Sun Java™ System

Application Server Platform Edition 8.1

Upgrade and Migration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0083

2005Q1

Copyright © 2004-2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http: //waw sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004-2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réserveés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I'adresse ht t p: // waw. sun. conl pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

L’utilisation est soumise aux termes de la License.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Ce produit est soumis a la Iégislation américaine en matiere de contrdle des exportations et peut étre soumis a la réglementation en vigueur dans
d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles,
des armes biologigues et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris,
mais de maniére non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une fagon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiere de contrdle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents

= - Lo 7
Who Should Use This GUIde e e e e e e et i 8
Before You Read This Book e 8
How This Guide Is Organized e e e e e 9
Conventions Used in This Book e e 9

Typographic CONVENLIONSttt ettt et ettt e e e e e e et et 9

SYIIDOLS . e 10

Default Paths and File Nameso e e e e 11

Shell Promptsottt e e e e e e 12
Related Documentationttt e e e 12

Books in This Documentation Stttt 12

Other Server DOCUMENtatioNttt ettt e e e e et e 13
Accessing Sun Resources Online e 14
Contacting Sun Technical Support 14
Related Third-Party Web Site References e 14
Sun Welcomes Your COMMENESttt ettt ettt e e e e e e e e e e et e 14
Chapter 1 Application Server CompatibilityIssues 17
Web Server Features 18
Security Realmso e 18
Sun Deployment Descriptor: sun-web.Xml 19
encodeCookies Property oo 19
CORBA Performance Optionttt e e e e e e et e e e e 19
File FOrmats o 20
Certificate Database 20
Tools Interoperabilityot 20
Primary Key Attribute Values 21

Contents 3

Command Line Interface: start-appserv and StOp-appservutitnt et 22

Command Line Interface: asadmin i 23
Subcommands 23
Error Codes for Start and Stop Subcommands i 24
10515103 4 P 25
Dotted NamMESottt e e 25
Tokens in Attribute ValUeso 28
Nulls in Attribute ValUes e e 28

Chapter 2 J2EE 1.4 Compatibility Issues 29

Binary Compatibilityot e 29

Source Compatibilityt e 29

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)o .. 30

JAXP and SAX Incompatibilitiesttt e 33

Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements 34

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations 34

Chapter 3 Upgrading an Application Server Installation 37

Upgrading Through the Upgrade Utility e 39

Upgrading Through the Wizard e 41

Correcting Potential PE Upgrade Problems e 43
Migrating Additional HTTP Listeners Defined on the Source Server to the Target PE Server.......... 43
Eliminating Problems Encountered When A Single Domain has Multiple Certificate Database Passwords .
44

Chapter 4 Understanding Migration it 45

J2EE Component Standardsot 45

J2EE Application COMPONENTSttt ettt et e e e e e e e e e e e e e e 46

Migration and Deploymentt 47
Why is Migration NECEeSSary?ottt ettt et e e e e e e e e e e 47
What Needs to be Migrated o i e 48
What is Deployment of Migrated Applications?ttt 49

Chapter 5 Migratingfrom EJB1.1toEJB 2.0.........ottt iiiiennnnnnn 51

EJB Query Languagettt 51

Local INterfacesot 52

EJB 2.0 Container-Managed Persistence (CMP) i e 53
Defining Persistent Fieldsttt e 53
Defining Entity Bean Relationships i e 54
Message-Driven Beanst e 54

Migrating EJB Client Applicationsttt ettt et ettt e e 54
Declaring EJBs in the INDI CONtextttt ettt et et 55

4 Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

Recap on Using EJB INDI Referencesottt e et 56

Placing EJB References in the INDI Contextttt 56
Global INDI context versus local INDI contextc..uiuiiuntn i 56
Migrating CMP Entity EJBS 56
Migrating the Bean Classttt e 57
Migration of ejb-jar.Xml e 59
Custom Finder Methods 60
Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 63
Migrating Deployment DeSCriptorsttt e e e 64
Migrating Web AppPLICAtioNS oottt e et e e e 66
Migrating Java Server Pages and JSP Custom Tag Libraries iuiininnen .. 66
Migrating ServIets e 67
Obtaining a Data Source from the INDI Contextiuiinninnin ... 68
Declaring EJBs in the INDI COntextottt et e e e e e 68
Potential Servlets and JSP Migration Problems i 68
Migrating Web Application Modules 69
Migrating Enterprise EJB Modules 70
EJB MIGrationttt e e e et e e e e 71
EJB Changes Specific to Application Server Platform Edition 8.1 71
Session Beans 72
Entity Beans 72
Message Driven Beans 73
Migrating Enterprise AppliCationsottt et e e e 73
Application Root Context and Access URL e 74
Applications With Form-based Authentication 75
Migrating Proprietary EXtENSIONSottt e 77
Migrating UIF . .. 77
Checking in the Registry Files e 77
Checking for UIF Binaries in Installation Directoriesc.o i ininenaen .. 78
Migrating JDBC Codeottt e e 79
Establishing Connections Through the DriverManager Interface 80
Using JDBC 2.0 Data SOUICESottt ettt e e et e e e e e e e e e e e e 81
Looking Up the Data Source Via JNDI To Obtain a Connectionc.c.oueuienen... 81
Migrating Rich CHEntSot e e e e e e e e e e e e e 82
Authenticating a Client in Application Server 6.Xc. ittt 82
Authenticating a Client in Sun Java System Application Server Platform Edition 8.1 82

Using ACC in Application Server 6.x and Sun Java System Application Server Platform Edition 8.1 ... 82

Chapter 7 Migrating a Sample Application -an Overviewt 85
Preparing for Migrating the iBank Application i 86
Choosing the Targett e e e e 86

Contents 5

6

Identifying the Components of the iBank Application 86

Manual Steps in the iBank Application Migration i, 87
Configuring Database CONNECtiVILY v .ttt ettt e et ettt e 87
Adding a Connection Pool 87
Adding a JDBC RESOUICEottt ettt et e e e e e e e e e e e e e e e 88
Adding a Persistence Managerttt ettt e 89
Assembling Application for Deployment 89
Using the asadmin Utility to Deploy the iBank Application on Application Server 89
Chapter 8 Migration Toolsand Resources i 91
Migration Tool for Sun Java System Application Server 8.1 91
Redeploying Migrated APpliCationsottt ettt e e e e e e 92
J2EE Application Verification Kit e 93
More Migration Informationt e 93
Migrating from KIVA/NAS/NetDynamics Application SErversuuneunenneneen .. 93
Appendix A iBank Application Specification o i i, 95
Database SChema e 96
Application Navigation and LOgICot 99
LOZIN PrOCESS . . . oottt ettt e e e 100
View/Edit Details 100
Account Summary and Transaction History it 101
Fund Transfer o 102
Interest Calculation it e 103
Application COMPONEILS . . . v\ vttt ettt ettt ettt e e e e e e ettt e e e ettt 104
Data COMPONENLS . . . oot ettt ettt et et et e e e e e e e e e e e e e e 104
BUSINESS COMPONCILS . . . o\ ottt t ettt ettt e et ettt e e e e e e e ettt ettt ee e 105
Application Logic Components (ServIets)t 105
Presentation Logic Components (JSP Pages)o 106
Potential Migration ISSUES i 107
SOTVIES . ottt e e 107
Java Server Pages e 108
DB C 108
Enterprise Java Beans i e e 108
Entity Beansttt e 108
Session Beans 109
Application ASSembly 109

0T =1 111

Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

Preface

This Upgrade and Migration Guide describes how Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) applications are migrated from the Sun ONE
Application Server 6.x/7 (also known as iPlanet Application Server), J2EE
Reference Implementation (RI) 1.3 Application Server, Sun Java System
Application Server 7 to the Sun Java System Application Server Platform Edition
8.1 product line.

This guide also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications. Specifically, this Upgrade and Migration Guide details Sun Java
System Application Server 8.1 2005Q1 incompatibility with Sun Java System
Application Server 8 2004Q2, Sun Java System Application Server 7 2004Q2, and
the Java™ 2 Platform, Enterprise Edition (J2EE™ platform), version 1.4
specification.

This preface contains information about the following topics:
= Who Should Use This Guide

= Before You Read This Book

< How This Guide Is Organized

= Conventions Used in This Book

= Related Documentation

= Contacting Sun Technical Support

< Related Third-Party Web Site References

e Sun Welcomes Your Comments

Who Should Use This Guide

Who Should Use This Guide

The intended audience for this guide is the system administrator, network
administrator, application server administrator, and web developer who has an
interest in migration issues.

This guide assumes you are familiar with the following topics:
 HTML

= Application Servers

= Client/Server programming model

= Internet and World Wide Web

< Windows 2000 and/or Solaris™ operating systems

= Java programming

= Java APIs as defined in specifications for EJBs, Java Server Pages (JSP)
= Java Database Connectivity (JDBC)

= Structured database query languages such as SQL

= Relational database concepts

= Software development processes, including debugging and source code
control

Before You Read This Book

8

Application Server is a component of Sun Java™ Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or
Internet environment. You should be familiar with the documentation provided
with Sun Java Enterprise System, which can be accessed online at

http://docs. sun. coni app/ docs/ pr od/ ent sys. 05q1#hi c.

Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

http://docs.sun.com/app/docs/prod/entsys.05q1#hic

How This Guide Is Organized

How This Guide Is Organized

This guide is organized as follows:

Table 1

How This Guide is Organized

Chapter

Description

Chapter 1, “Application Server
Compatibility Issues”

Chapter 2, “J2EE 1.4
Compatibility Issues”

Chapter 3, “Upgrading an
Application Server Installation”

Chapter 4, “Understanding
Migration”

Chapter 5, “Migrating from EJB
1.1to EJB 2.0"

Chapter 6, “Migrating from
Application Server 6.x/7.x to
Application Server 8.1"

Chapter 7, “Migrating a Sample
Application - an Overview”

Chapter 8, “Migration Tools
and Resources”

Appendix A, “iBank Application
Specification”

Discusses the incompatibilities between Application Server 8.1
and Application Server 7/8.

Discusses the J2EE incompatibilities between Application
Server 8.1 and Application Server 7/8.

Describes the process to upgrade an earlier installation of
application server to Application Server 8.1.

Discusses the need to migrate applications.

Describes the process to migrate EJB 1.1 to EJB2.0
specification.

Describes the considerations and strategies to migrate
applications from earlier releases of Sun’s application servers
to Sun Java System Application Server 8 2004Q4.

Describes the steps to migrate a sample application from Sun
ONE Application Server 6.x to Sun Java System Application
Server 2004Q4.

Lists the tools and resources that aid in automatic migration of
applications.

Describes the specification of the sample application- iBank.

Conventions Used in This Book

The tables in this section describe the conventions used in this book.

Typographic Conventions

The following table describes the typographic changes used in this book.

Preface

9

Conventions Used in This Book

10

Table 2 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 APl and language elements, HTML Edit your. | ogi n file.

(Monospace) tags, web site URLs, command))
names, file names, directory path Use | s -ato list all files.
names, onscreen computer output,)
Samp|e code. % YOU have mail | .

AaBbCc123 What you type, when contrasted %su

(Monospace with onscreen computer output. Passwor d:

bold)

AaBbCc123 Book titles, new terms, words to be Read Chapter 6 in the User’s

(Italic) emphasized. Guide.

A placeholder in a command or
path name to be replaced with a
real name or value.

These are called class options.
Do not save the file.

The file is located in the
install-dir/ bi n directory.

Symbols

The following table describes the symbol conventions used in this book.

Table 3 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional command |s [-1] The -1 option is not
options. required.

{11 Contains a set of choicesfor -d {y| n} The - d option requires that

a required command option.

Joins simultaneous multiple Control-A
keystrokes.

Joins consecutive multiple Ctrl+A+N

keystrokes.

you use either the y
argument or the n
argument.

Press the Control key while
you press the A key.

Press the Control key,
release it, and then press
the subsequent keys.

Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

Table 3 Symbol

Conventions Used in This Book

Conventions (Continued)

Symbol Description Example Meaning
> Indicates menu item File > New > Templates From the File menu, choose
selection in a graphical user New. From the New
interface. submenu, choose
Templates.

Default Paths and File Names

The following table describes the default paths and file names used in this book.

Table 4 Default Paths and File Names

Term

Description

install_dir

domain_root_dir

By default, the Application Server installation directory is located here:
e Sun Java Enterprise System installations on the Solaris™ platform:

/ opt / SUN\Wappser ver / appser ver
e Sun Java Enterprise System installations on the Linux platform:
[opt/ sun/ appser ver/

Other Solaris and Linux installations, non-root user:

user’s home directory/ SUNVappser ver

» Other Solaris and Linux installations, root user:
/ opt / SUN\Wappser ver

* Windows, all installations:
SystemDrive: \ Sun\ AppSer ver

By default, the directory containing all domains is located here:
* Sun Java Enterprise System installations on the Solaris platform:

/var/ opt / SUN\Wappser ver / donai ns/

e Sun Java Enterprise System installations on the Linux platform:
/var/ opt/sun/ appser ver/ donai ns/

* Al other installations:

install_dir/ domai ns/

Preface

11

Related Documentation

Table 4 Default Paths and File Names

Term Description

domain_dir By default, each domain directory is located here:
domain_root_dir/ domain_dir
In configuration files, you might see domain_dir represented as follows:

${ com sun. aas. i nst anceRoot }

Shell Prompts

The following table describes the shell prompts used in this book.

Table 5 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%
C shell superuser on UNIX or Linux machine-name#
Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C\

Related Documentation

The http://docs. sun. con¥™web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book
title or subject.

Books in This Documentation Set

The Sun Java System Application Server manuals are available as online files in
Portable Document Format (PDF) and Hypertext Markup Language (HTML).

The following table summarizes the books included in the Application Server core
documentation set.

12 Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

Related Documentation

Table 6 Books in This Documentation Set

Book Title

Description

Release Notes

Quick Start Guide
Installation Guide

Developer’s Guide

J2EE 1.4 Tutorial

Administration Guide

Administration Reference

Upgrade and Migration Guide

Troubleshooting Guide
Error Message Reference

Reference Manual

Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating
system, JDK, and JDBC/RDBMS.

How to get started with the Sun Java System Application Server product.
Installing the Sun Java System Application Server software and its components.

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components and APIs. Includes general
information about developer tools, security, assembly, deployment, debugging, and
creating lifecycle modules.

Using J2EE 1.4 platform technologies and APIs to develop J2EE applications and
deploying the applications on the Sun Java System Application Server.

Configuring, managing, and deploying the Sun Java System Application Server
subsystems and components from the Administration Console.

Editing the Sun Java System Application Server configuration file, donai n. xni .

Migrating your applications to the new Sun Java System Application Server
programming model, specifically from Application Server 6.x and 7. This guide also
describes differences between adjacent product releases and configuration options
that can result in incompatibility with the product specifications.

Solving Sun Java System Application Server problems.
Solving Sun Java System Application Server error messages.

Utility commands available with the Sun Java System Application Server; written in
manpage style. Includes the asadni n command line interface.

Other Server Documentation

For other server documentation, go to the following:

< Message Queue documentation
http://docs. sun. com db?p=prod/ s1. slnsgqu

= Directory Server documentation
http://docs. sun. comicol | / D rect oryServer_04q2

< Web Server documentation
http://docs. sun. comcol | / S1_websvr61_en

Preface 13

http://docs.sun.com/db?p=prod/s1.s1msgqu
http://docs.sun.com/coll/DirectoryServer_04q2
http://docs.sun.com/coll/S1_webvr61_en

Accessing Sun Resources Online

Accessing Sun Resources Online

For product downloads, professional services, patches and support, and additional
developer information, go to the following:

= Download Center
http: //wws. sun. coni sof t war e/ downl oad/

= Professional Services
http: // waw sun. coml servi ce/ sunps/ sunone/ i ndex. ht m

= Sun Enterprise Services, Solaris Patches, and Support
http://sunsol ve. sun. coni

= Developer Information
http://devel opers. sun. conm prodt ech/ i ndex. ht m

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in the
product documentation, go to htt p: //ww. sun. coni servi ce/ cont act i ng.

Related Third-Party Web Site References

Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments
and suggestions.

14 Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

http://wwws.sun.com/software/download
http://www.sun.com/service/sunps/sunone/index.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech.index.html
http://www.sun.com/service/contacting

Sun Welcomes Your Comments

To share your comments, go to htt p:// docs. sun. comand click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document. For example, the title of this book is Sun Java System
Application Server Platform Edition 8.1 2005Q1 Upgrade and Migration Guide, and
the part number is 819-0083.

Preface 15

http://docs.sun.com

Sun Welcomes Your Comments

16 Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

Chapter 1

Application Server Compatibility
Issues

The Sun Java System Application Server 8.1 2005Q1 (Application Server 8.1) is
upward binary-compatible with Sun Java System Application Server 8 2004Q2
(Application Server 8) and with Sun Java System Application Server 7 2004Q2
(Application Server 7) except for the incompatibilities noted below. J2EE
applications that run on versions 7 and 8 also work on version 8.1 except for the
incompatibilities noted below.

The topics discussed in this chapter include incompatibilities in the following
areas:

= Web Server Features

= Security Realms

e Sun Deployment Descriptor: sun-web.xml

= encodeCookies Property

= CORBA Performance Option

= File Formats

« Certificate Database

= Tools Interoperability

= Primary Key Attribute Values

= Command Line Interface: start-appserv and stop-appserv

e Command Line Interface: asadmin

17

Web Server Features

Web Server Features

Application Server 8.1 replaces the Web server shipped with Application Server 7
with a Java-based web container. As a result, the following web server-specific
features are no longer supported in version 8.1:

e cgi-bin,shtni

e SNMP support

e NSAPI plugin APIs

< Native content handling features

= Web server tools (f | exanl g, ht passwd)

e HTTP QoS

= Web server configuration files (*. conf , *. acl , ni ne. t ypes)
= Web server-specific log rotation facility

= Watch dog process (appser v- wdog)

Security Realms

The package names of the security realm implementations have been renamed
from com i pl anet . i as. security. aut h. real min Application Server 7 to

com sun. enterpri se. security. aut h. real min Application Server 8.1. Custom
realms written using the com i pl anet . * classes must be modified.

The com sun. ent erpri se. security. Aut henti cati onSt at us class has been
removed.

The com sun. enterprise. security. auth. | ogin. Passwor dLogi nMbdul e
aut hent i cat e method implementation has changed as follows.

/**

* Perform aut hentication decision.
* <P> Note: AuthenticationStatus and AuthenticationStat usl npl
* cl asses have been renoved.

* Method returns silently on success and returns a Logi nException

* on failure.

*

* @eturn void authenticate returns silently on successful authentication.
*

@hrows Logi nException on authentication failure.

18 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Sun Deployment Descriptor: sun-web.xml

abstract protected void authenticate()
throws Logi nExcepti on;

For more information, see:

htt p: // devel opers. sun. coni prodt ech/ appser ver/ref erence/ t echart/as8_aut henti cati on/i ndex. ht m

Sun Deployment Descriptor: sun-web.xml

In Application Server 7, the default value for the optional attribute del egat e was
f al se. In Application Server 8.1, this attribute defaults to t r ue. This change means
that by default the Web application classloader first delegates to the parent
classloader before attempting to load a class by itself. For details, see “Application
Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations” on

page 32.

encodeCookies Property

The encodeCooki es property of the sun- web- app element in the sun-web. xni file
performs URL encoding of cookies if set to true. If set to false, no encoding of
cookies is performed. In Application Server 7, the default value of the
encodeCooki es property was true. This property was not present in Application
Server 8. In Application Server 8.1, the default value is false.

In general, URL encoding of cookies is unnecessary. Setting this property to true is
strongly discouraged. This property is provided only for those rare applications
that depended on this behavior in Application Server 7. This property might be
removed in a future release.

CORBA Performance Option

In Application Server 7, users were able to specify the following system property to
optionally turn on some ORB performance optimization:

-Djavax.rm . OORBA Wil d ass=comiplanet.ias.util.orbutil.lasWil Del egate

Chapter 1 Application Server Compatibility Issues 19

http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html

File Formats

The ORB performance optimization is turned on by default in Application Server
8.1. If you are using the system property reference above, you must remove it to
avoid interfering with the default optimization.

File Formats

In Application Server 8.1, domai n. xni is the main server configuration file. In
Application Server 7, the main server configuration file was server. xm . The DTD
file of domai n. xm is found in | i b/ dt ds/ sun-domai n_1_1. dt d. The upgrade tool
included in Application Server 8.1 can be used to migrate the server. xni from
Application Server 7 to donai n. xm for Application Server 8.1.

The li b/ dtds/sun-donmai n_1 1. dtd. file for Application Server 8.1 is fully
backward compatible with the corresponding file for Application Server 8,
sun-donai n_1 0. dtd.

In general, the configuration file formats are NOT backward compatible. The
following configuration files are NOT supported:

e * conf
e * acl
= mne.types

< server.xm (replaced with domai n. xni)

Certificate Database

Application Server 8.1 uses Java Keystore (JKS) as the keystore format. The NSS
format used in Application Server 7 is not supported. The upgrade tool included in
the product can be used to migrate existing NSS keystores to JKS keystores.

Tools Interoperability

As a general rule, tools are not interoperable between Application Server 7 and 8.1.
Users must upgrade their Application Server 7 tools to work with Application
Server 8.1.

20 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Primary Key Attribute Values

Primary Key Attribute Values

In Application Server 7, it was possible to change any field (in the Administration

Console) or attribute (in the command line interface). In Application Server 8.1, a

field or attribute that is the primary key of an item cannot be changed. However, an
item can be deleted and then recreated with a new primary key value. In most
cases, the primary key is a name, ID, reference, or INDI name. The following table

lists the primary keys that cannot be changed.

NOTE In the donai n. xm file, a field or attribute is called an attribute, and
an item is called an element. For more information about domai n. xni ,
see the Sun Java System Application Server Administration Reference.

Table 1-1 Primary Key Attributes

Iltem Primary Key Field or Attribute

admi n- obj ect - r esour ce
al ert-subscription
appcl i ent - nodul e
application-ref

audi t - nodul e

auth-real m

cluster-ref

cluster

config

connect or - connect i on- pool
connect or - modul e
connect or - r esour ce
cust om resour ce

ej b- modul e

external -jndi -resource
http-1istener
iiop-listener

j 2ee-application

j ndi - nane
name

name

ref

name

name

ref

name

name

name

name

j ndi - nane
j ndi - nane
name

j ndi - nane
id

id

nane

Chapter 1

Application Server Compatibility Issues

21

Command Line Interface: start-appserv and stop-appserv

Table 1-1 Primary Key Attributes

Item Primary Key Field or Attribute
j acc- provi der nare

j dbc- connect i on- pool narme

j dbc-resource j ndi - nane

j ms- host name

j mx- connect or nare

I b-config narme

l'i fecycl e-nodul e name

mai | -resour ce j ndi - nane
nmessage- security-config aut h- | ayer
node- agent nare

profiler nare

el enent - property name

provi der-config provider-id
resour ce- adapt er - confi g resour ce- adapt er - nane
resour ce-ref ref
security-map nare

server name
server-ref ref

system property name

t hr ead- pool t hread- pool -i d
virtual - server id

web- nodul e nane

per si st ence- manager - f act ory- r esour ce j ndi - narre

Command Line Interface: start-appserv and
stop-appserv

The start - appserv and st op- appser v commands are deprecated. Use of these
commands results in a warning. Use asadm n start - domai n and asadm n
st op- domai n instead.

22 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Command Line Interface: asadmin

In Application Server 8.1, the "Log Messages to Standard Error” field has been
removed from the Administration Console. The | og-t 0- consol e attribute in the
domai n. xni file is deprecated and ignored. The asadm n set command has no
effect on the | og-t o- consol e attribute. Use the - - ver bose option of the asadm n
start-domai n command to print messages to the window in which you executed
st art - domai n. This only works if you execute st art - dormai n on the machine on
which the domain you are starting is installed.

Command Line Interface: asadmin

The following sections describe changes to the command line interface asadni n:
= Subcommands

= Error Codes for Start and Stop Subcommands

= Options

e Dotted Names

= Tokens in Attribute Values

<« Nulls in Attribute Values

For more information about the asadni n commands, see the Sun Java System
Application Server Reference Manual.

Subcommands

Subcommands are backward compatible except as noted below.
The following sub command is deprecated and ignored:
< reconfig

Application Server 8.1 can only create one instance, so these subcommands are not
supported.

e create-instance
e el ete-instance
e |ist-instances

e start-instance

Chapter 1 Application Server Compatibility Issues 23

Command Line Interface: asadmin

= stop-instance
e showi nstance-status
e restart-instance

The following subcommands are no longer supported in Application Server 8.1,
because the software license key and web core were removed, and because
controlled functions from web server features are no longer supported:

e install-license
e display-license
e create-http-qos
e delete-http-qos
= create-nine

e delete-nine

e J|ist-nine

e create-authdb

e del ete-aut hdb

e |ist-authdbs

e create-acl

e delete-acl

e |ist-acls

Error Codes for Start and Stop Subcommands

For Application Server 7, the exit codes returned by the start and stop
subcommands of the asadni n command were based on the desired end state. For
example, for asadm n st art - domai n, if the domain was already running, the exit
code was 0 (success). If domain startup failed, the exit code was 1 (error).

For Application Server 8.1, the exit codes are based on whether the commands
execute as expected. For example, the asadni n start - domai n command returns
exit code 1 if the domain is already running or if domain startup fails. Similarly,
asadm n st op- domai n returns exit code 1 if the domain is already not running or
cannot be stopped.

24 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Options

Command Line Interface: asadmin

Options in the following table are deprecated or no longer supported.

Table 1-2 Deprecated and Unsupported asadm n Options

Option Deprecated or Unsupported in Subcommands
--accept| ang Deprecated for the creat e- vi rt ual - server subcommand.
--acls Deprecated for the creat e-vi rt ual - server subcommand.

- - adni npasswor d

- - bl ocki ngenabl e

d
--configfile
--def aul t obj
--domain
--fanmly
--instance
--mnme
--optionsfile
- - passwor d

--path

--resour cet ype
--storeurl

--target

--type

Deprecated for all relevant subcommands. Use - - passwor df i | e instead.

Deprecated for the creat e- ht t p-| i st ener subcommand.

Deprecated for the creat e-vi rt ual - server subcommand.

Deprecated for the creat e- vi rt ual - server subcommand.

Deprecated for the st op- donai n subcommand.

Deprecated for the creat e- htt p-| i st ener subcommand.

Deprecated for all remote subcommands. Use - -t ar get instead.
Deprecated for the creat e-vi rt ual - server subcommand.

No longer supported for any commands.

Deprecated for all remote subcommands. Use - - passwor df i | e instead.

Deprecated for the cr eat e- domai n subcommand. Use - - donai ndi r
instead.

Deprecated for all relevant subcommands. Use - - r est ype instead.
No longer supported for any commands.

Deprecated for all j dbc- connect i on- pool , connect or - connect i on- pool ,
connect or - securi ty- map, and r esour ce- adapt er - conf i g subcommands.

Deprecated for all relevant subcommands.

Dotted Names

The following use of dotted names in asadmi n get and set subcommands are not
backward compatible:

= Default server name is server instead of server 1

e server. resource becomes donai n. r esour ces. resource

Chapter 1 Application Server Compatibility Issues 25

Command Line Interface: asadmin

= server. app-module becomes domai n. appl i cati ons. app-module

= Attributes names format is different, for example, pool Resi zeQuant ity is now
pool -resi ze-quantity

= Some aliases supported in Application Server 7 are not supported in
Application Server 8.1

In Application Server 8.1, the - - passwor df i | e option of the asadm n command
does not read the passwor d. conf file, and the upgrade tool does not upgrade this
file. For information about creating a password file in Application Server 8.1, see
the Sun Java System Application Server Administration Guide.

The table below displays a one-to-one mapping of the incompatibilities in dotted
names between Application Server 7 and 8.1. The compatible dotted names are not
listed in this table.

Table 1-3 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names

Application Server 8 Dotted Names

server_instance. htt p-1i st ener. listener_id
server_instance. htt p-servi ce. http-1istener.
listener_id

server_instance. or b
server_instance. i i op- servi ce

server_instance. or bl i st ener
server_instance. i i op-1i st ener
server_instance. j dbc- r esour ce. jndi_name

server_instance. j dbc- connect i on- pool . pool_id

server_instance. ext er nal -j ndi - r esour ce. jndi_name
server_instance. j ndi - r esour ce. jndi_name

server_instance. cust om r esour ce. jndi_name

server_instance. web- cont ai ner. | ogLevel

(see note below)

server. http-service. http-1istener. listener_id
server-config. http-service. http-listener.
listener_id

server.iiop-service
server-config.iiop-service

server.iiop-service.iiop-listener. listener_id
server-config.iiop-service.iiop-listener.
listener_id

server. resour ces. j dbc-resour ce. jndi_name
domai n. resour ces. j dbc-resour ce. jndi_name

server. resour ces. j dbc- connecti on- pool . pool_id
domai n. resour ces. j dbc- connect i on- pool . pool_id

server. resour ces. ext ernal -j ndi - resour ce.
jndi_name
domai n. resour ces. ext ernal . j ndi - resour ce.
jndi_name

server. resour ces. cust omresour ce. jndi_name
domai n. r esour ces. cust om r esour ce. jndi_name

server. | og- servi ce. nodul e-| og- | evel s.

web- cont ai ner

server-config. | og-service. nodul e-1 0g-1 evel s.
web- cont ai ner

26 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Table 1-3

Command Line Interface: asadmin

Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names

Application Server 8 Dotted Names

server_instance. web- cont ai ner . noni t ori ngEnabl ed

(see note below)

server_instance. j 2ee- appl i cati on. application_name
server_instance. appl i cati on. application_name

server_instance. ej b- modul e. ejb-module_name

server_instance. web- nodul e. web-module_name

server_instance. connect or - modul e.
connector_module_name

server_instance. | i f ecycl e- nodul e.
lifecycle_module_name

server_instance. vi rt ual - server - cl ass

server_instance.vi rt ual - server.
virtual-server_id

server_instance. m ne.mime_id
server_instance.acl .acl_id

server_instance.vi rt ual - server.
virtual-server_id.aut h- db.auth-db_id

server_instance.aut hr eal mrealm_id
server_instance.securi ty-service. aut hreal m
realm_id

server_instance.

per si st ence- manager - f act ory- r esour ce. jndi_name
server_instance. r esour ces. per si st ence- manager - f act o
ry-resource. jndi_name

server_instance. ht t p- servi ce. acl . acl_id

server_instance. mai | - r esour ce. jndi_name

server. noni t ori ng- servi ce.

nodul e- noni tori ng- | evel s. web- cont ai ner
server-config. moni t ori ng- servi ce.

nodul e- noni tori ng-| evel s. web- cont ai ner

server. appl i cations.j 2ee-application.
application_name
donai n. appl i cations. j 2ee-appl i cati on.
application_name

server. applications. ej b- nodul e. ejb-module_name
domai n. appl i cations. ej b- nodul e. ejh-module_name

server. appl i cati ons. web- nodul e. web-module_name
dorai n. appl i cati ons. web- nodul e. web-module_name

server. appl i cati ons. connect or - modul e.
connector_module_name
domai n. appl i cati ons. connect or - nodul e.
connector_module_name

server.applications.|ifecycle-nodul e.
lifecycle_module_name

dorai n. application.lifecycl e-nodul e.
lifecycle_module_name

N/A

server. http-service.virtual -server.
virtual-server_id

server-config. http-service.virtual -server.
virtual-server_id

N/A
N/A
N/A

server. security-service. auth-real m realm_id
server-config.security-service-auth-real m
realm_id

Server. resour ces. persi st ence- manager - f act ory-reso
ur ce. jndi_name

domai n. resour ces.

per si st ence- manager - f act or y- r esour ce. jndi_name

N/A

server. resour ces. nai | -resour ce. jndi_name
domai n. resour ces. nai | -resour ce. jndi_name

Chapter 1 Application Server Compatibility Issues 27

Command Line Interface: asadmin

Table 1-3 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names Application Server 8 Dotted Names

server_instance. profil er server.java-config.profiler
server-config.java-config.profiler

NOTE Rows with note in previous table describe attribute names. In these
instances, there is not a one-to-one relationship with the dotted
names between Application Server 7 and 8.1.

Tokens in Attribute Values

The asadm n get command shows raw values in Application Server 8.1 instead of
resolved values as in Application Server 8. These raw values may be tokens. For
example, executing the following command:

asadm n get domai n. | og-root
displays the following value:

${com sun. aas. i nst anceRoot } /| ogs

Nulls in Attribute Values

In Application Server 8, attributes with no values contained nulls. This caused
problems in attributes that specified paths. In Application Server 8.1, attributes
with no values contain empty strings, as they did in Application Server 7.

28 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Chapter 2

J2EE 1.4 Compatibility Issues

The following topics are covered in this chapter:

Binary Compatibility

Source Compatibility

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)
JAXP and SAX Incompatibilities

Application Server 8.1 Options Incompatible with J2EE 1.4 Specification
Requirements

Application Server 8.1 Options Contrary to J2EE 1.4 Specification
Recommendations

Binary Compatibility

In this Application Server 8.1 release, the included Java SDK is The Java™ 2
Platform, Enterprise Edition (J2EE™ platform), version 1.4 SDK. This version of the
J2EE SDK is upwards binary-compatible with J2EE SDK, v1.3, except for the
incompatibilities listed below. This means that, except for the noted
incompatibilities, applications built for version 1.3 run correctly in the Sun Java
System Application Server 8.1 release. For ease of reference, the version of the J2EE
SDK included in this release is referred to throughout this section as J2EE 1.4.

Source Compatibility

Downward source compatibility is not supported. If source files use new J2EE
APIs, they are not usable with an earlier version of the J2EE platform.

29

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

In general, the policy is as follows:

= Maintenance releases do not introduce any new APIs, so they maintain
source-compatibility with one another. However, since J2EE is based on J2SE, a
new Application Server release may include a new version of J2SE. Refer to the
document on compatibility issues in J2SE for more information:

http://java.sun. conlj2se/ 1.4.2/ conpatibility.htm

= Functionality releases and major releases maintain upwards but not
downwards source-compatibility.

Deprecated APIs are methods and classes that are supported only for backward
compatibility, and the compiler generates a warning message whenever one of
these is used, unless the - nowar n command-line option is used. It is recommended
that programs be modified to eliminate the use of deprecated methods and classes,
though there are no current plans to remove such methods and classes entirely
from the system.

Incompatibilities in the J2EE 1.4 Platform (since
the J2EE 1.3 release)

30

The Sun Java System Application Server 8.1 release is based on the Java 2 Platform,
Enterprise Edition, version 1.4. The Sun Java System Application Server 7 release is
based on the Java 2 Platform, Enterprise Edition, version 1.3.

The Sun Java System Application Server 8.1 release is strongly compatible with
previous versions of the J2EE platform. Almost all existing programs should run
on the Sun Java System Application Server 8.1 release without modification.
However, there are some minor potential incompatibilities that involve rare
circumstances and “corner cases” that we are documenting here for completeness.

= Java Servlet Specification Version 2.4 ships with the Sun Java System
Application Server 8.1 release, and can be downloaded from the following
URL:

http://]ava. sun. con product s/ servl et/

Version 2.3 of the specification shipped with the J2EE 1.3 SDK. The following
items discuss compatibility issues between these releases.

o HtpSessionListener sessionDestroyed

Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/products/servlet/

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

In the previous versions of the specification, this method was defined as
Notification that a session was invalidated. As of this release, this
method is changed to Notification that a session is about to be

i nval i dat ed so that it notifies before the session invalidation. If the code
assumed the previous behavior, it must be modified to match the new
behavior.

o Servl et Request methods get Renot ePor t, get Local Name, get Local Addr,
get Local Port

The following methods are added in the Ser vl et Request interface in this
version of the specification. Be aware that this addition causes source
incompatibility in some cases, such as when a developer implements the
Servl et Request interface. In this case, ensure that all the new methods are
implemented:

+ public int getRenotePort () returns the Internet Protocol (IP) source
port of the client or last proxy that sent the request.

« public java.lang.String getlLocal Name() returns the host name of
the Internet Protocol (IP) interface on which the request was received.

« public java.lang.String getLocal Addr () returns the Internet
Protocol (IP) address of the interface on which the request was
received.

« public int getlLocal Port() returns the Internet Protocol (IP) port
number of the interface on which the request was received.

Java Server Pages Specification 2.0 ships with the Sun Java System Application
Server 8.1 release and is downloadable from the following URL:

http://java. sun. coni product s/ sp/

JSP Specification 1.2 shipped with the J2EE 1.3 SDK. Where possible, the JSP 2.0
Specification attempts to be fully backward compatible with the JSP 1.2
Specification. In some cases, there are ambiguities in the JSP 1.2 specification
that have been clarified in the JSP 2.0 Specification. Because some JSP 1.2
containers behave differently, some applications that rely on container-specific
behavior may need to be adjusted to work correctly in a JSP 2.0 environment.

The following is a list of known backward compatibility issues of which
developers who use JSP technology should be aware:

Chapter 2 J2EE 1.4 Compatibility Issues 31

http://java.sun.com/products/jsp/

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

32

Tag Library validators that are not namespace aware and that rely solely
on the prefix parameter might not correctly validate some JSP 2.0 pages.
This is because the XML view might contain tag library declarations in
elements other than j sp: r oot , and might contain the same tag library
declaration more than once, using different prefixes. The uri parameter
should always be used by tag library validators instead. Existing JSP pages
with existing tag libraries do not create any problems.

Users may observe differences in 118N behavior on some containers due
primarily to ambiguity in the JSP 1.2 specification. Where possible, steps
were taken to minimize the impact on backward compatibility and overall,
the 118N abilities of technology have been greatly improved.

In JSP specification versions previous to JSP 2.0, JSP pages in XML syntax
(“JSP documents”) and those in standard syntax determined their page
encoding in the same fashion, by examining the pageEncodi ng or

cont ent Type attributes of their page directive, defaulting to 1SO-8859-1 if
neither was present.

As of the JSP Specification v2.0, the page encoding for JSP documents is
determined as described in section 4.3.3 and appendix F.1 of the XML
specification, and the pageEncodi ng attribute of those pages is only
checked to make sure it is consistent with the page encoding determined as
per the XML specification.

As a result of this change, JSP documents that rely on their page encoding
to be determined from their pageEncodi ng attribute will no longer be
decoded correctly. These JSP documents must be changed to include an
appropriate XML encoding declaration.

Additionally, in the JSP 1.2 Specification, page encodings are determined
on a per translation unit basis whereas in the JSP 2.0 Specification, page
encodings are determined on a per-file basis. Therefore, if a. | sp statically
includes b. j sp, and a page encoding is specified in a. j sp but notinb. j sp,
in the JSP 1.2 Specification a. j sp’s encoding is used for b. j sp, but in the
JSP 2.0 Specification, the default encoding is used for b. j sp.

The type coercion rules (shown in Table JSP.1-11 in the JSP 2.0
Specification) have been reconciled with the EL coercion rules. There are
some exceptional conditions that no longer result in an exception in the JSP
2.0 Specification. In particular, when passing an empty String("") to an
attribute of a numeric type, a translation error or a

Nurber For mat Except i on used to occur, whereas in the JSP 2.0
Specification, a 0 is passed in instead. See Table JSP.1-11 in the JSP 2.0

Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

JAXP and SAX Incompatibilities

Specification for details. In general, this is not expected to cause any
problems because these would have been exceptional conditions in the JSP
1.2 Specification and the specification allowed for these exceptions to occur
at either translation time or request time.

o The JSP container uses the version of web. xm to determine the default
behavior of various container features. The following is a list of items of
which JSP developers should be aware when upgrading their web. xni
from Servlet version 2.3 Specification to Servlet version 2.4 Specification.

« EL expressions are ignored by default in applications created with JSP
1.2 technology. When upgrading a Web application to the JSP 2.0
Specification, EL expressions are interpreted by default. The escape
sequence \ $ can be used to escape EL expressions that should not be
interpreted by the container. Alternatively, the i SELI gnor ed page
directive attribute, or the el -i gnor ed configuration element can
deactivate EL for entire translation units. Users of JSTL 1.0 need to
either upgrade their t agl i b/ imports to the JSTL 1.1 URIs, or they
need to use the _rt versions of the tags (for example c_rt instead of c,
orfmt_rt instead of f nt).

» Files with an extension of . j spx are interpreted as JSP documents by
default. Use the JSP configuration element i s-xm to treat . j spx files
as regular JSP pages. There is no way to disassociate . j spx from the
JSP container.

« The escape sequence \ $ was not reserved in the JSP 1.2 Specification.
Any template text or attribute value that appeared as\ $ in the JSP 1.2
Specification used to output\ $ but now outputs just $.

JAXP and SAX Incompatibilities

Sun Java System Application Server 8.1 supports JAXP 1.3, which in turn supports
SAX 2.0.2. In SAX 2.0.2, Decl Handl er. ext er nal Enti t yDecl requires the parser to
return the absolute system identifier for consistency with

DTDHand! er . unpar sedEnt i t yDecl . This might cause some incompatibilities when
migrating applications that use SAX 2.0.0.

To migrate an application that uses SAX 2.0.0 to SAX 2.0.2 without changing the
previous behavior of ext ernal Entit yDecl , you can set the resol ve-dtd-uris
feature to f al se. For example:

SAXPar ser Fact ory spf = SAXParser Fact ory. newl nst ance() ;
spf.set Feature("http://xm .org/sax/features/resol ve-dtd-uris",fal se);

Chapter 2 J2EE 1.4 Compatibility Issues 33

Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements

Other incompatibilities between SAX 2.0.0 and SAX 2.0.2 are documented here:

http://java. sun. conj 2se/ 1. 5. 0/ docs/ gui de/ xm / j axp/ JAXP- Conpat i bi | i ty_150. ht m #SAX

Application Server 8.1 Options Incompatible with
J2EE 1.4 Specification Requirements

Sun Java System Application Server 8.1 is compatible with the Java 2 Platform,
Enterprise Edition specification by default. In this case, all portable J2EE programs
run on the Application Server without modification. However, as allowed by the
J2EE compatibility requirements, it is possible to configure applications to use
features of the Sun Java System Application Server 8.1 that are not compatible with
the J2EE specification.

The pass- by-ref erence element in the sun- ej b-j ar. xnl file only applies to
remote calls. As defined in the EJB 2.0 specification, section 5.4, calls to local
interfaces use pass-by-reference semantics.

If the pass- by-r ef er ence element is set to its default value of f al se, the parameter
passing semantics for calls to remote interfaces comply with the EJB 2.0
specification, section 5.4. If set to t r ue, remote calls involve pass-by-reference
semantics instead of pass-by-value semantics, contrary to this specification.

Portable programs cannot assume that a copy of the object is made during such a
call, and thus that it’s safe to modify the original. Nor can they assume that a copy
is not made, and thus that changes to the object are visible to both caller and callee.
When this flag is set to t r ue, parameters and return values are considered
read-only. The behavior of a program that modifies such parameters or return
values is undefined. For more information about the pass- by- r ef er ence element,
see the Developer’s Guide.

Application Server 8.1 Options Contrary to J2EE
1.4 Specification Recommendations

34

If the del egat e attribute in the cl ass- | oader element of the sun-web. xni file is set
to its default value of t r ue, classes and resources residing in container-wide library
JAR files are loaded in preference to classes and resources packaged within the
WAR file, contrary to what is recommended in the Servlet 2.3 specification, section
9.7.2. If set to f al se, the classloader delegation behavior complies with what is
recommended in the Servlet 2.3 specification, section 9.7.2.

Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

Do not package portable programs that use the del egat e attribute with the value
of t r ue with any classes or interfaces that are a part of the J2EE specification. The
behavior of a program that includes such classes or interfaces in its WAR file is
undefined. For more information about the cl ass- | oader element, see the
Developer’s Guide.

Chapter 2 J2EE 1.4 Compatibility Issues 35

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

36 Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

Chapter 3

Upgrading an Application Server
Installation

You can upgrade to Sun Java System Application Server Platform Edition 8.1
(hereafter called Application Server) from Sun Java(TM) System Application
Server 7.x (formerly Sun ONE(TM) Application Server 7.x) or a Sun Java System
Application Server 8.x Platform Edition installation. Information that is transferred
includes data about deployed applications, the file realm, security certificates, and
other resource and server configuration settings. You can install your upgrade in a
new location, or you can upgrade in place by overwriting your previous
installation.

The following table shows supported Sun Java System Application Server
upgrades, where PE indicates Platform Edition and EE indicates Enterprise
Edition.

Table 3-1 Supported Upgrade Paths

Source Installation 8.1Platform Edition 8.1 Enterprise Edition
7.XPE X X
7.XSE X
7.XEE X
8.0PE X X
8.1PE X
NOTE Before starting the upgrade process, make sure that both the source

server (the server from which you are upgrading) and the target
server (the server to which you are upgrading) are stopped.

37

The software provides two methods, a command-line utility (asupgr ade) and a
graphical user interface (Upgrade Wizard), for completing the upgrade. If you
issue the asupgr ade command with no options, the Upgrade Wizard GUI will be
displayed. If the asupgr ade command is used in command-line mode and all of the
required information is not supplied, an interviewer will request information for
any required options that were omitted. The Upgrade Wizard automatically
detects the version of the specified source server installation.

If a domain contains information about a deployed application and the installed
application components do not agree with the configuration information, the
configuration will be migrated as is without any attempt to reconfigure the
incorrect configurations.

During an upgrade, the configuration and deployed applications of a previous
version of the Application Server are migrated; however, the runtime binaries of
the server are not updated. Database migrations or conversions are also beyond the
scope of this upgrade process.

Only those instances that do not use Sun Java System Web Server-specific features
will be upgraded seamlessly. Configuration files related to HTTP path, CGI bin,
SHTML, and NSAPI plug-ins will not be upgraded.

Application archives (EAR files) and component archives (JAR, WAR, and RAR
files) that are deployed in the Application Server 7.x/8.0 environment do not
require any modification to run on Application Server 8.1.

Applications and components that are deployed in the source server are deployed
on the target server during the upgrade. Applications that do not deploy
successfully on the target server must be migrated using the Migration Tool or
asm gr at e command, then deployed again manually.

If the upgrade includes clusters, specify one or more cluster files. Upon successful
upgrade, an upgrade report is generated listing successfully migrated items along
with a list of the items that could not be migrated.

This chapter discusses the following topics:

= Upgrading Through the Upgrade Utility

= Upgrading Through the Wizard

= Correcting Potential PE Upgrade Problems
= Correcting Potential PE Upgrade Problems

38 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Upgrading Through the Upgrade Utility

Upgrading Through the Upgrade Utility

The upgrade utility is run from the command line using the following syntax:

asupgrade [--console] [--version] [--help]
[--source applicationserver_7.x/8.x_installation]
[--target applicationserver 8.1 installation]
--adm nuser adm n_user
[- - adnmi npassword adm n_passwor d]
[- - mast er passwor d changei t]
[--passwordfile path_to_password file]
[--domain domai n_namne]
[--nsspwdfil e NSS password_fil epath]
[--targetnsspwdfile target NSS password fil epath]
[--] kspwdfile JKS password_fil epath]
[--capwdfile CA password_fil epath]
[--clinstancefile filel [, file2, file3, ... filen]]

The following table describes the command options in greater detail, including the
short form, the long form, and a description.

Table 3-2 asupgrade Utility Command Options

Short Form Long Form Description

-C ---console Launches the upgrade command line utility.

-V ---version The version of the Upgrade Tool.

-h ---help Displays the arguments for launching the upgrade utility.

-t ---target The installation directory for Sun Java System Application Server
8.1.

-a ---adminuser The username of the administrator.

-wW ---adminpassword The password for the adminuser. Although this option can be used,
the recommended way to transmit passwords is by using the
-passwordfile option.

-m --masterpassword The master password that is created during installation. The default

value is changei t . Although this option can be used, the
recommended way to transmit passwords is by using the
--passwordfile option.

Note: This option is required only if your target server is Application
Server 8.1 EE.

Chapter 3 Upgrading an Application Server Installation 39

Upgrading Through the Upgrade Utility

Table 3-2 asupgrade Utility Command Options

Short Form Long Form Description

-f --passwordfile The path to the file that contains the adminpassword and
masterpassword. Content of this file should be in the following
format:

AS_ADMIN_ADMINPASSWORD=adminpassword
AS_ADMIN_MASTERPASSWORD=masterpassword

-d --domain The domain name for the migrated certificates.

-n --nsspwdfile The path to the NSS password file.

-e --targetnsspwdfile The path to the target NSS password file.

- --jkspwdfile The path to the JKS password file.

-p --capwdfile The path to the CA certificate password file.

-i --clinstancefile The path to the cluster file. The default filename is

$AS_INSTALL/conf/clinstance.conf.

The following examples show how to use the asupgrade command-line utility to
upgrade an existing application server installation to Application Server 8.1.

Example 1: Upgrading an Application Server 7 Installation to Application Server 8.1
with Prompts for Certificate Migration.

This example shows how to upgrade a Sun Java System Application Server 7
installation to Sun Java System Application Server 8.1. You will be prompted to
migrate certificates. If you reply no, then no certificates will be migrated.

% asupgrade --adninuser admn --passwordfile password.txt
--source /hone/sunas7 --target /hone/sjsas8.1

Example 2: Upgrading an Application Server 7.0 PE Installation with NSS
Certificates to Application Server 8.1 PE

This example shows how to upgrade a Sun Java System Application Server 7.0 PE
installation to Sun Java System Application Server 8.1 PE. The NSS certificates from
the 7.0 PE source server will be converted to JKS and CA certificates in the 8.1 PE
target server.

40 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

Upgrading Through the Wizard

% asupgrade --adm nuser adm n --passwordfile password.txt
--source /hone/sjsas7.0 --target /home/sjsas8.1
--donai n domai nl
--nsspwdfil e /home/ sj sas7. 0/ nsspasswor d. t xt
--j kspwdfil e /home/sjsas?.0/jkspassword. t xt
--capwdfil e /hone/sjsas7. 0/ capassword. t xt

Example 3: Upgrading an Application Server 8.0 PE Installation with JKS and CA
Certificates to Application Server 8.1 PE

This example shows how to upgrade a Sun Java System Application Server 8.0 PE
installation to Sun Java System Application Server 8.1 PE. JKS and CA certificates
will be migrated.

% asupgrade --adm nuser adm n --passwordfile password.txt
--source /hore/ sjsas8.0 --target /hone/sjsas8.1
--domai n domai nl
--j kspwdfil e /home/ sj sas8. 0/ j kspasswor d. t xt
--capwdfil e /hone/sjsas8. 1/ capasswor d. t xt

Upgrading Through the Wizard

The Upgrade wizard provides a graphical user interface (GUI). Using the wizard
increases install time and space requirements. You can start the Upgrade wizard in
GUI mode from the command line or from the desktop.

To start the wizard,
- On UNIX, change to the <install_dir>/bi n directory and type asupgr ade.
- On Windows, double-click the asupgrade icon in the <install_dir>/bi n directory.

If the Upgrade checkbox was selected during the Application Server installation
process, the Upgrade Wizard screen will automatically display after the
installation completes.

From the Upgrade Wizard screen:

1. Inthe Source Installation Directory field, enter the location of the Sun Java
System Application Server 7 (formerly Sun ONE™ Application Server 7) or
Sun Java System Application Server 8.x installation from which to import the
configuration.

Chapter 3 Upgrading an Application Server Installation 41

Upgrading Through the Wizard

10.

11.

In the Target Installation Directory field, enter the location of the Application
Server installation to which to transfer the configuration.

If the upgrade wizard was started from the installation (the Upgrade from
Previous Version checkbox was checked during the Application Server
installation), the default value for this field will be the directory to which the
Application Server software was just installed.

If a Sun Java System Application Server 7.1 Enterprise Edition installation with
clusters and no security certificates is being upgraded to Sun Java Systems
Application Server 8.1 Enterprise Edition, press the Next button and continue
with Step 10. All other upgrades without certificates continue with Step 12.
Continue with Step 4 if security certificates need to be transferred.

If the source installation has security certificates that must be transferred,
check the Transfer Security Certificates checkbox, press the Next button, and
the Transfer Security Certificates screen displays.

From the Transfer Security Certificates screen, press the Add Domain button to
add domains with certificates to be transferred. The Add Domain dialog
displays.

From the Add Domain dialog, select the domain name that contains the
security certificates to migrate and enter the appropriate passwords.

Click the OK button when done. The Transfer Security Certificates screen will
be displayed again.

Repeat Step 5 and Step 6 until all the domains that have certificates to be
transferred have been added.

After all of the domains that contain certificates to be transferred have been
added, press the Next button and continue with Step 12 or with Step 10 if
cluster configuration information needs to be transferred.

If a Sun Java Systems Application Server 7.1 Enterprise Edition installation
with clusters is being upgraded to Sun Java Systems Application Server 8.1
Enterprise Edition, the Transfer Cluster Configurations screen will be
displayed. Press the Add Cluster button. The Select cl i nst ance. conf file
dialog box will be displayed. Choose clinstance file and click the Open button.
The cl i nst ance. conf file will be added to the list.

Enter the cluster file name, which contains the cluster configuration
information to be migrated. Repeat this process until all the cluster
configuration files that need to be migrated have been added, then press the
Next button.

42 Application Server Enterprise Edition 2005Q1 « Upgrade and Migration Guide

12.

13.

Correcting Potential PE Upgrade Problems

The Upgrade Results screen displays, showing the status of the upgrade
operation in the Results field.

Click the Finish button to close the Upgrade Tool when the upgrade process is
complete.

Correcting Potential PE Upgrade Problems

This section addresses the following issues that could occur during an upgrade to
Application Server 8.1:

Migrating Additional HTTP Listeners Defined on the Source Server to the
Target PE Server

Eliminating Problems Encountered When A Single Domain has Multiple
Certificate Database Passwords

Migrating Additional HTTP Listeners Defined on
the Source Server to the Target PE Server

If additional HTTP listeners have been defined in the PE source server, those
listeners need to be added to the PE target server after the upgrade:

1.
2.
3.

»

Start the Admin Console.
Expand Configuration.
Expand HTTP Service.
Expand Virtual Servers.
Select <server>.

In the right hand pane, add the additional HTTP listener name to the HTTP
Listeners field.

Click Save when done.

Chapter 3 Upgrading an Application Server Installation 43

Correcting Potential PE Upgrade Problems

44

Eliminating Problems Encountered When A
Single Domain has Multiple Certificate Database
Passwords

If the upgrade includes certificates, provide the passwords for the source PKCS12
file and the target JKS keyfile for each domain that contains certificates to be
migrated. Since Application Server 7 uses a different certificate store format (NSS)
than Application Server 8 PE (JSSE), the migration keys and certificates are
converted to the new format. Only one certificate database password per domain is
supported. If multiple certificate database passwords are used in a single domain,
make all of the passwords the same before starting the upgrade. Then reset the
passwords after the upgrade has been completed.

Application Server Enterprise Edition 2005Q1 * Upgrade and Migration Guide

Chapter 4

Understanding Migration

This chapter addresses the following topics:
= J2EE Component Standards
= J2EE Application Components

< Migration and Deployment

J2EE Component Standards

Sun Java System Application Server Platform Edition 8.1 2005Q1(hereafter called
Application Server) is a J2EE v1.4-compliant server based on the component
standards developed by the Java community. By contrast, Sun Java System
Application Server 7 (Application Server 7) is a J2EE v1.3-compliant server and Sun
ONE Application Server 6.x (Application Server 6.x) is a J2EE v1.2-compliant
server. Between the three J2EE versions, there are considerable differences with the
J2EE application component APIs.

The following table characterizes the differences between the component APIs
used with the J2EE v1.4-compliant Sun Java System Application Server Platform
Edition 8.1, the J2EE v1.3-compliant Sun ONE Application Server 7, and the J2EE
vl1.2-compliant Sun ONE Application Server 6.x.

Table 4-1 Application Server Version Comparison of APIs for J2EE Components
ISun Java System

Component [Sun ONE Application ISun Java System Application Server

API Server 6.x Application Server 7 Platform Edition 8.1

JDK 1.2.2 1.4 1.4

Servlet 2.2 2.3 2.4

45

J2EE Application Components

Table 4-1 Application Server Version Comparison of APIs for J2EE Components

USP 1.1 1.2 2.0
uDBC 2.0 2.0 2.1,3.0
EJB 1.1 2.0 2.0
UNDI 1.2 1.2 1.2.1
uMS 1.0 1.1 1.1
UTA 1.0 1.01 1.01

J2EE Application Components

46

J2EE simplifies development of enterprise applications by basing them on
standardized, modular components, providing a complete set of services to those
components, and handling many details of application behavior automatically,
without complex programming. J2EE v1.4 architecture includes several component
APIs. Prominent J2EE components include:

e Client Application

< Web Application

= Enterprise JavaBean (EJB)

= Connector

= Enterprise Application Archive (EAR)

J2EE components are packaged separately and bundled into a J2EE application for
deployment. Each component, its related files such as GIF and HTML files or
server-side utility classes, and a deployment descriptor are assembled into a
module and added to the J2EE application. A J2EE application is composed of one
or more enterprise bean(s), Web, or application client component modules. The
final enterprise solution can use one J2EE application or be made up of two or more
J2EE applications, depending on design requirements.

A J2EE application and each of its modules has its own deployment descriptor. A
deployment descriptor is an XML document with an .xml extension that describes a
component’s deployment settings.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migration and Deployment

A J2EE application with all of its modules is delivered in an Enterprise Archive
(EAR) file. An EARfile is a standard Java Archive (JAR) file with an .ear extension. The
EARfile contains EJB JAR files, application client JAR files and/or Web Archive
(WAR) files.

The migration process is concerned with moving J2EE application components,
modules, and files. For more information on migrating various J2EE components,
refer to Chapter 6, “Migrating from Application Server 6.x/7.x to Application
Server 8.1.”.

For more background information on J2EE, see the following references:
= J2EE tutorial - http://java. sun. conlj 2ee/ 1. 4/ docs/ t ut ori al / doc/ i ndex. ht m
= J2EE overview - http://java. sun. con j 2ee/ over vi ew. ht n

e J2EE topics - http://java. sun. conlj 2ee

Migration and Deployment

This section describes the need to migrate J2EE applications and the particular files
that must be migrated. Following successful migration, a J2EE application is
redeployed to the Application Server.

Redeployment is also described in this section.

The following topics are addressed:

< Why is Migration Necessary?

< What Needs to be Migrated

< What is Deployment of Migrated Applications?

Why is Migration Necessary?

Although J2EE specifications broadly cover requirements for applications, they are
nonetheless evolving standards. They either do not cover some aspects of
applications or leave implementation details to the application providers.

This leads to different implementations of the application servers, also well as
difference in the deployment of J2EE components on application servers. The array
of available configuration and deployment tools for use with any particular
application server product also contributes to the product implementation
differences.

Chapter 4 Understanding Migration 47

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/overview.html
http://java.sun.com/j2ee

Migration and Deployment

48

The evolutionary nature of the specifications itself presents challenges to
application providers. Each of the component APIs are also evolving. This leads to
a varying degree of conformance by products. In particular, an emerging product,
such as the Application Server, has to contend with differences in J2EE application
components, modules, and files deployed on other established application server
platforms. Such differences require mappings between earlier implementation
details of the J2EE standard, such as file naming conventions, messaging syntax,
and so forth.

Moreover, product providers usually bundle additional features and services with
their products. These features are available as custom JSP tags or proprietary Java
API libraries. Unfortunately, using these proprietary features renders these
applications non-portable.

What Needs to be Migrated

For migration purposes, the J2EE application consists of the following file
categories:

« Deployment descriptors (XML files)
= JSP source files that contain Proprietary APIs

= Java source files that contain Proprietary APIs

Deployment descriptors (XML files)

Deployment is accomplished by specifying deployment descriptors (DDs) for
standalone enterprise beans (EJB JAR files), front-end Web components (WAR
files) and enterprise applications (EAR files). Deployment descriptors are used to
resolve all external dependencies of the J2EE components/applications. The J2EE
specification for DDs is common across all application server products. However,
the specification leaves several deployment aspects of components pertaining to an
application dependent on product-implementation.

JSP source files

J2EE specifies how to extend JSP by adding extra custom tags. Product vendors
include some custom JSP extensions in their products, simplifying some tasks for
developers. However, usage of these proprietary custom tags results in
non-portability of JSP files. Additionally, JSP can invoke methods defined in other
Java source files as well. The JSPs containing proprietary APIls needs to be
rewritten before they can be migrated.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migration and Deployment

Java source files

The Java source files can be EJBs, servlets, or other helper classes. The EJBs and
servlets can invoke standard J2EE services directly. They can also invoke methods
defined in helper classes. Java source files are used to encode the business layer of
applications, such as EJBs.Vendors bundle several services and proprietary Java
API with their products. The use of proprietary Java APIs is a major source of
non-portability in applications. Since J2EE is an evolving standard, different
products can support different versions of J2EE component APIs. This is another
aspect that migration addresses.

What is Deployment of Migrated Applications?

Deployment refers to deploying a migrated application that was previously
deployed on an earlier version of Sun’s Application Server, or any third party
application server platforms.

The act of deploying a migrated application typically refers to using the standard
deployment actions outlined in the Sun Java System Application Server Platform
Edition 8.1 Administration Guide. However, when migration activities are performed
with automated tools, such as the Migration Tool for Sun Java System Application
Server 8 (for J2EE applications) or the Sun ONE Migration Toolbox (for Netscape
Application Servers), there might be post-migration or pre-deployment tasks that
are needed (and defined) prior to deploying the migrated application.

See Migration Tools and Resources for more information about migration tools that
are available.

Chapter 4 Understanding Migration 49

Migration and Deployment

50 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Chapter 5

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun Java
System Application Server Platform Edition 8.1, the use of the EJB 2.0 architecture
is recommended to leverage its enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications are required, including
within the source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and
EJB 2.0, all of which are described in the following topics.

< EJB Query Language

« Local Interfaces

< EJB 2.0 Container-Managed Persistence (CMP)
= Migrating EJB Client Applications

< Migrating CMP Entity EJBs

EJB Query Language

The EJB 1.1 specification left the manner and language for forming and expressing
queries for finder methods to each individual application server. While many
application server vendors let developers form queries using SQL, others use their
own proprietary language specific to their particular application server product.
This mixture of query implementations causes inconsistencies between application
servers.

51

Local Interfaces

The EJB 2.0 specification introduces a query language called EJB Query Language, or
EJB QL to correct many of these inconsistencies and shortcomings. EJB QL is based
on SQL92. It defines query methods, in the form of both finder and select methods,
specifically for entity beans with container-managed persistence. EJB QL's
principal advantage over SQL is its portability across EJB containers and its ability
to navigate entity bean relationships.

Local Interfaces

In the EJB 1.1 architecture, session and entity beans have one type of interface, a
remote interface, through which they can be accessed by clients and other
application components. The remote interface is designed such that a bean instance
has remote capabilities; the bean inherits from RMI and can interact with
distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients
through two types of interfaces: a remote interface and a local interface. The 2.0
remote interface is identical to the remote interface used in the 1.1 architecture,
whereby, the bean inherits from RMI, exposes its methods across the network tier,
and has the same capability to interact with distributed clients.

However, the local interfaces for session and entity beans provide support for
lightweight access from EJBs that are local clients; that is, clients co-located in the
same EJB container. The EJB 2.0 specification further requires that EJBs that use
local interfaces be within the same application. That is, the deployment descriptors
for an application's EJBs using local interfaces must be contained within one

ej b-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An
enterprise bean uses the local interface to expose its methods to other beans that
reside within the same container. By using a local interface, a bean may be more
tightly coupled with its clients and may be directly accessed without the overhead
of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by
reference semantics. Because you are now passing a reference to an object, rather
than the object itself, this reduces the overhead incurred when passing objects with
large amounts of data, resulting in a performance gain.

52 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

EJB 2.0 Container-Managed Persistence (CMP)

EJB 2.0 Container-Managed Persistence (CMP)

The EJB 2.0 specification expanded CMP to allow multiple entity beans to have
relationships among themselves. This is referred to as Container-Managed
Relationships (CMR). The container manages the relationships and the referential
integrity of the relationships.

The EJB 1.1 specification presented a more limited CMP model. The EJB 1.1
architecture limited CMP to data access that is independent of the database or
resource manager type. It allowed you to expose only an entity bean's instance
state through its remote interface; there is no means to expose bean relationships.
The EJB 1.1 version of CMP depends on mapping the instance variables of an entity
bean class to the data items representing their state in the database or resource
manager. The CMP instance fields are specified in the deployment descriptor, and
when the bean is deployed, the deployer uses tools to generate code that
implements the mapping of the instance fields to the data items.

You must also change the way you code the bean's implementation class.
According to the EJB 2.0 specification, the implementation class for an entity bean
that uses CMP is now defined as an abstract class.

The following topics are discussed in this section:
= Defining Persistent Fields
= Defining Entity Bean Relationships

= Message-Driven Beans

Defining Persistent Fields

The EJB 2.0 specification lets you designate an entity bean's instance variables as
CMP fields or CMR fields. You define these fields in the deployment descriptor.
CMP fields are marked with the element cnp-fi el d, while container-managed
relationship fields are marked with the element cnr-fi el d.

In the implementation class, note that you do not declare the CMP and CMR fields
as public variables. Instead, you define get and set methods in the entity bean to
retrieve and set the values of these CMP and CMR fields. In this sense, beans using
the 2.0 CMP follow the JavaBeans model: instead of accessing instance variables
directly, clients use the entity bean's get and set methods to retrieve and set these
instance variables. Keep in mind that the get and set methods only pertain to
variables that have been designated as CMP or CMR fields.

Chapter 5 Migrating from EJB 1.1to EJB 2.0 53

Migrating EJB Client Applications

Defining Entity Bean Relationships

As noted previously, the EJB 1.1 architecture does not support CMRs between
entity beans. The EJB 2.0 architecture does support both one-to-one and
one-to-many CMRs. Relationships are expressed using CMR fields, and these fields
are marked as such in the deployment descriptor. You set up the CMR fields in the
deployment descriptor using the appropriate deployment tool for your application
server.

Similar to CMP fields, the bean does not declare the CMR fields as instance
variables. Instead, the bean provides get and set methods for these fields.

Message-Driven Beans

Message-driven beans are another new feature introduced by the EJB 2.0
architecture. Message-driven beans are transaction-aware components that process
asynchronous messages delivered through the Java Message Service (JMS). The
JMS APl is an integral part of the J2EE 1.3 and J2EE 1.4 platform.

Asynchronous messaging allows applications to communicate by exchanging
messages so that senders are independent of receivers. The sender sends its
message and does not have to wait for the receiver to receive or process that
message. This differs from synchronous communication, which requires the
component that is invoking a method on another component to wait or block until
the processing completes and control returns to the caller component.

Migrating EJB Client Applications

54

This section includes the following topics:
= Declaring EJBs in the JNDI Context
« Recap on Using EJB INDI References

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating EJB Client Applications

Declaring EJBs in the JNDI Context

In Sun Java System Application Server Platform Edition 8.1, EJBs are systematically
mapped to the INDI sub-context "ejb/". If we attribute the JNDI name "Account” to
an EJB, then Sun Java System Application Server Platform Edition 8.1 will
automatically create the reference "ejb/Account” in the global JNDI context. The
clients of this EJB will therefore have to look up "ejb/Account” to retrieve the
corresponding home interface.

Let us examine the code for a servlet method deployed in Sun ONE Application
Server 6.X.

The servlet presented here calls on a stateful session bean, BankTeller, mapped to
the root of the JNDI context. The method whose code we are considering is
responsible for retrieving the home interface of the EJB, so as to enable a BankTeller
object to be instantiated and a remote interface for this object to be retrieved, in
order to make business method calls to this component.
/**
* Look up the BankTel | erHorme interface using JNDI .
*/
private BankTel | er Hore | ookupBankTel | er Home(Cont ext ct x)
t hrows Nani ngException
{
try

{
(oj ect horme = (BankTel | er Home) ct x. | ookup("ej b/ BankTel I er");

return (BankTel | er Home) Portabl eRenmot e(hj ect . nar r ow(hone,
BankTel | er Hone. cl ass) ;
}
cat ch (Nam ngException ne)

{
[og("| ookupBankTel | er Home: unabl e to | ookup BankTel | er Hone" +

"with JNDI narme 'BankTeller': " + ne.get Message());
t hrow ne;

}
}

As the code already uses ej b/ BankTel | er as an argument for the lookup, there is no
need for modifying the code to be deployed on Sun Java System Application Server
Platform Edition 8.1.

Chapter 5 Migrating from EJB 1.1to EJB 2.0 55

Migrating CMP Entity EJBs

Recap on Using EJB JNDI References

This section summarizes the considerations when using EJB JNDI references.
Where noted, the consideration details are specific to a particular source
application server platform.

Placing EJB References in the JNDI Context

It is only necessary to modify the name of the EJB references in the JNDI context
mentioned above (moving these references from the JNDI context root to the
sub-context "ejb/") when the EJBs are mapped to the root of the JNDI context in the
existing WebLogic application.

If these EJBs are already mapped to the JNDI sub-context ej b/ in the existing
application, no modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor
within the Sun Java Studio IDE, it is important to avoid including the prefix ej b/
in the INDI name of an EJB. Remember that these EJB references are automatically
placed in the JNDI ej b/ sub-context with Sun Java System Application Server
Platform Edition 8.1. So, if an EJB is given to the JNDI name "BankTeller" in its
deployment descriptor, the reference to this EJB will be "translated" by Sun Java
System Application Server Platform Edition 8.1 into ej b/ BankTel | er, and this is the
JNDI name that client components of this EJB must use when carrying out a
lookup.

Global JNDI context versus local JNDI context

Using the global INDI context to obtain EJB references is a perfectly valid, feasible
approach with Sun Java System Application Server Platform Edition 8.1.
Nonetheless, it is preferable to stay as close as possible to the J2EE specification,
and retrieve EJB references through the local JNDI context of EJB client
applications. When using the local JINDI context, you must first declare EJB
resource references in the deployment descriptor of the client part (web. xni for a
Web application, e]j b-j ar. xni for an EJB component).

Migrating CMP Entity EJBs

This section describes the steps to migrate your application components from the
EJB 1.1 architecture to the EJB 2.0 architecture.

56 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating CMP Entity EJBs

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a
particular bean can be migrated. The steps to perform this verification are as
follows.

1.

From the ej b-jar.xni file, go to the <cnp-fiel ds> names and check if the
optional tag <pri m key-fi el d>is present in the ejb-jar.xn file and hasan
indicated value. If it does, go to next step.

Look for the <pri mkey-cl ass> field name in the ej b-j ar. xni , get the class name
and get the public instance variabl es declared in the class. Now see if the
signature (name and case) of these variables matches with the <cnp-fi el d>
names above. Segregate the ones that are found. In these segregated fields,
check if some of them start with an upper case letter. If any of them do, then
migration cannot be performed.

Look into the bean class source code and obtain the java types of all the
<cnp-fi el d> variables.

Changeall the <cnp- f i el d>namesto lowercase and construct accessors from
them. For example if the original field name is Nane and its java type is Stri ng,
the accessor method signature will be:

Public void setNane(String narme)
Public String getNane()

Compare these accessor method signatures with the method signatures in the
bean class. If there is an exact match found, migration is not possible.

Get the custom finder methods signatures and their corresponding SQLSs.
Check if there is a ‘Join’ or ‘Outer join’ or an ‘OrderBy’ in the SQL, if yes, we
cannot migrate, as EJB QL does not support ‘joins’, ‘Outer join’ and ‘OrderBy’.

Any CMP 1.1 finder, which used j ava. uti | . Enuner ati on, must now use
java.util.Col I ecti on. Change your code to reflect this. CMP2.0 finders cannot
return java. util . Enunerati on.

“Muigrating the Bean Class,” explains how to perform the actual migration process.

Migrating the Bean Class

This section describes the steps required to migrate the bean class to Sun Java
System Application Server Platform Edition 8.1.

Chapter 5 Migrating from EJB 1.1to EJB 2.0 57

Migrating CMP Entity EJBs

Prepend the bean class declaration with the keyword abstract. For example if
the bean class declaration was:

Public class Cabi nBean inplenents EntityBean // before nodification

abstract Public class CabinBean inplenments EntityBean // after
modi fi cation

Prefix the accessors with the keyword abstract.

Insert all the accessors after modification into the source(.java) file of the bean
class at class level.

Comment out all the cnp fields in the source file of the bean class.

Construct protected instance variable declarations from the cnp-fi el d names in
lowercase and insert them at the class level.

Read up all the ej bCreat e() method bodies (there could be more than one

ej bOreat e). Look for the pattern ‘<cnp- fi el d>=some value or local variable’, and
replace it with the expression ‘abstract mutator method name (same value or
local variable)’. For example, if the ej bOr eat e body (before migration) is like this:

public M/PK ej bOreate(int id, String nane)
{
this.id = 10*i d;
Nane = nane;//1
return nul l;

}
The changed method body (after migration) should be:

public M/PK ej bOreate(int id, String nane)

{
set 1 d(10%id);
set Nanme(nane);//1
return null;

}

Note that the method signature of the abstract accessor in// 1 is as per the
Camel Case convention mandated by the EJB 2.0 specification. Also, the
keyword ‘this’ may or may not be present in the original source, but it must be
removed from the modified source file.

All the protected variables declared in the ej bPost O eat () methods in step 5
must be initialized. The protected variables will be equal in number with the
ej bO eat e() methods. This initialization will be done by inserting the
initialization code in the following manner:

58 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

10.

Migrating CMP Entity EJBs

protected String nane; [/fromstep 5
protected int id; [Ifromstep 5
public void ej bPost Create(int id, String name)
{
nane /*protected variabl e*/ = getNane(); /*abstract accessor*/
/linserted in this step
id/*protected variable*/ = getld(); / *abstract accessor*/
/linserted in this step
}

Inside the ej bLoad method, you must set the protected variables to the beans’
database state. To do so, insert the following lines of code:

public void ej bLoad()

{

name = get Nane(); /linserted in this step

id=getld(); /linserted in this step
/lal ready present code

}

Similarly, you will have to update the beans’ state inside ej bSt ore() so that its
database state gets updated. But remember, you are not allowed to update the
setters that correspond to the primary key outside the ej bCreat e(), so do not
include them inside this method. Insert the following lines of code:

public void ej bStore()

{
set Narme(nane) ; /linserted in this step
/1 setld(id); //Do not insert thisif it is a
part of the primry key
............. . /lal ready present code
}

As a last change to the bean class source (. j ava) file, examine the whole code
and replace all occurrences of any <cnp- fi el d> variable name with the
equivalent protected variable name (as declared in step 5).

If you do not migrate the bean, at the minimum you need to insert the

<cnp- ver si on>1. X</ cnp- ver si on> tag inside the ej b-j ar. xm file at the
appropriate place, so that the unmigrated bean still works on Sun Java System
Application Server Platform Edition 8.1.

Migration of ejb-jar.xml

To migrate the file ej b-j ar. xni to Sun Java System Application Server Platform
Edition 8.1, perform the following steps:

Chapter 5 Migrating from EJB 1.1to EJB 2.0 59

Migrating CMP Entity EJBs

1. Intheejb-jar.xm, convertall <cnp-fiel ds>to lowercase.

2. Intheejb-jar.xni file, insert the tag <abst r act - schema- nane> after the
<reent rant >tag. The schema name will be the name of the bean as in the

< g b- nane> tag, prefixed with “ias_".
3. Insert the following tags after the <pri nkey-fi el d> tag:

<security-identity><use-caller-identity/></security-identity>
4. Use the SQL’s obtained above to construct the EJB QL from SQL.

5. Insert the <query>tag and all its nested child tags with all the required
information in the ej b-j ar. xn , just after the <security-identity> tag.

Custom Finder Methods

The custom finder methods are the fi ndBy... methods (other than the default

fi ndByPri mar yKey method), which can be defined in the home interface of an entity
bean. Since the EJB 1.1 specification does not stipulate a standard for defining the
logic of these finder methods, EJB server vendors are free to choose their
implementations. As a result, the procedures used to define the methods vary
considerably between the different implementations chosen by vendors.

Sun ONE Application Server 6.x uses standard SQL to specify the finder logic.

Information concerning the definition of this finder method is stored in the
enterprise bean's persistence descriptor (Account -i as- cnp. xm) as follows:

<bean- property>
<property>
<name>f i ndOr der edAccount sFor Cust ormer SQL</ nane>
<type>j ava. | ang. Stri ng</type>
<val ue>
SELECT BRANCH_CCDE, ACC_NO FROM ACCOUNT where CUST_NO = ?
</val ue>
<delimter> </delimter>
</ property>
</ bean- pr operty>
<bean- property>
<property>
<nane>f i ndQr der edAccount sFor Cust oner Par ns</ nane>
<type>j ava. | ang. Vect or </ t ype>

60 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating CMP Entity EJBs

<val ue>Cust No</ val ue>
<delimter> </delimter>
</ property>
</ bean- property>

Each fi ndXxX finder method therefore has two corresponding entries in the
deployment descriptor (SQL code for the query, and the associated parameters).

In Sun Java System Application Server Platform Edition 8.1 the custom finder
method logic is also declarative, but is based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the
file ej b-j ar. xm , in the <gj b- gl > tag. This tag is inside the <quer y> tag, which defines
a query (finder or select method) inside an EJB. The EJB container can transform
each query into the implementation of the finder or select method. Here's an
example of an <ej b- gl > tag:

<ejb-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>hot el EJB</ €] b- nane>

<abst r act - schema- nane>TMBank SchenaNane</ abst r act - schema- nane>
<cnp-field>. ..
<query>
<quer y- net hod>
<net hod- nane>f i ndByQ t y</ met hod- name>
<net hod- par ans>
<met hod- par an®j ava. | ang. St ri ng</ net hod- par an»
</ met hod- par ans>
</ query- met hod>
<ej b-ql >
<! [CDATA SELECT OBJECT(t) FROM TMBankSchemaNanme AS t
WHERE t.city = ?1]]>
</ejb-qgl >
</ query>
</entity>

</enterpri se- beans>

</ejb-jar>

Chapter 5 Migrating from EJB 1.1to EJB 2.0 61

Migrating CMP Entity EJBs

62 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Chapter 6

Migrating from Application Server
6.x/7.x to Application Server 8.1

This chapter describes the considerations and strategies that are needed when
moving J2EE applications from Application Server 6.x and Application Server 7 to
the Application Server Platform Edition 8.1product line. However, Application
Server 8.1 provides backward compatibility standard, with Application Server 7 as
the baseline. That is, applications developed in Application Server 7 can be
deployable directly to Application Server 8.1 with minimum or no changes.

The sections that follow describe issues that arise while migrating the main
components of a typical J2EE application from Application Server 6.x/7.x to
Application Server Platform Edition 8.1.

This chapter contains the following sections:
= Migrating Deployment Descriptors

< Migrating Web Application Modules

< Migrating Enterprise EJB Modules

= Migrating Enterprise Applications

= Migrating Proprietary Extensions

= Migrating UIF

= Migrating JDBC Code

< Migrating Rich Clients

The migration issues described in this chapter are based on an actual migration
that was performed for a J2EE application called iBank, a simulated online banking
service, from Application Server 6.x to Sun Java System Application Server
Platform Edition 8.1. This application reflects all aspects of a traditional J2EE
application.

63

Migrating Deployment Descriptors

The following areas of the J2EE specification are covered by the iBank application:

= Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

= JSP pages, especially with static and dynamic inclusion of pages
= JSP custom tag libraries

e Creation and management of HTTP sessions

= Database access through the JDBC API

= Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans.

= Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A - iBank Application
Specification

Migrating Deployment Descriptors

64

There are two types of deployment descriptors, namely, Standard Deployment
Descriptors and Runtime Deployment Descriptors. Standard deployment
descriptors are portable across J2EE platform versions and vendors and does not
require any modifications. Currently, there are exceptions due to standards
interpretation. The following table lists such deployment descriptors.

Source Deployment Descriptor Target Deployment Descriptor
gjb-jar.xm -1.1 ejb-jar.xm -20

web. xm web. xm

appl i cation. xm appl i cation. xm

The J2EE standard deployment descriptors ej b-j ar. xm , web. xni and

appl i cation. xn are not modified significantly. However, the ej b-j ar. xni
deployment descriptor is modified to make it compliant with EJB 2.0 specification
in order to make the application deployable on Sun Java System Application Server
Platform Edition 8.1.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Deployment Descriptors

Runtime deployment descriptors are vendor and product specific and are not
portable across application servers due to difference in their format. Hence,
deployment descriptors require migration. This section describes how you can
manually create the runtime deployment descriptors and migrate relevant
information.

The following table summarizes the deployment descriptor migration mapping.

Source Deployment Descriptor Target Deployment Descriptor
ias-ejb-jar.xm sun-ej b-jar.xm

<bean- name>-i as- cnp. xni sun- cnp- mappi ngs. xm

i as-web. xni sun-web. xm

The standard deployment descriptors of Application Server 6.x needs modification
when moving to Application Server 8.1 because of hon-conformance with the
DTDs.

A majority of the information required for creating sun-ej b-jar. xni and

sun-web. xni comes from ias-ej b-jar.xnl and ias-web. xni respectively. However,
there is some information that is required and extracted from the home interface
(java file) of the CMP entity bean, in case the sun-¢j b-jar. xni being migrated
declares one. This is required to build the <query-fil t er > construct inside the
sun-gj b-jar. xnt , which requires information from inside the home interface of that
CMP entity bean. If the source file is not present during the migration time, the
<query-filter> construct is created, but with missing information (which manifests
itself in the form of "REPLACE ME” phrases in the migrated sun- ej b-j ar. xm).

Additionally, if the i as-ej b-j ar. xm contains a <nessage- dri ven> element, then
information from inside this element is picked up and used to fill up information
inside both ej b-jar. xm and sun-ej b-jar. xm . Also, inside the <nessage- dri ven>
element ofi as- ej b-j ar. xm , there is an element <dest i nat i on- name>, which holds the
JNDI name of the topic or queue to which the MDB listens. In Application Server
6.5, the naming convention for this jndi name is "cn=<SOVE_NAME>. " Since a JMS
Topic or Queue with this name is not deployable on Application Server, the
application server changes this to "<SOVE_NAME>", and inserts this information in the
sun-gj b-j ar. xni . This change must be reflected for all valid input files, namely, all
.java, .jspand.xni files. Hence, this JNDI name change is propagated across the
application, and if some source files that contain reference to this jndi-name are
unavailable, the administrator must make the changes manually so that the
application becomes deployable.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 65

Migrating Web Applications

Migrating Web Applications

66

Application Server 6.x support servlets (Servlet API 2.2), and JSPs (JSP 1.1). Sun
Java System Application Server Platform Edition 8.1 supports Servlet APl 2.4 and
JSP 2.0.

Within these environments it is essential to group the different components of an
application (servlets, JSP and HTML pages and other resources) together within an
archive file (J2EE-standard Web application module) deploying it on the
application server.

According to the J2EE specification, a Web application is an archive file (WAR file)
with the following structure;

<Aoot directory containing the HTML pages, JSP, images and other "static"
resources of the application.

< A MTA- I NF/ directory containing the archive manifest file (MANIFEST.MF)
containing the version information for the SDK used and, optionally, a list of
the files contained in the archive.

= AWB-INF directory containing the application deployment descriptor
(web. xn file) and all the Java classes and libraries used by the application,
organized as follows:

« Aclasses/ sub-directory containing the tree-structure of the compiled
classes of the application (servlets, auxiliary classes), organized into
packages

« Alib/ directory containing any Java libraries (JAR files) used by the
application

Migrating Java Server Pages and JSP Custom
Tag Libraries

Application Server 6.x complies with the JSP 1.1 specification and Application
Server 8.1 complies with the JSP 2.0 specification.

JSP 2.0 specification contains many new features, as well as updates to the JSP 1.1
specification.

These changes are enhancements and are not required to migrate to JSP pages from
JSP 1.1t02.0.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Web Applications

The implementation of JSP custom tag libraries in Application Server 6.x complies
with the J2EE specification. Consequently, migrating JSP custom tag libraries to the
Application Server Platform Edition 8.1does not pose any particular problem, nor
require any modifications.

Migrating Servlets

Application Server 6.x supports the Servlet 2.2 API. Sun Java System Application
Server Platform Edition 8.1 supports the Servlet 2.4 API.

Servlet API 2.4 leaves the core of servlets relatively untouched. Most changes are
concerned with adding new features outside the core.

The most significant features are:

= Servlets now require JDK 1.2 or later

= Filter mechanisms have been created

= Application lifecycle events have been added

= Internationalization support has been added

= Error and security attributes have been expanded

= HittpUtils class has been deprecated

= Several DTD behaviors have been expanded and clarified

These changes are enhancements and are not required to be made when migrating
servlets from Servlet APl 2.2 to 2.4.

However, if the servlets in the application use JNDI to access resources in the J2EE
application (such as data sources or EJBs), some modifications might be needed in
the source files or in the deployment descriptor.

These modifications are explained in detail in the following sections:
« Obtaining a Data Source from the JNDI Context
= Declaring EJBs in the JNDI Context

One last scenario might require modifications to the servlet code. Naming conflicts
can occur with Application Server 6.x if a JSP page has the same name as an
existing Java class. In this case, the conflict must be resolved by modifying the
name of the JSP page in question. This in turn can mean editing the code of the
servlets that call this JSP page. This issue is resolved in Application Server as it uses

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 67

Migrating Web Applications

68

a new class loader hierarchy. In the new version of the application server, for a
given application, one class loader loads all EJB modules and another class loader
loads web module. As these two loaders do not talk with each other, there is no
naming conflict.

Obtaining a Data Source from the JNDI Context

To obtain a reference to a data source bound to the JNDI context, look up the data
source's JNDI name from the initial context object. The object retrieved in this way
is then be cast as a DataSource type object:

ds = (DataSource)ct x. | ookup(Jndi Dat aSour ceNane) ;

For detailed information, refer to section “Migrating JDBC Code.”

Declaring EJBs in the JNDI Context

Please refer to section Declaring EJBs in the JNDI Context in “Migrating from EJB
1.1to EJB 2.0” on page 51.”

Potential Servlets and JSP Migration Problems

The actual migration of the components of a Servlet / JSP application from
Application Server 6.x to Application Server 8.1does not require any modifications
to the component code.

If the Web application is using a server resource, a DataSource for example, the
Application Server requires that this resource to be declared inside the web. xni file
and, correspondingly, inside the sun-web. xm file. To declare a DataSource called

j dbc/ i Bank, the <resour ce-ref > tag in the web. xni file is as follows:

<resour ce-ref >
<res-ref-name>j dbc/ i Bank</r es-ref - name>
<res-type>j avax. sgl . XADat aSour ce</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<res- shari ng- scope>Shar eabl e</r es- shari ng- scope>
</resource-ref>

The corresponding declaration inside the sun-web. xn file looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE FI X ME: need confirnation on the DTDto be used for this file

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Web Applications

<sun- web- app>
<resource-ref>
<res-ref - name>j dbc/ i Bank</r es- r ef - name>
<j ndi - name>j dbc/ i Bank</j ndi - nane>
</resource-ref>
</ sun- web- app>

Migrating Web Application Modules

Migrating applications from Application Server 6.x to Sun Java System Application
Server Platform Edition 8.1 does not require any changes to the Java/JSP code. The
following changes are, however, still required.

L]

web. xm

The Application Server adheres to J2EE 1.4 standards, according to which, the
web. xni file inside a WAR file must comply with the revised DTD available at
URL http://java. sun. con dt d/ web-app_2_3. dt d.. This DTD fortunately, is a
superset of the previous versions’ DTD, hence only the

<! DOCTYPE definition needs to be changed inside the web. xm file, which is to be
migrated. The modified <! DOCTYPE declaration looks like:

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, |nc.//DID Wb
Application 2.3//EN'" "http://]java. sun. con dt d/ web-app_2_3. dtd">

i as-web. xm

In Application Server Platform Edition 8.1, the name of this file is changed to
sun-web. xm .

This XML file must declare the Application Server-specific properties and
resources that are required by the Web application.

See “Potential Servlets and JSP Migration Problems,” for information about
important inclusions to this file.

If the i as-web. xni of the Application Server 6.5 application is present and does
declare Application Server 6.5 specific properties, then this file needs to be
migrated to Application Server standards. The DTD file name has to be
changed to sun-web. xm . For more details, see URL

http://wws. sun. coni sof t war e/ dt d/ appser ver/ sun-web-app_2 4-1.dtd

Once the web. xm and i as-web. xni files are migrated, the Web application
(WAR file) can be deployed from the Application Server’s deploytool GUI
interface or from the command line utility asadni n. The deployment command
must specific the type of application as web.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 69

http://java.sun.com/dtd/web-app_2_3.dtd
http://wwws.sun.com/software/dtd/appserver/sun-web-app_2_4-1.dtd

Migrating Enterprise EJB Modules

Invoke the asadm n command line utility by running asadni n. bat file or the
asadni n. sh script in the Application Server’s bi n directory.

The command at the asadni n prompt is:

asadm n> depl oy -u username -w password -H hostnanme -p admi nport --type
web [--contextroot contextroot] [--force=true] [--nane conponent - name]
[--upload=true] filepath

Migrating Enterprise EJB Modules

70

Application Server 6.x supports EJB 1.1, and the Application Server supports EJB
2.0. Therefore, both can support:

« Stateful or stateless session beans

= Entity beans with bean-managed persistence (BMP), or container-managed
persistence (CMP)

EJB 2.0, however, introduces a new type of enterprise bean, called a
message-driven bean (MDB).

J2EE 1.4 specification dictates that the different components of an EJB must be
grouped together in a JAR file with the following structure:

= META- I NF/ directory with an XML deployment descriptor named ej b-j ar. xm

= The .class files corresponding to the home interface, remote interface, the
implementation class, and the auxiliary classes of the bean with their package

Application Server 6.x use this archive structure. However, the EJB 1.1 specification
leaves each EJB container vendor to implement certain aspects as they see fit:

= Database persistence of CMP EJBs (particularly the configuration of mapping
between the bean's CMP fields and columns in a database table).

= Implementation of the custom finder method logic for CMP beans.

= Application Server 6.x andApplication Server 8.1do not handle migrations in
the same way, which means that some XML files must be modified:

= The <! DOCTYPE definition must be modified to point to the latest DTD url (in the
case of J2EE standard DDs, like ej b-j ar. xm).

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Enterprise EJB Modules

= Replace theias-ejb-jar.xnl file with the modified version of this file (for
example, file sun-ej b-j ar. xm , which is created manually according to the
DTDs). For more information, see URL
http://wws. sun. coni sof t war e/ dt d/ appserver/sun-ejb-jar_2 1-1.dtd

= Replace all the <ejb-name>-i as- cnp. xni files with one sun- cnp- mappi ngs. xm file,

which is created manually. For more information, see URL
http://wws. sun. coni sof t war e/ dt d/ appser ver/ sun-cnp- mappi ng_1 2. dtd

= Optionally, for CMP entity beans, use the capture-schema utility in the
Application Server’s bi n directory to generate the dbschema. Then place it
above the META- | NF directory for the entity beans.

EJB Migration

As mentioned in Understanding Migration, while Application Server 6.x supports
the EJB 1.1 specification, Application Server also supports the EJB 2.0 specification.

The EJB 2.0 specification introduces the following new features and functions to

the architecture:

< Message Driven Beans (MDBs)

= Improvements in Container-Managed Persistence (CMP)

= Container-managed relationships for entity beans with CMP

e Local interfaces

< EJB Query Language (EJB QL)

Although the EJB 1.1 specification continues to be supported in the Application

Server, the use of the EJB 2.0 architecture is recommended to leverage its enhanced

capabilities.

For detailed information on migrating from EJB 1.1 to EJB 2.0, please refer to
Chapter 5, “Migrating from EJB 1.1 to EJB 2.0.”

EJB Changes Specific to Application Server
Platform Edition 8.1

Migrating EJBs from Application Server 6.x to Application Server 8.1 is done
without making any changes to the EJB code. However, the following DTD
changes are required.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1

71

http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

Migrating Enterprise EJB Modules

72

Session Beans

The <! DOCTYPE> definition must be modified to point to the latest DTDs with
J2EE standard DDs, such as ej b-jar. xm .

Replace i as-ej b-jar. xm file with the modified version of this file, named
sun-¢j b-j ar. xnl , created manually according to the DDs. For more details, see
the URL htt p: // wwns. sun. conl sof t war e/ dt d/ appserver/sun-ej b-jar_2 1-1.dtd

In the sun-¢ej b-j ar. xni file, the INDI name for all the EJBs must be added before
‘ej b/ " in all the INDI names. This is required because, in Application Server 6.5,
the JINDI name of the EJB can only be ej b/ <ejb-name> where <ejb-name> is the
name of the EJB as declared inside the ej b-j ar. xni file.

In the Application Server, a new tag has been introduced in the
sun-ej b-j ar. xnl . This is where the INDI name of the EJB is declared.

NOTE To avoid changing JNDI names throughout the application, declare

the JNDI name of the EJB as ej b/ <ejb-name> inside the <jndi-name>
tag.

Entity Beans

The <! DOCTYPE> definition must be modified to point to the latest DTDs
containing J2EE standard DDs, such as ej b-j ar. xni .

Update the <cnp- ver si on>tag with the value 1.1, for all CMPs in the ej b-j ar. xm
file.

Replace all the <ejb-name>-i as-cnp. xni files with the manually created
sun- cnp- mappi ngs. xm file. For more information, see URL
http://wws. sun. coni sof t war e/ dt d/ appser ver/ sun-cnp- mappi ng_1 2. dtd

Generate dbschena by using the capt ur e- schena utility in the Application Server
installation’s bin directory and place it above META- | NF folder for Entity beans.

Repl ace the ias-ejb-jar.xm with the sun-gjb.jar.xn in Application Server.

In Application Server 6.5, the finders sql was directly embedded into the
<ejb-name>-i as- cnp. xni . In Application Server, mathematical expressions are
used to declare the <query-fil t er> for the various finder methods.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

Migrating Enterprise Applications

Message Driven Beans

Application Server provides seamless Message Driven Support through the tight
integration of Sun Java System Message Queue with the Application Server,
providing a native, built-in JMS Service.

This installation provides Application Server with a JMS messaging system that
supports any number of Application Server instances. Each server instance, by
default, has an associated built-in JMS Service that supports all JMS clients running
in the instance.

Both container-managed and bean-managed transactions, as defined in the
Enterprise JavaBeans Specification, v2.0, are supported.

Message Driven Bean support in iPlanet Application Server was restricted to
developers, and used many of the older proprietary APIs. Messaging services were
provided by iPlanet Message Queue for Java 2.0. An LDAP directory was also
required under iPlanet Application Server to configure the Queue Connection

Fact ory object.

The QueueConnect i onFact ory, and other elements required to configure Message
Driven Beans in Application Server are now specified in the ej b-j ar. xni file.

For more information on the changes to deployment descriptors, see “Migrating
Deployment Descriptors.” For information on Message Driven Bean
implementation in Application Server Platform Edition 8.1, see Sun Java System
Application Server Platform Edition 8.1, Developer’s Guide to Enterprise Java Bean
Technology.

Migrating Enterprise Applications

According to the J2EE specifications, an enterprise application is an EAR file,
which must have the following structure:

= A METAINF/ directory containing the XML deployment descriptor of the J2EE
application called appl i cati on. xm

< The JAR and WAR archive files for the EJB modules and Web module of the
enterprise application, respectively

In the application deployment descriptor, the modules that make up the enterprise
application and the Web application's context root are defined.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 73

Migrating Enterprise Applications

74

Application server 6.x and the Application Server 8.1support the J2EE model
wherein applications are packaged in the form of an enterprise archive (EAR) file
(extension . ear). The application is further subdivided into a collection of J2EE
modules, packaged into Java archives (JAR files, which have a . j ar file extension)
and EJBs and Web archives (WAR files, which have a . war file extension) for
servlets and JSPs.

It is essential to follow the steps listed here before deploying an enterprise
application:

1. Package EJBs in one or more EJB modules.
2. Package the components of the Web application in a Web module.

3. Assemble the EJB modules and Web modules in an enterprise application
module.

4. Define the name of the enterprise application's root context, which will
determine the URL for accessing the application.

The Application Server uses a newer class loader hierarchy than Application
Server 6.x does. In the new scheme, for a given application, one class loader loads
all EJB modules and another class loader loads Web modules. These two are
related in a parent child hierarchy where the JAR module class loader is the parent
module of the WAR module class loader. All classes loaded by the JAR class loader
are available/accessible to the WAR module but the reverse is not true. If a certain
class is required by the JAR file as well as the WAR file, then the class file must be
packaged inside the JAR module only. If this guideline is not followed it can lead to
class conflicts.

Application Root Context and Access URL

There is a major ‘difference between Application Server 6.x and the Application
Server, concerning the applications access URL (root context of the application's
Web module. If AppNane is the name of the root context of an application deployed
on a server called host nane, the access URL for this application will differ
depending on the application server used:

= With Application Server 6.x, which is always used jointly with a Web
front-end, the access URL for the application takes the following form
(assuming the Web server is configured on the standard HTTP port, 80):

ht t p: / / <hostname>/ NASApp/ AppNarre/
= With the Application Server, the URL takes the form:

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Enterprise Applications

htt p: // <host nane>: <por t nunber >/ AppNarre/
The TCP port used as default by Application Server is port 8080.

Although the difference in access URLs between Application Server 6.x and the
Application Server might appear minor, it can be problematic when migrating
applications that make use of absolute URL references. In such cases, it is necessary
to edit the code to update any absolute URL references so that they are no longer
prefixed with the specific marker used by the Web Server plug-in for Application
Server 6.X.

Applications With Form-based Authentication

Applications developed on Application Server 6.5 that use form-based
authentication can pass the request parameters to the Authentication Form or the
Login page. The Login page could be customized to display the authentication
parameters based on the input parameters.

For example:

htt p: // gat ekeeper . uk. sun. com 8690/ NASApp/ t est / secur ed/ page. j sp?ar gl=t es
t &r g2=m

Application Server 8.1 does not support the passing of request parameters while
displaying the Login page. The applications that uses form-based authentication,
which passes the request parameters can not be migrated to Application Server 8.1.
Porting such applications to Application Server 8.1 requires significant changes in
the code. Instead, you can store the request parameter information in the session,
which can be retrieved while displaying the Login page.

The following code example demonstrates the workaround:
Before changing the code in 6.5:
--------- i ndex-65.jsp -----------

<%@age content Type="text/htn "%
<htm >

<head><titl|e>JSP Page</titl e></head>
<body>

go to the secured a rea
</ body>
</htm >

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 75

Migrating Enterprise Applications

<%@age content Type="text/htn "%
<htm >

<head> </ head>

<body>

<I-- Print login form-->

<h3>Par anet er s</ h3>

out.printin("argl is " + request.getParameter("argl"));
out.printin("arg2 is " + request.getParameter("arg2"));

</ body>
</htm >

After changing the code in Application Server 8.1:
--------- index-8l.jsp -----------

<%@age content Type="text/htn "%

<htm >

<head><titl|e>JSP Page</titl e></head>
<body>

<Usession.setAttribute("argl","test"); %
<Usession.setAttribute("arg2","me"); %
go to the secured area</ a>

</ body>
</htm >

The index-81.jsp shows how you can store the request parameters in a session.

---------- login-8l.jsp--------------
<%@age content Type="text/htn "%
<htm >

<head> </ head>

<body>

<l-- Print login form-->
<h3>Par anet er s</ h3>

<I--retrieving the paraneters fromthe session -->
out.printlin("argl is"+(String)session.getAttribute("argl"));
out.println("arg2 is” + (String)session.getAttribute("arg2"));

</ body>
</[htm >

76 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Proprietary Extensions

Migrating Proprietary Extensions

A number of classes proprietary to the Application Server 6.x environment might
have been used in applications. Some of the proprietary packages used by
Application Server 6.x are listed below:

 comiplanet.server.servlet.extension
o comkivasoft.dlm

e« comiplanetiplanet.server.jdbc

e comkivasoft.util

e com netscape. server.servl et. extensi on
e comkivasoft

¢ com net scape. server

These APIs are not supported in the Application Server. Applications using any
classes belonging to the above package must be rewritten to use standard J2EE
APIs. Applications using custom JSP tags and UIF framework also need to be
rewritten to use standard J2EE APIs.

For a sample migration walkthrough using the iBank application, see Migrating a
Sample Application - an Overview.

Migrating UIF

The Application Server does not support the use of Unified Integration Framework
(UIF) API for applications. Instead, it supports the use of J2EE Connector
Architecture (JCA) for integrating the applications. However, the applications
developed in Application Server 6.5 use the UIF. In order to deploy such
applications to the Application Server, migrate the UIF to the J2EE Connector
Architecture. This section discusses the prerequisites and steps to migrate the
applications using UIF to Application Server.

Before migrating the applications, ensure that the UIF is installed on Application
Server 6.5. To check for the installation, follow either of the following approaches:

Checking in the Registry Files

UIF is installed as a set of application server extensions. They are registered in the
application server registry during the installation. Search for the following strings
in the registry to check whether UIF is installed.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 77

Migrating UIF

78

Extension Name Set:

Extension DataObjectExt-cDataObject
Extension RepositoryExt-cLDAPRepository
Extension MetadataService-cMetadataService
Extension RepoValidator-cRepoValidator
Extension BSPRuntime-cBSPRuntime
Extension BSPErrorLogExt-cErrorLogMgr
Extension BSPUserMap-cBSPUserMap

The registry file on Solaris Operating Environment can be found at the following
location:

AS _HOME/AS/ regi stry/ reg. dat

Checking for UIF Binaries in Installation Directories

UIF installers copy specific binary files in to the application server installation.
Successfully finding the files listed below, indicates that UIF is installed.

The location of the following files on Solaris and Windows is:

AS_HOME/ AS/ APPS/ bi n

List of files to be searched on Solaris:

|'i bcBSPR op. so

|'i bcBSPRunt i ne. so

| i bcBSPUser Map. so

| i bcDat athj ect . so

|'i bcErrorLogMr. so

| i bcLDAPReposi tory. so
|'i bcMet adat aSer vi ce. so
|i bcRepoVal i dat or. so
|'i bj x2cBSPRunt i ne. so
|'i bj x2cDat aChj ect . so
|'i bj x2cLDAPRepository. so

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating JDBC Code

e |ibjx2cMet adat aServi ce. so
List of files to be searched on Windows:
* CcBSPR op.dl|

o cBSPRuntine.dl|

e cBSPUser Map. dl |

e cDhatathject.dl|

e ErrorLogMyr.dll

e cLDAPReposi tory.dl|

o cMetadataService.dll

* cRepoValidator.dll

e jx2cBSPRuntine.dl |

e jx2cDataChject.dll

* jX2cLDAPRepository.dll

e jx2cMet adat aService. dl |

Before migrating the UIF to Application Server, ensure that the UIF APl is being
used in the applications. To verify its usage:

= Check for the usage of net scape. bsp package name in the Java sources

« Check for the usage of access_cBSPRunt i ne. get cBSPRunt i ne method in the
sources. You must call this method to acquire the UIF runtime.

Contact appser ver - n grati on@un. comfor information about UIF migration to the
Application Server.

Migrating JDBC Code

With the JDBC API, there are two methods of database access:
= Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL.
This method is used by other Application Servers, such as IBM’s WebSphere
4.0

« Using JDBC 2.0 Data Sources

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 79

mailto:appserver-migration@sun.com

Migrating JDBC Code

The Dat aSour ce interface (JDBC 2.0 API) can be used via a configurable
connection pool. According to J2EE 1.2, a data source is accessed through the
JNDI naming service

NOTE Application Server does not support the Native Type 2 JDBC drivers
bundled with Application Server 6.x. Code that uses the Type 2
drivers to access third party JDBC drivers, must be manually
migrated.

Establishing Connections Through the DriverManager Interface

Although this database access method is not recommended, as it is obsolete and is
not very effective, there can be some applications that still use this approach.

In this case, the access code is similar to the following:

public static final String driver = "oracle.jdbc.driver.CacleDriver";
public static final String url =

"jdbc:oracl e:thin:tnb_user/tnb_user @ben: 1521: t nbank";

A ass. for Nare(dri ver). new nstance();

Properties props = new Properties();

props. set Property("user", "tnb_user");

props. set Property("password", "tmb_user");

Connection conn = Driver Manager . get Connection(url, props);

This code can be fully ported from Application Server 6.x to Application Server, as
long as the Application Server is able to locate the classes needed to load the right
JDBC driver. In order to make the required classes accessible to the application
deployed in the Application Server, place the archive (JAR or ZIP) for the driver
implementation in the /1 b directory of the Application Server installation
directory.

Modify the CLASSPATH by setting the path for the driver through the Admin
Console GUI.

e Click the server instance “serverl.”
e Click the tab “JVM Settings” from the right pane.

= Click the option Path Settings and add the path in the classpath suffix text
entry box.

= Once the changes are made, click “Save.”
< Apply the new settings.

= Restart the server to modify the configuration file, server. xm .

80 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating JDBC Code

Using JDBC 2.0 Data Sources

Using JDBC 2.0 data sources to access a database provides performance
advantages, such as transparent connection pooling, enhanced productivity by
simplifying code and implementation, and code portability.

If there is a datasource by the name ‘xyz’ on Application Server 6.x application and
you do not want any impact on your JNDI lookup code, make sure that the
datasource you create for Application Server 8.1 is prefixed with jdbc. For example:
jdbc/ xyz.

For information on configuring JDBC Datasource, see the Sun Java System
Application Server 8.1 Administrator’s Guide.

Looking Up the Data Source Via JNDI To Obtain a Connection
To obtain a connection from a data source, do the following:

1. Obtain the initial INDI context.

To guarantee portability between different environments, the code used to
retrieve an InitialContext object (in a servlet, in a JSP page, or an EJB) is as
follows:

Initial Context ctx = new Initial Context();
2. Use aJNDI lookup to obtain a data source reference.

To obtain a reference to a data source bound to the JNDI context, look up the
data source's JNDI name from the initial context object. The object retrieved in
this way is cast as a DataSource type object:

ds = (DataSource)ctx. | ookup(Jndi Dat aSour ceNane) ;
3. Use the data source reference to obtain the connection.

This operation requires the following line of code:

conn = ds. get Connection();

Application Server 6.x and Application Server both follow these technique to
obtain a connection from the data source.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 81

Migrating Rich Clients

Migrating Rich Clients

This section describes the steps for migrating RMI/110P and ACC clients
developed in Planet Application Server 6.x to the Application Server.

Authenticating a Client in Application Server 6.x

Application Server 6.x provides a client-side callback mechanism that enables
applications to collect authentication data from the user, such as the username and
the password.The authentication data collected by the iPlanet CORBA
infrastructure is propagated to the application server via IIOP.

If ORBIX 2000 is the ORB used for RMI/IIOP, portable interceptors implement
security by providing hooks, or interception points, which define stages within the
request and reply sequence.

Authenticating a Client in Sun Java System
Application Server Platform Edition 8.1

The authentication is done based on JAAS (Java Authorization and Authentication
System API). If a client does not provide a Cal | backHandl er, then the default

Cal | backHand! er, called the Logi nMbdul e, is used by the ACC to obtain the
authentication data.

For detailed instructions on using JAAS for authentication, see the Sun Java System
Application Server Platform Edition 8.1 Developer’s Guide to Clients.

Using ACC in Application Server 6.x and Sun
Java System Application Server Platform Edition
8.1

In Application Server 6.x, no separate appclient script is provided. You are
required to place the i asacc. j ar file in the classpath instead of the i ascl eint.j ar
file. The only benefit of using the ACC for packaging application clients in 6.x is
that the JNDI names specified in the client application are indirectly mapped to the
absolute JNDI names of the EJBs.

82 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Migrating Rich Clients

In case of Application Server 6.x applications, a stand-alone client uses the absolute
name of the EJB in the JNDI lookup. That is, outside an ACC, the following
approach is used to lookup the JNDI:

initial.lookup(“ejb/ejb-name”);
initial.lookup(“ejb/modul e-nane/ ej b-nane”);

If your application was developed using Application Server 6.5 SP3, you would
have used the prefix “j ava: conp/ env/ ej b/ ” when performing lookups via absolute
references.

initial.lookup(“java: conp/env/ejb/ejb-nane”);

In Sun Java System Application Server Platform Edition 8.1, the INDI lookup is
done on the j ndi - nane of the EJB. The absolute name of the ejb must not be used.
Also, the prefix, j ava: conp/ env/ ej b is not supported in Sun Java System Application
Server Platform Edition 8.1. Replace theiasclient.jar,iasacc.jar, orjavax.jar
JAR files in the classpath with appserv-ext.jar.

If your application provides load balancing capabilities, in Sun Java System
Application Server Platform Edition 8.1, load balancing capabilities are supported
only in the form of SLASCTXFactory as the context factory on the client side and
then specifying the alternate hosts and ports in the cluster by setting the

com sun. appserv. i i op. | oadbal anci ngpol i cy system property as follows:

com sun. appserv. i i op. | oadbal anci ngpol i cy=r oundr obi n, host 1: port 1, host 2: port 2, .. .,

This property provides the administrator with a list of host:port combinations to
round robin the ORBs. These host names can also map to multiple IP addresses. If
this property is used along with or g. ong. CORBA. CRBI ni ti al Host and

org. ong. OCORBA. CRBI ni ti al Port as system properties, the round robin algorithm will
round robin across all the values provided. If, however, a host name and port
number are provided in your code, in the environment object, that value overrides
any other system property settings.

The Provider URL to which the client is connected in Application Server 6.5 is the
IIOP host and port of the CORBA Executive Engine (CXS Engine). In case of Sun
Java System Application Server Platform Edition 8.1, the client needs to specify the
I1OP listener Host and Port number of the instance. No separate CXS engine exists
in Sun Java System Application Server Platform Edition 8.1.

The default 11OP port is 3700 in Sun Java System Application Server Platform
Edition 8.1; the actual value of the 11OP Port can be found in the donai n. xni
configuration file.

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 83

Migrating Rich Clients

84 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Chapter 7

Migrating a Sample Application - an
Overview

This chapter describes the process for migrating the main components of a typical
J2EE application from Sun ONE Application Server 6.x to Sun Java System
Application Server Platform Edition 8.1. This chapter highlights some of the
problems posed during the migration of each type of component and suggests
practical solutions to overcome such problems.

For this migration process, the J2EE application presented is called iBank and is
based on the actual migration of the iBank application from Sun ONE Application
Server 6.x to Application Server 8.1. iBank simulates an online banking service and
covers all of the aspects traditionally associated with a J2EE application.

The major points of the J2EE specification covered by the iBank application are:

= Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

= JSP pages, especially with static and dynamic inclusion of pages
e JSP custom tag libraries

= Creation and management of HTTP sessions

= Database access through the JDBC API

= Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans

< Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A, “iBank Application
Specification.”

85

Preparing for Migrating the iBank Application

Preparing for Migrating the iBank Application

86

Before starting the migration process, it in important to understand the differences
in the deployment descriptors. For detailed information, see “Migrating
Deployment Descriptors” on page 64.

Choosing the Target

To start, choose Sun Java System Application Server Platform Edition 8.1 as the
target migration server. Install the server in the migration environment. For
step-by-step instructions on how to install the software, see the Sun Java System
Application Server Platform Edition 8.1 Installation Guide.

If you are using Migration Tool for Sun Java System Application Server 8.1 to
migrate the components, install the tool. The Migration Tool can be downloaded
from the following location:

http://java.sun.conij2ee/tool s/mgration

For information on how to use the Migration Tool for Sun Java System Application
Server 8.1, see the Migration Tool online help. The iBank application is bundled
with the tool.

Identifying the Components of the iBank
Application
The iBank application has the following directory structure:

i Bank

/ docr oot
/session
lentity
/ msc

« /docroot contains HTML, JSP’s and Image files in its root. It also contains the
source files for servlets and EJBs in the sub-folder VEB- | NR\ ¢l asses following
the package structure com sun. bank. *. A war file is generated using this
directory.

= /sessi on contains the source code for the session beans following the package
structure com sun. bank. ej b. sessi on. This directory forms the EJB module for
the session beans.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

http://java.sun.com/j2ee/tools/migration

Manual Steps in the iBank Application Migration

= J/entity contains the entity beans following the package structure
com sun. bank. ej b. enti ty. This directory would form the EJB module for entity
beans.

= /nisc contain the sql scripts for the database setup.

Manual Steps in the iBank Application Migration

Most of the migration is done by the Migration Tool. There are some aspects of
migration that must be done manually. These steps are documented in the
Migration Tool’s user’s guide and the documentation for the iBank sample
application.

Configuring Database Connectivity

In order to deploy an application to the target server, you must add a connection
pool, add a JDBC resource and a persistence manager.

This section discusses the following topics:
= Adding a Connection Pool
< Adding a JDBC Resource

= Adding a Persistence Manager

NOTE Before you begin these steps, make sure that the domain to which
the application will be deployed is in the running state. These
instructions assume that the application will be deployed to the
default domain, domainl.

Use the asadmin utility in the Application Server bin directory to
perform these tasks.

Adding a Connection Pool

A JDBC connection pool is a group of reusable connections for a particular
database. Because creating each new physical connection is time consuming, the
server maintains a pool of available connections to increase performance. When an
application requests a connection, it obtains one from the pool. When an
application closes a connection, the connection is returned to the pool.

Chapter 7 Migrating a Sample Application - an Overview 87

Manual Steps in the iBank Application Migration

88

Use the asadm n creat e-j dbc- connecti on- pool command to add a connection
pool to the server. The syntax of the command is given below.

asadm n create-j dbc- connecti on- pool
--user admin_user
- - passwor d admin_password
--host localhost
--port portno
- - dat asour cecl assnane dsclassname
--property User=i bank_user: Passwor d=i bank_user : URL_PROP=db_url TVMB

where, dsclassname is:

e oracle.jdbc. pool . Oracl eDat aSour ce for Oracle

= com poi nt base. j dbc. j dbcDat aSour ce for PointBase
URL_PRORP is:

« url for Oracle

= Dat abaseNane for PointBase

db_urlis:

e jdbc:oracl e: thin: @RACLE_HOST: 1521: Sl Dfor Oracle, where
ORACLE_HOST is the machine name/IP address on which the database is
installed, and SID is the System ID of the Oracle database.

e jdbc: poi nt base: server: // POINTBASE _HOST:9092/ m gr at i on- sanpl es for
Pointbase, where POINTBASE_HOST is the machine name/IP address on
which the database is installed. This will be localhost in most cases.

Adding a JDBC Resource

A JDBC resource (data source) provides applications with a means of connecting to
a database. Before creating a JDBC resource, you must first create a JDBC
connection pool.

Use the asadm n creat e-j dbc-resource command to add resource.

asadnin create-jdbc-resource
--user admin_user
- - passwor d admin_password
--host | ocal host
--port portno
--connectionpool id TMB j dbc/ | Bank

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Manual Steps in the iBank Application Migration

Adding a Persistence Manager

A persistence manager is required for backward compatibility. To run on version 7
of the Application Server, a persistent manager resource was required for
applications with container-managed persistent beans (a type of EJB component).

Use the asadm n cr eat e- per si st ence-r esour ce command.

asadmi n creat e- persi st ence-resource

--user admin_user

- - passwor d admin_password

--host | ocal host

--port portno

--connectionpoolid TVMB

--factorycl ass
com sun. j do. spi . per si st ence. support . sql store.inpl. Persi st enceManager Fac
toryl npl j do/ pnf

Assembling Application for Deployment

Application Server primarily supports the J2EE model wherein applications are
packaged in the form of an enterprise archive (EAR) file (extension .ear). The
application is further subdivided into a collection of J2EE modules, packaged into
Java archives (JAR, extension .jar) for EJBs and web archives (WAR, extension
.war) for servlets and JSPs.

All the JSPs and Servlets must be packaged into WAR file, all EJBs into the JAR file
and finally the WAR and the JAR file together with the deployment descriptors in
to the EAR file. This EAR file is a deployable component.

Using the asadmin Utility to Deploy the iBank
Application on Application Server

The last step is to deploy the application on Sun Java System Application Server
Platform Edition 8.1. The process for deploying an application is described below:

The Sun Java System Application Server Platform Edition 8.1 asadmin command
includes a help section on deployment that is accessible from the Help menu.

The command line utility asadni n can be invoked by executing asadni n. bat file in
Windows and asadni n file in Solaris Operating Environment that is stored in
Application Server’s installation’s bi n directory.

Chapter 7 Migrating a Sample Application - an Overview 89

Manual Steps in the iBank Application Migration

At asadni n prompt, the command for deployment looks like this:

asadm n> depl oy -u username -w password - H hostname -p adminport
absolute_path_to_application

After restarting the Application Server, open a browser and go to the following
URL to test the application:

ht t p: / / <machine_name>: <port_number>/ i bank

When prompted, enter one of the available user names and passwords. The main
menu page of the iBank application displays.

90 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Chapter 8

Migration Tools and Resources

This chapter describes migration tools that help automate the migration process
from earlier versions of Sun ONE Application Server, Sun Java System Application
Server 7, Netscape Application Server (Kiva), NetDynamics Application Server,
and competitive application servers to Sun Java System Application Server
Platform Edition 8.1.

Migration Tool for Sun Java System Application
Server 8.1

The (hereafter called Migration Tool) migrates J2EE applications from other server
platforms to Sun Java System Application Server Platform Edition 8.1.

The following source platforms are supported for Sun Java System Application
Server Platform Edition 8.1:

< Sun ONE Application Server 6.x

e Sun Java System Application Server 7

= J2EE Reference Implementation Application Server (RI) 1.3, 1.4 Betal
= WebLogic Application Server (WLS) 5.1, 6.0, 6.1, 8.1

= WebSphere Application Server (WAS) 4.0, 5.x

= Sun ONE Web Server 6.0

= JBoss Application Server 3.0

e TomCat Web Server 4.1

91

Migration Tool for Sun Java System Application Server 8.1

Migration Tool automates the migration of J2EE applications to Sun Java System
Application Server Platform Edition 8.1, without much modification to the source
code.

The key features of the tool are:
= Migration of application server-specific deployment descriptors

= Runtime support for selected custom JavaServer Pages (JSP) tags and
proprietary APIs

= Conversion of selected configuration parameters with equivalent functionality
in Application Server

< Automatic generation of Ant based scripts for building and deploying the
migrated application to the target server, Application Server

= Generation of comprehensive migration reports after achieving migration
Download the Migration Tool from the following location:

http://java. sun. conij2ee/tool s/ mgration/index. htm
For detailed information on how to install and use the tool, see online help.

The Migration Tool specifications and migration process change from time to time,
so the sample migration using the tool is not included in this guide. The migration
process of a sample application is discussed in the documentation for this tool.

Redeploying Migrated Applications

Most of the applications that are migrated automatically through the use of the
available migration tools utilize the standard deployment tasks described in the
Sun Java System Application Server Platform Edition 8.1 Administration Guide.

In some cases, the automatic migration is not able to migrate particular methods or
syntaxes from the source application. When this occurs, a message displays
describing the steps needed to complete the migration. Once these steps are
completed, the administrator is able to deploy the application in the standard
manner.

92 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

http://java.sun.com/j2ee/tools/migration/index.html

J2EE Application Verification Kit

J2EE Application Verification Kit

The Java Application Verification Kit (AVK) for the Enterprise helps build and test
applications to ensure that they are using the J2EE APIs correctly and to migrate to
other J2EE compatible application servers using specific guidelines and rules.

Download the Java Application Verification Kit (AVK) from the following location:

http://java. sun. conij 2ee/ verified/

More Migration Information

This section provides references to additional migration documents.

Migrating from KIVA/NAS/NetDynamics
Application Servers

For information about migrating KIVA/NAS/NetDynamics applications to Sun
ONE Application Server 6.0, see the Sun ONE Application Server Migration Guide at
the following URL.:

http://docs. sun. coni db/ doc/ 816- 5780- 10

For information about migrating KIVA/NAS/NetDynamics applications to Sun
ONE Application Server 6.5, see the Sun ONE Application Server 6.5 Migration Guide
at the following URL:

http://docs. sun. coni db/ doc/ 816-5793- 11

For information about migrating KIVA/NAS/NetDynamics applications to Sun
Java System Application Server 7, see Sun Java System Application Server 7 Migrating
and Redeploying Server Applications Guide at the following URL.:

http://docs. sun. coni db/ doc/ 817- 2158- 10

Chapter 8 Migration Tools and Resources 93

http://java.sun.com/j2ee/verified/
http://docs.sun.com/db/doc/816-5780-10
http://docs.sun.com/db/doc/816-5793-11
http://docs.sun.com/db/doc/817-2158-10

More Migration Information

94 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Appendix A

IBank Application Specification

The iBank application is used as the migration sample. This application simulates a
basic online banking service with the following functionality:

Log on to the online banking service

View/edit personal details and branch details

Summary view of accounts showing cleared balances

Facility to drill down by account to view individual transaction history
Money transfer service, allowing online transfer of funds between accounts

Compound interest earnings projection over a number of years for a given
principal and annual yield rate

The application is designed after the MVC (Model-View-Controller) model where:

EJBs are used to define the business and data model components of the
application

Java Server Pages handle the presentation logic and represent the View.

Servlets play the role of Controllers and handle application logic, taking charge
of calling the business logic components and accessing business data via EJBs
(the Model), and dispatching processed data for display to Java Server Pages
(the View).

Standard J2EE methods are used for assembling and deploying the application
components. This includes the definition of deployment descriptors and
assembling the application components within the archive files:

AWAR archive file for the Web application including HTML pages, images,
Servlets, JSPs and custom tag libraries, and ancillary server-side Java classes.

95

Database Schema

EJB-JAR archive files for the assembling of one or more EJBs, including
deployment descriptor, bean class and interfaces, stub and skeleton classes,
and other helper classes as required.

An EAR archive file for the packaging of the enterprise application module
that includes the Web application module and the EJB modules used by the
application.

The use of standard J2EE assembling methods will be useful in pointing out any
differences between Sun ONE Application Server 6.x/7.x and Sun Java System
Application Server Platform Edition 8.1, and any issues arising thereof.

Database Schema

The iBank database schema is derived from the following business rules:

96

The iBank company has local branches in major cities.
A Branch manages all customers within its regional area.
A Customer has one or more accounts held at their regional branch.

A customer Account is uniquely identified by the branch code and account
number, and also holds the number of the customer to which it belongs. The
current cleared balance available is also stored with the account.

Accounts are of a particular Account Type that is used to distinguish between
several kinds of accounts (checking account, savings account, etc.).

Each Account Type stores a number of particulars that apply to all accounts of
this type (regardless of branch or customer) such as interest rate and allowed
overdraft limit.

Every time a customer receives or pays money into/from one of their accounts,
the transaction is recorded in a global transaction log, the Transaction History.

The Transaction History stores details about individual transactions, such as
the relevant branch code and account number, the date the transaction was
posted (recorded), a code identifying the type of transaction and a
complementary description of the particular transaction, and the amount for
the transaction.

Transaction types allow different types of transactions to be distinguished,
such as cash deposit, credit card payment, fund transfer between accounts, and
so on.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Database Schema

Figure A-1, the entity-relationship diagram shown below, illustrates these business
rules.

Figure A-1

Database Schema

TMEBank

-- Database schema

Cuclhomer oonount Snoount Tvpe
aocType_d =
pu ct_No - uslies sl ie branoh_Code accType_Id oo Tepe_ld
ot Cook Poo_Mo pocTypEe_DEsc
ok L Userrem e g] pocType_nere=IRake
Iou= | Passvsomd roc Trpe_ it
Ioe | Emal moc_H alEree
o= _ e
o | SuEn Names
ok _Srname
Ious | Address1
ok | Addres=2
[_ Gl
[ots _2p
=T R=TT
‘ brarch_Code = bravch Code
branch_Code = branch_Code acc_No= acc_Ho
Eranoh . I _Type Hd = "
Tranmoion Hichry . :‘:rs_T::EH | Tranmoion_Tuvpe
:rm "uh-"':::: franc_id francType_id
- = ddress 1 nwtcm.- raeTpe_Desc
brarch_Address2 L e
::""C"*—GI':' ;:_Fo:lnalz
branch = =ie ::::;s;_nl
The database model translates as a series of table definitions below, where primary
key columns are printed in bold type, while foreign key columns are shown in
italics.
BRANCH
BRANCH_CODE CHAR(4) NOT NULL 4-digit code identifying the branch
BRANCH_NAME VARCHAR(40) NOT NULL Name of the branch
BRANCH_ADDRESS1 VARCHAR(60) NOT NULL Branch postal address, street address, 1st line

Appendix A iBank Application Specification 97

Database Schema

BRANCH_ADDRESS?2 VARCHAR(60) Branch postal address, street address, 2nd line
BRANCH_CITY VARCHAR(30 | NOT NULL | Branch postal address, City
)
BRANCH_ZIP VARCHAR(10 | NOT NULL | Branch postal address, Zip code
)

BRANCH_STATE CHAR(2) NOT NULL | Branch postal address, State
abbreviation

CUSTOMER

CUST_NO INT NOT NULL iBank customer number (global)

BRANCH_CODE CHAR(4) NOT NULL References this customer's branch

CUST_USERNAME VARCHAR(16) NOT NULL Customer's login username

CUST_PASSWORD VARCHAR(10) NOT NULL Customer's login password

CUST_EMAIL VARCHAR(40) Customer's e-mail address

CUST_TITLE VARCHAR(3) NOT NULL Customer's courtesy title

CUST_GIVENNAMES VARCHAR(40) NOT NULL Customer's given names

CUST_SURNAME VARCHAR(40) NOT NULL Customer's family name

CUST_ADDRESS1 VARCHAR(60) NOT NULL Customer postal address, street address, 1st
line

CUST_ADDRESS2 VARCHAR(60) Customer postal address, street address, 2nd
line

CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City

CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code

CUST_STATE CHAR(2) NOT NULL Customer postal address, State abbreviation

ACCOUNT_TYPE

ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code

ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description

ACCTYPE_INTERESTRA | DECIMAL(4,2) DEFAULT 0.0 | Annual interest rate

TE

ACCOUNT

98 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Application Navigation and Logic

BRANCH_CODE CHAR(4) NOT NULL branch code (primary-key part 1)
ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)
CUST_NO INT NOT NULL Customer to whom accounts belongs
ACCTYPE_ID CHAR(3) NOT NULL Account type, references ACCOUNT_TYPE
ACC_BALANCE DECIMAL(10,2) DEFAULT 0.0 | Cleared balance available
TRANSACTION_TYPE

TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code
TRANSTYPE_DESC VARCHAR(40) NOT NULL Human-readable description of code
TRANSACTION_HISTORY

TRANS_ID LONGINT NOT NULL Global transaction serial no
BRANCH_CODE CHAR(4) NOT NULL key referencing ACCOUNT part 1
ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2
TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE
TRANS_POSTDATE TIMESTAMP NOT NULL Date & time transaction was posted
TRANS_DESC VARCHAR(40) Additional details for the transaction
TRANS_AMOUNT DECIMAL(10,2) NOT NULL Money amount for this transaction

Application Navigation and Logic

Figure A-2 provides a high-level view of application navigation.

Figure A-2

Application Navigation and Logic

Appendix A iBank Application Specification

99

Application Navigation and Logic

Login Process

Figure A-3 shows the login process used in the iBank application.

Figure A-3 Login Process

: . AT heck] ./ BankTeller
index.jzp 4’(- Login Servlet ?

auhihech) - attempts

Login page. Atempts to 3 henticate :
Famm with ussrname & theuser with the E Eﬁ'-rﬂ';_a'lhﬁ&:t'ue uzer
password fields and Bark Teller EJB wFubiey)] EEiEhar

=0 bmit buttan wih maching usemarme

ard paszwaord

Fakd

Siccesei
arthe itbation Calimyde rmethod:
artie iteathi By g n ame §
LoginEmar jsp Lser Menu.jsp Customer
IF"i'_"TSﬁj'_'idiﬁti':';hnl_f " hiain henu disp Bving Customer BWP entity
g =TI, U (] all avaiable options b ean

back to login page

View/Edit Details

Figure A-4 shows the view/edit details process used in the iBank application.

100 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Figure A-4

UserMenwjsp

Main Menu displaying
all zvailable optionz

f Retumn to main menu

details »

—»

CustomerProfile.jsp

o wlewfBdit my

View/Edit Details Process

Retrieve user & branch
detailz

Application Navigation and Logic

——

Get branch detils Branch

\d
Branch ChiP
entity bean

Get
o stamer
details

* Form displaying:

- editable user details

- non-edtable branch
detailz.

* Zubmit button to updste
uzer oetails.

Tryagain

D etail=l pdatefF ailed.jsp

Prints indication of reason

far failure, with links back to
the detsils update form and
main menu pege

Cugtomer BWP
) UpdateCustomer D etailsServlet Update entity bean
Update my Eusn:imer
pda i
detils Checks uzer ertry and attempt =talls
o updste CustomerEJB with
neswy detsils
Successful
upd ate
Irualid user
entry or emor

U pdated etails.jsp

Printz indicstion of
successiul update of detail =
and link back to menu page

Account Summary and Transaction History

Figure A-5 shows how the account summary and transaction history work in the
iBank application.

Appendix A iBank Application Specification 101

Application Navigation and Logic

Figure A-5 Account Summary and Transaction History

UnarMenu jip

Mal Meyy dEpByiig
allaakbk optioks

Retars tomaly me un

« SAMMA Ny U lew oTmy
Eer T -2

etocoon KESImma
Bhowdee ourmtSummary Ser Wat

Retrkue |kt of caziomer 3ccon it

Tk rmethod

BankTeallar

getacoon v imman

Bkt 3 ltor acco
thatte bag b the
chmertcnsomer

Calludermethod:

Ted0rde e docoon

AccountSummarty. jip

— g BhowTraneaconH story. ip

Tabk dEpbyig-
-chkkabk accont# or
-:Irlllng-:l-:u.u 3 racton
WED N

-accontiype

-cATR itba B

Chk o1

e Uzez 3 cnsom By D@ to

Ik privtatabk show kg kduideal
A ractons Torthe fFe kol d
3ot

1 EFonC astome rij

A eount

Accon it CMP
& ity bean

TMETrama:z 1onHintory

'\

TEP By

TTorary

Accezre s the TMA3 K dabbase throngh aJ0DAC
data zonnc: o pivt v 30 Brom e detalks or
altaszactons orapariciBrogech l})ﬂ&?y

ool it

ho.

Fund Transfer

Figure A-6 shows how funds are transferred in the iBank application.

102 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Figure A-6

« Farckr unds

bEMEER My BTNk =

LEer Meri j=p

hviain hiaru
digplaingall
Fdlable optiorns

? Rebrnke manmerd

Fund Transfer

TrareferFund Servlet

Ratniewe list ofcusiomeraccounts

Enrkrfurd)

e Lo Eummary 0

Application Navigation and Logic

EankTdler

rarcErfundA):
alempk ko EnEr
ard = he bEen b
acounk

Traneta Runds j —{ CheckTrancfersenet
Transkr sskdion Hrmwit: - Checktanskr sattings and
- lizttochoo® Form acsount proced if Ok
- listto choos Yo' account
- i dto enter amo unt
FLOCERE
Ingulerroror
procEssIng
Trarsfer theckFEled =p e Trarcf g Siccess 5 p
Prirt an indicat o Prirt a corfirraio nmeszage
i.|||1-.:l :Qrgfa- 5;11!?1; an:J o showing the detal = orthe
incomect, or whithe trans=tion 'Ihatu:las
operdion failed sucoess il yea mied o

Interest Calculation

Figure A-7 shows how interest is calculated in the iBank application.

Appendix A

e lAccounFEammarnyQ:
Bulld= 1121 o7 acounks
de =l Tor he asrenl
aElomer

Caldrder me bed:
IO rdene d Aamoun b ForCus kom ek

Dot

Focount P
entitybean

iBank Application Specification

103

Application Components

Figure A-7 Interest Calculation
w P MM Epta | gt

Lizer Menu j prekctorsy Intene st Cale
e o S AE " terast Caloustor
rdLIFiI-II M'Enudl Formdisplaying fiddsto enter:
Ep g = - start principal rofectES kg ii:
el i - interestrate Esm =1 earfﬁgﬁs o a
- year period e Arbnyy ear bat b Tor a
and s brrit button prRkdEan g i gues sEtpricpalad
e ar pefod
E=dirt Calcinput j=p i ShovwProjgction Resuts j=p
hualt wpet FrojectEamings Sendlet
Print an ndication asto | parame e Checkin rameters. and if FACRES Prirt projection result=in
whiy Nput is incomeact pus——y pl:;-nri:-p:npr-:jedj-':-n and e tabular orm
d retriewe results
L A

Application Components

Data Components

Each table in the database schema is encapsulated as an entity bean:

Entity Bean Database Table

Account ACCOUNT table

AccountType ACCOUNT_TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table
TransactionType TRANSACTION_TYPE table

All entity beans use container-managed persistence (CMP), except Cust oner, which
uses bean-managed persistence (BMP).

Currently, the application only makes use of the Account, Account Type, Branch,
and Cust omer beans.

104 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Application Components

Business Components

Business components of the application are encapsulated by session beans.

The BankTel | er bean is a stateful session bean that encapsulates all interaction
between the customer and the system. BankTel | er is notably in charge of the
following activities:

= Authenticating a customer through the aut hCheck() method

= Giving the list of accounts for the customer through the get Account Summar y()

method

« Transferring funds between accounts on behalf of the customer through the
transf er Funds() method

The I nterest Cal cul at or bean is a stateless session bean that encapsulates financial
calculations. It is responsible for providing the compound interest projection
calculations, through the proj ect Ear ni ngs() method.

Application Logic Components (Servlets)

Component name

Purpose

LoginServlet

Authenticates the user with the BankTeller session bean (aut hCheck()
method), creates the HTTP session and saves information pertaining to the
user in the session.Upon successful authentication, forwards request to the
main menu page (User Menu. j sp)

CustomerProfileServiet

Retrieves customer and branch details from the Customer and Branch entity
beans and forwards request to the view/edit details page
(CustonerProfile.jsp).

UpdateCustomerDetailsServ
let

Attempts to effect customer details changes amended in

Cust orrer Prof i | e. j sp by updating the Customer entity bean after checking
validity of changes. Redirects to Updat edDet ai | s. j sp if success, or to

Det ai | sUpdat eFai | ed. j sp in case of incorrect input.

ShowAccountSummaryServl
et

Retrieves the list of customer accounts from the BankTeller session bean
(get Account Sunmar y() method) and forwards request to
Account Sunmary. j sp for display.

TransferFundsServlet

Retrieves the list of customer accounts from the BankTeller session bean
(get Account Sunmar y() method) and forwards request to
Transf er Funds. j sp allowing the user to set up the transfer operation.

Appendix A iBank Application Specification 105

Application Components

106

CheckTransferServlet

Checks the validity of source and destination accounts selected by the user
for transfer and the amount entered. Calls the tr ansf er Funds() method of
the BankTeller session bean to perform the transfer operation. Redirects the
user to CheckTr ansf er Fai | ed. j sp in case of input error or processing error,
or to Transf er Success. j sp if the operation was successfully carried out.

ProjectEarningsServlet

Retrieves the interest calculation parameters defined by the user in
InterestCalc.jsp and calls the proj ect Ear ni ngs() method of the
InterestCalculator stateless session bean to perform the calculation, and
forwards results to the ShowPr oj ect i onResul t s. j sp page for display. In
case of invalid input, redirects to Badl nt Cal cl nput . j sp

Presentation Logic Components (JSP Pages)

Component name

Purpose

i ndex. j sp

Index page to the application that also serves as the login page.

Logi nError.jsp

Login error page displayed in case of invalid user credentials supplied. Prints
an indication as to why login was unsuccessful.

Header . j sp

Page header that is dynamically included in every HTML page of the
application

CheckSessi on. j sp

This page is statically included in every page in the application and serves to
verify whether the user is logged in (i.e. has a valid HTTP session). If no valid
session is active, the user is redirected to the Not Logged! n. j sp page.

NotLoggedin.jsp

Page that the user gets redirected to when they try to access an application
page without having gone through the login process first.

UserMenu.jsp

Main application menu page that the user gets redirected to after
successfully logging in. This page provides links to all available actions.

Cust orer Profile.jsp

Page displaying editable customer details and static branch details. This
page allows the customer to amend their correspondence address.

Updat edDet ai | s. j sp

Page where the user gets redirected to after successfully updating their
details.

Det ai | sUpdat eFai | ed. j sp

Page where the user gets redirected if an input error prevents their details to
be updated.

Account Sumrar yPage. j sp

This page displays the list of accounts belonging to the customer in tabular
form listing the account no, account type and current balance. Clicking on an
account no. in the table causes the application to present a detailed
transaction history for the selected account.

Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Potential Migration Issues

ShowTr ansacti onH story.
isp

This page prints the detailed transaction history for a particular account no.
The transaction history is printed using a custom tag library.

Transf er Funds. j sp

This page allows the user to set up a transfer from one account to another for
a specific amount of money.

Transf er CheckFai | ed. j sp

When the user chooses incorrect settings for fund transfer, they get
redirected to this page.

Transf er Success. j sp

When the fund transfer set-up by the user can successfully be carried out,
this page will be displayed, showing a confirmation message.

InterestCalc.jsp

This page allows the user to enter parameters for a compound
interest calculation.

Badl nt Cal cl nput . j sp

If the parameters for compound interest calculation are incorrect, the user
gets redirected to this page.

ShowPr oj ectionResul ts.

When an interest calculation is successfully carried out, the user is redirected

sp to this page that displays the projection results in tabular form.

Logout . j sp Exit page of the application. This page removes the stateful session bean
associated with the user and invalidates the HTTP session.

Error.jsp In case of unexpected application error, the user will be redirected to this

page that will print details about the exception that occurred.

Potential Migration Issues

While many of application design choices made are certainly debatable especially
in the “real-world” context, care was taken to ensure that these choices enable the
sample application to encompass as many potential issues as possible as one would
face in the process of migrating a typical J2EE application.

This section will go through the potential issues that you might face when
migrating a J2EE application, and the corresponding component of iBank that was
included to check for this issue during the migration process.

With respect to the selected migration areas to address, this section specifically
looks at the following technologies:

Servlets

The iBank application includes a number of servlets, that enable us to detect
potential issues with;

Appendix A iBank Application Specification 107

Potential Migration Issues

The use of generic functionality of the Servlet API
Storage/retrieval of attributes in the HTTP session and HTTP request
Retrieval of servlet context initialization parameters

Page redirection

Java Server Pages

With respect to the JSP specification, the following aspects have been addressed:

Use of JSP declarations, scriptlets, expressions, and comments

Static includes (<%@i ncl ude file=".." %): notably tested with the inclusion of
the CheckSessi on. j sp file in every page)

Dynamic includes (<j sp: i ncl ude page=.../>): this is catered for by the dynamic
inclusion of Header . j sp in every page

Use of custom tag libraries: a custom tag library is used in the file
ShowTr ansacti onH story.|jsp

Error pages for JSP exception handling: the Error. j sp page is the application
error redirection page

JDBC

The iBank application accesses a database via a connection pool and the data
source, both programmatically (BMP entity bean, BankTeller session bean,
custom tag library) and declaratively (with the CMP entity beans).

Enterprise Java Beans

The iBank application uses a variety of Enterprise Java Beans.

Entity Beans
Bean-managed persistence (Cust omer bean): allows us to test the following:

JNDI lookup of initial context

Pooled data source access via JDBC

108 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

Potential Migration Issues

= Definition of a BMP custom finder ("fi ndByCust User nane() ")

Container-managed persistence ("Account " and "Branch" beans): allow us to test the
following:

= Object/Relational mapping with the development tool and within the
deployment descriptor

= Use of composite primary keys (Account)

= Definition of custom CMP finders (with the "Account" bean, and its
fi ndQ der edAccount sFor Cust oner () method). This is the occasion to look at
differences in declaring the query logic in the deployment descriptor, and also
to have a complex example returning a collection of objects.

Session Beans
Stateless session beans: | nt er est Cal cul at or allows us to test the following:

= Using and deploying a stateless session bean

= Calling a business method for calculations

Stateful session beans: BankTel | er allows us to test the following:
= Looking up various interfaces using JNDI and initial contexts
= Using JDBC to perform database queries

= Using various transactional attributes on bean methods

= Using container-demarcated transactions

= Maintaining conversational state between calls

= Business methods acting as front-ends to entity beans (e.g., the
"get Account Summar y() " method)

Application Assembly

The iBank application is assembled by following the J2EE standard procedures. It
contains the following components:

= A Web application archive file for the Web application module, and EJB-JAR
archives for the EJBs

= An enterprise application archive file (EAR file) for the final packaging of the
Web application and EJB modules

Appendix A iBank Application Specification 109

Potential Migration Issues

110 Application Server 8.1 2005Q1 « Upgrade and Migration Guide

A

asadmin command for deploying a Web application 70
asupgrade command 39
automated migration tools 49

B

Backward compatibility issues 31

D

data source benefits 81

database connectivity 87
connection pool 87
jdbc resource 88

database connetivity
persistence manager 89

Deployment descriptors 46
Deprecated APIs 30

documentation
overview 12

Downward source compatibility 29

DTD changes for SIAS 6.x to SIS AS 8 EJB
migration 71

Section A

Index

E

EAR file contents 47
EAR file definition 47

EJB 1.1 to EJB 2.0
Defining Entity Bean Relationships 54
EJB 2.0 Container-Managed Persistence (CMP) 53
EJB Query Language 51
Message-Driven Beans 54
Migrating CMP Entity EJBs
Custom Finder Methods 60
Migrating the Bean Class 57
Migration of ejb-jar.xml 59
Migrating EJB Client Applications 54
Declaring EJBs in the JINDI Context 55
Migration of ejb-jar.xml 59
EJB migration actions 71
EL Expressions 33

G

getLocalAddr 31
getLocalName 31
getLocalPort 31

getRemotePort 31

Index 111

Section H

H

HttpSessionListener.sessionDestroyed 30

118N behavior 32

iBank Application specification
Application Components 104
Application navigation and logic 99
Database schema 96
Fitness of design choices with regard to potential
migration issues 107
iBank sample application 63

J

J2EE applications
components 46

J2EE Component Standards 45
JDBC code migration 79
JSP and JSP custom tag library conversions 66

manual migration of iBank application 87
assembling application for deployment 89

Migration Tool for Sun Java System Application Server

Platform Edition 8 49, 91

(0

obtaining a data source from the JNDI context 68

P

Page encoding 32
pass-by-reference 34

S

servlet migration modifications 67
Solaris

patches 14

support 14

Sun ONE Migration Toolbox 49

support
Solaris 14

T

Tag Library validations 32
Type coercion rules 32

U

upgrade
http listeners 43

upgrade server 37
supported servers 37

upgrade tool 41
upgrade Ul 41
upgrade wizard 41

112 Application Server Platform Edition 2005Q1 « Upgrade and Migration Guide

	Application Server Platform Edition 8.1 Upgrade and Migration Guide
	Contents
	Preface
	Who Should Use This Guide
	Before You Read This Book
	How This Guide Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Related Documentation
	Books in This Documentation Set
	Other Server Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Application Server Compatibility Issues
	Web Server Features
	Security Realms
	Sun Deployment Descriptor: sun-web.xml
	encodeCookies Property
	CORBA Performance Option
	File Formats
	Certificate Database
	Tools Interoperability
	Primary Key Attribute Values
	Command Line Interface: start-appserv and stop-appserv
	Command Line Interface: asadmin
	Subcommands
	Error Codes for Start and Stop Subcommands
	Options
	Dotted Names
	Tokens in Attribute Values
	Nulls in Attribute Values

	J2EE 1.4 Compatibility Issues
	Binary Compatibility
	Source Compatibility
	Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)
	JAXP and SAX Incompatibilities
	Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements
	Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

	Upgrading an Application Server Installation
	Upgrading Through the Upgrade Utility
	Upgrading Through the Wizard
	Correcting Potential PE Upgrade Problems
	Migrating Additional HTTP Listeners Defined on the Source Server to the Target PE Server
	Eliminating Problems Encountered When A Single Domain has Multiple Certificate Database Passwords

	Understanding Migration
	J2EE Component Standards
	J2EE Application Components
	Migration and Deployment
	Why is Migration Necessary?
	What Needs to be Migrated
	What is Deployment of Migrated Applications?

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Persistent Fields
	Defining Entity Bean Relationships
	Message-Driven Beans

	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References
	Placing EJB References in the JNDI Context
	Global JNDI context versus local JNDI context

	Migrating CMP Entity EJBs
	Migrating the Bean Class
	Migration of ejb-jar.xml
	Custom Finder Methods

	Migrating from Application Server 6.x/7.x to Application Server 8.1
	Migrating Deployment Descriptors
	Migrating Web Applications
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	Obtaining a Data Source from the JNDI Context
	Declaring EJBs in the JNDI Context
	Potential Servlets and JSP Migration Problems

	Migrating Web Application Modules

	Migrating Enterprise EJB Modules
	EJB Migration
	EJB Changes Specific to Application Server Platform Edition 8.1
	Session Beans
	Entity Beans
	Message Driven Beans

	Migrating Enterprise Applications
	Application Root Context and Access URL
	Applications With Form-based Authentication

	Migrating Proprietary Extensions
	Migrating UIF
	Checking in the Registry Files
	Checking for UIF Binaries in Installation Directories

	Migrating JDBC Code
	Establishing Connections Through the DriverManager Interface
	Using JDBC 2.0 Data Sources
	Looking Up the Data Source Via JNDI To Obtain a Connection

	Migrating Rich Clients
	Authenticating a Client in Application Server 6.x
	Authenticating a Client in Sun Java System Application Server Platform Edition 8.1
	Using ACC in Application Server 6.x and Sun Java System Application Server Platform Edition 8.1

	Migrating a Sample Application - an Overview
	Preparing for Migrating the iBank Application
	Choosing the Target
	Identifying the Components of the iBank Application

	Manual Steps in the iBank Application Migration
	Configuring Database Connectivity
	Adding a Connection Pool
	Adding a JDBC Resource
	Adding a Persistence Manager

	Assembling Application for Deployment
	Using the asadmin Utility to Deploy the iBank Application on Application Server

	Migration Tools and Resources
	Migration Tool for Sun Java System Application Server 8.1
	Redeploying Migrated Applications

	J2EE Application Verification Kit
	More Migration Information
	Migrating from KIVA/NAS/NetDynamics Application Servers

	iBank Application Specification
	Database Schema
	Application Navigation and Logic
	Login Process
	View/Edit Details
	Account Summary and Transaction History
	Fund Transfer
	Interest Calculation

	Application Components
	Data Components
	Business Components
	Application Logic Components (Servlets)
	Presentation Logic Components (JSP Pages)

	Potential Migration Issues
	Servlets
	Java Server Pages
	JDBC
	Enterprise Java Beans
	Entity Beans
	Session Beans

	Application Assembly

	Index

