
Sun GlassFish Enterprise Server
v3 Prelude Add-On Component
Development Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–6583–10
October 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Java, and Solaris
are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Java et Solaris
sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC
sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

081029@21288

Contents

Preface ...7

1 Introduction to the Development Environment for Enterprise Server Add-On
Components ...13
Enterprise Server Modular Architecture and Add-On Components ... 13
OSGi Alliance Module Management Subsystem ... 14
Hundred-Kilobyte Kernel .. 14
Overview of the Development Process for an Add-On Component .. 15

Writing HK2 Components ... 15
Extending the Administration Console .. 15
Extending the asadmin Utility .. 16
Adding Monitoring Capabilities .. 16
Adding Container Capabilities .. 16
Packaging and Delivering an Add-On Component .. 17

2 Writing HK2 Components ..19
HK2 Component Model ... 19
Services in the HK2 Component Model ... 20
HK2 Runtime ... 20

Scopes of Services ... 20
Instantiation of Components in HK2 .. 21
HK2 Lifecycle Interfaces ... 21

Inversion of Control .. 22
Injecting HK2 Components ... 22
Extraction .. 23
Instantiation Cascading in HK2 ... 24

Identifying a Class as an Add-On Component .. 24
Using the Apache Maven Build System to Develop HK2 Components 25

3

3 Extending the Administration Console ...27
Administration Console Architecture .. 28

Implementing a Console Provider ... 28
About Administration Console Templates .. 29
About Integration Points .. 30
Specifying the ID of an Add-On Component .. 30
Adding Functionality to the Administration Console .. 31

Adding a Node to the Navigation Tree .. 32
Adding Tabs to a Page ... 34
Adding a Task to the Common Tasks Page .. 37
Adding a Task Group to the Common Tasks Page .. 39
Adding Content to a Page ... 41
Adding a Page to the Administration Console ... 42

Adding Internationalization Support ... 43
Changing the Theme or Brand of the Administration Console .. 44
Creating an Integration Point Type .. 46

▼ To Create an Integration Point Type ... 46

4 Extending the asadminUtility ...49
About the Administrative Command Infrastructure of Enterprise Server 49
Adding an asadmin Command .. 50

Representing an asadmin Command as a Java Class ... 50
Specifying the Name of an asadmin Command ... 50
Ensuring That an AdminCommand Implementation Is Stateless ... 51
Example of Adding an asadmin Command .. 51

Adding Parameters to an asadmin Command ... 52
Representing a Parameter of an asadmin Command .. 52
Identifying a Parameter of an asadmin Command .. 52
Specifying Whether a Parameter Is an Option or an Operand ... 53
Specifying the Name of an Option ... 53
Specifying the Acceptable Values of a Parameter ... 54
Specifying the Default Value of a Parameter .. 54
Specifying Whether a Parameter Is Required or Optional .. 55
Example of Adding Parameters to an asadmin Command ... 55

Adding Message Text Strings to an asadmin Command .. 56

Contents

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 20084

Enabling an asadmin Command to Run ... 59
Setting the Context of an asadmin Command ... 59
Changing the Brand in the Enterprise Server CLI ... 59
Examples of Extending the asadmin Utility ... 61

5 Adding Monitoring Capabilities ...65
Defining Statistics That Are to Be Monitored .. 65

Defining an Event Provider .. 66
Registering an Event Provider .. 67
Sending an Event .. 69

Updating the Monitorable Object Tree .. 70
Creating Event Listeners ... 70
Subscribing to Events From Event Provider Classes ... 71
Registering an Event Listener ... 72
Adding Statistics for a Component to the Monitorable Object Tree 73

Example of Adding Monitoring Capabilities ... 77

6 Adding Container Capabilities ..85
Creating a Container Implementation .. 85

Marking the Class with the @Service Annotation ... 85
Implementing the Container Interface .. 86

Adding an Archive Type ... 88
Implementing the ArchiveHandler Interface .. 89

Creating Connector Modules .. 90
Associating File Types with Containers Using the Sniffer Interface 90

7 Packaging, Integrating, and Delivering an Add-On Component .. 93
Packaging an Add-On Component ... 93
Integrating an Add-On Component With Enterprise Server .. 94
Delivering an Add-On Component Through Update Tool ... 94

A Integration Point Reference ..95
Integration Point Attributes ... 95
org.glassfish.admingui:treeNode Integration Point ... 96

Contents

5

org.glassfish.admingui:serverInstTab Integration Point ... 97
org.glassfish.admingui:commonTask Integration Point ... 98
org.glassfish.admingui:configuration Integration Point ... 98
org.glassfish.admingui:resources Integration Point ... 99
org.glassfish.admingui:customtheme Integration Point ... 99
org.glassfish.admingui:masthead Integration Point ... 100
org.glassfish.admingui:loginimage Integration Point ... 100
org.glassfish.admingui:loginform Integration Point ... 101
org.glassfish.admingui:versioninfo Integration Point ... 101

B Template Reference ..103
Base Template .. 103
Property Sheet Template .. 104
Property Table Template .. 106
Sheet Table Template .. 107
Administration Console Property Sheet Template ... 107
Administration Console Property Table Template ... 109
Administration Console Sheet Table Template ... 109

Index ... 111

Contents

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 20086

Preface

This document explains how to use published interfaces of Sun GlassFishTM Enterprise Server to
develop add-on components for Enterprise Server. This document explains how to perform
only those tasks that ensure that the add-on component is suitable for Enterprise Server.

This document is for software developers who are developing add-on components for
Enterprise Server. This document assumes that the developers are working with an Enterprise
Server distribution or GlassFish community distribution. Access to the source code of the
GlassFish project is not required to perform the tasks in this document. This document also
assumes familiarity with the JavaTM programming language.

This preface contains information about and conventions for the entire Sun GlassFish
Enterprise Server documentation set.

The following topics are addressed here:

■ “Enterprise Server Documentation Set” on page 7
■ “Related Documentation” on page 9
■ “Typographic Conventions” on page 9
■ “Symbol Conventions” on page 10
■ “Default Paths and File Names” on page 10
■ “Documentation, Support, and Training” on page 11
■ “Searching Sun Product Documentation” on page 11
■ “Third-Party Web Site References” on page 12
■ “Sun Welcomes Your Comments” on page 12

Enterprise Server Documentation Set
The Enterprise Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Enterprise Server documentation is
http://docs.sun.com/coll/1343.7. For an introduction to Enterprise Server, refer to the
books in the order in which they are listed in the following table.

7

http://docs.sun.com/coll/1343.7

TABLE P–1 Books in the Enterprise Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of the
supported hardware, operating system, Java Development Kit (JDKTM), and
database drivers.

Quick Start Guide Explains how to get started with the Enterprise Server product.

Installation Guide Explains how to install the software and its components.

Application Deployment Guide Explains how to assemble and deploy applications to the Enterprise Server
and provides information about deployment descriptors.

Developer’s Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the Enterprise
Server. These applications follow the open Java standards model for Java EE
components and APIs. This guide provides information about developer
tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Enterprise Server to develop
add-on components for Enterprise Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for Enterprise Server.

RESTful Web Services
Developer’s Guide

Explains how to develop Representational State Transfer (RESTful) web
services for Enterprise Server.

Getting Started With JRuby on
Rails for Sun GlassFish
Enterprise Server

Explains how to develop Ruby on Rails applications for deployment to
Enterprise Server.

Getting Started With Project
jMaki for Sun GlassFish
Enterprise Server

Explains how to use the jMaki framework to develop Ajax-enabled web
applications that are centered on JavaScriptTM technology for deployment to
Enterprise Server.

Roadmap to the Java EE 5
Tutorial

Explains which information in the Java EE 5 Tutorial is relevant to users of
the v3 Prelude release of the Enterprise Server.

Java EE 5 Tutorial Explains how to use Java EE 5 platform technologies and APIs to develop
Java EE applications.

Java WSIT Tutorial Explains how to develop web applications by using the Web Service
Interoperability Technologies (WSIT). The tutorial focuses on developing
web service endpoints and clients that can interoperate with Windows
Communication Foundation (WCF) endpoints and clients.

Preface

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 20088

http://docs.sun.com/doc/820-4494
http://docs.sun.com/doc/820-4836
http://docs.sun.com/doc/820-5968
http://docs.sun.com/doc/820-4502
http://docs.sun.com/doc/820-4496
http://docs.sun.com/doc/820-6583
http://docs.sun.com/doc/820-6583
http://docs.sun.com/doc/820-4867
http://docs.sun.com/doc/820-4867
http://docs.sun.com/doc/820-4926
http://docs.sun.com/doc/820-4926
http://docs.sun.com/doc/820-4926
http://docs.sun.com/doc/820-4868
http://docs.sun.com/doc/820-4868
http://docs.sun.com/doc/820-4868
http://docs.sun.com/doc/820-5625
http://docs.sun.com/doc/820-5625
http://docs.sun.com/doc/819-3669
http://docs.sun.com/doc/820-4716

TABLE P–1 Books in the Enterprise Server Documentation Set (Continued)
Book Title Description

Administration Guide Explains how to configure, monitor, and manage Enterprise Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Administration Reference Describes the format of the Enterprise Server configuration file, domain.xml.

Reference Manual Provides reference information in man page format for Enterprise Server
administration commands, utility commands, and related concepts.

Related Documentation
A JavadocTM tool reference for packages that are provided with the Enterprise Server is located at
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html. Additionally, the
following resources might be useful:

■ The Java EE 5 Specifications (http://java.sun.com/javaee/5/javatech.html)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information about creating enterprise applications in the NetBeansTM Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/60/index.html.

For information about the Java DB database for use with the Enterprise Server, see
http://developers.sun.com/javadb/.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

Preface

9

http://docs.sun.com/doc/820-4495
http://docs.sun.com/doc/820-4497/asadmin-1m?a=view
http://docs.sun.com/doc/820-4507
http://docs.sun.com/doc/820-4497
https://glassfish.dev.java.net/nonav/api/v3-prelude/index.html
http://java.sun.com/javaee/5/javatech.html
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/60/index.html
http://developers.sun.com/javadb/

TABLE P–2 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Preface

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200810

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
Enterprise Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the SolarisTM operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3-prelude/glassfish

Windows, all installations:

SystemDrive:\glassfishv3-prelude\glassfish

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Preface

11

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-6583.

Preface

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200812

http://docs.sun.com

Introduction to the Development Environment
for Enterprise Server Add-On Components

Sun GlassFishTM Enterprise Server enables an external vendor such as an independent software
vendor (ISV), original equipment manufacturer (OEM), or system integrator to incorporate
Enterprise Server into a new product with the vendor's own brand name. External vendors can
extend the functionality of Enterprise Server by developing add-on components for Enterprise
Server. Enterprise Server provides interfaces to enable add-on components to be configured,
managed, and monitored through existing Enterprise Server tools such as the Administration
Console and the asadmin utility.

The following topics are addressed here:
■ “Enterprise Server Modular Architecture and Add-On Components” on page 13
■ “OSGi Alliance Module Management Subsystem” on page 14
■ “Hundred-Kilobyte Kernel” on page 14
■ “Overview of the Development Process for an Add-On Component” on page 15

Enterprise Server Modular Architecture and Add-On
Components

Enterprise Server has a modular architecture in which the features of Enterprise Server are
provided by a consistent set of components that interact with each other. Each component
provides a small set of functionally related features.

The modular architecture of Enterprise Server enables users to download and install only the
components that are required for the applications that are being deployed. As a result, start-up
times, memory consumption, and disk space requirements are all minimized.

The modular architecture of Enterprise Server enables you to extend the basic functionality of
Enterprise Server by developing add-on components. An add-on component is an encapsulated
definition of reusable code that has the following characteristics:
■ The component provides a set of Java classes.

1C H A P T E R 1

13

■ The component offers services and public interfaces.
■ The component implements the public interfaces with a set of private classes.
■ The component depends on other components.

Add-on components that you develop interact with Enterprise Server in the same way as
components that are supplied in Enterprise Server distributions.

You can create and offer new or updated add-on components at any time. Enterprise Server
administrators can install add-on components and update or remove installed components
after Enterprise Server is installed. For more information, see Chapter 3, “Extending Enterprise
Server,” in Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

OSGi Alliance Module Management Subsystem
To enable components to be added when required, Enterprise Server provides a lightweight and
extensible kernel that uses the module management subsystem from the OSGi Alliance. Any
Enterprise Server component that plugs in to this kernel must be implemented as an OSGi
bundle. To enable an add-on component to plug in to the Enterprise Server kernel in the same
way as other components, package the component as an OSGi bundle. For more information,
see “Packaging an Add-On Component” on page 93.

The default OSGi module management subsystem in Enterprise Server is the Apache Felix
OSGi framework. However, the Enterprise Server kernel uses only the OSGi Service Platform
Release 4 API. Therefore, Enterprise Server supports other OSGi module management
subsystems that are compatible with the OSGi Service Platform Release 4 API.

Hundred-Kilobyte Kernel
The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of Enterprise
Server. HK2 consists of the following technologies:

■ Module subsystem. The HK2 module subsystem provides isolation between components of
the Enterprise Server. The HK2 module subsystem is compatible with existing technologies
such as the OSGi framework.

■ Component model. The HK2 component model eases the development of components
that are also services. Enterprise Server discovers these components automatically and
dynamically. HK2 components use injection of dependencies to express dependencies on
other components. Enterprise Server provides two-way mappings between the services of an
HK2 component and OSGi services.

For more information, see Chapter 2, “Writing HK2 Components.”

OSGi Alliance Module Management Subsystem

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200814

http://docs.sun.com/doc/820-4495/ghapp?a=view
http://docs.sun.com/doc/820-4495/ghapp?a=view
http://osgi.org
http://felix.apache.org
http://felix.apache.org
http://www.osgi.org/Release4/HomePage
http://www.osgi.org/Release4/HomePage
https://hk2.dev.java.net/

Overview of the Development Process for an Add-On
Component

To ensure that an add-on component behaves identically to components that are supplied in
Enterprise Server distributions, the component must meet the following requirements:

■ If the component generates management data or monitoring data, it must provide that data
to other Enterprise Server components in the same way as other Enterprise Server
components.

■ If the component generates management data or monitoring data, it must provide that data
to users through Enterprise Server administrative interfaces such as Administration
Console and the asadmin utility.

■ The component must be packaged and delivered as an OSGi bundle.

To develop add-on components that meet these requirements, follow the development process
that is described in the following sections:

■ “Writing HK2 Components” on page 15
■ “Extending the Administration Console” on page 15
■ “Extending the asadmin Utility” on page 16
■ “Adding Monitoring Capabilities” on page 16
■ “Adding Container Capabilities” on page 16
■ “Packaging and Delivering an Add-On Component” on page 17

Writing HK2 Components
The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of Enterprise
Server. To interact with Enterprise Server, add-on components plug in to this kernel. In the
HK2 component model, the functions of an add-on component are declared through a
contract-service implementation paradigm. An HK2 contract identifies and describes the
building blocks or the extension points of an application. An HK2 service implements an HK2
contract.

For more information, see Chapter 2, “Writing HK2 Components.”

Extending the Administration Console
The Administration Console is a browser-based tool for administering Enterprise Server. It
features an easy-to-navigate interface and online help. Extending the Administration Console
enables you to provide a graphical user interface for administering your add-on component.
You can use any of the user interface features of the Administration Console, such as tree nodes,
links on the Common Tasks page, tabs and sub-tabs, property sheets, and JavaServerTM Faces

Overview of the Development Process for an Add-On Component

Chapter 1 • Introduction to the Development Environment for Enterprise Server Add-On Components 15

pages. Your add-on component implements a marker interface and provides a configuration
file that describes how your customizations integrate with the Administration Console.

For more information, see Chapter 3, “Extending the Administration Console.”

Extending the asadminUtility
The asadmin utility is a command-line tool for configuring and administering Enterprise
Server. Extending the asadmin utility enables you to provide administrative interfaces for an
add-on component that are consistent with the interfaces of other Enterprise Server
components. A user can run asadmin commands either from a command prompt or from a
script. For more information about the asadmin utility, see the asadmin(1M) man page.

For more information, see Chapter 4, “Extending the asadmin Utility.”

Adding Monitoring Capabilities
Monitoring is the process of reviewing the statistics of a system to improve performance or solve
problems. By monitoring the state of components and services that are deployed in the
Enterprise Server, system administrators can identify performance bottlenecks, predict failures,
perform root cause analysis, and ensure that everything is functioning as expected. Monitoring
data can also be useful in performance tuning and capacity planning.

An add-on component typically generates statistics that the Enterprise Server can gather at run
time. Adding monitoring capabilities enables an add-on component to provide statistics to
Enterprise Server in the same way as components that are supplied in Enterprise Server
distributions. As a result, system administrators can use the same administrative interfaces to
monitor statistics from any installed Enterprise Server component, regardless of the origin of
the component.

For more information, see Chapter 5, “Adding Monitoring Capabilities.”

Adding Container Capabilities
Applications run on Enterprise Server in containers. Enterprise Server enables you to create
containers that extend or replace the existing containers of Enterprise Server. Adding container
capabilities enables you to run new types of applications and to deploy new archive types in
Enterprise Server.

For more information, see Chapter 6, “Adding Container Capabilities.”

Overview of the Development Process for an Add-On Component

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200816

http://docs.sun.com/doc/820-4497/asadmin-1m?a=view

Packaging and Delivering an Add-On Component
Packaging an add-on component enables the component to interact with the Enterprise Server
kernel in the same way as other components. Integrating a component with Enterprise Server
enables Enterprise Server to discover the component at runtime. If an add-on component is an
extension or update to existing installations of Enterprise Server, deliver the component
through Update Tool.

For more information, see Chapter 7, “Packaging, Integrating, and Delivering an Add-On
Component.”

Overview of the Development Process for an Add-On Component

Chapter 1 • Introduction to the Development Environment for Enterprise Server Add-On Components 17

18

Writing HK2 Components

The Hundred-Kilobyte Kernel (HK2) is the lightweight and extensible kernel of Enterprise
Server. To interact with Enterprise Server, add-on components plug in to this kernel. In the
HK2 component model, the functions of an add-on component are declared through a
contract-service implementation paradigm. An HK2 contract identifies and describes the
building blocks or the extension points of an application. An HK2 service implements an HK2
contract.

The following topics are addressed here:

■ “HK2 Component Model” on page 19
■ “Services in the HK2 Component Model” on page 20
■ “HK2 Runtime” on page 20
■ “Inversion of Control” on page 22
■ “Identifying a Class as an Add-On Component” on page 24
■ “Using the Apache Maven Build System to Develop HK2 Components” on page 25

HK2 Component Model
The Hundred-Kilobyte Kernel (HK2) provides a module system and component model for
building complex software systems. HK2 forms the core of Enterprise Server's architecture.

The module system is responsible for instantiating classes that constitute the application
functionality. The HK2 runtime complements the module system by creating objects. It
configures such objects by:

■ Injecting other objects that are needed by a newly instantiated object
■ Injecting configuration information needed for that object
■ Making newly created objects available, so that they can then be injected to other objects

that need it

2C H A P T E R 2

19

Services in the HK2 Component Model
An HK2 service identifies the building blocks or the extension points of an application. A
service is a plain-old Java object (POJO) with the following characteristics:

■ The object implements an interface.
■ The object is declared in a JAR file with the META-INF/services file.

To clearly separate the contract interface and its implementation, the HK2 runtime requires the
following information:

■ Which interfaces are contracts
■ Which implementations of such interfaces are services

Interfaces that define a contract are identified by the org.jvnet.hk2.annotation.Contract
annotation.

@Retention(RUNTIME)

@Target(TYPE)

public @interface Contract {

}

Implementations of such contracts should be identified with an
org.jvnet.hk2.annotations.Service annotation so that the HK2 runtime can recognize
them as @Contract implementations.

@Retention(RUNTIME)

@Target(TYPE)

public @interface Service {

...

}

For more information, see Service.

HK2 Runtime
Once Services are defined, the HK2 runtime can be used to instantiate or retrieve instances of
services. Each service instance has a scope, specified as singleton, per thread, per application, or
a custom scope.

Scopes of Services
You can specify the scope of a service by adding an org.jvnet.hk2.annotations.Scoped

annotation to the class-level of your @Service implementation class. Scopes are also services, so
they can be custom defined and added to the HK2 runtime before being used by other services.

Services in the HK2 Component Model

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200820

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Service.html

Each scope is responsible for storing the service instances to which it is tied; therefore, the HK2
runtime does not rely on predefined scopes (although it comes with a few predefined ones).

@Contract

public abstract class Scope {

public abstract ScopeInstance current();

}

The following code fragment shows how to set the scope for a service to the predefined
Singleton scope:

@Service

public Singleton implements Scope {

...

}

@Scope(Singleton.class)

@Service

public class SingletonService implements RandomContract {

...

}

You can define a new Scope implementation and use that scope on your @Service
implementations. You will see that the HK2 runtime uses the Scope instance to store and
retrieve service instances tied to that scope.

Instantiation of Components in HK2
Do not call the new method to instantiate components. Instead, retrieve components by using
the ComponentManager instance. The simplest way to use the ComponentManager instance is
through a getComponent(ClassT contract) call:

public <T> T getComponent(Class<T> clazz) throws ComponentException;

More APIs are available at ComponentManager.

HK2 Lifecycle Interfaces
Components can attach behaviors to their construction and destruction events by
implementing the org.jvnet.hk2.component.PostConstruct interface, the
org.jvnet.hk2.component.PreDestroy interface, or both. These are interfaces rather than
annotations for performance reasons.

The PostConstruct interface defines a single method, postConstruct, which is called after a
component has been initialized and all its dependencies have been injected.

HK2 Runtime

Chapter 2 • Writing HK2 Components 21

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/component/ComponentManager.html
https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/component/PostContruct.html
https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/component/PreDestroy.html

The PreDestroy interface defines a single method, preDestroy, which is called just before a
component is removed from the system.

EXAMPLE 2–1 Example Implementation of PostContruct and PreDestroy

@Service(name="com.example.container.MyContainer")
public class MyContainer implements Container, PostConstruct, PreDestroy {

@Inject

Logger logger;

...

public void postConstruct() {

logger.info("Starting up.");
}

public void preDestroy() {

logger.info("Shutting down.");
}

}

Inversion of Control
Inversion of control (IoC) refers to a style of software architecture where the behavior of a
system is determined by the runtime capabilities of the individual, discrete components that
make up the system. This architecture is different from traditional styles of software
architecture, where all the components of a system are specified at design-time. With IoC,
discrete components respond to high-level events to perform actions. While performing these
actions, the components typically rely on other components to provide other actions. In an IoC
system, components use injection to gain access to other components, and extraction to make
component variables available to the system.

Injecting HK2 Components
Services usually rely on other services to perform their tasks. The HK2 runtime identifies the
@Contract implementations required by a service by using the
org.jvnet.hk2.annotations.Inject annotation. Inject can be placed on fields or setter
methods of any service instantiated by the HK2 runtime. The target service is retrieved and
injected during the calling service's instantiation by the component manager.

The following example shows how to use @Inject at the field level:

@Inject

ConfigService config;

The following example shows how to use @Inject at the setter level:

Inversion of Control

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200822

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Inject.html

@Inject

public void set(ConfigService svc) {...}

Injection can further qualify the intended injected service implementation by using a name and
scope from which the service should be available:

@Inject(Scope=Singleton.class, name="deploy")

AdminCommand deployCommand;

Extraction
Although all services are automatically placed into a scope for later retrieval, a component may
need to extract more than itself. One practical way of doing so is to use a factory service. For
simplicity, however, the HK2 runtime extracts all fields or getter methods annotated with the
org.jvnet.hk2.annotations.Extract annotation.

The following example shows how to use @Extract at the field level:

@Extract

ConfigService config;

The following example shows how to use @Extract at the getter level:

@Extract

public ConfigService getConfigService() {...}

Extraction, like injection, can also use the name and scope annotation fields to further qualify
the extracted Contract implementation.

Extracted fields and properties are made available to other service instances by exporting them
to the org.jvnet.hk2.component.Habitat instance. Habitat instances can be injected into
other components, and the components can then extract and use the data contained in the
Habitat instance.

@Inject

protected Habitat habitat;

...

public void doSomething(String name) {

...

ConfigService config = habitat.getComponent(ConfigService.class);

...

}

Inversion of Control

Chapter 2 • Writing HK2 Components 23

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Extract.html

Instantiation Cascading in HK2
Injection of instances that have not been already instantiated triggers more instantiation. You
can see this as a component instantiation cascade where some code requests for a high-level
service will, by using the @Inject annotation, require more injection and instantiation of lower
level services. This cascading feature keeps the implementation as private as possible while
relying on interfaces and the separation of contracts and providers.

EXAMPLE 2–2 Example of Instantiation Cascading

The following example shows how the instantiation of DeploymentService as a Startup
contract implementation will trigger the instantiation of the ConfigService.

@Contract

public interface Startup {...}

Iterable<Startup> startups;

startups = componentMgr.getComponents(Startup.class);

@Service

public class DeploymentService implements Startup {

@Inject

ConfigService config;

}

@Service

public Class ConfigService implements ... {...}

Identifying a Class as an Add-On Component
Enterprise Server discovers add-on components by identifying Java programming language
classes that are annotated with the org.jvnet.hk2.annotation.Service annotation.

To identify a class as an implementation of an Enterprise Server service, add the
org.jvnet.hk2.annotation.Service annotation at the class-definition level of your Java
programming language class.

@Service

public class SamplePlugin implements ConsoleProvider {

...

}

The @Service annotation has the following elements. All elements are optional.

name

The name of the service. The default value is an empty string.

Identifying a Class as an Add-On Component

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200824

scope

The scope to which this service implementation is tied. The default value is
org.jvnet.hk2.component.PerLookup.class.

factory

The factory class for the service implementation, if the service is created by a factory class
rather than by calling the default constructor. If this element is specified, the factory
component is activated, and Factory.getObject is used instead of the default constructor.
The default value of the factory element is org.jvnet.hk2.component.Factory.class.

EXAMPLE 2–3 Example of the Optional Elements of the @ServiceAnnotation

The following example shows how to use the optional elements of the @Service annotation:

@Service (name="MyService",
scope=com.example.PerRequest.class,

factory=com.example.MyCustomFactory)

public class SamplePlugin implements ConsoleProvider {

...

}

Using the Apache Maven Build System to Develop HK2
Components

If you are using Maven 2 to build HK2 components, invoke the auto-depends plug-in for
Maven so that the META-INF/services files are generated automatically during build time.

EXAMPLE 2–4 Example of the Maven Plug-In Configuration

<plugin>

<groupId>com.sun.enterprise</groupId>

<artifactId>hk2-maven-plugin</artifactId>

<configuration>

<includes>

<include>com/sun/enterprise/v3/**</include>

</includes>

</configuration>

</plugin>

EXAMPLE 2–5 Example of META-INF/services File Generation

This example shows how to use @Contract and @Service and the resulting
META-INF/services files.

The interfaces and classes in this example are as follows:

Using the Apache Maven Build System to Develop HK2 Components

Chapter 2 • Writing HK2 Components 25

https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Contract.html
https://hk2.dev.java.net/auto-depends/apidocs/org/jvnet/hk2/annotations/Service.html

EXAMPLE 2–5 Example of META-INF/services File Generation (Continued)

package com.sun.v3.annotations;

@Contract

public interface Startup {...}

package com.wombat;

@Contract

public interface RandomContract {...}

package com.sun.v3;

@Service

public class MyService implements Startup, RandomContract, PropertyChangeListener {

...

}

These interfaces and classes generate this META-INF/services file with the MyService content:

com.sun.v3.annotations.Startup

com.wombat.RandomContract

Using the Apache Maven Build System to Develop HK2 Components

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200826

Extending the Administration Console

The Administration Console is a browser-based tool for administering Enterprise Server. It
features an easy-to-navigate interface and online help. Extending the Administration Console
enables you to provide a graphical user interface for administering your add-on component.
You can use any of the user interface features of the Administration Console, such as tree nodes,
links on the Common Tasks page, tabs and sub-tabs, property sheets, and JavaServerTM Faces
pages. Your add-on component implements a marker interface and provides a configuration
file that describes how your customizations integrate with the Administration Console.

This chapter refers to a simple example called console-sample-ip that illustrates how to
provide Administration Console features for a hypothetical add-on component. Instructions
for obtaining and using this example are available at the example's project page
(http://wiki.glassfish.java.net/Wiki.jsp?page=V3SampleIpProject). When you check
out the code, it is placed in a directory named
glassfish-samples/v3/plugin/adminconsole/console-sample-ip/ in your current
directory. In this chapter, path names for the example files are relative to this directory.

The following topics are addressed here:

■ “Administration Console Architecture” on page 28
■ “About Administration Console Templates” on page 29
■ “About Integration Points” on page 30
■ “Specifying the ID of an Add-On Component” on page 30
■ “Adding Functionality to the Administration Console” on page 31
■ “Adding Internationalization Support” on page 43
■ “Changing the Theme or Brand of the Administration Console” on page 44
■ “Creating an Integration Point Type” on page 46

3C H A P T E R 3

27

http://wiki.glassfish.java.net/Wiki.jsp?page=V3SampleIpProject
http://wiki.glassfish.java.net/Wiki.jsp?page=V3SampleIpProject

Administration Console Architecture
The Administration Console is a web application that is composed of OSGi bundles. These
bundles provide all the features of the Administration Console, such as the Web Applications,
Update Center, and Security content. To provide support for your add-on component, create
your own OSGi bundle that implements the parts of the user interface that you need. Place your
bundle in the modules directory of your Enterprise Server installation, along with the other
Administration Console bundles.

To learn how to package the Administration Console features for an add-on component, go to
the modules directory of your Enterprise Server installation and examine the contents of the
files named console-componentname-plugin.jar. Place the console-sample-ip project
bundle in the same place to deploy it and examine the changes that it makes to the
Administration Console.

The Administration Console includes a Console Add-On Component Service. The Console
Add-On Component Service is an HK2 service that acts as a façade to all theAdministration
Console add-on components. The Console Add-On Component Service queries the various
console providers for integration points so that it can perform the actions needed for the
integration (adding a tree node or a new tab, for example). The interface name for this service is
org.glassfish.api.admingui.ConsolePluginService.

For details about the Hundred-Kilobyte Kernel (HK2) project, see “Hundred-Kilobyte Kernel”
on page 14 and “HK2 Component Model” on page 19.

Each add-on component must contain a console provider implementation. This is a Java class
that implements the org.glassfish.api.admingui.ConsoleProvider interface and uses the
HK2 @Service annotation. The console provider allows your add-on component to specify
where your integration point configuration file is located. This configuration file communicates
to the Console Add-On Component Service the customizations that your add-on component
makes to the Administration Console.

Implementing a Console Provider
The org.glassfish.api.admingui.ConsoleProvider interface has one required method,
getConfiguration. The getConfiguration method returns the location of the
console-config.xml file as a java.net.URL. If getConfiguration returns null, the default
location, META-INF/admingui/console-config.xml, is used. The console-config.xml file is
described in “About Integration Points” on page 30.

To implement the console provider for your add-on component, write a Java class that is similar
to the following example.

EXAMPLE 3–1 Example ConsoleProvider Implementation

This example shows a simple implementation of the ConsoleProvider interface:

Administration Console Architecture

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200828

EXAMPLE 3–1 Example ConsoleProvider Implementation (Continued)

package org.glassfish.admingui.plugin;

import org.glassfish.api.admingui.ConsoleProvider;

import org.jvnet.hk2.annotations.Service;

import java.net.URL;

@Service

public class SamplePlugin implements ConsoleProvider {

public URL getConfiguration() { return null; }

}

This implementation of getConfiguration returns null to specify that the configuration file is
in the default location. If you place the file in a nonstandard location or give it a name other than
console-config.xml, your implementation of getConfiguration must return the URL where
the file can be found.

You can find this example code in the file
project/src/main/java/org/glassfish/admingui/plugin/SamplePlugin.java.

About Administration Console Templates
Enterprise Server includes a set of templates that make it easier to create JavaServer Faces pages
for your add-on component. These templates use Templating for JavaServer Faces Technology
(https://jsftemplating.dev.java.net/), which is also known as JSFTemplating.

For more details on the templates, see Appendix B, “Template Reference.”

Examples of JSFTemplating technology can be found in the following sections of this chapter:

■ “Creating a JavaServer Faces Page for Your Node” on page 33
■ “Creating JavaServer Faces Pages for Your Tabs” on page 36
■ “Creating a JavaServer Faces Page for Your Task” on page 38
■ “Creating a JavaServer Faces Page for Your Task Group” on page 40
■ “Creating a JavaServer Faces Page for Your Page Content” on page 41
■ “Adding a Page to the Administration Console” on page 42

About Administration Console Templates

Chapter 3 • Extending the Administration Console 29

https://jsftemplating.dev.java.net/
https://jsftemplating.dev.java.net/

About Integration Points
The integration points for your add-on component are the individual Administration Console
user interface features that your add-on component will extend. You can implement the
following kinds of integration points:

■ Nodes in the navigation tree
■ Elements on the Common Tasks page of the Administration Console
■ JavaServer Faces pages
■ Tabs and sub-tabs

Specify all the integration points in a file named console-config.xml. In the example, this file
is in the directory project/src/main/resources/META-INF/admingui/. The following
sections describe how to create this file.

In addition, create JavaServer Faces pages that contain JSF code fragments to implement the
integration points. In the example, these files are in the directory
project/src/main/resources/. The content of these files depends on the integration point
you are implementing. The following sections describe how to create these JavaServer Faces
pages.

For reference information on integration points, see Appendix A, “Integration Point
Reference.”

Specifying the ID of an Add-On Component
The console-config.xml file consists of a console-config element that encloses a series of
integration-point elements. The console-config element has one attribute, id, which
specifies a unique name or ID value for the add-on component.

In the example, the element is declared as follows:

<console-config id="sample">
...

</console-config>

You will also specify this ID value when you construct URLs to images, resources and pages in
your add-on component. See“Adding a Node to the Navigation Tree” on page 32 for an
example.

For example, a URL to an image named my.gif might look like this:

<sun:image url="/resource/sample/images/my.gif" />

About Integration Points

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200830

The URL is constructed as follows:

■ /resource is required to locate any resource URL.
■ sample is the add-on component ID. You must choose a unique ID value.
■ images is a folder under the root of the add-on component JAR file.

Adding Functionality to the Administration Console
The integration-point elements in the console-config.xml file specify attributes for the
user interface features that you choose to implement. The example file provides examples of
most of the available kinds of integration points at this release. Your own add-on component
can use some or all of them.

For complete details about the Administration Console user interface features, see the API
documentation for Project Woodstock
(http://webdev2.sun.com/woodstock-tlddocs/index.html).

For each integration-point element, specify the following attributes.

id

An identifier for the integration point.

parentId

The ID of the integration point's parent.

type

The type of the integration point.

priority

A numeric value that specifies the relative ordering of integration points for add-on
components that specify the same parentId. A lower number specifies a higher priority (for
example, 100 represents a higher priority than 400). The integration points for add-on
components are always placed after those in the basic Administration Console. You might
need to experiment to place the integration point where you want it. This attribute is
optional.

content

The content for the integration point, typically a JavaServer Faces page. In the example, you
can find the JavaServer Faces pages in the directory project/src/main/resources/.

Note – The order in which these attributes are specified does not matter, and in the example
console-config.xml file the order varies. To improve readability, this chapter uses the same
order throughout.

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 31

http://webdev2.sun.com/woodstock-tlddocs/index.html
http://webdev2.sun.com/woodstock-tlddocs/index.html
http://webdev2.sun.com/woodstock-tlddocs/index.html

The following topics are addressed here:

■ “Adding a Node to the Navigation Tree” on page 32
■ “Adding Tabs to a Page” on page 34
■ “Adding a Task to the Common Tasks Page” on page 37
■ “Adding a Task Group to the Common Tasks Page” on page 39
■ “Adding Content to a Page” on page 41
■ “Adding a Page to the Administration Console” on page 42

Adding a Node to the Navigation Tree
You can add a node to the navigation tree, either at the top level or under another node. To add
a node, use an integration point of type org.glassfish.admingui:treeNode. Use the
parentId attribute to specify where the new node should be placed. Any tree node, including
those added by other add-on components, can be specified. Examples include the following:

tree

At the top level

applicationServer

Under the Application Server node

applications

Under the Applications node

webApplications

Under the Web Applications node

resources

Under the Resources node

configuration

Under the Configuration node

webContainer

Under the Web Container node

httpService

Under the HTTP Service node

Note – The webContainer and httpService nodes are available only if you installed the web
container module for the Administration Console (the console-web-gui.jar OSGi bundle).

If you do not specify a parentId, the new content is added to the root of the integration point, in
this case the top level node, tree.

Adding Functionality to the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200832

EXAMPLE 3–2 Example Tree Node Implementation Point

For example, the following integration-point element uses a parentId of tree to place the
new node at the top level.

<integration-point

id="sampleNode"
parentId="tree"
type="org.glassfish.admingui:treeNode"
priority="200"
content="sampleNode.jsf"

/>

This example specifies the following values in addition to the parentId:

■ The id value, sampleNode, specifies the integration point ID.
■ The type value, org.glassfish.admingui:treeNode, specifies the integration point type as

a tree node.
■ The priority value, 200, specifies the order of the node on the tree.
■ The content value, sampleNode.jsf, specifies the JavaServer Faces page that displays the

node.

The example console-config.xml file provides other examples of tree nodes under the
Resources and Configuration nodes.

Creating a JavaServer Faces Page for Your Node
A JavaServer Faces page for a tree node uses the JSFTemplating tag sun:treeNode. This tag
provides all the capabilities of the Project Woodstock tag webuijsf:treeNode.

EXAMPLE 3–3 Example JavaServer Faces Page for a Tree Node

In the example, the sampleNode.jsf file has the following content:

<sun:treeNode id="treeNode1"
text="SampleTop"
url="/sample/page/testPage.jsf?name=SampleTop"
target="main"
imageURL="resource/sample/images/sample.png"
>

<sun:treeNode id="treeNodeBB"
text="SampleBB"
url="/sample/page/testPage.jsf?name=SampleBB"
target="main"
imageURL="resource/sample/images/sample.png"
/>

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 33

EXAMPLE 3–3 Example JavaServer Faces Page for a Tree Node (Continued)

</sun:treeNode>

This file uses the sun:treenode tag to specify both a top-level tree node and another node
nested beneath it. In your own JavaServer Faces pages, specify the attributes of this tag as
follows:

id

A unique identifier for the tree node.

text

The node name that appears in the tree.

url

The location of the JavaServer Faces page that appears when you click the node. In the
example, most of the integration points use a very simple JavaServer Faces page called
testPage.jsf, which is in the src/main/resources/page/ directory. Specify the
integration point id value as the root of the URL; in this case, it is sample (see “Specifying the
ID of an Add-On Component” on page 30). The rest of the URL is relative to the
src/main/resources/ directory, where sampleNode.jsf resides.

The url tag in this example passes a name parameter to the JavaServer Faces page.

target

The frame in which to display the JavaServer Faces page specified by the url tag. Normally,
the value is main.

imageURL

The location of a graphic to display next to the node name. In the example, the graphic is
always sample.png, which is in the src/main/resources/images/ directory. The URL for
the deployed images directory is relative to resource/idval/, where idval is the integration
point id value (see “Specifying the ID of an Add-On Component” on page 30).

Adding Tabs to a Page
You can add a tab to an existing tab set, or you can create a tab set for your own page. One way
to add a tab or tab set is to use an integration point of type
org.glassfish.admingui:serverInstTab, which adds a tab to the tab set on the main
Application Server page of the Administration Console. You can also create sub-tabs. Once
again, the parentId element specifies where to place the tab or tab set.

EXAMPLE 3–4 Example Tab Integration Point

In the example, the following integration-point element adds a new tab on the main
Application Server page of the Administration Console:

Adding Functionality to the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200834

EXAMPLE 3–4 Example Tab Integration Point (Continued)

<integration-point

id="sampleTab"
parentId="serverInstTabs"
type="org.glassfish.admingui:serverInstTab"
priority="500"
content="sampleTab.jsf"

/>

This example specifies the following values:

■ The id value, sampleTab, specifies the integration point ID.
■ The parentId value, serverInstTabs, specifies the tab set associated with the server

instance. The Application Server page is the only one of the default Administration Console
pages that has a tab set.

■ The type value, org.glassfish.admingui:serverInstTab, specifies the integration point
type as a tab associated with the server instance.

■ The priority value, 500, specifies the order of the tab within the tab set. This value is
optional.

■ The content value, sampleTab.jsf, specifies the JavaServer Faces page that displays the tab.

EXAMPLE 3–5 Example Tab Set Integration Points

The following integration-point elements add a new tab with two sub-tabs, also on the main
Application Server page of the Administration Console:

<integration-point

id="sampleTabWithSubTab"
parentId="serverInstTabs"
type="org.glassfish.admingui:serverInstTab"
priority="300"
content="sampleTabWithSubTab.jsf"

/>

<integration-point

id="sampleSubTab1"
parentId="sampleTabWithSubTab"
type="org.glassfish.admingui:serverInstTab"
priority="300"
content="sampleSubTab1.jsf"

/>

<integration-point

id="sampleSubTab2"
parentId="sampleTabWithSubTab"

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 35

EXAMPLE 3–5 Example Tab Set Integration Points (Continued)

type="org.glassfish.admingui:serverInstTab"
priority="400"
content="sampleSubTab2.jsf"

/>

These examples specify the following values:

■ The id values, sampleTabWithSubTab, sampleSubTab1, and sampleSubTab2, specify the
integration point IDs for the tab and its sub-tabs.

■ The parentId of the new tab, serverInstTabs, specifies the tab set associated with the
server instance. The parentId of the two sub-tabs, sampleTabWithSubTab, is the id value of
this new tab.

■ The type value, org.glassfish.admingui:serverInstTab, specifies the integration point
type for all the tabs as a tab associated with the server instance.

■ The priority values specify the order of the tabs within the tab set. This value is optional. In
this case, the priority value for sampleTabWithSubTab is 300, which is higher than the value
for sampleTab. That means that sampleTabWithSubTab appears to the left of sampleTab in
the Administration Console. The priority values for sampleSubTab1 and sampleSubTab2 are
300 and 400 respectively, so sampleSubTab1 appears to the left of sampleSubTab2.

■ The content values, sampleTabWithSubTab.jsf, sampleSubTab1.jsf, and
sampleSubTab2.jsf, specify the JavaServer Faces pages that display the tabs.

Creating JavaServer Faces Pages for Your Tabs
A JavaServer Faces page for a tab uses the JSFTemplating tag sun:tab. This tag provides all the
capabilities of the Project Woodstock tag webuijsf:tab.

EXAMPLE 3–6 Example JavaServer Faces Page for a Tab

In the example, the sampleTab.jsf file has the following content:

<sun:tab id="sampleTab" immediate="true" text="Sample First Tab">
<!command

setSessionAttribute(key="serverInstTabs" value="sampleTab");
redirect(page="#{request.contextPath}/page/

tabPage.jsf?name=Sample%20First%20Tab");
/>

</sun:tab>

Adding Functionality to the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200836

Note – In the actual file there are no line breaks in the redirect value.

In your own JavaServer Faces pages, specify the attributes of this tag as follows:

id

A unique identifier for the tab, in this case sampleTab.

immediate

If set to true, event handling for this component should be handled immediately (in the
Apply Request Values phase) rather than waiting until the Invoke Application phase.

text

The tab name that appears in the tab set.

The JSFTemplating page displays tab content differently from the way the page for a node
displays node content. It invokes two handlers for the command event: setSessionAttribute
and redirect. The redirect handler has the same effect for a tab that the url attribute has for a
node. It invokes a simple JavaServer Faces page called tabPage.jsf, in the
src/main/resources/page/ directory, passing the text “Sample First Tab” to the page in a name
parameter.

The sampleSubTab1.jsf and sampleSubTab2.jsf files are almost identical to sampleTab.jsf.
The most important difference is that each sets the session attribute serverInstTabs to the base
name of the JavaServer Faces file that corresponds to that tab:

setSessionAttribute(key="serverInstTabs" value="sampleTab");

setSessionAttribute(key="serverInstTabs" value="sampleSubTab1");

setSessionAttribute(key="serverInstTabs" value="sampleSubTab2");

Adding a Task to the Common Tasks Page
You can add either a single task or a group of tasks to the Common Tasks page of the
Administration Console. To add a task or task group, use an integration point of type
org.glassfish.admingui:commonTask. You can add a single task to either the Deployment
task group or the Monitoring task group, but not to any other group.

See “Adding a Task Group to the Common Tasks Page” on page 39 for information on adding
a task group.

EXAMPLE 3–7 Example Task Integration Point

In the example console-config.xml file, the following integration-point element adds a
task to the Deployment task group:

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 37

EXAMPLE 3–7 Example Task Integration Point (Continued)

<integration-point

id="sampleCommonTask"
parentId="deployment"
type="org.glassfish.admingui:commonTask"
priority="200"
content="sampleCommonTask.jsf"

/>

This example specifies the following values:

■ The id value, sampleCommonTask, specifies the integration point ID.
■ The parentId value, deployment, specifies that the task is to be placed in the Deployment

task group.

Specify a value of monitoring to place the task in the Monitoring task group.
■ The type value, org.glassfish.admingui:commonTask, specifies the integration point type

as a common task.
■ The priority value, 200, specifies the order of the task within the task group.
■ The content value, sampleCommonTask.jsf, specifies the JavaServer Faces page that

displays the task.

Creating a JavaServer Faces Page for Your Task
A JavaServer Faces page for a task uses the JSFTemplating tag sun:commonTask. This tag
provides all the capabilities of the Project Woodstock tag webuijsf:commonTask.

EXAMPLE 3–8 Example JavaServer Faces Page for a Task

In the example, the sampleCommonTask.jsf file has the following content:

<sun:commonTask

text="Sample Application Page"
toolTip="Sample Application Page"
infoLinkUrl="/com_sun_webui_jsf/help/

helpwindow.jsf?&windowTitle=Help+Window&helpFile=applications.html"
onClick="admingui.nav.selectTreeNodeById(’form:tree:deployment:ejb’);
parent.location=’#{facesContext.externalContext.requestContextPath}/sample/

page/testPage.jsf?name=Sample%20Application%20Page’; return false;">
</sun:commonTask>

Adding Functionality to the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200838

Note – In the actual file, there are no line breaks in the infoLinkUrl attribute or the
parent.location code values.

This file uses the sun:commonTask tag to specify the task. In your own JavaServer Faces pages,
specify the attributes of this tag as follows:

text The task name that appears on the Common Tasks page.

toolTip The text that appears when a user places the mouse cursor over the task name.

infoLinkUrl The URL for the link that is displayed at the bottom of the task's information
panel.

onClick Scripting code that is to be executed when a user clicks the task name. The
parent.location value on the next line is part of the onClick code.

Adding a Task Group to the Common Tasks Page
You can add a new group of tasks to the Common Tasks page to display the most important
tasks for your add-on component. To add a task group, use an integration point of type
org.glassfish.admingui:commonTask.

EXAMPLE 3–9 Example Task Group Integration Point

In the example console-config.xml file, the following integration-point element adds a
new task group to the Common Tasks page:

<integration-point

id="sampleGroup"
parentId="commonTasksSection"
type="org.glassfish.admingui:commonTask"
priority="500"
content="sampleTaskGroup.jsf"

/>

This example specifies the following values:

■ The id value, sampleGroup, specifies the integration point ID.
■ The parentId value, commonTasksSection, specifies that the task group is to be placed on

the Common Tasks page.
■ The type value, org.glassfish.admingui:commonTask, specifies the integration point type

as a common task.

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 39

■ The priority value, 500, specifies the order of the task group on the Common Tasks page.
The low value places it at the end of the page.

■ The content value, sampleTaskGroup.jsf, specifies the JavaServer Faces page that displays
the task.

Creating a JavaServer Faces Page for Your Task Group
A JavaServer Faces page for a task group uses the JSFTemplating tag sun:commonTasksGroup.
This tag provides all the capabilities of the Project Woodstock tag
webuijsf:commonTasksGroup.

EXAMPLE 3–10 Example JavaServer Faces Page for a Task Group

In the example, the sampleTaskGroup.jsf file has the following content:

<sun:commonTasksGroup title="My Own Sample Group">
<sun:commonTask

text="Go To Sample Resource"
toolTip="Go To Sample Resource"
infoLinkUrl="/com_sun_webui_jsf/help/

helpwindow.jsf?&windowTitle=Help+Window&helpFile=jdbcconnectionpoolnew1.html"
onClick="admingui.nav.selectTreeNodeById(’form:tree:resources:treeNode1’);
parent.location=’#{facesContext.externalContext.requestContextPath}/sample/

page/testPage.jsf?name=name=Sample%20Resource%20Page’; return false;">
</sun:commonTask>

<sun:commonTask

text="Sample Configuration"
toolTip="Go To Sample Configuration"
infoLinkUrl="/com_sun_webui_jsf/help/

helpwindow.jsf?&windowTitle=Help+Window&helpFile=jdbcconnectionpoolnew1.html"
onClick="admingui.nav.selectTreeNodeById(

’form:tree:configuration:sampleConfigNode’);

parent.location=’#{facesContext.externalContext.requestContextPath}/sample/

page/testPage.jsf?name=Sample%20Configuration%20Page’; return false;">
</sun:commonTask>

</sun:commonTasksGroup>

Note – In the actual file, there are no line breaks in the infoLinkUrl and parent.location

attribute values.

This file uses the sun:commonTasksGroup tag to specify the task group, and two
sun:commonTask tags to specify the tasks in the task group. The sun:commonTasksGroup tag has
only one attribute, title, which specifies the name of the task group.

Adding Functionality to the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200840

Adding Content to a Page
You can add content for your add-on component to an existing top-level page, such as the
Configuration page or the Resources page. To add content to one of these pages, use an
integration point of type org.glassfish.admingui:configuration or
org.glassfish.admingui:resources.

EXAMPLE 3–11 Example Resources Page Implementation Point

In the example console-config.xml file, the following integration-point element adds new
content to the top-level Resources page:

<integration-point

id="sampleResourceLink"
parentId="propSheetSection"
type="org.glassfish.admingui:resources"
priority="100"
content="sampleResourceLink.jsf"

/>

This example specifies the following values:

■ The id value, sampleResourceLink, specifies the integration point ID.
■ The parentId value, propSheetSection, specifies that the content is to be a section of a

property sheet on the page.
■ The type value, org.glassfish.admingui:resources, specifies the integration point type

as the Resources page.
To add content to the Configuration page, specify the type value as
org.glassfish.admingui:configuration.

■ The priority value, 100, specifies the order of the content on the Resources page. The high
value places it at the top of the page.

■ The content value, sampleResourceLink.jsf, specifies the JavaServer Faces page that
displays the new content on the Resources page.

Another integration-point element in the console-config.xml file places similar content
on the Configuration page.

Creating a JavaServer Faces Page for Your Page Content
A JavaServer Faces page for page content often uses the JSFTemplating tag sun:property to
specify a property on a property sheet. This tag provides all the capabilities of the Project
Woodstock tag webuijsf:property.

Adding Functionality to the Administration Console

Chapter 3 • Extending the Administration Console 41

EXAMPLE 3–12 Example JavaServer Faces Page for a Resource Page Item

In the example, the sampleResourceLink.jsf file has the following content:

<sun:property>

<sun:hyperlink

toolTip="Sample Resource"
url="/sample/page/testPage.jsf?name=Sample%20Resource%20Page" >

<sun:image url="/resource/sample/images/sample.png" />

<sun:staticText text="Sample Resource" />

</sun:hyperlink>

</sun:property>

<sun:property>

<sun:hyperlink

toolTip="Another"
url="/sample/page/testPage.jsf?name=Another" >

<sun:image url="/resource/sample/images/sample.png" />

<sun:staticText text="Another" />

</sun:hyperlink>

</sun:property>

The file specifies two simple properties on the property sheet, one above the other. Each consists
of a sun:hyperlink element (a link to a URL). Within each sun:hyperlink element is nested a
sun:image element, specifying an image, and a sun:staticText element, specifying the text to
be placed next to the image.

Each sun:hyperlink element uses a toolTip attribute and a url attribute. Each url attribute
references the testPage.jsf file that is used elsewhere in the example, specifying different
content for the name parameter.

You can use many other kinds of user interface elements within a sun:property element.

Adding a Page to the Administration Console
Your add-on component may require new configuration tasks. In addition to implementing
commands that accomplish these tasks (see Chapter 4, “Extending the asadmin Utility”), you
can provide property sheets that enable users to configure your component or to perform tasks
such as creating and editing resources for it.

EXAMPLE 3–13 Example JavaServer Faces Page for a Property Sheet

Most of the user interface features used in the example reference the file testPage.jsf or (for
tabs) the file tabPage.jsf. Both files are in the src/main/resources/page/ directory. The
testPage.jsf file looks like this:

Adding Functionality to the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200842

EXAMPLE 3–13 Example JavaServer Faces Page for a Property Sheet (Continued)

<!composition template="/templates/propertySheetTemplate.tpl"
pageTitle="TEST Sample Page Title"
helpText="Shows you what my page looks like"
>

<!define name="properties">
<sun:property id="prop1" labelAlign="left" noWrap="#{true}"

overlapLabel="#{false}" label="page Name:" >

<sun:staticText text="$pageSession{pageName}" >

<!beforeCreate

getRequestValue(key="name" value=>$page{pageName});

/>

</sun:staticText>

</sun:property>

</define>

</composition>

The page uses the composition directive to specify that the page uses the
propertySheetTemplate.tpl template and to specify a page title and inline help text. (See
“Property Sheet Template” on page 104 for more information about this template and more
examples.) The page uses additional directives, events, and tags to specify its content.

Adding Internationalization Support
To add internationalization support for your add-on component to the Administration
Console, use the i18nBundle attribute of the composition directive for your JavaServer Faces
page to specify the name of the resource bundle.

For example, in the tabPage.jsf file, the composition directive specifies
org.glassfish.admingui.core as the bundle name:

<!composition template="/templates/propertySheetTemplate.tpl"
pageTitle="TEST Sample Page Title"
helpText="Shows you what my page looks like"
i18nBundle="org.glassfish.admingui.core"
>

The bundle name specifies the package where the resource files are located.

Alternatively, you can place an event and handler like the following at the top of your page:

Adding Internationalization Support

Chapter 3 • Extending the Administration Console 43

<!initPage

setResourceBundle(key="yourI18NKey" bundle="bundle.package.BundleName")
/>

Replace the values yourI18NKey and bundle.package.BundleName with appropriate values for
your component.

Changing the Theme or Brand of the Administration Console
To change the theme or brand of the Administration Console for your add-on component, use
the integration point type org.glassfish.admingui:customtheme. This integration point
affects the Cascading Style Sheet (CSS) files and images that are used in the Administration
Console.

EXAMPLE 3–14 Example Custom Theme Integration Point

For example, the following integration point specifies a custom theme:

<integration-point

id="myOwnBrand"
type="org.glassfish.admingui:customtheme"
priority="2"
content="myOwnBrand.properties"

/>

The priority attribute works differently when you specify it in a branding integration point
from the way it works in other integration points. You can place multiple branding add-on
components in the modules directory, but only one theme can be applied to the Administration
Console. The priority attribute determines which theme is used. Specify a value from 1 to 100;
the lower the number, the higher the priority. The integration point with the highest priority
will be used.

Additional integration point types also affect the theme or brand of the Administration
Console:

org.glassfish.admingui:masthead

Specifies the name and location of the include masthead file, which can be customized with a
branding image. This include file will be integrated on the masthead of the Administration
Console.

org.glassfish.admingui:loginimage

Specifies the name and location of the include file containing the branding login image code
that will be integrated with the login page of the Administration Console.

Changing the Theme or Brand of the Administration Console

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200844

org.glassfish.admingui:loginform

Specifies the name and location of the include file containing the customized login form
code. This code also contains the login background image used for the login page for the
Administration Console.

org.glassfish.admingui:versioninfo

Specifies the name and location of the include file containing the branding image that will be
integrated with the content of the version popup window.

EXAMPLE 3–15 Example of Branding Integration Points

For example, you might specify the following integration points. The content for each
integration point is defined in an include file.

<integration-point

id="myOwnBrandMast"
type="org.glassfish.admingui:masthead"
priority="80"
content="branding/masthead.inc"

/>

<integration-point

id="myOwnBrandLogImg"
type="org.glassfish.admingui:loginimage"
priority="80"
content="branding/loginimage.inc"

/>

<integration-point

id="myOwnBrandLogFm"
type="org.glassfish.admingui:loginform"
priority="80"
content="branding/loginform.inc"

/>

<integration-point

id="myOwnBrandVersInf"
type="org.glassfish.admingui:versioninfo"
priority="80"
content="branding/versioninfo.inc"

/>

To provide your own CSS and images to modify the global look and feel of the entire
application (not just the Administration Console), use the theming feature of Project
Woodstock (https://woodstock.dev.java.net/docs/specs/ThemeFS.html). Create a theme
JAR file with all the CSS properties and image files that are required by your Woodstock
component. Use a script provided by the Woodstock project to clone an existing theme, then
modify the files and properties as necessary. See Creating a Theme for the Woodstock
Components (http://webdev2.sun.com/woodstock-theme-doc/creating-themes.html) for
details. Once you have created the theme JAR file, place it in the WEB-INF/lib directory of the

Changing the Theme or Brand of the Administration Console

Chapter 3 • Extending the Administration Console 45

https://woodstock.dev.java.net/docs/specs/ThemeFS.html
https://woodstock.dev.java.net/docs/specs/ThemeFS.html
http://webdev2.sun.com/woodstock-theme-doc/creating-themes.html
http://webdev2.sun.com/woodstock-theme-doc/creating-themes.html

Administration Console so that the Woodstock theme component will load the theme. In
addition, edit the properties file specified by your integration point (MyOwnBrand.properties,
for example) to specify the name and version of your theme.

Creating an Integration Point Type
If your add-on component provides new content that you would like other people to extend,
you may define your own integration point types. For example, if you add a new page that
provides tabs of monitoring information, you might want to allow others to add their own tabs
to complement your default tabs. This feature enables your page to behave like the existing
Administration Console pages that you or others can extend.

▼ To Create an Integration Point Type
Decide on the name of your integration point type.
The integration point type must be a unique identifier. You might use the package name of your
integration point, with a meaningful name appended to the end, as in the following example:
org.company.project:myMonitoringTabs

When you have an integration point ID, add handlers for the integration point.
Include code like the following below the place in your JavaServer Faces page where you would
like to enable others to add their integration point implementations:
<event>

<!afterCreate

getUIComponent(clientId="clientId:of:root"
component=>$attribute{rootComp});

includeIntegrations(type="org.company.project:myMonitoringTabs"
root="#{rootComp}");

/>

</event>

Change clientId:of:root to match the clientId of the outermost component in which you
want others to be able to add their content (in this example, the tab set is the most likely choice).
Also include your integration point ID in place of org.company.project:myMonitoringTabs.
If you omit the root argument to includeIntegrations, all components on the entire page can
be used for the parentId of the integration points.

To enable others to use this integration point, document it at the GlassFish Integration Point
wiki page (http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint).
Document the integration point only if your content is publicly available.

You or others can now provide an integration point that will be integrated into this page.

1

2

3

Creating an Integration Point Type

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200846

http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint
http://wiki.glassfish.java.net/Wiki.jsp?page=V3IntegrationPoint

For more information about the includeIntegrations and getUIComponent handlers, see the
JSFTemplating API documentation
(https://jsftemplating.dev.java.net/nonav/javadoc/index.html).

See Also

Creating an Integration Point Type

Chapter 3 • Extending the Administration Console 47

https://jsftemplating.dev.java.net/nonav/javadoc/index.html
https://jsftemplating.dev.java.net/nonav/javadoc/index.html

48

Extending the asadminUtility

The asadmin utility is a command-line tool for configuring and administering Enterprise
Server. Extending the asadmin utility enables you to provide administrative interfaces for an
add-on component that are consistent with the interfaces of other Enterprise Server
components. A user can run asadmin commands either from a command prompt or from a
script. For more information about the asadmin utility, see the asadmin(1M) man page.

The following topics are addressed here:
■ “About the Administrative Command Infrastructure of Enterprise Server” on page 49
■ “Adding an asadmin Command” on page 50
■ “Adding Parameters to an asadmin Command” on page 52
■ “Adding Message Text Strings to an asadmin Command” on page 56
■ “Enabling an asadmin Command to Run” on page 59
■ “Setting the Context of an asadmin Command” on page 59
■ “Changing the Brand in the Enterprise Server CLI” on page 59
■ “Examples of Extending the asadmin Utility” on page 61

About the Administrative Command Infrastructure of
Enterprise Server

To enable multiple containers to be independently packaged and loaded, the administrative
command infrastructure of Enterprise Server provides the following features:
■ Location independence. Administration commands can be loaded from any add-on

component that is known to Enterprise Server.
■ Extensibility. Administrative commands that are available to Enterprise Server are

discovered on demand and not obtained from a preset list of commands.
■ Support for the HK2 architecture. Commands can use injection to express their

dependencies, and extraction to provide results to a user. For more information, see
Chapter 2, “Writing HK2 Components.”

4C H A P T E R 4

49

http://docs.sun.com/doc/820-4497/asadmin-1m?a=view

Adding an asadminCommand
An asadmin command identifies the operation or task that a user is to perform. Adding an
asadmin command enables the user to perform these tasks and operations through the asadmin
utility.

The following topics are addressed here:
■ “Representing an asadmin Command as a Java Class” on page 50
■ “Specifying the Name of an asadmin Command” on page 50
■ “Ensuring That an AdminCommand Implementation Is Stateless” on page 51
■ “Example of Adding an asadmin Command” on page 51

Representing an asadminCommand as a Java Class
Each asadmin command that you are adding must be represented as a Java class. To represent
an asadmin command as a Java class, write a Java class that implements the
org.glassfish.api.admin.AdminCommand interface. Write one class for each command that
you are adding. Do not represent multiple asadmin commands in a single class.

Annotate the declaration of your implementations of the AdminCommand interface with the
org.jvnet.hk2.annotations.Service annotation. The @Service annotation ensures that the
following requirements for your implementations are met:
■ The implementations are eligible for resource injection and resource extraction.
■ The implementations are location independent, provided that the component that contains

them is made known to the Enterprise Server runtime.
For information about how to make a component known to the Enterprise Server runtime,
see “Integrating an Add-On Component With Enterprise Server” on page 94.

Specifying the Name of an asadminCommand
To specify the name of the command, set the name element of the @Service annotation to the
name.

Note – Command names are case-sensitive.

Commands that are supplied in Enterprise Server distributions typically create, delete, and list
objects of a particular type. For consistency with the names of commands that are supplied in
Enterprise Server distributions, follow these conventions when specifying the name of a
command:
■ For commands that create an object of a particular type, use the name create-object.

Adding an asadmin Command

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200850

■ For commands that delete an object of a particular type, use the name delete-object.
■ For commands that list all objects of a particular type, use the name list-objects.

For example, Enterprise Server provides the following commands for creating, deleting, and
listing HTTP listeners:

■ create-http-listener

■ delete-http-listener

■ list-http-listeners

You must also ensure that the name of your command is unique. To obtain a complete list of the
names of all asadmin commands that are installed, use the list-commands(1) command. For a
complete list of asadmin commands that are supplied in Enterprise Server distributions, see Sun
GlassFish Enterprise Server v3 Prelude Reference Manual.

Ensuring That an AdminCommand Implementation Is
Stateless
To enable multiple clients to run a command simultaneously, ensure that the implementation
of the AdminCommand interface for the command is stateless. To ensure that the implementation
of the AdminCommand interface is stateless, annotate the declaration of your implementation
with the org.jvnet.hk2.annotations.Scoped annotation. In the @Scoped annotation, set the
scope as follows:

■ To instantiate the command for each lookup, set the scope to PerLookup.class.
■ To instantiate the command only once for each session, set the scope to Singleton.

Example of Adding an asadminCommand

EXAMPLE 4–1 Adding an asadminCommand

This example shows the declaration of the class CreateMycontainer that represents an asadmin

command that is named create-mycontainer. The command is instantiated for each lookup.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;

...

import org.jvnet.hk2.annotations.Service;

...

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

Adding an asadmin Command

Chapter 4 • Extending the asadminUtility 51

http://docs.sun.com/doc/820-4497/list-commands-1?a=view
http://docs.sun.com/doc/820-4497
http://docs.sun.com/doc/820-4497

EXAMPLE 4–1 Adding an asadminCommand (Continued)

/**

* Sample command

*/

@Service(name="create-mycontainer")
@Scoped(PerLookup.class)

public Class CreateMycontainer implements AdminCommand {

...

}

Adding Parameters to an asadminCommand
The parameters of an asadmin command are the options and operands of the command.

■ Options control how the asadmin utility performs a command.
■ Operands are the objects on which a command acts. For example, the operand of the

start-domain(1) command is the domain that is to be started.

The following topics are addressed here:

■ “Representing a Parameter of an asadmin Command” on page 52
■ “Identifying a Parameter of an asadmin Command” on page 52
■ “Specifying Whether a Parameter Is an Option or an Operand” on page 53
■ “Specifying the Name of an Option” on page 53
■ “Specifying the Acceptable Values of a Parameter” on page 54
■ “Specifying the Default Value of a Parameter” on page 54
■ “Specifying Whether a Parameter Is Required or Optional” on page 55
■ “Example of Adding Parameters to an asadmin Command” on page 55

Representing a Parameter of an asadminCommand
Represent each parameter of a command in your implementation as a field or as the property of
a JavaBeansTM specification setter method. Use the property of a setter method for the following
reasons:

■ To provide data encapsulation for the parameter
■ To add code for validating the parameter before the property is set

Identifying a Parameter of an asadminCommand
Identifying a parameter of an asadmin command enables Enterprise Server to perform the
following operations at runtime on the parameter:

Adding Parameters to an asadmin Command

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200852

http://docs.sun.com/doc/820-4497/start-domain-1?a=view

■ Validation. The Enterprise Server determines whether all required parameters are specified
and returns an error if any required parameter is omitted.

■ Injection. Before the command runs, the Enterprise Server injects each parameter into the
required field or method before the command is run.

■ Usage message generation. The Enterprise Server uses reflection to obtain the list of
parameters for a command and to generate the usage message from this list.

■ Localized string display. If the command supports internationalization and if localized
strings are available, the Enterprise Server can automatically obtain the localized strings for
a command and display them to the user.

To identify a parameter of a command, annotate the declaration of the item that is associated
with the parameter with the org.glassfish.api.Param annotation. This item is either the field
or setter method that is associated with the parameter.

To specify the properties of the parameter, use the elements of the @Param annotation as
explained in the sections that follow.

Specifying Whether a Parameter Is an Option or an
Operand
Whether a parameter is an option or an operand determines how a user must specify the
parameter when running the command:
■ If the parameter is an option, the user must specify the option with the parameter name.
■ If the parameter is an operand, the user may omit the parameter name.

To specify whether a parameter is an option or an operand, set the primary element of the
@Param annotation as follows:
■ If the parameter is an option, set the primary element to false. This value is the default.
■ If the parameter is an operand, set the primary element to true.

Specifying the Name of an Option
The name of an option is the name that a user must type on the command line to specify the
option when running the command.

The name of each option that you add in your implementation of an asadmin command can
have a long form and a short form. When running the command, the user specifies the long
form and the short form as follows:
■ The short form of an option name has a single dash (-) followed by a single character.
■ The long form of an option name has two dashes (--) followed by an option word.

Adding Parameters to an asadmin Command

Chapter 4 • Extending the asadminUtility 53

For example, the short form and the long form of the name of the option for specifying terse
output are as follows:

■ Short form: -m
■ Long form: --monitor

Note – Option names are case-sensitive.

Specifying the Long Form of an Option Name
To specify the long form of an option name, set the name element of the @Param annotation to a
string that specifies the name. If you do not set this element, the default name depends on how
you represent the option.

■ If you represent the option as a field, the default name is the field name.
■ If you represent the option as the property of a JavaBeans specification setter method, the

default name is the property name from the setter method name. For example, if the setter
method setPassword is associated with an option, the property name and the option name
are both password.

Specifying the Short Form of an Option Name
To specify the short form of an option name, set the shortName element of the @Param
annotation to a single character that specifies the short form of the parameter. The user can
specify this character instead of the full parameter name, for example -m instead of --monitor.
If you do not set this element, the option has no short form.

Specifying the Acceptable Values of a Parameter
When a user runs the command, the Enterprise Server validates option arguments and
operands against the acceptable values that you specify in your implementation.

To specify the acceptable values of a parameter, set the acceptableValues element of the
@Param annotation to a string that contains a comma-separated list of acceptable values. If you
do not set this element, any string of characters is acceptable.

Specifying the Default Value of a Parameter
The default value of a parameter is the value that is applied if a user omits the parameter when
running the command.

To specify the default value of a parameter, set the defaultValue element of the @Param
annotation to a string that contains the default value. If you do not set this element, the
parameter has no default value.

Adding Parameters to an asadmin Command

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200854

Specifying Whether a Parameter Is Required or
Optional
Whether a parameter is required or optional determines how a command responds if a user
omits the parameter when running the command:
■ If the parameter is required, the command returns an error.
■ If the parameter is optional, the command runs successfully.

To specify whether a parameter is optional or required, set the optional element of the @Param
annotation as follows:
■ If the parameter is required, set the optional element to false. This value is the default.
■ If the parameter is optional, set the optional element to true.

Example of Adding Parameters to an asadmin

Command
EXAMPLE 4–2 Adding Parameters to an asadminCommand

This example shows the code for adding parameters to an asadmin command with the
properties as shown in the table.

Name Represented As
Acceptable
Values

Default
Value

Optional or
Required

Short
Name

Option or
Operand

--originator A field that is named
originator

Any
character
string

None
defined

Required None Option

--description A field that is named
mycontainerDescription

Any
character
string

None
defined

Optional None Option

--enabled A field that is named
enabled

true or
false

false Optional None Option

--containername A field that is named
containername

Any
character
string

None
defined

Required None Operand

...

import org.glassfish.api.Param;

...

{

...

Adding Parameters to an asadmin Command

Chapter 4 • Extending the asadminUtility 55

@Param

String originator;

@Param(name="description", optional=true)

...

String mycontainerDescription

@Param (acceptableValues="true,false", defaultValue="false", optional=true)

String enabled

@Param(primary=true)

String containername;

...

}

Adding Message Text Strings to an asadminCommand
A message text string provides useful information to the user about an asadmin command or a
parameter.

To provide internationalization support for the text string of a command or parameter,
annotate the declaration of the command or parameter with the org.glassfish.api.I18n
annotation. The @I18n annotation identifies the resource from the resource bundle that is
associated with your implementation.

To add message text strings to an asadmin command, create a plain text file that is named
LocalStrings.properties to contain the strings. Define each string on a separate line of the
file as follows:

key=string

key
A key that maps the string to a command or a parameter. The format to use for key depends
on the target to which the key applies and whether the target is annotated with the @I18n
annotation. See the following table.

Target Format

Command or parameter with the
@I18n annotation

command-name.command.resource-name

Command without the @I18n
annotation

command-name.command

Adding Message Text Strings to an asadmin Command

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200856

Target Format

Parameter without the @I18n
annotation

command-name.command.param-name

The replaceable parts of these formats are as follows:

command-name The name of the command.

resource-name The name of the resource that is specified in the@I18n annotation.

param-name The name of the parameter.

string
A string without quotes that contains the text of the message.

Note – To display the message strings to users, you must provide code in your implementation of
the execute method to display the text. For more information about implementing the execute
method, see “Enabling an asadmin Command to Run” on page 59.

EXAMPLE 4–3 Adding Message Strings to an asadminCommand

This example shows the code for adding message strings to the create-mycontainer command
as follows:
■ The create-mycontainer command is associated with the message Creates a custom

container. No internationalization support is provided for this message.
■ The --originator parameter is associated with the message The originator of the

container. No internationalization support is provided for this message.
■ The --description parameter is associated with the message that is contained in the

resource mydesc, for which internationalization is provided. This resource contains the
message text A description of the container.

■ The --enabled parameter is associated with the message Whether the container is

enabled or disabled. No internationalization support is provided for this message.
■ The --containername parameter is associated with the message The container name. No

internationalization support is provided for this message.

The addition of the parameters originator, description, enabled and containername to the
command is shown in Example 4–2.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;

...

import org.glassfish.api.I18n;

Adding Message Text Strings to an asadmin Command

Chapter 4 • Extending the asadminUtility 57

EXAMPLE 4–3 Adding Message Strings to an asadminCommand (Continued)

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

...

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

/**

* Sample command

*/

@Service(name="create-mycontainer")
@Scoped(PerLookup.class)

public Class CreateMycontainer implements AdminCommand {

...

@Param

String originator;

@Param(name="description", optional=true)

@I18n("mydesc")
String mycontainerDescription

@Param (acceptableValues="true,false", defaultValue="false", optional=true)

String enabled

@Param(primary=true)

String containername;

...

}

The following message text strings are defined in the file LocalStrings.properties for use by
the command:

create-mycontainer.command=Creates a custom container

create-mycontainer.command.originator=The originator of the container

create-mycontainer.command.mydesc=A description of the container

create-mycontainer.command.enabled=Whether the container is enabled or disabled

create-mycontainer.command.containername=The container name

Adding Message Text Strings to an asadmin Command

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200858

Enabling an asadminCommand to Run
To enable an asadmin command to run, implement the execute method in your
implementation of the AdminCommand interface. The declaration of the execute method in your
implementation must be as follows.

public void execute(AdminCommandContext context);

Pass each parameter of the command as a property to your implementation of the execute
method. Set the key of the property to the parameter name and set the value of the property to
the parameter's value.

Setting the Context of an asadminCommand
The org.glassfish.api.admin.AdminCommandContext class provides the following services to
an asadmin command:

■ Access to the parameters of the command
■ Logging
■ Reporting

To set the context of an asadmin command, pass an AdminCommandContext object to the
execute method of your implementation.

Changing the Brand in the Enterprise Server CLI
The brand in the Enterprise Server command-line interface (CLI) consists of the product name
and release information that are displayed in the following locations:

■ In the string that the version(1) command displays
■ In each entry in the server.log file

If you are incorporating Enterprise Server into a new product with an external vendor's own
brand name, change the brand in the Enterprise Server CLI.

To change the brand in the Enterprise Server CLI, create an OSGi fragment bundle that
contains a plain text file that is named src/main/resources/BrandingVersion.properties.

In the BrandingVersion.properties file, define the following keyword-value pairs:

product_name=product-name
abbrev_product_name=abbrev-product-name
major_version=major-version
minor_version=minor-version

Changing the Brand in the Enterprise Server CLI

Chapter 4 • Extending the asadminUtility 59

http://docs.sun.com/doc/820-4497/version-1?a=view

build_id=build-id
version_prefix=version-prefix
version_suffix=version-suffix

Define each keyword-value pair on a separate line of the file. Each value is a text string without
quotes.

The meaning of each keyword-value pair is as follows:

product_name=product-name
Specifies the full product name without any release information, for example, Sun
GlassFish Enterprise Server.

abbrev_product_name=abbrev-product-name
Specifies an abbreviated form of the product name without any release information, for
example, Sun GlassFish.

major_version=major-version
Returns the product major version, for example, 3

minor_version=minor-version
Specifies the product minor version, for example, 0.

build_id=build-id
Specifies the build version, for example, build 17.

version_prefix=version-prefix
Specifies a prefix for the product version, for example, v.

version_suffix=version-suffix
Specifies a suffix for the product version, for example, Prelude.

EXAMPLE 4–4 BrandingVersion.properties File for Changing the Brand in the Enterprise Server CLI

This example shows the content of the BrandingVersion.properties for defining the product
name and release information of Sun GlassFish Enterprise Server v3.0 Prelude, build 17. The
abbreviated product name is sun-glassfish.

product_name=Sun GlassFish Enterprise Server

abbrev_product_name=sun-glassfish

major_version=3

minor_version=0

build_id=build 17

version_prefix=v

version_suffix=Prelude

Changing the Brand in the Enterprise Server CLI

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200860

Examples of Extending the asadminUtility
EXAMPLE 4–5 Example asadminCommand With Empty executeMethod

This example shows a class that represents the asadmin command create-mycontainer.

The usage statement for this command is as follows:

asadmin create-mycontainer --originator any-character-string
[--description any-character-string]
[--enabled {true|false}] any-character-string

This command uses injection to specify that a running domain is required.

package com.example.mycontainer;

import org.glassfish.api.admin.AdminCommand;

import org.glassfish.api.admin.AdminCommandContext;

import org.glassfish.api.I18n;

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

/**

* Sample command

*/

@Service(name="create-mycontainer")
@Scoped(PerLookup.class)

public Class CreateMycontainer implements AdminCommand {

@Inject

Domain domain;

@Param

String originator;

@Param(name="description", optional=true)

@I18n("mydesc")
String mycontainerDescription

@Param (acceptableValues="true,false", defaultValue="false", optional=true)

String enabled

@Param(primary=true)

String containername;

Examples of Extending the asadminUtility

Chapter 4 • Extending the asadminUtility 61

EXAMPLE 4–5 Example asadminCommand With Empty executeMethod (Continued)

/**

* Executes the command with the command parameters passed as Properties

* where the keys are the paramter names and the values the parameter values

* @param context information

*/

public void execute(AdminCommandContext context) {

// domain and originator are not null

// mycontainerDescription can be null.

}

}

The following message text strings are defined in the file LocalStrings.properties for use by
the command:

create-mycontainer.command=Creates a custom container

create-mycontainer.command.originator=The originator of the container

create-mycontainer.command.mydesc=A description of the container

create-mycontainer.command.enabled=Whether the container is enabled or disabled

create-mycontainer.command.containername=The container name

EXAMPLE 4–6 Fully Functional asadminCommand

This example shows a class that represents the asadmin command
list-runtime-environment. The command determines the operating system or runtime
information for Enterprise Server

The usage statement for this command is as follows:

asadmin list-runtime-environment{runtime|os}

package com.example.env.cli;

import org.glassfish.api.admin.AdminCommand;

import org.glassfish.api.admin.AdminCommandContext;

import org.glassfish.api.ActionReport;

import org.glassfish.api.I18n;

import org.glassfish.api.ActionReport.ExitCode;

import org.glassfish.api.Param;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.PerLookup;

import java.lang.management.ManagementFactory;

import java.lang.management.OperatingSystemMXBean;

Examples of Extending the asadminUtility

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200862

EXAMPLE 4–6 Fully Functional asadminCommand (Continued)

import java.lang.management.RuntimeMXBean;

/**

* Demos asadmin CLI extension

*

*/

@Service(name="list-runtime-environment")
@Scoped(PerLookup.class)

public class ListRuntimeEnvironmentCommand implements AdminCommand {

// this value can be either runtime or os for our demo

@Param(primary=true)

String inParam;

public void execute(AdminCommandContext context) {

ActionReport report = context.getActionReport();

report.setActionExitCode(ExitCode.SUCCESS);

// If the inParam is ’os’ then this command returns operating system info

// and if the inParam is ’runtime’ then it returns runtime info.

// Both of the above are based on mxbeans.

if ("os".equals(inParam)) {

OperatingSystemMXBean osmb = ManagementFactory.getOperatingSystemMXBean();

report.setMessage("Your machine operating system name = " + osmb.getName());

} else if ("runtime".equals(inParam)) {

RuntimeMXBean rtmb = ManagementFactory.getRuntimeMXBean();

report.setMessage("Your JVM name = " + rtmb.getVmName());

} else {

report.setActionExitCode(ExitCode.FAILURE);

report.setMessage("operand should be either ’os’ or ’runtime’");
}

}

}

Examples of Extending the asadminUtility

Chapter 4 • Extending the asadminUtility 63

64

Adding Monitoring Capabilities

Monitoring is the process of reviewing the statistics of a system to improve performance or solve
problems. By monitoring the state of components and services that are deployed in the
Enterprise Server, system administrators can identify performance bottlenecks, predict failures,
perform root cause analysis, and ensure that everything is functioning as expected. Monitoring
data can also be useful in performance tuning and capacity planning.

An add-on component typically generates statistics that the Enterprise Server can gather at run
time. Adding monitoring capabilities enables an add-on component to provide statistics to
Enterprise Server in the same way as components that are supplied in Enterprise Server
distributions. As a result, system administrators can use the same administrative interfaces to
monitor statistics from any installed Enterprise Server component, regardless of the origin of
the component.

The following topics are addressed here:

■ “Defining Statistics That Are to Be Monitored” on page 65
■ “Updating the Monitorable Object Tree” on page 70
■ “Example of Adding Monitoring Capabilities” on page 77

Defining Statistics That Are to Be Monitored
At runtime, your add-on component might perform operations that affect the behavior and
performance of your system. For example, your component might start a thread of control,
receive a request from a service, or request a connection from a connection pool. Monitoring
the statistics that are related to these operations helps a system administrator maintain the
system.

To provide statistics to Enterprise Server, your component must define events for the
operations that generate these statistics. At runtime, your component must send these events
when performing the operations for which the events are defined. For example, to enable the

5C H A P T E R 5

65

number of received requests to be monitored, a component must send a “request received”
event each time that the component receives a request.

A statistic can correspond to single event or to multiple events.

■ Counter statistics typically correspond to a single event. For example, to calculate the
number of received requests, only one event is required, for example, a “request received”
event. Every time that a “request received” event is sent, the number of received requests is
increased by 1.

■ Timer statistics typically correspond to multiple events. For example, to calculate the time to
process a request, two requests, for example, a “request received” event and a “request
completed” event.

Defining statistics that are to be monitored involves the following tasks:

■ “Defining an Event Provider” on page 66
■ “Registering an Event Provider” on page 67
■ “Sending an Event” on page 69

Defining an Event Provider
An event provider defines the types of events for the operations that generate statistics for an
add-on component.

To define an event provider, write a JavaTM language interface that defines the types of events for
the component. In the interface, define one method for each type of event that is related to the
component.

Note – You are not required to implement the event provider interface. After you register the
event provider, Enterprise Server generates the implementation class at runtime for you. For
more information, see “Registering an Event Provider” on page 67.

Identifying the Event Type
If you overload a method in your implementation, annotate each form of the method with the
@org.glassfish.flashlight.provider.annotations.ProbeName annotation to uniquely
identify the event type. Set the value element of the @ProbeName annotation to the name of the
event type.

Note – If you do not annotate a method, the name of the event type is the method name.
Therefore, you are not required to annotate methods that are not overloaded.

Defining Statistics That Are to Be Monitored

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200866

Specifying Event Parameters
To enable methods in an event listener to select a subset of values, annotate each parameter in
the method signature with the
org.glassfish.flashlight.provider.annotations.ProbeParam annotation. Set the value
element of the @ProbeParam annotation to the name of the parameter.

Example of Defining an Event Provider

EXAMPLE 5–1 Defining an Event Provider
This example shows the definition of the TxManager interface. This interface defines events for
the start and end of transactions that are performed by a transaction manager.

The methods in this interface are as follows:

onTxBegin

This method sends an event to indicate the start of a transaction. The name of the event type
that is associated with this method is begin. A parameter that is named txId is passed to the
method.

onCompletion

This method sends an event to indicate the end of a transaction. The name of the event type
that is associated with this method is the method name. A parameter that is named outcome

is passed to the method.

import org.glassfish.flashlight.provider.annotations.ProbeName;

import org.glassfish.flashlight.provider.annotations.ProbeParam;

public interface TxManager {

@ProbeName("begin")
public void onTxBegin(

@ProbeParam("{txId}") String txId

);

public void onCompletion(

@ProbeParam("{outcome}") boolean outcome

);

}

Registering an Event Provider
Registering an event provider generates a class that implements the event provider interface.
Enterprise Server provides the
org.glassfish.flashlight.provider.ProbeProviderFactory factory class that generates

Defining Statistics That Are to Be Monitored

Chapter 5 • Adding Monitoring Capabilities 67

the event provider class at runtime. To generate the class, Enterprise Server uses the ASM
framework for manipulating and analyzing Java byte codes.

By default, a nonoperational implementation of the methods is created. If monitoring is not
enabled, which means that no listeners are registered, the methods do not consume any
computing resources, such as memory or processor cycles.

Note – The ProbeProviderFactory.getProbeProvider method is an unstable interface and is
subject to change.

To register an event provider, invoke the ProbeProviderFactory.getProbeProvider method
in the class that represents your add-on component. In the invocation of the
ProbeProviderFactory.getProbeProvider method, pass the following information as
parameters to the method:

component-name
Your choice of name for the add-on component that is to send the event.

provider-name
Your choice of name for the provider.

application-name
Your choice of name for the application that the add-on component represents. The
application-name can be null.

event-provider-class
The compiled class that is to implement your event provider interface. For example, if your
event provider interface is named TxManager, specify the class as TxManager.class.

EXAMPLE 5–2 Registering an Event Provider

This example shows the code for registering the event provider interface TxManager for the
add-on component that is represented by the class TransactionManagerImpl. The definition of
the TxManager interface is shown in Example 5–1. The component name is tx and the provider
name is TxManager. No application name is specified.

...

import org.glassfish.flashlight.provider.ProbeProviderFactory;

...

public class TransactionManagerImpl {

...

@Inject

protected ProbeProviderFactory probeProviderFactory;

...

TxManager txProvider = probeProviderFactory.getProbeProvider(

"tx", "TxManager", null, TxManager.class);

...

Defining Statistics That Are to Be Monitored

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200868

EXAMPLE 5–2 Registering an Event Provider (Continued)

}

Sending an Event
At runtime, your add-on component might perform an operation that generates statistics. To
provide statistics about the operation to Enterprise Server, your component must send an event
of the correct type when performing the operation.

To send an event, invoke the method of your event provider class that is defined for the type of
the event. Ensure that the method is invoked when your component performs the operation for
which the event was defined. One way to meet this requirement is to invoke the method for
sending the event in the body of the method for performing the operation.

EXAMPLE 5–3 Sending an Event

This example shows the code for invoking the onTxBegin method to send an event of type
begin. This event indicates that a component is about to begin a transaction. To ensure that the
event is sent at the correct time, the onTxBegin method is invoked in the body of the begin
method, which starts a transaction.

The declaration of the onTxBegin method in the event provider interface is shown in
Example 5–1.

The creation of the txProvider object is shown in Example 5–2.

...

public class TransactionManagerImpl {

...

public void begin() {

String txId = createTransactionId();

....

txProvider.onTxBegin(txId); //emit

}

...

}

Defining Statistics That Are to Be Monitored

Chapter 5 • Adding Monitoring Capabilities 69

Updating the Monitorable Object Tree
A monitorable object is a component, subcomponent, or service that can be monitored.
Enterprise Server uses a tree structure to track monitorable objects.

Because the tree is dynamic, the tree changes as components of the Enterprise Server instance
are added, modified, or removed. Objects are also added to or removed from the tree in
response to configuration changes. For example, if monitoring for a component is turned off,
the component's monitorable object is removed from the tree.

To enable system administrators to access statistics for all components in the same way, you
must provide statistics for an add-on component by updating the monitorable object tree.
Statistics for the add-on component are then available through the Enterprise Server
administrative commands get(1), list(1), and set(1). These commands locate an object in the
tree through the object's dotted name.

For more information about the tree structure of monitorable objects, see “How the Monitoring
Tree Structure Works” in Sun GlassFish Enterprise Server v3 Prelude Administration Guide.

To make an add-on component a monitorable object, you must add the add-on component to
the monitorable object tree.

To update the statistics for an add-on component, you must add the statistics to the
monitorable object tree, and create event listeners to gather statistics from events that represent
these statistics. At runtime, these listeners must update monitorable objects with statistics that
these events contain. The events are sent by event provider classes. For information about how
to create event provider classes and send events, see “Defining Statistics That Are to Be
Monitored” on page 65.

Updating the monitorable object tree involves the following tasks:

■ “Creating Event Listeners” on page 70
■ “Subscribing to Events From Event Provider Classes” on page 71
■ “Registering an Event Listener” on page 72
■ “Adding Statistics for a Component to the Monitorable Object Tree” on page 73

Creating Event Listeners
An event listener gathers statistics from events that an event provider sends. To enable an
add-on component to gather statistics from events, create listeners to receive events from the
event provider. The listener can receive events from the add-on component in which the
listener is created and from other components.

To create an event listener, write a Java class to represent the listener. The listener can be any
Java object.

Updating the Monitorable Object Tree

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200870

http://docs.sun.com/doc/820-4497/get-1?a=view
http://docs.sun.com/doc/820-4497/list-1?a=view
http://docs.sun.com/doc/820-4497/set-1?a=view
http://docs.sun.com/doc/820-4495/ghbaz?a=view
http://docs.sun.com/doc/820-4495/ghbaz?a=view

Ensure that the class that you write meets these requirements:

■ The return value of all callback methods in the listener must be void.
■ Because the methods of your event provider class may be entered by multiple threads, the

listener must be thread safe.
■ The listener must have the same restrictions as a Java Platform, Enterprise Edition (Java EE)

application. For example, the listener cannot open server sockets, or create threads.

A listener is called in the same thread as the event method. As a result, the listener can use
thread locals. If the monitored system allows access to thread locals, the listener can access
thread locals of the monitored system.

Note – A listener that is not registered to listen for events is never called by the framework.
Therefore, unregistered listeners do not consume any computing resources, such as memory or
processor cycles.

Subscribing to Events From Event Provider Classes
To receive events from event provider classes, a listener must subscribe to the events.
Subscribing to events also specifies the provider and the type of events that the listener will
receive.

To subscribe to events from event provider classes, write one method in your listener class to
process each type of event. To specify the provider and the type of event, annotate the method
with the org.glassfish.flashlight.client.ProbeListener annotation. In the
@ProbeListener annotation, specify the provider and the type as follows:

"component-name:provider-name:app-name:event-type"

Note – The @ProbeListener annotation is an unstable interface and is subject to change.

component-name
The name of add-on component that is to send the event. This parameter must match the
parameter that is defined when the event provider is registered. See “Registering an Event
Provider” on page 67.

provider-name
The name of the provider. This parameter must match the parameter that is defined when
the event provider is registered. See “Registering an Event Provider” on page 67.

Updating the Monitorable Object Tree

Chapter 5 • Adding Monitoring Capabilities 71

application-name
The name of the application that the add-on component represents. This parameter must
match the parameter that is defined when the event provider is registered. See “Registering
an Event Provider” on page 67.

event-type
The type of the event. This type is defined in the event provider interface. For more
information, see “Identifying the Event Type” on page 66.

In the method body, provide the code to update monitoring statistics in response to the event.

EXAMPLE 5–4 Subscribing to Events From Event Provider Classes

This example shows the code for subscribing to events of type begin from the tx component.
The provider of the component is TxManager. The body of the begin method contains code to
increase the transaction count txcount by 1 each time that an event is received.

The definition of the begin event type is shown in Example 5–1.

The code for sending begin events is shown in Example 5–3.

...

import org.glassfish.flashlight.client.ProbeListener;

...

public class TxListener {

AtomicInteger txCount =;

@ProbeListner("tx:TxManager::begin")
public void begin(String txId) {

txCount++;

}

}

Registering an Event Listener
Registering an event listener enables the listener to receive callbacks from the Enterprise Server
event infrastructure. The listener can then collect data from events and update monitorable
objects in the object tree. These monitorable objects form the basis for monitoring statistics.

At runtime, the Enterprise Server event infrastructure registers listeners for an event provider
when the event provider is started and unregisters them when the event provider is shut down.
As a result, listeners have no dependencies on other components.

To register a listener, invoke the
org.glassfish.flashlight.client.ProbeClientMediator.registerListener method in
the class that represents your add-on component. In the method invocation, pass the listener
object as a parameter.

Updating the Monitorable Object Tree

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200872

The registerListener method returns a collection of ProbeClientMethodHandle objects. To
enable a listener to turn on or turn off monitoring, pass this collection to your listener class. In
your listener class, invoke methods of the ProbeClientMethodHandle objects to turn on and
turn off monitoring.

■ To turn on monitoring, invoke the enable method. If monitoring is turned on, a functional
implementation of methods in is generated when the event provider is registered.

■ To turn off monitoring, invoke the disable method. If monitoring is turned off, a
nonoperational implementation of methods in is generated when the event provider is
registered.

For information about how to register an event provider, see “Registering an Event Provider”
on page 67.

EXAMPLE 5–5 Registering an Event Listener

This example shows the code for registering the event listener TxListener for the add-on
component that is represented by the class TransactionManagerImpl.

Code for the following methods of the TxListener class is beyond the scope of this example:

■ The TxListener constructor
■ The setProbeListenerHandles method

...

import org.glassfish.flashlight.client.ProbeClientMediator;

...

public class TransactionManagerImpl {

@Inject

private ProbeClientMediator pcm;

...

TxListener txL = new TxListener(txmNode);

Collection<ProbeClientMethodHandle> handles = pcm.registerListener(txL);

txL.setProbeListenerHandles(handles);

...

}

Adding Statistics for a Component to the Monitorable
Object Tree
Adding statistics for a component to the monitorable object tree makes the component and its
statistics monitorable objects.

Updating the Monitorable Object Tree

Chapter 5 • Adding Monitoring Capabilities 73

Adding a statistics for a component to the monitorable object tree involves the following tasks:
■ Creating a TreeNode object to represent the component in the monitorable object tree
■ Creating objects to represent the component's statistics in the monitorable object tree
■ Getting the server node object
■ Adding each object to the tree

Creating a TreeNodeObject to Represent a Component
To a create a TreeNode object to represent a component in the monitorable object tree, invoke
the static method createTreeNode of the
org.glassfish.flashlight.datatree.factory.TreeNodeFactory class. Invoke this method
in the class that represents your component.

In the invocation of the createTreeNode method, pass the following information as parameters
to the method:

■ A string that contains the name of the node
■ An instance of the class that represents the component
■ A string that describes the category of the component

Creating Objects to Represent a Component's Statistics
Create one object to represent each statistic that you are adding to the monitorable object tree.
Create the objects in your listener class or in the class that represents your add-on component.
Each object must be an implementation of an interface that extends
org.glassfish.flashlight.datatree.TreeNode.

Note – The TreeNode is an unstable interface and is subject to change.

To specify the name of the node in the monitorable object tree that the object represents, invoke
the object's setName method. In the invocation of the setName method, pass a string that
contains the name of the node as a parameter to the method.

The object that represents a statistic must also provide methods for computing the statistic from
event data.

The org.glassfish.flashlight.statistics package provides the following utility classes to
gather and compute statistics data:

Average

Provides averages.

Counter

Provides a counter that a class can use to maintain count.

Updating the Monitorable Object Tree

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200874

TimeStats

Provides timing information in seconds.

TimeStatsMillis

Provides timing information in milliseconds.

TimeStatsNanos

Provides timing information in nanoseconds.

Note – The classes in the org.glassfish.flashlight.statistics package are unstable
interfaces and are subject to change.

The org.glassfish.flashlight.statistics.factory package provides a factory class for
each utility class as shown in the following table.

Utility Class Factory Class

Average AverageFactory

Counter CounterFactory

TimeStats TimeStatsFactory

TimeStatsMillis TimeStatsFactory

TimeStatsNanos TimeStatsFactory

Getting the serverNode Object
The server node object is the parent of the TreeNode object that represents the component in
the monitorable object tree.

To get the server node object, invoke the get method of the
org.glassfish.flashlight.MonitoringRuntimeDataRegistry class. In the invocation of the
get method, pass the string server as a parameter.

Adding an Object to the Tree
To add an object to the tree, invoke the addChild method of the object's parent object. In the
invocation of the addChild method, pass the TreeNode object that you are adding as a
parameter.

The parent object depends on whether the object represents an add-on component or a statistic:
■ If the object represents an add-on component, the parent is the server node object.
■ If the object represents a statistic, the parent is the TreeNode object that represents the

add-on component.

Updating the Monitorable Object Tree

Chapter 5 • Adding Monitoring Capabilities 75

Dotted Names for an Add-On Component's Statistics
The Enterprise Server administrative commands get(1), list(1), and set(1) locate a statistic
through the dotted name of the statistic. The dotted name of a statistic for an add-on
component is determined from the names of the TreeNode objects that represent the statistic
and the component in the monitorable object tree as follows:

server.componenent-treenode-name.statistic-treenode-name

componenent-treenode-name
The name of the TreeNode object that represents the component in the monitorable object
tree. This name is passed In the invocation of the createTreeNode method that creates the
object. For more information, see “Creating a TreeNode Object to Represent a Component”
on page 74.

statistic-treenode-name
The name of the TreeNode object that represents the statistic in the monitorable object tree.
This name is passed In the invocation of the setName method. For more information, see
“Creating Objects to Represent a Component's Statistics” on page 74.

Example of Adding Statistics for a Component to the Monitorable
Object Tree

EXAMPLE 5–6 Adding Statistics for a Component to the Monitorable Object Tree
This example shows the code for adding the totaltransactioncount statistic to the
monitorable object tree. To add this statistic, objects are added to the monitorable object tree as
follows:
■ The component that is represented by the class TransactionManagerImpl is added as a

child of the server node of the tree. The name of the node is tx. The category is
transactions. The dotted name of the monitorable object that represents the component is
server.tx.

■ The totaltransactioncount statistic is added as a child of the tx node of the tree. The
dotted name of the monitorable object that represents the statistic is
server.tx.totaltransactioncount.

...

import org.glassfish.flashlight.client.ProbeListener;

import org.glassfish.flashlight.datatree.TreeNode;

import org.glassfish.flashlight.datatree.factory.TreeNodeFactory;

import org.glassfish.flashlight.statistics.Counter;

...

public class TransactionManagerImpl {

@Inject

private MonitoringRuntimeDataRegistry mrdr;

Updating the Monitorable Object Tree

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200876

http://docs.sun.com/doc/820-4497/get-1?a=view
http://docs.sun.com/doc/820-4497/list-1?a=view
http://docs.sun.com/doc/820-4497/set-1?a=view

EXAMPLE 5–6 Adding Statistics for a Component to the Monitorable Object Tree (Continued)

private TreeNode serverNode;

private Counter totalTxCount = CounterFactory.createCount();

public void init (){

...

TreeNode txNode = TreeNodeFactory.createTreeNode("tx", null, "transactions");
TreeNode serverNode = getServerNode();

serverNode.addChild(txNode);

...

totalTxCount.setName("totaltransactioncount");
txNode.addChild(totalTxCount);

...

}

...

private TreeNode getServerNode() {

TreeNode serverNode = null;

if (mrdr.get("server") != null) {

serverNode = mrdr.get("server");
} else {

serverNode = TreeNodeFactory.createTreeNode("server", null, "server");
mrdr.add("server", serverNode);

}

return serverNode;

}

...

}

Example of Adding Monitoring Capabilities
This example shows a component that monitors the number of requests that a container
receives. The following table provides a cross-reference to the listing of each class or interface in
the example.

Class or Interface Listing

ModuleProbeProvider Example 5–7

ModuleBootStrap Example 5–8

ModuleStatsTelemetry Example 5–9

Module Example 5–10

Example of Adding Monitoring Capabilities

Chapter 5 • Adding Monitoring Capabilities 77

Class or Interface Listing

ModuleMBean Example 5–11

EXAMPLE 5–7 Event Provider Interface

This example illustrates how to define an event provider as explained in “Defining an Event
Provider” on page 66.

The example shows the definition of the ModuleProbeProvider interface. The event provider
sends events when the request count is increased by 1 or decreased by 1.

This interface declares the following methods:

■ moduleCountIncrementEvent

■ moduleCountDecrementEvent

The name of each method is also the name of the event type that is associated with the method.

A parameter that is named count is passed to each method.

package com.example.count.monitoring;

import org.glassfish.flashlight.provider.annotations.ProbeParam;

/**

* Monitoring count eventse

* Provider interface for module specific probe events.

*

*/

public interface ModuleProbeProvider {

/**

* Emits probe event whenever the count is incremented

*/

public void moduleCountIncrementEvent(

@ProbeParam("count") Integer count

);

/**

* Emits probe event whenever the count is decremented

*/

public void moduleCountDecrementEvent(

@ProbeParam("count") Integer count

);

}

Example of Adding Monitoring Capabilities

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200878

EXAMPLE 5–8 Bootstrap Class

This example illustrates how to perform the following tasks:
■ “Registering an Event Provider” on page 67. The example shows the code for registering the

event provider and passing a reference to the event provider implementation to the MBean
implementation Module.

■ “Adding Statistics for a Component to the Monitorable Object Tree” on page 73. The
example shows the code for adding the component as a child of the server node of the tree.

■ “Registering an Event Listener” on page 72. The example shows the code for registering an
instance of the listener class ModuleStatsTelemetry.

package com.example.count.monitoring;

import java.lang.management.ManagementFactory;

import org.jvnet.hk2.component.PostConstruct;

import javax.management.MBeanServer;

import javax.management.ObjectName;

import org.jvnet.hk2.annotations.Inject;

import org.jvnet.hk2.annotations.Service;

import org.jvnet.hk2.annotations.Scoped;

import org.jvnet.hk2.component.Singleton;

import org.glassfish.flashlight.MonitoringRuntimeDataRegistry;

import org.glassfish.internal.api.Init;

import org.glassfish.flashlight.provider.ProbeProviderFactory;

import org.glassfish.flashlight.client.ProbeClientMediator;

import org.glassfish.flashlight.client.ProbeClientMethodHandle;

import java.util.Collection;

import org.glassfish.flashlight.datatree.TreeNode;

import org.glassfish.flashlight.datatree.factory.TreeNodeFactory;

/**

* Monitoring Count Example

* Bootstrap object for registering probe provider and listener

*

*/

@Service

@Scoped(Singleton.class)

public class ModuleBootStrap implements Init, PostConstruct {

@Inject

private MonitoringRuntimeDataRegistry mrdr;

@Inject

protected ProbeProviderFactory probeProviderFactory;

@Inject

Example of Adding Monitoring Capabilities

Chapter 5 • Adding Monitoring Capabilities 79

EXAMPLE 5–8 Bootstrap Class (Continued)

private ProbeClientMediator pcm;

private TreeNode serverNode;

public void postConstruct() {

try {

MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

ObjectName name = new ObjectName("count.example.monitoring:name=countMBean");
Module mbean = new Module();

mbs.registerMBean(mbean, name);

ModuleProbeProvider mpp = probeProviderFactory.getProbeProvider(

"count", "example", "countapp", ModuleProbeProvider.class);

mbean.setProbeProvider(mpp);

TreeNode serverNode = getServerNode();

TreeNode countNode = TreeNodeFactory.createTreeNode("count", null, "example");
serverNode.addChild(countNode);

ModuleStatsTelemetry modTM = new ModuleStatsTelemetry(countNode);

Collection<ProbeClientMethodHandle> handles = pcm.registerListener(modTM);

modTM.setProbeListenerHandles(handles);

} catch (Exception e) {

System.out.println("Caught exception in postconstruct");
e.printStackTrace();

}

}

private TreeNode getServerNode() {

TreeNode serverNode = null;

if (mrdr.get("server") != null) {

serverNode = mrdr.get("server");
} else {

serverNode = TreeNodeFactory.createTreeNode("server", null, "server");
mrdr.add("server", serverNode);

}

return serverNode;

}

}

EXAMPLE 5–9 Listener Class

This example shows how to perform the following tasks:
■ “Creating Event Listeners” on page 70. The example shows the code of the

ModuleStatsTelemetry listener class.

Example of Adding Monitoring Capabilities

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200880

EXAMPLE 5–9 Listener Class (Continued)

■ “Subscribing to Events From Event Provider Classes” on page 71. This example shows the
code for subscribing to the following types of events from the count component:
■ moduleCountIncrementEvent

■ moduleCountDecrementEvent

The provider of the component is example. The application name is countapp.

The example also shows the code for processing the events and updating the monitoring
statistics. To enable the listener to update statistics in the monitorable object tree, the parent of
statistics object in the tree is passed in the constructor of this class.

package com.example.count.monitoring;

import java.util.Collection;

import org.glassfish.flashlight.client.ProbeClientMethodHandle;

import org.glassfish.flashlight.statistics.*;

import org.glassfish.flashlight.statistics.factory.CounterFactory;

import org.glassfish.flashlight.datatree.TreeNode;

import org.glassfish.flashlight.datatree.factory.*;

import org.glassfish.flashlight.client.ProbeListener;

import org.glassfish.flashlight.provider.annotations.ProbeParam;

import org.glassfish.flashlight.provider.annotations.*;

/**

* Monitoring counter example

* Telemtry object which listens to probe events and updates

* the monitoring stats

*

*/

public class ModuleStatsTelemetry{

private Counter k = CounterFactory.createCount();

private Collection<ProbeClientMethodHandle> handles;

public ModuleStatsTelemetry(TreeNode parent) {

k.setName("countMBeanCount");
parent.addChild(k);

}

@ProbeListener("count:example:countapp:moduleCountIncrementEvent")
public void moduleCountIncrementEvent(

@ProbeParam("count") Integer count) {

k.increment();

Example of Adding Monitoring Capabilities

Chapter 5 • Adding Monitoring Capabilities 81

EXAMPLE 5–9 Listener Class (Continued)

}

@ProbeListener("count:example:countapp:moduleCountDecrementEvent")
public void moduleCountDecrementEvent(

@ProbeParam("count") Integer count) {

k.decrement();

}

public void setProbeListenerHandles(Collection<ProbeClientMethodHandle> handles) {

this.handles = handles;

// by default, the handles are enabled

// following template is provided to enable/disable

/*

for (ProbeClientMethodHandle handle : handles) {

handle.enable();

}

*/

}

}

EXAMPLE 5–10 MBean Interface

This example defines the interface for a simple standard MBean that has methods to increase
and decrease a counter by 1.

package com.example.count.monitoring;

/**

* Monitoring counter example

* ModuleMBean interface

*

*/

public interface ModuleMBean {

public Integer getCount() ;

public void incrementCount() ;

public void decrementCount() ;

}

EXAMPLE 5–11 MBean Implementation

This example illustrates how to send an event as explained in “Sending an Event” on page 69.
The example shows code for sending events as follows:

Example of Adding Monitoring Capabilities

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200882

EXAMPLE 5–11 MBean Implementation (Continued)

■ The moduleCountIncrementEvent method is invoked in the body of the incrementCount
method.

■ The moduleCountDecrementEvent method is invoked in the body of the decrementCount
method.

The methods incrementCount and decrementCount are invoked by an entity that is beyond the
scope of this example, for example, JConsole.

package com.example.count.monitoring;

/**

* Monitoring counter example

* ModuleMBean implementation

*

*/

public class Module implements ModuleMBean {

private int k = 0;

private ModuleProbeProvider mpp = null;

public Integer getCount() {

return k;

}

public void incrementCount() {

k++;

if (mpp != null) {

mpp.moduleCountIncrementEvent(k);

}

}

public void decrementCount() {

k--;

if (mpp != null) {

mpp.moduleCountDecrementEvent(k);

}

}

void setProbeProvider(ModuleProbeProvider mpp) {

this.mpp = mpp;

}

}

Example of Adding Monitoring Capabilities

Chapter 5 • Adding Monitoring Capabilities 83

84

Adding Container Capabilities

Applications run on Enterprise Server in containers. Enterprise Server enables you to create
containers that extend or replace the existing containers of Enterprise Server. Adding container
capabilities enables you to run new types of applications and to deploy new archive types in
Enterprise Server.

The following topics are addressed here:
■ “Creating a Container Implementation” on page 85
■ “Adding an Archive Type ” on page 88
■ “Creating Connector Modules” on page 90

Creating a Container Implementation
To implement a container that extends or replaces a service in Enterprise Server, you must
create a Java programming language class that includes the following characteristics:
■ It is annotated with the org.jvnet.hk2.annotations.Service annotation.
■ It implements the org.glassfish.api.container.Container interface.

Marking the Class with the @ServiceAnnotation
Add a com.jvnet.hk2.annotations.Service annotation at the class definition level to identify
your class as a service implementation.

@Service

public class MyContainer implements Container {

...

}

To avoid potential name collisions with other containers, use the fully qualified class name of
your container class in the @Service annotation's name element:

6C H A P T E R 6

85

package com.example.containers;

...

@Service(name="com.example.containers.MyContainer")
public class MyContainer implements Container {

...

}

Implementing the Container Interface
The org.glassfish.api.container.Container interface is the contract that defines a
container implementation. Classes that implement Container can extend or replace the
functionality in Enterprise Server by allowing applications to be deployed and run within the
Enterprise Server runtime.

The Container interface consists of two methods, getDeployer and getName. The
getDeployer method returns an implementation class of the
org.glassfish.api.deployment.Deployer interface capable of managing applications that
run within this container. The getName method returns a human-readable name for the
container, and is typically used to display messages belonging to the container.

The Deployer interface defines the contract for managing a particular application that runs in
the container. It consists of the following methods:

getMetaData

Retrieves the metadata used by the Deployer instance, and returns an
org.glassfish.api.deployment.MetaData object.

loadMetaData

Loads the metadata associated with an application.

prepare

Prepares the application to run in Enterprise Server.

load

Loads a previously prepared application to the container.

unload

Unloads or stops a previously loaded application.

clean

Removes any artifacts generated by an application during the prepare phase.

The DeploymentContext is the usual context object passed around deployer instances during
deployment.

Creating a Container Implementation

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200886

EXAMPLE 6–1 Example Implementation of Container

This example shows a Java programming language class that implements the Container
interface and is capable of extending the functionality of Enterprise Server.

package com.example.containers;

contains

@Service(name="com.example.containers.MyContainer")
public class MyContainer implements Container {

public String getName() {

return "MyContainer";
}

public Class<? extends org.glassfish.api.deployment.Deployer> getDeployer() {

return MyDeployer.class;

}

}

EXAMPLE 6–2 Example Implementation of Deployer

package com.example.containers;

@Service

public class MyDeployer {

public MetaData getMetaData() {

return new MetaData(...);

}

public <V> v loadMetaData(Class<V> type, DeploymentContext dc) {

...

}

public boolean prepare(DeploymentContext dc) {

// performs any actions needed to allow the application to run,

// such as generating artifacts

...

}

public MyApplication load(MyContainer container, DeploymentContext dc) {

// creates a new instance of an application

MyApplication myApp = new MyApplication (...);

...

// returns the application instance

return myApp;

}

public void unload(MyApplication myApp, DeploymentContext dc) {

Creating a Container Implementation

Chapter 6 • Adding Container Capabilities 87

EXAMPLE 6–2 Example Implementation of Deployer (Continued)

// stops and removes the application

...

}

public void clean (DeploymentContext dc) {

// cleans up any artifacts generated during prepare()

...

}

}

Adding an Archive Type
An archive type is an abstraction of the archive file format. An archive type can be implemented
as a plain JAR file, as a directory layout, or a custom type. By default, Enterprise Server
recognizes JAR based and directory based archive types. A new container might require a new
archive type.

There are two sub-interfaces of the org.glassfish.api.deployment.archive.Archive
interface, org.glassfish.api.deployment.archive.ReadableArchive and
org.glassfish.api.deployment.archive.WritableArchive. Typically developers of new
archive types will provide separate implementations of ReadableArchive and
WritableArchive, or a single implementation that implements both ReadableArchive and
WritableArchive.

Implementations of the ReadableArchive interface provide read access to an archive type.
ReadableArchive defines the following methods:

getEntry(String name)

Returns a java.io.InputStream for the specified entry name, or null if the entry doesn't
exist.

exists(String name)

Returns a boolean value indicating whether the specified entry name exists.

getEntrySize(String name)

Returns the size of the specified entry as a long value.

open(URI uri)

Returns an archive for the given java.net.URI.

getSubArchive(String name)

Returns an instance of ReadableArchive for the specified sub-archive contained within the
parent archive, or null if no such archive exists.

exists()

Returns a boolean value indicating whether this archive exists.

Adding an Archive Type

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200888

delete()

Deletes the archive, and returns a boolean value indicating whether the archive has been
successfully deleted.

renameTo(String name)

Renames the archive to the specified name, and returns a boolean value indicating whether
the archive has been successfully renamed.

Implementations of the WritableArchive interface provide write access to the archive type.
WritableArchive defines the following methods:

create(URI uri)

Creates a new archive with the given path, specified as a java.net.URI.

closeEntry(WritableArchive subArchive)

Closes the specified sub-archive contained within the parent archive.

closeEntry()

Closes the current entry.

createSubArchive(String name)

Creates a new sub-archive in the parent archive with the specified name, and returns it as a
WritableArchive instance.

putNextEntry(String name)

Creates a new entry in the archive with the specified name, and returns it as a
java.io.OutputStream.

Implementing the ArchiveHandler Interface
An archive handler is responsible for handling the particular layout of an archive. Java EE
defines a set of archives (WAR, JAR, and RAR, for example), and each of these archives has an
ArchiveHandler instance associated with the archive type.

Each layout should have one handler associated with it. There is no extension point support at
this level; the archive handler's responsibility is to give access to the classes and resources
packaged in the archive, and it should not contain any container-specific code. The
java.lang.ClassLoader returned by the handler is used by all the containers in which the
application will be deployed.

ArchiveHandler defines the following methods:

getArchiveType()

Returns the name of the archive type as a String. Typically, this is the archive extension,
such as jar or war.

getDefaultApplicationName(ReadableArchive archive)

Returns the default name of the specified archive as a String. Typically this default name is
the name part of the URI location of the archive.

Adding an Archive Type

Chapter 6 • Adding Container Capabilities 89

handles(ReadableArchive archive)

Returns a boolean value indicating whether this implementation of ArchiveHandler can
work with the specified archive.

getClassLoader(DeploymentContext dc)

Returns a java.lang.ClassLoader capable of loading all classes from the archive passed in
by the DeploymentContext instance. Typically the ClassLoader will load classes in the
scratch directory area, returned by DeploymentContext.getScratchDir(), as stubs and
other artifacts are generated in the scratch directory.

expand(ReadableArchive source, WritableArchive target)

Prepares the ReadableArchivesource archive for loading into the container in a format the
container accepts. Such preparation could be to expand a compressed archive, or possibly
nothing at all if the source archive format is already in a state that the container can handle.
This method returns the archive as an instance of WritableArchive.

Creating Connector Modules
Connector modules are small add-on modules that consist of application “sniffers” that
associate application types with containers that can run the application type. Enterprise Server
connector modules are separate from the associated add-on module that delivers the container
implementation to allow Enterprise Server to dynamically install and configure containers on
demand.

When a deployment request is received by the Enterprise Server runtime:

1. The current Sniffer implementations are used to determine the application type.
2. Once an application type is found, the runtime looks for a running container associated

with that application type. If no running container is found, the runtime attempts to install
and configure the container associated with the application type as defined by the Sniffer
implementation.

3. The Deployer interface is used to prepare and load the implementation.

Associating File Types with Containers Using the
Sniffer Interface
Containers do not necessarily need to be installed on the local machine for Enterprise Server to
recognize the container's application type. Enterprise Server uses a “sniffer” concept to study
the artifacts in a deployment request and to choose the associated container that handles the
application type that the user is trying to deploy. To create this association, create a Java
programming language class that implements the org.glassfish.api.container.Sniffer
interface. This implementation can be as simple as looking for a specific file in the application's
archive (such as the presence of WEB-INF/web.xml), or as complicated as running an annotation

Creating Connector Modules

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200890

scanner to determine an XML-less archive (such as enterprise bean annotations in a JAR file). A
Sniffer implementation must be as small as possible and must not load any of the container's
runtime classes.

A simple version of a Sniffer implementation uses the handles method to check the existence
of a file in the archive that denotes the application type (as WEB-INF/web.xml denotes a web
application). Once a Sniffer implementation has detected that it can handle the deployment
request artifact, Enterprise Server calls the setUp method. The setUp method is responsible for
setting up the container, which can involve one or more of the following actions:

■ Downloading the container's runtime (the first time that a container is used)
■ Installing the container's runtime (the first time that a container is used)
■ Setting up one or more repositories to access the runtime's classes (these are

implementations of the HK2 com.sun.enterprise.module.Repository interface, such as
the com.sun.enterprise.module.impl.DirectoryBasedRepository class)

The setUp method returns an array of the com.sun.enterprise.module.Module objects
required by the container.

The Sniffer interface defines the following methods:

handles(ReadableArchive source, ClassLoader loader)

Returns a boolean value indicating whether this Sniffer implementation can handle the
specified archive.

getURLPatterns()

Returns a String array containing all URL patterns to apply against the request URL. If a
pattern matches, the service method of the associated container is invoked.

getAnnotationTypes()

Returns a list of annotation types recognized by this Sniffer implementation. If an
application archive contains one of the returned annotation types, the deployment process
invokes the container's deployers as if the handles method had returned true.

getModuleType()

Returns the module type associated with this Sniffer implementation as a String.

setup(String containerHome, Logger logger)

Sets up the container libraries so that any dependent bundles from the connector JAR file
will be made available to the HK2 runtime. The setup method returns an array of
com.sun.enterprise.module.Module classes, which are definitions of container
implementations. Enterprise Server can then load these modules so that it can create an
instance of the container's Deployer or Container implementations when it needs to. The
module is locked as long as at least one module is loaded in the associated container.

teardown()

Removes a container and all associated modules in the HK2 modules subsystem.

Creating Connector Modules

Chapter 6 • Adding Container Capabilities 91

getContainerNames()

Returns a String array containing the Container implementations that this Sniffer
implementation enables.

isUserVisible()

Returns a boolean value indicating whether this Sniffer implementation should be visible
to end-users.

getDeploymentConfigurations(final ReadableArchive source)

Returns a Map<String, String> of deployment configuration names to configurations from
this Sniffer implementation for the specified application (the archive source). The names
are created by Enterprise Server; the configurations are the names of the files that contain
configuration information (for example, WEB-INF/web.xml and possibly
WEB-INF/sun-web.xml for a web application). If the getDeploymentConfigurations
method encounters errors while searching or reading the specified archive source, it throws a
java.io.IOException.

Making Sniffer Implementations Available to the Enterprise Server
Package Sniffer implementation code into modules and install the modules in the
as-install/modules directory. Enterprise Server will automatically discover these modules. If an
administrator installs connector modules that containSniffer implementations while
Enterprise Server is running, Enterprise Serverwill pick them up at the next deployment
request.

Creating Connector Modules

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200892

Packaging, Integrating, and Delivering an
Add-On Component

Packaging an add-on component enables the component to interact with the Enterprise Server
kernel in the same way as other components. Integrating a component with Enterprise Server
enables Enterprise Server to discover the component at runtime. If an add-on component is an
extension or update to existing installations of Enterprise Server, deliver the component
through Update Tool.

The following topics are addressed here:

■ “Packaging an Add-On Component” on page 93
■ “Integrating an Add-On Component With Enterprise Server” on page 94
■ “Delivering an Add-On Component Through Update Tool” on page 94

Packaging an Add-On Component
To enable an add-on component to plug in to the Enterprise Server kernel in the same way as
other components, package the component as an OSGi bundle.

A bundle is the unit of deployment in the OSGi module management subsystem. To package a
component as an OSGi bundle, package the component's constituent files in a Java archive
(JAR) file with appropriate manifest entries. The manifest entries provide information about
the component that is required to enable the component to be plugged into the Enterprise
Server kernel, such as:

■ Name
■ Version
■ Dependencies
■ Capabilities

7C H A P T E R 7

93

Integrating an Add-On Component With Enterprise Server
Integrating an add-on component with Enterprise Server enables Enterprise Server to discover
the component at runtime. To integrate an add-on component with Enterprise Server, ensure
that the JAR file that contains the component is copied to or installed in the as-install/modules/
directory.

Delivering an Add-On Component Through Update Tool
If an add-on component is an extension or update to existing installations of Enterprise Server,
deliver the component through Update Tool. To deliver an add-on component through Update
Tool, create an Image Packaging System (IPS) package to contain the component and add the
package to a suitable IPS package repository.

For information about how to create IPS packages, see the IPS best practices document
(http://wikis.sun.com/
display/IpsBestPractices/Image+Packaging+System+Best+Practices).

Integrating an Add-On Component With Enterprise Server

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200894

http://wikis.sun.com/display/IpsBestPractices/Image+Packaging+System+Best+Practices
http://wikis.sun.com/display/IpsBestPractices/Image+Packaging+System+Best+Practices
http://wikis.sun.com/display/IpsBestPractices/Image+Packaging+System+Best+Practices

Integration Point Reference

This appendix provides reference information about integration points, which are described in
Chapter 3, “Extending the Administration Console.”

Define an integration point for each user interface feature in the console-config.xml file for
your add-on component.

The following topics are addressed here:

■ “Integration Point Attributes” on page 95
■ “org.glassfish.admingui:treeNode Integration Point” on page 96
■ “org.glassfish.admingui:serverInstTab Integration Point” on page 97
■ “org.glassfish.admingui:commonTask Integration Point” on page 98
■ “org.glassfish.admingui:configuration Integration Point” on page 98
■ “org.glassfish.admingui:resources Integration Point” on page 99
■ “org.glassfish.admingui:customtheme Integration Point” on page 99
■ “org.glassfish.admingui:masthead Integration Point” on page 100
■ “org.glassfish.admingui:loginimage Integration Point” on page 100
■ “org.glassfish.admingui:loginform Integration Point” on page 101
■ “org.glassfish.admingui:versioninfo Integration Point” on page 101

Integration Point Attributes
For each integration-point element, specify the following attributes. Each attribute takes a
string value.

id

An identifier for the integration point. The remaining sections of this appendix do not
provide details about specifying this attribute.

parentId

The ID of the integration point's parent.

AA P P E N D I X A

95

type

The type of the integration point.

priority

A numeric value that specifies the relative ordering of integration points with the same
parentId. A lower number specifies a higher priority (for example, 100 represents a higher
priority than 400). You may need to experiment in order to place the integration point where
you want it. This attribute is optional.

content

A relative path to the JSF file that contains the content to be integrated. Typically, the file
contains a JSF code fragment that is incorporated into a page. The code fragment often
specifies a link to another JSF page that appears when a user clicks the link.

org.glassfish.admingui:treeNode Integration Point
Use an org.glassfish.admingui:treeNode integration point to insert a node in the
Administration Console navigation tree. Specify the attributes and their content as follows.

type

org.glassfish.admingui:treeNode

parentId

The id value of the treeNode that is the parent for this node. The parentId can be any of the
following:

tree

The root node of the entire navigation tree. Use this value to place your node at the top
level of the tree. You can then use the id of this node to create additional nodes beneath it.

registration

The Registration node

applicationServer

The Application Server node

applications

The Applications node

webApplications

The Web Applications node under the Applications node

resources

The Resources node

configuration

The Configuration node

webContainer

The Web Container node under the Configuration node

org.glassfish.admingui:treeNode Integration Point

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200896

httpService

The HTTP Service node under the Configuration node

Note – The webContainer and httpService nodes are available only if you installed the web
container module for the Administration Console (the console-web-gui.jar OSGi
bundle).

priority

A numeric value that specifies the relative ordering of the node on the tree, whether at the
top level or under another node.

content

A relative path to the JSF file that contains the content to be integrated.

For an example, see Example 3–2.

org.glassfish.admingui:serverInstTab Integration Point
Use an org.glassfish.admingui:serverInstTab integration point to place an additional tab
on the Application Server page of the Administration Console. Specify the attributes and their
content as follows.

type

org.glassfish.admingui:serverInstTab

parentId

The id value of the tab set that is the parent for this tab. For a top-level tab on this page, this
value is serverInstTabs, the tab set that contains the general information property pages
for Enterprise Server.

For a sub-tab, the value is the id value for the parent tab.

priority

A numeric value that specifies the relative ordering of the tab on the page, whether at the top
level or under another tab.

content

A relative path to the JSF file that contains the content to be integrated.

When you use this integration point, your JSF file must call the setSessionAttribute
handler for the command event to set the session variable of the serverInstTabs tab set to the
id value of your tab. For example, the file may have the following content:

<sun:tab id="sampleTab" immediate="true" text="Sample First Tab">
<!command

setSessionAttribute(key="serverInstTabs" value="sampleTab");

org.glassfish.admingui:serverInstTab Integration Point

Appendix A • Integration Point Reference 97

redirect(page="#{request.contextPath}/page/
tabPage.jsf?name=Sample%20First%20Tab");

/>

</sun:tab>

The id of the sun:tab custom tag must be the same as the value argument of the
setSessionAttribute handler.

For examples, see Example 3–4 and Example 3–5.

org.glassfish.admingui:commonTask Integration Point
Use an org.glassfish.admingui:commonTask integration point to place a new task or task
group on the Common Tasks page of the Administration Console. Specify the attributes and
their content as follows.

type

org.glassfish.admingui:commonTask

parentId

If you are adding a task group, the id value of the Common Tasks page, which is
commonTasksSection.

If you are adding a single task, the id value of the task group that is the parent for this tab,
which can be deployment (for the Deployment group) or monitoring (for the Monitoring
group).

priority

A numeric value that specifies the relative ordering of the tab on the page, whether at the top
level or under another tab.

content

A relative path to the JSF file that contains the content to be integrated.

For examples, see Example 3–7 and Example 3–9.

org.glassfish.admingui:configuration Integration Point
Use an org.glassfish.admingui:configuration integration point to add a component to the
Configuration page of the Administration Console. Typically, you add a link to the property
sheet section of this page. Specify the attributes and their content as follows.

type

org.glassfish.admingui:configuration

org.glassfish.admingui:commonTask Integration Point

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 200898

parentId

The id value of the property sheet for the Configuration page. This value is
propSheetSection, the section that contains the property definitions for the Configuration
page.

priority

A numeric value that specifies the relative ordering of the item on the Configuration page.

content

A relative path to the JSF file that contains the content to be integrated.

org.glassfish.admingui:resources Integration Point
Use an org.glassfish.admingui:resources integration point to add a component to the
Resources page of the Administration Console. Typically, you add a link to the property sheet
section of this page. Specify the attributes and their content as follows.

type

org.glassfish.admingui:resources

parentId

The id value of the property sheet for the Resources page. This value is propSheetSection,
the section that contains the property definitions for the Resources page.

priority

A numeric value that specifies the relative ordering of the item on the Resources page.

content

A relative path to the JSF file that contains the content to be integrated.

For an example, see Example 3–11.

org.glassfish.admingui:customtheme Integration Point
Use an org.glassfish.admingui:customtheme integration point to add your own branding to
the Administration Console. Specify the attributes and their content as follows. Do not specify a
parentId attribute for this integration point.

type

org.glassfish.admingui:customtheme

priority

A numeric value that specifies the relative ordering of the item in comparison to other
themes. This value must be between 1 and 100. The theme with the smallest number is used
first.

org.glassfish.admingui:customtheme Integration Point

Appendix A • Integration Point Reference 99

content

The name of the properties file that contains the key/value pairs that will be used to access
your theme JAR file. You must specify the following keys:

com.sun.webui.theme.DEFAULT_THEME

Specifies the theme name for the theme that this application may depend on.

com.sun.webui.theme.DEFAULT_THEME_VERSION

Specifies the theme version this application may depend on.

For example, the properties file for the default Administration Console brand contains the
following:

com.sun.webui.theme.DEFAULT_THEME=suntheme

com.sun.webui.theme.DEFAULT_THEME_VERSION=4.3

For an example, see Example 3–14.

org.glassfish.admingui:masthead Integration Point
Use an org.glassfish.admingui:masthead integration point to specify the name and location
of the include masthead file, which can be customized with a branding image. This include file
will be integrated on the masthead of the Administration Console. Specify the attributes and
their content as follows. Do not specify a parentId attribute for this integration point.

type

org.glassfish.admingui:masthead

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JSF page.

For an example, see Example 3–15.

org.glassfish.admingui:loginimage Integration Point
Use an org.glassfish.admingui:loginimage integration point to specify the name and
location of the include file containing the branding login image code that will be integrated with
the login page of the Administration Console. Specify the attributes and their content as
follows. Do not specify a parentId attribute for this integration point.

type

org.glassfish.admingui:loginimage

org.glassfish.admingui:masthead Integration Point

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008100

parentId

None; a login image does not have a parent ID.

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JSF page.

For an example, see Example 3–15.

org.glassfish.admingui:loginform Integration Point
Use an org.glassfish.admingui:loginform integration point to specify the name and
location of the include file containing the customized login form code. This code also contains
the login background image used for the login page for the Administration Console. Specify the
attributes and their content as follows. Do not specify a parentId attribute for this integration
point.

type

org.glassfish.admingui:loginform

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JSF page.

For an example, see Example 3–15.

org.glassfish.admingui:versioninfo Integration Point
Use an org.glassfish.admingui:versioninfo integration point to specify the name and
location of the include file containing the branding image that will be integrated with the
content of the version popup window. Specify the attributes and their content as follows. Do
not specify a parentId attribute for this integration point.

type

org.glassfish.admingui:versioninfo

org.glassfish.admingui:versioninfo Integration Point

Appendix A • Integration Point Reference 101

priority

A numeric value that specifies the relative ordering of the item in comparison to other items
of this type. This value must be between 1 and 100. The theme with the smallest number is
used first.

content

A file that contains the content, typically a file that is included in a JSF page.

For an example, see Example 3–15.

org.glassfish.admingui:versioninfo Integration Point

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008102

Template Reference

The Administration Console provides a set of page extensible templates to make it easier to
provide Administration Console content for your add-on component. This appendix provides
information about these templates.

In an Enterprise Server distribution in which both Enterprise Server and the Administration
Console are running, these templates can be found in the directory
domain-dir/generated/jsp/__admingui/loader/templates.

To use a template, specify it in the template attribute of the composition directive for your
page.

The following topics are addressed here:

■ “Base Template” on page 103
■ “Property Sheet Template” on page 104
■ “Property Table Template” on page 106
■ “Sheet Table Template” on page 107
■ “Administration Console Property Sheet Template” on page 107
■ “Administration Console Property Table Template” on page 109
■ “Administration Console Sheet Table Template” on page 109

Base Template
The base template, baseTemplate.tpl, is included by the other templates.

Parent
None.

Parameters
The baseTemplate.tpl file takes the following parameters. You can specify these
parameters as attributes to the composition tag for any JSF page that includes
baseTemplate.tpl.

BA P P E N D I X B

103

i18nBundle

The name of the resource bundle for internationalization. Specify #{i18n} to access the
values.

helpBundle

The name of the resource bundle for help. Specify #{help} to access the values.

pageTitle

The name of the page. Will be used in both the head element and as the page header.

helpText

The inline help text to be displayed under the page header.

Defines
You can use define tags with the following name values.

headExtra

Use this value if your page needs to add content to the head element.

titleExtra

Use this value if you need to add any extra child components to the sun:title custom
tag.

pageButtonsTop

Use this value if you need to add child components to the pageButtonsTop facet of the
sun:title custom tag.

content

This value is required, and describes what the body of the page will be. The body content
is usually defined by child templates, but if you use or extend this template directly, you
must specify this value.

Property Sheet Template
Use the property sheet template, propertySheetTemplate.tpl, to specify a property sheet.

Parent
baseTemplate.tpl

Parameters
The propertySheetTemplate.tpl file takes the following parameter in addition to those
listed in “Base Template” on page 103:

hasRequiredFields

If this parameter is set to "true" (the String value, not a Boolean, due to conversion
errors with the component), the following legend will appear at the top right of the page:

* Indicates required field

Property Sheet Template

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008104

Defines
You can use define tags with the following name values, in addition to those listed in “Base
Template” on page 103:

properties

Use this value to list each sun:property custom tag needed on the page.

propertySheets

Use this value if you need more than one property sheet. Provide a
sun:propertySheetSection custom tag for each sheet you need, along with the
sun:property custom tag for each section.

EXAMPLE B–1 Example Page That Uses a Single Property Sheet

The following page uses the property sheet template to specify a property sheet.

<!composition template="/templates/propertySheetTemplate.tpl"
i18nBundle="com.foo.resources.Messages"
helpBundle="com.foo.resources.Help"
pageTitle="Using the Base Templates"
helpText="This file uses the property sheet template.">

<!define name="properties">
<sun:property id="propOne" labelAlign="left" noWrap="#{true}"

overlapLabel="#{false}" label="Property One">
<sun:dropDown id="propOneDD" selected="#{propOne}"

labels={"foo" "bar" "baz"} values={"FOO" "BAR" "BAZ"} />

</sun:property>

<sun:property id="propTwo" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="Property Two">

<sun:dropDown id="propTwoDD" selected="#{propTwo}"
labels={"foo" "bar" "baz"} values={"FOO" "BAR" "BAZ"} />

</sun:property>

</define>

</composition>

EXAMPLE B–2 Example Page That Uses Multiple Property Sheets

The following page uses the property sheet template to specify a set of property sheets.

<!composition template="/templates/propertySheetTemplate.tpl"
i18nBundle="com.foo.resources.Messages"
helpBundle="com.foo.resources.Help"
pageTitle="Using the Base Templates"
helpText="This page uses two property sheets.">

<!define name="propertySheets">
<sun:propertySheetSection>

<sun:property id="propOne" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="Property One">

Property Sheet Template

Appendix B • Template Reference 105

EXAMPLE B–2 Example Page That Uses Multiple Property Sheets (Continued)

<sun:dropDown id="propOneDD" selected="#{propOne}"
labels={"foo" "bar" "baz"} values={"FOO" "BAR" "BAZ"} />

</sun:property>

<sun:property id="propTwo" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="Property Two">

<sun:dropDown id="propTwoDD" selected="#{propTwo}"
labels={"foo" "bar" "baz"} values={"FOO" "BAR" "BAZ"} />

</sun:property>

</sun:propertySheetSection>

<sun:propertySheetSection>

<sun:property id="propThree" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="Property Three">

<sun:dropDown id="propThreeDD" selected="#{propThree}"
labels={"foo" "bar" "baz"} values={"FOO" "BAR" "BAZ"} />

</sun:property>

<sun:property id="propFour" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="Property Four">

<sun:dropDown id="propFourDD" selected="#{propFour}"
labels={"foo" "bar" "baz"} values={"FOO" "BAR" "BAZ"} />

</sun:property>

</sun:propertySheetSection>

</define>

</composition>

Property Table Template
Use the property table template, propertyTableTemplate.tpl, to specify a property table.

Parent
baseTemplate.tpl

Parameters
The propertyTableTemplate.tpl file takes the following parameter in addition to those
listed in “Base Template” on page 103.

tableList

A List<Map> that holds the table data. This List can be created by passing a
Map<String,PropertyConfig> or Map<String,String> to the handler getTableList.

Defines
See defines for “Base Template” on page 103.

Property Table Template

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008106

Sheet Table Template
Use the sheet table template, propSheetPropTableTemplate.tpl, to specify a page that
contains both a property sheet and a property table. This template is an amalgamation of
propertySheetTemplate.tpl and propertyTableTemplate.tpl, so any requirements for
those two templates apply here as well. This template will display the property sheet above the
table.

Parent
baseTemplate.tpl

Parameters
See parameters for “Base Template” on page 103, “Property Sheet Template” on page 104,
and “Property Table Template” on page 106.

Defines
See defines for “Base Template” on page 103 and “Property Sheet Template” on page 104.

Administration Console Property Sheet Template
Use the Administration Console property sheet template, adminConsolePropertySheet.tpl,
to specify a property sheet that adds support for manipulating an AMXConfig object. (AMX
refers to Appserver Management EXtensions.) The loading and saving of values, including the
retrieval of default values, is automatic with this template.

Parent
propertySheetTemplate.tpl

Parameters
The adminConsolePropertySheet.tpl file takes the following parameters, in addition to
those specified in “Base Template” on page 103 and “Property Sheet Template” on page 104.

configName

The id of the Enterprise Server configuration.

amxConfigAttributes

A List detailing which attributes of the AMXConfig object are to be handled on this page.

Defines
See defines for “Base Template” on page 103 and “Property Sheet Template” on page 104.

EXAMPLE B–3 Example That Uses an Administration Console Property Sheet

The following page uses the Administration Console property sheet template to specify a
property sheet.

<!initPage

setResourceBundle(key="web" bundle="org.glassfish.web.admingui.Strings")

Administration Console Property Sheet Template

Appendix B • Template Reference 107

EXAMPLE B–3 Example That Uses an Administration Console Property Sheet (Continued)

/>

<!composition template="/templates/adminConsolePropertySheet.tpl"
pageTitle="$resource{web.monitoring.Title}"
helpText="$resource{web.monitoring.PageHelp}"
helpBundle="org.glassfish.web.admingui.Helplinks"
amxConfigName="monitoringServiceConfig.moduleMonitoringLevelsConfig"
amxConfigAttributes={"HTTPService","webContainer", "JVM", "threadPool"}>

<!define name="properties">
<sun:property id="httpProp" labelAlign="left" noWrap="#{true}"

overlapLabel="#{false}" label="$resource{web.monitoring.Http}">
<sun:dropDown id="Http" selected="#{configMap[’HTTPService’]}"

labels={"$resource{web.monitoring.Low}"
"$resource{web.monitoring.High}"
"$resource{web.monitoring.Off}"}

values={"LOW" "HIGH" "OFF"} />

</sun:property>

<sun:property id="webProp" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="$resource{web.monitoring.Web}">

<sun:dropDown id="Web" selected="#{configMap[’webContainer’]}"
labels={"$resource{web.monitoring.Low}"

"$resource{web.monitoring.High}"
"$resource{web.monitoring.Off}"}

values={"LOW" "HIGH" "OFF"} />

</sun:property>

<sun:property id="jvm" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}" label="$resource{web.monitoring.Jvm}">

<sun:dropDown id="Http" selected="#{configMap[’JVM’]}"
labels={"$resource{web.monitoring.Low}"

"$resource{web.monitoring.High}"
"$resource{web.monitoring.Off}"}

values={"LOW" "HIGH" "OFF"} />

</sun:property>

<sun:property id="threadPool" labelAlign="left" noWrap="#{true}"
overlapLabel="#{false}"
label="$resource{web.monitoring.ThreadPool}">

<sun:dropDown id="Web" selected="#{configMap[’threadPool’]}"
labels={"$resource{web.monitoring.Low}"

"$resource{web.monitoring.High}"
"$resource{web.monitoring.Off}"}

values={"LOW" "HIGH" "OFF"} />

</sun:property>

"

</define>

</composition>

Administration Console Property Sheet Template

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008108

Administration Console Property Table Template
This template, adminConsolePropertyTable.tpl, extends the property table template, adding
support for AMXConfig objects.

Parent
propertyTableTemplate.tpl

Parameters
See parameters for “Base Template” on page 103, “Property Table Template” on page 106,
and “Administration Console Property Sheet Template” on page 107.

Defines
See defines for “Base Template” on page 103.

Administration Console Sheet Table Template
Use the Administration Console sheet table template, adminConsoleSheetTable.tpl, to
specify a page that contains both a property sheet and a property table. This template extends
the property sheet and property table templates, adding support for AMXConfig objects.

Parent
propSheetPropTableTemplate.tpl

Parameters
See parameters for “Base Template” on page 103, “Property Sheet Template” on page 104,
“Property Table Template” on page 106, and “Administration Console Property Sheet
Template” on page 107.

Defines
See defines for “Base Template” on page 103, “Property Sheet Template” on page 104, and
“Administration Console Property Sheet Template” on page 107.

Administration Console Sheet Table Template

Appendix B • Template Reference 109

110

Index

A
abbrev_product_name keyword, 60
acceptableValues element

@Param annotation, 54
add-on components

delivering, 94
integrating, 94
overview, 13-14
packaging, 93
specifying ID values, 30-31

addChild method, 75
AdminCommand interface, 50

execute method, 59
AdminCommandContext class, 59
adminConsolePropertySheet.tpl template

file, 107-108
adminConsolePropertyTable.tpl template file, 109
adminConsoleSheetTable.tpl template file, 109
Administration Console

adding content to pages, 41-42
adding functionality to, 31-43
adding internationalization support, 43-44
adding nodes to navigation tree, 32-34
adding pages to, 42-43
adding tabs and tab sets to pages, 34-37
adding task groups to Common Tasks page, 39-40
adding tasks to Common Tasks page, 37-39
architecture, 28-29
changing theme or brand of, 44-46
extending, 27-47

annotations
@Param, 53

annotations (Continued)
@I18n, 56
@ProbeListener, 71-72
@ProbeName, 66
@ProbeParam, 67
@Scoped, 51
@Service, 50

Apache Felix OSGi framework, 14
Apache Maven, See Maven
Archive interface, 88-90
archive types, See containers: archive types
ArchiveHandler interface, 89-90
asadmin command

branding, 59-60
context, 59

asadmin commands
adding, 50
default parameter values, 54
error messages, 56-58
internationalization, 56
naming, 50
operands, 52-56
options, 52-56
parameters, 52-56
running, 59
strings, 56-58
text, 56-58
validation of parameters, 54

Average class, 74, 75
AverageFactory class, 75

111

B
baseTemplate.tpl template file, 103-104
brand of Administration Console, changing, 44-46
branding, asadmin command, 59-60
BrandingVersion.properties file, 59-60
build_id keyword, 60

C
callbacks, 72-73
class loaders, 89-90
classes

AdminCommandContext, 59
Average, 74, 75
AverageFactory, 75
Counter, 74, 75
CounterFactory, 75
MonitoringRuntimeDataRegistry, 75
ProbeClientMediator, 72-73
ProbeProviderFactory, 67-69
stateless, 51
TimeStats, 74, 75
TimeStatsFactory, 75
TimeStatsMillis, 75
TimeStatsNanos, 75
TreeNodeFactory, 74

CLI (command-line interface), branding, 59-60
command-line interface (CLI), branding, 59-60
ComponentManager class, 21
components, instantiating, 21
connector modules, See containers: connector modules
Console Add-On Component Service, 28-29
console-config.xml file, 30, 95-102

console-config element, 30-31
integration-point element, 30-31

console providers, 28-29
implementing, 28-29

ConsoleProvider interface, 28-29
Container interface, 85-88
containers

archive types, 88-90, 90-92, 92
connector modules, 90-92
developing, 85-92
examples, 87

containers (Continued)
implementing, 86-88
loading, 90-92, 92
naming, 85-86

content attribute, integration-point element, 95-96
context, asadmin command, 59
@Contract annotation, 20, 25-26
conventions, asadmin command names, 50
Counter class, 74, 75
CounterFactory class, 75
createTreeNode method, 74

D
default values, asadmin command parameters, 54
delivering, add-on components, 94
Deployer interface, 86-88, 90-92
deployment, examples, 87-88
dotted names, 76

E
error messages, asadmin commands, 56-58
event listeners, creating, 70-71
event providers

defining, 66-67
instantiating, 67-69
registering, 67-69

events
defining, 66-67
listeners, 70-71, 72-73
receiving, 71-72
sending, 69
statistics monitoring, 65
subscribing, 71-72

examples
containers, 87
deployers, 87-88

execute method, AdminCommand interface, 59
@Extract annotation, 23
extraction, 23

Index

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008112

F
Felix OSGi framework, 14
fields, representation of command parameters as, 52
files, BrandingVersion.properties, 59-60

G
get method, 75
getConfiguration method, 28-29
getProbeProvider method, 68

H
Habitat, class, 23
HK2, scopes, 20-21
HK2 (Hundred-Kilobyte Kernel)

architecture, 19
overview, 14
services, 20

Hundred-Kilobyte Kernel (HK2)
architecture, 19, 22-24
extraction, 23
injection, 22-23
instantiating, 21
instantiation, 24
inversion of control, 22-24
lifecycle, 21-22
overview, 14
runtime, 20-22
services, 20

I
@I18n annotation, 56
id attribute, integration-point element, 95-96
Image Packaging System (IPS), 94
@Inject annotation, 22-23, 24
injection, 22-23
instantiation, 24
integrating, add-on components, 94
integration-point element, 30-31

attributes, 31-43, 95-96

integration points, 28-29, 30
attributes, 95-96
creating types, 46-47
org.glassfish.admingui:commonTask, 37-39,

39-40, 98
org.glassfish.admingui:configuration, 41-42,

98-99
org.glassfish.admingui:customtheme, 44-46,

99-100
org.glassfish.admingui:loginform, 101
org.glassfish.admingui:loginimage, 100-101
org.glassfish.admingui:masthead, 100
org.glassfish.admingui:resources, 41-42, 99
org.glassfish.admingui:serverInstTab, 34-37,

97-98
org.glassfish.admingui:treeNode, 32-34, 96-97
org.glassfish.admingui:versioninfo, 101-102
reference, 95-102

interfaces
AdminCommand, 50, 59
TreeNode, 74

internationalization
asadmin commands, 56
providing for add-on components, 43-44

IPS (Image Packaging System), 94

J
JSFTemplating project

See also templates
templates, 29

JSFTemplating tags
sun:commonTask, 38-39
sun:commonTasksGroup, 40
sun:property, 41-42
sun:tab, 36-37
sun:treeNode, 33-34

L
lifecycle interfaces, 21-22
listeners

creating, 70-71

Index

113

listeners (Continued)
registering, 72-73

long form, option names, 54

M
major_version keyword, 60
Maven, 25-26
methods

addChild, 75
AdminCommand, 59
createTreeNode, 74
get, 75
getProbeProvider, 68
registerListener, 72-73

minor_version keyword, 60
modular architecture, Enterprise Server, 13-14
monitorable objects

adding to tree, 73-77
overview, 70-77

monitoring
adding to components, 65-83
dotted names, 76

MonitoringRuntimeDataRegistry class, 75

N
name element

@Param annotation, 54
@Service annotation, 50

names, asadmin commands, 50
navigation nodes, adding to Administration

Console, 32-34

O
operands, asadmin commands, 52-56
optional element, @Param annotation, 55
options

asadmin commands, 52-56
long names, 54
short names, 54

org.glassfish.admingui:commonTask integration
point type, 37-39, 39-40, 98

org.glassfish.admingui:configuration integration
point type, 41-42, 98-99

org.glassfish.admingui:customtheme integration
point type, 44-46, 99-100

org.glassfish.admingui:loginform integration
point type, 101

org.glassfish.admingui:loginimage integration
point type, 100-101

org.glassfish.admingui:masthead integration point
type, 100

org.glassfish.admingui:resources integration
point type, 41-42, 99

org.glassfish.admingui:serverInstTab integration
point type, 34-37, 97-98

org.glassfish.admingui:treeNode integration point
type, 32-34, 96-97

org.glassfish.admingui:versioninfo integration
point type, 101-102

OSGi Alliance, 14
overloaded methods, 66
overview

add-on components, 13-14
extensibility, 13-14

P
packaging, add-on components, 93
pages, adding to Administration Console, 42-43
pages of Administration Console, adding content

to, 41-42
@Param annotation, 53
parameters

asadmin commands, 52-56
default values, 54
events, 67
validation of, 54

parentId attribute, integration-point
element, 95-96

plug-ins, See add-on components
PostConstruct interface, 21-22
PreDestroy interface, 21-22
primary element, @Param annotation, 53

Index

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008114

priority attribute, integration-point
element, 95-96

ProbeClientMediator class, 72-73
@ProbeListener annotation, 71-72
@ProbeName annotation, 66
@ProbeParam annotation, 67
ProbeProviderFactory class, 67-69
product name, defining, 59-60
product_name keyword, 60
properties, representation of command parameters

as, 52
propertySheetTemplate.tpl template file, 104-106
propertyTableTemplate.tpl template file, 106
propSheetPropTableTemplate.tpl template file, 107
providers, registering, 67-69

R
ReadableArchive interface, 88-90
receiving, events, 71-72
registering

event listeners, 72-73
event providers, 67-69

registerListener method, 72-73
release information, defining, 59-60
running, asadmin commands, 59

S
@Scoped annotation, 20-21
@Scoped annotation, 51
sending, events, 69
server node, 75
@Service annotation, 20, 25-26, 85-88, 87
@Service annotation, 50
setter methods, command parameters and, 52
short form, option names, 54
shortName element, @Param annotation, 54
singletons, 20-21
Sniffer interface, 90-92, 92
sniffers, 90-92, 92
stateless classes, 51

statistics
adding to components, 65-83
dotted names, 76

strings, asadmin commands, 56-58
subscribing, to events, 71-72
sun:commonTask tag, 38-39
sun:commonTasksGroup tag, 40
sun:property tag, 41-42
sun:tab tag, 36-37
sun:treeNode tag, 33-34

T
tabs and tab sets, adding to Administration

Console, 34-37
task groups, adding to Administration Console, 39-40
tasks, adding to Administration Console, 37-39
templates

Administration Console property sheet, 107-108
Administration Console property table, 109
Administration Console sheet table, 109
base, 103-104
property sheet, 104-106
property table, 106
reference, 103-109
sheet table, 107

Templating for JavaServer Faces Technology, See
JSFTemplating project

text, asadmin commands, 56-58
theme of Administration Console, changing, 44-46
TimeStats class, 74, 75
TimeStatsFactory class, 75
TimeStatsMillis class, 75
TimeStatsNanos class, 75
tree

adding objects to, 73-77
monitorable objects, 70-77

TreeNode interface, 74
TreeNodeFactory class, 74
type attribute, integration-point element, 95-96

Index

115

U
Update Tool, 94

V
validation, asadmin command parameters, 54
value element

@ProbeName annotation, 66
@ProbeParam annotation, 67

version_prefix keyword, 60
version_suffix keyword, 60

W
WritableArchive interface, 88-90

Index

Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide • October 2008116

	Sun GlassFish Enterprise Server v3 Prelude Add-On Component Development Guide
	Preface
	Enterprise Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Introduction to the Development Environment for Enterprise Server Add-On Components
	Enterprise Server Modular Architecture and Add-On Components
	OSGi Alliance Module Management Subsystem
	Hundred-Kilobyte Kernel
	Overview of the Development Process for an Add-On Component
	Writing HK2 Components
	Extending the Administration Console
	Extending the asadmin Utility
	Adding Monitoring Capabilities
	Adding Container Capabilities
	Packaging and Delivering an Add-On Component

	Writing HK2 Components
	HK2 Component Model
	Services in the HK2 Component Model
	HK2 Runtime
	Scopes of Services
	Instantiation of Components in HK2
	HK2 Lifecycle Interfaces

	Inversion of Control
	Injecting HK2 Components
	Extraction
	Instantiation Cascading in HK2

	Identifying a Class as an Add-On Component
	Using the Apache Maven Build System to Develop HK2 Components

	Extending the Administration Console
	Administration Console Architecture
	Implementing a Console Provider

	About Administration Console Templates
	About Integration Points
	Specifying the ID of an Add-On Component
	Adding Functionality to the Administration Console
	Adding a Node to the Navigation Tree
	Creating a JavaServer Faces Page for Your Node

	Adding Tabs to a Page
	Creating JavaServer Faces Pages for Your Tabs

	Adding a Task to the Common Tasks Page
	Creating a JavaServer Faces Page for Your Task

	Adding a Task Group to the Common Tasks Page
	Creating a JavaServer Faces Page for Your Task Group

	Adding Content to a Page
	Creating a JavaServer Faces Page for Your Page Content

	Adding a Page to the Administration Console

	Adding Internationalization Support
	Changing the Theme or Brand of the Administration Console
	Creating an Integration Point Type
	To Create an Integration Point Type

	Extending the asadmin Utility
	About the Administrative Command Infrastructure of Enterprise Server
	Adding an asadmin Command
	Representing an asadmin Command as a Java Class
	Specifying the Name of an asadmin Command
	Ensuring That an AdminCommand Implementation Is Stateless
	Example of Adding an asadmin Command

	Adding Parameters to an asadmin Command
	Representing a Parameter of an asadmin Command
	Identifying a Parameter of an asadmin Command
	Specifying Whether a Parameter Is an Option or an Operand
	Specifying the Name of an Option
	Specifying the Long Form of an Option Name
	Specifying the Short Form of an Option Name

	Specifying the Acceptable Values of a Parameter
	Specifying the Default Value of a Parameter
	Specifying Whether a Parameter Is Required or Optional
	Example of Adding Parameters to an asadmin Command

	Adding Message Text Strings to an asadmin Command
	Enabling an asadmin Command to Run
	Setting the Context of an asadmin Command
	Changing the Brand in the Enterprise Server CLI
	Examples of Extending the asadmin Utility

	Adding Monitoring Capabilities
	Defining Statistics That Are to Be Monitored
	Defining an Event Provider
	Identifying the Event Type
	Specifying Event Parameters
	Example of Defining an Event Provider

	Registering an Event Provider
	Sending an Event

	Updating the Monitorable Object Tree
	Creating Event Listeners
	Subscribing to Events From Event Provider Classes
	Registering an Event Listener
	Adding Statistics for a Component to the Monitorable Object Tree
	Creating a TreeNode Object to Represent a Component
	Creating Objects to Represent a Component's Statistics
	Getting the server Node Object
	Adding an Object to the Tree
	Dotted Names for an Add-On Component's Statistics
	Example of Adding Statistics for a Component to the Monitorable Object Tree

	Example of Adding Monitoring Capabilities

	Adding Container Capabilities
	Creating a Container Implementation
	Marking the Class with the @Service Annotation
	Implementing the Container Interface

	Adding an Archive Type
	Implementing the ArchiveHandler Interface

	Creating Connector Modules
	Associating File Types with Containers Using the Sniffer Interface
	Making Sniffer Implementations Available to the Enterprise Server

	Packaging, Integrating, and Delivering an Add-On Component
	Packaging an Add-On Component
	Integrating an Add-On Component With Enterprise Server
	Delivering an Add-On Component Through Update Tool

	Integration Point Reference
	Integration Point Attributes
	org.glassfish.admingui:treeNode Integration Point
	org.glassfish.admingui:serverInstTab Integration Point
	org.glassfish.admingui:commonTask Integration Point
	org.glassfish.admingui:configuration Integration Point
	org.glassfish.admingui:resources Integration Point
	org.glassfish.admingui:customtheme Integration Point
	org.glassfish.admingui:masthead Integration Point
	org.glassfish.admingui:loginimage Integration Point
	org.glassfish.admingui:loginform Integration Point
	org.glassfish.admingui:versioninfo Integration Point

	Template Reference
	Base Template
	Property Sheet Template
	Property Table Template
	Sheet Table Template
	Administration Console Property Sheet Template
	Administration Console Property Table Template
	Administration Console Sheet Table Template

	Index

