DSun

microsystems

Sun™ ONE Studio 5
J2EE™ Application Tutorial

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

Part No. 817-2322-10
June 2003 Revision A

Send comments about this document to: docf eedback@un. com

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://ww. sun. cont pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology;, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is aregistered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
ahttp://ww. sun. conl pat ent s etun ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent I'utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, parquelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE “EN L’'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, AL'APTITUDE AUNE UTILISATION PARTICULIERE OU A
L"’ABSENCE DE CONTREFACON.

Please ("
& ca

Adobe PostScript

Contents

Before You Begin 13

Getting Started 21
Obtaining and Installing the Required Software 21
Starting the Software 23
Starting the IDE 23
Starting the Application Server 23
Confirming Sun ONE Application Server 7 as the Default Server 29
Setting Up Database Connectivity 29
Enabling the JDBC Driver 30
Setting JDBC Resources (Microsoft Windows Superusers) 30
Setting JDBC Resources (All Other Users) 31

Tutorial Database Table Descriptions 32

Introduction to the Tutorial 35
Functionality of the Tutorial Application 35
Application Scenarios 36
Application Functional Specification 36
User’s View of the Tutorial Application 37
Architecture of the Tutorial Application 40

Application Elements 41
EJB Tier Details 41
Overview of Tasks for Creating the Tutorial Application 42
Creating the EJB Components 42
Creating the Tutorial’s Web Service 44
Installing and Using the Provided Client 45

End Comments 46

3. Building the EJB Tier of the DiningGuide Application 47
Overview of the Tutorial’s EJB Tier 47
The Entity Beans 48
The Session Bean 49
The Detail Classes 49
Summary of Steps 51
Creating Entity Beans With the EJB Builder 52
Creating the Restaurant and Customerreview Entity Beans 52
Creating Create Methods for CMP Entity Beans 60
Creating Finder Methods on Entity Beans 63
Creating Business Methods for Testing Purposes 65
Creating Detail Classes to View Entity Bean Data 68
Creating the Detail Classes 68
Creating the Detail Class Properties and Their Accessor Methods 69
Creating the Detail Class Constructors 70
Creating Business Methods on the Entity Beans to Fetch the Detail Classes 71
Testing the Entity Beans 72
Creating a Test Client for the Restaurant Bean 73

Providing the Sun ONE Application Server 7 Plugin With Database
Information 75

Deploying and Executing the Restaurant Bean’s Test Application 77

4 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

Using the Test Client to Test the Restaurant Bean 78
Checking the Additions to the Database 81
Creating a Test Client for the Customerreview Bean 82
Deploying and Executing the Customerreview Bean’s Test Application 84
Testing the Customerreview Entity Bean 84
Checking the Additions to the Database 86
Creating a Session Bean With the EJB Builder 87
Coding a Session Bean’s Create Method 88
Creating Business Methods to Get the Detail Data 91
Creating a Business Method to Create a Customer Review Record 95
Creating Business Methods That Return Detail Class Types 96
Adding EJB References 98
Testing the Session Bean 100
Creating a Test Client for a Session Bean 100
Adding Entity Bean References to the EJB Module 101

Providing the Sun ONE Application Server 7 Plugin With Database
Information 102

Deploying and Executing the Test Application 104
Using the Test Client to Test a Session Bean 106
Checking the Additions to the Database 109

Comments on Creating a Client 109

Creating the DiningGuide Application’s Web Service 111
Overview of the Tutorial’s Web Service 111

The Web Service 112

The Runtime Classes 112

The Client Files 112
Creating the Tutorial’s Web Service 113

Creating the Logical Web Service 113

Contents

Generating the Web Service’s Runtime Classes 115
Testing the Web Service 117

Creating a Test Client and Test Application 117

Adding the Web Service to the J2EE Application 118

Deploying the Test Application 119

Using the Test Application to Test the Web Service 121
Making Your Web Service Available to Other Developers 129

Generating the WSDL File 129

Generating Client Files From the WSDL File 130

5. Creating a Client for the Tutorial Application 133
Creating the Client With the Provided Code 133
Running the Tutorial Application 134
Examining the Client Code 137
Displaying Restaurant Data 137
Displaying Customer Review Data for a Selected Restaurant 138

Creating a New Customer Review Record 141

A. DiningGuide Source Files 145
RestaurantBean.java Source 146
RestaurantDetail.java Source 149
CustomerreviewBean.java Source 154
CustomerreviewDetail.java Source 157
DiningGuideManagerBean.java Source 160
RestaurantTable.java Source 164

CustomerReviewTable.java Source 168

B. DiningGuide Database Script 173
Script for a PointBase Database 174
Script for an Oracle Database 175

6 Sun ONE Studio 5 J2EE Application Tutorial ¢ June 2003

C. Creating the Tutorial with an Oracle Database 177
Setting up Database Connectivity with the Oracle Database 177
Enabling the Oracle Type 4 JDBC Driver 178
Connecting the IDE to the Oracle Server 179
Creating a JDBC Connection Pool 180
Creating a JDBC Data Source 182
Creating a JDBC Persistent Manager 182
Creating the Database Tables 183
Creating EJB Components with an Oracle Database 185
Creating the Web Service with an Oracle Database 186

Index 187

Contents 7

8 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

Figures

FIGURE 2-1 DiningGuide Application Architecture 40

FIGURE 3-1 Function of a Detail Class 50

10 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Tables

TABLE 1-1

TABLE 1-2

TABLE 1-3

TABLE 1-4

TABLE C-1

TABLE C-2

Admin Server Property Values 25
DiningGuide Database Tables 33
Restaurant Table Records 33
CustomerReview Table Records 33
Oracle-Specific Changes to Chapter 3 185
Oracle-Specific Changes to Chapter 4 186

11

12 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Before You Begin

Welcome to the Sun™ ONE Studio 5 J2EE application tutorial. This tutorial shows
you how to use the following features of the Sun ONE Studio 5 integrated
development environment (IDE):

= EJB™ 2.0 Builder—for creating and developing Enterprise JavaBeans™
components based on the Enterprise JavaBeans Specification, Version 2.0.

= EJB module assembly—for assembling the EJB™ components into an EJB module,
which you export into an EJB Java Archive (JAR) file

= Test application facility—for testing enterprise beans without having to create a
client manually, using the Sun ONE Application Server 7, Standard Edition
software as the application server.

= Web Services features—for building a SOAP web service from the existing EJB
component, and generating JSP™ pages viewable from a web browser

= Deploying to the Sun ONE Application Server—for testing the tutorial
application

See the release notes for a list of environments in which you can create the example
in this book. The release notes are available on this web page:

http://forte.sun.com ffj/docunentation/index.htm

Screen shots vary slightly from one platform to another. Although almost all
procedures use the interface of the Sun ONE Studio 5 software, occasionally you
might be instructed to enter a command at the command line. Here too, there are
slight differences from one platform to another. For example, a Microsoft Windows
command might look like this:

c:>cd MyWor kDi r\ MyPackage

13

http://forte.sun.com/ffj/documentation/index.html

A UNIX command might look like this:

% cd MyWor kDi r/ MyPackage

Before You Read This Book

This tutorial creates an application that conforms to the architecture documented in
Java 2 Platform, Enterprise Edition (J2EE™) Blueprints. If you want to learn how to
use the features of Sun ONE Studio 5, Standard Edition to create, develop, and
deploy a J2EE compliant application, you will benefit from working through this
tutorial.

Before starting, you should be familiar with the following subijects:

= Java programming language

= Enterprise JavaBeans concepts

= Java™ Servlet syntax

= JDBC™ enabled driver syntax

= JavaServer Pages™ syntax

= HTML syntax

= Relational database concepts (such as tables and keys)
= How to use the chosen database

= J2EE application assembly and deployment concepts

This book requires a knowledge of J2EE concepts, as described in the following
resources:

= Java 2 Platform, Enterprise Edition Blueprints
http://java.sun.conlj2ee/ bl ueprints

= Java 2 Platform, Enterprise Edition Specification
http://java. sun. com j 2ee/ downl oad. ht m #pl at f or nspec

= The J2EE Tutorial
http://java.sun.conlj2ee/tutori al

= Java Servlet Specification Version 2.3
http://java. sun. com product s/ servl et/ downl oad. ht m #specs

= JavaServer Pages Specification Version 1.2
http://java. sun. coni product s/ j sp/ downl oad. ht m #specs

14 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs

Familiarity with the Java APl for XML-Based RPC (JAX-RPC) is helpful. For more
information, see this web page:

http://java. sun.conl xm /j axrpc

Note — Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

How This Book Is Organized

This manual is designed to be read from beginning to end. Each chapter in the
tutorial builds upon the code developed in earlier chapters.

Chapter 1 lists the software requirements for the DiningGuide tutorial, explains how
to start the Sun ONE Studio 5 IDE and the Sun ONE Application Server, how to get
the IDE and the application server to recognize each other and both communicating
with an Oracle database, how to create the tutorial database tables, and then create a
database schema in the IDE based on those tables.

Chapter 2 describes the functionality and architecture of the tutorial application.

Chapter 3 provides step-by-step instructions for creating the EJB tier of the tutorial
application, and how use the IDE’s test application facility to test each bean.

Chapter 4 describes how to use the IDE to generate the tutorial’s web service from
its EJB tier, and how to test the web service.

Chapter 5 explains how a provided Swing client accesses the output generated from
the Web Services module in Chapter 4, and how to run the tutorial application.

Appendix A provides complete source files for the tutorial application.
Appendix B provides the database script for the tutorial application.

Appendix C describes how to adapt the tutorial to create and run the application
using an Oracle database.

Before You Begin 15

http://java.sun.com/xml/jaxrpc

Typographic Conventions

Typeface

Meaning

Examples

AaBbCc123

AaBbCc123

AaBbCc123

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

What you type, when contrasted
with on-screen computer output

Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Edit your . cvspass file.

Use DI Rto list all files.

Search is conplete.

> login

Passwor d:

Read Chapter 6 in the User’s Guide.

These are called class options.
You must save your changes.

To delete a file, type DEL filename.

Related Documentation

Sun ONE Studio 5 documentation includes books delivered in Acrobat Reader (PDF)

format, release notes, online help, readme files for example applications, and
Javadoc™ documentation.

Documentation Available Online

The documents described in this section are available from the docs. sun. confM

web site and from the documentation page of the Sun ONE Studio Developer
Resources portal (http://forte. sun.conif ffj/documentation).

The docs. sun. comweb site (htt p: // docs. sun. con) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index installed with the product on your local
system or network.

= Release notes (HTML format)

Available for each Sun ONE Studio 5 edition. Describe last-minute release
changes and technical notes.

16 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

http://forte.sun.com/ffj/documentation/
http://docs.sun.com

« Sun ONE Studio 5, Standard Edition Release Notes - part no. 817-2337-10
Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 5 integrated development
environment (IDE) on each supported platform and include other pertinent
information, such as system requirements, upgrade instructions, application
server information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

= Sun ONE Studio 5, Standard Edition Getting Started Guide - part no. 817-2318-10
« Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 817-1145-10

Sun ONE Studio 5 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio
5 features to develop well-formed J2EE applications.

« Building Web Components - part no. 817-2334-10

Describes how to build a web application as a J2EE web module using JSP
pages, servlets, tag libraries, and supporting classes and files.

« Building J2EE Applications - part no. 817-2327-10

Describes how to assemble EJB modules and web modules into a J2EE
application, and how to deploy and run a J2EE application.

« Building Enterprise JavaBeans Components - part no. 817-2330-10

Describes how to build EJB components (session beans, message-driven beans,
and entity beans with container-managed or bean-managed persistence) using
the Sun ONE Studio 5 EJB Builder wizard and other components of the IDE.

« Building Web Services - part no. 817-2324-10

Describes how to use the Sun ONE Studio 5 IDE to build web services, to make
web services available to others through a UDDI registry, and to generate web
service clients from a local web service or a UDDI registry.

« Using Java DataBase Connectivity - part no. 817-2332-10

Describes how to use the JDBC productivity enhancement tools of the Sun
ONE Studio 5 IDE, including how to use them to create a JDBC application.

Sun ONE Studio 5 tutorials (PDF format)

These tutorials demonstrate how to use the major features of Sun ONE Studio 5,
Standard Edition.

= Sun ONE Studio 5 Web Application Tutorial - part no. 817-2320-10
Provides step-by-step instructions for building a simple J2EE web application.
« Sun ONE Studio 5 J2EE Application Tutorial - part no. 817-2322-10

Provides step-by-step instructions for building an application using EJB
components and Web Services technology.

Before You Begin 17

« Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10

Provides step-by-step instructions for building a simple application for a
wireless device, such as a cellular phone or personal digital assistant (PDA).
The application will be compliant with the Java 2 Platform, Micro Edition
(J2ME™ platform) and conform to the Mobile Information Device Profile
(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:
http://forte.sun.conf ffj/documentation/tutorial sandexanpl es. htm

Online Help

Online help is available inside the Sun ONE Studio 5 IDE. You can open help by
pressing the help key (F1 in Microsoft Windows and Linux environments, Help key
in the Solaris environment), or by choosing Help — Contents. Either action displays
a list of help topics and a search facility.

Examples

You can download examples that illustrate a particular Sun ONE Studio 5 feature, as
well as completed tutorial applications, from the Sun ONE Studio Developer
Resources portal at:

http://forte.sun.com ffj/docunmentation/tutorial sandexanpl es. htmi

The site includes the applications used in this document.

Javadoc Documentation

Javadoc documentation is available within the IDE for many Sun ONE Studio 5
modaules. Refer to the release notes for instructions on installing this documentation.

18 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Documentation in Accessible Formats

The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at htt p: // docs. sun. com

Mini-tutorials HTML at
http://forte.sun.com ffj/tutorial sandexanpl es. htn
Integrated example HTML in the example subdirectories of
readmes slstudio-install-directory/ exanpl es
Release notes HTML at htt p: // docs. sun. com

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this
document, go to:

http://ww. sun. conf servi ce/ contacti ng

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docf eedback@un. com

Please include the part number (817-2322-10) of your document in the subject line of
your email.

Before You Begin 19

http://docs.sun.com
http://forte.sun.com/ffj/tutorialsandexamples.html
http://docs.sun.com

20 Sun ONE Studio 5 J2EE Application Tutorial » June 2003

CHAPTER 1

Getting Started

This chapter describes what you must do before starting the Sun ONE Studio 5 J2EE
Application tutorial. The topics covered in this chapter are:

= “Obtaining and Installing the Required Software,” which follows
= “Starting the Software” on page 23

= “Setting Up Database Connectivity” on page 29

= “Tutorial Database Table Descriptions” on page 32

Note — There are several references in this book to the DiningGuide application files.
These files include a completed version of the tutorial application, a readme file
describing how to run the completed application, and SQL script files for creating
the required database tables. These files are compressed into a zip file you can
download from the Sun ONE Studio 5 Developer Resources portal at
http://forte.sun.com ffj/documentation/tutorial sandexanpl es. ht mi

Obtaining and Installing the Required
Software

The following items are required to create and run the tutorial.
= Sun ONE Studio 5, Standard Edition software, which includes:

« The Sun ONE Studio 5, Standard Edition integrated development environment
(IDE)

21

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

22

« The Sun ONE Application Server 7 software

The Sun ONE Studio 5, Standard Edition installer installs both products unless
it detects a supported version of the Sun ONE Application Server 7 already
installed. The Solaris™ 9 Update 2 Operating Environment, for example,
includes an installation of Sun ONE Application Server 7.

You can obtain the Sun ONE Studio 5, Standard Edition software from:

« The Sun ONE Studio 5, Standard Edition CD
« The Sun ONE Portal (http://wws. sun. com sof t war e/ sundev/ j de/)
« The Sun ONE Developer Resources portal (http://forte.sun.comffj/)

« Java™ 2 Software Development Kit (the J2SE™ SDK), version 1.4.1_02 or higher

The Sun ONE Studio 5, Standard Edition installer will not run if you do not have
the J2SE SDK on your system. If you do have a J2SE SDK on your system, the
installer will start and then verify whether the J2SE SDK you are using is a
version required by the IDE and the Sun ONE Application Server 7 for your
platform. If you do not have the required version, the installer will quit,
displaying a message that you must install the correct version before proceeding.
You can obtain the J2SE SDK from the same locations as the IDE.

= PointBase Network Server database software

This tutorial uses the PointBase database. PointBase is installed with the Sun ONE
Studio 5, Standard Edition software, in the subdirectory that contains the Sun
ONE Application Server 7 software. If your IDE and application server were
installed separately, your application server may or may not include PointBase
software. If it does not, you must download and install PointBase software
manually. Instructions are provided in the Sun ONE Application Server 7 Getting
Started Guide. Alternatively, Appendix C describes how to create the tutorial
application with an Oracle database.

= The tutorial database tables

The tutorial database tables are created for you by the Sun ONE Studio 5 installer
in the PointBase database in your user directory. The tables are described in
“Tutorial Database Table Descriptions” on page 32. Appendix C describes how to
install the tutorial tables in an Oracle database.

= A web browser

You need a web browser to view the tutorial application pages. This can be either
Netscape Communicator™ or Microsoft’s Internet Explorer.

You can access general system requirements from the release notes or from the Sun
ONE Studio 5 Developer Resources portal’s Documentation page at
http://forte.sun.conl ffj/docunmentation/.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

http://wwws.sun.com/software/sundev/jde/
http://forte.sun.com/ffj/documentation/
http://forte.sun.com/ffj/

Starting the Software

This section describes how to start the Sun ONE Studio 5 IDE and Sun ONE
Application Server 7 after the software has been installed.

Starting the IDE

There are several ways to start the Sun ONE Studio 5 IDE. Only one is described
here. For more options, see the Sun ONE Studio 5, Standard Edition Getting Started
Guide.

To start the IDE:

Start the Sun ONE Studio 5 IDE by running the program executable.

= On Microsoft Windows, choose Start —» Programs — Sun Microsystems - Sun
ONE Studio 5 SE - Sun ONE Studio 5 SE

= On Solaris, UNIX, and Linux environments, run the r uni de. sh script in a
terminal window, as follows:

$ sh slstudio-install-directory/ bi n/ r uni de. sh

The slstudio-install-directory variable stands for the IDE’s home directory, which is
by default $HOVE/ st udi 05_se (UNIX standard user) or / opt / st udi 05_se
(UNIX superuser).

Starting the Application Server

Before starting this section, you must have write access to an application server
domain. The default domain is created during installation and requires superuser
privileges (administrator privileges on Microsoft Windows systems or root
privileges in Solaris or Linux environments) to access. If your userid has superuser
privileges, you can start the application server using all default settings, as described
in the next section. Standard users (without superuser privileges) must use the
procedures described in “Starting the Admin Server (Standard User)” on page 25.

Chapter 1 Getting Started 23

Starting the Admin Server (Superuser)

If you have started the admin server previously, confirm whether it is running. See
“Confirming Sun ONE Application Server 7 as the Default Server” on page 29 for
information. If this is the first time you have started the admin server, start with this
section.

To start the admin server:

1. In the IDE, select the Runtime tab of the Explorer.
The Runtime pane of the Explorer displays the Server Registry node, among other
nodes. This node contains subnodes for all the installed web and application servers,
and a node showing which servers are the default servers.

2. Select the Server Registry node.
A query window pops up, asking whether you want to start the admin server. This
refers to the default domain’s admin server, which can only be run by a privileged
user.

3. Click OK to start the default admin server.
The IDE starts the default admin server and configures Sun ONE Application Server
7 as the IDE’s default application server. It also creates a server instance, serverl.

4. Expand the Server Registry node, the Installed Servers node, and the Sun ONE
Application Server 7 node.
The Server Registry in the Explorer looks like this:

Explorer [Rurtitme] E
—
5= Rurtine
9 Server Registry Values show a local
@ B Defaut Servers installation of Sun ONE
[J2EE Applications : serverd (localhost 50) Ji Application Server 7 set
03 web Tier Applications : server! (localhost:G00 as default web and

@ B Installed Servers
o= 1 Weblogic Server 6.1
@ Tomcat 4.0
o= Weblogic Server 7.0
@ dﬂ Sun ONE Application Server 7 . .
P E@ localhost 4548 Admin server instance
& [servert focalhost &) Application server instance
Unregistered JOBC Connection Pools
Unregistered JOBC Data Sources
Unregistered JMS Resources
Unregistered Perzistence Managers
Unregistered Java Mail Sessions

application server

PPPPY

Now, start the server instance, as described in “Starting the Application Server
Instance” on page 28.

24 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Starting the Admin Server (Standard User)

If your userid does not have superuser privileges, a superuser must create a domain
for you before you start this section. The procedures are described in the Sun ONE
Studio 5, Standard Edition Getting Started Guide.

If you have started the IDE previously, created an admin server, and started it,
confirm now whether it is running by using the procedures described in
“Confirming Sun ONE Application Server 7 as the Default Server” on page 29. If this
is the first time you have started the admin server, continue with this section.

Before starting the procedures described in this section, you will need values of
several properties of your domain. Your administrator can provide these for you.
Use the following table to record your values to these properties.:

TABLE 1-1 Admin Server Property Values

Admin Server Properties IYour Value

Admin Server Host

Admin Server Port

User Name

User Password

Domain

To start the admin server:

. In the IDE, select the Runtime tab of the Explorer.

The Runtime pane of the Explorer displays the Server Registry node, among other
nodes. This node contains subnodes for all the installed web and application servers,
and a node showing which servers are the default servers.

. Select the Server Registry node.

A query window pops up, asking whether you want to start the admin server. This
refers to the admin server of the default domain, which can only be run by a
privileged user.

If you click OK, this action creates and starts an admin server that you cannot use.
Click Cancel.

. Add your admin server to the IDE.
a. Expand the Server Registry node and the Installed Servers node.

b. Right-click the Sun ONE Application Server 7 node and choose Add Admin
Server.

The Add Admin Server dialog box is displayed.

Chapter 1 Getting Started 25

Add Admin Server

Admin Server Host ||

Aclimin Server Port |

Uzer Passward |

|
|
User Marne | |
|
|

Diatnain |domain1

| Ok || Cancel || Hedp |

¢. Type in your values (see TABLE 1-1) and click OK.

If an error message appears, stating that the IDE could not locate the admin
server, but will start it if it is local, click OK to close the error window. A progress
window appears, showing the admin server process starting up.

A new admin server node is generated in the Explorer. In the following screen
shot, for example, a new admin server’s host is localhost and port number is 4849.

Explorer [Runtime] E
E Ruritirme
(o] Server Registry
- @ Default Servers
@ BB Installed Servers
g dﬁ Sun ONE Application Server 7
B3 localhost 4545
@[3 locahost 4850 New admin server instance
Unregistered JDBC Connection Pools
Unregistered JDBC Data Sources
Unregistered JMS Resources
Unregistered Persistence Managers
Unregistered Java Mail Sessions
- fﬁ Tarmcat
@ B DDI Server Registry
@ & Processes
@ = Databases

-~ I -

?PPPPY

4. Create an application server instance.

a. Right-click the new admin server node and choose Create a Server Instance.
The Enter Server Instance Values dialog box is displayed.

b. Type in a name and an available port number.
For example, you could type MySer ver and 4855.

26 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Note — On Solaris and Linux systems, port numbers below 1024 are reserved. Use a
port number above 1023. On all systems, do not use the port number used by the
default application server, which is 80.

c. Click OK.

This action starts the admin server, which you can verify by messages in the
output window and status bar. The new server instance is created in the IDE.

Explorer [Rurtite] =l
E Runtime
o] Server Registry
& E Default Servers
@ B Installed Servers
& 2 Tomcat
@ <y Sun ONE Spplication Server 7
&3 localhost 4543
© 33 locahost4as0
e [3 hyServer (localhost4855)
- Unregistered JDBC Connection Pools
- Unregistered JOBEC Data Sources

5. Set the default application and web server by right-clicking the new server
instance and choosing Set As Default.
6. Expand the Default Servers node to verify this action.

The default servers for J2EE applications and web tier applications show the new
server as the default.

Explorer [Rurtime] [l
E Rurtime

Q Server Registry
@ & Default Servers

1 J2EE Applicstions : MyServer (localhost4855)1||——— New server as
A Wik Tier Spplications : MyServer (localhost 48 default server
@ B Installed Servers
- @. Taomcat

@ dﬂ Sun ONE Application Server 7
& [Iocalhost 4543
® B Iocahost 4850
(o g E@ My Zerver (localhost 48355)

Now start the server instance, as described in the next section.

Chapter 1 Getting Started 27

28

Starting the Application Server Instance

When you are test deploying and deploying applications during development, the
IDE starts the application server instance automatically as long as the admin server
is running. In this section, you start the application server instance manually in
order to perform some operations described later in this chapter.

All users start the server instance as follows:

. Right-click the application server node and choose Status.

Note — If this node is not displayed, select the admin server instance node and
choose Refresh.

The Sun ONE Application Server Instance Status dialog box is displayed, as shown
(your instance label may be different).

[E!_ISun OME Application Server Instance Statu:

Instance . server] (localhost: 800

Status Stopped

[]| Debug Made

‘ /L/Start Server button
| Start Server ”/ Cloze || Help |

. Click the Start Server button.

(If the dialog box has a Stop Server button, the server is already running.)
On Microsoft Windows systems, a command window appears, displaying progress
messages.

The server is started when the Server Instance Status window displays Status:
Running.

. Click Close on the instance status dialog box.

Now, proceed to “Setting Up Database Connectivity” on page 29.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Confirming Sun ONE Application Server 7 as the
Default Server

If you have started Sun ONE Application Server 7 before, this is how you confirm
that it is still the default server:

. In the IDE, select the Runtime tab of the Explorer.

. Expand the Server Registry node and its Default Servers subnode.

If the J2EE Applications node’s label is server-instance(server-hostname: server-port-
number) , as shown, then Sun ONE Application Server 7 is the default application
server. Go to the next section. Otherwise, continue with the next step.

Server Registry Value shows a local

5= E.?Efiéiijvelr,s stione - vServer (asahost 4855 installation of Sun ONE
pplications : MyServer (localhost 4855) Application Server 7 set as

A Wk Tier Applications | MyServer (localhost 4855) default application server

. Find your application server instance under the Installed Servers node, right-click
it, and choose Set As Default.

Your server is set as the default server for J2EE and Web Tier applications.

Setting Up Database Connectivity

An enterprise application uses the Java Database Connectivity (JDBC™) API to
interact with a database. Before you can deploy and execute an enterprise
application with Sun ONE Application Server 7, the following required JDBC-related
actions must be performed in the application server environment. These include:

= Enabling the database’s JDBC driver
= Creating a connection pool

Enterprise applications require pooling of database connections so that the
business objects in the system can share database access.

= Creating a JDBC data source

A JDBC data source (also called a JDBC resource) lets you make connections to a
database with the get Connection() method.

= Creating a JDBC persistent manager

A persistent manager is a component responsible for the persistence of the entity
beans installed in the container.

Chapter 1 Getting Started 29

30

Under most circumstances, the Sun ONE Studio 5 IDE performs all these actions for
you, providing the values required by the tutorial. Depending on the privileges of
your userid and the platform you are using, these are performed with different
methods, which are described in “Setting JDBC Resources (Microsoft Windows
Superusers)” on page 30 and “Setting JDBC Resources (All Other Users)” on page 31.

Exceptions to automatic enabling of the JDBC driver, however, are not dependent on
your userid, as the next section describes.

Enabling the JDBC Driver

The PointBase JDBC driver is installed automatically with the standard installation,
where the Sun ONE Studio 5 IDE and Sun ONE Application Server 7 are installed
together.

Note — If the Sun ONE Studio 5 IDE and Sun ONE Application Server 7 were
installed separately, there are actions you must take. These are described in the Sun
ONE Studio 5, Standard Edition Getting Started Guide.

Setting JDBC Resources (Microsoft Windows
Superusers)

The Sun ONE Studio 5 installer automatically creates the three connectivity
resources for the Microsoft Windows user with administrator privileges.

Note — If the Sun ONE Studio 5 IDE and Sun ONE Application Server 7 were
installed separately, you must configure the JDBC resources with the procedure
described in “Setting JDBC Resources (All Other Users)” on page 31.

To view the resources in the IDE:

. In the Runtime pane of the Explorer, expand the Server Registry and Installed

Servers nodes.

. Expand the default admin server node (localhost:4848) and the default application

server node (serverl(localhost:80)).

. Expand the registered resources for JDBC Connection Pools, JDBC Data Sources,

and Persistent Managers.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

You should see the following nodes under these:

= JDBC Connection Pools: PointbasePool
= JDBC DataSources: jdbc/jdbc-pointbase
= Persistent Managers: jdo/PointbasePM

The Explorer looks like this:

Explarer [Rurtime]

E Runtime
o] Server Registry
& Eh Detault Servers
@ H Installed Servers
& 2 Tomcat
& <y Sun ONE Spplication Server 7
© 3% locahost4343
@ E@ zarver] (ocalhost 800
@ J Registered JDBEC Connection
J PointhazePool
@ J Registered JDBC DataSource:
[A] jebcidbc-pointbase
Registered JMS Resources
Registered Persistent Manage
[A] jsoPeirthasePu

o
P
o

|

| Renistered Jave Mail Srssinns |22

Setting JDBC Resources (All Other Users)

Note — Before starting this procedure, make sure both the admin server and the

application server are running (refer to “Starting the Software” on page 23).

To create the JDBC connection resources for this tutorial:

. In the Runtime pane of the Explorer, expand the Server Registry and Installed

Servers nodes.

. Locate your application server instance.

It is labeled app-server-name (app-server-host:app-server-port), for example, MyServer

(localhost:4855).

. Right-click the application server instance node and choose Preconfigure

PointBase JDBC Resources.

A timer icon (such as an hour glass) appears. When the process is complete, the

cursor reverts to its usual icon.

Chapter 1 Getting Started

31

4. Expand the registered resources for JDBC Connection Pools, JDBC Data Sources,
and Persistent Managers.

You should see the following nodes under these:

= JDBC Connection Pools: PointbasePool
= JDBC DataSources: jdbc/jdbc-pointbase
= Persistent Managers: jdo/PointbasePM

The Explorer looks like this:

Explorer [Ruritime] [=
—
% Ruritime -
(o] Server Registry
& Detautt Servers
@ B Installed Servers
& & Tomcat
@ 4 Sun ONE Application Server 7
o[localhost 4543
9 [locahost4ss0
% % Myserver (ocalhost4855)
@ J Registered JDBC Connection Pq:
J PointhazePool :
@ J Registered JDBC DataSources |
[4A] iebcidbc-poirtbase :
- :| Registered JMZ Resources
g
e

Registered Persistent Manager
[A] isomirthasePm

Rarictarar laws Mail Sacainne [H

Now proceed to the tutorial’s database tables.

32

Tutorial Database Table Descriptions

The DiningGuide tutorial uses two database tables, Restaurant and
CustomerReview. These tables are automatically created for you in the PointBase
default (sample) database with the standard installation, where Sun ONE Studio 5
software and Sun ONE Application Server 7 are installed together.

However, if Sun ONE Studio 5 software and Sun ONE Application Server 7 were not
installed together, you must follow the procedures described in “Enabling the JDBC
Driver” on page 30. This action not only enables the PointBase JDBC driver, but
copies the default sample database to your user directory, which makes these tables
available to you.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

The database schemas shown in TABLE 1-2 are used in this tutorial. They are created

in the PointBase database by the Sun ONE Studio 5 installer.

TABLE 1-2 DiningGuide Database Tables

Table Name Columns Primary Key Other
Restaurant restaurantName yes
cuisine

neighborhood
address
phone
description
rating

CustomerReview restaurantName yes Compound primary key with
CustomerName; references
Restaurant(restaurantName)

customerName yes

review

The Restaurant table contains the records shown in TABLE 1-3.

TABLE 1-3 Restaurant Table Records

restaurant-
Name cuisine neighborhood address phone description rating
French Mediterranean Rockridge 1200 College 510888 \Very nice 5
Lemon Avenue 8888 spot.
Bay Fox Mediterranean Piedmont 1200 510 888 Excellent. 5
Piedmont 8888
Avenue

The CustomerReview table contains the records shown in TABLE 1-4.

TABLE 1-4 CustomerReview Table Records

restaurantName customerName comment
French Lemon Fred Nice flowers.
French Lemon Ralph Excellent Service

Chapter 1 Getting Started

33

Now you are ready to start the tutorial application. Either continue to Chapter 2 to
get an overview of the application you will build, or go directly to Chapter 3 and
start building it.

34 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

CHAPTER 2

Introduction to the Tutorial

In the process of creating the tutorial example application, you will learn how to
build a simple J2EE application using Sun ONE Studio 5, Standard Edition features.

This chapter describes the application you will build, first describing its
requirements, and then presenting an architecture that fulfills the requirements. The
final section describes how you use Sun ONE Studio 5, Standard Edition
features—the EJB Builder, the test application facility, and the New Web Service
wizard—to create the application.

This chapter is organized into the following sections:

= “Functionality of the Tutorial Application,” which follows

= “User’s View of the Tutorial Application” on page 37

= “Architecture of the Tutorial Application” on page 40

= “Overview of Tasks for Creating the Tutorial Application” on page 42

Functionality of the Tutorial Application

The tutorial application, DiningGuide, is a simple dining guide application that
enables users to view a list of available restaurants and their features. The user can
also view a list of a selected restaurant’s customer reviews, and add a review to a
restaurant’s record. The restaurant features include the restaurant name, its cuisine
type, its neighborhood, address, and phone number, a brief description of the
restaurant, and a rating number (1 - 5).

The user interacts with the application’s interface as follows:

= The user views a complete list of restaurants
= The user requests a list of customer reviews for a particular restaurant
= The user writes a review and adds it to the restaurant’s list of reviews

35

36

Application Scenarios

The interaction of DiningGuide begins when the user executes a client page listing
all the restaurant records in the database. The interaction ends when the user quits
the application’s client. A simple Swing client is provided to illustrate how a user
can interact with the application’s features. However, other types of clients, such as
a web client or another application, could access the business methods of the
DiningGuide application.

The following scenarios illustrate interactions that happen within the application,
and the application’s requirements.
1. The user executes the application’s Rest aur ant Tabl e class.

The application displays the DiningGuide Restaurant Listing window, which
displays a list of all restaurants, their names, cuisine type, location, phone
number, a short review comment, and a rating from 1 to 5. On the page is a
button labeled View Customer Comments.

2. The user selects a restaurant record in the list and clicks the View Customer
Comments button for a given restaurant.
The application displays a All Customer Reviews By Restaurant Name window
with a list of all the reviews submitted by customers for the selected restaurant.
3. On the customer review window, the user types text into the Customer Name and
Review fields and clicks the Submit Customer Review button.

The application adds the customer’s name and review text to the
CustomerReview database table, and redisplays the All Customer Reviews By
Restaurant Name window with the new record added.

4. The user returns to the Restaurant Listing window, selects another restaurant, and
clicks the View Customer Comments button.

The application displays a new All Customer Reviews By Restaurant Name
window showing all the reviews for the selected restaurant.

Application Functional Specification

The following items list the main functions for a user interface of an application that
supports the application scenarios.

= A master view of all restaurant data through a displayed list

= A button on the master restaurant list window for retrieving all customer review
data for a given restaurant

= A master view of all customer review data for a given restaurant
= A button on the customer review list window for adding a new review

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

= Text entry fields on the customer review list window for typing in a new
customer name and new customer review for the current restaurant

= A button on the customer review list window for submitting the finished review
data to the database

User’s View of the Tutorial Application

The user’s view of the application illustrates how the scenarios and the functional

specification, described in “Functionality of the Tutorial Application” on page 35 are
realized.

. In the Sun ONE Studio 5 Explorer, right-click the RestaurantTable node and
choose Execute.

The IDE switches to Runtime mode. A Restaurant node appears in the execution
window. Then, the RestaurantTable window is displayed, as shown:

2 =10]]
Restaurant Listing

RESTAURAN.] CUISINE |NEIGHEORH.| ADDRESS | PHOME |DESCRIFTION] RATING |

French Leman Mediterranean |Rockridge 1200 College...|510 888 8888 |Verynice spot. |5

Bay Fox Mediterranean Piedmont 1200 Piedmo...|510 888 85888 |Excellent. i)

| Yiew Customer Comments |

This window displays the data from the Restaurant table described in “Tutorial
Database Table Descriptions” on page 32.

. To view the customer reviews for a given restaurant, select the restaurant name
and click the View Customer Comments button.

For example, select the Bay Fox restaurant. The CustomerReviewTable window is
displayed.

Chapter 2 Introduction to the Tutorial 37

38

& IS[=]ES

All Customer Review By Restaurant Name

CUSTOMER MNAME | REVIEW

Customer Name | |

Review | |

| Submit Customer Review |

In this case, no records are shown, because none are in the database. Refer to
TABLE 1-4.

3. To add a review, type in a customer name and some text for the review and click
the Submit Customer Review button.

For example, type in New User for the name and | ' mspeechl ess! for the review.
The application redisplays the customer review window, as shown:

& i [=[E3

All Customer Review By Restaurant Name

CUSTOMER MAME | REVIEW
Mew Llser I'm speechless

Customer Name [new User |

Review ['m speechless |

| Submit Customer Review |

Now, display the reviews of the other restaurant.

4. On the Restaurant List window, select French Lemon and click the View Customer
Comments button.
A new customer review list window is displayed, showing the comments for the
French Lemon restaurant.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

& i [=]
All Customer Review By Restaurant Name

CUSTOMER NAME | REVIEW
Fred MHice flowers.
Ralph Excellent service.

Customer Name | |

Review | |

| Submit Customer Review |

Two customer review records are displayed. Refer to TABLE 1-4 for confirmation.

. Continue to add and view customer review records.

. When you are done, quit the application by closing any of the application’s
windows.

. To verify that the new customer review records were written to the database, in
the IDE, select the Runtime tab of the Explorer.

. Expand the Databases node, the PointBase connection node, and the Tables node
under it.

. Right-click the CUSTOMERREVIEW table and choose View Data.

A command editor window is displayed, showing any new CustomerReview
records you entered in Step 3, for example:

%5 Command Editor jdbc: [Command Editor jdbe:pointbaze: server:/localhosk:_
’Selec‘t "RESTALURAMTHAME", "CUSTOMERMAME", "REVIEW" from "PEPUBLIC" "CUSTOMERREWIEW" ‘ﬂ
-

| v|| Execute |

RESTAURAN.. [CUSTOMERN..| REWIEWY [
French Lemon [Fred Mice floveers.
French Lemaon |Ralph Excellent service.
Bay Fox Mewy User I'tn speechless!

L Cornmand Editor jdbc: poirtbase: server: Mocalhost: 3092isample [phpublic on PEPUBLIC] =

Chapter 2 Introduction to the Tutorial 39

FIGURE 2-1

40

Architecture of the Tutorial Application

The heart of the tutorial application is the EJB tier that contains two entity type
enterprise beans, two detail classes, and a session bean. The entity beans represent
the two DiningGuide database tables (Restaurant and CustomerReview); the two
detail classes mirror the entity bean fields and include getter and setter methods for
each field. The detail classes are used to reduce the number of method calls to the
entity beans when retrieving database data. The session bean manages the
interaction between the client (by way of the web service) and the entity beans.

FIGURE 2-1 shows the DiningGuide application architecture.

Java Client

Client Proxy

Web Service Tier EIS Tier

Collection of
RestaurantDetai
objects

Application Service Tier

Restaurant
Detail

o Restaurant | Tt

Entity Bean

@pnm
!

Client App

SOAP Dining / S -
rpcrouter MGulde 0 Database
Servlet anager

\ Entity Bean :
‘l: Customer-
Customer- review

review
Detail

Collection of
CustomerreviewDetdil
objects

E)B Container

Dini

ngGuide Application Architecture

In FIGURE 2-1, the client includes a client proxy, which uses the SOAP runtime system
to communicate with the SOAP runtime system on the web server. Requests are
passed as SOAP messages. The web service translates the SOAP messages into calls
on the EJB tier’s session bean’s methods. The session bean passes its responses back
to the web service, which translates them into SOAP messages to give to the client
proxy and ultimately get translated into a display of data or action.

A SOAP request is an XML wrapper that contains a method call on the web service
and input data in serialized form.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Application Elements

The elements shown in FIGURE 2-1 are:

An application service tier (an EJB tier)

You build and test the EJB tier before you build anything else in the tutorial. The
EJB tier consists of:

Two entity enterprise beans that use container-managed persistence (CMP) to
represent the two database tables of the application

Two detail classes to hold returned database records

A stateless session enterprise bean to manage the requests from the client and
to format the objects returned to the client.

The web service tier

A web module containing Servlets and JSP pages for exercising the session
bean’s methods

This is automatically created when a test application is built for the session
bean.

A web service logical node that represents the entire web service and enables
modification and configuration of the web service

A client proxy that is generated when the web service is deployed

A WSDL (Web Services Descriptive Language) file that described the web
service for a client

The client

The client component is a Swing client that displays the application pages. In
Chapter 5, you copy code from provided client pages that instantiate the client
proxy created in the web service in Chapter 4.

EJB Tier Details

The EJB tier of the DiningGuide application contains two entity-type enterprise
beans, two detail classes, and a session bean used to manage the interaction between
the client and the entity beans.

Restaurant CMP EJB component

The Restaurant bean is an entity bean that uses container-managed persistence
(CMP) to represent the data of the Restaurant database table.

Customerreview CMP EJB component

Also a CMP-type entity bean, the Customerreview entity bean represents the data
from the CustomerReview database table.

Chapter 2 Introduction to the Tutorial 41

= RestaurantDetail class

This component has the same fields as the Restaurant entity bean, plus getter and
setter methods for each field for retrieving this data from the entity bean’s remote
reference. Its constructor instantiates an object that represents the restaurant data.
This object can then be formatted into a JSP page, HTML page, or Swing
component for the client to view.

= CustomerreviewDetail class

This component serves the same function for the Customerreview entity bean that
the RestaurantDetail class serves for the Restaurant entity bean.

= DiningGuideManager session EJB component

This component is a stateless session bean that is used to manage the interaction
between the client and the entity beans.

42

Overview of Tasks for Creating the
Tutorial Application

The tutorial building process is divided into three chapters. In the first (Chapter 3),
you create the EJB tier and use the IDE’s test application facility to test each
enterprise bean as you work. Then you create a session bean to manage traffic. This
is a common model when creating the web services and the client manually.

In the second chapter (Chapter 4), you create a web service and specify which of the
EJB tier’s business methods to reference. You deploy the web service, which
generates a client proxy, and then you test the client proxy.

In the final chapter (Chapter 5), you install two provided Swing classes into the
application and execute them to test the application.

Creating the EJB Components

In Chapter 3 you learn how to use Sun ONE Studio 5 features to:
= Build entity and session beans quickly with the EJB Builder
= Generate classes (with getter and setter methods) from a database schema

= Use the test application facility to assemble a test J2EE application from enterprise
beans

= Add EJB references to a J2EE application

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

= Deploy the test application to the J2EE Reference Implementation application
server

= Exercise enterprise bean methods from the test client page created by the test
application facility.

Using the EJB Builder

The EJB Builder wizard automatically creates the various components that make up
an enterprise bean, whether it’s a stateless or stateful session bean, or an entity bean
with container-managed persistence (CMP) or bean-managed persistence (BMP). In
Chapter 3, you create two CMP entity beans based on existing database tables, and a
stateless session bean.

When you create the entity beans, you learn how to connect to a database during the
creation process, and then generate an entity bean whose fields represent the table’s
columns. The basic parts of the bean are generated into the Sun ONE Studio 5
Explorer with Java code already generated for the home interface, remote interface,
bean class, and (if applicable) the primary key class. You learn how to edit and
modify the bean properly by using the logical bean node, which represents the bean
as a whole. You learn to add create, finder, and business methods using the EJB
Builder’s GUI features.

Creating the Detail Classes

The detail classes must have the same fields as the entity beans. You create two
classes and add the appropriate bean properties to them. While adding each
property, you activate an option that automatically generates accessor methods for
the property. This way, you obtain the getter and setter methods the application
requires. Then you code each class’s constructor to instantiate the properties. Finally,
you add code to each of the two entity beans to return an instance of its
corresponding detail class.

Using the Test Application Facility

The Sun ONE Studio 5 IDE includes a facility for testing enterprise JavaBean
components without your having to create a client for this purpose. This facility uses
Sun ONE Application Server 7 as the application server and deploys the enterprise
bean as part of a J2EE application that includes a web module and client JSP pages.
An HTML page coordinates these JSP pages so that, from a web browser, you can
create an instance of the bean and then exercise its business methods.

Chapter 2 Introduction to the Tutorial 43

44

You create test applications for all three of the enterprise beans separately. For the
entity beans, the test application generates a J2EE application that contains a web
module, which contains the automatically generated JSP pages for the client’s use
from a web browser, and an EJB module for the entity bean. The session bean’s EJB
module must also contain the EJB modules of the entity beans, because it calls
methods on those entity beans. You add the entity bean references to the session
bean’s EJB module using commands in the IDE. The EJB module created while
creating the test application is referenced later by the web service.

When you test the session bean in a web browser, you can exercise all the
application’s business methods. At the end of Chapter 3 are guidelines for using the
test client apparatus to guide you if you want to create your own web service and
client manually.

Creating the Tutorial’s Web Service

In Chapter 4 you learn how to use Sun ONE Studio 5 features to:

= Create a logical web service

= Specify which session business methods are to be referenced by the web service
= Create a J2EE application to contain the web service

= Generate the web service’s runtime classes and client pages

= Generate the web service’s client proxy

Creating a Web Service

A web service is a logical entity that represents the entire set of objects in the web
service, and facilitates modifying and configuring the web service. You create a web
service in the Explorer using the New wizard to define its name and package
location. As you create the web service, the wizard prompts you to specify the
business methods you want the web service to reference.

You inform the web service of the location of the JAX-RPC runtime by specifying its
URL as a property of the web service. You then generate the web service’s runtime
classes, which are EJB components that implement the web service.

Creating a Test Client for the Tutorial

You create a test client that consists of front-end client and a back-end J2EE
application. You then add references to the session bean’s EJB module and to the
web service. This action makes the web service’s WAR and EJB JAR files available,
S0 you can customize their properties. One property that you customize is the Web
Context property. This completes the DiningGuide’s J2EE application, and you are
ready to deploy it.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Deploying the Web Service and Creating a Test Client

When you deploy the J2EE application that contains the web service, the IDE
automatically generates a client proxy and supporting files. The supporting files
include a JSP page for each referenced method, a JSP error page, and a welcome

page.

Testing the Web Service

You use an IDE command to deploy the DiningGuide application. This starts the
application server and displays the test client’s welcome page that displays all the
operations on one page. The generated JSP pages contain input fields when an input
parameter is required, and an Invoke button to execute the operation. You use these
means to test how the web service calls each of the session bean’s methods.

Making a Web Service Available to Other Developers

Although this tutorial does not describe how to publish the web service to a UDDI
registry, it does describe an informal method for enabling other developers to use
the web service for testing purposes. You learn how to generate a WSDL file, which
you can then make available, either by placing it on a server, or by distributing it
some other way, such as by email. The target developers can generate a client proxy
from this file and discover which methods are available on your web service. They
can then build a client accordingly, and, if you provide them with the URL of your
deployed web service, they can test their client against your web service.

The Sun ONE Studio 5 IDE also provides a single-user internal UDDI registry for
testing purposes. The StockApp example, available from the Examples and Tutorials
page of the Sun ONE Studio 5 Developer’s portal, demonstrates how to publish a
web service using this device. The Examples and Tutorials page is at:

http://forte.sun.com ffj/documentation/tutorial sandexanpl es. ht n

See Building Web Services in the Sun ONE Studio 5 Programming series for complete
information about publishing a web service to a UDDI registry.

Installing and Using the Provided Client

Code for a simple Swing client that demonstrates the functionality of the
DiningGuide application is provided in Appendix A. This client consists of a Swing
class for each of the database tables. You create two classes and then replace their
default code with the provided code. Then, you simply execute the main class.

Chapter 2 Introduction to the Tutorial 45

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

You learn by examining the provided code how a client accesses the application’s
methods. First, the client must instantiate the client proxy. This makes the client
proxy’s methods available to the client. These methods (see FIGURE 2-1) are used by
the SOAP runtime to access the methods of the application’s EJB tier.

46

End Comments

This tutorial application is designed to be a running application that illustrates the
main features of Sun ONE Studio 5, Standard Edition, while still brief enough for

you to create in a short time (perhaps a day). This places certain restrictions on its
scope, for example:

= There is no error handling
= There are no debugging procedures
= Publishing the web service is not described

Although the tutorial application described in this book is designed to be a simple
application that you can complete quickly, you might want to import the entire
application, view the source files, or copy and paste method code into methods you
create. The DiningGuide application is accessible from the Examples and Tutorials
page of the Sun ONE Studio 5 Developer’s portal at:

http://forte.sun.conl ffj/docunmentation/tutorial sandexanpl es. htmi

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

CHAPTER 3

Building the EJB Tier of the
DiningGuide Application

This chapter describes, step by step, how to create the EJB tier of the DiningGuide
tutorial application. Along the way, you learn how to use the EJB Builder to create
both entity and session beans, and how to use the IDE’s test mechanism to test the
beans. The topics covered in this chapter are:

= “Overview of the Tutorial’s EJB Tier,” which follows

= “Creating Entity Beans With the EJB Builder” on page 52

= “Creating Detail Classes to View Entity Bean Data” on page 68
= “Testing the Entity Beans” on page 72

= “Creating a Session Bean With the EJB Builder” on page 87

= “Testing the Session Bean” on page 100

= “Comments on Creating a Client” on page 109

By the end of this chapter, you will be able to run the whole EJB tier of the
DiningGuide application as a deployed test application.

After you have created the EJB tier, you are free to create your own web services and
client pages. Alternatively, you can continue on to Chapter 4, to learn how to create
the application’s web services using the Sun ONE Studio 5 Web Services features.

Overview of the Tutorial’s EJB Tier

In this chapter, you create the module that is the heart of the tutorial application,
namely, its EJB tier. As you create each component, you test it using the IDE’s test
application facility, which automatically creates a test web service and test client.

47

The EJB tier you create will include:

= a Restaurant entity bean

= a Customerreview entity bean

= a DiningGuideManager session bean
= a RestaurantDetail bean

= a CustomerreviewDetail bean

For a complete discussion of the role of the EJB tier within J2EE architecture, see
Building Enterprise JavaBeans Components in the Sun ONE Studio 5 Programming
series. That document provides full descriptions of all the bean elements, and
explains how transactions, persistence, and security are supported in enterprise
beans.

To examine an application that also uses an EJB tier and a web service generated
from it, see the PartSupplier example on the Sun ONE Studio 5 examples page,
http://forte.sun.conm ffj/documentation/tutorial sandexanpl es. htm

The Entity Beans

An entity bean provides a consistent interface to a set of shared data that defines a
concept. In this tutorial, there are two concepts: restaurant and customer review. The

Restaurant and Customerreview entity beans that you create represent the database
tables you created in Chapter 1.

Entity beans can have either container-managed persistence (CMP) or bean-managed
persistence (BMP). With a BMP entity bean, the developer must provide code for
mapping the bean’s fields to the database table columns. With a CMP entity bean,
the EJB execution environment manages persistence operations. In this tutorial, you
use CMP entity beans. Using the IDE’s EJB Builder wizard, you connect to the
database and indicate which columns to map. The wizard creates the entity beans
mapped to the database.

The EJB Builder creates the CMP entity bean’s framework, including the required
home interface, remote interface, and bean class. The wizard also creates a logical
node to organize and facilitate customization of the entity bean.

You manually define the entity bean’s create, finder, and business methods. When
you define these methods, the IDE automatically propagates the method to the
appropriate bean components. For example, a create method is propagated to the
bean’s home interface and a corresponding ejbCreate method to the bean’s class.
When you edit the method, the changes are propagated as well.

48 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

With finder methods, you must define the appropriate database statements to find
the objects you want. The EJB 2.0 architecture defines a database-independent
version of SQL, called EJB QL, which you use for your statements. At deployment,
the Sun ONE Application Server plugin translates the EJB QL into the SQL
appropriate for your database and places the SQL in the deployment descriptor.

The Session Bean

Entity beans represent shared data, but session beans access data that spans concepts
and is not shared. Session beans can also manage the steps required to accomplish a
particular task. Session beans can be stateful or stateless. A stateful session bean
performs tasks on behalf of a client while maintaining a continued conversational
state with the client. A stateless session bean does not maintain a conversational state
and is not dedicated to one client. Once a stateless bean has finished calling a
method for a client, the bean is available to service a request from a different client.

In the DiningGuide application, client requests might include obtaining data on all
the restaurants in the database or finding all the customer reviews for a given
restaurant. Submitting a review for a given restaurant is another client request.
These requests are not interrelated, and don’t require maintenance of a
conversational state. For these reasons, the DiningGuide tutorial uses a stateless
session bean to manage the different steps required for each request.

The session bean repeatedly builds collections of restaurant and customer review
records to satisfy a client’s request. This task could be accomplished by adding
getter and setter methods for each field onto the entity beans, but this approach
would require calling a method for every field each time the session bean has to
retrieve a row of the table. To reduce the number of method calls, this tutorial uses
special helper classes, called detail classes, to hold the row data.

The Detail Classes

A detail class is a Java class that has fields that correspond to the container-managed
fields of the entity beans, plus getter and setter methods for each field. When the
session bean looks up an entity bean, it uses the corresponding detail class to create
an instance of each remote reference returned by the entity bean. The session bean
just calls the detail class’s constructor to instantiate a row of data for viewing. In this
way, the session bean can create a collection of row instances that can be formatted
into an HTML page for the client to view. Returning detail class instances to the
client consumes less network bandwidth than returning remote references for the
entity bean instances.

FIGURE 3-1 shows graphically how the detail classes work.

Chapter 3 Building the EJB Tier of the DiningGuide Application 49

Web Container EJB Container

k . : DiningGuideMgr Restaurant entity
Test /\ session EJB EJB home
. ' 5 2)
Client : b / | findAll()
. : getRestaurants(){
JsP - 6/ findAll() /
. for each Rest{
: getDetail() (3
new Collection Restaurant entity
for each Detail{
Collection.add \ ElB remote
0 +
Collection Of : . return Collection QEtDEtall()
: RestaurantDetail ¥
objects

Collection of
RestaurantDetail Restaurant remote
object interfaces

FIGURE 3-1 Function of a Detail Class

The numbered items in FIGURE 3-1 signify the following actions:

1. The web container passes a client’s request for all restaurant data to the
DiningGuideManager session bean.

2. The session bean calls the Restaurant entity bean’s findAll method to perform a
lookup on the Restaurant entity bean.

3. The findAll method obtains all available remote references to the entity bean.

4. For each remote reference returned, the session bean calls the Restaurant bean’s
getRestaurantDetail business method to fetch the RestaurantDetail class.

5. The getRestaurantDetail method returns a RestaurantDetail object, which is
added to the collection.

6. The session bean returns a collection of all RestaurantDetail objects to the web
container, which formats the data appropriately for the client to view.

50 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Summary of Steps

Creating the EJB tier requires six steps:

1.

Creating the entity beans

First, you create database schemas in the IDE, mapped from the tutorial’s
database tables. Next, using the EJB Builder, you create CMP entity beans that
model the tables with the EJB Builder wizard. Then, you program the entity beans
by adding and coding create, finder, and business methods.

Creating detail classes to be passed to the client for display

You create two JavaBeans classes with the same fields as the corresponding entity
beans, and include the same accessor methods. These classes are used by the
entity beans as types for parameters, fields, and return values. Returning these
classes to the client is more efficient regarding network bandwidth than returning
remote references for the entity bean instances.

Creating business methods on the entity beans to fetch the detail classes

Testing the entity beans’ methods with the IDE’s test application facility

From each entity bean, you automatically generate a test client that, when viewed
in a web browser, allows you to create an instance of the bean and then exercise
the business methods on the instance.

Creating the session bean

You use the EJB Builder to create a stateless session bean. You program the bean’s
create method to perform a lookup on the entity beans and its getter methods to
construct collections of detail objects (from the detail classes for each entity bean.
You create a method that creates customer review record in the database. You also
create two dummy business methods required by the SOAP runtime.

Testing the session bean’s methods

Before testing the session bean, you add references to the CMP entity beans to the
EJB module’s property sheet. From the session bean, you then generate a test
application, which includes an EJB module. To this module, you add the EJB
modules from the entity beans’ test applications. Then you use the test client to
create an instance of the session bean and then exercise its methods.

Note — Before you can begin work on the tutorial application, you must first have
performed all the setup steps described in Chapter 1.

Chapter 3 Building the EJB Tier of the DiningGuide Application 51

52

Creating Entity Beans With the EJB
Builder

Create two entity beans, Restaurant and Customerreview, to represent the two
database tables you created in Chapter 1.

In version 2.0 of the EJB architecture, entity beans can have local interfaces, remote
interfaces, or both. The criterion for deciding which to use rests on whether the
client that calls the bean’s methods is remote or local to the bean. In this tutorial, you
create the entity beans with both remote and local interfaces, for flexibility regarding
how the web service will access the beans’ methods. Two possibilities are the session
bean accesses the beans’ methods (using local interfaces), or the web service accesses
the methods directly (using remote interfaces).

Tip — For more details about working with the EJB Builder, see the Sun ONE Studio
5 help topics on EJB components.

Note — The source code for the completed entity beans is provided in Appendix A.

Creating the Restaurant and Customerreview
Entity Beans

First, create a directory to contain the application, then mount the directory in the
IDE. Mounting a directory puts it in the IDE’s class path. Next, in the mounted
directory, create a database schema from the two database tables. Finally, create a
package for the EJB tier and create two entity beans in it that are modeled from the
database schema.

Creating the Tutorial’s Directory

Create a directory to contain the tutorial’s files and mount it in the IDE’s file system,
as follows;

1. Somewhere on your file system, create a directory and name it Di ni ngCui de.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Note — If you create this as a subdirectory of another directory, the specifications of
some methods you create for this tutorial, which include the file specification, may
become very long. This may cause execution problems for platforms using Microsoft
Windows 2000 with a Service Pack number less than 3. To avoid this, create this
directory at the top level of a disk or volume (for example c:\ Di ni ngCGui de).

. Mount the Di ni ngCQui de directory.
Mounting an object in the Explorer puts that object into the IDE’s class path.

a. In the Sun ONE Studio 5 IDE, choose the File - Mount Filesystem.
The New wizard is displayed.

b. Select Local Directory, and click Next.
The Select Directory page of the New wizard is displayed.

¢. Use the Look In file finder to find the Di ni ngGui de directory, select it, and
click Finish.

The new directory (for example, c: \ Di ni ngGui de) is mounted in the Explorer.

Creating a Database Schema for the Tutorial’s Tables

Now create a database schema that models the Restaurant and Customerreview
database tables. The IDE reads table definitions from the database and creates the
schema.

. Start the PointBase server by choosing Tools - PointBase Network Server - Start
Server.
If the Start Server command is dimmed, the server is already running.

. Open a connection to the PointBase sample database.
a. Select the Runtime tab of the Explorer.

b. Expand the Databases node.

« If there is a square icon labeled jdbc:pointbase:server://localhost:9092/sample
[PBPUBLIC on PBPUBLIC] and it is whole, skip to Step 3.

« If there is a square icon, as above, and it is broken, right-click it and choose
Connect.

The broken square icon redisplays as a whole square when the connection is
opened.

Chapter 3 Building the EJB Tier of the DiningGuide Application 53

54

Note — If there is no square icon, your IDE and application server were installed
separately from each other and the PointBase JDBC driver has not been enabled in
the IDE; consult the Sun ONE Studio 5, Mobile Edition Getting Started Guide for
instructions on connecting an external PointBase database to the IDE.

. Begin creating the schema.

a. Right-click the DiningGuide node in the Explorer and choose New - All
Templates.

The New Wizard is displayed, showing the Choose Template page.

b. Expand the Databases node, select Database Schema, and click Next.
The New Object Name page of the New wizard is displayed.

. Type dgSchenma in the Name field and click Next.

The Database Connection page of the wizard is displayed.

. Specify the source database for the schema.

a. Enable the Existing Connection option.

b. Select from the list jdbc:pointbase:server://localhost:9092/sample [PBPUBLIC
on PBPUBLIC].

c. Click Next.
The Tables and Views page is displayed.

. Select the table to be modeled in the schema.

a. Select the CUSTOMERREVIEW table in the list of available tables and click
the Add button.

b. Select the RESTAURANT table in the list and click the Add button.
The CUSTOMERREVIEW and RESTAURANT tables appear in the list of selected
tables and views.

c. Click Finish.

The new database schema appears under the Di ni ngGui de directory in the
Explorer. If you expand all its subnodes, it looks like this:

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

| Explorer [Filesystems] E
@ Filezystems
@ 32 CDiningGuide
Q dgSchema
@ (J dySchema .
o] CUSTOMERREVIEW Customerreview schema
@ HB Columns
Al cusTOMERMAME
[ﬂ] RESTAURAMNTHARME
Al reviEN
G0 Indexes
@ % Foreion Keys
&[ﬂ] CUSTOMERREWIEW_0_SY STEMD.
o] RESTALRANT Restaurant schema
@ HB Columns
ADDRESS
CUISINE
DESCRIPTICN
MEIGHEORHOOD
PHOME
RATING
RESTAURAMNTHARME
G0 Indexes
E@ Foreign Keys

HEEEEEE

l

[»

Local Filesystem
L @ Filesystems = L <3 Project Defautt * L % Rurtime |

Creating a Java Package for the EJB Tier

Create a Java package within the mounted DiningGuide node to hold the EJB tier,
which is the data of your application.

1. Right-click the DiningGuide node and choose New - Java Package.

2. Name the new package Dat a and click Finish.
The new Data package appears under the DiningGuide directory.

Creating the Restaurant Entity Bean
Create an entity bean to model the Restaurant table, as follows:
1. Begin creating the Restaurant entity bean.

a. Right-click the new Data package and choose New - All Templates.

Chapter 3 Building the EJB Tier of the DiningGuide Application 55

56

b. From the Templates wizard, expand the J2EE node, select CMP Entity EJB and
click Next.

The CMP Entity Bean Name and Properties page of the New wizard (used by the
EJB Builder module) is displayed. If you click the Help button on any page of the
wizard, you can get context-sensitive help on creating CMP entity beans.

¢. Name the new CMP entity bean Rest aur ant and select the following options:

Option Category Option to Select

Source for Entities and Fields Table from Database Schema Object

Component Interfaces Both Remote and Local Interfaces

The New wizard looks like this.

ew Wizard - CMP Entity EJB X|

CMP Entity Bean Hame and Properties

EJE Mame: |Restaurant |

Specify CMP Entity Bean

Hame and Properties Package: |Data | | Browse... |

~Source for Ertities and Fields
() Table from Database Connection
@ Takle from Databazse Schema Object
() CMP 2 % Bean Class
() CMP 1 x Bean Class
() Create from scratch

~Component Interfaces
() Remate Interface Only
[Local Interface Only (Default)
- Both Remaote and Local Interfac:es|

<gock || met= || Fmsh || concel || Hew

d. Click Next.
This displays the Table from Database Schema Object page.

2. Specify the RESTAURANT schema.

a. Expand the DiningGuide node and the nodes under the dgSchema node, and
select the RESTAURANT table.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

The page looks like this:

ew Wizard - CMP Entity EJB

Table from Database Schema Object

G Filezystems
@ 32 CDiningGuide
a Data
Q dgSchema
@ (J dySchema
@ B CUSTOMERREWIEW

o RESTALRANT

Specify Source

| <Back || mext= || Fnsn || cancal ||

b. Click Next to go to the CMP Fields page.

. Customize any fields you wish to define the CMP bean.

a. Select the rating field and click the Edit button.

The Edit Persistent Field dialog box is displayed.

b. Delete the existing text in the Type field and type i nt .

The dialog box looks like this:

-él Edit Persistent Field

Field name: |rating |

Type: |ir'|t| |'| | Browse... |
Cancel

¢. Click OK to close the dialog box.

The type of the rating Java field is changed to i nt .

Chapter 3 Building the EJB Tier of the DiningGuide Application

You see a side-by-side display of the columns of the Restaurant database table and
the corresponding Java fields that the columns will be mapped to when the wizard
creates the Restaurant entity bean. For this tutorial, you want to change the type of
the rating field.

57

58

d. Click Next.

The CMP Entity Bean Class Files page is displayed, listing the parts of the
Rest aur ant bean that will be created. Notice that the EJB Builder wizard has
automatically named the new entity bean with the same name as the database
table.

. Finish creating the bean by clicking Finish.

The new Restaurant entity bean and all its parts are created and displayed in the
Explorer window.

Explorer [Filesystems] [

@ Filesystems
@ 3@ CDiningGuide

acalRestaurant Local interface
8" LocalRestaurantHome Local home interface
& & Restaurart (EJE) Logical node
o estaurant Remote interface
- estaurantBean Bean class
@ RestaurartHome Remote home interface

= dgSchema

Five of the parts are interfaces and one part is the bean class. The sixth part is the
logical node that groups all the elements of the enterprise bean together and facilitates
working with them.

Creating the Customerreview Entity Bean

Create the Customerreview entity bean as you did the Restaurant bean, using the
following steps:

. Begin creating the Customerreview entity bean.

a. Right-click the new Data package and choose New - CMP Entity EJB.

Notice that this item appears in the contextual menu. This shortcut is created for
your convenience whenever you select an item from the New menu.

b. Name the new CMP bean Customerreview and select the following options:

Option Category Option to Select

Source for Entities and Fields Table from Database Schema Object

Component Interfaces Both Remote and Local Interfaces

c. Click Next.
This displays the Table from Database Schema Object page.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

2. Specify the CUSTOMERREVIEW schema.
a. Expand the DiningGuide node and all the nodes under the dgSchema node.
b. Select the CUSTOMERREVIEW table.
c. Click Next.
3. Finish creating the bean.
a. Click Next on the CMP Fields page.

b. Click Finish on the last page (CMP Entity Bean Class Files page).

The Cust orrer r evi ew entity bean is displayed in the Data package in the
Explorer. Notice that there is also a primary key class named CustomerreviewKey.
This class is automatically created when the entity bean has a composite primary
key. (See TABLE 1-2 in Chapter 1 to confirm the composite primary key in this
table.)

Explorer [Filesystems] [

@ Filesystems
@ @ CDiningGuide
@ 3 Data
@ @ Customerreview (EJE)
O @ Classes
© (3 Create Methods
@ (% Finder Methods
@ (] Home Methods
© (] Select Methods
© (] Business Methods
@ ™ WP Figlds
[customername (PR
@ restaurantname (PR

Logical node

Falder

|\ [Filesystems = L < Project Default L 52 Runtitne *

Chapter 3 Building the EJB Tier of the DiningGuide Application

[review
& B Customerreview Remote interface
- ustomerreviewBean Bean class
o] ustomerreviewHome Remote home interface
(o3 ustormerreview ey Primal’y key class
o] ocalCustomerreview Local interface
(o] ocalCustomerreviewHome Local home interface
Lo ocalRestaurant
Lo LocalRestaurantHome
Lo Restaurant (EJE)
Lo estaurart
Lo estaurartBean
= estaurantHome
o dySchema

59

Creating Create Methods for CMP Entity Beans

Create the create methods for both entity beans, adding parameters and code to
initialize the fields of the beans’ instances.

Creating the Restaurant Bean’s Create Method
Create the create method for the Restaurant entity bean as follows:
1. In the Explorer, right-click the Restaurant(EJB) logical node (the bean icon &).

2. Choose Add Create Method from the contextual menu.
The Add New Create Method dialog box is displayed.

3. Add method parameters for each column of the Restaurant database.

a. Click the Add button in the Parameters section.
The Enter Method Parameter dialog box is displayed.

b. Type r est aur ant nane for the Field Name.
c. Selectj ava. | ang. Stri ng for the Type.
d. Click OK (or press Enter) to create the parameter and close the dialog box.

e. Similarly, create the other parameters:

Field Name Type

cuisine java.lang.String
neighborhood java.lang.String
address java.lang.String
phone java.lang.String
description java.lang.String
rating int

Note — The order in which you create these parameters becomes important when
you test the bean with the test application facility. Create them in the order given
here.

Keep the two exceptions created by default, and make sure the method is added to
both Home and Local Home interfaces.

60 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

4. Click OK.

The IDE propagates a create method under the RestaurantHome interface, another

create method under the LocalRestaurantHome interface, and an ejbCreate method

under the Restaurant bean class (RestaurantBean). A related ejbPostCreate method is
also added to the bean class.

5. Expand the Restaurant(EJB) logical node and the Create Methods folder, and
double-click the create method.

The Source Editor is displayed with the cursor at the ejbCreate method of the bean.

Note — If you right-click the create method node and choose Help, you can get
online help information on create methods.

6. Add the following code (the bold text only) to the body of the ejbCreate method
to initialize the fields of the bean instance:

public String ejbCreate(java.lang. String restaurantnane,
java.lang. String cuisine, java.lang. String nei ghborhood,
java.lang. String address, java.lang.String phone,
java.lang. String description, int rating) throws
j avax. ej b. Creat eException {

if (restaurantname == null) {
/1 Join the following two lines in the Source Editor

t hrow new j avax. ej b. Creat eExcepti on(" The rest aur ant

name is required.");

}

set Rest aur ant name(r est aur ant nane) ;

set Cui si ne(cui si ne);

set Nei ghbor hood(nei ghbor hood) ;

set Addr ess(addr ess);

set Phone(phone) ;

set Description(description);

set Rating(rating);

return null;

Tip — After you enter code (either by typing or copying and pasting) into the Source
Editor, press Control-Shift F to reformat it properly. If you are copying from the PDF
file, join the lines that get broken by word wrap, as indicated by the code comment.

When the Restaurant entity bean’s create method is called, it creates a new record in
the database, based on the container-managed fields of this bean.

Chapter 3 Building the EJB Tier of the DiningGuide Application 61

62

7. Select the Restaurant(EJB) logical node and press F9 to compile the bean.

The Restaurant entity bean should compile without errors.

Creating the Customerreview Bean’s Create Method

Create the create method for the Customerreview entity bean as follows:

. Right-click the Customerreview(EJB) logical node (the bean icon &) and choose

Add Create Method.

. Use the Add button to create three parameters, one for each column of the

CustomerReview table:

Field Name Type

restaurantname java.lang.String
customername java.lang.String
review java.lang.String

Note — As in Step a, create these parameters in the order given.

Keep the two exceptions created by default, and make sure the method is added to
both Home and Local Home interfaces.

. Click OK.

. Open the Customerreview(EJB) logical node and the Create Methods folder, and

double-click the create method.
The Source Editor opens with the cursor at the ejbCreate method of the bean.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

5. Add the following (bold) code to the body of the ejbCreate method to initialize
the fields of the bean instance:

public Custonerrevi ewKey ej bCreate(java.lang. String
rest aurant nane, java.lang. String custonernane, java.lang.String
review) throws javax.ejb. CreateException {

if ((restaurantnane == null) || (custonernanme == null)) {
/1 Join the following two lines in the Source Editor

t hrow new j avax. ej b. Creat eExcepti on("Both the

restaurant name and custoner name are required.");

}

set Rest aur ant nanme(r est aur ant nane) ;

set Cust oner nane(cust oner nane) ;

set Revi em(revi ew) ;

return null;

Tip — After you enter code (either by typing or copying and pasting) into the Source
Editor, press Control-Shift F to reformat it properly. If you are copying from the PDF
file, join the lines that get broken by word wrap, as indicated by the code comment.

When the ejbCreate method is called, it creates a new record in the database, based
on the container-managed fields of this bean.

6. Select the Customerreview(EJB) logical node and press F9 to compile the bean.
The Customerreview entity bean should compile without errors.

Now, create finder methods on both entity beans that will locate all or selected
instances of each bean in the context.

Creating Finder Methods on Entity Beans

Create a findAll method on the Restaurant bean to locate all restaurant data. Also
create a findByRestaurantName on the Customerreview bean to locate review data
for a given restaurant.

Every finder method, except findByPrimaryKey, must be associated with a query
element in the deployment descriptor. When you create the finder methods for these
two entity beans, specify SQL statements using a database-independent language
specified in the EJB 2.0 specification, namely EJB QL. At deployment time, the
application server plugin translates the EJB QL into the SQL of the target database.

Chapter 3 Building the EJB Tier of the DiningGuide Application 63

64

A~ W

Creating the Restaurant Bean’s findAll Method

To create the Rest aur ant bean’s findAll method:

. Right-click the Restaurant(EJB) logical node and choose Add Finder Method.

The Add New Finder Method dialog box is displayed.

. Type Al | after the “find” string in the Name field.
. Selectj ava. util. Col | ecti on for the Return type.
. Accept the two default exceptions.

. Define the EJB QL statements, as follows:

EJB QL Statement Text

Select Obj ect (0)

From Restaurant o

. Make sure the method is added to both Home and Local Home interfaces.

. Click OK.

The new findAll method is created in the Local and Local Hone interfaces of the
Rest aur ant bean.

Note — If you right-click the Finder Methods node and choose Help, you can get
online help information on finder methods.

. Select the Restaurant(EJB) logical node and press F9 to compile the bean.

The Restaurant entity bean should compile without errors.

Creating the Customerreview Bean’s findByRestaurantName
Method

To create the Customerreview bean’s findByRestaurantName method:

. Right-click the Customerreview(EJB) logical node and choose Add Finder

Method.
The Add New Finder Method dialog box is displayed.

. Type ByRest aur ant Nane after the “find” string in the Name field.

. Selectj ava. util. Col | ecti on for the Return type.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

N

10.
11.

12.

. Click the parameter’s Add button.
The Enter New Parameter dialog box is displayed.

. Type r est aur ant nane for the parameter name.
. Select j ava. | ang. Stri ng for the parameter type.
. Click OK.
. Accept the two default exceptions.
Define the EJB QL statements, as follows:
EJB QL Statement Text
Select Obj ect (0)
From Custonerrevi ew o
Where o.restaurantname = ?1
(Which numeral you use for the Where clause depends on the position of the
parameter in the finder method. In this case there’s only one parameter, so the
numeral is “17).
Make sure the method is added to both Home and Local Home interfaces.
Click OK.

The new findByRestaurantName method is created in the Local and Local Home
interfaces of the Customerreview bean.

Select the Customerreview(EJB) logical node and press F9 to compile the bean.
The Customerreview entity bean should compile without errors.

Creating Business Methods for Testing Purposes

Create a business method for each entity bean that returns a value of one of its
parameters. The business method enables you to test the beans later. For Restaurant,
create a getRating method; for Customerreview, create a getReview method.

Chapter 3 Building the EJB Tier of the DiningGuide Application 65

Creating the Restaurant Bean’s getRating Method
To create the getRating business method for the Restaurant bean:
1. Examine the Restaurant entity bean’s business methods.

a. Expand the Restaurant(EJB) logical node, and then expand its Business
Methods node.
There are no business methods yet for this entity bean.

b. Expand the Restaurant bean’s class (RestaurantBean), and then expand its
Methods node.
Every field on the bean has accessor methods, including a getRating method.

These methods are used by the container for synchronization with the data
source. To use any of these methods in development, you have to create them as
business methods.

2. Create the getRating business method.

a. Right-click the Restaurant(EJB) logical node and choose Add Business Method.
The Add New Business Method dialog box is displayed.

b. Type get Rat i ng in the Name field.
c. Selecti nt from the list of the Return Type field.

d. Accept the default exception (RemoteException), and the designation that the
method will be created in both Remote and Local Home interfaces.

e. Click OK.

3. Examine the Restaurant entity bean’s business methods again.

Under the logical node’s Business Methods folder, the getRating method is now
accessible as a business method. When the getRating method is used, it returns the
value in the rating column of a selected restaurant record.

4. Validate the bean by right-clicking the Restaurant(EJB) logical node and choosing
Validate EJB from the contextual menu.

The Restaurant entity bean should compile without errors. Now, create a similar
method for the Customerreview bean.

66 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Creating the Customerreview Bean’s getReview Method
To create the getReview business method for the Customerreview bean:
. Right-click the Customerreview(EJB) logical node and choose Add Business

Method.
The Add New Business Method dialog box is displayed.

. Type get Revi ew in the Name field.

. Selectj ava. | ang. Stri ng in the Return Type field.

Accept the default exception (RemoteException), and the designation that the
method will be created in both Remote and Local Home interfaces.

. Click OK.

The getReview method is now accessible as a business method. When the getReview
method is called, it returns the value in the review column of a selected restaurant
record.

. Right-click the Customerreview(EJB) logical node and choose Validate EJB from
the contextual menu.
The Customerreview entity bean should compile without errors.

. Check that the icons in the Explorer no longer indicate that the beans are
uncompiled.

| Explorer [Filesystems] E

@ Filesystems
@ 3 CDiningGuide

@ 3 Data

@ & Customerreview (EJB)

Customerrevigw:
CustomerreviewBean
CustornerrevieseHome
Customerreviewey
LocalCustomerreviewn:
LocalCustomerreviesHome
i LocalRestaurant
B LocalRestaurantHome
Restaurant (EJE)
& Restaurant
8 RestaurartBean
5 RestaurartHome
© B dgSchema

Chapter 3 Building the EJB Tier of the DiningGuide Application 67

Creating Detail Classes to View Entity
Bean Data

As discussed in “The Detail Classes” on page 49, this tutorial uses detail classes as a
mechanism for holding row data for viewing and reducing method calls to the entity
beans. These classes must have the same fields as the corresponding entity beans,
access methods for each field, and a constructor that sets each field.

Note — The source code for the completed detail classes is provided in Appendix A.

Creating the Detail Classes

First, create a RestaurantDetail class and a CustomerreviewDetail class:

1. In the Explorer, right-click the Data package and choose New - All Templates.
The New wizard is displayed.

2. In the Choose Template page of the wizard, expand the Java Beans node and select
Java Bean.

3. Click Next.
The New Object Name page of the wizard is displayed.

4. Type Rest aur ant Det ai | in the Name field and click Finish.
The new bean is displayed in the Explorer.

5. Right-click the Data package node and choose New - Java Bean.
Notice the IDE has created a shortcut to the Java Bean template.

6. Type Cust onerrevi ewDet ai | in the Name field and click Finish.

68 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

10.

11.

12.

Creating the Detail Class Properties and Their
Accessor Methods

Now, duplicate the entity beans’ CMP fields in the detail classes. You do this by

adding these fields as bean properties. (If you look in the Bean Patterns nodes of an

entity bean’s bean class, you will see that the CMP fields are stored as bean

properties.) While adding the fields, you can automatically create accessor methods

for each field.
To create the detail class properties and methods:
Expand the RestaurantDetail node and the class RestaurantDetail node.

Right-click the Bean Patterns node and choose Add - Property.
The New Property Pattern dialog box is displayed.

Type r est aur ant nane in the Name field.

Select St ri ng for the Type.

Select the Gener at e Fi el d option.

Select the Gener at e Ret urn St at enent option.
Select the Gener at e Set St at enent option.
Click OK.

Repeat Step 2 through Step 8 to create the following additional properties:

cuisine (String)

nei ghbor hood (String)
address (String)
phone (String)
description (String)
rating (int)

Expand the RestaurantDetail bean’s Methods node.
Observe that accessor methods have been generated for each field.

Expand the CustomerreviewDetail node and the class CustomerreviewDetail
node.

Repeat Step 2 through Step 8 to create the following properties in the Bean
Properties node:

restaurantnane (String)
custonernane (String)
review (String)

Chapter 3 Building the EJB Tier of the DiningGuide Application

69

Creating the Detail Class Constructors

To create constructors for the detail classes that instantiate the class fields:

1. Expand the RestaurantDetail bean, right-click the class RestaurantDetail node,
and choose Add - Constructor.

The Edit New Constructor dialog box is displayed.

2. Add the following method parameters and click OK:

java.lang. String restaurantname
java.lang. String cuisine
java.lang. String nei ghborhood
java.lang. String address
java.lang. String phone
java.lang. String description
int rating

3. Add the following bold code to the body of this RestaurantDetail constructor to
initialize the fields:

public RestaurantDetail (java.lang. String restaurantnane,
java.lang. String cuisine, java.lang. String nei ghborhood,
java.lang. String address, java.lang.String phone,
java.lang. String description, java.lang.|Integer rating){

Systemout.println("Creating new RestaurantDetail");

set Rest aur ant name(r est aur ant nane) ;

set Cui si ne(cui si ne);

set Nei ghbor hood(nei ghbor hood) ;

set Addr ess(addr ess);

set Phone(phone) ;

set Descri ption(description);

set Rating(rating);

Tip — Remember, you can reformat code you paste or type into the Source Editor by
pressing Control-Shift F.

4. Similarly, add a constructor to the CustomerreviewDetail class with the following
parameters:

java.lang. String restaurantnanme
java. l ang. String custonernane
java.lang. String review

70 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

5. Add the following bold code to the body of this CustomerreviewDetail
constructor to initialize the fields:

public CustonerreviewDetail (java.lang. String restaurantnane,
java.lang. String custonernane, java.lang.String review){
Systemout.println("Creating new Custonerrevi ewbetail");
set Rest aur ant nanme(r est aur ant nane) ;
set Cust oner nane(cust omer nane) ;
set Revi ew(revi ew) ;

6. Right-click the Data package and choose Compile All.
The package should compile without errors.

Now, create get methods on the entity beans to retrieve instances of the detail
classes.

Creating Business Methods on the Entity Beans to
Fetch the Detail Classes

Create a method on each entity bean that returns an instance of its corresponding
detail class.

To create these methods:

1. In the Explorer, right-click the Restaurant (EJB) logical node and choose Add
Business Method.

The Add New Business Method dialog box is displayed.

N

. Type get Rest aur ant Det ai | in the Name field.

3. For the return type, use the Browse button to select the Rest aur ant Det ai | class.

Tip — Be sure to select the class (E:,), not the bean’s node.

Data.RestaurantDetail is displayed in the Return Type field.

4. Make sure the option Both Remote and Local Interfaces is enabled.

ol

. Accept all other default values and click OK to create the method.

6. Find the new method under the logical bean’s Business Methods node and
double-click it to display it in the Source Editor.

Chapter 3 Building the EJB Tier of the DiningGuide Application 71

7.

10.
11.

12.
13.
14.

15.

Add the following bold code to the method’s body:

public Data. RestaurantDetail getRestaurantDetail () {
return (new Restaurant Detail (get Restaurant name(),

get Cui si ne(), get Nei ghborhood(), getAddress(), getPhone(),

get Description(), getRating()));

}

. Select the Restaurant (EJB) logical node and press F9 to compile the code.

. In the Explorer, right-click the Customerreview (EJB) logical node and choose Add

Business Method.
Type get Cust onmer revi ewbDet ai | in the Name field.

For the return type, use the Browse button to select the CustomerreviewDetail
class icon.

Make sure the option Both Remote and Local Interfaces is enabled.
Accept all other default values and click OK to create the method.

Open the method in the Source Editor and add the following bold code:

public Data.Custonerrevi ewDetail getCustonerreviewDetail () {
return (new Custonerrevi ewbDet ai | (get Rest aur ant nane(),
get Cust onernane(), getReview()));

}

Right-click the Data package and choose Compile All.
The entire package should compile without errors.

You have finished creating the entity beans of the tutorial application and their
detail class helpers. Your next task is to test the beans.

72

Testing the Entity Beans

With the Sun ONE Studio 5 IDE, you can create a test client to exercise the methods
on an entity bean. The test client uses JavaServer Pages technology that allows you
to create instances of the bean and exercise the bean’s create, finder, and business
methods in a web browser.

Use this test client to exercise the Restaurant bean’s create and getRating methods.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Creating a Test Client for the Restaurant Bean

When you create a test client, the IDE generates an EJB module, a J2EE application

module, and many supporting elements.

To create a test client for the Restaurant entity bean:

Application.
The EJB Test Application wizard is displayed.

2. Accept all default values.
The wizard’s window looks like this:

B Create a new EJB Test Application

Right-click the Restaurant(EJB) logical node and choose Create New EJB Test

EJB Test Application Mame: |Restaurarﬁ_TestApp|

Package: Data

|
Browse...

Specify the name and package for the generated EJB Module and YWeb Module

EJB Module: DataRestaurart_EJBModule Modify. ..
wWeb Module: Data/Restaurant_YWebModule fdodify...
Specify an Application Server on which to deploy this EJB Test Application

Application Server: | Default Application Server hd | | fdodify...

|| Deploy Application to this Application Server after creation

Cancel

3. Click OK.

A progress monitor appears briefly and then goes away when the process is
complete. Another window is displayed informing you that the web module that
was created is also visible in the Project tab. This window should go away
automatically, also. If not, click OK to close the window.

Chapter 3 Building the EJB Tier of the DiningGuide Application 73

74

4. View the resulting test objects in the Explorer.

The IDE has created an EJB module named Restaurant_EJBModule, a web module
named Restaurant_WebModule (which is also mounted separately), and a J2EE
application named Restaurant_TestApp. The web module contains a number of JSP
pages that support the test client. The J2EE application includes references to the EJB
module and to the web module.

| Explorer [Filesystems] E

8 Filezystems
@ 3@ CDiningGuide
@ 3 Data
@ [0 Restaurart_webModule Web module
& B customerreview
@ & Customerreview (EJB)
(o] CustomerreviewBean
CustomerreviewDetail
CustomerrevigmHome
Customerreviewkey
LocalCustomerreview
LocalCustomerreviewHome
LocalRestaurant
LocalRestaurantHome
Restaurant
Restaurant (EJE)
RestaurartBean
RestaurantDetail
8 RestaurantHome
& [=] Restaurart_EJEModule EJB module
@ (i Restaurart_Testipp J2EE appllcatlon
@ dyScherma
@ 32 CDiningGuide'Data Restaurant_webModue ——— X X —— \\Neb module (mounted)
o3 WWEE-INF
0—@ array
0—@ arrayconstructor
& [F dispatch
0—@ displaymethods
O [f eror JSP pages
& [F method
0—@ navigation
o [object
0—@ ohjectconstructor
0—@ result
o & storedokj
0—@ vigwer
@ 3 CDiningGuide\Data'Restaurant_Yebhodule | MWEB-INFizlasses
@ 0 com

PPIPRIPPPPPRPOQ

4 [»
| |

L @ Filesystems = L <3 Project Default L % Rurtitme = |

The J2EE application created by the IDE contains references to the web module and
the EJB module. You can see these objects by expanding the Restaurant_TestApp:

L% 5 Restaurant_Testapp
@ %] Restaurart_EJEMacule
&‘@ Restaurant_TestApp

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Providing the Sun ONE Application Server 7
Plugin With Database Information

In order for the test client to find the database and log onto it, you must add
information about your database to the application server properties of the EJB
module.

To add the required information:

. Expand the EJB module (Restaurant_EJBModule) in the Explorer and select the
Restaurant node (a reference to the Restaurant bean) under it, to display its
properties.

If the Properties Window is not already displayed, choose View - Properties.
. Select the Sun ONE AS tab of the Properties window.

. Confirm that the following properties are set as follows:

Property Value

Mapped Fields 7 container managed fields mapped
Mapped Primary Table RESTAURANT

Mapped Schema dgSchema

If these values are displayed, continue with Step 5.
. If the values are not displayed, remap the Restaurant reference as follows:

a. Select the value field of the Mapped Fields value and click on the ellipsis
button.

The Map to Database wizard is displayed.
b. Click Next to view the Select Tables page.

c. Select RESTAURANT from the drop list of the Primary Table field.

If RESTAURANT is not in the list, use the Browse button to find the table within
the dgSchema schema.

d. Click Next to view the Field Mappings page.

e. If the fields are unmapped, click the Automap button.

Chapter 3 Building the EJB Tier of the DiningGuide Application 75

76

10.

Values for mappings appear for each field, as shown:

8| bean Restaurant - Map to Database X|

Field ings [3 of 3]

Use the drop-down menu for each field to map i to a databasze column. To map & field to
mare than one column, or to map a relstionship field, use the .. button. If you seant to map
a field to a column in & table that is not in the drop-down list, return to the previous screen
and add & secondary takble to the mapping.
Persistent Field Mappings for Bean Restaurant:

Field! Mapped Colurn(s) | Automap
address RESTAURANT ADDRESS . 0
cuisine RESTALURANT CUISINE = Unmap
clescription RESTAURANT DESCRIPTICN . -
neighborhoodd RESTAURAMT MEIGHEORHO... ||
phone RESTAURANT PHOME .
rating RESTAURANT RATIMNG .
restaurartname RESTAURAMNT RESTAURANT... | .|

<gock || wei- [Fnsh || concel || Hew

f. Click Finish.
The values should now display as in Step 3.

. Select the EJB module (Restaurant_EJBModule) to display its properties.
. Select the Sun ONE AS tab of the properties window.

. Click in the value field for the CMP Resource property to display an ellipsis

button.
Click the ellipsis button to display the CMP Resource property editor.

Type j do/ Poi nt basePMin the Jndi Name field.

This is the JNDI name of the JDBC Persistence Manager described in “Setting JDBC
Resources (Microsoft Windows Superusers)” on page 30 or “Setting JDBC Resources
(All Other Users)” on page 31.

For the Name and Password fields, type the User Name and Password for your
database.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

For the PointBase sample database, these are both PBPUBLIC. The editor looks
similar to this:

) CMP Resource

Jndi Mame [idoPointbasePh]

Default Resource Principal

Marme [PEPUBLIC |
Passward | aaaaaaaa |

| OK || Cancel || Help |

11. Click OK to accept the values and close the property editor.

You have finished configuring the test application to use your database and now you
can deploy the test application.

Deploying and Executing the Restaurant Bean’s
Test Application

Note — Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database. In addition,
make sure Sun ONE Application Server 7 is running and is the default application
server of the IDE. See “Confirming Sun ONE Application Server 7 as the Default
Server” on page 29 for information.

To deploy the Restaurant test application:
e Right-click the Restaurant_TestApp J2EE application node and choose Execute
from the contextual menu.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The IDE starts the default web browser and displays the test application’s home
URL.:

ht t p: / / server-host: server-port-number/ Rest aur ant _Test App/ di spat ch. j sp

Chapter 3 Building the EJB Tier of the DiningGuide Application 77

Your browser displays the test client like this:

List of instances being
tested, beginning with
the home interface of
the bean being tested.

in Test Client - Netscape

000 Festauran_

=1 @ whatsesed [

EJB Navigation

This view allows easy access to instances of the home and
remote interfices of the Enterprise Java Bean undergoing
testing. The home inferface will be listed at the beginning of
the list, instances of the remote interface will follow. Selecting.
\an object here allows methods to be invoked on the ohject
instance. An instance of the tested Bean can be created by
selecting the home interface and invoking the appropriate
method.

o Dat

Stored Objects

This view provides a list of objects created during your
test session which may be used as method parameters.
Objects are placed on this list once created from a
method invocation or when created directly using the new
\button provided for complex parameters. Selecting an
lobject from this view allows methods on the ohject
instance to be invoked.

Dat:

Results of the Last Method Invocation

(Objects may be manipulated using public methods. Method parameters are sef directly for primitive types and their L
\associated object wrappers, while object object are selected from the stored object space. The value returned from the

method invocation will be displayed in the results of section.

Invoke Methods on Data RestaurantHome

Area where you can
enter parameters and
invoke methods.

Invoke | Data Restaurant create
javalang String
javalang String

javalang String

|

o= [Document Dane

Sl e 9P E 2|

List of objects created
during the test session.

Area where results of
last method invocation
are shown.

78

Note — If you do not see the browser, look behind the windows of the IDE. You can
verify whether the application is deployed by checking the server instance’s log file
tab on the output window. The application is successfully deployed when you see
success messages.

Using the Test Client to Test the Restaurant Bean

On the test client’s web page that is displayed, use the create method of the
Restaurant bean’s home interface to create an instance of the bean. Then test a
business method (in this case, getRating) on that instance.

To test the Rest aur ant bean:

. Create an instance of the Restaurant bean by invoking the create method.

The create method is under the heading “Invoke Methods on
Data.RestaurantHome.” There are seven fields under it. The fields are not named,
but you can deduce what they are by their order, which is the same order you
created them in (see Step a under “Creating Create Methods for CMP Entity Beans”
on page 60).

Note — Double-click the Restaurant.create method in the Explorer to display it in the
Source Editor; the order of the fields is shown in the method’s definition.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Tip — If you want the parameters to appear in a different order, right-click the
Restaurant.create method node in the Explorer window and choose Customize. In
the Customizer dialog box, rearrange the parameters by selecting and clicking the
Up and Down buttons. Then redeploy the test application by right-clicking its node
in the Explorer and choosing Deploy.

Type any data you like into the fields, for example (your field order may be
different):

Invole Methods on Data.RestaurantHome

Dot RestourantHome

Inwoke | Data Festaurant create

java lang String IJDE'S House of Fish

javalang. String Iﬂmelf ican

java lang String I)lla.meda Island

java.lang.Stn‘ng|1234 Mariner Sqg Loop

java lang String |510-222-3333

javalang String IInt,erest,ing variety

int 4]

2. Click the Invoke button next to the create method.

The deployed test application adds the records you created to the test database. The
new Restaurant instance is listed by its restaurantname value in the upper left, and
new data objects are listed in the upper right, as shown.

Chapter 3 Building the EJB Tier of the DiningGuide Application 79

EJB Navigation

This view allows easy access to instarces of the home and
remate interfaces of the Entarprise Java Bean undargoing
iesiing. The home inferface will be listed ai the beginning of
the list, instarces af the remote interface will follow. Selecting
an ahject here allows methods to be invoked on the object
instance. Aw instance af the tested Bean can be created hy
selecting the hame interface and invoking the appropriaie
mmethod.

® Data RestaurantHome
. Joe's House of Fish

The results are shown in the Results area.

Stored Objects

This view provides a list of ohjects created during your
test sassion which may be used as method parametars.
Ohjects are placed on this lisi once created from a
method invocation or when created directly using the
new buiton provided for complex paramsters. Selecting
an object from this view allows methods on the abject
instance to be involed.

Remave Selectad | Rernave All |
[T Data Festaurant Joe's House of Fish
[T javalang Integer 4
M javalang, String Interesting variety
[T javalang String 510-222-3333
[T javalang String 1234 Marner Sq Loop
M javalang String Alameda Island
7 javalang String American
[T javalang, String Joe's House of Fish
Data RestaurantHome

Results of the Last Method Invocation
Joe's House of Fish
Llethod Tnvoled: create

Parameters:

Jae's House af Fish
\American

\Alammeda Island

1234 Mariner Sy Loap
510-222-3333
Interasting variety

4

{favalang String javalang String javalang. String javalang. String javaang. String javaang. Stringint)

3. Test the findAll method of the Restaurant bean by clicking the Invoke button next

to it.
The results area should look like this:

Rosedis of dee Last Mlethod Invocation
sime =%
Bl ethod Lwakos d el

Farameters
B

Notice that three items were returned. This demonstrates that the new database
record you created in Step 2 was added to the two you created in Chapter 1.

80 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

4. Test the findByPrimaryKey method by typing in Bay Fox and clicking the Invoke
button next to the method.

The results area shows that the Bay Fox record was returned.
Now, test the entity bean’s business methods.
5. Select the instance for Joe’s House of Fish listed under Data.RestaurantHome in the
instances list (upper left).
The getRating method is now listed under the Invoke Methods area.

6. Click the Invoke button next to the getRating method.
The results of this action are listed in the Results area and should look like this:

Fevalix of the Last krthod Invocation

4

Iethod Invckond: getfatieg ()
Farameters
o

This demonstrates that you have created a new record in the database and used the
getRating method to retrieve the value of one of its fields.

Continue testing by selecting created objects and invoking their methods. For
example, if you select one of the Data.RestaurantDetail objects, you can invoke its
getter methods to view its data, or its setter methods to write new data to the
database.

7. When you are finished testing, you can quit the browser, point it to a different
URL, or do nothing, as you wish

Checking the Additions to the Database

To verify that the Restaurant_TestApp application inserted data in the database:
1. In the IDE, select the Runtime tab of the Explorer.

2. Expand the Databases node, the PointBase connection node, and the Tables node.
The nodes for each table in the sample database are displayed.

3. Right-click the RESTAURANT table and choose View Data.

A command editor window is displayed, showing the new Restaurant record you
entered in Step 1 under “Using the Test Client to Test the Restaurant Bean” on
page 78, as shown.

Chapter 3 Building the EJB Tier of the DiningGuide Application 81

82

%5 Command Editor jdbc: [Command Editor jdbe:pointbase: server://localhost:9092/zample [ph

elect "RESTAURAMTMARME", "CLISINE", "MEIGHEORHOOD", "ADDRESS", "PHOMNE", "DESCRIPTION", "RATIMNG" from
"PEPUBLIC" "RESTAURANT"

| - | | Execute |
RESTAURANTMNAME [CUISINE [MEIGHBORH...| ADDRESS | PHOME [CESCRIPTION | RATING |
French Leman Mediterranean |Rockridge 1200 College Avenue 510 8858 8883 |Very nice spot. 5
Bay Fox Mediterranean |Piedmont 1200 Piedmont Avenue 510 533 8383 Excellent. 5
Joe's House of Fish | American Alameda lsla... [1234 Mariner Sg Loop |510-222-3333 Interesting variety 4

L Cornmand Editor jdbc: poirtbase: server: Mocalhost: 3092isample [phpublic on PEPUBLIC] = |

You are now ready to create the session bean.

Note — You do not need to stop the application server’s process (which is listed in
the execution window). Whenever you redeploy, the server undeploys the
application and then redeploys. When you exit the IDE, a dialog box is displayed for
terminating the application server’s instance process. However, you can manually
terminate it at any time by right-clicking the serverl(hostname:host-port) node in the
execution window and choosing Terminate Process.

Creating a Test Client for the Customerreview
Bean

Create a test client for the Customerreview entity bean by repeating all the steps in
“Creating a Test Client for the Restaurant Bean” on page 73, but using values
appropriate to the Customerreview bean.

To summarize creating the test client application:

. Select the Customerreview(EJB) logical bean and choose Create a new EJB Test

Application.

. Accept all default values and click OK.

Add database information for the plugin, similar to the description in “Providing the
Sun ONE Application Server 7 Plugin With Database Information” on page 75, using
values appropriate to the Customerreview bean.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

o

10

To summarize adding database information to the plugin:

Expand the EJB module (Customerreview_EJBModule), select the Customerreview

node under it, and display its properties.

Select the Sun ONE AS tab of the Properties window.

Confirm that the following three values for the appropriate properties:

Property Value

Mapped Fields 3 container managed fields mapped
Mapped Primary Table CUSTOMERREVIEW

Mapped Schema dgSchema

If these values are displayed, continue with Step 5.

a.

b.

a.

h

If the values are not displayed, remap the Customerreview bean as follows:

Set the Mapped Schema to Dat a/ dgSchensa.
Set the Mapped Primary Table to CUSTOVERREVI EW

. Click the ellipsis button in the value field of the Mapped Fields property.

. In the wizard, click Next to view the Select Tables page.

Select CUSTOVERREVI EWfrom the drop list of the Primary Table field.
Click Next to view the Field Mappings page.

If the fields are unmapped, click the Automap button.

. Click Finish.

Display the EJB module (Customerreview_EJBModule) properties.
. Select the Sun ONE AS tab of the properties window.
. Click the ellipsis button in the value field of the CMP Resource property.

In the CMP Resource property editor, type j do/ Poi nt basePMin the Jndi Name

field.

. For the Name and Password fields, type the User Name and Password for your
database.

For the PointBase sample database, these are both PBPUBLIC.

. Click OK to accept the values and close the property editor.

Chapter 3 Building the EJB Tier of the DiningGuide Application 83

84

Deploying and Executing the Customerreview
Bean’s Test Application

Note — Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database. In addition,
make sure Sun ONE Application Server 7 is running and is the default application
server of the IDE. See “Confirming Sun ONE Application Server 7 as the Default
Server” on page 29 for information.

To deploy the Customerreview test application:

Right-click the Customerreview_TestApp J2EE application node and choose
Execute from the contextual menu.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The IDE starts the default web browser and displays the test application’s home
URL:

ht t p: / / server-host: server-port-
number/ Cust omerrevi ew_Test App/ di spat ch. j sp

Note — If you do not see the browser, look behind the windows of the IDE. You can
verify whether the application is deployed by checking the server instance’s log file
tab on the output window. The application is successfully deployed when you see
success messages.

Testing the Customerreview Entity Bean

On the test client’s web page, use the create method of the Customerreview bean’s
home interface to create an instance of the bean. Then test a business method (in this
case, getCustomerreview) on that instance.

To test the Customerreview bean:

. Create an instance of the Customerreview bean by invoking the create method.

The create method is under the heading “Invoke Methods on
Data.CustomerreviewHome.” There are three fields under it.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

2. Type values in the three fields.

Type any data you like into the fields, for example (your field order may be
different):

Invole Methods on Data.CustomerreviewHome

Diater. CustomerreviewHome

Invoke | Data Customerreview create
javalang, String IBay Fox
java.lang, String IW
java.lang, String Im

3. Click the Invoke button next to the create method.

The deployed test application adds the records you created to the test database. The
new Restaurant instance is listed by its restaurantname value in the upper left, and
new data objects are listed in the upper right, as shown.

Results of the Last Method Invocation
mytest. CustomerreviewF ey@834dbia2

Wlethod Tnvolked: create fiava.lang Siring javalang. Siring java. lang. Siring)
Parameters:

Bay Fax

Bill Gaodpersan

Excellent wine list.

4. In the field for the findByRestaurantName method, type French Lenon and click
the Invoke button.

The results look like this, showing that the French Lemon record was returned:

Results of the Last Method Invocation
size = 2
Wlethod Tnvoleed: findByvRestaurantName (javalang String)

Parameters:
Franch Lemon

5. In the Navigation cell (upper left), select the CustomerreviewKey instance.

6. Find the instance’s getReview method and click its Invoke button.

The results display the customer review of the instance you created in Step 2 and
Step 3, for example:

Chapter 3 Building the EJB Tier of the DiningGuide Application 85

86

Results of the Last Method Invocation
Excellent wine list.
lethod Tnvoled: get Review ()

Parameters:
none

Continue testing by selecting created objects and invoking their methods.

. When you are finished testing, you can quit the browser, point it to a different

URL, or do nothing, as you wish.

Checking the Additions to the Database

Verify that the Customerreview_TestApp application inserted data in the database,
as you tested the Restaurant_TestApp in “Checking the Additions to the Database”
on page 81:

. In the IDE, select the Runtime tab of the Explorer.
. Expand the Databases node, the PointBase connection node, and the Tables node.

. Right-click the CUSTOMERREVIEW table and choose View Data.

Your new review record should be displayed in the command editor.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Creating a Session Bean With the EJB
Builder

Create a stateless session bean to manage the conversation between the client (the
web service you will create in Chapter 4) and the entity beans.

Note — The source code for the completed session bean is provided in Appendix A.

In version 2.0 of the EJB architecture, session beans can have local interfaces, remote
interfaces, or both. In this tutorial, the session beans’ methods will be called by the
test application (which is local to the session bean), the web services (also local), and
the client (remote). Therefore, create a session bean with both local and remote
interfaces.

. In the Sun ONE Studio 5 Explorer, right-click the Data package and choose New
- All Templates.

The New wizard is displayed, showing the Choose Templates page.
. Expand the J2EE node and select Session EJB.

. Click Next.
The Session Bean Name and Properties page is displayed.

i. Type Di ni ngQui deManager in the Name field and select the following
options:

Option Category Option to Select

State Stateless

Transaction Type Container Managed

Component Interfaces Both Remote and Local Interfaces
. Click Next.

The Session Bean Class Files page of the wizard is displayed, listing all the
components that will be created for this session bean.

Notice that the names of the all the components are based on DiningGuideManager.

. Click Finish.
The new DiningGuideManager session bean is displayed in the Explorer.

Chapter 3 Building the EJB Tier of the DiningGuide Application 87

88

| Explorer [Filesystems]

@ Filezystems
@ 32 CDiningGuide
@ 3 Data

@ [0 Customerreview_Testipp_ClientStubs

@ [0 Customerreview_ebhodule

@ [0 Restaurant_Testipp_ClientStubs

@ [0 Restaurant_\WwebhModule

@ Customerrevisw

B & Customerreview (EJB)
CustomerreviewwBean
CustomerreviewDetail
CustomerrevieswHome
Customerrevieskey
Gb Customerreviewy_EJBhodule
Lo Q Customerreview_TestApp
@ & DiningGuideManager (EJB)
DiningGuidedanager
DiningGuideiManagerBean
DiningGuidedManagerHome
LocalCustomerreview
LocalCustomerreviewHome
LocalDiningGuideManacger
LocalDiningGuideManagerHome
LocalRestaurant
LocalRestaurantHome
Restaurant
Restaurant (EJB)

—— Di ni ngGui deManager session bean

PPV

[4]

q] [*]
Falder

L @ Filesystems = L <3 Project Defautt * L % Runtitne IE|

Now create the session bean’s methods.

Coding a Session Bean’s Create Method

The create method was created when you created the DiningGuideManager session
bean. You will now modify it.

Create methods of stateless session beans have no arguments, because session beans
do not maintain an ongoing state that needs to be initialized. The create method of
the DiningGuideManager session bean must first create an initial context, which it

then uses to get the required remote references.

1. Locate the DiningGuideManager’s create method within the logical bean’s Create
folder, and double-click it to display it in the Source Editor.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

2. Begin coding the method with a JNDI lookup for a remote reference to the
RestaurantHome interface.

public void ejbCreate(){

/1 Join the following two lines in the Source Editor
Systemout. println("Entering

Di ni ngQui deManager EJB. ej bCreate()");
Context ¢ = null;
hject result = null;

if (this.nmyRestaurantHome == null) {

try {
¢ = new Initial Context();
result =

c.l ookup("java: conp/ env/ ej b/ Rest aurant");
nmyRest aur ant Hone =
(Rest aur ant Hone) j avax. rm . Port abl eRenpt eChj ect. narrow (resul t,
Rest aur ant Hone. cl ass) ;
}

catch (Exception e) {Systemout.printin("Error: "+

e, }

Tip — Remember, you can reformat the code you enter in the Source Editor by
pressing Control-Shift F. Also remember to remove line breaks when indicated by
the code comments.

Chapter 3 Building the EJB Tier of the DiningGuide Application 89

3. Under the preceding code, add a similar INDI lookup for the
CustomerreviewHome interface.

Context crc = null;
oject crresult = null;

if (this.myCustomerreviewdomre == null) {
try {
crc = new Initial Context();
result =
crc. | ookup("java: conp/ env/ ej b/ Cust onerrevi ew');
myCust onmerr evi ewHone =
(Custonerrevi ewHone) j avax. rm . Port abl eRenpt ehj ect. narrow(resul t
, Custonerrevi ewHone. cl ass) ;
}
catch (Exception e) {Systemout.printin("Error: "+

e); }

4. Now add an import statement for the j avax. nam ng package.

Add the import statement at the top of the file. You must import javax.naming
because it contains the | ookup method you just used.

i mport javax. nam ng. *;

5. Declare the myRestaurantHome and myCustomerreviewHome fields.

Add these declarations to the definition of the Di ni ngGui deManager EJB session
bean after the i nport statements.

public class Di ni ngGui deManager Bean i npl enents

j avax. ej b. Sessi onBean {
private javax.ejb. SessionContext Context;
private RestaurantHonme nyRestaur ant Hone;
private Custonerrevi ewHone nmyCust omerrevi ewHone;

6. Select the (DiningGuideManager(EJB) logical node and press F9 to compile the
bean.

Next, create the DiningGuideManager’s business methods.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Creating Business Methods to Get the Detail Data

The DiningGuideManager bean requires a method that retrieves all restaurant data
when it receives a request from the client to see the list of restaurants. It also requires
a method to retrieve review data for a specific restaurant when the client requests a
list of customer reviews. Create the getAllRestaurants and
getCustomerreviewsByRestaurant methods to satisfy these requirements.

Creating the getAllRestaurants Method

To create the getAllRestaurants business method:

. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.
. Type get Al | Rest aur ant s in the Name field.
. Typejava. util. Vector in the Return Type field.

. Make sure the option Both Remote and Local Interfaces is enabled.
This method should be added to both remote and local interfaces.

. Accept all other default values and click OK.

The method shell is created in the DiningGuideManager session bean’s business
methods.

Chapter 3 Building the EJB Tier of the DiningGuide Application 91

92

6. Open the method in the Source Editor and add the following (bold only) code:

public java.util.Vector getAll Restaurants() {

/1 Join the following two Ilines in the Source Editor
Systemout.println("Entering

Di ni ngQui deManager EJB. get Al | Restaurants()");
java.util.Vector restaurantList = new java.util.Vector();
try {

java.util.Collection rl =
nmyRest aur ant Hone. fi ndAl | () ;

if (rl == null) { restaurantList = null; }
el se {
Rest aurant Detai | rd;
java.util.lterator rli =rl.iterator();
while (rli.hasNext()) {
rd =

((Restaurant)rli.next()).getRestaurantDetail ();

Systemout. println(rd. get Restaurantnane());
Systemout.println(rd.getRating());
restaurant Li st. addEl ement (rd);

}

}
catch (Exception e) {

/1 Join the following two lines in the Source Editor
Systemout.printiln("Error in
Di ni ngQui deManager EJB. get Al | Restaurants(): " + e);

/1 Join the following two lines in the Source Editor
Systemout. println("Leaving

Di ni ngGui deManager EJB. get Al | Rest aurants()");
return restaurantlList;

}

Note — Remember to remove line breaks when indicated by the code comments.

This code gets an instance of RestaurantDetail for each remote reference of the
Restaurant bean in the context, adds it to a vector called restaurantList, and returns
this vector.

. Select the DiningGuideManager(EJB) logical node and press F9 to compile the

bean.

Now, create a similar method to get a list of customer reviews.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Creating the getCustomerreviewsByRestaurant Method

To create the getCustomerreviewsByRestaurant method:

. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.
. Type get Cust onerr evi ewsByRest aur ant in the Name field.
. Typejava. util. Vector in the Return Type field.

. Click the Add button to add a parameter with the following values:

Parameter Name Type

restaurantname java.lang.String

. Click OK to close the dialog box and create the method parameter.

. Make sure the option Both Remote and Local Interfaces is enabled.

. Accept all other default values and click OK again create the business method.

The method is created in the Di ni ngGui deManager session bean.

Chapter 3 Building the EJB Tier of the DiningGuide Application

93

8. Find the method in the Source Editor and add the following bold code:

public java.util.Vector
get Cust omer r evi ewsByRest aurant (j ava. |l ang. String
rest aur ant nane) {
/1 Join the following two lines in the Source Editor
Systemout.println("Entering
Di ni ngGui deManager EJB. get Cust oner r evi ewsByRestaurant () ") ;
java.util.Vector reviewList = new java.util.Vector();
try {
java.util.Collection rl =
nmyCust oner r evi ewHorre. f i ndByRest aur ant Nanme(r est aur ant nane) ;

if (rl == null) { reviewList = null; }
el se {
Custonerrevi ewbDetail crd;
java.util.lterator rli =rl.iterator();
while (rli.hasNext()) {
crd =

((Custonerreviewrli.next()).getCustonerreviewDetail ();
System out . println(crd. get Rest aurant nane());

System out. println(crd. get Cust onernane());
Systemout. println(crd. getReview());
revi ewLi st. addEl enent (crd);

}
}
catch (Exception e) {
/1 Join the following two lines in the Source Editor
Systemout.printin("Error in
Di ni ngGui deManager EJB. get Cust oner r evi ewsByRestaurant(): " + e);

/1 Join the following two lines in the Source Editor
System out. println("Leaving

Di ni ngQui deManager EJB. get Cust oner r evi ewsByRest aurant () ") ;
return reviewList;

}

Note — Remember to remove line breaks when indicated by the code comments.

Similar to the getAllRestaurants code, this method retrieves an instance of
CustomerreviewDetail for each remote reference of the Customerreview bean in the
context, adds it to a vector called reviewList and returns this vector.

94 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

9. Select the DiningGuideManager(EJB) logical node and press F9 to compile the
bean.

Creating a Business Method to Create a Customer
Review Record

Now create a business method that calls the Customerreview entity bean’s create
method to create a new record in the database.

To create the createCustomerreview method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.
2. Type creat eCust onerrevi ewin the Name field.
3. Type voi d in the Return Type field.

4. Use the Add button to add three parameters with the following values:

Parameter Name Type

restaurantname java.lang.String
customername java.lang.String
review java.lang.String

5. Click OK to close the Add Parameter dialog box.
6. Make sure the option Both Remote and Local Interfaces is enabled.

7. Click OK again create the business method.
The method is created in the DiningGuideManager session bean.

Chapter 3 Building the EJB Tier of the DiningGuide Application 95

96

8. Find the method in the Source Editor and add the following bold code:

public voi d creat eCustonerrevi ew(j ava. |l ang. Stri ng rest aur ant nane,
java.lang. String customernane, java.lang.String review {
/1 Join the following two lines in the Source Editor
Systemout.println("Entering
Di ni ngQui deManager EJB. creat eCust onerreview()");
try {
Custonerrevi ew custonerrev =
nyCust onerr evi ewHone. cr eat e(r est aur ant nane, cust oner nane,
review;
} catch (Exception e) {
/1 Join the following two lines in the Source Editor
Systemout.printin("Error in
Di ni ngGui deManager EJB. creat eCustonmerreview(): " + e);
}
// Join the following two lines in the Source Editor
Systemout. println("Leavi ng
Di ni ngQui deManager EJB. cr eat eCust omerrevi ew()");

}

Note — Make sure you eliminate the three line breaks indicated by the comments.

. Select the (DiningGuideManager(EJB) logical node again and press F9 to compile

the bean.

Creating Business Methods That Return Detail
Class Types

The web service you will create in Chapter 4 is a JAX-RPC implementation of the
SOAP RPC web service. SOAP (Simple Object Access Protocol) is an abstract
messaging technique that allows web services to communicate with one another
using HTTP and XML. The SOAP runtime must know of all the Java types employed
by any methods that are called by the web service in order to map them properly
into XML. Because the tutorial’s web service will call session bean methods, it needs
to know every type used by those methods.

One type the SOAP runtime can not have knowledge of is the type of objects that
make up collections. The methods that you just created (getAllRestaurants and
getCustomerreviewsByRestaurant) all return collections of the detail classes. You

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

must provide knowledge of these classes to the SOAP runtime by creating, for each
detail class, a method that returns the class. The methods you will create are the
getRestaurantDetail and getCustomerreviewDetail methods.

You created methods with the same names on the entity beans (see “Creating
Business Methods on the Entity Beans to Fetch the Detail Classes” on page 71), but
the methods you create now are empty, their purpose being simply to supply the
required return type to the SOAP runtime.

For more information on Sun ONE Studio 5 web services and the SOAP runtime, see
Building Web Services in the Sun ONE Studio 5 Programming series.

Creating the getRestaurantDetail Method
To create the getRestaurantDetail method:

. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.
. Type get Rest aur ant Det ai | in the Name field.

. For the return type, use the Browse button to select the RestaurantDetail class.

Be sure to select the class (ﬁ:)), not the bean’s node. Data.RestaurantDetail is
displayed in the Return Type field.

. Make sure the option Both Remote and Local Interfaces is enabled.

. Accept all other default values and click OK to create the business method and
close the dialog box.

The method is created in the DiningGuideManager session bean.

. Find the method in the Source Editor and add the following bold code:

public Data. RestaurantDetail getRestaurantDetail () {
return null;

}

Creating the getCustomerreviewDetail Method
To create the getCustomerreviewDetail method:

. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

Chapter 3 Building the EJB Tier of the DiningGuide Application 97

98

. Type get Cust onerrevi ewDet ai | in the Name field.

. For the return type, use the Browse button to select the Cust orrer r evi ewDet ai |

class.
Data.CustomerreviewDetail is displayed in the Return Type field.

. Make sure the option Both Remote and Local Interfaces is enabled.

. Click OK to create the business method and close the dialog box.

The method is created in the DiningGuideManager session bean.

. Find the method in the Source Editor and add the following bold code:

publ i c Data. Custonerrevi ewDetail getCustomerreviewDetail () {
return null;
}

. Right-click DiningGuideManager(EJB) and choose Validate EJB.

The DiningGuideManager session bean should validate without errors.

Adding EJB References

When you deploy a session bean, the bean’s properties must contain references to
any entity beans methods called by the session bean. Add them to the session bean
now; you can not add them after the bean has been assembled into an EJB module.

. In the Explorer, select the DiningGuideManager(EJB) logical node.

. Display the bean’s property sheet.

If the Properties window is not already visible, choose View - Properties.

. Select the References tab of the property window.

. Click the EJB References field and then click the ellipsis (...) button.

The EJB References property editor is displayed.

. Click the Add button.

The Add EJB Reference property editor is displayed.

. Type ej b/ Rest aur ant in the Reference Name field.

. For the Referenced EJB Name field, click the Browse button.

The Select an EJB browser is displayed.

Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

8. Select the Restaurant (EJB) bean under the DiningGuide/Data node and click OK.
Notice that the Home and Remote interface fields are automatically filled.

9. Set the Type field to Enti ty.
The Add EJB Reference property editor looks like this:

“Add EJB Reference

|/ Standard I/ Sun OME App Server

Reference Mame: |ejbIRestaurant |

Description: [|

Referenced EJB Mame: |Restaurant | | Browese... |
Type: ’m

Hotne Interface: |Data.ResiauramHome | | Browvese... |
Retnote Interface: |Data.Resiauram | | Browvese... |

| OK || Cancel || Help |

10. Select the Sun ONE App Server tab.

11. Type ej b/ Rest aur ant in the JINDI Name field and click OK.
This is the default INDI name that was assigned to the Restaurant bean when you
created it.

12. Similarly, add a reference to the Customerreview entity bean, so that the
properties have the following values:

Tab Property Value

Standard Reference Name ejb/Customerreview
Referenced EJB Name Customerreview
Type Entity
Home Interface Data.CustomerreviewHome
Remote Interface Data.Customerreview

Sun ONE App Server JNDI Name ebj/Customerreview

Chapter 3 Building the EJB Tier of the DiningGuide Application 99

The EJB References dialog box looks like this:

EJB References
Reference MNamne | Description | Referenced EJB Mame | Type | Home Interface | Remote Interface
ejbRestaurant Restaurant Ertity |DataRestaura... Data Restaurant
EjbiCustomerreyi... Customerreview Ertity |Data.Custormer... |Data Customerre...
Add...
| OK | | Cancel | | Help

13. Click OK to close the Property Editor window.

You have now completed the EJB Tier of the tutorial application and are ready to test
it. As when you tested the entity beans, the IDE’s test application facility creates a
web tier and JSP pages that can be read by a client in a browser.

100

Testing the Session Bean

Use the IDE’s test application facility to test the DiningGuideManager session bean.
This will test the whole EJB tier, because the session bean’s methods provide access
to methods on all of the tier’s components.

Creating a Test Client for a Session Bean

Create a test application from the DiningGuideManager bean. Then add the two
entity beans to the EJB module.

To create a test client for the session bean:

. Right-click the DiningGuideManager logical node and choose Create New EJB

Test Application.
The EJB Test Application wizard is displayed.

. Accept all default values and click OK.

A progress monitor appears briefly and then goes away when the process is
complete. Another window is displayed informing you that the web module that
was created is also visible in the Project tab. It should go away automatically, also. If
not, click OK to close the window.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

3. View the resulting test objects in the Explorer.
The IDE has created the following objects:

= An EJB module (DiningGuideManager_EJBModule)
= A web module (DiningGuideManager_WebModule)
= A J2EE application (DiningGuideManager_TestApp)

The EJB module and the web module appear as subnodes under the Data package
and also as modules contained in the J2EE application. The web module has also
been mounted separately.

Adding Entity Bean References to the EJB Module

The EJB module contains only the DiningGuideManager bean, so you must add the
two entity beans to it.

1. Right-click the DiningGuideManager_EJBModule and choose Add EJB.
The Add EJB to EJB Module browser is displayed.

2. Expand the DiningGuide filesystem and the Data package.

3. Using Control-Click, select both the Restaurant and Customerreview logical
beans.

4. Click OK.

The IDE adds references to the two entity beans to the EJB module, and to its
reference in the test applications. The DiningGuideManager_EJBModule should look
like this:

@ DiningGuideianager _EJBModulz
?'6 Customerreview
b DiningGuideManager
?'6 Restaurant
o] .Q DiningGuideManager _TestApp
@ B DiningGuideManager_EJBModule
GP?'@ Customerreview
E-?'e DiningGuideManager
Gr?'e Restaurarnt
Lo "@ DiningGuidedanager_TestApp

5. Choose File — Save All.

Chapter 3 Building the EJB Tier of the DiningGuide Application 101

102

Providing the Sun ONE Application Server 7
Plugin With Database Information

You must add database information to the Sun ONE Application Server 7 properties
of the EJB module. You performed this task with the entity bean test client in
“Providing the Sun ONE Application Server 7 Plugin With Database Information”
on page 75.

To add the required information:

. Expand the EJB module (DiningGuideManager_EJBModule) in the Explorer and

select the Restaurant node (a reference to the Restaurant bean) under it, to display
its properties.

If the Properties Window is not already displayed, choose View - Properties.

. Select the Sun ONE AS tab of the Properties window.

Note — If there is no Sun ONE AS tab on the Properties window, there is no instance
of the Sun ONE Application Server 7 in the Server Registry. See “Confirming Sun
ONE Application Server 7 as the Default Server” on page 29 to correct this problem.

. Confirm that the following three values for the appropriate properties:

Property Value

Mapped Fields 7 container managed fields mapped
Mapped Primary Table RESTAURANT

Mapped Schema dgSchema

If these values are displayed, continue with Step 5.

. If the values are not displayed, remap the Restaurant bean as follows:

a. Set the Mapped Schema property to Dat a/ dgSchens.
b. Set the Mapped Primary Table property to Rest aur ant .

c¢. Click in the value field of the Mapped Fields, then click on the ellipsis button.
The Map to Database wizard is displayed.

d. Click Next to view the Select Tables page.

e. Select RESTAURANT from the drop list of the Primary Table field.

If RESTAURANT is not in the list, use the Browse button to find the table with the
dgSchema schema.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

10.

11.

12.

f. Click Next to view the Field Mappings page.

g. If the fields are unmapped, click the Automap button.
Values for mappings appear for each field.

h. Click Finish.
The values should now display as in Step 3.

Repeat Step 1 through Step 4 (if required) for the Customerreview reference.

Select the EJB module (DiningGuideManager_EJBModule) to display its
properties.

Select the Sun ONE AS tab of the properties window.

Click in the value field for the CMP Resource property, then click the ellipsis
button.

The CMP Resource property editor is displayed.

Type j do/ Poi nt basePMin the Jndi Name field.

This is the JNDI name of the JDBC Persistence Manager you defined in “Setting
JDBC Resources (Microsoft Windows Superusers)” on page 30 or “Setting JDBC
Resources (All Other Users)” on page 31.

For the Name and Password fields, type the User Name and Password for your
database.

For the PointBase sample database, these are both PBPUBLIC. The editor looks
similar to this:

) CMP Resource

Jndi Mame [idoPointbasePh]

Default Resource Principal

Mame [PEPUBLIC |

Passward | aaaaaaaa |
| OK | | Cancel | | Help |

Click OK to accept the values and close the property editor.

You have finished configuring the test application to use your database and now you
can deploy the test application.

Save your work with File - Save All.

Chapter 3 Building the EJB Tier of the DiningGuide Application 103

104

Deploying and Executing the Test Application

You must first undeploy the two test applications of the entity beans (if they are still
deployed) before you deploy the session bean’s test application. This is because they
use the same JNDI lookups to the Restaurant and Customerreview beans that are
used by the DiningGuideManager_TestApp application. If you fail to undeploy these
applications, the DiningGuideManager test application will deploy, but will not
load.

Note — Make sure your application server instance is running and is set as the
default application server, before you proceed with this section.

Undeploying the Entity Bean Test Applications

To undeploy any previously deployed applications.

. Click the Explorer’s Runtime tab to display the Runtime page.

. Expand the servername(hostname: host-number) instance node under the Sun ONE

Application Server 7 node under Installed Servers.

For example, serverl(localhost:80) is the default server instance. Or your instance
might have other labels, such as MyServer(localhost:82).

. Make sure the application server is running.

a. Right-click the application server node and choose Status.
The Application Server Instance Status dialog box is displayed. If the Status is
Running, go on to Step 4.

b. Click the Start Server button.
A command window appears, displaying progress messages. The server is started
when this window displays the string “Application onReady complete.”

¢. Click Close on the instance status dialog box.
Do not close the command window, although you can minimize it if necessary.

. Expand the Deployed Applications node.

The two entity bean test applications are displayed.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Explorer [Runtime] E
E Rurtirne =
9 Server Registry
Lo @ Default Servers
@ B Installed Servers
@ iy Sun ONE Spplication Server 7
% B localhost4s4s
o @ =erver] (localhost: 801
Lo Registered JOBC Connection P
Registered JOBC DataSources
Registered JMS Resources
Registered Persistent Manager:
Registered Java Mail Sessions
Deployed YWeb Modules
Deployed Ejb Modules
Deployed Rar Modules
Deployed SApplications
Q Customerreview_TestApp
Q Restaurant_TestApp
Unregistered JOBC Connection Pools
Unregistered JOBC Data Sources
Unregistered JMS Resources
Unregistered Persistence Managers
Unregistered Java Mail Sessions
& & Tomcat 4.0
@ @ UDDI Server Registry
@ Q& Processes |
Lo Databases |

©9 99999
Ei @

Deployed applications

PPPPQ

L @ Filesystems = L <3 Project Defautt * L % Rurtime |—

If nothing is displayed, right-click the Deployed Applications node and choose
Refresh List.

5. Right-click one of the applications and choose Undeploy.
The application is undeployed.

6. Repeat Step 5 to undeploy the other application.

Deploying the DiningGuideManager Test Application

Note — Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database.

To deploy the DiningGuideManager test application:

1. Click the Explorer’s Filesystems tab to display the Filesystems page.

Chapter 3 Building the EJB Tier of the DiningGuide Application 105

106

2. Right-click the DiningGuideManager_TestApp J2EE application node and choose

Execute from the contextual menu.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The IDE starts the default web browser and displays the test application’s home
URL, similar to htt p: / /1 ocal host/ Di ni ngGui deManager _Test App/ if your
application server is installed locally; it will be different if it is installed remotely.

Using the Test Client to Test a Session Bean

On the test client’s web page, create an instance of the DiningGuideManager session
bean by exercising the create method; then test the business methods (getRating) on
that instance.

To test the DiningGuideManager bean:

. Create an instance of the DiningGuideManager session bean by invoking the

DiningGuideManagerHome’s create method.

The Data.DiningGuideManager[x] instance appears in the instance list. Now you can
test the bean’s getter methods.

. Select the new Data.DiningGuideManager[x] instance.

The getAllRestaurants and getCustomerreviewsByRestaurant methods are made
available.

3. Type any data you like in the createCustomerreview fields.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

For example:
Invoke Methods on Das. HelngGulde Manager |7)

Oy Cymin g Fulde ifanaper

Iiwibs |'.=:|-1 FrvabrEE i ee e

| lasy S [E'-_ﬂ Fik

e lang Sineg |I'I'l.rr im GTEEND

1oy, lyzg Shmng ITI'.'.: im the Eaxu!

4. Click the Invoke button next to the createCustomerreview method.

The deployed test application adds the record you created to the database. The new
parameter values are listed in the Stored Objects section (upper right), and the
results are shown in the Results area:

Fesults of the Last Aethod Invocation

wirid

Methail Irmoked: erearta CLe b Rorediyg (ave Leg Sveg Love Laeg Svieg tave Lasg Sivleg)
Parareters

By Fex

Aifirrcia Groee

Thir ir e bashd

5. Click the Invoke button on the getAllRestaurants method.

If you created Joe’s House of Fish in the database (in “Using the Test Client to Test
the Restaurant Bean” on page 78), a vector of size 3 appears in the list of created
objects (upper right), and the results of the method invocation should look as shown
(actual numbers may be different). If you didn’t create this record, your results
might be different.

Resalts of the Last Method Invocation
[Dats B estamratlteakiTa daBite, Tiata ResanrsatDistel St e 1400, Data HestaramTetal @A 68059]
blethiod Tmwedoed: gt A Resiaunants ¢)

Faramaiecs
Bk

6. Click the Invoke button on the getCustomerreviewDetail method.
The result is shown in the Results section.

Chapter 3 Building the EJB Tier of the DiningGuide Application 107

108

Roselts of thee Last Flathod hivocation

11|

P ethiod Imwcdoed: perCuctommrnevine Dl)

Faramaiecs
CET

7. Type Joe’ s House of Fi sh in the field for the getCustomerreviewsByRestaurant

10.

method and click the Invoke button.

No CustomerreviewDetail records should be returned, because there are no
customer review comments in the database. Now try the French Lemon record.

Type French Lenon in the same field and invoke the method.
Two CustomerreviewDetail records should be returned:

Hogalg of the Last Method Divocatdon
[Daka. CustorresrremewDietad 206 1465, Data Crtomerrenew Dbt 2hdaT)

Blethiod Tvadoed: perustermrrmestne By antauranl Hava. g, Jdug)

Farameters
Frewel Laran

Click the Invoke button on the getRestaurantDetail method.
The result is shown in the Results section.

Hevalix of the Lazt Eethod Invocstion

11 |

Iethod Invckond: pofBrsiaurantDelar! {7

Faramesters

nar

When you are finished testing, stop the test client by pointing your web browser
at another URL or by exiting the browser (or do nothing).

Note — You do not need to stop the application server’s process (which is listed in
the execution window). Whenever you redeploy, the server undeploys the
application and then redeploys. When you exit the IDE, a dialog box is displayed for
terminating the application server’s instance process. However, you can manually
terminate it at any time by right-clicking the ser ver 1(hostname: host-port) node in
the execution window and choosing Terminate Process.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Checking the Additions to the Database

To verify that the DiningGuideManager_TestApp application inserted data in the
database, repeat the procedures described in “Checking the Additions to the
Database” on page 81 and “Checking the Additions to the Database” on page 86.

You are now ready to create the web service.

Comments on Creating a Client

Congratulations, you have successfully completed the EJB tier of the DiningGuide
application. You are ready to go on to Chapter 4, to use the Sun ONE Studio 5 IDE’s
Web Services module to create web services for the application, and then on to
Chapter 5 to install the provided Swing classes for your client.

You may, however, wish to create your own web services and client, in which case,
the Sun ONE Studio 5 test application can offer some guidelines.

Web services that access a session bean like the DiningGuideManager bean must
include a servlet and JSP pages with lookup methods for obtaining the Home
interfaces and Home objects of the entity beans in the EJB tier. The web module
created by the test application facility offers examples of the required code.

Lookup method examples are found in the Ejblnvoker class under the web module.
Specifically, look for this class under the
VEEB- | NF/ Cl asses/ coml sun/ fortedj/j2eel ej bt est/ webt est directory.

Chapter 3 Building the EJB Tier of the DiningGuide Application 109

110

@ Explorer [Filesystems] -0

@ 3 DDiningGuide'DataDiningGuideManager_WebModule

| »

5] WEB-INF
@ 3 Classes
@ A com
@3 zun
@ 3 fortedi
@ A jZee
@ 3 sjbtest
@ 3 webtest
@ ArrayHelper
DizpatchHelper
Ejklrevoker
InvalidParameterException
InvalidStack=tate
Invocablebethod
InvocationEny
hethodHelper
& O ik
'3” wveh
& [F array

& (& arrayconstructor
o & dispatch

& [# displaymethods
& 3 error

o [rethod

& [# navigstion

& [F okject

Lo @ ohjectconstructar
& [F resut

& [F storedab

4] O

Lookup method examples

L] Filesystems L % Project Defautt L

Javadoo L% Ruritime |

For example, the following methods offer good example lookup code:

EjbInvoker.getHomeObject
Ejblnvoker.getHomelnterface
EjbInvoker.resolveEjb

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

CHAPTER 4

Creating the DiningGuide
Application’s Web Service

This chapter describes how to use the Sun ONE Studio 5 IDE to create web services
for the DiningGuide application. This chapter covers the following topics:

= “Overview of the Tutorial’s Web Service,” which follows

= “Creating the Tutorial’s Web Service” on page 113

= “Testing the Web Service” on page 117

= “Making Your Web Service Available to Other Developers” on page 129

For a complete discussion of Sun ONE Studio 5 web service features, see Building
Web Services from the Sun ONE Studio 5 Programming series. This book is available
from the Sun ONE Studio 5 portal’s Documentation page at
http://forte.sun.con ffj/docunentation/index.htm .Forinformation
on specific features, see the Sun ONE Studio 5 online help.

Overview of the Tutorial’s Web Service

In this chapter, you will create the DiningGuide application’s web service. As part of

this procedure you will explicitly create a number of components and generate some

others.

You will explicitly create:

= A logical web service, the DGWebService web service

= A J2EE application, which references both the session bean’s EJB module and the
web service

You will generate:

= Runtime classes, which are EJB components for implementing the web service
= A test client
= Test client files

111

http://forte.sun.com/ffj/documentation/index.html

112

The Web Service

For more complete information about web services and how to create and program
them, see Building Web Services. See also the Sun ONE Studio 5 online help for
specific web service topics and procedures.

In this tutorial, you develop your web service’s functionality by creating references
in the web service to the methods you want clients to be able to access.

The Runtime Classes

After creating your web service and its method references, you generate its runtime
classes. You do not work directly on the runtime classes, but you will see them
generated in the package containing the web service.

The Client Files

When you create a client and generate its files, supporting client pages are created.
You will use these client pages for testing the web service. You can also use them as
a starting point or a guide for developing a full-featured referenced method. These
client files include a JSP page for each reference method, a JSP page to display errors
for the web service, and an HTML welcome page to organize the method JSP pages
for presentation in a web browser.

The welcome page contains one HTML form for each of the JSP pages generated for
the referenced methods. If a method requires parameters, the HTML form contains
the appropriate input fields. You test the methods by inputting data for each
parameter, if required, and pressing the method’s Invoke button. The following
actions then occur:

1. The JSP page passes the request to the SOAP client file.

2. The SOAP client file passes the request to the JAX-RPC runtime system on the
application server.

A SOAP request is an XML wrapper that contains a method call on the web
service and input data in a serialized form.

3. The JAX-RPC runtime system on the application server transforms the SOAP
requests into a method call on the appropriate method referenced by the
DiningGuide web service.

4. The method call is passed to the appropriate business method in the EJB tier.

5. The processed response is passed back up the chain to the SOAP client file.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

6. The SOAP client file passes the response to the JSP page, which displays the
response on a web page.

Creating the Tutorial’s Web Service

Creating the tutorial’s web service requires two steps:

1. Creating the logical web service for the application.

Use the IDE’s Web Service wizard to create the logical web service and specify the
methods you want to reference. These are the five business methods you created
for the DiningGuideManager session bean.

2. Generating the web services runtime classes.

This task generates the supporting EJB components that are used for testing and
implementing the web service.

Creating the Logical Web Service

Use the New Web Service wizard to create the logical web service. The wizard offers
a choice of architectures: multitier or web-centric. The DiningGuide application’s
web service calls methods on the EJB tier components, so choose the multitier
architecture.

The wizard also prompts you to select the methods the web service will call, so it
can build references to these methods. Select the five business methods of the EJB
tier’s session bean.

To create the tutorial’s logical web service:

. In the Explorer, right-click the mounted DiningGuide Filesystem and choose
New - Java Package.

The New Package dialog box is displayed.

. Type WebSer vi ce for the name and click Finish.
The new WebService package appears under the DiningGuide directory.

. Right-click the WebService package and choose New - All Templates.
The New wizard is displayed, showing the Choose Template page.

. Expand the Web Services node, select Web Service and click Next.
The New wizard displays the Web Service page.

Chapter 4 Creating the DiningGuide Application’s Web Service 113

5. Type DGMbSer vi ce in the Name field, select the following options:

Option Category Option to Select
Create From Java Methods
Architecture Multitier

6. Click Next.

The Select Methods page of the New wizard is displayed.
7. Expand the Data, DiningGuideManager(EJB), and Business Methods nodes.

8. Use Shift-Click to select all the DiningGuideManager’s business methods:
The Methods page looks like this:

Mew Wizard - Web Service %]

Select Methods

Select one or mare methods to add:

CustomerreviewDetail
CustomerrevieswHome
Customerrevieskey
Customerreview _EJEModule
Customerreview_TestApp
DiningGuidedanager
DiningGuidetanager (EJE)
@ Claszes
@ (B Crests Methods
@ (B Business Methods
O"E createCustomerreview(String, String, String)
o gettIRestaurarts()
O"E getCustomerreviewDetail()
O"E getCustomerreviewsByRestaurant] String)
o' getRestaurantDetai)
Lo DiningGuideiManagerBean
DiningGuidedManagerHome
Lo DiningGuidetanager_EJBMadule

Select Methods

| <Back || wei- [Ensn || concel || Hew

9. Click Finish.

The new DGWebService web service (the icon with a blue sphere [&]) appears under
the WebService package in the Explorer. If you expand this node, the Explorer looks

like this:

114 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

| Explorer [Filesystems] E

@ Filezystems
@ 32 CDiningGuide
© O Dsta
@ & webService
@ [0 DGWebServiceGenServer
@ [©] DGwebServics New web service
@ (™ Methods
createCustomerreviewjava lang String restaur:
getAlRestaurants:java il Wectar
getCustomerreviewDetail Data Customerreview] — |nC|Uded mEthOdS
getCustomerreviewsByRestaurant(java lang St
@ getRestaurantDetail Data RestaurantDetail
53 dgSchema
@@ CDiningGuide\Data\Restaurant_WebModule
@@ CDiningGuide\Data\Restaurant_WebModule : AWEB-INFiclasses
@@ CDiningGuide\Data\Customerreview Webhodule
@@ CDiningGuide\DatavCustomerreview Webhodule | AWEB-INF izl
@@ CDiningGuide\DataDiningGuidelanager _wWebhodule
@ @ CDiningGuide DataDiningGuideManager _WebModule : AWEB-IMNA

L= - -]

Wieh service

Generating the Web Service’s Runtime Classes

Before you can assemble the web service as a J2EE application and deploy it for
testing, you must generate the web service’s runtime classes. When the architecture
is multitier, the IDE generates many classes to implement the web service, three of
which are for a generated EJB component.

Note — Make sure your admin server is running and your application server is set
as the default server.

To generate a web service’s runtime classes:

. Right-click the DGWebService node and choose Generate Web Service Files.

When the operation is complete, the word “Finished” appears in the IDE’s output
window. Runtime classes that are EJB components for implementing the SOAP RPC
web service appear in the Explorer:

Chapter 4 Creating the DiningGuide Application’s Web Service 115

116

Explorer [Filesystems]
[WehService
@ T DGWebServiceGenServer

% PPPPPPIPPYIPIIPPPPPIPPYIPIIPPPPPPPPYPY

D

DGiviehService

DGviehServiceRPC

DGviehServiceRPCBean

DiGviehServiceRPCHome

DGviehServiceServant

DGviehServiceServartinterface
DGWehServiceServantinterface_CreateCustomerreviewy_RecuestStruct
DGWehServiceServantinterface_CreateCustomerreview_ReguestStruct_SO0APBuilder
DGWehServiceServantinterface_CreateCustomerreview_ReguestStruct_SOAPSerializer
DGWehServiceServantinterface_CreateCustomerreview_ResponseStruct
DGWehServiceServantinterface_CreateCustomerreview_ResponseStruct_SOAPSerializer
DGWehServiceServantinterface_GetAlRestaurants _RequestStruct
DGWehServiceServantinterface_GetAlRestaurants_RequestStruct_SOAPSerializer
DGWehServiceServantinterface_GetAlRestaurants_ResponseStruct
DGWehServiceServantinterface_GetAlRestaurants_ResponseStruct_S0APBuilder
DGWehServiceServantinterface_GetAllRestaurants_ResponseStruct_SOAPSerializer
DGWehServiceServantinterface_GetCustomerreviewyDetail_RequestStruct
DGWehServiceServantinterface_GetCustomerreviewyDetail_RequestStruct_SOAPSerializer
DGWehServiceServantinterface_GetCustomerreviewDetaill_ResponseStruct
DGWehServiceServantinterface_GetCustomerreviewwDetaill_ResponseStruct_SO0APBuilder
DGWehServiceServantinterface_GetCustomerreviewyDetaill_ResponseStruct_SOAPSerializer
DGWehServiceServantinterface_GetCustomerreviewsByRestaurant_RequestStruct
DGWehServiceServantinterface_GetCustomerreviewysByRestaurant_ReguestStruct_S0APBuilde
DGWehServiceServantinterface_GetCustomerreviewsByRestaurant_ReguestStruct_S0APSerial
DGWehServiceServantinterface_GetCustomerreviewsByRestaurant_ResponseStruct
DGWehServiceServantinterface_GetCustomerreviewsByRestaurant_ResponseStruct_SOAPBul
DGWehServiceServantinterface_GetCustomerreviewsByRestaurant_ResponzeStruct_SOAPSeri
DGWehServiceServartinterface_GetRestaurartDetail_RequestStruct
DGWehServiceServantinterface_GetRestaurantDetail_RequestStruct_SOAPSerializer
DGWehServiceServantinterface_GetRestaurantDetail_ResponseStruct
DGWehServiceServartinterface_GetRestaurantDetail_ResponseStruct_S0APBuilder
DGWehServiceServantinterface_GetRestaurantDetail_ResponseStruct_SOAPSerializer
DGWehServiceServantinterface_Tie

DGWehService_SerializerRedistry

Web service
components

jaxrpe-ri-runtime

[4]

2. Display the DGWebService node’s properties.

Either view them in the Properties window beneath the Explorer, or right-click the
node and choose Properties from the contextual menu.

3. Verify that the value of the SOAP RPC URL property reflects the hostname and

portnumber of your application server.

For example, for an application server host name of “tech5” and a port number of

“4855,” the URL should be as follows:

http://tech5: 4855/ DGMbSer vi ce/ DGWMDbSer vi ce

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

Testing the Web Service

Testing your web service requires the following tasks:

1. Creating a test client that includes:

« A test client
« A J2EE application that references both the EJB module the web service

2. Deploying the test application.
3. Using the test application to test the web service.

The Web Services test application generates a JSP page for each XML operation in
the web service, plus a welcome page to organize them for viewing in a browser.
When you execute the test client, you exercise the XML operations from the welcome

page.

Creating a Test Client and Test Application

To test your web service, create a test client and a J2EE application. Add the EJB
modules and the web service module to the J2EE application.

Tip — When you create the test client, make it the default test client for the web
service. Then when you deploy the J2EE application, the test client is deployed as
well.

To create and deploy a client application for your web service:

1. In the Explorer, right-click the DGWebService node (@) and choose Create New
Web Service Test Client.

The Create a New Web Service Test Client dialog box is displayed.

l-;l Create a Hew Web Service Test Client

Mame: |DGWebServic:eCIient |

Package: wWebService Erowse...
[¥] Make this the defautt test cliert far the weh service.

The option to make this client the default test client for the web service is selected by
default.

Chapter 4 Creating the DiningGuide Application’s Web Service 117

2. Accept all the defaults and click OK.

A new client node appears in the Explorer (@). Now create a new J2EE application
for the web service.

3. Right-click the WebService package and choose New - All Templates.
4. In the New wizard, expand the J2EE node, select Application and click Next.

5. Type DGApp in the Name field and click Finish.
The new J2EE application node (ﬂ) appears under the WebService package.

Adding the Web Service to the J2EE Application

Now add the web service to the application:

1. Right-click the DGApp node and choose Add Module.
The Add Module to Application dialog box appears.

2. In the dialog box, expand the DiningGuide filesystem and both the Data and
WebService packages.

3. Using Control-Click, select both the DiningGuideManager_EJBModule and the
DGWebService nodes.

118 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

The dialog box looks like this:

| Add Module to Application

Select the Module(=] to add to this Application.

8 Filezystems
@ 2 C'DiningGuide
@ 3 Data
@ [Customerreview_TestApp_ClientStubs
@ 3 Customerreview _Yebhodule
@ [0 DiningGuidetanager_TestApp_ClientStubs
@ [0 DiningGuidetanager_Webhodule
@ [0 Restaurant_TestApp_cClientStubs
@ [0 Restaurant_\Webhodule
Gb Customerreview_EJBModule
G.b DiningGuidetdanager_EJBMaodule
@ [2] Restaurart_EJBMociule
@ 3 WebService
@ [0 DewWebhServiceGenServer
@[] DGWehService
B 3 CDiningGuide'Data'Restaurant_Webhodule
@ @ CDiningGuide'Data'Restaurant_WebModule | AWEE-INF iclasses
@ @ CDiningGuideDatanCustomerreviewy MebModule
B 3 CDiningGuide'DatavCustomerreview WebhModule | AMWEE-INFiclasses
@ @ CDiningGuide'Data'DiningGuideManager_Webhodule
@ @ CDiningGuideDataDiningGuideianager_Wiebhodule : WWEB-IMF iclazse:

21D

Cancel

4. Click OK to accept the selection and close the dialog box.
5. In the Explorer, expand the DGApp J2EE application.

Both the DGWebService’s WAR and EJB JAR files have been added to the
application, as well as the DiningGuideManager_EJBModule:

o £ DiningGuidedpp
Gb@ DGWehService _War
@] DGWebService_EjbJar
GPB DiningGuidedanager_EJEModule

Deploying the Test Application

You must first undeploy the any deployed test applications before you deploy the
session bean’s test application, for the same reason given in “Deploying and
Executing the Test Application” on page 104. (Because they use the same JNDI
lookups to the Restaurant and Customerreview beans that will be used by the web
service test application.)

Chapter 4 Creating the DiningGuide Application’s Web Service 119

120

For the procedure for undeploying an application, see “Undeploying the Entity Bean
Test Applications” on page 104.

Note — Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database. In addition,
make sure your Sun ONE Application Server 7 instance is running and is the default
application server of the IDE. See “Confirming Sun ONE Application Server 7 as the
Default Server” on page 29 for information.

To deploy the DGApp application:

. Undeploy any deployed DiningGuide test applications.

Refer to “Undeploying the Entity Bean Test Applications” on page 104 for this
procedure, if it is necessary. Make sure you also restart the application server.

. In the Explorer, right-click the DGApp node (ﬂ) and choose Deploy.

A progress monitor window shows the deployment process running.

. Verify that the application is deployed.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The Execution View window of the Explorer displays a servername(server-
hostname: server-port-number) node.

. Expand the DGWebServiceClient$Documents node under the WebService

package.
The following supporting items have been created:

= A JSP page for each method that formats the display using tag libraries
= A JSP page for each method for displaying the returned SOAP message
= A set of JSP pages that compose a welcome page

= A JSP error page

See Building Web Services for more information about these pages.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

The Explorer looks like this:

Explorer [Filesystems]

@ Filesystems
@ 3 CDiningGuide
© [0 Data
@ 3 webService
@ 3 DeWwebServiceCliertfhocuments
o & DewehserviceClient_Error
Lo @ DGvehServiceClisnt_PROXY _INPUT
Lo @ DiziehServiceClient_SETUP
@ DiGWiehServiceClient_SOLP
- @ createCustomerreview _S0 AP
Lo @ createCustomerreviews _TAGLIB
Lo @ gettilRestaurants_SOAPKML
Lo @ getAlRestaurants_TAGLIE
Lo @ getCustomerreviewDetail_SOAPKML
Lo @ getCustomerreviewDetail_TAGLIE
Lo @ getCustomerreviewsByRestaurant_Sd
Lo @ getCustomerreviewsByRestaurant_T.4
Lo @ getRestaurantDetail_SOAPKML g
Lo @ getRestaurantDetail_TAGLIE ||
D mitne types
@ [0 DeWwebServiceClentGenClient
@ [0 DoWwebServiceGenServer
@ @ DewebService
© (] Methods
@ DowebService
gg DizvehService
i GehServiceCl

—— Generated client pages

4]

[

Included EJE module.

These files are also referenced under the Generated Documents node under the
DGWebServiceClient node.

Using the Test Application to Test the Web Service

For an explanation of the details of how SOAP requests and responses are passed
between the client and the web service, see Building Web Services, available from the
Sun ONE Studio 5 portal’s Documentation page at

http://forte.sun.conl ffj/docunentation/index.htnl.

Note — Make sure the admin server and the PointBase server are running. Make
sure your application server is the default application server.

To test the web service:

. In the Explorer, right-click the DGWebServiceClient node (@) and choose
Deploy.

The DGWebServiceClient is deployed. The node is visible under your application
server instance’s Deployed Web Modules node in the Runtime pane of the Explorer.

Chapter 4 Creating the DiningGuide Application’s Web Service 121

http://forte.sun.com/ffj/documentation/index.html

2. Right-click the same node and choose Execute.
The IDE deploys the test client, launches the default web browser, and displays the
client’s generated welcome page (DGWebServiceClient_SOAP.html):

3 DEWebService - Netscape

File Edit Wiew Go Communicator Help
7| " Bookmarks & Location: [hitp:/localhost/DG WebServiceClisnt/D G ebS erviceClient_S0AF himl =] @7 what's Related m
T

3

DGWebService

http:/Mocalhost: 80D GWebService DGWebService

Input proxy server if the service is outside a firewall

Vector getAllR estaurants()

Inweoke

void createCustomerreview(String string_1, String string_2, String string_3)

strmg_1: |

strmg_2: |

strmg_3: ||

Invoke | Reset

RestaurantDetail getRestaurantDetail()

Tnwoke

CustomerreviewDetail getCustomerreviewDetail()

Tnwoke

= == [Document: Done

This page lets you test whether the operations work as expected.

3. Test the getCustomerreviewsByRestaurant method by typing Fr ench Lenon in the
text field and clicking the Invoke button.

Vector getCustomerreviewsByRestaurant(String string 1)

sting_1: ||Frenc:h Lemcml

Tnvoke | Resetl

122 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

A SOAP message is created and sent to the application server. The DGApp web
service turns the SOAP message into a method invocation of the
DiningGuideManager.getCustomerreviewsByRestaurant method. This method
returns a collection to the generated JSP page,
getCustomerreviewsByRestaurant_ TAGLIB.jsp, which displays the returned data in
a formatted table, as shown.

¥ DGWebService - Netscape
File Edit “iew Go Communicator Help

wf " Bookmarks & Lacation:[ServiceClient/getCustomemeviswsByRestaurant_TAGLIB jsp -] @507 What's Related m

P

DGWebService

hittp:/Mocalhost: 30D GWebService DGWebService

Vector getCustomerreviewsByR estaurant(String string_1)

View SOAP RequestResponse

<rustomernamesFredd/ customer names
<restaurantname>French Lemwon</restaurantnames
<review:Nice flowers.</reviews>

Retmm
Value <customer name>Ralph</customername >
<restauranthame>French Lemon</restauranthames
<reviewrExcellent service.</reviews

[=F == |Documernt: Done:

The data includes all the records entered for the French Lemon restaurant.Verify the
data by starting the Pointbase console and running the following SQL statement:

sel ect * from CustonerReview,
The results show what CustomerReview records you have entered.

. To view the SOAP message, click the View SOAP Request/Response link.
This is displays the returned data as an XML-wrapped SOAP message.

Chapter 4 Creating the DiningGuide Application’s Web Service 123

GwebService - Metscape
File Edit View Go Communicator Help

N"Eookmalks A Location IrviceCIienta’getEustomerreviewsByHestauranthDAPXMLisp j @'What's FRelated m

DGWebService

http:/localhost: 30D GWebService DGWebService

Vector getCustomerreviewsByRestaurant(String string 1)

SOAP RequestResponse

FEEERERAEREEAERERE
Reguest
Content-Type: text/xml; charset="utf-g"
Content-Length: 610
S0APAction: "M
<?xml wersion="1.0" encoding="UTF-2"2>
<env:Envelope xmlns:env="http://schemas.xmlsoap.ory/soap/envelope/ "
xmlns:xsd="http://www. w3, org/ 2001/ XNLSchema™
xmlns:xsi="http://www. w3, org/2001/ XNL3chema-instance "
xmlns:enc="http://schemas.xmlsoap. ory/soap/ encoding/ "
xmlnsins0="urn:DGlebService/vadl™
xmlns:nsl="http://java.sun.com jax-rpe-ri/ internal®
xmlns:nsZ="urn:DGWebIervice/types"
env:encodingStyle="http://schemas . xwlsoap.org/ soap/encoding/ "><env: Body><ns0:
xsiztype="xsd:string">French
LEmon<fString_1><anD:getCustomerrev1ewsByRestaurant></env:Eody></env:Envelor

Response

Content-Type: text/xml; charset="utf-g"

Content-Length: 610
S0APAction: MM

<?uml wersion="1.0" encoding="UTF-8"2>

<env:Envelope xmlns:env="http://schemas.xmlsoap.ory/soap/envelope/ "
xwmlns:xsd="http://www.w3.org/2001/ XMLSchema™

xmlns:xsi="http://www.w3.org/2001/ XMLSchema-instance™ -
il &9 2

il
E,ﬁ| |Document: Done

5. Use the Back button on your browser to return to the welcome page.

6. Test the createCustomerreview operation by typing French Lenon in the

restaurantname field, and whatever you want in the other two fields.

124 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

For example:

void createCustomerreview(String string 1, String string_2, String string_3)

=

‘ sting_1: ||Bay Fox
‘ sting_2: ||Dick Wagmer
‘ stiing_ 3: ||Great, bay views!l

Tnvoke | Resetl

7. Click the Invoke button.

This method takes a complex Java object as an input parameter. The generated JSP
page, createCustomerreview_SOAP.jsp, prompts for the three inputs. These are then
converted into a Customerreview object and passed as a SOAP message. This
message is sent to the application server, where it is turned back into a Java method
call and sent to the DiningGuideManagerEJB component. The result is displayed in
the browser:

Chapter 4 Creating the DiningGuide Application’s Web Service 125

DGWebService - Hetscape

File Edit “iew Go Communicator Help

W'thookmarks J‘ Location:IerviceEIient.-"c:reateEustomerreview_TAGLIB.isp j @v\w’hat's Felated m

DGWebService

http: Mocalhost: 30/ DGWebService DGWebService

void createCustomerreview(String string 1, String string 2, String
string_3)

View SOAP RequestHResponse

’E == | |Document: Done

8. Click the View SOAP Request/Response link.

126 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

The SOAP request and response looks like this.

DGWebService - Netscape
ile Edit “iew Go Communicator Help

M w“!'Enokmarks \)& Locallon:IDGW’ebSBrv\ceEllantz’createEustomanewewjEIAPXML_\sp j @'What‘s Related u

DGWebService

http:/localhost: 30/ DGWebService DGWebService

void createCustomerreview(String stiing_1, String string_2, Sting string_3)
SOAP Request/Response

EERETETREAETRRTRAS
Request
Content-Type: text/xml; charset="utf-g"
Content-Length: 695
SOAPAction: "'
<?¥ml wersion="1.0" encoding="UTF-5"72>
<envi:Envelope xmlns:env="http://schemas.xmlsoap.org/soapfenvelope/"
xwlns:xsd="http://www.wl.org/2001/EMLSchewa™
xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance™
xmlns:enc="hrtp://schemas. xmlsoap . ory/ soap/encoding/ ™
®mlns:ns0="urn:GUebService/ wsdl"
xmlns:nsl="http://java.sun.con/ jax-rpe-ri/internal”
xmlns:ns2="urn:DGWeb3Iervice/types"
env:encoding3tyle="http://schemas. xmlsoap.org/soap/encoding/ "><env: Body><ns0:
®zirtype="xad:scring">Eay Fox</Str1ngﬁl><Str1nq}
®2i:itype="xadistring">Dick Uagner</Strlng_2><str1nq;
xsiztype="xsdistring™>Great bay
views!</String 3r</ns0:createCustomerreviews</env:Bodyr</env:Enveloper

Response
Content-Type: text/xml; charset=rutf-gm
Content-Length: 698
SOAPAction: ™"
<?xml wersion="1.0" encoding="UTF-8"72>
<env:Envelope xmlns:env="hrcp://schemas.xmlsoap.org/ soap/envelope/™

wmwlnz:xsd="http:/ wwy. w3, org/ 2001/ ZHLSchewa ™ -
. Tttt et £ meren % e (OO M s ;l_l
[&F == |Document: Done SR o = e 2

9. Use the Back button on your browser to return to the welcome page.

10. Test the getAllRestaurants operation by clicking its Invoke button on the welcome
page.

Vector getAllR estaurants()

Tnvoke |

This method does not require an input parameter. It returns a collection of restaurant
data, which the getAllRestaurants_SOAP.jsp page displays as XML.:

Chapter 4 Creating the DiningGuide Application’s Web Service 127

GWebService - Netscape

ile Edt Wiew Go Communicator Help
A

DGWebService

http:/localhost:80/DGWebService DGWebService

Vector getAIR estaurants()

View SOAP Request/Response

<address»1200 College Avenue</address:
<cuisinerMediterransan</cuisine>
<description»Wery nice spot.</description>
<neighborhood-Rockridge</neighborhoods
<phone>510 888 B888</phone>
<rating>5</rating>

<restaurantname>French Lemon</restaurantnemes

<address>1200 Piedmont Avenue</address:>
<cuisinesMediterranean</cuisines
<description»Excellent.</description>
Retum <neighhorhood»>Piedmont</ neighborhood>
Value <phone>510 886 B8886</phone>
<crating>S</racing:

<restaurantname>Bay Fox</restaurantname:

<caddress»>1234 Mariner 3 Loop</address>
<cuisinerimerican</cuisines

<descriprion»Interesting variecy</descriprions
<neighborhood»Alamedsa Island</neighborhoods>
<phone>510-222-3333</phone>

<rating:4</ratings

<restaurantnamerJoe's House of Fish</restaurantname>

[=0=] |Document: Dane

Notice the Restaurant record you entered when you tested the Restaurant entity
bean (see “Using the Test Client to Test the Restaurant Bean” on page 78) is the last
record on the page.

You have successfully created a web service for the DiningGuide tutorial. In
Chapter 5, you will use a provided Swing client to run the DiningGuide application.

128 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

Making Your Web Service Available to
Other Developers

You have learned a convenient method for testing web services if you are a web
services developer. However, other development groups in your organization,
particularly the client developers, need to test their work against your web service,
as well. You can easily provide them with your web service’s WSDL file. From this
file, they can generate a client files from which they can build the application’s
client. They can then test the client against your web service, if you provide them
with the URL of your deployed web service (and make sure the web server is
running).

To make web services available to other developers involves these tasks:

1. The web services developer:

« Generates a WSDL file from the web service
« Makes the WSDL file available to the target user
« Provides the target user with the URL of the deployed web service

2. The target user:

« Adds the WSDL file to a mounted filesystem in the Explorer

« Creates a web service client from this WSDL

« Generates client files

= Builds the client around the client files

« Specifies the web service URL as the SOAP RPC URL property of the client

Generating the client files generates the JSP pages required for developing a real
client for the application.

Generating the WSDL File

The first step in sharing access to the application’s web service is to generate a
WSDL file for the web service. This is performed by the developers of the web
service.

Chapter 4 Creating the DiningGuide Application’s Web Service 129

130

To generate a WSDL file for the web service:

. In the Explorer, right-click the DGWebService node (@) and choose Generate

WSDL.

A WSDL file (the node with a green sphere Zf)) named DGWebService is created
under the WebService package.

You can find this file, named DGAebSer vi ce. wsdl , in the
Di ni ngGui de/ WebSer vi ce directory on your operating system’s file system.

. Make this file available to other development teams.

You can attach the file to an email message or post it on a web site.

Generating Client Files From the WSDL File

The second part of sharing access to the application’s web service is to generate all
the web service supporting files from the WSDL file. This is performed by the
developers of the client.

To generate the web service files and client files from the WSDL file:

. On your operating system’s file system, create a directory and place the

DGMebSer vi ce. wsdl file in it.
For example, create the c: \ wsdl Hol der directory and paste the file in it.

. In the Sun ONE Studio 5 Explorer, mount this directory.
. Right-click the new directory and choose New - Java Package.

. Type MyC i ent Package in the Name field and click Finish.

MyClientPackage is displayed in the mounted directory.

. In the Explorer, right-click MyClientPackage and choose New - All Templates.

. In the New wizard, expand the Web Services node, select Web Service Client and

click Next.
The Web Service Client page is displayed.

. Type Newd i ent in the Name field.
. Make sure the package is the MyClientPackage package.

. For the Source, select the Local WSDL File option and click Next.

The Select Local WSDL File page of the New wizard is displayed.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

10.

11.

Expand the directory you created in Step 1, select the DGWebService WSDL file,
and click Finish.

A new client node (@) appears in the Explorer.

Right-click the NewClient client node and choose Generate Client Files.

A Generated Documents node is generated in the Explorer. The expanded Generated
Documents node reveals the JSP pages and welcome page required for the client, as
shown:

Explorer [Filesystems] E

@ Filezystems
@ 2 CDiningGuide
@ [0 Data
O O WebService
© 3 db
© B3 dgSchema
@ @ CDiningGuideData DiningGuideManager Webhoduls
@ 3 CDiningGuideDataDiningGuideManager _wWebhodule
@ 32 ChwwsdiHolder
@ S MyClisntPackage
@ 3 MNewClent$Documents
l}@ MesweClient _Error
@ [F Mewdclient_PROXY_INPUT
© & Mewclent_SETUP
MesweClient _S04P
E-@ createCustomerreview _SOAPKML
G-@ createCustomerreview _TAGLIE
l}@ gethlRestaurants_SOAPKML
o 3 getalRestaurarts_TAGLIE — Generated support files
G-@ getCustomerrevieswDetail _SOAP XML
l}@ getCustomerreviewDetail_TAGLIE
E-@ getCustomerreviewsByRestaurant_SOLP.
G-@ getCustomerreviewsByRestaurant_TAGLI
l}@ getRestaurantDetail _SOAPKML
E-@ getRestaurantDetail_TAGLIE
rirne types
© [0 NewdlientGenClient
© & NewClient
gg DGWiehZervice

B [»
(b service client f

You can now use the client to test the web service, as described in “Using the Test
Application to Test the Web Service” on page 121.

When your application is finished, you will probably publish your web service to a
UDDI registry, to make it available to developers outside your immediate locale. Sun
ONE Studio 5 provides a single-user internal UDDI registry to test this process, and
the StockApp example, available from the Sun ONE Studio 5 portal’s Examples and
Tutorials page at

http://forte.sun.com ffj/documentation/tutorial sandexanpl es. ht n
illustrates how to use this feature. For information on publishing to an external
UDDI registry, see Building Web Services.

Chapter 4 Creating the DiningGuide Application’s Web Service 131

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

132 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

CHAPTER 5

Creating a Client for the Tutorial
Application

This chapter shows you how to run the DiningGuide application using a provided
Swing client that communicates with the web service you created in Chapter 4.

The provided client contains two Swing classes, RestaurantTable and
CustomerReviewTable. You add these classes to the WebService package, then
execute the RestaurantTable class to run the application.

This client is very primitive, provided only to illustrate how to access the methods of
the client you have generated for the web service.

This chapter covers these topics:

“Creating the Client With the Provided Code,” which follows
“Running the Tutorial Application” on page 134
= “Examining the Client Code” on page 137

2.

Creating the Client With the Provided
Code

The client classes are provided as Java class files in the Di ni ngCQui de. zi p file,
which you can download from the Developer Resources portal.

To copy the two provided Java client classes into the DiningGuide application:
In the IDE, create the Client package within the DiningGuide folder.

a. Right-click the DiningGuide folder and choose New - Java Package.

b. In the New wizard, type d i ent in the Name field and click Finish.

Unzip the Di ni ngQui de. zi p file from the Developer Resources portal.

133

a. Download the Di ni ngQui de. zi p file from the Developer Resources portal.
http://forte.sun.conf ffj/documentation/tutorial sandexanpl es. htmi

b. Unzip the file to a local directory, for example, the / MyZi pFi | es directory.

. Using a file system command, copy the two client files from the DiningGuide

source files to the Client package, as follows:

= On Microsoft Windows systems, copy the files and paste them into the new
Cl i ent folder.

= On Solaris or Linux environments, type a command like this:

$ cp /WZipFiles/DningGuide/Cient/*.java /D ningGuide/dient

. In the IDE’s Explorer, expand the DiningGuide/Client package and verify that the

two new classes are there.

Note — When you create a Swing client in the IDE’s Form Editor, the IDE generates
a.form fileand a . j ava file. The . f or mfile enables you to edit the GUI
components in the Form Editor. However, the . f or mfiles have not been provided
for the RestaurantTable and CustomerReviewTable classes, which prevents you from
modifying the GUI components in the Form Editor.

134

Running the Tutorial Application

Note — Make sure the PointBase server is running before you run the tutorial
application. In addition, make sure Sun ONE Application Server 7 is running and is
the default application server of the IDE. See “Confirming Sun ONE Application
Server 7 as the Default Server” on page 29 for information.

Run the DiningGuide application by executing the RestaurantTable class, as follows:

. In the IDE, click the Runtime tab of the Explorer.

. Expand the Server Registry, the Installed Servers, the Sun ONE Application

Server 7, and its subnodes.

3. Right-click the Deployed Applications subnode of the server instance.

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

4. Make sure the DiningGuideApp application is still deployed.
If it is still deployed, a DiningGuideApp node is displayed under the Deployed
Applications subnode.

5. If it is not still deployed, deploy it, as described in “Deploying the Test
Application” on page 119.

6. In the Filesystems tab of the Explorer, right-click the RestaurantTable node and
choose Execute.

The IDE switches to Runtime mode. A Restaurant node appears in the execution
window. Then, the RestaurantTable window is displayed, as shown:

& =|0] %]

Restaurant Listing

RESTAURAN.] CUISIME [MEIGHBORH.| ADDRESS | PHOME |DESCRIPTION] RATING |
French Lermon Mediterranean |Rockridoe 1200 College.. 510 888 8388 |Verynice spot. |5
Eay Fox Mediterranean Piedmont 1200 Piedmo... 510 888 8588 |Excellent.]
Joe's House .. |American Alameda Isla.. |1234 Mariner... 510-222-3333 |Interesting va... |4

| View Customer Comments |

7. Select any restaurant in the table and Click the View Customer Comments button.

For example, select the French Lemon restaurant. The CustomerReviewTable
window is displayed. If any comments exist in the database for this restaurant, they
are displayed, as shown. Otherwise, an empty table is displayed.

& IS[=] 3

All Customer Review By Restaurant Name

CUSTOMER NAME | REVIEW
Fred Mice flowers.
Ralph Excellent service,
Mol Great, but where's the lemaon meri..

Customer Name | |

Review | |

| Submit Customer Review |

8. Type a something in the Customer Name field and in the Review field and click
the Submit Customer Review button.

Chapter 5 Creating a Client for the Tutorial Application 135

For example:

& I [=] B3

All Customer Review By Restaurant Name

CUSTOMER MNAME | REVIEW
Fred Mice flowears.
Ralph Excellent service,
Moy Great, but where's the lemaon meri...

Customer Hame [Siuseppe Verdi |

Review |E magnifica! |

| Submit Customer Review |

The record is entered in the database and is displayed on the same
CustomerReviewTable window, as shown:

& =10
All Customer Review By Restaurant Name

CUSTOMER MNAME | REVIEWY
Fred Mice flowears.
Ralph Excellent service,
Mally Great, butwhera's the leman meri...
Giuseppe Verdi E magnifica!

Customer Name [Giuseppe Yerdi |

Review E rnagnificol |

| Submit Customer Review |

9. Play around with the features, as described in “User’s View of the Tutorial
Application” on page 37.

10. Quit the application by closing any window.

After you quit the application, the execution window shows that the Sun ONE
Application Server 7 process is still running. You need not stop the application
server. If you redeploy any of the tutorial’s J2EE applications or rerun the test clients
(but not this Swing client), the server is automatically restarted.

When you quit the IDE, a dialog box is displayed for terminating any process that is
still running (including the application server or the web server). Select each
running process and click the End Tasks button. You can also manually terminate
any process at any time while the IDE is running by right-clicking its node in the
execution window and choosing Terminate Process.

136 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

Examining the Client Code

The two client classes you have installed in the DiningGuide application are
composed of Swing components and actions that were created in the Form Editor,
and several methods that were created in the Source Editor. The methods added in
the Source Editor include the crucial task of instantiating the client so that its
methods become available to the client.

To help you understand how the Swing client interacts with the web service, the
next few sections discuss the main actions of the client, namely:

“Displaying Restaurant Data” on page 137
“Displaying Customer Review Data for a Selected Restaurant” on page 138
“Creating a New Customer Review Record” on page 141

Displaying Restaurant Data

Displaying restaurant data is accomplished by the RestaurantTable class’s methods,
which instantiate the client and call its getAllRestaurants method, as follows:

1. RestaurantTable.getAllRestaurants method instantiates the client, calls the client’s
getAllRestaurants method to fetch the restaurant data, and returns the fetched
restaurant data as a vector.

private Vector getAll Restaurants() {
Vector restList = new Vector();
try {

WebSer vi ce. DGA\ebSer vi ceCl i ent GenCl i ent . DGMbServi ce servicel =
new

WebSer vi ce. DGMebSer vi ceCl i ent GenCl i ent . DGWebSer vi ce_I npl () ;

WebSer vi ce. DGWebServi ceCl i ent GenCl i ent . DGWbSer vi ceServant I nterface port =
servi cel. get DGMebServi ceServant | nterfacePort ();

restList = (java.util.Vector)port.getAll Restaurants();

}
catch (Exception ex) {

Systemerr.println("Caught an exception.");
ex. printStackTrace();

}

return restList;

Chapter 5 Creating a Client for the Tutorial Application 137

138

2. The RestaurantTable constructor puts the returned restaurant data into the
restaurantList variable and calls RestaurantTable.putDataToTable.

publ i c RestaurantTabl e() {
i ni t Conponents();
restaurantLi st=get Al | Rest aurants();
put Dat aToTabl e() ;

3. The RestaurantTable.putDataToTable method iterates through the vector and
populates the table.

private void putDataToTabl e() {
Iterator j=restaurantList.iterator();
while (j.hasNext()) {
RestaurantDetail ci = (RestaurantDetail)j.next();
String strRating = null;
String[] str ={ci.getRestaurantnane(),
ci . get Cui sine(), ci.getNeighborhood(), ci.getAddress(),
ci . get Phone(), ci.getDescription(),
strRating. val ueO (ci.getRating()),
b
Tabl eMbdel . addRow(str);

4. The RestaurantTable.Main method displays the table as a Swing jTable
component.

public static void main(String args[]) {
new Rest aur ant Tabl e() . show();

}

Displaying Customer Review Data for a Selected
Restaurant

Displaying customer review data begins when the RestaurantTable’s button
component’s action instantiates a CustomerReviewTable. The
CustomerReviewTable’s methods fetch the customer review data by means of the
client’s methods, and populate the table. The RestaurantTable’s button component’s

action then displays it, as follows:

Sun ONE Studio 5 J2EE Application Tutorial « June 2003

1. When the RestaurantTable’s button is pressed to retrieve customer review data,
the RestaurantTable.jButton1ActionPerformed method instantiates a new
CustomerReviewTable object, calls its putDataToTable method, and passes it the
data of the selected column.

private void jButtonlActionPerformed(java.awt .event.Acti onEvent evt)
{

int r =j Tabl el. get Sel ect edRow() ;

int ¢ = jTabl el. get Sel ect edCol unmCount () ;

String i =(String)Tabl eModel . get Val ueAt (r, 0);

Cust omer Revi ewTabl e crt = new Cust oner Revi ewTabl e() ;

crt. put Dat aToTabl e(i);

crt.show);

Systemout.println(i);

2. The CustomerReviewTable.putDataToTable method calls the
CustomerReviewTable.getCustomerReviewByName method, passing it the
selected restaurant name, assigning the returned vector to the customerList
variable.

public void putDataToTabl e(j ava. |l ang. String restaurantnanme) {
Rest aur ant Name = rest aur ant nane;
java.util.Vector custonmerlList =
get Cust onmer Revi ewByNane(r est aur ant nane) ;
Iterator j=custonerList.iterator();
while (j.hasNext()) {
Custonerrevi ewDetail ci =
(Custonerreviewbetail)j.next();
String[] str = {ci.getCustonername(), ci.get Review()
s
Tabl eModel . addRow(st r);

Chapter 5 Creating a Client for the Tutorial Application 139

3. The CustomerReviewTable.getCustomerReviewByName method instantiates a
client (if required) and calls its getCustomerreviewsByRestaurant method,
passing it the name of the selected restaurant.

private Vector getCustomnerRevi ewByName(java.lang. String restaurantname) {
Vector custList = new Vector();
try {
WebServi ce. DGMbServi ceCl i ent GenCl i ent. DGWebSer vi ce service2 =
new
WebSer vi ce. DGMebSer vi ceCl i ent GenCl i ent . DGWebSer vi ce_I npl () ;

WebSer vi ce. DGWMebSer vi ceCl i ent GenCl i ent. DGW\bSer vi ceServant I nterface port =
servi ce2. get DGMebSer vi ceServant | nt erfacePort ();

custList =
(java.util.Vector)port.get Custonerrevi ewsByRest aur ant (rest aur ant nane) ; }
catch (Exception ex) {
Systemerr. println("Caught an exception.");
ex. printStackTrace();

}

return custList;

4. The review data is passed up to the CustomerReviewTable.putDataToTable
method, which iterates through it and populates the table.

public void putDataToTabl e(j ava. | ang. String restaurantnanme) {
Rest aur ant Name = rest aur ant nane;
java.util.Vector custonerlList =
get Cust onmer Revi ewByName(r est aur ant nane) ;
Iterator j=custonerList.iterator();
while (j.hasNext()) {
CustonerreviewDetail ci =
(CustonerreviewbDetail)j.next();
String[] str = {ci.getCustonername(), ci.get Revi ew()
b
Tabl eModel . addRow(st r);

140 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

5. The RestaurantTable.jButtonlActionPerformed method then displays the data.

private void jButtonlActionPerformnmed(java. awt.event. Acti onEvent

evt)
{
int r = Tabl el. get Sel ect edRow() ;
int ¢ = jTabl el. get Sel ect edCol umCount () ;
String i =(String)Tabl eMbdel . get Val ueAt (r, 0);
Cust oner Revi ewTabl e crt = new Cust oner Revi ewTabl e() ;
crt. put Dat aToTabl e(i);
crt.show);
Systemout.println(i);
}

Creating a New Customer Review Record

When the user types a name and review comments on the Customer Review
window and clicks the Submit Customer Review button, the

CustomerReviewTable’s jButtonl1ActionPerformed method creates the review record

in the database by means of the client’s methods, then refreshes the Customer
Review window, as follows:

Chapter 5 Creating a Client for the Tutorial Application

141

1. When the CustomerReviewTable’s button is pressed to submit a customer review
record, the CustomerReviewTable.jButton1ActionPerformed method instantiates a
new client (if required) and calls its createCustomerreview method, passing it the
restaurant name, the customer name, and the review data.

private void jButtonlActi onPerformed(java.awt.event. Acti onEvent evt) {
try {

WebSer vi ce. DGMebSer vi ceCl i ent GenCl i ent . DGMbServi ce servicel =
new

WebSer vi ce. DGWMebSer vi ceCl i ent GenCl i ent . DGWbSer vi ce_I npl () ;

WebServi ce. DGMebServi ceCl i ent GenCl i ent . DGWebSer vi ceServant I nterface port =
servi cel. get DGMebServi ceServant I nterfacePort ();

port.createCustomerrevi em Rest aur ant Nane,

cust orrer NameFi el d. get Text (), revi ewFi el d. get Text ());
}
catch (Exception ex) {

Systemerr. println("Caught an exception.");

ex. printStackTrace();

}
refreshView();

2. This same method (jButtonlActionPerformed) calls the
CustomerReviewTable.refreshView method.

private void jButtonlActionPerformed(java. awt.event. Acti onEvent evt) {
try {
WebSer vi ce. DGWbServi ced i ent Gend i ent . DGWbServi ce servicel =
new

WebServi ce. DGAebSer vi ceC i ent Gend i ent . DGWebSer vi ce_I npl () ;

WebSer vi ce. DGW\ebSer vi ceCl i ent GenCl i ent . DGAbSer vi ceServant I nterface port =
servi cel. get DGNbSer vi ceServant I nterfacePort ();

port.createCustonerrevi em Rest aur ant Nane,
cust oner NameFi el d. get Text (), revi ewFi el d. get Text());
}
catch (Exception ex) {
Systemerr. println("Caught an exception.");
ex. printStackTrace();
}
refreshView);

142 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

3. The CustomerReviewTable.refreshView method calls the putDataToTable method,
passing it the restaurant name.

voi d refreshView() {

try{
whi | e(Tabl eMbdel . get RowCount () >0) {
Tabl eMbdel . rembveRow(0) ;
}
put Dat aToTabl e(Rest aur ant Nane) ;
repaint();
}

catch (Exception ex) {
ex. printStackTrace();

}

4. The CustomerReviewTable.putDataToTable method populates the table.

public void putDataToTabl e(j ava. | ang. String restaurantnanme) {
Rest aur ant Name = rest aur ant nane;
java.util.Vector customerlList =
get Cust onmer Revi ewByNane(r est aur ant nane) ;
Iterator j=custonerlList.iterator();
while (j.hasNext()) {
CustonerreviewbDetail ci =
(Custonerreviewbetail)j.next();
String[] str = {ci.getCustonernane(), ci.getReview)
b
Tabl eMbdel . addRow(st r);

Chapter 5 Creating a Client for the Tutorial Application 143

5. Then the CustomerReviewTable.refreshView method repaints the window,
showing the new data.

voi d refreshView() {

try{
whi | e(Tabl eMbdel . get RowCount () >0) {
Tabl eMbdel . renmoveRow(0) ;
}
put Dat aToTabl e(Rest aur ant Nane) ;
repaint();
}

catch (Exception ex) {
ex. printStackTrace();

}

144 Sun ONE Studio 5 J2EE Application Tutorial * June 2003

APPENDIX A

DiningGuide Source Files

This appendix displays the code for the following DiningGuide components:
= EJB tier components:

« “RestaurantBean.java Source” on page 146

« “RestaurantDetail.java Source” on page 149

« “CustomerreviewBean.java Source” on page 154

« “CustomerreviewDetail.java Source” on page 157

« “DiningGuideManagerBean.java Source” on page 160

» Client components:
« “RestaurantTable.java Source” on page 164
« “CustomerReviewTable.java Source” on page 168

This code is also available as source files within the DiningGuide application zip file,
which you can download from the Forte for Java Developer Resources portal at:

http://forte.sun.conf ffj/documentation/tutorial sandexanpl es. htm

Tip — If you use these files to cut and paste code into the Sun ONE Studio 5 Source
Editor, all formatting is lost. To automatically reformat the code in the Source Editor,
press Control- Shift F after you paste the code.

Note — Wrapped lines are copied from PDF as separate lines, causing the compiler
to interpret certain types of statements as nonesense. These lines are preceeded in
this code by the comment, “Join the following two lines in the Source Editor.” Also,
the Source Editor will mark such lines as coding errors, so they are easy to find and
correct.

Solaris and Linux users are advised not to copy these files, because the Source Editor
does not read the carriage returns at the ends of lines. To view source files, unzip the
DiningGuide source zip file and then mount the unzipped directory in the IDE.

145

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

RestaurantBean.java Source

package Dat a;

i mport javax.ejb.*;

public abstract class RestaurantBean inplenents javax.ejb.EntityBean {

private javax.ejb.EntityContext context;

/**
* @ee javax.ejb. EntityBean#set EntityContext(javax.ejb.EntityContext)
*/
public void setEntityContext(javax.ejb.EntityContext aContext) {
cont ext =aCont ext ;

/**
* @ee javax.ejb. EntityBean#ej bActivate()
*/

public void ej bActivate() {

/**
* @ee javax.ejb. EntityBean#ej bPassi vate()
*/

public void ej bPassivate() {

/**
* @ee javax.ejb. EntityBean#ej bRenove()
*/

public void ej bRenove() {

146 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

/*-k
* @ee javax.ejb. EntityBean#unset EntityContext()
*/
public void unsetEntityContext() {
cont ext =nul | ;

/**
* @ee javax.ejb. EntityBean#ej bLoad()
*/

public void ejbLoad() {

/**
* @ee javax.ejb.EntityBean#ej bStore()
*/

public void ejbStore() {

public abstract java.lang. String getRestaurantnanme();
public abstract void setRestaurantname(java.lang. String restaurantnane);

public abstract java.lang.String getCuisine();
public abstract void setCuisine(java.lang. String cuisine);

public abstract java.lang. String get Nei ghborhood();
public abstract void setNei ghborhood(java.l ang. String nei ghborhood) ;

public abstract java.lang.String get Address();
public abstract void setAddress(java.lang. String address);

public abstract java.lang.String getPhone();
public abstract void setPhone(java.lang. String phone);

public abstract java.lang.String getDescription();
public abstract void setDescription(java.lang.String description);

public abstract int getRating();
public abstract void setRating(int rating);

Appendix A DiningGuide Source Files 147

public java.lang. String ej bCreate(java.lang. String restaurantnang,
java.lang. String cuisine, java.lang.String nei ghborhood, java.lang.String
address, java.lang.String phone, java.lang.String description, int rating)
throws javax. ejb. CreateException {

if (restaurantname == null) {
/1 Join the following two lines in the Source Editor

t hrow new j avax. ej b. Creat eExcepti on("The restaurant nane is
required.");

}

set Rest aur ant nane(r est aur ant nane) ;
set Cui si ne(cui si ne);

set Nei ghbor hood(nei ghbor hood) ;

set Addr ess(addr ess);

set Phone(phone) ;

set Descri ption(description);

set Rating(rating);

return null;

public void ej bPost Create(java.l ang. String restaurantnane, java.lang. String
cui sine, java.lang.String nei ghborhood, java.lang.String address,
java.lang. String phone, java.lang.String description, int rating) throws
j avax. ej b. Creat eException {

}

public Data.RestaurantDetail getRestaurantDetail () {
return (new Restaurant Detail (get Restaurant nane(),
get Cui si ne(), get Nei ghborhood(), getAddress(), getPhone(),
get Description(), getRating()));

148 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

RestaurantDetail.java Source

/*
* RestaurantDetail.java
*

* Created on March 27, 2003, 3:35 PM
*/

package Dat a;

i mport java. beans. *;

public class RestaurantDetail extends Cbject inplenents java.io.Serializable {
private static final String PROP_SAMPLE PROPERTY = "Sanpl eProperty";
private String sanpl eProperty;
private PropertyChangeSupport propertySupport;

/** Hol ds val ue of property restaurantnanme. */
private String restaurantnane;

/** Hol ds val ue of property cuisine. */
private String cuisine;

/** Hol ds val ue of property nei ghborhood. */
private String nei ghborhood;

/** Hol ds val ue of property address. */
private String address;

/** Hol ds val ue of property phone. */
private String phone;

/** Hol ds val ue of property description. */
private String description;

/** Hol ds val ue of property rating. */

Appendix A DiningGuide Source Files 149

private int rating;

/** Creates new RestaurantDetail */
public RestaurantDetail () {
propertySupport = new PropertyChangeSupport(this);

public RestaurantDetail (java.lang. String restaurantnane, java.lang.String
cui sine, java.lang.String nei ghborhood, java.lang.String address,
java.lang. String phone, java.lang.String description, int rating) {

Systemout.println("Creating new RestaurantDetail");
set Rest aur ant name(r est aur ant nane) ;

set Cui si ne(cui si ne);

set Nei ghbor hood(nei ghbor hood) ;

set Addr ess(addr ess);

set Phone(phone) ;

set Description(description);

set Rating(rating);

public String getSanpl eProperty() {
return sanpl eProperty;

public void set Sanpl eProperty(String val ue) {
String ol dval ue = sanpl eProperty;
sanpl eProperty = val ue;
propertySupport.firePropertyChange(PROP_SAMPLE PROPERTY, ol dVval ue,
sanpl eProperty);

}

public voi d addPropertyChangeli st ener (PropertyChangelLi stener |istener) {
pr opertySupport. addPropertyChangeli st ener (li stener);

publ i c voi d renovePropertyChangelLi st ener (PropertyChangelLi stener |istener) {
propertySupport.renovePropertyChangelLi st ener(listener);

[** Cetter for property restaurantnane.
* @eturn Value of property restaurantnane.

150 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

*

*/

public String getRestaurantnane() {
return this.restaurant nane;

[** Setter for property restaurantnane.
* @aram restaurant nane New val ue of property restaurantnane.
*
*/
public void set Restaurantname(String restaurantnane) {
thi s. restaurant nane = restaurant naneg;

/** Getter for property cuisine.
* @eturn Val ue of property cuisine.
*
*/
public String getCuisine() {
return this.cuisine;

[** Setter for property cuisine.
* @aram cui si ne New val ue of property cuisine.
*
*/
public void setCuisine(String cuisine) {
this.cuisine = cuisine;

[** Getter for property neighborhood.
* @eturn Value of property nei ghborhood.
*
*/
public String getNei ghborhood() ({
return this.neighborhood;

/** Setter for property nei ghborhood.

* @ar am nei ghbor hood New val ue of property nei ghborhood.
*

Appendix A DiningGuide Source Files

151

*/
public void set Nei ghborhood(String nei ghborhood) {
t hi s. nei ghbor hood = nei ghbor hood,;

[** Cetter for property address.
* @eturn Value of property address.
*
*/
public String get Address() {
return this.address;

/** Setter for property address.
* @aram address New val ue of property address.
*/
public void set Address(String address) {
this. address = address;

/** Getter for property phone.
* @eturn Value of property phone.
*
*/
public String getPhone() {
return this. phone;

/** Setter for property phone.
* @ar am phone New val ue of property phone.
*
*/
public void setPhone(String phone) {
t hi s. phone = phone;

/** Getter for property description.
* @eturn Value of property description.

*

*/

152 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

public String getDescription() {
return this.description;

[** Setter for property description.
* @aram description New val ue of property description.
*
*/
public void setDescription(String description) {
this.description = description;

[** Getter for property rating.
* @eturn Value of property rating.
*
*/
public int getRating() {
return this.rating;

/** Setter for property rating.

* @aramrating New val ue of property rating.

*

*/

public void setRating(int rating) {
this.rating = rating;

Appendix A DiningGuide Source Files 153

CustomerreviewBean.java Source

package Dat a;
i mport javax.ejb.*;
public abstract class Custonerrevi ewBean inplenments javax.ejb. EntityBean {

private javax.ejb. EntityContext context;

/**
* @ee javax.ejb.EntityBean#set EntityContext(javax.ejb.EntityContext)
*/
public void setEntityContext(javax.ejb.EntityContext aContext) {
cont ext =aCont ext ;

/**
* @ee javax.ejb. EntityBean#ej bActivate()
*/

public void ejbActivate() {

/**
* @ee javax.ejb. EntityBean#ej bPassi vate()
*/

public void ejbPassivate() {

/**
* @ee javax.ejb. EntityBean#ej bRenove()
*/

public void ej bRenove() {

154 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

/*-k
* @ee javax.ejb. EntityBean#unset EntityContext()
*/
public void unsetEntityContext() {
cont ext =nul | ;

/**
* @ee javax.ejb. EntityBean#ej bLoad()
*/

public void ejbLoad() {

/**
* @ee javax.ejb.EntityBean#ej bStore()
*/

public void ejbStore() {

public abstract java.lang. String getRestaurantnanme();
public abstract void setRestaurantname(java.lang. String restaurantnane);

public abstract java.lang. String getCustomrernane();
public abstract void setCustonernane(java.lang. String custonernane);

public abstract java.lang.String getReview);
public abstract void setReview(java.lang.String review);

publi ¢ Data. Custonerrevi ewkKey ej bCreate(java.lang. String restaurantnane,
java.lang. String custonmernane, java.lang.String review) throws
j avax. ej b. Creat eException {

if ((restaurantname == null) || (customernane == null)) {
/1 Join the following two lines in the Source Editor

t hrow new j avax. ej b. Creat eExcepti on("Both the restaurant nane and
custoner nane are required.");

}

set Rest aur ant nane(r est aur ant nane) ;
set Cust omer nanme(cust orrer nane) ;

set Revi ew(revi ew) ;

return null;

Appendix A DiningGuide Source Files

155

public void ej bPost Create(java.lang. String restaurantnane, java.lang. String
custonername, java.lang.String review) throws javax.ejbh.CreateException {

}

publ i c Data. Custonerrevi ewDetail getCustonerreviewbDetail () {

return (new Custonerrevi ewbDet ai | (get Rest aur ant nanme(),
get Cust onernane(), getReview()));

156 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

CustomerreviewDetail.java Source

* CustonerreviewDetail.java

*

* Created on March 27, 2003, 3:35 PM
*/

package Dat a;
i mport java. beans. *;

public class Custonerrevi ewDetail extends Cbject inplenments
java.io. Serializable {

private static final String PROP_SAMPLE _PROPERTY = "Sanpl eProperty";
private String sanpl eProperty;
private PropertyChangeSupport propertySupport;

[** Hol ds val ue of property restaurantnane. */
private String restaurantnang;

/** Hol ds val ue of property custonernanme. */
private String custonernane;

/** Hol ds val ue of property review */
private String review,

/** Creates new Custonerrevi ewDetail */
public CustomerreviewDetail () {
propertySupport = new PropertyChangeSupport(this);

public Custonerrevi ewDetail (java.lang. String restaurantnaneg,
java.lang. String custonernane, java.lang.String review {

Systemout.println("Creating new Customerrevi ewDetail");
set Rest aur ant name(r est aur ant nane) ;
set Cust omer nane(cust orrer nane) ;

Appendix A DiningGuide Source Files

157

set Revi ew(revi ew) ;

public String getSanpl eProperty() {
return sanpl eProperty;

public void set Sanpl eProperty(String val ue) {
String ol dval ue = sanpl eProperty;
sanpl eProperty = val ue;

propertySupport.firePropertyChange(PROP_SAMPLE PROPERTY, ol dVval ue,
sanpl eProperty);

}

public void addPropertyChangeLi st ener (PropertyChangeLi stener |istener) {
propertySupport. addPropertyChangeli stener(listener);

public voi d renovePropertyChangelLi st ener (PropertyChangelLi stener |istener) {
propertySupport.renovePropertyChangeLi stener(listener);

/** Getter for property restaurantnane.
* @eturn Value of property restaurantnane.
*
*/
public String getRestaurantname() {
return this.restaurantnane;

[** Setter for property restaurantnane.
* @aram rest aurant name New val ue of property restaurantnane.
*
*/
public void set Restaurantname(String restaurantnane) {
thi s. restaurant nane = rest aur ant nane;

[** Getter for property custonernane.
* @eturn Value of property custonernane.

*

158 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

*/
public String getCustonernanme() ({
return this.custonernane;

[** Setter for property custonernane.
* @ar am cust oner nane New val ue of property custonernane.
*
*/
public void setCustonername(String customernane) {
t hi s. cust oner name = cust oner nane;

/** Getter for property review
* @eturn Value of property review
*
*/
public String getReview) {
return this.review,

/** Setter for property review

* @aramreview New val ue of property review

*

*/

public void setReview(String review {
this.review = revi ew,

Appendix A DiningGuide Source Files 159

DiningGuideManagerBean.java Source

package Dat a;

i mport javax.ejb.*;
i mport javax. nam ng. *;

public class Di ni ngGQui deManager Bean i npl enents javax. ej b. Sessi onBean {
private javax.ejb. SessionContext context;
private Restaurant Honme mnyRest aur ant Horre;
private Custonerrevi ewHone nyCust onmerrevi ewHone;

/*'k
* @ee javax. ejb. Sessi onBean#set Sessi onCont ext (j avax. €] b. Sessi onCont ext)
*/
public void set Sessi onCont ext (j avax. ej b. Sessi onCont ext aContext) {
cont ext =aCont ext ;

/**
* @ee javax. ejb. Sessi onBean#ej bActi vate()
*/

public void ejbActivate() {

/**
* @ee javax.ejb. Sessi onBean#ej bPassi vat e()
*/

public void ej bPassivate() {

/**
* @ee javax.ejb. Sessi onBean#ej bRenove()
*/

public void ej bRenove() {

160 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

/**
* See section 7.10.3 of the EJB 2.0 specification
*/
public void ejbCreate() {
Systemout. println("Entering D ni ngGui deManager EJB. ej bCreate()");
Context ¢ = null;
ohject result = null;
if (this.myRestaurantHo == null) {
try {
¢ = new Initial Context();
result = c.lookup("java: conp/env/ejb/Restaurant");

nyRest aur ant Home =
(Rest aur ant Hone) j avax. rmi . Port abl eRenpt eObj ect . narrow(resul t,
Rest aur ant Horre. cl ass) ;

}
catch (Exception e) {Systemout.printin("Error: "+
e); }

}

Context crc = null;
hject crresult = null;
if (this.pmyCustomerreviewdomre == null) {
try {
crc = new Initial Context();
result = crc.lookup("java: conp/ env/ejb/ Custonerreview');

nmyCust oner r evi ewHone =
(Cust onerrevi ewHone) j avax. rm . Port abl eRenpt eChj ect. narrow(resul t,
Cust onerrevi ewHone. cl ass) ;

}
catch (Exception e) {Systemout.println("Error: "+
e); }

public java.util.Vector getAll Restaurants() {

Systemout. println("Entering
Di ni ngGui deManager EJB. get Al | Rest aurants()");

java.util.Vector restaurantList = new java.util.Vector();
try {
java.util.Collection rl = myRestaurant Hore. findAll ();
if (rl == null) { restaurantList = null; }

Appendix A DiningGuide Source Files

161

el se {

RestaurantDetail rd;

java.util.lterator rli =rl.iterator();

while (rli.hasNext()) {
rd = ((Restaurant)rli.next()).getRestaurantDetail ();
Systemout . println(rd. get Restaurantnane());
Systemout.println(rd. getRating());
rest aurantLi st. addEl enent (rd);

}
catch (Exception e) {

/1 Join the following two lines in the Source Editor

Systemout.printin("Error in
Di ni ngQui deManager EJB. get Al | Restaurants(): " + e);

}
/1 Join the following two lines in the Source Editor

System out . println("Leaving D ni ngGui deManager EJB. get Al | Restaurants()");
return restaurantlList;

public java.util.Vector getCustonerrevi ewsByRestaurant(java.lang. String
rest aur ant name) {

Systemout. println("Entering
Di ni ngQui deManager EJB. get Cust oner r evi ewsByRestaurant ()");

java.util.Vector reviewList = new java.util.Vector();
try {

java.util.Collection rl =
nyCust oner r evi ewHorre. f i ndByRest aur ant Nane(r est aur ant nane) ;

if (rl ==null) { reviewList = null; }

el se {
Custonerrevi ewbDetail crd;
java.util.lterator rli =rl.iterator();

while (rli.hasNext()) {
crd = ((Custonerreview)rli.next()).getCustonerrevi ewDetail ();
System out . println(crd. get Restaurant nane());
System out . println(crd. get Cust onmer name());
Systemout . println(crd. get Review));
revi ewLi st. addEl enent (crd);

162 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

catch (Exception e) {
/1 Join the following two Iines in the Source Editor

Systemout.printin("Error in
Di ni ngQui deManager EJB. get Cust oner r evi ewsByRestaurant(): " + e);

}
/1 Join the following two lines in the Source Editor

System out . println("Leaving
Di ni ngGui deManager EJB. get Cust oner r evi ewsByRestaurant () ") ;

return revi ewli st;

public void createCustonerrevi ew(java.lang. String restaurantnane,
java.lang. String custonmernane, java.lang.String review) {
Systemout.println("Entering
Di ni ngQui deManager EJB. creat eCust onerreview()");

try {
Cust onerrevi ew custonerrev =
nmyCust oner r evi ewHone. cr eat e(r est aur ant nane, cust oner nane,

review;
} catch (Exception e) {
/1 Join the following two lines in the Source Editor

Systemout.printIn("Error in
Di ni ngGui deManager EJB. creat eCustonmerreview(): " + e);

}

/1 Join the following two lines in the Source Editor

System out. println("Leaving
Di ni ngQui deManager EJB. creat eCust onerreview()");

}

public Data. RestaurantDetail getRestaurantDetail () {
return null;

public Data. Custonerrevi ewDetail getCustonerreviewbdetail () {
return null;

Appendix A DiningGuide Source Files

163

RestaurantTable.java Source

/*
* Restaurant Tabl e. j ava
*
* Created on March 12, 2003, 4:29 PM
*/

package Cient;

i mport javax.sw ng.table.*;

i mport java.util.*;

i mport WebServi ce. DGMbServi ced i ent GenClient. *;

/*'k
*
* @ut hor adm ni strator
*/
public class Restaurant Tabl e extends javax.sw ng. JFrane {
/** Creates new form Restaurant Tabl e */
public Restaurant Tabl e() {
i ni t Conponents();
restaurantLi st=get Al | Restaurants();
put Dat aToTabl e();
}
[** This method is called fromw thin the constructor to
* initialize the form
* WARNING. Do NOT nodify this code. The content of this nmethod is
* always regenerated by the Form Editor.
*/
private void initConmponents() {//GEN BEG N:i ni t Conponent s
jButtonl = new javax.sw ng.JButton();
j Scrol | Panel = new j avax. swi ng. JScrol | Pane();
j Tabl el = new j avax. sw ng. JTabl e();
j Label 1 = new j avax. sw ng. JLabel ();
get Cont ent Pane() . set Layout (new
org. net beans. | ib. am extra. Absol ut eLayout ());
addW ndowLi st ener (new j ava. awt . event . W ndowAdapt er () {
public void w ndowCl osi ng(j ava. awt . event . W ndowEvent evt) {
exitFormevt);

164 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

1
jButtonl. set Text (" Vi ew Cust omer Comments");
j Buttonl. addActi onLi st ener (new j ava. awt . event . Acti onLi stener () {
public void actionPerforned(java. awm.event. Acti onEvent evt) {
j Butt onlAct i onPer f or ned(evt);

1)

get Cont ent Pane() . add(j Buttonl, new

org. netbeans. |ib. awt extra. Absol ut eConstrai nts(200, 240, -1, -1));

Tabl eMbdel = (new j avax. swi ng.t abl e. Def aul t Tabl eModel (

new Object [][] {

b

new String [] {
"RESTAURANT NAME", "CU SI NE", "NEI GHBORHOOD', "ADDRESS', " PHONE",
"DESCRI PTI ON', " RATI NG'

Class[] types = new Cass [] {
java.lang. String.class, java.lang. String.cl ass,
java.l ang. String. cl ass,

java.lang. String.class,java.lang. String.class,java.lang. String.cl ass, java.l ang
.String.class
b
public C ass get Col umd ass(int columml ndex) {
return types [col uml ndex];

s
j Tabl el. set Model (Tabl eModel) ;
j Scrol | Panel. set Vi ewport Vi ew(j Tabl el);
get Cont ent Pane() . add(j Scrol | Panel, new
org. netbeans. | ib. am extra. Absol ut eConstraints(0, 60, 600, 100));
j Label 1. set Text ("Restaurant Listing");
get Cont ent Pane() . add(j Label 1, new
org. net beans. | i b. awt extra. Absol ut eConstrai nts(230, 20, 110, 30));
pack();
}/ /1 GEN- END: i ni t Conponent s

private void jButtonlActi onPerfornmed(java.awt.event. Acti onEvent evt) {//GEN
FI RST: event _j Butt onl1Act i onPer f or med

int r =jTabl el. get Sel ect edRow() ;
int ¢ = jTabl el. get Sel ect edCol utmCount () ;

Appendix A DiningGuide Source Files 165

String i =(String) Tabl eMbdel . get Val ueAt (r, 0);
Cust oner Revi ewTabl e crt = new Cust onmer Revi ewTabl e() ;
crt. put Dat aToTabl e(i);
crt.show);
Systemout.println(i);
}/ 1 GEN- LAST: event _j Butt onl1Act i onPer f or med
[** Exit the Application */
private void exitForn{java. awt.event. WndowEvent evt) {//GEN
FI RST: event _exi t Form
System exit(0);
}/ 1 GEN- LAST: event _exi t Form
private void putDataToTabl e() {
Iterator j=restaurantList.iterator();
while (j.hasNext()) {
RestaurantDetail ci = (RestaurantDetail)j.next();
String strRating = null;
String[] str =

{ci . get Rest aur ant name(), ci . get Cui si ne(), ci . get Nei ghbor hood(), ci . get Address(),
ci . get Phone(), ci . get Description(),
strRating.val ueX (ci.getRating()),
b
Tabl eMbdel . addRow(st r);

}
private Vector getAll Restaurants() ({
Vector restList = new Vector();
try {
WebSer vi ce. DGW\ebSer vi ceCl i ent Gend i ent . DGMbServi ce servicel = new
WebSer vi ce. DGW\ebSer vi ceC i ent Gend i ent . DGAbSer vi ce_I npl () ;
WebSer vi ce. DGNebServi ced i ent GenCl i ent . DGW\ebSer vi ceServant I nterface

port

servi cel. get DGMbServi ceServant | nt erfacePort ();
restList = (java.util.Vector)port.getAll Restaurants();

}

catch (Exception ex) {
Systemerr. println("Caught an exception.");
ex. printStackTrace();

}

return restList;

}

166 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

private Vector getCustonerrevi ewByRest aurant (java.lang. String
rest aur ant nanme) {
Vector reviewli st = new Vector();
try {
WebSer vi ce. DGMbServi ced i ent GenCd i ent. DGWMbServi ce service2 = new
WebSer vi ce. DGAebSer vi ceC i ent Gend i ent . DGWebSer vi ce_I npl () ;

WebSer vi ce. DGMbSer vi ced i ent GenCl i ent . DOMbSer vi ceSer vant | nt er f ace
port

servi ce2. get DGW\ebSer vi ceServant I nterfacePort();
revi ewLi st =

(java.util.Vector)port.getCustonerrevi ewsByRest aur ant (rest aur ant nane) ;
}
catch (Exception ex) {
Systemerr.println("Caught an exception.");
ex. printStackTrace();

}

return revi ewLi st;

}
/**

* @aram args the command |ine argunents

*/
public static void main(String args[]) {

new Rest aur ant Tabl e() . show();

}
/1 Variables declaration - do not nodify//GEN BEG N: vari abl es
private javax.sw ng.JButton jButtonl,
private javax.sw ng.JScrol | Pane j Scrol | Panel,;
private javax.sw ng.JTabl e j Tabl el;
private javax.sw ng. JLabel jLabel 1;
/1 End of variables declaration//GEN END: vari abl es
private Defaul t Tabl eMbdel Tabl eMbdel ;
private java.util.Vector restaurantList = null;

Appendix A DiningGuide Source Files 167

CustomerReviewTable.java Source

/*
* Cust orer Revi ewTabl e. j ava
*
* Created on March 12, 2003, 4:29 PM
*/

package Cient;
i mport javax.sw ng.table.*;
i mport java.util.*;
i mport WebServi ce. DGMbServi ced i ent GenClient. *;
/*'k
*
** @ut hor adm ni strator
*/
public class CustonerRevi ewTabl e extends javax.sw ng. JFrane {
/** Creates new form Custoner Revi ewTabl e */
public Customer Revi ewTabl e() {
i ni t Conponents();
}
/** This method is called fromw thin the constructor to
* initialize the form
* WARNING Do NOT nodify this code. The content of this nmethod is
* always regenerated by the Form Editor.
*/
private void initConponents() {//GEN BEGQ N: i ni t Conponents
j Scrol | Panel = new javax.sw ng. JScrol | Pane();
j Tabl el = new j avax. sw ng. JTabl e();
jButtonl = new javax.sw ng.JButton();

cust oner NaneLabel = new j avax. swi ng. JLabel ();
cust oner NanmeFi el d = new j avax. swi ng. JText Fi el d();
revi ewLabel = new javax. sw ng. JLabel ();

revi ewFi el d = new javax. swi ng. JText Fi el d();
j Label 1 = new j avax. swi ng. JLabel ();
get Cont ent Pane() . set Layout (new
org. netbeans. | ib. am extra. Absol ut eLayout ());
addW ndowLi st ener (new j ava. awt . event. W ndowAdapt er () {
public void w ndowCl osi ng(j ava. awt . event. W ndowEvent evt) {

168 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

exitFormevt);

|OF
Tabl eMbdel = (new j avax. swi ng.t abl e. Def aul t Tabl eModel (
new Object [][] {
}
new String [] {
"CUSTOVER NAME", "REVI EW

}
) A
Class[] types = new Cass [] {
java.lang. String.cl ass, java.lang. String. cl ass
}s
public O ass getCol umd ass(int columml ndex) {
return types [col uml ndex];
}
)

j Tabl el. set Model (Tabl eModel) ;

j Scrol | Panel. set Vi ewport Vi ew(j Tabl el);

get Cont ent Pane() . add(j Scrol | Panel, new

org. netbeans. | i b. awt extra. Absol uteConstrai nts(0, 60, 400, 100));

jButtonl. set Text (" Submit Custoner Review');

j Buttonl. addActi onLi st ener (new j ava. awt . event . Acti onLi stener () {
public void actionPerforned(java. am.event. Acti onEvent evt) {

j ButtonlActi onPerforned(evt);

1)

get Cont ent Pane() . add(j Buttonl, new

org. net beans. | ib. am extra. Absol ut eConst rai nts(100, 250, 190, -1));
cust oner NanmeLabel . set Text (" Cust onmer Nane");

get Cont ent Pane() . add(cust oner NaneLabel , new

org. netbeans. | ib. am extra. Absol ut eConstrai nts(40, 170, -1, -1));
get Cont ent Pane() . add(cust oner NaneFi el d, new

org. net beans. | i b. am extra. Absol ut eConst rai nts(153, 170, 170, -1));
revi ewLabel . set Text (" Revi ew') ;

get Cont ent Pane() . add(revi ewLabel , new

org. netbeans. | i b. awt extra. Absol ut eConstrai nts(40, 200, 80, -1));
get Cont ent Pane() . add(revi ewFi el d, new

org. net beans. | i b. am extra. Absol ut eConst rai nts(153, 200, 170, 20));
j Label 1. set Text ("All Customer Revi ew By Restaurant Name");

get Cont ent Pane() . add(j Label 1, new

Appendix A DiningGuide Source Files

169

org. netbeans. | ib. awt extra. Absol uteConstrai nts(80, 10, 240, -1));
pack();
}// GEN- END: i ni t Conponent s
private void jButtonlActionPerformed(java.awt.event. Acti onEvent evt)
{/] GENFI RST: event _j But t on1Acti onPerf or ned
try {
WebSer vi ce. DGM\ebSer vi ceCl i ent GenC i ent . DGMbSer vi ce servicel = new
WebServi ce. DGAebSer vi ceC i ent Gend i ent . DGWebSer vi ce_I npl () ;
WebServi ce. DGAebServi ceC i ent Gend i ent. DGAbSer vi ceServant | nt er f ace
port =
servi cel. get DGNbSer vi ceServant | nt erfacePort ();
port. creat eCust omerrevi ew(Rest aur ant Nane,
cust oner NanmeFi el d. get Text (), revi ewFi el d. get Text ());
}
catch (Exception ex) {
Systemerr.println("Caught an exception.");
ex. printStackTrace();
}
refreshView();
}/ 1 GEN- LAST: event _j But t on1Act i onPer f or ned
void refreshView() {
try{
whi | e(Tabl eMbdel . get RowCount () >0) {
Tabl eMbdel . removeRow(0) ;
}
put Dat aToTabl e(Rest aur ant Narne) ;
repaint();
}
catch (Exception ex) {
ex. printStackTrace();

}
[** Exit the Application */
private void exitForn{java. awt.event. WndowEvent evt)
{/] GENFI RST: event _exi t Form
System exi t (0);
}/ 1 GEN- LAST: event _exi t Form
public void putDataToTabl e(j ava. |l ang. String restaurantnanme) {
Rest aur ant Name = rest aur ant nane;
java. util.Vector custonerList =get Custoner Revi ewByNane(rest aur ant nane) ;
Iterator j=custonerList.iterator();

170 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

while (j.hasNext()) {

CustonerreviewDetail ci = (CustonerreviewDetail)j.next();
String[] str = {ci.getCustonernanme(), ci.getReview)
s

Tabl eMbdel . addRow(st r);

}

private Vector getCustonerRevi ewByNane(java.lang. String restaurantnanme) {
Vector custList = new Vector();
try {
WebSer vi ce. DGMbServi ced i ent Gend i ent. DGWbServi ce service2 = new
WebSer vi ce. DGAebSer vi ceC i ent Gend i ent . DGWebSer vi ce_I npl () ;
WebSer vi ce. DGW\ebSer vi ceC i ent Gend i ent . DOGAbSer vi ceServant I nterface

port =
servi ce2. get DGNebServi ceServant I nterfacePort();
custList =

(java.util.Vector)port. get Custonerrevi ewsByRest aur ant (r est aur ant nane) ;
}
catch (Exception ex) {
Systemerr.println("Caught an exception.");
ex. printStackTrace();

}

return custList;

}
/**

* @aram args the command |ine argunents

*/
public static void main(String args[]) {

new Cust ormer Revi ewTabl e() . show();

}
/'l Variables declaration - do not nodify//GEN BEG N: vari abl es
private javax.sw ng.JLabel review.abel;
private javax.sw ng.JButton jButtonl;
private javax.sw ng.JScrol | Pane j Scrol | Panel;
private javax.sw ng.JTextFi el d cust oner NaneFi el d;
private javax.sw ng.JTabl e j Tabl el;
private javax.sw ng. JLabel custoner NanelLabel ;
private javax.sw ng.JLabel jLabel1;
private javax.sw ng.JTextField revi ewFi el d;
/1 End of variabl es decl arati on//GEN END: vari abl es

Appendix A DiningGuide Source Files 171

private Defaul t Tabl eMbdel Tabl eMbdel ;
private java.lang. String RestaurantName = nul | ;
/lprivate java.util.Vector restaurantList = null;

172 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

APPENDIX B

DiningGuide Database Script

This appendix displays the following database scripts for the DiningGuide tutorial:

= “Script for a PointBase Database” on page 174
= “Script for an Oracle Database” on page 175

173

Script for a PointBase Database

drop tabl e CustonerRevi ew,
drop tabl e Restaurant;

create tabl e Restaurant(
rest aur ant Nanme var char (80),

cui si ne var char (25),
nei ghbor hood varchar (25),
addr ess var char (30),
phone var char (12),
description var char (200),
rating tinyint,

constraint pk_Restaurant primary key(restaurantNanme));

create tabl e CustonerRevi ew

rest aur ant Name varchar (80) not null references
Rest aur ant (r est aur ant Nane) ,

cust oner Name var char (25),
revi ew var char (200),
constrai nt pk_CustonerReview prinmary key(Custoner Nane, restaurantName));

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('French Lenon',' Mediterranean','Rockridge',"' 1200
Col | ege Avenue','510 888 8888',' Very nice spot.',5);

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('Bay Fox','Mediterranean','Piednont','1200

Pi ednmont Avenue',' 510 888 8888',' Excellent.',5);

insert into CustonerReview (restaurantName, custonerNane, review) val ues
(' French Lenon','Fred',"'Nice flowers."');

insert into CustonerReview (restaurantName, custonerNane, review) val ues
(' French Lenon',' Ral ph',' Excel l ent service.');

174 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Script for an Oracle Database

drop tabl e CustonerRevi ew,
drop tabl e Restaurant;

create tabl e Restaurant(
rest aur ant Nane var char (80),

cui si ne var char (25),
nei ghbor hood varchar (25),
addr ess var char (30),
phone var char (12),
descri ption var char (200),
rating nunber (1, 0),

constraint pk_Restaurant primary key(restaurantName));
grant all on Restaurant to public;

create tabl e CustonerRevi ew
rest aur ant Nane varchar (80) not null references
Rest aur ant (r est aur ant Nane) ,
custoner Name var char (25),
revi ew var char (200),
constraint pk_CustonerRevi ew primary key(Customner Nanme, restaurantNane));
grant all on CustonerReview to public;

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('French Lenmon',' Mediterranean','Rockridge',"' 1200
Col | ege Avenue','510 888 8888',' Very nice spot.',5);

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('Bay Fox','Mediterranean','Piednont','1200

Pi ednont Avenue',' 510 888 8888',' Excellent.',5);

insert into CustonerReview (restaurantName, custonerNane, review) val ues
(' French Lemon','Fred','Nice flowers.');

insert into CustonerReview (restaurantName, custonerNane, review) val ues
(' French Lenon',' Ral ph',' Excellent service.');

comm t;

Appendix B DiningGuide Database Script

175

176 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

APPENDIX C

Creating the Tutorial with an Oracle
Database

This appendix describes the steps you must perform to create and run the
DiningGuide tutorial with an Oracle database. The topics covered are:

= “Setting up Database Connectivity with the Oracle Database,” which follows
= “Creating the Database Tables” on page 183

= “Creating EJB Components with an Oracle Database” on page 185

= “Creating the Web Service with an Oracle Database” on page 186

Note — There are several references in this book to the DiningGuide application files.
These files include a completed version of the tutorial application, a readme file
describing how to run the completed application, and SQL script files for creating
the required database tables. These files are compressed into a zip file you can
download from the Sun ONE Studio 5 Developer Resources portal at
http://forte.sun.com ffj/documentation/tutorial sandexanpl es. ht n

Setting up Database Connectivity with
the Oracle Database

Configure Sun ONE Application Server 7 to connect to the Oracle database by
performing the required JDBC-related actions in the application server environment.
These include:

= Enabling the database’s JDBC driver

= Creating a connection pool

= Creating a JDBC data source

= Creating a JDBC persistent manager

177

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Enabling the Oracle Type 4 JDBC Driver

Enabling a JDBC driver means putting the driver library in the Sun ONE Studio 5
and Sun ONE Application Server 7 class paths. To do this, you need the Oracle Type
4 JDBC driver library (the cl asses12. zi p file). You can download this driver from
the Oracle portal. Copy the JDBC Type 4 driver into the program files of Sun ONE
Studio 5 before you start the IDE.

To enable the Oracle Type 4 JDBC driver:

1. Copy the Oracle Type 4 driver library to the slstudio-install-directory/ | i b/ ext
directory.

For example, copy the cl asses12. zi p file to c: \ Sun\ st udi 05_se\l i b\ ext.

Note — You must have root or administrator privileges to write to the Sun ONE
Studio 5 home directories.

2. Restart the IDE.

3. In the Runtime pane of the Explorer, select your application server instance.

It is labeled app-server-name (app-server-host:app-server-port). For example, the default
server is serverl (localhost:4848), or a standard user’s server could be MyServer
(localhost:4855).

4. Display the properties of the application server instance.

The property window is usually below the Explorer window. Selecting the node
displays the properties in the window. If the window is not there, right-click the
server instance node and choose Properties.

5. Open the property editor for the Classpath Suffix property.

Click on the value field of this property, then on the ellipsis button that appears. The
Classpath Suffix editor window is displayed.

6. Click the Add JAR/ZIP button.
Use the Add JAR File file finder to locate your cl asses12. zi p file.

7. Select the cl asses12. zi p file and click OK.

8. Click OK to close the property editor window. J

178 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Connecting the IDE to the Oracle Server

To create the JDBC connectivity resources or the EJB tier of the tutorial, you must
connect the IDE to the Oracle database. You can either connect before creating these
components or during the creation process. Here is how you connect to the database
beforehand:

1. Make sure the Oracle server is running.

2. In the Runtime pane of the Explorer, expand the Databases node and its Drivers
subnode.
A node labeled Oracle thin is displayed.

If this node has a red strike across it, you have not enabled the Oracle JDBC driver
properly. Follow the procedures in “Enabling the Oracle Type 4 JDBC Driver” on
page 178.

3. Right-click this node and choose Connect Using.

The New Database Connection dialog box is displayed.
4. Make sure Oracle thin is selected in the name field.

5. Fill in the property values for Database URL, User, and Password.

For example, the following values are correct for a locally installed Oracle database
with a SID of “extut,” and the default Oracle login of “scott” for User and “tiger” for
Password: (1521 is the standard Oracle port number.)

Name Value
URL jdbc:oracle:thin:@localhost:1521:extut
User scott
Password tiger

6. Enable the Remember password during this session option.

Appendix C Creating the Tutorial with an Oracle Database 179

The New Database Connection dialog box should look like this:

Mew Database Connection

Mame: | Cracle thin - |

Drriver: aracle jdbe.driver OracleDriver

Databaze URL: |idbc:0racle:thin:@Iocalhosﬂ 221 extut |

User hame: |Scoﬂ |

Pazsword: | ***** |

[] Remember pazswaord during thiz session

l Basic setting I Addvanced

Cancel

7. Click OK.

8. Close the Dri ver s node.
The new Oracle thin driver node is displayed, labeled
jdbc:oracle:thin:@hostname:1521:sid [Username on Password].
9. Expand this node and its Tables subnode.

The tables in the database, including the RESTAURANT and CUSTOMERREVIEW
tables, are displayed.

Creating a JDBC Connection Pool

To create a JDBC connection pool so that the business objects in the system can share
database access, you first define a JDBC connection pool with information related to
your database, then register it with Sun ONE Application Server 7.

Note — Before starting this procedure, make sure both the admin server and the
application server are running (refer to “Starting the Software” on page 23).

To create an Oracle JDBC connection pool for this tutorial:

1. In the Runtime pane of the Explorer, expand the Server Registry, Installed
Servers, and Sun ONE Application Server 7 nodes.

2. Right-click the Unregistered JDBC Connection Pools node and choose Add New
JDBC Connection Pool.

This opens the New JDBC Connection Pool wizard.
3. Type O acl ePool for the JDBC Connection Pool Name.

4. Enable the Extract From Existing Connection option.

180 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

5. Select the Oracle thin string from the pull-down menu.

6. Click Next, then Finish.
A window is displayed, asking whether you want to register this resource.

7. Click the Register button.
The JDBC Connection Pool Registration dialog box is displayed.

8. Select the server instance you wish to register to from the list and click Register.
When the connection pool is registered, a message is displayed indicating success.

|JDBC Connection Pool Registration X|

Resource Mame : CraclePool

Server Instance: MyServer (localhost: 4555) » |

Fesource Registered Successully |

| Register || Cloze || Help |

9. Click the Close button to close the window.
The registered OraclePool connection pool is displayed.

Explorer [Rurtitme] E
E Ruritime -
Q Server Registry
- & Default Servers
@ B Installed Servers
- @. Taomcat
@ dﬂ Sun ONE Application Server 7
& [Iocalhost 4543
® B Iocahost 4850
© B myServer (localhost 4855)
® [A] Registered JOBC Connection P
OraclePool !
Registered JOBC DataSources
Registered JME Rezources
Registered Persiztent Manager
Regiztered Java Mail Sessions | 25

Registered Oracle connection pool

PPPY

If you do not see the OraclePool connection pool, right-click the Registered JDBC
Connection Pools node and choose Refresh List.

Appendix C Creating the Tutorial with an Oracle Database 181

Creating a JDBC Data Source

A JDBC data source (also called a JDBC resource) lets you make connections to a
database with the getConnection() method. Before creating a data source, make sure
both the admin server and the application server are running.

To create a JDBC persistent manager:

1. If necessary, expand the Server Registry, Installed Servers, and Sun ONE
Application Server 7 nodes in the Explorer’s Runtime page.

2. Right-click the Unregistered JDBC Data Sources node and choose Add New Data
Source.

This opens the New JDBC Resource wizard.

3. Enable the Use Existing JDBC Data Source option, and select Or acl ePool from
the list.

4. Type j dbc/j dbc- or acl e for the INDI name and select True in the Enabled field.

5. Click Finish.
A window is displayed, asking whether you want to register this resource.

6. Click the Register button.
The Persistence Manager Registration dialog box is displayed.

7. Select the server instance you wish to register to from the list and click Register.
When the data resource is registered, a message is displayed indicating success.

8. Click the Close button to close the window.

The jdbc/jdbc-oracle node is displayed under the Registered JDBC DataSources
node. If you don’t see it, right-click the JDBC Data Sources node and choose Refresh
List.

Creating a JDBC Persistent Manager

A persistent manager is a component responsible for the persistence of the entity
beans installed in the container. Before creating a persistent manager, make sure both
the admin server and the application server are running.

To create a JDBC persistent manager:

1. If necessary, expand the Server Registry, Installed Servers, Sun ONE Application
Server 7, and the nodes in the Explorer’s Runtime page.

182 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

. Right-click the Unregistered persistent managers node and choose Add a
Persistent Manager.

This opens the New Persistence Manager wizard.

. Enable the Use Existing JDBC Resource option, and select j dbc/j dbc-oracl e
from the list.

. Type j do/ Or acl ePmfor the JNDI name and select True in the Enabled field.

. Click Finish.
A window is displayed, asking whether you want to register this resource.

. Click the Register button.
The Persistence Manager Registration dialog box is displayed.

. Select the server instance you wish to register to from the list and click Register.
When the persistent manager is registered, a message is displayed indicating
Ssuccess.

. Click the Close button to close the window.

The jdo/OraclePm node is displayed under the Registered Persistence Managers
node. If you don’t see it, right-click the node and choose Refresh List.

Creating the Database Tables

The DiningGuide tutorial uses two database tables, which you must create in an
Oracle Server database. The instructions that follow describe how to use the
provided SQL script to create your tables. Microsoft Windows users can copy and
paste the SQL script provided in Appendix B to create these tables. Solaris and Linux
users can use a script file, di ni nggui de_or a. sql , which is available within
DiningGuide application files.

To install the tutorial tables in an Oracle database on Microsoft Windows systems:

. Open the Oracle Console by choosing Start - Programs —
Oracle (your version) - Application Development - SQL Plus.

. Log in to SQL Plus using your user name and password.

For example, use the user name (scott) and password (tiger) for the default Oracle
installation.

. When the SQL prompt appears, copy the script from Chapter B and paste it next to
the prompt.

Appendix C Creating the Tutorial with an Oracle Database 183

Tip — Avoid the first two DROP statements, which refer to tables that have not yet
been created and will create harmless errors. These DROP statements are useful in
future, however, if you want to rerun the script to initialize the tables.

To install the tutorial database on Solaris or Linux environments:

1. Unzip the Di ni ngGui de. zi p file from the Developer Resources portal.
For example, unzip it to the / MyZi pFi | es directory.

2. At a command prompt, type:

$ cd your-unzip-dir/ Di ni ngGui de/ db
$ sql pl us db-userid/ db-password@lb-servicename @li ni nggui de_or a. sql

For example,

$ cd / MyZi pFi | es/ Di ni ngQui de/ db
$ sqgl plus scott/tiger@yDB @i ni nggui de_or a. sql

The two DROP statements will generate errors, but they are harmless.

184 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Creating EJB Components with an
Oracle Database

This section lists the changes to Chapter 3 required to create the EJB tier using an
Oracle database. TABLE C-1 lists the sections and the changes required.

TABLE C-1

Oracle-Specific Changes to Chapter 3

Section

Change

“Creating a Database Schema
for the Tutorial’s Tables” on
page 53, Step 2b.

Same section, Step 5b.

“Creating the Restaurant Entity
Bean” on page 55

“Creating the Customerreview
Entity Bean” on page 58

“Providing the Sun ONE
Application Server 7 Plugin
With Database Information” on
page 75, Step 9.

“Checking the Additions to the
Database” on page 81

“Creating a Test Client for the
Customerreview Bean” on
page 82

“Providing the Sun ONE
Application Server 7 Plugin
With Database Information” on
page 102

1. Expand the Drivers folder, right-click the Oracle thin
node and choose New Database Connection.

2. In the dialog box, specify your Oracle URL, User
Name, and Password.

3. Check Remember password during this session and
click OK.

4. Close the Drivers folder. An Oracle connection
appears.
Select the Oracle connection from the list.

Use the Oracle schema to create the Restaurant entity
bean.

Use the Oracle schema to create the Customerreview
entity bean.
Step 9. Type j do/ Or acl ePMin the JNDI Name field.

Step 10: Type your Oracle database username and
password.

1. Start SQLPIus.
2. Log into your database.
3. Enter the SQL statements.

Step 8. Type j do/ Or acl ePMin the JNDI Name field.
Step 9. Type your Oracle database username and
password.

Step 9. Type j do/ O acl ePMin the JNDI Name field.

Step 10: Type your Oracle database username and
password.

Appendix C Creating the Tutorial with an Oracle Database

185

Creating the Web Service with an Oracle
Database

This section lists the changes to Chapter 4 required to create the web service using
an Oracle database. TABLE C-2 lists the sections and the changes required.

TABLE C-2 Oracle-Specific Changes to Chapter 4

Section Change

“Using the Test Application to Start SQLPIlus, log into your database, and test the
Test the Web Service” on insertion of the record, as described.
page 121, Step 2

186 Sun ONE Studio 5 J2EE Application Tutorial ¢« June 2003

Index

A

accessor methods, exposing to the user, 65
Add Admin Server menu item, 25

Add Business Method menu item, 66
Add Constructor menu item, 70

Add Create Method menu item, 60

Add Finder Method menu item, 64

Add Module menu item, 118

B

business methods

Cust onerrevi ew
get Custonerrevi ewbDetail, 72
get Revi ew, 67

Di ni ngGui deManager
creat eCust onerrevi ew, 95, 107
get Al | Rest aur ant s, 91, 107
get Cust onerrevi ewbDet ai |, 98, 107
get Cust onerrevi ewsByRest aur ant, 93,

108

get Rest aur ant Det ai |, 97,108

Rest aur ant
get Rati ng, 66,81
get Restaurant Detail, 71

Rest aur ant . get Rest aur ant Det ai | , 50

business methods, Swing client

Cust oner Revi ewTabl e
get Cust oner Revi ewByNane, 140
j Butt onlAct i onPer f or ned, 142
put Dat aToTabl e, 139, 140, 143

refreshVi ew, 142,144
Rest aur ant Tabl e
get Al | Rest aurant s, 137
j Butt onlAct i onPer f or ned, 139, 141
put Dat aToTabl e, 138

C
client file methods
get Al | Rest aurant s, 127
get Cust oner r evi ewsByRest aur ant, 122
constructors
Custonerrevi ewbetai |, 71
Rest aurant Detai l, 70
Create a Server Instance menu item, 26
create methods
Cust onerrevi ew. create, 62,78, 84
Di ni ngCQui deManager . cr eat e, 88 to 90, 106
JNDI lookup code in, 89
Rest aur ant . creat e, 60,79, 85
Create New EJB Test Application menu item, 73,
100
Create New Web Service Test Client command, 117
Creating a web service, 44
creating a web service, 113 to 115
creating a web service client, 118
Cust oner r evi ewentity bean
cr eat e method, creating, 62
creating, 52 to 67
get Revi ewmethod, creating, 67
testing, 82

187

CustomerReview table, description, 33
Cust onerrevi ew_Test App, 82

bean methods, testing, 84 to 86
creating, 82 to 83

deploying, 84

undeploying, 104 to 105

Cust orrer Revi ewTabl e

copying into the DiningGuide application, 133
to 134
displayed, 37, 135, 136

databases

creating a database schema (Oracle), 185
creating a database schema (PointBase), 53
creating an entity bean from a schema, 52 to 59
creating the tutorial tables (Oracle), 183 to 184
installing the Oracle JDBC driver, 178
installing the PointBase JDBC driver, 30
opening a connection (Oracle), 185

opening a connection (PointBase), 53

setting up connectivity (Oracle), 177 to 183
setting up connectivity (PointBase), 29 to 32
supported versions, 22

tutorial SQL script (Oracle), 175

tutorial SQL script (PointBase), 174

viewing data in the IDE, 39, 81, 86

Deploy menu item, 120
deploying

adding Sun ONE Application Server 7 properties
for entity beans (Oracle), 185

adding Sun ONE Application Server 7 properties
for entity beans (PointBase), 75to 77, 83

adding Sun ONE Application Server 7 properties
for session beans (Oracle), 185

adding Sun ONE Application Server 7 properties
for session beans (PointBase), 102 to 103

test applications for entity beans, 77, 84

test applications for session beans, 105

undeploying with the IDE, 104 to 105

detail classes

creating, 68 to 71
description, 43,49

DGApp, 121
DGWbSer vi ce, 114

DiningGuide application
application scenarios, 36
architecture, 40
database script (Oracle), 175
database script (PointBase), 174
database tables, description, 33
deploying, 45, 119
EJB tier, 47 to 51
functional description, 35
functional specs, 36
limitations, 46, 53
requirements, 22
Swing client, adding to the application, 133 to
134
Swing client, examining, 137 to 144
Swing client, executing, 134
user’s view, 37
zipped source files, 21, 177
DiningGuide Swing client
executing, 37
generated from web services, 122
installing and using, 45
Di ni ngGui deManager session bean
cr eat e method, coding, 88 to 90
creat eCust oner r evi ewmethod, 82, 95 to 96,
107,124
creating, 87
get Al | Rest aur ant s method, 91 to 92, 107
get Cust oner r evi ewDet ai | method, 97, 107
get Cust onmer r evi ewsByRest aur ant
method, 93 to 95, 108
get Rest aur ant Det ai | method, 97, 108
testing, 106 to 108
Di ni ngGQui deManager _Test App
bean methods, testing, 106 to 108
creating, 100 to 103
deploying, 105

E

EJB Builder
entity beans, creating, 52 to 59
local or remote interfaces, 52, 87
session beans, creating, 87
using, 43
EJB QL, using in finder methods, 63
EJB tier overview, 41,47 to 51

188 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

entity beans
adding to an EJB module, 101
business methods, creating, 65
business methods, testing, 81
create methods, creating, 60
create methods, testing, 78
creating, 52 to 59
finder methods, creating, 63
finder methods, testing, 80
local or remote interfaces, 52
primary key class, 59
testing, 78 to 81
validating, 66
example applications
StockApp and UDDI registry, 45
where to download, 18
executing
test applications for entity beans, 77, 84
test applications for session beans, 105

F

finder methods
Cust onerrevi ew. fi ndByRest aur ant Nare,
63, 80
Rest aurant. fi ndAl |, 50, 63, 80
testing, 80

G

Generate Client Files menu item, 131
Generate Web Service Files menu item, 115
generated runtime classes, 112

generated web service, 112

|

interfaces, local or remote
for entity beans, 52
for session beans, 87

J

J2EE applications
creating, 118
deploying, 119
DGApp, 118

Javadoc technology, using in the IDE, 18

JDBC connection pools
creating (Oracle), 180 to 181
creating as administrator user (PointBase), 30
creating as all other users (PointBase), 31
purpose, 29

JDBC data sources
creating (Oracle), 182
creating as administrator user (PointBase), 30
creating as all other users (PointBase), 31
purpose, 29

JDBC drivers
enabling (Oracle), 178
enabling (PointBase), 30

JNDI lookup code, 89

M
Mount Filesystem menu item, 53

N

Netscape browser, supported version, 22
New CMP Entity EJB menu item, 55
New EJB Test Application menu item, 73
New J2EE Application menu item, 118
New Java Bean menu item, 68

New Web Service menu item, 113

O

Oracle database
connecting to the IDE, 179 to 180
installing a type 4 JDBC driver, 178
See also databases

Overview of tasks, 42 to 45

Index

189

P

parameters
changing order of, 79
order in test client, 79

persistent managers
creating (Oracle), 182 to 183
creating as administrator user (PointBase), 30
creating as all other users (PointBase), 31
purpose, 29

PointBase database
installing a type 4 JDBC driver, 30
supported version, 22

R

Rest aur ant entity bean
cr eat e method, 60, 79, 85
creating, 52 to 67
findall method, 50
get Rat i ng method, 66, 81
get Rest aur ant Det ai | method, 50
Restaurant table, description, 33
Rest aur ant _Test App
bean methods, testing, 78 to 81
creating, 73to 77
deploying, 77
undeploying, 104 to 105
Rest aur ant Tabl e
copying into the DiningGuide application, 133
to 134
displayed, 37, 135
runi de. sh script, 23

S

session beans
business methods, creating, 91 to 94
create method, modifying, 88
create method, testing, 106
creating, 87 to 100
EJB references, adding, 98 to 100
local or remote interfaces, 87
testing, 100 to 108
validating, 98

Sun ONE Application Server 7
confirming as the default server, 29
database connectivity, 29 to 32
starting the admin server (standard user), 25 to
27
starting the admin server (superuser), 24
starting the application server, 28
stopping, 136
Sun ONE Application Server 7 server
plugin properties to set for entity beans
(Oracle), 185
plugin properties to set for entity beans
(PointBase), 75to 77, 83
plugin properties to set for session beans
(Oracle), 185
plugin properties to set for session beans
(PointBase), 102 to 103
Sun ONE Studio 5 IDE
connecting to the Oracle server, 179 to 180
creating a database schema (Oracle), 185
creating a database schema (PointBase), 53
opening a database connection (Oracle), 185
opening a database connection (PointBase), 53
setting up database connectivity (Oracle), 177 to
183
setting up database connectivity (PointBase), 29
to 32
starting the IDE, 23
Sun ONE Studio 5, Standard Edition, where to
obtain, 22
Swing client
adding to the DiningGuide application, 133 to
134
examining the code, 137 to 144
executing, 135

T

test application facility
adding entity beans to the EJB module, 101
entity beans, testing, 78 to 82
session bean, testing, 100 to 108
test client, creating, 73 to 77, 82 to 83, 100 to 103
test client, deploying, 77, 84, 105
test client, using, 78 to 82, 106 to 108
using, 43
web service, testing, 117 to 128

190 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

test applications
Cust onerrevi ew_Test App, 82
DGApp, 117
Di ni ngQui deManager _Test App, 100
Rest aur ant _Test App, 73
testing enterprise beans
business methods, testing, 81
create method, testing, 79, 85
finder methods, testing, 80
results in IDE’s output window, 78, 120

results in J2EE command window, 78, 120

test client page, 78, 106

U

undeploying an application
how to, 104 to 105
reasons for, 104, 119

Using the test application facility, 43

V
Validate EJB menu item, 66, 98
View Data menu item, 39, 81, 86

w
web browsers, supported versions, 22
web service

client files, 112

creating, 113 to 115

description, 111 to 113

exposing class types underlying collection

types, 96 to 98
generating client files, 131
generating WSDL, 129

sharing with other developers, 129 to 131

testing, 117 to 128

web service client methods
creat eCust onerrevi ew, 142
get Al | Rest aurants, 137

get Cust oner r evi ewsByRest aur ant, 140

Web Service Descriptive Language (WSDL),
generating, 129

Index

191

192 Sun ONE Studio 5 J2EE Application Tutorial « June 2003

	Sun™ ONE Studio 5 J2EE ™ Application Tutorial
	Contents
	Figures
	Tables
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation
	Documentation in Accessible Formats

	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Getting Started
	Obtaining and Installing the Required Software
	Starting the Software
	Starting the IDE
	Starting the Application Server
	Starting the Admin Server (Superuser)
	Starting the Admin Server (Standard User)
	Starting the Application Server Instance

	Confirming Sun ONE Application Server 7 as the Default Server

	Setting Up Database Connectivity
	Enabling the JDBC Driver
	Setting JDBC Resources (Microsoft Windows Superusers)
	Setting JDBC Resources (All Other Users)

	Tutorial Database Table Descriptions

	Introduction to the Tutorial
	Functionality of the Tutorial Application
	Application Scenarios
	Application Functional Specification

	User’s View of the Tutorial Application
	Architecture of the Tutorial Application
	Application Elements
	EJB Tier Details

	Overview of Tasks for Creating the Tutorial Application
	Creating the EJB Components
	Using the EJB Builder
	Creating the Detail Classes
	Using the Test Application Facility

	Creating the Tutorial’s Web Service
	Creating a Web Service
	Creating a Test Client for the Tutorial
	Deploying the Web Service and Creating a Test Client
	Testing the Web Service
	Making a Web Service Available to Other Developers

	Installing and Using the Provided Client

	End Comments

	Building the EJB Tier of the DiningGuide Application
	Overview of the Tutorial’s EJB Tier
	The Entity Beans
	The Session Bean
	The Detail Classes
	Summary of Steps

	Creating Entity Beans With the EJB Builder
	Creating the Restaurant and Customerreview Entity Beans
	Creating the Tutorial’s Directory
	Creating a Database Schema for the Tutorial’s Tables
	Creating a Java Package for the EJB Tier
	Creating the Restaurant Entity Bean
	Creating the Customerreview Entity Bean

	Creating Create Methods for CMP Entity Beans
	Creating the Restaurant Bean’s Create Method
	Creating the Customerreview Bean’s Create Method

	Creating Finder Methods on Entity Beans
	Creating the Restaurant Bean’s findAll Method
	Creating the Customerreview Bean’s findByRestaurantName Method

	Creating Business Methods for Testing Purposes
	Creating the Restaurant Bean’s getRating Method
	Creating the Customerreview Bean’s getReview Method

	Creating Detail Classes to View Entity Bean Data
	Creating the Detail Classes
	Creating the Detail Class Properties and Their Accessor Methods
	Creating the Detail Class Constructors
	Creating Business Methods on the Entity Beans to Fetch the Detail Classes

	Testing the Entity Beans
	Creating a Test Client for the Restaurant Bean
	Providing the Sun ONE Application Server 7 Plugin With Database Information
	Deploying and Executing the Restaurant Bean’s Test Application
	Using the Test Client to Test the Restaurant Bean
	Checking the Additions to the Database
	Creating a Test Client for the Customerreview Bean
	Deploying and Executing the Customerreview Bean’s Test Application
	Testing the Customerreview Entity Bean
	Checking the Additions to the Database

	Creating a Session Bean With the EJB Builder
	Coding a Session Bean’s Create Method
	Creating Business Methods to Get the Detail Data
	Creating the getAllRestaurants Method
	Creating the getCustomerreviewsByRestaurant Method

	Creating a Business Method to Create a Customer Review Record
	Creating Business Methods That Return Detail Class Types
	Creating the getRestaurantDetail Method
	Creating the getCustomerreviewDetail Method

	Adding EJB References

	Testing the Session Bean
	Creating a Test Client for a Session Bean
	Adding Entity Bean References to the EJB Module
	Providing the Sun ONE Application Server 7 Plugin With Database Information
	Deploying and Executing the Test Application
	Undeploying the Entity Bean Test Applications
	Deploying the DiningGuideManager Test Application

	Using the Test Client to Test a Session Bean
	Checking the Additions to the Database

	Comments on Creating a Client

	Creating the DiningGuide Application’s Web Service
	Overview of the Tutorial’s Web Service
	The Web Service
	The Runtime Classes
	The Client Files

	Creating the Tutorial’s Web Service
	Creating the Logical Web Service
	Generating the Web Service’s Runtime Classes

	Testing the Web Service
	Creating a Test Client and Test Application
	Adding the Web Service to the J2EE Application
	Deploying the Test Application
	Using the Test Application to Test the Web Service

	Making Your Web Service Available to Other Developers
	Generating the WSDL File
	Generating Client Files From the WSDL File

	Creating a Client for the Tutorial Application
	Creating the Client With the Provided Code
	Running the Tutorial Application
	Examining the Client Code
	Displaying Restaurant Data
	Displaying Customer Review Data for a Selected Restaurant
	Creating a New Customer Review Record

	DiningGuide Source Files
	RestaurantBean.java Source
	RestaurantDetail.java Source
	CustomerreviewBean.java Source
	CustomerreviewDetail.java Source
	DiningGuideManagerBean.java Source
	RestaurantTable.java Source
	CustomerReviewTable.java Source

	DiningGuide Database Script
	Script for a PointBase Database
	Script for an Oracle Database

	Creating the Tutorial with an Oracle Database
	Setting up Database Connectivity with the Oracle Database
	Enabling the Oracle Type 4 JDBC Driver
	Connecting the IDE to the Oracle Server
	Creating a JDBC Connection Pool
	Creating a JDBC Data Source
	Creating a JDBC Persistent Manager

	Creating the Database Tables
	Creating EJB Components with an Oracle Database
	Creating the Web Service with an Oracle Database

	Index

