Sun GlassFish Enterprise Server
v3 Prelude Developer's Guide

»
2 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-4496-10
October 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090304@21990

Partl

Contents

PrEface ... 11
Development Tasks aNdTOOISc.cooiiiiiiicciccceecee et 17
Setting Up a Development ENVIrONMEeNt ..o 19
Installing and Preparing the Server for DeveloOpment ... 19
The GIasSFISh PIOJECTceuvuiriiiciiieeccireeecieieereteeeeetseee et saesesesae s 20
DeVEIOPIMENT TOOLS .euverieiiuiieiicieieieirteie ettt bbbttt 20
The asadmin COMMANG ..ottt saeen 20
The Administration CONSOLe ..o eeaens 21
The Migration TOOL ..ottt asese s sse s esenaen 21
The NetBeans IDE
The EClIPSE IDEouiiiiiiiiiecieireicicirtistietseiseie ettt e
Debugging TOOILS ..o naes 22
PIOfIlING TOOLS .ottt naen 22
CIASSLOAUELS ... 23
The Class Loader HIETarchycc.oceeceirieincininiceieeeneineeeseieseessesesessesessessessssessessesensessesenne 24
DELEGALION ...eeveiriiecictieeictrete ettt ettt sttt ettt 25
Using the Java Optional Package Mechanisimc.eeeveureveecineunecineineeeiseinereseseeseeesessesesesnesneaes 25
Using the Endorsed Standards Override Mechanismcccocevecniuricencinieencneeeecnenreeeesenennes 25
Class Loader Universes
Application-Specific Class LOAAINGc.cvvueveureurecireuriecineireieieireieeeesetseeeesessesessessessesessessesessessesenae 26
Circumventing Class Loader ISOlationcccccciiiiniiiiccescscsssssssessssieees 27
Using the Common Class LOAAETccvuievcuniiriemiiieeiieeeeieeeeneeseee s ssensessesens 27

Contents

3 Debugg@ing APPlICAtioNS ..ottt 29
Enabling DeDUGEINGcouiuiiiiciciiiiiiitie e 29
¥V To Set the Server to Automatically Start Up in Debug Modeccocuviervcmnivncrnenecrncnenn. 30
JPDA OPHIOIS wevviiiereiciiiirirteteteieieitttetete ettt ettt b bbbttt sttt neaes 30
Generating a Stack Trace for Debugging w31
Enabling Verbose MO ..ot iessesessessessesessessesessessesessessessesessessesessennes 31
PIOfIIING TOOLS uveeuiriiiecietrieeieireteee ettt ettt e 31
The NetBeans PIOfIET ..ot sesesse s s ssasssensees 32
The HPROF PrOfILErccvueiiirieeicireieicintieiicintiseieetseie st ese et sneen 32

B STl 22) oY= 24 e 11 L3 U 33
Partll Developing Applications and Application Componentsccocoerrrnrirecrcennrreeeeeens 37
4 Securing APPlICAtIONSc.c.ouieiiieccc ettt bbb n s s b sne 39
SECULILY GOALS ..ottt ettt et 40
Enterprise Server Specific SecUrity FEAtUIESccceueuiriunirnieeineiereienieieeieesene e eaesasaees 40
COoNtAINEr SECUTILY .ooviviiiiiiiiicii s 40
Declarative SECUTILYvuiuiviicicic s 41
Programmatic SECUTItYccooiiiiiiiiiiiiiii e 42
Roles, Principals, and Principal to Role Mappingcceceeeveureeeeerereerneenemeesenensenessessessessseseees 42
Realm CONAIGUIALIONvcvieicireireeeieiieieireie ettt b sttt seesessenee 43
SUPPOTted REAIMSouiiiiiiic e 44
How to Configure @ RN «.....c.cvcuiurieeiiiriieiciniieeceteieeeeieneieteneesessese s sese s sssesesses 44
How to Set a Realm for a Web Application or EJB Module .44
Creating a Custom REAlMc.ocueurieiiinieiciniieccieieeeneieeeete e ese s ssasesesnees 45
JACC SUPPOIL ettt ettt ettt s s 47
Pluggable Audit MOAULE SUPPOIT «.....cuveeviieeicireinicieirieeicireieeetreiseeeee e ssesesessese e sseseesesnenns 47
Configuring an Audit MOAUIEc..c.cueieiiiniiniiecceeceseere et saeneeaes 47
The AuditModule Class .47
The SErver.POLLCY FILE ..oovoeieieeeeeeeeeeeeeeee ettt eae et et eae st es s e s sennnserens 49
Deefault PErMISSIONScucvurveiueerieieeieirieeieeneiersetseeessesseasesesssesesesseasesessessssssaesssasesessessssessesassssesnees 49
Changing Permissions for an APplICAtiONcceeveureuereerererereneeeeineerenenseressersensesesessesseene 49
Enabling and Disabling the Security Managerc..cccocoveeeeeneureeeneeneeerceneennesneenesesesnesensens 51

Programmatic LOgin ..o

Programmatic Login Precautions

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Contents

Granting Programmatic Login Permission ... 53
The ProgrammatiCLogin ClASSocoiieeiieeeeieeeeeeeeeeeeeseeeteseeeeseee e s esesesessseesensesensenenes 54
User Authentication for Single SIN-00cccucvereirrreniinereieererenerineeseseesessessessessessessesssesens 55

5 Developing Web Services

Deploying @ Web SEIVICE ...

WWED SEIVICES REGISTIT .cvuveeuvrieiiirciiicicireie ettt 58

The Web Service URI, WSDL File, and Test Pagecccocveeeereureueecereureeineirieenerreieeecenesseeeeseesenennes 59

6 UsingtheJavaPersistenCe AP ...ttt 61

Specifying the Database ...ttt esenns 62

Additional Database PrOPEILIESc.cveeurireucuricueiniacirieieireeeietresetseesetsesessesesesseseseseaessaesessescsnsneaes 64

Configuring the CACKE ..ot sseses 64

Setting the Logging LeVel ... sseseas 64

USING LAZY LOAAINE «..uvrvveieieeiecicireiccinetecetreteeeetet ettt seae et sese st see et sesessetsesesaessesesaesncs

Primary Key Generation Defaults ...

Automatic Schema Generation ...
ANNOLATIONS ettt
GENeration OPLIONSccceveveueieiiriririieicetctrr ettt saenene 66

QUETY HINES .ot 67

Changing the Persistence PrOVIAETc.cccocuriurieiniinieincineinieneiniereineeseeteisese e sseseesessessesesesseseens 67

Restrictions and Optimizations

Extended Persistence Context

Using @OrderBy with a Shared Session Cachec..coccriercinicecninicnireceeeneereeens 68

Using BLOB or CLOB Types with the Inet Oraxo JDBC DIiverccocoeveneeveceneeneeeeneenennn 69

Database Case SENSITIVILYc.cuvuererrieereiriieicniineieneiesenseeeiessessessesessessesessessesessesssasssessesnesessens 69

Sybase Finder LIMitation ... 70

MySQL Database ReSIIICHIONSccueureerrierieerierieereieaereesteeeeensessesesseseeessesessssesssssesessessesessens 70

7 DevelopingWeb ApplIiCationscc.cooiiiieieiericccsee st sssssses 73

Packaging an EJB JAR File in @ Web APPLICAtionccveuvcucicvceernieniiiineeeseeensenseseesseaseaens 73
USING SEIVIELS ..ottt seb sttt ettt se st et enactnes

Invoking a Servlet With a URL
SEIVIEt OULPUL .ottt saen

Contents

Caching Servlet RESULLSc..ceueveciiirieiiiriieicineieeeeieietee et sese s ese s ssasescsneen 76
About the Servlet ENGINEcovuevcuiurieiiiriieiciriieecneiseeceseienseieiessesessesessessesesse s s ssssesessees 79
Using JavaServer Pages ... 80
JSP Tag Libraries and Standard Portable Tagsc.cceereuercuneureerneeneeencenieenenieneeneenesennens 80
Options for Compiling JSP FALESceueuiurierniirreeicireieicitieeeeneiseieseineee s ssssesessesesessens 80
Creating and Managing SESSIONScecureureeurerreerierrernecererseeeeessesseessessesessessesessessessesessessesessenns 81
CONTIGUIING SESSIONS ...uvrrverueriereiretiieitereieieiseie e tseasese e seae e ebe st ese st ese e seasescsaeen 81
5€SSI0N MANAZETS ...uviviiiiiiiiiiii bbb 82
USING COMEL ...t 84
Introduction t0 COMEL ... e 84
GIIZZIY COMEL ettt st saen 86
BaYEUX PrOtOCOL ...ttt saeen 96
Developing Grails APPLICAIONSc.cueueecuiuricirerrieeicineieecinetseeeeeisessee s sseseesessessesesessesessenns 99
Introduction to Groovy and Grailsccveeenereeeenieicnieeeieeeneeseeese e essesessees 99
INStAllINg GIails ...ceveeeierieeiciiiccireerei ettt sen 99
Creating a Simple Grails APPLICAtIONccueureeeecunierrcriireeicireeeeeeiseesessese e seasesenne 100
Deploying and Running a Grails APpliCationceceuveereeecuneereerneeneernerneessenseeenensesneenne 101
Advanced Web Application FEAtUIESc.cvwevcuruerecuniurieeriireiereieieneereesesesessesessesesensesessesensees 103
Internationalization ISSUEScccuiiuriiiiiiiiiici e 103
VITTUAL SEIVELS w.ovuiiieiiiiiiiii s s 104
Default Web MOdULES ... 105
Class Loader Dele@ationc..ceecueureeeueueeererieneentenesessersesessessesessesessesessessesessessessssesessesenns 106
Using the default-web . XmUFIle ..o nesene 106
Configuring Logging and Monitoring in the Web Containerooccvcveevvcrneeeerncenenenne 107
Header Managementcceeeeeueeerecuienieeniuneseresesessesessesessessesessessesessessessesesesesessesscsssnenns 107
Configuring Valves and Catalina LISTEINErSccccvevrreuirreercrreeeeernieneenernesesensesenensessesenne 107
Alternate Document ROOLS ..ot ssssasaas 108
Redirecting URLScvcurueumrureeeieiieeieciieneeeseesesessestsesse s ssessese e sesessesstssesessesnesssesesssnenns 110
Using a conteXt. XM FIle ..ot e seaeesenns 110
ENabling WeEDDIAVc.ocuvieuiirieeieiieeicitisee s sese e ssessese e sstssssesesesssesscssssenns 111
USING IMOA_JK oottt et 113
USING SST e 114
USING CGI i 116
USING PHP ..o 117
UsIng Scala and Liftc.ocereeicinieeeiireciecieiteeeie et ssesessenns 117

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Contents

8 Using Enterprise JavaBeans Technologyccooiiininiiiiiceees e 119
Summary of EJB 3.1 Changescccouuiuiuniicucicieiiniieiiiise e ssesssssse s sssssesssssssssens 119
Valtue Added FEATUIESc.cuiuiciiiicieiceec s 120

Bean-Level Container-Managed Transaction TIMEOULScccuveeeueureeeecrnerreennenneeenserneeenne 121
EJB TIMET SEIVICE vttt ettt et teere et e ste et e eteetsesseeseeasaebsessebeessensesssenseseessensenes 121
UsSINg SESSI0N BEANSvvveiiiiicit s 122
About the Session Bean CONLAINETSc.cccueuieererrieemeirienienreireeeeneseeenessese e ssessesenne 122
Session Bean Restrictions and OPptimiZationsc.ceceeenecirinceeineeesineeeinieeeeseessesesesseenns 123

Partlil

Handling Transactions With Enterprise Beans
FIat TTANSACHIONSceevuirieieiiiieciieicisci st s

Global and Local TTanSaCtIONSc.eeveveeieveriieeeeeeeeseeeeeeeeeseereseeesesseseseesssesssssseeseseessensesessseses

Administration and MONItOTINGccocveeeercurerrecirerreieierneeseessetseseesessesseessessesesessessesessessesesns

Using Servic@S aNA APIScoooiriiiiireeeer ettt seseees 125

Using the JDBC APl for Database ACCESSc.ccoeeiieereieieiieecee et aene

General Steps for Creating a JDBC RESOUICEcuvemiumiieieiiiniiscieieniscesessssssssesssssssneans
Integrating the JDBC DIIVETcccoirierernieeeeiiireeieisieenereienseseieese e sseesesnns
Creating a CoNNEction POOLciuiueuiuieeiciniinieitineeeecisee e ssese e ssesnesenne
Testing a JDBC Connection POOL ... saeseseaesnns
Creating a JDBC Resourcecccocovvicivivcncivicnnincnennes

Creating Web Applications That Use the JDBC API
Setting a Statement TImMeOoULcccciciiiiiiiiiiiii e

Sharing CONNECHIONS ..ot

Wrapping CONNECIONSccveviiiiiiiiiiiiciicerci s sesaeses
Obtaining a Physical Connection From a Wrapped Connectionc.ceceeeeveureeeecrnenncne 131
Using the Connection.unwrap () Method ... 131
Marking Bad CONNECHIONS ...ttt sanes
Using Non-Transactional CONNECHIONSceuveeermeurieemernieemerirneenerneeenersesesesessesesessesenne
Using JDBC Transaction Isolation Levels

Allowing Non-Component Callers ... sessesseesesseseees

Restrictions and OPHMIZAtIONSc.cureiueirecurireeeirieieireeteesesees ettt esese e esesessesessssesesees

Disabling Stored Procedure Creation on Sybase ... 135

Contents

10 Using the TranSactioN SEIVICEcccovoviieieieiciceieceeee et asans 137
TTansaction SCOPEccuiimiiciiiicii s 138
Configuring the Transaction SEIVICEcoweveuriureeeieirieretreieiceerseeressesessesseseeeessessesessessesessennes 139
The Transaction Manager, the Transaction Synchronization Registry, and
USErTranSaCTLoN ..o nn 139

11 Using the Java Naming and Directory Interfaceccccoooeeieninnenecinnccnsisess s 141
Accessing the Naming CONtEXEcueueurreuniurreereuriuereiienieeseesesessessesessesstssssessessesessessesessesessssesees 141

GlODAL JNDI NAITIESocvvevreieieieriereretesseteeseesesesesesssssssssesesesessssasassesesesessssasassesesesessssasasseses 142
Usinga Custom jndi.properties File ... eseseseseseeeneseene 142

Mapping References

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Tables

TABLE 2-1 Sun GlassFish Enterprise Server Class Loaders
TABLE 7-1 URL Fields for Servlets Within an Application
TABLE 7-2 SSIServiet init-param Valies ... seeenes
TABLE 7-3 CGIServiet init-paramValues ... oo sesenene
TABLE 9-1 Transaction ISOlation LEVELScccveeuiverereieiereceeiereeieeeeeee e

10

Preface

This Developer's Guide describes how to create and run Java™ Platform, Enterprise Edition
(Java EE platform) applications that follow the open Java standards model for Java EE
components and APIs in the Sun GlassFish™ Enterprise Server environment. Topics include
developer tools, security, and debugging. This book is intended for use by software developers
who create, assemble, and deploy Java EE applications using Sun GlassFish servers and
software.

This preface contains information about and conventions for the entire Sun GlassFish
Enterprise Server documentation set.

The following topics are addressed here:

= “Enterprise Server Documentation Set” on page 11

= “Related Documentation” on page 13

“Typographic Conventions” on page 13

“Symbol Conventions” on page 14

“Default Paths and File Names” on page 15
“Documentation, Support, and Training” on page 15
= “Searching Sun Product Documentation” on page 15
= “Third-Party Web Site References” on page 16

“Sun Welcomes Your Comments” on page 16

Enterprise Server Documentation Set

The Enterprise Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Enterprise Server documentation is
http://docs.sun.com/coll/1343.7. For an introduction to Enterprise Server, refer to the
books in the order in which they are listed in the following table.

http://docs.sun.com/coll/1343.7

TABLEP-1 Books in the Enterprise Server Documentation Set
BookTitle Description
Release Notes Provides late-breaking information about the software and the

documentation. Includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDK™), and
database drivers.

Quick Start Guide

Explains how to get started with the Enterprise Server product.

Installation Guide

Explains how to install the software and its components.

Application Deployment Guide

Explains how to assemble and deploy applications to the Enterprise Server
and provides information about deployment descriptors.

Developer’s Guide

Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the Enterprise
Server. These applications follow the open Java standards model for Java EE
components and APIs. This guide provides information about developer
tools, security, and debugging.

Add-On Component

Explains how to use published interfaces of Enterprise Server to develop

Development Guide add-on components for Enterprise Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for Enterprise Server.

RESTful Web Services Explains how to develop Representational State Transfer (RESTful) web

Developer’s Guide services for Enterprise Server.

Getting Started With JRuby on
Rails for Sun GlassFish
Enterprise Server

Explains how to develop Ruby on Rails applications for deployment to
Enterprise Server.

Getting Started With Project
jMaki for Sun GlassFish
Enterprise Server

Explains how to use the jMaki framework to develop Ajax-enabled web
applications that are centered on JavaScript™ technology for deployment to
Enterprise Server.

Roadmap to the Java EE 5 Explains which information in the Java EE 5 Tutorial is relevant to users of
Tutorial the v3 Prelude release of the Enterprise Server.
Java EE 5 Tutorial Explains how to use Java EE 5 platform technologies and APIs to develop

Java EE applications.

Java WSIT Tutorial

Explains how to develop web applications by using the Web Service
Interoperability Technologies (WSIT). The tutorial focuses on developing
web service endpoints and clients that can interoperate with Windows
Communication Foundation (WCF) endpoints and clients.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4836
http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4496
http://docs.sun.com/doc/820-6583
http://docs.sun.com/doc/820-6583
http://docs.sun.com/doc/820-4867
http://docs.sun.com/doc/820-4867
http://docs.sun.com/doc/820-4926
http://docs.sun.com/doc/820-4926
http://docs.sun.com/doc/820-4926
http://docs.sun.com/doc/820-4868
http://docs.sun.com/doc/820-4868
http://docs.sun.com/doc/820-4868
http://docs.sun.com/doc/820-5625
http://docs.sun.com/doc/820-5625
http://docs.sun.com/doc/819-3669
http://docs.sun.com/doc/820-1072

Preface

TABLEP-1 Books in the Enterprise Server Documentation Set (Continued)
BookTitle Description
Administration Guide Explains how to configure, monitor, and manage Enterprise Server

subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online

help.
Administration Reference Describes the format of the Enterprise Server configuration file, domain.xml.
Troubleshooting Guide Describes common problems that you might encounter when using

Enterprise Server and how to solve them.

Reference Manual Provides reference information in man page format for Enterprise Server
administration commands, utility commands, and related concepts.

Related Documentation

A Javadoc™ tool reference for packages that are provided with the Enterprise Server is located at
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html. Additionally, the
following resources might be useful:

= TheJava EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
® The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information about creating enterprise applications in the NetBeans™ Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/60/index.html.

For information about the Java DB for use with the Enterprise Server, see
http://developers.sun.com/javadb/.

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-2 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer

Use 1s -a to list all files.
output

machine name% you have mail.

http://docs.sun.com/doc/820-4495
http://docs.sun.com/doc/820-4497/asadmin-1m?a=view
http://docs.sun.com/doc/820-4507
http://docs.sun.com/doc/820-6823
http://docs.sun.com/doc/820-4497
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/60/index.html
http://developers.sun.com/javadb/

Preface

TABLEP-2 Typographic Conventions (Continued)
Typeface Meaning Example
AaBbCc123 What you type, contrasted with onscreen ~ machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User’s Guide.

emphasized (note that some emphasized

items appear bold online) A cache s a copy that is stored locally.

Do not save the file.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-3 Symbol Conventions

Symbol Description Example Meaning

[1 Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{1} Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${ } Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun.javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

- Indicates menu item File - New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

14 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Preface

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

TABLE P-4 Default Paths and File Names

Placeholder

Description

Default Value

as-install

Represents the base installation directory for
Enterprise Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the Solaris™ operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3-prelude/glassfish
Windows, all installations:

SystemDrive:\glassfishv3-prelude\glassfish

domain-root-dir

Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir

Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

= Documentation (http://www.sun.com/documentation/)
= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Searching Sun Product Documentation

Besides searching Sun product documentation from the docs.sun.com™ web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun. com in place of docs. sun. comin the search field.

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Preface

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments

16

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-4496.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com

PART I

Development Tasks and Tools

18

L K R 4 CHAPTER 1

Setting Up a Development Environment

This chapter gives guidelines for setting up an application development environment in the Sun
GlassFish™ Enterprise Server. Setting up an environment for creating, assembling, deploying,
and debugging your code involves installing the mainstream version of the Enterprise Server
and making use of development tools. In addition, sample applications are available. These
topics are covered in the following sections:

= “Installing and Preparing the Server for Development” on page 19
= “The GlassFish Project” on page 20
= “Development Tools” on page 20

Installing and Preparing the Server for Development

For more information about stand-alone Enterprise Server installation, see the Sun GlassFish
Enterprise Server v3 Prelude Installation Guide.

The following components are included in the full installation.
= JDK
= Enterprise Server core

= Java Platform, Standard Edition (Java SE) 6

= Java EE 6 compliant application server

= Administration Console

= asadmin utility

= Other development and deployment tools

= Java DB database, based on the Derby database from Apache
(http://db.apache.org/derby/manuals)

The NetBeans™ Integrated Development Environment (IDE) bundles the GlassFish edition of
the Enterprise Server, so information about this IDE is provided as well.

http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-5968
http://db.apache.org/derby/manuals
http://db.apache.org/derby/manuals

The GlassFish Project

After you have installed Enterprise Server, you can further optimize the server for development
in these ways:

= Locate utility classes and libraries so they can be accessed by the proper class loaders. For
more information, see “Using the Common Class Loader” on page 27.

= Set up debugging. For more information, see Chapter 3, “Debugging Applications”

= Configure the Virtual Machine for the Java™ platform (JVM™ software). For more
information, see Chapter 4, “Administering the Virtual Machine for the Java Platform,” in
Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

The GlassFish Project

Enterprise Server v3 Prelude is developed through the GlassFish project open-source
community athttps://glassfish.dev.java.net/. The GlassFish project provides a
structured process for developing the Enterprise Server platform that makes the new features of
Java EE 5 available faster, while maintaining the most important feature of Java EE:
compatibility. It enables Java developers to access the Enterprise Server source code and to
contribute to the development of the Enterprise Server. The GlassFish project is designed to
encourage communication between Sun engineers and the community.

Development Tools

The following general tools are provided with the Enterprise Server:

® “The asadmin Command” on page 20
= “The Administration Console” on page 21

The following development tools are provided with the Enterprise Server or downloadable
from Sun:

= “The Migration Tool” on page 21
= “The NetBeans IDE” on page 21

The following third-party tools might also be useful:

= “The Eclipse IDE” on page 21
= “Debugging Tools” on page 22
= “Profiling Tools” on page 22

The asadmin Command

The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

20 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4495/ablwj?a=view
http://docs.sun.com/doc/820-4495/ablwj?a=view
https://glassfish.dev.java.net/
http://docs.sun.com/doc/820-4497

DevelopmentTools

The asadmin command is located in the as-install/bin directory. Type asadmin help for a list
of subcommands.

The Administration Console

The Administration Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Administration
Console, click the Help button in the Administration Console. This displays the Enterprise
Server online help.

To access the Administration Console, type http://host: 4848 in your browser. The host is the
name of the machine on which the Enterprise Server is running. By default, the host is
localhost. For example:

http://localhost:4848

The Migration Tool

The Migration Tool converts and reassembles Java EE applications and modules developed on
other application servers. This tool also generates a report listing how many files are
successfully and unsuccessfully migrated, with reasons for migration failure. For more
information and to download the Migration Tool, see
http://java.sun.com/j2ee/tools/migration/index.html.

The NetBeans IDE

The NetBeans IDE allows you to create, assemble, and debug code from a single, easy-to-use
interface. The GlassFish edition of the Enterprise Server is bundled with the NetBeans 6.1 IDE.
To download the NetBeans IDE, see http://www.netbeans . org. This site also provides
documentation on how to use the NetBeans IDE with the bundled Enterprise Server.

You can also use the Enterprise Server with the Sun Java Studio 8 software, which is built on the
NetBeans IDE. For more information, see
http://developers.sun.com/prodtech/javatools/jsenterprise/.

The Eclipse IDE

A plug-in for the Eclipse IDE is available at http: //glassfishplugins.dev. java.net/. This
site also provides documentation on how to register the Enterprise Server and use Sun-specific
deployment descriptors.

Chapter 1 « Setting Up a Development Environment 21

http://java.sun.com/j2ee/tools/migration/index.html
http://www.netbeans.org
http://developers.sun.com/prodtech/javatools/jsenterprise/
http://glassfishplugins.dev.java.net/

DevelopmentTools

Debugging Tools

You can use several debugging tools with the Enterprise Server. For more information, see
Chapter 3, “Debugging Applications.”

Profiling Tools

You can use several profilers with the Enterprise Server. For more information, see “Profiling
Tools” on page 31.

22 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

CHAPTER 2

Class Loaders

Understanding Enterprise Server class loaders can help you determine where to place
supporting JAR and resource files for your modules and applications. For general information
about J2SE class loaders, see Understanding Network Class Loaders
(http://java.sun.com/developer/technicalArticles/Networking/classloaders/).

In a JVM implementation, the class loaders dynamically load a specific Java class file needed for
resolving a dependency. For example, when an instance of java.util.Enumeration needs to be
created, one of the class loaders loads the relevant class into the environment. This section
includes the following topics:

“The Class Loader Hierarchy” on page 24

“Delegation” on page 25

“Using the Java Optional Package Mechanism” on page 25

Using the Endorsed Standards Override Mechanism” on page 25
“Class Loader Universes” on page 25

“Application-Specific Class Loading” on page 26

“Circumventing Class Loader Isolation” on page 27

«

Note - For GlassFish v3 Prelude, EJB modules are not supported unless the optional EJB
container add-on component is downloaded from the Update Tool. Web services are not
supported unless the optional Metro (JSR 109) add-on component is downloaded from the
Update Tool. For information about the Update Tool, see the Sun GlassFish Enterprise Server v3
Prelude Installation Guide.

23

http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://java.sun.com/developer/technicalArticles/Networking/classloaders/
http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-5968

The Class Loader Hierarchy

The Class Loader Hierarchy

Class loaders in the Enterprise Server runtime follow a delegation hierarchy that is fully
described in Table 2-1.

TABLE2-1 Sun GlassFish Enterprise Server Class Loaders

Class Loader

Description

Bootstrap

The Bootstrap class loader loads the basic runtime classes provided by the JVM
software.

Extension

The Extension class loader loads classes from JAR files present in the system extensions
directory, domain-dir/1ib/ext. It is parent to the Public API class loader. See “Using
the Java Optional Package Mechanism” on page 25.

Public API

The Public API class loader makes available all classes specifically exported by the
Enterprise Server runtime for use by deployed applications. This includes, but is not
limited to, Java EE APIs and other Sun GlassFish APIs. It is parent to the Common class
loader.

Common

The Common class loader loads JAR files in the as-install/1ib directory, then classes in
the domain-dir/1ib/classes directory, followed by JAR files in the domain-dir/1ib
directory. Using domain-dir/1ib/classes or domain-dir/1ib is recommended
whenever possible, and required for custom login modules and realms. It is parent to the
Connector class loader. See “Using the Common Class Loader” on page 27.

Connector

The Connector class loader is a single class loader instance that loads individually
deployed connector modules, which are shared across all applications. It is parent to the
Applib class loader.

Applib

The Applib class loader loads the library classes, specified during deployment, for a
specific enabled module; see “Application-Specific Class Loading” on page 26. One
instance of this class loader is present in each class loader universe; see “Class Loader
Universes” on page 25. It is parent to the Archive class loader.

When multiple deployed applications use the same library, they share the same instance
of the library. One library cannot reference classes from another library.

Archive

The Archive class loader loads classes from the WAR and JAR files or directories (for
directory deployment) of modules deployed to the Enterprise Server. This class loader
also loads any application-specific classes generated by the Enterprise Server runtime,
such as stub classes or servlets generated by JSP pages.

24 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Class Loader Universes

Delegation

Note that the class loader hierarchy is not a Java inheritance hierarchy, but a delegation
hierarchy. In the delegation design, a class loader delegates class loading to its parent before
attempting to load a class itself. If the parent class loader cannot load a class, the class loader
attempts to load the class itself. In effect, a class loader is responsible for loading only the classes
not available to the parent. Classes loaded by a class loader higher in the hierarchy cannot refer
to classes available lower in the hierarchy.

Using the Java Optional Package Mechanism

Optional packages are packages of Java classes and associated native code that application
developers can use to extend the functionality of the core platform.

To use the Java optional package mechanism, copy the JAR files into the domain-dir/1ib/ext
directory, then restart the server.

For more information, see Optional Packages - An Overview
(http://java.sun.com/javase/6/docs/technotes/guides/extensions/extensions.html)
and Understanding Extension Class Loading
(http://java.sun.com/docs/books/tutorial/ext/basics/load.html).

Using the Endorsed Standards Override Mechanism

Endorsed standards handle changes to classes and APIs that are bundled in the JDK but are
subject to change by external bodies.

To use the endorsed standards override mechanism, copy the JAR files into the
domain-dir/1ib/endorsed directory, then restart the server.

For more information and the list of packages that can be overridden, see Endorsed Standards
Override Mechanism
(http://java.sun.com/javase/6/docs/technotes/guides/standards/).

Class Loader Universes

Access to components within modules installed on the server occurs within the context of
isolated class loader universes, each of which has its own Applib and Archive class loaders.

= Individually Deployed Module Universe - Each individually deployed EJB JAR or web
WAR has its own class loader universe, which loads the classes in the module.

A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in one of
the following locations:

Chapter2 - Class Loaders 25

http://java.sun.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://java.sun.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://java.sun.com/docs/books/tutorial/ext/basics/load.html
http://java.sun.com/docs/books/tutorial/ext/basics/load.html
http://java.sun.com/javase/6/docs/technotes/guides/standards/
http://java.sun.com/javase/6/docs/technotes/guides/standards/
http://java.sun.com/javase/6/docs/technotes/guides/standards/

Application-Specific Class Loading

= A directory pointed to by the Libraries field or - -l1ibraries option used during deployment

= A directory pointed to by the module’s classpath; for example, a web module’s classpath
includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/lib

Application-Specific Class Loading

You can specify module-specific library classes during deployment in one of the following ways:

= Use the Administration Console. Open the Applications component, then go to the page for
the type of module. Select the Deploy button. Type the comma-separated paths in the
Libraries field. For details, click the Help button in the Administration Console.

= Use the asadmin deploy command with the - -libraries option and specify
comma-separated paths. For details, see the Sun GlassFish Enterprise Server v3 Prelude
Reference Manual.

Application libraries are included in the Applib class loader. Paths to libraries can be relative or
absolute. A relative path is relative to domain-dir/1ib/applibs. If the path is absolute, the path
must be accessible to the domain administration server (DAS).

If multiple modules refer to the same libraries, classes in those libraries are automatically
shared. This can reduce the memory footprint and allow sharing of static information.
However, modules using application-specific libraries are not portable. Other ways to make
libraries available are described in “Circumventing Class Loader Isolation” on page 27.

One library cannot reference classes from another library.

For general information about deployment, see the Sun GlassFish Enterprise Server v3 Prelude
Application Deployment Guide.

Note - If you see an access control error message when you try to use a library, you may need to
grant permission to the library in the server.policy file. For more information, see “Changing
Permissions for an Application” on page 49.

26 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502

Circumventing Class Loader Isolation

Circumventing Class Loader Isolation

Since each module class loader universe is isolated, a module cannot load classes from another
module. This prevents two similarly named classes in different modules from interfering with
each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules, you
can include the relevant path to the required classes. See “Using the Common Class Loader” on
page 27.

Using the Common Class Loader

To use the Common class loader, copy the JAR files into the domain-dir/1ib or as-install/1ib
directory or copy the . class files into the domain-dir/1ib/classes directory, then restart the
server.

Using the Common class loader makes a module accessible to all modules deployed on servers
that share the same configuration.

For example, using the Common class loader is the reccommended way of adding JDBC drivers
to the Enterprise Server. For a list of the JDBC drivers currently supported by the Enterprise
Server, see the Sun GlassFish Enterprise Server v3 Prelude Release Notes. For configurations of
supported and other drivers, see “Configuration Specifics for JDBC Drivers” in Sun GlassFish
Enterprise Server v3 Prelude Administration Guide.

To activate custom login modules and realms, place the JAR files in the domain-dir/1ib
directory or the class files in the domain-dir/1ib/classes directory, then restart the server.

Chapter2 - Class Loaders 27

http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4495/beamw?a=view

28

L K R 4 CHAPTER 3

Debugging Applications

This chapter gives guidelines for debugging applications in the Sun GlassFish Enterprise Server.
It includes the following sections:

“Enabling Debugging” on page 29

“JPDA Options” on page 30

“Generating a Stack Trace for Debugging” on page 31
“Enabling Verbose Mode” on page 31

“Profiling Tools” on page 31

Enabling Debugging

When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the - -debug option as follows:

asadmin start-domain --user adminuser --debug [domain-name]

You can then attach to the server from the Java Debugger (jdb) at its default Java Platform
Debugger Architecture (JPDA) port, which is 9009. For example, for UNIX® systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

For more information about the jdb debugger, see the following links:

= Java Platform Debugger Architecture - The Java Debugger:
http://java.sun.com/products/jpda/doc/soljdb.html

= Java Platform Debugger Architecture - Connecting with JDB:
http://java.sun.com/products/jpda/doc/conninv.html#JDB

29

http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/conninv.html#JDB

JPDA Options

SeeAlso

Enterprise Server debugging is based on the JPDA. For more information, see “/PDA Options”
on page 30.

You can attach to the Enterprise Server using any JPDA compliant debugger, including that of
NetBeans (http://www.netbeans.org), Sun Java Studio, JBuilder, Eclipse, and so on.

You can enable debugging even when the application server is started without the - -debug
option. This is useful if you start the application server from the Windows Start Menu, or if you
want to make sure that debugging is always turned on.

To Set the Server to Automatically Start Up in Debug
Mode

Use the Administration Console. Select the Enterprise Server component and the JVM Settings
tab.

Check the Debug Enabled box.

To specify a different port (from 9009, the default) to use when attaching the JVM software to a
debugger, specify address= port-numberin the Debug Options field.

To add JPDA options, add any desired JPDA debugging options in Debug Options. See “JPDA
Options”on page 30.

For details, click the Help button in the Administration Console from the JVM Settings page.

JPDA Options

30

The default JPDA options in Enterprise Server are as follows:

-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,address=9009
For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM software starts in suspended mode and stays suspended
until a debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM
software starts.

To specify a different port (from 9009, the default) to use when attaching the JVM software to a
debugger, specify address=port-number.

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://www.netbeans.org
http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Profiling Tools

Generating a Stack Trace for Debugging

To generate a Java stack trace for debugging, use the asadmin generate- jvm-report

- -type=thread command. The stack trace goes to the domain-dir/logs/server.log file and
also appears on the command prompt screen. For more information about the asadmin
generate-jvm-report command, see the Sun GlassFish Enterprise Server v3 Prelude Reference
Manual.

Enabling Verbose Mode

To have the server logs and messages printed to System.out on your command prompt screen,
you can start the server in verbose mode. This makes it easy to do simple debugging using print
statements, without having to view the server. log file every time.

To start the server in verbose mode, use the - -verbose option as follows:
asadmin start-domain --user adminuser --verbose [domain-name]

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on
UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX
platforms, you can also print a thread dump using the jstack command (see
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html) or the
command kill -QUIT process_id.

Profiling Tools

You can use a profiler to perform remote profiling on the Enterprise Server to discover
bottlenecks in server-side performance. This section describes how to configure these profilers
for use with the Enterprise Server:

= “The NetBeans Profiler” on page 32
= “The HPROF Profiler” on page 32
= “The JProbe Profiler” on page 33

Information about comprehensive monitoring and management support in the Java™ 2
Platform, Standard Edition (J2SE™ platform) is available at
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html.

Chapter3 - Debugging Applications 31

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html

Profiling Tools

32

The NetBeans Profiler

For information on how to use the NetBeans profiler, see http://www.netbeans.organd
http://blogs.sun.com/
roller/page/bhavani?entry=analyzing the performance of java.

The HPROF Profiler

The Heap and CPU Profiling Agent (HPROF) is a simple profiler agent shipped with the Java 2
SDK. It is a dynamically linked library that interacts with the Java Virtual Machine Profiler
Interface (JVMPI) and writes out profiling information either to a file or to a socket in ASCII or
binary format.

HPROF can monitor CPU usage, heap allocation statistics, and contention profiles. In addition,
it can also report complete heap dumps and states of all the monitors and threads in the Java
virtual machine. For more details on the HPROF profiler, see the technical article at
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html.

After HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

To Use HPROF Profiling on UNIX

Use the Administration Console. Select the Enterprise Server component and the JVM Settings
tab. Then select the Profiler tab.

Edit the following fields:

m Profiler Name - hprof

® Profiler Enabled - true

= (Classpath - (leave blank)

= Native Library Path - (leave blank)

= JVM Option - Select Add, type the HPROF JVM option in the Value field, then check its
box. The syntax of the HPROF JVM option is as follows:

-Xrunhprof[:helpl|[:param=value, param2=value2, ...]

Here is an example of params you can use:
-Xrunhprof:file=log.txt, thread=y,depth=3

The file parameter determines where the stack dump is written.

Using help lists parameters that can be passed to HPROEF. The output is as follows:

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://www.netbeans.org
http://blogs.sun.com/roller/page/bhavani?entry=analyzing_the_performance_of_java
http://blogs.sun.com/roller/page/bhavani?entry=analyzing_the_performance_of_java
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

Profiling Tools

3

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]
Option Name and Value Description Default
heap=dump|sites|all heap profiling all
cpu=samples|old CPU usage off
format=a|b ascii or binary output a
file=<file> write data to file java.hprof
(.txt for ascii)
net=<host>:<port> send data over a socket write to file
depth=<size> stack trace depth 4
cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? vy
thread=y|n thread in traces? n
doe=y|n dump on exit? y

Note - Do not use help in the JVM Option field. This parameter prints text to the standard
output and then exits.

The help output refers to the parameters as options, but they are not the same thing as JVM
options.

Restart the Enterprise Server.
This writes an HPROF stack dump to the file you specified using the file HPROF parameter.

The JProbe Profiler

Information about JProbe™ from Sitraka is available at http: //www.quest.com/jprobe/.

After JProbe is installed using the following instructions, its libraries are loaded into the server
process.

To Enable Remote Profiling With JProbe

Install JProbe 3.0.1.1.

For details, see the JProbe documentation.
Configure Enterprise Server using the Administration Console:

a. Selectthe Enterprise Server component and the JVM Settings tab. Then select the Profiler
tab.

b. Editthefollowing fields before selecting Save and restarting the server:

Chapter3 - Debugging Applications 33

http://www.quest.com/jprobe/

Profiling Tools

34

Profiler Name — jprobe

Profiler Enabled - true

Classpath - (leave blank)

Native Library Path — JProbe-dir/profiler

JVM Option - For each of these options, select Add, type the option in the Value field,
then check its box

-Xbootclasspath/p:JProbe-dir/profiler/jpagent.jar
-Xrunjprobeagent

-Xnoclassgc

Note - If any of the configuration options are missing or incorrect, the profiler might
experience problems that affect the performance of the Enterprise Server.

When the server starts up with this configuration, you can attach the profiler.

Set the following environment variable:
JPROBE_ARGS_0=-jp_input=JPL-file-path

See Step 6 for instructions on how to create the JPL file.

Start the server.

Launch the jpprofiler and attach to Remote Session. The default portis 4444,

Create the JPL file using the JProbe Launch Pad. Here are the required settings:

a. Select Server Side for the type of application.

b. On the Program tab, provide the following details:

Target Server — other-server

Server home Directory — as-install

Server class File — com.sun.enterprise.server.J2EERunner

Working Directory - as-install

Classpath - as-install/lib/appserv-rt.jar

Source File Path — source-code-dir (in case you want to get the line level details)
Server class arguments — (optional)

Main Package - com.sun.enterprise.server

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Profiling Tools

You must also set VM, Attach, and Coverage tabs appropriately. For further details, see the
JProbe documentation. After you have created the JPL file, use this an input to
JPROBE_ARGS 0.

Chapter3 - Debugging Applications 35

36

PART 11

Developing Applications and Application
Components

37

38

CHAPTER 4

Securing Applications

This chapter describes how to write secure Java EE applications, which contain components
that perform user authentication and access authorization for the business logic of Java EE
components.

For information about administrative security for the Enterprise Server, see Chapter 6,
“Administering System Security,” in Sun GlassFish Enterprise Server v3 Prelude Administration
Guide.

For general information about Java EE security, see “Chapter 29: Introduction to Security in
Java EE” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

This chapter contains the following sections:

“Security Goals” on page 40

“Enterprise Server Specific Security Features” on page 40
“Container Security” on page 40

“Roles, Principals, and Principal to Role Mapping” on page 42
“Realm Configuration” on page 43

“JACC Support” on page 47

“Pluggable Audit Module Support” on page 47

“The server.policy File” on page 49

“Programmatic Login” on page 52

“User Authentication for Single Sign-on” on page 55

Note - For GlassFish v3 Prelude, EJB modules are not supported unless the optional EJB
container add-on component is downloaded from the Update Tool. Web services are not
supported unless the optional Metro (JSR 109) add-on component is downloaded from the
Update Tool. For information about the Update Tool, see the Sun GlassFish Enterprise Server v3
Prelude Installation Guide.

39

http://docs.sun.com/doc/820-4495/ablnk?a=view
http://docs.sun.com/doc/820-4495/ablnk?a=view
http://docs.sun.com/doc/820-4495/ablnk?a=view
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-5968

Security Goals

Security Goals

In an enterprise computing environment, there are many security risks. The goal of the Sun
GlassFish Enterprise Server is to provide highly secure, interoperable, and distributed
component computing based on the Java EE security model. Security goals include:

= Full compliance with the Java EE security model. This includes EJB and servlet role-based
authorization.

= Support for single sign-on across all Enterprise Server applications within a single security
domain.

= Support for several underlying authentication realms.

= Support for declarative security through Enterprise Server specific XML-based role
mapping.

= Support for Java Authorization Contract for Containers (JACC) pluggable authorization as
included in the Java EE specification and defined by Java Specification Request (JSR) 115
(http://www.jcp.org/en/jsr/detail?id=115).

= Support for Java™ Authentication Service Provider Interface for Containers as included in
the Java EE specification and defined by JSR 196
(http://www.jcp.org/en/jsr/detail?id=196).

= Support for Web Services Interoperability Technologies (WSIT) as described in The WSIT
Tutorial (https://wsit-docs.dev.java.net/releases/m5/).

Enterprise Server Specific Security Features

The Enterprise Server supports the Java EE security model, as well as the following features
which are specific to the Enterprise Server:

= Single sign-on across all Enterprise Server applications within a single security domain; see
“User Authentication for Single Sign-on” on page 55

= Programmatic login; see “Programmatic Login” on page 52

Container Security

The component containers are responsible for providing Java EE application security. The
container provides two security forms:

= “Declarative Security” on page 41
= “Programmatic Security” on page 42

Annotations (also called metadata) enable a declarative style of programming, and so
encompass both the declarative and programmatic security concepts. Users can specify

40 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
https://wsit-docs.dev.java.net/releases/m5/
https://wsit-docs.dev.java.net/releases/m5/

Container Security

information about security within a class file using annotations. When the application is
deployed, this information can either be used by or overridden by the application or module
deployment descriptor.

Declarative Security

Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the Java EE
application’s security structure, including security roles, access control, and authentication
requirements.

The Enterprise Server supports the deployment descriptors specified by Java EE and has
additional security elements included in its own deployment descriptors. Declarative security is
the application deployer’s responsibility. For more information about Sun-specific deployment
descriptors, see the Sun GlassFish Enterprise Server v3 Prelude Application Deployment Guide.

There are two levels of declarative security, as follows:

= “Application Level Security” on page 41
= “Component Level Security” on page 41

Application Level Security

For an individually deployed web or EJB module, you define roles using @eclareRoles
annotations or role-name elements in the Java EE deployment descriptor files web . xml or
ejb-jar.xml.

To map roles to principals and groups, define matching security-role-mapping elements in
the sun-ejb-jar.xml or sun-web.xml file for each role-name used by the application. For
more information, see “Roles, Principals, and Principal to Role Mapping” on page 42.

Component Level Security
Component level security encompasses web components and EJB components.
A secure web container authenticates users and authorizes access to a servlet or JSP by using the

security policy laid out in the servlet XML deployment descriptors (web.xml and sun-web. xml
files).

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml
files).

Chapter4 - Securing Applications 41

http://docs.sun.com/doc/820-4502

Roles, Principals, and Principal to Role Mapping

Programmatic Security

Programmatic security involves an EJB component or servlet using method calls to the security
API, as specified by the Java EE security model, to make business logic decisions based on the
caller or remote user’s security role. Programmatic security should only be used when
declarative security alone is insufficient to meet the application’s security model.

The Java EE specification defines programmatic security as consisting of two methods of the
EJB EJBContext interface and two methods of the servlet HttpServletRequest interface. The
Enterprise Server supports these interfaces as specified in the specification.

For more information on programmatic security, see the following:

m The Java EE Specification
® “Programmatic Login” on page 52

Roles, Principals, and Principal to Role Mapping

For applications, you define roles in @eclareRoles annotations or the Java EE deployment
descriptor file application.xml. You define the corresponding role mappings in the Enterprise
Server deployment descriptor file sun-application.xml. For individually deployed web or EJB
modules, you define roles in @eclareRoles annotations or the Java EE deployment descriptor
filesweb.xml or ejb-jar.xml. You define the corresponding role mappings in the Enterprise
Server deployment descriptor files sun-web.xml or sun-ejb-jar.xml.

For more information regarding Java EE deployment descriptors, see the Java EE Specification.
For more information regarding Enterprise Server deployment descriptors, see Appendix A,
“Deployment Descriptor Files,” in Sun GlassFish Enterprise Server v3 Prelude Application
Deployment Guide.

Each security-role-mapping element in the sun-application.xml, sun-web.xml, or
sun-ejb-jar.xml file maps a role name permitted by the application or module to principals
and groups. For example, a sun-web . xml file for an individually deployed web module might
contain the following:

<sun-web-app>
<security-role-mapping>
<role-name>manager</role-name>
<principal-name>jgarcia</principal-name>
<principal-name>mwebster</principal-name>
<group-name>team-leads</group-name>
</security-role-mapping>
<security-role-mapping>
<role-name>administrator</role-name>
<principal-name>dsmith</principal-name>
</security-role-mapping>
</sun-web-app>

42 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4502/beaqi?a=view
http://docs.sun.com/doc/820-4502/beaqi?a=view
http://docs.sun.com/doc/820-4502/beaqi?a=view

Realm Configuration

A role can be mapped to either specific principals or to groups (or both). The principal or group
names used must be valid principals or groups in the realm for the application or module. Note
that the role-name in this example must match the @DeclareRoles annotations or the
role-name in the security- role element of the corresponding web . xm1 file.

You can also specify a custom principal implementation class. This provides more flexibility in
how principals can be assigned to roles. A user's JAAS login module now can authenticate its
custom principal, and the authenticated custom principal can further participate in the
Enterprise Server authorization process. For example:

<security-role-mapping>
<role-name>administrator</role-name>
<principal-name class-name="CustomPrincipalImplClass">
dsmith
</principal-name>
</security-role-mapping>

You can specify a default principal and a default principal to role mapping, each of which
applies to the entire Enterprise Server. The default principal to role mapping maps group
principals to the same named roles. Web modules that omit the run-as element in web . xml use
the default principal. Applications and modules that omit the security-role-mapping element
use the default principal to role mapping. These defaults are part of the Security Service, which
you can access in the following ways:

= Inthe Administration Console, select the Security component under the relevant
configuration. For details, click the Help button in the Administration Console.

= Use the asadmin set command. For details, see the Sun GlassFish Enterprise Server v3
Prelude Reference Manual. For example, you can set the default principal as follows.

asadmin set --user adminuser server-config.security-service.default-principal=dsmith
asadmin set --user adminuser server-config.security-service.default-principal-password=secret

You can set the default principal to role mapping as follows.
asadmin set --user adminuser server-config.security-service.activate-default-principal-to-role-mapping=true
asadmin set --user adminuser server-config.security-service.mapped-principal-class=CustomPrincipalImplClass
Realm Configuration

This section covers the following topics:

“Supported Realms” on page 44

“How to Configure a Realm” on page 44

“How to Set a Realm for a Web Application or EJB Module” on page 44
“Creating a Custom Realm” on page 45

Chapter4 - Securing Applications 43

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Realm Configuration

Supported Realms

The following realms are supported in the current release of the Enterprise Server:

= file - Stores user information in a file. This is the default realm when you first install the
Enterprise Server.

= ldap - Stores user information in an LDAP directory.
® jdbc - Stores user information in a database.

In the JDBC realm, the server gets user credentials from a database. The Enterprise Server
uses the database information and the enabled JDBC realm option in the configuration file.
For digest authentication, a JDBC realm should be created with jdbcDigestRealmas the
JAAS context.

= certificate - Setsup the user identity in the Enterprise Server security context, and
populates it with user data obtained from cryptographically verified client certificates.

Note - The solaris realm is not supported in GlassFish v3 Prelude.

For information about configuring realms, see “How to Configure a Realm” on page 44.

How to Configure a Realm

You can configure a realm in one of these ways:

= Inthe Administration Console, open the Security component under the relevant
configuration and go to the Realms page. For details, click the Help button in the
Administration Console.

= Use the asadmin create-auth-realm command to configure realms on local servers. For
details, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

How to Set a Realm for aWeb Application or EJB
Module

The following deployment descriptor elements have optional realmor realm-name data
subelements or attributes that override the domain’s default realm:

= web-app element in web.xml
® as-contextelementin sun-ejb-jar.xml

For more information about the deployment descriptor files and elements, see Appendix A,
“Deployment Descriptor Files,” in Sun GlassFish Enterprise Server v3 Prelude Application
Deployment Guide.

44 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4502/beaqi?a=view
http://docs.sun.com/doc/820-4502/beaqi?a=view
http://docs.sun.com/doc/820-4502/beaqi?a=view

Realm Configuration

Creating a Custom Realm

You can create a custom realm by providing a custom Java Authentication and Authorization
Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login
modules are not suitable for use with the Enterprise Server.

To activate the custom login modules and realms, place the JAR files in the domain-dir/1ib
directory or the class files in the domain-dir/1ib/classes directory, then restart the server. For
more information about class loading in the Enterprise Server, see Chapter 2, “Class Loaders”

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
JAAS provides a pluggable and extensible framework for programmatic user authentication
and authorization. JAAS is a core APTand an underlying technology for Java EE security
mechanisms. For more information about JAAS, refer to the JAAS specification for Java SDK,
availableathttp://java.sun.com/products/jaas/.

For general information about realms and login modules, see “Chapter 29: Introduction to
Security in Java EE” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

For Javadoc tool pages relevant to custom realms, go to
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html and click on the
com.sun.appserv.security package.

Custom login modules must extend the
com.sun.appserv.security.AppservPasswordLoginModule class. This class implements
javax.security.auth.spi.LoginModule. Custom login modules must not implement
LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not
implement any of the other methods, such as login(), logout (), abort(), commit (), or
initialize(). Default implementations are provided in AppservPasswordLoginModule which
hook into the Enterprise Server infrastructure.

The custom login module can access the following protected object fields, which it inherits from
AppservPasswordLoginModule. These contain the user name and password of the user to be
authenticated:

protected String _username;
protected String password;

The authenticateUser () method must end with the following sequence:

Chapter4 - Securing Applications 45

http://java.sun.com/products/jaas/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html

Realm Configuration

46

String[] grpList;

// populate grpList with the set of groups to which

// _username belongs in this realm, if any

commitUserAuthentication(username, password,
_currentRealm, grpList);

Custom realms must extend the com. sun.appserv.security.AppservRealm class and
implement the following methods:

public void init(Properties props) throws BadRealmException,
NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm in domain.xml. The realm can do any
initialization it needs in this method. If the method returns without throwing an exception, the
Enterprise Server assumes that the realm is ready to service authentication requests. If an
exception is thrown, the realm is disabled.

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this
realm.

public abstract Enumeration getGroupNames(String username) throws
InvalidOperationException, NoSuchUserException

This method returns an Enumeration (of String objects) enumerating the groups (if any) to
which the given username belongs in this realm.

Note - The array passed to the commitUseAuthentication method should be newly created and
otherwise unreferenced. This is because the group name array elements are set to null after
authentication as part of cleanup. So the second time your custom realm executes it returns an
array with null elements.

Ideally, your custom realm should not return member variables from the authenticate
method. It should return local variables as the default JDBCRealm does. Your custom realm can
create alocal String array in its authenticate method, copy the values from the member
variables, and return the String array. Or it can use clone on the member variables.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Pluggable Audit Module Support

JACC Support

JACC (Java Authorization Contract for Containers) is part of the Java EE specification and
defined by JSR 115 (http://www.jcp.org/en/jsr/detail?id=115). JACC defines an interface
for pluggable authorization providers. Specifically, JACC is used to plug in the Java policy
provider used by the container to perform Java EE caller access decisions. The Java policy
provider performs Java policy decisions during application execution. This provides third
parties with a mechanism to develop and plug in modules that are responsible for answering
authorization decisions during Java EE application execution. The interfaces and rules used for
developing JACC providers are defined in the JACC 1.0 specification.

The Enterprise Server provides a simple file-based JACC-compliant authorization engine as a
default JACC provider, named default. An alternate provider named simple is also provided.
To configure an alternate provider using the Administration Console, open the Security
component under the relevant configuration, and select the JACC Providers component. For
details, click the Help button in the Administration Console.

Pluggable Audit Module Support

Audit modules collect and store information on incoming requests (servlets, EJB components)
and outgoing responses. You can create a custom audit module. This section covers the
following topics:

= “Configuring an Audit Module” on page 47
= “The AuditModule Class” on page 47

For additional information about audit modules, see Audit Callbacks
(http://developers.sun.com/
prodtech/appserver/reference/techart/ws mgmt3.html#8.2).

Configuring an Audit Module

To configure an audit module, you can perform one of the following tasks:

= To specify an audit module using the Administration Console, open the Security
component under the relevant configuration, and select the Audit Modules component. For
details, click the Help button in the Administration Console.

= You can use the asadmin create-audit-module command to configure an audit module.
For details, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

The AuditModule Class

You can create a custom audit module by implementing a class that extends
com.sun.appserv.security.audit.AuditModule.

Chapter4 - Securing Applications 47

http://www.jcp.org/en/jsr/detail?id=115
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt3.html#8.2
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt3.html#8.2
http://developers.sun.com/prodtech/appserver/reference/techart/ws_mgmt3.html#8.2
http://docs.sun.com/doc/820-4497

Pluggable Audit Module Support

For Javadoc tool pages relevant to audit modules, go to
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html and click on the
com.sun.appserv.security.audit package.

The AuditModule class provides default “no-op” implementations for each of the following
methods, which your custom class can override.

public void init(Properties props)

The preceding method is invoked during server startup when the audit module is initially
loaded. The props argument contains the properties defined for this module in domain.xml.
The module can do any initialization it needs in this method. If the method returns without
throwing an exception, the Enterprise Server assumes the module realm is ready to service audit
requests. If an exception is thrown, the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for the
given user. The success flag indicates whether the authorization was granted or denied.

public void webInvocation(String user, HttpServletRequest req, String type, boolean success)

48

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is the
standard HttpServletRequest object for this request. The type string is one of
hasUserDataPermission or hasResourcePermission (see JSR 115
(http://www.jcp.org/en/jsr/detail?id=115)).

public void ejbInvocation(String user, String ejb, String method, boolean success)

This method is invoked when an EJB container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The ejb and method
strings describe the EJB component and its method that is being invoked.

public void webServicelInvocation(String uri, String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
servlet. The uri is the URL representation of the web service endpoint. The endpoint is the
name of the endpoint representation. The success flag indicates whether the authorization was
granted or denied.

public void ejbAsWebServiceInvocation(String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
stateless session bean. The endpoint is the name of the endpoint representation. The success
flag indicates whether the authorization was granted or denied.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115

The server.policy File

The server.policyFile

Each Enterprise Server domain has its own global J2SE policy file, located in
domain-dir/config. The file is named server.policy.

The Enterprise Server is a Java EE compliant application server. As such, it follows the
requirements of the Java EE specification, including the presence of the security manager (the
Java component that enforces the policy) and a limited permission set for Java EE application
code.

This section covers the following topics:

= “Default Permissions” on page 49
= “Changing Permissions for an Application” on page 49
= “Enabling and Disabling the Security Manager” on page 51

Default Permissions

Internal server code is granted all permissions. These are covered by the AllPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously. The Enterprise Server does not
distinguish between EJB and web module permissions. All code is granted the minimal set of
web component permissions (which is a superset of the EJB minimal set). Do not modify these
entries.

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. Java EE
application developers must not rely on these additional permissions. In some cases, deleting
these permissions might be appropriate. For example, one additional permission is granted
specifically for using connectors. If connectors are not used in a particular domain, you should
remove this permission, because it is not otherwise necessary.

Changing Permissions for an Application

The default policy for each domain limits the permissions of Java EE deployed applications to
the minimal set of permissions required for these applications to operate correctly. Do not add
extra permissions to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the applications requiring the extra
permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you
can add the custom permissions that your applications need. The com. sun.aas.instanceRoot
variable refers to the domain-dir. For example:

Chapter4 - Securing Applications 49

The server.policy File

50

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/-" {

}

You can add permissions to stub code with the following grant block:

grant codeBase "file:${com.sun.aas.instanceRoot}/generated/-" {

}

In general, you should add extra permissions only to the applications or modules that require
them, not to all applications deployed to a domain. For example:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-" {

}

For a module:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyModule/-" {

Note - Deployment directories may change between Enterprise Server releases.

An alternative way to add permissions to a specific application or module is to edit the
granted.policy file for that application or module. The granted. policy file islocated in the
domain-dir/generated/policy/app-or-module-name directory. In this case, you add
permissions to the default grant block. Do not delete permissions from this file.

When the application server policy subsystem determines that a permission should not be
granted, it logs a server.policy message specifying the permission that was not granted and
the protection domains, with indicated code source and principals that failed the protection
check. For example, here is the first part of a typical message:

[#]2005-12-17T16:16:32.671-0200| INFO|sun-appserver-pe9.1]|
javax.enterprise.system.core.security| ThreadID=14; ThreadName=Thread-31; |
JACC Policy Provider: PolicyWrapper.implies, context(null)-
permission((java.util.PropertyPermission java.security.manager write))
domain that failed(ProtectionDomain
(file:/E:/glassfish/domains/domainl/applications/cejug-clfds/ ...)

Granting the following permission eliminates the message:

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

The server.policy File

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/cejug-clfds/-" {
permission java.util.PropertyPermission "java.security.manager", "write";

}

Note - Do notadd java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still get the
performance overhead associated with it.

Asnoted in the Java EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As alast resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log.

If this is not sufficient, you can add the -Djava.security.debug=failure JVM option to the
domain. Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options --user adminuser -Djava.security.debug=failure

For more information about the asadmin create-jvm-options command, see the Sun
GlassFish Enterprise Server v3 Prelude Reference Manual.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For
more information, see
http://java.sun.com/docs/books/tutorial/securityl.2/tour2/index.html.

For detailed information about policy file syntax, see http://java.sun.com/
javase/6/docs/technotes/gquides/security/PolicyFiles.html#FileSyntax.

For information about using system properties in the server.policy file, see
http://java.sun.com/
javase/6/docs/technotes/guides/security/PolicyFiles.html#PropertyExp. For
information about Enterprise Server system properties, see “system-property” in Sun GlassFish
Enterprise Server v3 Prelude Administration Reference.

For detailed information about the permissions you can set in the server.policy file, see
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html.

The Javadoc for the Permission classis at
http://java.sun.com/javase/6/docs/api/java/security/Permission.html.

Enabling and Disabling the Security Manager

The security manager is disabled by default.

Chapter4 - Securing Applications 51

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#PropertyExp
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#PropertyExp
http://docs.sun.com/doc/820-4507/abhey?a=view
http://docs.sun.com/doc/820-4507/abhey?a=view
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html
http://java.sun.com/javase/6/docs/api/java/security/Permission.html

Programmatic Login

In a production environment, you may be able to safely disable the security manager if all of the
following are true:

Performance is critical

Deployment to the production server is carefully controlled
Only trusted applications are deployed

Applications don't need policy enforcement

Disabling the security manager may improve performance significantly for some types of
applications. To disable the security manager, do one of the following:

To use the Administration Console, open the Security component under the relevant
configuration, and uncheck the Security Manager Enabled box. Then restart the server. For
details, click the Help button in the Administration Console.

Use the following asadmin delete-jvm-options command, then restart the server:

asadmin delete-jvm-options --user adminuser -Djava.security.manager

To re-enable the security manager, use the corresponding create- jvm-options command.
For more information about the create-jvm-options and asadmin delete-jvm-options
commands, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

Programmatic Login

52

Programmatic login allows a deployed Java EE application or module to invoke a login method.
If the login is successful, a SecurityContext is established as if the client had authenticated
using any of the conventional Java EE mechanisms. Programmatic login is supported for servlet
and EJB components on the server side, and for stand-alone or application clients on the client
side. Programmatic login is useful for an application having special needs that cannot be
accommodated by any of the Java EE standard authentication mechanisms.

Note - Programmatic login is specific to the Enterprise Server and not portable to other

application servers.

This section contains the following topics:

“Programmatic Login Precautions” on page 53
“Granting Programmatic Login Permission” on page 53
“The ProgrammaticLogin Class” on page 54

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4497

Programmatic Login

Programmatic Login Precautions

The Enterprise Server is not involved in how the login information (user, password) is
obtained by the deployed application. Programmatic login places the burden on the application
developer with respect to assuring that the resulting system meets security requirements. If the
application code reads the authentication information across the network, the application
determines whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly to the
security service. While flexible, this capability should not be used without some understanding
of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. It is also the application developer’s
responsibility to verify the status of the login attempt and to alter the behavior of the application
accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated using the programmatic login method,
access is denied immediately and the application might fail if not coded to account for this
occurrence. One way to account for this occurrence is to catch the access control or security
exception, perform a programmatic login, and repeat the request.

Granting Programmatic Login Permission

The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application if the security manager is enabled. For information about the
security manager, see “The server.policy File” on page 49. This permission is not granted by
default to deployed applications because this is not a standard Java EE mechanism.

To grant the required permission to the application, add the following to the
domain-dir/config/server.policy file:

grant codeBase "file:jar-file-path" {
permission com.sun.appserv.security.ProgrammaticLoginPermission
"login";

+

The jar-file-path is the path to the application’s JAR file.

Chapter4 - Securing Applications 53

Programmatic Login

54

TheProgrammaticLogin Class

The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically.

For Javadoc tool pages relevant to programmatic login, go to
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html and click on the
com.sun.appserv.security package.

The ProgrammaticlLogin class has four login methods, two for servlets or JSP files and two for
EJB components.

The login methods for servlets or JSP files have the following signatures:

public java.lang.Boolean login(String user, String password,
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServlietResponse response)

public java.lang.Boolean login(String user, String password,
String realm, javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServlietResponse response, boolean errors)
throws java.lang.Exception

The login methods for EJB components have the following signatures:
public java.lang.Boolean login(String user, String password)

public java.lang.Boolean login(String user, String password,
String realm, boolean errors) throws java.lang.Exception

All of these login methods accomplish the following:

= Perform the authentication
= Return true iflogin succeeded, false if login failed

The login occurs on the realm specified unless it is null, in which case the domain’s default
realm is used. The methods with no realm parameter use the domain’s default realm.

Ifthe errors flag s set to true, any exceptions encountered during the login are propagated to
the caller. If set to false, exceptions are thrown.

On the client side, realmand errors parameters are ignored and the actual login does not occur
until a resource requiring a login is accessed. A java.rmi.AccessException with COBRA
NO_PERMISSION occurs if the actual login fails.

The logout methods for servlets or JSP files have the following signatures:

public java.lang.Boolean logout(HttpServletRequest request,
HttpServletResponse response)

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html

User Authentication for Single Sign-on

public java.lang.Boolean logout(HttpServletRequest request,
HttpServletResponse response, boolean errors)
throws java.lang.Exception

The logout methods for EJB components have the following signatures:
public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)
throws java.lang.Exception

All of these logout methods return true if logout succeeded, false if logout failed.

Ifthe errors flag is set to true, any exceptions encountered during the logout are propagated to
the caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on

The single sign-on feature of the Enterprise Server allows multiple web applications deployed to
the same virtual server to share the user authentication state. With single sign-on enabled, users
who log in to one web application become implicitly logged into other web applications on the
same virtual server that require the same authentication information. Otherwise, users would
have to log in separately to each web application whose protected resources they tried to access.

A sample application using the single sign-on scenario could be a consolidated airline booking
service that searches all airlines and provides links to different airline web sites. After the user
signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

= Single sign-on applies to web applications configured for the same realm and virtual server.
The realm is defined by the realm-name element in the web . xml file. For information about
virtual servers, see Chapter 8, “Administering the HTTP Service,” in Sun GlassFish
Enterprise Server v3 Prelude Administration Guide.

= Aslongas users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

= Assoon asa user accesses a protected resource in any web application associated with a
virtual server, the user is challenged to authenticate himself or herself, using the login
method defined for the web application currently being accessed.

= After authentication, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

Chapter4 - Securing Applications 55

http://docs.sun.com/doc/820-4495/ablsw?a=view
http://docs.sun.com/doc/820-4495/ablsw?a=view

User Authentication for Single Sign-on

56

= When the user logs out of one web application (for example, by invalidating the
corresponding session), the user’s sessions in all web applications are invalidated. Any
subsequent attempt to access a protected resource in any application requires the user to
authenticate again.

The single sign-on feature utilizes HT'TP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that support
cookies.

To configure single sign-on, set the following properties in the virtual-server element of the
domain.xml file:

= sso-enabled - If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is false.

® sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on record
becomes eligible for purging if no client activity is received. Since single sign-on applies
across several applications on the same virtual server, access to any of the applications keeps
the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values
provide longer single sign-on persistence for the users at the expense of more memory use
on the server.

® sso-reap-interval-seconds - Specifies the interval between purges of expired single
sign-on records. The default value is 60.

Here is an example configuration with all default values:
<virtual-server id="server" ... >
<property name="sso-enabled" value="true"/>
<property name="sso-max-inactive-seconds" value="300"/>

<property name="sso-reap-interval-seconds" value="60"/>
</virtual-server>

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

CHAPTER 5

Developing Web Services

This chapter describes Enterprise Server support for web services. Java™ API for XML-Based
Web Services (JAX-WS) version 2.0 is supported. This chapter contains the following sections:

= “Deploying a Web Service” on page 58
= “Web Services Registry” on page 58
= “The Web Service URI, WSDL File, and Test Page” on page 59

Note - For GlassFish v3 Prelude, web services are not supported unless the optional Metro (JSR
109) add-on component is downloaded from the Update Tool. Without the Metro add-on
component, a servlet cannot be a web service endpoint, and the sun-web.xml elements related
to web services are ignored. For information about the Update Tool, see the Sun GlassFish
Enterprise Server v3 Prelude Installation Guide.

For additional information about JAX-WS and web services, see Java Specification Request
(JSR) 224 (http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html) and
JSR 109 (http://jcp.org/en/jsr/detail?id=109).

The Fast Infoset standard specifies a binary format based on the XML Information Set. This
format is an efficient alternative to XML. For information about using Fast Infoset, see the
following links:

= Java Web Services Developer Pack 1.6 Release Notes
(http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html)

= Fast Infoset in Java Web Services Developer Pack, Version 1.6
(http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html)

= Fast Infoset Project (http://fi.dev.java.net)

57

http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-5968
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html
http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://java.sun.com/webservices/docs/1.6/jaxrpc/fastinfoset/manual.html
http://fi.dev.java.net

Deploying a Web Service

Deploying a Web Service

You deploy a web service endpoint to the Enterprise Server just as you would any servlet. After
you deploy the web service, the next step is to publish it. For more information about publishing
aweb service, see “Web Services Registry” on page 58.

You can use the autodeployment feature to deploy a simple JSR 181
(http://jcp.org/en/jsr/detail?id=181) annotated file. You can compile and deploy in one
step, as in the following example:

javac -cp webservices.jar -d domain-dir/autodeploy MyWSDemo.java

Note - For complex services with dependent classes, user specified WSDL files, or other
advanced features, autodeployment of an annotated file is not sufficient.

The Sun-specific deployment descriptor files sun-web.xml and sun-ejb-jar.xml provide
optional web service enhancements in the webservice-endpoint and
webservice-description elements, including a debugging-enabled subelement that enables
the creation of a test page. The test page feature is enabled by default and described in “The Web
Service URI, WSDL File, and Test Page” on page 59.

For more information about deployment, autodeployment, and deployment descriptors, see
the Sun GlassFish Enterprise Server v3 Prelude Application Deployment Guide. For more
information about the asadmin deploy command, see the Sun GlassFish Enterprise Server v3
Prelude Reference Manual.

Web Services Registry

58

You deploy a registry to the Enterprise Server just as you would any module, except that if you
are using the Administration Console, you must select a Registry Type value. After deployment,
you can configure a registry in one of the following ways:

= Inthe Administration Console, open the Web Services component, and select the Registry
tab. For details, click the Help button in the Administration Console.

= To configure a registry using the command line, use the following commands.

= Set the registry type to com. sun.appserv.registry.ebxml or
com.sun.appserv.registry.uddi. Use a backslash before each period as an escape
character. For example:

asadmin create-resource-adapter-config --user adminuser
--property com\.sun\.appserv\.registry\.ebxml=true MyReg

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

The Web Service URI, WSDL File, and Test Page

= Set any properties needed by the registry. For an ebXML registry, set the
LifeCycleManagerURL and QueryManagerURL properties. In the following example, the
system property REG_URL is set to
http\\:\\/\\/siroe.com\\:6789\\/soar\\/registry\\/soap.

asadmin create-connector-connection-pool --user adminuser --raname MyReg
--connectiondefinition javax.xml.registry.ConnectionFactory --property
LifeCycleManagerURL=${REG URL}:QueryManagerURL=${REG URL} MyRegCP

= SetaJNDIname for the registry resource. For example:

asadmin create-connector-resource --user adminuser --poolname MyRegCP jndi-MyReg

For details on these commands, see the Sun GlassFish Enterprise Server v3 Prelude Reference
Manual.

After you deploy a web service, you can publish it to a registry in one of the following ways:

= Inthe Administration Console, open the Web Services component, select the web service in
the listing on the General tab, and select the Publish tab. For details, click the Help button in
the Administration Console.

= Use the asadmin publish-to-registry command. For example:

asadmin publish-to-registry --user adminuser --registryjndinames jndi-MyReg --webservicename my-ws#simple
For details, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

For more information about registries, see “Chapter 20: Java API for XML Registries” in the
Java EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

A module that accesses UDDI registries is provided with the Enterprise Server in the
as-install/1ib/install/applications/jaxr-ra directory.

You can also use the SOA registry available at
http://www.sun.com/products/soa/index.jsp.

For further information, see https://metro.dev.java.net/.

The Web Service URI, WSDL File, and Test Page

Clients can run a deployed web service by accessing its service endpoint address URL, which has
the following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the web . xm1 file, and can be overridden in the sun-web . xm1 file.
The servlet-mapping-url-pattern is defined in the web . xm1 file.

Chapter5 - Developing Web Services 59

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://www.sun.com/products/soa/index.jsp
https://metro.dev.java.net/

The Web Service URI, WSDL File, and Test Page

60

In the following example, the context-root is my -ws and the servlet-mapping-url-pattern is
/simple:

http://localhost:8080/my-ws/simple

You can view the WSDL file of the deployed service in a browser by adding ?WSDL to the end of
the URL. For example:

http://localhost:8080/my-ws/simple?WSDL

For debugging, you can run a test page for the deployed service in a browser by adding ?Tester
to the end of the URL. For example:

http://localhost:8080/my-ws/simple?Tester

You can also test a service using the Administration Console. Open the Web Services
component, select the web service in the listing on the General tab, and select Test. For details,
click the Help button in the Administration Console.

Note - The test page works only for WS-I compliant web services. This means that the tester
servlet does not work for services with WSDL files that use RPC/encoded binding.

Generation of the test page is enabled by default. You can disable the test page for a web service
by setting the value of the debugging-enabled element in the sun-web.xml and
sun-ejb-jar.xml deployment descriptor to false. For more information, see the Sun
GlassFish Enterprise Server v3 Prelude Application Deployment Guide.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502

CHAPTER 6

Using the Java Persistence API

Sun GlassFish Enterprise Server support for the Java Persistence API includes all required
features described in the Java Persistence Specification. Although officially part of the
Enterprise JavaBeans Specification v3.0, also known as JSR 220
(http://jcp.org/en/jsr/detail?id=220), the Java Persistence API can also be used with
non-EJB components outside the EJB container.

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. For basic information about the Java Persistence
API, see “Part Four: Persistence” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

This chapter contains Enterprise Server specific information on using the Java Persistence API
in the following topics:

= “Specifying the Database” on page 62

= “Additional Database Properties” on page 64

= “Configuring the Cache” on page 64

= “Setting the Logging Level” on page 64

= “Using Lazy Loading” on page 64

= “Primary Key Generation Defaults” on page 65
= “Automatic Schema Generation” on page 65

= “Query Hints” on page 67

= “Changing the Persistence Provider” on page 67
= “Restrictions and Optimizations” on page 68

Note - The default persistence provider in the Enterprise Server is based on the EclipseLink Java
Persistence API implementation. All configuration options in EclipseLink are available to
applications that use the Enterprise Server's default persistence provider.

61

http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

Specifying the Database

Note - For GlassFish v3 Prelude, EJB modules are not supported unless the optional EJB
container add-on component is downloaded from the Update Tool. For information about the
Update Tool, see the Sun GlassFish Enterprise Server v3 Prelude Installation Guide.

Specifying the Database

62

The Enterprise Server uses the bundled Java DB (Derby) database by default. If the
transaction-type element is omitted or specified as JTA and both the jta-data-source and
non-jta-data-source elements are omitted in the persistence.xml file, Java DB is used as a
JTA data source. If transaction-type is specified as RESOURCE_LOCAL and both
jta-data-source and non-jta-data-source are omitted, Java DB is used as a non-JTA data
source.

To use a non-default database, either specify a value for the jta-data-source element, or set
the transaction-type element to RESOURCE_LOCAL and specify a value for the
non-jta-data-source element.

If you are using the default persistence provider, the provider attempts to automatically detect
the database type based on the connection metadata. This database type is used to issue SQL
statements specific to the detected database type's dialect. You can specify the optional
eclipselink.target-database property to guarantee that the database type is correct. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name ="eml">
<jta-data-source>jdbc/MyDB2DB</jta-data-source>
<properties>
<property name="eclipselink.target-database"
value="DB2"/>
</properties>
</persistence-unit>
</persistence>

The following eclipselink.target-database property values are allowed. Supported
platforms have been tested with the Enterprise Server and are found to be Java EE compatible.

//Supported platforms
JavaDB

Derby

Oracle

MySQL4

//0thers available
SQLServer

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-5968

Specifying the Database

DB2

Sybase
PostgreSQL
Informix
TimesTen
Attunity
HSQL
SQLAnyWhere
DBase
DB2Mainframe
Cloudscape
PointBase

For more information about the eclipselink.target-database property, see Using
EclipseLink JPA Extensions for Session, Target Database and Target Application Server.

To use the Java Persistence API outside the EJB container (in Java SE mode), do not specify the
jta-data-source or non-jta-data-source elements. Instead, specify the provider element
and any additional properties required by the JDBC driver or the database. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
<persistence-unit name ="em2">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<class>ejb3.war.servlet.JpaBean</class>
<properties>
<property name="eclipselink.target-database"
value="Derby"/>
<!-- JDBC connection properties -->
<property name="eclipselink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
<property name="eclipselink.jdbc.url"
value="jdbc:derby://localhost:1527/testdb; retrieveMessagesFromServerOnGetMessage=true;create=true;"/>
<property name="eclipselink.jdbc.user" value="APP"/>
<property name="eclipselink.jdbc.password" value="APP"/>
</properties>
</persistence-unit>
</persistence>

For more information about eclipselink properties, see “Additional Database Properties” on
page 64.

For alist of the JDBC drivers currently supported by the Enterprise Server, see the Sun GlassFish
Enterprise Server v3 Prelude Release Notes. For configurations of supported and other drivers,
see “Configuration Specifics for JDBC Drivers” in Sun GlassFish Enterprise Server v3 Prelude
Administration Guide.

To change the persistence provider, see “Changing the Persistence Provider” on page 67.

Chapter6 - Using the Java Persistence API 63

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4495/beamw?a=view

Additional Database Properties

Additional Database Properties

If you are using the default persistence provider, you can specify in the persistence.xml file
the database properties listed at How to Use EclipseLink JPA Extensions for JDBC Connection
Communication.

For schema generation properties, see “Generation Options” on page 66. For query hints, see
“Query Hints” on page 67.

Configuring the Cache

If you are using the default persistence provider, you can configure whether caching occurs, the
type of caching, the size of the cache, and whether client sessions share the cache. Caching
properties for the default persistence provider are described in detail at Using EclipseLink JPA
Extensions for Entity Caching.

Setting the Logging Level

One of the default persistence provider's properties that you can set in the persistence.xml file
iseclipselink.logging.level. For example, setting the logging level to FINE or higher logs all
SQL statements. For details about this property, see Using EclipseLink JPA Extensions for

Logging.

Using Lazy Loading

The default persistence provider treats only OneToOne, ManyToOne, OneToMany, and ManyToMany
mappings specially when they are annotated as LAZY. OneToMany and ManyToMany mappings are
loaded lazily by default in compliance with the Java Persistence Specification. Other mappings
are always loaded eagerly.

For basic information about lazy loading, see What You May Need to Know About EclipseLink
JPA Lazy Loading.

64 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_Connection_Communication
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_Connection_Communication
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Entity_Caching
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Entity_Caching
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Logging
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Logging
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#What_You_May_Need_to_Know_About_EclipseLink_JPA_Lazy_Loading
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#What_You_May_Need_to_Know_About_EclipseLink_JPA_Lazy_Loading

Automatic Schema Generation

Primary Key Generation Defaults

In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator
annotations in the Java Persistence Specification, certain defaults are noted as specific to the
persistence provider. The default persistence provider's primary key generation defaults are
listed here.

@GeneratedValue defaults are as follows:

= Using strategy=AUTO (or no strategy) creates a @TableGenerator named SEQ_GEN with
default settings. Specifying a generator has no effect.

= Using strategy=TABLE without specifying a generator creates a @TableGenerator named
SEQ_GEN_TABLE with default settings. Specifying a generator but no @TableGenerator
creates and names a @TableGenerator with default settings.

= Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are
database-specific.

= For Oracle databases, not specifying a generator creates a @equenceGenerator named
SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no
@SequenceGenerator creates and names a @equenceGenerator with default settings.

= For PostgreSQL databases, a SERIAL column named entity-table_pk-column_SEQis
created.

= For MySQL databases, an AUTO_INCREMENT column is created.
= For other supported databases, an IDENTITY column is created.

The @SequenceGenerator annotation has one default specific to the default provider. The
default sequenceName is the specified name.

@TableGenerator defaults are as follows:

® The default table is SEQUENCE.
® The default pkColumnName is SEQ NAME.
® The default valueColumnName is SEQ COUNT.

= The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation

The automatic schema generation feature of the Enterprise Server defines database tables based
on the fields or properties in entities and the relationships between the fields or properties. This
insulates developers from many of the database related aspects of development, allowing them
to focus on entity development. The resulting schema is usable as-is or can be given to a
database administrator for tuning with respect to performance, security, and so on. This section
covers the following topics:

Chapter6 - Using the Java Persistence API 65

Automatic Schema Generation

66

= “Annotations” on page 66
= “Generation Options” on page 66

Note - Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. Instead, an error is written to the server log. This is done to allow you to
investigate the problem and fix it manually. You should not rely on the partially created
database schema to be correct for running the application.

Schema generation occurs whenever an application is loaded. For example, schema generation
occurs if the Enterprise Server is restarted with the application deployed.

Annotations

The following annotations are used in automatic schema generation: @ssociationOverride,
@AssociationOverrides, @AttributeOverride, @AttributeOverrides, @Column,
@iscriminatorColumn,@iscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue,
@Id,@IdClass,@JoinColumn,@JoinColumns,@loinTable, @Lob, @ManyToMany, @ManyToOne,
@0OneToMany, @OneToOne, @PrimaryKeyJoinColumn, @PrimaryKeyJoinColumns,
@SecondaryTable, @SecondaryTables, @SequenceGenerator,@Table, @TableGenerator,
@UniqueConstraint, and @/ersion. For information about these annotations, see the Java
Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic
schema generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the
resulting DDL files.

Generation Options

Optional schema generation properties control the automatic creation of database tables. You
can specify them in the persistence.xml file. For more information, see Using EclipseLink JPA
Extensions for Schema Generation.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation

Changing the Persistence Provider

Query Hints

Query hints are additional, implementation-specific configuration settings. You can use hints
in your queries in the following format:

setHint ("hint-name", hint-value)

For example:

Customer customer = (Customer)entityMgr.
createNamedQuery ("findCustomerBySSN") .
setParameter("SSN", "123-12-1234").
setHint("eclipselink.refresh", true).
getSingleResult();

For more information about the query hints available with the default provider, see How to Use
EclipseLink JPA Query Hints.

Changing the Persistence Provider

Note - The previous sections in this chapter apply only to the default persistence provider. If you
change the provider for a module or application, the provider-specific database properties,
query hints, and schema generation features described in this chapter do not apply.

You can change the persistence provider for an application in the manner described in the Java
Persistence API Specification.

First, install the provider. Copy the provider JAR files to the domain-dir/1ib directory, and
restart the Enterprise Server. For more information about the domain-dir/11ib directory, see
“Using the Common Class Loader” on page 27. The new persistence provider is now available
to all modules and applications deployed on servers that share the same configuration.
However, the default provider remains the same.

In your persistence unit, specify the provider and any properties the provider requires in the
persistence.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">
<persistence-unit name ="em3">
<provider>com.company22.persistence.PersistenceProviderImpl</provider>
<properties>
<property name="company22.database.name" value="MyDB"/>
</properties>
</persistence-unit>
</persistence>

Chapter6 - Using the Java Persistence API 67

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Query_Hints
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#How_to_Use_EclipseLink_JPA_Query_Hints

Restrictions and Optimizations

To migrate from Oracle TopLink to EclipseLink, see Migrating from Oracle TopLink to
EclipseLink
(http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink).

Restrictions and Optimizations

68

This section discusses restrictions and performance optimizations that affect using the Java
Persistence APIL.

= “Extended Persistence Context” on page 68

= “Using @OrderBy with a Shared Session Cache” on page 68

= “Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver” on page 69
= “Database Case Sensitivity” on page 69

= “Sybase Finder Limitation” on page 70

= “MySQL Database Restrictions” on page 70

Extended Persistence Context

If a stateful session bean is passivated, its extended persistence context could be lost when the
stateful session bean is activated. In this environment, it is safe to store an extended persistence
context in a stateful session bean only if you can safely disable stateful session bean passivation
altogether. This is possible, but trade-ofts in memory utilization must be carefully examined
before choosing this option.

It is safe to store a reference to an extended persistence context in an HttpSession.

Using @OrderBy with a Shared Session Cache

Setting @0rderBy on a ManyToMany or OneToMany relationship field in which a List represents
the Many side doesn't work if the session cache is shared. Use one of the following
workarounds:

= Have the application maintain the order so the List is cached properly.

= Refresh the session cache using EntityManager.refresh() if you don't want to maintain
the order during creation or modification of the List.

= Disable session cache sharing in persistence.xml as follows:

<property name="eclipselink.cache.shared.default" value="false"/>

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink
http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink
http://wiki.eclipse.org/EclipseLink/Examples/MigratingFromOracleTopLink

Restrictions and Optimizations

Using BLOB or CLOB Types with the Inet Oraxo JDBC
Driver

To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC
Driver for Oracle Databases, you must set the database's st reamstolob property value to true.

Database Case Sensitivity

Mapping references to column or table names must be in accordance with the expected column
or table name case, and ensuring this is the programmer's responsibility. If column or table
names are not explicitly specified for a field or entity, the Enterprise Server uses upper case
column names by default, so any mapping references to the column or table names must be in
upper case. If column or table names are explicitly specified, the case of all mapping references
to the column or table names must be in accordance with the case used in the specified names.

The following are examples of how case sensitivity affects mapping elements that refer to
columns or tables. Programmers must keep case sensitivity in mind when writing these
mappings.

Unique Constraints

If column names are not explicitly specified on a field, unique constraints and foreign key
mappings must be specified using uppercase references. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "DEPTNAME" }) })

The other way to handle this is by specifying explicit column names for each field with the
required case. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "deptName" }) })
public class Department{ @Column(name="deptName") private String deptName; }

Otherwise, the ALTER TABLE statement generated by the Enterprise Server uses the incorrect
case, and the creation of the unique constraint fails.

Foreign Key Mapping
Use @0neToMany (mappedBy="COMPANY") or specify an explicit column name for the Company
field on the Many side of the relationship.

SQL Result Set Mapping

Use the following elements:

Chapter6 - Using the Java Persistence API 69

Restrictions and Optimizations

70

<sql-result-set-mapping name="SRSMName" >
<entity-result entity-class="entities.someEntity" />
<column-result name="UPPERCASECOLUMNNAME" />
</sql-result-set-mapping>

Or specify an explicit column name for the upperCaseColumnName field.

Named Native Queries and JDBC Queries

Column or table names specified in SQL queries must be in accordance with the expected case.
For example, MySQL requires column names in the SELECT clause of JDBC queries to be
uppercase, while PostgreSQL and Sybase require table names to be uppercase in all JDBC
queries.

PostgreSQL Case Sensitivity

PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve
column or table names in lowercase unless the names are quoted. For example:

use aliases Select m.ID AS \"ID\" from Department m

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation

If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype
'"TEXT’ to 'VARCHAR’ is not allowed. Use the CONVERT function to run this
query.

To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions

The following restrictions apply when you use a MySQL database with the Enterprise Server for
persistence.

= MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘and ‘int2‘ field names in your SQL file.

= When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Restrictions and Optimizations

= The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

= The CREATE TABLE syntax in the SQL file must end with the following line.
) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

= Fora FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT (10, 2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

= Touse || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES AS CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

= MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:
Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:
Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
seehttp://forums.mysql.com/read.php?39,31326,31404.

= MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an
example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,
salary float(25,2) NULL,
mgrId int NULL,

PRIMARY KEY (empId),
FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);
delete from Employee where empId = 1;

This example fails with the following error message.

Chapter6 - Using the Java Persistence API 71

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

Restrictions and Optimizations

ERROR 1217 (23000): Cannot delete or update a parent row:
a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,
salary float(25,2) NULL,
mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);
delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

72 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://bugs.mysql.com/bug.php?id=12449
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

L K R 4 CHAPTER 7

Developing Web Applications

This chapter describes how web applications are supported in the Sun GlassFish Enterprise
Server and includes the following sections:

“Packaging an EJB JAR File in a Web Application” on page 73
“Using Servlets” on page 74

“Using JavaServer Pages” on page 80

“Creating and Managing Sessions” on page 81

“Using Comet” on page 84

“Developing Grails Applications” on page 99

“Advanced Web Application Features” on page 103

For general information about web applications, see “Part One: The Web Tier” in the Java EE 5
Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Packaging an EJB JARFilein aWeb Application

The Enterprise Server supports the EJB 3.1 specification, which allows EJB JAR files to be
packaged in WAR files. EJB classes must reside under WEB- INF/classes. For example, the
structure of a hello.war file might look like this:

index.jsp
META-INF/
MANIFEST.MF
WEB-INF/
web . xml
classes/
com/
sun/
v3/
demo/
HelloEJB.class
HelloServlet.class

73

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html

Using Servlets

For more information about EJB components, see Chapter 8, “Using Enterprise JavaBeans
Technology”

Note - For GlassFish v3 Prelude, EJB modules are not supported unless the optional EJB
container add-on component is downloaded from the Update Tool. For information about the
Update Tool, see the Sun GlassFish Enterprise Server v3 Prelude Installation Guide.

For GlassFish v3 Prelude, only stateless session beans with local interfaces and entity beans that
use the Java Persistence API are supported. Stateful, message-driven, and EJB 2.0 and 2.1 entity
beans are not supported. Remote interfaces and remote business interfaces for any of the bean
types are not supported.

Using Servlets

74

Enterprise Server supports the Java Servlet Specification version 2.5.

Note - Servlet API version 2.5 is fully backward compatible with versions 2.3 and 2.4, so all
existing servlets should work without modification or recompilation.

To develop servlets, use Sun Microsystems’ Java Servlet APL For information about using the
Java Servlet AP, see the documentation provided by Sun Microsystems at
http://java.sun.com/products/servliet/index.html.

The Enterprise Server provides the wscompile and wsdeploy tools to help you implement a web
service endpoint as a servlet. For more information about these tools, see the Sun GlassFish
Enterprise Server v3 Prelude Reference Manual.

This section describes how to create effective servlets to control application interactions
running on an Enterprise Server, including standard-based servlets. In addition, this section
describes the Enterprise Server features to use to augment the standards.

This section contains the following topics:

“Invoking a Servlet With a URL” on page 74
“Servlet Output” on page 75

“Caching Servlet Results” on page 76
“About the Servlet Engine” on page 79

Invoking a Servlet With a URL

You can call a servlet deployed to the Enterprise Server by using a URL in a browser or
embedded as alink in an HTML or JSP file. The format of a servlet invocation URL is as follows:

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-5968
http://java.sun.com/products/servlet/index.html
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Using Servlets

http://server:port/context-root/servlet-mapping? name=value

The following table describes each URL section.

TABLE7-1 URL Fields for Servlets Within an Application

URL element Description

server:port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this URL section.
You do not need to specify the context-root or servlet-name unless you also wish to
specify name-value parameters.

context-root For an application, the context root is defined in the context- root element of the
application.xml, sun-application.xml,or sun-web.xml file. For an individually
deployed web module, the context root is specified during deployment.

For both applications and individually deployed web modules, the default context root
is the name of the WAR file minus the .war suffix.

servlet-mapping The servlet-mapping as configured in the web. xm file.

?name=value. . . Optional request parameters.

In this example, localhost is the host name, MortPages is the context root, and calcMortgage
is the servlet mapping:

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

When invoking a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Servlet Output
ServletContext.log messages are sent to the server log.

By default, the System.out and System. err output of servlets are sent to the server log, and
during startup, server log messages are echoed to the System.err output. Also by default, there
is no Windows-only console for the System.err output.

You can change these defaults using the Administration Console. Select the Enterprise Server
component and the Logging tab. Then check or uncheck Write to System Log. If this box is
checked, System. out output is sent to the server log. If it is unchecked, System. out output is
sent to the system default location only.

For more information, click the Help button in the Administration Console from the Logging
page.

Chapter 7 « Developing Web Applications 75

Using Servlets

76

Caching Servlet Results

The Enterprise Server can cache the results of invoking a servlet, a JSP, or any URL pattern to
make subsequent invocations of the same servlet, JSP, or URL pattern faster. The Enterprise
Server caches the request results for a specific amount of time. In this way, if another data call
occurs, the Enterprise Server can return the cached data instead of performing the operation
again. For example, if your servlet returns a stock quote that updates every 5 minutes, you set
the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how an Enterprise Server web application handles response caching, you edit specific
fields in the sun-web. xml file.

Note - A servlet that uses caching is not portable.

For Javadoc tool pages relevant to caching servlet results, go to
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html and click on the
com.sun.appserv.web.cache package.

The rest of this section covers the following topics:

= “Caching Features” on page 76

= “Default Cache Configuration” on page 77

= “Caching Example” on page 77

= “The CacheKeyGenerator Interface” on page 79

Caching Features
The Enterprise Server has the following web application response caching capabilities:

= Caching is configurable based on the servlet name or the URL

= When caching is based on the URI, this includes user specified parameters in the query
string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

= Cache size, entry timeout, and other caching behaviors are configurable.

= Entry timeout is measured from the time an entry is created or refreshed. To override this
timeout for an individual cache mapping, specify the cache-mapping subelement timeout.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html

Using Servlets

To determine caching criteria programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows
when a back end data source was last modified, you can write a helper class to retrieve the
last modified timestamp from the data source and decide whether to cache the response
based on that timestamp.

To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See “The
CacheKeyGenerator Interface” on page 79.

All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request

query string.
The following HttpServletRequest request attributes are exposed.

= com.sun.appserv.web.cachedServletName, the cached servlet target
= com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those
resources. For details, see “cache-mapping” in Sun GlassFish Enterprise Server v3 Prelude
Application Deployment Guide and “dispatcher” in Sun GlassFish Enterprise Server v3
Prelude Application Deployment Guide. These are elements in the sun-web. xml file.

Default Cache Configuration

If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

The default cache timeout is 30 seconds.

Only the HTTP GET method is eligible for caching.

HTTP requests with cookies or sessions automatically disable caching.

No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
The default key consists of the Servlet Path (minus pathInfo and the query string).

A “least recently used” list is maintained to evict cache entries if the maximum cache size is
exceeded.

Key generation concatenates the servlet path with key field values, if any are specified.

Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are never cached.

Caching Example

Here is an example cache element in the sun-web . xm1 file:

Chapter7 - Developing Web Applications 77

http://docs.sun.com/doc/820-4502/bearh?a=view
http://docs.sun.com/doc/820-4502/bearh?a=view
http://docs.sun.com/doc/820-4502/beasp?a=view
http://docs.sun.com/doc/820-4502/beasp?a=view

Using Servlets

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>
<servlet-name>myservlet</servlet-name>
<timeout name="timefield">120</timeout>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</cache-mapping>
<cache-mapping>
<url-pattern> /catalog/* </url-pattern>
<!-- cache the best selling category; cache the responses to
-- this resource only when the given parameters exist. Cache
-- only when the catalog parameter has 'lilies’ or ’'roses’
-- but no other catalog varieties:
-- /orchard/catalog?best&category="1lilies’
-- /orchard/catalog?best&category="roses’
-- but not the result of
-- /orchard/catalog?best&category="wild’
-=>
<constraint-field name='best’ scope='request.parameter’/>
<constraint-field name='category’ scope='request.parameter’>
<value> roses </value>
<value> lilies </value>
</constraint-field>
<!-- Specify that a particular field is of given range but the
-- field doesn’t need to be present in all the requests -->
<constraint-field name='SKUnum’ scope='request.parameter’>
<value match-expr="in-range’> 1000 - 2000 </value>
</constraint-field>
<!-- cache when the category matches with any value other than
-- a specific value -->
<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">
bogus
</value>
</constraint-field>
</cache-mapping>
<cache-mapping>
<servlet-name> InfoServlet </servlet-name>
<cache-helper-ref>myHelper</cache-helper-ref>
</cache-mapping>
</cache>

For more information about the sun-web. xml caching settings, see “cache” in Sun GlassFish
Enterprise Server v3 Prelude Application Deployment Guide.

78 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4502/beard?a=view
http://docs.sun.com/doc/820-4502/beard?a=view

Using Servlets

The CacheKeyGenerator Interface

The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServietContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” in Sun GlassFish Enterprise
Server v3 Prelude Application Deployment Guide.

About the Servlet Engine

Servlets exist in and are managed by the servlet engine in the Enterprise Server. The servlet
engine is an internal object that handles all servlet meta functions. These functions include
instantiation, initialization, destruction, access from other components, and configuration
management. This section covers the following topics:

= “Instantiating and Removing Servlets” on page 79
= “Request Handling” on page 79

Instantiating and Removing Servlets

After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init ()
method to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy () method in the
servlet so that the servlet can perform any final tasks and deallocate resources. You can override
this method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Request Handling

When a request is made, the Enterprise Server hands the incoming data to the servlet engine.
The servlet engine processes the request’s input data, such as form data, cookies, session
information, and URL name-value pairs, into an HttpServletRequest request object type.

The servlet engine also creates an HttpServletResponse response object type. The engine then
passes both as parameters to the servlet’s service () method.

In an HTTP servlet, the default service () method routes requests to another method based on
the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example,
HTTP POST requests are sent to the doPost () method, HTTP GET requests are sent to the

doGet () method, and so on. This enables the servlet to process request data differently,
depending on which transfer method is used. Since the routing takes place in the service

Chapter7 - Developing Web Applications 79

http://docs.sun.com/doc/820-4502/beasm?a=view
http://docs.sun.com/doc/820-4502/beasm?a=view

Using JavaServer Pages

method, you generally do not override service() inan HITP servlet. Instead, override
doGet (), doPost (), and so on, depending on the request type you expect.

To perform the tasks to answer a request, override the service () method for generic servlets,
and the doGet () or doPost () methods for HTTP servlets. Very often, this means accessing EJB
components to perform business transactions, then collating the information in the request
object or in a JDBC ResultSet object.

Using JavaServer Pages

80

The Enterprise Server supports the following JSP features:

= JavaServer Pages (JSP) Specification
= Precompilation of JSP files, which is especially useful for production servers
= JSP taglibraries and standard portable tags

For information about creating JSP files, see Sun Microsystem’s JavaServer Pages web site at
http://java.sun.com/products/jsp/index.html.

For information about Java Beans, see Sun Microsystem’s JavaBeans web page at
http://java.sun.com/beans/index.html.

This section describes how to use JavaServer Pages (JSP files) as page templates in an Enterprise
Server web application. This section contains the following topics:

= “JSP Tag Libraries and Standard Portable Tags” on page 80
= “Options for Compiling JSP Files” on page 80

JSP Tag Libraries and Standard Portable Tags

Enterprise Server supports tag libraries and standard portable tags. For more information, see
the JavaServer Pages Standard Tag Library (JSTL) page at
http://java.sun.com/products/jsp/jstl/index. jsp.

Web applications don’t need to bundle copies of the jsf-impl.jar orappserv-jstl.jar JSP
tag libraries (in as-install/1ib) to use JavaServer™ Faces technology or JSTL, respectively. These
tag libraries are automatically available to all web applications.

Options for Compiling JSP Files

Enterprise Server provides the following ways of compiling JSP source files into servlets:

= JSP files are automatically compiled at runtime.

® The asadmin deploy command has a precompilejsp option. For details, see the Sun
GlassFish Enterprise Server v3 Prelude Reference Manual.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://java.sun.com/products/jsp/index.html
http://java.sun.com/beans/index.html
http://java.sun.com/products/jsp/jstl/index.jsp
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Creating and Managing Sessions

= The jspc command line tool allows you to precompile JSP files at the command line. For
details, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

Creating and Managing Sessions

This chapter describes how to create and manage HTTP sessions that allows users and
transaction information to persist between interactions.

This chapter contains the following sections:

= “Configuring Sessions” on page 81
= “Session Managers” on page 82

Configuring Sessions

This section covers the following topics:

= “HTTP Sessions, Cookies, and URL Rewriting” on page 81
= “Coordinating Session Access” on page 81
= “Saving Sessions During Redeployment” on page 81

HTTP Sessions, Cookies, and URL Rewriting

To configure whether and how HTTP sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elementsin the sun-web.xml file for an
individual web application. For more about the properties you can configure, see
“session-properties” in Sun GlassFish Enterprise Server v3 Prelude Application Deployment
Guide and “cookie-properties” in Sun GlassFish Enterprise Server v3 Prelude Application
Deployment Guide.

Coordinating Session Access

Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways.

This is especially likely to occur in web applications that use HTML frames where multiple
servlets are executing simultaneously on behalf of the same client. A good solution is to ensure
that one of the servlets modifies the session and the others have read-only access.

Saving Sessions During Redeployment

Whenever a redeployment is done, the sessions at that transit time become invalid unless you
use the keepSessions=true property of the asadmin redeploy command. For example:

asadmin redeploy --properties keepSessions=true --name hello.war

Chapter7 - Developing Web Applications 81

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4502/beaxr?a=view
http://docs.sun.com/doc/820-4502/beaxr?a=view
http://docs.sun.com/doc/820-4502/beash?a=view
http://docs.sun.com/doc/820-4502/beash?a=view

Creating and Managing Sessions

82

For details, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

The new class loader of the redeployed application is used to deserialize any sessions previously
saved. The usual restrictions about serialization and deserialization apply. For example, any
application-specific class referenced by a session attribute may evolve only in a
backward-compatible fashion. For more information about class loaders, see Chapter 2, “Class
Loaders”

Session Managers

A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

Enterprise Server offers these session management options, determined by the
session-manager element’s persistence-type attribute in the sun-web. xm1 file:

= “Thememory Persistence Type” on page 82, the default
= “The file Persistence Type” on page 83, which uses a file to store session data

Note - If the session manager configuration contains an error, the error is written to the server
log and the default (memory) configuration is used.

For more information, see “session-manager” in Sun GlassFish Enterprise Server v3 Prelude
Application Deployment Guide.

The memory Persistence Type

This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the session
state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for a specific web application, edit the sun-web.xm1 file
as in the following example. The persistence- type property is optional, but must be set to
memory if included. This overrides the web container availability settings for the web
application.

<sun-web-app>

<session-config>
<session-manager persistence-type="memory" />
<manager-properties>
" . . " " . "
<property name="sessionFilename" value="sessionstate" />
</manager-properties>

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4502/beaxq?a=view
http://docs.sun.com/doc/820-4502/beaxq?a=view

Creating and Managing Sessions

</session-manager>
</session-config>
</sun-web-app>

The only manager property that the memory persistence type supports is sessionFilename,
which is listed under “manager-properties” in Sun GlassFish Enterprise Server v3 Prelude
Application Deployment Guide. The sessionFilename property specifies the name of the file
where sessions are serialized and persisted if the web application or the server is stopped. To
disable this behavior, specify an empty string as the value of sessionFilename.

For more information about the sun-web.xml file, see Sun GlassFish Enterprise Server v3
Prelude Application Deployment Guide.

The file Persistence Type

This persistence type provides session persistence to the local file system, and allows a single
server domain to recover the session state after a failure and restart. The session state is
persisted in the background, and the rate at which this occurs is configurable. The store also
provides passivation and activation of the session state to help control the amount of memory
used. This option is not supported in a production environment. However, it is useful for a
development system with a single server instance.

Note - Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 49.

To specify the file persistence type for a specific web application, edit the sun-web . xml file as
in the following example. Note that persistence-type must be set to file. This overrides the
web container availability settings for the web application.

<sun-web-app>
<session-config>
<session-manager persistence-type="file">
<store-properties>
<property name="directory" value="sessiondir" />
</store-properties>
</session-manager>

</session-config>

</sun-web-app>

Chapter7 - Developing Web Applications 83

http://docs.sun.com/doc/820-4502/beaum?a=view
http://docs.sun.com/doc/820-4502/beaum?a=view
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502

Using Comet

The file persistence type supports all the manager properties listed under
“manager-properties” in Sun GlassFish Enterprise Server v3 Prelude Application Deployment
Guide except sessionFilename, and supports the directory store property listed under
“store-properties” in Sun GlassFish Enterprise Server v3 Prelude Application Deployment Guide.

For more information about the sun-web.xml file, see Sun GlassFish Enterprise Server v3
Prelude Application Deployment Guide.

Using Comet

84

This section explains the Comet programming technique and how to create and deploy a
Comet-enabled application with the Sun GlassFish Enterprise Server.

Introduction to Comet

Comet is a programming technique that allows a web server to send updates to clients without
requiring the clients to explicitly request them.

This kind of programming technique is called server push, which means that the server pushes
data to the client. The opposite style is client pull, which means that the client must pull the data
from the server, usually through a user-initiated event, such as a button click.

Web applications that use the Comet technique can deliver updates to clients in a more timely
manner than those that use the client-pull style while avoiding the latency that results from
clients frequently polling the server.

One of the many use cases for Comet is a chat room application. When the server receives a
message from one of the chat clients, it needs to send the message to the other clients without
requiring them to ask for it. With Comet, the server can deliver messages to the clients as they
are posted rather than expecting the clients to poll the server for new messages.

To accomplish this scenario, a Comet application establishes a long-lived HTTP connection.
This connection is suspended on the server side, waiting for an event to happens before being
resumed. This kind of connection remains open, allowing an application that uses the Comet
technique to send updates to clients when they are available rather than expecting clients to
reopen the connection to poll the server for updates.

The Grizzly Implementation of Comet

One limitation of the Comet technique is that you must use it with a web server that supports
non-blocking connections in order to avoid poor performance. Non-blocking connections are
those that do not need to allocate one thread for each request. If the web server were to use
blocking connections then it might end up holding many thousands of threads, thereby
hindering its scalability.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4502/beaum?a=view
http://docs.sun.com/doc/820-4502/beaum?a=view
http://docs.sun.com/doc/820-4502/beaxu?a=view
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502

Using Comet

The GlassFish server includes the Grizzly HTTP Engine, which enables asynchronous request
processing (ARP) by avoiding blocking connections. Grizzly's ARP implementation
accomplishes this by using the Java NIO API.

With Java NIO, Grizzly enables greater performance and scalability by avoiding the limitations
experienced by traditional web servers that must run a thread for each request. Instead,
Grizzly's ARP mechanism makes efficient use of a thread pool system and also keeps the state of
requests so that it can keep requests alive without holding a single thread for each of them.

Grizzly supports two different implementations of Comet:

= “Grizzly Comet” on page 86 — Based on ARDP, this includes a set of APIs that you use from a
web component to enable Comet functionality in your web application. Grizzly Comet is
specific to the Sun GlassFish Enterprise Server.

= “Bayeux Protocol” on page 96 — Often referred to as Cometd. This consists of the
JSON-based Bayeux message protocol, a set of Dojo or Ajax libraries, and an event handler.
The Bayeux protocol uses a publish/subscribe model for server/client communication. The
Bayeux protocol is portable, but it is container dependent if you want to invoke it from an
EJB component. The Grizzly implementation of Cometd consists of a servlet that you
reference from your web application.

Client Technologies to Use With Comet

In addition to creating a web component that uses the Comet APIs, you need to enable your
client to accept asynchronous updates from the web component. To accomplish this, you can
use JavaScript, IFrames, or a framework, such as Dojo.

An IFrame is an HTML element that allows you to include other content in an HTML page. As
aresult, the client can embed updated content in the IFrame without having to reload the page.

The example explained in this tutorial employs a combination of JavaScript and [Frames to
allow the client to accept asynchronous updates. A servlet included in the example writes out
JavaScript code to one of the [Frames. The JavaScript code contains the updated content and
invokes a function in the page that updates the appropriate elements in the page with the new
content.

The next section explains the two kinds of connections that you can make to the server. While
you can use any of the client technologies listed in this section with either kind of connection, it
is more difficult to use JavaScript with an HTTP-streaming connection.

Kinds of Comet Connections

When working with Comet, as implemented in Grizzly, you have two different ways to handle
client connections to the server:

= HTTP Streaming
= long-polling

Chapter7 - Developing Web Applications 85

http://dojotoolkit.org

Using Comet

86

HTTP Streaming

The HTTP Streaming technique keeps a connection open indefinitely. It never closes, even after
the server pushes data to the client.

In the case of HTTP streaming, the application sends a single request and receives responses as
they come, reusing the same connection forever. This technique significantly reduces the
network latency because the client and the server don't need to open and close the connection.

The basic life cycle of an application using HTTP-streaming is:
request --> suspend --> data available --> write response --> data available --> write response

The client makes an initial request and then suspends the request, meaning that it waits for a
response. Whenever data is available, the server writes it to the response.

Long Polling

The long-polling technique is a combination of server-push and client-pull because the client
needs to resume the connection after a certain amount of time or after the server pushes an
update to the client.

The basic life cycle of an application using long-polling is:
request -> suspend --> data available --> write response --> resume

The client makes an initial request and then suspends the request. When an update is available,
the server writes it to the response. The connection closes, and the client optionally resumes the
connection.

How to Choose the Kind of Connection

If you anticipate that your web application will need to send frequent updates to the client, you
should use the HTTP-streaming connection so that the client does not have to frequently
reestablish a connection. If you anticipate less frequent updates, you should use the long-polling
connection so that the web server does not need to keep a connection open when no updates are
occurring. One caveat to using the HTTP-streaming connection is that if you are streaming
through a proxy, the proxy can buffer the response from the server. So, be sure to test your
application if you plan to use HT'TP-streaming behind a proxy.

Grizzly Comet

The following sections describe how to use Grizzly Comet.

= “The Grizzly Comet API” on page 87
= “The Hidden Frame Example” on page 87

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Using Comet

“Creating a Comet-Enabled Application” on page 88

“Developing the Web Component” on page 89

“Creating the Client Pages” on page 92

“Creating the Deployment Descriptor” on page 94

“Deploying and Running a Comet-Enabled Application” on page 95

The Grizzly Comet API

Grizzly's support for Comet includes a small set of APIs that make it easy to add Comet
functionality to your web applications. The Grizzly Comet APIs that developers will use most
often are the following:

= CometContext: A Comet context, which is a shareable space to which applications subscribe
in order to receive updates.

= CometEngine: The entry point to any component using Comet. Components can be servlets,
JavaServer Pages™ (JSP™), JavaServer Faces components, or pure Java classes.

= CometEvent: Contains the state of the CometContext object
= CometHandler: The interface an application implements to be part of one or more Comet

contexts.

The way a developer would use this APIin a web component is to perform the following tasks:

1. Register the context path of the application with the CometContext object:

CometEngine cometEngine =
CometEngine.getEngine();

CometContext cometContext =
cometEngine.register(contextPath)

2. Register the CometHandler implementation with the CometContext object:

cometContext.addCometHandler (handler)

3. Notify one or more CometHandler implementations when an event happens:

cometContext.notify((Object) (handler))

The Hidden Frame Example

This rest of this tutorial uses the Hidden Frame example to explain how to develop
Comet-enabled web applications. You can download the example from
grizzly.dev.java.net at Hidden example download. From there, you can download a
prebuilt WAR file as well as a JAR file containing the servlet code.

The Hidden Frame example is so called because it uses hidden IFrames. What the example does
is it allows multiple clients to increment a counter on the server. When a client increments the
counter, the server broadcasts the new count to the clients using the Comet technique.

Chapter7 - Developing Web Applications 87

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

Using Comet

The Hidden Frame example uses the long-polling technique, but you can easily modify it to use
HTTP-streaming by removing two lines. See “Notifying the Comet Handler of an Event” on
page 91 and “Creating the HTML Page That Updates and Displays the Content” on page 93

for more information on converting the example to use the HTTP-streaming technique.

The client side of the example uses hidden IFrames with embedded JavaScript tags to connect to
the server and to asynchronously post content to and accept updates from the server.

The server side of the example consists of a single servlet that listens for updates from clients,
updates the counter, and writes JavaScript code to the client that allows it to update the counter
on its page.

See “Deploying and Running a Comet-Enabled Application” on page 95 for instructions on
how to deploy and run the example.

When you run the example, the following happens:
1. The index.html page opens.

2. Thebrowser loads three frames: the first one accesses the servlet using an HTTP GET; the
second one loads the count . html page, which displays the current count; and the third one
loads the button. html page, which is used to send the POST request.

3. After clicking the button on the button.html page, the page submits a POST request to the
servlet.

4. The doPost method calls the onEvent method of the Comet handler and redirects the
incremented count along with some JavaScript to the count. html page on the client.

5. The updateCount JavaScript function on the count.html page updates the counter on the
page.

6. Because this example uses long-polling, the JavaScript code on count. html calls doGet
again to resume the connection after the servlet pushes the update.

Creating a Comet-Enabled Application

This section uses the Hidden Frame example application to demonstrate how to develop a
Comet application. The main tasks for creating a simple Comet-enabled application are the
following:

= “Developing the Web Component” on page 89, such as a servlet to support the Comet
requests and a Comet handler to send updates to the client

= “Creating the Client Pages” on page 92, one or more HTML pages that include some
client-side technology to open an asynchronous connection to the server and to receive
updates from the web component

= “Creating the Deployment Descriptor” on page 94, which configures the web component

88 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Using Comet

Developing the Web Component

This section shows you how to create a Comet-enabled web component by giving you
instructions for creating the servlet in the Hidden Frame example.

Developing the web component involves performing the following steps:

Create a web component to support Comet requests.

Register the component with the Comet engine.

Define a Comet handler that sends updates to the client.

Add the Comet handler to the Comet context.

Notify the Comet handler of an event using the Comet context.

G R =

Creating a Web Component to Support Comet

Create an empty servlet class, like the following:

import javax.servlet.*;

public class HiddenCometServlet extends HttpServlet {
private static final long serialVersionUID = 1L;
private String contextPath = null;
@Override
public void init(ServletConfig config) throws ServletException {}

@Override

protected void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {}

@Override

protected void doPost(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {);

Import the following Comet packages into the servlet class:

import com.sun.grizzly.comet.CometContext;
import com.sun.grizzly.comet.CometEngine;
import com.sun.grizzly.comet.CometEvent;

import com.sun.grizzly.comet.CometHandler;

Import these additional classes that you need for incrementing a counter and writing output to
the clients:

import java.io.IOException;
import java.io.PrintWriter;
import java.util.concurrent.atomic.AtomicInteger;

Chapter7 - Developing Web Applications 89

Using Comet

4 Adda private variable for the counter:

private final AtomicInteger counter = new AtomicInteger();

V¥ Registering the Servlet with the Comet Engine

1 Intheservlet's init method, add the following code to get the component's context path:

ServletContext context = config.getServletContext();
contextPath = context.getContextPath() + "/hidden comet";

2 Getaninstance of the Comet engine by adding this line after the lines from step 1:

CometEngine engine = CometEngine.getEngine();

3 Register the component with the Comet engine by adding the following lines after those from
step 2:

CometContext cometContext = engine.register(contextPath);
cometContext.setExpirationDelay (30 * 1000);

V¥ Defining a Comet Handler to Send Updates to the Client

1 Createa private class thatimplements CometHandler and add it to the servlet class:

private class CounterHandler
implements CometHandler<HttpServletResponse> {
private HttpServletResponse response;

2 Add the following methods to the class:

public void onInitialize(CometEvent event)
throws IOException {}

public void onInterrupt(CometEvent event)

throws IOException {
removeThisFromContext();

public void onTerminate(CometEvent event)
throws IOException {
removeThisFromContext();

public void attach(HttpServletResponse attachment) {
this.response = attachment;

private void removeThisFromContext() throws IOException {

90 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Using Comet

response.getWriter().close();

CometContext context =
CometEngine.getEngine().getCometContext(contextPath);

context.removeCometHandler(this);

}

You need to provide implementations of these methods when implementing CometHandler.
The onInterrupt and onTerminate methods execute when certain changes occur in the status
of the underlying TCP communication. The onInterrupt method executes when
communication is resumed. The onTerminate method executes when communication is
closed. Both methods call removeThisFromContext, which removes the CometHandler object
from the CometContext object.

Adding the Comet Handler to the Comet Context

Get an instance of the Comet handler and attach the response to it by adding the following lines
to the doGet method:

CounterHandler handler = new CounterHandler();
handler.attach(res);

Get the Comet context by adding the following lines to doGet:

CometEngine engine = CometEngine.getEngine();
CometContext context = engine.getCometContext(contextPath);

Add the Comet handler to the Comet context by adding this line to doGet:

context.addCometHandler (handler);

Notifying the Comet Handler of an Event

Add an onEvent method to the CometHandler class to define what happens when an event
occurs:

public void onEvent(CometEvent event)
throws IOException {
if (CometEvent.NOTIFY == event.getType()) {
int count = counter.get();
PrintWriter writer = response.getWriter();
writer.write("<script type=’text/javascript’s" +
"parent.counter.updateCount(’" + count + "")" +
"</script>\n")
writer.flush();
event.getCometContext().resumeCometHandler(this);

Chapter7 - Developing Web Applications 91

Using Comet

92

This method first checks if the event type is NOTIFY, which means that the web component is
notifying the CometHandler object that a client has incremented the count. If the event type is
NOTIFY, the onEvent method gets the updated count, and writes out JavaScript to the client. The
JavaScript includes a call to the updateCount function, which will update the count on the
clients' pages.

The last line resumes the Comet request and removes it from the list of active CometHandler
objects. By this line, you can tell that this application uses the long-polling technique. If you
were to delete this line, the application would use the HTTP-Streaming technique.

= For HTTP-Streaming:
Add the same code as for long-polling, except do not include the following line:

event.getCometContext().resumeCometHandler(this);

You don't include this line because you do not want to resume the request. Instead, you want
the connection to remain open.

Increment the counter and forward the response by adding the following lines to the doPost
method:
counter.incrementAndGet();
CometEngine engine = CometEngine.getEngine();
CometContext<?> context =
engine.getCometContext(contextPath);
context.notify(null);
req.getRequestDispatcher("count.html").forward(req, res);

When a user clicks the button, the doPost method is called. The doPost method increments the
counter. It then obtains the current CometContext object and calls its notify method. By calling
context.notify, the doPost method triggers the onEvent method you created in the previous
step. After onEvent executes, doPost forwards the response to the clients.

Creating the Client Pages
Developing the HTML pages for the client involves performing these steps:

1. Createawelcome HTML page, called index . htm1, that contains: one hidden frame for
connecting to the servlet through an HTTP GET; one IFrame that embeds the count.htmtl
page, which contains the updated content; and one IFrame that embeds the button.html
page, which is used for posting updates using HTTP POST.

2. Create the count.html page that contains an HTML element that displays the current count
and the JavaScript for updating the HTML element with the new count.

3. Create the button.html page that contains a button for the users to submit updates.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Using Comet

V¥ Creating aWelcome HTML Page That Contains IFrames for Receiving
and Sending Updates

1 Createan HTML page called index.html.

2 Addthefollowing content to the page:

<html>
<head>
<title>Comet Example: Counter with Hidden Frame</title>
</head>
<body>
</body>
</html>

3 AddIFrames for connecting to the server and receiving and sending updates to index . htmlin
between the body tags:

<frameset>
<iframe name="hidden" src="hidden comet"
frameborder="0" height="0" width="100%"></iframe>
<iframe name="counter" src="count.html"
frameborder="0" height="100%" width="100%"></1iframe>
<iframe name="button" src="button.html" frameborder="0" height="30%" widget="100%"></iframe>
</frameset>

The first frame, which is hidden, points to the servlet by referencing its context path. The
second frame displays the content from count. html, which displays the current count. The
second frame displays the content from button. html, which contains the submit button for
incrementing the counter.

¥ Creating the HTML Page That Updates and Displays the Content

1 Createan HTML page called count.html and add the following content to it:

<html>
<head>
</head>
<body>
<center>
<h3>Comet Example: Counter with Hidden Frame</h3>
<p>
<b id="count">
<p>
</center>
</body>
</html>

This page displays the current count.

Chapter7 - Developing Web Applications 93

Using Comet

2 AddJavaScript code that updates the countin the page . Add the following lines in between the
head tags of count.html:
<script type='text/javascript’>
function updateCount(c) {
document.getElementById(’'count’).innerHTML = c;
parent.hidden.location.href = "hidden comet";
}i
</script>

The JavaScript takes the updated count it receives from the servlet and updates the count
element in the page. The last line in the updateCount function invokes the servlet's doGet
method again to reestablish the connection.

= For HTTP-Streaming:
Add the same code as for long-polling, except for the following line:

parent.hidden.location.href = “hidden comet”

This line invokes the doGet method of CometServlet again, which would reestablish the
connection. In the case of HTTP-Streaming, you want the connection to remain open.
Therefore, you don't include this line of code.

V¥ Creating the HTML Page That Allows Submitting Updates

® CreateanHTML page called button.html and add the following content to it:

<html>
<head>
</head>
<body>
<center>
<form method="post" action="hidden_ comet">
<input type="submit" value="Click">
</form>
</center>
</body>
</html>

This page displays a form with a button that allows a user to update the count on the server. The
servlet will then broadcast the updated count to all clients.

Creating the Deployment Descriptor

This section describes how to create a deployment descriptor to specify how your
Comet-enabled web application should be deployed.

94 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Using Comet

V¥ Creating the Deployment Descriptor

® Createafile called web. xml and put the following contents in it:
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation=
"http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd ">

<servlet>
<servlet-name>HiddenCometServlet</servliet-name>
<servlet-class>

com.sun.grizzly.samples.comet.HiddenCometServlet

</servlet-class>
<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>HiddenCometServlet</servlet-name>
<url-pattern>/hidden comet</url-pattern>

</servlet-mapping>

</web-app>

This deployment descriptor contains a servlet declaration and mapping for
HiddenCometServlet. The load-on-startup attribute must be set to 0 so that the
Comet-enabled servlet will not load until the client makes a request to it.

Deploying and Running a Comet-Enabled Application

Before running a Comet-enabled application in the Enterprise Server, you need to enable
Comet in the server. Then you can deploy the application just as you would any other web
application.

When running the application, you need to connect to it from at least two different browsers to
experience the effect of the servlet updating all clients in response to one client posting an
update to the server.

¥ Enabling Cometin the Enterprise Server

Before running a Comet-enabled application, you need to enable Comet in your application
server by adding a special property to the http-listener element of the domain.xml file.

The following steps tell you how to add this property.

1 Opendomain-dir/config/domain.xml in atext editor.

Chapter7 - Developing Web Applications 95

Using Comet

96

Add the following property in between the http-listener startand end tags:

<property name="cometSupport" value="true"/>

Save domain.xml and restart the server.

Deploying the Example

These instructions tell you how to deploy the Hidden Frame example.
Download grizzly-comet-hidden-1.7.3.1.war.

Run the following command to deploy the example:

as-install/bin/asadmin deploy grizzly-comet-hidden-1.7.3.1.war

Running the Example

These instructions tell you how to run the Hidden Frame example.
Open two web browsers, preferably two different brands of web browser.

Enter the following URL in both browsers:
http://localhost:8080/grizzly-comet-hidden/index.html

When the first page loads in both browsers, click the button in one of the browsers and watch
the count change in the other browser window.

Bayeux Protocol

The Bayeux protocol, often referred to as Cometd, greatly simplifies the use of Comet. No
server-side coding is needed for servers such as Enterprise Server that support the Bayeux
protocol. Just enable Comet and the Bayeux protocol, then write and deploy the client as
described in the following tasks:

= “Enabling Comet” on page 96
= “Configuring the web.xml File” on page 97
= “Writing, Deploying, and Running the Client” on page 98

Enabling Comet

Before running a Comet-enabled application, you need to enable Comet in your application
server by adding a special property to the http-listener element of the domain.xml file.

The following steps tell you how to add this property.

Open domain-dir/config/domain.xml in a text editor.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

Using Comet

Add the following property in between the http-listener startand end tags:

<property name="cometSupport" value="true"/>

Save domain.xml and restart the server.

Configuring the web . xm1 File

To enable the Bayeux protocol on the Enterprise Server, you must reference the CometdServlet
in your web application's web . xm1 file. In addition, if your web application includes a servlet, set
the load-on-startup value for your servlet to @ (zero) so that it will not load until the client
makes a request to it.

Open the web . xm1 file for your web application in a text editor.

Add the following XML code to the web . xm1 file:

<servlet>
<servlet-name>Grizzly Cometd Servlet</servlet-name>
<servlet-class>
com.sun.grizzly.cometd.servlet.CometdServlet
</servlet-class>
<init-param>
<description>
expirationDelay is the long delay before a request is
resumed. -1 means never.
</description>
<param-name>expirationDelay</param-name>
<param-value>-1</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Grizzly Cometd Servlet</servlet-name>
<url-pattern>/cometd/*</url-pattern>
</servlet-mapping>

Note that the load-on-startup value for the CometdServletis 1.

If your web application includes a servlet, set the Load-on-startup value to @ for your servlet
(not the CometdServlet) as follows:

<servlet>

<load-on-startup>0</load-on-startup>
</servlet>

Save theweb. xml file.

Chapter7 - Developing Web Applications 97

Using Comet

98

SeeAlso

Writing, Deploying, and Running the Client

The examples in this task are taken from the example chat application posted and discussed at
http://weblogs.java.net/blog/jfarcand/archive/2007/02/gcometd introdu 1.html.

Add script tags to the HTML page. For example:

<script type="text/javascript" src="chat.js"></script>

In the script, call the needed libraries. For example:

dojo.require("dojo.io.cometd");

In the script, use publish and subscribe methods to send and receive messages. For example:

cometd.subscribe("/chat/demo", false, room, " chat");
cometd.publish("/chat/demo", { user: room. username, chat: text});

Deploy the web application as you would any other web application. For example:

asadmin deploy cometd-example.war

Run the application as you would any other web application.

The context root for the example chat application is /cometd and the HTML page is
index.html. So the URL might look like this:

http://localhost:8080/cometd/index.html

For more information about deployment in the Enterprise Server, see the Sun GlassFish
Enterprise Server v3 Prelude Application Deployment Guide.

For more information about the Bayeux protocol, see Bayeux Protocol
(http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html).

For more information about the Dojo toolkit, see http://dojotoolkit.org/.

For information about pushing data from an external component such as an EJB module, see
the example at http://blogs.sun.com/swchan/entry/java_api_for_cometd. Using this
Grizzly Java API for Cometd makes your web application non-portable. Running your
application on a server that doesn't support Grizzly Comet will not work.

For information about RESTful (REpresentational State Transfer) web services and Comet, see
RESTful Web Services and Comet
(http://developers.sun.com/appserver/reference/techart/cometslideshow.html).

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://weblogs.java.net/blog/jfarcand/archive/2007/02/gcometd_introdu_1.html
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://dojotoolkit.org/
http://blogs.sun.com/swchan/entry/java_api_for_cometd
http://developers.sun.com/appserver/reference/techart/cometslideshow.html
http://developers.sun.com/appserver/reference/techart/cometslideshow.html

Developing Grails Applications

Developing Grails Applications

Example 7-1

This section shows you how to get started using Groovy on Grails on the Enterprise Server by
covering the following topics:

“Introduction to Groovy and Grails” on page 99

“Installing Grails” on page 99

“Creating a Simple Grails Application” on page 100
“Deploying and Running a Grails Application” on page 101

Introduction to Groovy and Grails

Groovy is a dynamic, object-oriented language for the Java Virtual Machine, which builds on
the strengths of Java but has additional features inspired by languages such as Python, Ruby,
and Smalltalk. For more information about Groovy, see Groovy
(http://groovy.codehaus.org).

Grails is an open-source web application framework that leverages the Groovy language and
complements Java web development. Grails is a stand-alone development environment that can
hide all configuration details or allow integration of Java business logic. For more information
about Grails, see Grails (http://www.grails.org).

Installing Grails

To develop and deploy Grails applications on the Enterprise Server, first install the Grails
plug-in module.

Installing the Grails Plug-in Module

Install the Grails add-on component from the Update Tool.

For information about the Update Tool, see the Sun GlassFish Enterprise Server v3 Prelude
Installation Guide.

Create aGRAILS HOME environment variable that points to the Grails directory,
as-install/grails.

Add the as-install/grails/bin directory to the PATH environment variable.

Setting UNIX Environment Variables

On Solaris, Linux, and other operating systems related to UNIX, use the following commands
for steps 2 and 3:

Chapter7 - Developing Web Applications 99

http://groovy.codehaus.org
http://groovy.codehaus.org
http://www.grails.org
http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-5968

Developing Grails Applications

100

Example 7-2

set GRAILS HOME=~/glassfish/grails
export GRAILS HOME

cd $GRAILS HOME

set PATH=$GRAILS HOME/bin:$PATH
export PATH

chmod a+x $GRAILS HOME/bin/*

Setting Windows Environment Variables

On the Windows operating system, use the following commands for steps 2 and 3:

set GRAILS HOME=C:\GlassFish\grails
set PATH=%GRAILS HOME%\bin;%PATH%

Creating a Simple Grails Application

To create the helloworld application, perform both these tasks:

= “Creating the helloworld Application” on page 100
= “Creating the hello Controller” on page 100

For more information on creating Grails applications, see the Grails Quick Start
(http://grails.org/Quick+Start).

Creating the helloworld Application
Go to the as-install/grails/samples directory.

Run the grails create-app helloworld command.

The grails create-app command creates an application framework that you can modify.

Creating the hello Controller
Go to the as-install/grails/samples/helloworld directory.

Run the grails create-controller hello command.

The grails create-controller command creates a controller file that you can modify.

Edit the generated HelloController.groovy file so it looks like this:

class HelloController {

def world = {
render "Hello World!"

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://grails.org/Quick+Start
http://grails.org/Quick+Start

Developing Grails Applications

SeeAlso

H
//def index = { }

Deploying and Running a Grails Application

To deploy and run your application, perform one of these tasks:

= “Running a Grails Application Using run-app” on page 101
= “Running a Grails Application Using Standard Deployment” on page 101

Running a Grails Application Using run-app

Go to the application directory.

For example, go to the as-install/grails/samples/helloworld directory.

Run the grails run-app command.

The grails run-app command starts the Enterprise Server in the background and runs the
application in one step. You don't need to create a WAR file or deploy your application.

To test your application, point your browser to http: //host: port/app-dir-name.

For example, point to http://localhost:8080/helloworld. You should see a screen that
begins, “Welcome to Grails”” Selecting the HelloController link should change the display to,
“Hello World!”

For details about the grails run-app command, see the Sun GlassFish Enterprise Server v3
Prelude Reference Manual.

Running a Grails Application Using Standard Deployment

Go to the application directory.

For example, go to the as-install/grails/samples/helloworld directory.
Create the WARfile in one of the following ways:

= Run the grails war command.
This command creates a large WAR file containing all the application's dependencies.

®= Runthegrails shared-war command.

This command creates a small WAR file, but requires referencing of the Grails library JAR at
deployment.

Chapter7 - Developing Web Applications 101

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Developing Grails Applications

3

SeeAlso

102

In the helloworld application, this step creates the helloworld-0.1.war file.
Deploy the WAR file in one of the following ways:

= |nthe Administration Console, open the Applications component, go to the Web
Applications page, select the Deploy button, and type the path to the WAR file.

The path to the helloworld WAR file is
as-install/grails/samples/helloworld/helloworld-0.1.war.

If you used the grails shared-war command, specify the
as-install/grails/lib/glassfish-grails.jar file in the Libraries field.

= Onthe command line, use the asadmin deploy command and specify the WAR file. For
example:

asadmin deploy helloworld-0.1.war
If you used the grails shared-war command, specify the libraries using the - - libraries
option. For example:

asadmin deploy --libraries $GRAILS HOME/lib/glassfish-grails.jar helloworld-0.1.war

To test your application, point your browser to http: //host: port/ war-file-name. Do not include
the .war extension.

For example, point to http://localhost:8080/helloworld-0.1. You should see a screen that
begins, “Welcome to Grails.” Selecting the HelloController link should change the display to,
“Hello World!”

For details about the Administration Console, see the online help.

For details about the asadmin deploy command, see the Sun GlassFish Enterprise Server v3
Prelude Reference Manual.

For details about the grails war and grails shared-war commands, see the Grails Quick
Start (http://grails.org/Quick+Start).

For general information about deployment, see the Sun GlassFish Enterprise Server v3 Prelude
Application Deployment Guide.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://grails.org/Quick+Start
http://grails.org/Quick+Start
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502

Advanced Web Application Features

Advanced Web Application Features

This section includes summaries of the following topics:

= “Internationalization Issues” on page 103

= “Virtual Servers” on page 104

= “Default Web Modules” on page 105

“Class Loader Delegation” on page 106

“Using the default-web.xml File” on page 106
“Configuring Logging and Monitoring in the Web Container” on page 107
“Header Management” on page 107

“Configuring Valves and Catalina Listeners” on page 107
“Alternate Document Roots” on page 108

“Redirecting URLs” on page 110

“Using a context.xml File” on page 110

“Enabling WebDav” on page 111

“Using mod_jk” on page 113

“Using SSI” on page 114

“Using CGI” on page 116

“Using PHP” on page 117

“Using Scala and Lift” on page 117

Internationalization Issues

This section covers internationalization as it applies to the following:

= “The Server's Default Locale” on page 103
= “Servlet Character Encoding” on page 103

The Server's Default Locale

To set the default locale of the entire Enterprise Server, which determines the locale of the
Administration Console, the logs, and so on, use the Administration Console. Select the
Enterprise Server component, the Advanced tab, and the Domain Attributes tab. Then type a
value in the Locale field. For details, click the Help button in the Administration Console.

Servlet Character Encoding

This section explains how the Enterprise Server determines the character encoding for the
servlet request and the servlet response. For encodings you can use, see
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html.

Chapter7 - Developing Web Applications 103

http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Advanced Web Application Features

104

Servlet Request

When processing a servlet request, the server uses the following order of precedence, first to
last, to determine the request character encoding:

m ThegetCharacterEncoding() method

= Ahidden field in the form, specified by the form-hint-field attribute of the
parameter-encoding element in the sun-web. xml file

m Thedefault-charset attribute of the parameter-encoding element in the sun-web . xm1l
file

® The default, which is IS0-8859-1

For details about the parameter-encoding element, see “parameter-encoding” in Sun GlassFish
Enterprise Server v3 Prelude Application Deployment Guide.

Servlet Response

When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

m ThesetCharacterEncoding() or setContentType() method
m ThesetLocale() method
® The default, which is IS0-8859-1

Virtual Servers

A virtual server, also called a virtual host, is a virtual web server that serves content targeted for
a specific URL. Multiple virtual servers can serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service directs incoming web requests to
different virtual servers based on the URL.

When you first install the Enterprise Server, a default virtual server is created. You can also
assign a default virtual server to each new HTTP listener you create.

Web applications can be assigned to virtual servers during deployment. A web module can be
assigned to more than one virtual server, and a virtual server can have more than one web
module assigned to it.

If you deploy a web application and don't specify any assigned virtual servers, the web
application is assigned to all currently defined virtual servers. If you then create additional
virtual servers and want to assign existing web applications to them, you must redeploy the web
applications. For more information about deployment, see the Sun GlassFish Enterprise Server
v3 Prelude Application Deployment Guide.

For more information about virtual servers, see “virtual-server” in Sun GlassFish Enterprise
Server v3 Prelude Administration Reference.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4502/beavn?a=view
http://docs.sun.com/doc/820-4502/beavn?a=view
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4507/abhfg?a=view
http://docs.sun.com/doc/820-4507/abhfg?a=view

Advanced Web Application Features

See Also

See Also

To Assign a Default Virtual Server

In the Administration Console, open the HTTP Service component under the relevant
configuration.

Open the HTTP Listeners component under the HTTP Service component.
Select or create a new HTTP listener.

Select from the Default Virtual Server drop-down list.

For more information, see “Default Web Modules” on page 105.

For details, click the Help button in the Administration Console from the HTTP Listeners page.

To Assign Virtual Servers

Deploy the application or web module and assign the desired virtual servers to it.

For more information, see Sun GlassFish Enterprise Server v3 Prelude Application Deployment
Guide.

In the Administration Console, open the HTTP Service component under the relevant
configuration.

Open the Virtual Servers component under the HTTP Service component.
Select the virtual server to which you want to assign a default web module.

Select the application or web module from the Default Web Module drop-down list.

For more information, see “Default Web Modules” on page 105.

For details, click the Help button in the Administration Console from the Virtual Servers page.

Default Web Modules

A default web module can be assigned to the default virtual server and to each new virtual
server. For details, see “Virtual Servers” on page 104. To access the default web module for a
virtual server, point the browser to the URL for the virtual server, but do not supply a context
root. For example:

http://myvserver:3184/

Chapter7 - Developing Web Applications 105

http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502

Advanced Web Application Features

106

A virtual server with no default web module assigned serves HTML or JavaServer Pages (JSP)
content from its document root, which is usually domain-dir/docroot. To access this HTML or
JSP content, point your browser to the URL for the virtual server, do not supply a context root,
but specify the target file.

For example:

http://myvserver:3184/hellothere. jsp

Class Loader Delegation

The Servlet specification recommends that a web application class loader look in the local class
loader before delegating to its parent. To make the web application class loader follow the
delegation model in the Servlet specification, set delegate="false" in the class-loader
element of the sun-web. xml file. It’s safe to do this only for a web module that does not interact
with any other modules.

The default value is delegate="true", which causes the web application class loader to delegate
in the same manner as the other class loaders. Use delegate="true" for a web application that
accesses EJB components or that acts as a web service client or endpoint. For details about
sun-web . xml, see Sun GlassFish Enterprise Server v3 Prelude Application Deployment Guide.

Note - For Prelude, the delegate value is ignored and assumed to be set to true.

For general information about class loaders, see Chapter 2, “Class Loaders.”

Using the default-web.xml File

You can use the default-web.xml file to define features such as filters and security constraints
that apply to all web applications.

For example, you can disable directory listings for added security. In your domain's
default-web.xml file, search for the definition of the servlet whose servlet-name is equal to
default, and set the value of the init-param named listings to false. Then redeploy your
web application if it has already been deployed.

<init-param>
<param-name>listings</param-name>
<param-value>false</param-value>
</init-param>

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4502

Advanced Web Application Features

The mime-mapping elements in default-web.xml are global and inherited by all web
applications. You can override these mappings or define your own using mime -mapping
elements in your web application's web . xml file. For more information about mime-mapping
elements, see the Servlet specification.

You can use the Administration Console to edit the default-web.xml file. For details, click the
Help button in the Administration Console. As an alternative, you can edit the file directly using
the following steps.

ToUsethedefault-web.xml File

Place the JAR file for the filter, security constraint, or other feature in the domain-dir/1ib
directory.

Edit the domain-dir/config/default-web.xml file to refer to the JARfile.

Restart the server.

Configuring Logging and Monitoring in the Web
Container

For information about configuring logging and monitoring in the web container using the
Administration Console, click the Help button in the Administration Console. Logging and
Monitor tabs are accessible from the Application Server page.

Header Management

In all Editions of the Enterprise Server, the Enumeration from request.getHeaders () contains
multiple elements (one element per request header) instead of a single, aggregated value.

The header names used in HttpServletResponse.addXXXHeader () and
HttpServletResponse.setXXXHeader () are returned as they were created.

Configuring Valves and Catalina Listeners

You can configure custom valves and Catalina listeners for web modules or virtual servers by
defining properties. A valve class must implement the org.apache. catalina.Valve interface
from Tomcat or previous Enterprise Server releases, or the
org.glassfish.web.valve.GlassFishValve interface from the current Enterprise Server
release. A listener class for a virtual server must implement the
org.apache.catalina.ContainerListener ororg.apache.catalina.LifecyclelListener

Chapter7 - Developing Web Applications 107

Advanced Web Application Features

interface. A listener class for a web module must implement the
org.apache.catalina.ContainerListener,org.apache.catalina.LifecycleListener,or
org.apache.catalina.InstancelListener interface.

In the sun-web. xml file, valve and listener properties for a web module look like this:
<sun-web-app ...>

<property name="valve 1" value="org.glassfish.extension.Valve"/>
<property name="listener 1" value="org.glassfish.extension.MyLifecycleListener"/>
</sun-web-app>

In the domain. xml file, valve and listener properties for a virtual server look like this:
<virtual-server ...>

<property name="valve 1" value="org.glassfish.extension.Valve"/>
<property name="listener 1" value="org.glassfish.extension.MyLifecycleListener"/>
</virtual-server>

You can define these properties for a virtual server in one of the following ways, then restart the
server:

= You can define properties using the asadmin set command. For example:

asadmin set server-config.http-service.virtual-server.MyVS.property.valve 1="org.glassfish.extension.Valve"

= You can define virtual server properties using the Administration Console. Select the HTTP
Service component under the relevant configuration, select Virtual Servers, and select the
desired virtual server. Select Add Property, enter the property name and value, check the
enable box, and select Save. For details, click the Help button in the Administration Console.

Alternate Document Roots

An alternate document root (docroot) allows a web application to serve requests for certain
resources from outside its own docroot, based on whether those requests match one (or more)
of the URI patterns of the web application's alternate docroots.

To specify an alternate docroot for a web application or a virtual server, use the
alternatedocroot_n property, where n is a positive integer that allows specification of more
than one. This property can be a subelement of a sun-web-app element in the sun-web. xml file
oravirtual-server elementin the domain.xml file. For more information about these
elements, see “sun-web-app” in Sun GlassFish Enterprise Server v3 Prelude Application
Deployment Guide and “virtual-server” in Sun GlassFish Enterprise Server v3 Prelude
Administration Reference.

108 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4502/beayb?a=view
http://docs.sun.com/doc/820-4502/beayb?a=view
http://docs.sun.com/doc/820-4507/abhfg?a=view
http://docs.sun.com/doc/820-4507/abhfg?a=view

Advanced Web Application Features

A virtual server's alternate docroots are considered only if a request does not map to any of the
web modules deployed on that virtual server. A web module's alternate docroots are considered
only once a request has been mapped to that web module.

If a request matches an alternate docroot's URI pattern, it is mapped to the alternate docroot by
appending the request URI (minus the web application's context root) to the alternate docroot's
physical location (directory). If a request matches multiple URI patterns, the alternate docroot
is determined according to the following precedence order:

= Exact match
= Longest path match
= Extension match

For example, the following properties specify three docroots. The URI pattern of the first
alternate docroot uses an exact match, whereas the URI patterns of the second and third
alternate docroots use extension and longest path prefix matches, respectively.

<property name="alternatedocroot 1" value="from=/my.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot 2" value="from=*.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot 3" value="from=/jpg/* dir=/src/images"/>

The value of each alternate docroot has two components: The first component, from, specifies
the alternate docroot's URI pattern, and the second component, dir, specifies the alternate
docroot's physical location (directory).

Suppose the above examples belong to a web application deployed at
http://company22. com/myapp. The first alternate docroot maps any requests with this URL:

http://company22.com/myapp/my.jpg

To this resource:

/svr/images/jpg/my.jpg

The second alternate docroot maps any requests with a *. jpg suffix, such as:

http://company22.com/myapp/*.jpg

To this physical location:

/svr/images/jpg

The third alternate docroot maps any requests whose URI starts with /myapp/jpg/, such as:

http://company22.com/myapp/jpg/*
To the same directory as the second alternate docroot.

For example, the second alternate docroot maps this request:

Chapter7 - Developing Web Applications 109

Advanced Web Application Features

110

http://company22.com/myapp/abc/def/my.jpg

To:

/srv/images/jpg/abc/def/my.jpg
The third alternate docroot maps:

http://company22.com/myapp/jpg/abc/resource

To:

/srv/images/jpg/abc/resource

If a request does not match any of the target web application's alternate docroots, or if the target
web application does not specify any alternate docroots, the request is served from the web
application's standard docroot, as usual.

Redirecting URLs

You can specify that a request for an old URL is treated as a request for a new URL. This is called
redirectinga URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where nisa
positive integer that allows specification of more than one. This property is a subelement of a
virtual-server element in the domain.xml file. For more information about this element, see
“virtual-server” in Sun GlassFish Enterprise Server v3 Prelude Administration Reference. Each of
these redirect_n properties is inherited by all web applications deployed on the virtual server.

The value of each redirect_n property has two components, which may be specified in any
order:

The first component, f rom, specifies the prefix of the requested URI to match.

The second component, url-prefix, specifies the new URL prefix to return to the client. The
from prefix is simply replaced by this URL prefix.

For example:

<property name="redirect 1" value="from=/dummy url-prefix=http://etude"/>

Using a context.xml File

You can define a context . xml file for all web applications, for web applications assigned to a
specific virtual server, or for a specific web application.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4507/abhfg?a=view

Advanced Web Application Features

To define a global context . xml file, place the file in the domain-dir/ config directory and name
it context.xml.

Use the contextXmlDefault property to specify the name and the location, relative to
domain-dir, of the context . xml file for a specific virtual server. Specify this property in one of
the following ways:

= Inthe Administration Console, open the HTTP Service component under the relevant
configuration. Open the Virtual Servers component and scroll down to the bottom of the
page. Enter contextXmlDefault as the property name and the path and file name relative to
domain-dir as the property value.

= Use the asadmin create-virtual-server command. For example:

asadmin create-virtual-server --hosts localhost --property contextXmlDefault=config/vslcontext.xml vsl

= Use the asadmin set command for an existing virtual server. For example:

asadmin set server-config.http-service.virtual-server.server.property.contextXmlDefault=config/mycontext.xml

To define a context . xml file for a specific web application, place the file in the META- INF
directory and name it context.xml.

For more information about virtual servers, see “Virtual Servers” on page 104. For more
information about the context.xml file, see The Context Container
(http://tomcat.apache.org/tomcat-5.5-doc/config/context.html). Context parameters,
environment entries, and resource definitions in context . xml are supported in the Enterprise
Server.

Enabling WebDav

To enable WebDav in the Enterprise Server, you edit the web . xml and sun-web . xm1 files as
follows.

First, enable the WebDav servlet in your web . xm1 file:

<servlet>

<servlet-name>webdav</servlet-name>

<servlet-class>org.apache.catalina.servlets.WebdavServlet</servlet-class>

<init-param>
<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>

<init-param>
<param-name>listings</param-name>
<param-value>true</param-value>

</init-param>

Chapter7 - Developing Web Applications m

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html

Advanced Web Application Features

<init-param>
<param-name>readonly</param-name>
<param-value>false</param-value>
</init-param>
</servlet>

Then define the servlet mapping associated with your WebDav servlet in your web . xm1 file:

<servlet-mapping>
<servlet-name>webdav</servlet-name>
<url-pattern>/webdav/*</url-pattern>
</servlet-mapping>

To protect the WebDav servlet so other users can't modify it, add a security constraint in your
web . xml file:

<security-constraint>
<web-resource-collection>
<web-resource-name>Login Resources</web-resource-name>
<url-pattern>/webdav/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>Admin</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>default</realm-name>
</login-config>
<security-role>
<role-name>Admin</role-name>
</security-role>
</security-constraint>

Then define a security role mapping in your sun-web. xml file:

<security-role-mapping>
<role-name>Admin</role-name>
<group-name>Admin</group-name>

</security-role-mapping>

If you are using the file realm, create a user and password. For example:

asadmin create-file-user --user admin --host localhost --port 4848 --terse=true
--groups Admin --authrealmname default admin

112 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Advanced Web Application Features

Enable the security manager as described in “Enabling and Disabling the Security Manager” on
page 51.

You can now use any WebDav client by connecting to the WebDav servlet URL, which has this
format:

http://host:port/context-root/webdav/file

For example:

http://localhost:80/glassfish-webdav/webdav/index.html

You can add the WebDav servlet to your default-web.xml file to enable it for all applications,
but you can't set up a security role mapping to protect it.

Using mod_jk
To set up mod_jk, follow these steps:
1. Obtain and install Apache 2.0.x or 2.2.x HTTP Server (http://httpd.apache.org/).
2. Configure the following files:
m /etc/httpd/conf/httpd.conf

m /etc/httpd/conf/worker.properties or
domain-dir/config/glassfish-jk.properties (to use non-default values of attributes
described at http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html)

Examples of these files are shown after these steps. If you use both worker.properties and
glassfish-jk.properties files, the file referenced by httpd. conf, or referenced by
httpd.conf first, takes precedence.

Start httpd.

4. Enablemod_jk using the following command:

asadmin set server-config.http-service.http-listener.listener.property.jkEnabled=true
For example:
asadmin set server-config.http-service.http-listener.http-listenerl.property.jkEnabled=true

Or you can use the following deprecated command, provided for backward compatibility:

asadmin create-jvm-options -Dcom.sun.enterprise.web.connector.enableJK=8009

5. Ifyouareusing the glassfish-jk.properties file and not referencing itin httpd. conf,
point to it using the following command:

Chapter 7 « Developing Web Applications 113

http://httpd.apache.org/
http://tomcat.apache.org/tomcat-5.5-doc/config/ajp.html

Advanced Web Application Features

asadmin create-jvm-options
-Dcom.sun.enterprise.web.connector.enableJK.propertyFile=domain-dir/config/glassfish-jk.properties

6. Restart the Enterprise Server.

Here is an example httpd. conf file:

LoadModule jk module /usr/lib/httpd/modules/mod jk.so
JkWorkersFile /etc/httpd/conf/worker.properties

Where to put jk logs

JkLogFile /var/log/httpd/mod jk.log

Set the jk log level [debug/error/info]

JkLogLevel debug

Select the log format

JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

JkOptions indicate to send SSL KEY SIZE,

JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
JkRequestLogFormat set the request format
JkRequestLogFormat "sw %V %T"

Send all jsp requests to GlassFish

JkMount /*.jsp workerl

Send all glassfish-test requests to GlassFish
JkMount /glassfish-test/* workerl

Hbreisanexanqﬂeworker.propertiesorglassfish-jk.propertiesfﬂe

Define 1 real worker using ajpl3
worker.list=workerl

Set properties for workerl (ajpl3)
worker.workerl.type=ajpl3
worker.workerl.host=1localhost.localdomain
worker.workerl.port=8009
worker.workerl.lbfactor=50
worker.workerl.cachesize=10
worker.workerl.cache timeout=600
worker.workerl.socket keepalive=1
worker.workerl.socket timeout=300

Using SSI

To enable SSI (server-side includes) processing for a specific web module, add the SSIServlet
to your web . xml file as follows:

<web-app>
<servlet>
<servlet-name>ssi</servlet-name>
<servlet-class>org.apache.catalina.ssi.SSIServlet</servlet-class>

114 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Advanced Web Application Features

</servlet>

<servlet-mapping>

<servlet-name>ssi</servlet-name>
<url-pattern>*.shtml</url-pattern>

</servlet-mapping>

<mime-mapping>
<extension>shtml</extension>

<mime-type>text/html</mime-type>

</mime-mapping>
</web-app>

To enable SSI processing for all web modules, un-comment the corresponding sections in the

default-web.xml file.

If the mime-mapping is not specified in web . xml, Enterprise Server attempts to determine the
MIME type from default-web.xml or the operating system default.

You can configure the following init-paramvalues for the SSIServlet.

TABLE7-2 SSIServlet init-param Values

init-param Type Default Description
buffered boolean false Specifies whether the output should be
buffered.

debug int 0 (for no debugging) Specifies the debugging level.

expires Long Expires headerin Specifies the expiration time in seconds.
HTTP response not
set

inputEncoding String operating system Specifies encoding for the SSIinput if there is
encoding no URL content encoding specified.

isVirtualWebappRelativeboolean false (relative to the
given SSI file)

outputEncoding String UTEF-8

Specifies whether the virtual path of the
#include directive is relative to the
content-root

Specifies encoding for the SSI output.

For more information about SSI, see

http://httpd.apache.org/docs/2.2/mod/mod_include.html.

Chapter 7 « Developing Web Applications

115

http://httpd.apache.org/docs/2.2/mod/mod_include.html

Advanced Web Application Features

Using CGI

To enable CGI (common gateway interface) processing for a specific web module, add the
CGIServlet to your web.xml file as follows:

<web-app>
<servlet>
<servlet-name>cgi</servlet-name>
<servlet-class>org.apache.catalina.servlets.CGIServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>cgi</servlet-name>
<url-pattern>/cgi-bin/*</url-pattern>
</servlet-mapping>

</web-app>

To enable CGI processing for all web modules, un-comment the corresponding sections in the
default-web.xml file.

Package the CGI program under the cgiPathPrefix. The default cgiPathPrefix is
WEB-INF/cgi. For security, it is highly recommended that the contents and binaries of CGI
programs be prohibited from direct viewing or download. For information about hiding
directory listings, see “Using the default-web.xml File” on page 106.

Invoke the CGI program using a URL of the following format:
http://host:8080/context-root/cgi-bin/cgi-name

For example:
http://localhost:8080/mycontext/cgi-bin/hello

You can configure the following init-paramvalues for the CGIServlet.

TABLE7-3 (CGIServlet init-param Values

init-param Type Default Description

cgiPathPrefix String WEB-INF/cgi Specifies the subdirectory containing the
CGI programs.

debug int 0 (for no debugging) Specifies the debugging level.

executable String perl Specifies the executable for running the
CGI script.

116 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Advanced Web Application Features

TABLE7-3 CGIServlet init-param Values (Continued)
init-param Type Default Description
parameterEncoding String System.getProperty Specifies the parameter's encoding.
("file.encoding",
"UTF-8")
passShellEnvironment boolean false Specifies whether to pass shell environment

properties to the CGI program.

To work with a native executable, do the following:

1. Setthe value of the init-param named executable to an empty String in the web.xml file.
2. Make sure the executable has its executable bits set correctly.

3. Use directory deployment to deploy the web module. Do not deploy itasa WAR file,
because the executable bit information is lost during the process of jar and unjar. For more
information about directory deployment, see the Sun GlassFish Enterprise Server v3 Prelude
Application Deployment Guide.

Using PHP

To enable PHP, deploy the Quercus PHP interpreter to the Enterprise Server as a web module as
follows:

1. Download the Quercus interpreter from http://quercus.caucho.com/.
2. Deploy the WAR file you downloaded to the Enterprise Server.

3. To verify that your PHP engine is working, point your browser to the default PHP script that
comes with the Quercus interpreter, which is http://localhost:8080/quercus-3.1.6/.

4. The Quercus application directory is located at
domain-dir/applications/quercus-3.1.6/. Place your PHP application in a subdirectory
of the Quercus directory, for example domain-dir/applications/quercus-3.1.6/myapp/.
To point your browser to the PHP application, enter
http://localhost:8080/quercus-3.1.6/myapp/.

For more information about using the Quercus PHP interpreter, see the documentation at
http://quercus.caucho.com/quercus-3.1/doc/quercus.xtp.

Using Scala and Lift

Scala is a general purpose programming language designed to express common programming
patterns in a concise, elegant, and type-safe way. It smoothly integrates features of
object-oriented and functional languages. It is also fully interoperable with Java. For details, see
http://www.scala-lang.org/.

Chapter7 - Developing Web Applications 17

http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4502
http://quercus.caucho.com/
http://quercus.caucho.com/quercus-3.1/doc/quercus.xtp
http://www.scala-lang.org/

Advanced Web Application Features

118

Lift is an expressive and elegant framework for writing web applications using Scala. Lift
stresses the importance of security, maintainability, scalability and performance, while allowing
for high levels of developer productivity. For details, see http://1iftweb.net/.

It is common practice to start a Lift web application using Maven. Maven is a software project
management and comprehension tool. Based on the concept of a project object model (POM),
Maven can manage a project's build, reporting and documentation from a central piece of
information. For details, see http://maven.apache.org/.

To create a new Lift project, use Maven interactively in one of these ways:
mvn archetype:generate -DarchetypeCatalog=http://scala-tools.org/
Or:

mvn org.apache.maven.plugins:maven-archetype-plugin:1.0-alpha-7:create \

-DarchetypeGroupId=net.liftweb \
-DarchetypeArtifactId=1ift-archetype-blank \
-DarchetypeVersion=0.7.1 \

-DremoteRepositories=http://scala-tools.org/repo-releases \
-DgroupId=_ my.liftapp -DartifactId= 1liftapp

Or:

mvn org.apache.maven.plugins:maven-archetype-plugin:1.0-alpha-7:create \

-DarchetypeGroupId=net.liftweb \
-DarchetypeArtifactId=1lift-archetype-basic \
-DarchetypeVersion=0.7.1 \

-DremoteRepositories=http://scala-tools.org/repo-releases \
-DgroupId=__my.liftapp__ -DartifactId=__liftapp _

After coding your application, build the WAR file using the mvn package command. Then
deploy the WAR file to the Enterprise Server as you would any other web application.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://liftweb.net/
http://maven.apache.org/

L K R 4 CHAPTER 8

Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeans™ (EJB™) technology is supported in the Sun
GlassFish Enterprise Server. This chapter addresses the following topics:

“Summary of EJB 3.1 Changes” on page 119

“Value Added Features” on page 120

“EJB Timer Service” on page 121

“Using Session Beans” on page 122

“Handling Transactions With Enterprise Beans” on page 123

For general information about enterprise beans, see “Part Three: Enterprise Beans” in the Java
EE 5 Tutorial (http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

Note - For GlassFish v3 Prelude, EJB modules are not supported unless the optional EJB
container add-on component is downloaded from the Update Tool. For information about the
Update Tool, see the Sun GlassFish Enterprise Server v3 Prelude Installation Guide.

For GlassFish v3 Prelude, only stateless session beans with local interfaces and entity beans that
use the Java Persistence API are supported. Stateful, message-driven, and EJB 2.0 and 2.1 entity
beans are not supported. Remote interfaces and remote business interfaces for any of the bean
types are not supported.

Summary of EJB 3.1 Changes

The Enterprise Server supports and is compliant with the Sun Microsystems Enterprise
JavaBeans (EJB) architecture as defined by the Enterprise JavaBeans Specification, v3.1, also
known as JSR 318 (http://jcp.org/en/jsr/detail?id=318).

The main changes in the Enterprise JavaBeans Specification, v3.1 that impact enterprise beans
in the Enterprise Server environment are as follows:

119

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/820-5968
http://jcp.org/en/jsr/detail?id=318

Value Added Features

An EJB component need not implement any interface as long as it contains one of the
component defining annotations or the XML equivalent. Essentially, the local business
interface is optional. For example, the following is a simple no-interface bean:

@Stateless
public class HelloBean {
public String sayHello(String msg) {

return "Hello " + msg;

}

Even though the bean doesn't implement any interface, the client can still inject (or look up)
areference to the session bean. The client still has to perform a JNDI lookup or inject a
reference of the bean. More specifically, it cannot use the new operator to construct the
bean.

@EJB HelloBean h;

h.sayHello("bob")

EJB classes can be packaged inside WAR files. These classes must reside under
WEB-INF/classes. For example, the structure of a hello.war file might look like this:

index.jsp
META-INF/
MANIFEST.MF
WEB-INF/
web . xml
classes/
com/
sun/
v3/
demo/
HelloEJB.class
HelloServlet.class

For more information about web applications, see Chapter 7, “Developing Web
Applications.”

Value Added Features

The Enterprise Server provides a number of value additions that relate to EJB development.
These capabilities are discussed in the following sections. References to more in-depth material
are included.

120

= “Bean-Level Container-Managed Transaction Timeouts” on page 121

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

EJBTimer Service

Bean-Level Container-Managed Transaction Timeouts

The default transaction timeout for the domain is specified using the Transaction Timeout
setting of the Transaction Service. A transaction started by the container must commit (or
rollback) within this time, regardless of whether the transaction is suspended (and resumed), or
the transaction is marked for rollback.

To override this timeout for an individual bean, use the optional cmt - timeout-in-seconds
elementin sun-ejb-jar.xml. The default value, 0, specifies that the default Transaction Service
timeout is used. The value of cmt - timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

EJB Timer Service

The EJB Timer Service uses a database to store persistent information about EJB timers.

The EJB Timer Service in Enterprise Server is preconfigured to use an embedded version of the
Java DB database.

Note - If the optional JTS add-on component has not been downloaded from the Update Tool,
you must reconfigure the JDBC resource named jdbc/__TimerPool. If the optional JTS add-on
component has been downloaded, this is not necessary. For information about the Update
Tool, see the Sun GlassFish Enterprise Server v3 Prelude Installation Guide.

In the Administration Console, open the Resources component and select JDBC Resources. For
details, click the Help button in the Administration Console. Change the connection pool name
for the JDBC resource named jdbc/__TimerPool to point to the same connection pool as the
one you are using for the rest of your data. Then start the database.

To enable the timer service, deploy the following application:

as-install/1ib/install/applications/ejb-timer-service-app.war

You can verify that it was deployed successfully by accessing the following URL:

http://localhost:8080/ejb-timer-service-app/timer

The EJB Timer Service configuration can store persistent timer information in any database
supported by the Enterprise Server for persistence. For a list of the JDBC drivers currently
supported by the Enterprise Server, see the Sun GlassFish Enterprise Server v3 Prelude Release
Notes. For configurations of supported and other drivers, see “Configuration Specifics for JDBC
Drivers” in Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

Chapter8 - Using Enterprise JavaBeans Technology 121

http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4495/beamw?a=view

Using Session Beans

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. You must also create the timer database table.
DDL files are located in as-install/1ib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager.
If an EJB component or application accesses a database either directly through JDBC or
indirectly (for example, through an entity bean’s persistence mechanism), and also interacts
with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

= Minimum Delivery Interval - Specifies the minimum time in milliseconds before an
expiration for a particular timer can occur. This guards against extremely small timer
increments that can overload the server. The default is 7000.

= Maximum Redeliveries - Specifies the maximum number of times the EJB timer service
attempts to redeliver a timer expiration due for exception or rollback. The default is 1.

= Redelivery Interval - Specifies how long in milliseconds the EJB timer service waits after a
failed ejbTimeout delivery before attempting a redelivery. The default is 5000.

Using Session Beans

122

This section provides guidelines for creating session beans in the Enterprise Server
environment. This section addresses the following topics:

= “About the Session Bean Containers” on page 122
m “Session Bean Restrictions and Optimizations” on page 123

Information on session beans is contained in the Enterprise JavaBeans Specification, v3.1.

About the Session Bean Containers

Like an entity bean, a session bean can access a database through Java Database Connectivity
(JDBC) calls. A session bean can also provide transaction settings. These transaction settings
and JDBC calls are referenced by the session bean’s container, allowing it to participate in
transactions managed by the container.

Stateless Container

The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Enterprise Server
specific deployment descriptor file, sun-ejb-jar.xml, contains the properties that define the
pool:

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Handling Transactions With Enterprise Beans

steady-pool-size
resize-quantity
max-pool-size
pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” in Sun GlassFish
Enterprise Server v3 Prelude Application Deployment Guide.

The Enterprise Server provides the wscompile and wsdeploy tools to help you implement a web
service endpoint as a stateless session bean. For more information about these tools, see the Sun
GlassFish Enterprise Server v3 Prelude Reference Manual.

Session Bean Restrictions and Optimizations

This section discusses restrictions on developing session beans and provides some optimization
guidelines.

Restricting Transactions

The following restrictions on transactions are enforced by the container and must be observed
as session beans are developed:

= A session bean can participate in, at most, a single transaction at a time.

= Ifasession bean is participating in a transaction, a client cannot invoke a method on the
bean such that the trans-attribute element (or @TransactionAttribute annotation) in
the ejb-jar.xml file would cause the container to execute the method in a different or
unspecified transaction context or an exception is thrown.

= Ifasession bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or business interface object, or an exception is thrown.

Handling Transactions With Enterprise Beans

This section describes the transaction support built into the Enterprise JavaBeans programming
model for the Enterprise Server.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors. This section
provides overview information on the following topics:

= “Flat Transactions” on page 124
= “Global and Local Transactions” on page 124
= “Administration and Monitoring” on page 124

Chapter8 - Using Enterprise JavaBeans Technology 123

http://docs.sun.com/doc/820-4502/beaqm?a=view
http://docs.sun.com/doc/820-4502/beaqm?a=view
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Handling Transactions With Enterprise Beans

124

Note - For GlassFish v3 Prelude, global (XA) transactions are not supported unless the optional
JTS add-on component is downloaded from the Update Tool. Without the JTS add-on
component, only local transactions are supported. For information about the Update Tool, see
the Sun GlassFish Enterprise Server v3 Prelude Installation Guide.

Flat Transactions

The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions

Understanding the distinction between global and local transactions is crucial in understanding
the Enterprise Server support for transactions. See “Iransaction Scope” on page 138.

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local transactions
bypass the transaction manager and are faster. For more information, see “The Transaction
Manager, the Transaction Synchronization Registry, and UserTransaction” on page 139.

Administration and Monitoring

An administrator can control a number of domain-level Transaction Service settings. For
details, see “Configuring the Transaction Service” on page 139.

The Transaction Timeout setting can be overridden by a bean. See “Bean-Level
Container-Managed Transaction Timeouts” on page 121.

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions completed,
rolled back, or recovered since server startup, and transactions presently being processed.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-5968

PART I11

Using Services and APIs

125

126

L K R 4 CHAPTER 9

Using the JDBC API for Database Access

This chapter describes how to use the Java™ Database Connectivity (J]DBC™) API for database
access with the Sun GlassFish Enterprise Server. This chapter also provides high level JDBC
implementation instructions for servlets and EJB components using the Enterprise Server. If
the JDK version 1.6 is used, the Enterprise Server supports the JDBC 4.0 APL

The JDBC specifications are available at
http://java.sun.com/products/jdbc/download.html.

A useful JDBC tutorial is located at
http://java.sun.com/docs/books/tutorial/jdbc/index.html.

Note - The Enterprise Server does not support connection pooling or transactions for an
application’s database access if it does not use standard Java EE DataSource objects.

This chapter discusses the following topics:

= “General Steps for Creating a JDBC Resource” on page 127
= “Creating Web Applications That Use the JDBC API” on page 129
= “Restrictions and Optimizations” on page 135

General Steps for Creating a JDBC Resource

To prepare a JDBC resource for use in Java EE applications deployed to the Enterprise Server,
perform the following tasks:

“Integrating the JDBC Driver” on page 128
“Creating a Connection Pool” on page 128
“Testing a JDBC Connection Pool” on page 129
“Creating a JDBC Resource” on page 129

127

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

General Steps for Creating a JDBC Resource

128

For information about how to configure some specific JDBC drivers, see “Configuration
Specifics for JDBC Drivers” in Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

Integrating the JDBC Driver

To use JDBC features, you must choose a JDBC driver to work with the Enterprise Server, then
you must set up the driver. This section covers these topics:

= “Supported Database Drivers” on page 128
= “Making the JDBC Driver JAR Files Accessible” on page 128

Supported Database Drivers

Supported JDBC drivers are those that have been fully tested by Sun. For a list of the JDBC
drivers currently supported by the Enterprise Server, see the Sun GlassFish Enterprise Server v3
Prelude Release Notes. For configurations of supported and other drivers, see “Configuration
Specifics for JDBC Drivers” in Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

Note - Because the drivers and databases supported by the Enterprise Server are constantly
being updated, and because database vendors continue to upgrade their products, always check
with Sun technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible

To integrate the JDBC driver into an Enterprise Server domain, copy the JAR files into the
domain-dir/1ib directory, then restart the server. This makes classes accessible to all
applications or modules deployed on servers that share the same configuration. For more
information about Enterprise Server class loaders, see Chapter 2, “Class Loaders.”

Creating a Connection Pool

When you create a connection pool that uses JDBC technology (a JDBC connection pool) in the
Enterprise Server, you can define many of the characteristics of your database connections.

You can create a JDBC connection pool in one of these ways:

= Inthe Administration Console, open the Resources component and select Connection
Pools. For details, click the Help button in the Administration Console.

m Use the asadmin create-jdbc-connection-pool command. For details, see the Sun
GlassFish Enterprise Server v3 Prelude Reference Manual.

For a complete description of JDBC connection pool features, see the Sun GlassFish Enterprise
Server v3 Prelude Administration Guide

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4495/beamw?a=view
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4495
http://docs.sun.com/doc/820-4495

Creating Web Applications That Use the JDBC API

Testing a JDBC Connection Pool

You can test a JDBC connection pool for usability in one of these ways:

= Inthe Administration Console, open the Resources component select Connection Pools,
and select the connection pool you want to test. Then select the Ping button in the top right
corner of the page. For details, click the Help button in the Administration Console.

m Usethe asadmin ping-connection-pool command. For details, see the Sun GlassFish
Enterprise Server v3 Prelude Reference Manual.

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

Creating a JDBC Resource

A JDBC resource, also called a data source, lets you make connections to a database using
getConnection(). Create a JDBC resource in one of these ways:

= Inthe Administration Console, open the Resources component and select JDBC Resources.
For details, click the Help button in the Administration Console.

m Usethe asadmin create-jdbc-resource command. For details, see the Sun GlassFish
Enterprise Server v3 Prelude Reference Manual.

Creating Web Applications That Use the JDBCAPI

A web application that uses the JDBC API is an application that looks up and connects to one or
more databases. This section covers these topics:

“Setting a Statement Timeout” on page 129

“Sharing Connections” on page 130

“Wrapping Connections” on page 130

“Obtaining a Physical Connection From a Wrapped Connection” on page 131
“Using the Connection.unwrap() Method” on page 131

“Marking Bad Connections” on page 131

“Using Non-Transactional Connections” on page 132

“Using JDBC Transaction Isolation Levels” on page 133

“Allowing Non-Component Callers” on page 134

Setting a Statement Timeout

An abnormally long running JDBC query executed by an application may leave it in a hanging
state unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees
that all queries automatically time out if not completed within the specified period. When

Chapter9 « Using the JDBC API for Database Access 129

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Creating Web Applications That Use the JDBC API

130

statements are created, the queryTimeout is set according to the statement timeout setting. This
works only when the underlying JDBC driver supports queryTimeout for Statement,
PreparedStatement, CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

= Enter a Statement Timeout value in the JDBC Connection Pools page in the Administration
Console. For more information, click the Help button in the Administration Console.

= Specify the - -statementtimeout option in the asadmin create- jdbc-connection-pool
command. For more information, see the Sun GlassFish Enterprise Server v3 Prelude
Reference Manual.

Sharing Connections

When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by
the Java EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLSs, see Chapter 5, “Administering
Database Connectivity ,” in Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

Wrapping Connections

If the Wrap JDBC Objects option is true, wrapped JDBC objects are returned for Statement,
PreparedStatement, CallableStatement, ResultSet, and DatabaseMetaData. The defaultis
false.

This option ensures that Statement.getConnection() is the same as
DataSource.getConnection(). Therefore, this option should be true when both
Statement.getConnection() and DataSource.getConnection() are done. The default is
false to avoid breaking existing applications.

You can specify the Wrap JDBC Objects option in the following ways:

= Check or uncheck the Wrap JDBC Objects box on the JDBC Connection Pools page in the
Administration Console. For more information, click the Help button in the
Administration Console.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4495/ablih?a=view
http://docs.sun.com/doc/820-4495/ablih?a=view

Creating Web Applications That Use the JDBC API

= Specify the - -wrapjdbcobjects option in the asadmin create-jdbc-connection-pool
command. For more information, see the Sun GlassFish Enterprise Server v3 Prelude
Reference Manual.

Obtaining a Physical Connection From a Wrapped
Connection

The DataSource implementation in the Enterprise Server provides a getConnection method
that retrieves the JDBC driver’s SQLConnection from the Enterprise Server’s Connection
wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)
throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)
ctx.lookup("jdbc/MyBase")

Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con); //get physical connection from wrapper

// Do db operations.

// Do not close driver connection.

con.close(); // return wrapped connection to pool.

Using the Connection.unwrap() Method

If the JDK version 1.6 is used, the Enterprise Server supports JDBC 4.0 if the JDBC driver is
JDBC 4.0 compliant. Using the Connection.unwrap () method on a vendor-provided interface
returns an object or a wrapper object implementing the vendor-provided interface, which the
application can make use of to do vendor-specific database operations. Use the
Connection.isWrapperFor () method on avendor-provided interface to check whether the
connection can provide an implementation of the vendor-provided interface. Check the JDBC
driver vendor's documentation for information on these interfaces.

Marking Bad Connections

The DataSource implementation in the Enterprise Server provides a markConnectionAsBad
method. A marked bad connection is removed from its connection pool when it is closed. The
method signature is as follows:

public void markConnectionAsBad(java.sql.Connection con)

Chapter9 « Using the JDBC API for Database Access 131

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Creating Web Applications That Use the JDBC API

132

For example:

com.sun.appserv.jdbc.DataSource ds=
(com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();
Statement stmt = null;
try{
stmt = con.createStatement();
stmt.executeUpdate("Update");
}
catch (BadConnectionException e){
ds.markConnectionAsBad(con) //marking it as bad for removal

}
finally{

stmt.close();

con.close(); //Connection will be destroyed during close.
}

Using Non-Transactional Connections

You can specify a non-transactional database connection in any of these ways:

= Check the Non-Transactional Connections box on the JDBC Connection Pools page in the
Administration Console. The default is unchecked. For more information, click the Help
button in the Administration Console.

= Specify the - -nontransactionalconnections option in the asadmin
create-jdbc-connection-pool command. For more information, see the Sun GlassFish
Enterprise Server v3 Prelude Reference Manual.

= Use the DataSource implementation in the Enterprise Server, which provides a
getNonTxConnection method. This method retrieves a JDBC connection that is not in the
scope of any transaction. There are two variants.

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)
throws java.sql.SQLException

= Create a resource with the INDI name ending in __nontx. This forces all connections looked
up using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Creating Web Applications That Use the JDBC API

connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Using JDBC Transaction Isolation Levels

For general information about transactions, see Chapter 10, “Using the Transaction Service”
For information about last agent optimization, which can improve performance, see
“Transaction Scope” on page 138.

Not all database vendors support all transaction isolation levels available in the JDBC API. The
Enterprise Server permits specifying any isolation level your database supports. The following
table defines transaction isolation levels.

TABLE9-1 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITTED Dirty reads, non-repeatable reads, and phantom reads can occur.
TRANSACTION_READ COMMITTED Dirty reads are prevented; non-repeatable reads and phantom reads can occur.
TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom reads can occur.
TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are prevented.

You can specify the transaction isolation level in the following ways:

= Select the value from the Transaction Isolation drop-down list on the JDBC Connection
Pools page in the Administration Console. For more information, click the Help button in
the Administration Console.

= Specify the - -isolationlevel option in the asadmin create- jdbc-connection-pool
command. For more information, see the Sun GlassFish Enterprise Server v3 Prelude
Reference Manual.

Note that you cannot call setTransactionIsolation() duringa transaction.
You can set the default transaction isolation level for a JDBC connection pool. For details, see

“Creating a Connection Pool” on page 128.

Chapter9 « Using the JDBC API for Database Access 133

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Creating Web Applications That Use the JDBC API

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel() methodin
java.sql.DatabaseMetaData, as shown in the following example:

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("jdbc/MyBase") ;

Connection con = ds.getConnection();

DatabaseMetaData dbmd = con.getMetaData();

if (dbmd.supportsTransactionIsolationLevel (TRANSACTION SERIALIZABLE)
{ Connection.setTransactionIsolation(TRANSACTION SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC API
specification.

Note - Applications that change the isolation level on a pooled connection programmatically
risk polluting the pool, which can lead to errors.

Allowing Non-Component Callers

You can allow non-Java-EE components, such as servlet filters and third party persistence
managers, to use this JDBC connection pool. The returned connection is automatically enlisted
with the transaction context obtained from the transaction manager. Standard Java EE
components can also use such pools. Connections obtained by non-component callers are not
automatically closed at the end of a transaction by the container. They must be explicitly closed
by the caller.

You can enable non-component callers in the following ways:

= Check the Allow Non Component Callers box on the JDBC Connection Pools page in the
Administration Console. The default is false. For more information, click the Help button
in the Administration Console.

= Specify the - -allownoncomponentcallers option in the asadmin
create-jdbc-connection-pool command. For more information, see the Sun GlassFish
Enterprise Server v3 Prelude Reference Manual.

= CreateaJDBCresource witha _ pm suffix.

134 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

Restrictions and Optimizations

Restrictions and Optimizations

This section discusses restrictions and performance optimizations that affect using the JDBC
APL

Disabling Stored Procedure Creation on Sybase

By default, DataDirect and Sun GlassFish JDBC drivers for Sybase databases create a stored
procedure for each parameterized PreparedStatement. On the Enterprise Server, exceptions
are thrown when primary key identity generation is attempted. To disable the creation of these
stored procedures, set the property PrepareMethod=direct for the JDBC connection pool.

Chapter9 « Using the JDBC API for Database Access 135

136

CHAPTER 10

Using the Transaction Service

The Java EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses Java EE transactions and
transaction support in the Sun GlassFish Enterprise Server.

This chapter contains the following sections:

= “Transaction Scope” on page 138

= “Configuring the Transaction Service” on page 139

= “The Transaction Manager, the Transaction Synchronization Registry, and
UserTransaction” on page 139

For more information about the Java™ Transaction API (JTA) and Java Transaction Service
(JTS), see the following sites: http://java.sun.com/products/jta/ and
http://java.sun.com/products/jts/.

You might also want to read “Chapter 35: Transactions” in the Java EE 5 Tutorial
(http://java.sun.com/javaee/5/docs/tutorial/doc/index.html).

For information about JDBC transaction isolation levels, see “Using JDBC Transaction
Isolation Levels” on page 133.

Note - For GlassFish v3 Prelude, global (XA) transactions are not supported unless the optional
JTS add-on component, including the dependent Object Management Group (OMG)
subcomponent, is downloaded from the Update Tool. Without this add-on component, only
local transactions are supported. For information about the Update Tool, see the Sun GlassFish
Enterprise Server v3 Prelude Installation Guide.

Transaction recovery is not implemented for GlassFish v3 Prelude, even if the JTS and OMG
add-on components are installed. Therefore, all transaction service attributes and properties
pertaining to transaction recovery or transaction logs are not implemented.

137

http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-5968

Transaction Scope

Transaction Scope

138

A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific
to the resource manager and is transparent to the Java EE application.

In the Enterprise Server, a JDBC resource is non-XA if it meets any of the following criteria:

= In the JDBC connection pool configuration, the DataSource class does not implement the
javax.sql.XADataSource interface.

= The Global Transaction Support box is not checked, or the Resource Type setting does not
exist or is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:

= Oneand only one non-XA resource is used. If any additional non-XA resource is used, the
transaction is aborted.

= No transaction importing or exporting occurs.

Transactions that involve multiple resources are global transactions. A global transaction can
involve one non-XA resource if last agent optimization is enabled. Otherwise, all resourced
must be XA. The use-last-agent-optimization property is set to true by default. For details
about how to set this property, see “Configuring the Transaction Service” on page 139.

Note - For GlassFish v3 Prelude, transaction propagation between multiple participant
processes, applications, or JVM machines is not supported.

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the resources enlisted
for a transaction ensures that either all the resource managers commit the transaction or they all
abort. When the application requests the commitment of a transaction, the transaction
manager issues a PREPARE_TO_COMMIT request to all the resource managers involved. Each of
these resources can in turn send a reply indicating whether it is ready for commit (PREPARED) or
not (NO). Only when all the resource managers are ready for a commit does the transaction
manager issue a commit request (COMMIT) to all the resource managers. Otherwise, the
transaction manager issues a rollback request (ABORT) and the transaction is rolled back.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

Configuring the Transaction Service

You can configure the transaction service in the Enterprise Server in the following ways:

= To configure the transaction service, use the asadmin set command to set the following
attributes and properties.

server-config.transaction-service.automatic-recovery = false
server-config.transaction-service.heuristic-decision = rollback
server-config.transaction-service.keypoint-interval = 2048
server-config.transaction-service.retry-timeout-in-seconds = 600
server-config.transaction-service.timeout-in-seconds = 0
server-config.transaction-service.tx-log-dir = domain-dir/1logs
server-config.transaction-service.property.use-last-agent-optimization = true

You can use the asadmin get command to list all the transaction service attributes and
properties. For details, see the Sun GlassFish Enterprise Server v3 Prelude Reference Manual.

Changing keypoint-interval, retry-timeout-in-seconds, or timeout-in-seconds does
not require a server restart. Changing other attributes or properties requires a server restart.

Transaction recovery is not implemented for GlassFish v3 Prelude, even if the JTS and OMG
add-on components are installed. Therefore, all transaction service attributes and properties
pertaining to transaction recovery or transaction logs are not implemented.

The Transaction Manager, the Transaction Synchronization
Registry,and UserTransaction

ToaccessaUserTransaction instance, you can either look it up using the java: comp/
UserTransaction JNDIname or inject it using the @esource annotation.

If you need to access the javax.transaction.TransactionManager implementation, you can
look up the Enterprise Server implementation of this interface using the JNDI name
java:appserver/TransactionManager. If possible, you should use the javax.transaction.
TransactionSynchronizationRegistry interface instead, for portability. You can look up the
implementation of this interface by using the JNDI name java: comp/
TransactionSynchronizationRegistry. For details, see the Javadoc page for Interface
TransactionSynchronizationRegistry (http://java.sun.com/
javaee/5/docs/api/javax/transaction/TransactionSynchronizationRegistry.html)
and Java Specification Request (JSR) 907 (http://www.jcp.org/en/jsr/detail?id=907).

Chapter 10 « Using the Transaction Service 139

http://docs.sun.com/doc/820-4497
http://java.sun.com/javaee/5/docs/api/javax/transaction/TransactionSynchronizationRegistry.html
http://java.sun.com/javaee/5/docs/api/javax/transaction/TransactionSynchronizationRegistry.html
http://java.sun.com/javaee/5/docs/api/javax/transaction/TransactionSynchronizationRegistry.html
http://www.jcp.org/en/jsr/detail?id=907

140

L R 2 4 CHAPTER 11

Using the Java Naming and Directory Interface

A naming service maintains a set of bindings, which relate names to objects. The Java EE
naming service is based on the Java Naming and Directory Interface™ (JNDI) APL The JNDI
API allows application components and clients to look up distributed resources, services, and
EJB components. For general information about the JNDI API, see
http://java.sun.com/products/jndi/.

You can also see the JNDI tutorial at http://java.sun.com/products/jndi/tutorial/.

This chapter contains the following sections:

= “Accessing the Naming Context” on page 141
= “Mapping References” on page 143

Note - For GlassFish v3 Prelude, EJB modules are not supported unless the optional EJB
container add-on component is downloaded from the Update Tool. For information about the
Update Tool, see the Sun GlassFish Enterprise Server v3 Prelude Installation Guide.

For GlassFish v3 Prelude, only stateless session beans with local interfaces and entity beans that
use the Java Persistence API are supported. Stateful, message-driven, and EJB 2.0 and 2.1 entity
beans are not supported. Remote interfaces and remote business interfaces for any of the bean
types are not supported.

Accessing the Naming Context

The Enterprise Server provides a naming environment, or context, which is compliant with
standard Java EE requirements. A Context object provides the methods for binding names to
objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the Java EE naming service that application components and
clients use for lookups.

141

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/
http://docs.sun.com/doc/820-5968

Using a Custom jndi.properties File

The INDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization
of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

Note - Each resource within the server must have a unique name.

Global JNDI Names

Global JNDI names are assigned according to the following precedence rules:

1. A global JNDI name assigned in the sun-ejb-jar.xml, sun-web.xml deployment
descriptor file has the highest precedence. See “Mapping References” on page 143.

2. Aglobal JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml
deployment descriptor file has the second highest precedence. The following elements have
mapped - name subelements: resource-ref, resource-env-ref,ejb-ref,
message-destination, message-destination-ref, session,and entity.

3. A global INDI name assigned in a mappedName attribute of an annotation has the third
highest precedence. The following annotations have mappedName attributes:
@javax.annotation.Resource,@javax.ejb.EJB,@javax.ejb.Stateless.

4. A default global JNDI name is assigned in some cases if no name is assigned in deployment
descriptors or annotations.

= For component dependencies that must be mapped to global INDI names, the default is
the name of the dependency relative to java: comp/env. For example, in the
@Resource (name="jdbc/Foo") DataSource ds; annotation, the global JNDI name is
jdbc/Foo.

Using a Custom jndi.properties File

142

To use a custom jndi.properties file, place the file in the domain-dir/1ib/classes directory
or JAR itand place it in the domain-dir/1ib directory. This adds the custom jndi.properties
file to the Common class loader. For more information about class loading, see Chapter 2,
“Class Loaders”

For each property found in more than one jndi.properties file, the Java EE naming service
either uses the first value found or concatenates all of the values, whichever makes sense.

Sun GlassFish Enterprise Server v3 Prelude Developer's Guide - October 2008

Mapping References

Mapping References

The following XML elements in the Enterprise Server deployment descriptors map resource
references in EJB and web application components to JNDI names configured in the Enterprise
Server:

= resource-env-ref - Maps the @Resource or @Resources annotation (or the
resource-env-ref element in the corresponding Java EE XML file) to the absolute JNDI
name configured in the Enterprise Server.

= resource-ref - Maps the @esource or @Resources annotation (or the resource- ref
element in the corresponding Java EE XML file) to the absolute INDI name configured in
the Enterprise Server.

= ejb-ref - Maps the @EJB annotation (or the ejb- ref element in the corresponding Java EE
XML file) to the absolute JNDI name configured in the Enterprise Server.

JNDI names for EJB components must be unique. For example, appending the application
name and the module name to the EJB name is one way to guarantee unique names. In this
case, mycompany . pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the
module pkgingEJB. jar, which is packaged in the pkging.ear application.

These elements are part of the sun-web.xml and sun-ejb-ref.xml deployment descriptor files.
For more information about how these elements behave in each of the deployment descriptor
files, see Appendix A, “Deployment Descriptor Files,” in Sun GlassFish Enterprise Server v3
Prelude Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories.

The @Resource annotation in the application code looks like this:

@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;

This references a resource with the JNDI name of java: comp/env/jdbc/helloDbDs. If this is
the JNDI name of the JDBC resource configured in the Enterprise Server, the annotation alone
is enough to reference the resource.

However, you can use an Enterprise Server specific deployment descriptor to override the
annotation. For example, the resource- ref element in the sun-web.xml file maps the
res-ref-name (the name specified in the annotation) to the JNDI name of another JDBC
resource configured in the Enterprise Server.

<resource-ref>
<res-ref-name>jdbc/helloDbDs</res-ref-name>
<jndi-name>jdbc/helloDbDataSource</jndi-name>
</resource-ref>

Chapter 11 « Using the Java Naming and Directory Interface 143

http://docs.sun.com/doc/820-4502/beaqi?a=view
http://docs.sun.com/doc/820-4502/beaqi?a=view

144

Index

Numbers and Symbols
@OrderBy and session cache sharing, 68

A
Admin Console, 21

Audit Modules page, 47

Debug Enabled field, 30

Default Virtual Server field, 105

HPROF configuration, 32

JACC Providers page, 47

JDBC Connection Pools page, 128
Allow Non Component Callers field, 134
Non-Transactional Connections field, 132
Ping button, 129
Statement Timeout field, 130
Transaction Isolation field, 133
Wrap JDBC Objects field, 130

JDBC Resources page, 129

JProbe configuration, 33

Libraries field, 26

Locale field, 103

Logging tab, 107

Monitor tab, 107

online help for, 21

Realms page, 44

role mapping configuration, 43

Security Manager Enabled field, 52

Virtual Servers page, 105

Web Services page
Publish tab, 59

Admin Console, Web Services page (Continued)
Registry tab, 58
Test button, 60
Write to System Log field, 75
alternate document roots, 108-110
annotation
JNDI names, 142
schema generation, 66
security, 40
Applib class loader, 24
AppservPasswordLoginModule class, 45
AppservRealm class, 46
Archive class loader, 24
asadmin command, 20-21
create-audit-module, 47
create-auth-realm, 44
create-jdbc-connection-pool, 128
--allownoncomponentcallers option, 134
--isolationlevel option, 133
--nontransactionalconnections option, 132
--statementtimeout option, 130
--wrapjdbcobjects option, 131
create-jdbc-resource, 129
create-jvm-options
java.security.debug option, 51
delete-jvm-options
java.security.manager option, 52
deploy
--libraries option, 26
--precompilejsp option, 80
generate-jvm-report, 31
get, 139

145

Index

asadmin command (Continued)

ping-connection-pool, 129

publish-to-registry, 59

set

default principal settings, 43
transaction service settings, 139

audit modules, 47-48
AuditModule class, 47-48
authentication

audit modules, 48

JAAS, 45-46

programmatic login, 52

realms, 44

single sign-on, 55-56
authorization

audit modules, 48

JAAS, 45-46

JACC, 47

roles, 42-43
automatic schema generation, Java Persistence

options, 66

Bayeux protocol, 96-98
Bootstrap class loader, 24

C

cache for servlets
default configuration, 77
example configuration, 77
helper class, 77,79
cache sharing and @OrderBy, 68
CacheHelper interface, 79
cacheKeyGeneratorAttrName property, 79
caching
data using a non-transactional connection, 133
servlet results, 76-79
Catalina listeners, defining custom, 107-108
certificate realm, 44
CGI, 116-117
class-loader element, 106

classloaders, 23-27
application-specific, 26
circumventing isolation, 27
delegation hierarchy, 24
isolation, 25-26
Comet, 84-98
Cometd, 96-98
command-line server configuration, See asadmin
command
Common class loader, 24
using to circumvent isolation, 27
common gateway interface, 116-117
compiling JSP files, 80-81
Connector class loader, 24
contextroot, 75
context.xml file, 110-111
context, for INDI naming, 141-142
create-audit-module command, 47
create-auth-realm command, 44
create-jdbc-connection-pool command, 128
--allownoncomponentcallers option, 134
--isolationlevel option, 133
--nontransactionalconnections option, 132
--statementtimeout option, 130
--wrapjdbcobjects option, 131
create-jdbc-resource command, 129
create-jvm-options command, java.security.debug
option, 51

D

database properties, 64
databases

properties, 64

specitying for Java Persistence, 62-63

supported, 128
debugging, 29-35

enabling, 29-30

generating a stack trace, 31

JPDA options, 30
DeclareRoles annotation, 42-43
default virtual server, 105
default web module, 75,105-106
default-web.xml file, 106-107

146 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Index

delegation, class loader, 25

delete-jvm-options command, java.security.manager

option, 52
deploy command

--libraries option, 26

--precompilejsp option, 80
deployment descriptor files, 143
destroy method, 79
development environment

creating, 19-22

tools for developers, 20-22
digest authentication, 44
directory listings, disabling, 106
document root, 104, 106
document roots, alternate, 108-110
doGet method, 79,80
domain.xml file, configuring single sign-on, 56
doPost method, 79,80

E
Eclipse IDE, 21
EclipseLink, 61
eclipselink.target-database property, 62
EJB 3.0, Java Persistence, 61-72
EJB 3.1, summary of changes, 119
EJB components

pooling, 122

security, 41
ejb-ref element, 143
EJB Timer Service, 121-122
encoding, of servlets, 103-104
endorsed standards override mechanism, 25
Extension class loader, 24

F
file realm, 44

finder limitation for Sybase, 70
flat transactions, 124

G

generate-jvm-report command, 31
get command, 139
getCharacterEncoding method, 104
getConnection method, 131
getHeaders method, 107

GlassFish project, 20

Grails, 99-102

Grizzly, Comet, 86-96

Groovy, 99-102

H
handling requests, 79
header management, 107
help for Admin Console tasks, 21
HPROF profiler, 32-33
HTTP sessions, 81-84
and redeployment, 81-82
cookies, 81
session managers, 82-84
URL rewriting, 81
HttpServletRequest, 77

|

Inet Oracle JDBC driver, 69

init method, 79

Initial Context naming service handle, 141-142
installation, 19-20

instantiating servlets, 79

internationalization, 103

isolation of class loaders, 25-26,27

J

JACC, 47

Java Authentication and Authorization Service
(JAAS), 45-46

Java Authorization Contract for Containers, See JACC

Java Database Connectivity, See JDBC
Java DB database, 62-63

147

Index

Java Debugger (jdb), 29
Java EE tutorial, 73
Java EE, security model, 40
Java Naming and Directory Interface, See JNDI
Java optional package mechanism, 25
Java Persistence, 61-72
annotation for schema generation, 66
changing the provider, 67-68
database for, 62-63

deployment options for schema generation, 66

restrictions, 68-72
Java Platform Debugger Architecture, See JPDA
Java Servlet API, 74
Java Transaction API (JTA), 137-139
Java Transaction Service (JTS), 137-139
JavaBeans, 80
jdbcrealm, 44
JDBC
connection pool creation, 128
Connection wrapper, 131
creating resources, 129
integrating driver JAR files, 27,128
non-component callers, 134
non-transactional connections, 132-133
restrictions, 135
sharing connections, 130
specification, 127
supported drivers, 128
transaction isolation levels, 133
tutorial, 127
JNDI
and EJB components, 143
defined, 141-143
global names, 142
mapping references, 143
tutorial, 141
JPDA debugging options, 30
JProbe profiler, 33-35
JSP files
command-line compiler, 80-81
precompiling, 80-81
specification, 80
tag libraries, 80
jspc command, 81

JSR 109, 57
JSR115, 40,47,48
JSR 181, 58
JSR 196, 40
JSR 220, 61
JSR 224, 57
JSR 318, 119
JSR 907, 139

L

last agent optimization, 138

ldap realm, 44

lib directory, and the Common class loader, 24
libraries, 26,27

Lift, 117-118

listeners, Catalina, defining custom, 107-108
locale, setting default, 103

logging, in the web container, 107

login method, 54

LoginModule, 45

login, programmatic, 52

M

mapping resource references, 143
markConnectionAsBad method, 131-132
Maven, 117-118

Migration Tool, 21

mime-mapping element, 107

monitoring in the web container, 107
MySQL database restrictions, 70-72

naming service, 141-143
native library path
configuring for hprof, 32
configuring for JProbe, 34
nested transactions, 124
NetBeans
about, 21

148 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Index

NetBeans (Continued)
profiler, 32

o

online help, 21

Oracle Inet JDBC driver, 69
Oracle TopLink, 68

output from servlets, 75

P

permissions
changing in server.policy, 49-51
default in server.policy, 49
persistence.xml file, 62-63,66
PHP, 117
ping-connection-pool command, 129
precompiling JSP files, 80-81
profilers, 31-35
programmatic login, 52
ProgrammaticLogin class, 54
ProgrammaticLoginPermission permission, 53
Public API class loader, 24
publish-to-registry command, 59

Q
query hints, 67

R

realms
application-specific, 44
configuring, 44
custom, 45-46
supported, 44
redirectinga URL, 110
removing servlets, 79
request object, 79
res-sharing-scope deployment descriptor setting, 130

resource-env-ref element, 143
resource-ref element, 143
resource references, mapping, 143
roles, 42-43

S
Scala, 117-118
schema generation, Java Persistence options for
automatic, 66
security, 39-56
security manager, enabling and disabling, 51-52
security
annotations, 40
application level, 41
audit modules, 47-48
declarative, 41
disabling directory listings, 106
EJB components, 41
Enterprise Server features, 40
goals, 40
JACC, 47
Java EE model, 40
of containers, 40-42
programmatic, 42
programmatic login, 52
roles, 42-43
server.policy file, 49-52
web applications, 41
server.policy file, 49-52
changing permissions, 49-51
default permissions, 49
ProgrammaticLoginPermission, 53
server-side includes, 114-115
server
installation, 19-20
lib directory of, 24
optimizing for development, 20
value-added features, 120-121
service method, 79, 80
ServletContext.log messages, 75
servlets, 74-80
caching, 76-79
character encoding, 103-104

149

Index

servlets (Continued) T
destroying, 79 taglibraries, 80
engine, 79 tools, for developers, 20-22
instantiating, 79 transactions, 137-139
invoking usinga URL, 74-75 administration and monitoring, 124
output, 75 and EJB components, 123-124
removing, 79 configuring, 139

flat, 124

global, 124

in the Java EE tutorial, 137-139
JDBC isolation levels, 133

request handling, 79

specification, 74
classloading, 106
mime-mapping, 107 local, 124

session b.eans, 122 local or global scope of, 138
container for, 122-123 nested, 124

restrictions, 123 timeouts, 121

session cache sharing and @OrderBy, 68 transaction manager, 139
session managers, 82-84 transaction synchronization registry, 139
set command UserTransaction, 139

default principal settings, 43

transaction service settings, 139
setCharacterEncoding method, 104
setContentType method, 104 u
setLocale method, 104 unwrap method, 131
setTransactionlIsolation method, 133 URL rewriting, 81
single sign-on, 55-56 URL, redirecting, 110

Sitraka web site, 33-35 utility classes, 26,27

specification
EJB3.1, 119
JAAS, 45 Vv
Java Persistence, 61 valves, defining custom, 107-108
JavaBeans, 80 verbose mode, 31
JDBC, 127 virtual servers, 104-105
JSP, 80 default, 105

programmatic security, 42
security manager, 49

servlet, 74
SSI, 114-115 w
stack trace, generating, 31 web application class loader, changing delegation
’ ’ in, 106

stateless session beans, 122-123

Sun Java Studio, 21

sun-web.xml file, and class loaders, 106
supportsTransactionlsolationLevel method, 134
Sybase, finder limitation, 70

web applications, 73-118

default, 75,105-106

security, 41
web container, logging and monitoring, 107
web services, 57-60

150 Sun GlassFish Enterprise Server v3 Prelude Developer's Guide « October 2008

Index

web services (Continued)
debugging, 58,60
deployment, 58
registry, 58-59
test page, 59-60
URL, 59-60
WSDL file, 59-60
WebDav, 111-113
WSIT, 40

X
XA resource, 138

151

152

	Sun GlassFish Enterprise Server v3 Prelude Developer's Guide
	Preface
	Enterprise Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Development Tasks and Tools
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	The GlassFish Project
	Development Tools
	The asadmin Command
	The Administration Console
	The Migration Tool
	The NetBeans IDE
	The Eclipse IDE
	Debugging Tools
	Profiling Tools

	Class Loaders
	The Class Loader Hierarchy
	Delegation
	Using the Java Optional Package Mechanism
	Using the Endorsed Standards Override Mechanism
	Class Loader Universes
	Application-Specific Class Loading
	Circumventing Class Loader Isolation
	Using the Common Class Loader

	Debugging Applications
	Enabling Debugging
	To Set the Server to Automatically Start Up in Debug Mode

	JPDA Options
	Generating a Stack Trace for Debugging
	Enabling Verbose Mode
	Profiling Tools
	The NetBeans Profiler
	The HPROF Profiler
	To Use HPROF Profiling on UNIX

	The JProbe Profiler
	To Enable Remote Profiling With JProbe

	Developing Applications and Application Components
	Securing Applications
	Security Goals
	Enterprise Server Specific Security Features
	Container Security
	Declarative Security
	Application Level Security
	Component Level Security

	Programmatic Security

	Roles, Principals, and Principal to Role Mapping
	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for a Web Application or EJB Module
	Creating a Custom Realm

	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	Changing Permissions for an Application
	Enabling and Disabling the Security Manager

	Programmatic Login
	Programmatic Login Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on

	Developing Web Services
	Deploying a Web Service
	Web Services Registry
	The Web Service URI, WSDL File, and Test Page

	Using the Java Persistence API
	Specifying the Database
	Additional Database Properties
	Configuring the Cache
	Setting the Logging Level
	Using Lazy Loading
	Primary Key Generation Defaults
	Automatic Schema Generation
	Annotations
	Generation Options

	Query Hints
	Changing the Persistence Provider
	Restrictions and Optimizations
	Extended Persistence Context
	Using @OrderBy with a Shared Session Cache
	Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver
	Database Case Sensitivity
	Unique Constraints
	Foreign Key Mapping
	SQL Result Set Mapping
	Named Native Queries and JDBC Queries
	PostgreSQL Case Sensitivity

	Sybase Finder Limitation
	MySQL Database Restrictions

	Developing Web Applications
	Packaging an EJB JAR File in a Web Application
	Using Servlets
	Invoking a Servlet With a URL
	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	The CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	Options for Compiling JSP Files

	Creating and Managing Sessions
	Configuring Sessions
	HTTP Sessions, Cookies, and URL Rewriting
	Coordinating Session Access
	Saving Sessions During Redeployment

	Session Managers
	The memory Persistence Type
	The file Persistence Type

	Using Comet
	Introduction to Comet
	The Grizzly Implementation of Comet
	Client Technologies to Use With Comet
	Kinds of Comet Connections
	HTTP Streaming
	Long Polling
	How to Choose the Kind of Connection

	Grizzly Comet
	The Grizzly Comet API
	The Hidden Frame Example
	Creating a Comet-Enabled Application
	Developing the Web Component
	Creating a Web Component to Support Comet
	Registering the Servlet with the Comet Engine
	Defining a Comet Handler to Send Updates to the Client
	Adding the Comet Handler to the Comet Context
	Notifying the Comet Handler of an Event

	Creating the Client Pages
	Creating a Welcome HTML Page That Contains IFrames for Receiving and Sending Updates
	Creating the HTML Page That Updates and Displays the Content
	Creating the HTML Page That Allows Submitting Updates

	Creating the Deployment Descriptor
	Creating the Deployment Descriptor

	Deploying and Running a Comet-Enabled Application
	Enabling Comet in the Enterprise Server
	Deploying the Example
	Running the Example

	Bayeux Protocol
	Enabling Comet
	Configuring the web.xml File
	Writing, Deploying, and Running the Client

	Developing Grails Applications
	Introduction to Groovy and Grails
	Installing Grails
	Installing the Grails Plug-in Module

	Creating a Simple Grails Application
	Creating the helloworld Application
	Creating the hello Controller

	Deploying and Running a Grails Application
	Running a Grails Application Using run-app
	Running a Grails Application Using Standard Deployment

	Advanced Web Application Features
	Internationalization Issues
	The Server's Default Locale
	Servlet Character Encoding
	Servlet Request
	Servlet Response

	Virtual Servers
	To Assign a Default Virtual Server
	To Assign Virtual Servers

	Default Web Modules
	Class Loader Delegation
	Using the default-web.xml File
	To Use the default-web.xml File

	Configuring Logging and Monitoring in the Web Container
	Header Management
	Configuring Valves and Catalina Listeners
	Alternate Document Roots
	Redirecting URLs
	Using a context.xml File
	Enabling WebDav
	Using mod_jk
	Using SSI
	Using CGI
	Using PHP
	Using Scala and Lift

	Using Enterprise JavaBeans Technology
	Summary of EJB 3.1 Changes
	Value Added Features
	Bean-Level Container-Managed Transaction Timeouts

	EJB Timer Service
	Using Session Beans
	About the Session Bean Containers
	Stateless Container

	Session Bean Restrictions and Optimizations
	Restricting Transactions

	Handling Transactions With Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Administration and Monitoring

	Using Services and APIs
	Using the JDBC API for Database Access
	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Supported Database Drivers
	Making the JDBC Driver JAR Files Accessible

	Creating a Connection Pool
	Testing a JDBC Connection Pool
	Creating a JDBC Resource

	Creating Web Applications That Use the JDBC API
	Setting a Statement Timeout
	Sharing Connections
	Wrapping Connections
	Obtaining a Physical Connection From a Wrapped Connection
	Using the Connection.unwrap() Method
	Marking Bad Connections
	Using Non-Transactional Connections
	Using JDBC Transaction Isolation Levels
	Allowing Non-Component Callers

	Restrictions and Optimizations
	Disabling Stored Procedure Creation on Sybase

	Using the Transaction Service
	Transaction Scope
	Configuring the Transaction Service
	The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Global JNDI Names

	Using a Custom jndi.properties File
	Mapping References

	Index

