
Sun Java™ System

Application Server Platform Edition 8.1
Upgrade and Migration Guide

2005Q1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0083

Copyright © 2004-2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
Use is subject to license terms.
This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004-2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
L’utilisation est soumise aux termes de la License.
Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents 3

Contents

Preface . 7

Who Should Use This Guide . 8

Before You Read This Book . 8

How This Guide Is Organized . 9

Conventions Used in This Book . 9

Typographic Conventions . 9

Symbols . 10

Default Paths and File Names . 11

Shell Prompts . 12

Related Documentation . 12

Books in This Documentation Set . 12

Other Server Documentation . 13

Accessing Sun Resources Online . 14

Contacting Sun Technical Support . 14

Related Third-Party Web Site References . 14

Sun Welcomes Your Comments . 14

Chapter 1 Application Server Compatibility Issues . 17
Web Server Features . 18

Security Realms . 18

Sun Deployment Descriptor: sun-web.xml . 19

encodeCookies Property . 19

CORBA Performance Option . 19

File Formats . 20

Certificate Database . 20

Tools Interoperability . 20

Primary Key Attribute Values . 21

4 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Command Line Interface: start-appserv and stop-appserv . 22

Command Line Interface: asadmin . 23

Subcommands . 23

Error Codes for Start and Stop Subcommands . 24

Options . 25

Dotted Names . 25

Tokens in Attribute Values . 28

Nulls in Attribute Values . 28

Chapter 2 J2EE 1.4 Compatibility Issues . 29
Binary Compatibility . 29

Source Compatibility . 29

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release) . 30

JAXP and SAX Incompatibilities . 33

Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements 34

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations 34

Chapter 3 Upgrading an Application Server Installation . 37
Upgrading Through the Upgrade Utility . 39

Upgrading Through the Wizard . 41

Correcting Potential PE Upgrade Problems . 43

Migrating Additional HTTP Listeners Defined on the Source Server to the Target PE Server 43

Eliminating Problems Encountered When A Single Domain has Multiple Certificate Database Passwords .

44

Chapter 4 Understanding Migration . 45
J2EE Component Standards . 45

J2EE Application Components . 46

Migration and Deployment . 47

Why is Migration Necessary? . 47

What Needs to be Migrated . 48

What is Deployment of Migrated Applications? . 49

Chapter 5 Migrating from EJB 1.1 to EJB 2.0 . 51
EJB Query Language . 51

Local Interfaces . 52

EJB 2.0 Container-Managed Persistence (CMP) . 53

Defining Persistent Fields . 53

Defining Entity Bean Relationships . 54

Message-Driven Beans . 54

Migrating EJB Client Applications . 54

Declaring EJBs in the JNDI Context . 55

Contents 5

Recap on Using EJB JNDI References . 56

Placing EJB References in the JNDI Context . 56

Global JNDI context versus local JNDI context . 56

Migrating CMP Entity EJBs . 56

Migrating the Bean Class . 57

Migration of ejb-jar.xml . 59

Custom Finder Methods . 60

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 63
Migrating Deployment Descriptors . 64

Migrating Web Applications . 66

Migrating Java Server Pages and JSP Custom Tag Libraries . 66

Migrating Servlets . 67

Obtaining a Data Source from the JNDI Context . 68

Declaring EJBs in the JNDI Context . 68

Potential Servlets and JSP Migration Problems . 68

Migrating Web Application Modules . 69

Migrating Enterprise EJB Modules . 70

EJB Migration . 71

EJB Changes Specific to Application Server Platform Edition 8.1 . 71

Session Beans . 72

Entity Beans . 72

Message Driven Beans . 73

Migrating Enterprise Applications . 73

Application Root Context and Access URL . 74

Applications With Form-based Authentication . 75

Migrating Proprietary Extensions . 77

Migrating UIF . 77

Checking in the Registry Files . 77

Checking for UIF Binaries in Installation Directories . 78

Migrating JDBC Code . 79

Establishing Connections Through the DriverManager Interface . 80

Using JDBC 2.0 Data Sources . 81

Looking Up the Data Source Via JNDI To Obtain a Connection . 81

Migrating Rich Clients . 82

Authenticating a Client in Application Server 6.x . 82

Authenticating a Client in Sun Java System Application Server Platform Edition 8.1 82

Using ACC in Application Server 6.x and Sun Java System Application Server Platform Edition 8.1 . . . 82

Chapter 7 Migrating a Sample Application - an Overview . 85
Preparing for Migrating the iBank Application . 86

Choosing the Target . 86

6 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Identifying the Components of the iBank Application . 86

Manual Steps in the iBank Application Migration . 87

Configuring Database Connectivity . 87

Adding a Connection Pool . 87

Adding a JDBC Resource . 88

Adding a Persistence Manager . 89

Assembling Application for Deployment . 89

Using the asadmin Utility to Deploy the iBank Application on Application Server 89

Chapter 8 Migration Tools and Resources . 91
Migration Tool for Sun Java System Application Server 8.1 . 91

Redeploying Migrated Applications . 92

J2EE Application Verification Kit . 93

More Migration Information . 93

Migrating from KIVA/NAS/NetDynamics Application Servers . 93

Appendix A iBank Application Specification . 95
Database Schema . 96

Application Navigation and Logic . 99

Login Process . 100

View/Edit Details . 100

Account Summary and Transaction History . 101

Fund Transfer . 102

Interest Calculation . 103

Application Components . 104

Data Components . 104

Business Components . 105

Application Logic Components (Servlets) . 105

Presentation Logic Components (JSP Pages) . 106

Potential Migration Issues . 107

Servlets . 107

Java Server Pages . 108

JDBC . 108

Enterprise Java Beans . 108

Entity Beans . 108

Session Beans . 109

Application Assembly . 109

Index .111

7

Preface

This Upgrade and Migration Guide describes how Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) applications are migrated from the Sun ONE
Application Server 6.x/7 (also known as iPlanet Application Server), J2EE
Reference Implementation (RI) 1.3 Application Server, Sun Java System
Application Server 7 to the Sun Java System Application Server Platform Edition
8.1 product line.

This guide also describes differences between adjacent product releases and
configuration options that can result in incompatibility with the product
specifications. Specifically, this Upgrade and Migration Guide details Sun Java
System Application Server 8.1 2005Q1 incompatibility with Sun Java System
Application Server 8 2004Q2, Sun Java System Application Server 7 2004Q2, and
the Java™ 2 Platform, Enterprise Edition (J2EE™ platform), version 1.4
specification.

This preface contains information about the following topics:

• Who Should Use This Guide

• Before You Read This Book

• How This Guide Is Organized

• Conventions Used in This Book

• Related Documentation

• Contacting Sun Technical Support

• Related Third-Party Web Site References

• Sun Welcomes Your Comments

Who Should Use This Guide

8 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Who Should Use This Guide
The intended audience for this guide is the system administrator, network
administrator, application server administrator, and web developer who has an
interest in migration issues.

This guide assumes you are familiar with the following topics:

• HTML

• Application Servers

• Client/Server programming model

• Internet and World Wide Web

• Windows 2000 and/or Solaris™ operating systems

• Java programming

• Java APIs as defined in specifications for EJBs, Java Server Pages (JSP)

• Java Database Connectivity (JDBC)

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code
control

Before You Read This Book
Application Server is a component of Sun Java™ Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or
Internet environment. You should be familiar with the documentation provided
with Sun Java Enterprise System, which can be accessed online at
http://docs.sun.com/app/docs/prod/entsys.05q1#hic.

http://docs.sun.com/app/docs/prod/entsys.05q1#hic

How This Guide Is Organized

Preface 9

How This Guide Is Organized
This guide is organized as follows:

Conventions Used in This Book
The tables in this section describe the conventions used in this book.

Typographic Conventions
The following table describes the typographic changes used in this book.

Table 1 How This Guide is Organized

Chapter Description

Chapter 1, “Application Server
Compatibility Issues”

Discusses the incompatibilities between Application Server 8.1
and Application Server 7/8.

Chapter 2, “J2EE 1.4
Compatibility Issues”

Discusses the J2EE incompatibilities between Application
Server 8.1 and Application Server 7/8.

Chapter 3, “Upgrading an
Application Server Installation”

Describes the process to upgrade an earlier installation of
application server to Application Server 8.1.

Chapter 4, “Understanding
Migration”

Discusses the need to migrate applications.

Chapter 5, “Migrating from EJB
1.1 to EJB 2.0”

Describes the process to migrate EJB 1.1 to EJB2.0
specification.

Chapter 6, “Migrating from
Application Server 6.x/7.x to
Application Server 8.1”

Describes the considerations and strategies to migrate
applications from earlier releases of Sun’s application servers
to Sun Java System Application Server 8 2004Q4.

Chapter 7, “Migrating a Sample
Application - an Overview”

Describes the steps to migrate a sample application from Sun
ONE Application Server 6.x to Sun Java System Application
Server 2004Q4.

Chapter 8, “Migration Tools
and Resources”

Lists the tools and resources that aid in automatic migration of
applications.

Appendix A, “iBank Application
Specification”

Describes the specification of the sample application- iBank.

Conventions Used in This Book

10 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Symbols
The following table describes the symbol conventions used in this book.

Table 2 Typographic Conventions

Typeface Meaning Examples

AaBbCc123
(Monospace)

API and language elements, HTML
tags, web site URLs, command
names, file names, directory path
names, onscreen computer output,
sample code.

Edit your.login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123
(Monospace
bold)

What you type, when contrasted
with onscreen computer output.

% su
Password:

AaBbCc123
(Italic)

Book titles, new terms, words to be
emphasized.

A placeholder in a command or
path name to be replaced with a
real name or value.

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

The file is located in the
install-dir/bin directory.

Table 3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional command
options.

ls [-l] The -l option is not
required.

{ | } Contains a set of choices for
a required command option.

-d {y|n} The -d option requires that
you use either the y
argument or the n
argument.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key,
release it, and then press
the subsequent keys.

Conventions Used in This Book

Preface 11

Default Paths and File Names
The following table describes the default paths and file names used in this book.

> Indicates menu item
selection in a graphical user
interface.

File > New > Templates From the File menu, choose
New. From the New
submenu, choose
Templates.

Table 4 Default Paths and File Names

Term Description

install_dir By default, the Application Server installation directory is located here:

• Sun Java Enterprise System installations on the Solaris™ platform:

/opt/SUNWappserver/appserver

• Sun Java Enterprise System installations on the Linux platform:

/opt/sun/appserver/

• Other Solaris and Linux installations, non-root user:

user’s home directory/SUNWappserver

• Other Solaris and Linux installations, root user:

/opt/SUNWappserver

• Windows, all installations:

SystemDrive:\Sun\AppServer

domain_root_dir By default, the directory containing all domains is located here:

• Sun Java Enterprise System installations on the Solaris platform:

/var/opt/SUNWappserver/domains/

• Sun Java Enterprise System installations on the Linux platform:

/var/opt/sun/appserver/domains/

• All other installations:

install_dir/domains/

Table 3 Symbol Conventions (Continued)

Symbol Description Example Meaning

Related Documentation

12 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Shell Prompts
The following table describes the shell prompts used in this book.

Related Documentation
The http://docs.sun.comSM web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book
title or subject.

Books in This Documentation Set
The Sun Java System Application Server manuals are available as online files in
Portable Document Format (PDF) and Hypertext Markup Language (HTML).

The following table summarizes the books included in the Application Server core
documentation set.

domain_dir By default, each domain directory is located here:

domain_root_dir/domain_dir

In configuration files, you might see domain_dir represented as follows:

${com.sun.aas.instanceRoot}

Table 5 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%

C shell superuser on UNIX or Linux machine-name#

Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C:\

Table 4 Default Paths and File Names

Term Description

Related Documentation

Preface 13

Other Server Documentation
For other server documentation, go to the following:

• Message Queue documentation
http://docs.sun.com/db?p=prod/s1.s1msgqu

• Directory Server documentation
http://docs.sun.com/coll/DirectoryServer_04q2

• Web Server documentation
http://docs.sun.com/coll/S1_websvr61_en

Table 6 Books in This Documentation Set

Book Title Description

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating
system, JDK, and JDBC/RDBMS.

Quick Start Guide How to get started with the Sun Java System Application Server product.

Installation Guide Installing the Sun Java System Application Server software and its components.

Developer’s Guide Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components and APIs. Includes general
information about developer tools, security, assembly, deployment, debugging, and
creating lifecycle modules.

J2EE 1.4 Tutorial Using J2EE 1.4 platform technologies and APIs to develop J2EE applications and
deploying the applications on the Sun Java System Application Server.

Administration Guide Configuring, managing, and deploying the Sun Java System Application Server
subsystems and components from the Administration Console.

Administration Reference Editing the Sun Java System Application Server configuration file, domain.xml.

Upgrade and Migration Guide Migrating your applications to the new Sun Java System Application Server
programming model, specifically from Application Server 6.x and 7. This guide also
describes differences between adjacent product releases and configuration options
that can result in incompatibility with the product specifications.

Troubleshooting Guide Solving Sun Java System Application Server problems.

Error Message Reference Solving Sun Java System Application Server error messages.

Reference Manual Utility commands available with the Sun Java System Application Server; written in
manpage style. Includes the asadmin command line interface.

http://docs.sun.com/db?p=prod/s1.s1msgqu
http://docs.sun.com/coll/DirectoryServer_04q2
http://docs.sun.com/coll/S1_webvr61_en

Accessing Sun Resources Online

14 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

• Download Center
http://wwws.sun.com/software/download/

• Professional Services
http://www.sun.com/service/sunps/sunone/index.html

• Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

• Developer Information
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, go to http://www.sun.com/service/contacting.

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions.

http://wwws.sun.com/software/download
http://www.sun.com/service/sunps/sunone/index.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech.index.html
http://www.sun.com/service/contacting

Sun Welcomes Your Comments

Preface 15

To share your comments, go to http://docs.sun.com and click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document. For example, the title of this book is Sun Java System
Application Server Platform Edition 8.1 2005Q1 Upgrade and Migration Guide, and
the part number is 819-0083.

http://docs.sun.com

Sun Welcomes Your Comments

16 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

17

Chapter 1

Application Server Compatibility
Issues

The Sun Java System Application Server 8.1 2005Q1 (Application Server 8.1) is
upward binary-compatible with Sun Java System Application Server 8 2004Q2
(Application Server 8) and with Sun Java System Application Server 7 2004Q2
(Application Server 7) except for the incompatibilities noted below. J2EE
applications that run on versions 7 and 8 also work on version 8.1 except for the
incompatibilities noted below.

The topics discussed in this chapter include incompatibilities in the following
areas:

• Web Server Features

• Security Realms

• Sun Deployment Descriptor: sun-web.xml

• encodeCookies Property

• CORBA Performance Option

• File Formats

• Certificate Database

• Tools Interoperability

• Primary Key Attribute Values

• Command Line Interface: start-appserv and stop-appserv

• Command Line Interface: asadmin

Web Server Features

18 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

Web Server Features
Application Server 8.1 replaces the Web server shipped with Application Server 7
with a Java-based web container. As a result, the following web server-specific
features are no longer supported in version 8.1:

• cgi-bin, shtml

• SNMP support

• NSAPI plugin APIs

• Native content handling features

• Web server tools (flexanlg, htpasswd)

• HTTP QoS

• Web server configuration files (*.conf, *.acl, mime.types)

• Web server-specific log rotation facility

• Watch dog process (appserv-wdog)

Security Realms
The package names of the security realm implementations have been renamed
from com.iplanet.ias.security.auth.realm in Application Server 7 to
com.sun.enterprise.security.auth.realm in Application Server 8.1. Custom
realms written using the com.iplanet.* classes must be modified.

The com.sun.enterprise.security.AuthenticationStatus class has been
removed.

The com.sun.enterprise.security.auth.login.PasswordLoginModule
authenticate method implementation has changed as follows.

/**
* Perform authentication decision.
* <P> Note: AuthenticationStatus and AuthenticationStatusImpl
* classes have been removed.
* Method returns silently on success and returns a LoginException
* on failure.
*
* @return void authenticate returns silently on successful authentication.
* @throws LoginException on authentication failure.

Sun Deployment Descriptor: sun-web.xml

Chapter 1 Application Server Compatibility Issues 19

*
*/

abstract protected void authenticate()
throws LoginException;

For more information, see:

http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html

Sun Deployment Descriptor: sun-web.xml
In Application Server 7, the default value for the optional attribute delegate was
false. In Application Server 8.1, this attribute defaults to true. This change means
that by default the Web application classloader first delegates to the parent
classloader before attempting to load a class by itself. For details, see “Application
Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations” on
page 32.

encodeCookies Property
The encodeCookies property of the sun-web-app element in the sun-web.xml file
performs URL encoding of cookies if set to true. If set to false, no encoding of
cookies is performed. In Application Server 7, the default value of the
encodeCookies property was true. This property was not present in Application
Server 8. In Application Server 8.1, the default value is false.

In general, URL encoding of cookies is unnecessary. Setting this property to true is
strongly discouraged. This property is provided only for those rare applications
that depended on this behavior in Application Server 7. This property might be
removed in a future release.

CORBA Performance Option
In Application Server 7, users were able to specify the following system property to
optionally turn on some ORB performance optimization:

-Djavax.rmi.CORBA.UtilClass=com.iplanet.ias.util.orbutil.IasUtilDelegate

http://developers.sun.com/prodtech/appserver/reference/techart/as8_authentication/index.html

File Formats

20 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

The ORB performance optimization is turned on by default in Application Server
8.1. If you are using the system property reference above, you must remove it to
avoid interfering with the default optimization.

File Formats
In Application Server 8.1, domain.xml is the main server configuration file. In
Application Server 7, the main server configuration file was server.xml. The DTD
file of domain.xml is found in lib/dtds/sun-domain_1_1.dtd. The upgrade tool
included in Application Server 8.1 can be used to migrate the server.xml from
Application Server 7 to domain.xml for Application Server 8.1.

The lib/dtds/sun-domain_1_1.dtd. file for Application Server 8.1 is fully
backward compatible with the corresponding file for Application Server 8,
sun-domain_1_0.dtd.

In general, the configuration file formats are NOT backward compatible. The
following configuration files are NOT supported:

• *.conf

• *.acl

• mime.types

• server.xml (replaced with domain.xml)

Certificate Database
Application Server 8.1 uses Java Keystore (JKS) as the keystore format. The NSS
format used in Application Server 7 is not supported. The upgrade tool included in
the product can be used to migrate existing NSS keystores to JKS keystores.

Tools Interoperability
As a general rule, tools are not interoperable between Application Server 7 and 8.1.
Users must upgrade their Application Server 7 tools to work with Application
Server 8.1.

Primary Key Attribute Values

Chapter 1 Application Server Compatibility Issues 21

Primary Key Attribute Values
In Application Server 7, it was possible to change any field (in the Administration
Console) or attribute (in the command line interface). In Application Server 8.1, a
field or attribute that is the primary key of an item cannot be changed. However, an
item can be deleted and then recreated with a new primary key value. In most
cases, the primary key is a name, ID, reference, or JNDI name. The following table
lists the primary keys that cannot be changed.

NOTE In the domain.xml file, a field or attribute is called an attribute, and
an item is called an element. For more information about domain.xml,
see the Sun Java System Application Server Administration Reference.

Table 1-1 Primary Key Attributes

Item Primary Key Field or Attribute

admin-object-resource jndi-name

alert-subscription name

appclient-module name

application-ref ref

audit-module name

auth-realm name

cluster-ref ref

cluster name

config name

connector-connection-pool name

connector-module name

connector-resource jndi-name

custom-resource jndi-name

ejb-module name

external-jndi-resource jndi-name

http-listener id

iiop-listener id

j2ee-application name

Command Line Interface: start-appserv and stop-appserv

22 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

Command Line Interface: start-appserv and
stop-appserv

The start-appserv and stop-appserv commands are deprecated. Use of these
commands results in a warning. Use asadmin start-domain and asadmin
stop-domain instead.

jacc-provider name

jdbc-connection-pool name

jdbc-resource jndi-name

jms-host name

jmx-connector name

lb-config name

lifecycle-module name

mail-resource jndi-name

message-security-config auth-layer

node-agent name

profiler name

element-property name

provider-config provider-id

resource-adapter-config resource-adapter-name

resource-ref ref

security-map name

server name

server-ref ref

system-property name

thread-pool thread-pool-id

virtual-server id

web-module name

persistence-manager-factory-resource jndi-name

Table 1-1 Primary Key Attributes

Item Primary Key Field or Attribute

Command Line Interface: asadmin

Chapter 1 Application Server Compatibility Issues 23

In Application Server 8.1, the "Log Messages to Standard Error" field has been
removed from the Administration Console. The log-to-console attribute in the
domain.xml file is deprecated and ignored. The asadmin set command has no
effect on the log-to-console attribute. Use the --verbose option of the asadmin
start-domain command to print messages to the window in which you executed
start-domain. This only works if you execute start-domain on the machine on
which the domain you are starting is installed.

Command Line Interface: asadmin
The following sections describe changes to the command line interface asadmin:

• Subcommands

• Error Codes for Start and Stop Subcommands

• Options

• Dotted Names

• Tokens in Attribute Values

• Nulls in Attribute Values

For more information about the asadmin commands, see the Sun Java System
Application Server Reference Manual.

Subcommands
Subcommands are backward compatible except as noted below.

The following sub command is deprecated and ignored:

• reconfig

Application Server 8.1 can only create one instance, so these subcommands are not
supported.

• create-instance

• delete-instance

• list-instances

• start-instance

Command Line Interface: asadmin

24 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

• stop-instance

• show-instance-status

• restart-instance

The following subcommands are no longer supported in Application Server 8.1,
because the software license key and web core were removed, and because
controlled functions from web server features are no longer supported:

• install-license

• display-license

• create-http-qos

• delete-http-qos

• create-mime

• delete-mime

• list-mime

• create-authdb

• delete-authdb

• list-authdbs

• create-acl

• delete-acl

• list-acls

Error Codes for Start and Stop Subcommands
For Application Server 7, the exit codes returned by the start and stop
subcommands of the asadmin command were based on the desired end state. For
example, for asadmin start-domain, if the domain was already running, the exit
code was 0 (success). If domain startup failed, the exit code was 1 (error).

For Application Server 8.1, the exit codes are based on whether the commands
execute as expected. For example, the asadmin start-domain command returns
exit code 1 if the domain is already running or if domain startup fails. Similarly,
asadmin stop-domain returns exit code 1 if the domain is already not running or
cannot be stopped.

Command Line Interface: asadmin

Chapter 1 Application Server Compatibility Issues 25

Options
Options in the following table are deprecated or no longer supported.

Dotted Names
The following use of dotted names in asadmin get and set subcommands are not
backward compatible:

• Default server name is server instead of server1

• server.resource becomes domain.resources.resource

Table 1-2 Deprecated and Unsupported asadmin Options

Option Deprecated or Unsupported in Subcommands

--acceptlang Deprecated for the create-virtual-server subcommand.

--acls Deprecated for the create-virtual-server subcommand.

--adminpassword Deprecated for all relevant subcommands. Use --passwordfile instead.

--blockingenable
d

Deprecated for the create-http-listener subcommand.

--configfile Deprecated for the create-virtual-server subcommand.

--defaultobj Deprecated for the create-virtual-server subcommand.

--domain Deprecated for the stop-domain subcommand.

--family Deprecated for the create-http-listener subcommand.

--instance Deprecated for all remote subcommands. Use --target instead.

--mime Deprecated for the create-virtual-server subcommand.

--optionsfile No longer supported for any commands.

--password Deprecated for all remote subcommands. Use --passwordfile instead.

--path Deprecated for the create-domain subcommand. Use --domaindir
instead.

--resourcetype Deprecated for all relevant subcommands. Use --restype instead.

--storeurl No longer supported for any commands.

--target Deprecated for all jdbc-connection-pool, connector-connection-pool,
connector-security-map, and resource-adapter-config subcommands.

--type Deprecated for all relevant subcommands.

Command Line Interface: asadmin

26 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

• server.app-module becomes domain.applications.app-module

• Attributes names format is different, for example, poolResizeQuantity is now
pool-resize-quantity

• Some aliases supported in Application Server 7 are not supported in
Application Server 8.1

In Application Server 8.1, the --passwordfile option of the asadmin command
does not read the password.conf file, and the upgrade tool does not upgrade this
file. For information about creating a password file in Application Server 8.1, see
the Sun Java System Application Server Administration Guide.

The table below displays a one-to-one mapping of the incompatibilities in dotted
names between Application Server 7 and 8.1. The compatible dotted names are not
listed in this table.

Table 1-3 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names Application Server 8 Dotted Names

server_instance.http-listener.listener_id
server_instance.http-service.http-listener.
listener_id

server.http-service.http-listener.listener_id
server-config.http-service.http-listener.
listener_id

server_instance.orb
server_instance.iiop-service

server.iiop-service
server-config.iiop-service

server_instance.orblistener
server_instance.iiop-listener

server.iiop-service.iiop-listener.listener_id
server-config.iiop-service.iiop-listener.
listener_id

server_instance.jdbc-resource.jndi_name server.resources.jdbc-resource.jndi_name
domain.resources.jdbc-resource.jndi_name

server_instance.jdbc-connection-pool.pool_id server.resources.jdbc-connection-pool.pool_id
domain.resources.jdbc-connection-pool.pool_id

server_instance.external-jndi-resource.jndi_name
server_instance.jndi-resource.jndi_name

server.resources.external-jndi-resource.
jndi_name
domain.resources.external.jndi-resource.
jndi_name

server_instance.custom-resource.jndi_name server.resources.custom-resource.jndi_name
domain.resources.custom-resource.jndi_name

server_instance.web-container.logLevel

(see note below)

server.log-service.module-log-levels.
web-container
server-config.log-service.module-log-levels.
web-container

Command Line Interface: asadmin

Chapter 1 Application Server Compatibility Issues 27

server_instance.web-container.monitoringEnabled

(see note below)

server.monitoring-service.
module-monitoring-levels.web-container
server-config.monitoring-service.
module-monitoring-levels.web-container

server_instance.j2ee-application.application_name
server_instance.application.application_name

server.applications.j2ee-application.
application_name
domain.applications.j2ee-application.
application_name

server_instance.ejb-module.ejb-module_name server.applications.ejb-module.ejb-module_name
domain.applications.ejb-module.ejb-module_name

server_instance.web-module.web-module_name server.applications.web-module.web-module_name
domain.applications.web-module.web-module_name

server_instance.connector-module.
connector_module_name

server.applications.connector-module.
connector_module_name
domain.applications.connector-module.
connector_module_name

server_instance.lifecycle-module.
lifecycle_module_name

server.applications.lifecycle-module.
lifecycle_module_name
domain.application.lifecycle-module.
lifecycle_module_name

server_instance.virtual-server-class N/A

server_instance.virtual-server.
virtual-server_id

server.http-service.virtual-server.
virtual-server_id
server-config.http-service.virtual-server.
virtual-server_id

server_instance.mime.mime_id N/A

server_instance.acl.acl_id N/A

server_instance.virtual-server.
virtual-server_id.auth-db.auth-db_id

N/A

server_instance.authrealm.realm_id
server_instance.security-service.authrealm.
realm_id

server.security-service.auth-realm.realm_id
server-config.security-service-auth-realm.
realm_id

server_instance.
persistence-manager-factory-resource.jndi_name
server_instance.resources.persistence-manager-facto
ry-resource.jndi_name

server.resources.persistence-manager-factory-reso
urce.jndi_name
domain.resources.
persistence-manager-factory-resource.jndi_name

server_instance.http-service.acl.acl_id N/A

server_instance.mail-resource.jndi_name server.resources.mail-resource.jndi_name
domain.resources.mail-resource.jndi_name

Table 1-3 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names Application Server 8 Dotted Names

Command Line Interface: asadmin

28 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

Tokens in Attribute Values
The asadmin get command shows raw values in Application Server 8.1 instead of
resolved values as in Application Server 8. These raw values may be tokens. For
example, executing the following command:

asadmin get domain.log-root

displays the following value:

${com.sun.aas.instanceRoot}/logs

Nulls in Attribute Values
In Application Server 8, attributes with no values contained nulls. This caused
problems in attributes that specified paths. In Application Server 8.1, attributes
with no values contain empty strings, as they did in Application Server 7.

server_instance.profiler server.java-config.profiler
server-config.java-config.profiler

NOTE Rows with note in previous table describe attribute names. In these
instances, there is not a one-to-one relationship with the dotted
names between Application Server 7 and 8.1.

Table 1-3 Incompatible Dotted Names Between Versions

Application Server 7 Dotted Names Application Server 8 Dotted Names

29

Chapter 2

J2EE 1.4 Compatibility Issues

The following topics are covered in this chapter:

• Binary Compatibility

• Source Compatibility

• Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

• JAXP and SAX Incompatibilities

• Application Server 8.1 Options Incompatible with J2EE 1.4 Specification
Requirements

• Application Server 8.1 Options Contrary to J2EE 1.4 Specification
Recommendations

Binary Compatibility
In this Application Server 8.1 release, the included Java SDK is The Java™ 2
Platform, Enterprise Edition (J2EE™ platform), version 1.4 SDK. This version of the
J2EE SDK is upwards binary-compatible with J2EE SDK, v1.3, except for the
incompatibilities listed below. This means that, except for the noted
incompatibilities, applications built for version 1.3 run correctly in the Sun Java
System Application Server 8.1 release. For ease of reference, the version of the J2EE
SDK included in this release is referred to throughout this section as J2EE 1.4.

Source Compatibility
Downward source compatibility is not supported. If source files use new J2EE
APIs, they are not usable with an earlier version of the J2EE platform.

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

30 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

In general, the policy is as follows:

• Maintenance releases do not introduce any new APIs, so they maintain
source-compatibility with one another. However, since J2EE is based on J2SE, a
new Application Server release may include a new version of J2SE. Refer to the
document on compatibility issues in J2SE for more information:

http://java.sun.com/j2se/1.4.2/compatibility.html

• Functionality releases and major releases maintain upwards but not
downwards source-compatibility.

Deprecated APIs are methods and classes that are supported only for backward
compatibility, and the compiler generates a warning message whenever one of
these is used, unless the -nowarn command-line option is used. It is recommended
that programs be modified to eliminate the use of deprecated methods and classes,
though there are no current plans to remove such methods and classes entirely
from the system.

Incompatibilities in the J2EE 1.4 Platform (since
the J2EE 1.3 release)

The Sun Java System Application Server 8.1 release is based on the Java 2 Platform,
Enterprise Edition, version 1.4. The Sun Java System Application Server 7 release is
based on the Java 2 Platform, Enterprise Edition, version 1.3.

The Sun Java System Application Server 8.1 release is strongly compatible with
previous versions of the J2EE platform. Almost all existing programs should run
on the Sun Java System Application Server 8.1 release without modification.
However, there are some minor potential incompatibilities that involve rare
circumstances and “corner cases” that we are documenting here for completeness.

• Java Servlet Specification Version 2.4 ships with the Sun Java System
Application Server 8.1 release, and can be downloaded from the following
URL:

http://java.sun.com/products/servlet/

Version 2.3 of the specification shipped with the J2EE 1.3 SDK. The following
items discuss compatibility issues between these releases.

❍ HttpSessionListener sessionDestroyed

http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/products/servlet/

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

Chapter 2 J2EE 1.4 Compatibility Issues 31

In the previous versions of the specification, this method was defined as
Notification that a session was invalidated. As of this release, this
method is changed to Notification that a session is about to be
invalidated so that it notifies before the session invalidation. If the code
assumed the previous behavior, it must be modified to match the new
behavior.

❍ ServletRequest methods getRemotePort, getLocalName, getLocalAddr,
getLocalPort

The following methods are added in the ServletRequest interface in this
version of the specification. Be aware that this addition causes source
incompatibility in some cases, such as when a developer implements the
ServletRequest interface. In this case, ensure that all the new methods are
implemented:

• public int getRemotePort() returns the Internet Protocol (IP) source
port of the client or last proxy that sent the request.

• public java.lang.String getLocalName() returns the host name of
the Internet Protocol (IP) interface on which the request was received.

• public java.lang.String getLocalAddr() returns the Internet
Protocol (IP) address of the interface on which the request was
received.

• public int getLocalPort() returns the Internet Protocol (IP) port
number of the interface on which the request was received.

• Java Server Pages Specification 2.0 ships with the Sun Java System Application
Server 8.1 release and is downloadable from the following URL:

http://java.sun.com/products/jsp/

JSP Specification 1.2 shipped with the J2EE 1.3 SDK. Where possible, the JSP 2.0
Specification attempts to be fully backward compatible with the JSP 1.2
Specification. In some cases, there are ambiguities in the JSP 1.2 specification
that have been clarified in the JSP 2.0 Specification. Because some JSP 1.2
containers behave differently, some applications that rely on container-specific
behavior may need to be adjusted to work correctly in a JSP 2.0 environment.

The following is a list of known backward compatibility issues of which
developers who use JSP technology should be aware:

http://java.sun.com/products/jsp/

Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)

32 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

❍ Tag Library validators that are not namespace aware and that rely solely
on the prefix parameter might not correctly validate some JSP 2.0 pages.
This is because the XML view might contain tag library declarations in
elements other than jsp:root, and might contain the same tag library
declaration more than once, using different prefixes. The uri parameter
should always be used by tag library validators instead. Existing JSP pages
with existing tag libraries do not create any problems.

❍ Users may observe differences in I18N behavior on some containers due
primarily to ambiguity in the JSP 1.2 specification. Where possible, steps
were taken to minimize the impact on backward compatibility and overall,
the I18N abilities of technology have been greatly improved.

In JSP specification versions previous to JSP 2.0, JSP pages in XML syntax
(“JSP documents”) and those in standard syntax determined their page
encoding in the same fashion, by examining the pageEncoding or
contentType attributes of their page directive, defaulting to ISO-8859-1 if
neither was present.

As of the JSP Specification v2.0, the page encoding for JSP documents is
determined as described in section 4.3.3 and appendix F.1 of the XML
specification, and the pageEncoding attribute of those pages is only
checked to make sure it is consistent with the page encoding determined as
per the XML specification.

As a result of this change, JSP documents that rely on their page encoding
to be determined from their pageEncoding attribute will no longer be
decoded correctly. These JSP documents must be changed to include an
appropriate XML encoding declaration.

Additionally, in the JSP 1.2 Specification, page encodings are determined
on a per translation unit basis whereas in the JSP 2.0 Specification, page
encodings are determined on a per-file basis. Therefore, if a.jsp statically
includes b.jsp, and a page encoding is specified in a.jsp but not in b.jsp,
in the JSP 1.2 Specification a.jsp’s encoding is used for b.jsp, but in the
JSP 2.0 Specification, the default encoding is used for b.jsp.

❍ The type coercion rules (shown in Table JSP.1-11 in the JSP 2.0
Specification) have been reconciled with the EL coercion rules. There are
some exceptional conditions that no longer result in an exception in the JSP
2.0 Specification. In particular, when passing an empty String("") to an
attribute of a numeric type, a translation error or a
NumberFormatException used to occur, whereas in the JSP 2.0
Specification, a 0 is passed in instead. See Table JSP.1-11 in the JSP 2.0

JAXP and SAX Incompatibilities

Chapter 2 J2EE 1.4 Compatibility Issues 33

Specification for details. In general, this is not expected to cause any
problems because these would have been exceptional conditions in the JSP
1.2 Specification and the specification allowed for these exceptions to occur
at either translation time or request time.

❍ The JSP container uses the version of web.xml to determine the default
behavior of various container features. The following is a list of items of
which JSP developers should be aware when upgrading their web.xml
from Servlet version 2.3 Specification to Servlet version 2.4 Specification.

• EL expressions are ignored by default in applications created with JSP
1.2 technology. When upgrading a Web application to the JSP 2.0
Specification, EL expressions are interpreted by default. The escape
sequence \$ can be used to escape EL expressions that should not be
interpreted by the container. Alternatively, the isELIgnored page
directive attribute, or the el-ignored configuration element can
deactivate EL for entire translation units. Users of JSTL 1.0 need to
either upgrade their taglib/ imports to the JSTL 1.1 URIs, or they
need to use the _rt versions of the tags (for example c_rt instead of c,
or fmt_rt instead of fmt).

• Files with an extension of .jspx are interpreted as JSP documents by
default. Use the JSP configuration element is-xml to treat .jspx files
as regular JSP pages. There is no way to disassociate .jspx from the
JSP container.

• The escape sequence \$ was not reserved in the JSP 1.2 Specification.
Any template text or attribute value that appeared as \$ in the JSP 1.2
Specification used to output \$ but now outputs just $.

JAXP and SAX Incompatibilities
Sun Java System Application Server 8.1 supports JAXP 1.3, which in turn supports
SAX 2.0.2. In SAX 2.0.2, DeclHandler.externalEntityDecl requires the parser to
return the absolute system identifier for consistency with
DTDHandler.unparsedEntityDecl. This might cause some incompatibilities when
migrating applications that use SAX 2.0.0.

To migrate an application that uses SAX 2.0.0 to SAX 2.0.2 without changing the
previous behavior of externalEntityDecl, you can set the resolve-dtd-uris
feature to false. For example:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setFeature("http://xml.org/sax/features/resolve-dtd-uris",false);

Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements

34 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

Other incompatibilities between SAX 2.0.0 and SAX 2.0.2 are documented here:

http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX

Application Server 8.1 Options Incompatible with
J2EE 1.4 Specification Requirements

Sun Java System Application Server 8.1 is compatible with the Java 2 Platform,
Enterprise Edition specification by default. In this case, all portable J2EE programs
run on the Application Server without modification. However, as allowed by the
J2EE compatibility requirements, it is possible to configure applications to use
features of the Sun Java System Application Server 8.1 that are not compatible with
the J2EE specification.

The pass-by-reference element in the sun-ejb-jar.xml file only applies to
remote calls. As defined in the EJB 2.0 specification, section 5.4, calls to local
interfaces use pass-by-reference semantics.

If the pass-by-reference element is set to its default value of false, the parameter
passing semantics for calls to remote interfaces comply with the EJB 2.0
specification, section 5.4. If set to true, remote calls involve pass-by-reference
semantics instead of pass-by-value semantics, contrary to this specification.

Portable programs cannot assume that a copy of the object is made during such a
call, and thus that it’s safe to modify the original. Nor can they assume that a copy
is not made, and thus that changes to the object are visible to both caller and callee.
When this flag is set to true, parameters and return values are considered
read-only. The behavior of a program that modifies such parameters or return
values is undefined. For more information about the pass-by-reference element,
see the Developer’s Guide.

Application Server 8.1 Options Contrary to J2EE
1.4 Specification Recommendations

If the delegate attribute in the class-loader element of the sun-web.xml file is set
to its default value of true, classes and resources residing in container-wide library
JAR files are loaded in preference to classes and resources packaged within the
WAR file, contrary to what is recommended in the Servlet 2.3 specification, section
9.7.2. If set to false, the classloader delegation behavior complies with what is
recommended in the Servlet 2.3 specification, section 9.7.2.

http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html#SAX

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

Chapter 2 J2EE 1.4 Compatibility Issues 35

Do not package portable programs that use the delegate attribute with the value
of true with any classes or interfaces that are a part of the J2EE specification. The
behavior of a program that includes such classes or interfaces in its WAR file is
undefined. For more information about the class-loader element, see the
Developer’s Guide.

Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

36 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

37

Chapter 3

Upgrading an Application Server
Installation

You can upgrade to Sun Java System Application Server Platform Edition 8.1
(hereafter called Application Server) from Sun Java(TM) System Application
Server 7.x (formerly Sun ONE(TM) Application Server 7.x) or a Sun Java System
Application Server 8.x Platform Edition installation. Information that is transferred
includes data about deployed applications, the file realm, security certificates, and
other resource and server configuration settings. You can install your upgrade in a
new location, or you can upgrade in place by overwriting your previous
installation.

The following table shows supported Sun Java System Application Server
upgrades, where PE indicates Platform Edition and EE indicates Enterprise
Edition.

Table 3-1 Supported Upgrade Paths

Source Installation 8.1Platform Edition 8.1 Enterprise Edition

7.XPE X X

7.XSE X

7.XEE X

8.0PE X X

8.1PE X

NOTE Before starting the upgrade process, make sure that both the source
server (the server from which you are upgrading) and the target
server (the server to which you are upgrading) are stopped.

38 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

The software provides two methods, a command-line utility (asupgrade) and a
graphical user interface (Upgrade Wizard), for completing the upgrade. If you
issue the asupgrade command with no options, the Upgrade Wizard GUI will be
displayed. If the asupgrade command is used in command-line mode and all of the
required information is not supplied, an interviewer will request information for
any required options that were omitted. The Upgrade Wizard automatically
detects the version of the specified source server installation.

If a domain contains information about a deployed application and the installed
application components do not agree with the configuration information, the
configuration will be migrated as is without any attempt to reconfigure the
incorrect configurations.

During an upgrade, the configuration and deployed applications of a previous
version of the Application Server are migrated; however, the runtime binaries of
the server are not updated. Database migrations or conversions are also beyond the
scope of this upgrade process.

Only those instances that do not use Sun Java System Web Server-specific features
will be upgraded seamlessly. Configuration files related to HTTP path, CGI bin,
SHTML, and NSAPI plug-ins will not be upgraded.

Application archives (EAR files) and component archives (JAR, WAR, and RAR
files) that are deployed in the Application Server 7.x/8.0 environment do not
require any modification to run on Application Server 8.1.

Applications and components that are deployed in the source server are deployed
on the target server during the upgrade. Applications that do not deploy
successfully on the target server must be migrated using the Migration Tool or
asmigrate command, then deployed again manually.

If the upgrade includes clusters, specify one or more cluster files. Upon successful
upgrade, an upgrade report is generated listing successfully migrated items along
with a list of the items that could not be migrated.

This chapter discusses the following topics:

• Upgrading Through the Upgrade Utility

• Upgrading Through the Wizard

• Correcting Potential PE Upgrade Problems

• Correcting Potential PE Upgrade Problems

Upgrading Through the Upgrade Utility

Chapter 3 Upgrading an Application Server Installation 39

Upgrading Through the Upgrade Utility
The upgrade utility is run from the command line using the following syntax:

asupgrade [--console] [--version] [--help]
[--source applicationserver_7.x/8.x_installation]
[--target applicationserver_8.1_installation]
--adminuser admin_user
[--adminpassword admin_password]
[--masterpassword changeit]
[--passwordfile path_to_password_file]
[--domain domain_name]
[--nsspwdfile NSS_password_filepath]
[--targetnsspwdfile target_NSS_password_filepath]
[--jkspwdfile JKS_password_filepath]
[--capwdfile CA_password_filepath]
[--clinstancefile file1 [, file2, file3, ... filen]]

The following table describes the command options in greater detail, including the
short form, the long form, and a description.

Table 3-2 asupgrade Utility Command Options

Short Form Long Form Description

-c ---console Launches the upgrade command line utility.

-V ---version The version of the Upgrade Tool.

-h ---help Displays the arguments for launching the upgrade utility.

-t ---target The installation directory for Sun Java System Application Server
8.1.

-a ---adminuser The username of the administrator.

-w ---adminpassword The password for the adminuser. Although this option can be used,
the recommended way to transmit passwords is by using the
-passwordfile option.

-m --masterpassword The master password that is created during installation. The default
value is changeit. Although this option can be used, the
recommended way to transmit passwords is by using the
--passwordfile option.

Note: This option is required only if your target server is Application
Server 8.1 EE.

Upgrading Through the Upgrade Utility

40 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

The following examples show how to use the asupgrade command-line utility to
upgrade an existing application server installation to Application Server 8.1.

Example 1: Upgrading an Application Server 7 Installation to Application Server 8.1
with Prompts for Certificate Migration.

This example shows how to upgrade a Sun Java System Application Server 7
installation to Sun Java System Application Server 8.1. You will be prompted to
migrate certificates. If you reply no, then no certificates will be migrated.

% asupgrade --adminuser admin --passwordfile password.txt
--source /home/sunas7 --target /home/sjsas8.1

Example 2: Upgrading an Application Server 7.0 PE Installation with NSS
Certificates to Application Server 8.1 PE

This example shows how to upgrade a Sun Java System Application Server 7.0 PE
installation to Sun Java System Application Server 8.1 PE. The NSS certificates from
the 7.0 PE source server will be converted to JKS and CA certificates in the 8.1 PE
target server.

-f --passwordfile The path to the file that contains the adminpassword and
masterpassword. Content of this file should be in the following
format:

AS_ADMIN_ADMINPASSWORD=adminpassword

 AS_ADMIN_MASTERPASSWORD=masterpassword

-d --domain The domain name for the migrated certificates.

-n --nsspwdfile The path to the NSS password file.

-e --targetnsspwdfile The path to the target NSS password file.

-j --jkspwdfile The path to the JKS password file.

-p --capwdfile The path to the CA certificate password file.

-i --clinstancefile The path to the cluster file. The default filename is
$AS_INSTALL/conf/clinstance.conf.

Table 3-2 asupgrade Utility Command Options

Short Form Long Form Description

Upgrading Through the Wizard

Chapter 3 Upgrading an Application Server Installation 41

% asupgrade --adminuser admin --passwordfile password.txt
--source /home/sjsas7.0 --target /home/sjsas8.1
--domain domain1
--nsspwdfile /home/sjsas7.0/nsspassword.txt
--jkspwdfile /home/sjsas7.0/jkspassword.txt
--capwdfile /home/sjsas7.0/capassword.txt

Example 3: Upgrading an Application Server 8.0 PE Installation with JKS and CA
Certificates to Application Server 8.1 PE

This example shows how to upgrade a Sun Java System Application Server 8.0 PE
installation to Sun Java System Application Server 8.1 PE. JKS and CA certificates
will be migrated.

% asupgrade --adminuser admin --passwordfile password.txt
--source /home/sjsas8.0 --target /home/sjsas8.1
--domain domain1
--jkspwdfile /home/sjsas8.0/jkspassword.txt
--capwdfile /home/sjsas8.1/capassword.txt

Upgrading Through the Wizard
The Upgrade wizard provides a graphical user interface (GUI). Using the wizard
increases install time and space requirements. You can start the Upgrade wizard in
GUI mode from the command line or from the desktop.

To start the wizard,

- On UNIX, change to the <install_dir>/bin directory and type asupgrade.

- On Windows, double-click the asupgrade icon in the <install_dir>/bin directory.

If the Upgrade checkbox was selected during the Application Server installation
process, the Upgrade Wizard screen will automatically display after the
installation completes.

From the Upgrade Wizard screen:

1. In the Source Installation Directory field, enter the location of the Sun Java
System Application Server 7 (formerly Sun ONETM Application Server 7) or
Sun Java System Application Server 8.x installation from which to import the
configuration.

Upgrading Through the Wizard

42 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

2. In the Target Installation Directory field, enter the location of the Application
Server installation to which to transfer the configuration.

If the upgrade wizard was started from the installation (the Upgrade from
Previous Version checkbox was checked during the Application Server
installation), the default value for this field will be the directory to which the
Application Server software was just installed.

3. If a Sun Java System Application Server 7.1 Enterprise Edition installation with
clusters and no security certificates is being upgraded to Sun Java Systems
Application Server 8.1 Enterprise Edition, press the Next button and continue
with Step 10. All other upgrades without certificates continue with Step 12.
Continue with Step 4 if security certificates need to be transferred.

4. If the source installation has security certificates that must be transferred,
check the Transfer Security Certificates checkbox, press the Next button, and
the Transfer Security Certificates screen displays.

5. From the Transfer Security Certificates screen, press the Add Domain button to
add domains with certificates to be transferred. The Add Domain dialog
displays.

6. From the Add Domain dialog, select the domain name that contains the
security certificates to migrate and enter the appropriate passwords.

7. Click the OK button when done. The Transfer Security Certificates screen will
be displayed again.

8. Repeat Step 5 and Step 6 until all the domains that have certificates to be
transferred have been added.

9. After all of the domains that contain certificates to be transferred have been
added, press the Next button and continue with Step 12 or with Step 10 if
cluster configuration information needs to be transferred.

10. If a Sun Java Systems Application Server 7.1 Enterprise Edition installation
with clusters is being upgraded to Sun Java Systems Application Server 8.1
Enterprise Edition, the Transfer Cluster Configurations screen will be
displayed. Press the Add Cluster button. The Select clinstance.conf file
dialog box will be displayed. Choose clinstance file and click the Open button.
The clinstance.conf file will be added to the list.

11. Enter the cluster file name, which contains the cluster configuration
information to be migrated. Repeat this process until all the cluster
configuration files that need to be migrated have been added, then press the
Next button.

Correcting Potential PE Upgrade Problems

Chapter 3 Upgrading an Application Server Installation 43

12. The Upgrade Results screen displays, showing the status of the upgrade
operation in the Results field.

13. Click the Finish button to close the Upgrade Tool when the upgrade process is
complete.

Correcting Potential PE Upgrade Problems
This section addresses the following issues that could occur during an upgrade to
Application Server 8.1:

• Migrating Additional HTTP Listeners Defined on the Source Server to the
Target PE Server

• Eliminating Problems Encountered When A Single Domain has Multiple
Certificate Database Passwords

Migrating Additional HTTP Listeners Defined on
the Source Server to the Target PE Server
If additional HTTP listeners have been defined in the PE source server, those
listeners need to be added to the PE target server after the upgrade:

1. Start the Admin Console.

2. Expand Configuration.

3. Expand HTTP Service.

4. Expand Virtual Servers.

5. Select <server>.

6. In the right hand pane, add the additional HTTP listener name to the HTTP
Listeners field.

7. Click Save when done.

Correcting Potential PE Upgrade Problems

44 Application Server Enterprise Edition 2005Q1 • Upgrade and Migration Guide

Eliminating Problems Encountered When A
Single Domain has Multiple Certificate Database
Passwords
If the upgrade includes certificates, provide the passwords for the source PKCS12
file and the target JKS keyfile for each domain that contains certificates to be
migrated. Since Application Server 7 uses a different certificate store format (NSS)
than Application Server 8 PE (JSSE), the migration keys and certificates are
converted to the new format. Only one certificate database password per domain is
supported. If multiple certificate database passwords are used in a single domain,
make all of the passwords the same before starting the upgrade. Then reset the
passwords after the upgrade has been completed.

45

Chapter 4

Understanding Migration

This chapter addresses the following topics:

• J2EE Component Standards

• J2EE Application Components

• Migration and Deployment

J2EE Component Standards
Sun Java System Application Server Platform Edition 8.1 2005Q1(hereafter called
Application Server) is a J2EE v1.4-compliant server based on the component
standards developed by the Java community. By contrast, Sun Java System
Application Server 7 (Application Server 7) is a J2EE v1.3-compliant server and Sun
ONE Application Server 6.x (Application Server 6.x) is a J2EE v1.2-compliant
server. Between the three J2EE versions, there are considerable differences with the
J2EE application component APIs.

The following table characterizes the differences between the component APIs
used with the J2EE v1.4-compliant Sun Java System Application Server Platform
Edition 8.1, the J2EE v1.3-compliant Sun ONE Application Server 7, and the J2EE
v1.2-compliant Sun ONE Application Server 6.x.

Table 4-1 Application Server Version Comparison of APIs for J2EE Components

Component
API

Sun ONE Application
Server 6.x

Sun Java System
Application Server 7

Sun Java System
Application Server
Platform Edition 8.1

JDK 1.2.2 1.4 1.4

Servlet 2.2 2.3 2.4

J2EE Application Components

46 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

J2EE Application Components
J2EE simplifies development of enterprise applications by basing them on
standardized, modular components, providing a complete set of services to those
components, and handling many details of application behavior automatically,
without complex programming. J2EE v1.4 architecture includes several component
APIs. Prominent J2EE components include:

• Client Application

• Web Application

• Enterprise JavaBean (EJB)

• Connector

• Enterprise Application Archive (EAR)

J2EE components are packaged separately and bundled into a J2EE application for
deployment. Each component, its related files such as GIF and HTML files or
server-side utility classes, and a deployment descriptor are assembled into a
module and added to the J2EE application. A J2EE application is composed of one
or more enterprise bean(s), Web, or application client component modules. The
final enterprise solution can use one J2EE application or be made up of two or more
J2EE applications, depending on design requirements.

A J2EE application and each of its modules has its own deployment descriptor. A
deployment descriptor is an XML document with an .xml extension that describes a
component’s deployment settings.

JSP 1.1 1.2 2.0

JDBC 2.0 2.0 2.1, 3.0

EJB 1.1 2.0 2.0

JNDI 1.2 1.2 1.2.1

JMS 1.0 1.1 1.1

JTA 1.0 1.01 1.01

Table 4-1 Application Server Version Comparison of APIs for J2EE Components

Migration and Deployment

Chapter 4 Understanding Migration 47

A J2EE application with all of its modules is delivered in an Enterprise Archive
(EAR) file. An EAR file is a standard Java Archive (JAR) file with an .ear extension. The
EAR file contains EJB JAR files, application client JAR files and/or Web Archive
(WAR) files.

The migration process is concerned with moving J2EE application components,
modules, and files. For more information on migrating various J2EE components,
refer to Chapter 6, “Migrating from Application Server 6.x/7.x to Application
Server 8.1.”.

For more background information on J2EE, see the following references:

• J2EE tutorial - http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

• J2EE overview - http://java.sun.com/j2ee/overview.html

• J2EE topics - http://java.sun.com/j2ee

Migration and Deployment
This section describes the need to migrate J2EE applications and the particular files
that must be migrated. Following successful migration, a J2EE application is
redeployed to the Application Server.

Redeployment is also described in this section.

The following topics are addressed:

• Why is Migration Necessary?

• What Needs to be Migrated

• What is Deployment of Migrated Applications?

Why is Migration Necessary?
Although J2EE specifications broadly cover requirements for applications, they are
nonetheless evolving standards. They either do not cover some aspects of
applications or leave implementation details to the application providers.

This leads to different implementations of the application servers, also well as
difference in the deployment of J2EE components on application servers. The array
of available configuration and deployment tools for use with any particular
application server product also contributes to the product implementation
differences.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/overview.html
http://java.sun.com/j2ee

Migration and Deployment

48 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

The evolutionary nature of the specifications itself presents challenges to
application providers. Each of the component APIs are also evolving. This leads to
a varying degree of conformance by products. In particular, an emerging product,
such as the Application Server, has to contend with differences in J2EE application
components, modules, and files deployed on other established application server
platforms. Such differences require mappings between earlier implementation
details of the J2EE standard, such as file naming conventions, messaging syntax,
and so forth.

Moreover, product providers usually bundle additional features and services with
their products. These features are available as custom JSP tags or proprietary Java
API libraries. Unfortunately, using these proprietary features renders these
applications non-portable.

What Needs to be Migrated
For migration purposes, the J2EE application consists of the following file
categories:

• Deployment descriptors (XML files)

• JSP source files that contain Proprietary APIs

• Java source files that contain Proprietary APIs

Deployment descriptors (XML files)
Deployment is accomplished by specifying deployment descriptors (DDs) for
standalone enterprise beans (EJB JAR files), front-end Web components (WAR
files) and enterprise applications (EAR files). Deployment descriptors are used to
resolve all external dependencies of the J2EE components/applications. The J2EE
specification for DDs is common across all application server products. However,
the specification leaves several deployment aspects of components pertaining to an
application dependent on product-implementation.

JSP source files
J2EE specifies how to extend JSP by adding extra custom tags. Product vendors
include some custom JSP extensions in their products, simplifying some tasks for
developers. However, usage of these proprietary custom tags results in
non-portability of JSP files. Additionally, JSP can invoke methods defined in other
Java source files as well. The JSPs containing proprietary APIs needs to be
rewritten before they can be migrated.

Migration and Deployment

Chapter 4 Understanding Migration 49

Java source files
The Java source files can be EJBs, servlets, or other helper classes. The EJBs and
servlets can invoke standard J2EE services directly. They can also invoke methods
defined in helper classes. Java source files are used to encode the business layer of
applications, such as EJBs.Vendors bundle several services and proprietary Java
API with their products. The use of proprietary Java APIs is a major source of
non-portability in applications. Since J2EE is an evolving standard, different
products can support different versions of J2EE component APIs. This is another
aspect that migration addresses.

What is Deployment of Migrated Applications?
Deployment refers to deploying a migrated application that was previously
deployed on an earlier version of Sun’s Application Server, or any third party
application server platforms.

The act of deploying a migrated application typically refers to using the standard
deployment actions outlined in the Sun Java System Application Server Platform
Edition 8.1 Administration Guide. However, when migration activities are performed
with automated tools, such as the Migration Tool for Sun Java System Application
Server 8 (for J2EE applications) or the Sun ONE Migration Toolbox (for Netscape
Application Servers), there might be post-migration or pre-deployment tasks that
are needed (and defined) prior to deploying the migrated application.

See Migration Tools and Resources for more information about migration tools that
are available.

Migration and Deployment

50 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

51

Chapter 5

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun Java
System Application Server Platform Edition 8.1, the use of the EJB 2.0 architecture
is recommended to leverage its enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications are required, including
within the source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and
EJB 2.0, all of which are described in the following topics.

• EJB Query Language

• Local Interfaces

• EJB 2.0 Container-Managed Persistence (CMP)

• Migrating EJB Client Applications

• Migrating CMP Entity EJBs

EJB Query Language
The EJB 1.1 specification left the manner and language for forming and expressing
queries for finder methods to each individual application server. While many
application server vendors let developers form queries using SQL, others use their
own proprietary language specific to their particular application server product.
This mixture of query implementations causes inconsistencies between application
servers.

Local Interfaces

52 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

The EJB 2.0 specification introduces a query language called EJB Query Language, or
EJB QL to correct many of these inconsistencies and shortcomings. EJB QL is based
on SQL92. It defines query methods, in the form of both finder and select methods,
specifically for entity beans with container-managed persistence. EJB QL's
principal advantage over SQL is its portability across EJB containers and its ability
to navigate entity bean relationships.

Local Interfaces
In the EJB 1.1 architecture, session and entity beans have one type of interface, a
remote interface, through which they can be accessed by clients and other
application components. The remote interface is designed such that a bean instance
has remote capabilities; the bean inherits from RMI and can interact with
distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients
through two types of interfaces: a remote interface and a local interface. The 2.0
remote interface is identical to the remote interface used in the 1.1 architecture,
whereby, the bean inherits from RMI, exposes its methods across the network tier,
and has the same capability to interact with distributed clients.

However, the local interfaces for session and entity beans provide support for
lightweight access from EJBs that are local clients; that is, clients co-located in the
same EJB container. The EJB 2.0 specification further requires that EJBs that use
local interfaces be within the same application. That is, the deployment descriptors
for an application's EJBs using local interfaces must be contained within one
ejb-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An
enterprise bean uses the local interface to expose its methods to other beans that
reside within the same container. By using a local interface, a bean may be more
tightly coupled with its clients and may be directly accessed without the overhead
of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by
reference semantics. Because you are now passing a reference to an object, rather
than the object itself, this reduces the overhead incurred when passing objects with
large amounts of data, resulting in a performance gain.

EJB 2.0 Container-Managed Persistence (CMP)

Chapter 5 Migrating from EJB 1.1 to EJB 2.0 53

EJB 2.0 Container-Managed Persistence (CMP)
The EJB 2.0 specification expanded CMP to allow multiple entity beans to have
relationships among themselves. This is referred to as Container-Managed
Relationships (CMR). The container manages the relationships and the referential
integrity of the relationships.

The EJB 1.1 specification presented a more limited CMP model. The EJB 1.1
architecture limited CMP to data access that is independent of the database or
resource manager type. It allowed you to expose only an entity bean's instance
state through its remote interface; there is no means to expose bean relationships.
The EJB 1.1 version of CMP depends on mapping the instance variables of an entity
bean class to the data items representing their state in the database or resource
manager. The CMP instance fields are specified in the deployment descriptor, and
when the bean is deployed, the deployer uses tools to generate code that
implements the mapping of the instance fields to the data items.

You must also change the way you code the bean's implementation class.
According to the EJB 2.0 specification, the implementation class for an entity bean
that uses CMP is now defined as an abstract class.

The following topics are discussed in this section:

• Defining Persistent Fields

• Defining Entity Bean Relationships

• Message-Driven Beans

Defining Persistent Fields
The EJB 2.0 specification lets you designate an entity bean's instance variables as
CMP fields or CMR fields. You define these fields in the deployment descriptor.
CMP fields are marked with the element cmp-field, while container-managed
relationship fields are marked with the element cmr-field.

In the implementation class, note that you do not declare the CMP and CMR fields
as public variables. Instead, you define get and set methods in the entity bean to
retrieve and set the values of these CMP and CMR fields. In this sense, beans using
the 2.0 CMP follow the JavaBeans model: instead of accessing instance variables
directly, clients use the entity bean's get and set methods to retrieve and set these
instance variables. Keep in mind that the get and set methods only pertain to
variables that have been designated as CMP or CMR fields.

Migrating EJB Client Applications

54 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Defining Entity Bean Relationships
As noted previously, the EJB 1.1 architecture does not support CMRs between
entity beans. The EJB 2.0 architecture does support both one-to-one and
one-to-many CMRs. Relationships are expressed using CMR fields, and these fields
are marked as such in the deployment descriptor. You set up the CMR fields in the
deployment descriptor using the appropriate deployment tool for your application
server.

Similar to CMP fields, the bean does not declare the CMR fields as instance
variables. Instead, the bean provides get and set methods for these fields.

Message-Driven Beans
Message-driven beans are another new feature introduced by the EJB 2.0
architecture. Message-driven beans are transaction-aware components that process
asynchronous messages delivered through the Java Message Service (JMS). The
JMS API is an integral part of the J2EE 1.3 and J2EE 1.4 platform.

Asynchronous messaging allows applications to communicate by exchanging
messages so that senders are independent of receivers. The sender sends its
message and does not have to wait for the receiver to receive or process that
message. This differs from synchronous communication, which requires the
component that is invoking a method on another component to wait or block until
the processing completes and control returns to the caller component.

Migrating EJB Client Applications
This section includes the following topics:

• Declaring EJBs in the JNDI Context

• Recap on Using EJB JNDI References

Migrating EJB Client Applications

Chapter 5 Migrating from EJB 1.1 to EJB 2.0 55

Declaring EJBs in the JNDI Context
In Sun Java System Application Server Platform Edition 8.1, EJBs are systematically
mapped to the JNDI sub-context "ejb/". If we attribute the JNDI name "Account" to
an EJB, then Sun Java System Application Server Platform Edition 8.1 will
automatically create the reference "ejb/Account" in the global JNDI context. The
clients of this EJB will therefore have to look up "ejb/Account" to retrieve the
corresponding home interface.

Let us examine the code for a servlet method deployed in Sun ONE Application
Server 6.x.

The servlet presented here calls on a stateful session bean, BankTeller, mapped to
the root of the JNDI context. The method whose code we are considering is
responsible for retrieving the home interface of the EJB, so as to enable a BankTeller
object to be instantiated and a remote interface for this object to be retrieved, in
order to make business method calls to this component.

/**
 * Look up the BankTellerHome interface using JNDI.
 */
private BankTellerHome lookupBankTellerHome(Context ctx)

 throws NamingException
{
 try
 {
 Object home = (BankTellerHome) ctx.lookup("ejb/BankTeller");
 return (BankTellerHome) PortableRemoteObject.narrow(home,
BankTellerHome.class);
 }
 catch (NamingException ne)
 {
 log("lookupBankTellerHome: unable to lookup BankTellerHome" +

 "with JNDI name 'BankTeller': " + ne.getMessage());
 throw ne;
 }
}

As the code already uses ejb/BankTeller as an argument for the lookup, there is no
need for modifying the code to be deployed on Sun Java System Application Server
Platform Edition 8.1.

Migrating CMP Entity EJBs

56 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Recap on Using EJB JNDI References
This section summarizes the considerations when using EJB JNDI references.
Where noted, the consideration details are specific to a particular source
application server platform.

Placing EJB References in the JNDI Context
It is only necessary to modify the name of the EJB references in the JNDI context
mentioned above (moving these references from the JNDI context root to the
sub-context "ejb/") when the EJBs are mapped to the root of the JNDI context in the
existing WebLogic application.

If these EJBs are already mapped to the JNDI sub-context ejb/ in the existing
application, no modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor
within the Sun Java Studio IDE, it is important to avoid including the prefix ejb/
in the JNDI name of an EJB. Remember that these EJB references are automatically
placed in the JNDI ejb/ sub-context with Sun Java System Application Server
Platform Edition 8.1. So, if an EJB is given to the JNDI name "BankTeller" in its
deployment descriptor, the reference to this EJB will be "translated" by Sun Java
System Application Server Platform Edition 8.1 into ejb/BankTeller, and this is the
JNDI name that client components of this EJB must use when carrying out a
lookup.

Global JNDI context versus local JNDI context
Using the global JNDI context to obtain EJB references is a perfectly valid, feasible
approach with Sun Java System Application Server Platform Edition 8.1.
Nonetheless, it is preferable to stay as close as possible to the J2EE specification,
and retrieve EJB references through the local JNDI context of EJB client
applications. When using the local JNDI context, you must first declare EJB
resource references in the deployment descriptor of the client part (web.xml for a
Web application, ejb-jar.xml for an EJB component).

Migrating CMP Entity EJBs
This section describes the steps to migrate your application components from the
EJB 1.1 architecture to the EJB 2.0 architecture.

Migrating CMP Entity EJBs

Chapter 5 Migrating from EJB 1.1 to EJB 2.0 57

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a
particular bean can be migrated. The steps to perform this verification are as
follows.

1. From the ejb-jar.xml file, go to the <cmp-fields> names and check if the
optional tag <prim-key-field> is present in the ejb-jar.xml file and has an
indicated value. If it does, go to next step.

Look for the <prim-key-class> field name in the ejb-jar.xml, get the class name
and get the public instance variables declared in the class. Now see if the
signature (name and case) of these variables matches with the <cmp-field>

names above. Segregate the ones that are found. In these segregated fields,
check if some of them start with an upper case letter. If any of them do, then
migration cannot be performed.

2. Look into the bean class source code and obtain the java types of all the
<cmp-field> variables.

3. Change all the <cmp-field>names to lowercase and construct accessors from
them. For example if the original field name is Name and its java type is String,
the accessor method signature will be:

Public void setName(String name)
Public String getName()

4. Compare these accessor method signatures with the method signatures in the
bean class. If there is an exact match found, migration is not possible.

5. Get the custom finder methods signatures and their corresponding SQLs.
Check if there is a ‘Join’ or ‘Outer join’ or an ‘OrderBy’ in the SQL, if yes, we
cannot migrate, as EJB QL does not support ‘joins’, ‘Outer join’ and ‘OrderBy’.

6. Any CMP 1.1 finder, which used java.util.Enumeration, must now use
java.util.Collection. Change your code to reflect this. CMP2.0 finders cannot
return java.util.Enumeration.

“Migrating the Bean Class,” explains how to perform the actual migration process.

Migrating the Bean Class
This section describes the steps required to migrate the bean class to Sun Java
System Application Server Platform Edition 8.1.

Migrating CMP Entity EJBs

58 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

1. Prepend the bean class declaration with the keyword abstract. For example if
the bean class declaration was:

Public class CabinBean implements EntityBean // before modification

abstract Public class CabinBean implements EntityBean // after
modification

2. Prefix the accessors with the keyword abstract.

3. Insert all the accessors after modification into the source(.java) file of the bean
class at class level.

4. Comment out all the cmp fields in the source file of the bean class.

5. Construct protected instance variable declarations from the cmp-field names in
lowercase and insert them at the class level.

6. Read up all the ejbCreate() method bodies (there could be more than one
ejbCreate). Look for the pattern ‘<cmp-field>=some value or local variable’, and
replace it with the expression ‘abstract mutator method name (same value or
local variable)’. For example, if the ejbCreate body (before migration) is like this:

public MyPK ejbCreate(int id, String name)
{

this.id = 10*id;
Name = name;//1
return null;
}

The changed method body (after migration) should be:

public MyPK ejbCreate(int id, String name)
{

setId(10*id);
setName(name);//1
return null;

}

Note that the method signature of the abstract accessor in //1 is as per the
Camel Case convention mandated by the EJB 2.0 specification. Also, the
keyword ‘this’ may or may not be present in the original source, but it must be
removed from the modified source file.

7. All the protected variables declared in the ejbPostCreate()methods in step 5
must be initialized. The protected variables will be equal in number with the
ejbCreate() methods. This initialization will be done by inserting the
initialization code in the following manner:

Migrating CMP Entity EJBs

Chapter 5 Migrating from EJB 1.1 to EJB 2.0 59

protected String name; //from step 5
protected int id; //from step 5

public void ejbPostCreate(int id, String name)
{

name /*protected variable*/ = getName(); /*abstract accessor*/
//inserted in this step
id /*protected variable*/ = getId(); /*abstract accessor*/
//inserted in this step

}

8. Inside the ejbLoad method, you must set the protected variables to the beans’
database state. To do so, insert the following lines of code:

public void ejbLoad()
{
name = getName(); //inserted in this step
id = getId(); //inserted in this step

……….. //already present code
}

9. Similarly, you will have to update the beans’ state inside ejbStore()so that its
database state gets updated. But remember, you are not allowed to update the
setters that correspond to the primary key outside the ejbCreate(), so do not
include them inside this method. Insert the following lines of code:

public void ejbStore()
{
setName(name); //inserted in this step

// setId(id); //Do not insert this if it is a
 part of the primary key

……………….. //already present code
}

10. As a last change to the bean class source (.java) file, examine the whole code
and replace all occurrences of any <cmp-field> variable name with the
equivalent protected variable name (as declared in step 5).

If you do not migrate the bean, at the minimum you need to insert the
<cmp-version>1.x</cmp-version> tag inside the ejb-jar.xml file at the
appropriate place, so that the unmigrated bean still works on Sun Java System
Application Server Platform Edition 8.1.

Migration of ejb-jar.xml
To migrate the file ejb-jar.xml to Sun Java System Application Server Platform
Edition 8.1, perform the following steps:

Migrating CMP Entity EJBs

60 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

1. In the ejb-jar.xml, convert all <cmp-fields> to lowercase.

2. In the ejb-jar.xml file, insert the tag <abstract-schema-name> after the
<reentrant> tag. The schema name will be the name of the bean as in the
< ejb-name> tag, prefixed with “ias_”.

3. Insert the following tags after the <primkey-field> tag:

<security-identity><use-caller-identity/></security-identity>

4. Use the SQL’s obtained above to construct the EJB QL from SQL.

5. Insert the <query> tag and all its nested child tags with all the required
information in the ejb-jar.xml, just after the <security-identity> tag.

Custom Finder Methods
The custom finder methods are the findBy... methods (other than the default
findByPrimaryKey method), which can be defined in the home interface of an entity
bean. Since the EJB 1.1 specification does not stipulate a standard for defining the
logic of these finder methods, EJB server vendors are free to choose their
implementations. As a result, the procedures used to define the methods vary
considerably between the different implementations chosen by vendors.

Sun ONE Application Server 6.x uses standard SQL to specify the finder logic.

Information concerning the definition of this finder method is stored in the
enterprise bean's persistence descriptor (Account-ias-cmp.xml) as follows:

<bean-property>
 <property>
 <name>findOrderedAccountsForCustomerSQL</name>
 <type>java.lang.String</type>
 <value>
 SELECT BRANCH_CODE,ACC_NO FROM ACCOUNT where CUST_NO = ?

</value>
 <delimiter>,</delimiter>
 </property>
</bean-property>
<bean-property>
 <property>
 <name>findOrderedAccountsForCustomerParms</name>
 <type>java.lang.Vector</type>

Migrating CMP Entity EJBs

Chapter 5 Migrating from EJB 1.1 to EJB 2.0 61

 <value>CustNo</value>
 <delimiter>,</delimiter>
 </property>
</bean-property>

Each findXXX finder method therefore has two corresponding entries in the
deployment descriptor (SQL code for the query, and the associated parameters).

In Sun Java System Application Server Platform Edition 8.1 the custom finder
method logic is also declarative, but is based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the
file ejb-jar.xml, in the <ejb-ql> tag. This tag is inside the <query> tag, which defines
a query (finder or select method) inside an EJB. The EJB container can transform
each query into the implementation of the finder or select method. Here's an
example of an <ejb-ql> tag:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>hotelEJB</ejb-name>
 ...
 <abstract-schema-name>TMBankSchemaName</abstract-schema-name>
 <cmp-field>...
 ...
 <query>
 <query-method>
 <method-name>findByCity</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>

 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[SELECT OBJECT(t) FROM TMBankSchemaName AS t

 WHERE t.city = ?1]]>
 </ejb-ql>

 </query>
 </entity>

 ...
 </enterprise-beans>
...
</ejb-jar>

Migrating CMP Entity EJBs

62 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

63

Chapter 6

Migrating from Application Server
6.x/7.x to Application Server 8.1

This chapter describes the considerations and strategies that are needed when
moving J2EE applications from Application Server 6.x and Application Server 7 to
the Application Server Platform Edition 8.1product line. However, Application
Server 8.1 provides backward compatibility standard, with Application Server 7 as
the baseline. That is, applications developed in Application Server 7 can be
deployable directly to Application Server 8.1 with minimum or no changes.

The sections that follow describe issues that arise while migrating the main
components of a typical J2EE application from Application Server 6.x/7.x to
Application Server Platform Edition 8.1.

This chapter contains the following sections:

• Migrating Deployment Descriptors

• Migrating Web Application Modules

• Migrating Enterprise EJB Modules

• Migrating Enterprise Applications

• Migrating Proprietary Extensions

• Migrating UIF

• Migrating JDBC Code

• Migrating Rich Clients

The migration issues described in this chapter are based on an actual migration
that was performed for a J2EE application called iBank, a simulated online banking
service, from Application Server 6.x to Sun Java System Application Server
Platform Edition 8.1. This application reflects all aspects of a traditional J2EE
application.

Migrating Deployment Descriptors

64 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

The following areas of the J2EE specification are covered by the iBank application:

• Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans.

• Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A - iBank Application
Specification

Migrating Deployment Descriptors
There are two types of deployment descriptors, namely, Standard Deployment
Descriptors and Runtime Deployment Descriptors. Standard deployment
descriptors are portable across J2EE platform versions and vendors and does not
require any modifications. Currently, there are exceptions due to standards
interpretation. The following table lists such deployment descriptors.

The J2EE standard deployment descriptors ejb-jar.xml, web.xml and
application.xml are not modified significantly. However, the ejb-jar.xml

deployment descriptor is modified to make it compliant with EJB 2.0 specification
in order to make the application deployable on Sun Java System Application Server
Platform Edition 8.1.

Source Deployment Descriptor Target Deployment Descriptor

ejb-jar.xml - 1.1 ejb-jar.xml - 2.0

web.xml web.xml

application.xml application.xml

Migrating Deployment Descriptors

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 65

Runtime deployment descriptors are vendor and product specific and are not
portable across application servers due to difference in their format. Hence,
deployment descriptors require migration. This section describes how you can
manually create the runtime deployment descriptors and migrate relevant
information.

The following table summarizes the deployment descriptor migration mapping.

The standard deployment descriptors of Application Server 6.x needs modification
when moving to Application Server 8.1 because of non-conformance with the
DTDs.

A majority of the information required for creating sun-ejb-jar.xml and
sun-web.xml comes from ias-ejb-jar.xml and ias-web.xml respectively. However,
there is some information that is required and extracted from the home interface
(java file) of the CMP entity bean, in case the sun-ejb-jar.xml being migrated
declares one. This is required to build the <query-filter> construct inside the
sun-ejb-jar.xml, which requires information from inside the home interface of that
CMP entity bean. If the source file is not present during the migration time, the
<query-filter> construct is created, but with missing information (which manifests
itself in the form of "REPLACE ME” phrases in the migrated sun-ejb-jar.xml).

Additionally, if the ias-ejb-jar.xml contains a <message-driven> element, then
information from inside this element is picked up and used to fill up information
inside both ejb-jar.xml and sun-ejb-jar.xml. Also, inside the <message-driven>

element of ias-ejb-jar.xml, there is an element <destination-name>, which holds the
JNDI name of the topic or queue to which the MDB listens. In Application Server
6.5, the naming convention for this jndi name is "cn=<SOME_NAME>." Since a JMS
Topic or Queue with this name is not deployable on Application Server, the
application server changes this to "<SOME_NAME>", and inserts this information in the
sun-ejb-jar.xml. This change must be reflected for all valid input files, namely, all
.java, .jsp and .xml files. Hence, this JNDI name change is propagated across the
application, and if some source files that contain reference to this jndi-name are
unavailable, the administrator must make the changes manually so that the
application becomes deployable.

Source Deployment Descriptor Target Deployment Descriptor

ias-ejb-jar.xml sun-ejb-jar.xml

<bean-name>-ias-cmp.xml sun-cmp-mappings.xml

ias-web.xml sun-web.xml

Migrating Web Applications

66 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Migrating Web Applications
Application Server 6.x support servlets (Servlet API 2.2), and JSPs (JSP 1.1). Sun
Java System Application Server Platform Edition 8.1 supports Servlet API 2.4 and
JSP 2.0.

Within these environments it is essential to group the different components of an
application (servlets, JSP and HTML pages and other resources) together within an
archive file (J2EE-standard Web application module) deploying it on the
application server.

According to the J2EE specification, a Web application is an archive file (WAR file)
with the following structure:

• A root directory containing the HTML pages, JSP, images and other "static"
resources of the application.

• A META-INF/ directory containing the archive manifest file (MANIFEST.MF)
containing the version information for the SDK used and, optionally, a list of
the files contained in the archive.

• A WEB-INF/ directory containing the application deployment descriptor
(web.xml file) and all the Java classes and libraries used by the application,
organized as follows:

• A classes/ sub-directory containing the tree-structure of the compiled
classes of the application (servlets, auxiliary classes), organized into
packages

• A lib/ directory containing any Java libraries (JAR files) used by the
application

Migrating Java Server Pages and JSP Custom
Tag Libraries
Application Server 6.x complies with the JSP 1.1 specification and Application
Server 8.1 complies with the JSP 2.0 specification.

JSP 2.0 specification contains many new features, as well as updates to the JSP 1.1
specification.

These changes are enhancements and are not required to migrate to JSP pages from
JSP 1.1 to 2.0.

Migrating Web Applications

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 67

The implementation of JSP custom tag libraries in Application Server 6.x complies
with the J2EE specification. Consequently, migrating JSP custom tag libraries to the
Application Server Platform Edition 8.1does not pose any particular problem, nor
require any modifications.

Migrating Servlets
Application Server 6.x supports the Servlet 2.2 API. Sun Java System Application
Server Platform Edition 8.1 supports the Servlet 2.4 API.

Servlet API 2.4 leaves the core of servlets relatively untouched. Most changes are
concerned with adding new features outside the core.

The most significant features are:

• Servlets now require JDK 1.2 or later

• Filter mechanisms have been created

• Application lifecycle events have been added

• Internationalization support has been added

• Error and security attributes have been expanded

• HttpUtils class has been deprecated

• Several DTD behaviors have been expanded and clarified

These changes are enhancements and are not required to be made when migrating
servlets from Servlet API 2.2 to 2.4.

However, if the servlets in the application use JNDI to access resources in the J2EE
application (such as data sources or EJBs), some modifications might be needed in
the source files or in the deployment descriptor.

These modifications are explained in detail in the following sections:

• Obtaining a Data Source from the JNDI Context

• Declaring EJBs in the JNDI Context

One last scenario might require modifications to the servlet code. Naming conflicts
can occur with Application Server 6.x if a JSP page has the same name as an
existing Java class. In this case, the conflict must be resolved by modifying the
name of the JSP page in question. This in turn can mean editing the code of the
servlets that call this JSP page. This issue is resolved in Application Server as it uses

Migrating Web Applications

68 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

a new class loader hierarchy. In the new version of the application server, for a
given application, one class loader loads all EJB modules and another class loader
loads web module. As these two loaders do not talk with each other, there is no
naming conflict.

Obtaining a Data Source from the JNDI Context
To obtain a reference to a data source bound to the JNDI context, look up the data
source's JNDI name from the initial context object. The object retrieved in this way
is then be cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

For detailed information, refer to section “Migrating JDBC Code.”

Declaring EJBs in the JNDI Context
Please refer to section Declaring EJBs in the JNDI Context in “Migrating from EJB
1.1 to EJB 2.0” on page 51.”

Potential Servlets and JSP Migration Problems
The actual migration of the components of a Servlet / JSP application from
Application Server 6.x to Application Server 8.1does not require any modifications
to the component code.

If the Web application is using a server resource, a DataSource for example, the
Application Server requires that this resource to be declared inside the web.xml file
and, correspondingly, inside the sun-web.xml file. To declare a DataSource called
jdbc/iBank, the <resource-ref> tag in the web.xml file is as follows:

<resource-ref>
 <res-ref-name>jdbc/iBank</res-ref-name>
 <res-type>javax.sql.XADataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

The corresponding declaration inside the sun-web.xml file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<! DOCTYPE FIX ME: need confirmation on the DTD to be used for this file

Migrating Web Applications

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 69

<sun-web-app>
 <resource-ref>
 <res-ref-name>jdbc/iBank</res-ref-name>
 <jndi-name>jdbc/iBank</jndi-name>
 </resource-ref>
</sun-web-app>

Migrating Web Application Modules
Migrating applications from Application Server 6.x to Sun Java System Application
Server Platform Edition 8.1 does not require any changes to the Java/JSP code. The
following changes are, however, still required.

• web.xml

The Application Server adheres to J2EE 1.4 standards, according to which, the
web.xml file inside a WAR file must comply with the revised DTD available at
URL http://java.sun.com/dtd/web-app_2_3.dtd.. This DTD fortunately, is a
superset of the previous versions’ DTD, hence only the
<! DOCTYPE definition needs to be changed inside the web.xml file, which is to be
migrated. The modified <! DOCTYPE declaration looks like:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

• ias-web.xml

In Application Server Platform Edition 8.1, the name of this file is changed to
sun-web.xml.

This XML file must declare the Application Server-specific properties and
resources that are required by the Web application.

See “Potential Servlets and JSP Migration Problems,” for information about
important inclusions to this file.

If the ias-web.xml of the Application Server 6.5 application is present and does
declare Application Server 6.5 specific properties, then this file needs to be
migrated to Application Server standards. The DTD file name has to be
changed to sun-web.xml. For more details, see URL
http://wwws.sun.com/software/dtd/appserver/sun-web-app_2_4-1.dtd

Once the web.xml and ias-web.xml files are migrated, the Web application
(WAR file) can be deployed from the Application Server’s deploytool GUI
interface or from the command line utility asadmin. The deployment command
must specific the type of application as web.

http://java.sun.com/dtd/web-app_2_3.dtd
http://wwws.sun.com/software/dtd/appserver/sun-web-app_2_4-1.dtd

Migrating Enterprise EJB Modules

70 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Invoke the asadmin command line utility by running asadmin.bat file or the
asadmin.sh script in the Application Server’s bin directory.

The command at the asadmin prompt is:

asadmin> deploy -u username -w password -H hostname -p adminport --type
web [--contextroot contextroot] [--force=true] [--name component-name]
[--upload=true] filepath

Migrating Enterprise EJB Modules
Application Server 6.x supports EJB 1.1, and the Application Server supports EJB
2.0. Therefore, both can support:

• Stateful or stateless session beans

• Entity beans with bean-managed persistence (BMP), or container-managed
persistence (CMP)

EJB 2.0, however, introduces a new type of enterprise bean, called a
message-driven bean (MDB).

J2EE 1.4 specification dictates that the different components of an EJB must be
grouped together in a JAR file with the following structure:

• META-INF/ directory with an XML deployment descriptor named ejb-jar.xml

• The .class files corresponding to the home interface, remote interface, the
implementation class, and the auxiliary classes of the bean with their package

Application Server 6.x use this archive structure. However, the EJB 1.1 specification
leaves each EJB container vendor to implement certain aspects as they see fit:

• Database persistence of CMP EJBs (particularly the configuration of mapping
between the bean's CMP fields and columns in a database table).

• Implementation of the custom finder method logic for CMP beans.

• Application Server 6.x andApplication Server 8.1do not handle migrations in
the same way, which means that some XML files must be modified:

• The <!DOCTYPE definition must be modified to point to the latest DTD url (in the
case of J2EE standard DDs, like ejb-jar.xml).

Migrating Enterprise EJB Modules

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 71

• Replace the ias-ejb-jar.xml file with the modified version of this file (for
example, file sun-ejb-jar.xml, which is created manually according to the
DTDs). For more information, see URL
http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

• Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml file,
which is created manually. For more information, see URL
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

• Optionally, for CMP entity beans, use the capture-schema utility in the
Application Server’s bin directory to generate the dbschema. Then place it
above the META-INF directory for the entity beans.

EJB Migration
As mentioned in Understanding Migration, while Application Server 6.x supports
the EJB 1.1 specification, Application Server also supports the EJB 2.0 specification.
The EJB 2.0 specification introduces the following new features and functions to
the architecture:

• Message Driven Beans (MDBs)

• Improvements in Container-Managed Persistence (CMP)

• Container-managed relationships for entity beans with CMP

• Local interfaces

• EJB Query Language (EJB QL)

Although the EJB 1.1 specification continues to be supported in the Application
Server, the use of the EJB 2.0 architecture is recommended to leverage its enhanced
capabilities.

For detailed information on migrating from EJB 1.1 to EJB 2.0, please refer to
Chapter 5, “Migrating from EJB 1.1 to EJB 2.0.”

EJB Changes Specific to Application Server
Platform Edition 8.1
Migrating EJBs from Application Server 6.x to Application Server 8.1 is done
without making any changes to the EJB code. However, the following DTD
changes are required.

http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

Migrating Enterprise EJB Modules

72 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Session Beans
• The <!DOCTYPE> definition must be modified to point to the latest DTDs with

J2EE standard DDs, such as ejb-jar.xml.

• Replace ias-ejb-jar.xml file with the modified version of this file, named
sun-ejb-jar.xml,created manually according to the DDs. For more details, see
the URL http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd

• In the sun-ejb-jar.xml file, the JNDI name for all the EJBs must be added before
‘ejb/’ in all the JNDI names. This is required because, in Application Server 6.5,
the JNDI name of the EJB can only be ejb/<ejb-name> where <ejb-name> is the
name of the EJB as declared inside the ejb-jar.xml file.

In the Application Server, a new tag has been introduced in the
sun-ejb-jar.xml. This is where the JNDI name of the EJB is declared.

Entity Beans
• The <!DOCTYPE> definition must be modified to point to the latest DTDs

containing J2EE standard DDs, such as ejb-jar.xml.

• Update the <cmp-version> tag with the value 1.1, for all CMPs in the ejb-jar.xml

file.

• Replace all the <ejb-name>-ias-cmp.xml files with the manually created
sun-cmp-mappings.xml file. For more information, see URL
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

• Generate dbschema by using the capture-schema utility in the Application Server
installation’s bin directory and place it above META-INF folder for Entity beans.

• Replace the ias-ejb-jar.xml with the sun-ejb.jar.xml in Application Server.

• In Application Server 6.5, the finders sql was directly embedded into the
<ejb-name>-ias-cmp.xml. In Application Server, mathematical expressions are
used to declare the <query-filter> for the various finder methods.

NOTE To avoid changing JNDI names throughout the application, declare
the JNDI name of the EJB as ejb/<ejb-name> inside the <jndi-name>
tag.

http://wwws.sun.com/software/dtd/appserver/sun-ejb-jar_2_1-1.dtd
http://wwws.sun.com/software/dtd/appserver/sun-cmp-mapping_1_2.dtd

Migrating Enterprise Applications

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 73

Message Driven Beans
Application Server provides seamless Message Driven Support through the tight
integration of Sun Java System Message Queue with the Application Server,
providing a native, built-in JMS Service.

This installation provides Application Server with a JMS messaging system that
supports any number of Application Server instances. Each server instance, by
default, has an associated built-in JMS Service that supports all JMS clients running
in the instance.

Both container-managed and bean-managed transactions, as defined in the
Enterprise JavaBeans Specification, v2.0, are supported.

Message Driven Bean support in iPlanet Application Server was restricted to
developers, and used many of the older proprietary APIs. Messaging services were
provided by iPlanet Message Queue for Java 2.0. An LDAP directory was also
required under iPlanet Application Server to configure the Queue Connection

Factory object.

The QueueConnectionFactory, and other elements required to configure Message
Driven Beans in Application Server are now specified in the ejb-jar.xml file.

For more information on the changes to deployment descriptors, see “Migrating
Deployment Descriptors.” For information on Message Driven Bean
implementation in Application Server Platform Edition 8.1, see Sun Java System
Application Server Platform Edition 8.1, Developer’s Guide to Enterprise Java Bean
Technology.

Migrating Enterprise Applications
According to the J2EE specifications, an enterprise application is an EAR file,
which must have the following structure:

• A META-INF/ directory containing the XML deployment descriptor of the J2EE
application called application.xml

• The JAR and WAR archive files for the EJB modules and Web module of the
enterprise application, respectively

In the application deployment descriptor, the modules that make up the enterprise
application and the Web application's context root are defined.

Migrating Enterprise Applications

74 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

 Application server 6.x and the Application Server 8.1support the J2EE model
wherein applications are packaged in the form of an enterprise archive (EAR) file
(extension .ear). The application is further subdivided into a collection of J2EE
modules, packaged into Java archives (JAR files, which have a .jar file extension)
and EJBs and Web archives (WAR files, which have a .war file extension) for
servlets and JSPs.

It is essential to follow the steps listed here before deploying an enterprise
application:

1. Package EJBs in one or more EJB modules.

2. Package the components of the Web application in a Web module.

3. Assemble the EJB modules and Web modules in an enterprise application
module.

4. Define the name of the enterprise application's root context, which will
determine the URL for accessing the application.

The Application Server uses a newer class loader hierarchy than Application
Server 6.x does. In the new scheme, for a given application, one class loader loads
all EJB modules and another class loader loads Web modules. These two are
related in a parent child hierarchy where the JAR module class loader is the parent
module of the WAR module class loader. All classes loaded by the JAR class loader
are available/accessible to the WAR module but the reverse is not true. If a certain
class is required by the JAR file as well as the WAR file, then the class file must be
packaged inside the JAR module only. If this guideline is not followed it can lead to
class conflicts.

Application Root Context and Access URL
There is a major ‘difference between Application Server 6.x and the Application
Server, concerning the applications access URL (root context of the application's
Web module. If AppName is the name of the root context of an application deployed
on a server called hostname, the access URL for this application will differ
depending on the application server used:

• With Application Server 6.x, which is always used jointly with a Web
front-end, the access URL for the application takes the following form
(assuming the Web server is configured on the standard HTTP port, 80):

http://<hostname>/NASApp/AppName/

• With the Application Server, the URL takes the form:

Migrating Enterprise Applications

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 75

http://<hostname>:<portnumber>/AppName/

The TCP port used as default by Application Server is port 8080.

Although the difference in access URLs between Application Server 6.x and the
Application Server might appear minor, it can be problematic when migrating
applications that make use of absolute URL references. In such cases, it is necessary
to edit the code to update any absolute URL references so that they are no longer
prefixed with the specific marker used by the Web Server plug-in for Application
Server 6.x.

Applications With Form-based Authentication
Applications developed on Application Server 6.5 that use form-based
authentication can pass the request parameters to the Authentication Form or the
Login page. The Login page could be customized to display the authentication
parameters based on the input parameters.

For example:

http://gatekeeper.uk.sun.com:8690/NASApp/test/secured/page.jsp?arg1=tes
t&arg2=m

 Application Server 8.1 does not support the passing of request parameters while
displaying the Login page. The applications that uses form-based authentication,
which passes the request parameters can not be migrated to Application Server 8.1.
Porting such applications to Application Server 8.1 requires significant changes in
the code. Instead, you can store the request parameter information in the session,
which can be retrieved while displaying the Login page.

The following code example demonstrates the workaround:

Before changing the code in 6.5:

---------index-65.jsp -----------

<%@page contentType="text/html"%>
<html>

<head><title>JSP Page</title></head>
<body>

go to the secured a rea

</body>

</html>

----------login-65.jsp--------------

Migrating Enterprise Applications

76 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

<%@page contentType="text/html"%>
<html>
<head> </head>
<body>

<!-- Print login form -->

<h3>Parameters</h3>

out.println("arg1 is " + request.getParameter("arg1"));
out.println("arg2 is " + request.getParameter("arg2"));

</body>
</html>

After changing the code in Application Server 8.1:

---------index-81.jsp -----------

<%@page contentType="text/html"%>

<html>

<head><title>JSP Page</title></head>
<body>

<%session.setAttribute("arg1","test"); %>
<%session.setAttribute("arg2","me"); %>
go to the secured area

</body>

</html>

The index-81.jsp shows how you can store the request parameters in a session.

----------login-81.jsp--------------

<%@page contentType="text/html"%>
<html>
<head> </head>
<body>

<!-- Print login form -->
<h3>Parameters</h3>

<!--retrieving the parameters from the session -->
out.println("arg1 is"+(String)session.getAttribute("arg1"));
out.println("arg2 is” + (String)session.getAttribute("arg2"));

</body>
</html>

Migrating Proprietary Extensions

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 77

Migrating Proprietary Extensions
A number of classes proprietary to the Application Server 6.x environment might
have been used in applications. Some of the proprietary packages used by
Application Server 6.x are listed below:

• com.iplanet.server.servlet.extension

• com.kivasoft.dlm

• com.iplanetiplanet.server.jdbc

• com.kivasoft.util

• com.netscape.server.servlet.extension

• com.kivasoft

• com.netscape.server

These APIs are not supported in the Application Server. Applications using any
classes belonging to the above package must be rewritten to use standard J2EE
APIs. Applications using custom JSP tags and UIF framework also need to be
rewritten to use standard J2EE APIs.

For a sample migration walkthrough using the iBank application, see Migrating a
Sample Application - an Overview.

Migrating UIF
The Application Server does not support the use of Unified Integration Framework
(UIF) API for applications. Instead, it supports the use of J2EE Connector
Architecture (JCA) for integrating the applications. However, the applications
developed in Application Server 6.5 use the UIF. In order to deploy such
applications to the Application Server, migrate the UIF to the J2EE Connector
Architecture. This section discusses the prerequisites and steps to migrate the
applications using UIF to Application Server.

Before migrating the applications, ensure that the UIF is installed on Application
Server 6.5. To check for the installation, follow either of the following approaches:

Checking in the Registry Files
UIF is installed as a set of application server extensions. They are registered in the
application server registry during the installation. Search for the following strings
in the registry to check whether UIF is installed.

Migrating UIF

78 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Extension Name Set:

• Extension DataObjectExt-cDataObject

• Extension RepositoryExt-cLDAPRepository

• Extension MetadataService-cMetadataService

• Extension RepoValidator-cRepoValidator

• Extension BSPRuntime-cBSPRuntime

• Extension BSPErrorLogExt-cErrorLogMgr

• Extension BSPUserMap-cBSPUserMap

The registry file on Solaris Operating Environment can be found at the following
location:

AS_HOME/AS/registry/reg.dat

Checking for UIF Binaries in Installation Directories
UIF installers copy specific binary files in to the application server installation.
Successfully finding the files listed below, indicates that UIF is installed.

The location of the following files on Solaris and Windows is:

AS_HOME/AS/APPS/bin

List of files to be searched on Solaris:

• libcBSPRlop.so

• libcBSPRuntime.so

• libcBSPUserMap.so

• libcDataObject.so

• libcErrorLogMgr.so

• libcLDAPRepository.so

• libcMetadataService.so

• libcRepoValidator.so

• libjx2cBSPRuntime.so

• libjx2cDataObject.so

• libjx2cLDAPRepository.so

Migrating JDBC Code

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 79

• libjx2cMetadataService.so

List of files to be searched on Windows:

• cBSPRlop.dll

• cBSPRuntime.dll

• cBSPUserMap.dll

• cDataObject.dll

• ErrorLogMgr.dll

• cLDAPRepository.dll

• cMetadataService.dll

• cRepoValidator.dll

• jx2cBSPRuntime.dll

• jx2cDataObject.dll

• jx2cLDAPRepository.dll

• jx2cMetadataService.dll

Before migrating the UIF to Application Server, ensure that the UIF API is being
used in the applications. To verify its usage:

• Check for the usage of netscape.bsp package name in the Java sources

• Check for the usage of access_cBSPRuntime.getcBSPRuntime method in the
sources. You must call this method to acquire the UIF runtime.

Contact appserver-migration@sun.com for information about UIF migration to the
Application Server.

Migrating JDBC Code
With the JDBC API, there are two methods of database access:

• Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL.
This method is used by other Application Servers, such as IBM’s WebSphere
4.0

• Using JDBC 2.0 Data Sources

mailto:appserver-migration@sun.com

Migrating JDBC Code

80 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

The DataSource interface (JDBC 2.0 API) can be used via a configurable
connection pool. According to J2EE 1.2, a data source is accessed through the
JNDI naming service

Establishing Connections Through the DriverManager Interface
Although this database access method is not recommended, as it is obsolete and is
not very effective, there can be some applications that still use this approach.

In this case, the access code is similar to the following:

public static final String driver = "oracle.jdbc.driver.OracleDriver";
public static final String url =
"jdbc:oracle:thin:tmb_user/tmb_user@iben:1521:tmbank";
Class.forName(driver).newInstance();
Properties props = new Properties();
props.setProperty("user", "tmb_user");
props.setProperty("password", "tmb_user");
Connection conn = DriverManager.getConnection(url, props);

This code can be fully ported from Application Server 6.x to Application Server, as
long as the Application Server is able to locate the classes needed to load the right
JDBC driver. In order to make the required classes accessible to the application
deployed in the Application Server, place the archive (JAR or ZIP) for the driver
implementation in the /lib directory of the Application Server installation
directory.

Modify the CLASSPATH by setting the path for the driver through the Admin
Console GUI.

• Click the server instance “server1.”

• Click the tab “JVM Settings” from the right pane.

• Click the option Path Settings and add the path in the classpath suffix text
entry box.

• Once the changes are made, click “Save.”

• Apply the new settings.

• Restart the server to modify the configuration file, server.xml.

NOTE Application Server does not support the Native Type 2 JDBC drivers
bundled with Application Server 6.x. Code that uses the Type 2
drivers to access third party JDBC drivers, must be manually
migrated.

Migrating JDBC Code

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 81

Using JDBC 2.0 Data Sources
Using JDBC 2.0 data sources to access a database provides performance
advantages, such as transparent connection pooling, enhanced productivity by
simplifying code and implementation, and code portability.

If there is a datasource by the name ‘xyz’ on Application Server 6.x application and
you do not want any impact on your JNDI lookup code, make sure that the
datasource you create for Application Server 8.1 is prefixed with jdbc. For example:
jdbc/xyz.

For information on configuring JDBC Datasource, see the Sun Java System
Application Server 8.1 Administrator’s Guide.

Looking Up the Data Source Via JNDI To Obtain a Connection
To obtain a connection from a data source, do the following:

1. Obtain the initial JNDI context.

To guarantee portability between different environments, the code used to
retrieve an InitialContext object (in a servlet, in a JSP page, or an EJB) is as
follows:

InitialContext ctx = new InitialContext();

2. Use a JNDI lookup to obtain a data source reference.

To obtain a reference to a data source bound to the JNDI context, look up the
data source's JNDI name from the initial context object. The object retrieved in
this way is cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

3. Use the data source reference to obtain the connection.

This operation requires the following line of code:

conn = ds.getConnection();

 Application Server 6.x and Application Server both follow these technique to
obtain a connection from the data source.

Migrating Rich Clients

82 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Migrating Rich Clients
This section describes the steps for migrating RMI/IIOP and ACC clients
developed in Planet Application Server 6.x to the Application Server.

Authenticating a Client in Application Server 6.x
Application Server 6.x provides a client-side callback mechanism that enables
applications to collect authentication data from the user, such as the username and
the password.The authentication data collected by the iPlanet CORBA
infrastructure is propagated to the application server via IIOP.

If ORBIX 2000 is the ORB used for RMI/IIOP, portable interceptors implement
security by providing hooks, or interception points, which define stages within the
request and reply sequence.

Authenticating a Client in Sun Java System
Application Server Platform Edition 8.1
The authentication is done based on JAAS (Java Authorization and Authentication
System API). If a client does not provide a CallbackHandler, then the default
CallbackHandler, called the LoginModule, is used by the ACC to obtain the
authentication data.

For detailed instructions on using JAAS for authentication, see the Sun Java System
Application Server Platform Edition 8.1 Developer’s Guide to Clients.

Using ACC in Application Server 6.x and Sun
Java System Application Server Platform Edition
8.1
In Application Server 6.x, no separate appclient script is provided. You are
required to place the iasacc.jar file in the classpath instead of the iascleint.jar

file. The only benefit of using the ACC for packaging application clients in 6.x is
that the JNDI names specified in the client application are indirectly mapped to the
absolute JNDI names of the EJBs.

Migrating Rich Clients

Chapter 6 Migrating from Application Server 6.x/7.x to Application Server 8.1 83

In case of Application Server 6.x applications, a stand-alone client uses the absolute
name of the EJB in the JNDI lookup. That is, outside an ACC, the following
approach is used to lookup the JNDI:

initial.lookup(“ejb/ejb-name”);
initial.lookup(“ejb/module-name/ejb-name”);

If your application was developed using Application Server 6.5 SP3, you would
have used the prefix “java:comp/env/ejb/” when performing lookups via absolute
references.

initial.lookup(“java:comp/env/ejb/ejb-name”);

In Sun Java System Application Server Platform Edition 8.1, the JNDI lookup is
done on the jndi-name of the EJB. The absolute name of the ejb must not be used.
Also, the prefix, java:comp/env/ejb is not supported in Sun Java System Application
Server Platform Edition 8.1. Replace the iasclient.jar, iasacc.jar, or javax.jar
JAR files in the classpath with appserv-ext.jar.

If your application provides load balancing capabilities, in Sun Java System
Application Server Platform Edition 8.1, load balancing capabilities are supported
only in the form of S1ASCTXFactory as the context factory on the client side and
then specifying the alternate hosts and ports in the cluster by setting the
com.sun.appserv.iiop.loadbalancingpolicy system property as follows:

com.sun.appserv.iiop.loadbalancingpolicy=roundrobin,host1:port1,host2:port2,...,

This property provides the administrator with a list of host:port combinations to
round robin the ORBs. These host names can also map to multiple IP addresses. If
this property is used along with org.omg.CORBA.ORBInitialHost and
org.omg.CORBA.ORBInitialPort as system properties, the round robin algorithm will
round robin across all the values provided. If, however, a host name and port
number are provided in your code, in the environment object, that value overrides
any other system property settings.

The Provider URL to which the client is connected in Application Server 6.5 is the
IIOP host and port of the CORBA Executive Engine (CXS Engine). In case of Sun
Java System Application Server Platform Edition 8.1, the client needs to specify the
IIOP listener Host and Port number of the instance. No separate CXS engine exists
in Sun Java System Application Server Platform Edition 8.1.

The default IIOP port is 3700 in Sun Java System Application Server Platform
Edition 8.1; the actual value of the IIOP Port can be found in the domain.xml

configuration file.

Migrating Rich Clients

84 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

85

Chapter 7

Migrating a Sample Application - an
Overview

This chapter describes the process for migrating the main components of a typical
J2EE application from Sun ONE Application Server 6.x to Sun Java System
Application Server Platform Edition 8.1. This chapter highlights some of the
problems posed during the migration of each type of component and suggests
practical solutions to overcome such problems.

For this migration process, the J2EE application presented is called iBank and is
based on the actual migration of the iBank application from Sun ONE Application
Server 6.x to Application Server 8.1. iBank simulates an online banking service and
covers all of the aspects traditionally associated with a J2EE application.

The major points of the J2EE specification covered by the iBank application are:

• Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans

• Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A, “iBank Application
Specification.”

Preparing for Migrating the iBank Application

86 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Preparing for Migrating the iBank Application
Before starting the migration process, it in important to understand the differences
in the deployment descriptors. For detailed information, see “Migrating
Deployment Descriptors” on page 64.

Choosing the Target
To start, choose Sun Java System Application Server Platform Edition 8.1 as the
target migration server. Install the server in the migration environment. For
step-by-step instructions on how to install the software, see the Sun Java System
Application Server Platform Edition 8.1 Installation Guide.

If you are using Migration Tool for Sun Java System Application Server 8.1 to
migrate the components, install the tool. The Migration Tool can be downloaded
from the following location:

http://java.sun.com/j2ee/tools/migration

For information on how to use the Migration Tool for Sun Java System Application
Server 8.1, see the Migration Tool online help. The iBank application is bundled
with the tool.

Identifying the Components of the iBank
Application
The iBank application has the following directory structure:

iBank
/docroot
/session
/entity
/misc

• /docroot contains HTML, JSP’s and Image files in its root. It also contains the
source files for servlets and EJBs in the sub-folder WEB-INF\classes following
the package structure com.sun.bank.*. A war file is generated using this
directory.

• /session contains the source code for the session beans following the package
structure com.sun.bank.ejb.session. This directory forms the EJB module for
the session beans.

http://java.sun.com/j2ee/tools/migration

Manual Steps in the iBank Application Migration

Chapter 7 Migrating a Sample Application - an Overview 87

• /entity contains the entity beans following the package structure
com.sun.bank.ejb.entity. This directory would form the EJB module for entity
beans.

• /misc contain the sql scripts for the database setup.

Manual Steps in the iBank Application Migration
Most of the migration is done by the Migration Tool. There are some aspects of
migration that must be done manually. These steps are documented in the
Migration Tool’s user’s guide and the documentation for the iBank sample
application.

Configuring Database Connectivity
In order to deploy an application to the target server, you must add a connection
pool, add a JDBC resource and a persistence manager.

This section discusses the following topics:

• Adding a Connection Pool

• Adding a JDBC Resource

• Adding a Persistence Manager

Adding a Connection Pool
A JDBC connection pool is a group of reusable connections for a particular
database. Because creating each new physical connection is time consuming, the
server maintains a pool of available connections to increase performance. When an
application requests a connection, it obtains one from the pool. When an
application closes a connection, the connection is returned to the pool.

NOTE Before you begin these steps, make sure that the domain to which
the application will be deployed is in the running state. These
instructions assume that the application will be deployed to the
default domain, domain1.

Use the asadmin utility in the Application Server bin directory to
perform these tasks.

Manual Steps in the iBank Application Migration

88 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Use the asadmin create-jdbc-connection-pool command to add a connection
pool to the server. The syntax of the command is given below.

asadmin create-jdbc-connection-pool
--user admin_user
--password admin_password
--host localhost
--port portno
--datasourceclassname dsclassname
--property User=ibank_user:Password=ibank_user:URL_PROP=db_url TMB

where, dsclassname is:

• oracle.jdbc.pool.OracleDataSource for Oracle

• com.pointbase.jdbc.jdbcDataSource for PointBase

URL_PROP is:

• url for Oracle

• DatabaseName for PointBase

db_url is :

• jdbc:oracle:thin:@ORACLE_HOST:1521:SID for Oracle, where
ORACLE_HOST is the machine name/IP address on which the database is
installed, and SID is the System ID of the Oracle database.

• jdbc:pointbase:server://POINTBASE_HOST:9092/migration-samples for
Pointbase, where POINTBASE_HOST is the machine name/IP address on
which the database is installed. This will be localhost in most cases.

Adding a JDBC Resource
A JDBC resource (data source) provides applications with a means of connecting to
a database. Before creating a JDBC resource, you must first create a JDBC
connection pool.

Use the asadmin create-jdbc-resource command to add resource.

asadmin create-jdbc-resource
--user admin_user
--password admin_password
--host localhost
--port portno
--connectionpoolid TMB jdbc/IBank

Manual Steps in the iBank Application Migration

Chapter 7 Migrating a Sample Application - an Overview 89

Adding a Persistence Manager
A persistence manager is required for backward compatibility. To run on version 7
of the Application Server, a persistent manager resource was required for
applications with container-managed persistent beans (a type of EJB component).

Use the asadmin create-persistence-resource command.

asadmin create-persistence-resource
--user admin_user
--password admin_password
--host localhost
--port portno
--connectionpoolid TMB
--factoryclass

com.sun.jdo.spi.persistence.support.sqlstore.impl.PersistenceManagerFac
toryImpljdo/pmf

Assembling Application for Deployment
Application Server primarily supports the J2EE model wherein applications are
packaged in the form of an enterprise archive (EAR) file (extension .ear). The
application is further subdivided into a collection of J2EE modules, packaged into
Java archives (JAR, extension .jar) for EJBs and web archives (WAR, extension
.war) for servlets and JSPs.

All the JSPs and Servlets must be packaged into WAR file, all EJBs into the JAR file
and finally the WAR and the JAR file together with the deployment descriptors in
to the EAR file. This EAR file is a deployable component.

Using the asadmin Utility to Deploy the iBank
Application on Application Server
The last step is to deploy the application on Sun Java System Application Server
Platform Edition 8.1. The process for deploying an application is described below:

The Sun Java System Application Server Platform Edition 8.1 asadmin command
includes a help section on deployment that is accessible from the Help menu.

The command line utility asadmin can be invoked by executing asadmin.bat file in
Windows and asadmin file in Solaris Operating Environment that is stored in
Application Server’s installation's bin directory.

Manual Steps in the iBank Application Migration

90 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

At asadmin prompt, the command for deployment looks like this:

asadmin> deploy -u username -w password -H hostname -p adminport
absolute_path_to_application

After restarting the Application Server, open a browser and go to the following
URL to test the application:

 http://<machine_name>:<port_number>/ibank

When prompted, enter one of the available user names and passwords. The main
menu page of the iBank application displays.

91

Chapter 8

Migration Tools and Resources

This chapter describes migration tools that help automate the migration process
from earlier versions of Sun ONE Application Server, Sun Java System Application
Server 7, Netscape Application Server (Kiva), NetDynamics Application Server,
and competitive application servers to Sun Java System Application Server
Platform Edition 8.1.

Migration Tool for Sun Java System Application
Server 8.1

The (hereafter called Migration Tool) migrates J2EE applications from other server
platforms to Sun Java System Application Server Platform Edition 8.1.

The following source platforms are supported for Sun Java System Application
Server Platform Edition 8.1:

• Sun ONE Application Server 6.x

• Sun Java System Application Server 7

• J2EE Reference Implementation Application Server (RI) 1.3, 1.4 Beta1

• WebLogic Application Server (WLS) 5.1, 6.0, 6.1, 8.1

• WebSphere Application Server (WAS) 4.0, 5.x

• Sun ONE Web Server 6.0

• JBoss Application Server 3.0

• TomCat Web Server 4.1

Migration Tool for Sun Java System Application Server 8.1

92 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Migration Tool automates the migration of J2EE applications to Sun Java System
Application Server Platform Edition 8.1, without much modification to the source
code.

The key features of the tool are:

• Migration of application server-specific deployment descriptors

• Runtime support for selected custom JavaServer Pages (JSP) tags and
proprietary APIs

• Conversion of selected configuration parameters with equivalent functionality
in Application Server

• Automatic generation of Ant based scripts for building and deploying the
migrated application to the target server, Application Server

• Generation of comprehensive migration reports after achieving migration

Download the Migration Tool from the following location:

http://java.sun.com/j2ee/tools/migration/index.html

For detailed information on how to install and use the tool, see online help.

The Migration Tool specifications and migration process change from time to time,
so the sample migration using the tool is not included in this guide. The migration
process of a sample application is discussed in the documentation for this tool.

Redeploying Migrated Applications
Most of the applications that are migrated automatically through the use of the
available migration tools utilize the standard deployment tasks described in the
Sun Java System Application Server Platform Edition 8.1 Administration Guide.

In some cases, the automatic migration is not able to migrate particular methods or
syntaxes from the source application. When this occurs, a message displays
describing the steps needed to complete the migration. Once these steps are
completed, the administrator is able to deploy the application in the standard
manner.

http://java.sun.com/j2ee/tools/migration/index.html

J2EE Application Verification Kit

Chapter 8 Migration Tools and Resources 93

J2EE Application Verification Kit
The Java Application Verification Kit (AVK) for the Enterprise helps build and test
applications to ensure that they are using the J2EE APIs correctly and to migrate to
other J2EE compatible application servers using specific guidelines and rules.

Download the Java Application Verification Kit (AVK) from the following location:

http://java.sun.com/j2ee/verified/

More Migration Information
This section provides references to additional migration documents.

Migrating from KIVA/NAS/NetDynamics
Application Servers
For information about migrating KIVA/NAS/NetDynamics applications to Sun
ONE Application Server 6.0, see the Sun ONE Application Server Migration Guide at
the following URL:

http://docs.sun.com/db/doc/816-5780-10

For information about migrating KIVA/NAS/NetDynamics applications to Sun
ONE Application Server 6.5, see the Sun ONE Application Server 6.5 Migration Guide
at the following URL:

http://docs.sun.com/db/doc/816-5793-11

For information about migrating KIVA/NAS/NetDynamics applications to Sun
Java System Application Server 7, see Sun Java System Application Server 7 Migrating
and Redeploying Server Applications Guide at the following URL:

http://docs.sun.com/db/doc/817-2158-10

http://java.sun.com/j2ee/verified/
http://docs.sun.com/db/doc/816-5780-10
http://docs.sun.com/db/doc/816-5793-11
http://docs.sun.com/db/doc/817-2158-10

More Migration Information

94 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

95

Appendix A

iBank Application Specification

The iBank application is used as the migration sample. This application simulates a
basic online banking service with the following functionality:

• Log on to the online banking service

• View/edit personal details and branch details

• Summary view of accounts showing cleared balances

• Facility to drill down by account to view individual transaction history

• Money transfer service, allowing online transfer of funds between accounts

• Compound interest earnings projection over a number of years for a given
principal and annual yield rate

The application is designed after the MVC (Model-View-Controller) model where:

• EJBs are used to define the business and data model components of the
application

• Java Server Pages handle the presentation logic and represent the View.

• Servlets play the role of Controllers and handle application logic, taking charge
of calling the business logic components and accessing business data via EJBs
(the Model), and dispatching processed data for display to Java Server Pages
(the View).

Standard J2EE methods are used for assembling and deploying the application
components. This includes the definition of deployment descriptors and
assembling the application components within the archive files:

• AWAR archive file for the Web application including HTML pages, images,
Servlets, JSPs and custom tag libraries, and ancillary server-side Java classes.

Database Schema

96 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

• EJB-JAR archive files for the assembling of one or more EJBs, including
deployment descriptor, bean class and interfaces, stub and skeleton classes,
and other helper classes as required.

• An EAR archive file for the packaging of the enterprise application module
that includes the Web application module and the EJB modules used by the
application.

The use of standard J2EE assembling methods will be useful in pointing out any
differences between Sun ONE Application Server 6.x/7.x and Sun Java System
Application Server Platform Edition 8.1, and any issues arising thereof.

Database Schema
The iBank database schema is derived from the following business rules:

• The iBank company has local branches in major cities.

• A Branch manages all customers within its regional area.

• A Customer has one or more accounts held at their regional branch.

• A customer Account is uniquely identified by the branch code and account
number, and also holds the number of the customer to which it belongs. The
current cleared balance available is also stored with the account.

• Accounts are of a particular Account Type that is used to distinguish between
several kinds of accounts (checking account, savings account, etc.).

• Each Account Type stores a number of particulars that apply to all accounts of
this type (regardless of branch or customer) such as interest rate and allowed
overdraft limit.

• Every time a customer receives or pays money into/from one of their accounts,
the transaction is recorded in a global transaction log, the Transaction History.

• The Transaction History stores details about individual transactions, such as
the relevant branch code and account number, the date the transaction was
posted (recorded), a code identifying the type of transaction and a
complementary description of the particular transaction, and the amount for
the transaction.

• Transaction types allow different types of transactions to be distinguished,
such as cash deposit, credit card payment, fund transfer between accounts, and
so on.

Database Schema

Appendix A iBank Application Specification 97

Figure A-1, the entity-relationship diagram shown below, illustrates these business
rules.

Figure A-1 Database Schema

The database model translates as a series of table definitions below, where primary
key columns are printed in bold type, while foreign key columns are shown in
italics.

BRANCH

BRANCH_CODE CHAR(4) NOT NULL 4-digit code identifying the branch

BRANCH_NAME VARCHAR(40) NOT NULL Name of the branch

BRANCH_ADDRESS1 VARCHAR(60) NOT NULL Branch postal address, street address, 1st line

Database Schema

98 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

BRANCH_ADDRESS2 VARCHAR(60) Branch postal address, street address, 2nd line

BRANCH_CITY VARCHAR(30
)

NOT NULL Branch postal address, City

BRANCH_ZIP VARCHAR(10
)

NOT NULL Branch postal address, Zip code

BRANCH_STATE CHAR(2) NOT NULL Branch postal address, State
abbreviation

CUSTOMER

CUST_NO INT NOT NULL iBank customer number (global)

BRANCH_CODE CHAR(4) NOT NULL References this customer's branch

CUST_USERNAME VARCHAR(16) NOT NULL Customer's login username

CUST_PASSWORD VARCHAR(10) NOT NULL Customer's login password

CUST_EMAIL VARCHAR(40) Customer's e-mail address

CUST_TITLE VARCHAR(3) NOT NULL Customer's courtesy title

CUST_GIVENNAMES VARCHAR(40) NOT NULL Customer's given names

CUST_SURNAME VARCHAR(40) NOT NULL Customer's family name

CUST_ADDRESS1 VARCHAR(60) NOT NULL Customer postal address, street address, 1st
line

CUST_ADDRESS2 VARCHAR(60) Customer postal address, street address, 2nd
line

CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City

CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code

CUST_STATE CHAR(2) NOT NULL Customer postal address, State abbreviation

ACCOUNT_TYPE

ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code

ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description

ACCTYPE_INTERESTRA
TE

DECIMAL(4,2) DEFAULT 0.0 Annual interest rate

ACCOUNT

Application Navigation and Logic

Appendix A iBank Application Specification 99

Application Navigation and Logic
Figure A-2 provides a high-level view of application navigation.

Figure A-2 Application Navigation and Logic

BRANCH_CODE CHAR(4) NOT NULL branch code (primary-key part 1)

ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)

CUST_NO INT NOT NULL Customer to whom accounts belongs

ACCTYPE_ID CHAR(3) NOT NULL Account type, references ACCOUNT_TYPE

ACC_BALANCE DECIMAL(10,2) DEFAULT 0.0 Cleared balance available

TRANSACTION_TYPE

TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code

TRANSTYPE_DESC VARCHAR(40) NOT NULL Human-readable description of code

TRANSACTION_HISTORY

TRANS_ID LONGINT NOT NULL Global transaction serial no

BRANCH_CODE CHAR(4) NOT NULL key referencing ACCOUNT part 1

ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2

TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE

TRANS_POSTDATE TIMESTAMP NOT NULL Date & time transaction was posted

TRANS_DESC VARCHAR(40) Additional details for the transaction

TRANS_AMOUNT DECIMAL(10,2) NOT NULL Money amount for this transaction

Application Navigation and Logic

100 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Login Process
Figure A-3 shows the login process used in the iBank application.

Figure A-3 Login Process

View/Edit Details
Figure A-4 shows the view/edit details process used in the iBank application.

Application Navigation and Logic

Appendix A iBank Application Specification 101

Figure A-4 View/Edit Details Process

Account Summary and Transaction History
Figure A-5 shows how the account summary and transaction history work in the
iBank application.

Application Navigation and Logic

102 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Figure A-5 Account Summary and Transaction History

Fund Transfer
Figure A-6 shows how funds are transferred in the iBank application.

Application Navigation and Logic

Appendix A iBank Application Specification 103

Figure A-6 Fund Transfer

Interest Calculation
Figure A-7 shows how interest is calculated in the iBank application.

Application Components

104 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Figure A-7 Interest Calculation

Application Components

Data Components
Each table in the database schema is encapsulated as an entity bean:

All entity beans use container-managed persistence (CMP), except Customer, which
uses bean-managed persistence (BMP).

Currently, the application only makes use of the Account, AccountType, Branch,

and Customer beans.

Entity Bean Database Table

Account ACCOUNT table

AccountType ACCOUNT_TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table

TransactionType TRANSACTION_TYPE table

Application Components

Appendix A iBank Application Specification 105

Business Components
Business components of the application are encapsulated by session beans.

The BankTeller bean is a stateful session bean that encapsulates all interaction
between the customer and the system. BankTeller is notably in charge of the
following activities:

• Authenticating a customer through the authCheck() method

• Giving the list of accounts for the customer through the getAccountSummary()

method

• Transferring funds between accounts on behalf of the customer through the
transferFunds() method

The InterestCalculator bean is a stateless session bean that encapsulates financial
calculations. It is responsible for providing the compound interest projection
calculations, through the projectEarnings() method.

Application Logic Components (Servlets)

Component name Purpose

LoginServlet Authenticates the user with the BankTeller session bean (authCheck()
method), creates the HTTP session and saves information pertaining to the
user in the session.Upon successful authentication, forwards request to the
main menu page (UserMenu.jsp)

CustomerProfileServlet Retrieves customer and branch details from the Customer and Branch entity
beans and forwards request to the view/edit details page
(CustomerProfile.jsp).

UpdateCustomerDetailsServ
let

Attempts to effect customer details changes amended in
CustomerProfile.jsp by updating the Customer entity bean after checking
validity of changes. Redirects to UpdatedDetails.jsp if success, or to
DetailsUpdateFailed.jsp in case of incorrect input.

ShowAccountSummaryServl
et

Retrieves the list of customer accounts from the BankTeller session bean
(getAccountSummary() method) and forwards request to
AccountSummary.jsp for display.

TransferFundsServlet Retrieves the list of customer accounts from the BankTeller session bean
(getAccountSummary() method) and forwards request to
TransferFunds.jsp allowing the user to set up the transfer operation.

Application Components

106 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Presentation Logic Components (JSP Pages)

CheckTransferServlet Checks the validity of source and destination accounts selected by the user
for transfer and the amount entered. Calls the transferFunds() method of
the BankTeller session bean to perform the transfer operation. Redirects the
user to CheckTransferFailed.jsp in case of input error or processing error,
or to TransferSuccess.jsp if the operation was successfully carried out.

ProjectEarningsServlet Retrieves the interest calculation parameters defined by the user in
InterestCalc.jsp and calls the projectEarnings() method of the
InterestCalculator stateless session bean to perform the calculation, and
forwards results to the ShowProjectionResults.jsp page for display. In
case of invalid input, redirects to BadIntCalcInput.jsp

Component name Purpose

index.jsp Index page to the application that also serves as the login page.

LoginError.jsp Login error page displayed in case of invalid user credentials supplied. Prints
an indication as to why login was unsuccessful.

Header.jsp Page header that is dynamically included in every HTML page of the
application

CheckSession.jsp This page is statically included in every page in the application and serves to
verify whether the user is logged in (i.e. has a valid HTTP session). If no valid
session is active, the user is redirected to the NotLoggedIn.jsp page.

NotLoggedIn.jsp Page that the user gets redirected to when they try to access an application
page without having gone through the login process first.

UserMenu.jsp Main application menu page that the user gets redirected to after
successfully logging in. This page provides links to all available actions.

CustomerProfile.jsp Page displaying editable customer details and static branch details. This
page allows the customer to amend their correspondence address.

UpdatedDetails.jsp Page where the user gets redirected to after successfully updating their
details.

DetailsUpdateFailed.jsp Page where the user gets redirected if an input error prevents their details to
be updated.

AccountSummaryPage.jsp This page displays the list of accounts belonging to the customer in tabular
form listing the account no, account type and current balance. Clicking on an
account no. in the table causes the application to present a detailed
transaction history for the selected account.

Potential Migration Issues

Appendix A iBank Application Specification 107

Potential Migration Issues
While many of application design choices made are certainly debatable especially
in the “real-world” context, care was taken to ensure that these choices enable the
sample application to encompass as many potential issues as possible as one would
face in the process of migrating a typical J2EE application.

This section will go through the potential issues that you might face when
migrating a J2EE application, and the corresponding component of iBank that was
included to check for this issue during the migration process.

With respect to the selected migration areas to address, this section specifically
looks at the following technologies:

Servlets
The iBank application includes a number of servlets, that enable us to detect
potential issues with:

ShowTransactionHistory.
jsp

This page prints the detailed transaction history for a particular account no.
The transaction history is printed using a custom tag library.

TransferFunds.jsp This page allows the user to set up a transfer from one account to another for
a specific amount of money.

TransferCheckFailed.jsp When the user chooses incorrect settings for fund transfer, they get
redirected to this page.

TransferSuccess.jsp When the fund transfer set-up by the user can successfully be carried out,
this page will be displayed, showing a confirmation message.

InterestCalc.jsp This page allows the user to enter parameters for a compound
interest calculation.

BadIntCalcInput.jsp If the parameters for compound interest calculation are incorrect, the user
gets redirected to this page.

ShowProjectionResults.j
sp

When an interest calculation is successfully carried out, the user is redirected
to this page that displays the projection results in tabular form.

Logout.jsp Exit page of the application. This page removes the stateful session bean
associated with the user and invalidates the HTTP session.

Error.jsp In case of unexpected application error, the user will be redirected to this
page that will print details about the exception that occurred.

Potential Migration Issues

108 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

• The use of generic functionality of the Servlet API

• Storage/retrieval of attributes in the HTTP session and HTTP request

• Retrieval of servlet context initialization parameters

• Page redirection

Java Server Pages
With respect to the JSP specification, the following aspects have been addressed:

• Use of JSP declarations, scriptlets, expressions, and comments

• Static includes (<%@ include file="…" %>): notably tested with the inclusion of
the CheckSession.jsp file in every page)

• Dynamic includes (<jsp:include page=… />): this is catered for by the dynamic
inclusion of Header.jsp in every page

• Use of custom tag libraries: a custom tag library is used in the file
ShowTransactionHistory.jsp

• Error pages for JSP exception handling: the Error.jsp page is the application
error redirection page

JDBC
The iBank application accesses a database via a connection pool and the data
source, both programmatically (BMP entity bean, BankTeller session bean,
custom tag library) and declaratively (with the CMP entity beans).

Enterprise Java Beans
The iBank application uses a variety of Enterprise Java Beans.

Entity Beans
Bean-managed persistence (Customer bean): allows us to test the following:

• JNDI lookup of initial context

• Pooled data source access via JDBC

Potential Migration Issues

Appendix A iBank Application Specification 109

• Definition of a BMP custom finder ("findByCustUsername()")

Container-managed persistence ("Account" and "Branch" beans): allow us to test the
following:

• Object/Relational mapping with the development tool and within the
deployment descriptor

• Use of composite primary keys (Account)

• Definition of custom CMP finders (with the "Account" bean, and its
findOrderedAccountsForCustomer() method). This is the occasion to look at
differences in declaring the query logic in the deployment descriptor, and also
to have a complex example returning a collection of objects.

Session Beans
Stateless session beans: InterestCalculator allows us to test the following:

• Using and deploying a stateless session bean

• Calling a business method for calculations

Stateful session beans: BankTeller allows us to test the following:

• Looking up various interfaces using JNDI and initial contexts

• Using JDBC to perform database queries

• Using various transactional attributes on bean methods

• Using container-demarcated transactions

• Maintaining conversational state between calls

• Business methods acting as front-ends to entity beans (e.g., the
"getAccountSummary()" method)

Application Assembly
The iBank application is assembled by following the J2EE standard procedures. It
contains the following components:

• A Web application archive file for the Web application module, and EJB-JAR
archives for the EJBs

• An enterprise application archive file (EAR file) for the final packaging of the
Web application and EJB modules

Potential Migration Issues

110 Application Server 8.1 2005Q1 • Upgrade and Migration Guide

Section A

Index 111

Index

A
asadmin command for deploying a Web application 70

asupgrade command 39

automated migration tools 49

B
Backward compatibility issues 31

D
data source benefits 81

database connectivity 87

connection pool 87

jdbc resource 88

database connetivity

persistence manager 89

Deployment descriptors 46

Deprecated APIs 30

documentation

overview 12

Downward source compatibility 29

DTD changes for S1AS 6.x to SJS AS 8 EJB

migration 71

E
EAR file contents 47

EAR file definition 47

EJB 1.1 to EJB 2.0

Defining Entity Bean Relationships 54

EJB 2.0 Container-Managed Persistence (CMP) 53

EJB Query Language 51

Message-Driven Beans 54

Migrating CMP Entity EJBs

Custom Finder Methods 60

Migrating the Bean Class 57

Migration of ejb-jar.xml 59

Migrating EJB Client Applications 54

Declaring EJBs in the JNDI Context 55

Migration of ejb-jar.xml 59

EJB migration actions 71

EL Expressions 33

G
getLocalAddr 31

getLocalName 31

getLocalPort 31

getRemotePort 31

Section H

112 Application Server Platform Edition 2005Q1 • Upgrade and Migration Guide

H
HttpSessionListener.sessionDestroyed 30

I
I18N behavior 32

iBank Application specification

Application Components 104

Application navigation and logic 99

Database schema 96

Fitness of design choices with regard to potential

migration issues 107

iBank sample application 63

J
J2EE applications

components 46

J2EE Component Standards 45

JDBC code migration 79

JSP and JSP custom tag library conversions 66

M
manual migration of iBank application 87

assembling application for deployment 89

Migration Tool for Sun Java System Application Server

Platform Edition 8 49, 91

O
obtaining a data source from the JNDI context 68

P
Page encoding 32

pass-by-reference 34

S
servlet migration modifications 67

Solaris

patches 14

support 14

Sun ONE Migration Toolbox 49

support

Solaris 14

T
Tag Library validations 32

Type coercion rules 32

U
upgrade

http listeners 43

upgrade server 37

supported servers 37

upgrade tool 41

upgrade UI 41

upgrade wizard 41

	Application Server Platform Edition 8.1 Upgrade and Migration Guide
	Contents
	Preface
	Who Should Use This Guide
	Before You Read This Book
	How This Guide Is Organized
	Conventions Used in This Book
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Related Documentation
	Books in This Documentation Set
	Other Server Documentation

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Application Server Compatibility Issues
	Web Server Features
	Security Realms
	Sun Deployment Descriptor: sun-web.xml
	encodeCookies Property
	CORBA Performance Option
	File Formats
	Certificate Database
	Tools Interoperability
	Primary Key Attribute Values
	Command Line Interface: start-appserv and stop-appserv
	Command Line Interface: asadmin
	Subcommands
	Error Codes for Start and Stop Subcommands
	Options
	Dotted Names
	Tokens in Attribute Values
	Nulls in Attribute Values

	J2EE 1.4 Compatibility Issues
	Binary Compatibility
	Source Compatibility
	Incompatibilities in the J2EE 1.4 Platform (since the J2EE 1.3 release)
	JAXP and SAX Incompatibilities
	Application Server 8.1 Options Incompatible with J2EE 1.4 Specification Requirements
	Application Server 8.1 Options Contrary to J2EE 1.4 Specification Recommendations

	Upgrading an Application Server Installation
	Upgrading Through the Upgrade Utility
	Upgrading Through the Wizard
	Correcting Potential PE Upgrade Problems
	Migrating Additional HTTP Listeners Defined on the Source Server to the Target PE Server
	Eliminating Problems Encountered When A Single Domain has Multiple Certificate Database Passwords

	Understanding Migration
	J2EE Component Standards
	J2EE Application Components
	Migration and Deployment
	Why is Migration Necessary?
	What Needs to be Migrated
	What is Deployment of Migrated Applications?

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Persistent Fields
	Defining Entity Bean Relationships
	Message-Driven Beans

	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References
	Placing EJB References in the JNDI Context
	Global JNDI context versus local JNDI context

	Migrating CMP Entity EJBs
	Migrating the Bean Class
	Migration of ejb-jar.xml
	Custom Finder Methods

	Migrating from Application Server 6.x/7.x to Application Server 8.1
	Migrating Deployment Descriptors
	Migrating Web Applications
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	Obtaining a Data Source from the JNDI Context
	Declaring EJBs in the JNDI Context
	Potential Servlets and JSP Migration Problems

	Migrating Web Application Modules

	Migrating Enterprise EJB Modules
	EJB Migration
	EJB Changes Specific to Application Server Platform Edition 8.1
	Session Beans
	Entity Beans
	Message Driven Beans

	Migrating Enterprise Applications
	Application Root Context and Access URL
	Applications With Form-based Authentication

	Migrating Proprietary Extensions
	Migrating UIF
	Checking in the Registry Files
	Checking for UIF Binaries in Installation Directories

	Migrating JDBC Code
	Establishing Connections Through the DriverManager Interface
	Using JDBC 2.0 Data Sources
	Looking Up the Data Source Via JNDI To Obtain a Connection

	Migrating Rich Clients
	Authenticating a Client in Application Server 6.x
	Authenticating a Client in Sun Java System Application Server Platform Edition 8.1
	Using ACC in Application Server 6.x and Sun Java System Application Server Platform Edition 8.1

	Migrating a Sample Application - an Overview
	Preparing for Migrating the iBank Application
	Choosing the Target
	Identifying the Components of the iBank Application

	Manual Steps in the iBank Application Migration
	Configuring Database Connectivity
	Adding a Connection Pool
	Adding a JDBC Resource
	Adding a Persistence Manager

	Assembling Application for Deployment
	Using the asadmin Utility to Deploy the iBank Application on Application Server

	Migration Tools and Resources
	Migration Tool for Sun Java System Application Server 8.1
	Redeploying Migrated Applications

	J2EE Application Verification Kit
	More Migration Information
	Migrating from KIVA/NAS/NetDynamics Application Servers

	iBank Application Specification
	Database Schema
	Application Navigation and Logic
	Login Process
	View/Edit Details
	Account Summary and Transaction History
	Fund Transfer
	Interest Calculation

	Application Components
	Data Components
	Business Components
	Application Logic Components (Servlets)
	Presentation Logic Components (JSP Pages)

	Potential Migration Issues
	Servlets
	Java Server Pages
	JDBC
	Enterprise Java Beans
	Entity Beans
	Session Beans

	Application Assembly

	Index

