
Sun Java™ System

Application Server Platform Edition 8.1
Developer’s Guide

2005Q1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0079

Copyright © 2004 - 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more
additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE OR
REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable
provisions of the FAR and its supplements.
Use is subject to license terms.
This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear, missile,
chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject
to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 - 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En
particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à l'adresse
http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC. SON
UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET PREALABLE
DE SUN MICROSYSTEMS, INC.
L’utilisation est soumise aux termes de la License.
Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d'autres pays.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans d’autres pays
dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles, des armes biologiques et
chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers les pays sous embargo
américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière non exhaustive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régis par la législation
américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU
TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE
CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

Preface . 19

Who Should Use This Book . 19
Before You Read This Book . 19
How This Book Is Organized . 20
Conventions Used in This Book . 21

Typographic Conventions . 21
Symbols . 22
Default Paths and File Names . 23
Shell Prompts . 24

Related Documentation . 24
Books in This Documentation Set . 25
Other Server Documentation . 26

Accessing Sun Resources Online . 26
Contacting Sun Technical Support . 26
Related Third-Party Web Site References . 27
Sun Welcomes Your Comments . 27

Part I Developing and Deploying Applications . 29

Chapter 1 Setting Up a Development Environment . 31
Installing and Preparing the Server for Development . 31
Tools . 32

The asadmin Command . 33
The Administration Console . 33
The asant Utility . 33
deploytool . 33
Verifier . 34
Migration Tool . 34

4 Application Server Platform Edition 2005Q1 • Developer’s Guide

Debugging Tools . 34
Profiling Tools . 34

Sample Applications . 35

Chapter 2 Securing Applications . 37
Security Goals . 38
Application Server Specific Security Features . 38
Container Security . 39

Programmatic Security . 39
Declarative Security . 39

Application Level Security . 40
Component Level Security . 40

Realm Configuration . 40
Supported Realms . 40
How to Configure a Realm . 41
How to Set a Realm for an Application or Module . 41
Creating a Custom Realm . 42

JACC Support . 43
Pluggable Audit Module Support . 43

Configuring an Audit Module . 44
The AuditModule Class . 44

The server.policy File . 45
Default Permissions . 45
Changing Permissions for an Application . 45

Configuring Message Security . 46
Message Security Responsibilities . 47

Application Developer . 47
Application Deployer . 48
System Administrator . 48

Application-Specific Message Protection . 49
Using a Signature to Enable Message Protection for All Methods . 49
Configuring Message Protection For a Specific Method Based on Digital Signatures 50

Understanding and Running the Example Application . 52
Setting Up the Sample Application . 52
Running the Sample Application . 53

Monitoring Message Security . 55
Programmatic Login . 56

Precautions . 56
Granting Programmatic Login Permission . 57
The ProgrammaticLogin Class . 57

User Authentication for Single Sign-on . 58
Defining Roles . 60

Contents 5

Chapter 3 Assembling and Deploying Applications . 63
Overview of Assembly and Deployment . 63

Modules . 64
Applications . 65
J2EE Standard Descriptors . 67
Sun Java System Application Server Descriptors . 68
Naming Standards . 68
Directory Structure . 69
Runtime Environments . 71

Module Runtime Environment . 71
Application Runtime Environment . 72

Classloaders . 73
The Classloader Hierarchy . 74
Classloader Universes . 76
Circumventing Classloader Isolation . 77

Assembling Modules and Applications . 79
deploytool . 80
Apache Ant . 80
The Deployment Descriptor Verifier . 80

Deploying Modules and Applications . 85
Deployment Errors . 85
The Deployment Life Cycle . 86

Dynamic Deployment . 86
Disabling a Deployed Application or Module . 86
Dynamic Reloading . 87
Automatic Deployment . 88

Tools for Deployment . 88
Apache Ant . 89
The deploytool . 89
JSR 88 . 89
The asadmin Command . 89
The Administration Console . 89

Deployment by Module or Application . 90
Deploying a WAR Module . 90
Deploying an EJB JAR Module . 91
Deploying a Lifecycle Module . 91
Deploying an Application Client . 92
Deploying a J2EE CA Resource Adapter . 93
Access to Shared Frameworks . 93

asant Assembly and Deployment Tool . 93
asant Tasks for Sun Java System Application Server . 94

sun-appserv-deploy . 95
sun-appserv-undeploy . 99

6 Application Server Platform Edition 2005Q1 • Developer’s Guide

sun-appserv-component . 101
sun-appserv-admin . 104
sun-appserv-jspc . 106
sun-appserv-update . 107

Reusable Subelements . 108
component . 108
fileset . 110

Chapter 4 Debugging Applications . 111
Enabling Debugging . 111
JPDA Options . 112
Generating a Stack Trace for Debugging . 113
The Java Debugger . 113
Using the NetBeans IDE for Debugging . 114
Sun Java System Message Queue Debugging . 115
Enabling Verbose Mode . 115
Logging . 115
Profiling . 115

The HPROF Profiler . 116
The Optimizeit Profiler . 117

Part II Developing Applications and Application Components . 119

Chapter 5 Developing Web Applications . 121
Introducing Web Applications . 121

Internationalization Issues . 122
The Server . 122
Servlets . 122

Virtual Servers . 123
Default Web Modules . 123
Classloader Delegation . 124
Using the default-web.xml File . 124
Configuring Logging in the Web Container . 124
Configuring HTML Error Pages . 125
Header Management . 125

Using Servlets . 126
Invoking a Servlet with a URL . 126
Servlet Output . 127
Caching Servlet Results . 128

Caching Features . 129
Default Cache Configuration . 130

Contents 7

Caching Example . 130
CacheKeyGenerator Interface . 131

About the Servlet Engine . 131
Instantiating and Removing Servlets . 132
Request Handling . 132

Using JavaServer Pages . 132
JSP Tag Libraries and Standard Portable Tags . 133
JSP Caching . 133

cache . 134
flush . 136

Options for Compiling JSP Files . 137
Creating and Managing HTTP Sessions . 137

Configuring Sessions . 137
Sessions, Cookies, and URL Rewriting . 137
Coordinating Session Access . 138

Session Managers . 138
The memory Persistence Type . 138
The file Persistence Type . 139

Chapter 6 Using Enterprise JavaBeans Technology . 141
Summary of EJB 2.1 Changes . 141
Value Added Features . 142

Read-Only Beans . 142
pass-by-reference . 143
Pooling and Caching . 143

Pooling Parameters . 144
Caching Parameters . 144

Bean-Level Container-Managed Transaction Timeouts . 144
Priority Based Scheduling of Remote Bean Invocations . 145
Immediate Flushing . 145

EJB Timer Service . 146
Using Session Beans . 147

About the Session Bean Containers . 147
Stateless Container . 147
Stateful Container . 148

Restrictions and Optimizations . 148
Optimizing Session Bean Performance . 149
Restricting Transactions . 149

Using Read-Only Beans . 149
Read-Only Bean Characteristics and Life Cycle . 150
Read-Only Bean Good Practices . 151
Refreshing Read-Only Beans . 151

Invoking a Transactional Method . 151

8 Application Server Platform Edition 2005Q1 • Developer’s Guide

Refreshing Periodically . 151
Refreshing Programmatically . 151

Deploying Read Only Beans . 152
Using Message-Driven Beans . 153

Message-Driven Bean Configuration . 153
Connection Factory and Destination . 153
Message-Driven Bean Pool . 153
Domain-Level Settings . 154

Restrictions and Optimizations . 154
Pool Tuning and Monitoring . 155
onMessage Runtime Exception . 155

Sample Message-Driven Bean XML Files . 156
Sample ejb-jar.xml File . 156
Sample sun-ejb-jar.xml File . 157

Handling Transactions with Enterprise Beans . 158
Flat Transactions . 158
Global and Local Transactions . 158
Commit Options . 159
Administration and Monitoring . 160

Chapter 7 Using Container-Managed Persistence for Entity Beans 161
Sun Java System Application Server Support . 161
Container-Managed Persistence Mapping . 162

Mapping Capabilities . 163
The Mapping Deployment Descriptor File . 163
Mapping Considerations . 164

Join Tables and Relationships . 165
Automatic Primary Key Generation . 165
Fixed Length CHAR Primary Keys . 165
Managed Fields . 166
BLOB Support . 166
CLOB Support . 167

Automatic Schema Generation . 168
Supported Data Types . 168
Generation Options . 170

Schema Capture . 175
Automatic Database Schema Capture . 175
Using the capture-schema Utility . 176

Configuring the CMP Resource . 176
Configuring Queries for 1.1 Finders . 177

About JDOQL Queries . 177
Query Filter Expression . 178
Query Parameters . 180

Contents 9

Query Variables . 180
JDOQL Examples . 180

Performance-Related Features . 181
Version Column Consistency Checking . 182
Relationship Prefetching . 182
Read-Only Beans . 183

Restrictions and Optimizations . 183
Eager Loading of Field State . 184
Restrictions on Remote Interfaces . 184
Sybase Finder Limitation . 184
Date and Time Fields as CMP Field Types . 185
No Support for lock-when-loaded on Sybase and DB2 . 185
Set RECURSIVE_TRIGGERS to false on MSSQL . 185

Chapter 8 Developing Java Clients . 187
Introducing the Application Client Container . 187
Developing Clients Using the ACC . 188

Using an Application Client to Access an EJB Component . 188
Using an Application Client to Access a JMS Resource . 190
Running an Application Client Using the ACC . 191
Packaging an Application Client Using the ACC . 191

Editing the Configuration File . 192
Editing the appclient Script . 192
Editing the sun-acc.xml File . 192
Setting Security Options . 193
Using the package-appclient Script . 194

Developing Clients Without the ACC . 195
Using a Stand-Alone Client to Access an EJB Component . 195
Using a Server-Side Module to Access an EJB Component . 196
Using a Stand-Alone Client to Access a JMS Resource . 197

Chapter 9 Developing Connectors . 199
Connector 1.5 Support in the Application Server . 200

Connector Architecture for JMS and JDBC . 200
Connector Configuration . 200

Deploying and Configuring a Stand-Alone Connector Module . 201
Redeploying a Stand-Alone Connector Module . 202
Deploying and Configuring an Embedded Resource Adapter . 202
Advanced Connector Configuration Options . 203

Thread Pools . 203
Security Maps . 204
Overriding Configuration Properties . 205

10 Application Server Platform Edition 2005Q1 • Developer’s Guide

Testing a Connection Pool . 205
Handling Invalid Connections . 205
Setting the Shutdown Timeout . 206
Using Last Agent Optimization of Transactions . 206

Inbound Communication Support . 207
Configuring a Message Driven Bean to Use a Resource Adapter . 207

Example Resource Adapter for Inbound Communication . 210

Chapter 10 Developing Lifecycle Listeners . 211
Server Life Cycle Events . 211
The LifecycleListener Interface . 212
The LifecycleEvent Class . 212
The Server Lifecycle Event Context . 213
Deploying a Lifecycle Module . 213
Considerations for Lifecycle Modules . 214

Part III Using Services and APIs . 215

Chapter 11 Using the JDBC API for Database Access . 217
General Steps for Creating a JDBC Resource . 218

Integrating the JDBC Driver . 218
Supported Database Drivers . 218
Making the JDBC Driver JAR Files Accessible . 218

Creating a Connection Pool . 219
Testing a Connection Pool . 219
Creating a JDBC Resource . 219

Creating Applications That Use the JDBC API . 220
Sharing Connections . 220
Obtaining a Physical Connection from a Wrapped Connection . 220
Using Non-Transactional Connections . 221
Using JDBC Transaction Isolation Levels . 222

Configurations for Specific JDBC Drivers . 223
PointBase Type4 Driver . 224
Sun Java System JDBC Driver for DB2 Databases . 225
Sun Java System JDBC Driver for Oracle 8.1.7 and 9.x Databases . 225
Sun Java System JDBC Driver for Microsoft SQL Server Databases . 226
Sun Java System JDBC Driver for Sybase Databases . 226
IBM DB2 8.1 Type2 Driver . 227
JConnect/Type4 Driver for Sybase ASE 12.5 Databases . 228
Inet Oraxo JDBC Driver for Oracle 8.1.7 and 9.x Databases . 229
Inet Merlia JDBC Driver for Microsoft SQL Server Databases . 230

Contents 11

Inet Sybelux JDBC Driver for Sybase Databases . 230
Oracle Thin/Type4 Driver for Oracle 8.1.7 and 9.x Databases . 231
OCI Oracle Type2 Driver for Oracle 8.1.7 and 9.x Databases . 232
IBM Informix Type4 Driver . 232
MM MySQL Type4 Driver . 233
CloudScape 5.1 Type4 Driver . 234

Chapter 12 Using the Transaction Service . 235
Transaction Resource Managers . 236
Transaction Scope . 236
Configuring the Transaction Service . 238
Transaction Logging . 238

Chapter 13 Using the Java Naming and Directory Interface . 239
Accessing the Naming Context . 239

Naming Environment for J2EE Application Components . 240
Accessing EJB Components Using the CosNaming Naming Context . 241
Accessing EJB Components in a Remote Application Server . 241
Naming Environment for Lifecycle Modules . 242

Configuring Resources . 242
External JNDI Resources . 243
Custom Resources . 243

Mapping References . 243

Chapter 14 Using the Java Message Service . 247
The JMS Provider . 248
Message Queue Resource Adapter . 248
Administration of the JMS Service . 249

Configuring the JMS Service . 249
The Default JMS Host . 250
Creating JMS Hosts . 251
Checking Whether the JMS Provider Is Running . 251
Creating Physical Destinations . 251
Creating JMS Resources: Destinations and Connection Factories . 252

Restarting the JMS Client After JMS Configuration . 252
JMS Connection Features . 252

Connection Pooling . 253
Connection Failover . 253

Transactions and Non-Persistent Messages . 254
ConnectionFactory Authentication . 254
Message Queue varhome Directory . 254
Delivering SOAP Messages Using the JMS API . 255

12 Application Server Platform Edition 2005Q1 • Developer’s Guide

Sending SOAP Messages Using the JMS API . 255
Receiving SOAP Messages Using the JMS API . 257

Chapter 15 Using the JavaMail API . 259
Introducing JavaMail . 259
Creating a JavaMail Session . 260
JavaMail Session Properties . 260
Looking Up a JavaMail Session . 261
Sending Messages Using JavaMail . 261
Reading Messages Using JavaMail . 262

Chapter 16 Using the Java Management Extensions (JMX) API . 263
Application Server Management Extensions (AMX) . 263

About AMX . 264
AMX MBeans . 265

Configuration MBeans . 265
Monitoring MBeans . 266
Utility MBeans . 266
J2EE Management MBeans . 266
Other MBeans . 266
MBean Notifications . 266
Access to MBean Attributes. 267

Proxies . 267
Connecting to the Domain Administration Server . 267
Examining AMX Code Samples . 268

Connecting to the DAS . 268
Starting an Application Server . 270
Deploying an Archive . 271
Displaying the AMX MBean Hierarchy . 274
Setting Monitoring States . 277
Accessing AMX MBeans . 279
Accessing and Displaying the Attributes of an AMX MBean . 282
Listing AMX MBean Properties . 283
Querying . 285
Monitoring Attribute Changes . 287
Undeploying Modules . 290
Stopping an Application Server . 291

Running the AMX Samples . 291

Appendix A Deployment Descriptor Files . 293
Sun Java System Application Server Descriptors . 293
The sun-application.xml File . 295

Contents 13

The sun-web.xml File . 295
The sun-ejb-jar.xml File . 299
The sun-cmp-mappings.xml File . 304
The sun-application-client.xml file . 308
The sun-acc.xml File . 309
Alphabetical Listing of All Elements . 310

activation-config . 310
activation-config-property . 310
activation-config-property-name . 311
activation-config-property-value . 311
as-context . 311
auth-method . 312
auth-realm . 312
bean-cache . 313
bean-pool . 314
cache . 315
cache-helper . 317
cache-helper-ref . 318
cache-idle-timeout-in-seconds . 318
cache-mapping . 318
call-property . 320
caller-propagation . 320
cert-db . 320
check-all-at-commit . 321
check-modified-at-commit . 321
check-version-of-accessed-instances . 321
checkpoint-at-end-of-method . 322
checkpointed-methods . 322
class-loader . 322
client-container . 323
client-credential . 324
cmp . 325
cmp-field-mapping . 326
cmp-resource . 326
cmr-field-mapping . 327
cmr-field-name . 328
cmt-timeout-in-seconds . 328
column-name . 328
column-pair . 328
commit-option . 329
confidentiality . 329
consistency . 330
constraint-field . 330

14 Application Server Platform Edition 2005Q1 • Developer’s Guide

constraint-field-value . 331
context-root . 332
cookie-properties . 332
create-tables-at-deploy . 333
database-vendor-name . 333
default . 334
default-helper . 334
default-resource-principal . 335
description . 336
dispatcher . 336
drop-tables-at-undeploy . 336
ejb . 337
ejb-name . 339
ejb-ref . 340
ejb-ref-name . 340
endpoint-address-uri . 341
enterprise-beans . 341
entity-mapping . 343
establish-trust-in-client . 343
establish-trust-in-target . 344
fetched-with . 344
field-name . 345
finder . 345
flush-at-end-of-method . 346
gen-classes . 346
group-name . 347
http-method . 347
idempotent-url-pattern . 348
integrity . 348
ior-security-config . 348
is-cache-overflow-allowed . 349
is-one-one-cmp . 349
is-read-only-bean . 349
java-method . 349
jms-durable-subscription-name . 350
jms-max-messages-load . 350
jndi-name . 350
jsp-config . 351
key-field . 353
level . 354
local-home-impl . 354
local-impl . 355
locale-charset-info . 355

Contents 15

locale-charset-map . 356
localpart . 357
lock-when-loaded . 357
lock-when-modified . 358
log-service . 358
login-config . 359
manager-properties . 359
mapping-properties . 360
max-cache-size . 360
max-pool-size . 361
max-wait-time-in-millis . 361
mdb-connection-factory . 361
mdb-resource-adapter . 362
message . 362
message-destination . 363
message-destination-name . 363
message-security . 363
message-security-binding . 364
message-security-config . 365
method . 366
method-intf . 366
method-name . 367
method-param . 367
method-params . 367
name . 368
named-group . 368
namespaceURI . 368
none . 368
one-one-finders . 369
operation-name . 369
parameter-encoding . 370
pass-by-reference . 370
password . 372
pm-descriptors . 372
pool-idle-timeout-in-seconds . 372
port-component-name . 372
port-info . 373
prefetch-disabled . 374
principal . 374
principal-name . 374
property (with attributes) . 375
property (with subelements) . 376
provider-config . 376

16 Application Server Platform Edition 2005Q1 • Developer’s Guide

query-filter . 377
query-method . 378
query-ordering . 378
query-params . 378
query-variables . 379
read-only . 379
realm . 379
refresh-field . 379
refresh-period-in-seconds . 380
removal-timeout-in-seconds . 380
remote-home-impl . 381
remote-impl . 381
request-policy . 381
request-protection . 382
required . 383
res-ref-name . 383
resize-quantity . 383
resource-adapter-mid . 384
resource-env-ref . 384
resource-env-ref-name . 385
resource-ref . 385
response-policy . 386
response-protection . 387
role-name . 387
sas-context . 388
schema . 388
schema-generator-properties . 389
secondary-table . 390
security . 390
security-role-mapping . 391
service-endpoint-interface . 391
service-impl-class . 392
service-qname . 392
service-ref . 392
service-ref-name . 393
servlet . 393
servlet-impl-class . 394
servlet-name . 394
session-config . 394
session-manager . 395
session-properties . 396
ssl . 397
steady-pool-size . 397

Contents 17

store-properties . 398
stub-property . 398
sun-application . 399
sun-application-client . 400
sun-cmp-mapping . 401
sun-cmp-mappings . 401
sun-ejb-jar . 402
sun-web-app . 402
table-name . 405
target-server . 405
tie-class . 406
timeout . 406
transport-config . 407
transport-guarantee . 407
unique-id . 408
url-pattern . 408
use-thread-pool-id . 408
value . 409
victim-selection-policy . 409
web . 410
web-uri . 410
webservice-description . 410
webservice-description-name . 411
webservice-endpoint . 411
wsdl-override . 412
wsdl-port . 412
wsdl-publish-location . 413

Index . 415

18 Application Server Platform Edition 2005Q1 • Developer’s Guide

19

Preface

This Developer’s Guide describes how to create and run Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) applications that follow the open Java standards model for J2EE
components and APIs in the Sun Java™ System Application Server environment. Topics
include developer tools, security, assembly, deployment, debugging, and creating lifecycle
modules.

Who Should Use This Book
This Developer’s Guide is intended for use by software developers who create, assemble,
and deploy J2EE applications using Sun Java System servers and software. Application
Server software developers should already understand the following technologies:

• Java technology

• The Java™ 2 Platform, Enterprise Edition (J2EE™ platform), version 1.4

• Hypertext Transfer Protocol (HTTP)

• Hypertext Markup Language (HTML)

• Extensible Markup Language (XML)

Before You Read This Book
Application Server is a component of Sun Java™ Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or Internet
environment. You should be familiar with the documentation provided with Sun Java
Enterprise System, which can be accessed online at
http://docs.sun.com/app/docs/prod/entsys.05q1#hic.

http://docs.sun.com/app/docs/prod/entsys.05q1#hic

How This Book Is Organized

20 Application Server Platform Edition 2005Q1 • Developer’s Guide

How This Book Is Organized
The Developer’s Guide has three parts and an Appendix:

• Part I, “Developing and Deploying Applications,” includes general development topics
relevant to the Application Server, such as security and debugging.

• Part II, “Developing Applications and Application Components,” describes J2EE
application components, such as servlets and message-driven beans, that can run on the
Application Server.

• Part III, “Using Services and APIs,” describes services and APIs that provide
Application Server resources, such as JDBC and JNDI.

• Appendix A, “Deployment Descriptor Files,” describes deployment descriptor files
specific to the Sun Java System Application Server.

The following table summarizes the chapters in this book.

Table 1 How This Book Is Organized
Chapter Description

Chapter 1, “Setting Up a Development
Environment”

Describes setting up an application development
environment in the Sun Java System Application Server.

Chapter 2, “Securing Applications” Explains how to write secure J2EE applications, which
contain components that perform user authentication
and access authorization.

Chapter 3, “Assembling and
Deploying Applications”

Describes Sun Java System Application Server modules
and how these modules are assembled separately or
together in an application. Also describes classloaders
and tools for assembly and deployment.

Chapter 4, “Debugging Applications” Provides guidelines for debugging applications in the
Sun Java System Application Server.

Chapter 5, “Developing Web
Applications”

Describes how web applications are supported in the
Sun Java System Application Server.

Chapter 6, “Using Enterprise
JavaBeans Technology”

Describes how Enterprise JavaBeans™ (EJB™)
technology is supported in the Sun Java System
Application Server.

Chapter 7, “Using Container-Managed
Persistence for Entity Beans”

Provides information on how container-managed
persistence (CMP) works in the Sun Java System
Application Server.

Chapter 8, “Developing Java Clients” Describes how to develop, assemble, and deploy J2EE
Application Clients.

Conventions Used in This Book

Preface 21

Conventions Used in This Book
The tables in this section describe the conventions used in this book.

Typographic Conventions
The following table describes the typographic changes used in this book.

Chapter 9, “Developing Connectors” Describes Sun Java System Application Server support
for the J2EE Connector 1.5 architecture.

Chapter 10, “Developing Lifecycle
Listeners”

Describes how to create and use a lifecycle listener
module.

Chapter 11, “Using the JDBC API for
Database Access”

Explains how to use the Java™ Database Connectivity
(JDBC™) API for database access with the Sun Java
System Application Server.

Chapter 12, “Using the Transaction
Service”

Describes J2EE transactions and transaction support in
the Sun Java System Application Server.

Chapter 13, “Using the Java Naming
and Directory Interface”

Explains how to use the Java Naming and Directory
Interface™ (JNDI) API for naming and references.

Chapter 14, “Using the Java Message
Service”

Explains how to use the Java™ Message Service (JMS)
API, and describes the Application Server’s fully
integrated JMS provider: the Sun Java™ System
Message Queue software.

Chapter 15, “Using the JavaMail API” Explains how to use the JavaMail™ API.

Chapter 16, “Using the Java
Management Extensions (JMX) API”

Explains how to use the Java Management Extensions
(JMX™) API.

Appendix A, “Deployment Descriptor
Files”

Describes deployment descriptor files specific to the Sun
Java System Application Server.

Table 2 Typographic Conventions
Typeface Meaning Examples

AaBbCc123
(Monospace)

API and language elements, HTML
tags, web site URLs, command
names, file names, directory path
names, onscreen computer output,
sample code.

Edit your.login file.

Use ls -a to list all files.

% You have mail.

Table 1 How This Book Is Organized (Continued)
Chapter Description

Conventions Used in This Book

22 Application Server Platform Edition 2005Q1 • Developer’s Guide

Symbols
The following table describes the symbol conventions used in this book.

AaBbCc123
(Monospace
bold)

What you type, when contrasted
with onscreen computer output.

% su
Password:

AaBbCc123
(Italic)

Book titles, new terms, words to be
emphasized.

A placeholder in a command or path
name to be replaced with a real
name or value.

Read Chapter 6 in the User’s Guide.

These are called class options.

Do not save the file.

The file is located in the
install-dir/bin directory.

Table 3 Symbol Conventions
Symbol Description Example Meaning

[] Contains optional command
options.

ls [-l] The -l option is not
required.

{ | } Contains a set of choices for
a required command option.

-d {y|n} The -d option requires that
you use either the y
argument or the n
argument.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key,
release it, and then press
the subsequent keys.

> Indicates menu item
selection in a graphical user
interface.

File > New > Templates From the File menu, choose
New. From the New
submenu, choose
Templates.

Table 2 Typographic Conventions (Continued)
Typeface Meaning Examples

Conventions Used in This Book

Preface 23

Default Paths and File Names
The following table describes the default paths and file names used in this book.

Table 4 Default Paths and File Names
Term Description

install_dir By default, the Application Server installation directory is located here:

• Sun Java Enterprise System installations on the Solaris™ platform:

/opt/SUNWappserver/appserver

• Sun Java Enterprise System installations on the Linux platform:

/opt/sun/appserver/

• Other Solaris and Linux installations, non-root user:

user’s home directory/SUNWappserver

• Other Solaris and Linux installations, root user:

/opt/SUNWappserver

• Windows, all installations:

SystemDrive:\Sun\AppServer

domain_root_dir By default, the directory containing all domains is located here:

• Sun Java Enterprise System installations on the Solaris platform:

/var/opt/SUNWappserver/domains/

• Sun Java Enterprise System installations on the Linux platform:

/var/opt/sun/appserver/domains/

• All other installations:

install_dir/domains/

domain_dir By default, each domain directory is located here:

domain_root_dir/domain_dir

In configuration files, you might see domain_dir represented as follows:

${com.sun.aas.instanceRoot}

Related Documentation

24 Application Server Platform Edition 2005Q1 • Developer’s Guide

Shell Prompts
The following table describes the shell prompts used in this book.

Related Documentation
The http://docs.sun.comSM web site enables you to access Sun technical documentation
online. You can browse the archive or search for a specific book title or subject.

You can find a directory of URLs for the official specifications at
install_dir/docs/index.htm. Additionally, the following resources might be useful.

General J2EE Information:

The J2EE 1.4 Tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

The J2EE Blueprints:

http://java.sun.com/reference/blueprints/index.html

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi, &
Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with Servlets and JSP files:

Java Servlet Programming, by Jason Hunter, O’Reilly Publishing

Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Table 5 Shell Prompts
Shell Prompt

C shell on UNIX or Linux machine-name%

C shell superuser on UNIX or Linux machine-name#

Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C:\

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/reference/blueprints/index.html
http://docs.sun.com

Related Documentation

Preface 25

Programming with JDBC:

Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by
Graham Hamilton, Rick Cattell, & Maydene Fisher

Javadocs:

Javadocs for packages provided with the Application Server are located in
install_dir/docs/api.

Books in This Documentation Set
The Sun Java System Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML).

The following table summarizes the books included in the Application Server core
documentation set.

Table 6 Books in This Documentation Set
Book Title Description

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating
system, JDK, and JDBC/RDBMS.

Quick Start Guide How to get started with the Sun Java System Application Server product.

Installation Guide Installing the Sun Java System Application Server software and its components.

Developer’s Guide Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components and APIs. Includes general
information about developer tools, security, assembly, deployment, debugging, and
creating lifecycle modules.

J2EE 1.4 Tutorial Using J2EE 1.4 platform technologies and APIs to develop J2EE applications and
deploying the applications on the Sun Java System Application Server.

Administration Guide Configuring, managing, and deploying the Sun Java System Application Server
subsystems and components from the Administration Console.

Administration Reference Editing the Sun Java System Application Server configuration file, domain.xml.

Upgrade and Migration Guide Migrating your applications to the new Sun Java System Application Server
programming model, specifically from Application Server 6.x and 7. This guide also
describes differences between adjacent product releases and configuration options
that can result in incompatibility with the product specifications.

Troubleshooting Guide Solving Sun Java System Application Server problems.

Accessing Sun Resources Online

26 Application Server Platform Edition 2005Q1 • Developer’s Guide

Other Server Documentation
For other server documentation, go to the following:

• Message Queue documentation
http://docs.sun.com/db?p=prod/s1.s1msgqu

• Directory Server documentation
http://docs.sun.com/coll/DirectoryServer_04q2

• Web Server documentation
http://docs.sun.com/coll/S1_websvr61_en

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

• Download Center
http://wwws.sun.com/software/download/

• Professional Services
http://www.sun.com/service/sunps/sunone/index.html

• Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

• Developer Information
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the product
documentation, go to http://www.sun.com/service/contacting.

Error Message Reference Solving Sun Java System Application Server error messages.

Reference Manual Utility commands available with the Sun Java System Application Server; written in
manpage style. Includes the asadmin command line interface.

Table 6 Books in This Documentation Set (Continued)
Book Title Description

http://docs.sun.com/db?p=prod/s1.s1msgqu
http://docs.sun.com/coll/DirectoryServer_04q2
http://docs.sun.com/coll/S1_websvr61_en
http://wwws.sun.com/software/download/
http://www.sun.com/service/sunps/sunone/index.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html
http://www.sun.com/service/contacting

Related Third-Party Web Site References

Preface 27

Related Third-Party Web Site References
Information about the Ant tool is available through the Apache Software Foundation:

http://ant.apache.org/

For information about standard Ant tasks, see the Ant documentation:

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/index.html

For information about use of the fileset element in the Ant tool, see:

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/CoreTypes/fileset.html

For more information about SOAP, see the Apache SOAP web site:

http://xml.apache.org/soap/index.html

Information about Optimizeit™ from Borland is available at:

http://www.borland.com/optimizeit

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or loss
caused or alleged to be caused by or in connection with use of or reliance on any such
content, goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the
online form, provide the document title and part number. The part number is a seven-digit
or nine-digit number that can be found on the title page of the book or at the top of the
document. For example, the title of this book is Sun Java System Application Server
2005Q1 Developer’s Guide, and the part number is 819-0079.

http://ant.apache.org/
http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/index.html
http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/CoreTypes/fileset.html
http://www.w3.org/TR/REC-xml
http://xml.apache.org/soap/index.html
http://www.borland.com/optimizeit
http://docs.sun.com

Sun Welcomes Your Comments

28 Application Server Platform Edition 2005Q1 • Developer’s Guide

Part I

Developing and Deploying
Applications

Chapter 1, “Setting Up a Development Environment”

Chapter 2, “Securing Applications”

Chapter 3, “Assembling and Deploying Applications”

Chapter 4, “Debugging Applications”

31

Chapter 1

Setting Up a Development
Environment

This chapter gives guidelines for setting up an application development environment in the
Sun Java™ System Application Server. Setting up an environment for creating, assembling,
deploying, and debugging your code involves installing the mainstream version of the Sun
Java System Application Server and making use of development tools. In addition, sample
applications are available. These topics are covered in the following sections:

• Installing and Preparing the Server for Development

• Tools

• Sample Applications

Installing and Preparing the Server for
Development

For the Sun Java Enterprise System, Application Server installation is part of the system
installation process. For more information, see
http://docs.sun.com/app/docs/prod/entsys.05q1#hic.

For all other installations, the following components are included in the full installation. For
more information, see the Sun Java System Application Server Installation Guide.

• Sun Java System Application Server core, including:

❍ J2EE 1.4 compliant application server

❍ Administration Console

❍ asadmin utility

http://docs.sun.com/app/docs/prod/entsys.05q1#hic

Tools

32 Application Server Platform Edition 2005Q1 • Developer’s Guide

❍ deploytool

❍ Other development and deployment tools

❍ Sun Java™ System Message Queue

❍ J2SE 1.4.2

❍ PointBase (intended for evaluation use only, not for production or deployment use)

• JDK

• Sample Applications

After you have installed Sun Java System Application Server, you can further optimize the
server for development in these ways:

• Locate utility classes and libraries so they can be accessed by the proper classloaders.
For more information, see “Using the System Classloader” on page 77 or “Using the
Common Classloader” on page 77.

• Set up debugging. For more information, see Chapter 4, “Debugging Applications.”

• Configure the Java™ Virtual Machine (JVM™) software. For more information, see
the Sun Java System Application Server Administration Guide.

Tools
The following general tools are provided with Sun Java System Application Server:

• The asadmin Command

• The Administration Console

The following development tools are provided with Sun Java System Application Server or
downloadable from Sun:

• The asant Utility

• deploytool

• Verifier

• Migration Tool

The following third-party tools might also be useful:

• Debugging Tools

• Profiling Tools

Tools

Chapter 1 Setting Up a Development Environment 33

The asadmin Command
The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the Sun Java System Application Server Reference Manual.

The asadmin command is located in the install_dir/bin directory. Type asadmin help for
a list of subcommands.

The Administration Console
The Administration Console lets you configure the server and perform both administrative
and development tasks using a web browser. For general information about the
Administration Console, see the Sun Java System Application Server Administration
Guide.

To access the Administration Console, type http://host:4848 in your browser. The host
is the name of the machine on which the Application Server is running.

The asant Utility
Apache Ant 1.5.4 is provided with Sun Java System Application Server and can be
launched from the bin directory using the command asant. Sun Java System Application
Server also provides server-specific tasks for deployment; see “asant Assembly and
Deployment Tool” on page 93. The sample applications provided with Sun Java System
Application Server use Ant build.xml files; see “Sample Applications” on page 35.

For more information about Ant, see the Apache Software Foundation website:

http://ant.apache.org/

deploytool
You can use the deploytool, provided with Sun Java System Application Server, to
assemble J2EE applications and modules, configure deployment parameters, perform
simple static checks, and deploy the final result. For more information about using the
deploytool, see the J2EE 1.4 Tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

http://ant.apache.org/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Tools

34 Application Server Platform Edition 2005Q1 • Developer’s Guide

Verifier
The verifier tool checks a J2EE application file (EAR, JAR, WAR, RAR), including Java
classes and deployment descriptors, for compliance with J2EE specifications. Use it to
check whether an application has obvious bugs and to make applications portable across
application servers. The verifier can be launched from the deploytool or from the command
line. For more information, see “The Deployment Descriptor Verifier” on page 80.

Migration Tool
The Migration Tool reassembles J2EE applications and modules developed on other
application servers. For more information and to download the Migration Tool, see:

http://java.sun.com/j2ee/tools/migration/index.html

For additional information on migration, see the Sun Java System Application Server
Upgrade and Migration Guide.

Debugging Tools
You can use several debuggers with the Sun Java System Application Server. For more
information, see Chapter 4, “Debugging Applications.”

Profiling Tools
You can use several profilers with the Sun Java System Application Server. For more
information, see “Profiling” on page 115.

http://java.sun.com/j2ee/tools/migration/index.html

Sample Applications

Chapter 1 Setting Up a Development Environment 35

Sample Applications
Sample applications that you can examine and deploy are included with the full installation
of the Sun Java System Application Server. You can also download these samples
separately if you installed the Sun Java System Application Server without them initially.

If installed with the Sun Java System Application Server, the samples are in the
install_dir/samples directory. The samples are organized in categories such as ejb, jdbc,
connectors, i18n, and so on. Each sample category is further divided into subcategories.
For example, under the ejb category are stateless, stateful, security, mdb, bmp, and
cmp subcategories.

Most Sun Java System Application Server samples have the following directory structure:

• The docs directory contains instructions for how to use the sample.

• The build.xml file defines asant targets for the sample (see “asant Assembly and
Deployment Tool” on page 93)

• The build and javadocs directories are generated as a result of targets specified in the
build.xml file.

• The src/java directory under each component contains source code for the sample.

• The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure
described here:

http://java.sun.com/blueprints/code/projectconventions.html

The install_dir/samples/common-ant.xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy and undeploy
sample applications. In most sample applications, the build.xml file includes
common-ant.xml.

For a detailed description of the helloworld sample and how to deploy and run it, see the
associated documentation at:

install_dir/samples/ejb/stateless/apps/simple/docs/index.html

After you deploy the helloworld sample in Sun Java System Application Server, you can
invoke it using the following URL:

http://server:port/helloworld

http://java.sun.com/blueprints/code/projectconventions.html

Sample Applications

36 Application Server Platform Edition 2005Q1 • Developer’s Guide

37

Chapter 2

Securing Applications

This chapter describes how to write secure J2EE applications, which contain components
that perform user authentication and access authorization for servlets and EJB business
logic. For information about administrative security for the server, see the Sun Java System
Application Server Administration Guide.

This chapter contains the following sections:

• Security Goals

• Application Server Specific Security Features

• Container Security

• Realm Configuration

• JACC Support

• Pluggable Audit Module Support

• The server.policy File

• Configuring Message Security

• Programmatic Login

• User Authentication for Single Sign-on

• Defining Roles

Security Goals

38 Application Server Platform Edition 2005Q1 • Developer’s Guide

Security Goals
In an enterprise computing environment, there are many security risks. The Sun Java
System Application Server’s goal is to provide highly secure, interoperable, and distributed
component computing based on the J2EE security model. Security goals include:

• Full compliance with the J2EE security model (for more information, see the J2EE
specification, v1.4 Chapter 3 Security)

• Full compliance with the EJB v2.1 security model (for more information, see the
Enterprise JavaBean specification v2.1 Chapter 15 Security Management). This
includes EJB role-based authorization.

• Full compliance with the Java Servlet v2.4 security model (for more information, see
the Java Servlet specification, v2.4 Chapter 11 Security). This includes servlet
role-based authorization.

• Support for single sign-on across all Sun Java System Application Server applications
within a single security domain.

• Support for message security.

• Security support for ACC Clients.

• Support for several underlying authentication realms, such as simple file and LDAP.
Certificate authentication is also supported for SSL client authentication. For Solaris,
OS platform authentication is supported in addition to these.

• Support for declarative security through Sun Java System Application Server specific
XML-based role mapping.

• Support for JACC (Java Authorization Contract for Containers) pluggable
authorization as included in the J2EE 1.4 specification and defined by JSR-115.

Application Server Specific Security Features
The Sun Java System Application Server supports the J2EE v1.4 security model, as well as
the following features which are specific to the Sun Java System Application Server:

• Message security

• Single sign-on across all Sun Java System Application Server applications within a
single security domain

• Programmatic login

• A GUI-based deploytool for building XML files containing the security information.

Container Security

Chapter 2 Securing Applications 39

Container Security
The component containers are responsible for providing J2EE application security. There
are two security forms provided by the container:

• Programmatic Security

• Declarative Security

Programmatic Security
Programmatic security is when an EJB component or servlet uses method calls to the
security API, as specified by the J2EE security model, to make business logic decisions
based on the caller or remote user’s security role. Programmatic security should only be
used when declarative security alone is insufficient to meet the application’s security
model.

The J2EE specification, v1.4 defines programmatic security as consisting of two methods of
the EJB EJBContext interface and two methods of the servlet HttpServletRequest
interface. The Sun Java System Application Server supports these interfaces as specified in
the specification.

For more information on programmatic security, see the following:

• Section 3.3.6, Programmatic Security, in the J2EE Specification,v1.4

• “Programmatic Login” on page 56

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the J2EE
application’s security structure, including security roles, access control, and authentication
requirements.

The Sun Java System Application Server supports the deployment descriptors specified by
J2EE v1.4 and has additional security elements included in its own deployment descriptors.
Declarative security is the application deployer’s responsibility.

There are two levels of declarative security, as follows:

• Application Level Security

• Component Level Security

Realm Configuration

40 Application Server Platform Edition 2005Q1 • Developer’s Guide

Application Level Security
The application XML deployment descriptor (application.xml) contains authorization
descriptors for all user roles for accessing the application’s servlets and EJB components.
On the application level, all roles used by any application container must be listed in a
role-name element in this file. The role names are scoped to the EJB XML deployment
descriptors (ejb-jar.xml and sun-ejb-jar.xml files) and to the servlet XML
deployment descriptors (web.xml and sun-web.xml files). The sun-application.xml
file must also contain matching security-role-mapping elements for each role-name
used by the application.

Component Level Security
Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by
using the security policy laid out in the servlet XML deployment descriptors (web.xml and
sun-web.xml files).

The EJB container is responsible for authorizing access to a bean method by using the
security policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and
sun-ejb-jar.xml files).

Realm Configuration
This section covers the following topics:

• Supported Realms

• How to Configure a Realm

• How to Set a Realm for an Application or Module

• Creating a Custom Realm

Supported Realms
The following realms are supported in the Sun Java System Application Server:

• file - Stores user information in a file. This is the default realm when you first install
the Sun Java System Application Server.

• ldap - Stores user information in an LDAP database.

Realm Configuration

Chapter 2 Securing Applications 41

• certificate - Sets up the user identity in the Sun Java System Application Server’s
security context, and populates it with user data obtained from cryptographically
verified client certificates.

• solaris - Allows authentication using Solaris username+password data. This realm
is only supported on Solaris 9.

For detailed information about configuring each of these realms, see the Sun Java System
Application Server Administration Guide.

How to Configure a Realm
You can configure a realm in one of these ways:

• In the Administration Console, open the Security component under the relevant
configuration and go to the Realms page. For details, see the Sun Java System
Application Server Administration Guide.

• Use the asadmin create-auth-realm command to configure realms on local
servers. For details, see the Sun Java System Application Server Reference Manual.

How to Set a Realm for an Application or Module
The following deployment descriptor elements have optional realm or realm-name data
subelements or attributes that override the domain’s default realm:

• sun-application element in sun-application.xml

• web-app element in web.xml

• as-context element in sun-ejb-jar.xml

• client-container element in sun-acc.xml

• client-credential element in sun-acc.xml

If modules within an application specify conflicting realms, these are ignored. If present,
the realm defined in sun-application.xml is used, otherwise the domain’s default realm
is used.

For example, a realm is specified in sun-application.xml as follows:

<sun-application>
...
<realm>ldap</realm>

</sun-application>

Realm Configuration

42 Application Server Platform Edition 2005Q1 • Developer’s Guide

For more information about the deployment descriptor files and elements, see Appendix A,
“Deployment Descriptor Files.”

Creating a Custom Realm
You can create a custom realm by providing a Java Authentication and Authorization
Service (JAAS) login module and a realm implementation. Note that client-side JAAS login
modules are not suitable for use with Sun Java System Application Server. For more
information about JAAS, refer to the JAAS specification for Java 2 SDK, v 1.4, available
here:

http://java.sun.com/products/jaas/

Custom realms must extend the
com.sun.appserv.security.AppservPasswordLoginModule class. This class extends
javax.security.auth.spi.LoginModule. Custom realms must not extend
LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not
implement any of the other methods, such as login(), logout(), abort(), commit(), or
initialize(). Default implementations are provided in AppservPasswordLoginModule
which hook into Sun Java System Application Server infrastructure.

The custom login module can access the following protected object fields, which it inherits
from AppservPasswordLoginModule. These contain the user name and password of the
user to be authenticated:

protected String _username;

protected String _password;

The authenticateUser() method must end with the following sequence:

String[] grpList;
// populate grpList with the set of groups to which
// _username belongs in this realm, if any
return commitUserAuthentication(_username, _password, _currentRealm, grpList);

Custom realms must also implement a Realm class which extends the
com.sun.appserv.security.AbstractRealm class.

http://java.sun.com/products/jaas/

JACC Support

Chapter 2 Securing Applications 43

Custom realms must implement the following methods:

public void init(Properties props) throws BadRealmException,
NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm in domain.xml. The realm can do
any initialization it needs in this method. If the method returns without throwing an
exception, Sun Java System Application Server assumes the realm is ready to service
authentication requests. If an exception is thrown, the realm is disabled.

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this
realm.

public abstract Enumeration getGroupNames(String username) throws
InvalidOperationException, NoSuchUserException

This method returns an Enumeration (of String objects) enumerating the groups (if any)
to which the given username belongs in this realm.

JACC Support
JACC (Java Authorization Contract for Containers) is part of the J2EE 1.4 specification and
defined by JSR-115. JACC defines an interface for pluggable authorization providers. This
provides third parties with a mechanism to develop and plug in modules that are responsible
for answering authorization decisions during J2EE application execution. The interfaces
and rules used for developing JACC providers are defined in the JACC 1.0 specification.

The Sun Java System Application Server provides a simple file-based JACC-compliant
authorization engine as a default JACC provider. To configure an alternate provider using
the Administration Console, open the Security component under the relevant configuration,
and select the JACC Providers component. For details, see the Sun Java System
Application Server Administration Guide.

Pluggable Audit Module Support
You can create a custom audit module. This section covers the following topics:

• Configuring an Audit Module

• The AuditModule Class

Pluggable Audit Module Support

44 Application Server Platform Edition 2005Q1 • Developer’s Guide

Configuring an Audit Module
To configure an audit module, you can perform one of the following tasks:

• To specify an audit module using the Administration Console, open the Security
component under the relevant configuration, and select the Audit Modules component.
For details, see the Sun Java System Application Server Administration Guide.

• You can use the asadmin create-audit-module command to configure an audit
module. For details, see the Sun Java System Application Server Reference Manual.

The AuditModule Class
You can create a custom audit module by implementing a class that extends
com.sun.appserv.security.AuditModule. The AuditModule class provides default
“no-op” implementations for each of the following methods, which your custom class can
override.

public void init(Properties props)

This method is invoked during server startup when the audit module is initially loaded. The
props argument contains the properties defined for this module in domain.xml. The
module can do any initialization it needs in this method. If the method returns without
throwing an exception, Sun Java System Application Server assumes the module realm is
ready to service audit requests. If an exception is thrown the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for
the given user. The success flag indicates whether the authorization was granted or denied.

public void webInvocation(String user, HttpServletRequest req, String type,
boolean success)

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is
the standard HttpServletRequest object for this request. The type string is one of
hasUserDataPermission or hasResourcePermission (see JSR-115).

public void ejbInvocation(String user, String ejb, String method, boolean
success)

This method is invoked when an EJB container call has been processed by authorization.
The success flag indicates whether the authorization was granted or denied. The ejb and
method strings describe the EJB component and its method that is being invoked.

The server.policy File

Chapter 2 Securing Applications 45

The server.policy File
Each Sun Java System Application Server domain has its own standard J2SE policy file,
located in domain_dir/config. The file is named server.policy.

Sun Java System Application Server is a J2EE 1.4-compliant application server. As such, it
follows the requirements of the J2EE specification, including the presence of the security
manager (the Java component that enforces the policy) and a limited permission set for
J2EE application code.

This section covers the following topics:

• Default Permissions

• Changing Permissions for an Application

Default Permissions
Internal server code is granted all permissions. These are covered by the AllPermission
grant blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to
all code not part of the internal server code listed previously. Sun Java System Application
Server does not distinguish between EJB and web module permissions. All code is granted
the minimal set of web component permissions (which is a superset of the EJB minimal
set).

A few permissions above the minimal set are also granted in the default server.policy
file. These are necessary due to various internal dependencies of the server implementation.
J2EE application developers must not rely on these additional permissions.

One additional permission is granted specifically for using connectors. If connectors are not
used in a particular domain, you should remove this permission, because it is not otherwise
necessary.

Changing Permissions for an Application
The default policy for each domain limits the permissions of J2EE deployed applications to
the minimal set of permissions required for these applications to operate correctly. If you
develop applications that require more than this default set of permissions, you can edit the
server.policy file to add the custom permissions that your applications need.

Configuring Message Security

46 Application Server Platform Edition 2005Q1 • Developer’s Guide

You should add the extra permissions only to the applications that require them, not to all
applications deployed to a domain. Do not add extra permissions to the default set (the grant
block with no codebase, which applies to all code). Instead, add a new grant block with a
codebase specific to the application requiring the extra permissions, and only add the
minimally necessary permissions in that block.

As noted in the J2EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log. If this is not
sufficient, you can add the -Djava.security.debug=fail JVM option to the domain.
For details, see the Sun Java System Application Server Administration Guide or the Sun
Java System Application Server Administration Reference.

You can use the J2SE standard policytool or any text editor to edit the server.policy
file. For more information, see:

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

For detailed information about the permissions you can set in the server.policy file, see:

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

The Javadoc for the Permission class is here:

http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html

Configuring Message Security
In message security, security information travels along with the web services message.
WSS in the SOAP layer is the use of XML Encryption and XML Digital Signatures to
secure SOAP messages. WSS profiles the use of various security tokens including X.509
certificates, SAML assertions, and username/password tokens to achieve this.

NOTE Do not add java.security.AllPermission to the server.policy file
for application code. Doing so completely defeats the purpose of the
security manager, yet you still get the performance overhead associated
with it.

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html

Configuring Message Security

Chapter 2 Securing Applications 47

Message layer security differs from transport layer security (which is discussed in the
Security chapter of the J2EE 1.4 Tutorial) in that message layer security can be used to
decouple message protection from message transport so that messages remain protected
after transmission, regardless of how many hops they travel on.

WSS is a security mechanism that is applied at the message-layer in order to secure web
services. For the purposes of this document, when we discuss WSS, we are talking about
security for web services as described by the Oasis Web Services Security (WSS)
specification. Message security for the Application Server follows this specification, which
can be viewed at the following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

For more information about message security, see the following:

• The J2EE 1.4 Tutorial chapter titled Security, which can be viewed from:
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

• The Administration Guide chapter titled “Configuring Message Security.”

The following web services security topics are discussed in this section:

• Message Security Responsibilities

• Application-Specific Message Protection

• Understanding and Running the Example Application

• Monitoring Message Security

Message Security Responsibilities
Message security responsibilities are assigned to the following:

• Application Developer

• Application Deployer

• System Administrator

Application Developer
The application developer can implement message security, but is not responsible for doing
so. Message security can be set up by the System Administrator so that all web services are
secured, or set up by the Application Deployer when the Application Server provider
configuration is insufficient.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Configuring Message Security

48 Application Server Platform Edition 2005Q1 • Developer’s Guide

The application developer is responsible for the following:

• Determining if an application-specific policy is necessary for an application. If so,
ensure that policy is satisfied at application assembly, or communicate the requirement
for application-specific message security to the Application Deployer, or take care of
implementing the application-specific policy.

• Determining if message security is necessary at the Application Server level. If so,
ensure that need is communicated to the System Administrator, or take care of
implementing message security at the Application-Server level.

Application Deployer
The application deployer is responsible for:

• Securing the application if it has not been appropriately secured by upstream roles (the
developer or assembler) and only if an application-specific policy is appropriate for the
application.

• Implementing application-specific security by adding the message security binding to
the web service endpoint.

• Modifying Sun-specific deployment descriptors to add message binding information.

These security tasks are discussed in “Application-Specific Message Protection” on
page 49. An example application using message security is discussed in “Understanding
and Running the Example Application” on page 52.

System Administrator
The system administrator is responsible for:

• Configuring message security providers on the Application Server.

• Managing user databases.

• Managing keystore and truststore files.

• Configuring a Java Cryptography Extension (JCE) provider if using Encryption and
running a version of the Java SDK prior to version 1.5.0.

• Installing the samples server in order to work with the example message security
applications.

A system administrator uses the Admin Console or the asadmin tool to manage server
security settings and keytool to manage certificates. System administrator tasks are
discussed in the “Configuring Message Security” chapter of the Administration Guide.

Configuring Message Security

Chapter 2 Securing Applications 49

Application-Specific Message Protection
When the Application Server provided configuration is insufficient for your security needs,
and you want to override the default protection, you can apply application-specific message
security to a web service.

Application-specific security is implemented by adding the message security binding to the
web service endpoint, whether it is an EJB or servlet web service endpoint. Modify
Sun-specific XML files to add the message binding information.

For more details on message security binding for EJB web services, servlet web services,
and clients, see the XML file descriptions in Appendix A, “Deployment Descriptor Files.”

• For sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 299.

• For sun-web.xml, see “The sun-web.xml File” on page 295.

• For sun-application-client.xml, see “The sun-application-client.xml file” on
page 308.

This section contains the following topics:

• Using a Signature to Enable Message Protection for All Methods

• Configuring Message Protection For a Specific Method Based on Digital Signatures

Using a Signature to Enable Message Protection for All Methods
To enable message protection for all methods using digital signature, update the
message-security-binding element for the EJB web service endpoint in the
application’s sun-ejb-jar.xml file. In this file, add request-protection and
response-protection elements, which are analogous to the request-policy and
response-policy elements discussed in the “Configuring Message Security” chapter of
the Administration Guide. In order to apply the same protection mechanisms for all
methods, leave the method-name element blank. “Configuring Message Protection For a
Specific Method Based on Digital Signatures” on page 50 discusses listing specific methods
or using wild card characters.

This section uses the sample application discussed in “Understanding and Running the
Example Application” on page 52 to apply application-level message security in order to
show only the differences necessary for protecting web services using various mechanisms.

To enable message protection for all methods using digital signature, including both
requests and responses, follow these steps.

1. In a text editor, open the application’s sun-ejb-jar.xml file. For the xms example,
this file is located in the directory
install_dir\samples\webservices\security\ejb\apps\xms\xms-ejb\src\conf.

Configuring Message Security

50 Application Server Platform Edition 2005Q1 • Developer’s Guide

2. Modify the sun-ejb-jar.xml file by adding the text highlighted in bold:

<sun-ejb-jar>
<enterprise-beans>
<unique-id>1</unique-id>
<ejb>
<ejb-name>HelloWorld</ejb-name>
<jndi-name>HelloWorld</jndi-name>
<webservice-endpoint>
<port-component-name>HelloIF</port-component-name>

 <endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
<message-security-binding auth-layer="SOAP">
<message-security>
<request-protection auth-source="content" />
<response-protection auth-source="content"/>

</message-security>
</message-security-binding>

</webservice-endpoint>
</ejb>

</enterprise-beans>
</sun-ejb-jar>

3. Compile, deploy, and run the application as described in “Running the Sample
Application” on page 53.

Configuring Message Protection For a Specific Method Based on
Digital Signatures
To enable message protection for a specific method, or for a set of methods that can be
identified using a wildcard value, follow these steps. As in the example discussed in “Using
a Signature to Enable Message Protection for All Methods” on page 49, to enable message
protection for a specific method, update the message-security-binding element for the
EJB web service endpoint in the application’s sun-ejb-jar.xml file. To this file, add
request-protection and response-protection elements, which are analogous to the
request-policy and response-policy elements discussed in the “Configuring Message
Security” chapter of the Administration Guide. The Administration Guide includes a table
listing the set and order of security operations for different request and response policy
configurations.

This section uses the sample application discussed in “Understanding and Running the
Example Application” on page 52 to apply application-level message security in order to
show only the differences necessary for protecting web services using various mechanisms.

To enable message protection for a particular method or set of methods using digital
signature, follow these steps.

Configuring Message Security

Chapter 2 Securing Applications 51

1. In a text editor, open the application’s sun-ejb-jar.xml file. For the xms example,
this file is located in the directory
install_dir\samples\webservices\security\ejb\apps\xms\xms-ejb\src\conf.

2. Modify the sun-ejb-jar.xml file by adding the text highlighted in bold:

<sun-ejb-jar>
<enterprise-beans>
<unique-id>1</unique-id>
<ejb>
<ejb-name>HelloWorld</ejb-name>
<jndi-name>HelloWorld</jndi-name>
<webservice-endpoint>
<port-component-name>HelloIF</port-component-name>
<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
<message-security-binding auth-layer="SOAP">
<message-security>
<message>
<java-method>
<method-name>ejbCreate</method-name>

</java-method>
</message>
<message>
<java-method>
<method-name>sayHello</method-name>

</java-method>
</message>
<request-protection auth-source="content" />
<response-protection auth-source="content"/>

</message-security>
</message-security-binding>

</webservice-endpoint>
</ejb>

</enterprise-beans>
</sun-ejb-jar>

3. Compile, deploy, and run the application as described in “Running the Sample
Application” on page 53.

This example authenticates the source of the content of both the request and response
messages corresponding to the named methods.

Configuring Message Security

52 Application Server Platform Edition 2005Q1 • Developer’s Guide

Understanding and Running the Example
Application
This section discusses the WSS sample application, xms, which is located in the directory
install_dir\samples\webservices\security\ejb\apps\xms\. This directory and this
sample application is installed on your system only if you have selected to install the
samples server when you installed the Application Server. If you have not installed the
samples, see “Setting Up the Sample Application” on page 52.

The objective of this sample application is to demonstrate how a web service can be secured
with WSS. The web service in the xms example is a simple web service implemented using
a J2EE EJB endpoint and a web service endpoint implemented using a servlet. In this
example, a service endpoint interface is defined with one operation, sayHello, which takes
a string then sends a response with Hello prefixed to the given string. You can view the
WSDL file for the service endpoint interface at
install_dir\samples\webservices\security\ejb\apps\xms\xms-ejb\src\conf\
HelloWorld.wsdl.

In this application, the client lookups the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to
invoke the operation using a given name. For the name Duke, the client gets the response
Hello Duke!

This example shows how to use message security for web services at the Application Server
level and at the application level. The WSS message security mechanisms implement
message-level authentication (for example, XML digital signature and encryption) of SOAP
web services invocations using the X.509 and username/password profiles of the OASIS
WS-Security standard, which can be viewed from the following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

This section includes the following topics:

• Setting Up the Sample Application

• Running the Sample Application

Setting Up the Sample Application
This section discusses setting up the message security application that uses XML digital
signatures to implement message security. The example application is located in the
directory install_dir\samples\webservices\security\ejb\apps\xms\. For ease of
reference throughout the rest of this section, this directory is referred to as simply
app_dir/xms/.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Configuring Message Security

Chapter 2 Securing Applications 53

In order to have access to this sample application, you must have installed the samples
server during installation of the Application Server. To check to see if the samples are
installed, browse to the directory
install_dir\samples\webservices\security\ejb\apps\xms\. If this directory exists,
you do not need to follow the steps in the following section. If this directory does not exist,
the samples server is not installed, and must be installed for access to the sample
application discussed here. To install the samples server, follow these steps:

1. Start the installation for the Application Server.

2. Click Next on the Welcome page.

3. Click Yes on the Software License Agreement page. Click Next.

4. Click Next to accept the installation directory, or change it to match the location where
the Application Server is currently installed.

5. Select Continue to install to the same directory.

You want to do this because you want the samples/ directory to be a subdirectory of
the Application Server directory, install_dir/samples/.

6. Reenter the Admin User Name and Password. Click Next.

You are on the page where you select to install just the samples.

7. Deselect everything except Create Samples Server. Click Next.

8. Click Install Now to install the samples.

9. Click Finish to complete the installation.

<property name="security.config"
value="${com.sun.aas.instanceRoot}/lib/appclient/
wss-client-config.xml"/>

10. Save and exit the file.

Running the Sample Application
1. Make sure that the Application Server is running.

Message security providers are set up when the asant targets are run, so you don’t
need to configure these on the Application Server prior to running this example.

2. If you are not running HTTP on the default port of 8080, change the WSDL file for the
example to reflect the change, and change the common.properties file to reflect the
change as well. The WSDL file for this example is located at
install_dir\samples\webservices\security\ejb\apps\xms\xms-ejb\src\conf\
HelloWorld.wsdl. The port number is in the following section:

Configuring Message Security

54 Application Server Platform Edition 2005Q1 • Developer’s Guide

<service name="HelloWorld">
<port name="HelloIFPort" binding="tns:HelloIFBinding">
<soap:address location="http://localhost:8080/
service/HelloWorld" />

</port>
</service>

Verify that the properties in the install_dir\samples\common.properties file are set
properly for your installation and environment. If you need more description of this
file, refer to the Configuration section for the web services security applications at
install_dir\samples\webservices\security\docs\common.html#Logging.

3. Change to the install_dir\samples\webservices\security\ejb\apps\xms\
directory.

4. Run the following asant targets to compile, deploy, and run the example application:

a. To compile samples:

asant

b. To deploy samples:

asant deploy

c. To run samples:

asant run

If the sample has compiled and deployed properly, you see the following response on
your screen after the application has run:

run:
[echo] Running the xms program:
[exec] Established message level security : Hello Duke!

5. All of the web services security examples use the same web service name
(HelloWorld) and web service ports in order to show only the differences necessary
for protecting web services using various mechanisms. Make sure to undeploy an
application when you have completed running it, or you receive an Already in Use
error and deployment failures when you try to deploy another web services example
application.

To undeploy the sample, run the following asant target:

asant undeploy

Configuring Message Security

Chapter 2 Securing Applications 55

Monitoring Message Security
To view SOAP messages containing security elements in the server.log file, set the
parameter dumpMessages=true in the file domain_dir/config/wss-server-config.xml,
and then restart the server.

 The section of the wss-server-config.xml file that needs to be modified to enable this is
as shown below:

<xwss:SecurityConfiguration
xmlns:xwss="http://com.sun.xml.wss.configuration"
useTimestamps="true"
dumpMessages="true">

After you have enabled SOAP messages in the server.log file, you can verify if the
username-password token is enabled by checking the
install_dir/domains/domain_name/logs/server.log file for the tag
<wsse:UsernamePassword>. The following selection of code is similar to what you might
see in the server.log file, with the username-password token tag highlighted in bold.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns0="http://tax.org/wsdl" xmlns:
xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<env:Header>
<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" env:mustUnderstand="1">
<wsse:UsernameToken>
<wsse:Username>j2ee</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText">j2ee
</wsse:Password>

</wsse:UsernameToken>
<wsu:Timestamp
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
<wsu:Created>2004-08-22T09:07:58Z</wsu:Created>

</wsu:Timestamp>
</wsse:Security>
</env:Header>
<env:Body>
<ns0:getStateTax>

Programmatic Login

56 Application Server Platform Edition 2005Q1 • Developer’s Guide

<double_1 xsi:type="xsd:double">85000.0</double_1>
<double_2 xsi:type="xsd:double">5000.0</double_2>
</ns0:getStateTax>

</env:Body>
</env:Envelope>

Programmatic Login
Programmatic login allows a deployed J2EE application to invoke a login method. If the
login is successful, a SecurityContext is established as if the client had authenticated
using any of the conventional J2EE mechanisms.

Programmatic login is useful for an application that has special needs which cannot be
accommodated by any of the J2EE standard authentication mechanisms.

This section contains the following topics:

• Precautions

• Granting Programmatic Login Permission

• The ProgrammaticLogin Class

Precautions
The Sun Java System Application Server is not involved in how the login information
(user, password) is obtained by the deployed application. Programmatic login places the
burden on the application developer with respect to assuring that the resulting system meets
their security requirements. If the application code reads the authentication information
across the network, it is up to the application to determine whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly to the
security service. While flexible, this capability should not be used without some
understanding of security issues.

NOTE Programmatic login is specific to Sun Java System Application Server and
not portable to other application servers.

Programmatic Login

Chapter 2 Securing Applications 57

Since this mechanism bypasses the container-managed authentication process and
sequence, the application developer must be very careful in making sure that authentication
is established before accessing any restricted resources or methods. It is also the application
developer’s responsibility to verify the status of the login attempt and to alter the behavior
of the application accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Lazy authentication is not supported for programmatic login. If an access check is reached
and the deployed application has not properly authenticated via the programmatic login
method, access is denied immediately and the application might fail if not properly coded to
account for this occurrence.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the programmatic
login mechanism for an application. This permission is not granted by default to deployed
applications because this is not a standard J2EE mechanism.

To grant the required permission to the application, add the following to the
domain_dir/config/server.policy file:

grant codeBase "file:jar_file_path" {
permission com.sun.appserv.security.ProgrammaticLoginPermission
"login";

};

The jar_file_path is the path to the application’s JAR file.

For more information about the server.policy file, see “The server.policy File” on
page 45.

The ProgrammaticLogin Class
The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform
login programmatically. This class has four login methods, two for servlets or JSP files
and two for EJB components.

The login methods for servlets or JSP files have the following signatures:

public Boolean login(String user, String password,
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

User Authentication for Single Sign-on

58 Application Server Platform Edition 2005Q1 • Developer’s Guide

public Boolean login(String user, String password, String realm,
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response, boolean errors) throws
Exception

The login methods for EJB components have the following signatures:

public Boolean login(String user, String password)

public Boolean login(String user, String password, String realm, boolean
errors) throws Exception

All of theselogin methods:

• Perform the authentication

• Return true if login succeeded, false if login failed

The methods with errors flags propagate to the caller any exceptions encountered during
the authentication and return true upon a successful authentication. The login occurs on
the realm specified unless it is null, in which case the domain’s default realm is used. The
methods with no realm parameter use the domain’s default realm.

The logout method for servlets or JSP files has the following signature:

public Boolean login(String user, String password, String realm,
HttpServletRequest request, HttpServletResponse response, boolean errors)
throws Exception

The logout method for EJB components has the following signature:

public Boolean login(String user, String password, String realm, boolean
errors) throws Exception

The errors flags are used to propagate to the caller any exceptions encountered during the
logout. These methods return true upon a successful logout. The logout occurs on the
realm specified unless it is null, in which case the domain’s default realm is used.

User Authentication for Single Sign-on
The single sign-on feature of the Sun Java System Application Server allows multiple web
applications deployed to the same virtual server to share the user authentication state. With
single sign-on enabled, users who log in to one web application become implicitly logged
into other web applications on the same virtual server that require the same authentication
information. Otherwise, users would have to log in separately to each web application
whose protected resources they tried to access.

User Authentication for Single Sign-on

Chapter 2 Securing Applications 59

An example application using the single sign-on scenario could be a consolidated airline
booking service that searches all airlines and provides links to different airline web sites.
Once the user signs on to the consolidated booking service, the user information can be
used by each individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

• Single sign-on applies to web applications configured for the same realm and virtual
server. The realm is defined by the realm-name element in the web.xml file. For
information about virtual servers, see the Sun Java System Application Server
Administration Guide.

• As long as users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

• As soon as a user accesses a protected resource in any web application associated with
a virtual server, the user is challenged to authenticate himself or herself, using the login
method defined for the web application currently being accessed.

• Once authenticated, the roles associated with this user are used for access control
decisions across all associated web applications, without challenging the user to
authenticate to each application individually.

• When the user logs out of one web application (for example, by invalidating the
corresponding session), the user’s sessions in all web applications are invalidated. Any
subsequent attempt to access a protected resource in any application requires the user to
authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that
support cookies.

To configure single sign-on, set the following properties in the virtual-server element
of the domain.xml file:

• sso-enabled - If false, single sign-on is disabled for this virtual server, and users
must authenticate separately to every application on the virtual server. The default is
true.

• sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on
record becomes eligible for purging if no client activity is received. Since single
sign-on applies across several applications on the same virtual server, access to any of
the applications keeps the single sign-on record active. The default value is 5 minutes
(300 seconds). Higher values provide longer single sign-on persistence for the users at
the expense of more memory use on the server.

• sso-reap-interval-seconds - Specifies the interval between purges of expired
single sign-on records. The default value is 60.

Defining Roles

60 Application Server Platform Edition 2005Q1 • Developer’s Guide

Here is an example configuration with all default values:

<virtual-server id="server" ... >
...
<property name="sso-enabled" value="true"/>
<property name="sso-max-inactive-seconds" value="450"/>
<property name="sso-reap-interval-seconds" value="80"/>

</virtual-server>

Defining Roles
You define roles in the J2EE deployment descriptor file, web.xml, and the corresponding
role mappings in the Sun Java System Application Server deployment descriptor file,
sun-application.xml (or sun-web.xml for individually deployed web modules).

For more information regarding web.xml elements, see Chapter 13, “Deployment
Descriptor,” of the Java Servlet Specification, v2.4. For more information regarding
sun-web.xml and sun-application.xml elements, see Appendix A, “Deployment
Descriptor Files.”

Each security-role-mapping element in the sun-application.xml or sun-web.xml
file maps a role name permitted by the web application to principals and groups. For
example, a sun-web.xml file for an individually deployed web module might contain the
following:

<sun-web-app>
<security-role-mapping>

<role-name>manager</role-name>
<principal-name>jgarcia</principal-name>
<principal-name>mwebster</principal-name>
<group-name>team-leads</group-name>

</security-role-mapping>
<security-role-mapping>

<role-name>administrator</role-name>
<principal-name>dsmith</principal-name>

</security-role-mapping>
</sun-web-app>

Note that the role-name in this example must match the role-name in the
security-role element of the corresponding web.xml file.

Defining Roles

Chapter 2 Securing Applications 61

Note that for J2EE applications (EAR files), all security role mappings for the application
modules must be specified in the sun-application.xml file. For individually deployed
web modules, the roles are always specified in the sun-web.xml file. A role can be mapped
to either specific principals or to groups (or both). The principal or group names used must
be valid principals or groups in the current default realm.

Defining Roles

62 Application Server Platform Edition 2005Q1 • Developer’s Guide

63

Chapter 3

Assembling and Deploying
Applications

This chapter describes Sun Java System Application Server modules and how these
modules are assembled separately or together in an application. This chapter also describes
classloaders and tools for assembly and deployment.

Sun Java System Application Server modules and applications include J2EE standard
features and Sun Java System Application Server specific features. Only Sun Java System
Application Server specific features are described in detail in this chapter.

The following topics are presented in this chapter:

• Overview of Assembly and Deployment

• Assembling Modules and Applications

• Deploying Modules and Applications

• asant Assembly and Deployment Tool

Overview of Assembly and Deployment
Application assembly (also known as packaging) is the process of combining discrete
components of an application into a single unit that can be deployed to a J2EE-compliant
application server. A package can be classified either as a module or as a full-fledged
application. This section covers the following topics:

• Modules

• Applications

• J2EE Standard Descriptors

• Sun Java System Application Server Descriptors

Overview of Assembly and Deployment

64 Application Server Platform Edition 2005Q1 • Developer’s Guide

• Naming Standards

• Directory Structure

• Runtime Environments

• Classloaders

Modules
A J2EE module is a collection of one or more J2EE components of the same container type
(for example, web or EJB) with deployment descriptors of that type. One descriptor is J2EE
standard, the other is Sun Java System Application Server specific. Types of J2EE modules
are as follows:

• Web Application Archive (WAR): A web application is a collection of servlets,
HTML pages, classes, and other resources that can be bundled and deployed to several
J2EE application servers. A WAR file can consist of the following items: servlets, JSP
files, JSP tag libraries, utility classes, static pages, client-side applets, beans, bean
classes, and deployment descriptors (web.xml and optionally sun-web.xml).

• EJB JAR File: The EJB JAR file is the standard format for assembling enterprise
beans. This file contains the bean classes (home, remote, local, and implementation),
all of the utility classes, and the deployment descriptors (ejb-jar.xml and
sun-ejb-jar.xml). If the EJB component is an entity bean with container managed
persistence, a .dbschema file and a CMP mapping descriptor,
sun-cmp-mapping.xml, must be included as well.

• Application Client Container JAR File: An ACC client is a Sun Java System
Application Server specific type of J2EE client. An ACC client supports the standard
J2EE Application Client specifications, and in addition, supports direct access to the
Sun Java System Application Server. Its deployment descriptors are
application-client.xml and sun-application-client.xml.

• Resource RAR File: RAR files apply to J2EE CA connectors. A connector module is
like a device driver. It is a portable way of allowing EJB components to access a
foreign enterprise system. Each Sun Java System Application Server connector has a
J2EE XML file, ra.xml.

Package definitions must be used in the source code of all modules so the classloader can
properly locate the classes after the modules have been deployed.

Because the information in a deployment descriptor is declarative, it can be changed
without requiring modifications to source code. At run time, the J2EE server reads this
information and acts accordingly.

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 65

Sun Java System Application Server also supports lifecycle modules. See Chapter 10,
“Developing Lifecycle Listeners,” for more information.

EJB JAR and Web modules can also be assembled as separate JAR or WAR files and
deployed separately, outside of any application, as in the following figure.

Figure 3-1 Module Assembly and Deployment

Applications
A J2EE application is a logical collection of one or more J2EE modules tied together by
application deployment descriptors. Components can be assembled at either the module or
the application level. Components can also be deployed at either the module or the
application level.

The following diagram illustrates how components are assembled into modules and then
assembled into a Sun Java System Application Server application EAR file ready for
deployment.

EJB

EJB

EJB

EJB
module

Web
module

(.jar file)

(.war file)

J2EE Modules
(.jar and .war files)

J2EE
Components

Deployment
to the

Application

sun-ejb-jar.xml
Sun

sun-web.xml
Sun

J2EE
ejb-jar.xml

J2EE
web.xmlWEB

Servlet

WEB
JSP

Server

Overview of Assembly and Deployment

66 Application Server Platform Edition 2005Q1 • Developer’s Guide

Figure 3-2 Application Assembly and Deployment

Each module has a Sun Java System Application Server deployment descriptor and a J2EE
deployment descriptor. The Sun Java System Application Server uses the deployment
descriptors to deploy the application components and to register the resources with the Sun
Java System Application Server.

EJB

EJB

EJB

EJB
module

Web
module

(.jar file)

(.war file)

J2EE Application
(.ear file)

J2EE Modules
(.jar, .war files)

J2EE
Components

Deployment
to the

Application

sun-ejb-jar.xml
Sun

sun-web.xml
Sun

sun-application-client.xml
Sun

J2EE

Application Client
module
(.jar file)

ejb-jar.xml

J2EE
web.xml

J2EE

WEB
Servlet

WEB
JSP

Sun Java System Application Server File Set

Server

application-client.xml

application.xml
J2EE

sun-application.xml
Sun

Connector
module
(.rar file)

J2EE
ra.xml

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 67

An application consists of one or more modules, an optional Sun Java System Application
Server deployment descriptor, and a required J2EE application deployment descriptor. All
items are assembled, using the Java ARchive (.jar) file format, into one file with an
extension of .ear.

J2EE Standard Descriptors
The J2EE platform provides assembly and deployment facilities. These facilities use WAR,
JAR, and EAR files as standard packages for components and applications, and XML-based
deployment descriptors for customizing parameters.

J2EE standard deployment descriptors are described in the J2EE specification, v1.4. You
can find the specification here:

http://java.sun.com/products/

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 80.

The following table shows where to find more information about J2EE standard
deployment descriptors.

Table 3-1 J2EE Standard Descriptors
Deployment Descriptor Where to Find More Information

application.xml Java 2 Platform Enterprise Edition Specification, v1.4, Chapter 8, “Application
Assembly and Deployment - J2EE:application XML DTD”

web.xml Java Servlet Specification, v2.4 Chapter 13, “Deployment Descriptor,” and
JavaServer Pages Specification, v2.0, Chapter 7, “JSP Pages as XML
Documents,” and Chapter 5, “Tag Extensions”

ejb-jar.xml Enterprise JavaBeans Specification, v2.1, Chapter 16, “Deployment Descriptor”

application-client.xml Java 2 Platform Enterprise Edition Specification, v1.4, Chapter 9, “Application
Clients - J2EE:application-client XML DTD”

ra.xml Java 2 Enterprise Edition, J2EE Connector Architecture Specification, v1.0,
Chapter 10, “Packaging and Deployment.”

http://java.sun.com/products/

Overview of Assembly and Deployment

68 Application Server Platform Edition 2005Q1 • Developer’s Guide

Sun Java System Application Server Descriptors
Sun Java System Application Server uses additional deployment descriptors for configuring
features specific to the Sun Java System Application Server. The sun-application.xml,
sun-web.xml, and sun-cmp-mappings.xml files are optional; all the others are required.

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 80.

The following table lists the Sun Java System Application Server deployment descriptors
and their DTD files. For complete descriptions of these files, see Appendix A, “Deployment
Descriptor Files.”

Naming Standards
Names of applications and individually deployed EJB JAR, WAR, and connector RAR
modules must be unique within a Sun Java System Application Server domain. Modules of
the same type within an application must have unique names. In addition, for entity beans
that use CMP,.dbschema file names must be unique within an application.

Table 3-2 Sun Java System Application Server Descriptors
Deployment Descriptor DTD File Description

sun-application.xml sun-application_1_4-0.dtd Configures an entire J2EE
application (EAR file).

sun-web.xml sun-web-app_2_4-1.dtd Configures a web application
(WAR file).

sun-ejb-jar.xml sun-ejb-jar_2_1-1.dtd Configures an enterprise bean
(EJB JAR file).

sun-cmp-mappings.xml sun-cmp-mapping_1_2.dtd Configures container-managed
persistence for an enterprise bean.

sun-application-client.xml sun-application-client_1_4-1.dtd Configures an Application Client
Container (ACC) client (JAR file).

sun-acc.xml sun-application-client-container_1_0.dtd Configures the Application Client
Container.

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 69

If you do not explicitly specify a name, the default name is the first portion of the file name
(without the .war or .jar extension). Modules of different types can have the same name
within an application, because the directories holding the individual modules are named
with _jar, _war and _rar suffixes. This is the case when you use the Administration
Console, the asadmin command, or the deploytool to deploy an application or module. See
“Tools for Deployment” on page 88.

Make sure your package and file names do not contain spaces or characters that are illegal
for your operating system.

If you are writing your own JSR 88 client to deploy applications to the Sun Java System
Application Server using the following API, the name of the application is taken from the
display-name entry in the J2EE standard deployment descriptor, because there is no file
name in this case. If the display-name entry is not present, the Application Server creates
a temporary file name and uses that name to deploy the application.

javax.enterprise.deploy.spi.DeploymentManager.distribute(Target[],
InputStream, InputStream)

Neither the Administration Console, the asadmin command, nor the deploytool uses this
API.

For more information about JSR 88, see the JSR 88 page:

http://jcp.org/en/jsr/detail?id=88

Directory Structure
When you deploy an application, the application is expanded to an open directory structure,
and the directories holding the individual modules are named with _jar, _war and _rar
suffixes. If you use the asadmin deploydir command to deploy a directory instead of an
EAR file, your directory structure must follow this same convention.

Module and application directory structures follow the structure outlined in the J2EE
specification. Here is an example directory structure of a simple application containing a
web module, an EJB module, and a client module.

http://jcp.org/en/jsr/detail?id=88

Overview of Assembly and Deployment

70 Application Server Platform Edition 2005Q1 • Developer’s Guide

Here is an example directory structure of an individually deployed connector module.

+ converter_1/
|--- converterClient.jar
|--+ META-INF/
| |--- MANIFEST.MF
| |--- application.xml
| '--- sun-application.xml
|--+ war-ic_war/
| |--- index.jsp
| |--+ META-INF/
| | |--- MANIFEST.MF
| '--+ WEB-INF/
| |--- web.xml
| '--- sun-web.xml
|--+ ejb-jar-ic_jar/
| |--- Converter.class
| |--- ConverterBean.class
| |--- ConverterHome.class
| '--+ META-INF/
| |--- MANIFEST.MF
| |--- ejb-jar.xml
| '--- sun-ejb-jar.xml
'--+ app-client-ic_jar/

|--- ConverterClient.class
'--+ META-INF/

|--- MANIFEST.MF
|--- application-client.xml
'--- sun-application-client.xml

+ MyConnector/
|--- readme.html
|--- ra.jar
|--- client.jar
|--- win.dll
|--- solaris.so
'--+ META-INF/

|--- MANIFEST.MF
'--- ra.xml

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 71

Runtime Environments
Whether you deploy an individual module or an application, deployment affects both the
file system and the server configuration. See the following “Module runtime environment”
and “Application runtime environment” figures.

Module Runtime Environment
The following figure illustrates the environment for individually deployed module-based
deployment.

Figure 3-3 Module runtime environment

For file system entries, modules are extracted as follows:

domain_dir/applications/j2ee-modules/module_name
domain_dir/generated/ejb/j2ee-modules/module_name
domain_dir/generated/jsp/j2ee-modules/module_name

The applications directory contains the directory structures described in “Directory
Structure” on page 69. The generated/ejb directory contains the stubs and ties that an
ACC client needs to access the module; the generated/jsp directory contains compiled
JSP files.

Lifecycle modules (see Chapter 10, “Developing Lifecycle Listeners”) are extracted as
follows:

domain_dir/applications/lifecycle-modules/module_name

Configuration: File System:

packagingEJB.jar

<ejb-module>
element in domain.xml

domain_dir/applications/j2ee-modules/
packagingEJB/*

Overview of Assembly and Deployment

72 Application Server Platform Edition 2005Q1 • Developer’s Guide

Configuration entries are added in the domain.xml file as follows:

<server>
<applications>

<type-module>
...module configuration...

</type-module>
</applications>

</server>

The type of the module in domain.xml can be lifecycle, ejb, web, or connector. For
details about domain.xml, see the Sun Java System Application Server Administration
Reference.

Application Runtime Environment
The following figure illustrates the environment for application-based deployment.

Figure 3-4 Application runtime environment

For file system entries, applications are extracted as follows:

domain_dir/applications/j2ee-apps/app_name
domain_dir/generated/ejb/j2ee-apps/app_name
domain_dir/generated/jsp/j2ee-apps/app_name

The applications directory contains the directory structures described in “Directory
Structure” on page 69. The generated/ejb directory contains the stubs and ties that an
ACC client needs to access the module; the generated/jsp directory contains compiled
JSP files.

Configuration: File System:

packagingApp.ear

packagingEJB.jar

<j2ee-application>
element in domain.xml

domain_dir/applications/j2ee-apps/
packagingApp/packagingEJB/*

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 73

Configuration entries are added in the domain.xml file as follows:

<server>
<applications>

<j2ee-application>
...application configuration...

</j2ee-application>
</applications>

</server>

For details about domain.xml, see the Sun Java System Application Server Administration
Reference.

Classloaders
Understanding Sun Java System Application Server classloaders can help you determine
where and how you can position supporting JAR and resource files for your modules and
applications.

In a Java Virtual Machine (JVM), the classloaders dynamically load a specific java class
file needed for resolving a dependency. For example, when an instance of
java.util.Enumeration needs to be created, one of the classloaders loads the relevant
class into the environment. This section includes the following topics:

• The Classloader Hierarchy

• Classloader Universes

• Circumventing Classloader Isolation

Overview of Assembly and Deployment

74 Application Server Platform Edition 2005Q1 • Developer’s Guide

The Classloader Hierarchy
Classloaders in the Sun Java System Application Server runtime follow a hierarchy that is
illustrated in the following figure.

Figure 3-5 Classloader runtime hierarchy

Connector
Classloader

EJB
Classloader*

Web Container
Classloader

System
Classloader

Web
Classloader*

JSP Engine
Classloader*

*There are separate classloader instances for each application
(one of these classloaders is in each application classloader universe).

LifeCycleModule
Classloader

Bootstrap
Classloader

Common
Classloader

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 75

Note that this is not a Java inheritance hierarchy, but a delegation hierarchy. In the
delegation design, a classloader delegates classloading to its parent before attempting to
load a class itself. A classloader parent can be either the System Classloader or another
custom classloader. If the parent classloader can’t load a class, the findClass() method is
called on the classloader subclass. In effect, a classloader is responsible for loading only the
classes not available to the parent.

The Servlet specification recommends that the Web Classloader look in the local
classloader before delegating to its parent. You can make the Web Classloader follow the
delegation model in the Servlet specification by setting delegate="false" in the
class-loader element of the sun-web.xml file. It’s safe to do this only for a web module
that does not interact with any other modules.

The default value is delegate="true", which causes the Web Classloader to delegate in
the same manner as the other classloaders. You must use delegate="true" for a web
application that accesses EJB components or that acts as a web service client or endpoint.
For details about sun-web.xml, see “The sun-web.xml File” on page 295.

The following table describes Sun Java System Application Server classloaders.

Table 3-3 Sun Java System Application Server Classloaders
Classloader Description

Bootstrap The Bootstrap Classloader loads all the JDK classes.

System The System Classloader loads most of the core Sun Java System Application
Server classes. It is created based on the classpath-prefix,
server-classpath, and classpath-suffix attributes of the java-config
element in the domain.xml file. The environment classpath is included if
env-classpath-ignored="false" is set in the java-config element.

Common The Common Classloader loads classes in the domain_dir/lib/classes
directory, followed by JAR and ZIP files in the domain_dir/lib directory. No
special classpath settings are required. The existence of these directories is
optional; if they don’t exist, the Common Classloader is not created.

Connector The Connector Classloader is a single classloader instance that loads
individually deployed connector modules, which are shared across all
applications.

LifeCycleModule The LifeCycleModule Classloader is the parent classloader for lifecycle
modules. Each lifecycle module’s classpath is used to construct its own
classloader.

EJB The EJB Classloader loads the enabled EJB classes in a specific enabled EJB
module or J2EE application. One instance of this classloader is present in
each classloader universe. The EJB Classloader is created with a list of URLs
that point to the locations of the classes it needs to load.

Overview of Assembly and Deployment

76 Application Server Platform Edition 2005Q1 • Developer’s Guide

Classloader Universes
Access to components within applications and modules installed on the server occurs within
the context of isolated classloader universes, each of which has its own EJB, Web, and JSP
Engine classloaders.

• Application Universe: Each J2EE application has its own classloader universe, which
loads the classes in all the modules in the application.

• Individually Deployed Module Universe: Each individually deployed EJB JAR, web
WAR, or lifecycle module has its own classloader universe, which loads the classes in
the module.

Web The Web Classloader loads the servlets and other classes in a specific
enabled web module or J2EE application. One instance of this classloader is
present in each classloader universe. The Web Classloader is created with a
list of URLs that point to the locations of the classes it needs to load.

JSP Engine The JSP Engine Classloader loads compiled JSP classes of enabled JSP files.
One instance of this classloader is present in each classloader universe. The
JSP Engine Classloader is created with a list of URLs that point to the
locations of the classes it needs to load.

NOTE A resource such as a file that is accessed by a servlet, JSP, or EJB
component must be in a directory pointed to by the classloader’s classpath.
For example, the web classloader’s classpath includes these directories:

module_name/WEB-INF/classes
module_name/WEB-INF/lib

If a servlet accesses a resource, it must be in one of these directories or it is
not loaded.

NOTE In iPlanet Application Server 6.x, individually deployed modules shared the
same classloader. In Sun Java System Application Server 8.1, each
individually deployed module has its own classloader universe.

Table 3-3 Sun Java System Application Server Classloaders (Continued)
Classloader Description

Overview of Assembly and Deployment

Chapter 3 Assembling and Deploying Applications 77

Circumventing Classloader Isolation
Since each application or individually deployed module classloader universe is isolated, an
application or module cannot load classes from another application or module. This
prevents two similarly named classes in different applications from interfering with each
other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules
accessed by more than one application, you can include the relevant path to the required
classes in one of these ways:

• Using the System Classloader

• Using the Common Classloader

• Using the Java Optional Package Mechanism

• Packaging the Client JAR for One Application in Another Application

Using the System Classloader
To use the System Classloader, do one of the following, then restart the server:

• Use the Administration Console. Select the JVM Settings component under the
relevant configuration, select the Path Settings tab, and edit the Classpath Suffix field.
For details, see the Sun Java System Application Server Administration Guide.

• Edit the classpath-suffix attribute of the java-config element in the
domain.xml file. For details about domain.xml, see the Sun Java System Application
Server Administration Reference.

Using the System Classloader makes an application or module accessible to any other
application or module across the domain.

Using the Common Classloader
To use the Common Classloader, copy the JAR and ZIP files into the domain_dir/lib
directory or copy the .class files into the domain_dir/lib/classes directory, then
restart the server.

Using the Common Classloader makes an application or module accessible to any other
application or module across the domain.

Overview of Assembly and Deployment

78 Application Server Platform Edition 2005Q1 • Developer’s Guide

Using the Java Optional Package Mechanism
To use the Java optional package mechanism, copy the JAR and ZIP files into the
domain_dir/lib/ext directory, then restart the server.

Using the Java optional package mechanism makes an application or module accessible to
any other application or module across the domain. For example, this is the recommended
way of adding JDBC drivers to the Sun Java System Application Server.

Packaging the Client JAR for One Application in Another Application
By packaging the client JAR for one application in a second application, you allow an EJB
or web component in the second application to call an EJB component in the first
(dependent) application, without making either of them accessible to any other application
or module.

As an alternative for a production environment, you can have the Common Classloader load
client JAR of the dependent application as described in “Using the Common Classloader”
on page 77. Server performance is better, but you must restart the server to make the
dependent application accessible, and it is accessible across the domain.

To package the client JAR for one application in another application:

1. Deploy the dependent application.

2. Add the dependent application’s client JAR file to the calling application.

❍ For a calling EJB component, add the client JAR file at the same level as the EJB
component. Then add a Class-Path entry to the MANIFEST.MF file of the calling
EJB component. The Class-Path entry has this syntax:

Class-Path: filepath1.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the MANIFEST.MF
file. For details, see the J2EE specification, section 8.1.1.2, “Dependencies.”

❍ For a calling web component, add the client JAR file under the WEB-INF/lib
directory.

3. For most applications, packaging the client JAR file with the calling EJB component is
sufficient. You do not need to package the client JAR file with both the EJB and web
components unless the web component is directly calling the EJB component in the
dependent application. If you need to package the client JAR with both the EJB and
web components, set delegate="true" in the class-loader element of the
sun-web.xml file. This changes the Web Classloader so it follows the standard
classloader delegation model and delegates to its parent before attempting to load a
class itself.

4. Deploy the calling application.

Assembling Modules and Applications

Chapter 3 Assembling and Deploying Applications 79

Assembling Modules and Applications
Assembling (or packaging) modules and applications in Sun Java System Application
Server conforms to all of the customary J2EE-defined specifications. The only difference is
that when you assemble in Sun Java System Application Server, you include Sun Java
System Application Server specific deployment descriptors that enhance the functionality
of the Application Server.

For example, when you assemble an EJB JAR module, you must create two deployment
descriptor files with these names: ejb-jar.xml and sun-ejb-jar.xml (both required). If
the EJB component is an entity bean with container-managed persistence, you can also
create a .dbschema file and a sun-cmp-mapping.xml file, but these are not required. For
more information about sun-ejb-jar.xml and sun-cmp-mapping.xml, see Appendix A,
“Deployment Descriptor Files.”

The Sun Java System Application Server provides these tools for assembling and verifying
a module or an application:

• deploytool

• Apache Ant

• The Deployment Descriptor Verifier

NOTE The calling EJB or web component must specify in its sun-ejb-jar.xml
or sun-web.xml file the JNDI name of the EJB component in the
dependent application. Using an ejb-link mapping does not work when
the EJB component being called resides in another application.

NOTE According to the J2EE specification, section 8.1.1.2, “Dependencies,” you
cannot package utility classes within an individually deployed EJB module.
Instead, package the EJB module and utility JAR within an application
using the JAR Extension Mechanism Architecture. For other alternatives,
see “Circumventing Classloader Isolation” on page 77.

Assembling Modules and Applications

80 Application Server Platform Edition 2005Q1 • Developer’s Guide

deploytool
You can use the deploytool, provided with Sun Java System Application Server, to
assemble J2EE applications and modules, configure deployment parameters, perform
simple static checks, and deploy the final result. For more information about using the
deploytool, see the J2EE 1.4 Tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Apache Ant
Ant can help you assemble and deploy modules and applications. For details, see “asant
Assembly and Deployment Tool” on page 93.

The Deployment Descriptor Verifier
The verifier tool validates both J2EE and Sun Java System Application Server specific
deployment descriptors against their corresponding DTD files and gives errors and
warnings if a module or application is not J2EE and Sun Java System Application Server
compliant. You can verify deployment descriptors in EAR, WAR, RAR, and JAR files.

The verifier tool is not simply an XML syntax verifier. Rules and interdependencies
between various elements in the deployment descriptors are verified. Where needed, user
application classes are introspected to apply validation rules.

The verifier is integrated into Sun Java System Application Server deployment, the
deploytool, and the sun-appserv-deploy Ant task. You can also run it as a stand-alone
utility from the command line. The verifier is located in the install_dir/bin directory.

When you run the verifier during Sun Java System Application Server deployment, the
output of the verifier is written to the tempdir/verifier-results/ directory, where
tempdir is the temporary directory defined in the operating system. Deployment fails if any
failures are reported during the verification process. The verifier also logs information
about verification progress to the standard output.

For details on all the assertions tested by the verifier, see the assertions documentation
provided at:

http://java.sun.com/j2ee/avk/index.html

TIP Using the verifier tool can help you avoid runtime errors that are difficult to
debug.

http://java.sun.com/j2ee/avk/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Assembling Modules and Applications

Chapter 3 Assembling and Deploying Applications 81

This section covers the following topics:

• Command Line Syntax

• Ant Integration

• Sample Results Files

Command Line Syntax
The verifier tool’s syntax is as follows:

verifier [options] file

The file can be an EAR, WAR, RAR, or JAR file.

The following table shows the options for the verifier tool.

For example, the following command runs the verifier in verbose mode and writes all the
results of static verification of the ejb.jar file to the output directory ResultsDir:

verifier -v -r a -d ResultsDir ejb.jar

Table 3-4 Verifier Options
Short Form Long Form Description

-v --verbose Turns on verbose mode.

-d output_dir --destdir Writes test results to the output_dir, which must already exist. By default, the
results files are created in the current directory.

-r level --reportlevel level Sets the output report level to one of the following values:

• a or all - Reports all results. This is the default in both verbose and non
verbose modes.

• w or warnings - Reports only warning and failure results.

• f or failures - Reports only failure results.

-n --notimestamp Does not append the timestamp to the output file name.

-h or -? --help Displays help for the verifier command. If you use this option, you do not need
to specify an EAR, WAR, RAR, or JAR file.

-V --version Displays the verifier tool version. If you use this option, you do not need to
specify an EAR, WAR, RAR, or JAR file.

-u --gui Opens a graphical interface for performing verification. If you use this option,
you do not need to specify an EAR, WAR, RAR, or JAR file. For more
information, see the verifier online help.

Assembling Modules and Applications

82 Application Server Platform Edition 2005Q1 • Developer’s Guide

The results files are ejb.jar_verifier.timestamp.txt and
ejb.jar_verifier.timestamp.xml. The format of the timestamp is yyyyMMddhhmmss.

If the verifier runs successfully, a result code of 0 is returned. This does not mean that no
verification errors occurred. A non-zero error code is returned if the verifier fails to run.

Ant Integration
You can integrate the verifier into an Ant build file as a target and use the Ant call feature to
call the target each time an application or module is assembled. This is because the main
method in com.sun.enterprise.tools.verifier.Verifier is callable from user Ant
scripts. The main method accepts the arguments described in the “Verifier Options” table.

Example code for an Ant verify target is as follows:

<target name="verify">
<echo message="Verification Process for ${testfile}"/>
<java classname="com.sun.enterprise.tools.verifier.Verifier"

fork="yes">
<sysproperty key="com.sun.enterprise.home"

value="${appserv.home}"/>
<sysproperty key="verifier.xsl"

value="${appserv.home}/verifier/config" />
<!-- uncomment the following for verbose output -->
<!--<arg value="-v"/>-->
<arg value="${assemble}/${ejbjar}" />
<classpath path="${appserv.cpath}:${java.class.path}"/>

</java>
</target>

Sample Results Files
Here is a sample results XML file:

<static-verification>
<ejb>

<failed>
<test>

<test-name>
tests.ejb.session.TransactionTypeNullForContainerTX

</test-name>
<test-assertion>

Session bean with bean managed transaction demarcation test
</test-assertion>
<test-description>

For [TheGreeter] Error: Session Beans [TheGreeter] with [Bean] managed
transaction demarcation should not have container transactions defined.

</test-description>

Assembling Modules and Applications

Chapter 3 Assembling and Deploying Applications 83

</test>
</failed>

</ejb>
...
</static-verification>

Here is a sample results TXT file:

STATIC VERIFICATION RESULTS

NUMBER OF FAILURES/WARNINGS/ERRORS

of Failures : 3
of Warnings : 6
of Errors : 0

RESULTS FOR EJB-RELATED TESTS

FAILED TESTS :

Test Name : tests.ejb.session.TransactionTypeNullForContainerTX
Test Assertion : Session bean with bean managed transaction demarcation
test
Test Description : For [TheGreeter]
Error: Session Beans [TheGreeter] with [Bean] managed transaction
demarcation should not have container transactions defined.

...

PASSED TESTS :

Test Name : tests.ejb.session.ejbcreatemethod.EjbCreateMethodStatic
Test Assertion : Each session Bean must have at least one non-static
ejbCreate method test
Test Description : For [TheGreeter] For EJB Class [
samples.helloworld.ejb.GreeterEJB] method [ejbCreate] [

Assembling Modules and Applications

84 Application Server Platform Edition 2005Q1 • Developer’s Guide

samples.helloworld.ejb.GreeterEJB] properly declares non-static
ejbCreate(...) method.

...

WARNINGS :

Test Name : tests.ejb.businessmethod.BusinessMethodException
Test Assertion : Enterprise bean business method throws RemoteException
test
Test Description :

Test Name : tests.ejb.ias.beanpool.IASEjbBeanPool
Test Assertion :
Test Description : WARNING [IAS-EJB ejb] : bean-pool should be defined for
Stateless Session and Message Driven Beans

...

NOTAPPLICABLE TESTS :

Test Name : tests.ejb.entity.pkmultiplefield.PrimaryKeyClassFieldsCmp
Test Assertion : Ejb primary key class properly declares all class fields
within subset of the names of the container-managed fields test.
Test Description : For [TheGreeter] class
com.sun.enterprise.tools.verifier.tests.ejb.entity.pkmultiplefield.Primary
KeyClassFieldsCmp expected Entity bean, but called with Session.

Test Name : tests.ejb.entity.ejbcreatemethod.EjbCreateMethodReturn
Test Assertion : Each entity Bean can have zero or more ejbCreate methods
which return primary key type test
Test Description : For [TheGreeter] class
com.sun.enterprise.tools.verifier.tests.ejb.entity.ejbcreatemethod.EjbCrea
teMethodReturn expected Entity bean, but called with Session bean.

...

RESULTS FOR OTHER XML-RELATED TESTS

PASSED TESTS :

Deploying Modules and Applications

Chapter 3 Assembling and Deploying Applications 85

Test Name : tests.dd.ParseDD
Test Assertion : Test parses the deployment descriptor using a SAX parser to
avoid the dependency on the DOL
Test Description : PASSED [EJB] : [remote] and [home] tags present.
PASSED [EJB]: session-type is Stateless.
PASSED [EJB]: trans-attribute is NotSupported.
PASSED [EJB]: transaction-type is Bean.

...

Deploying Modules and Applications
This section describes the different ways to deploy J2EE applications and modules to the
Sun Java System Application Server. It covers the following topics:

• Deployment Errors

• The Deployment Life Cycle

• Tools for Deployment

• Deployment by Module or Application

• Deploying a WAR Module

• Deploying an EJB JAR Module

• Deploying a Lifecycle Module

• Deploying an Application Client

• Deploying a J2EE CA Resource Adapter

• Access to Shared Frameworks

Deployment Errors
If an error occurs during deployment, the application or module is not deployed. If a module
within an application contains an error, the entire application is not deployed. This prevents
a partial deployment that could leave the server in an inconsistent state.

Deploying Modules and Applications

86 Application Server Platform Edition 2005Q1 • Developer’s Guide

The Deployment Life Cycle
After an application is initially deployed, it can be modified and reloaded, redeployed,
disabled, re-enabled, and finally undeployed (removed from the server). This section covers
the following topics related to the deployment life cycle:

• Dynamic Deployment

• Disabling a Deployed Application or Module

• Dynamic Reloading

• Automatic Deployment

Dynamic Deployment
You can deploy, redeploy, and undeploy an application or module without restarting the
server. This is called dynamic deployment.

Although primarily for developers, dynamic deployment can be used in operational
environments to bring new applications and modules online without requiring a server
restart. Whenever a redeployment is done, the sessions at that transit time become invalid.
The client must restart the session.

Disabling a Deployed Application or Module
You can disable a deployed application or module without removing it from the server.
Disabling an application makes it inaccessible to clients.

To disable an application or module using the Administration Console:

1. Open the Applications component.

2. Go to the page for the type of application or module. For example, for a web
application, go to the Web Applications page.

3. Click on the name of the application or module you wish to disable.

4. Uncheck the Status Enabled box.

For details, see the Sun Java System Application Server Administration Guide.

NOTE You can overwrite a previously deployed application by using the --force
option of asadmin deploy or by checking the appropriate box in the
Administration Console during deployment. However, you must remove a
preconfigured resource before you can update it.

Deploying Modules and Applications

Chapter 3 Assembling and Deploying Applications 87

To disable an application or module using the asadmin disable command, see the Sun
Java System Application Server Reference Manual.

Dynamic Reloading
If dynamic reloading is enabled (it is by default), you do not have to redeploy an application
or module when you change its code or deployment descriptors. All you have to do is copy
the changed JSP or class files into the deployment directory for the application or module.
The server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

This is useful in a development environment, because it allows code changes to be tested
quickly. In a production environment, however, dynamic reloading might degrade
performance. In addition, whenever a reload is done, the sessions at that transit time become
invalid. The client must restart the session.

To enable dynamic reloading, use the Administration Console:

1. Select the Application Settings component under the relevant configuration.

2. Check the Reload Enabled box to enable dynamic reloading.

3. Enter a number of seconds in the Reload Poll Interval field to set the interval at which
applications and modules are checked for code changes and dynamically reloaded. The
default is 2.

For details, see the Sun Java System Application Server Administration Guide.

In addition, to load new servlet files, reload EJB related changes, or reload deployment
descriptor changes, you must do the following:

1. Create an empty file named .reload at the root of the deployed application:

domain_dir/applications/j2ee-apps/app_name/.reload

or individually deployed module:

domain_dir/applications/j2ee-modules/module_name/.reload

2. Explicitly update the .reload file’s timestamp (touch .reload in UNIX) each time
you make the above changes.

Deploying Modules and Applications

88 Application Server Platform Edition 2005Q1 • Developer’s Guide

Automatic Deployment
Automatic deployment, also called autodeployment, involves copying an application or
module file (JAR, WAR, RAR, or EAR) into a special directory, where it is automatically
deployed by the Sun Java System Application Server. To undeploy an automatically
deployed application or module, simply remove its file from the special autodeployment
directory. This is useful in a development environment, because it allows new code to be
tested quickly.

Autodeployment is enabled by default. To enable and configure or to disable
autodeployment, use the Administration Console:

1. Select the Application Settings component under the relevant configuration.

2. Check the Auto Deploy Enabled box to enable autodeployment, or uncheck this box to
disable autodeployment.

3. Enter a number of seconds in the Auto Deploy Poll Interval field to set the interval at
which applications and modules are checked for code changes and dynamically
reloaded. The default is 2.

4. You can change the Auto Deploy Directory if you like. The default is
domain_dir/autodeploy. You can enter an absolute or relative path. A relative path is
relative to domain_dir.

5. You can check the Verifier Enabled box to verify your deployment descriptor files.
This is optional. For details about the verifier, see “The Deployment Descriptor
Verifier” on page 80.

6. Check the Precompile Enabled box to precompile any JSP files.

For details, see the Sun Java System Application Server Administration Guide.

Tools for Deployment
This section discusses the various tools that can be used to deploy modules and
applications. The deployment tools include:

• Apache Ant

• The deploytool

• JSR 88

• The asadmin Command

• The Administration Console

Deploying Modules and Applications

Chapter 3 Assembling and Deploying Applications 89

Apache Ant
Ant can help you assemble and deploy modules and applications. For details, see “asant
Assembly and Deployment Tool” on page 93.

The deploytool
You can use the deploytool, provided with Sun Java System Application Server, to
assemble J2EE applications and modules, configure deployment parameters, perform
simple static checks, and deploy the final result. For more information about using the
deploytool, see the J2EE 1.4 Tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

JSR 88
You can write your own JSR 88 client to deploy applications to the Sun Java System
Application Server. For more information, see the JSR 88 page:

http://jcp.org/en/jsr/detail?id=88

See “Naming Standards” on page 68 for application and module naming considerations.

The asadmin Command
You can use the asadmin deploy or asadmin deploydir command to deploy or
undeploy applications and individually deployed modules on local servers. For details, see
the Sun Java System Application Server Reference Manual.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 91.

The Administration Console
You can use the Administration Console to deploy modules and applications to both local
and remote Sun Java System Application Server sites. To use this tool, follow these steps:

1. Open the Applications component.

2. Go to the page for the type of application or module. For example, for a web
application, go to the Web Applications page.

NOTE On Windows, if you are deploying a directory on a mapped drive, you must
be running Sun Java System Application Server as the same user to which
the mapped drive is assigned, or Sun Java System Application Server won’t
see the directory.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://jcp.org/en/jsr/detail?id=88

Deploying Modules and Applications

90 Application Server Platform Edition 2005Q1 • Developer’s Guide

3. Click on the Deploy button. (You can also undeploy, enable, or disable an application
or module from this page.)

For details, see the Sun Java System Application Server Administration Guide.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 91.

Deployment by Module or Application
You can deploy applications or individual modules that are independent of applications.
The runtime and file system implications of application-based or individual module-based
deployment are described in “Runtime Environments” on page 71.

Individual module-based deployment is preferable when components need to be accessed
by:

• Other modules

• J2EE Applications

• ACC clients (Module-based deployment allows shared access to a bean from an ACC
client, a servlet, or an EJB component.)

Modules can be combined into an EAR file and then deployed as a single module. This is
similar to deploying the modules of the EAR independently.

Deploying a WAR Module
You deploy a WAR module as described in “Tools for Deployment” on page 88.

You can precompile JSP files during deployment by checking the appropriate box in the
Administration Console or by using the --precompilejsp option of the asadmin deploy
or asadmin deploydir command. The sun-appserv-deploy and sun-appserv-jspc
Ant tasks also allow you to precompile JSP files.

You can keep the generated source for JSP files by adding the -keepgenerated flag to the
jsp-config element in sun-web.xml. If you include this property when you deploy the
WAR module, the generated source is kept in
domain_dir/generated/jsp/j2ee-apps/app_name/module_name if it is in an
application or domain_dir/generated/jsp/j2ee-modules/module_name if it is in an
individually deployed web module.

For more information about JSP precompilation, see “Options for Compiling JSP Files” on
page 137. For more information about the -keepgenerated property, see “jsp-config” on
page 351.

Deploying Modules and Applications

Chapter 3 Assembling and Deploying Applications 91

Deploying an EJB JAR Module
You deploy an EJB JAR module as described in “Tools for Deployment” on page 88.

You can keep the generated source for stubs and ties by adding the -keepgenerated flag
to the rmic-options attribute of the java-config element in domain.xml. If you include
this flag when you deploy the EJB JAR module, the generated source is kept in
domain_dir/generated/ejb/j2ee-apps/app_name/module_name if it is in an
application or domain_dir/generated/ejb/j2ee-modules/module_name if it is in an
individually deployed EJB JAR module. For more information about the -keepgenerated
flag, see the Sun Java System Application Server Administration Reference.

Generation of stubs and ties is performed asynchronously, so unless you request their
generation during deployment (for example, using the --retrieve option of the asadmin
deploy command), stubs and ties are not guaranteed to be available immediately after
deployment. You can use the asadmin get-client-stubs command to retrieve the stubs
and ties whether or not you requested their generation during deployment. For details, see
the Sun Java System Application Server Reference Manual.

Deploying a Lifecycle Module
For general information about lifecycle modules, see Chapter 10, “Developing Lifecycle
Listeners.”

You can deploy a lifecycle module using the following tools:

• In the Administration Console, open the Applications component and go to the
Lifecycle Modules page. For details, see the Sun Java System Application Server
Administration Guide.

• Use the asadmin create-lifecycle-module command. For details, see the Sun
Java System Application Server Reference Manual.

NOTE If the is-failure-fatal setting is set to true (the default is false),
lifecycle module failure prevents server initialization or startup, but not
shutdown or termination.

Deploying Modules and Applications

92 Application Server Platform Edition 2005Q1 • Developer’s Guide

Deploying an Application Client
Deployment is only necessary for application clients that communicate with EJB
components. To deploy an application client:

1. Assemble the necessary client files (as described in Chapter 8, “Developing Java
Clients”).

2. Assemble the EJB components to be accessed by the client.

3. Package the client and EJB components together in an application.

4. Deploy the application as described in “Tools for Deployment” on page 88. You can
use the --retrieve option to get the client JAR file.

You can also use the asadmin get-client-stubs command to retrieve the stubs and
ties whether or not you requested their generation during deployment. For details, see
the Sun Java System Application Server Reference Manual.

5. The client JAR contains the ties and necessary classes for the ACC client. Copy this
file to the client machine, and set the APPCPATH environment variable on the client to
point to this JAR.

To execute the client on the Sun Java System Application Server machine to test it, use the
appclient script in the install_dir/bin directory. The only required option is -client.
For example:

appclient -client converterClient.jar

The -xml parameter specifies the location of the sun-acc.xml file.

Before you can execute an ACC client on a different machine, you must prepare the client
machine:

1. You can use the package-appclient script in the install_dir/bin directory to create
the ACC package JAR file. This is optional. This JAR file is created in the
install_dir/lib/appclient directory.

2. Copy the ACC package JAR file to the client machine and unjar it.

3. Configure the sun-acc.xml file, located in the
appclient/appserv/lib/appclient directory by default if you used the
package-appclient script.

4. Configure the asenv.conf (asenv.bat on Windows) file, located in
appclient/appserv/bin by default if you used the package-appclient script.

5. Copy the client JAR file to the client machine. You are now ready to execute the client.

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 93

For more detailed information about the appclient and package-appclient scripts, see
Chapter 8, “Developing Java Clients.”

Deploying a J2EE CA Resource Adapter
You deploy a connector module as described in “Tools for Deployment” on page 88. After
deploying the module, you must configure it as described in Chapter 9, “Developing
Connectors.”

Access to Shared Frameworks
When J2EE applications and modules use shared framework classes (such as utility classes
and libraries) the classes can be put in the path for the System Classloader or the Common
Classloader rather than in an application or module. If you assemble a large, shared library
into every module that uses it, the result is a huge file that takes too long to register with the
server. In addition, several versions of the same class could exist in different classloaders,
which is a waste of resources. For more information, see “Circumventing Classloader
Isolation” on page 77.

asant Assembly and Deployment Tool
Apache Ant 1.5.4 is provided with Sun Java System Application Server and can be
launched from the bin directory using the command asant. Sun Java System Application
Server also provides server-specific tasks for deployment, which are described in this
section.

Make sure you have done these things before using asant:

• Include install_dir/bin in the PATH environment variable (/usr/sfw/bin for Sun
Java Enterprise System on Solaris). The Ant script provided with Sun Java System
Application Server, asant, is located in this directory. For details on how to use
asant, see the Sun Java System Application Server Reference Manual and the sample
applications documentation in the install_dir/samples/docs/ant.html file.

• If you are executing platform-specific applications, such as the exec or cvs task, the
ANT_HOME environment variable must be set to the Ant installation directory.

❍ The ANT_HOME environment variable for Sun Java Enterprise System must
include the following:

• /usr/sfw/bin - the Ant binaries (shell scripts)

asant Assembly and Deployment Tool

94 Application Server Platform Edition 2005Q1 • Developer’s Guide

• /usr/sfw/doc/ant - HTML documentation

• /usr/sfw/lib/ant - Java classes that implement Ant

❍ The ANT_HOME environment variable for all other platforms is install_dir/lib.

• Set up your password file. The argument for the passworfile option of each Ant task
is a file. This file contains the password attribute name and its value, in the following
format:

AS_ADMIN_PASSWORD=password

For more information about password files, see the Sun Java System Application
Server Reference Manual.

This section covers the following asant-related topics:

• asant Tasks for Sun Java System Application Server

• Reusable Subelements

For more information about Ant, see the Apache Software Foundation website:

http://ant.apache.org/

For information about standard Ant tasks, see the Ant documentation:

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/index.html

asant Tasks for Sun Java System Application
Server
Use the asant tasks provided by Sun Java System Application Server for assembling,
deploying, and undeploying modules and applications, and for configuring the server. The
tasks are as follows:

• sun-appserv-deploy

• sun-appserv-undeploy

• sun-appserv-component

• sun-appserv-admin

• sun-appserv-jspc

• sun-appserv-update

http://ant.apache.org/
http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/index.html

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 95

sun-appserv-deploy
Deploys any of the following.

• Enterprise application (EAR file)

• Web application (WAR file)

• Enterprise Java Bean (EJB-JAR file)

• Enterprise connector (RAR file)

• Application client

Subelements
The following table describes subelements for the sun-appserv-deploy task. These are
objects upon which this task acts.

Attributes
The following table describes attributes for the sun-appserv-deploy task.

Table 3-5 sun-appserv-deploy Subelements
Element Description

component A component to be deployed.

fileset A set of component files that match specified parameters.

Table 3-6 sun-appserv-deploy Attributes
Attribute Default Description

file none (optional if a component or fileset subelement is
present, otherwise required) The component to deploy. If
this attribute refers to a file, it must be a valid archive. If
this attribute refers to a directory, it must contain a valid
archive in which all components have been exploded. If
upload is set to false, this must be an absolute path
on the server machine.

name file name
without
extension

(optional) The display name for the component being
deployed.

type determined
by extension

(optional) Deprecated.

asant Assembly and Deployment Tool

96 Application Server Platform Edition 2005Q1 • Developer’s Guide

force true (optional) If true, the component is overwritten if it
already exists on the server. If false,
sun-appserv-deploy fails if the component exists.

retrievestubs client stubs
not saved

(optional) The directory where client stubs are saved.
This attribute is inherited by nested component
elements.

precompilejsp false (optional) If true, all JSP files found in an enterprise
application (.ear) or web application (.war) are
precompiled. This attribute is ignored for other
component types. This attribute is inherited by nested
component elements.

verify false (optional) If true, syntax and semantics for all
deployment descriptors are automatically verified for
correctness. This attribute is inherited by nested
component elements.

contextroot file name
without
extension

(optional) The context root for a web module (WAR file).
This attribute is ignored if the component is not a WAR
file.

dbvendorname sun-ejb-jar
.xml entry

(optional) The name of the database vendor for which
tables can be created. Allowed values are db2, mssql,
oracle, pointbase, and sybase, case-insensitive.

If not specified, the value of the
database-vendor-name attribute in
sun-ejb-jar.xml is used.

If no value is specified, a connection is made to the
resource specified by the jndi-name subelement of the
cmp-resource element in the sun-ejb-jar.xml file, and
the database vendor name is read. If the connection
cannot be established, or if the value is not recognized,
SQL-92 compliance is presumed.

For details, see “Generation Options” on page 170.

createtables sun-ejb-jar
.xml entry

(optional) If true, causes database tables to be created
for beans that need them. If false, does not create
tables. If not specified, the value of the
create-tables-at-deploy attribute in
sun-ejb-jar.xml is used.

For details, see “Generation Options” on page 170.

Table 3-6 sun-appserv-deploy Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 97

dropandcreatetables sun-ejb-jar
.xml entry

(optional) If true, and if tables were automatically
created when this application was last deployed, tables
from the earlier deployment are dropped and fresh ones
are created.

If true, and if tables were not automatically created
when this application was last deployed, no attempt is
made to drop any tables. If tables with the same names
as those that would have been automatically created are
found, the deployment proceeds, but a warning indicates
that tables could not be created.

If false, settings of create-tables-at-deploy or
drop-tables-at-undeploy in the sun-ejb-jar.xml
file are overridden.

For details, see “Generation Options” on page 170.

uniquetablenames sun-ejb-jar
.xml entry

(optional) If true, specifies that table names are unique
within each application server domain. If not specified,
the value of the use-unique-table-names property in
sun-ejb-jar.xml is used.

For details, see “Generation Options” on page 170.

enabled true (optional) If true, enables the component.

deploymentplan none (optional) A deployment plan is a JAR file containing
Sun-specific descriptors. Use this attribute when
deploying an EAR file that lacks Sun-specific
descriptors.

upload true (optional) If true, the component is transferred to the
server for deployment. If the component is being
deployed on the local machine, set upload to false to
reduce deployment time. If a directory is specified for
deployment, upload must be false.

virtualservers default virtual
server only

(optional) A comma-separated list of virtual servers to be
deployment targets. This attribute applies only to
application (.ear) or web (.war) components and is
ignored for other component types.

user admin (optional) The user name used when logging into the
application server.

password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server.

passwordfile none (optional) File containing passwords. The password from
this file is retrieved for communication with the
application server. If both password and passwordfile
are specified, passwordfile takes precedence.

Table 3-6 sun-appserv-deploy Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

98 Application Server Platform Edition 2005Q1 • Developer’s Guide

Examples
Here is a simple application deployment script with many implied attributes:

<sun-appserv-deploy
file="${assemble}/simpleapp.ear"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-deploy
file="${assemble}/simpleapp.ear"
name="simpleapp"
force="true"
precompilejsp="false"
verify="false"
upload="true"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
asinstalldir="${asinstalldir}" />

This example deploys multiple components to the same Sun Java System Application
Server running on a remote server:

host localhost (optional) Target server. When deploying to a remote
server, use the fully qualified host name.

port 4848 (optional) The administration port on the target server.

asinstalldir see
description

(optional) The installation directory for the local Sun Java
System Application Server installation, which is used to
find the administrative classes. If not specified, the
command checks to see if the asinstalldir
parameter has been set. Otherwise, administrative
classes must be in the system classpath.

sunonehome see
description

(optional) Deprecated. Use asinstalldir instead.

Table 3-6 sun-appserv-deploy Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 99

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

This example deploys the same components as the previous example because the three
components match the fileset criteria, but note that it’s not possible to set some
component-specific attributes. All component-specific attributes (name and contextroot)
use their default values.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<fileset dir="${assemble}" includes="**/*.?ar" />
</sun-appserv-deploy>

sun-appserv-undeploy
Undeploys any of the following.

• Enterprise application (EAR file)

• Web application (WAR file)

• Enterprise Java Bean (EJB-JAR file)

• Enterprise connector (RAR file)

• Application client

Subelements
The following table describes subelements for the sun-appserv-undeploy task. These are
objects upon which this task acts.

Attributes
The following table describes attributes for the sun-appserv-undeploy task.

Table 3-7 sun-appserv-undeploy Subelements
Element Description

component A component to be deployed.

fileset A set of component files that match specified parameters.

asant Assembly and Deployment Tool

100 Application Server Platform Edition 2005Q1 • Developer’s Guide

Table 3-8 sun-appserv-undeploy Attributes
Attribute Default Description

name file name
without
extension

(optional if a component or fileset subelement is present
or the file attribute is specified, otherwise required) The
display name for the component being undeployed.

file none (optional) The component to undeploy. If this attribute refers
to a file, it must be a valid archive. If this attribute refers to a
directory, it must contain a valid archive in which all
components have been exploded.

type determined
by extension

(optional) Deprecated.

droptables sun-ejb-jar.
xml entry

(optional) If true, causes database tables that were
automatically created when the bean(s) were last deployed to
be dropped when the bean(s) are undeployed. If false, does
not drop tables.

If not specified, the value of the drop-tables-at-undeploy
attribute in sun-ejb-jar.xml is used.

For details, see “Generation Options” on page 170.

cascade false (optional) If true, deletes all connection pools and connector
resources associated with the resource adapter being
undeployed.

If false, undeployment fails if any pools or resources are still
associated with the resource adapter.

This attribute is applicable to connectors (resource adapters)
and applications with connector modules.

user admin (optional) The user name used when logging into the
application server.

password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server.

passwordfile none (optional) File containing passwords. The password from this
file is retrieved for communication with the application server.
If both password and passwordfile are specified,
passwordfile takes precedence.

host localhost (optional) Target server. When deploying to a remote server,
use the fully qualified host name.

port 4848 (optional) The administration port on the target server.

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 101

Examples
Here is a simple application undeployment script with many implied attributes:

<sun-appserv-undeploy name="simpleapp" passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-undeploy
name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
asinstalldir="${asinstalldir}" />

This example demonstrates using the archive files (EAR and WAR, in this case) for the
undeployment, using the component name (for undeploying the EJB component in this
example), and undeploying multiple components.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

sun-appserv-component
Enables or disables the following J2EE component types that have been deployed to the
Sun Java System Application Server.

• Enterprise application (EAR file)

• Web application (WAR file)

• Enterprise Java Bean (EJB-JAR file)

asinstalldir see
description

(optional) The installation directory for the local Sun Java
System Application Server installation, which is used to find
the administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been set.
Otherwise, administrative classes must be in the system
classpath.

sunonehome see
description

(optional) Deprecated. Use asinstalldir instead.

Table 3-8 sun-appserv-undeploy Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

102 Application Server Platform Edition 2005Q1 • Developer’s Guide

• Enterprise connector (RAR file)

• Application client

You don’t need to specify the archive to enable or disable a component: only the component
name is required. You can use the component archive, however, because it implies the
component name.

Subelements
The following table describes subelements for the sun-appserv-component task. These
are objects upon which this task acts.

Attributes
The following table describes attributes for the sun-appserv-component task.

Table 3-9 sun-appserv-component Subelements
Element Description

component A component to be deployed.

fileset A set of component files that match specified parameters.

Table 3-10 sun-appserv-component Attributes
Attribute Default Description

action none The control command for the target application server. Valid
values are enable and disable.

name file name
without
extension

(optional if a component or fileset subelement is present
or the file attribute is specified, otherwise required) The
display name for the component being enabled or disabled.

file none (optional) The component to enable or disable. If this attribute
refers to a file, it must be a valid archive. If this attribute refers
to a directory, it must contain a valid archive in which all
components have been exploded.

type determined
by extension

(optional) Deprecated.

user admin (optional) The user name used when logging into the
application server.

password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server.

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 103

Examples
Here is a simple example of disabling a component:

<sun-appserv-component
action="disable"
name="simpleapp"
passwordfile="${passwordfile}" />

Here is a simple example of enabling a component:

<sun-appserv-component
action="enable"
name="simpleapp"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-component
action="enable"
name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
asinstalldir="${asinstalldir}" />

passwordfile none (optional) File containing passwords. The password from this
file is retrieved for communication with the application server.
If both password and passwordfile are specified,
passwordfile takes precedence.

host localhost (optional) Target server. When enabling or disabling a remote
server, use the fully qualified host name.

port 4848 (optional) The administration port on the target server.

asinstalldir see
description

(optional) The installation directory for the local Sun Java
System Application Server installation, which is used to find
the administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been set.
Otherwise, administrative classes must be in the system
classpath.

sunonehome see
description

(optional) Deprecated. Use asinstalldir instead.

Table 3-10 sun-appserv-component Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

104 Application Server Platform Edition 2005Q1 • Developer’s Guide

This example demonstrates disabling multiple components using the archive files (EAR and
WAR, in this case) and using the component name (for an EJB component in this example).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

sun-appserv-admin
Enables arbitrary administrative commands and scripts to be executed on the Sun Java
System Application Server. This is useful for cases where a specific Ant task hasn’t been
developed or a set of related commands are in a single script.

Subelements
none

Attributes
The following table describes attributes for the sun-appserv-admin task.

Table 3-11 sun-appserv-admin Attributes
Attribute Default Description

command none (exactly one of these is required: command,
commandfile, or explicitcommand) The command to
execute. If the user, passwordfile, host, or port
attributes are also specified, they are automatically
inserted into the command before execution. If any of
these options are specified in the command string, the
corresponding attribute values are ignored.

commandfile none (exactly one of these is required: command,
commandfile, or explicitcommand) Deprecated. The
command script to execute. If commandfile is used, the
values of all other attributes are ignored. Be sure to end
the script referenced by commandfile with the exit
command; if you omit exit, the Ant task might appear to
hang after the command script is called.

explicitcommand none (exactly one of these is required: command,
commandfile, or explicitcommand) The exact
command to execute. No command processing is done,
and all other attributes are ignored.

user admin (optional) The user name used when logging into the
application server.

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 105

Examples
Here is an example of executing the create-jms-dest command:

<sun-appserv-admin command="create-jms-dest --desttype topic">

Here is an example of using commandfile to execute the create-jms-dest command:

<sun-appserv-admin commandfile="create_jms_dest.txt"
instance="development">

The create_jms_dest.txt file contains the following:

create-jms-dest --user admin --passwordfile "${passwordfile}" --host
localhost --port 4848 --desttype topic --target server1 simpleJmsDest

Here is an example of using explicitcommand to execute the create-jms-dest
command:

<sun-appserv-admin command="create-jms-dest --user admin --passwordfile
"${passwordfile}" --host localhost --port 4848 --desttype topic --target
server1 simpleJmsDest">

password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server.

passwordfile none (optional) File containing passwords. The password
from this file is retrieved for communication with the
application server. If both password and passwordfile
are specified, passwordfile takes precedence.

host localhost (optional) Target server. If it is a remote server, use the
fully qualified host name.

port 4848 (optional) The administration port on the target server.

asinstalldir see
description

(optional) The installation directory for the local Sun
Java System Application Server installation, which is
used to find the administrative classes. If not specified,
the command checks to see if the asinstalldir
parameter has been set. Otherwise, administrative
classes must be in the system classpath.

sunonehome see
description

(optional) Deprecated. Use asinstalldir instead.

Table 3-11 sun-appserv-admin Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

106 Application Server Platform Edition 2005Q1 • Developer’s Guide

sun-appserv-jspc
Precompiles JSP source code into Sun Java System Application Server compatible Java
code for initial invocation by Sun Java System Application Server. Use this task to speed up
access to JSP files or to check the syntax of JSP source code. You can feed the resulting
Java code to the javac task to generate class files for the JSP files.

Subelements
none

Attributes
The following table describes attributes for the sun-appserv-jspc task.

Table 3-12 sun-appserv-jspc Attributes
Attribute Default Description

destdir The destination directory for the generated Java source files.

srcdir (exactly one of these is required: srcdir or webapp) The
source directory where the JSP files are located.

webapp (exactly one of these is required: srcdir or webapp) The
directory containing the web application. All JSP files within
the directory are recursively parsed. The base directory must
have a WEB-INF subdirectory beneath it. When webapp is
used, sun-appserv-jspc hands off all dependency
checking to the compiler.

verbose 2 (optional) The verbosity integer to be passed to the compiler.

classpath (optional) The classpath for running the JSP compiler.

classpathref (optional) A reference to the JSP compiler classpath.

uribase / (optional) The URI context of relative URI references in the
JSP files. If this context does not exist, it is derived from the
location of the JSP file relative to the declared or derived
value of uriroot. Only pages translated from an explicitly
declared JSP file are affected.

uriroot see
description

(optional) The root directory of the web application, against
which URI files are resolved. If this directory is not specified,
the first JSP file is used to derive it: each parent directory of
the first JSP file is searched for a WEB-INF directory, and the
directory closest to the JSP file that has one is used. If no
WEB-INF directory is found, the directory sun-appserv-jspc
was called from is used. Only pages translated from an
explicitly declared JSP file (including tag libraries) are
affected.

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 107

Example
The following example uses the webapp attribute to generate Java source files from JSP
files. The sun-appserv-jspc task is immediately followed by a javac task, which
compiles the generated Java files into class files. The classpath value in the javac task
must be all on one line with no spaces.

<sun-appserv-jspc
destdir="${assemble.war}/generated"
webapp="${assemble.war}"
classpath="${assemble.war}/WEB-INF/classes"
asinstalldir="${asinstalldir}" />

<javac
srcdir="${assemble.war}/WEB-INF/generated"
destdir="${assemble.war}/WEB-INF/generated"
debug="on"
classpath="${assemble.war}/WEB-INF/classes:${asinstalldir}/lib/

appserv-rt.jar:${asinstalldir}/lib/appserv-ext.jar">
<include name="**/*.java"/>

</javac>

sun-appserv-update
Enables deployed applications (EAR files) and modules (EJB JAR, RAR, and WAR files)
to be updated and reloaded for fast iterative development. This task copies modified class
files, XML files, and other contents of the archive files to the appropriate subdirectory of
the domain_dir/applications directory, then touches the .reload file to cause dynamic
reloading to occur.

This is a local task and must be executed on the same machine as the application server.

package (optional) The destination package for the generated Java
classes.

asinstalldir see
description

(optional) The installation directory for the local Sun Java
System Application Server installation, which is used to find
the administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been set.
Otherwise, administrative classes must be in the system
classpath.

sunonehome see
description

(optional) Deprecated. Use asinstalldir instead.

Table 3-12 sun-appserv-jspc Attributes (Continued)
Attribute Default Description

asant Assembly and Deployment Tool

108 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none

Attributes
The following table describes attributes for the sun-appserv-update task.

Example
The following example updates the J2EE application foo.ear, which is deployed to the
default domain, domain1.

<sun-appserv-update file="foo.ear"/>

Reusable Subelements
Reusable subelements of the Ant tasks for the Sun Java System Application Server are as
follows. These are objects upon which the Ant tasks act.

• component

• fileset

component
Specifies a J2EE component. Allows a single task to act on multiple components. The
component attributes override corresponding attributes in the parent task; therefore, the
parent task attributes function as default values.

Subelements
none

Attributes
The following table describes attributes for the component element.

Table 3-13 sun-appserv-update Attributes
Attribute Default Description

file none The component to update, which must be a valid archive.

domain domain1 (optional) The domain in which the application has been
previously deployed.

asant Assembly and Deployment Tool

Chapter 3 Assembling and Deploying Applications 109

Examples
You can deploy multiple components using a single task. This example deploys each
component to the same Sun Java System Application Server running on a remote server.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/s1as8" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>

</sun-appserv-deploy>

Table 3-14 component Attributes
Attribute Default Description

file none (optional if the parent task is sun-appserv-undeploy or
sun-appserv-component) The target component. If this
attribute refers to a file, it must be a valid archive. If this
attribute refers to a directory, it must contain a valid archive in
which all components have been exploded. If upload is set to
false, this must be an absolute path on the server machine.

name file name
without
extension

(optional) The display name for the component.

type determined
by extension

(optional) Deprecated.

force true (applies to sun-appserv-deploy only, optional) If true, the
component is overwritten if it already exists on the server. If
false, the containing element’s operation fails if the
component exists.

precompilejsp false (applies to sun-appserv-deploy only, optional) If true, all
JSP files found in an enterprise application (.ear) or web
application (.war) are precompiled. This attribute is ignored
for other component types.

retrievestubs client stubs
not saved

(applies to sun-appserv-deploy only, optional) The
directory where client stubs are saved.

contextroot file name
without
extension

(applies to sun-appserv-deploy only, optional) The context
root for a web module (WAR file). This attribute is ignored if
the component is not a WAR file.

verify false (applies to sun-appserv-deploy only, optional) If true,
syntax and semantics for all deployment descriptors is
automatically verified for correctness.

asant Assembly and Deployment Tool

110 Application Server Platform Edition 2005Q1 • Developer’s Guide

You can also undeploy multiple components using a single task. This example demonstrates
using the archive files (EAR and WAR, in this case) and the component name (for the EJB
component).

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

You can enable or disable multiple components. This example demonstrates disabling
multiple components using the archive files (EAR and WAR, in this case) and the
component name (for the EJB component).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

fileset
Selects component files that match specified parameters. When fileset is included as a
subelement, the name and contextroot attributes of the containing element must use their
default values for each file in the fileset. For more information, see:

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/CoreTypes/fileset.html

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/CoreTypes/fileset.html

111

Chapter 4

Debugging Applications

This chapter gives guidelines for debugging applications in Sun Java System Application
Server. It includes the following sections:

• Enabling Debugging

• JPDA Options

• Generating a Stack Trace for Debugging

• The Java Debugger

• Using the NetBeans IDE for Debugging

• Sun Java System Message Queue Debugging

• Enabling Verbose Mode

• Logging

• Profiling

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. To start the
server in debug mode, use the --debug option as follows:

asadmin start-domain --debug [domain_name]

You can then attach to the server from the debugger at its default JPDA port, which is 9009.
For example, for UNIX systems:

jdb -attach 9009

JPDA Options

112 Application Server Platform Edition 2005Q1 • Developer’s Guide

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

Sun Java System Application Server debugging is based on the JPDA (Java Platform
Debugger Architecture). For more information, see “JPDA Options” on page 112.

You can enable debugging even when the application server is started without the --debug
option. This is useful if you start the application server from the Windows Start Menu or if
you want to make sure that debugging is always turned on. You can set the server to
automatically start up in debug mode using the Administration Console:

1. Select the JVM Settings component under the relevant configuration.

2. Check the Debug Enabled box.

3. To specify a different port (from 9009, the default) to use when attaching the JVM to a
debugger, specify address=port_number in the Debug Options field.

4. If you wish to add JPDA options, add any desired JPDA debugging options in Debug
Options. See “JPDA Options” on page 112.

For details, see the Sun Java System Application Server Administration Guide.

JPDA Options
The default JPDA options in Sun Java System Application Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM
starts.

To specify a different port (from 9009, the default) to use when attaching the JVM to a
debugger, specify address=port_number.

You can include additional options. A list of JPDA debugging options is available here:

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Generating a Stack Trace for Debugging

Chapter 4 Debugging Applications 113

Generating a Stack Trace for Debugging
You can generate a Java stack trace for debugging as described here if the Sun Java System
Application Server is in verbose mode (see “Enabling Verbose Mode” on page 115):

http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/

The stack trace goes to the domain_dir/logs/server.log file and also appears on the
command prompt screen.

If the -Xrs flag is set (for reduced signal usage) in the domain.xml file (under
<jvm-options>), comment it out before generating the stack trace. If the -Xrs flag is used,
the server might simply dump core and restart when you send the signal to generate the
trace. For more about the domain.xml file, see the Sun Java System Application Server
Administration Reference.

The Java Debugger
The Java Debugger (jdb) helps you find and fix bugs in Java language programs. When
using the jdb debugger with Sun Java System Application Server, you must attach to the
server from the debugger at its default JPDA port, which is 9009. For example, for UNIX
systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

For more information about the jdb debugger, see the following links:

http://java.sun.com/products/jpda/doc/soljdb.html

http://java.sun.com/products/jpda/doc/conninv.html#JDB

http://java.sun.com/products/jdk/1.2/debugging/JDBTutorial.html

You can attach to the Application Server using any JPDA compliant IDE debugger,
including NetBeans (http://www.netbeans.org), Sun Java Studio, JBuilder, Eclipse, and
so on.

http://www.netbeans.org
http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/
http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/soljdb.html

Using the NetBeans IDE for Debugging

114 Application Server Platform Edition 2005Q1 • Developer’s Guide

Using the NetBeans IDE for Debugging
To use the NetBeans 3.6 IDE with the Sun Java System Application Server:

1. Download the latest version of NetBeans from http://www.netbeans.org.

2. Set up the classpath in NetBeans to compile J2EE applications using the standard J2EE
1.4 API libraries provided with the Sun Java System Application Server. Perform the
following steps in the NetBeans IDE:

a. In the Menu bar, click on the File menu and select Mount Filesystem.

b. In the wizard dialog box, select Archive Files as the Filesystem type and click
Next.

c. Navigate the file chooser to the Sun Java System Application Server directory
install_dir/lib.

d. Select j2ee.jar. To use Sun-specific public APIs provided in the Sun Java
System Application Server, select the appserv-ext.jar archive as well. Click
Finish.

The j2ee.jar file should appear in the list of mounted file systems under the Editing
pane inside the Filesystems tab of the NetBeans IDE. You can now import J2EE 1.4
API packages in your source files and compile the source files.

3. Build your application in the NetBeans IDE.

4. Assemble your application into a J2EE archive file (WAR, JAR, RAR or EAR file) and
deploy it to the Sun Java System Application Server.

5. Start the Sun Java System Application Server with debugging enabled. See “Enabling
Debugging” on page 111.

6. Attach to the Sun Java System Application Server using the Netbeans IDE debugger:

a. Click on the Debug menu, select Start Session, then select Attach.

b. In the Attach dialog box, make sure the host (default localhost) and port (default
9009) correspond to the host and JPDA debug port of the Sun Java System
Application Server. Click OK.

The Output Window of the Debugger Console should display the message
Connection established.

7. Set break points in your source file in the NetBeans IDE as usual, and run the
application.

8. When finished with debugging, detach from the server by clicking Finish in the Debug
menu.

http://www.netbeans.org

Sun Java System Message Queue Debugging

Chapter 4 Debugging Applications 115

Sun Java System Message Queue Debugging
Sun Java System Message Queue has a broker logger, which can be useful for debugging
JMS, including message-driven bean, applications. You can adjust the logger’s verbosity,
and you can send the logger output to the broker’s console using the broker’s -tty option.
For more information, see the Sun Java System Message Queue Administration Guide.

Enabling Verbose Mode
If you want to see the server logs and messages printed to System.out on your command
prompt screen, you can start the server in verbose mode. This makes it easy to do simple
debugging using print statements, without having to view the server.log file every time.

When the server is in verbose mode, messages are logged to the console or terminal
window in addition to the log file. In addition, pressing Ctrl-C stops the server and pressing
Ctrl-\ prints a thread dump. To start the server in verbose mode, use the --verbose option
as follows:

asadmin start-domain --verbose [domain_name]

You can enable verbose mode even when the application server is started without the
--verbose option. This is useful if you start the application server from the Windows Start
Menu or if you want to make sure that verbose mode is always turned on.

You can set the server to automatically start up in verbose mode using the Administration
Console. For details, see the Sun Java System Application Server Administration Guide.

Logging
You can use the Sun Java System Application Server’s log files to help debug your
applications. In the Administration Console, select the Application Server component, then
click on the Open Log Viewer button in the General Information page. For details about
logging, see the Sun Java System Application Server Administration Guide.

Profiling
You can use a profiler to perform remote profiling on the Sun Java System Application
Server to discover bottlenecks in server-side performance. This section describes how to
configure these profilers for use with Sun Java System Application Server:

Profiling

116 Application Server Platform Edition 2005Q1 • Developer’s Guide

• The HPROF Profiler

• The Optimizeit Profiler

Information about comprehensive monitoring and management support in the Java™ 2
Platform, Standard Edition (J2SE™ platform) version 5.0 is available at:

http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html

The HPROF Profiler
HPROF is a simple profiler agent shipped with the Java 2 SDK. It is a dynamically linked
library that interacts with the JVMPI and writes out profiling information either to a file or
to a socket in ASCII or binary format.

HPROF can present CPU usage, heap allocation statistics, and monitor contention profiles.
In addition, it can also report complete heap dumps and states of all the monitors and
threads in the Java virtual machine. For more details on the HPROF profiler, see the JDK
documentation at:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof

Once HPROF is enabled using the following instructions, its libraries are loaded into the
server process. To use HPROF profiling on UNIX, follow these steps:

1. Configure Sun Java System Application Server using the Administration Console:

a. Select the JVM Settings component under the relevant configuration, then select
the Profiler tab.

b. Edit the following fields:

• Profiler Name: hprof

• Profiler Enabled: true

• Classpath: (leave blank)

• Native Library Path: (leave blank)

• JVM Option: For each of these options, select Add, type the option in the
Value field, then check its box:

-Xrunhprof:file=log.txt,options

Here is an example of options you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file option determines where the stack dump is written in Step 2.

http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof

Profiling

Chapter 4 Debugging Applications 117

The syntax of HPROF options is as follows:

-Xrunhprof[:help]|[:option=value,option2=value2, ...]

Using help lists options that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default
--------------------- ----------- -------
heap=dump|sites|all heap profiling all
cpu=samples|old CPU usage off
format=a|b ascii or binary output a
file=<file> write data to file java.hprof
 (.txt for ascii)
net=<host>:<port> send data over a socket write to file
depth=<size> stack trace depth 4
cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
doe=y|n dump on exit? y

2. Restart the Application Server. This writes an HPROF stack dump to the file you
specified using the file HPROF option in Step 1.

The Optimizeit Profiler
You can purchase Optimizeit™ from Borland at:

http://www.borland.com/optimizeit

Once Optimizeit is enabled using the following instructions, its libraries are loaded into the
server process. To enable remote profiling with Optimizeit, do the following:

1. Configure your operating system:

❍ On Solaris, add Optimizeit_dir/lib to the LD_LIBRARY_PATH environment
variable.

❍ On Windows, add Optimizeit_dir/lib to the PATH environment variable.

2. Configure Sun Java System Application Server using the Administration Console:

a. Select the JVM Settings component under the relevant configuration, then select
the Profiler tab.

http://www.borland.com/optimizeit

Profiling

118 Application Server Platform Edition 2005Q1 • Developer’s Guide

b. Edit the following fields:

• Profiler Name: optimizeit

• Profiler Enabled: true

• Classpath: Optimizeit_dir/lib/optit.jar

• Native Library Path: Optimizeit_dir/lib

• JVM Option: For each of these options, select Add, type the option in the
Value field, then check its box:

-DOPTITHOME=Optimizeit_dir
-Xrunpri
-Xbootclasspath/Optimizeit_dir/lib/oibcp.jar

3. In addition, you might have to set the following in your server.policy file. For more
information about the server.policy file, see “The server.policy File” on page 45.

grant codeBase "file:Optimizeit_dir/lib/optit.jar" {
permission java.security.AllPermission;

};

4. Restart the Application Server.

When the server starts up with this configuration, you can attach the profiler. For further
details, see the Optimizeit documentation.

NOTE If any of the configuration options are missing or incorrect, the profiler
might experience problems that affect the performance of the Sun Java
System Application Server.

Part II

Developing Applications and
Application Components

Chapter 5, “Developing Web Applications”

Chapter 6, “Using Enterprise JavaBeans Technology”

Chapter 7, “Using Container-Managed Persistence for Entity
Beans”

Chapter 8, “Developing Java Clients”

Chapter 9, “Developing Connectors”

Chapter 10, “Developing Lifecycle Listeners”

121

Chapter 5

Developing Web Applications

This chapter describes how web applications are supported in the Sun Java System
Application Server and includes the following sections:

• Introducing Web Applications

• Using Servlets

• Using JavaServer Pages

• Creating and Managing HTTP Sessions

For general information about web applications, see the J2EE tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/WebApp.html#wp76431

Introducing Web Applications
This section includes summaries of the following topics:

• Internationalization Issues

• Virtual Servers

• Default Web Modules

• Classloader Delegation

• Using the default-web.xml File

• Configuring Logging in the Web Container

• Configuring HTML Error Pages

• Header Management

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/WebApp.html#wp76431

Introducing Web Applications

122 Application Server Platform Edition 2005Q1 • Developer’s Guide

Internationalization Issues
This section covers internationalization as it applies to the following:

• The Server

• Servlets

The Server
To set the default locale of the entire Sun Java System Application Server, which
determines the locale of the Administration Console, the logs, and so on, use the
Administration Console. Select the Domain component, and type a value in the Locale
field. For details, see the Sun Java System Application Server Administration Guide.

Servlets
This section explains how the Sun Java System Application Server determines the character
encoding for the servlet request and the servlet response. For encodings you can use, see:

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Servlet Request
When processing a servlet request, the server uses the following order of precedence, first
to last, to determine the request character encoding:

• The getCharacterEncoding() method.

• A hidden field in the form, specified by the form-hint-field attribute of the
parameter-encoding element in the sun-web.xml file.

• The character encoding set in the default-charset attribute of the
parameter-encoding element in the sun-web.xml file.

• The default, which is ISO-8859-1.

For details about the parameter-encoding element, see “parameter-encoding” on page 370.

Servlet Response
When processing a servlet response, the server uses the following order of precedence, first
to last, to determine the response character encoding:

• The setCharacterEncoding() or setContentType() method.

• The setLocale() method.

• The default, which is ISO-8859-1.

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Introducing Web Applications

Chapter 5 Developing Web Applications 123

Virtual Servers
A virtual server, also called a virtual host, is a virtual web server that serves content targeted
for a specific URL. Multiple virtual servers can serve content using the same or different
host names, port numbers, or IP addresses. The HTTP service directs incoming web
requests to different virtual servers based on the URL.

When you first install the Sun Java System Application Server, a default virtual server is
created. (You can also assign a default virtual server to each new HTTP listener you create.
For details, see the Sun Java System Application Server Administration Guide.)

Web applications and J2EE applications containing web components can be assigned to
virtual servers. You can use the Administration Console to assign virtual servers:

1. Deploy the application or web module and assign the desired virtual server to it as
described in “Tools for Deployment” on page 88.

2. In the Administration Console, open the HTTP Service component under the relevant
configuration.

3. Open the Virtual Servers component under the HTTP Service component.

4. Select the virtual server to which you want to assign a default web module.

5. Select the application or web module from the Default Web Module drop-down list.
For more information, see “Default Web Modules” on page 123.

For details, see the Sun Java System Application Server Administration Guide.

Default Web Modules
A default web module can be assigned to the default virtual server and to each new virtual
server. For details, see “Virtual Servers” on page 123. To access the default web module for
a virtual server, point the browser to the URL for the virtual server, but do not supply a
context root. For example:

http://myvserver:3184/

A virtual server with no default web module assigned serves HTML or JSP content from its
document root, which is usually domain_dir/docroot. To access this HTML or JSP
content, point your browser to the URL for the virtual server, do not supply a context root,
but specify the target file.

For example:

http://myvserver:3184/hellothere.jsp

Introducing Web Applications

124 Application Server Platform Edition 2005Q1 • Developer’s Guide

Classloader Delegation
The Servlet specification recommends that the Web Classloader look in the local
classloader before delegating to its parent. To make the Web Classloader follow the
delegation model in the Servlet specification, set delegate="false" in the
class-loader element of the sun-web.xml file. It’s safe to do this only for a web module
that does not interact with any other modules.

The default value is delegate="true", which causes the Web Classloader to delegate in
the same manner as the other classloaders. Use delegate="true" for a web application
that accesses EJB components or that acts as a web service client or endpoint. For details
about sun-web.xml, see “The sun-web.xml File” on page 295.

For general information about classloaders, see “Classloaders” on page 73.

Using the default-web.xml File
You can use the default-web.xml file to define features such as filters and security
constraints that apply to all web applications, as follows:

1. Place the JAR file for the filter, security constraint, or other feature in the
domain_dir/lib directory.

2. Edit the domain_dir/config/default-web.xml file to refer to the JAR file.

3. Restart the server.

The InvokerServlet allows use of the servlet-name instead of the servlet-mapping
for invoking a servlet with a URL, as described in “Invoking a Servlet with a URL” on
page 126. The InvokerServlet is commented out in the default-web.xml file. To
re-enable the InvokerServlet, remove the comment indicators (<!-- and -->), then
restart the server.

Configuring Logging in the Web Container
For information about configuring logging and monitoring in the web container using the
Administration Console, see the Sun Java System Application Server Administration
Guide.

Introducing Web Applications

Chapter 5 Developing Web Applications 125

Configuring HTML Error Pages
To specify an error page (or URL to an error page) to be displayed to the end user, use the
error-url attribute of the sun-web-app element in the sun-web.xml file. For example:

<sun-web-app error-url="webserver_install_dir/error/error1.html">
... subelements ...

</sun-web-app>

For details, see “sun-web-app” on page 402.

If the error-url attribute is specified, it overrides all other mechanisms configured for error
reporting.

The Sun Java System Application Server provides the following options for specifying the
error page.

• You can specify the error-url to be an HTTP URL. The Application Server forwards
the client request to the specified error URL.

• If you do not specify the error-url attribute in the sun-web.xml file, a default error
page is displayed.

The error page is displayed according to the following rules:

• When an error is encountered for an application, the Application Server first checks if
the error-url attribute is defined. If it is defined, the Application Server reads the URL
attribute and loads the error page.

• If the error-url attribute is missing or invalid, the Application Server displays the
default error page.

• If the error-url has been defined but the page is missing, the Application Server loads
the default error page.

• If the default error page is missing, the error is forwarded to the web server.

Header Management
In the Platform Edition of the Sun Java System Application Server, the Enumeration from
request.getHeaders() contains multiple elements instead of a single, aggregated value.

NOTE This attribute should not point to a URL on the Application Server instance,
because the error-url cannot be loaded if the server is down. Instead,
specify a URL that points to a location on the web server.

Using Servlets

126 Application Server Platform Edition 2005Q1 • Developer’s Guide

Using Servlets
Sun Java System Application Server supports the Java Servlet Specification version 2.4.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information about using
the Java Servlet API, see the documentation provided by Sun Microsystems at:

http://java.sun.com/products/servlet/index.html

The Sun Java System Application Server provides the wscompile and wsdeploy tools to
help you implement a web service endpoint as a servlet. For more information about these
tools, see the Sun Java System Application Server Reference Manual.

This section describes how to create effective servlets to control application interactions
running on a Sun Java System Application Server, including standard-based servlets. In
addition, this section describes the Sun Java System Application Server features to use to
augment the standards.

This section contains the following topics:

• Invoking a Servlet with a URL

• Servlet Output

• Caching Servlet Results

• About the Servlet Engine

Invoking a Servlet with a URL
You can call a servlet deployed to the Sun Java System Application Server by using a URL
in a browser or embedded as a link in an HTML or JSP file. The format of a servlet
invocation URL is as follows:

http://server:port/context_root/servlet_mapping?name=value

NOTE Servlet API version 2.4 is fully backward compatible with version 2.3, so
all existing servlets should work without modification or recompilation.

http://java.sun.com/products/servlet/index.html

Using Servlets

Chapter 5 Developing Web Applications 127

The following table describes each URL section.

In this example, localhost is the host name, MortPages is the context root, and
calcMortgage is the servlet mapping:

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

When invoking a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Servlet Output
ServletContext.log messages are sent to the server log.

By default, the System.out and System.err output of servlets are sent to the server log,
and during start-up server log messages are echoed to the System.err output. Also by
default, there is no Windows-only console for the System.err output.

To change these defaults using the Administration Console, select the Logger Settings
component under the relevant configuration, then check or uncheck these boxes:

• Log Messages to Standard Error - If checked, System.err output is sent to the server
log. If unchecked, System.err output is sent to the system default location only.

Table 5-1 URL Fields for Servlets Within an Application
URL element Description

server:port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this URL
section. You do not need to specify the context_root or servlet_name unless
you also wish to specify name-value parameters.

context_root For an application, the context root is defined in the context-root element
of the application.xml or sun-application.xml file. For an individually
deployed web module, the context root is specified during deployment.

For both applications and individually deployed web modules, the default
context root is the name of the WAR file minus the .war suffix.

servlet_mapping The servlet-mapping as configured in the web.xml file.

You can use the servlet-name instead if you enable the InvokerServlet; see
“Using the default-web.xml File” on page 124.

?name=value... Optional request parameters.

Using Servlets

128 Application Server Platform Edition 2005Q1 • Developer’s Guide

• Write to System Log - If checked, System.out output is sent to the server log. If
unchecked, System.out output is sent to the system default location only.

For more information, see the Sun Java System Application Server Administration Guide.

Caching Servlet Results
The Sun Java System Application Server can cache the results of invoking a servlet, a JSP,
or any URL pattern to make subsequent invocations of the same servlet, JSP, or URL
pattern faster. The Sun Java System Application Server caches the request results for a
specific amount of time. In this way, if another data call occurs, the Sun Java System
Application Server can return the cached data instead of performing the operation again.
For example, if your servlet returns a stock quote that updates every 5 minutes, you set the
cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For
example, it makes no sense to cache the results of a quiz submission, because the input to
the servlet is different each time. However, it makes sense to cache a high level report
showing demographic data taken from quiz results that is updated once an hour.

To define how a Sun Java System Application Server web application handles response
caching, you edit specific fields in the sun-web.xml file.

A sample caching application is in install_dir/samples/webapps/apps/caching.

For more information about JSP caching, see “JSP Caching” on page 133.

The rest of this section covers the following topics:

• Caching Features

• Default Cache Configuration

• Caching Example

• CacheKeyGenerator Interface

NOTE A servlet that uses caching is not portable.

Using Servlets

Chapter 5 Developing Web Applications 129

Caching Features
The Sun Java System Application Server has the following web application response
caching capabilities:

• Caching is configurable based on the servlet name or the URI.

• When caching is based on the URI, this includes user specified parameters in the query
string. For example, a response from /garden/catalog?category=roses is
different from a response from /garden/catalog?category=lilies. These
responses are stored under different keys in the cache.

• Cache size, entry timeout, and other caching behaviors are configurable.

• Entry timeout is measured from the time an entry is created or refreshed. To override
this timeout for an individual cache mapping, specify the cache-mapping subelement
timeout.

• To determine caching criteria programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheHelper interface. For example, if only a
servlet knows when a back end data source was last modified, you can write a helper
class to retrieve the last modified timestamp from the data source and decide whether to
cache the response based on that timestamp.

• To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See
“CacheKeyGenerator Interface” on page 131.

• All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the
request query string.

• Since newly updated classes impact what gets cached, the web container clears the
cache during dynamic deployment or reloading of classes.

• The following HttpServletRequest request attributes are exposed:

❍ com.sun.appserv.web.cachedServletName, the cached servlet target

❍ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

• Results produced by resources that are the target of a
RequestDispatcher.include() or RequestDispatcher.forward() call are
cached if caching has been enabled for those resources. For details, see the descriptions
of the cache-mapping and dispatcher elements in the sun-web.xml file.

Using Servlets

130 Application Server Platform Edition 2005Q1 • Developer’s Guide

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

• The default cache timeout is 30 seconds.

• Only the HTTP GET method is eligible for caching.

• HTTP requests with cookies or sessions automatically disable caching.

• No special consideration is given to Pragma:, Cache-control:, or Vary: headers.

• The default key consists of the Servlet Path (minus pathInfo and the query string).

• A “least recently used” list is maintained to evict cache entries if the maximum cache
size is exceeded.

• Key generation concatenates the servlet path with key field values, if any are specified.

• Results produced by resources that are the target of a
RequestDispatcher.include() or RequestDispatcher.forward() call are never
cached.

Caching Example
Here is an example cache element in the sun-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet-name>
<timeout name="timefield">120</timeout>
<http-method>GET</http-method>
<http-method>POST</http-method>

</cache-mapping>
<cache-mapping>

<url-pattern> /catalog/* </url-pattern>
<!-- cache the best selling category; cache the responses to
-- this resource only when the given parameters exist. Cache
-- only when the catalog parameter has 'lilies' or 'roses'
-- but no other catalog varieties:
-- /orchard/catalog?best&category='lilies'
-- /orchard/catalog?best&category='roses'
-- but not the result of
-- /orchard/catalog?best&category='wild'

-->
<constraint-field name='best' scope='request.parameter'/>
<constraint-field name='category' scope='request.parameter'>

Using Servlets

Chapter 5 Developing Web Applications 131

<value> roses </value>
<value> lilies </value>

</constraint-field>
<!-- Specify that a particular field is of given range but the
-- field doesn't need to be present in all the requests -->

<constraint-field name='SKUnum' scope='request.parameter'>
<value match-expr='in-range'> 1000 - 2000 </value>

</constraint-field>
<!-- cache when the category matches with any value other than
-- a specific value -->

<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">bogus</value>

</constraint-field>
</cache-mapping>
<cache-mapping>

<servlet-name> InfoServlet </servlet-name>
<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>
</cache>

For more information about the sun-web.xml caching settings, see “cache” on page 315.

CacheKeyGenerator Interface
The built-in default CacheHelper implementation allows web applications to customize
the key generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the
sun-web.xml deployment descriptor. For more information, see “default-helper” on
page 334.

About the Servlet Engine
Servlets exist in and are managed by the servlet engine in the Sun Java System Application
Server. The servlet engine is an internal object that handles all servlet meta functions. These
functions include instantiation, initialization, destruction, access from other components,
and configuration management. This section covers the following topics:

• Instantiating and Removing Servlets

• Request Handling

Using JavaServer Pages

132 Application Server Platform Edition 2005Q1 • Developer’s Guide

Instantiating and Removing Servlets
After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init()
method to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy() method in
the servlet so that the servlet can perform any final tasks and deallocate resources. You can
override this method to write log messages or clean up any lingering connections that won’t
be caught in garbage collection.

Request Handling
When a request is made, the Sun Java System Application Server hands the incoming data
to the servlet engine. The servlet engine processes the request’s input data, such as form
data, cookies, session information, and URL name-value pairs, into an
HttpServletRequest request object type.

The servlet engine also creates an HttpServletResponse response object type. The
engine then passes both as parameters to the servlet’s service() method.

In an HTTP servlet, the default service() method routes requests to another method based
on the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For
example, HTTP POST requests are sent to the doPost() method, HTTP GET requests are
sent to the doGet() method, and so on. This enables the servlet to process request data
differently, depending on which transfer method is used. Since the routing takes place in the
service method, you generally do not override service() in an HTTP servlet. Instead,
override doGet(), doPost(), and so on, depending on the request type you expect.

To perform the tasks to answer a request, override the service() method for generic
servlets, and the doGet() or doPost() methods for HTTP servlets. Very often, this means
accessing EJB components to perform business transactions, then collating the information
in the request object or in a JDBC ResultSet object.

Using JavaServer Pages
The Sun Java System Application Server supports the following JSP features:

• JavaServer Pages (JSP) Specification version 2.0

• Precompilation of JSP files, which is especially useful for production servers

• JSP tag libraries and standard portable tags

Using JavaServer Pages

Chapter 5 Developing Web Applications 133

For information about creating JSP files, see Sun Microsystem’s JavaServer Pages web site
at:

http://java.sun.com/products/jsp/index.html

For information about Java Beans, see Sun Microsystem’s JavaBeans web page at:

http://java.sun.com/beans/index.html

This section describes how to use JavaServer Pages (JSP files) as page templates in a Sun
Java System Application Server web application. This section contains the following topics:

• JSP Tag Libraries and Standard Portable Tags

• JSP Caching

• Options for Compiling JSP Files

JSP Tag Libraries and Standard Portable Tags
Sun Java System Application Server supports tag libraries and standard portable tags. For
more information, see the JavaServer Pages Standard Tag Library (JSTL) page:

http://java.sun.com/products/jsp/jstl/index.jsp

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar
JSP tag libraries (in install_dir/lib) to use JavaServer™ Faces technology or JSTL,
respectively. These tag libraries are automatically available to all web applications.

However, the install_dir/lib/appserv-tags.jar tag library for JSP caching is not
automatically available to web applications. See “JSP Caching,” next.

JSP Caching
JSP caching lets you cache tag invocation results within the Java engine. Each can be
cached using different cache criteria. For example, suppose you have invocations to view
stock quotes, weather information, and so on. The stock quote result can be cached for 10
minutes, the weather report result for 30 minutes, and so on.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 128.

JSP caching is implemented by a tag library packaged into the
install_dir/lib/appserv-tags.jar file, which you can copy into the WEB-INF/lib directory
of your web application. The appserv-tags.tld tag library descriptor file is in the
META-INF directory of this JAR file.

http://java.sun.com/products/jsp/index.html
http://java.sun.com/beans/index.html
http://java.sun.com/products/jsp/jstl/index.jsp

Using JavaServer Pages

134 Application Server Platform Edition 2005Q1 • Developer’s Guide

To allow all web applications to share this tag library, change the following elements in the
domain.xml file. Change this:

<jvm-options>-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar</jvm-options>

to this:

<jvm-options>-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar,appserv-tags.jar
</jvm-options>

and this:

<jvm-options>-Dcom.sun.enterprise.taglisteners=jsf-impl.jar</jvm-options>

to this:

<jvm-options>-Dcom.sun.enterprise.taglisteners=jsf-impl.jar,appserv-tags.jar</jvm-options>

For more information about the domain.xml file, see the Sun Java System Application
Server Administration Reference.

Refer to these tags in JSP files as follows:

<%@ taglib prefix="prefix" uri="Sun ONE Application Server Tags" %>

Subsequently, the cache tags are available as <prefix:cache> and <prefix:flush>. For
example, if your prefix is mypfx, the cache tags are available as <mypfx:cache> and
<mypfx:flush>.

The tags are as follows:

• cache

• flush

cache
The cache tag caches the body between the beginning and ending tags according to the
attributes specified. The first time the tag is encountered, the body content is executed and
cached. Each subsequent time it is run, the cached content is checked to see if it needs to be
refreshed and if so, it is executed again, and the cached data is refreshed. Otherwise, the
cached data is served.

Attributes
The following table describes attributes for the cache tag.

NOTE Web applications that use this tag library are not portable.

Using JavaServer Pages

Chapter 5 Developing Web Applications 135

Example
The following example represents a cached JSP file:

<%@ taglib prefix="mypfx" uri="Sun ONE Application Server Tags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<mypfx:cache key="${sessionScope.loginId}"
nocache="${param.nocache}"
refresh="${param.refresh}"
timeout="10m">

<c:choose>
<c:when test="${param.page == 'frontPage'}">

<%-- get headlines from database --%>
</c:when>
<c:otherwise>

...
</c:otherwise>

</c:choose>
</mypfx:cache>

Table 5-2 cache Attributes
Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the
cached entry. The cache key is suffixed to the servlet path to
generate a key to access the cached entry. If no key is
specified, a number is generated according to the position of
the tag in the page.

timeout 60s (optional) The time in seconds after which the body of the tag
is executed and the cache is refreshed. By default, this value
is interpreted in seconds. To specify a different unit of time,
add a suffix to the timeout value as follows: s for seconds, m
for minutes, h for hours, d for days. For example, 2h specifies
two hours.

nocache false (optional) If set to true, the body content is executed and
served as if there were no cache tag. This offers a way to
programmatically decide whether the cached response is sent
or whether the body has to be executed, though the response
is not cached.

refresh false (optional) If set to true, the body content is executed and the
response is cached again. This lets you programmatically
refresh the cache immediately regardless of the timeout
setting.

Using JavaServer Pages

136 Application Server Platform Edition 2005Q1 • Developer’s Guide

<mypfx:cache timeout="1h">
<h2> Local News </h2>

<%-- get the headline news and cache them --%>
</mypfx:cache>

flush
Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed.
If no key is specified, the entire cache is flushed.

Attributes
The following table describes attributes for the flush tag.

Examples
To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<c:if test="${empty sessionScope.clearCache}">
<mypfx:flush />

</c:if>

Table 5-3 flush Attributes
Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the
cached entry. The cache key is suffixed to the servlet path to
generate a key to access the cached entry. If no key is
specified, a number is generated according to the position of
the tag in the page.

Creating and Managing HTTP Sessions

Chapter 5 Developing Web Applications 137

Options for Compiling JSP Files
Sun Java System Application Server provides the following ways of compiling JSP 2.0
compliant source files into servlets:

• JSP files are automatically compiled at runtime.

• The asadmin deploy command has a precompilejsp option. For details, see the Sun
Java System Application Server Reference Manual.

• The sun-appserv-jspc Ant task allows you to precompile JSP files; see
“sun-appserv-jspc” on page 106.

• The jspc command line tool allows you to precompile JSP files at the command line.
For details, see the Sun Java System Application Server Reference Manual.

Creating and Managing HTTP Sessions
This chapter describes how to create and manage a session that allows users and transaction
information to persist between interactions.

This chapter contains the following sections:

• Configuring Sessions

• Session Managers

Configuring Sessions
This section covers the following topics:

• Sessions, Cookies, and URL Rewriting

• Coordinating Session Access

Sessions, Cookies, and URL Rewriting
To configure whether and how sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elements in the sun-web.xml file for an
individual web application. See “session-properties” on page 396 and “cookie-properties”
on page 332 for more about the properties you can configure.

For information about configuring default session properties for the entire web container,
see the Sun Java System Application Server Administration Guide.

Creating and Managing HTTP Sessions

138 Application Server Platform Edition 2005Q1 • Developer’s Guide

Coordinating Session Access
Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways. This is especially likely to occur in web applications that use HTML
frames where multiple servlets are executing simultaneously on behalf of the same client. A
good solution is to ensure that one of the servlets modifies the session and the others have
read-only access.

Session Managers
A session manager automatically creates new session objects whenever a new session starts.
In some circumstances, clients do not join the session, for example, if the session manager
uses cookies and the client does not accept cookies.

Sun Java System Application Server offers these session management options, determined
by the session-manager element’s persistence-type attribute in the sun-web.xml
file:

• The memory Persistence Type, the default

• The file Persistence Type, which uses a file to store session data

The memory Persistence Type
This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the
session state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Reference Manual.

To specify the memory persistence type for a specific web application, edit the
sun-web.xml file as in the following example. The persistence-type property is
optional, but must be set to memory if included. This overrides the web container
availability settings for the web application.

<sun-web-app>
...
<session-config>

<session-manager persistence-type=memory />
<manager-properties>

NOTE If the session manager configuration contains an error, the error is written
to the server log and the default (memory) configuration is used.

Creating and Managing HTTP Sessions

Chapter 5 Developing Web Applications 139

<property name="sessionFilename" value="sessionstate" />
</manager-properties>

</session-manager>
...

</session-config>
...

</sun-web-app>

The only manager property that the memory persistence type supports is sessionFilename,
which is listed under “manager-properties” on page 359.

For more information about the sun-web.xml file, see “The sun-web.xml File” on
page 295.

The file Persistence Type
This persistence type provides session persistence to the local file system, and allows a
single server domain to recover the session state after a failure and restart. The session state
is persisted in the background, and the rate at which this occurs is configurable. The store
also provides passivation and activation of the session state to help control the amount of
memory used. This option is not supported in a production environment. However, it is
useful for a development system with a single server instance.

To specify the file persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Reference Manual.

To specify the file persistence type for a specific web application, edit the sun-web.xml
file as in the following example. Note that persistence-type must be set to file. This
overrides the web container availability settings for the web application.

<sun-web-app>
...
<session-config>

<session-manager persistence-type=file>
<store-properties>

<property name=directory value=sessiondir />
</store-properties>

</session-manager>

NOTE Make sure the delete option is set in the server.policy file, or expired
file-based sessions might not be deleted properly. For more information
about server.policy, see “The server.policy File” on page 45.

Creating and Managing HTTP Sessions

140 Application Server Platform Edition 2005Q1 • Developer’s Guide

...
</session-config>
...

</sun-web-app>

The file persistence type supports all the manager properties listed under
“manager-properties” on page 359 except sessionFilename, and supports the directory
store property listed under “store-properties” on page 398.

For more information about the sun-web.xml file, see “The sun-web.xml File” on
page 295.

141

Chapter 6

Using Enterprise JavaBeans
Technology

This chapter describes how Enterprise JavaBeans™ (EJB™) technology is supported in the
Sun Java System Application Server. This chapter addresses the following topics:

• Summary of EJB 2.1 Changes

• Value Added Features

• EJB Timer Service

• Using Session Beans

• Using Read-Only Beans

• Using Message-Driven Beans

• Handling Transactions with Enterprise Beans

Summary of EJB 2.1 Changes
Sun Java System Application Server supports the Sun Microsystems Enterprise JavaBeans
(EJB) architecture as defined by the Enterprise JavaBeans Specification, v2.1 and is
compliant with the Enterprise JavaBeans Specification, v2.0.

NOTE The Sun Java System Application Server is backward compatible with 1.1
and 2.0 enterprise beans. However, to take advantage of version 2.1
features, you should develop new beans as 2.1 enterprise beans.

Value Added Features

142 Application Server Platform Edition 2005Q1 • Developer’s Guide

The changes in the Enterprise JavaBeans Specification, v2.1 that impact enterprise beans in
the Sun Java System Application Server environment are as follows:

• EJB Timer Service: This is a container-managed, reliable, and transactional
notification service that provides methods to allow callbacks to be scheduled for
time-based events. See “EJB Timer Service” on page 146.

• Message-driven beans: This type of enterprise bean can consume any inbound
messages from a Connector 1.5 inbound resource adapter, primarily but not exclusively
JMS messages. See “Using Message-Driven Beans” on page 153.

• EJB Web Services: A stateless session bean can serve as a web service endpoint. In
addition, all EJB component types can act as web service clients. For details, see the
web service elements in the sun-ejb-jar.xml file, described in “The sun-ejb-jar.xml
File” on page 299.

Value Added Features
The Sun Java System Application Server provides a number of value additions that relate to
EJB development. These capabilities are discussed in the following sections (references to
more in-depth material are included):

• Read-Only Beans

• pass-by-reference

• Pooling and Caching

• Bean-Level Container-Managed Transaction Timeouts

• Priority Based Scheduling of Remote Bean Invocations

• Immediate Flushing

Read-Only Beans
Another feature that the Sun Java System Application Server provides is the read-only
bean, an entity bean that is never modified by an EJB client. Read-only beans avoid
database updates completely. A read-only bean is not portable.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

Value Added Features

Chapter 6 Using Enterprise JavaBeans Technology 143

The Sun Java System Application Server provides a number of ways by which a read-only
bean’s state can be refreshed. By setting the refresh-period-in-seconds element in the
sun-ejb-jar.xml file and the trans-attribute element in the ejb-jar.xml file, it is
easy to configure a read-only bean that is (a) always refreshed, (b) periodically refreshed,
(c) never refreshed, or (d) programmatically refreshed.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 149.

pass-by-reference
The pass-by-reference element in the sun-ejb-jar.xml file allows you to specify the
parameter passing semantics for co-located remote EJB invocations. This is an opportunity
to improve performance. However, use of this feature results in non-portable applications.
See “pass-by-reference” on page 370.

Pooling and Caching
The EJB container of the Sun Java System Application Server pools anonymous instances
(message-driven beans, stateless session beans, and entity beans) to reduce the overhead of
creating and destroying objects. The EJB container maintains the free pool for each bean
that is deployed. Bean instances in the free pool have no identity (that is, no primary key
associated) and are used to serve the method calls of the home interface. The free beans are
also used to serve all methods for stateless session beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after
ejbCreate and the business methods run. The size and behavior of each pool is controlled
using pool-related properties in the EJB container or the sun-ejb-jar.xml file.

In addition, the Sun Java System Application Server supports a number of tunable
parameters that can control the number of “stateful” instances (stateful session beans and
entity beans) cached as well as the duration they are cached. Multiple bean instances that
refer to the same database row in a table can be cached. The EJB container maintains a
cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache,
usually when cache overflows. These evicted bean instances return to the free bean pool.
The size and behavior of each cache can be controlled using the cache-related properties in
the EJB container or the sun-ejb-jar.xml file.

Pooling and caching parameters for the sun-ejb-jar.xml file are described in “bean-cache”
on page 313.

Value Added Features

144 Application Server Platform Edition 2005Q1 • Developer’s Guide

Pooling Parameters
One of the most important parameters of Sun Java System Application Server pooling is
steady-pool-size. When steady-pool-size is set to greater than 0, the container not only
pre-populates the bean pool with the specified number of beans, but also attempts to ensure
that there is always this many beans in the free pool. This ensures that there are enough
beans in the ready to serve state to process user requests.

This parameter does not necessarily guarantee that no more than steady-pool-size
instances exist at a given time. It only governs the number of instances that are pooled over
a long period of time. For example, suppose an idle stateless session container has a
fully-populated pool with a steady-pool-size of 10. If 20 concurrent requests arrive for
the EJB component, the container creates 10 additional instances to satisfy the burst of
requests. The advantage of this is that it prevents the container from blocking any of the
incoming requests. However, if the activity dies down to 10 or fewer concurrent requests,
the additional 10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify,
through the amount of time a bean instance can be idle in the pool. When
pool-idle-timeout-in-seconds is set to greater than 0, the container removes or destroys
any bean instance that is idle for this specified duration.

Caching Parameters
Sun Java System Application Server provides a way that completely avoids caching of
entity beans, using commit-C option. Commit-C option is particularly useful if beans are
accessed in large number but very rarely reused. For additional information, refer to
“Commit Options” on page 159.

The Sun Java System Application Server caches can be either bounded or unbounded.
Bounded caches have limits on the number of beans that they can hold beyond which beans
are passivated. For stateful session beans, there are three ways (LRU, NRU and FIFO) of
picking victim beans when cache overflow occurs. Caches can also passivate beans that are
idle (not accessed for a specified duration).

Bean-Level Container-Managed Transaction
Timeouts
The default transaction timeout for the domain is specified using the Transaction Timeout
setting of the Transaction Service. A transaction started by the container must commit (or
rollback) within this time, regardless of whether the transaction is suspended (and
resumed), or the transaction is marked for rollback.

Value Added Features

Chapter 6 Using Enterprise JavaBeans Technology 145

To override this timeout for an individual bean, use the optional
cmt-timeout-in-seconds element in sun-ejb-jar.xml. The default value, 0, specifies
that the default Transaction Service timeout is used. The value of
cmt-timeout-in-seconds is used for all methods in the bean that start a new
container-managed transaction. This value is not used if the bean joins a client transaction.

Priority Based Scheduling of Remote Bean
Invocations
You can create multiple thread pools, each having its own work queues. An optional
element in the sun-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool
that processes the requests for the bean. The bean must have a remote interface, or
use-thread-pool-id is ignored. You can create create different thread pools and specify
the appropriate thread pool ID for a bean that requires a quick response time. If there is no
such thread pool configured or if the element is absent, the default thread pool is used.

Immediate Flushing
Normally, all entity bean updates within a transaction are batched and executed at the end of
the transaction. The only exception is the database flush that precedes execution of a finder
or select query.

Since a transaction often spans many method calls, you might want to find out if the updates
made by a method succeeded or failed immediately after method execution. To force a flush
at the end of a method’s execution, use the flush-at-end-of-method element in the
sun-ejb-jar.xml file. Only non-finder methods in the Local, Local Home, Remote, and
Remote Home interfaces of an entity bean can be flush-enabled.

Upon completion of the method, the EJB container updates the database. Any exception
thrown by the underlying data store is wrapped as follows:

• If the method that triggered the flush is a create method, the exception is wrapped
with CreateException.

• If the method that triggered the flush is a remove method, the exception is wrapped
with RemoveException.

• For all other methods, the exception is wrapped with EJBException.

All normal end-of-transaction database synchronization steps occur regardless of whether
the database has been flushed during the transaction.

EJB Timer Service

146 Application Server Platform Edition 2005Q1 • Developer’s Guide

EJB Timer Service
The EJB Timer Service uses a database to store persistent information about EJB timers.
By default, the EJB Timer Service in Sun Java System Application Server is preconfigured
to use an embedded version of PointBase. The EJB Timer Service configuration can store
persistent timer information in any database supported by the Sun Java System Application
Server CMP container.

For a list of the JDBC drivers currently supported by the Sun Java System Application
Server, see the Sun Java System Application Server 8.1 Release Notes. For configurations
of supported and other drivers, see the Sun Java System Application Server Administration
Guide.

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
Datasource setting to a valid JDBC resource. You must also create the timer database table.
DDL files are located in install_dir/lib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource
manager. If an EJB component or application accesses a database either directly through
JDBC or indirectly (for example, through an entity bean’s persistence mechanism), and also
interacts with the EJB Timer Service, its data source must be configured with an XA JDBC
driver.

You can change the following EJB Timer Service settings. You must restart the server for
the changes to take effect.

• Minimum Delivery Interval - Specifies the minimum time in milliseconds before an
expiration for a particular timer can occur. This guards against extremely small timer
increments that can overload the server. The default is 7000.

• Maximum Redeliveries - Specifies the maximum number of times the EJB timer
service attempts to redeliver a timer expiration due for exception or rollback. The
default is 1.

• Redelivery Interval - Specifies how long in milliseconds the EJB timer service waits
after a failed ejbTimeout delivery before attempting a redelivery. The default is 5000.

• Timer Datasource - Specifies the database used by the EJB Timer Service. The default
is jdbc/__TimerPool.

For information about configuring EJB Timer Service settings, see the Sun Java System
Application Server Administration Guide. For information about the asadmin
list-timers command, see the Sun Java System Application Server Reference Manual.

Using Session Beans

Chapter 6 Using Enterprise JavaBeans Technology 147

Using Session Beans
This section provides guidelines for creating session beans in the Sun Java System
Application Server environment. This section addresses the following topics:

• About the Session Bean Containers

• Restrictions and Optimizations

Extensive information on session beans is contained in the chapters 6, 7, and 8 of the
Enterprise JavaBeans Specification, v2.1.

About the Session Bean Containers
Like an entity bean, a session bean can access a database through Java™ Database
Connectivity (JDBC™) calls. A session bean can also provide transaction settings. These
transaction settings and JDBC calls are referenced by the session bean’s container, allowing
it to participate in transactions managed by the container.

A container managing stateless session beans has a different charter from a container
managing stateful session beans.

Stateless Container
The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Sun Java
System Application Server specific deployment descriptor file, sun-ejb-jar.xml, contains
the properties that define the pool:

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 299.

The Sun Java System Application Server provides the wscompile and wsdeploy tools to
help you implement a web service endpoint as a stateless session bean. For more
information about these tools, see the Sun Java System Application Server Reference
Manual.

Using Session Beans

148 Application Server Platform Edition 2005Q1 • Developer’s Guide

Stateful Container
The stateful container manages the stateful session beans, which, by definition, carry the
client-specific state. There is a one-to-one relationship between the client and the stateful
session beans. At creation, each stateful session bean (SFSB) is given a unique session ID
that is used to access the session bean so that an instance of a stateful session bean is
accessed by a single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session
beans cache are controlled by specifying the following sun-ejb-jar.xml parameters:

• max-cache-size

• resize-quantity

• cache-idle-timeout-in-seconds

• removal-timeout-in-seconds

• victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held
in cache. If the cache overflows (when the number of beans exceeds max-cache-size), the
container then passivates some beans or writes out the serialized state of the bean into a file.
The directory in which the file is created is obtained from the EJB container using the
configuration APIs.

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 299.

The passivated beans are stored on the file system.The Session Store Location setting in the
EJB container allows the administrator to specify the directory where passivated beans are
stored. By default, passivated stateful session beans are stored in application-specific
subdirectories created under domain_dir/session-store.

Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some
optimization guidelines:

• Optimizing Session Bean Performance

• Restricting Transactions

NOTE Make sure the delete option is set in the server.policy file, or expired
file-based sessions might not be deleted properly. For more information
about server.policy, see “The server.policy File” on page 45.

Using Read-Only Beans

Chapter 6 Using Enterprise JavaBeans Technology 149

Optimizing Session Bean Performance
For stateful session beans, co-locating the stateful beans with their clients so that the client
and bean are executing in the same process address space improves performance.

Restricting Transactions
The following restrictions on transactions are enforced by the container and must be
observed as session beans are developed:

• A session bean can participate in, at most, a single transaction at a time.

• If a session bean is participating in a transaction, a client cannot invoke a method on the
bean such that the trans-attribute element in the ejb-jar.xml file would cause the
container to execute the method in a different or unspecified transaction context or an
exception is thrown.

• If a session bean instance is participating in a transaction, a client cannot invoke the
remove method on the session object’s home or component interface object or an
exception is thrown.

Using Read-Only Beans
A read-only bean is an entity bean that is never modified by an EJB client. The data that a
read-only bean represents can be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. The following topics are addressed in this section:

• Read-Only Bean Characteristics and Life Cycle

• Read-Only Bean Good Practices

• Refreshing Read-Only Beans

• Deploying Read Only Beans

NOTE Read-only beans are specific to Sun Java System Application Server and
are not part of the Enterprise JavaBeans Specification, v2.1. Use of this
feature results in a non-portable application.

Using Read-Only Beans

150 Application Server Platform Edition 2005Q1 • Developer’s Guide

Read-Only Bean Characteristics and Life Cycle
Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, a read-only bean can be used to represent a stock quote
for a particular company, which is updated externally. In such a case, using a regular entity
bean might incur the burden of calling ejbStore, which can be avoided by using a read-only
bean.

Read-only beans have the following characteristics:

• Only entity beans can be read-only beans.

• Either bean-managed persistence (BMP) or container-managed persistence (CMP) is
allowed. If CMP is used, do not create the database schema during deployment.
Instead, work with your database administrator to populate the data into the tables. See
Chapter 7, “Using Container-Managed Persistence for Entity Beans.”

• Only container-managed transactions are allowed; read-only beans cannot start their
own transactions.

• Read-only beans don’t update any bean state.

• ejbStore is never called by the container.

• ejbLoad is called only when a transactional method is called or when the bean is
initially created (in the cache), or at regular intervals controlled by the bean’s
refresh-period-in-seconds element in the sun-ejb-jar.xml file.

• The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary
keys).

• If the data that the bean represents can change, then refresh-period-in-seconds must
be set to refresh the beans at regular intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as a victim to make room in the cache, ejbPassivate is called
and the bean is returned to the free pool. When in the free pool, the bean has no identity and
is used only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Using Read-Only Beans

Chapter 6 Using Enterprise JavaBeans Technology 151

Read-Only Bean Good Practices
For best results, follow these guidelines when developing read-only beans:

• Avoid having any create or remove methods in the home interface.

• Use any of the valid EJB 2.1 transaction attributes for the trans-attribute element.

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same
transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans
There are several ways of refreshing read-only beans as addressed in the following sections:

• Invoking a Transactional Method

• Refreshing Periodically

• Refreshing Programmatically

Invoking a Transactional Method
Invoking any transactional method invokes ejbLoad.

Refreshing Periodically
Use the refresh-period-in-seconds element in the sun-ejb-jar.xml file to refresh a
read-only bean periodically.

• If the value specified in refresh-period-in-seconds is zero or not specified, which is
the default, the bean is never refreshed (unless a transactional method is accessed).

• If the value is greater than zero, the bean is refreshed at the rate specified.

Refreshing Programmatically
Typically, beans that update any data that is cached by read-only beans need to notify the
read-only beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of
read-only beans.

NOTE This is the only way to refresh the bean state if the data can be modified
external to the Sun Java System Application Server.

Using Read-Only Beans

152 Application Server Platform Edition 2005Q1 • Developer’s Guide

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier
extends java.rmi.Remote

{
refresh(Object PrimaryKey)

throws RemoteException;
}

The implementation of the ReadOnlyBeanNotifier interface is provided by the container.
The bean looks up ReadOnlyBeanNotifier using a fragment of code such as the following
example:

com.sun.appserv.ejb.ReadOnlyBeanHelper helper = new
com.sun.appserv.ejb.ReadOnlyBeanHelper();
com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =
helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer");
notifier.refresh(PrimaryKey);

For a local read-only bean notifier, the lookup has this modification:

helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer");

Beans that update any data that is cached by read-only beans need to call the refresh
methods. The next (non-transactional) call to the read-only bean invokes ejbLoad.

Deploying Read Only Beans
Read-only beans are deployed in the same manner as other entity beans. However, in the
entry for the bean in the sun-ejb-jar.xml file, the is-read-only-bean element must be
set to true. That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element in the sun-ejb-jar.xml file can be set to
some value that specifies the rate at which the bean is refreshed. If this element is missing,
no refresh occurs.

All requests in the same transaction context are routed to the same read-only bean instance.
Set the allow-concurrent-access element to either true (to allow concurrent accesses) or
false (to serialize concurrent access to the same read-only bean). The default is false.

For further information on these elements, refer to “The sun-ejb-jar.xml File” on page 299.

NOTE Programmatic refresh of read-only beans is not supported in a clustered
environment.

Using Message-Driven Beans

Chapter 6 Using Enterprise JavaBeans Technology 153

Using Message-Driven Beans
This section describes message-driven beans and explains the requirements for creating
them in the Sun Java System Application Server environment. This section contains the
following topics:

• Message-Driven Bean Configuration

• Restrictions and Optimizations

• Sample Message-Driven Bean XML Files

Message-Driven Bean Configuration
This section addresses the following configuration topics:

• Connection Factory and Destination

• Message-Driven Bean Pool

• Domain-Level Settings

Connection Factory and Destination
A message-driven bean is a client to a Connector 1.5 inbound resource adapter. The
message-driven bean container uses the JMS service integrated into the Sun Java System
Application Server for message-driven beans that are JMS clients. JMS clients use JMS
Connection Factory- and Destination-administered objects. A JMS Connection Factory
administered object is a resource manager Connection Factory object that is used to create
connections to the JMS provider.

The mdb-connection-factory element in the sun-ejb-jar.xmlfile for a message-driven
bean specifies the connection factory that creates the container connection to the JMS
provider.

The jndi-name element of the ejb element in the sun-ejb-jar.xml file specifies the JNDI
name of the administered object for the JMS Queue or Topic destination that is associated
with the message-driven bean.

Message-Driven Bean Pool
The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The sun-ejb-jar.xml file contains the elements that define the pool
(that is, the bean-pool element):

• steady-pool-size

Using Message-Driven Beans

154 Application Server Platform Edition 2005Q1 • Developer’s Guide

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 299.

Domain-Level Settings
You can control the following domain-level message-driven bean settings in the EJB
container:

• Initial and Minimum Pool Size - Specifies the initial and minimum number of beans
maintained in the pool. The default is 0.

• Maximum Pool Size - Specifies the maximum number of beans that can be created to
satisfy client requests. The default is 32.

• Pool Resize Quantity - Specifies the number of beans to be created if a request arrives
when the pool is empty (subject to the Initial and Minimum Pool Size), or the number
of beans to remove if idle for more than the Idle Timeout. The default is 8.

• Idle Timeout - Specifies the maximum time in seconds that a bean can remain idle in
the pool. After this amount of time, the bean is destroyed. The default is 600 (10
minutes). A value of 0 means a bean can remain idle indefinitely.

For information on monitoring message-driven beans, see the Sun Java System Application
Server Administration Console online help and Administration Guide.

Restrictions and Optimizations
This section discusses the following restrictions and performance optimizations that pertain
to developing message-driven beans:

• Pool Tuning and Monitoring

• onMessage Runtime Exception

NOTE Running monitoring when it is not needed might impact performance, so
you might choose to turn monitoring off when it is not in use. For details,
see the Sun Java System Application Server Administration Guide.

Using Message-Driven Beans

Chapter 6 Using Enterprise JavaBeans Technology 155

Pool Tuning and Monitoring
The message-driven bean pool is also a pool of threads, with each message-driven bean
instance in the pool associating with a server session, and each server session associating
with a thread. Therefore, a large pool size also means a high number of threads, which
impacts performance and server resources.

When configuring message-driven bean pool properties, make sure to consider factors such
as message arrival rate and pattern, onMessage method processing time, overall server
resources (threads, memory, and so on), and any concurrency requirements and limitations
from other resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS
provider properties for the connection factory used by the container (the
mdb-connection-factory element in the sun-ejb-jar.xml file). For example, you can
tune the Sun Java System Message Queue flow control related properties for connection
factory in situations where the message incoming rate is much higher than max-pool-size
can handle.

Refer to the Sun Java System Application Server Administration Guide for information on
how to get message-driven bean pool statistics.

onMessage Runtime Exception
Message-driven beans, like other well-behaved MessageListeners, should not, in general,
throw runtime exceptions. If a message-driven bean’s onMessage method encounters a
system-level exception or error that does not allow the method to successfully complete, the
Enterprise JavaBeans Specification, v2.1 provides the following guidelines:

• If the bean method encounters a runtime exception or error, it should simply propagate
the error from the bean method to the container.

• If the bean method performs an operation that results in a checked exception that the
bean method cannot recover, the bean method should throw the
javax.ejb.EJBException that wraps the original exception.

• Any other unexpected error conditions should be reported using
javax.ejb.EJBException (javax.ejb.EJBException is a subclass of
java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime exception
from a message-driven bean’s onMessage method, the container rolls back the
container-started transaction and the message is redelivered. This is because the message
delivery itself is part of the container-started transaction. By default, the Sun Java System
Application Server container closes the container’s connection to the JMS provider when
the first runtime exception is received from a message-driven bean instance’s onMessage

Using Message-Driven Beans

156 Application Server Platform Edition 2005Q1 • Developer’s Guide

method. This avoids potential message redelivery looping and protects server resources if
the message-driven bean’s onMessage method continues misbehaving. To change this
default container behavior, use the cmt-max-runtime-exceptions property of the
mdb-container element in the domain.xml file.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime
exceptions allowed from a message-driven bean’s onMessage method before the container
starts to close the container’s connection to the message source. By default this value is 1;
-1 disables this container protection.

A message-driven bean’s onMessage method can use the javax.jms.Message
getJMSRedelivered method to check whether a received message is a redelivered message.

Sample Message-Driven Bean XML Files
This section includes the following sample files:

• Sample ejb-jar.xml File

• Sample sun-ejb-jar.xml File

For general information on the sun-ejb-jar.xml file, see “The sun-ejb-jar.xml File” on
page 299.

Sample ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<enterprise-beans>
<message-driven>

<ejb-name>MessageBean</ejb-name>
<ejb-class>samples.mdb.ejb.MessageBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>

NOTE The cmt-max-runtime-exceptions property might be deprecated in the
future.

Using Message-Driven Beans

Chapter 6 Using Enterprise JavaBeans Technology 157

<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
</resource-ref>

</message-driven>
</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>MessageBean</ejb-name>
<method-intf>Bean</method-intf>
<method-name>onMessage</method-name>
<method-params>
<method-param>javax.jms.Message</method-param>
</method-params>

</method>
<trans-attribute>NotSupported</trans-attribute>

</container-transaction>
</assembly-descriptor

</ejb-jar>

Sample sun-ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Application Server 8.1 EJB
2.1//EN' 'http://www.sun.com/software/appserver/dtds/sun-ejb-jar_2_1-1.dtd'>

<sun-ejb-jar>
<enterprise-beans>
<ejb>

<ejb-name>MessageBean</ejb-name>
<jndi-name>jms/sample/Queue</jndi-name>
<resource-ref>
<res-ref-name>jms/QueueConnectionFactory</res-ref-name>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>

<name>guest</name>
<password>guest</password>

</default-resource-principal>
</resource-ref>
<mdb-connection-factory>
<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>
<default-resource-principal>

<name>guest</name>
<password>guest</password>

</default-resource-principal>

Handling Transactions with Enterprise Beans

158 Application Server Platform Edition 2005Q1 • Developer’s Guide

</mdb-connection-factory>
</ejb>
</enterprise-beans>

</sun-ejb-jar>

Handling Transactions with Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans
programming model for the Sun Java System Application Server.

As a developer, you can write an application that updates data in multiple databases
distributed across multiple sites. The site might use EJB servers from different vendors.
This section provides overview information on the following topics:

• Flat Transactions

• Global and Local Transactions

• Commit Options

• Administration and Monitoring

Flat Transactions
The Enterprise JavaBeans Specification, v2.1 requires support for flat (as opposed to
nested) transactions. In a flat transaction, each transaction is decoupled from and
independent of other transactions in the system. Another transaction cannot start in the same
thread until the current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial
database systems. Although nested transactions offer a finer granularity of control over
transactions, they are supported by far fewer commercial database systems.

Global and Local Transactions
Understanding the distinction between global and local transactions is crucial in
understanding the Sun Java System Application Server support for transactions. See
“Transaction Scope” on page 236.

Handling Transactions with Enterprise Beans

Chapter 6 Using Enterprise JavaBeans Technology 159

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local
transactions bypass the transaction manager and are faster. For more information, see
“Naming Environment for J2EE Application Components” on page 240.

Commit Options
The EBJ protocol is designed to give the container the flexibility to select the disposition of
the instance state at the time a transaction is committed. This allows the container to best
manage caching an entity object’s state and associating an entity object identity with the
EJB instances.

There are three commit-time options:

• Option A: The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent
storage.

In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

• Option B: The container caches a ready instance between transactions, but the
container does not ensure that the instance has exclusive access to the state of the object
in persistent storage. This is the default.

In this case, the container must synchronize the instance’s state by invoking ejbLoad
from persistent storage at the beginning of the next transaction.

• Option C: The container does not cache a ready instance between transactions, but
instead returns the instance to the pool of available instances after a transaction has
completed.

The life cycle for every business method invocation under commit option C looks like
this:

ejbActivate->
ejbLoad ->

business method ->
ejbStore ->

ejbPassivate

NOTE Commit option A is not supported for this Sun Java System Application
Server release.

Handling Transactions with Enterprise Beans

160 Application Server Platform Edition 2005Q1 • Developer’s Guide

If there is more than one transactional client concurrently accessing the same entity
EJBObject, the first client gets the ready instance and subsequent concurrent clients get
new instances from the pool.

The Sun Java System Application Server deployment descriptor has an element,
commit-option, that specifies the commit option to be used. Based on the specified commit
option, the appropriate handler is instantiated.

Administration and Monitoring
An administrator can control a number of domain-level Transaction Service settings. For
details, see “Configuring the Transaction Service” on page 238.

The Transaction Timeout setting can be overridden by a bean. See “Bean-Level
Container-Managed Transaction Timeouts” on page 144.

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions
completed, rolled back, or recovered since server startup, and transactions presently being
processed.

For information on administering and monitoring transactions, see the Sun Java System
Application Server Administration Console online help and the Sun Java System
Application Server Administration Guide.

161

Chapter 7

Using Container-Managed
Persistence for Entity Beans

This section contains information on how container-managed persistence (CMP) works in
the Sun Java System Application Server in the following topics:

• Sun Java System Application Server Support

• Container-Managed Persistence Mapping

• Automatic Schema Generation

• Schema Capture

• Configuring the CMP Resource

• Configuring Queries for 1.1 Finders

• Performance-Related Features

• Restrictions and Optimizations

Extensive information on CMP is contained in chapters 10, 11, and 14 of the Enterprise
JavaBeans Specification, v2.1.

Sun Java System Application Server Support
Sun Java System Application Server support for CMP includes:

• Full support for the J2EE v 1.4 specification’s CMP model.

❍ Support for commit options B and C for transactions, as defined in the Enterprise
JavaBeans Specification, v2.1. See “Commit Options” on page 159.

Container-Managed Persistence Mapping

162 Application Server Platform Edition 2005Q1 • Developer’s Guide

❍ The primary key class must be a subclass of java.lang.Object. This ensures
portability, and is noted because some vendors allow primitive types (such as int)
to be used as the primary key class.

• The Sun Java System Application Server CMP implementation, which provides:

❍ An Object/Relational (O/R) mapping tool that creates XML deployment
descriptors for EJB JAR files that contain beans that use CMP

❍ Support for compound (multi-column) primary keys

❍ Support for sophisticated custom finder methods

❍ Standards-based query language (EJB QL)

❍ CMP runtime support. See “Configuring the CMP Resource” on page 176.

• Sun Java System Application Server performance-related features, including:

❍ Version column consistency checking

❍ Relationship prefetching

❍ Read-Only Beans

For details, see “Performance-Related Features” on page 181.

Container-Managed Persistence Mapping
Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields
and CMR fields (relationships) to the database. This section addresses the following topics:

• Mapping Capabilities

• The Mapping Deployment Descriptor File

• Mapping Considerations

Container-Managed Persistence Mapping

Chapter 7 Using Container-Managed Persistence for Entity Beans 163

Mapping Capabilities
Mapping refers to the ability to tie an object-based model to a relational model of data,
usually the schema of a relational database. The CMP implementation provides the ability
to tie a set of interrelated beans containing data and associated behaviors to the schema.
This object representation of the database becomes part of the Java application. You can
also customize this mapping to optimize these beans for the particular needs of an
application. The result is a single data model through which both persistent database
information and regular transient program data are accessed.

The mapping capabilities provided by the Sun Java System Application Server include:

• Mapping a CMP bean to one or more tables

• Mapping CMP fields to one or more columns

• Mapping CMP fields to different column types

• Mapping tables with compound primary keys

• Mapping tables with unknown primary keys

• Mapping CMP relationships to foreign keys

• Mapping tables with overlapping primary and foreign keys

The Mapping Deployment Descriptor File
Each module with CMP beans must have the following files:

• ejb-jar.xml: The J2EE standard file for assembling enterprise beans. For a detailed
description, see the Enterprise JavaBeans Specification, v2.1.

• sun-ejb-jar.xml: The Sun Java System Application Server standard file for
assembling enterprise beans. For a detailed description, see “The sun-ejb-jar.xml File”
on page 299.

• sun-cmp-mappings.xml: The mapping deployment descriptor file, which describes
the mapping of CMP beans to tables in a database. For a detailed description, see “The
sun-cmp-mappings.xml File” on page 304.

This file can be automatically generated and does not have to exist prior to deployment.
For details, see “Generation Options” on page 170.

Container-Managed Persistence Mapping

164 Application Server Platform Edition 2005Q1 • Developer’s Guide

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the
database. A primary table must be selected for each CMP bean, and optionally, multiple
secondary tables. CMP fields are mapped to columns in either the primary or secondary
table(s). CMR fields are mapped to pairs of column lists (normally, column lists are the lists
of columns associated with primary and foreign keys).

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping_1_2.dtd file and is
packaged with the user-defined bean classes in the EJB JAR file under the META-INF
directory.

The Sun Java System Application Server or the deploytool creates the mappings in the
sun-cmp-mappings.xml file automatically during deployment if the file is not present. For
information on how to use the deploytool for mapping, see the “Create Database Mapping”
topic in the deploytool’s online help.

To map the fields and relationships of your entity beans manually, edit the
sun-cmp-mappings.xml deployment descriptor. Only do this if you are proficient in
editing XML.

The mapping information is developed in conjunction with the database schema
(.dbschema) file, which can be automatically captured when you deploy the bean (see
“Automatic Database Schema Capture” on page 175). You can manually generate the
schema using the capture-schema utility (“Using the capture-schema Utility” on
page 176).

Mapping Considerations
This section addresses the following topics:

• Join Tables and Relationships

• Automatic Primary Key Generation

• Fixed Length CHAR Primary Keys

• Managed Fields

NOTE Table names in databases can be case-sensitive. Make sure that the table
names in the sun-cmp-mappings.xml file match the names in the
database.

Relationships should always be mapped to the primary key field(s) of the
related table.

Container-Managed Persistence Mapping

Chapter 7 Using Container-Managed Persistence for Entity Beans 165

• BLOB Support

• CLOB Support

The data types used in automatic schema generation are also suggested for manual
mapping. These data types are described in “Supported Data Types” on page 168.

Join Tables and Relationships
Use of join tables in the database schema is supported for all types of relationships, not just
many-to-many relationships. For general information about relationships, see section 10.3.7
of the Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation
The Sun Java System Application Server supports automatic primary key generation for
EJB 1.1, 2.0, and 2.1 CMP beans. To specify automatic primary key generation, give the
prim-key-class element in the ejb-jar-xml file the value java.lang.Object. CMP
beans with automatically generated primary keys can participate in relationships with other
CMP beans. The Sun Java System Application Server does not support database-generated
primary key values.

If the database schema is created during deployment, the Sun Java System Application
Server creates the schema with the primary key column, then generates unique values for
the primary key column at runtime.

If the database schema is not created during deployment, the primary key column in the
mapped table must be of type NUMERIC with a precision of 19 or more, and must not be
mapped to any CMP field. The Sun Java System Application Server generates unique
values for the primary key column at runtime.

Fixed Length CHAR Primary Keys
If an existing database table has a primary key column in which the values vary in length,
but the type is CHAR instead of VARCHAR, the Sun Java System Application Server
automatically trims any extra spaces when retrieving primary key values. It is not a good
practice to use a fixed length CHAR column as a primary key. Use this feature with schemas
that cannot be changed, such as a schema inherited from a legacy application.

Container-Managed Persistence Mapping

166 Application Server Platform Edition 2005Q1 • Developer’s Guide

Managed Fields
A managed field is a CMP or CMR field that is mapped to the same database column as
another CMP or CMR field. CMP fields mapped to the same column and CMR fields
mapped to exactly the same column lists always have the same value in memory. For CMR
fields that share only a subset of their mapped columns, changes to the columns affect the
relationship fields in memory differently. Basically, the Application Server always tries to
keep the state of the objects in memory synchronized with the database.

A managed field can have any fetched-with subelement except <default/>.

BLOB Support
Binary Large Object (BLOB) is a data type used to store values that do not correspond to
other types such as numbers, strings, or dates. Java fields whose types implement
java.io.Serializable or are represented as byte[] can be stored as BLOBs.

If a CMP field is defined as Serializable, it is serialized into a byte[] before being
stored in the database. Similarly, the value fetched from the database is deserialized.
However, if a CMP field is defined as byte[], it is stored directly instead of being
serialized and deserialized when stored and fetched, respectively.

To enable BLOB support in the Sun Java System Application Server environment, define a
CMP field of type byte[] or a user-defined type that implements the
java.io.Serializable interface. If you map the CMP bean to an existing database
schema, map the field to a column of type BLOB.

To use BLOB or CLOB datatypes larger than 4 KB for CMP using the Inet Oraxo JDBC
Driver for Oracle 8.1.7 and 9.x Databases, you must set the streamstolob property value
to true.

For a list of the JDBC drivers currently supported by the Sun Java System Application
Server, see the Sun Java System Application Server 8.1 Release Notes. For configurations
of supported and other drivers, see the Sun Java System Application Server Administration
Guide.

For automatic mapping, you might need to change the default BLOB column length for the
generated schema using the schema-generator-properties element in
sun-ejb-jar.xml. See your database vendor documentation to determine whether you
need to specify the length. For example:

<schema-generator-properties>
<property>

<name>Employee.voiceGreeting.jdbc-type</name>
<value>BLOB</value>

</property>
<property>

Container-Managed Persistence Mapping

Chapter 7 Using Container-Managed Persistence for Entity Beans 167

<name>Employee.voiceGreeting.jdbc-maximum-length</name>
<value>10240</value>

</property>
...

</schema-generator-properties>

CLOB Support
Character Large Object (CLOB) is a data type used to store and retrieve very long text
fields. CLOBs translate into long strings.

To enable CLOB support in the Sun Java System Application Server environment, define a
CMP field of type java.lang.String. If you map the CMP bean to an existing database
schema, map the field to a column of type CLOB.

To use BLOB or CLOB datatypes larger than 4 KB for CMP using the Inet Oraxo JDBC
Driver for Oracle 8.1.7 and 9.x Databases, you must set the streamstolob property value
to true.

For a list of the JDBC drivers currently supported by the Sun Java System Application
Server, see the Sun Java System Application Server 8.1 Release Notes. For configurations
of supported and other drivers, see the Sun Java System Application Server Administration
Guide.

For automatic mapping, you might need to change the default CLOB column length for the
generated schema using the schema-generator-properties element in
sun-ejb-jar.xml. See your database vendor documentation to determine whether you
need to specify the length. For example:

<schema-generator-properties>
<property>

<name>Employee.resume.jdbc-type</name>
<value>CLOB</value>

</property>
<property>

<name>Employee.resume.jdbc-maximum-length</name>
<value>10240</value>

</property>
...

</schema-generator-properties>

Automatic Schema Generation

168 Application Server Platform Edition 2005Q1 • Developer’s Guide

Automatic Schema Generation
The automatic schema generation feature provided in the Sun Java System Application
Server defines database tables based on the fields in entity beans and the relationships
between the fields. This insulates developers from many of the database related aspects of
development, allowing them to focus on entity bean development. The resulting schema is
usable as-is,or can be given to a database administrator for tuning with respect to
performance, security, and so on.

This section addresses the following topics:

• Supported Data Types

• Generation Options

Supported Data Types
CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL
types. Supported JDBC data types are as follows:

The following table contains the mappings of Java types to JDBC types when automatic
mapping is used.

BIGINT BIT BLOB CHAR CLOB DATE

DECIMAL DOUBLE FLOAT INTEGER NUMERIC REAL

SMALLINT TIME TIMESTAMP TINYINT VARCHAR

Table 7-1 Java Type to JDBC Type Mappings
Java Type JDBC Type Nullability

boolean BIT No

java.lang.Boolean BIT Yes

byte TINYINT No

java.lang.Byte TINYINT Yes

double DOUBLE No

java.lang.Double DOUBLE Yes

float REAL No

Automatic Schema Generation

Chapter 7 Using Container-Managed Persistence for Entity Beans 169

java.lang.Float REAL Yes

int INTEGER No

java.lang.Integer INTEGER Yes

long BIGINT No

java.lang.Long BIGINT Yes

short SMALLINT No

java.lang.Short SMALLINT Yes

java.math.BigDecimal DECIMAL Yes

java.math.BigInteger DECIMAL Yes

char CHAR No

java.lang.Character CHAR Yes

java.lang.String VARCHAR or CLOB Yes

Serializable BLOB Yes

byte[] BLOB Yes

java.util.Date DATE (Oracle only)

TIMESTAMP (all other databases)

Yes

java.sql.Date DATE Yes

java.sql.Time TIME Yes

java.sql.Timestamp TIMESTAMP Yes

NOTE Java types assigned to CMP fields must be restricted to Java primitive
types, Java Serializable types, java.util.Date, java.sql.Date,
java.sql.Time, or java.sql.Timestamp. An entity bean local interface
type (or a collection of such) can be the type of a CMR field.

Table 7-1 Java Type to JDBC Type Mappings (Continued)
Java Type JDBC Type Nullability

Automatic Schema Generation

170 Application Server Platform Edition 2005Q1 • Developer’s Guide

The following table contains the mappings of JDBC types to database vendor-specific types
when automatic mapping is used. For a list of the JDBC drivers currently supported by the
Sun Java System Application Server, see the Sun Java System Application Server 8.1
Release Notes. For configurations of supported and other drivers, see the Sun Java System
Application Server Administration Guide.

Generation Options
Deployment descriptor elements or asadmin command line options can control automatic
schema generation by:

• Creating tables during deployment

• Dropping tables during undeployment

• Dropping and creating tables during redeployment

• Specifying the database vendor

Table 7-2 Mappings of JDBC Types to Database Vendor Specific Types

JDBC Type PointBase Oracle DB2
Sybase ASE
12.5 MS-SQL Server

BIT BOOLEAN SMALLINT SMALLINT TINYINT BIT

TINYINT SMALLINT SMALLINT SMALLINT TINYINT TINYINT

SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER

BIGINT BIGINT NUMBER BIGINT NUMERIC NUMERIC

REAL FLOAT REAL FLOAT FLOAT REAL

DOUBLE DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE DOUBLE
PRECISION

FLOAT

DECIMAL(p,s) DECIMAL(p,s) NUMBER(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

VARCHAR VARCHAR VARCHAR2 VARCHAR VARCHAR VARCHAR

DATE DATE DATE DATE DATETIME DATETIME

TIME TIME DATE TIME DATETIME DATETIME

TIMESTAMP TIMESTAMP TIMESTAMP(9) TIMESTAMP DATETIME DATETIME

BLOB BLOB BLOB BLOB IMAGE IMAGE

CLOB CLOB CLOB CLOB TEXT NTEXT

Automatic Schema Generation

Chapter 7 Using Container-Managed Persistence for Entity Beans 171

• Specifying that table names are unique

• Specifying type mappings for individual CMP fields

The following optional data subelements of the cmp-resource element in the
sun-ejb-jar.xml file control the automatic creation of database tables at deployment. For
more information about the cmp-resource element, see “Configuring the CMP Resource”
on page 176.

NOTE Before using these options, make sure you have a properly configured CMP
resource. See “Configuring the CMP Resource” on page 176.

You can also use the deploytool to perform automatic mapping. For more
information about using the deploytool, see the “Create Database
Mapping” topic in the deploytool’s online help.

For a read-only bean, do not create the database schema during
deployment. Instead, work with your database administrator to populate the
data into the tables. See “Using Read-Only Beans” on page 149.

Automatic schema generation is not supported for beans with version
column consistency checking. Instead, work with your database
administrator to create the schema and add the required triggers. See
“Version Column Consistency Checking” on page 182.

Table 7-3 sun-ejb-jar.xml Generation Elements
Element Default Description

create-tables-at-deploy false If true, causes database tables to be created for beans that are
automatically mapped by the EJB container. If false, does not
create tables.

drop-tables-at-undeploy false If true, causes database tables that were automatically created
when the bean(s) were last deployed to be dropped when the
bean(s) are undeployed. If false, does not drop tables.

database-vendor-name none Specifies the name of the database vendor for which tables are
created. Allowed values are db2, mssql, oracle, pointbase,
and sybase, case-insensitive.

If no value is specified, a connection is made to the resource
specified by the jndi-name subelement of the cmp-resource
element in the sun-ejb-jar.xml file, and the database vendor
name is read. If the connection cannot be established, or if the
value is not recognized, SQL-92 compliance is presumed.

Automatic Schema Generation

172 Application Server Platform Edition 2005Q1 • Developer’s Guide

schema-generator-properties none Specifies field-specific column attributes in property
subelements. Each property name is of the following format:

bean_name.field_name.attribute

For example:

Employee.firstName.jdbc-type

Attributes are described in Table 7-4 on page 173.

Also allows you to set the use-unique-table-names property.
If true, this property specifies that generated table names are
unique within each application server domain. The default is
false.

For example:

<schema-generator-properties>
<property>

<name>
Employee.firstName.jdbc-type

</name>
<value>char</value>

</property>
<property>

<name>
Employee.firstName.jdbc-maximum-length
</name>
<value>25</value>

</property>

<property>
<name>

use-unique-table-names
</name>
<value>true</value>

</property>
</schema-generator-properties>

Table 7-3 sun-ejb-jar.xml Generation Elements
Element Default Description

Automatic Schema Generation

Chapter 7 Using Container-Managed Persistence for Entity Beans 173

The following table lists the attributes for properties defined in the
schema-generator-properties element.

Table 7-4 schema-generator-properties Attributes
Attribute Description

jdbc-type Specifies the JDBC type of the column created for the CMP field.
The actual SQL type generated is based on this JDBC type but is
database vendor specific.

jdbc-maximum-length Specifies the maximum number of characters stored in the column
corresponding to the CMP field. Applies only when the actual SQL
that is generated for the column requires a length.

For example, a jdbc-maximum-length of 32 on a CMP String field
such as firstName normally results in a column definition such as
VARCHAR(32). But if the jdbc-type is CLOB and you are deploying
on Oracle, the resulting column definition is CLOB. No length is
given, because in an Oracle database, a CLOB has no length.

jdbc-precision Specifies the maximum number of digits stored in a column which
represents a numeric type.

jdbc-scale Specifies the number of digits stored to the right of the decimal
point in a column that represents a floating point number.

jdbc-nullable Specifies whether the column generated for the CMP field allows
null values.

Automatic Schema Generation

174 Application Server Platform Edition 2005Q1 • Developer’s Guide

The following options of the asadmin deploy or asadmin deploydir command control
the automatic creation of database tables at deployment:

If one or more of the beans in the module are manually mapped and you use any of the
asadmin deploy or asadmin deploydir options, the deployment is not harmed in any
way, but the options have no effect, and a warning is written to the server log.

If the deploytool mapped one or more of the beans, the --uniquetablenames option of
asadmin deploy or asadmin deploydir has no effect. The uniqueness of the table
names was established when deploytool created the mapping.

Table 7-5 asadmin deploy and asadmin deploydir Generation Options
Option Default Description

--createtables none If true, causes database tables to be created for beans that need
them. If false, does not create tables. If not specified, the value of
the create-tables-at-deploy attribute in sun-ejb-jar.xml is
used.

--dropandcreatetables none If true, and if tables were automatically created when this
application was last deployed, tables from the earlier deployment
are dropped and fresh ones are created.

If true, and if tables were not automatically created when this
application was last deployed, no attempt is made to drop any
tables. If tables with the same names as those that would have
been automatically created are found, the deployment proceeds,
but a warning indicates that tables could not be created.

If false, settings of create-tables-at-deploy or
drop-tables-at-undeploy in the sun-ejb-jar.xml file are
overridden.

--uniquetablenames none If true, specifies that table names are unique within each
application server domain. If not specified, the value of the
use-unique-table-names property in sun-ejb-jar.xml is
used.

--dbvendorname none Specifies the name of the database vendor for which tables are
created. Allowed values are db2, mssql, oracle, pointbase, and
sybase, case-insensitive.

If not specified, the value of the database-vendor-name attribute
in sun-ejb-jar.xml is used.

If no value is specified, a connection is made to the resource
specified by the jndi-name subelement of the cmp-resource
element in the sun-ejb-jar.xml file, and the database vendor
name is read. If the connection cannot be established, or if the
value is not recognized, SQL-92 compliance is presumed.

Schema Capture

Chapter 7 Using Container-Managed Persistence for Entity Beans 175

The following options of the asadmin undeploy command control the automatic removal
of database tables at undeployment:

For more information about the asadmin deploy, asadmin deploydir, and asadmin
undeploy commands, see the Sun Java System Application Server Reference Manual.

When command line and sun-ejb-jar.xml options are both specified, the asadmin
options take precedence.

Schema Capture
This section addresses the following topics:

• Automatic Database Schema Capture

• Using the capture-schema Utility

Automatic Database Schema Capture
You can configure a CMP bean in Sun Java System Application Server to automatically
capture the database metadata and save it in a .dbschema file during deployment. If the
sun-cmp-mappings.xml file contains an empty <schema/> entry, the cmp-resource
entry in the sun-ejb-jar.xml file is used to get a connection to the database, and
automatic generation of the schema is performed.

Table 7-6 asadmin undeploy Generation Options
Option Default Description

--droptables none If true, causes database tables that were automatically created
when the bean(s) were last deployed to be dropped when the
bean(s) are undeployed. If false, does not drop tables.

If not specified, the value of the drop-tables-at-undeploy
attribute in sun-ejb-jar.xml is used.

NOTE Before capturing the database schema automatically, make sure you have a
properly configured CMP resource. See “Configuring the CMP Resource”
on page 176.

Configuring the CMP Resource

176 Application Server Platform Edition 2005Q1 • Developer’s Guide

Using the capture-schema Utility
You can use the capture-schema command to manually generate the database metadata
(.dbschema) file. For details, see the Sun Java System Application Server Reference
Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to
provide the persistence engine with information about the structure of the database (the
schema).

Keep the following in mind when using the capture-schema command:

• The name of a .dbschema file must be unique across all deployed modules in a
domain.

• If more than one schema is accessible for the schema user, more than one table with the
same name might be captured if the -schemaname parameter of capture-schema is
not set.

• The schema name must be upper case.

• Table names in databases are case-sensitive. Make sure that the table name matches the
name in the database.

• An Oracle database user running the capture-schema command needs ANALYZE
ANY TABLE privileges if that user does not own the schema. These privileges are
granted to the user by the database administrator.

Configuring the CMP Resource
An EJB module that contains CMP beans requires the JNDI name of a JDBC resource or
Persistence Manager resource in the jndi-name subelement of the cmp-resource element
in the sun-ejb-jar.xml file. If the JNDI name refers to a JDBC Resource, set
PersistenceManagerFactory properties as properties of the cmp-resource element in
the sun-ejb-jar.xml file.

In the Administration Console, open the Resources component, then select JDBC or
Persistence Managers. Refer to the Sun Java System Application Server Administration
Guide for information on creating a new CMP resource.

For a list of the JDBC drivers currently supported by the Sun Java System Application
Server, see the Sun Java System Application Server 8.1 Release Notes. For configurations
of supported and other drivers, see the Sun Java System Application Server Administration
Guide.

Configuring Queries for 1.1 Finders

Chapter 7 Using Container-Managed Persistence for Entity Beans 177

For example, if the JDBC resource has the JNDI name jdbc/MyDatabase, set the CMP
resource in the sun-ejb-jar.xml file as follows:

<cmp-resource>
<jndi-name>jdbc/MyDatabase</jndi-name>

</cmp-resource>

For another example, if the Persistence Manager has the JNDI name jdo/MyDatabase, set
the CMP resource in the sun-ejb-jar.xml file as follows:

<cmp-resource>
<jndi-name>jdo/MyDatabase</jndi-name>

</cmp-resource>

Configuring Queries for 1.1 Finders
This section contains the following topics:

• About JDOQL Queries

• Query Filter Expression

• Query Parameters

• Query Variables

• JDOQL Examples

About JDOQL Queries
The Enterprise JavaBeans Specification, v1.1 spec does not specify the format of the finder
method description. The Sun Java System Application Server uses an extension of Java
Data Objects Query Language (JDOQL) queries to implement finder and selector methods.
(For EJB 2.0 and later, the container automatically maps an EJB QL query to JDOQL.) You
can specify the following elements of the underlying JDOQL query:

• Filter expression - A Java-like expression that specifies a condition that each object
returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.

• Query parameter declaration - Specifies the name and the type of one or more query
input parameters. Follows the syntax for formal parameters in the Java language.

• Query variable declaration - Specifies the name and type of one or more query
variables. Follows the syntax for local variables in the Java language. A query filter
might use query variables to implement joins.

Configuring Queries for 1.1 Finders

178 Application Server Platform Edition 2005Q1 • Developer’s Guide

• Query ordering declaration - Specifies the ordering expression of the query.
Corresponds to the ORDER BY clause of EJBQL.

The Sun Java System Application Server specific deployment descriptor
(sun-ejb-jar.xml) provides the following elements to store the EJB 1.1 finder method
settings:

query-filter
query-params
query-variables
query-ordering

The bean developer uses these elements to construct a query. When the finder method that
uses these elements executes, the values of these elements are used to execute a query in the
database. The objects from the JDOQL query result set are converted into primary key
instances to be returned by the EJB 1.1 ejbFind method.

The JDO specification (see JSR 12) provides a comprehensive description of JDOQL. The
following information summarizes the elements used to define EJB 1.1 finders.

Query Filter Expression
The filter expression is a String containing a boolean expression evaluated for each instance
of the candidate class. If the filter is not specified, it defaults to true. Rules for constructing
valid expressions follow the Java language, with the following differences:

• Equality and ordering comparisons between primitives and instances of wrapper
classes are valid.

• Equality and ordering comparisons of Date fields and Date parameters are valid.

• Equality and ordering comparisons of String fields and String parameters are valid.

• White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

• The following assignment operators are not supported:

❍ =, +=, etc.

❍ pre- and post-increment

❍ pre- and post-decrement

Configuring Queries for 1.1 Finders

Chapter 7 Using Container-Managed Persistence for Entity Beans 179

• Methods, including object construction, are not supported, except for:

Collection.contains(Object o)
Collection.isEmpty()
String.startsWith(String s)
String.endsWith(String e)

In addition, the Sun Java System Application Server supports the following
non-standard JDOQL methods:

String.like(String pattern)
String.like(String pattern, char escape)
String.substring(int start, int length)
String.indexOf(String str)
String.indexOf(String str, int start)
String.length()
Math.abs(numeric n)
Math.sqrt(double d)

• Navigation through a null-valued field, which throws a NullPointerException, is
treated as if the subexpression returned false.

The following expressions are supported:

• Operators applied to all types where they are defined in the Java language:

❍ relational operators (==, !=, >, <, >=, <=)

❍ boolean operators (&, &&, |, ||, ~, !)

❍ arithmetic operators (+, -, *, /)

String concatenation is supported only for String + String.

• Parentheses to explicitly mark operator precedence

• Cast operator

NOTE Comparisons between floating point values are by nature inexact.
Therefore, equality comparisons (== and !=) with floating point values
should be used with caution. Identifiers in the expression are considered to
be in the name space of the candidate class, with the addition of declared
parameters and variables. As in the Java language, this is a reserved word,
and refers to the current instance being evaluated.

Configuring Queries for 1.1 Finders

180 Application Server Platform Edition 2005Q1 • Developer’s Guide

• Promotion of numeric operands for comparisons and arithmetic operations. The rules
for promotion follow the Java rules (see the numeric promotions of the Java language
specification) extended by BigDecimal, BigInteger, and numeric wrapper classes.

Query Parameters
The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Query Variables
The type declarations follow the Java syntax for local variable declarations.

JDOQL Examples
This section provides a few query examples.

Example1
The following query returns all players called Michael. It defines a filter that compares the
name field with a string literal:

name == "Michael"

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>
<method-name>findPlayerByName</method-name>
<query-filter>name == "Michael"</query-filter>

</finder>

Example 2
This query returns all products in a specified price range. It defines two query parameters
which are the lower and upper bound for the price: double low, double high. The filter
compares the query parameters with the price field:

low < price && price < high

Query ordering is set to price ascending.

Performance-Related Features

Chapter 7 Using Container-Managed Persistence for Entity Beans 181

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>
<method-name>findInRange</method-name>
<query-params>double low, double high</query-params>
<query-filter>low < price && price < high</query-filter>
<query-ordering>price ascending</query-ordering>

</finder>

Example 3
This query returns all players having a higher salary than the player with the specified
name. It defines a query parameter for the name java.lang.String name. Furthermore, it
defines a variable to which the player’s salary is compared. It has the type of the persistence
capable class that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState player

The filter compares the salary of the current player denoted by the this keyword with the
salary of the player with the specified name:

(this.salary > player.salary) && (player.name == name)

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>
<method-name>findByHigherSalary</method-name>
<query-params>java.lang.String name</query-params>
<query-filter>

(this.salary > player.salary) && (player.name == name)
</query-filter>
<query-variables>mypackage.PlayerEJB_170160966_JDOState player</query-variables>

</finder>

Performance-Related Features
The Sun Java System Application Server provides the following features to enhance
performance or allow more fine-grained data checking. These features are supported only
for entity beans with container managed persistence.

• Version Column Consistency Checking

• Relationship Prefetching

• Read-Only Beans

Performance-Related Features

182 Application Server Platform Edition 2005Q1 • Developer’s Guide

Version Column Consistency Checking
The version consistency feature saves the bean state at first transactional access and caches
it between transactions. The state is copied from the cache instead of being read from the
database. The bean state is verified by primary key and version column values at flush for
custom queries (for dirty instances only) and at commit (for clean and dirty instances).

To use version consistency:

• Create the version column in the primary table.

• Give the version column a numeric data type.

• Provide appropriate update triggers on the version column. These triggers must
increment the version column on each update of the specified row.

• Specify the version column in the check-version-of-accessed-instances
subelement of the consistency element in the sun-cmp-mappings.xml file.

• Map the CMP bean to an existing schema. You cannot automatically generate the
schema.

Relationship Prefetching
In many cases when an entity bean’s state is fetched from the database, its relationship
fields are always accessed in the same transaction. Relationship prefetching saves database
round trips by fetching data for an entity bean and those beans referenced by its CMR fields
in a single database round trip.

NOTE Use of any of these features results in a non-portable application.

NOTE Automatic schema generation is not supported for beans with version
column consistency checking. Instead, work with your database
administrator to create the schema and add the required triggers.

Restrictions and Optimizations

Chapter 7 Using Container-Managed Persistence for Entity Beans 183

To enable relationship prefetching for a CMR field, use the default subelement of the
fetched-with element in the sun-cmp-mappings.xml file. By default, these CMR fields
are prefetched whenever findByPrimaryKey or a custom finder is executed for the entity,
or when the entity is navigated to from a relationship. (Recursive prefetching is not
supported, because it does not usually enhance performance.) To disable prefetching for
specific custom finders, use the prefetch-disabled element in the sun-ejb-jar.xml
file.

Read-Only Beans
Another feature that the Sun Java System Application Server provides is the read-only
bean, an entity bean that is never modified by an EJB client. Read-only beans avoid
database updates completely.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Sun Java System Application Server provides a number of ways by which a read-only
bean’s state can be refreshed. By setting the refresh-period-in-seconds element in the
sun-ejb-jar.xml file and the trans-attribute element in the ejb-jar.xml file, it is
easy to configure a read-only bean that is (a) always refreshed, (b) periodically refreshed,
(c) never refreshed, or (d) programmatically refreshed.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 149.

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that pertain to using CMP
entity beans.

• Eager Loading of Field State

• Restrictions on Remote Interfaces

• Sybase Finder Limitation

• Date and Time Fields as CMP Field Types

• No Support for lock-when-loaded on Sybase and DB2

• Set RECURSIVE_TRIGGERS to false on MSSQL

Restrictions and Optimizations

184 Application Server Platform Edition 2005Q1 • Developer’s Guide

Eager Loading of Field State
By default, the EJB container loads the state for all CMP fields (excluding relationship,
BLOB, and CLOB fields) before invoking the ejbLoad method of the abstract bean. This
approach might not be optimal for entity objects with large state if most business methods
require access to only parts of the state. If this is an issue, use the fetched-with element in
sun-cmp-mappings.xml for fields that are used infrequently.

Restrictions on Remote Interfaces
The following restrictions apply to the remote interface of an entity bean that uses CMP:

• Do not expose the get and set methods for CMR fields or the persistence collection
classes that are used in container-managed relationships through the remote interface of
the bean.

However, you are free to expose the get and set methods that correspond to the CMP
fields of the entity bean through the bean’s remote interface.

• Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

• Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface,
and can be included in the client EJB JAR file.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to
type TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype
'TEXT' to 'VARCHAR' is not allowed. Use the CONVERT function to run this
query.

To avoid this error, make sure the finder method input is less than 255 characters.

Restrictions and Optimizations

Chapter 7 Using Container-Managed Persistence for Entity Beans 185

Date and Time Fields as CMP Field Types
If a CMP field type is a Java date or time type (java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp), make sure that the field value exactly matches
the value in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())
beanHome.create(myDate, ...);

For some databases, this code results in only the year, month, and date portion of the field
value being stored in the database. Later on if the client tries to find this bean by primary
key as follows:

myBean = beanHome.findByPrimaryKey(myDate);

the bean is not found in the database because the value does not match the one that is stored
in the database.

Similar problems can happen if the database truncates the timestamp value while storing it,
or if a custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date,
java.sql.Date, and java.sql.Time are mapped to Oracle’s DATE data type. Fields of
type java.sql.Timestamp are mapped to Oracle’s TIMESTAMP(9) data type.

No Support for lock-when-loaded on Sybase and
DB2
The lock-when-loaded consistency level is implemented by placing update locks on the
data corresponding to a bean when the data is loaded from the database. There is no suitable
mechanism available on Sybase and DB2 databases to implement this feature. Therefore,
the lock-when-loaded consistency level is not supported on Sybase and DB2 databases.

Set RECURSIVE_TRIGGERS to false on
MSSQL
For version consistency triggers on MSSQL, the property RECURSIVE_TRIGGERS must be
set to false, which is the default. If set to true, triggers throw a
java.sql.SQLException.

Set this property as follows:

Restrictions and Optimizations

186 Application Server Platform Edition 2005Q1 • Developer’s Guide

EXEC sp_dboption 'database_name', 'recursive triggers', 'FALSE'
go

You can test this property as follows:

SELECT DATABASEPROPERTYEX('database_name', 'IsRecursiveTriggersEnabled')
go

187

Chapter 8

Developing Java Clients

This chapter describes how to develop, assemble, and deploy J2EE Application Clients in
the following sections:

• Introducing the Application Client Container

• Developing Clients Using the ACC

• Developing Clients Without the ACC

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and other
files that are required for and distributed with Java client programs that execute in their own
Java Virtual Machine (JVM). The ACC manages the execution of J2EE application client
components, which are used to access a variety of J2EE services (such as JMS resources,
EJB components, web services, security, and so on.) from a JVM outside the Sun Java
System Application Server.

The ACC communicates with the Application Server using RMI-IIOP protocol and
manages the details of RMI-IIOP communication using the client ORB that is bundled with
it. Compared to other J2EE containers, the ACC is lightweight.

Security
The ACC is responsible for collecting authentication data such as the username and
password and sending the collected data to the Application Server. The Application Server
then processes the authentication data using the configured JavaTM Authentication and
Authorization Service (JAAS) module.

Developing Clients Using the ACC

188 Application Server Platform Edition 2005Q1 • Developer’s Guide

Authentication techniques are provided by the client container, and are not under the control
of the application client component. The container integrates with the platform’s
authentication system. When you execute a client application, it displays a login window
and collects authentication data from the user. It also supports SSL (Secure Socket
Layer)/IIOP if configured and when necessary.

Naming
The client container enables the application clients to use the Java Naming and Directory
Interface (JNDI) to look up J2EE services (such as JMS resources, EJB components, web
services, security, and so on.) and to reference configurable parameters set at the time of
deployment.

Developing Clients Using the ACC
This section describes the procedure to develop, assemble, and deploy client applications
using the ACC. This section describes the following topics:

• Using an Application Client to Access an EJB Component

• Using an Application Client to Access a JMS Resource

• Running an Application Client Using the ACC

• Packaging an Application Client Using the ACC

For information about Java-based clients that are not packaged using the ACC, see
“Developing Clients Without the ACC” on page 195.

Using an Application Client to Access an EJB
Component
To access an EJB component from an application client, perform the following steps:

1. In your client code, instantiate the InitialContext using the default (no argument)
constructor:

InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the
CosNaming service.

Developing Clients Using the ACC

Chapter 8 Developing Java Clients 189

2. In your client code, look up the home object by specifying the JNDI name of the home
object as specified in the ejb-jar.xml file. For example:

Object ref = ctx.lookup("java:comp/env/ejb-ref-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

For more information about naming and lookups, see “Accessing the Naming Context”
on page 239.

3. Define the ejb-ref elements in the application-client.xml file and the
corresponding sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 308. For a general explanation of how to map
JNDI names using reference elements, see “Mapping References” on page 243.

4. Deploy the application client and EJB component together in an application. For more
information on deployment, see “Tools for Deployment” on page 88. To get the client
JAR file, use the --retrieve option.

To retrieve the stubs and ties whether or not you requested their generation during
deployment, use the asadmin get-client-stubs command. For details, see the Sun
Java System Application Server Reference Manual.

5. Ensure that the client JAR file includes the following files:

❍ a Java class to access the bean

❍ application-client.xml - J2EE 1.4 application client deployment descriptor

❍ sun-application-client.xml - Sun Java System Application Server specific
client deployment descriptor. For information on the
sun-application-client.xml file, see “The sun-application-client.xml file” on
page 308.

❍ The MANIFEST.MF file. This file contains the main class, which states the
complete package prefix and classname of the Java client.

You can package the application client using the package-appclient script. This is
optional. See “Packaging an Application Client Using the ACC” on page 191.

6. Copy the following JAR files to the client machine and include them in the classpath
on the client side:

❍ appserv-rt.jar - available at install_dir/lib

❍ j2ee.jar - available at install_dir/lib

❍ The client JAR file

Developing Clients Using the ACC

190 Application Server Platform Edition 2005Q1 • Developer’s Guide

7. To access EJB components that are residing in a remote system, make the following
changes to the sun-acc.xml file:

❍ Define the target-server element’s address attribute to reference the remote
server machine.

❍ Define the target-server element’s port attribute to reference the ORB port on
the remote server.

This information can be obtained from the domain.xml file on the remote system. For
more information on domain.xml file, see the Sun Java System Application Server
Administration Reference.

For more information about the sun-acc.xml file, see “The sun-acc.xml File” on
page 309.

8. Run the application client. See “Running an Application Client Using the ACC” on
page 191.

Using an Application Client to Access a JMS
Resource
To access a JMS resource from an application client, perform the following steps:

1. Create a JMS client. For detailed instructions on developing a JMS client, see the J2EE
tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

2. Next, configure a JMS resource on the Sun Java System Application Server. For
information on configuring JMS resources, see “Creating JMS Resources: Destinations
and Connection Factories” on page 252.

3. Define the resource-ref elements in the application-client.xml file and the
corresponding sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 308. For a general explanation of how to map
JNDI names using reference elements, see “Mapping References” on page 243.

4. Ensure that the client JAR file includes the following files:

❍ A Java class to access the resource.

❍ application-client.xml - J2EE 1.4 application client deployment descriptor.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

Developing Clients Using the ACC

Chapter 8 Developing Java Clients 191

❍ sun-application-client.xml - Sun Java System Application Server specific
client deployment descriptor. For information on the
sun-application-client.xml file, see “The sun-application-client.xml file” on
page 308.

❍ The MANIFEST.MF file. This file contains the main class, which states the
complete package prefix and classname of the Java client.

You can package the application client using the package-appclient script. This is
optional. See “Packaging an Application Client Using the ACC” on page 191.

5. Copy the following JAR files to the client machine and include them in the classpath
on the client side:

❍ appserv-rt.jar - available at install_dir/lib

❍ j2ee.jar - available at install_dir/lib

❍ imqjmsra.jar - available at install_dir/lib/install/aplications/jmsra

❍ The client JAR file

6. Run the application client. See “Running an Application Client Using the ACC” on
page 191.

Running an Application Client Using the ACC
To run an application client, launch the ACC using the appclient script. For details, see
the Sun Java System Application Server Reference Manual.

Packaging an Application Client Using the ACC
The package-appclient script, located in the install_dir/bin directory, is used to package
a client application into a single appclient.jar file. Packaging an application client
involves the following main steps:

• Editing the Configuration File

• Editing the appclient Script

• Editing the sun-acc.xml File

• Setting Security Options

• Using the package-appclient Script

Developing Clients Using the ACC

192 Application Server Platform Edition 2005Q1 • Developer’s Guide

Editing the Configuration File
Modify the environment variables in asenv.conf file located in the install_dir/config
directory as shown below:

• $AS_INSTALL to reference the location where the package was un-jared plus
/appclient. For example: $AS_INSTALL=/install_dir/appclient.

• $AS_NSS to reference the location of the nss libs. For example:

UNIX:

$AS_NSS=/install_dir/appclient/lib

WINDOWS:

%AS_NSS%=\install_dir\appclient\bin

• $AS_JAVA to reference the location where the JDK is installed.

• $AS_ACC_CONFIG to reference the configuration xml (sun-acc.xml). The
sun-acc.xml is located at install_dir/config.

• $AS_IMQ_LIB to reference the imq home. Use domain_dir/imq/lib.

Editing the appclient Script
Modify the appclient script file as follows:

UNIX:

Change $CONFIG_HOME/asenv.conf to your_ACC_dir/config/asenv.conf.

Windows:

Change %CONFIG_HOME%\config\asenv.bat to your_ACC_dir\config\asenv.bat

Editing the sun-acc.xml File
Modify sun-acc.xml file to set the following attributes:

• Ensure that the DOCTYPE references %%%SERVER_ROOT%%%/lib/dtds to
your_ACC_dir/lib/dtds.

• Ensure that the <target-server> address attribute references the remote server
machine.

• Ensure that the <target-server> port attribute references the ORB port on the
remote server.

Developing Clients Using the ACC

Chapter 8 Developing Java Clients 193

• To log the messages in a file, specify a file name for the log-service element’s file
attribute. You can also set the log level. For example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE client-container SYSTEM "file:{Your installed server
root}/lib/dtds/sun-application-client-container_1_0.dtd">

<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<log-service level="WARNING"/>

</client-container>

For more information on the sun-acc.xml file, see “The sun-acc.xml File” on page 309.

Setting Security Options
You can run the application client using SSL with certificate authentication. To set the
security options, modify the sun-acc.xml file as shown in the code illustration below. For
more information on the sun-acc.xml file, see “The sun-acc.xml File” on page 309.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE client-container SYSTEM
"file:////opt/SUNWappserver/lib/dtds/sun-application-client-container_1_0.dtd">

<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<security>

<ssl cert-nickname="cts"

ssl2-enabled="false"

ssl2-ciphers="-rc4,-rc4export,-rc2,-rc2export,-des,-desede3"

ssl3-enabled="true"

ssl3-tls-ciphers="+rsa_rc4_128_md5,-rsa_rc4_40_md5,+rsa3_des_sha,+rsa_des_sha,-rsa_rc2_40
_md5,-rsa_null_md5,-rsa_des_56_sha,-rsa_rc4_56_sha"

tls-enabled="true"

tls-rollback-enabled="true"/>

<cert-db path="ignored" password="ignored"/> <!-- not used -->

</security>

</target-server>

Developing Clients Using the ACC

194 Application Server Platform Edition 2005Q1 • Developer’s Guide

<client-credential user-name="j2ee" password="j2ee"/>

<log-service level="WARNING"/>

</client-container>

Using the package-appclient Script
The following steps describe the procedure to use the package-appclient script that is
bundled with Sun Java System Application Server:

1. Under install_dir/bin directory, run the package-appclient script. For details, see
the Sun Java System Application Server Reference Manual.

This creates an appclient.jar file and stores it under install_dir/lib/appclient/
directory.

2. Copy the install_dir/lib/appclient/appclient.jar file to the desired location.
The appclient.jar file contains the following files:

❍ appclient/bin - contains the appclient script used to launch the ACC.

❍ appclient/lib - contains the JAR and runtime shared library files.

❍ appclient/lib/appclient - contains the following files:

• sun-acc.xml - the ACC configuration file.

• client.policy file- the security manager policy file for the ACC.

• appclientlogin.conf file - the login configuration file.

• client.jar file - is created during the deployment of the client application.

❍ appclient/lib/dtds - contains
sun-application_client-container_1_0.dtd which is the DTD
corresponding to sun-acc.xml.

NOTE The appclient.jar file provides an application client container package
targeted at remote hosts and does not contain a server installation. You can
run this file from a remote machine with the same operating system as
where it is created. That is, appclient.jar created on a Solaris platform
does not function on Windows.

Developing Clients Without the ACC

Chapter 8 Developing Java Clients 195

client.policy
The client.policy file is the J2SE policy file used by the application client. Each
application client has a client.policy file. The default policy file limits the permissions
of J2EE deployed application clients to the minimal set of permissions required for these
applications to operate correctly. If an application client requires more than this default set
of permissions, edit the client.policy file to add the custom permissions that your
application client needs. Use the J2SE standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, visit the following URL:

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

For more information about the permissions you can set in the client.policy file, visit
the following URL:

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Developing Clients Without the ACC
This section describes the procedure to create, assemble, and deploy a Java-based client that
is not packaged using the Application Client Container (ACC). This section describes the
following topics:

• Using a Stand-Alone Client to Access an EJB Component

• Using a Server-Side Module to Access an EJB Component

• Using a Stand-Alone Client to Access a JMS Resource

For information about using the ACC, see “Developing Clients Using the ACC” on
page 188.

Using a Stand-Alone Client to Access an EJB
Component
To access an EJB component from a stand-alone client, perform the following steps:

1. In your client code, instantiate the InitialContext:

InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the
CosNaming service.

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Developing Clients Without the ACC

196 Application Server Platform Edition 2005Q1 • Developer’s Guide

2. In the client code, look up the home object by specifying the JNDI name of the home
object. For example:

Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

For more information about naming and lookups, see “Accessing the Naming Context”
on page 239.

3. Deploy the EJB component to be accessed. For more information on deployment, see
“Tools for Deployment” on page 88.

4. Copy the following JAR files to the client machine and include them in the classpath
on the client side:

❍ appserv-rt.jar - available at install_dir/lib

❍ j2ee.jar - available at install_dir/lib

5. To access EJB components that are residing in a remote system, set the values for the
Java Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port
number (default is 3700).

This information can be obtained from the domain.xml file on the remote system. For
more information on domain.xml file, see the Sun Java System Application Server
Administration Reference.

6. Run the stand-alone client. As long as the client environment is set appropriately and
the JVM is compatible, you merely need to run the main class.

Using a Server-Side Module to Access an EJB
Component
To access an EJB component from a server-side module, such as a servlet or another EJB
component, perform the following steps:

1. In your module code, instantiate the InitialContext:

InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the
CosNaming service.

Developing Clients Without the ACC

Chapter 8 Developing Java Clients 197

2. In the module code, look up the home object by specifying the JNDI name of the home
object. For example:

Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

For more information about naming and lookups, see “Accessing the Naming Context”
on page 239.

3. Deploy the EJB component to be accessed. For more information on deployment, see
“Tools for Deployment” on page 88.

4. To access EJB components that are residing in a remote system, set the values for the
Java Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port
number (default is 3700).

This information can be obtained from the domain.xml file on the remote system. For
more information on domain.xml file, see the Sun Java System Application Server
Administration Reference.

5. Deploy the module. For more information on deployment, see “Tools for Deployment”
on page 88.

Using a Stand-Alone Client to Access a JMS
Resource
To access a JMS resource from a stand-alone client, perform the following steps:

1. Create a JMS client. For detailed instructions on developing a JMS client, see the J2EE
tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

2. Next, configure a JMS resource on the Sun Java System Application Server. For
information on configuring JMS resources, see “Creating JMS Resources: Destinations
and Connection Factories” on page 252.

3. Copy the following JAR files to the client machine and include them in the classpath
on the client side:

❍ appserv-rt.jar - available at install_dir/lib

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

Developing Clients Without the ACC

198 Application Server Platform Edition 2005Q1 • Developer’s Guide

❍ j2ee.jar - available at install_dir/lib

❍ imqjmsra.jar - available at install_dir/lib/install/aplications/jmsra

4. Set the values for the Java Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port
number (default is 3700).

This information can be obtained from the domain.xml file. For more information on
domain.xml file, see the Sun Java System Application Server Administration
Reference.

5. Run the stand-alone client. As long as the client environment is set appropriately and
the JVM is compatible, you merely need to run the main class.

199

Chapter 9

Developing Connectors

This chapter describes Sun Java System Application Server support for the J2EE Connector
1.5 architecture.

The J2EE Connector architecture provides a Java solution to the problem of connectivity
between multiple application servers and existing enterprise information systems (EISs). By
using the J2EE Connector architecture, EIS vendors no longer need to customize their
product for each application server. Application server vendors who conform to the J2EE
Connector architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms
refer to a resource adapter module that is developed in conformance with the J2EE
Connector Specification 1.5.

For more information about connectors, see the J2EE Connector architecture homepage, at:

http://java.sun.com/j2ee/connector/

For connector examples, see:

http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors

This chapter includes the following topics:

• Connector 1.5 Support in the Application Server

• Deploying and Configuring a Stand-Alone Connector Module

• Redeploying a Stand-Alone Connector Module

• Deploying and Configuring an Embedded Resource Adapter

• Advanced Connector Configuration Options

• Inbound Communication Support

• Configuring a Message Driven Bean to Use a Resource Adapter

http://java.sun.com/j2ee/connector/
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors

Connector 1.5 Support in the Application Server

200 Application Server Platform Edition 2005Q1 • Developer’s Guide

Connector 1.5 Support in the Application Server
The Sun Java System Application Server supports the development and deployment of
resource adapters that are compatible with Connector 1.5 specification (and, for backward
compatibility, the Connector 1.0 specification).

The Connector 1.0 specification defines the outbound connectivity system contracts
between the resource adapter and the Application Server. The Connector 1.5 specification
introduces major additions in defining system level contracts between the Application
Server and the resource adapter with respect to the following:

• Inbound connectivity from an EIS - The Connector 1.5 defines the transaction and
message inflow system contracts for achieving inbound connectivity from an EIS. The
message inflow contract also serves as a standard message provider pluggability
contract, thereby allowing various providers of messaging systems to seamlessly plug
in their products with any application server that supports the message inflow contract.

• Resource adapter life cycle management and thread management - These features are
available through the lifecycle and work management contracts.

Connector Architecture for JMS and JDBC
In the Administration Console, connector, JMS, and JDBC resources are handled
differently, but they use the same underlying Connector architecture. In the Sun Java
System Application Server, all communication to an EIS, whether to a message provider or
an RDBMS, happens through the Connector architecture. To provide JMS infrastructure to
clients, the Application Server uses the Sun Java System Message Queue software. To
provide JDBC infrastructure to clients, the Application Server uses its own JDBC system
resource adapters. The application server automatically makes these system resource
adapters available to any client that requires them.

For more information about JMS in the Sun Java System Application Server, see
Chapter 14, “Using the Java Message Service.” For more information about JDBC in the
Sun Java System Application Server, see Chapter 11, “Using the JDBC API for Database
Access.”

Connector Configuration
Sun Java System Application Server does not need to use sun-ra.xml, which previous
Application Server versions used, to store server-specific deployment information inside a
Resource Adapter Archive (RAR) file. (However, the sun-ra.xml file is still supported for
backward compatibility.) Instead, the information is stored in the server configuration. As a

Deploying and Configuring a Stand-Alone Connector Module

Chapter 9 Developing Connectors 201

result, you can create multiple connector connection pools for a connection definition in a
functional resource adapter instance, and you can create multiple user-accessible connector
resources (that is, registering a resource with a JNDI name) for a connector connection
pool. In addition, dynamic changes can be made to connector connection pools and the
connector resource properties without restarting the Application Server.

Deploying and Configuring a Stand-Alone
Connector Module

You can deploy a stand-alone connector module using the Administration Console or the
asadmin command. For information about using the Administration Console, see the Sun
Java System Application Server Administration Guide. For information about using the
asadmin command, see the Sun Java System Application Server Reference Manual.

Deploying a stand-alone connector module allows multiple deployed J2EE applications to
share the connector module. To deploy and configure a stand-alone connector module:

1. Deploy the connector module in one of the following ways. A resource adapter
configuration is automatically created for the connector module.

❍ In the Administration Console, open the Applications component and select
Connector Modules. When you deploy the connector module, a resource adapter
configuration is automatically created for the connector module.

❍ Use the asadmin deploy or asadmin deploydir command. To override the
default configuration properties of a resource adapter, if necessary, use the
asadmin create-resource-adapter-config command.

2. Configure connector connection pools for the deployed connector module in one of the
following ways:

❍ In the Administration Console, open the Resources component, select Connectors,
and select Connector Connection Pools.

❍ Use the asadmin create-connector-connection-pool command.

3. Configure connector resources for the connector connection pools in one of the
following ways. This associates a connector resource with a JNDI name.

❍ In the Administration Console, open the Resources component, select Connectors,
and select Connector Resources.

❍ Use the asadmin create-connector-resource command.

Redeploying a Stand-Alone Connector Module

202 Application Server Platform Edition 2005Q1 • Developer’s Guide

4. Create an administered object for an inbound resource adapter, if necessary, in one of
the following ways:

❍ In the Administration Console, open the Resources component, select Connectors,
and select Admin Object Resources.

❍ Use the asadmin create-admin-object command.

Redeploying a Stand-Alone Connector Module
Redeployment of a connector module maintains all connector connection pools, connector
resources, and administered objects defined for the previously deployed connector module.
You need not reconfigure any of these resources.

However, you should redeploy any dependent modules. A dependent module uses or refers
to a connector resource of the redeployed connector module. Redeployment of a connector
module results in the shared classloader reloading the new classes. Other modules that refer
to the old resource adapter classes must be redeployed to gain access to the new classes. For
more information about classloaders, see “Classloaders” on page 73.

During connector module redeployment, the server log provides a warning indicating that
all dependent applications should be redeployed. Client applications or application
components using the connector module’s resources may throw classcast exceptions if
dependent applications are not redeployed after connector module redeployment.

To disable automatic redeployment, set the --force option to false. In this case, if the
connector module has already been deployed, the Application Server provides an error
message.

Deploying and Configuring an Embedded
Resource Adapter

A connector module can be deployed as a J2EE component in a J2EE application. Such
connectors are only visible to components residing in the same J2EE application. Simply
deploy this J2EE application as you would any other J2EE application.

You can create new connector connection pools and connector resources for a connector
module embedded within a J2EE application by prefixing the connector name with
application_name#. For example, if an application appX.ear has jdbcra.rar embedded
within it, the connector connection pools and connector resources refer to the connector
module as appX#jdbcra.

Advanced Connector Configuration Options

Chapter 9 Developing Connectors 203

However, an embedded connector module cannot be undeployed using the name
application_name#connector_name. To undeploy the connector module, you must
undeploy the application in which it is embedded.

The association between the physical JNDI name for the connector module in the
Application Server and the logical JNDI name used in the application component is
specified in the Sun Java System Application Server specific XML descriptor
sun-ejb-jar.xml. You can either hand code this association or use the deploytool to make
this association. (For more information about using the deploytool, see the J2EE 1.4
Tutorial.)

Advanced Connector Configuration Options
You can use these advanced connector configuration options:

• Thread Pools

• Security Maps

• Overriding Configuration Properties

• Testing a Connection Pool

• Handling Invalid Connections

• Setting the Shutdown Timeout

• Using Last Agent Optimization of Transactions

Thread Pools
Connectors can submit work instances to the Application Server for execution. By default,
the Application Server services work requests for all connectors from its default thread
pool. However, you can associate a specific user-created thread pool to service work
requests from a connector. A thread pool can service work requests from multiple resource
adapters. To create a thread pool:

• In the Administration Console, select Thread Pools under the relevant configuration.
For details, see the Sun Java System Application Server Administration Guide.

• Use the asadmin create-threadpool command. For details, see the Sun Java
System Application Server Reference Manual.

Advanced Connector Configuration Options

204 Application Server Platform Edition 2005Q1 • Developer’s Guide

To associate a connector with a thread pool:

• In the Administration Console, open the Applications component and select Connector
Modules. Deploy the module, or select the previously deployed module. Specify the
name of the thread pool in the Thread Pool ID field. For details, see the Sun Java
System Application Server Administration Guide.

• Use the --threadpoolid option of the asadmin
create-resource-adapter-config command. For details, see the Sun Java System
Application Server Reference Manual.

If you create a resource adapter configuration for a connector module that is already
deployed, the connector module deployment is restarted with the new configuration
properties.

Security Maps
Create a security map for a connector connection pool to map an application principal or a
user group to a backend EIS principal. The security map is usually used in situations where
one or more EIS backend principals are used to execute operations (on the EIS) initiated by
various principals or user groups in the application.

To create or update security maps for a connector connection pool:

• In the Administration Console, open the Resources component, select Connectors,
select Connector Connection Pools, and select the Security Maps tab. For details, see
the Sun Java System Application Server Administration Guide.

• Use the asadmin create-connector-security-map command. For details, see the
Sun Java System Application Server Reference Manual.

If a security map already exists for a connector connection pool, the new security map is
appended to the previous one. The connector security map configuration supports the use of
the wildcard asterisk (*) to indicate all users or all user groups.

When an application principal initiates a request to an EIS, the Application Server first
checks for an exact match to a mapped backend EIS principal using the security map
defined for the connector connection pool. If there is no exact match, the Application Server
uses the wild card character specification, if any, to determined the mapped backend EIS
principal.

Advanced Connector Configuration Options

Chapter 9 Developing Connectors 205

Overriding Configuration Properties
You can override the properties specified in the ra.xml file of a resource adapter. Use the
asadmin create-resource-adapter-config command to create a configuration for a
resource adapter. Use this command’s --property option to specify a name-value pair for
a resource adapter property.

You can use the asadmin create-resource-adapter-config command either before or
after resource adapter deployment. If it is executed after deploying the resource adapter, the
existing resource adapter is restarted with the new properties. For details, see the Sun Java
System Application Server Administration Guide.

Testing a Connection Pool
After configuring a connector connection pool, use the asadmin ping-connection-pool
command to test the health of the underlying connections. For details, see the Sun Java
System Application Server Administration Guide.

Handling Invalid Connections
If a resource adapter generates a ConnectionErrorOccured event, the Application Server
considers the connection invalid and removes the connection from the connection pool.
Typically, a resource adapter generates a ConnectionErrorOccured event when it finds a
ManagedConnection object unusable. Reasons can be network failure with the EIS, EIS
failure, fatal problems with resource adapter, and so on. If the fail-all-connections
property in the connection pool configuration is set to true, all connections are destroyed
and the pool is recreated.

You can set the fail-all-connections configuration property during creation of a
connector connection pool. Or, you can use the asadmin set command to dynamically
reconfigure a previously set property. For details, see the Sun Java System Application
Server Administration Guide.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The Application
Server checks if the resource adapter implements this interface, and if it does, invalid
connections are removed when the connection pool is resized.

Advanced Connector Configuration Options

206 Application Server Platform Edition 2005Q1 • Developer’s Guide

Setting the Shutdown Timeout
According to the Connector 1.5 specification, while an application server shuts down, all
resource adapters should be stopped. A resource adapter might hang during shutdown, since
shutdown is typically a resource intensive operation. To avoid such a situation, you can set
a timeout that aborts resource adapter shutdown if exceeded. The default timeout is 30
seconds per resource adapter module. To configure this timeout:

• In the Administration Console, select JMS/Connector Service under the relevant
configuration. For details, see the Sun Java System Application Server Administration
Guide.

• Use the following command:

asadmin set server_instance.connector-service.shutdown-timeout-in-seconds="number_of_seconds"

For details, see the Sun Java System Application Server Reference Manual.

The Application Server deactivates all message-driven bean deployments before stopping a
resource adapter.

Using Last Agent Optimization of Transactions
Transactions that involve multiple resources or multiple participant processes are
distributed or global transactions. A global transaction can involve one non-XA resource if
last agent optimization is enabled. Otherwise, all resources must be XA. For more
information about transactions in the Application Server, see Chapter 12, “Using the
Transaction Service.”

The Connector 1.5 specification requires that if a resource adapter supports
XATransaction, the ManagedConnection created from that resource adapter must support
both distributed and local transactions. Therefore, even if a resource adapter supports
XATransaction, you can configure its connector connection pools as non-XA or without
transaction support for better performance. A non-XA resource adapter becomes the last
agent in the transactions in which it participates.

The value of the connection pool configuration property transaction-support defaults
to the value of the transaction-support property in the ra.xml file. The connection
pool configuration property can override the ra.xml file property if the transaction level in
the connection pool configuration property is lower. If the value in the connection pool
configuration property is higher, it is ignored.

Inbound Communication Support

Chapter 9 Developing Connectors 207

Inbound Communication Support
The Connector 1.5 specification defines the transaction and message inflow system
contracts for achieving inbound connectivity from an EIS. The message inflow contract also
serves as a standard message provider pluggability contract, thereby allowing various
message providers to seamlessly plug in their products with any application server that
supports the message inflow contract. In the inbound communication model, the EIS
initiates all communication to an application. An application can be composed of enterprise
beans (session, entity, or message-driven beans), which reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven
bean. This message-driven bean asynchronously consumes messages from a message
provider. An application can also synchronously send and receive messages directly using
messaging style APIs.

A resource adapter supporting inbound communication provides an instance of an
ActivationSpec JavaBean class for each supported message listener type. Each class
contains a set of configurable properties that specify endpoint activation configuration
information during message-driven bean deployment. The required-config-property
element in the ra.xml file provides a list of configuration property names required for each
activation specification. An endpoint activation fails if the required property values are not
specified. Values for the properties that are overridden in the message-driven bean’s
deployment descriptor are applied to the ActivationSpec JavaBean when the
message-driven bean is deployed.

Administered objects can also be specified for a resource adapter, and these JavaBeans are
specific to a messaging style or message provider. For example, some messaging styles may
need applications to use special administered objects (such as Queue and Topic objects in
JMS). Applications use these objects to send and synchronously receive messages using
connection objects using messaging style APIs. For more information about administered
objects, see Chapter 14, “Using the Java Message Service.”

Configuring a Message Driven Bean to Use a
Resource Adapter

The Connectors 1.5 specification’s message inflow contract provides a generic mechanism
to plug in a wide-range of message providers, including JMS, into a J2EE-compatible
application server. Message providers use a resource adapter and dispatch messages to
message endpoints, which are implemented as message-driven beans.

Configuring a Message Driven Bean to Use a Resource Adapter

208 Application Server Platform Edition 2005Q1 • Developer’s Guide

The message-driven bean developer provides activation configuration information in the
message-driven bean’s ejb-jar.xml file. Configuration information includes
messaging-style-specific configuration details, and possibly message-provider-specific
details as well. The message-driven bean deployer uses this configuration information to set
up the activation specification JavaBean. The activation configuration properties specified
in ejb-jar.xml override configuration properties in the activation specification definition
in the ra.xml file.

According to the EJB specification, the messaging-style-specific descriptor elements
contained within the activation configuration element are not specified because they are
specific to a messaging provider. In the following sample message-driven bean
ejb-jar.xml, a message-driven bean has the following activation configuration property
names: destinationType, SubscriptionDurability, and MessageSelector.

<!-- A sample MDB that listens to a JMS Topic -->
<!-- message-driven bean deployment descriptor -->
...

<activation-config>
<activation-config-property>

<activation-config-property-name>
destinationType

</activation-config-property-name>
<activation-config-property-value>

javax.jms.Topic
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
SubscriptionDurability

</activation-config-property-name>
<activation-config-property-value>

Durable
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
MessageSelector

</activation-config-property-name>
<activation-config-property-value>

JMSType = 'car' AND color = 'blue'
</activation-config-property-value>

</activation-config-property>
...
</activation-config>

...

Configuring a Message Driven Bean to Use a Resource Adapter

Chapter 9 Developing Connectors 209

When the message-driven bean is deployed, the value for the resource-adapter-mid
element in the sun-ejb-jar.xml file is set to the resource adapter module name that
delivers messages to the message endpoint (to the message-driven bean). In the following
example, the jmsra JMS resource adapter, which is the bundled resource adapter for the
Sun Java System Message Queue message provider, is specified as the resource adapter
module identifier for the SampleMDB bean.

<sun-ejb-jar>
<enterprise-beans>

<unique-id>1</unique-id>
<ejb>

<ejb-name>SampleMDB</ejb-name>
<jndi-name>SampleQueue</jndi-name>

<!-- JNDI name of the destination from which messages would
be delivered from MDB needs to listen to -->

...
</ejb>
<mdb-resource-adapter>

<resource-adapter-mid>jmsra</resource-adapter-mid>
<!-- Resource Adapter Module Id that would deliver messages
to this message endpoint -->

</mdb-resource-adapter>
...

</sun-ejb-jar>

When the message-driven bean is deployed, the Application Server uses the
resourceadapter-mid setting to associate the resource adapter with a message endpoint
through the message inflow contract. This message inflow contract with the application
server gives the resource adapter a handle to the MessageEndpointFactory and the
ActivationSpec JavaBean, and the adapter uses this handle to deliver messages to the
message endpoint instances (which are created by the MessageEndpointFactory).

When a message-driven bean first created for use on the Sun Java System Application
Server 7 is deployed, the Connector runtime transparently transforms the previous
deployment style to the current connector-based deployment style. If the deployer specifies
neither a resource-adapter-mid property nor the Message Queue resource adapter’s
activation configuration properties, the Connector runtime maps the message-driven bean to
the jmsra system resource adapter and converts the JMS-specific configuration to the
Message Queue resource adapter’s activation configuration properties.

Configuring a Message Driven Bean to Use a Resource Adapter

210 Application Server Platform Edition 2005Q1 • Developer’s Guide

Example Resource Adapter for Inbound
Communication
The inbound sample connector bundled with the Application Server is a good example of an
application utilizing the inbound connectivity contract of the J2EE Connector Architecture
1.5 specification. This sample connector is available at install_dir/samples/
connectors/apps/mailconnector.

This example connector shows how to create an inbound J2EE Connector Architecture
1.5-compliant resource adapter and deploy its components. It shows how these resource
adapters interact with other application components. The inbound sample resource adapter
allows message endpoints (that is, message-driven beans) to receive email messages
delivered to a specific mailbox folder on a given mail server.

The application that is bundled along with this inbound sample connector provides a simple
Remote Method Invocation (RMI) backend service that allows the user to monitor the
mailbox folders specified by the message-driven beans. The sample application also
contains a sample message-driven bean that illustrates how the activation configuration
specification properties of the message-driven bean provide the configuration parameters
that the backend and resource adapter require to monitor a specific mailbox folder.

The onMessage method of the message-driven bean uses the JavaMail API to send a reply
acknowledging the receipt of the message. This reply is sufficient to verify that the full
process is working.

211

Chapter 10

Developing Lifecycle Listeners

Lifecycle listener modules provide a means of running short or long duration Java-based
tasks within the application server environment, such as instantiation of singletons or RMI
servers. These modules are automatically initiated at server startup and are notified at
various phases of the server life cycle.

All lifecycle module classes and interfaces are in the install_dir/lib/appserv-rt.jar
file.

The following sections describe how to create and use a lifecycle listener module:

• Server Life Cycle Events

• The LifecycleListener Interface

• The LifecycleEvent Class

• The Server Lifecycle Event Context

• Deploying a Lifecycle Module

• Considerations for Lifecycle Modules

Server Life Cycle Events
A lifecycle module listens for and performs its tasks in response to the following events in
the server life cycle:

• After the INIT_EVENT, the server reads the configuration, initializes built-in
subsystems (such as security and logging services), and creates the containers.

• After the STARTUP_EVENT, the server loads and initializes deployed applications.

• After the READY_EVENT, the server is ready to service requests.

The LifecycleListener Interface

212 Application Server Platform Edition 2005Q1 • Developer’s Guide

• After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.

• After the TERMINATION_EVENT, the server closes the containers, the built-in
subsystems, and the server runtime environment.

These events are defined in the LifecycleEvent class.

The lifecycle modules that listen for these events implement the LifecycleListener
interface.

The LifecycleListener Interface
To create a lifecycle module is to configure a customized class that implements the
com.sun.appserv.server.LifecycleListener interface. You can create and
simultaneously execute multiple lifecycle modules.

The LifecycleListener interface defines this method:

• public void handleEvent(com.sun.appserv.server.LifecycleEvent

event) throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the
LifecycleListenerImpl.java file, which you can use for testing lifecycle events.

The LifecycleEvent Class
The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event.
The following methods are associated with the event:

• public java.lang.Object getData()

This method returns the data associated with the event.

• public int getEventType()

This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT,
READY_EVENT, SHUTDOWN_EVENT, or TERMINATION_EVENT.

• public com.sun.appserv.server.LifecycleEventContext

getLifecycleEventContext()

This method returns the lifecycle event context, described next.

The Server Lifecycle Event Context

Chapter 10 Developing Lifecycle Listeners 213

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

The Server Lifecycle Event Context
The com.sun.appserv.server.LifecycleEventContext interface exposes runtime
information about the server. The lifecycle event context is created when the
LifecycleEvent class is instantiated at server initialization. The
LifecycleEventContext interface defines these methods:

• public java.lang.String[] getCmdLineArgs()

This method returns the server startup command-line arguments.

• public java.lang.String getInstallRoot()

This method returns the server installation root directory.

• public java.lang.String getInstanceName()

This method returns the server instance name.

• public javax.naming.InitialContext getInitialContext()

This method returns the initial JNDI naming context. The naming environment for
lifecycle modules is installed after the STARTUP_EVENT. A lifecycle module can look
up any resource by its jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It
can use the getInitialContext() method to get the initial context to which all the
resources are bound.

Deploying a Lifecycle Module
You can deploy a lifecycle module using the following tools:

• In the Administration Console, open the Applications component and go to the
Lifecycle Modules page. For details, see the Sun Java System Application Server
Administration Guide.

• Use the asadmin create-lifecycle-module command. For details, see the Sun
Java System Application Server Reference Manual.

After you deploy a lifecycle module, you must restart the server to activate it. The server
instantiates it and registers it as a lifecycle event listener at server initialization.

Considerations for Lifecycle Modules

214 Application Server Platform Edition 2005Q1 • Developer’s Guide

Considerations for Lifecycle Modules
The resources allocated at initialization or startup should be freed at shutdown or
termination. The lifecycle module classes are called synchronously from the main server
thread, therefore it is important to ensure that these classes don’t block the server. Lifecycle
modules can create threads if appropriate, but these threads must be stopped in the
shutdown and termination phases.

The LifeCycleModule Classloader is the parent classloader for lifecycle modules. Each
lifecycle module’s classpath in domain.xml is used to construct its classloader. All the
support classes needed by a lifecycle module must be available to the LifeCycleModule
Classloader or its parent, the Connector Classloader.

You must ensure that the server.policy file is appropriately set up, or a lifecycle module
trying to perform a System.exec() might cause a security access violation. For details, see
“The server.policy File” on page 45.

The configured properties for a lifecycle module are passed as properties after the
INIT_EVENT. The JNDI naming context is not available before the STARTUP_EVENT. If a
lifecycle module requires the naming context, it can get this after the STARTUP_EVENT,
READY_EVENT, or SHUTDOWN_EVENT.

NOTE If the is-failure-fatal setting is set to true (the default is false),
lifecycle module failure prevents server initialization or startup, but not
shutdown or termination.

Part III

Using Services and APIs

Chapter 11, “Using the JDBC API for Database Access”

Chapter 12, “Using the Transaction Service”

Chapter 13, “Using the Java Naming and Directory Interface”

Chapter 14, “Using the Java Message Service”

Chapter 15, “Using the JavaMail API”

Chapter 16, “Using the Java Management Extensions (JMX) API”

217

Chapter 11

Using the JDBC API for Database
Access

This chapter describes how to use the Java™ Database Connectivity (JDBC™) API for
database access with the Sun Java System Application Server. This chapter also provides
high level JDBC implementation instructions for servlets and EJB™ components using the
Sun Java System Application Server. The Sun Java System Application Server supports the
JDBC 3.0 API, which encompasses the JDBC 2.0 Optional Package API.

The JDBC specifications are available here:

http://java.sun.com/products/jdbc/download.html

A useful JDBC tutorial is located here:

http://java.sun.com/docs/books/tutorial/jdbc/index.html

For explanations of two-tier and three-tier database access models, see the Sun Java System
Application Server Administration Guide.

This chapter discusses the following topics:

• General Steps for Creating a JDBC Resource

• Creating Applications That Use the JDBC API

• Configurations for Specific JDBC Drivers

NOTE Sun Java System Application Server does not support connection pooling
or transactions for an application’s database access if it does not use
standard J2EE™ DataSource objects.

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

General Steps for Creating a JDBC Resource

218 Application Server Platform Edition 2005Q1 • Developer’s Guide

General Steps for Creating a JDBC Resource
To prepare a JDBC resource for use in J2EE applications deployed to the Sun Java System
Application Server, perform the following tasks:

• Integrating the JDBC Driver

• Creating a Connection Pool

• Testing a Connection Pool

• Creating a JDBC Resource

For information about how to configure some specific JDBC drivers, see the Sun Java
System Application Server Administration Guide.

Integrating the JDBC Driver
To use JDBC features, you must choose a JDBC driver to work with the Sun Java System
Application Server, then you must set up the driver. This section covers these topics:

• Supported Database Drivers

• Making the JDBC Driver JAR Files Accessible

Supported Database Drivers
Supported JDBC drivers are those that have been fully tested by Sun. For a list of the JDBC
drivers currently supported by the Sun Java System Application Server, see the Sun Java
System Application Server 8.1 Release Notes. For configurations of supported and other
drivers, see the Sun Java System Application Server Administration Guide.

Making the JDBC Driver JAR Files Accessible
To integrate the JDBC driver into a Sun Java System Application Server domain, copy the
JAR files into the domain_dir/lib/ext directory, then restart the server. This makes
classes accessible to any application or module across the domain. For more information
about Sun Java System Application Server classloaders, see “Classloaders” on page 73.

NOTE Because the drivers and databases supported by the Sun Java System
Application Server are constantly being updated, and because database
vendors continue to upgrade their products, always check with Sun
technical support for the latest database support information.

General Steps for Creating a JDBC Resource

Chapter 11 Using the JDBC API for Database Access 219

Creating a Connection Pool
When you create a connection pool that uses JDBC technology (“JDBC connection pool”)
in the Sun Java System Application Server, you can define many of the characteristics of
your database connections.

You can create a JDBC connection pool in one of these ways:

• In the Administration Console, open the Resources component, open the JDBC
component, and select Connection Pools. For details, see the Sun Java System
Application Server Administration Guide.

• Use the asadmin create-jdbc-connection-pool command. For details, see the
Sun Java System Application Server Reference Manual.

Testing a Connection Pool
You can test a JDBC connection pool for usability in one of these ways:

• In the Administration Console, open the Resources component, open the JDBC
component, select Connection Pools, and select the connection pool you want to test.
Then select the Ping button in the top right corner of the page. For details, see the Sun
Java System Application Server Administration Guide.

• Use the asadmin ping-connection-pool command. For details, see the Sun Java
System Application Server Reference Manual

Both these commands fail and display an error message unless they successfully connect to
the connection pool.

For information about how to tune a connection pool, see the Sun Java System Application
Server Performance Tuning Guide.

Creating a JDBC Resource
A JDBC resource, also called a data source, lets you make connections to a database using
getConnection(). Create a JDBC resource in one of these ways:

• In the Administration Console, open the Resources component, open the JDBC
component, and select JDBC Resources. For details, see the Sun Java System
Application Server Administration Guide.

• Use the asadmin create-jdbc-resource command. For details, see the Sun Java
System Application Server Reference Manual.

Creating Applications That Use the JDBC API

220 Application Server Platform Edition 2005Q1 • Developer’s Guide

Creating Applications That Use the JDBC API
An application that uses the JDBC API is an application that looks up and connects to one
or more databases. This section covers these topics:

• Sharing Connections

• Obtaining a Physical Connection from a Wrapped Connection

• Using Non-Transactional Connections

• Using JDBC Transaction Isolation Levels

Sharing Connections
When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For
example, suppose Bean_A starts a transaction and obtains a connection, then calls a method
in Bean_B. If Bean_B acquires a connection to the same JDBC resource with the same
sign-on information, and if Bean_A completes the transaction, the connection can be
shared.

Connections obtained through a resource are shared only if the resource reference declared
by the J2EE component allows it to be shareable. This is specified in a component’s
deployment descriptor by setting the res-sharing-scope element to Shareable for the
particular resource reference. To turn off connection sharing, set res-sharing-scope to
Unshareable.

For general information about connections and JDBC URLs, see the Sun Java System
Application Server Administration Guide.

Obtaining a Physical Connection from a
Wrapped Connection
The DataSource implementation in the Sun Java System Application Server provides a
getConnection method that retrieves the JDBC driver’s SQLConnection from the
Application Server’s Connection wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con) throws
java.sql.SQLException

Creating Applications That Use the JDBC API

Chapter 11 Using the JDBC API for Database Access 221

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.DataSource ds = (com.sun.appserv.DataSource)
ctx.lookup("jdbc/MyBase");

Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con);

// Do db operations.

con.close();

Using Non-Transactional Connections
The DataSource implementation in the Sun Java System Application Server provides a
getNonTxConnection method, which retrieves a JDBC connection that is not in the scope
of any transaction. There are two variants, as follows:

public java.sql.Connection getNonTxConnection() throws
java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)
throws java.sql.SQLException

Another way to get a non-transactional connection is to create a resource with the JNDI
name ending in __nontx. This forces all connections looked up using this resource to be
non transactional.

Typically, a connection is enlisted in the context of the transaction in which a
getConnection call is invoked. However, a non-transactional connection is not enlisted in
a transaction context even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t
committed. For another example, if a non-transactional connection modifies the database
and a transaction that is running simultaneously rolls back, the changes made by the
non-transactional connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh
cached data by using a non-transactional connection to read data before the transaction
commits.

Creating Applications That Use the JDBC API

222 Application Server Platform Edition 2005Q1 • Developer’s Guide

Using JDBC Transaction Isolation Levels
For general information about transactions, see Chapter 12, “Using the Transaction
Service,” and the Sun Java System Application Server Administration Guide. For
information about last agent optimization, which can improve performance, see
“Transaction Scope” on page 236.

Not all database vendors support all transaction isolation levels available in the JDBC API.
The Sun Java System Application Server permits specifying any isolation level your
database supports. The following table defines transaction isolation levels.

Note that you cannot call setTransactionIsolation() during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details,
see “Creating a Connection Pool” on page 219.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel() method in
java.sql.DatabaseMetaData, as shown in the following example:

java.sql.DatabaseMetaData db;
if (db.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC 3.0
API specification.

Table 11-1 Transaction Isolation Levels
Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITTED Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom reads can
occur.

TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom reads can
occur.

TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are prevented.

NOTE Applications that change the isolation level on a pooled connection
programmatically risk polluting the pool, which can lead to errors.

Configurations for Specific JDBC Drivers

Chapter 11 Using the JDBC API for Database Access 223

Configurations for Specific JDBC Drivers
Sun Java System Application Server 8.1 is designed to support connectivity to any database
management system with a corresponding JDBC driver. The following JDBC driver and
database combinations are supported. These combinations have been tested with Sun Java
System Application Server 8.1 and are found to be J2EE compatible. They are also
supported for CMP.

• PointBase Type4 Driver

• Sun Java System JDBC Driver for DB2 Databases

• Sun Java System JDBC Driver for Oracle 8.1.7 and 9.x Databases

• Sun Java System JDBC Driver for Microsoft SQL Server Databases

• Sun Java System JDBC Driver for Sybase Databases

• IBM DB2 8.1 Type2 Driver

• JConnect/Type4 Driver for Sybase ASE 12.5 Databases

For an up to date list of currently supported JDBC drivers, see the Sun Java System
Application Server 8.1 Release Notes.

Other JDBC drivers can be used with Sun Java System Application Server Platform Edition
8.1, but J2EE compliance tests have not been completed with these drivers. Although Sun
offers no product support for these drivers, Sun offers limited support of the use of these
drivers with the Sun Java System Application Server.

• Inet Oraxo JDBC Driver for Oracle 8.1.7 and 9.x Databases

• Inet Merlia JDBC Driver for Microsoft SQL Server Databases

• Inet Sybelux JDBC Driver for Sybase Databases

• Oracle Thin/Type4 Driver for Oracle 8.1.7 and 9.x Databases

• OCI Oracle Type2 Driver for Oracle 8.1.7 and 9.x Databases

• IBM Informix Type4 Driver

• MM MySQL Type4 Driver

• CloudScape 5.1 Type4 Driver

For details about how to integrate a JDBC driver and how to use the Administration
Console or the command line interface to implement the configuration, see the Sun Java
System Application Server Administration Guide.

Configurations for Specific JDBC Drivers

224 Application Server Platform Edition 2005Q1 • Developer’s Guide

PointBase Type4 Driver
The PointBase JDBC driver is included with the Sun Java System Application Server by
default, except for the Solaris bundled installation, which does not include PointBase.
Therefore, unless you have the Solaris bundled installation, you do not need to integrate this
JDBC driver with the Sun Java System Application Server.

PointBase is intended for evaluation use only, not for production or deployment use.

The JAR file for the PointBase driver is pbclient.jar.

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: PointBase

• Datasource Classname: one of the following:

com.pointbase.jdbc.jdbcDataSource

com.pointbase.xa.xaDataSource

• Properties:

❍ user - Specify the database user.

❍ password - Specify the database password.

❍ databaseName - Specify the URL of the database. The syntax is as follows:

jdbc:pointbase:server://server:port/dbname,new

NOTE An Oracle database user running the capture-schema command needs
ANALYZE ANY TABLE privileges if that user does not own the schema.
These privileges are granted to the user by the database administrator. For
information about capture-schema, see “Using the capture-schema
Utility” on page 176.

Configurations for Specific JDBC Drivers

Chapter 11 Using the JDBC API for Database Access 225

Sun Java System JDBC Driver for DB2
Databases
The JAR files for this driver are smbase.jar, smdb2.jar, and smutil.jar. Configure the
connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DB2

• Datasource Classname: com.sun.sql.jdbcx.db2.DB2DataSource

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ portNumber - Specify the port number of the database server.

❍ databaseName - Set as appropriate.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

• URL: jdbc:sun:db2://serverName:portNumber;databaseName=databaseName

Sun Java System JDBC Driver for Oracle 8.1.7
and 9.x Databases
The JAR files for this driver are smbase.jar, smoracle.jar, and smutil.jar. Configure
the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• Datasource Classname: com.sun.sql.jdbcx.oracle.OracleDataSource

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ portNumber - Specify the port number of the database server.

Configurations for Specific JDBC Drivers

226 Application Server Platform Edition 2005Q1 • Developer’s Guide

❍ SID - Set as appropriate.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

• URL: jdbc:sun:oracle://serverName[:portNumber][;SID=databaseName]

Sun Java System JDBC Driver for Microsoft SQL
Server Databases
The JAR files for this driver are smbase.jar, smsqlserver.jar, and smutil.jar.
Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: mssql

• Datasource Classname: com.sun.sql.jdbcx.sqlserver.SQLServerDataSource

• Properties:

❍ serverName - Specify the host name or IP address and the port of the database
server.

❍ portNumber - Specify the port number of the database server.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ selectMethod - Set to cursor.

• URL: jdbc:sun:sqlserver://serverName[:portNumber]

Sun Java System JDBC Driver for Sybase
Databases
The JAR files for this driver are smbase.jar, smsybase.jar, and smutil.jar. Configure
the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

Configurations for Specific JDBC Drivers

Chapter 11 Using the JDBC API for Database Access 227

• Database Vendor: Sybase

• Datasource Classname: com.sun.sql.jdbcx.sybase.SybaseDataSource

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ portNumber - Specify the port number of the database server.

❍ databaseName - Set as appropriate. This is optional.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

• URL: jdbc:sun:sybase://serverName[:portNumber]

IBM DB2 8.1 Type2 Driver
The JAR files for the DB2 driver are db2jcc.jar, db2jcc_license_cu.jar, and
db2java.zip. Set environment variables as follows:

LD_LIBRARY_PATH=/usr/db2user/sqllib/lib:${j2ee.home}/lib

DB2DIR=/opt/IBM/db2/V8.1

DB2INSTANCE=db2user

INSTHOME=/usr/db2user

VWSPATH=/usr/db2user/sqllib

THREADS_FLAG=native

Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: DB2

• Datasource Classname: com.ibm.db2.jcc.DB2SimpleDataSource

• Properties:

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ databaseName - Set as appropriate.

Configurations for Specific JDBC Drivers

228 Application Server Platform Edition 2005Q1 • Developer’s Guide

❍ driverType - Set to 2.

❍ deferPrepares - Set to false.

JConnect/Type4 Driver for Sybase ASE 12.5
Databases
The JAR file for the Sybase driver is jconn2.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Sybase

• Datasource Classname: one of the following:

com.sybase.jdbc2.jdbc.SybDataSource

com.sybase.jdbc2.jdbc.SybXADataSource

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ portNumber - Specify the port number of the database server.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ databaseName - Set as appropriate. Do not specify the complete URL, only the
database name.

❍ BE_AS_JDBC_COMPLIANT_AS_POSSIBLE - Set to true.

❍ FAKE_METADATA - Set to true.

Configurations for Specific JDBC Drivers

Chapter 11 Using the JDBC API for Database Access 229

Inet Oraxo JDBC Driver for Oracle 8.1.7 and 9.x
Databases
The JAR file for the Inet Oracle driver is Oranxo.jar. Configure the connection pool using
the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• Datasource Classname: com.inet.ora.OraDataSource

• Properties:

❍ user - Specify the database user.

❍ password - Specify the database password.

❍ serviceName - Specify the URL of the database. The syntax is as follows:

jdbc:inetora:server:port:dbname

For example:

jdbc:inetora:localhost:1521:payrolldb

In this example,localhost is the host name of the machine running the Oracle
server, 1521 is the Oracle server’s port number, and payrolldb is the SID of the
database. For more information about the syntax of the database URL, see the
Oracle documentation.

❍ serverName - Specify the host name or IP address of the database server.

❍ port - Specify the port number of the database server.

❍ streamstolob - If the size of BLOB or CLOB datatypes exceeds 4 KB and this
driver is used for CMP, this property must be set to true.

❍ xa-driver-does-not-support-non-tx-operations - Set to the value true.
Optional: only needed if both non-XA and XA connections are retrieved from the
same connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one
for non-XA connections and one for XA connections.

Configurations for Specific JDBC Drivers

230 Application Server Platform Edition 2005Q1 • Developer’s Guide

Inet Merlia JDBC Driver for Microsoft SQL
Server Databases
The JAR file for the Inet Microsoft SQL Server driver is Merlia.jar. Configure the
connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: mssql

• Datasource Classname: com.inet.tds.TdsDataSource

• Properties:

❍ serverName - Specify the host name or IP address and the port of the database
server.

❍ port - Specify the port number of the database server.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

Inet Sybelux JDBC Driver for Sybase Databases
The JAR file for the Inet Sybase driver is Sybelux.jar. Configure the connection pool
using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Sybase

• Datasource Classname: com.inet.syb.SybDataSource

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ portNumber - Specify the port number of the database server.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ databaseName - Set as appropriate. Do not specify the complete URL, only the
database name.

Configurations for Specific JDBC Drivers

Chapter 11 Using the JDBC API for Database Access 231

Oracle Thin/Type4 Driver for Oracle 8.1.7 and
9.x Databases
The JAR file for the Oracle driver is ojdbc14.jar. Configure the connection pool using
the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• Datasource Classname: one of the following:

oracle.jdbc.pool.OracleDataSource

oracle.jdbc.xa.client.OracleXADataSource

• Properties:

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ URL - Specify the complete database URL using the following syntax:

jdbc:oracle:thin:[user/password]@host[:port]/service

For example:

jdbc:oracle:thin:@localhost:1521:customer_db

❍ xa-driver-does-not-support-non-tx-operations - Set to the value true.
Optional: only needed if both non-XA and XA connections are retrieved from the
same connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one
for non-XA connections and one for XA connections.

NOTE You must set the oracle-xa-recovery-workaround property in the
Transaction Service for recovery of global transactions to work correctly.
For details, see “Transaction Scope” on page 236.

When using this driver, it is not possible to insert more than 2000 bytes of
data into a column. To circumvent this problem, use the OCI driver (JDBC
type 2).

Configurations for Specific JDBC Drivers

232 Application Server Platform Edition 2005Q1 • Developer’s Guide

OCI Oracle Type2 Driver for Oracle 8.1.7 and 9.x
Databases
The JAR file for the OCI Oracle driver is ojdbc14.jar. Make sure that the shared library
is available through LD_LIBRARY_PATH and that the ORACLE_HOME property is set.
Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Oracle

• Datasource Classname: one of the following:

oracle.jdbc.pool.OracleDataSource

oracle.jdbc.xa.client.OracleXADataSource

• Properties:

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ URL - Specify the complete database URL using the following syntax:

jdbc:oracle:oci:[user/password]@host[:port]/service

For example:

jdbc:oracle:oci:@localhost:1521:customer_db

❍ xa-driver-does-not-support-non-tx-operations - Set to the value true.
Optional: only needed if both non-XA and XA connections are retrieved from the
same connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one
for non-XA connections and one for XA connections.

IBM Informix Type4 Driver
Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Informix

Configurations for Specific JDBC Drivers

Chapter 11 Using the JDBC API for Database Access 233

• Datasource Classname: one of the following:

com.informix.jdbcx.IfxDataSource

com.informix.jdbcx.IfxXADataSource

• Properties:

❍ serverName - Specify the Informix database server name.

❍ portNumber - Specify the port number of the database server.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ databaseName - Set as appropriate. This is optional.

❍ IfxIFXHost - Specify the host name or IP address of the database server.

MM MySQL Type4 Driver
Configure the connection pool using the following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: mysql

• Datasource Classname: one of the following:

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

com.mysql.jdbc.jdbc2.optional.MysqlXaConnectionPoolDataSource

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ port - Specify the port number of the database server.

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ databaseName - Set as appropriate.

❍ URL - If you are using global transactions, you can set this property instead of
serverName, port, and databaseName.

Configurations for Specific JDBC Drivers

234 Application Server Platform Edition 2005Q1 • Developer’s Guide

The MM MySQL Type4 driver doesn’t provide a method to set the required
relaxAutoCommit property, so you must set it indirectly by setting the URL property:

jdbc:mysql://host:port/database?relaxAutoCommit="true"

CloudScape 5.1 Type4 Driver
The JAR files for the CloudScape driver are db2j.jar, db2jtools.jar, db2jcview.jar,
jh.jar, db2jcc.jar, and db2jnet.jar. Configure the connection pool using the
following settings:

• Name: Use this name when you configure the JDBC resource later.

• Resource Type: Specify the appropriate value.

• Database Vendor: Cloudscape

• Datasource Classname: com.ibm.db2.jcc.DB2DataSource

• Properties:

❍ user - Set as appropriate.

❍ password - Set as appropriate.

❍ databaseName - Set as appropriate.

235

Chapter 12

Using the Transaction Service

The J2EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses J2EE transactions and
transaction support in the Sun Java System Application Server.

This chapter contains the following sections:

• Transaction Resource Managers

• Transaction Scope

• Configuring the Transaction Service

• Transaction Logging

For more information about the Java™ Transaction API (JTA) and Java™ Transaction
Service (JTS), see the Sun Java System Application Server Administration Guide and the
following sites:

http://java.sun.com/products/jta/

http://java.sun.com/products/jts/

You might also want to read the chapter on transactions in the J2EE tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Transaction Resource Managers

236 Application Server Platform Edition 2005Q1 • Developer’s Guide

Transaction Resource Managers
There are three types of transaction resource managers:

• Databases - Use of transactions prevents databases from being left in inconsistent states
due to incomplete updates. For information about JDBC transaction isolation levels,
see “Using JDBC Transaction Isolation Levels” on page 222.

Sun Java System Application Server supports a variety of JDBC™ XA drivers. For a
list of the JDBC drivers currently supported by the Sun Java System Application
Server, see the Sun Java System Application Server 8.1 Release Notes. For
configurations of supported and other drivers, see the Sun Java System Application
Server Administration Guide.

• Java™ Message Service (JMS) Providers - Use of transactions ensures that messages
are reliably delivered. Sun Java System Application Server is integrated with Sun Java
System Message Queue, a fully capable JMS provider. For more information about
transactions and the JMS API, see Chapter 14, “Using the Java Message Service.”

• J2EE™ Connector Architecture (CA) components - Use of transactions prevents
legacy EIS systems from being left in inconsistent states due to incomplete updates.

For details about how transaction resource managers, the transaction service, and
applications interact, see the Sun Java System Application Server Administration Guide.

Transaction Scope
A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is
specific to the resource manager and is transparent to the J2EE application.

In Sun Java System Application Server, a JDBC resource is non-XA if it meets any of the
following criteria:

• In the JDBC connection pool configuration, the datasource class does not implement
the javax.sql.XADataSource interface.

• The Global Transaction Support box is not checked, or the Resource Type setting does
not exist or is not set to javax.sql.XADataSource.

NOTE In the Sun Java System Application Server, the transaction manager is a
privileged interface. However, applications can access UserTransaction.
For more information, see “Naming Environment for J2EE Application
Components” on page 240.

Transaction Scope

Chapter 12 Using the Transaction Service 237

A transaction remains local if the following conditions remain true:

• One and only one non-XA resource is used. If any additional non-XA resource is used,
the transaction is aborted.

• No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are
distributed or global transactions. A global transaction can involve one non-XA resource if
last agent optimization is enabled. Otherwise, all resourced must be XA. The
use-last-agent-optimization property is set to true by default. For details about how
to set this property, see “Configuring the Transaction Service” on page 238.

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the resources
enlisted for a transaction ensures that either all the resource managers commit the
transaction or they all abort. When the application requests the commitment of a
transaction, the transaction manager issues a PREPARE_TO_COMMIT request to all the
resource managers involved. Each of these resources can in turn send a reply indicating
whether it is ready for commit (PREPARED) or not (NO). Only when all the resource
managers are ready for a commit does the transaction manager issue a commit request
(COMMIT) to all the resource managers. Otherwise, the transaction manager issues a rollback
request (ABORT) and the transaction is rolled back.

Sun Java System Application Server provides workarounds for some known issues with the
recovery implementations of the following JDBC drivers. These workarounds are used
unless explicitly disabled.

• Oracle thin driver - The XAResource.recover method repeatedly returns the same set
of in-doubt Xids regardless of the input flag. According to the XA specifications, the
Transaction Manager initially calls this method with TMSTARTSCAN and then with
TMNOFLAGS repeatedly until no Xids are returned. The XAResource.commit
method also has some issues.

To disable the Sun Java System Application Server workaround, set the
oracle-xa-recovery-workaround property value to false. For details about how
to set this property, see “Configuring the Transaction Service” on page 238.

NOTE These workarounds do not imply support for any particular JDBC driver.

Configuring the Transaction Service

238 Application Server Platform Edition 2005Q1 • Developer’s Guide

Configuring the Transaction Service
You can configure the transaction service in Sun Java System Application Server in the
following ways:

• To configure the transaction service using the Administration Console, open the
Transaction Service component under the relevant configuration. For details, see the
Sun Java System Application Server Administration Guide.

• To configure the transaction service, use the asadmin set command to set the
following attributes:

server.transaction-service.automatic-recovery = false
server.transaction-service.heuristic-decision = rollback
server.transaction-service.keypoint-interval = 2048
server.transaction-service.retry-timeout-in-seconds = 600
server.transaction-service.timeout-in-seconds = 0
server.transaction-service.tx-log-dir = domain_dir/logs

You can also set these properties:

server.transaction-service.property.oracle-xa-recovery-workaround = false
server.transaction-service.property.disable-distributed-transaction-logging = false
server.transaction-service.property.xaresource-txn-timeout = 600
server.transaction-service.property.pending-txn-cleanup-interval = 60
server.transaction-service.property.use-last-agent-optimization = true

You can use the asadmin get command to list all the transaction service attributes and
properties. For details, see the Sun Java System Application Server Reference Manual.

Transaction Logging
The transaction service writes transactional activity into transaction logs so that transactions
can be recovered. You can control transaction logging in these ways:

• Set the location of the transaction log files using the Transaction Log Location setting
in the Administration Console, or set the tx-log-dir attribute using the asadmin set
command.

• Turn off transaction logging by setting the
disable-distributed-transaction-logging property to true. Do this only if
performance is more important than transaction recovery.

239

Chapter 13

Using the Java Naming and Directory
Interface

A naming service maintains a set of bindings, which relate names to objects. The J2EE™
naming service is based on the Java Naming and Directory Interface™ (JNDI) API. The
JNDI API allows application components and clients to look up distributed resources,
services, and EJB™ components. For general information about the JNDI API, see:

http://java.sun.com/products/jndi/

You can also see the JNDI tutorial at:

http://java.sun.com/products/jndi/tutorial/

This chapter contains the following sections:

• Accessing the Naming Context

• Configuring Resources

• Mapping References

Accessing the Naming Context
Sun Java System Application Server provides a naming environment, or context, which is
compliant with standard J2EE 1.4 requirements. A Context object provides the methods
for binding names to objects, unbinding names from objects, renaming objects, and listing
the bindings. The InitialContext is the handle to the J2EE naming service that
application components and clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file
system, a subcontext is a context within a context. This hierarchical structure permits better
organization of information. For naming services that support subcontexts, the Context
class also provides methods for creating and destroying subcontexts.

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

Accessing the Naming Context

240 Application Server Platform Edition 2005Q1 • Developer’s Guide

The rest of this section covers these topics:

• Naming Environment for J2EE Application Components

• Accessing EJB Components Using the CosNaming Naming Context

• Accessing EJB Components in a Remote Application Server

• Naming Environment for Lifecycle Modules

Naming Environment for J2EE Application
Components
The namespace for objects looked up in a J2EE environment is organized into different
subcontexts, with the standard prefix java:comp/env.

The following table describes standard JNDI subcontexts for connection factories in the
Sun Java System Application Server.

NOTE Each resource within a server instance must have a unique name. However,
two resources in different server instances or different domains can have
the same name.

Table 13-1 Standard JNDI Subcontexts for Connection Factories
Resource
Manager Connection Factory Type JNDI Subcontext

JDBC™ javax.sql.DataSource java:comp/env/jdbc

Transaction Service javax.transaction.UserTransaction java:comp/UserTransaction

JMS javax.jms.TopicConnectionFactory

javax.jms.QueueConnectionFactory

java:comp/env/jms

JavaMail™ javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFactory java:comp/env/eis

Accessing the Naming Context

Chapter 13 Using the Java Naming and Directory Interface 241

Accessing EJB Components Using the
CosNaming Naming Context
The preferred way of accessing the naming service, even in code that runs outside of a J2EE
container, is to use the no-argument InitialContext constructor. However, if EJB client
code explicitly instantiates an InitialContext that points to the CosNaming naming
service, it is necessary to set these properties in the client JVM when accessing EJB
components:

-Djavax.rmi.CORBA.UtilClass=com.sun.corba.ee.impl.javax.rmi.CORBA.Util

-Dorg.omg.CORBA.ORBClass=com.sun.corba.ee.impl.orb.ORBImpl

-Dorg.omg.CORBA.ORBSingletonClass=com.sun.corba.ee.impl.orb.ORBSingleton

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

Accessing EJB Components in a Remote
Application Server
The recommended approach for looking up an EJB component in a remote Application
Server from a client that is a servlet or EJB component is to use the Interoperable Naming
Service syntax. Host and port information is prepended to any global JNDI names and is
automatically resolved during the lookup. The syntax for an interoperable global name is as
follows:

corbaname:iiop:host:port#a/b/name

This makes the programming model for accessing EJB components in another Application
Server exactly the same as accessing them in the same server. The deployer can change the
way the EJB components are physically distributed without having to change the code.

For J2EE components, the code still performs a java:comp/env lookup on an EJB
reference. The only difference is that the deployer maps the ejb-reference element to an
interoperable name in an Application Server deployment descriptor file instead of a simple
global JNDI name.

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo,
and the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in sun-web.xml looks like this:

Configuring Resources

242 Application Server Platform Edition 2005Q1 • Developer’s Guide

<ejb-ref>
<ejb-ref-name>ejb/Foo</ejb-ref-name>
<jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>

<ejb-ref>

The code looks like this:

Context ic = new InitialContext();
Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a J2EE container, the code just uses the interoperable
global name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();
Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-specific
(java:comp/env) naming contexts are transient. On each server startup or application
reloading, all relevant objects are re-bound to the namespace.

Naming Environment for Lifecycle Modules
Lifecycle listener modules provide a means of running short or long duration Java-based
tasks within the application server environment, such as instantiation of singletons or RMI
servers. These modules are automatically initiated at server startup and are notified at
various phases of the server life cycle. For details about lifecycle modules, see Chapter 10,
“Developing Lifecycle Listeners.”

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial JNDI naming context is not available until
server initialization is complete. A lifecycle module can get the InitialContext for
lookups using the method LifecycleEventContext.getInitialContext() during, and
only during, the STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle
events.

Configuring Resources
Sun Java System Application Server exposes the following special resources in the naming
environment. Full administration details are provided in the following sections:

• External JNDI Resources

• Custom Resources

Mapping References

Chapter 13 Using the Java Naming and Directory Interface 243

External JNDI Resources
An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI
parent context for external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:

• To create an external JNDI resource using the Administration Console, open the
Resources component, open the JNDI component, and select External Resources. For
details, see the Sun Java System Application Server Administration Guide.

• To create an external JNDI resource, use the asadmin create-jndi-resource
command. For details, see the Sun Java System Application Server Reference Manual.

Custom Resources
A custom resource specifies a custom server-wide resource object factory that implements
the javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent
context for external JNDI resources, except for the standard java:comp/env/.

Create a custom resource in one of these ways:

• To create a custom resource using the Administration Console, open the Resources
component, open the JNDI component, and select Custom Resources. For details, see
the Sun Java System Application Server Administration Guide.

• To create a custom resource, use the asadmin create-custom-resource command.
For details, see the Sun Java System Application Server Reference Manual.

Mapping References
The following XML elements map JNDI names configured in the Sun Java System
Application Server to resource references in application client, EJB, and web application
components:

• resource-env-ref - Maps the resource-env-ref element in the corresponding
J2EE XML file to the absolute JNDI name configured in Sun Java System Application
Server.

• resource-ref - Maps the resource-ref element in the corresponding J2EE XML
file to the absolute JNDI name configured in Sun Java System Application Server.

Mapping References

244 Application Server Platform Edition 2005Q1 • Developer’s Guide

• ejb-ref - Maps the ejb-ref element in the corresponding J2EE XML file to the
absolute JNDI name configured in Sun Java System Application Server.

JNDI names for EJB components must be unique. For example, appending the
application name and the module name to the EJB name is one way to guarantee unique
names. In this case, mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name
for an EJB in the module pkgingEJB.jar, which is packaged in the pkging.ear
application.

These elements are part of the sun-web-app.xml, sun-ejb-ref.xml, and
sun-application-client.xml deployment descriptor files. For more information about
how these elements behave in each of the deployment descriptor files, see Appendix A,
“Deployment Descriptor Files.”

The rest of this section uses an example of a JDBC resource lookup to describe how to
reference resource factories. The same principle is applicable to all resources (such as JMS
destinations, JavaMail sessions, and so on).

The resource-ref element in the sun-web-app.xml deployment descriptor file maps the
JNDI name of a resource reference to the resource-ref element in the web-app.xml
J2EE deployment descriptor file.

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String dsName = "java:comp/env/jdbc/HelloDbDs";
DataSource ds = (javax.sql.DataSource)ic.lookup(dsName);
Connection connection = ds.getConnection();

The resource being queried is listed in the res-ref-name element of the web.xml file as
follows:

<resource-ref>
<description>DataSource Reference</description>
<res-ref-name>jdbc/HelloDbDs</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The resource-ref section in a Sun Java System specific deployment descriptor, for
example sun-web.xml, maps the res-ref-name (the name being queried in the
application code) to the JNDI name of the JDBC resource. The JNDI name is the same as
the name of the JDBC resource as defined in the resource file when the resource is created.

<resource-ref>
<res-ref-name>jdbc/HelloDbDs</res-ref-name>
<jndi-name>jdbc/HelloDbDataSource</jndi-name>

</resource-ref>

Mapping References

Chapter 13 Using the Java Naming and Directory Interface 245

The JNDI name in the Sun Java System specific deployment descriptor must match the
JNDI name you assigned to the resource when you created and configured it.

Mapping References

246 Application Server Platform Edition 2005Q1 • Developer’s Guide

247

Chapter 14

Using the Java Message Service

This chapter describes how to use the Java™ Message Service (JMS) API. The Sun Java™
System Application Server has a fully integrated JMS provider: the Sun Java™ System
Message Queue software.

For general information about the JMS API, see the J2EE tutorial:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

For detailed information about JMS concepts and JMS support in Sun Java System
Application Server, see the Sun Java System Application Server Administration Guide.

This chapter contains the following sections:

• The JMS Provider

• Message Queue Resource Adapter

• Administration of the JMS Service

• Restarting the JMS Client After JMS Configuration

• JMS Connection Features

• Transactions and Non-Persistent Messages

• ConnectionFactory Authentication

• Message Queue varhome Directory

• Delivering SOAP Messages Using the JMS API

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

The JMS Provider

248 Application Server Platform Edition 2005Q1 • Developer’s Guide

The JMS Provider
Sun Java System Application Server support for JMS messaging, in general, and for
message-driven beans, in particular, requires messaging middleware that implements the
JMS specification: a JMS provider. Sun Java System Application Server uses the Sun Java
System Message Queue software as its native JMS provider. The Sun Java System Message
Queue software is tightly integrated into Sun Java System Application Server, providing
transparent JMS messaging support. This support (known within Sun Java System
Application Server as the JMS Service) requires only minimal administration.

The relationship of the Sun Java System Message Queue software to the Sun Java System
Application Server can be one of these types: LOCAL or REMOTE. The results of these choices
are as follows:

• If the type is LOCAL (the default), the Message Queue broker starts when the
Application Server starts.

• If the type is REMOTE, the Message Queue broker must be started separately. For
information about starting the broker, see the Sun Java System Message Queue
Administration Guide.

For more information about setting the type and the default JMS host, see “Configuring the
JMS Service” on page 249.

For more information about the Sun Java System Message Queue, refer to the following
documentation:

http://docs.sun.com/db/prod/s1.s1msgqu#hic

For general information about the JMS API, see the JMS web page at:

http://java.sun.com/products/jms/index.html

Message Queue Resource Adapter
The Sun Java System Message Queue is integrated into the Sun Java System Application
Server using a resource adapter that is compliant with the Connector 1.5 specification. The
module name of this system resource adapter is jmsra. Every JMS resource is converted to
a corresponding connector resource of this resource adapter as follows:

• Connection Factory: A connector connection pool with a max-pool-size of 250 and
a corresponding connector resource.

• Destination (Topic or Queue): A connector administered object.

http://docs.sun.com/db/prod/s1.s1msgqu#hic
http://java.sun.com/products/jms/index.html

Administration of the JMS Service

Chapter 14 Using the Java Message Service 249

You can use connector configuration tools to manage JMS resources. For more information,
see Chapter 9, “Developing Connectors.”

Administration of the JMS Service
To configure the JMS Service and prepare JMS resources for use in applications deployed
to the Sun Java System Application Server, you must perform these tasks:

• Configuring the JMS Service

• The Default JMS Host

• Creating JMS Hosts

• Checking Whether the JMS Provider Is Running

• Creating Physical Destinations

• Creating JMS Resources: Destinations and Connection Factories

For more information about JMS administration tasks, see the Sun Java System Application
Server Administration Guide and the Sun Java System Message Queue documentation at:

http://docs.sun.com/db/prod/s1.s1msgqu#hic

Configuring the JMS Service
The JMS Service configuration is available to all inbound and outbound connections
pertaing to the Sun Java System Application Server. You can edit the JMS Service
configuration in the following ways:

• To edit the JMS Service configuration using the Administration Console, open the Java
Message Service component under the relevant configuration. For details, see the Sun
Java System Application Server Administration Guide.

• To configure the JMS service, use the asadmin set command to set the following
attributes:

server.jms-service.init-timeout-in-seconds = 60
server.jms-service.type = LOCAL
server.jms-service.start-args =
server.jms-service.default-jms-host = default_JMS_host
server.jms-service.reconnect-interval-in-seconds = 60
server.jms-service.reconnect-attempts = 3
server.jms-service.reconnect-enabled = true

http://docs.sun.com/db/prod/s1.s1msgqu#hic

Administration of the JMS Service

250 Application Server Platform Edition 2005Q1 • Developer’s Guide

server.jms-service.addresslist-behavior = random
server.jms-service.addresslist-iterations = 3
server.jms-service.mq-scheme = mq
server.jms-service.mq-service = jms

You can also set these properties:

server.jms-service.property.instance-name = imqbroker
server.jms-service.property.instance-name-suffix =
server.jms-service.property.append-version = false

You can use the asadmin get command to list all the JMS service attributes and
properties. For details, see the Sun Java System Application Server Reference Manual.

You can override the JMS Service configuration using JMS connection factory settings. For
details, see the Sun Java System Application Server Administration Guide.

The Default JMS Host
A JMS host refers to a Sun Java System Message Queue broker. A default JMS host for the
JMS service is provided, named default_JMS_host. This is the JMS host that the
Application Server instance starts when the JMS Service type is configured as LOCAL.

If you have created a multi-broker cluster in the Sun Java System Message Queue software,
delete the default JMS host, then add the Message Queue cluster’s brokers as JMS hosts. In
this case, the default JMS host becomes the first JMS host in the AddressList. (For more
information about the AddressList, see “JMS Connection Features” on page 252.) You
can also explicitly set the default JMS host; see “Configuring the JMS Service” on
page 249.

When the Application Server uses a Message Queue cluster, it executes Message Queue
specific commands on the default JMS host. For example, when a physical destination is
created for a Message Queue cluster of three brokers, the command to create the physical
destination is executed on the default JMS host, but the physical destination is used by all
three brokers in the cluster.

NOTE Sun Java System Application Server must be restarted after configuration
of the JMS Service.

Administration of the JMS Service

Chapter 14 Using the Java Message Service 251

Creating JMS Hosts
You can create additional JMS hosts in the following ways:

• Use the Administration Console. Open the Java Message Service component under the
relevant configuration, then select the JMS Hosts component. For details, see the Sun
Java System Application Server Administration Guide.

• Use the asadmin create-jms-host command. For details, see the Sun Java System
Application Server Reference Manual.

Checking Whether the JMS Provider Is Running
You can use the asadmin jms-ping command to check whether a Sun Java System
Message Queue instance is running. For details, see the Sun Java System Application
Server Reference Manual.

Creating Physical Destinations
Produced messages are delivered for routing and subsequent delivery to consumers using
physical destinations in the JMS provider. A physical destination is identified and
encapsulated by an administered object (a Topic or Queue destination resource) that an
application component uses to specify the destination of messages it is producing and the
source of messages it is consuming.

If a message-driven bean is deployed and the physical destination it listens to doesn’t exist,
the Application Server automatically creates the physical destination. However, it is good
practice to create the physical destination beforehand.

You can create a JMS physical destination in the following ways:

• Use the Administration Console. Open the Resources component, open the JMS
Resources component, then select Physical Destinations. For details, see the Sun Java
System Application Server Administration Guide.

• Use the asadmin create-jmsdest command. This command acts on the default JMS
host. For details, see the Sun Java System Application Server Reference Manual.

To create a destination resource, see “Creating JMS Resources: Destinations and
Connection Factories” on page 252.

Restarting the JMS Client After JMS Configuration

252 Application Server Platform Edition 2005Q1 • Developer’s Guide

Creating JMS Resources: Destinations and
Connection Factories
You can create two kinds of JMS resources in Sun Java System Application Server:

• Connection Factories: administered objects that implement the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interfaces.

• Destination Resources: administered objects that implement the Queue or Topic
interfaces.

In either case, the steps for creating a JMS resource are the same. You can create a JMS
resource in the following ways:

• To create a JMS resource using the Administration Console, open the Resources
component, then open the JMS Resources component. Click Connection Factories to
create a connection factory, or click Destination Resources to create a queue or topic.
For details, see the Sun Java System Application Server Administration Guide.

• To create a JMS resource, use the asadmin create-jms-resource command. For
details, see the Sun Java System Application Server Reference Manual.

Restarting the JMS Client After JMS Configuration
When a JMS client accesses a JMS administered object for the first time, the client JVM
retrieves the JMS service configuration from the Sun Java System Application Server.
Further changes to the configuration are not available to the client JVM until the client is
restarted.

JMS Connection Features
The Sun Java System Message Queue software supports the following JMS connection
features:

• Connection Pooling

• Connection Failover

NOTE All JMS resource properties that used to work with version 7 of the
Application Server are supported for backward compatibility.

JMS Connection Features

Chapter 14 Using the Java Message Service 253

Both these features use the AddressList configuration, which is populated with the hosts
and ports of the JMS hosts defined in the Sun Java System Application Server. The
AddressList is updated whenever a JMS host configuration changes. The AddressList is
inherited by any JMS resource when it is created and by any MDB when it is deployed.

Connection Pooling
The Sun Java System Application Server pools JMS connections automatically.

To dynamically modify connection pool properties using the Administration Console, go to
either the Connection Factories page (see “Creating JMS Resources: Destinations and
Connection Factories” on page 252) or the Connector Connection Pools page (see
“Deploying and Configuring a Stand-Alone Connector Module” on page 201) .

To use the command line, use the asadmin create-connector-connection-pool
command to manage the pool (see “Deploying and Configuring a Stand-Alone Connector
Module” on page 201).

The addresslist-behavior JMS service attribute is set to random by default. This means
that each ManagedConnection (physical connection) created from the
ManagedConnectionFactory selects its primary broker in a random way from the
AddressList.

When a JMS connection pool is created, there is one ManagedConnectionFactory
instance associated with it. If you configure the AddressList as a
ManagedConnectionFactory property, the AddressList configuration in the
ManagedConnectionFactory takes precedence over the one defined in the Sun Java
System Application Server.

Connection Failover
To specify whether the Application Server tries to reconnect to the primary broker if the
connection is lost, set the reconnect-enabled attribute in the JMS service. To specify the
number of retries and the time between retries, set the reconnect-attempts and
reconnect-interval-in-seconds attributes, respectively.

NOTE In the Sun Java System Message Queue software, the AddressList
property is called imqAddressList.

Transactions and Non-Persistent Messages

254 Application Server Platform Edition 2005Q1 • Developer’s Guide

If reconnection is enabled and the primary broker goes down, the Sun Java System
Application Server tries to reconnect to another broker in the AddressList. The
AddressList is updated whenever a JMS host configuration changes. The logic for
scanning is decided by two JMS service attributes, addresslist-behavior and
addresslist-iterations.

You can override these settings using JMS connection factory settings. For details, see the
Sun Java System Application Server Administration Guide.

The Sun Java System Message Queue software transparently transfers the load to another
broker when the failover occurs. JMS semantics are maintained during failover.

Transactions and Non-Persistent Messages
During transaction recovery, non-persistent messages might be lost. If the broker fails
between the transaction manager’s prepare and commit operations, any non-persistent
message in the transaction is lost and cannot be delivered. A message that is not saved to a
persistent store is not available for transaction recovery.

ConnectionFactory Authentication
If your web, EJB, or client module has res-auth set to Container, but you use the
ConnectionFactory.createConnection("user","password") method to get a
connection, the Sun Java System Application Server searches the container for
authentication information before using the supplied user and password. Version 7 of the
Application Server threw an exception in this situation.

Message Queue varhome Directory
Sun Java System Message Queue uses a default directory for storing data such as persistent
messages and its log file. This directory is called varhome. Sun Java System Application
server uses domain_dir/imq as the varhome directory. Thus, for the default Application
Server domain, Message Queue data is stored in the following location:

install_dir/domains/domain1/imq/var/instances/imqbroker

Version 7 of the Application Server stored this data in the following location:

install_dir/imq/var/instances/domain1_server

Delivering SOAP Messages Using the JMS API

Chapter 14 Using the Java Message Service 255

When executing Sun Java System Message Queue scripts such as
install_dir/imq/bin/imqusermgr, use the -varhome option. For example:

imqusermgr -varhome $AS_INSTALL/domains/domain1/imq add -u testuser -p testpassword

Delivering SOAP Messages Using the JMS API
Web service clients use the Simple Object Access Protocol (SOAP) to communicate with
web services. SOAP uses a combination of XML-based data structuring and Hyper Text
Transfer Protocol (HTTP) to define a standardized way of invoking methods in objects
distributed in diverse operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site:

http://xml.apache.org/soap/index.html

You can take advantage of the JMS provider’s reliable messaging when delivering SOAP
messages. You can convert a SOAP message into a JMS message, send the JMS message,
then convert the JMS message back into a SOAP message. The following sections explain
how to do these conversions:

• Sending SOAP Messages Using the JMS API

• Receiving SOAP Messages Using the JMS API

Sending SOAP Messages Using the JMS API
Use the MessageTransformer utility to convert a SOAP message into a JMS message.
Then send the JMS message containing the SOAP payload as if it were a normal JMS
message.

1. Import the library com.sun.messaging.xml.MessageTransformer. This is the
utility whose methods you use to convert SOAP messages to JMS messages and the
reverse.

import com.sun.messaging.xml.MessageTransformer;

2. Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and
publisher.

tcf = new TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
publisher = session.createPublisher(topic);

http://xml.apache.org/soap/index.html

Delivering SOAP Messages Using the JMS API

256 Application Server Platform Edition 2005Q1 • Developer’s Guide

3. Construct a SOAP message using the SOAP with Attachments API for Java (SAAJ).
For more information on constructing a SOAP message, see the Sun Java System
Message Queue Developer’s Guide.

*construct a default soap MessageFactory */
MessageFactory mf = MessageFactory.newInstance();

* Create a SOAP message object.*/
SOAPMessage soapMessage = mf.createMessage();

/** Get SOAP part.*/
SOAPPart soapPart = soapMessage.getSOAPPart();

/* Get SOAP envelope. */
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

/* Get SOAP body.*/
SOAPBody soapBody = soapEnvelope.getBody();

/* Create a name object. with name space */
/* http://www.sun.com/imq. */
Name name = soapEnvelope.createName("HelloWorld", "hw",

"http://www.sun.com/imq");

* Add child element with the above name. */
SOAPElement element = soapBody.addChildElement(name)

/* Add another child element.*/
element.addTextNode("Welcome to Sun Java System Web Services.");

/* Create an atachment with activation API.*/
URL url = new URL ("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler (url);
AttachmentPart ap = soapMessage.createAttachmentPart(dh);

/*set content type/ID. */
ap.setContentType("text/html");
ap.setContentId("cid-001");

/** add the attachment to the SOAP message.*/
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

4. Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage() method.

Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage,
session);

5. Publish the JMS message.

publisher.publish(m);

Delivering SOAP Messages Using the JMS API

Chapter 14 Using the Java Message Service 257

6. Close the JMS connection.

tc.close();

Receiving SOAP Messages Using the JMS API
The JMS message containing the SOAP payload is received as if it were a normal JMS
message. Use the MessageTransformer utility to convert the JMS message back into a
SOAP message.

1. Import the library com.sun.messaging.xml.MessageTransformer. This is the
utility whose methods you use to convert SOAP messages to JMS messages and the
reverse.

import com.sun.messaging.xml.MessageTransformer;

2. Initialize the TopicConnectionFactory, TopicConnection, TopicSession,
TopicSubscriber, and Topic.

messageFactory = MessageFactory.newInstance();
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();

session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
tc.start();

3. Use the OnMessage method to receive the message. Use the
SOAPMessageFromJMSMessage method to convert the JMS message to a SOAP
message.

public void onMessage (Message message) {
SOAPMessage soapMessage =
MessageTransformer.SOAPMessageFromJMSMessage(message,
messageFactory); }

4. Retrieve the content of the SOAP message.

Delivering SOAP Messages Using the JMS API

258 Application Server Platform Edition 2005Q1 • Developer’s Guide

259

Chapter 15

Using the JavaMail API

This chapter describes how to use the JavaMail™ API, which provides a set of abstract
classes defining objects that comprise a mail system.

This chapter contains the following sections:

• Introducing JavaMail

• Creating a JavaMail Session

• JavaMail Session Properties

• Looking Up a JavaMail Session

• Sending Messages Using JavaMail

• Reading Messages Using JavaMail

Introducing JavaMail
The JavaMail API defines classes such as Message, Store, and Transport. The API can
be extended and can be subclassed to provide new protocols and to add functionality when
necessary. In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet
mail protocols and conform to the RFC822 and RFC2045 specifications. The JavaMail API
includes support for the IMAP4, POP3, and SMTP protocols.

The JavaMail architectural components are as follows:

• The abstract layer declares classes, interfaces, and abstract methods intended to
support mail handling functions that all mail systems support.

• The internet implementation layer implements part of the abstract layer using the
RFC822 and MIME internet standards.

Creating a JavaMail Session

260 Application Server Platform Edition 2005Q1 • Developer’s Guide

• JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message data
and to handle commands intended to interact with that data.

For more information, see the Sun Java System Application Server Administration Guide
and the JavaMail specification at:

http://java.sun.com/products/javamail/

Creating a JavaMail Session
You can create a JavaMail session in the following ways:

• In the Administration Console, open the Resources component and select JavaMail
Sessions. For details, see the Sun Java System Application Server Administration
Guide.

• Use the asadmin create-javamail-resource command. For details, see the Sun
Java System Application Server Reference Manual.

JavaMail Session Properties
You can set properties for a JavaMail Session object. Every property name must start with
a mail- prefix. Sun Java System Application Server changes the dash (-) character to a
period (.) in the name of the property and saves the property to the MailConfiguration
and JavaMail Session objects. If the name of the property doesn’t start with mail-, the
property is ignored.

For example, if you want to define the property mail.from in a JavaMail Session object,
first define the property as follows:

• Name - mail-from

• Value - john.doe@sun.com

After you get the JavaMail Session object, you can get the mail.from property to retrieve
the value as follows:

String password = session.getProperty("mail.from");

http://java.sun.com/products/javamail/

Looking Up a JavaMail Session

Chapter 15 Using the JavaMail API 261

Looking Up a JavaMail Session
The standard Java Naming and Directory Interface™ (JNDI) subcontext for JavaMail
sessions is java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace, or in
one of its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file
system’s directory structure, so it is easy to find and nest references. A JavaMail session is
bound to a logical JNDI name. The name identifies a subcontext, mail, of the root context,
and a logical name. To change the JavaMail session, you can change its entry in the JNDI
namespace without having to modify the application.

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information about the JNDI API, see Chapter 13, “Using the Java Naming and
Directory Interface.”

Sending Messages Using JavaMail
To send a message using JavaMail, perform the following tasks:

1. Import the packages that you need:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the JavaMail session, as described in “Looking Up a JavaMail Session” on
page 261:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

3. Override the JavaMail session properties if necessary. For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4. Create a MimeMessage. The msgRecipient, msgSubject, and msgTxt variables in
the following example contain input from the user:

Reading Messages Using JavaMail

262 Application Server Platform Edition 2005Q1 • Developer’s Guide

Message msg = new MimeMessage(session);
msg.setSubject(msgSubject);
msg.setSentDate(new Date());
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse(msgRecipient, false));
msg.setText(msgTxt);

5. Send the message:

Transport.send(msg);

Reading Messages Using JavaMail
To read a message using JavaMail, perform the following tasks:

1. Import the packages that you need:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the JavaMail session, as described in “Looking Up a JavaMail Session” on
page 261:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

3. Override the JavaMail session properties if necessary. For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4. Get a Store object from the Session, then connect to the mail server using the Store
object’s connect() method. You must supply a mail server name, a mail user name,
and a password.

Store store = session.getStore();
store.connect("MailServer", "MailUser", "secret");

5. Get the INBOX folder:

Folder folder = store.getFolder("INBOX");

6. It is efficient to read the Message objects (which represent messages on the server) into
an array:

Message[] messages = folder.getMessages();

263

Chapter 16

Using the Java Management
Extensions (JMX) API

The Sun Java System Application Server uses Java Management Extensions (JMXTM)
technology for monitoring, management and notification purposes. Management and
monitoring of the Application Server is performed by the Application Server Managment
Extensions (AMX), which exposes managed resources for remote management via the JMX
Application Programming Interface (API).

Sun Java System Application Server incorporates the JMX 1.2 Reference Implementation,
that was developed by the Java Community Process as Java Specification Request (JSR) 3,
and the JMX Remote API 1.0 Reference Implementation (JSR 160).

This chapter assumes some familiarity with the JMX technology, but the AMX interfaces
can be used for the most part without understanding JMX.

The JMX specifications and Reference Implementations are available for download here:

http://java.sun.com/products/JavaManagement/download.html

Application Server Management Extensions
(AMX)

This section describes the Sun Java System Application Server Management eXtensions
(AMX). AMX is an API that exposes all of the Application Server configuration and
monitoring MBeans as easy-to-use client-side dynamic proxies implementing the AMX
interfaces.

Full API documentation for the AMX API is provided in the following Application Server
package:

com.sun.appserv.management

http://java.sun.com/products/JavaManagement/download.html

Application Server Management Extensions (AMX)

264 Application Server Platform Edition 2005Q1 • Developer’s Guide

This section contains the following sub-sections:

• About AMX

• AMX MBeans

• Proxies

• Connecting to the Domain Administration Server

• Examining AMX Code Samples

• Running the AMX Samples

About AMX
As seen previously in this guide, Sun Java System Application Server is based around the
concept of administration domains, which consist of one or more managed resources. A
managed resource can be an Application Server instance, a cluster of such instances, or a
manageable entity within a server instance. A managed resource is of a particular type, and
each resource type exposes a set of attributes and administrative operations that change the
resource’s state.

Managed resources are exposed as JMX management beans, or MBeans. While the MBeans
can be accessed via standard JMX APIs (for example, MBeanServerConnection), most
users find the use of the AMX client-side dynamic proxies much more convenient.

All the vital components of the Sun Java System Application Server are visible for
monitoring and management via AMX. You can use third-party tools to perform all
common administrative tasks programmatically, based on the JMX and JMX Remote API
standards.

The AMX API consists of a set of proxy interfaces. MBeans are registered in the JMX
runtime contained in the Domain Administration Server (DAS). AMX provides routines to
obtain proxies for MBeans, starting with a root-level domain MBean.

You can navigate generically through the MBean hierarchy using the
com.sun.appserv.management.base.Container interface. When using AMX, the
interfaces defined are implemented by client-side dynamic proxies, but they also implicitly
define the MBeanInfo that is made available by the MBean or MBeans corresponding to it.
Certain operations defined in the interface might have a different return type or a slightly
different name when accessed through the MBean directly. This results from the fact that
direct access to JMX requires the use of ObjectName, whereas use of the AMX interfaces is
via strongly typed proxies implementing the interface(s).

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 265

AMX MBeans
All AMX MBeans are represented as interfaces in a subpackage of
com.sun.appserv.management and are implemented by dynamic proxies on the
client-side. While you can access AMX MBeans directly through standard JMX APIs,
most users find the use of AMX interface (proxy) classes to be most convenient.

An AMX MBean belongs to an application server domain. There is exactly one domain per
DAS. Thus all MBeans accessible through the DAS belong to a single Application Server
administrative domain. All MBeans in an Application Server administrative domain, and
hence within the DAS, belong to the JMX domain amx. Any MBeans that do not have the
JMX domain amx are not part of AMX, and are neither documented nor supported for use
by clients. All AMX MBeans can be reached navigationally through the DomainRoot.

AMX defines different types of MBean, namely, configuration MBeans, monitoring
MBeans, utility MBeans and J2EE management (JSR 77) MBeans. These MBeans are
logically related in the following ways:

• They all implement the com.sun.appserv.management.base.AMX interface.

• They all have a j2eeType and name property within their ObjectName (see
com.sun.appserv.management.base.XTypes and
com.sun.appserv.management.j2ee.J2EETypes for the available values of the
j2eeType property).

• All MBeans that logically contain other MBeans implement the
com.sun.appserv.management.base.Container interface.

• JSR 77 MBeans that have a corresponding configuration or monitoring peer expose it
via getConfigPeer() or getMonitoringPeer(). However, there are many
configuration and monitoring MBeans that do not correspond to JSR 77 MBeans.

Configuration MBeans
Configuration information for a given Application Server domain is stored in a central
repository that is shared by all instances in that domain. The central repository can only be
written to by the DAS. However, configuration information in the central repository is
made available to administration clients via AMX MBeans.

The configuration MBeans are those that modify the underlying domain.xml or related
files. Collectively, they form a model representing the configuration and deployment
repository and the operations that can be performed on them.

The Group Attribute of configuration MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_CONFIGURATION.

Application Server Management Extensions (AMX)

266 Application Server Platform Edition 2005Q1 • Developer’s Guide

Monitoring MBeans
Monitoring MBeans provide transient monitoring information about all the vital
components of the Application Server.

The Group Attribute of monitoring MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_MONITORING.

Utility MBeans
Utility MBeans provide commonly used services to the Application Server.

The Group Attribute of utility MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_UTILITY.

J2EE Management MBeans
The J2EE management MBeans implement, and in some cases extend, the management
hierarchy as defined by JSR 77, which specifies the management model for the whole J2EE
platform. One of the management APIs implemented in JSR 77 is the JMX API.

The implementation of JSR 77 in AMX offers access to and monitoring of MBeans via
J2EE management MBeans, by using the getMonitoringPeer() and getConfigPeer()
methods.

The J2EE management MBeans can be thought of as the central "hub" from which other
MBeans are obtained.

The Group Attribute of J2EE management MBeans, obtained from getGroup(), has a
value of com.sun.appserv.management.base.AMX.GROUP_JSR77.

Other MBeans
MBeans that do not fit into one of the above four categories have the value
com.sun.appserv.management.base.AMX.GROUP_OTHER. One such example is
com.sun.appserv.management.deploy.DeploymentMgr.

MBean Notifications
All AMX MBeans that emit Notifications place a java.util.Map within the userData
field of a standard Notification, which can be obtained via
Notification.getUserData(). Within the map are zero or more items, which vary
according to the Notification type. Each Notification type, and the data available within the
Notification, is defined in its respective MBean or in an appropriate place.

Note that certain standard Notifications, such as
javax.management.AttributeChangeNotification do not and cannot follow this
behavior.

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 267

Access to MBean Attributes.
An AMX MBean Attribute is accessible in three ways:

• Dotted names via MonitoringDottedNames and ConfigDottedNames

• Attributes on MBeans via getAttribute(s) and setAttributes(s) (from the
standard JMX API)

• Getters/setters within the MBean’s interface class, for example, getPort(),
setPort(), and so on.

All dotted names that are accessible via the command line interface are available as
Attributes within a single MBean. This includes properties, which are Attributes beginning
with the prefix "property.", for examle, server.property.myproperty.

Proxies
Proxies are an important part of the AMX API, and enhance ease-of-use for the
programmer.

While JMX MBeans can be used directly, client-side proxies are offered to facilitate
navigation through the MBean hierarchy. In some cases, proxies also function as support or
helper objects to simplify the use of the MBeans.

See the API documentation for the com.sun.appserv.management package and its
sub-packages for more information about using proxies. The API documentation explains
the use of AMX with proxies. If you are using JMX directly (for example, via
MBeanServerConnection), the return type, argument types and method names might vary
as needed for the difference between a strongly-typed proxy interface and generic
MBeanServerConnection/ObjectName interface.

Connecting to the Domain Administration Server
As stated in “Configuration MBeans” on page 265, the AMX API allows client applications
to connect to Application Server instances via the DAS. All AMX connections are
established to the DAS only: AMX does not support direct connections to individual server
instances. This makes it simple to interact with all servers, clusters, and so on, with a single
connection.

NOTE Certain attributes that may be of a specific type, such as int, are declared
as java.lang.String. This is because the value of the attribute may be a
template of a form such as ${HTTP_LISTENER_PORT}.

Application Server Management Extensions (AMX)

268 Application Server Platform Edition 2005Q1 • Developer’s Guide

Sample code for connecting to the DAS is shown in Code Example 16-1.

Examining AMX Code Samples
The following example uses of AMX are discussed in this document:

• Starting an Application Server

• Deploying an Archive

• Displaying the AMX MBean Hierarchy

• Setting Monitoring States

• Accessing AMX MBeans

• Accessing and Displaying the Attributes of an AMX MBean

• Listing AMX MBean Properties

• Querying

• Monitoring Attribute Changes

• Undeploying Modules

• Stopping an Application Server

Connecting to the DAS
The connection to the DAS is shown in Code Example 16-1.

Code Example 16-1 Connecting to the DAS

[...]

public static AppserverConnectionSource

connect(

final String host,

final int port,

final String user,

final String password,

final TLSParams tlsParams)

throws IOException

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 269

{

final String info = "host=" + host + ", port=" + port +

", user=" + user + ", password=" + password +

", tls=" + (tlsParams != null);

SampleUtil.println("Connecting...:" + info);

final AppserverConnectionSource conn=

new AppserverConnectionSource(

AppserverConnectionSource.PROTOCOL_RMI,

host, port, user, password, tlsParams, null);

conn.getJMXConnector(false);

SampleUtil.println("Connected: " + info);

return(conn);

}

[...]

A connection to the DAS is obtained via an instance of the
com.sun.appserv.management.client.AppserverConnectionSource class. For the
connection to be established, you must know the name of the host and port number on
which the DAS is running, and have the correct user name, password and TLS parameters.

Once the connection to the DAS is established, DomainRoot is obtained as follows:

DomainRoot domainRoot = appserverConnectionSource.getDomainRoot();

This DomainRoot instance is a client-side dynamic proxy to the MBean
amx:j2eeType=X-DomainRoot,name=amx.

See the API documentation for
com.sun.appserv.management.client.AppserverConnectionSource for further
details about connecting to the DAS using the AppserverConnectionSource class.

However, f you prefer to work with standard JMX, instead of getting DomainRoot, you can
get the MBeanServerConnection or JMXConnector, as shown:

Application Server Management Extensions (AMX)

270 Application Server Platform Edition 2005Q1 • Developer’s Guide

MBeanServerConnection conn =

appserverConnectionSource.getMBeanServerConnection(false);

JMXConnector jmxConn =

appserverConnectionSource.getJMXConnector(false);

Starting an Application Server
The startServer() method demonstrates how to start an Application Server.

Code Example 16-2 Starting an Application Server

[...]

startServer(final String serverName)

{

final J2EEServer server= getJ2EEServer(serverName);

server.start();

}

[...]

This method retrieves and starts an application server instance named server. The server
is an instance of the com.sun.appserv.management.j2see.J2EEServer interface, and
is obtained by calling another method, getJ2EEServer(), shown in Code Example 16-3
below.

Code Example 16-3 Obtaining a Named J2EE server instance

[...]

getJ2EEServer(final String serverName)

{

final J2EEDomain j2eeDomain = getDomainRoot().getJ2EEDomain();

final Map servers = j2eeDomain.getServerMap();

final J2EEServer server = (J2EEServer)servers.get(serverName);

if (server == null)

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 271

{

throw new IllegalArgumentException(serverName);

}

return(server);

}

[...]

To obtain a J2EE server instance, the getJ2EEServer() method first of all obtains an
instance of the J2EEDomain interface by calling the
com.sun.appserv.management.base.AMX.getDomainRoot() and
com.sun.appserv.management.DomainRoot.getJ2EEDomain() methods. The two
methods called establish the following:

• AMX.getDomainRoot() obtains the Application Server domain to which j2eeDomain
belongs.

• DomainRoot.getJ2EEDomain() obtains the J2EE domain for j2eeDomain.

The J2EEServer instance is then started by a call to the start() method. The
com.sun.appserv.management.j2ee.StateManageable.start() method can be used
to start any state manageable object.

Deploying an Archive
The uploadArchive() and deploy() methods demonstrate how to upload and deploy a
J2EE archive file.

Code Example 16-4 Uploading an archive

[...]

uploadArchive (final File archive) throws IOException

{

final FileInputStream input = new FileInputStream(archive);

final long length = input.available();

final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();

final Object uploadID = mgr.initiateFileUpload(length);

try

{

Application Server Management Extensions (AMX)

272 Application Server Platform Edition 2005Q1 • Developer’s Guide

[...]

}

finally

{

input.close();

}

return(uploadID);

}

[...]

The uploadArchive() method creates a standard Java FileInputStream instance called
input, to upload the archive archive. It then obtains the AMX deployment manager
running in the application server domain, by calling the
DomainRoot.getDeploymentMgr() method.

A call to com.sun.appserv.management.deploy.initiateFileUpload starts the
upload of archive. The initiateFileUpload() method automatically issues an upload
ID, that uploadArchive() returns when it is called by deploy().

Code Example 16-5 Deploying an archive

[...]

deploy (final File archive) throws IOException

{

final Object uploadID = uploadArchive(archive);

final DeploymentMgr mgr= getDomainRoot().getDeploymentMgr();

final Object deployID = mgr.initDeploy();

final DeployNotificationListener myListener =

new DeployNotificationListener(deployID);

mgr.addNotificationListener(myListener, null, null);

try

{

final Map options = new HashMap();

options.put(DeploymentMgr.DEPLOY_OPTION_VERIFY_KEY,

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 273

Boolean.TRUE.toString());

options.put(DeploymentMgr.DEPLOY_OPTION_DESCRIPTION_KEY,

"description");

mgr.startDeploy(deployID, uploadID, null, null);

while (! myListener.isCompleted())

{

try

{

println("deploy: waiting for deploy of " + archive);

Thread.sleep(1000);

}

catch(InterruptedException e)

{

}

}

final DeploymentStatus status = myListener.getDeploymentStatus();

println("Deployment result: " + getStageStatusString(

status.getStageStatus()));

if (status.getStageThrowable() != null)

{

status.getStageThrowable().printStackTrace();

}

}

finally

{

try

{

mgr.removeNotificationListener(myListener);

}

catch(Exception e)

Application Server Management Extensions (AMX)

274 Application Server Platform Edition 2005Q1 • Developer’s Guide

{

}

}

}

[...]

The deploy() method calls uploadArchive to get the upload ID for archive. It then
idenitifes the deployment manager by calling DomainRoot.getDeploymentMgr(). A call
to DeploymentMgr.initDeploy() initializes the deployment and obtains a deployment
ID, which is used to track the progress of the deployment.

A JMX notification listener, myListener, is created and activated to listen for notifications
regarding the deployment of deployID.

Deployment is started by calling the DeploymentMgr.startDeploy() method and
providing it with the deployID and uploadID.

While the deployment is continuing, myListener listens for the completion notification
and DeploymentStatus keeps you informed of the status of the deployment by regularly
calling its getStageStatus() method. Once the deployment is complete, the listener is
closed down.

Displaying the AMX MBean Hierarchy
The displayAMX() method demonstrates how to display the AMX MBean hierarchy.

Code Example 16-6 Displaying the AMX MBean Hierarchy

[...]

displayAMX(

final AMX amx,

final int indentCount)

{

final String indent = getIndent(indentCount);

final String j2eeType = amx.getJ2EEType();

CAUTION Some of the behavior of the com.sun.appserv.management.deploy
API is unpredictable, and it should be used with caution.

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 275

final String name = amx.getName();

if (name.equals(AMX.NO_NAME))

{

println(indent + j2eeType);

}

else

{

println(indent + j2eeType + "=" + name);

}

}

private void

displayHierarchy(

final Collection amxSet,

final int indentCount)

{

final Iteratoriter= amxSet.iterator();

while (iter.hasNext())

{

final AMX amx = (AMX)iter.next();

displayHierarchy(amx, indentCount);

}

}

public void

displayHierarchy(

final AMX amx,

final intindentCount)

{

displayAMX(amx, indentCount);

if (amx instanceof Container)

{

Application Server Management Extensions (AMX)

276 Application Server Platform Edition 2005Q1 • Developer’s Guide

final Map m = ((Container)amx).getMultiContaineeMap(null);

final Set deferred = new HashSet();

final Iterator mapsIter = m.values().iterator();

while (mapsIter.hasNext())

{

final Map instancesMap = (Map)mapsIter.next();

final AMX first = (AMX)instancesMap.values().iterator().next();

if (first instanceof Container)

{

deferred.add(instancesMap);

}

else

{

displayHierarchy(instancesMap.values(), indentCount + 2);

}

}

// display deferred items

final Iterator iter = deferred.iterator();

while (iter.hasNext())

{

final Map instancesMap = (Map)iter.next();

displayHierarchy(instancesMap.values(), indentCount + 2);

}

}

}

public void displayHierarchy()

{

displayHierarchy(getDomainRoot(), 0);

}

public void

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 277

displayHierarchy(final String j2eeType)

{

final Set items = getQueryMgr().queryJ2EETypeSet(j2eeType);

if (items.size() == 0)

{

println("No {@link AMX} of j2eeType "

+ SampleUtil.quote(j2eeType) + " found");

}

else

{

displayHierarchy(items, 0);

}

}

[...]

The displayAMX() method obtains the J2EE type and the name of an AMX MBean by
calling AMX.getJ2EEType and AMX.getName respectively.

The displayHierarchy() method defines a standard Java Collection instance, amxSet,
which collects instances of AMX MBeans.

To display the hierarchy of MBeans within a particular MBean in the collection,
displayHierarchy() checks whether the MBean is an instance of Container. If so, it
creates a set of the MBeans it contains by calling the
com.sun.appserv.management.base.Container.getMultiContaineeMap() method.

The MBean hierarchy for a particular J2EE type is displayed by calling the
com.sun.appserv.management.base.QueryMgr.queryJ2EETypeSet(), and passing
the result to displayHierarchy().

To display the entire AMX MBean hierarchy in a domain, displayHierarchy() calls
getDomainRoot() to obtain the root AMX MBean in the domain.

Setting Monitoring States
The setMonitoring() method demonstrates how to set monitoring states.

Code Example 16-7 Setting Monitoring States

Application Server Management Extensions (AMX)

278 Application Server Platform Edition 2005Q1 • Developer’s Guide

[...]

private static final Set LEGAL_MON =

Collections.unmodifiableSet(SampleUtil.newSet(new String[]

{

ModuleMonitoringLevelValues.HIGH,

ModuleMonitoringLevelValues.LOW,

ModuleMonitoringLevelValues.OFF,

}));

public void setMonitoring(

final String configName,

final String state)

{

if (! LEGAL_MON.contains(state))

{

throw new IllegalArgumentException(state);

}

final ConfigConfig config =

(ConfigConfig)getDomainConfig().

getConfigConfigMap().get(configName);

final ModuleMonitoringLevelsConfig mon =

config.getMonitoringServiceConfig().

getModuleMonitoringLevelsConfig();

mon.setConnectorConnectionPool(state);

mon.setThreadPool(state);

mon.setHTTPService(state);

mon.setJDBCConnectionPool(state);

mon.setORB(state);

mon.setTransactionService(state);

mon.setWebContainer(state);

mon.setEJBContainer(state);

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 279

}

[...]

The AMX API defines three levels of monitoring in
com.sun.appserv.management.config.ModuleMonitoringLevelValues, namely,
HIGH, LOW, and OFF.

In this example, the configuration element being monitored is named configName. The
com.sun.appserv.management.config.ConfigConfig interface is used to configure
the config element for configName in the domain.xml file.

An instance of
com.sun.appserv.management.config.ModuleMonitoringLevelsConfig is created
to configure the module-monitoring-levels element for configName in the
domain.xml file.

The ModuleMonitoringLevelsConfig instance created then calls each of its set methods
to change their states to state.

The above is performed by running the set-monitoring command when you run
SimpleMain, stating the name of the configuration element to be monitored and the
monitoring state to one of HIGH, LOW or OFF.

Accessing AMX MBeans
The handleList() method demonstrates how to access many (but not all) configuration
elements.

Code Example 16-8 Accessing AMX MBeans

[...]

handleList()

{

final DomainConfig dcp = getDomainConfig();

println("\n--- Top-level --- \n");

displayMap("ConfigConfig", dcp.getConfigConfigMap());

displayMap("ServerConfig", dcp.getServerConfigMap());

displayMap("StandaloneServerConfig",

dcp.getStandaloneServerConfigMap());

displayMap("ClusteredServerConfig",

Application Server Management Extensions (AMX)

280 Application Server Platform Edition 2005Q1 • Developer’s Guide

dcp.getClusteredServerConfigMap());

displayMap("ClusterConfig", dcp.getClusterConfigMap());

println("\n--- DeployedItems --- \n");

displayMap("J2EEApplicationConfig",

dcp.getJ2EEApplicationConfigMap());

displayMap("EJBModuleConfig",

dcp.getEJBModuleConfigMap());

displayMap("WebModuleConfig",

dcp.getWebModuleConfigMap());

displayMap("RARModuleConfig",

dcp.getRARModuleConfigMap());

displayMap("AppClientModuleConfig",

dcp.getAppClientModuleConfigMap());

displayMap("LifecycleModuleConfig",

dcp.getLifecycleModuleConfigMap());

println("\n--- Resources --- \n");

displayMap("CustomResourceConfig",

dcp.getCustomResourceConfigMap());

displayMap("PersistenceManagerFactoryResourceConfig",

dcp.getPersistenceManagerFactoryResourceConfigMap());

displayMap("JNDIResourceConfig",

dcp.getJNDIResourceConfigMap());

displayMap("JMSResourceConfig",

dcp.getJMSResourceConfigMap());

displayMap("JDBCResourceConfig",

dcp.getJDBCResourceConfigMap());

displayMap("ConnectorResourceConfig",

dcp.getConnectorResourceConfigMap());

displayMap("JDBCConnectionPoolConfig",

dcp.getJDBCConnectionPoolConfigMap());

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 281

displayMap("PersistenceManagerFactoryResourceConfig",

dcp.getPersistenceManagerFactoryResourceConfigMap());

displayMap("ConnectorConnectionPoolConfig",

dcp.getConnectorConnectionPoolConfigMap());

displayMap("AdminObjectResourceConfig",

dcp.getAdminObjectResourceConfigMap());

displayMap("ResourceAdapterConfig",

dcp.getResourceAdapterConfigMap());

displayMap("MailResourceConfig",

dcp.getMailResourceConfigMap());

final ConfigConfig config =

(ConfigConfig)dcp.getConfigConfigMap().get("server-config");

println("\n--- HTTPService --- \n");

final HTTPServiceConfig httpService = config.getHTTPServiceConfig();

displayMap("HTTPListeners",

httpService.getHTTPListenerConfigMap());

displayMap("VirtualServers",

httpService.getVirtualServerConfigMap());

}

[...]

The handleList() method makes use of the displayMap() method, which simply prints
out the key value pairs.

The handleList() method identifies the configuration for a domain by calling the
DomainRoot.getDomainConfig() method. This DomainConfig instance then calls each
of its getXXXMap() methods in turn, to obtain a Map for each type of AMX MBean. The
Map returned by each getter is displayed by displayMap().

Similarly, the AMX MBeans representing the http-service element are displayed as
Maps by calling the getXXXMap() methods of the
com.sun.appserv.management.config.HTTPServiceConfig interface, and passing
them to displayMap().

Application Server Management Extensions (AMX)

282 Application Server Platform Edition 2005Q1 • Developer’s Guide

Accessing and Displaying the Attributes of an AMX MBean
The displayAllAttributes() method demonstrates how to access and display the
attributes of an AMX MBean.

Code Example 16-9 Accessing and Displaying the Attributes of an AMX MBean

[...]

displayAllAttributes(final AMX item)

{

println("\n--- Attributes for " + item.getJ2EEType() +

"=" + item.getName() + " ---");

final Extra extra = Util.getExtra(item);

final Map attrs= extra.getAllAttributes();

final Iterator iter = attrs.keySet().iterator();

while (iter.hasNext())

{

final String name = (String)iter.next();

final Object value = attrs.get(name);

println(name + "=" + toString(value));

}

}

public void

displayAllAttributes(final String j2eeType)

{

final Set items = queryForJ2EEType(j2eeType);

if (items.size() == 0)

{

println("No {@link AMX} of j2eeType "

+ SampleUtil.quote(j2eeType) + " found");

}

else

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 283

{

final Iterator iter= items.iterator();

while (iter.hasNext())

{

final AMX amx = (AMX)iter.next();

displayAllAttributes(amx);

println("");

}

}

}

[...]

The displayAllAttributes() method calls the AMX.getName() and
AMX.getJ2EEType() methods for an AMX MBean and prints the results onscreen. It then
gets all the attributes for that MBean by calling
com.sun.appserv.management.base.Extra.getAllAttributes() on the Extra
instance returned by com.sun.appserv.management.base.Util.getExtra(). This is
repeated for every MBean.

The attributes of AMX MBeans of a certain J2EE type can be displayed by specifiying the
J2EE type when the command is run. In this case, displayAllAttributes() calls
queryForJ2EEType(). The queryForJ2EEType() method calls the
com.sun.appserv.management.base.QueryManager.queryPropSet() method on the
specified J2EE type to identify all elements of that type in the domain.

Listing AMX MBean Properties
The displayAllProperties() demonstrates how to list AMX MBean properties.

Code Example 16-10 Listing AMX MBean Properties

[...]

getProperties(final PropertiesAccess pa)

{

final HashMap m = new HashMap();

final String[] names = pa.getPropertyNames();

for(int i = 0; i < names.length; ++i)

Application Server Management Extensions (AMX)

284 Application Server Platform Edition 2005Q1 • Developer’s Guide

{

m.put(names[i], pa.getPropertyValue(names[i]));

}

return(m);

}

public void

displayAllProperties()

{

final Iterator iter= getQueryMgr().queryAllSet().iterator();

while (iter.hasNext())

{

final AMX amx = (AMX)iter.next();

if (amx instanceof PropertiesAccess)

{

final PropertiesAccess pa = (PropertiesAccess)amx;

final Mapprops= getProperties(pa);

if (props.keySet().size() != 0)

{

println("\nProperties for:

" + Util.getObjectName(AMX)pa));

println(SampleUtil.mapToString(getProperties(pa), "\n"));

}

}

}

}

[...]

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 285

The displayAllProperties() method uses another Samples method,
getProperties(). This method creates an instance of the
com.sun.appserv.management.config.PropertiesAccess interface, and calls its
getPropertyNames() method to obtain the names of all the properties for a given AMX
MBean. For each property name obtained, its corresponding value is obtained by calling
PropertiesAccess.getPropertyValue().

The displayAllProperties() method calls the
com.sun.appserv.management.base.QueryMgr.queryAllSet() method to obtain a
set of all the AMX MBeans present in the domain. All AMX MBeans that have properties
obligatorily extend the PropertiesAccess interface. Any MBean found to extend
PropertiesAccess is passed to the getProperties() method, and the list of property
values returned is printed onscreen.

Querying
The demoQuery() method demonstrates how to issue queries.

The demoQuery() method uses other methods that are defined by Samples, namely
displayWild(), and displayJ2EEType(). The displayWild() method is shown in
Code Example 16-11 below.

Code Example 16-11 Querying and displaying wild cards

[...]

queryWild(

final String propertyName,

final String propertyValue)

{

final String[] propNames = new String[] { propertyName };

final String[] propValues = new String[]{ propertyValue };

final Set amxs = getQueryMgr().queryWildSet(propNames, propValues);

return(amxs);

}

public Set

displayWild(

final String propertyName,

final String propertyValue)

Application Server Management Extensions (AMX)

286 Application Server Platform Edition 2005Q1 • Developer’s Guide

{

final Set items = queryWild(propertyName, propertyValue);

println("\n--- Queried for " + propertyName + "="

+ propertyValue + " ---");

final Iteratoriter= items.iterator();

while (iter.hasNext())

{

final AMXitem= (AMX)iter.next();

println("j2eeType=" + item.getJ2EEType() + ",

" + "name=" + item.getName());

}

}

[...]

The displayWild() method calls queryWild(), to obtain all the AMX MBeans that have
object names matching propertyName and propertyValue. To do so, queryWild() calls
the com.sun.appserv.management.base.QueryMgr.queryWildSet() method. The
queryWildSet() method returns the list of AMX MBeans with object names matching the
wild card strings.

For each MBean returned, the displayWild() calls AMX.getJ2EEType() to identify its
J2EE type, and prints the result onscreen.

In code that is not shown here, the displayJ2EEType() method calls the
queryForJ2EEType() that was seen in “Accessing and Displaying the Attributes of an
AMX MBean”, to identifiy MBeans of a certain J2EE type, and prints their object names
onscreen.

Code Example 16-12 Querying

[...]

demoQuery()

{

displayWild(AMX.J2EE_TYPE_KEY, "X-*ResourceConfig");

displayWild(AMX.J2EE_TYPE_KEY, "X-*ServerConfig");

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 287

displayJ2EEType(XTypes.SSL_CONFIG);

displayJ2EEType(XTypes.CLUSTER_CONFIG);

}

[...]

In the demoQuery() method, the displayWild() and displayJ2EEType() methods are
called to find the following MBeans:

• J2EE_TYPE_KEY MBeans called ResourceConfig

• J2EE_TYPE_KEY MBeans called ServerConfig

• All SSL_CONFIG MBeans

• All CLUSTER_CONFIG MBeans

Monitoring Attribute Changes
The demoJMXMonitor() demonstrates how to monitor attribute changes.

Code Example 16-13 Monitoring Attribute Changes

[...]

demoJMXMonitor() throws InstanceNotFoundException, IOException

{

final JMXMonitorMgr mgr = getDomainRoot().getJMXMonitorMgr();

final String attrName = "SampleString";

final String attrValue = "hello";

final SampleListener sampleListener = new SampleListener();

final MBeanServerConnection conn =

Util.getExtra(mgr).getConnectionSource()

.getExistingMBeanServerConnection();

conn.addNotificationListener(

getMBeanServerDelegateObjectName(),

sampleListener, null, null);

final Sample sample = (Sample)getDomainRoot()

.getContainee(XTypes.SAMPLE);

Application Server Management Extensions (AMX)

288 Application Server Platform Edition 2005Q1 • Developer’s Guide

final String monitorName = "SampleStringMonitor";

AMXStringMonitor mon = null;

try

{

try { mgr.remove(monitorName); }

catch(Exception e) {}

mon = mgr.createStringMonitor(monitorName);

waitMBeanServerNotification(sampleListener,

MBeanServerNotification.REGISTRATION_NOTIFICATION,

Util.getObjectName(mon));

sample.addAttribute(attrName, attrValue);

mon.addNotificationListener(sampleListener, null, null);

mon.setObservedAttribute(attrName);

mon.setStringToCompare(attrValue);

mon.setNotifyDiffer(true);

mon.setNotifyMatch(true);

mon.addObservedObject(Util.getObjectName(sample));

final StdAttributesAccess attrs = Util.getExtra(sample);

attrs.setAttribute(new Attribute(attrName, "goodbye"));

attrs.setAttribute(new Attribute(attrName, attrValue));

sample.removeAttribute(attrName);

final Map notifs = sampleListener.getNotifsReceived();

waitNumNotifs(notifs,

AttributeChangeNotification.ATTRIBUTE_CHANGE, 4);

}

catch(Throwable t)

{

t.printStackTrace();

}

finally

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 289

{

try

{

mon.removeNotificationListener(sampleListener);

if (mon != null)

{

mgr.remove(mon.getName());

waitMBeanServerNotification(sampleListener,

MBeanServerNotification

.UNREGISTRATION_NOTIFICATION,

Util.getObjectName(mon));

}

conn.removeNotificationListener(

getMBeanServerDelegateObjectName(),

sampleListener);

}

catch(ListenerNotFoundException e)

{

}

}

}

[...]

The demoJmx() method demonstrates the implemetation of a JMX monitor MBean, that
listens for changes in a certain attribute. This is achieved in the following stages:

1. A com.sun.appserv.management.monitor.JMXMonitorMgr instance is obtained
using the DomainRoot.getJMXMonitorMgr() method.

2. A SampleListener JMX notification listener that is provided in the sample package is
instantiated.

3. A connection to the domain’s MBean server is obtained by calling
com.sun.appserv.management.client.ConnectionSource.getExistingMBeanS
erverConnection() on the JMXMonitorMgr instance’s Extra information.

Application Server Management Extensions (AMX)

290 Application Server Platform Edition 2005Q1 • Developer’s Guide

4. The SampleListener notification listener is added to the MBean server connection,
with an MBean server delegate obtained from getMBeanServerDelegateObject().
The notification listener is now in place on the MBean server connection.

5. An AMX MBean, sample, of the type SAMPLE is obtained by calling the
com.sun.appserv.management.base.Container.getContainee() method on an
instance of the Sample interface. The Sample interface defines a basic AMX MBean.

6. An AMXStringMonitor, an AMX-compatible JMX StringMonitorMBean, is
instantiated by calling createStringMonitor on the JMXMonitorMgr instance
created above. The AMXStringMonitor instance then calls
waitMBeanServerNotification(). The waitMBeanServerNotification()
method waits for MBean server notifications of the type
REGISTRATION_NOTIFICATION from the SampleListener instance that is listening
on the MBean server connection.

7. An attribute of name attrName and value attrValue is added to the AMX MBean
sample.

8. Various methods of the AMXStringMonitor instance are called, to add a listener, and
to set the value to be observed, the object to be observed, and so on.

9. Access to the sample MBean’s attributes is obtained by passing the sample MBean’s
Extra information to an instance of
com.sun.appserv.management.base.StdAttributesAccess. The
StdAttributesAccess.setAttribute() method is then called to change the values
of these attributes.

10. The AMXStringMonitor then calls the sample notification listener’s
getNotifsReceived() method to retrieve the notifications that resulted from the calls
to setAttribute() above. The waitNumNotifs() method waits until four
ATTRIBUTE_CHANGE notifications have been received before exiting.

11. The notification listener is then removed and the monitor is closed down.

Undeploying Modules
The undeploy() method demonstrates how to undeploy a module.

Code Example 16-14 Undeploying Modules

[...]

undeploy (final String moduleName) throws IOException

{

final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();

Application Server Management Extensions (AMX)

Chapter 16 Using the Java Management Extensions (JMX) API 291

final Map statusData = mgr.undeploy(moduleName, null);

final DeploymentStatus status =

DeploymentSupport.mapToDeploymentStatus(statusData);

println("Undeployment result: "

+ getStageStatusString(status.getStageStatus()));

if (status.getStageThrowable() != null)

{

status.getStageThrowable().printStackTrace();

}

}

[...]

The undeploy() method obtains the DeploymentMgr instance for the domain in the same
way that deploy() does so. It then calls the DeploymentMgr.undeploy() method for a
named module.

Stopping an Application Server
The stopServer() method demonstrates how to stop an application server. The
stopServer() method simply calls the getJ2EEServer() method on a given server
instance, and then calls J2EEServer.stop().

Running the AMX Samples
To set up your development environment for using AMX, you must ensure that your Java
classpath contains the following Java archive (JAR) files:

• appserv-admin.jar - The JAR file containing the AMX interfaces needed for your
client. This file is found in install_dir/lib/. No other classes from this JAR file should
be used by your program.

• jmxri.jar - The runtime libraries for the JMX Reference Implementation. If you are
using JDK 1.5, these are already in the JDK.

• jmxremote.jar - The runtime libraries for the JMX Remote API. If you are using
JDK 1.5, these are already in the JDK.

Application Server Management Extensions (AMX)

292 Application Server Platform Edition 2005Q1 • Developer’s Guide

• j2ee.jar - The runtime libraries for the J2EE Platform. This file is found in
install_dir/lib/. This JAR file is needed only if you intend to use any of the J2EE
Management Statistic classes (javax.management.j2ee.*).

Start your Java application in a manner similar to this:

export JAR_PATH=install_dir/lib/

export CP="$JAR_PATH/j2ee.jar:$JAR_PATH/appserv-admin.jar"

java -cp $CP com.mycompany.MyClientMain

293

Appendix A

Deployment Descriptor Files

This chapter describes deployment descriptor files specific to the Sun Java System
Application Server in the following sections:

• Sun Java System Application Server Descriptors

• The sun-application.xml File

• The sun-web.xml File

• The sun-ejb-jar.xml File

• The sun-cmp-mappings.xml File

• The sun-application-client.xml file

• The sun-acc.xml File

• Alphabetical Listing of All Elements

Sun Java System Application Server Descriptors
Sun Java System Application Server uses deployment descriptors in addition to the J2EE
standard descriptors for configuring features specific to the Sun Java System Application
Server. The sun-application.xml, sun-web.xml, and sun-cmp-mappings.xml files
are optional; all the others are required.

Each deployment descriptor (or XML) file has a corresponding DTD file, which defines the
elements, data, and attributes that the deployment descriptor file can contain. For example,
the sun-application_1_4-0.dtd file defines the structure of the
sun-application.xml file. The DTD files for the Sun Java System Application Server
deployment descriptors are located in the install_dir/lib/dtds directory.

Sun Java System Application Server Descriptors

294 Application Server Platform Edition 2005Q1 • Developer’s Guide

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 80.

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

The following table lists the Sun Java System Application Server deployment descriptors
and their DTD files.

NOTE Do not edit the DTD files; their contents change only with new versions of
Sun Java System Application Server.

Table A-1 Sun Java System Application Server Descriptors
Deployment Descriptor DTD File Description

sun-application.xml sun-application_1_4-0.dtd Configures an entire J2EE
application (EAR file).

sun-web.xml sun-web-app_2_4-1.dtd Configures a web application
(WAR file).

sun-ejb-jar.xml sun-ejb-jar_2_1-1.dtd Configures an enterprise bean
(EJB JAR file).

sun-cmp-mappings.xml sun-cmp-mapping_1_2.dtd Configures container-managed
persistence for an enterprise bean.

sun-application-client.xml sun-application-client_1_4-1.dtd Configures an Application Client
Container (ACC) client (JAR file).

sun-acc.xml sun-application-client-container_1_0.dtd Configures the Application Client
Container.

NOTE The Sun Java System Application Server deployment descriptors must be
readable and writable by the file owners.

In each deployment descriptor file, subelements must be defined in the
order in which they are listed under each Subelements heading, unless
otherwise noted.

http://www.w3.org/TR/REC-xml

The sun-application.xml File

Appendix A Deployment Descriptor Files 295

The sun-application.xml File
The element hierarchy in the sun-application.xml file is as follows:

sun-application
. web
. . web-uri
. . context-root
. pass-by-reference
. unique-id
. security-role-mapping
. . role-name
. . principal-name
. . group-name
. realm

Here is a sample sun-application.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-application PUBLIC '-//Sun Microsystems, Inc.//DTD
Application Server 8.1 J2EE Application 1.4//EN'
'http://www.sun.com/software/appserver/dtds/sun-application_1_4-0.dtd'>

<sun-application>
<unique-id>67488732739338240</unique-id>

</sun-application>

The sun-web.xml File
The element hierarchy in the sun-web.xml file is as follows:

sun-web-app
. context-root
. security-role-mapping
. . role-name
. . principal-name
. . group-name
. servlet
. . servlet-name
. . principal-name
. . webservice-endpoint
. . . port-component-name
. . . endpoint-address-uri
. . . login-config

The sun-web.xml File

296 Application Server Platform Edition 2005Q1 • Developer’s Guide

. . . . auth-method

. . . message-security-binding

. . . . message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . . transport-guarantee

. . . service-qname

. . . tie-class

. . . servlet-impl-class

. idempotent-url-pattern

. session-config

. . session-manager

. . . manager-properties

. . . . property (with attributes)

. description

. . . store-properties

. . . . property (with attributes)

. description

. . session-properties

. . . property (with attributes)

. . . . description

. . cookie-properties

. . . property (with attributes)

. . . . description

. ejb-ref

. . ejb-ref-name

. . jndi-name

. resource-ref

. . res-ref-name

. . jndi-name

. . default-resource-principal

. . . name

. . . password

. resource-env-ref

. . resource-env-ref-name

. . jndi-name

. service-ref

. . service-ref-name

. . port-info

The sun-web.xml File

Appendix A Deployment Descriptor Files 297

. . . service-endpoint-interface

. . . wsdl-port

. . . . namespaceURI

. . . . localpart

. . . stub-property

. . . . name

. . . . value

. . . call-property

. . . . name

. . . . value

. . . message-security-binding

. . . . message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . call-property

. . . name

. . . value

. . wsdl-override

. . service-impl-class

. . service-qname

. . . namespaceURI

. . . localpart

. cache

. . cache-helper

. . . property (with attributes)

. . . . description

. . default-helper

. . . property (with attributes)

. . . . description

. . property (with attributes)

. . . description

. . cache-mapping

. . . servlet-name

. . . url-pattern

. . . cache-helper-ref

. . . dispatcher

. . . timeout

. . . refresh-field

. . . http-method

The sun-web.xml File

298 Application Server Platform Edition 2005Q1 • Developer’s Guide

. . . key-field

. . . constraint-field

. . . . constraint-field-value

. class-loader

. . property (with attributes)

. . . description

. jsp-config

. locale-charset-info

. . locale-charset-map

. . parameter-encoding

. property (with attributes)

. . description

. parameter-encoding

. message-destination

. . message-destination-name

. . jndi-name

. webservice-description

. . webservice-description-name

. . wsdl-publish-location

Here is a sample sun-web.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Application
Server 8.1 Servlet 2.4//EN'
'http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd'>

<sun-web-app>
<session-config>

<session-manager/>
</session-config>
<resource-ref>

<res-ref-name>mail/Session</res-ref-name>
<jndi-name>mail/Session</jndi-name>

</resource-ref>
<jsp-config/>

</sun-web-app>

The sun-ejb-jar.xml File

Appendix A Deployment Descriptor Files 299

The sun-ejb-jar.xml File
The element hierarchy in the sun-ejb-jar.xml file is as follows:

sun-ejb-jar
. security-role-mapping
. . role-name
. . principal-name
. . group-name
. enterprise-beans
. . name
. . unique-id
. . ejb
. . . ejb-name
. . . jndi-name
. . . ejb-ref
. . . . ejb-ref-name
. . . . jndi-name
. . . resource-ref
. . . . res-ref-name
. . . . jndi-name
. . . . default-resource-principal
. name
. password
. . . resource-env-ref
. . . . resource-env-ref-name
. . . . jndi-name
. . . service-ref
. . . . service-ref-name
. . . . port-info
. service-endpoint-interface
. wsdl-port
. namespaceURI
. localpart
. stub-property
. name
. value
. call-property
. name
. value
. message-security-binding
. message-security
. message
. java-method
. method-name

The sun-ejb-jar.xml File

300 Application Server Platform Edition 2005Q1 • Developer’s Guide

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . . . call-property

. name

. value

. . . . wsdl-override

. . . . service-impl-class

. . . . service-qname

. namespaceURI

. localpart

. . . pass-by-reference

. . . cmp

. . . . mapping-properties

. . . . is-one-one-cmp

. . . . one-one-finders

. finder

. method-name

. query-params

. query-filter

. query-variables

. query-ordering

. . . . prefetch-disabled

. query-method

. method-name

. method-params

. method-param

. . . principal

. . . . name

. . . mdb-connection-factory

. . . . jndi-name

. . . . default-resource-principal

. name

. password

. . . jms-durable-subscription-name

. . . jms-max-messages-load

. . . ior-security-config

. . . . transport-config

. integrity

. confidentiality

. establish-trust-in-target

. establish-trust-in-client

. . . . as-context

The sun-ejb-jar.xml File

Appendix A Deployment Descriptor Files 301

. auth-method

. realm

. required

. . . . sas-context

. caller-propagation

. . . is-read-only-bean

. . . refresh-period-in-seconds

. . . commit-option

. . . cmt-timeout-in-seconds

. . . use-thread-pool-id

. . . gen-classes

. . . . remote-impl

. . . . local-impl

. . . . remote-home-impl

. . . . local-home-impl

. . . bean-pool

. . . . steady-pool-size

. . . . resize-quantity

. . . . max-pool-size

. . . . pool-idle-timeout-in-seconds

. . . . max-wait-time-in-millis

. . . bean-cache

. . . . max-cache-size

. . . . resize-quantity

. . . . is-cache-overflow-allowed

. . . . cache-idle-timeout-in-seconds

. . . . removal-timeout-in-seconds

. . . . victim-selection-policy

. . . mdb-resource-adapter

. . . . resource-adapter-mid

. . . . activation-config

. description

. activation-config-property

. activation-config-property-name

. activation-config-property-value

. . . webservice-endpoint

. . . . port-component-name

. . . . endpoint-address-uri

. . . . login-config

. auth-method

. . . . message-security-binding

. message-security

. message

. java-method

. method-name

The sun-ejb-jar.xml File

302 Application Server Platform Edition 2005Q1 • Developer’s Guide

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . . . transport-guarantee

. . . . service-qname

. . . . tie-class

. . . . servlet-impl-class

. . . flush-at-end-of-method

. . . . method

. description

. ejb-name

. method-name

. method-intf

. method-params

. method-param

. . . checkpointed-methods

. . . checkpoint-at-end-of-method

. . . . method

. description

. ejb-name

. method-name

. method-intf

. method-params

. method-param

. . pm-descriptors

. . cmp-resource

. . . jndi-name

. . . default-resource-principal

. . . . name

. . . . password

. . . property (with subelements)

. . . . name

. . . . value

. . . create-tables-at-deploy

. . . drop-tables-at-undeploy

. . . database-vendor-name

. . . schema-generator-properties

. . . . property (with subelements)

. name

. value

. . message-destination

. . . message-destination-name

The sun-ejb-jar.xml File

Appendix A Deployment Descriptor Files 303

. . . jndi-name

. . webservice-description

. . . webservice-description-name

. . . wsdl-publish-location

Here is a sample sun-ejb-jar.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Application Server 8.1 EJB
2.1//EN' 'http://www.sun.com/software/appserver/dtds/sun-ejb-jar_2_1-1.dtd'>

<sun-ejb-jar>
<display-name>First Module</display-name>
<enterprise-beans>

<ejb>
<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>
</ejb>
<cmp-resource>

<jndi-name>jdbc/PointBase</jndi-name>
<create-tables-at-deploy>true</create-tables-at-deploy>
<drop-tables-at-undeploy>true</drop-tables-at-undeploy>

</cmp-resource>
</enterprise-beans>

</sun-ejb-jar>

NOTE If any configuration information for an enterprise bean is not specified in
the sun-ejb-jar.xml file, it defaults to a corresponding setting in the EJB
container if an equivalency exists.

The sun-cmp-mappings.xml File

304 Application Server Platform Edition 2005Q1 • Developer’s Guide

The sun-cmp-mappings.xml File
The element hierarchy in the sun-cmp-mappings.xml file is as follows:

sun-cmp-mappings
. sun-cmp-mapping
. . schema
. . entity-mapping
. . . ejb-name
. . . table-name
. . . cmp-field-mapping
. . . . field-name
. . . . column-name
. . . . read-only
. . . . fetched-with
. default
. level
. named-group
. none
. . . cmr-field-mapping
. . . . cmr-field-name
. . . . column-pair
. column-name
. . . . fetched-with
. default
. level
. named-group
. none
. . . secondary-table
. . . . table-name
. . . . column-pair
. column-name
. . . consistency
. . . . none
. . . . check-modified-at-commit
. . . . lock-when-loaded
. . . . check-all-at-commit
. . . . lock-when-modified
. . . . check-version-of-accessed-instances
. column-name

The sun-cmp-mappings.xml File

Appendix A Deployment Descriptor Files 305

Here is a sample database schema definition:

create table TEAMEJB (
TEAMID varchar2(256) not null,
NAME varchar2(120) null,
CITY char(30) not null,
LEAGUEEJB_LEAGUEID varchar2(256) null,
constraint PK_TEAMEJB primary key (TEAMID)

)

create table PLAYEREJB (
POSITION varchar2(15) null,
PLAYERID varchar2(256) not null,
NAME char(64) null,
SALARY number(10, 2) not null,
constraint PK_PLAYEREJB primary key (PLAYERID)

)

create table LEAGUEEJB (
LEAGUEID varchar2(256) not null,
NAME varchar2(256) null,
SPORT varchar2(256) null,
constraint PK_LEAGUEEJB primary key (LEAGUEID)

)

create table PLAYEREJBTEAMEJB (
PLAYEREJB_PLAYERID varchar2(256) null,
TEAMEJB_TEAMID varchar2(256) null

)

alter table TEAMEJB
add constraint FK_LEAGUE foreign key (LEAGUEEJB_LEAGUEID)
references LEAGUEEJB (LEAGUEID)

alter table PLAYEREJBTEAMEJB
add constraint FK_TEAMS foreign key (PLAYEREJB_PLAYERID)
references PLAYEREJB (PLAYERID)

alter table PLAYEREJBTEAMEJB
add constraint FK_PLAYERS foreign key (TEAMEJB_TEAMID)
references TEAMEJB (TEAMID)

Here is a corresponding sample sun-cmp-mappings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<sun-cmp-mappings>

<sun-cmp-mapping>
<schema>Roster</schema>
<entity-mapping>

The sun-cmp-mappings.xml File

306 Application Server Platform Edition 2005Q1 • Developer’s Guide

<ejb-name>TeamEJB</ejb-name>
<table-name>TEAMEJB</table-name>
<cmp-field-mapping>

<field-name>teamId</field-name>
<column-name>TEAMEJB.TEAMID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>TEAMEJB.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>city</field-name>
<column-name>TEAMEJB.CITY</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>league</cmr-field-name>
<column-pair>

<column-name>TEAMEJB.LEAGUEEJB_LEAGUEID</column-name>
<column-name>LEAGUEEJB.LEAGUEID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
<cmr-field-mapping>

<cmr-field-name>players</cmr-field-name>
<column-pair>

<column-name>TEAMEJB.TEAMID</column-name>
<column-name>PLAYEREJBTEAMEJB.TEAMEJB_TEAMID</column-name>

</column-pair>
<column-pair>

<column-name>PLAYEREJBTEAMEJB.PLAYEREJB_PLAYERID</column-name>
<column-name>PLAYEREJB.PLAYERID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
</entity-mapping>
<entity-mapping>

<ejb-name>PlayerEJB</ejb-name>
<table-name>PLAYEREJB</table-name>
<cmp-field-mapping>

<field-name>position</field-name>
<column-name>PLAYEREJB.POSITION</column-name>

The sun-cmp-mappings.xml File

Appendix A Deployment Descriptor Files 307

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>playerId</field-name>
<column-name>PLAYEREJB.PLAYERID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>PLAYEREJB.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>salary</field-name>
<column-name>PLAYEREJB.SALARY</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>teams</cmr-field-name>
<column-pair>

<column-name>PLAYEREJB.PLAYERID</column-name>
<column-name>PLAYEREJBTEAMEJB.PLAYEREJB_PLAYERID</column-name>

</column-pair>
<column-pair>

<column-name>PLAYEREJBTEAMEJB.TEAMEJB_TEAMID</column-name>
<column-name>TEAMEJB.TEAMID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
</entity-mapping>
<entity-mapping>

<ejb-name>LeagueEJB</ejb-name>
<table-name>LEAGUEEJB</table-name>
<cmp-field-mapping>

<field-name>leagueId</field-name>
<column-name>LEAGUEEJB.LEAGUEID</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>name</field-name>
<column-name>LEAGUEEJB.NAME</column-name>

</cmp-field-mapping>
<cmp-field-mapping>

<field-name>sport</field-name>
<column-name>LEAGUEEJB.SPORT</column-name>

</cmp-field-mapping>
<cmr-field-mapping>

<cmr-field-name>teams</cmr-field-name>

The sun-application-client.xml file

308 Application Server Platform Edition 2005Q1 • Developer’s Guide

<column-pair>
<column-name>LEAGUEEJB.LEAGUEID</column-name>
<column-name>TEAMEJB.LEAGUEEJB_LEAGUEID</column-name>

</column-pair>
<fetched-with>

<none/>
</fetched-with>

</cmr-field-mapping>
</entity-mapping>

</sun-cmp-mapping>
</sun-cmp-mappings>

The sun-application-client.xml file
The element hierarchy in the sun-application-client.xml file is as follows:

sun-application-client
. ejb-ref
. . ejb-ref-name
. . jndi-name
. resource-ref
. . res-ref-name
. . jndi-name
. . default-resource-principal
. . . name
. . . password
. resource-env-ref
. . resource-env-ref-name
. . jndi-name
. service-ref
. . service-ref-name
. . port-info
. . . service-endpoint-interface
. . . wsdl-port
. . . . namespaceURI
. . . . localpart
. . . stub-property
. . . . name
. . . . value
. . . call-property
. . . . name
. . . . value
. . . message-security-binding

The sun-acc.xml File

Appendix A Deployment Descriptor Files 309

. . . . message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . call-property

. . . name

. . . value

. . wsdl-override

. . service-impl-class

. . service-qname

. . . namespaceURI

. . . localpart

. message-destination

. . message-destination-name

. . jndi-name

The sun-acc.xml File
The element hierarchy in the sun-acc.xml file is as follows:

client-container
. target-server
. . description
. . security
. . . ssl
. . . cert-db
. auth-realm
. . property (with attributes)
. client-credential
. . property (with attributes)
. log-service
. . property (with attributes)
. message-security-config
. . provider-config
. . . request-policy
. . . response-policy
. . . property (with attributes)
. property (with attributes)

Alphabetical Listing of All Elements

310 Application Server Platform Edition 2005Q1 • Developer’s Guide

Alphabetical Listing of All Elements

A

activation-config
Specifies an activation configuration, which includes the runtime configuration properties
of the message-driven bean in its operational environment. For example, this can include
information about the name of a physical JMS destination. Matches and overrides the
activation-config element in the ejb-jar.xml file.

Superelements
mdb-resource-adapter (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the activation-config element.

activation-config-property
Specifies the name and value of an activation configuration property.

Superelements
activation-config (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the activation-config-property
element.

A B C D E F G H I J K L M N O P Q R S T U V W

Table A-2 activation-config subelements
Element Required Description

description zero or one Specifies a text description of the activation configuration.

activation-config-property one or more Specifies an activation configuration property.

A

Appendix A Deployment Descriptor Files 311

activation-config-property-name
Specifies the name of an activation configuration property.

Superelements
activation-config-property (sun-ejb-jar.xml)

Subelements
none - contains data

activation-config-property-value
Specifies the value of an activation configuration property.

Superelements
activation-config-property (sun-ejb-jar.xml)

Subelements
none - contains data

as-context
Specifies the authentication mechanism used to authenticate the client.

Superelements
ior-security-config (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the as-context element.

Table A-3 activation-config-property subelements
Element Required Description

activation-config-property-name only one Specifies the name of an activation configuration property.

activation-config-property-value only one Specifies the value of an activation configuration property.

Table A-4 as-context Subelements
Element Required Description

auth-method only one Specifies the authentication method. The only supported value is
USERNAME_PASSWORD.

A

312 Application Server Platform Edition 2005Q1 • Developer’s Guide

auth-method
Specifies the authentication method.

If the parent element is as-context, the only supported value is USERNAME_PASSWORD.

If the parent element is login-config, specifies the authentication mechanism for the web
service endpoint. As a prerequisite to gaining access to any web resources protected by an
authorization constraint, a user must be authenticated using the configured mechanism.

Superelements
login-config (sun-web.xml), as-context (sun-ejb-jar.xml)

Subelements
none - contains data

auth-realm
JAAS is available on the ACC. Defines the optional configuration for a JAAS
authentication realm. Authentication realms require provider-specific properties, which
vary depending on what a particular implementation needs. For more information about
how to define realms, see “Realm Configuration” on page 40.

Superelements
client-container (sun-acc.xml)

Subelements
The following table describes subelements for the auth-realm element.

realm only one Specifies the realm in which the user is authenticated.

required only one Specifies whether the authentication method specified must be used
for client authentication.

Table A-5 auth-realm subelement
Element Required Description

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-4 as-context Subelements (Continued)
Element Required Description

B

Appendix A Deployment Descriptor Files 313

Attributes
The following table describes attributes for the auth-realm element.

Example
Here is an example of the default file realm:

<auth-realm name="file"
classname="com.sun.enterprise.security.auth.realm.file.FileRealm">

<property name="file" value="domain_dir/config/keyfile"/>
<property name="jaas-context" value="fileRealm"/>

</auth-realm>

Which properties an auth-realm element uses depends on the value of the auth-realm
element’s name attribute. The file realm uses file and jaas-context properties. Other
realms use different properties. See “Realm Configuration” on page 40.

B

bean-cache
Specifies the entity bean cache properties. Used for entity beans and stateful session beans.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the bean-cache element.

Table A-6 auth-realm attributes
Attribute Default Description

name none Defines the name of this realm.

classname none Defines the Java class which implements this realm.

Table A-7 bean-cache Subelements
Element Required Description

max-cache-size zero or one Specifies the maximum number of beans allowable in cache.

is-cache-overflow-allowed zero or one Deprecated.

B

314 Application Server Platform Edition 2005Q1 • Developer’s Guide

Example
<bean-cache>

<max-cache-size>100</max-cache-size>
<cache-resize-quantity>10</cache-resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

<cache-idle-timeout-in-seconds>600</cache-idle-timeout-in-seconds>
<removal-timeout-in-seconds>5400</removal-timeout-in-seconds>

</bean-cache>

bean-pool
Specifies the pool properties of stateless session beans, entity beans, and message-driven
bean.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the bean-pool element.

cache-idle-timeout-in-seconds zero or one Specifies the maximum time that a stateful session bean or
entity bean is allowed to be idle in cache before being
passivated. Default value is 10 minutes (600 seconds).

removal-timeout-in-seconds zero or one Specifies the amount of time a bean remains before being
removed. If removal-timeout-in-seconds is less than
idle-timeout, the bean is removed without being
passivated.

resize-quantity zero or one Specifies the number of beans to be created if the pool is
empty (subject to the max-pool-size limit). Values are from
0 to MAX_INTEGER.

victim-selection-policy zero or one Specifies the algorithm that must be used by the container to
pick victims. Applies only to stateful session beans.

Table A-8 bean-pool Subelements
Element Required Description

steady-pool-size zero or one Specifies the initial and minimum number of beans maintained
in the pool. Default is 32.

Table A-7 bean-cache Subelements (Continued)
Element Required Description

C

Appendix A Deployment Descriptor Files 315

Example
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

C

cache
Configures caching for web application components.

Superelements
sun-web-app (sun-web.xml)

Subelements
The following table describes subelements for the cache element.

resize-quantity zero or one Specifies the number of beans to be created if the pool is
empty (subject to the max-pool-size limit). Values are from
0 to MAX_INTEGER.

max-pool-size zero or one Specifies the maximum number of beans in the pool. Values
are from 0 to MAX_INTEGER. Default is to the EJB container
value or 60.

max-wait-time-in-millis zero or one Deprecated.

pool-idle-timeout-in-seconds zero or one Specifies the maximum time that a bean is allowed to be idle in
the pool. After this time, the bean is removed. This is a hint to
the server. Default time is 600 seconds (10 minutes).

Table A-9 cache Subelements
Element Required Description

cache-helper zero or more Specifies a custom class that implements the
CacheHelper interface.

Table A-8 bean-pool Subelements (Continued)
Element Required Description

C

316 Application Server Platform Edition 2005Q1 • Developer’s Guide

Attributes
The following table describes attributes for the cache element.

Properties
The following table describes properties for the cache element.

default-helper zero or one Allows you to change the properties of the default, built-in
cache-helper class.

property (with
attributes)

zero or more Specifies a cache property, which has a name and a
value.

cache-mapping zero or more Maps a URL pattern or a servlet name to its cacheability
constraints.

Table A-10 cache Attributes
Attribute Default Description

max-entries 4096 (optional) Specifies the maximum number of entries
the cache can contain. Must be a positive integer.

timeout-in-seconds 30 (optional) Specifies the maximum amount of time in
seconds that an entry can remain in the cache after
it is created or refreshed. Can be overridden by a
timeout element.

enabled true (optional) Determines whether servlet and JSP
caching is enabled.

Table A-11 cache Properties
Property Default Description

cacheClassName com.sun.appserv.web
.cache.LruCache

Specifies the fully qualified name of the class that
implements the cache functionality. The “cacheClassName
Values” table below lists possible values.

MultiLRUSegmentSize 4096 Specifies the number of entries in a segment of the cache
table that should have its own LRU (least recently used)
list. Applicable only if cacheClassName is set to
com.sun.appserv.web.cache.MultiLruCache.

Table A-9 cache Subelements (Continued)
Element Required Description

C

Appendix A Deployment Descriptor Files 317

Cache Class Names
The following table lists possible values of the cacheClassName property.

cache-helper
Specifies a class that implements the com.sun.appserv.web.cache.CacheHelper
interface.

Superelements
cache (sun-web.xml)

Subelements
The following table describes subelements for the cache-helper element.

MaxSize unlimited;
Long.MAX_VALUE

Specifies an upper bound on the cache memory size in
bytes (KB or MB units). Example values are 32 KB or
2 MB. Applicable only if cacheClassName is set to
com.sun.appserv.web.cache.BoundedMultiLruCache.

Table A-12 cacheClassName Values
Value Description

com.sun.appserv.web.cache
.LruCache

A bounded cache with an LRU (least recently used) cache replacement policy.

com.sun.appserv.web.cache
.BaseCache

An unbounded cache suitable if the maximum number of entries is known.

com.sun.appserv.web.cache
.MultiLruCache

A cache suitable for a large number of entries (>4096). Uses the
MultiLRUSegmentSize property.

com.sun.appserv.web.cache
.BoundedMultiLruCache

A cache suitable for limiting the cache size by memory rather than number of
entries. Uses the MaxSize property.

Table A-13 cache-helper Subelements
Element Required Description

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-11 cache Properties (Continued)
Property Default Description

C

318 Application Server Platform Edition 2005Q1 • Developer’s Guide

Attributes
The following table describes attributes for the cache-helper element.

cache-helper-ref
Specifies the name of the cache-helper used by the parent cache-mapping element.

Superelements
cache-mapping (sun-web.xml)

Subelements
none - contains data

cache-idle-timeout-in-seconds
Specifies the maximum time that a bean can remain idle in the cache. After this amount of
time, the container can passivate this bean. A value of 0 specifies that beans never become
candidates for passivation. Default is 600.

Applies to stateful session beans and entity beans.

Superelements
bean-cache (sun-ejb-jar.xml)

Subelements
none - contains data

cache-mapping
Maps a URL pattern or a servlet name to its cacheability constraints.

Superelements
cache (sun-web.xml)

Table A-14 cache-helper Attributes
Attribute Default Description

name default Specifies a unique name for the helper class, which is
referenced in the cache-mapping element.

class-name none Specifies the fully qualified class name of the cache helper,
which must implement the
com.sun.appserv.web.CacheHelper interface.

C

Appendix A Deployment Descriptor Files 319

Subelements
The following table describes subelements for the cache-mapping element.

Table A-15 cache-mapping Subelements
Element Required Description

servlet-name requires one
servlet-name or
url-pattern

Contains the name of a servlet.

url-pattern requires one
servlet-name or
url-pattern

Contains a servlet URL pattern for which
caching is enabled.

cache-helper-ref required if
dispatcher,
timeout,
refresh-field,
http-method,
key-field, and
constraint-field
are not used

Contains the name of the cache-helper
used by the parent cache-mapping
element.

dispatcher zero or one if
cache-helper-ref is
not used

Contains a comma-separated list of
RequestDispatcher methods for which
caching is enabled.

timeout zero or one if
cache-helper-ref is
not used

Contains the cache-mapping specific
maximum amount of time in seconds that an
entry can remain in the cache after it is
created or refreshed.

refresh-field zero or one if
cache-helper-ref is
not used

Specifies a field that gives the application
component a programmatic way to refresh a
cached entry.

http-method zero or more if
cache-helper-ref is
not used

Contains an HTTP method that is eligible for
caching.

key-field zero or more if
cache-helper-ref is
not used

Specifies a component of the key used to
look up and extract cache entries.

constraint-field zero or more if
cache-helper-ref is
not used

Specifies a cacheability constraint for the
given url-pattern or servlet-name.

C

320 Application Server Platform Edition 2005Q1 • Developer’s Guide

call-property
Specifies JAX-RPC property values that can be set on a javax.xml.rpc.Call object
before it is returned to the web service client. The property names can be any properties
supported by the JAX-RPC Call implementation.

Superelements
port-info, service-ref (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the call-property element.

caller-propagation
Specifies whether the target accepts propagated caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

Superelements
sas-context (sun-ejb-jar.xml)

Subelements
none - contains data

cert-db
Not implemented. Included for backward compatibility only. Attribute values are ignored.

Superelements
security (sun-acc.xml)

Subelements
none

Attributes
The following table describes attributes for the cert-db element.

Table A-16 call-property subelements
Element Required Description

name only one Specifies the name of the entity.

value only one Specifies the value of the entity.

C

Appendix A Deployment Descriptor Files 321

check-all-at-commit
This element is not implemented. Do not use.

Superelements
consistency (sun-cmp-mappings.xml)

check-modified-at-commit
Checks concurrent modification of fields in modified beans at commit time.

Superelements
consistency (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

check-version-of-accessed-instances
Checks the version column of the modified beans.

Version consistency allows the bean state to be cached between transactions instead of read
from a database. The bean state is verified by primary key and version column values. This
occurs during a custom query (for dirty instances only) or commit (for both clean and dirty
instances).

The version column must be a numeric type, and must be in the primary table. You must
provide appropriate update triggers for this column.

Superelements
consistency (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the
check-version-of-accessed-instances element.

Table A-17 cert-db attributes
Attribute Default Description

path none Specifies the absolute path of the certificate database.

password none Specifies the password to access the certificate database.

C

322 Application Server Platform Edition 2005Q1 • Developer’s Guide

checkpoint-at-end-of-method
Not available. Do not use.

Superelements
ejb (sun-ejb-jar.xml)

checkpointed-methods
Not available. Do not use.

Superelements
ejb (sun-ejb-jar.xml)

class-loader
Configures the classloader for the web module.

Superelements
sun-web-app (sun-web.xml)

Subelements
The following table describes subelements for the class-loader element.

Attributes
The following table describes attributes for the class-loader element.

Table A-18 check-version-of-accessed-instances Subelements
Element Required Description

column-name only one Specifies the name of the version column.

Table A-19 class-loader Subelements
Element Required Description

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

C

Appendix A Deployment Descriptor Files 323

client-container
Defines the Sun Java System Application Server specific configuration for the application
client container. This is the root element; there can only be one client-container
element in a sun-acc.xml file. See “The sun-acc.xml File” on page 309.

Superelements
none

Subelements
The following table describes subelements for the client-container element.

Table A-20 class-loader Attributes
Attribute Default Description

extra-class-path null (optional) Specifies additional classpath settings for this web
module.

delegate true (optional) If true, the web module follows the standard
classloader delegation model and delegates to its parent
classloader first before looking in the local classloader. You
must set this to true for a web application that accesses EJB
components or that acts as a web service client or endpoint.

If false, the web module follows the delegation model
specified in the Servlet specification and looks in its classloader
before looking in the parent classloader. It’s safe to set this to
false only for a web module that does not interact with any
other modules.

dynamic-reload-in
terval

(optional) Not implemented. Included for backward compatibility
with previous Sun Java System Web Server versions.

NOTE If the delegate element is set to false, the classloader delegation
behavior complies with the Servlet 2.4 specification, section 9.7.2. If set to
its default value of true, classes and resources residing in container-wide
library JAR files are loaded in preference to classes and resources packaged
within the WAR file.

Portable programs that use this element should not be packaged with any
classes or interfaces that are a part of the J2EE specification. The behavior
of a program that includes such classes or interfaces in its WAR file is
undefined.

C

324 Application Server Platform Edition 2005Q1 • Developer’s Guide

Attributes
The following table describes attributes for the client-container element.

client-credential
Default client credentials that are sent to the server. If this element is present, the credentials
are automatically sent to the server, without prompting the user for the user name and
password on the client side.

Superelements
client-container (sun-acc.xml)

Subelements
The following table describes subelements for the client-credential element.

Table A-21 client-container Subelements
Element Required Description

target-server only one Specifies the IIOP listener configuration of the target
server.

auth-realm zero or one Specifies the optional configuration for JAAS
authentication realm.

client-credential zero or one Specifies the default client credential that is sent to
the server.

log-service zero or one Specifies the default log file and the severity level of
the message.

message-security-con
fig

zero or more Specifies configurations for message security
providers.

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-22 client-container Attributes
Attribute Default Description

send-password true If true, specifies that client authentication credentials
must be sent to the server. Without authentication
credentials, all access to protected EJB components
results in exceptions.

C

Appendix A Deployment Descriptor Files 325

Attributes
The following table describes attributes for the client-credential element.

cmp
Describes runtime information for a CMP entity bean object for EJB1.1 and EJB2.1 beans.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the cmp element.

Table A-23 client-credential subelement
Element Required Description

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-24 client-credential attributes
Attribute Default Description

user-name none The user name used to authenticate the Application
client container.

password none The password used to authenticate the Application
client container.

realm the default
realm for the
domain

(optional) The realm (specified by name) where
credentials are to be resolved.

Table A-25 cmp Subelements
Element Required Description

mapping-properties zero or one This element is not implemented.

is-one-one-cmp zero or one This element is not implemented.

one-one-finders zero or one Describes the finders for CMP 1.1 beans.

prefetch-disabled zero or one Disables prefetching of entity bean states for the
specified query methods.

C

326 Application Server Platform Edition 2005Q1 • Developer’s Guide

cmp-field-mapping
The cmp-field-mapping element associates a field with one or more columns to which it
maps. The column can be from a bean’s primary table or any defined secondary table. If a
field is mapped to multiple columns, the column listed first in this element is used as a
source for getting the value from the database. The columns are updated in the order they
appear. There is one cmp-field-mapping element for each cmp-field element defined in
the ejb-jar.xml file.

Superelements
entity-mapping (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the cmp-field-mapping element.

cmp-resource
Specifies the database to be used for storing CMP beans. For more information about this
element, see “Configuring the CMP Resource” on page 176.

Superelements
enterprise-beans (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the cmp-resource element.

Table A-26 cmp-field-mapping Subelements
Element Required Description

field-name only one Specifies the Java identifier of a field. This identifier must match
the value of the field-name subelement of the cmp-field that
is being mapped.

column-name one or more Specifies the name of a column from the primary table, or the
qualified table name (TABLE.COLUMN) of a column from a
secondary or related table.

read-only zero or one Specifies that a field is read-only.

fetched-with zero or one Specifies the fetch group for this CMP field’s mapping.

C

Appendix A Deployment Descriptor Files 327

cmr-field-mapping
A container-managed relationship field has a name and one or more column pairs that
define the relationship. There is one cmr-field-mapping element for each cmr-field
element in the ejb-jar.xml file. A relationship can also participate in a fetch group.

Superelements
entity-mapping (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the cmr-field-mapping element.

Table A-27 cmp-resource Subelements
Element Required Description

jndi-name only one Specifies the absolute jndi-name of a JDBC resource or
Persistence Manager resource.

default-resource-principal zero or one Specifies the default runtime bindings of a resource reference.

property (with subelements) zero or more Specifies a property name and value. Used to configure
PersistenceManagerFactory properties if the
jndi-name subelement refers to a JDBC resource.

create-tables-at-deploy zero or one If true, specifies that database tables are created for beans
that are automatically mapped by the EJB container.

drop-tables-at-undeploy zero or one If true, specifies that database tables that were automatically
created when the bean(s) were last deployed are dropped
when the bean(s) are undeployed.

database-vendor-name zero or one Specifies the name of the database vendor for which tables
can be created.

schema-generator-properties zero or one Specifies field-specific type mappings and allows you to set
the use-unique-table-names property.

Table A-28 cmr-field-mapping Subelements
Element Required Description

cmr-field-name only one Specifies the Java identifier of a field. Must match the value of
the cmr-field-name subelement of the cmr-field that is
being mapped.

column-pair one or more Specifies the pair of columns that determine the relationship
between two database tables.

fetched-with zero or one Specifies the fetch group for this CMR field’s relationship.

C

328 Application Server Platform Edition 2005Q1 • Developer’s Guide

cmr-field-name
Specifies the Java identifier of a field. Must match the value of the cmr-field-name
subelement of the cmr-field element in the ejb-jar.xml file.

Superelements
cmr-field-mapping (sun-cmp-mappings.xml)

Subelements
none - contains data

cmt-timeout-in-seconds
Overrides the Transaction Timeout setting of the Transaction Service for an individual
bean. The default value, 0, specifies that the default Transaction Service timeout is used. If
positive, this value is used for all methods in the bean that start a new container-managed
transaction. This value is not used if the bean joins a client transaction.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
none - contains data

column-name
Specifies the name of a column from the primary table, or the qualified table name
(TABLE.COLUMN) of a column from a secondary or related table.

Superelements
check-version-of-accessed-instances, cmp-field-mapping, column-pair
(sun-cmp-mappings.xml)

Subelements
none - contains data

column-pair
Specifies the pair of columns that determine the relationship between two database tables.
Each column-pair must contain exactly two column-name subelements, which specify
the column’s names. The first column-name element names the table that this bean is
mapped to, and the second column-name names the column in the related table.

C

Appendix A Deployment Descriptor Files 329

Superelements
cmr-field-mapping, secondary-table (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the column-pair element.

commit-option
Specifies the commit option used on transaction completion. Valid values for the Sun Java
System Application Server are B or C. Default value is B. Applies to entity beans.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
none - contains data

confidentiality
Specifies if the target supports privacy-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Superelements
transport-config (sun-ejb-jar.xml)

Subelements
none - contains data

Table A-29 column-pair Subelements
Element Required Description

column-name two Specifies the name of a column from the primary table, or the
qualified table name (TABLE.COLUMN) of a column from a
secondary or related table.

NOTE Commit option A is not supported for this Sun Java System Application
Server release.

C

330 Application Server Platform Edition 2005Q1 • Developer’s Guide

consistency
Specifies container behavior in guaranteeing transactional consistency of the data in the
bean.

Superelements
entity-mapping (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the consistency element.

constraint-field
Specifies a cacheability constraint for the given url-pattern or servlet-name.

All constraint-field constraints must pass for a response to be cached. If there are
value constraints, at least one of them must pass.

Superelements
cache-mapping (sun-web.xml)

Subelements
The following table describes subelements for the constraint-field element.

Table A-30 consistency Subelements
Element Required Description

none exactly one
of these
elements is
required

No consistency checking occurs.

check-modified-at-commit Checks concurrent modification of fields in
modified beans at commit time.

lock-when-loaded Obtains an exclusive lock when the data is
loaded.

check-all-at-commit This element is not implemented. Do not use.

lock-when-modified This element is not implemented. Do not use.

check-version-of-accessed
-instances

Checks the version column of the modified
beans.

C

Appendix A Deployment Descriptor Files 331

Attributes
The following table describes attributes for the constraint-field element.

constraint-field-value
Specifies a value to be matched to the input parameter value. The matching is case
sensitive. For example:

<value match-expr="in-range">1-60</value>

Superelements
constraint-field (sun-web.xml)

Subelements
none - contains data

Attributes
The following table describes attributes for the constraint-field-value element.

Table A-31 constraint-field Subelements
Element Required Description

constraint-field-value zero or more Contains a value to be matched to the input
parameter value.

Table A-32 constraint-field Attributes
Attribute Default Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope from which the input parameter is
retrieved. Allowed values are context.attribute,
request.header, request.parameter, request.cookie,
request.attribute, and session.attribute.

cache-on-match true (optional) If true, caches the response if matching succeeds.
Overrides the same attribute in a constraint-field-value
subelement.

cache-on-match
-failure

false (optional) If true, caches the response if matching fails. Overrides the
same attribute in a constraint-field-value subelement.

C

332 Application Server Platform Edition 2005Q1 • Developer’s Guide

context-root
Contains the web context root for the application or web application. Overrides the
corresponding element in the application.xml or web.xml file.

Superelements
web (sun-application.xml), sun-web-app (sun-web.xml)

Subelements
none - contains data

cookie-properties
Specifies session cookie properties.

Superelements
session-config (sun-web.xml)

Subelements
The following table describes subelements for the cookie-properties element.

Table A-33 constraint-field-value Attributes
Attribute Default Description

match-expr equals (optional) Specifies the type of comparison performed with the value. Allowed values
are equals, not-equals, greater, lesser, and in-range.

If match-expr is greater or lesser, the value must be a number. If match-expr is
in-range, the value must be of the form n1-n2, where n1 and n2 are numbers.

cache-on-match true (optional) If true, caches the response if matching succeeds.

cache-on-match
-failure

false (optional) If true, caches the response if matching fails.

Table A-34 cookie-properties Subelements
Element Required Description

property
(with
attribute
s)

zero or more Specifies a property, which has a name and a value.

D

Appendix A Deployment Descriptor Files 333

Properties
The following table describes properties for the cookie-properties element.

create-tables-at-deploy
Specifies whether database tables are created for beans that are automatically mapped by
the EJB container. If true, creates tables in the database. If false (the default if this
element is not present), does not create tables.

This element can be overridden during deployment. See Table 7-5 on page 174.

Superelements
cmp-resource (sun-ejb-jar.xml)

Subelements
none - contains data

D

database-vendor-name
Specifies the name of the database vendor for which tables can be created. Allowed values
are db2, mssql, oracle, pointbase, and sybase, case-insensitive.

Table A-35 cookie-properties Properties
Property Default Description

cookiePath Context path at which
the web module is
installed.

Specifies the pathname that is set when the cookie is
created. The browser sends the cookie if the pathname for
the request contains this pathname. If set to / (slash), the
browser sends cookies to all URLs served by the Sun Java
System Application Server. You can set the path to a
narrower mapping to limit the request URLs to which the
browser sends cookies.

cookieMaxAgeSeconds -1 Specifies the expiration time (in seconds) after which the
browser expires the cookie.

cookieDomain (unset) Specifies the domain for which the cookie is valid.

cookieComment Sun Java System
Application Server
Session Tracking
Cookie

Specifies the comment that identifies the session tracking
cookie in the cookie file. Applications can provide a more
specific comment for the cookie.

D

334 Application Server Platform Edition 2005Q1 • Developer’s Guide

If no value is specified, a connection is made to the resource specified by the jndi-name
subelement of the cmp-resource element, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized, SQL-92 compliance is
presumed.

This element can be overridden during deployment. See Table 7-5 on page 174.

Superelements
cmp-resource (sun-ejb-jar.xml)

Subelements
none - contains data

default
Specifies that a field belongs to the default hierarchical fetch group, and enables prefetching
for a CMR field. To disable prefetching for specific query methods, use a
prefetch-disabled element in the sun-ejb-jar.xml file.

Superelements
fetched-with (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

default-helper
Passes property values to the built-in default cache-helper class.

Superelements
cache (sun-web.xml)

Subelements
The following table describes subelements for the default-helper element.

Table A-36 default-helper Subelements
Element Required Description

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

D

Appendix A Deployment Descriptor Files 335

Properties
The following table describes properties for the default-helper element.

default-resource-principal
Specifies the default principal (user) for the resource.

If this element is used in conjunction with a JMS Connection Factory resource, the name
and password subelements must be valid entries in the Sun Java™ System Message Queue
broker user repository. See the “Security Management” chapter in the Sun Java System
Message Queue Administration Guide for details.

Superelements
resource-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
cmp-resource, mdb-connection-factory (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the default-resource-principal
element.

Table A-37 default-helper Properties
Property Default Description

cacheKeyGeneratorAttrName Uses the built-in default
cache-helper key
generation, which
concatenates the servlet
path with key-field
values, if any.

The caching engine looks in the
ServletContext for an attribute with a name
equal to the value specified for this property to
determine whether a customized
CacheKeyGenerator implementation is used.
An application can provide a customized key
generator rather than using the default
helper. See “CacheKeyGenerator Interface”
on page 131.

Table A-38 default-resource-principal Subelements
Element Required Description

name only one Specifies the default resource principal name used to sign on to a
resource manager.

password only one Specifies password of the default resource principal.

D

336 Application Server Platform Edition 2005Q1 • Developer’s Guide

description
Specifies a text description of the containing element.

Superelements
property (with attributes) (sun-web.xml); activation-config, method
(sun-ejb-jar.xml); target-server (sun-acc.xml)

Subelements
none - contains data

dispatcher
Specifies a comma-separated list of RequestDispatcher methods for which caching is
enabled on the target resource. Valid values are REQUEST, FORWARD, INCLUDE, and ERROR .
If this element is not specified, the default is REQUEST. See SRV.6.2.5 of the Servlet 2.4
specification for more information.

Superelements
cache-mapping (sun-web.xml)

Subelements
none - contains data

drop-tables-at-undeploy
Specifies whether database tables that were automatically created when the bean(s) were
last deployed are dropped when the bean(s) are undeployed. If true, drops tables from the
database. If false (the default if this element is not present), does not drop tables.

This element can be overridden during deployment. See Table 7-5 on page 174.

Superelements
cmp-resource (sun-ejb-jar.xml)

Subelements
none - contains data

E

Appendix A Deployment Descriptor Files 337

E

ejb
Defines runtime properties for a single enterprise bean within the application. The
subelements listed below apply to particular enterprise beans as follows:

• All types of beans: ejb-name, ejb-ref, resource-ref, resource-env-ref, cmp,
ior-security-config, gen-classes, jndi-name, use-thread-pool-id

• Stateless session beans and message-driven beans: bean-pool

• Stateful session beans and entity beans: bean-cache

• Entity beans: commit-option, bean-cache, bean-pool, is-read-only-bean,
refresh-period-in-seconds, flush-at-end-of-method

• Message-driven beans: mdb-connection-factory,
jms-durable-subscription-name, jms-max-messages-load, bean-pool

Superelements
enterprise-beans (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the ejb element.

Table A-39 ejb Subelements
Element Required Description

ejb-name only one Matches the ejb-name in the corresponding ejb-jar.xml file.

jndi-name zero or more Specifies the absolute jndi-name.

ejb-ref zero or more Maps the absolute JNDI name to the ejb-ref element in the
corresponding J2EE XML file.

resource-ref zero or more Maps the absolute JNDI name to the resource-ref in the
corresponding J2EE XML file.

resource-env-ref zero or more Maps the absolute JNDI name to the resource-env-ref in
the corresponding J2EE XML file.

service-ref zero or more Specifies runtime settings for a web service reference.

pass-by-reference zero or one Specifies the passing method used by an enterprise bean
calling a remote interface method in another bean that is
co-located within the same process.

E

338 Application Server Platform Edition 2005Q1 • Developer’s Guide

cmp zero or one Specifies runtime information for a container-managed
persistence (CMP) EntityBean object for EJB1.1 and EJB2.1
beans.

principal zero or one Specifies the principal (user) name in an enterprise bean that
has the run-as role specified.

mdb-connection-factory zero or one Specifies the connection factory associated with a
message-driven bean.

jms-durable-subscription-name zero or one Specifies the durable subscription associated with a
message-driven bean.

jms-max-messages-load zero or one Specifies the maximum number of messages to load into a
Java Message Service session at one time for a
message-driven bean to serve. The default is 1.

ior-security-config zero or one Specifies the security information for the IOR.

is-read-only-bean zero or one Specifies that this entity bean is read-only.

refresh-period-in-seconds zero or one Specifies the rate at which a read-only-bean must be
refreshed from the data source.

commit-option zero or one Has valid values of B or C. Default value is B.

cmt-timeout-in-seconds zero or one Overrides the Transaction Timeout setting of the Transaction
Service for an individual bean.

use-thread-pool-id zero or one Specifies the thread pool from which threads are selected for
remote invocations of this bean.

gen-classes zero or one Specifies all the generated class names for a bean.

bean-pool zero or one
bean-pool

Specifies the bean pool properties. Used for stateless
session beans, entity beans, and message-driven bean
pools.

bean-cache zero or one
bean-pool

Specifies the bean cache properties. Used only for stateful
session beans and entity beans.

mdb-resource-adapter zero or one Specifies runtime configuration information for a
message-driven bean.

webservice-endpoint zero or more Specifies information about a web service endpoint.

flush-at-end-of-method zero or one Specifies the methods that force a database flush after
execution. Used for entity beans.

checkpointed-methods zero or one Not available. Do not use.

checkpoint-at-end-of-method zero or one Not available. Do not use.

Table A-39 ejb Subelements (Continued)
Element Required Description

E

Appendix A Deployment Descriptor Files 339

Attributes
The following table describes attributes for the ejb element.

Example
<ejb>

<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
<jndi-name>jdbc/PointBase</jndi-name>

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>
<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>
</ejb>

ejb-name
In the sun-ejb-jar.xml file, matches the ejb-name in the corresponding ejb-jar.xml
file. The name must be unique among the names of the enterprise beans in the same EJB
JAR file.

There is no architected relationship between the ejb-name in the deployment descriptor
and the JNDI name that the deployer assigns to the EJB component’s home.

Table A-40 ejb Attributes
Attribute Default Description

availability-enabled false (optional) Not available. Do not use.

E

340 Application Server Platform Edition 2005Q1 • Developer’s Guide

In the sun-cmp-mappings.xml file, specifies the ejb-name of the entity bean in the
ejb-jar.xml file to which the container-managed persistence (CMP) bean corresponds.

Superelements
ejb, method (sun-ejb-jar.xml); entity-mapping (sun-cmp-mappings.xml)

Subelements
none - contains data

ejb-ref
Maps the ejb-ref-name in the corresponding J2EE deployment descriptor file ejb-ref
entry to the absolute jndi-name of a resource.

The ejb-ref element is used for the declaration of a reference to an EJB’s home. Applies
to session beans or entity beans.

Superelements
sun-web-app (sun-web.xml), ejb (sun-ejb-jar.xml), sun-application-client
(sun-application-client.xml)

Subelements
The following table describes subelements for the ejb-ref element.

ejb-ref-name
Specifies the ejb-ref-name in the corresponding J2EE deployment descriptor file
ejb-ref entry.

Superelements
ejb-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

Table A-41 ejb-ref Subelements
Element Required Description

ejb-ref-name only one Specifies the ejb-ref-name in the corresponding J2EE
deployment descriptor file ejb-ref entry.

jndi-name only one Specifies the absolute jndi-name of a resource.

E

Appendix A Deployment Descriptor Files 341

endpoint-address-uri
Specifies the relative path combined with the web server root to form the fully qualified
endpoint address for a web service endpoint. This is a required element for EJB endpoints
and an optional element for servlet endpoints.

For servlet endpoints, this value is relative to the web application context root. For EJB
endpoints, the URI is relative to root of the web server (the first portion of the URI is a
context root). The context root portion must not conflict with the context root of any web
application deployed to the same web server.

In all cases, this value must be a fixed pattern (no ‘*’ allowed).

If the web service endpoint is a servlet that implements only a single endpoint and has only
one url-pattern, it is not necessary to set this value, because the web container derives it
from the web.xml file.

Superelements
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

Example
If the web server is listening at http://localhost:8080, the following
endpoint-address-uri:

<endpoint-address-uri>StockQuoteService/StockQuotePort</endpoint-address-uri>

results in the following target endpoint address:

http://localhost:8080/StockQuoteService/StockQuotePort

enterprise-beans
Specifies all the runtime properties for an EJB JAR file in the application.

Superelements
sun-ejb-jar (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the enterprise-beans element.

E

342 Application Server Platform Edition 2005Q1 • Developer’s Guide

Example
<enterprise-beans>

<ejb>
<ejb-name>CustomerEJB</ejb-name>
<jndi-name>customer</jndi-name>
<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>
<jndi-name>jdbc/PointBase</jndi-name>

</resource-ref>
<is-read-only-bean>false</is-read-only-bean>
<commit-option>B</commit-option>
<bean-pool>

<steady-pool-size>10</steady-pool-size>
<resize-quantity>10</resize-quantity>
<max-pool-size>100</max-pool-size>
<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>
<bean-cache>

<max-cache-size>100</max-cache-size>
<resize-quantity>10</resize-quantity>
<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

Table A-42 enterprise-beans Subelements
Element Required Description

name zero or one Specifies the name string.

unique-id zero or one Specifies a unique system identifier. This data
is automatically generated and updated at
deployment/redeployment. Do not specify or
edit this value.

ejb zero or more Defines runtime properties for a single
enterprise bean within the application.

pm-descriptors zero or one Deprecated.

cmp-resource zero or one Specifies the database to be used for storing
container-managed persistence (CMP) beans
in an EJB JAR file.

message-destination zero or more Specifies the name of a logical message
destination.

webservice-description zero or more Specifies a name and optional publish location
for a web service.

E

Appendix A Deployment Descriptor Files 343

<victim-selection-policy>LRU</victim-selection-policy>
</bean-cache>

</ejb>
</enterprise-beans>

entity-mapping
Specifies the mapping a bean to database columns.

Superelements
sun-cmp-mapping (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the entity-mapping element.

establish-trust-in-client
Specifies if the target is capable of authenticating a client. The values are NONE, SUPPORTED,
or REQUIRED.

Superelements
transport-config (sun-ejb-jar.xml)

Table A-43 entity-mapping Subelements
Element Required Description

ejb-name only one Specifies the name of the entity bean in the
ejb-jar.xml file to which the CMP bean
corresponds.

table-name only one Specifies the name of a database table. The
table must be present in the database schema
file.

cmp-field-mapping one or more Associates a field with one or more columns to
which it maps.

cmr-field-mapping zero or more A container-managed relationship field has a
name and one or more column pairs that
define the relationship.

secondary-table zero or more Describes the relationship between a bean’s
primary and secondary table.

consistency zero or one Specifies container behavior in guaranteeing
transactional consistency of the data in the
bean.

F

344 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none - contains data

establish-trust-in-target
Specifies if the target is capable of authenticating to a client. The values are NONE,
SUPPORTED, or REQUIRED.

Superelements
transport-config (sun-ejb-jar.xml)

Subelements
none - contains data

F

fetched-with
Specifies the fetch group configuration for fields and relationships. The fetched-with
element has different allowed and default subelements based on its parent element and the
data types of the fields.

• If there is no fetched-with subelement of a cmp-field-mapping, and the data type is
not BLOB, CLOB, VARBINARY, LONGVARBINARY, or OTHER, fetched-with
can have any valid subelement. The default subelement is as follows:

<fetched-with><default/></fetched-with>

• If there is no fetched-with subelement of a cmp-field-mapping, and the data type is
BLOB, CLOB, VARBINARY, LONGVARBINARY, or OTHER, fetched-with can
have any valid subelement except <default/>. The default subelement is as follows:

<fetched-with><none/></fetched-with>

• If there is no fetched-with subelement of a cmr-field-mapping, fetched-with can
have any valid subelement. The default subelement is as follows:

<fetched-with><none/></fetched-with>

Managed fields are multiple CMP or CMR fields that are mapped to the same column. A
managed field can have any fetched-with subelement except <default/>. For additional
information, see “Managed Fields” on page 166.

Superelements
cmp-field-mapping, cmr-field-mapping (sun-cmp-mappings.xml)

F

Appendix A Deployment Descriptor Files 345

Subelements
The following table describes subelements for the fetched-with element.

field-name
Specifies the Java identifier of a field. This identifier must match the value of the
field-name subelement of the cmp-field element in the ejb-jar.xml file.

Superelements
cmp-field-mapping (sun-cmp-mappings.xml)

Subelements
none - contains data

finder
Describes the finders for CMP 1.1 with a method name and query.

Superelements
one-one-finders (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the finder element.

Table A-44 fetched-with Subelements
Element Required Description

default exactly one
of these
elements is
required

Specifies that a CMP field belongs to the default hierarchical fetch
group, which means it is fetched any time the bean is loaded from
a database. Enables prefetching of a CMR field.

level Specifies the level number of a hierarchical fetch group.

named-group Specifies the name of an independent fetch group.

none Specifies that this field or relationship is placed into its own
individual fetch group, which means it is loaded from a database
the first time it is accessed in this transaction.

Table A-45 finder Subelements
Element Required Description

method-name only one Specifies the method name for the finder.

G

346 Application Server Platform Edition 2005Q1 • Developer’s Guide

flush-at-end-of-method
Specifies the methods that force a database flush after execution. Applicable to entity beans.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the flush-at-end-of-method element.

G

gen-classes
Specifies all the generated class names for a bean.

Superelements
ejb (sun-ejb-jar.xml)

query-params zero or one Specifies the query parameters for the CMP 1.1
finder.

query-filter zero or one Specifies the query filter for the CMP 1.1 finder.

query-variables zero or one Specifies variables in query expression for the
CMP 1.1 finder.

query-ordering zero or one Specifies the query ordering for the CMP 1.1
finder.

Table A-46 flush-at-end-of-method Subelements
Element Required Description

method one or more Specifies a bean method.

NOTE This value is automatically generated by the server at deployment or
redeployment time. Do not specify it or change it after deployment.

Table A-45 finder Subelements (Continued)
Element Required Description

H

Appendix A Deployment Descriptor Files 347

Subelements
The following table describes subelements for the gen-class element.

group-name
Specifies a group name in the current realm.

Superelements
security-role-mapping (sun-application.xml, sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

H

http-method
Specifies an HTTP method that is eligible for caching. The default is GET.

Superelements
cache-mapping (sun-web.xml)

Table A-47 gen-classes Subelements
Element Required Description

remote-impl zero or one Specifies the fully-qualified class name of the
generated EJBObject impl class.

local-impl zero or one Specifies the fully-qualified class name of the
generated EJBLocalObject impl class.

remote-home-impl zero or one Specifies the fully-qualified class name of the
generated EJBHome impl class.

local-home-impl zero or one Specifies the fully-qualified class name of the
generated EJBLocalHome impl class.

I

348 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none - contains data

I

idempotent-url-pattern
Not available. Do not use.

Superelements
sun-web-app (sun-web.xml)

integrity
Specifies if the target supports integrity-protected messages. The values are NONE,
SUPPORTED, or REQUIRED.

Superelements
transport-config (sun-ejb-jar.xml)

Subelements
none - contains data

ior-security-config
Specifies the security information for the input-output redirection (IOR).

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the ior-security-config element.

Table A-48 ior-security-config Subelements
Element Required Description

transport-config zero or one Specifies the security information for transport.

as-context zero or one Specifies the authentication mechanism used to
authenticate the client. If specified, it is
USERNAME_PASSWORD.

sas-context zero or one Describes the sas-context fields.

J

Appendix A Deployment Descriptor Files 349

is-cache-overflow-allowed
This element is deprecated. Do not use.

Superelements
bean-cache (sun-ejb-jar.xml)

is-one-one-cmp
This element is not used.

Superelements
cmp (sun-ejb-jar.xml)

is-read-only-bean
Specifies that this entity bean is a read-only bean if true. If this element is absent, the
default value of false is used.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
none - contains data

J

java-method
Specifies a method.

Superelements
message (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the java-method element.

Table A-49 java-method Subelements
Element Required Description

method-name only one Specifies a method name.

J

350 Application Server Platform Edition 2005Q1 • Developer’s Guide

jms-durable-subscription-name
Specifies the durable subscription associated with a message-driven bean class. Only
applies to the Java Message Service Topic Destination type, and only when the
message-driven bean deployment descriptor subscription durability is Durable.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
none - contains data

jms-max-messages-load
Specifies the maximum number of messages to load into a Java Message Service session at
one time for a message-driven bean to serve. The default is 1.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
none - contains data

jndi-name
Specifies the absolute jndi-name of a URL resource or a resource.

For entity beans and session beans, this value specifies the global JNDI name of the
EJBHome object. It is only needed if the entity or session bean exposes a remote view.

For JMS message-driven beans, this is the JNDI name of the JMS resource from which the
message-driven bean consumes JMS messages. This information is alternatively specified
within the activation-config subelement of the mdb-resource-adapter element. For
more information about JMS resources, see Chapter 14, “Using the Java Message Service.”

method-params zero or one Specifies fully qualified Java type names of method
parameters.

Table A-49 java-method Subelements (Continued)
Element Required Description

J

Appendix A Deployment Descriptor Files 351

Superelements
ejb-ref, message-destination, resource-env-ref, resource-ref (sun-web.xml,
sun-ejb-jar.xml, sun-application-client.xml); cmp-resource, ejb,
mdb-connection-factory (sun-ejb-jar.xml)

Subelements
none - contains data

jsp-config
Specifies JSP configuration information.

Superelements
sun-web-app (sun-web.xml)

Subelements
The following table describes subelements for the jsp-config element.

Properties
The default property values are tuned for development of JSP files at the cost of
performance. To maximize performance, set jsp-config properties to these non-default
values:

• development - false (as an alternative, set to true and give
modificationTestInterval a large value)

• mappedfile - false

• trimSpaces - true

• suppressSmap - true

• fork - false (on Solaris)

• classdebuginfo - false

The following table describes properties for the jsp-config element.

Table A-50 jsp-config Subelements
Element Required Description

property
(with
attributes)

zero or more Specifies a property.

J

352 Application Server Platform Edition 2005Q1 • Developer’s Guide

Table A-51 jsp-config Properties
Property Default Description

checkInterval 0 If development is set to false and checkInterval is greater than
zero, background compilations are enabled. The checkInterval
is the time in seconds between checks to see if a JSP file needs
to be recompiled.

classdebuginfo true Specifies whether the generated Java servlets are compiled with
the debug option set (-g for javac).

classpath created
dynamically
based on the
current web
application

Specifies the classpath to use when compiling generated
servlets.

compiler javac Specifies the compiler Ant uses to compile JSP files. See the Ant
documentation for more information:

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/index
.html

development true If set to true, enables development mode, which allows JSP files
to be checked for modification. Specify the frequency at which
JSPs are checked using the modificationTestInterval
property.

dumpSmap false If set to true, dumps SMAP information for JSR 45 debugging to
a file. Set to false if suppressSmap is true.

enablePooling true If set to true, tag handler pooling is enabled.

errorOnUseBeanInvalidClass
Attribute

false If set to true, issues an error when the value of the class
attribute in a useBean action is not a valid bean class.

fork true Specifies that Ant forks the compiling of JSP files, using a JVM
separate from the one in which Tomcat is running.

genStrAsCharArray false If set to true, generates text strings as char arrays, which
improves performance in some cases.

ieClassId clsid:8AD9C840-
044E-11D1-B3E9-
00805F499D93

Specifies the Java plug-in COM class ID for Internet Explorer.
Used by the <jsp:plugin> tags.

javaEncoding UTF8 Specifies the encoding for the generated Java servlet. This
encoding is passed to the Java compiler that is used to compile
the servlet as well. By default, the web container tries to use
UTF8. If that fails, it tries to use the javaEncoding value.

For encodings, see:

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.
html

http://computing.ee.ethz.ch/sepp/ant-1.5.4-ke/manual/index.html
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

K

Appendix A Deployment Descriptor Files 353

K

key-field
Specifies a component of the key used to look up and extract cache entries. The web
container looks for the named parameter, or field, in the specified scope.

If this element is not present, the web container uses the Servlet Path (the path section that
corresponds to the servlet mapping that activated the current request). See the Servlet 2.4
specification, section SRV 4.4, for details on the Servlet Path.

Superelements
cache-mapping (sun-web.xml)

keepgenerated true If set to true, keeps the generated Java files. If false, deletes
the Java files.

mappedfile true If set to true, generates static content with one print statement
per input line, to ease debugging.

modificationTestInterval 0 Specifies the frequency in seconds at which JSPs are checked
for modification. A value of 0 causes the JSP to be checked on
every access. Used only if development is set to true.

scratchdir The default work
directory for the
web application

Specifies the working directory created for storing all the
generated code.

suppressSmap false If set to true, generation of SMAP information for JSR 45
debugging is suppressed.

trimSpaces false If set to true, trims white spaces in template text between
actions or directives.

usePrecompiled false If set to true, an accessed JSP file is not compiled. Its
precompiled servlet class is used instead.

It is assumed that JSP files have been precompiled, and their
corresponding servlet classes have been bundled in the web
application’s WEB-INF/lib or WEB-INF/classes directory.

xpoweredBy true If set to true, the X-Powered-By response header is added by
the generated servlet.

Table A-51 jsp-config Properties (Continued)
Property Default Description

L

354 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none

Attributes
The following table describes attributes for the key-field element.

L

level
Specifies the name of a hierarchical fetch group. The name must be an integer. Fields and
relationships that belong to a hierarchical fetch group of equal (or lesser) value are fetched
at the same time. The value of level must be greater than zero. Only one is allowed.

Superelements
fetched-with (sun-cmp-mappings.xml)

Subelements
none - contains data

local-home-impl
Specifies the fully-qualified class name of the generated EJBLocalHome impl class.

Superelements
gen-classes (sun-ejb-jar.xml)

Table A-52 key-field Attributes
Attribute Default Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie, session.id,
and session.attribute.

NOTE This value is automatically generated by the server at deployment or
redeployment time. Do not specify it or change it after deployment.

L

Appendix A Deployment Descriptor Files 355

Subelements
none - contains data

local-impl
Specifies the fully-qualified class name of the generated EJBLocalObject impl class.

Superelements
gen-classes (sun-ejb-jar.xml)

Subelements
none - contains data

locale-charset-info
Deprecated. For backward compatibility only. Use the parameter-encoding subelement
of sun-web-app instead. Specifies information about the application’s internationalization
settings.

Superelements
sun-web-app (sun-web.xml)

Subelements
The following table describes subelements for the locale-charset-info element.

NOTE This value is automatically generated by the server at deployment or
redeployment time. Do not specify it or change it after deployment.

Table A-53 locale-charset-info Subelements
Element Required Description

locale-charset-map one or more Maps a locale and an agent to a character encoding.
Provided for backward compatibility. Used only for
request processing, and only if no parameter-encoding
is defined.

parameter-encoding zero or one Determines the default request character encoding and
how the web container decodes parameters from forms
according to a hidden field value.

L

356 Application Server Platform Edition 2005Q1 • Developer’s Guide

Attributes
The following table describes attributes for the locale-charset-info element.

locale-charset-map
Maps locales and agents to character encodings. Provided for backward compatibility. Used
only for request processing. Used only if the character encoding is not specified in the
request and cannot be derived from the optional parameter-encoding element.

For encodings, see:

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Superelements
locale-charset-info (sun-web.xml)

Subelements
The following table describes subelements for the locale-charset-map element.

Attributes
The following table describes attributes for the locale-charset-map element.

Table A-54 locale-charset-info Attributes
Attribute Default Description

default-locale none Although a value is required, the value is ignored. Use the
default-charset attribute of the parameter-encoding element.

Table A-55 locale-charset-map Subelements
Element Required Description

description zero or one Specifies an optional text description of a mapping.

Table A-56 locale-charset-map Attributes
Attribute Default Description

locale none Specifies the locale name.

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

L

Appendix A Deployment Descriptor Files 357

Example Agents
The following table specifies example agent attribute values.

localpart
Specifies the local part of a QNAME.

Superelements
service-qname, wsdl-port (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

lock-when-loaded
Places a database update lock on the rows corresponding to the bean whenever the bean is
loaded. How the lock is placed is database-dependent. The lock is released when the
transaction finishes (commit or rollback). While the lock is in place, other database users
have read access to the bean.

Superelements
consistency (sun-cmp-mappings.xml)

agent none (optional) Specifies the type of client that interacts with the application
server. For a given locale, different agents can have different preferred
character encodings. The value of this attribute must exactly match the
value of the user-agent HTTP request header sent by the client. See the
“Example agent Attribute Values” table for more information.

charset none Specifies the character encoding to which the locale maps.

Table A-57 Example agent Attribute Values
Agent user-agent Header and agent Attribute Value

Internet Explorer 5.00 for Windows 2000 Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Netscape 4.7.7 for Windows 2000 Mozilla/4.77 [en] (Windows NT 5.0; U)

Netscape 4.7 for Solaris Mozilla/4.7 [en] (X11; u; Sun OS 5.6 sun4u)

Table A-56 locale-charset-map Attributes (Continued)
Attribute Default Description

L

358 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none - element is present or absent

lock-when-modified
This element is not implemented. Do not use.

Superelements
consistency (sun-cmp-mappings.xml)

log-service
Specifies configuration settings for the log file.

Superelements
client-container (sun-acc.xml)

Subelements
The following table describes subelements for the log-service element.

Attributes
The following table describes attributes for the log-service element.

Table A-58 log-service subelement
Element Required Description

property (with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-59 log-service attributes
Attribute Default Description

log-file your_ACC_dir/logs/client.log (optional) Specifies the file where the application
client container logging information is stored.

level SEVERE (optional) Sets the base level of severity.
Messages at or above this setting get logged to
the log file.

M

Appendix A Deployment Descriptor Files 359

login-config
Specifies the authentication configuration for an EJB web service endpoint. Not needed for
servlet web service endpoints. A servlet’s security configuration is contained in the
web.xml file.

Superelements
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

Subelements
The following table describes subelements for the login-config element.

M

manager-properties
Specifies session manager properties.

Superelements
session-manager (sun-web.xml)

Subelements
The following table describes subelements for the manager-properties element.

Properties
The following table describes properties for the manager-properties element.

Table A-60 login-config subelements
Element Required Description

auth-method only one Specifies the authentication method.

Table A-61 manager-properties Subelements
Element Required Description

property
(with
attributes)

zero or more Specifies a property, which has a name and a value.

M

360 Application Server Platform Edition 2005Q1 • Developer’s Guide

mapping-properties
This element is not implemented.

Superelements
cmp (sun-ejb-jar.xml)

max-cache-size
Specifies the maximum number of beans allowable in cache. A value of zero indicates an
unbounded cache. In reality, there is no hard limit. The max-cache-size limit is just a hint to
the cache implementation. Default is 512.

Applies to stateful session beans and entity beans.

Table A-62 manager-properties Properties
Property Default Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for expired
sessions. This is also the interval at which sessions are
passivated if maxSessions is exceeded.

To prevent data inconsistency, set this value lower than the
frequency at which session data changes. For example, this
value should be as low as possible (1 second) for a hit counter
servlet on a frequently accessed website, or the last few hits
might be lost each time the server is restarted.

Applicable only if the persistence-type attribute of the parent
session-manager element is file.

maxSessions -1 Specifies the maximum number of sessions that are permitted in
the cache, or -1 for no limit. After this, an attempt to create a new
session causes an IllegalStateException to be thrown.

The session manager passivates sessions to the persistent store
when this maximum is reached.

Applicable only if the persistence-type attribute of the parent
session-manager element is file.

sessionFilename none; state is not
preserved across
restarts

Specifies the absolute or relative path to the directory in which
the session state is preserved between application restarts, if
preserving the state is possible. A relative path is relative to the
temporary directory for this web application.

Applicable only if the persistence-type attribute of the parent
session-manager element is memory.

M

Appendix A Deployment Descriptor Files 361

Superelements
bean-cache (sun-ejb-jar.xml)

Subelements
none - contains data

max-pool-size
Specifies the maximum number of bean instances in the pool. Values are from 0 (1 for
message-driven bean) to MAX_INTEGER. A value of 0 means the pool is unbounded.
Default is 64.

Applies to all beans.

Superelements
bean-pool (sun-ejb-jar.xml)

Subelements
none - contains data

max-wait-time-in-millis
This element is deprecated. Do not use.

Superelements
bean-pool (sun-ejb-jar.xml)

mdb-connection-factory
Specifies the connection factory associated with a message-driven bean. Queue or Topic
type must be consistent with the Java Message Service Destination type associated with the
message-driven bean class.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the mdb-connection-factory element.

Table A-63 mdb-connection-factory Subelements
Element Required Description

jndi-name only one Specifies the absolute jndi-name.

M

362 Application Server Platform Edition 2005Q1 • Developer’s Guide

mdb-resource-adapter
Specifies runtime configuration information for a message-driven bean.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the mdb-resource-adapter element.

message
Specifies the methods or operations to which message security requirements apply.

Superelements
message-security (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the message element.

default-resource-principal zero or one Specifies the default sign-on (name/password)
to the resource manager.

Table A-64 mdb-resource-adapter subelements
Element Required Description

resource-adapter-mid zero or one Specifies a resource adapter module ID.

activation-config one or more Specifies an activation configuration.

Table A-65 message Subelements
Element Required Description

java-method zero or one Specifies the methods or operations to which
message security requirements apply.

operation-name zero or one Specifies the WSDL name of an operation of a web
service.

Table A-63 mdb-connection-factory Subelements (Continued)
Element Required Description

M

Appendix A Deployment Descriptor Files 363

message-destination
Specifies the name of a logical message-destination defined within an application. The
message-destination-name matches the corresponding message-destination-name
in the corresponding J2EE deployment descriptor file.

Superelements
sun-web-app (sun-web.xml), enterprise-beans (sun-ejb-jar.xml),
sun-application-client (sun-application-client.xml)

Subelements
The following table describes subelements for the message-destination element.

message-destination-name
Specifies the name of a logical message destination defined within the corresponding J2EE
deployment descriptor file.

Superelements
message-destination (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

message-security
Specifies message security requirements.

• If the grandparent element is webservice-endpoint, these requirements pertain to
request and response messages of the endpoint.

• If the grandparent element is port-info, these requirements pertain to the port of the
referenced service.

Table A-66 message-destination subelements
Element Required Description

message-destination-name only one Specifies the name of a logical message destination defined
within the corresponding J2EE deployment descriptor file.

jndi-name only one Specifies the jndi-name of the associated entity.

M

364 Application Server Platform Edition 2005Q1 • Developer’s Guide

Superelements
message-security-binding (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the message-security element.

message-security-binding
Specifies a custom authentication provider binding for a parent webservice-endpoint or
port-info element in one or both of these ways:

• By binding to a specific provider

• By specifying the message security requirements enforced by the provider

Superelements
webservice-endpoint, port-info (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the message-security-binding element.

Attributes
The following table describes attributes for the message-security-binding element.

Table A-67 message-security Subelements
Element Required Description

message one or more Specifies the methods or operations to which
message security requirements apply.

request-protection zero or one Defines the authentication policy requirements of the
application’s request processing.

response-protection zero or one Defines the authentication policy requirements of the
application’s response processing.

Table A-68 message-security-binding Subelements
Element Required Description

message-security zero or more Specifies message security requirements.

M

Appendix A Deployment Descriptor Files 365

message-security-config
Specifies configurations for message security providers.

Superelements
client-container (sun-acc.xml)

Subelements
The following table describes subelements for the message-security-config element.

Attributes
The following table describes attributes for the message-security-config element.

Table A-69 message-security-binding Attributes
Attribute Default Description

auth-layer none Specifies the message layer at which authentication is
performed. The value must be SOAP.

provider-id none (optional) Specifies the authentication provider used to
satisfy application-specific message security
requirements.

If this attribute is not specified, a default provider is used,
if it is defined for the message layer.

if no default provider is defined, authentication
requirements defined in the message-security-binding
are not enforced.

Table A-70 message-security-config Subelements
Element Required Description

provider-config one or more Specifies a configuration for one message security
provider.

Table A-71 message-security-config Attributes
Attribute Default Description

auth-layer none Specifies the message layer at which authentication is
performed. The value must be SOAP.

M

366 Application Server Platform Edition 2005Q1 • Developer’s Guide

method
Specifies a bean method.

Superelements
flush-at-end-of-method (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the method element.

method-intf
Specifies the method interface to distinguish between methods with the same name in
different interfaces. Allowed values are Home, Remote, LocalHome, and Local.

Superelements
method (sun-ejb-jar.xml)

Subelements
none - contains data

default-provider none (optional) Specifies the server provider that is invoked for
any application not bound to a specific server provider.

default-client-provider none (optional) Specifies the client provider that is invoked for
any application not bound to a specific client provider.

Table A-72 method Subelements
Element Required Description

description zero or one Specifies an optional text description.

ejb-name zero or one Matches the ejb-name in the corresponding
ejb-jar.xml file.

method-name only one Specifies a method name.

method-intf zero or one Specifies the method interface to distinguish between
methods with the same name in different interfaces.

method-params zero or one Specifies fully qualified Java type names of method
parameters.

Table A-71 message-security-config Attributes (Continued)
Attribute Default Description

M

Appendix A Deployment Descriptor Files 367

method-name
Specifies a method name or * (an asterisk) for all methods. If a method is overloaded,
specifies all methods with the same name.

Superelements
java-method (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
finder, query-method , method (sun-ejb-jar.xml)

Subelements
none - contains data

Examples
<method-name>findTeammates</method-name>

<method-name>*</method-name>

method-param
Specifies the fully qualified Java type name of a method parameter.

Superelements
method-params (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

method-params
Specifies fully qualified Java type names of method parameters.

Superelements
java-method (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
query-method, method (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the method-params element.

Table A-73 method-params Subelements
Element Required Description

method-param zero or more Specifies the fully qualified Java type name of a
method parameter.

N

368 Application Server Platform Edition 2005Q1 • Developer’s Guide

N

name
Specifies the name of the entity.

Superelements
call-property, default-resource-principal, stub-property (sun-web.xml,
sun-ejb-jar.xml, sun-application-client.xml); enterprise-beans, principal,
property (with subelements) (sun-ejb-jar.xml)

Subelements
none - contains data

named-group
Specifies the name of one independent fetch group. All the fields and relationships that are
part of a named group are fetched at the same time. A field belongs to only one fetch group,
regardless of what type of fetch group is used.

Superelements
fetched-with (sun-cmp-mappings.xml)

Subelements
none - contains data

namespaceURI
Specifies the namespace URI.

Superelements
service-qname, wsdl-port (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

none
Specifies that this field or relationship is fetched by itself, with no other fields or
relationships.

O

Appendix A Deployment Descriptor Files 369

Superelements
consistency, fetched-with (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

O

one-one-finders
Describes the finders for CMP 1.1 beans.

Superelements
cmp (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the one-one-finders element.

operation-name
Specifies the WSDL name of an operation of a web service.

Superelements
message (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

Table A-74 one-one-finders Subelements
Element Required Description

finder one or more Describes the finders for CMP 1.1 with a method name and query.

P

370 Application Server Platform Edition 2005Q1 • Developer’s Guide

P

parameter-encoding
Specifies the default request character encoding and how the web container decodes
parameters from forms according to a hidden field value.

If both the sun-web-app and locale-charset-info elements have
parameter-encoding subelements, the subelement of sun-web-app takes precedence.

For encodings, see:

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Superelements
locale-charset-info, sun-web-app (sun-web.xml)

Subelements
none

Attributes
The following table describes attributes for the parameter-encoding element.

pass-by-reference
Specifies the passing method used by a servlet or enterprise bean calling a remote interface
method in another bean that is co-located within the same process.

• If false (the default if this element is not present), this application uses pass-by-value
semantics.

• If true, this application uses pass-by-reference semantics.

Table A-75 parameter-encoding Attributes
Attribute Default Description

form-hint-field none (optional) The name of the hidden field in the form. This field
specifies the character encoding the web container uses for
request.getParameter and request.getReader calls when
the charset is not set in the request’s content-type header.

default-charset ISO-8859-1 (optional) The default request character encoding.

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

P

Appendix A Deployment Descriptor Files 371

When a servlet or enterprise bean calls a remote interface method in another bean that is
co-located within the same process, by default the Sun Java System Application Server
makes copies of all the call parameters in order to preserve the pass-by-value semantics.
This increases the call overhead and decreases performance.

However, if the calling method does not change the object being passed as a parameter, it is
safe to pass the object itself without making a copy of it. To do this, set the
pass-by-reference value to true.

The setting of this element in the sun-application.xml file applies to all EJB modules in
the application. For an individually deployed EJB module, you can set the same element in
the sun-ejb-jar.xml file. If pass-by-reference is used at both the bean and
application level, the bean level takes precedence.

Superelements
sun-application (sun-application.xml), ejb (sun-ejb-jar.xml)

Subelements
none - contains data

NOTE The pass-by-reference element only applies to remote calls. As defined
in the EJB 2.1 specification, section 5.4, calls to local interfaces use
pass-by-reference semantics.

If the pass-by-reference element is set to its default value of false, the
passing semantics for calls to remote interfaces comply with the EJB 2.1
specification, section 5.4. If set to true, remote calls involve
pass-by-reference semantics instead of pass-by-value semantics, contrary
to this specification.

Portable programs cannot assume that a copy of the object is made during
such a call, and thus that it’s safe to modify the original. Nor can they
assume that a copy is not made, and thus that changes to the object are
visible to both caller and callee. When this element is set to true,
parameters and return values should be considered read-only. The behavior
of a program that modifies such parameters or return values is undefined.

P

372 Application Server Platform Edition 2005Q1 • Developer’s Guide

password
Specifies the password for the principal.

Superelements
default-resource-principal (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

pm-descriptors
This element and its subelements are deprecated. Do not use.

Superelements
enterprise-beans (sun-ejb-jar.xml)

pool-idle-timeout-in-seconds
Specifies the maximum time, in seconds, that a bean instance is allowed to remain idle in
the pool. When this timeout expires, the bean instance in a pool becomes a candidate for
passivation or deletion. This is a hint to the server. A value of 0 specifies that idle beans
remain in the pool indefinitely. Default value is 600.

Applies to stateless session beans, entity beans, and message-driven beans.

Superelements
bean-pool (sun-ejb-jar.xml)

Subelements
none - contains data

port-component-name
Specifies a unique name for a port component within a web or EJB module.

Superelements
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

NOTE For a stateless session bean or a message-driven bean, the bean is removed
(garbage collected) when the timeout expires.

P

Appendix A Deployment Descriptor Files 373

Subelements
none - contains data

port-info
Specifies information for a port within a web service reference.

Either a service-endpoint-interface or a wsdl-port or both must be specified. If
both are specified, wsdl-port specifies the port that the container chooses for
container-managed port selection.

The same wsdl-port value must not appear in more than one port-info element within
the same service-ref.

If a service-endpoint-interface is using container-managed port selection, its value
must not appear in more than one port-info element within the same service-ref.

Superelements
service-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the port-info element.

Table A-76 port-info subelements
Element Required Description

service-endpoint-interface zero or one Specifies the web service reference name relative to
java:comp/env.

wsdl-port zero or one Specifies the WSDL port.

stub-property zero or more Specifies JAX-RPC property values that are set on a
javax.xml.rpc.Stub object before it is returned to the web
service client.

call-property zero or more Specifies JAX-RPC property values that are set on a
javax.xml.rpc.Call object before it is returned to the web
service client.

message-security-binding zero or one Specifies a custom authentication provider binding.

P

374 Application Server Platform Edition 2005Q1 • Developer’s Guide

prefetch-disabled
Disables prefetching of entity bean states for the specified query methods.
Container-managed relationship fields are prefetched if their fetched-with element is set
to default.

Superelements
cmp (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the prefetch-disabled element.

principal
Defines a node that specifies a user name on the platform.

Superelements
ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the principal element.

principal-name
Contains the principal (user) name.

In an enterprise bean, specifies the principal (user) name that has the run-as role specified.

Superelements
security-role-mapping (sun-application.xml, sun-web.xml, sun-ejb-jar.xml),
servlet (sun-web.xml)

Table A-77 prefetch-disabled Subelements
Element Required Description

query-method one or more Specifies a query method.

Table A-78 principal Subelements
Element Required Description

name only one Specifies the name of the user.

P

Appendix A Deployment Descriptor Files 375

Subelements
none - contains data

property (with attributes)
Specifies the name and value of a property. A property adds configuration information to its
parent element that is one or both of the following:

• Optional with respect to Sun Java System Application Server

• Needed by a system or object that Sun Java System Application Server doesn’t have
knowledge of, such as an LDAP server or a Java class

Superelements
cache, cache-helper, class-loader, cookie-properties, default-helper,
manager-properties, session-properties, store-properties, sun-web-app
(sun-web.xml); auth-realm, client-container, client-credential, log-service,
provider-config (sun-acc.xml)

Subelements
The following table describes subelements for the property element.

Attributes
The following table describes attributes for the property element.

Table A-79 property Subelements
Element Required Description

description zero or one Specifies an optional text description of a property.

NOTE The property element in the sun-acc.xml file has no subelements.

Table A-80 property Attributes
Attribute Default Description

name none Specifies the name of the property.

value none Specifies the value of the property.

P

376 Application Server Platform Edition 2005Q1 • Developer’s Guide

Example
<property name="reapIntervalSeconds" value="20" />

property (with subelements)
Specifies the name and value of a property. A property adds configuration information to its
parent element that is one or both of the following:

• Optional with respect to Sun Java System Application Server

• Needed by a system or object that Sun Java System Application Server doesn’t have
knowledge of, such as an LDAP server or a Java class

Superelements
cmp-resource, schema-generator-properties (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the property element.

Example
<property>

<name>use-unique-table-names</name>
<value>true</value>

</property>

provider-config
Specifies a configuration for one message security provider.

Although the request-policy and response-policy subelements are optional, the
provider-config element does nothing if they are not specified.

Use property subelements to configure provider-specific properties. Property values are
passed to the provider when its initialize method is called.

Superelements
message-security-config (sun-acc.xml)

Table A-81 property subelements
Element Required Description

name only one Specifies the name of the property.

value only one Specifies the value of the property.

Q

Appendix A Deployment Descriptor Files 377

Subelements
The following table describes subelements for the provider-config element.

Attributes
The following table describes attributes for the provider-config element.

Q

query-filter
Specifies the query filter for the CMP 1.1 finder.

Superelements
finder (sun-ejb-jar.xml)

Table A-82 provider-config Subelements
Element Required Description

request-policy zero or one Defines the authentication policy requirements of the
authentication provider’s request processing.

response-policy zero or one Defines the authentication policy requirements of the
authentication provider’s response processing.

property (with
attributes)

zero or more Specifies a property or a variable.

Table A-83 provider-config Attributes
Attribute Default Description

provider-id none Specifies the provider ID.

provider-type none Specifies whether the provider is a client, server, or client-server
authentication provider.

class-name none Specifies the Java implementation class of the provider. Client
authentication providers must implement the
com.sun.enterprise.security.jauth.ClientAuthModule interface.
Server authentication providers must implement the
com.sun.enterprise.security.jauth.ServerAuthModule interface.
Client-server providers must implement both interfaces.

Q

378 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none - contains data

query-method
Specifies a query method.

Superelements
prefetch-disabled (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the query-method element.

query-ordering
Specifies the query ordering for the CMP 1.1 finder.

Superelements
finder (sun-ejb-jar.xml)

Subelements
none - contains data

query-params
Specifies the query parameters for the CMP 1.1 finder.

Superelements
finder (sun-ejb-jar.xml)

Subelements
none - contains data

Table A-84 query-method Subelements
Element Required Description

method-name only one Specifies a method name.

method-params only one Specifies the fully qualified Java type names of
method parameters.

R

Appendix A Deployment Descriptor Files 379

query-variables
Specifies variables in the query expression for the CMP 1.1 finder.

Superelements
finder (sun-ejb-jar.xml)

Subelements
none - contains data

R

read-only
Specifies that a field is read-only if true. If this element is absent, the default value is
false .

Superelements
cmp-field-mapping (sun-cmp-mappings.xml)

Subelements
none - contains data

realm
Specifies the name of the realm used to process all authentication requests associated with
this application. If this element is not specified or does not match the name of a configured
realm, the default realm is used. For more information about realms, see “Realm
Configuration” on page 40.

Superelements
sun-application (sun-application.xml), as-context (sun-ejb-jar.xml)

Subelements
none - contains data

refresh-field
Specifies a field that gives the application component a programmatic way to refresh a
cached entry.

R

380 Application Server Platform Edition 2005Q1 • Developer’s Guide

Superelements
cache-mapping (sun-web.xml)

Subelements
none

Attributes
The following table describes attributes for the refresh-field element.

refresh-period-in-seconds
Specifies the rate at which a read-only-bean must be refreshed from the data source. If the
value is less than or equal to zero, the bean is never refreshed; if the value is greater than
zero, the bean instances are refreshed at the specified interval. This rate is just a hint to the
container. Default is 0 (no refresh).

Superelements
ejb (sun-ejb-jar.xml)

Subelements
none - contains data

removal-timeout-in-seconds
Specifies the amount of time a bean instance can remain idle in the container before it is
removed (timeout). A value of 0 specifies that the container does not remove inactive beans
automatically. The default value is 5400.

If removal-timeout-in-seconds is less than or equal to
cache-idle-timeout-in-seconds, beans are removed immediately without being
passivated.

Applies to stateful session beans.

Table A-85 refresh-field Attributes
Attribute Default Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie, session.id,
and session.attribute.

R

Appendix A Deployment Descriptor Files 381

For related information, see cache-idle-timeout-in-seconds.

Superelements
bean-cache (sun-ejb-jar.xml)

Subelements
none - contains data

remote-home-impl
Specifies the fully-qualified class name of the generated EJBHome impl class.

Superelements
gen-classes (sun-ejb-jar.xml)

Subelements
none - contains data

remote-impl
Specifies the fully-qualified class name of the generated EJBObject impl class.

Superelements
gen-classes (sun-ejb-jar.xml)

Subelements
none - contains data

request-policy
Defines the authentication policy requirements of the authentication provider’s request
processing.

NOTE This value is automatically generated by the server at deployment or
redeployment time. Do not specify it or change it after deployment.

NOTE This value is automatically generated by the server at deployment or
redeployment time. Do not specify it or change it after deployment.

R

382 Application Server Platform Edition 2005Q1 • Developer’s Guide

Superelements
provider-config (sun-acc.xml)

Subelements
none

Attributes
The following table describes attributes for the request-policy element.

request-protection
Defines the authentication policy requirements of the application’s request processing.

Superelements
message-security (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none

Attributes
The following table describes attributes for the request-protection element.

Table A-86 request-policy Attributes
Attribute Default Description

auth-source none Specifies the type of required authentication, either sender (user name and
password) or content (digital signature).

auth-recipient none Specifies whether recipient authentication occurs before or after content
authentication. Allowed values are before-content and after-content.

Table A-87 request-protection Attributes
Attribute Default Description

auth-source none Specifies the type of required authentication, either sender (user name and
password) or content (digital signature).

auth-recipient none Specifies whether recipient authentication occurs before or after content
authentication. Allowed values are before-content and after-content.

R

Appendix A Deployment Descriptor Files 383

required
Specifies whether the authentication method specified must be used for client
authentication. The value is true or false.

Superelements
as-context (sun-ejb-jar.xml)

Subelements
none - contains data

res-ref-name
Specifies the res-ref-name in the corresponding J2EE deployment descriptor file
resource-ref entry. The res-ref-name element specifies the name of a resource
manager connection factory reference. The name must be unique within an enterprise bean.

Superelements
resource-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

resize-quantity
Specifies the number of bean instances to be:

• Created, if a request arrives when the pool has less than steady-pool-size quantity
of beans (applies to pools only for creation). If the pool has more than
steady-pool-size minus resize-quantity of beans, then resize-quantity is
still created.

• Removed, when the pool-idle-timeout-in-seconds timer expires and a cleaner
thread removes any unused instances.

❍ For caches, when max-cache-size is reached, resize-quantity beans are
selected for passivation using the victim-selection-policy. In addition, the
cache-idle-timeout-in-seconds or removal-timeout-in-seconds timers
passivate beans from the cache.

❍ For pools, when the max-pool-size is reached, resize-quantity beans are
selected for removal. In addition, the pool-idle-timeout-in-seconds timer
removes beans until steady-pool-size is reached.

Values are from 0 to MAX_INTEGER. The pool is not resized below the
steady-pool-size. Default is 16.

R

384 Application Server Platform Edition 2005Q1 • Developer’s Guide

Applies to stateless session beans, entity beans, and message-driven beans.

For EJB pools, the value can be defined in the EJB container. Default is 16.

For EJB caches, the value can be defined in the EJB container. Default is 32.

For message-driven beans, the value can be defined in the EJB container. Default is 2.

Superelements
bean-cache, bean-pool (sun-ejb-jar.xml)

Subelements
none - contains data

resource-adapter-mid
Specifies the module ID of the resource adapter that is responsible for delivering messages
to the message-driven bean.

Superelements
mdb-resource-adapter (sun-ejb-jar.xml)

Subelements
none - contains data

resource-env-ref
Maps the res-ref-name in the corresponding J2EE deployment descriptor file
resource-env-ref entry to the absolute jndi-name of a resource.

Superelements
sun-web-app (sun-web.xml), ejb (sun-ejb-jar.xml), sun-application-client
(sun-application-client.xml)

Subelements
The following table describes subelements for the resource-env-ref element.

Table A-88 resource-env-ref Subelements
Element Required Description

resource-env-ref-name only one Specifies the res-ref-name in the
corresponding J2EE deployment descriptor file
resource-env-ref entry.

R

Appendix A Deployment Descriptor Files 385

Example
<resource-env-ref>

<resource-env-ref-name>jms/StockQueueName</resource-env-ref-name>
<jndi-name>jms/StockQueue</jndi-name>

</resource-env-ref>

resource-env-ref-name
Specifies the res-ref-name in the corresponding J2EE deployment descriptor file
resource-env-ref entry.

Superelements
resource-env-ref (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

resource-ref
Maps the res-ref-name in the corresponding J2EE deployment descriptor file
resource-ref entry to the absolute jndi-name of a resource.

jndi-name only one Specifies the absolute jndi-name of a
resource.

NOTE Connections acquired from JMS connection factories are not shareable in
the current release of the Sun Java System Application Server. The
res-sharing-scope element in the ejb-jar.xml file resource-ref
element is ignored for JMS connection factories.

When resource-ref specifies a JMS connection factory for the Sun Java
System Message Queue, the default-resource-principal
(name/password) must exist in the Sun Java System Message Queue user
repository. Refer to the Security Management chapter in the Sun Java
System Message Queue Administration Guide for information on how to
manage the Sun Java System Message Queue user repository.

Table A-88 resource-env-ref Subelements (Continued)
Element Required Description

R

386 Application Server Platform Edition 2005Q1 • Developer’s Guide

Superelements
sun-web-app (sun-web.xml), ejb (sun-ejb-jar.xml), sun-application-client
(sun-application-client.xml)

Subelements
The following table describes subelements for the resource-ref element.

Example
<resource-ref>

<res-ref-name>jdbc/EmployeeDBName</res-ref-name>
<jndi-name>jdbc/EmployeeDB</jndi-name>

</resource-ref>

response-policy
Defines the authentication policy requirements of the authentication provider’s response
processing.

Superelements
provider-config (sun-acc.xml)

Subelements
none

Attributes
The following table describes attributes for the response-policy element.

Table A-89 resource-ref Subelements
Element Required Description

res-ref-name only one Specifies the res-ref-name in the corresponding J2EE
deployment descriptor file resource-ref entry.

jndi-name only one Specifies the absolute jndi-name of a resource.

default-resource-
principal

zero or one Specifies the default principal (user) for the resource.

Table A-90 response-policy Attributes
Attribute Default Description

auth-source none Specifies the type of required authentication, either sender (user name and
password) or content (digital signature).

R

Appendix A Deployment Descriptor Files 387

response-protection
Defines the authentication policy requirements of the application’s response processing.

Superelements
message-security (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none

Attributes
The following table describes attributes for the response-protection element.

role-name
Contains the role-name in the security-role element of the corresponding J2EE
deployment descriptor file.

Superelements
security-role-mapping (sun-application.xml, sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

auth-recipient none Specifies whether recipient authentication occurs before or after content
authentication. Allowed values are before-content and after-content.

Table A-91 response-protection Attributes
Attribute Default Description

auth-source none Specifies the type of required authentication, either sender (user name and
password) or content (digital signature).

auth-recipient none Specifies whether recipient authentication occurs before or after content
authentication. Allowed values are before-content and after-content.

Table A-90 response-policy Attributes (Continued)
Attribute Default Description

S

388 Application Server Platform Edition 2005Q1 • Developer’s Guide

S

sas-context
Describes the sas-context fields.

Superelements
ior-security-config (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the sas-context element.

schema
Specifies the file that contains a description of the database schema to which the beans in
this sun-cmp-mappings.xml file are mapped. If this element is empty, the database
schema file is automatically generated at deployment time. Otherwise, the schema element
names a .dbschema file with a pathname relative to the directory containing the
sun-cmp-mappings.xml file, but without the .dbschema extension. See “Automatic
Database Schema Capture” on page 175.

Superelements
sun-cmp-mapping (sun-cmp-mappings.xml)

Subelements
none - contains data

Examples
<schema/> <!-- use automatic schema generation -->

<schema>CompanySchema</schema> <!-- use "CompanySchema.dbschema" -->

Table A-92 sas-context Subelements
Element Required Description

caller-propagation only one Specifies whether the target accepts propagated
caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

S

Appendix A Deployment Descriptor Files 389

schema-generator-properties
Specifies field-specific column attributes in property subelements.

Superelements
cmp-resource (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the schema-generator-properties
element.

Properties
The following table describes properties for the schema-generator-properties
element.

Example
<schema-generator-properties>

<property>
<name>Employee.firstName.jdbc-type</name>
<value>char</value>

</property>
<property>

<name>Employee.firstName.jdbc-maximum-length</name>
<value>25</value>

</property>
<property>

Table A-93 schema-generator-properties Subelements
Element Required Description

property (with
subelements)

zero or more Specifies a property name and value.

Table A-94 schema-generator-properties Properties
Property Default Description

use-unique-table-names false Specifies that generated table names are unique within each application
server domain. This property can be overridden during deployment. See
Table 7-5 on page 174.

bean_name.field_name.attribute none Defines a column attribute. For attribute descriptions, see Table 7-4 on
page 173.

S

390 Application Server Platform Edition 2005Q1 • Developer’s Guide

<name>use-unique-table-names</name>
<value>true</value>

</property>
</schema-generator-properties>

secondary-table
Specifies a bean’s secondary table(s).

Superelements
entity-mapping (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the secondary-table element.

security
Defines the SSL security configuration for IIOP/SSL communication with the target server.

Superelements
target-server (sun-acc.xml)

Subelements
The following table describes subelements for the security element.

Table A-95 secondary table Subelements
Element Required Description

table-name only one Specifies the name of a database table.

column-pair one or more Specifies the pair of columns that determine the relationship
between two database tables.

Table A-96 security Subelements
Element Required Description

ssl only one Specifies the SSL processing parameters.

cert-db only one Not implemented. Included for backward compatibility only.

S

Appendix A Deployment Descriptor Files 391

security-role-mapping
Maps roles to users or groups in the currently active realm. See “Realm Configuration” on
page 40 for how to define the currently active realm.

The role mapping element maps a role, as specified in the EJB JAR role-name entries, to a
environment-specific user or group. If it maps to a user, it must be a concrete user which
exists in the current realm, who can log into the server using the current authentication
method. If it maps to a group, the realm must support groups and the group must be a
concrete group which exists in the current realm. To be useful, there must be at least one
user in that realm who belongs to that group.

Superelements
sun-application (sun-application.xml), sun-web-app (sun-web.xml),
sun-ejb-jar (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the security-role-mapping element.

service-endpoint-interface
Specifies the web service reference name relative to java:comp/env.

Superelements
port-info (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

Table A-97 security-role-mapping Subelements
Element Required Description

role-name only one Contains the role-name in the security-role
element of the corresponding J2EE deployment
descriptor file.

principal-name one or more if no group-name,
otherwise zero or more

Contains a principal (user) name in the current
realm. In an enterprise bean, the principal must
have the run-as role specified.

group-name one or more if no principal-name,
otherwise zero or more

Contains a group name in the current realm.

S

392 Application Server Platform Edition 2005Q1 • Developer’s Guide

service-impl-class
Specifies the name of the generated service implementation class.

Superelements
service-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

service-qname
Specifies the WSDL service element that is being referred to.

Superelements
service-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

Subelements
The following table describes subelements for the service-qname element.

service-ref
Specifies runtime settings for a web service reference. Runtime information is only needed
in the following cases:

• To define the port used to resolve a container-managed port

• To define the default Stub/Call property settings for Stub objects

• To define the URL of a final WSDL document to be used instead of the one associated
with the service-ref in the standard J2EE deployment descriptor

Superelements
sun-web-app (sun-web.xml), ejb (sun-ejb-jar.xml), sun-application-client
(sun-application-client.xml)

Table A-98 service-qname subelements
Element Required Description

namespaceURI only one Specifies the namespace URI.

localpart only one Specifies the local part of a QNAME.

S

Appendix A Deployment Descriptor Files 393

Subelements
The following table describes subelements for the service-ref element.

service-ref-name
Specifies the web service reference name relative to java:comp/env.

Superelements
service-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

servlet
Specifies a principal name for a servlet. Used for the run-as role defined in web-xml.

Superelements
sun-web-app (sun-web.xml)

Subelements
The following table describes subelements for the servlet element.

Table A-99 service-ref subelements
Element Required Description

service-ref-name only one Specifies the web service reference name relative to
java:comp/env.

port-info zero or more Specifies information for a port within a web service
reference.

call-property zero or more Specifies JAX-RPC property values that can be set on a
javax.xml.rpc.Call object before it is returned to
the web service client.

wsdl-override zero or one Specifies a valid URL pointing to a final WSDL
document.

service-impl-class zero or one Specifies the name of the generated service
implementation class.

service-qname zero or one Specifies the WSDL service element that is being
referenced.

S

394 Application Server Platform Edition 2005Q1 • Developer’s Guide

servlet-impl-class
Specifies the automatically generated name of the servlet implementation class.

Superelements
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

servlet-name
Specifies the name of a servlet, which is matched to a servlet-name in web.xml. This
name must be present in web.xml.

Superelements
cache-mapping, servlet (sun-web.xml)

Subelements
none - contains data

session-config
Specifies session configuration information. Overrides the web container settings for an
individual web application.

Superelements
sun-web-app (sun-web.xml)

Subelements
The following table describes subelements for the session-config element.

Table A-100 servlet Subelements
Element Required Description

servlet-name only one Contains the name of a servlet, which is matched to a
servlet-name in web.xml.

principal-name zero or one Contains a principal (user) name in the current realm.

webservice-endpoint zero or more Specifies information about a web service endpoint.

S

Appendix A Deployment Descriptor Files 395

session-manager
Specifies session manager information.

Superelements
session-config (sun-web.xml)

Subelements
The following table describes subelements for the session-manager element.

Attributes
The following table describes attributes for the session-manager element.

Table A-101 session-config Subelements
Element Required Description

session-manager zero or one Specifies session manager configuration
information.

session-properties zero or one Specifies session properties.

cookie-properties zero or one Specifies session cookie properties.

Table A-102 session-manager Subelements
Element Required Description

manager-properties zero or one Specifies session manager properties.

store-properties zero or one Specifies session persistence (storage) properties.

Table A-103 session-manager Attributes
Attribute Default Description

persistence-type memory (optional) Specifies the session persistence
mechanism. Allowed values are memory and file.

S

396 Application Server Platform Edition 2005Q1 • Developer’s Guide

session-properties
Specifies session properties.

Superelements
session-config (sun-web.xml)

Subelements
The following table describes subelements for the session-properties element.

Properties
The following table describes properties for the session-properties element.

Table A-104 session-properties Subelements
Element Required Description

property
(with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-105 session-properties Properties
Property Default Description

timeoutSeconds 1800 Specifies the default maximum inactive interval (in seconds) for all
sessions created in this web module. If set to 0 or less, sessions in this
web module never expire.

If a session-timeout element is specified in the web.xml file, the
session-timeout value overrides any timeoutSeconds value. If
neither session-timeout nor timeoutSeconds is specified, the
timeoutSeconds default is used.

Note that the session-timeout element in web.xml is specified in
minutes, not seconds.

enableCookies true Uses cookies for session tracking if set to true.

enableURLRewriting true Enables URL rewriting. This provides session tracking via URL
rewriting when the browser does not accept cookies. You must also
use an encodeURL or encodeRedirectURL call in the servlet or JSP.

S

Appendix A Deployment Descriptor Files 397

ssl
Defines SSL processing parameters.

Superelements
security (sun-acc.xml)

Subelements
none

Attributes
The following table describes attributes for the SSL element.

steady-pool-size
Specifies the initial and minimum number of bean instances that are maintained in the pool.
Default is 32. Applies to stateless session beans and message-driven beans.

Superelements
bean-pool (sun-ejb-jar.xml)

Table A-106 ssl attributes

Attribute Default Description

cert-nickname none (optional) The nickname of the server certificate in the
certificate database or the PKCS#11 token. In the
certificate, the name format is tokenname:nickname.
Including the tokenname: part of the name in this attribute
is optional.

ssl2-enabled false (optional) Determines whether SSL2 is enabled.

ssl2-ciphers none (optional) A space-separated list of the SSL2 ciphers used
with the prefix + to enable or - to disable. For example,
+rc4. Allowed values are rc4, rc4export, rc2,
rc2export, idea, des, desede3.

ssl3-enabled true (optional) Determines whether SSL3 is enabled.

ssl3-tls-ciphers none (optional) A space-separated list of the SSL3 ciphers
used, with the prefix + to enable or - to disable, for
example +rsa_des_sha. Allowed SSL3 values are
rsa_rc4_128_md5, , rsa_des_sha,
rsa_rc4_40_md5, rsa_rc2_40_md5, rsa_null_md5.
Allowed TLS values are rsa_des_56_sha,
rsa_rc4_56_sha.

tls-enabled true (optional) Determines whether TLS is enabled.

S

398 Application Server Platform Edition 2005Q1 • Developer’s Guide

Subelements
none - contains data

store-properties
Specifies session persistence (storage) properties.

Superelements
session-manager (sun-web.xml)

Subelements
The following table describes subelements for the store-properties element.

Properties
The following table describes properties for the store-properties element.

stub-property
Specifies JAX-RPC property values that are set on a javax.xml.rpc.Stub object before it
is returned to the web service client. The property names can be any properties supported by
the JAX-RPC Stub implementation.

Superelements
port-info (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Table A-107 store-properties Subelements
Element Required Description

property
(with
attributes)

zero or more Specifies a property, which has a name and a value.

Table A-108 store-properties Properties
Property Default Description

directory domain_dir/generated/jsp
/j2ee-apps/
appname/appname_war

Specifies the absolute or relative pathname of the directory
into which individual session files are written. A relative path is
relative to the temporary work directory for this web
application.

Applicable only if the persistence-type attribute of the
parent session-manager element is file.

S

Appendix A Deployment Descriptor Files 399

Subelements
The following table describes subelements for the stub-property element.

Example
<service-ref>

<service-ref-name>service/FooProxy</service-ref-name>
<port-info>

<service-endpoint-interface>a.FooPort</service-endpoint-interface>
<wsdl-port>

<namespaceURI>urn:Foo</namespaceURI>
<localpart>FooPort</localpart>

</wsdl-port>
<stub-property>

<name>javax.xml.rpc.service.endpoint.address</name>
<value>http://localhost:8080/a/Foo</value>

</stub-property>
</port-info>

</service-ref>

sun-application
Defines the Sun Java System Application Server specific configuration for an application.
This is the root element; there can only be one sun-application element in a
sun-application.xml file. See “The sun-application.xml File” on page 295.

Superelements
none

Subelements
The following table describes subelements for the sun-application element.

Table A-109 stub-property subelements
Element Required Description

name only one Specifies the name of the entity.

value only one Specifies the value of the entity.

Table A-110 sun-application Subelements
Element Required Description

web zero or more Specifies the application’s web tier
configuration.

S

400 Application Server Platform Edition 2005Q1 • Developer’s Guide

sun-application-client
Defines the Sun Java System Application Server specific configuration for an application
client. This is the root element; there can only be one sun-application-client element
in a sun-application-client.xml file. See “The sun-application-client.xml file” on
page 308.

Superelements
none

Subelements
The following table describes subelements for the sun-application-client element.

pass-by-reference zero or one Determines whether EJB modules use
pass-by-value or pass-by-reference semantics.

unique-id zero or one Contains the unique ID for the application.

security-role-mapping zero or more Maps a role in the corresponding J2EE XML
file to a user or group.

realm zero or one Specifies an authentication realm.

Table A-111 sun-application-client subelements
Element Required Description

ejb-ref zero or more Maps the absolute JNDI name to the ejb-ref in the
corresponding J2EE XML file.

resource-ref zero or more Maps the absolute JNDI name to the resource-ref
in the corresponding J2EE XML file.

resource-env-ref zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding J2EE XML
file.

service-ref zero or more Specifies runtime settings for a web service reference.

message-destination zero or more Specifies the name of a logical message destination.

Table A-110 sun-application Subelements (Continued)
Element Required Description

S

Appendix A Deployment Descriptor Files 401

sun-cmp-mapping
Specifies beans mapped to a particular database schema.

Superelements
sun-cmp-mappings (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the sun-cmp-mapping element.

sun-cmp-mappings
Defines the Sun Java System Application Server specific CMP mapping configuration for
an EJB JAR file. This is the root element; there can only be one sun-cmp-mappings
element in a sun-cmp-mappings.xml file. See “The sun-cmp-mappings.xml File” on
page 304.

Superelements
none

Subelements
The following table describes subelements for the sun-cmp-mappings element.

NOTE A bean cannot be related to a bean that maps to a different database
schema, even if the beans are deployed in the same EJB JAR file.

Table A-112 sun-cmp-mapping Subelements
Element Required Description

schema only one Specifies the file that contains a description of the database
schema.

entity-mapping one or more Specifies the mapping of a bean to database columns.

Table A-113 sun-cmp-mappings Subelements
Element Required Description

sun-cmp-mapping one or more Specifies beans mapped to a particular
database schema.

S

402 Application Server Platform Edition 2005Q1 • Developer’s Guide

sun-ejb-jar
Defines the Sun Java System Application Server specific configuration for an EJB JAR file.
This is the root element; there can only be one sun-ejb-jar element in a
sun-ejb-jar.xml file. See “The sun-ejb-jar.xml File” on page 299.

Superelements
none

Subelements
The following table describes subelements for the sun-ejb-jar element.

sun-web-app
Defines Sun Java System Application Server specific configuration for a web module. This
is the root element; there can only be one sun-web-app element in a sun-web.xml file.
See “The sun-web.xml File” on page 295.

Superelements
none

Subelements
The following table describes subelements for the sun-web-app element.

Table A-114 sun-ejb-jar Subelements
Element Required Description

security-role-mapping zero or more Maps a role in the corresponding J2EE XML
file to a user or group.

enterprise-beans only one Describes all the runtime properties for an EJB
JAR file in the application.

Table A-115 sun-web-app Subelements
Element Required Description

context-root zero or one Contains the web context root for the web
application.

security-role-mapping zero or more Maps roles to users or groups in the currently
active realm.

servlet zero or more Specifies a principal name for a servlet, which
is used for the run-as role defined in
web.xml.

S

Appendix A Deployment Descriptor Files 403

Attributes
The following table describes attributes for the sun-web-app element.

idempotent-url-pattern zero or more Not available. Do not use.

session-config zero or one Specifies session manager, session cookie,
and other session-related information.

ejb-ref zero or more Maps the absolute JNDI name to the ejb-ref
in the corresponding J2EE XML file.

resource-ref zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE
XML file.

resource-env-ref zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding
J2EE XML file.

service-ref zero or more Specifies runtime settings for a web service
reference.

cache zero or one Configures caching for web application
components.

class-loader zero or one Specifies classloader configuration
information.

jsp-config zero or one Specifies JSP configuration information.

locale-charset-info zero or one Deprecated. Use the parameter-encoding
subelement of sun-web-app instead.

property (with
attributes)

zero or more Specifies a property, which has a name and a
value.

parameter-encoding zero or one Determines the default request character
encoding and how the web container decodes
parameters from forms according to a hidden
field value.

message-destination zero or more Specifies the name of a logical message
destination.

webservice-description zero or more Specifies a name and optional publish location
for a web service.

Table A-115 sun-web-app Subelements (Continued)
Element Required Description

S

404 Application Server Platform Edition 2005Q1 • Developer’s Guide

Properties
The following table describes properties for the sun-web-app element.

Table A-116 sun-web-app Attributes
Attribute Default Description

error-url (blank) (optional) Specifies a redirect URL in case of an error.

Table A-117 sun-web-app Properties
Property Default Description

allowLinking true If true, resources in this web application
that are symbolic links are served.

crossContextAllowed true If true, allows this web application to
access the contexts of other web
applications using the
ServletContext.getContext()method.

relativeRedirectAllowed false If true, allows this web application to send
a relative URL to the client using
HttpServletResponse.sendRedirect(),
and instructs the web container not to
translate any relative URLs to fully qualified
ones.

reuseSessionID false If true, sessions generated for this web
application use the session ID specified in
the request.

singleThreadedServletPoolSize 5 Specifies the maximum number of servlet
instances allocated for each
SingleThreadModel servlet in the web
application.

tempdir domain_dir/generated/j2ee
-apps/app_name

or

domain_dir/generated/j2ee
-modules/module_name

Specifies a temporary directory for use by
this web module. This value is used to
construct the value of the
javax.servlet.context.tempdir
context attribute. Compiled JSP files are
also placed in this directory.

useResponseCTForHeaders false If true, response headers are encoded
using the response’s charset instead of the
default (UTF-8).

T

Appendix A Deployment Descriptor Files 405

T

table-name
Specifies the name of a database table. The table must be present in the database schema
file. See “Automatic Database Schema Capture” on page 175.

Superelements
entity-mapping, secondary-table (sun-cmp-mappings.xml)

Subelements
none - contains data

target-server
Defines the IIOP listener configuration of the target server.

Superelements
client-container (sun-acc.xml)

Subelements
The following table describes subelements for the target-server element.

Attributes
The following table describes attributes for the target-server element.

Table A-118 target-server subelements
Element Required Description

description zero or one Specifies the description of the target server.

security zero or one Specifies the security configuration for the IIOP/SSL
communication with the target server.

Table A-119 target-server attributes
Attribute Default Description

name none Specifies the name of the application server instance accessed by the
client container.

address none Specifies the host name or IP address (resolvable by DNS) of the server to
which this client attaches.

T

406 Application Server Platform Edition 2005Q1 • Developer’s Guide

tie-class
Specifies the automatically generated name of a tie implementation class for a port
component.

Superelements
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

timeout
Specifies the cache-mapping specific maximum amount of time in seconds that an entry
can remain in the cache after it is created or refreshed. If not specified, the default is the
value of the timeout attribute of the cache element.

Superelements
cache-mapping (sun-web.xml)

Subelements
none - contains data

Attributes
The following table describes attributes for the timeout element.

port none Specifies the naming service port number of the server to which this client
attaches.

For a new server instance, assign a port number other than 3700. You can
change the port number in the Administration Console. See the Sun Java
System Application Server Administration Guide for more information.

Table A-120 timeout Attributes
Attribute Default Description

name none Specifies the timeout input parameter, whose value is
interpreted in seconds. The field’s type must be
java.lang.Long or java.lang.Integer.

Table A-119 target-server attributes (Continued)
Attribute Default Description

T

Appendix A Deployment Descriptor Files 407

transport-config
Specifies the security transport information.

Superelements
ior-security-config (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the transport-config element.

transport-guarantee
Specifies that the communication between client and server is NONE, INTEGRAL, or
CONFIDENTIAL.

• NONE means the application does not require any transport guarantees.

• INTEGRAL means the application requires that the data sent between client and server
be sent in such a way that it can’t be changed in transit.

• CONFIDENTIAL means the application requires that the data be transmitted in a fashion
that prevents other entities from observing the contents of the transmission.

scope request.attribute (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
request.attribute, and session.attribute.

Table A-121 transport-config Subelements
Element Required Description

integrity only one Specifies if the target supports integrity-protected messages. The
values are NONE, SUPPORTED, or REQUIRED.

confidentiality only one Specifies if the target supports privacy-protected messages. The
values are NONE, SUPPORTED, or REQUIRED.

establish-trust-in-target only one Specifies if the target is capable of authenticating to a client. The
values are NONE, SUPPORTED, or REQUIRED.

establish-trust-in-client only one Specifies if the target is capable of authenticating a client. The
values are NONE, SUPPORTED, or REQUIRED.

Table A-120 timeout Attributes (Continued)
Attribute Default Description

U

408 Application Server Platform Edition 2005Q1 • Developer’s Guide

In most cases, a value of INTEGRAL or CONFIDENTIAL indicates that the use of SSL is
required.

Superelements
webservice-endpoint (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

U

unique-id
Contains the unique ID for the application. This value is automatically updated each time
the application is deployed or redeployed. Do not edit this value.

Superelements
sun-application (sun-application.xml), enterprise-beans (sun-ejb-jar.xml)

Subelements
none - contains data

url-pattern
Specifies a servlet URL pattern for which caching is enabled. See the Servlet 2.4
specification section SRV. 11.2 for applicable patterns.

Superelements
cache-mapping (sun-web.xml)

Subelements
none - contains data

use-thread-pool-id
Specifies the thread pool from which threads are selected for remote invocations of this
bean.

Superelements
ejb (sun-ejb-jar.xml)

V

Appendix A Deployment Descriptor Files 409

Subelements
none - contains data

V

value
Specifies the value of the entity.

Superelements
call-property, stub-property (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml); property (with subelements) (sun-ejb-jar.xml)

Subelements
none - contains data

victim-selection-policy
Specifies how stateful session beans are selected for passivation. Possible values are First
In, First Out (FIFO), Least Recently Used (LRU), Not Recently Used (NRU). The default
value is NRU, which is actually pseudo-LRU.

The victims are generally passivated into a backup store (typically a file system or
database). This store is cleaned during startup, and also by a periodic background process
that removes idle entries as specified by removal-timeout-in-seconds. The backup
store is monitored by a background thread (or sweeper thread) to remove unwanted entries.

Applies to stateful session beans.

Superelements
bean-cache (sun-ejb-jar.xml)

Subelements
none - contains data

Example
<victim-selection-policy>LRU</victim-selection-policy>

NOTE You cannot plug in your own victim selection algorithm.

W

410 Application Server Platform Edition 2005Q1 • Developer’s Guide

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that fails, the
server tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a virtual server, the
server tries SSL3 encryption first. If that fails, the server tries SSL2 encryption.

W

web
Specifies the application’s web tier configuration.

Superelements
sun-application (sun-application.xml)

Subelements
The following table describes subelements for the web element.

web-uri
Contains the web URI for the application. Must match the corresponding element in the
application.xml file.

Superelements
web (sun-application.xml)

Subelements
none - contains data

webservice-description
Specifies a name and optional publish location for a web service.

Superelements
sun-web-app (sun-web.xml), enterprise-beans (sun-ejb-jar.xml)

Table A-122 web Subelements
Element Required Description

web-uri only one Contains the web URI for the application.

context-root only one Contains the web context root for the application.

W

Appendix A Deployment Descriptor Files 411

Subelements
The following table describes subelements for the webservice-description element.

webservice-description-name
Specifies a unique name for the web service within a web or EJB module.

Superelements
webservice-description (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

webservice-endpoint
Specifies information about a web service endpoint.

Superelements
servlet (sun-web.xml), ejb (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the webservice-endpoint element.

Table A-123 webservice-description subelements
Element Required Description

webservice-description-name only one Specifies a unique name for the web service within a web or EJB
module.

wsdl-publish-location zero or one Specifies the URL of a directory to which a web service’s WSDL
is published during deployment.

Table A-124 webservice-endpoint subelements
Element Required Description

port-component-name only one Specifies a unique name for a port component
within a web or EJB module.

endpoint-address-uri zero or one Specifies the automatically generated endpoint
address.

login-config zero or one Specifies the authentication configuration for an
EJB web service endpoint.

message-security-binding zero or one Specifies a custom authentication provider binding.

W

412 Application Server Platform Edition 2005Q1 • Developer’s Guide

wsdl-override
Specifies a valid URL pointing to a final WSDL document. If not specified, the WSDL
document associated with the service-ref in the standard J2EE deployment descriptor is
used.

Superelements
service-ref (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

Example
// available via HTTP
<wsdl-override>http://localhost:8000/myservice/myport?WSDL</wsdl-override>

// in a file
<wsdl-override>file:/home/user1/myfinalwsdl.wsdl</wsdl-override>

wsdl-port
Specifies the WSDL port.

Superelements
port-info (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the wsdl-port element.

transport-guarantee zero or one Specifies that the communication between client
and server is NONE, INTEGRAL, or CONFIDENTIAL.

service-qname zero or one Specifies the WSDL service element that is being
referenced.

tie-class zero or one Specifies the automatically generated name of a tie
implementation class for a port component.

servlet-impl-class zero or one Specifies the automatically generated name of the
generated servlet implementation class.

Table A-124 webservice-endpoint subelements (Continued)
Element Required Description

W

Appendix A Deployment Descriptor Files 413

wsdl-publish-location
Specifies the URL of a directory to which a web service’s WSDL is published during
deployment. Any required files are published to this directory, preserving their location
relative to the module-specific WSDL directory (META-INF/wsdl or WEB-INF/wsdl).

Superelements
webservice-description (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

Example
Suppose you have an ejb.jar file whose webservices.xml file’s wsdl-file element
contains the following reference:

META-INF/wsdl/a/Foo.wsdl

Suppose your sun-ejb-jar file contains the following element:

<wsdl-publish-location>file:/home/user1/publish</wsdl-publish-location>

The final WSDL is stored in /home/user1/publish/a/Foo.wsdl.

Table A-125 wsdl-port subelements
Element Required Description

namespaceURI only one Specifies the namespace URI.

localpart only one Specifies the local part of a QNAME.

W

414 Application Server Platform Edition 2005Q1 • Developer’s Guide

415

Index

A
AbstractRealm class 42
ACC 187

asenv configuration settings 192
naming 188
security 187

ACC clients
appclient script 191
deploying 92
invoking a JMS resource 190
invoking an EJB component 188
making a remote call 190
module definition 64
package-appclient script 191
preparing the client machine 92
running 191
SSL 188
using SSL with CA 193

action attribute 102
activation-config element 310
activation-config-property element 310
activation-config-property-name element 311
activation-config-property-value element 311
address attribute 405
AddressList

and connections 253
and default JMS host 250

administered objects 252
and connectors 202

Administration Console
about 33
changing servlet output 127

configuring a default virtual server 123
configuring the web container 124
setting the connector shutdown timeout 206
setting the default locale 122
setting verbose mode 115
using for autodeployment 88
using for deployment 89
using for dynamic reloading 87
using for HPROF configuration 116
using for lifecycle module deployment 91, 213
using for Optimizeit configuration 117
using to add to the server classpath 77
using to associate a connector with a thread pool 204
using to configure audit modules 44
using to configure JACC providers 43
using to configure realms 41
using to configure the JMS Service 249
using to configure the transaction service 238
using to create a custom resource 243
using to create a JavaMail session 260
using to create a JDBC connection pool 219
using to create a JDBC resource 219
using to create an external JNDI resource 243
using to create JMS hosts 251
using to create JMS resources 252
using to create physical destinations 251
using to create security maps 204
using to create thread pools 203
using to deploy and configure a connector 201, 202
using to disable modules and applications 86
using to enable debugging 112
using to ping a JDBC connection pool 219

agent attribute 357
allow-concurrent-access element 152

Section A

416 Application Server Platform Edition 2005Q1 • Developer’s Guide

allowLinking property 404
AMX

about 264
MBeans 265
proxies 267

Ant 33, 93
ANT_HOME environment variable 93
Apache Ant 33, 93

and deployment descriptor verification 80, 82
Sun Java System Application Server specific tasks 94
using for deployment 95
using for JSP precompilation 106
using for server administration 104

API reference
JavaBeans 133
JSP 2.0 specification 133
servlets 126

appclient script 92, 191
modifying 192

appclient.jar file 194
contents 194

Application Client Container see ACC
Application Server Management eXtensions see AMX
application.xml file 67
application-client.xml file 67
applications

definition 65
directories deployed to 72
directory structure 69
disabling 86, 101
examples 35
naming 68
runtime environment 72
security 37, 40
see also modules

AppservPasswordLoginModule class 42
appserv-rt.jar file 211
appserv-tags.jar file 133
appserv-tags.tld file 133
asadmin command 33
asadmin create-admin-object command 202
asadmin create-audit-module command 44
asadmin create-auth-realm command 41

asadmin create-connector-connection-pool
command 201, 253

asadmin create-connector-resource command 201
asadmin create-connector-security-map command 204
asadmin create-custom-resource command 243
asadmin create-javamail-resource command 260
asadmin create-jdbc-connection-pool command 219
asadmin create-jdbc-resource command 219
asadmin create-jmsdest command 251
asadmin create-jms-host command 251
asadmin create-jms-resource command 252
asadmin create-jndi-resource command 243
asadmin create-lifecycle-module command 91, 213
asadmin create-resource-adapter-config command 201,

204, 205
asadmin create-threadpool command 203
asadmin deploy command 89, 201

--force option 86
--precompilejsp option 90

asadmin deploydir command 89, 201
asadmin get command 238, 250
asadmin get-client-stubs command 91, 92, 189
asadmin ping-connection-pool command 219
asadmin set command 238, 249
asant script 33, 93
as-context element 311
asenv configuration settings 192
asenv.conf file 92
asinstalldir attribute 98, 101, 103, 105, 107
assembly

of EJB components 79
overview 63

audit modules 44
AuditModule class 44
authentication

JMS 254
realm 312
single sign-on 58

auth-layer attribute 365
auth-method element 312
authorization roles 60
auth-realm element 312
auth-recipient attribute 382, 387

Section B

Index 417

auth-source attribute 382, 386, 387
autodeployment 88
automatic schema generation 168

options 170
availability-enabled attribute 339

B
BaseCache cacheClassName value 317
bean-cache element 313
bean-pool element 314
bin directory 93
BLOB support 166
Bootstrap Classloader 75
Borland web site 117
BoundedMultiLruCache cacheClassName value 317
build.xml file 33, 35

C
cache element 315
cache for JSP files 133
cache for servlets 128

default configuration 130
example configuration 130
helper class 129, 131

cache management for EJB components 143
cache tag 134
cacheClassName property 316, 317
cache-helper element 317
CacheHelper interface 131, 317
cache-helper-ref element 318
cache-idle-timeout-in-seconds element 318
cacheKeyGeneratorAttrName property 131, 335
cache-mapping element 318
cache-on-match attribute 331, 332
cache-on-match-failure attribute 331, 332
caller-propagation element 320
call-property element 320

capture-schema command 176
cascade attribute 100
cert-db element 320
certificate realm 41
cert-nickname attribute 397
charset attribute 357
check-all-at-commit element 321
checkInterval property 352
check-modified-at-commit element 321
checkpoint-at-end-of-method element 322
checkpointed-methods element 322
check-version-of-accessed-instances element 321
classdebuginfo property 352
classloader delegation model 323
class-loader element 75, 124, 322
classloaders 73

delegation hierarchy 74
isolation 76
isolation, circumventing 77

class-name attribute 318, 377
classname attribute 313
classpath attribute 106
classpath property 352
classpath, server, changing 75
classpathref attribute 106
classpath-suffix attribute 75
client JAR file 78, 92
client.policy file 195
client-container element 323
client-credential element 324
clients, stand-alone 195

invoking a JMS resource 197
invoking an EJB component 195
making a remote call 196, 197
running 196, 198

CLOB support 167
CloudScape Type4 JDBC driver 234
cmp element 325
cmp-field-mapping element 326
cmp-resource element 176, 326
cmr-field-mapping element 327
cmr-field-name element 328

Section D

418 Application Server Platform Edition 2005Q1 • Developer’s Guide

cmt-max-runtime-exceptions property 156
cmt-timeout-in-seconds element 328
column-name element 328
column-pair element 328
command attribute 104
commandfile attribute 104
command-line server configuration see asadmin command
commit options 159
commit-option element 329
Common Classloader 75

using to circumvent isolation 77
common-ant.xml file 35
compiler property 352
compiling JSP files 137
component subelement 108
confidentiality element 329
connection factories, JNDI subcontexts for 240
connection factory 153
ConnectionFactory interface 252
Connector Classloader 75, 214
connectors 199

administered objects 202
and JDBC 200
and JMS 200
and message-driven beans 207
and transactions 236
configuration options 203
configuring 200
connection pools 201
deploying 93
deployment 201
embedded 202
inbound connectivity 207
invalid connections 205
JNDI subcontext for 240
last agent optimization 206
module definition 64
redeployment 202
resources 201
shutdown timeout 206
Sun Java System Application Server support 200
testing connection pools 205
thread pools 203

consistency element 330

constraint-field element 330
constraint-field-value element 331
container-managed persistence 161

configuring 1.1 finders 177
data type for mapping 168
deployment descriptor 163
mapping 163
performance features 181
prefetching 182
resource manager 176
restrictions 183
support 161
version consistency 182

context root 127
context, for JNDI naming 239
contextroot attribute 96, 109
context-root element 332
cookieComment property 333
cookieDomain property 333
cookieMaxAgeSeconds property 333
cookiePath property 333
cookie-properties element 332
CosNaming naming service 241
createtables attribute 96
create-tables-at-deploy element 333
crossContextAllowed property 404
custom resource 243

D
DAS, connecting to 267
data types for mapping 168
database schema, capturing 175
databases

as transaction resource managers 236
supported 218, 223

database-vendor-name element 333
DB2 lock-when-loaded limitation 185
.dbschema file 79
dbvendorname attribute 96
debugging 111, 115

115

Section D

Index 419

enabling 111
generating a stack trace 113
JPDA options 112

default element 334
default virtual server 123
default web module 123, 127
default-charset attribute 370
default-client-provider attribute 366
default-helper element 334
default-locale attribute 356
default-provider attribute 366
default-resource-principal element 335
default-web.xml file 124
delegate attribute 323
delegation model for classloaders 323
delegation, classloader 75
demoJmx method 289
demoQuery method 285
deployment

directory deployment 89
disabling deployed applications and modules 86, 101
dynamic 86
errors during 85
forcing 86
JSR 88 69, 89
module vs. application based 90
of ACC clients 92
of connectors 93
of EJB components 91
of lifecycle modules 91
of web applications 90
overview 63
read-only beans 152
redeployment 86
standard J2EE descriptors 67
Sun Java System Application Server descriptors 68,

293
tools for 88
undeploying an application or module 90, 99
using Apache Ant 95
using the Administration Console 89
verifying descriptor correctness 80

deployment descriptor files 244
deploymentplan attribute 97
deploytool 33, 80, 89

description element 336
destdir attribute 106
destinations

destination resources 252
physical 251

destroy method 132
development environment, creating 31

tools for developers 32
development property 352
directory deployment 89
directory property 398
dispatcher element 336
displayAllAttributes method 283
displayAllProperties method 285
displayAMX method 274, 277
displayWild method 286
documentation

overview 24
doGet method 132
Domain Administration Server see DAS
domain attribute 108
domain.xml file

application configuration 73
configuring single sign-on 59
keeping stubs 91
module configuration 72
stack trace generation 113
System Classloader 75, 77

doPost method 132
dropandcreatetables attribute 97
droptables attribute 100
drop-tables-at-undeploy element 336
DTD files 293

location of 293
dumpSmap property 352
dynamic

deployment 86
reloading 87

dynamic-reload-interval attribute 323

Section E

420 Application Server Platform Edition 2005Q1 • Developer’s Guide

E
EJB 2.1 changes, summary 141
EJB Classloader 75
EJB components

assembling 79
calling from a different application 78
deploying 91
elements 341
flushing 145
generated source code 91
module definition 64
pooling 143, 147
remote bean invocations 145
security 40
thread pools 145

ejb element 337
EJB QL queries 177
EJB Timer Service 146
ejb-jar.xml file 67, 156
ejb-name element 339
ejbPassivate 150
EJB-QL 162
ejb-ref element 244, 340
ejb-ref mapping, using JNDI name instead 79
ejb-ref-name element 340
elements in XML files 341
enableCookies property 396
enabled attribute 97, 316
enablePooling property 352
enableURLRewriting property 396
encoding

of JSP files 352
of servlets 122

endpoint-address-uri element 341
enterprise-beans element 341
entity-mapping element 343
env-classpath-ignored attribute 75
error pages 125
errorOnUseBeanInvalidClassAttribute property 352
errors during deployment 85
error-url attribute 125, 404
establish-trust-in-client element 343
establish-trust-in-target element 344

events, server life cycle 211
example applications 35
explicitcommand attribute 104
external JNDI resource 243
extra-class-path attribute 323

F
fail-all-connections property 205
failover

JMS connection 253
fetched-with element 344
field-name element 345
file attribute 95, 100, 102, 108, 109
file realm 40
fileset subelement 110
finder element 345
finder limitation for Sybase 184
finder methods 177
flat transactions 158
flush tag 136
flush-at-end-of-method element 346
flushing of EJB components 145
force attribute 96, 109
forcing deployment 86
fork property 352
form-hint-field attribute 370

G
genStrAsCharArray property 352
getCharacterEncoding method 122
getCmdLineArgs method 213
getData method 212
getEventType method 212
getHeaders method 125
getInitialContext method 213, 242
getInstallRoot method 213
getInstanceName method 213

Section H

Index 421

getLifecycleEventContext method 212
getParameter method 370
getReader method 370
group-name element 347
groups in realms 391

H
handleEvent method 212
handleList method 281
handling requests 132
header management 125
host attribute 98, 100, 103
HPROF profiler 116
HTTP sessions 137

cookies 137
session managers 138
URL rewriting 137

http-method element 347
HttpServletRequest 129

I
IBM DB2 JDBC driver 225, 227
idempotent-url-pattern element 348
ieClassId property 352
IIOP/SSL configuration 390
IMAP4 protocol 259
inbound connectivity 207
Inet MSSQL JDBC driver 230
Inet Oracle JDBC driver 166, 167, 229
Inet Sybase JDBC driver 230
Informix Type4 JDBC driver 232
init method 132
INIT_EVENT 211
InitialContext naming service handle 239
installation 31
instantiating servlets 132
integrity element 348

internationalization 122
Interoperable Naming Service 241
InvokerServlet 127
ior-security-config element 348
is-cache-overflow-allowed element 349
is-failure-fatal attribute 91, 214
isolation of classloaders 76, 77
is-one-one-cmp element 349
is-read-only-bean element 152, 349

J
J2EE

security model 38
standard deployment descriptors 67

J2EE Connector 1.5 architecture 199
J2EE tutorial 121
J2SE policy file 195
JACC 43
JAR Extension Mechanism Architecture 79
JAR file

client, for a deployed application 78, 92
Java Authentication and Authorization Service

(JAAS) 42
Java Authorization Contract for Containers

see JACC
Java Database Connectivity see JDBC
Java Management Extensions see JMX
Java Message Service see JMS
Java Naming and Directory Interface see JNDI
Java optional package mechanism 78
Java Platform Debugger Architecture see JPDA
Java Servlet API 126
Java Transaction API (JTA) 235
Java Transaction Service (JTS) 235
JavaBeans 133
java-config element 75, 91
Javadocs 25
javaEncoding property 352
JavaMail

and JNDI lookups 261

Section K

422 Application Server Platform Edition 2005Q1 • Developer’s Guide

architecture 259
creating sessions 260
defined 259
JNDI subcontext for 240
session properties 260
specification 260

java-method element 349
JDBC

connection pool, creating 219
Connection wrapper 220
creating resources 219
integrating driver JAR files 218
JNDI subcontext for 240
non-transactional connections 221
sharing connections 220
specification 217
supported drivers 218, 223
transaction isolation levels 222
tutorial 217

JDOQL 177
JMS 153, 335

and transactions 236
authentication 254
checking if provider is running 251
configuring 249
connection failover 253
connection pooling 253
creating hosts 251
creating resources 252
debugging 115
default host 250
JMS Service administration 249
JNDI subcontext for 240
provider 248
restarting the client 252
SOAP messages 255
system connector for 248
transactions and non-persistent messages 254

jms-durable-subscription-name element 350
jms-max-messages-load 350
jmsra system JMS connector 248
JMX 263
JNDI

and EJB components 244
and JavaMail 261
and lifecycle modules 213, 214, 242

custom resource 243
defined 239
external JNDI resources 243
for message-driven beans 153
mapping references 243
name, for container-managed persistence 176
subcontexts for connection factories 240
tutorial 239
using instead of ejb-ref mapping 79

jndi-name element 350
join tables 165
JPDA debugging options 112
JSP 2.0 specification 133
JSP Engine Classloader 76
JSP files

API reference 133
caching 133
command-line compiler 137
configuring 351
encoding of 352
generated source code 90
precompiling 90, 96, 106, 109, 137
tag libraries 133

jspc command 137
jsp-config element 90, 351
JSR 88 deployment 69, 89

K
-keepgenerated flag 90, 91
keepgenerated property 353
key attribute

of cache tag 135
of flush tag 136

key-field element 353

L
last agent optimization 206, 237
ldap realm 40
level attribute 358

Section M

Index 423

level element 354
lib directory

and ACC clients 92
and Apache Ant 94
and the Common Classloader 75
DTD file location 293
for a web application 78

libraries 77, 93
lifecycle modules 211

allocating and freeing resources 214
and classloaders 214
and the server.policy file 214
deploying 91
deployment 213
naming environment 242

LifecycleEvent class 212
LifecycleEventContext interface 213
LifecycleListener interface 212
LifecycleListenerImpl.java file 212
LifeCycleModule Classloader 75, 214
locale attribute 356
locale, setting default 122
locale-charset-info element 355
locale-charset-map element 356
localpart element 357
lock-when-loaded consistency level 185
lock-when-loaded element 357
lock-when-modified element 358
log-file attribute 358
logging 115

ACC clients messages 193
in the web container 124

login method 57
login, programmatic 56
login-config element 359
LoginModule 42
log-service element 358
LruCache cacheClassName value 317

M
managed fields 166

manager-properties element 359
mappedfile property 353
mapping for container-managed persistence

considerations 164
data types 168
features 163

mapping resource references 243
mapping-properties element 360
match-expr attribute 332
max-cache-size element 360
max-entries attribute 316
max-pool-size element 361
maxSessions property 360
MaxSize property 317
max-wait-time-in-millis element 361
MBeans 263

accessing 279
attributes 267
configuration 265
displaying attributes 282
displaying hierarchy 274
displaying name and type 277
J2EE management 266
listing properties 283
monitoring 266
notifications 266
other types 266
proxies 267
querying 285
undeploying 290
using to stop a server instance 291
utility 266

MDB file samples 156
mdb-connection-factory element 153, 155, 361
mdb-resource-adapter element 362
message element 362
message security 46

application-specific 49
monitoring 55
responsibilities 47
sample application 52

message-destination element 363
message-destination-name element 363
message-driven beans 115, 153

Section N

424 Application Server Platform Edition 2005Q1 • Developer’s Guide

administering 154
connection factory 153
monitoring 154
onMessage runtime exception 155
pool monitoring 155
pooling 153
restrictions 154
sample XML files 156
using with connectors 207

messages, JavaMail
reading 262
sending 261

message-security element 363
message-security-binding element 364
message-security-config element 365
MessageTransformer utility 255, 257
method element 366
method-intf element 366
method-name element 367
method-param element 367
method-params element 367
Migration Tool 34
MM MySQL Type4 JDBC driver 233
modificationTestInterval property 353
modules

definition 64
directories deployed to 71
directory structure 69
disabling 86, 101
individual deployment of 90
invoking an EJB component 196
lifecycle 211
naming 69
runtime environment 71
see also applications

monitoring in the web container 124
MSSQL Inet JDBC driver 230
MSSQL version consistency triggers 185
MSSQL/SQL Server2000 Data Direct JDBC driver 226
MultiLruCache cacheClassName value 317
MultiLRUSegmentSize property 316

N
name element 368
named-group element 368
namespaceURI element 368
naming service 239
native library path

configuring for hprof 116
configuring for OptimizeIt 118

nested transactions 158
NetBeans 114
nocache attribute of cache tag 135
none element 368

O
Oasis Web Services Security

see message security
one-one-finders element 369
onMessage 155
operation-name element 369
Optimizeit profiler 117
Oracle automatic mapping of date and time fields 185
Oracle Data Direct JDBC driver 225
Oracle Inet JDBC driver 166, 167, 229
Oracle OCI JDBC driver 232
Oracle Thin/Type4 Driver, workaround for 237
Oracle Thin/Type4 JDBC driver 231
oracle-xa-recovery-workaround property 237
output from servlets 127

P
package attribute 107
package-appclient script 92, 191, 194
packaging see assembly
parameter-encoding element 370
pass-by-reference element 143, 370
pass-by-value semantics 370

Section Q

Index 425

password element 372
path attribute 321
permissions

changing in server.policy 45
default in server.policy 45

persistence-type attribute 395
physical destinations 251
plugin tag 352
pm-descriptors element 372
PointBase JDBC driver 224
pool monitoring for MDBs 155
pool-idle-timeout-in-seconds element 372
pooling 150
POP3 protocol 259
port attribute 98, 100, 103, 406
port-component-name element 372
port-info element 373
precompilejsp attribute 96, 109
--precompilejsp option 90
precompiling JSP files 137
prefetch-disabled element 374
prefetching 182
primary key 162, 165
principal element 374
principal-name element 374
profilers 115
programmatic login 56
ProgrammaticLogin class 57
ProgrammaticLoginPermission permission 57
properties, about 375, 376
property element 375, 376
provider-config element 376
provider-id attribute 365, 377
provider-type attribute 377
proxies, AMX 267

Q
query-filter element 377
query-method element 378

query-ordering element 378
query-params element 378
query-variables element 379
Queue interface 252
QueueConnectionFactory interface 252

R
ra.xml file 67
read-only beans 142, 149, 183

deploying 152
refreshing 151

read-only element 379
ReadOnlyBeanNotifier 151
READY_EVENT 211
realm attribute 325
realm element 379
realms 312

application-specific 41
configuring 41
custom 42
mapping groups and users to 391
supported 40

reapIntervalSeconds property 360
redeployment 86
refresh attribute of cache tag 135
refresh-field element 379
refresh-period-in-seconds element 150, 380
relativeRedirectAllowed property 404
.reload file 87
reloading, dynamic 87
removal-timeout-in-seconds element 380
removing servlets 132
request object 132
request-policy element 381
request-protection element 382
required element 383
resize-quantity element 383
resource adapters see connectors
resource managers 236
resource references, mapping 243

Section S

426 Application Server Platform Edition 2005Q1 • Developer’s Guide

resource-adapter-mid element 209, 384
resource-env-ref element 243, 384
resource-env-ref-name element 385
resource-ref element 243, 385
response-policy element 386
response-protection element 387
res-ref-name element 383
res-sharing-scope deployment descriptor setting 220
retrievestubs attribute 96, 109
reuseSessionID property 404
rmic-options attribute 91
role-name element 387
roles 60

S
sample applications 35
sample XML files 156
sas-context element 388
schema capture 175
schema element 388
schema example 305
schema generation, automatic 168

options 170
schema-generator-properties element 389
scope attribute 331, 354, 380, 407
scratchdir property 353
secondary table 164, 326
secondary-table element 390
security 37

ACC 187
applications 40
audit modules 43
declarative 39
EJB components 40
goals 38
J2EE model 38
JACC 43
JMS 254
message security 46
of containers 39
programmatic 39

programmatic login 56
roles 60
server.policy file 45
Sun Java System Application Server features 38
using SSL with CA 193
web applications 40

security element 390
security map 204
security-role-mapping element 391
send-password attribute 324
server

changing the classpath of 75
installation 31
lib directory of 75, 92, 94, 293
life cycle events 211
optimizing for development 32
stopping an instance using an MBean 291
Sun Java System Application Server deployment

descriptors 68, 293
using Ant scripts to control 104
value-added features 142

server.policy file 45
and lifecycle modules 214
changing permissions 45
default permissions 45
Optimizeit profiler options 118
ProgrammaticLoginPermission 57

server-classpath attribute 75
ServerLifecycleException 212
service method 132
service-endpoint-interface element 391
service-impl-class element 392
service-qname element 392
service-ref element 392
service-ref-name element 393
Servlet 2.4 specification 126
servlet element 393
ServletContext.log messages 127
servlet-impl-class element 394
servlet-name element 394
servlets 126

API reference 126
caching 128
character encoding 122

Section S

Index 427

destroying 132
engine 131
instantiating 132
invoking using a URL 126
output 127
removing 132
request handling 132
specification 126

session beans 147
container for 147
optimizing performance 149
restrictions 149

session managers 138
session-config element 394
sessionFilename property 360
session-manager element 395
session-properties element 396
sessions

and dynamic redeployment 86
and dynamic reloading 87

session-timeout element 396
setCharacterEncoding method 122
setContentType method 122
setLocale method 122
setMonitoring method 277
setting the ORB port 192
setTransactionIsolation method 222
SHUTDOWN_EVENT 212
Simple Object Access Protocol see SOAP
single sign-on 58
singleThreadedServletPoolSize property 404
SMTP protocol 259
SOAP messages 255
SOAP with Attachments API for Java (SAAJ) 256
Solaris

patches 26
support 26

solaris realm 41
srcdir attribute 106
ssl element 397
ssl2-ciphers attribute 397
ssl2-enabled attribute 397
ssl3-enabled attribute 397

ssl3-tls-ciphers attribute 397
stack trace, generating 113
STARTUP_EVENT 211, 213
stateful session beans 148
stateless session beans 147
steady-pool-size element 397
store-properties element 398
stub-property element 398
stubs

directory for 71, 72
keeping 91, 96, 109
retrieving after deployment 91

Sun Java System Message Queue 115, 248, 335
checking to see if running 251
connector for 248
varhome directory 254

sun-acc.xml file 68, 92, 294
editing 192
elements in 309

sun-application element 399
sun-application.xml file 68, 294

elements in 295
example of 295

sun-application_1_4-0.dtd file 68, 294
sun-application-client element 400
sun-application-client.xml file 68, 294

elements in 308
sun-application-client_1_4-1.dtd file 68, 294
sun-application-client-container_1_0.dtd file 68, 294
sun-appserv-admin task 104
sun-appserv-component task 101
sun-appserv-deploy task 95
sun-appserv-jspc task 106
sun-appserv-undeploy task 99
sun-appserv-update task 107
sun-cmp-mapping element 401
sun-cmp-mapping_1_2.dtd file 68, 294
sun-cmp-mappings element 401
sun-cmp-mappings.xml file 68, 163, 294

elements in 304
example of 305

sun-ejb-jar element 402
sun-ejb-jar.xml file 68, 294

Section T

428 Application Server Platform Edition 2005Q1 • Developer’s Guide

elements in 299
example of 303
sample 157

sun-ejb-jar_2_1-1.dtd file 68, 294
sunhome attribute 98, 101, 103, 105, 107
sun-ra.xml file 200
sun-web.xml file 68, 90, 294

and classloaders 75, 124
elements in 295
example of 298

sun-web-app element 402
sun-web-app_2_4-1.dtd file 68, 294
supportsTransactionIsolationLevel method 222
suppressSmap property 353
Sybase

finder limitation 184
lock-when-loaded limitation 185

Sybase Data Direct JDBC driver 226
Sybase Inet JDBC driver 230
Sybase JConnect/Type4 JDBC driver 228
System Classloader 75

using to circumvent isolation 77

T
table-name element 405
tag libraries 133
tags for JSP caching 133
target-server element 405
tasks, Apache Ant 94
tempdir property 404
TERMINATION_EVENT 212
thread pools

and connectors 203
for bean invocation scheduling 145

tie-class element 406
timeout attribute of cache tag 135
timeout element 406
timeout-in-seconds attribute 316
timeoutSeconds property 396
tls-enabled attribute 397

tools
for deployment 88
for developers, general 32

Topic interface 252
TopicConnectionFactory interface 252
transactions 235

administering 160
administration and monitoring 160
and EJB components 158
and non-persistent JMS messages 254
commit options 159
configuring 238
flat 158
global 158
in the J2EE tutorial 235
JDBC isolation levels 222
JNDI subcontext for 240
local 158
local or global scope of 236
logging for recovery 238
monitoring 160
nested 158
resource managers 236
timeouts 144

transaction-support property 206
transport-config element 407
transport-guarantee element 407
trimSpaces property 353
type attribute 95, 100, 102, 109

U
unique-id element 408
uniquetablenames attribute 97
upload attribute 97
URI, configuring for an application 410
uribase attribute 106
uriroot attribute 106
URL rewriting 137
URL, JNDI subcontext for 240
url-pattern element 408
usePrecompiled property 353

Section V

Index 429

user attribute 97, 100, 102
useResponseCTForHeaders property 404
user-name attribute 325
users in realms 391
use-thread-pool-id element 145, 408
use-unique-table-names property 172, 389
utility classes 77, 79, 93

V
value attribute 375
value element 409
varhome directory 254
verbose attribute 106
verbose mode 115
verifier tool 80
verify attribute 96, 109
version consistency 182
version consistency triggers 185
victim-selection-policy element 409
virtual servers 123

default 123
virtualservers attribute 97

W
web applications 121

deploying 90
module definition 64
security 40

Web Classloader 76
changing delegation in 75, 124

web container, configuring 124
web element 410
web module, default 123, 127
Web Services Security

see message security
web.xml file 67
webapp attribute 106

webservice-description element 410
webservice-description-name element 411
webservice-endpoint element 411
web-uri element 410
wsdl-override element 412
wsdl-port element 412
wsdl-publish-location element 413
WSS

see message security

X
XA resource 236
XML files

sample 156
XML specification 27, 294
XML syntax verifier 80
xpoweredBy property 353
-Xrs option and debugging 113

Section X

430 Application Server Platform Edition 2005Q1 • Developer’s Guide

	Application Server Platform Edition 8.1 Developer’s Guide
	Contents
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Related Documentation
	Books in This Documentation Set
	Other Server Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Developing and Deploying Applications
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	Tools
	The asadmin Command
	The Administration Console
	The asant Utility
	deploytool
	Verifier
	Migration Tool
	Debugging Tools
	Profiling Tools

	Sample Applications

	Securing Applications
	Security Goals
	Application Server Specific Security Features
	Container Security
	Programmatic Security
	Declarative Security
	Application Level Security
	Component Level Security

	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for an Application or Module
	Creating a Custom Realm

	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	Changing Permissions for an Application

	Configuring Message Security
	Message Security Responsibilities
	Application Developer
	Application Deployer
	System Administrator

	Application-Specific Message Protection
	Using a Signature to Enable Message Protection for All Methods
	Configuring Message Protection For a Specific Method Based on Digital Signatures

	Understanding and Running the Example Application
	Setting Up the Sample Application
	Running the Sample Application

	Monitoring Message Security

	Programmatic Login
	Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on
	Defining Roles

	Assembling and Deploying Applications
	Overview of Assembly and Deployment
	Modules
	Applications
	J2EE Standard Descriptors
	Sun Java System Application Server Descriptors
	Naming Standards
	Directory Structure
	Runtime Environments
	Module Runtime Environment
	Application Runtime Environment

	Classloaders
	The Classloader Hierarchy
	Classloader Universes
	Circumventing Classloader Isolation

	Assembling Modules and Applications
	deploytool
	Apache Ant
	The Deployment Descriptor Verifier

	Deploying Modules and Applications
	Deployment Errors
	The Deployment Life Cycle
	Dynamic Deployment
	Disabling a Deployed Application or Module
	Dynamic Reloading
	Automatic Deployment

	Tools for Deployment
	Apache Ant
	The deploytool
	JSR 88
	The asadmin Command
	The Administration Console

	Deployment by Module or Application
	Deploying a WAR Module
	Deploying an EJB JAR Module
	Deploying a Lifecycle Module
	Deploying an Application Client
	Deploying a J2EE CA Resource Adapter
	Access to Shared Frameworks

	asant Assembly and Deployment Tool
	asant Tasks for Sun Java System Application Server
	sun-appserv-deploy
	Subelements
	Attributes
	Examples

	sun-appserv-undeploy
	Subelements
	Attributes
	Examples

	sun-appserv-component
	Subelements
	Attributes
	Examples

	sun-appserv-admin
	Subelements
	Attributes
	Examples

	sun-appserv-jspc
	Subelements
	Attributes
	Example

	sun-appserv-update
	Subelements
	Attributes
	Example

	Reusable Subelements
	component
	Subelements
	Attributes
	Examples

	fileset

	Debugging Applications
	Enabling Debugging
	JPDA Options
	Generating a Stack Trace for Debugging
	The Java Debugger
	Using the NetBeans IDE for Debugging
	Sun Java System Message Queue Debugging
	Enabling Verbose Mode
	Logging
	Profiling
	The HPROF Profiler
	The Optimizeit Profiler

	Developing Applications and Application Components
	Developing Web Applications
	Introducing Web Applications
	Internationalization Issues
	The Server
	Servlets

	Virtual Servers
	Default Web Modules
	Classloader Delegation
	Using the default-web.xml File
	Configuring Logging in the Web Container
	Configuring HTML Error Pages
	Header Management

	Using Servlets
	Invoking a Servlet with a URL
	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	cache
	Attributes
	Example

	flush
	Attributes
	Examples

	Options for Compiling JSP Files

	Creating and Managing HTTP Sessions
	Configuring Sessions
	Sessions, Cookies, and URL Rewriting
	Coordinating Session Access

	Session Managers
	The memory Persistence Type
	The file Persistence Type

	Using Enterprise JavaBeans Technology
	Summary of EJB 2.1 Changes
	Value Added Features
	Read-Only Beans
	pass-by-reference
	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	Bean-Level Container-Managed Transaction Timeouts
	Priority Based Scheduling of Remote Bean Invocations
	Immediate Flushing

	EJB Timer Service
	Using Session Beans
	About the Session Bean Containers
	Stateless Container
	Stateful Container

	Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read Only Beans

	Using Message-Driven Beans
	Message-Driven Bean Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Domain-Level Settings

	Restrictions and Optimizations
	Pool Tuning and Monitoring
	onMessage Runtime Exception

	Sample Message-Driven Bean XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	Handling Transactions with Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Commit Options
	Administration and Monitoring

	Using Container-Managed Persistence for Entity Beans
	Sun Java System Application Server Support
	Container-Managed Persistence Mapping
	Mapping Capabilities
	The Mapping Deployment Descriptor File
	Mapping Considerations
	Join Tables and Relationships
	Automatic Primary Key Generation
	Fixed Length CHAR Primary Keys
	Managed Fields
	BLOB Support
	CLOB Support

	Automatic Schema Generation
	Supported Data Types
	Generation Options

	Schema Capture
	Automatic Database Schema Capture
	Using the capture-schema Utility

	Configuring the CMP Resource
	Configuring Queries for 1.1 Finders
	About JDOQL Queries
	Query Filter Expression
	Query Parameters
	Query Variables
	JDOQL Examples
	Example1
	Example 2
	Example 3

	Performance-Related Features
	Version Column Consistency Checking
	Relationship Prefetching
	Read-Only Beans

	Restrictions and Optimizations
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	Sybase Finder Limitation
	Date and Time Fields as CMP Field Types
	No Support for lock-when-loaded on Sybase and DB2
	Set RECURSIVE_TRIGGERS to false on MSSQL

	Developing Java Clients
	Introducing the Application Client Container
	Security
	Naming

	Developing Clients Using the ACC
	Using an Application Client to Access an EJB Component
	Using an Application Client to Access a JMS Resource
	Running an Application Client Using the ACC
	Packaging an Application Client Using the ACC
	Editing the Configuration File
	Editing the appclient Script
	Editing the sun-acc.xml File
	Setting Security Options
	Using the package-appclient Script
	client.policy

	Developing Clients Without the ACC
	Using a Stand-Alone Client to Access an EJB Component
	Using a Server-Side Module to Access an EJB Component
	Using a Stand-Alone Client to Access a JMS Resource

	Developing Connectors
	Connector 1.5 Support in the Application Server
	Connector Architecture for JMS and JDBC
	Connector Configuration

	Deploying and Configuring a Stand-Alone Connector Module
	Redeploying a Stand-Alone Connector Module
	Deploying and Configuring an Embedded Resource Adapter
	Advanced Connector Configuration Options
	Thread Pools
	Security Maps
	Overriding Configuration Properties
	Testing a Connection Pool
	Handling Invalid Connections
	Setting the Shutdown Timeout
	Using Last Agent Optimization of Transactions

	Inbound Communication Support
	Configuring a Message Driven Bean to Use a Resource Adapter
	Example Resource Adapter for Inbound Communication

	Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Using Services and APIs
	Using the JDBC API for Database Access
	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Supported Database Drivers
	Making the JDBC Driver JAR Files Accessible

	Creating a Connection Pool
	Testing a Connection Pool
	Creating a JDBC Resource

	Creating Applications That Use the JDBC API
	Sharing Connections
	Obtaining a Physical Connection from a Wrapped Connection
	Using Non-Transactional Connections
	Using JDBC Transaction Isolation Levels

	Configurations for Specific JDBC Drivers
	PointBase Type4 Driver
	Sun Java System JDBC Driver for DB2 Databases
	Sun Java System JDBC Driver for Oracle 8.1.7 and 9.x Databases
	Sun Java System JDBC Driver for Microsoft SQL Server Databases
	Sun Java System JDBC Driver for Sybase Databases
	IBM DB2 8.1 Type2 Driver
	JConnect/Type4 Driver for Sybase ASE 12.5 Databases
	Inet Oraxo JDBC Driver for Oracle 8.1.7 and 9.x Databases
	Inet Merlia JDBC Driver for Microsoft SQL Server Databases
	Inet Sybelux JDBC Driver for Sybase Databases
	Oracle Thin/Type4 Driver for Oracle 8.1.7 and 9.x Databases
	OCI Oracle Type2 Driver for Oracle 8.1.7 and 9.x Databases
	IBM Informix Type4 Driver
	MM MySQL Type4 Driver
	CloudScape 5.1 Type4 Driver

	Using the Transaction Service
	Transaction Resource Managers
	Transaction Scope
	Configuring the Transaction Service
	Transaction Logging

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Naming Environment for J2EE Application Components
	Accessing EJB Components Using the CosNaming Naming Context
	Accessing EJB Components in a Remote Application Server
	Naming Environment for Lifecycle Modules

	Configuring Resources
	External JNDI Resources
	Custom Resources

	Mapping References

	Using the Java Message Service
	The JMS Provider
	Message Queue Resource Adapter
	Administration of the JMS Service
	Configuring the JMS Service
	The Default JMS Host
	Creating JMS Hosts
	Checking Whether the JMS Provider Is Running
	Creating Physical Destinations
	Creating JMS Resources: Destinations and Connection Factories

	Restarting the JMS Client After JMS Configuration
	JMS Connection Features
	Connection Pooling
	Connection Failover

	Transactions and Non-Persistent Messages
	ConnectionFactory Authentication
	Message Queue varhome Directory
	Delivering SOAP Messages Using the JMS API
	Sending SOAP Messages Using the JMS API
	Receiving SOAP Messages Using the JMS API

	Using the JavaMail API
	Introducing JavaMail
	Creating a JavaMail Session
	JavaMail Session Properties
	Looking Up a JavaMail Session
	Sending Messages Using JavaMail
	Reading Messages Using JavaMail

	Using the Java Management Extensions (JMX) API
	Application Server Management Extensions (AMX)
	About AMX
	AMX MBeans
	Configuration MBeans
	Monitoring MBeans
	Utility MBeans
	J2EE Management MBeans
	Other MBeans
	MBean Notifications
	Access to MBean Attributes.

	Proxies
	Connecting to the Domain Administration Server
	Examining AMX Code Samples
	Connecting to the DAS
	Starting an Application Server
	Deploying an Archive
	Displaying the AMX MBean Hierarchy
	Setting Monitoring States
	Accessing AMX MBeans
	Accessing and Displaying the Attributes of an AMX MBean
	Listing AMX MBean Properties
	Querying
	Monitoring Attribute Changes
	Undeploying Modules
	Stopping an Application Server

	Running the AMX Samples

	Deployment Descriptor Files
	Sun Java System Application Server Descriptors
	The sun-application.xml File
	The sun-web.xml File
	The sun-ejb-jar.xml File
	The sun-cmp-mappings.xml File
	The sun-application-client.xml file
	The sun-acc.xml File
	Alphabetical Listing of All Elements
	A
	activation-config
	Superelements
	Subelements

	activation-config-property
	Superelements
	Subelements

	activation-config-property-name
	Superelements
	Subelements

	activation-config-property-value
	Superelements
	Subelements

	as-context
	Superelements
	Subelements

	auth-method
	Superelements
	Subelements

	auth-realm
	Superelements
	Subelements
	Attributes
	Example

	B
	bean-cache
	Superelements
	Subelements
	Example

	bean-pool
	Superelements
	Subelements
	Example

	C
	cache
	Superelements
	Subelements
	Attributes
	Properties
	Cache Class Names

	cache-helper
	Superelements
	Subelements
	Attributes

	cache-helper-ref
	Superelements
	Subelements

	cache-idle-timeout-in-seconds
	Superelements
	Subelements

	cache-mapping
	Superelements
	Subelements

	call-property
	Superelements
	Subelements

	caller-propagation
	Superelements
	Subelements

	cert-db
	Superelements
	Subelements
	Attributes

	check-all-at-commit
	Superelements

	check-modified-at-commit
	Superelements
	Subelements

	check-version-of-accessed-instances
	Superelements
	Subelements

	checkpoint-at-end-of-method
	Superelements

	checkpointed-methods
	Superelements

	class-loader
	Superelements
	Subelements
	Attributes

	client-container
	Superelements
	Subelements
	Attributes

	client-credential
	Superelements
	Subelements
	Attributes

	cmp
	Superelements
	Subelements

	cmp-field-mapping
	Superelements
	Subelements

	cmp-resource
	Superelements
	Subelements

	cmr-field-mapping
	Superelements
	Subelements

	cmr-field-name
	Superelements
	Subelements

	cmt-timeout-in-seconds
	Superelements
	Subelements

	column-name
	Superelements
	Subelements

	column-pair
	Superelements
	Subelements

	commit-option
	Superelements
	Subelements

	confidentiality
	Superelements
	Subelements

	consistency
	Superelements
	Subelements

	constraint-field
	Superelements
	Subelements
	Attributes

	constraint-field-value
	Superelements
	Subelements
	Attributes

	context-root
	Superelements
	Subelements

	cookie-properties
	Superelements
	Subelements
	Properties

	create-tables-at-deploy
	Superelements
	Subelements

	D
	database-vendor-name
	Superelements
	Subelements

	default
	Superelements
	Subelements

	default-helper
	Superelements
	Subelements
	Properties

	default-resource-principal
	Superelements
	Subelements

	description
	Superelements
	Subelements

	dispatcher
	Superelements
	Subelements

	drop-tables-at-undeploy
	Superelements
	Subelements

	E
	ejb
	Superelements
	Subelements
	Attributes
	Example

	ejb-name
	Superelements
	Subelements

	ejb-ref
	Superelements
	Subelements

	ejb-ref-name
	Superelements
	Subelements

	endpoint-address-uri
	Superelements
	Subelements
	Example

	enterprise-beans
	Superelements
	Subelements
	Example

	entity-mapping
	Superelements
	Subelements

	establish-trust-in-client
	Superelements
	Subelements

	establish-trust-in-target
	Superelements
	Subelements

	F
	fetched-with
	Superelements
	Subelements

	field-name
	Superelements
	Subelements

	finder
	Superelements
	Subelements

	flush-at-end-of-method
	Superelements
	Subelements

	G
	gen-classes
	Superelements
	Subelements

	group-name
	Superelements
	Subelements

	H
	http-method
	Superelements
	Subelements

	I
	idempotent-url-pattern
	Superelements

	integrity
	Superelements
	Subelements

	ior-security-config
	Superelements
	Subelements

	is-cache-overflow-allowed
	Superelements

	is-one-one-cmp
	Superelements

	is-read-only-bean
	Superelements
	Subelements

	J
	java-method
	Superelements
	Subelements

	jms-durable-subscription-name
	Superelements
	Subelements

	jms-max-messages-load
	Superelements
	Subelements

	jndi-name
	Superelements
	Subelements

	jsp-config
	Superelements
	Subelements
	Properties

	K
	key-field
	Superelements
	Subelements
	Attributes

	L
	level
	Superelements
	Subelements

	local-home-impl
	Superelements
	Subelements

	local-impl
	Superelements
	Subelements

	locale-charset-info
	Superelements
	Subelements
	Attributes

	locale-charset-map
	Superelements
	Subelements
	Attributes
	Example Agents

	localpart
	Superelements
	Subelements

	lock-when-loaded
	Superelements
	Subelements

	lock-when-modified
	Superelements

	log-service
	Superelements
	Subelements
	Attributes

	login-config
	Superelements
	Subelements

	M
	manager-properties
	Superelements
	Subelements
	Properties

	mapping-properties
	Superelements

	max-cache-size
	Superelements
	Subelements

	max-pool-size
	Superelements
	Subelements

	max-wait-time-in-millis
	Superelements

	mdb-connection-factory
	Superelements
	Subelements

	mdb-resource-adapter
	Superelements
	Subelements

	message
	Superelements
	Subelements

	message-destination
	Superelements
	Subelements

	message-destination-name
	Superelements
	Subelements

	message-security
	Superelements
	Subelements

	message-security-binding
	Superelements
	Subelements
	Attributes

	message-security-config
	Superelements
	Subelements
	Attributes

	method
	Superelements
	Subelements

	method-intf
	Superelements
	Subelements

	method-name
	Superelements
	Subelements
	Examples

	method-param
	Superelements
	Subelements

	method-params
	Superelements
	Subelements

	N
	name
	Superelements
	Subelements

	named-group
	Superelements
	Subelements

	namespaceURI
	Superelements
	Subelements

	none
	Superelements
	Subelements

	O
	one-one-finders
	Superelements
	Subelements

	operation-name
	Superelements
	Subelements

	P
	parameter-encoding
	Superelements
	Subelements
	Attributes

	pass-by-reference
	Superelements
	Subelements

	password
	Superelements
	Subelements

	pm-descriptors
	Superelements

	pool-idle-timeout-in-seconds
	Superelements
	Subelements

	port-component-name
	Superelements
	Subelements

	port-info
	Superelements
	Subelements

	prefetch-disabled
	Superelements
	Subelements

	principal
	Superelements
	Subelements

	principal-name
	Superelements
	Subelements

	property (with attributes)
	Superelements
	Subelements
	Attributes
	Example

	property (with subelements)
	Superelements
	Subelements
	Example

	provider-config
	Superelements
	Subelements
	Attributes

	Q
	query-filter
	Superelements
	Subelements

	query-method
	Superelements
	Subelements

	query-ordering
	Superelements
	Subelements

	query-params
	Superelements
	Subelements

	query-variables
	Superelements
	Subelements

	R
	read-only
	Superelements
	Subelements

	realm
	Superelements
	Subelements

	refresh-field
	Superelements
	Subelements
	Attributes

	refresh-period-in-seconds
	Superelements
	Subelements

	removal-timeout-in-seconds
	Superelements
	Subelements

	remote-home-impl
	Superelements
	Subelements

	remote-impl
	Superelements
	Subelements

	request-policy
	Superelements
	Subelements
	Attributes

	request-protection
	Superelements
	Subelements
	Attributes

	required
	Superelements
	Subelements

	res-ref-name
	Superelements
	Subelements

	resize-quantity
	Superelements
	Subelements

	resource-adapter-mid
	Superelements
	Subelements

	resource-env-ref
	Superelements
	Subelements
	Example

	resource-env-ref-name
	Superelements
	Subelements

	resource-ref
	Superelements
	Subelements
	Example

	response-policy
	Superelements
	Subelements
	Attributes

	response-protection
	Superelements
	Subelements
	Attributes

	role-name
	Superelements
	Subelements

	S
	sas-context
	Superelements
	Subelements

	schema
	Superelements
	Subelements
	Examples

	schema-generator-properties
	Superelements
	Subelements
	Properties
	Example

	secondary-table
	Superelements
	Subelements

	security
	Superelements
	Subelements

	security-role-mapping
	Superelements
	Subelements

	service-endpoint-interface
	Superelements
	Subelements

	service-impl-class
	Superelements
	Subelements

	service-qname
	Superelements
	Subelements

	service-ref
	Superelements
	Subelements

	service-ref-name
	Superelements
	Subelements

	servlet
	Superelements
	Subelements

	servlet-impl-class
	Superelements
	Subelements

	servlet-name
	Superelements
	Subelements

	session-config
	Superelements
	Subelements

	session-manager
	Superelements
	Subelements
	Attributes

	session-properties
	Superelements
	Subelements
	Properties

	ssl
	Superelements
	Subelements
	Attributes

	steady-pool-size
	Superelements
	Subelements

	store-properties
	Superelements
	Subelements
	Properties

	stub-property
	Superelements
	Subelements
	Example

	sun-application
	Superelements
	Subelements

	sun-application-client
	Superelements
	Subelements

	sun-cmp-mapping
	Superelements
	Subelements

	sun-cmp-mappings
	Superelements
	Subelements

	sun-ejb-jar
	Superelements
	Subelements

	sun-web-app
	Superelements
	Subelements
	Attributes
	Properties

	T
	table-name
	Superelements
	Subelements

	target-server
	Superelements
	Subelements
	Attributes

	tie-class
	Superelements
	Subelements

	timeout
	Superelements
	Subelements
	Attributes

	transport-config
	Superelements
	Subelements

	transport-guarantee
	Superelements
	Subelements

	U
	unique-id
	Superelements
	Subelements

	url-pattern
	Superelements
	Subelements

	use-thread-pool-id
	Superelements
	Subelements

	V
	value
	Superelements
	Subelements

	victim-selection-policy
	Superelements
	Subelements
	Example

	W
	web
	Superelements
	Subelements

	web-uri
	Superelements
	Subelements

	webservice-description
	Superelements
	Subelements

	webservice-description-name
	Superelements
	Subelements

	webservice-endpoint
	Superelements
	Subelements

	wsdl-override
	Superelements
	Subelements
	Example

	wsdl-port
	Superelements
	Subelements

	wsdl-publish-location
	Superelements
	Subelements
	Example

	Index

