
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ ONEApplication Framework
Tutorial

Sun™ ONE Studio 5 update 1

Part No. 817-4358-10
October 2003, Revision A

www.sun.com
http://www.sun.com/hwdocs/feedback

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document.

En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et dans les
autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent l'utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFAÇON.

Contents

Preface 9

How This Book Is Organized 9

Using UNIX Commands 10

Related Documentation 11

Accessing Sun Documentation 11

Contacting Sun Technical Support 12

Sun Welcomes Your Comments 12

1. Before You Begin 13

Primary Features of the Sun ONE Application Framework 13

QA Certification 14

2. Getting Started 15

Introduction 15

Writing Sun ONE Application Framework Applications 16

J2EE/Sun ONE Application Framework Terminology 17

How Sun ONE Application Framework Applications Are Organized 18

About the Sun ONE Application Framework Tutorial 19

3. Tutorial Sections (Links to) 21

Sections 1.1—1.3 21
3

Sections 2.1—2.6 22

Sections 3.1—3.3 22

Sections 4.1—4.5 23

4. Tutorial—Section 1.1
Application Infrastructure 25

Task 1: New Sun ONE Web Application 25

Create an Application Wizard 25

Application Servlet 30

Module Servlet 31

Advanced Tip - Modules 31

5. Tutorial—Section 1.2
Create Login Page 33

Task 2: Create the Login Page 33

Add a ViewBean 33

Add Display Fields to the Login Page 37

Add Code to the Login Button 42

6. Tutorial—Section 1.3
Test Run the Login Page 45

Task 3: Test Run the Login Page 45

Compile the Web Application 45

Test Run the Login Page 46

Test a Successful Login 48

Test an Unsuccessful Login 48

Alternative Runtime Environments 49

7. Tutorial—Section 2.1
Prepare Application to Access SQL Database 51

Task 1: Accessing a SQL Database 51

Connect to the Sample Database 51
4 Sun ONE Application Framework Tutorial • October 2003

JDBC Datasources 53

Tomcat (and other non-JNDI containers) SQL Connection Preparation 57

8. Tutorial—Section 2.2
Create the CustomerModel 61

Task 2: Create the CustomerMode 61

Create a JDBC™ SQL Model 61

Mark the Model's Key Field(s) 67

Add Connection Code for Non-JNDI Enabled Containers 68

9. Tutorial—Section 2.3
Create Customer Page 71

Task 3: Create the Customer Page 71

Add a ViewBean 71

Add a Button Component 78

Making a Model Auto Update 82

Add a Hidden Field to the Customer Page 84

Format the JSP 88

10. Tutorial—Section 2.4
Test Run the Customer Page 91

Task 4: Test Run the Customer Page 91

Test a Customer Update 92

11. Tutorial—Section 2.5
Link Login Page to Customer Page 95

Task 5: Link the Login Page to the Customer Page 95

Edit the handleLoginRequest Method in LoginPage 95

12. Tutorial—Section 2.6
Run Application 99

Task 6: Run the Application 99
Contents 5

13. Tutorial—Section 3.1
Create a Command Component 103

Task 1: Create a Command Component 103

Create the UserAccessCommand Component 103

Add Code to the execute Method 107

Configure a Button's Command Descriptor 109

14. Tutorial—Section 3.2
Add a Logout Link to the Customer Page 117

Task 2: Add an HREF to a Customer Page 117

Configure an HREF's Command Descriptor 118

Format the HREF tag in the Customer JSP 123

15. Tutorial—Section 3.3
Test Run the Login/Logout Command Component 125

Task 3: Test Run the Login/Logout Command 125

16. Tutorial—Section 4.1
Prepare to Create a Web Service Model 129

Task 1: Web Service User Registration and Downloading 129

Download the Web Service SDK 129

Register to Use the Web Service 130

Create the Web Service Model 130

17. Tutorial—Section 4.2
Create the Google Search Page 135

Task 2: Create the Google Search Page 135

Add a Page Component 135

Add More Visual Components to the Page 142

Enable the Search Button 147

Manual Code Technique 148

Point & Click Technique (code-free) 148
6 Sun ONE Application Framework Tutorial • October 2003

Format the JSP Content 152

18. Tutorial—Section 4.3
Test Run the Google Search Page 155

Task 3: Test Run the Google Search Page 155

Try a Search 156

19. Tutorial—Section 4.4
Add Results Listing to the Google Search Page 157

Task 4: Create a TiledView Pagelet 157

Add a TiledView 157

Configure the TiledView Pagelet Component 164

Getting the Correct Primary Model Dataset Name 166

Add the Pagelet to a Page 169

Formatting the JSP 172

20. Tutorial—Section 4.5
Test Run the Google Search Page 175

Task 5: Test Run the Google Search Page with Results 175

Try a Search 176
Contents 7

8 Sun ONE Application Framework Tutorial • October 2003

Preface

This Sun™ ONE Application Framework Tutorial introduces developers to the
mechanics and techniques used to build Web applications with the Sun ONE
Application Framework tools.

It is intended for developers who are at least somewhat familiar with building Web
applications using existing J2EE Web technologies (servlets and JSPs), but new to
building Web applications with the Sun ONE Application Framework.

How This Book Is Organized
In the following chapter, you see an overview of the primary features of the Sun
ONE Application Framework and toolset (IDE) for enterprise Web application
development.

� Chapter 1, “Before You Begin” on page 13.

In the following chapter, you see an outline of the mechanics of using the Sun™
ONE Application Framework tools to build a J2EE Web application.

� Chapter 2, “Getting Started” on page 15.

In the following chapters, you create the application infrastructure needed for all
subsequent chapters, and add your first Sun ONE Application Framework page.

� Chapter 4, “Tutorial—Section 1.1 Application Infrastructure” on page 25.

� Chapter 5, “Tutorial—Section 1.2 Create Login Page” on page 33.

� Chapter 6, “Tutorial—Section 1.3 Test Run the Login Page” on page 45.

In the following chapters, you expand the existing application by adding a SQL-
based model, and a page to display that model's data. You then link the two
application pages together so they show coordinated data.
9

� Chapter 7, “Tutorial—Section 2.1 Prepare Application to Access SQL Database”
on page 51.

� Chapter 8, “Tutorial—Section 2.2 Create the CustomerModel” on page 61.

� Chapter 9, “Tutorial—Section 2.3 Create Customer Page” on page 71.

� Chapter 10, “Tutorial—Section 2.4 Test Run the Customer Page” on page 91.

� Chapter 11, “Tutorial—Section 2.5 Link Login Page to Customer Page” on
page 95.

� Chapter 12, “Tutorial—Section 2.6 Run Application” on page 99.

In the following chapters, you create a Command component that can be reused by
many buttons and HREFs within the same application. This is the alternative
technique to implementing request handling code in the button or HREF's handle
request event inside its parent container view class.

� Chapter 13, “Tutorial—Section 3.1 Create a Command Component” on page 103.

� Chapter 14, “Tutorial—Section 3.2 Add a Logout Link to the Customer Page” on
page 117.

� Chapter 15, “Tutorial—Section 3.3 Test Run the Login/Logout Command
Component” on page 125.

In the following chapters, you expand the existing application by adding a Web
service-based model and a page to display that model's data. You need to register for
and download the Google developer's SDK to build a model for a Web service.

� Chapter 16, “Tutorial—Section 4.1 Prepare to Create a Web Service Model” on
page 129.

� Chapter 17, “Tutorial—Section 4.2 Create the Google Search Page” on page 135.

� Chapter 18, “Tutorial—Section 4.3 Test Run the Google Search Page” on page 155.

� Chapter 19, “Tutorial—Section 4.4 Add Results Listing to the Google Search Page”
on page 157.

� Chapter 20, “Tutorial—Section 4.5 Test Run the Google Search Page” on page 175.

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. See the following for this information:

� Software documentation that you received with your system

� Solaris™ operating environment documentation, which is at
10 Sun ONE Application Framework Tutorial • October 2003

http://docs.sun.com

Related Documentation

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Application Title Part Number

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Overview, Sun™ ONE Studio 5 update 1

817-4360-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework IDE
Guide, Sun ONE Studio 5 update 1

817-4104-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Developer's Guide, Sun ONE Studio 5
update 1

817-4359-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Component Author's Guide, Sun ONE
Studio 5 update 1

817-4362-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Component Reference Guide, Sun ONE
Studio 5 update 1

817-4661-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework Tag
Library Reference, Sun ONE Studio 5
update 1

817-4361-10
Preface 11

http://www.sun.com/documentation
http://docs.sun.com

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun ONE Application Framework Tutorial, part number 817-4358-10
12 Sun ONE Application Framework Tutorial • October 2003

http://www.sun.com/hwdocs/feedback
http://www.sun.com/service/contacting

CHAPTER 1

Before You Begin

Welcome to the Sun™ ONE Application Framework, the J2EE Web application
framework and toolset (IDE) for enterprise Web application development.

This chapter contains the following topics:

� Primary Features of the Sun ONE Application Framework
� QA Certification

Primary Features of the Sun ONE
Application Framework
The primary features of the Sun ONE Application Framework are as follows:

� Turnkey J2EE™ application development

� High performance, proven J2EE framework runtime

� Full component-based development

� Graphical application builder toolset as follows:

� Logical application tree explorer view

� Automated synchronization of changes between application components and
JSPs

� High-level wizards

� Support for Web Services Model (Enterprise Edition only)
13

The Sun ONE Application Framework is used by the following:

� Large enterprises doing medium-, large-, or massive-scale enterprise Web
applications

� Financial, Manufacturing, Government, Education, Health Care, and
Telecommunications sectors

The Sun ONE Application Framework is a valuable tool that does the following:

� Guides naive and junior Java™/J2EE Developers

� Provides exceptional ease of use and an easy learning curve with the graphical
development tools

� Leverages complex J2EE APIs for those without detailed knowledge

� Provides the ability for inexperienced developers to learn J2EE as they build
high-performance enterprise applications

� Complements advanced Java/J2EE developers and architects

� Provides the ability for advanced developers to gain higher productivity by
avoiding tedious low-level J2EE development

� Offers architects well-defined points from which to extend the application
architecture

� Accelerates Web Application development and skill/component reuse by
providing easy entree into the J2EE API world

This document shows you how to use the Sun ONE Application Framework features
to do the following:

� Create a Sun ONE Web Application
� Create a page (ViewBean and TiledViews) and an associated JSP
� Create and use a Mode (JDBC™ SQL and WebService-based models)
� Link pages together

QA Certification
� Solaris 8™ Operating System

� Solaris™ 9 Operating System

� Windows 2000 Operating System

� JavaSoft™ RI and Apache Tomcat

� Sun™ ONE Application Server 6.5 and 7.0, WebLogic, WebSphere
(J2EE container testing done via WAR import export)

� Sun™ ONE Studio 4.1, Enterprise Edition

� Sun™ ONE Studio 4.1, Community Edition
14 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 2

Getting Started

This chapter outlines the mechanics of using the Sun™ ONE Application Framework
tools to build a J2EE™ Web application.

This chapter contains the following topics:

� Introduction
� Writing Sun ONE Application Framework Applications
� About the Sun ONE Application Framework Tutorial

Introduction
This document introduces developers to the mechanics and techniques used to build
Web applications with the Sun ONE Application Framework tools.

It is intended for developers who are at least somewhat familiar with building Web
applications using existing J2EE Web technologies (servlets and JSPs), but new to
building Web applications with the Sun ONE Application Framework.

This document assumes Java expertise and familiarity with the development and
deployment procedures for the specific servlet container and development tools
being used.

Because the Sun ONE Application Framework is foremost a design pattern and a set
of interfaces, the examples in this document show only the most basic way of
creating a Sun ONE Application Framework application, by extending existing Sun
ONE Application Framework implementation base classes and manually
constructing certain application objects. This is only one possible way to create a Sun
ONE Application Framework application.
15

There are two reasons for not showing more advanced techniques in this document.
First, starting at a fundamental level is the most direct way to impart how the Sun
ONE Application Framework works to someone new to the framework. Being able
to see exactly how the framework interacts with the application is critical to getting
the most out of the Sun ONE Application Framework.

Second, building an application using these fundamental techniques is a prerequisite
to fully understanding the many possible ways to build Sun ONE Application
Framework applications. Features that extend the Sun ONE Application Framework
to add additional capabilities are built on the techniques demonstrated in this
document. After understanding these basic examples, you have a greater
understanding of how these features extend and complement the Sun ONE
Application Framework core, and you are able to optionally decide not to use them
and instead construct your own Sun ONE Application Framework extensions (or
simply fall back to a more basic approach where necessary).

The ultimate goal of this document then is to introduce developers to the most
fundamental way to build Sun ONE Application Framework applications, so they
become familiar with Sun ONE Application Framework's interactions with
applications built on top of the framework, and more fluent in the Sun ONE
Application Framework itself.

Writing Sun ONE Application
Framework Applications
Writing a Sun ONE Application Framework application consists of first laying out
an application structure, and incrementally adding Sun ONE Application
Framework objects to that structure. Although this can be done entirely by hand and
from scratch, the task has been simplified by creating a Sun ONE Application
Framework tools module for the Sun™ ONE Developer Studio that assists
developers in writing their Sun ONE Application Framework applications. With the
assistance of these tools, creating a Sun ONE Application Framework application
becomes a simple process of generating Sun ONE Application Framework
components using wizards, and customizing them to an application.

Before demonstrating the creation of a simple Sun ONE Application Framework
application, you will cover the basics of how a Sun ONE Application Framework
application is structured.
16 Sun ONE Application Framework Tutorial • October 2003

J2EE/Sun ONE Application Framework
Terminology
There are terms in this document such as application, module, and components.
These terms can be confusing, because they are also used in more general Web
architecture and development discussions.

The following table contains a list of the most important terms found in this tutorial.

Term Description

*J2EE component Sometimes referred to as J2EE application components; concrete
software components which are deployed, managed, and executed
on a J2EE server including EJBs, Servlets, and Java Server Pages
(JSPs); there are components including HTML and Applets which
are also J2EE components but these are not relevant to the Sun ONE
Application Framework Web application discussion.

*J2EE module Represents the basic unit of composition of a J2EE application. A
J2EE module consists of one or more J2EE components and one
component-level deployment descriptor. J2EE modules can be
deployed as stand-alone units or can be assembled with a J2EE
application deployment descriptor and deployed as a J2EE
application. Servlet and/or JSP components are packaged as a J2EE
module and deployed as a WAR file. EJB components are packaged
as a J2EE module and deployed as a JAR file. An arbitrary number
or WAR files and JAR files may be combined to form a J2EE
application and deployed as an EAR file. WAR files (J2EE modules
which are also known as J2EE Web applications) may be deployed
stand-alone on a J2EE server.

*J2EE Web
application

Stand-alone J2EE modules containing J2EE components deployable
in a J2EE servlet container (Web application container). Depending
on the context of the term application or J2EE application, the intent
may be to refer to a J2EE Web application. There are products such
as the Sun ONE Application Server 7 and Apache Tomcat that
support J2EE Web applications, in that they can manage J2EE
modules consisting of Servlets and JSPs, but they cannot manage a
complete J2EE application which may have EJB J2EE modules.
Chapter 2 Getting Started 17

* Refer to the Java 2 Platform Enterprise Edition Specification v1.2 (J2EE) section
J2EE8.1 for a detailed explanation of this term.

How Sun ONE Application Framework
Applications Are Organized
The Sun ONE Application Framework provides formal application and module
entities. A Sun ONE Application Framework application is a base Java package that
contains one or more sub-packages (Sun ONE Application Framework modules). It
is perfectly acceptable for an application to consist of only one module, and it is
likely be the common situation for smaller applications. Each module inherits
behavior from its parent application-level components, and might also customize
this behavior separately from other modules.

In J2EE Web application container terms, a Sun ONE Application Framework
application corresponds one-to-one with a servlet context, and thus is subject to the
constraints enforced by the container for servlet contexts.

Before starting to develop your application, you should first decide how it should be
organized:

� Determine which modules will be grouped together into your Sun ONE
Application Framework application.

*J2EE application Consists of one or more J2EE modules and one J2EE application
deployment descriptor, packaged using the Java archive (JAR) file
format into a file with a .ear (enterprise archive) filename
extension.

Sun ONE
Application
Framework module

Refers to both a logical and physical partition of content and
components within a Sun ONE Application Framework application
(not to be confused with a J2EE module).

Sun ONE
Application
Framework
application

In informal terms, a Sun ONE Application Framework application is
a J2EE Web application that has been written using the Sun ONE
Application Framework. It consists of at least one J2EE module (the
Web application), but may also include other standard J2EE
components or modules. A minimal Sun ONE Application
Framework application is a J2EE Web application consisting of one
WAR file. In formal terms, a Sun ONE Application Framework
application is a collection of related Sun ONE Application
Framework modules, all running in the same servlet context. In this
sense, Sun ONE Application Framework application refers only to
this logical Sun ONE Application Framework abstraction.

Term Description
18 Sun ONE Application Framework Tutorial • October 2003

Avoid over-categorizing your application into several modules simply because
the Sun ONE Application Framework provides this capability. In many cases, one
module is sufficient.

� Decide on an application package name.

The application package name can be arbitrarily complex and will likely reflect
your organization's packaging strategy. Each of your modules becomes a package
beneath this application package.

� Assign a deployment-time or published Web application name.

In Apache Tomcat, the directory immediately beneath the /webapps directory
would bear this name. In the Sun™ ONE Application Server, the directory
immediately beneath the $instance_dir/applications/j2ee-modules
directory would bear this name. The deployed application name is the same as
the name WAR file name.

For example, if you have two Application Framework modules (named module1 and
module2) that comprise a Sun ONE Application Framework application, you would
call this application myapp. The full application package name would be
com.mycompany.myapp.

� The application package would be com.mycompany.myapp
� The module1 package would be com.mycompany.myapp.module1
� The module2 package would be com.mycompany.myapp.module2

In general, the application package name should be different from that of any of its
modules.

For example, your first instinct might be to name both your application and its
primary module foo. This can easily lead to confusion for someone trying to
understand your application and your application development tools. Instead,
consider naming the application package something like fooapp, or calling the
primary module something like main or module1. This makes your application
structure much easier to understand, especially when you add to it in the future.

About the Sun ONE Application
Framework Tutorial
You will now develop a simple application so you can experience using the Sun
ONE Application Framework and its tools. This application consists of two pages: a
login page, and a customer account page, and demonstrates the following:

� Retrieving field values submitted by the user.
� Returning a status message to the user.
Chapter 2 Getting Started 19

� Using a QueryModel to retrieve customer information.
� Using a QueryModel to update customer information.
� Coordinating user input with QueryModel SQL WHERE criteria.
� Moving from one page to another.
� Using a WebServiceModel to perform a Google Internet search.
� Displaying the multiple search results of a WebServiceModel.

This tutorial is divided into sections and tasks the steps required to develop the
application. Each section addresses a broad topic, at the end of which you have an
application that you can run.

Each task within a chapter is a relatively self-contained topic and contains several
more detailed steps.
20 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 3

Tutorial Sections (Links to)

This chapter outlines the sections contained in this Sun™ ONE Application
Framework Tutorial.

This section lists the links to the various tasks as follows:

� Sections 1.1—1.3
� Sections 2.1—2.6
� Sections 3.1—3.3
� Sections 4.1—4.5

Sections 1.1—1.3
In Sections 1.1 through 1.3, you create the application infrastructure needed for all
subsequent chapters, and add your first Sun ONE Application Framework page.

� Section 1.1

Task 1: New Sun ONE Web Application

� Section 1.2

Task 2: Create the Login Page

� Section 1.3

Task 3: Test Run the Login Page
21

Sections 2.1—2.6
In Sections 2.1 through 2.6, you expand the existing application by adding a SQL-
based model, and a page to display that model's data. You then link the two
application pages together so they show coordinated data.

� Section 2.1

Task 1: Accessing a SQL Database

� Section 2.2

Task 2: Create the CustomerMode

� Section 2.3

Task 3: Create the Customer Page

� Section 2.4

Task 4: Test Run the Customer Page

� Section 2.5

Task 5: Link the Login Page to the Customer Page

� Section 2.6

Task 6: Run the Application

Sections 3.1—3.3
In Sections 3.1 through 3.3, you create a Command component that can be reused by
many buttons and HREFs within the same application. This is the alternative
technique to implementing request handling code in the button or HREF's handle
request event inside its parent container view class.

� Section 3.1

Task 1: Create a Command Component

� Section 3.2

Task 2: Add an HREF to a Customer Page

� Section 3.3

Task 3: Test Run the Login/Logout Command
22 Sun ONE Application Framework Tutorial • October 2003

Sections 4.1—4.5
In Sections 4.1 through 4.5, you expand the existing application by adding a Web
service-based model and a page to display that model's data. You need to register for
and download the Google developer's SDK to build a model for a Web service.

� Section 4.1

Task 1: Web Service User Registration and Downloading

� Section 4.2

Task 2: Create the Google Search Page

� Section 4.3

Task 3: Test Run the Google Search Page

� Section 4.4

Task 4: Create a TiledView Pagelet

� Section 4.5

Task 5: Test Run the Google Search Page with Results
Chapter 3 Tutorial Sections (Links to) 23

24 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 4

Tutorial—Section 1.1
Application Infrastructure

This chapter describes how to create the Sun™ ONE Application Framework (also
known as Application Framework, App Framework, S1AF, and JATO) application
infrastructure needed for all subsequent tasks.

Task 1: New Sun ONE Web Application
Before developing any pages, you need to create the Sun ONE Application
Framework application infrastructure (the WAR directory structure and supporting
files). This is a onetime requirement for each Sun ONE Application Framework
application.

Create an Application Wizard
Before you create the application, you need to decide where the application should
be located. Typically, developers develop the application directly in the webapps
directory of a servlet container so the application can be tested without deploying it
to the target runtime environment. Since you are already using the Sun™ ONE
Studio (Studio), you can locate the application anywhere and use the built-in Sun™

ONE Application Server 7 module to test it in place.

1. Select the Sun ONE Studio menu option File -> New.

The Choose Template panel displays.
25

2. Expand the Sun ONE Application Framework folder.

3. Select Application.

4. Click Next.

The Application Location panel displays.
26 Sun ONE Application Framework Tutorial • October 2003

The default base directory is your Sun ONE Studio user-dir, which might be
different than the one shown in this example. You can choose any existing directory
to be your base directory for your Sun ONE Application Framework applications.

Note – Many developers use the webapps directory of the servlet container in
which the application is deployed.

Later in this tutorial, you will see how to run your Sun ONE Application Framework
Web application using the Sun ONE Studio, so you can put your Web application
anywhere you want.

5. Enter JatoTutorial in the Web Context Name field.

The New App Directory field is populated after you make entries in the Base
Directory and Context Name fields.

6. Click Next.

The Application Properties panel displays.
Chapter 4 Tutorial—Section 1.1 Application Infrastructure 27

The fields on this panel are populated using the value of the Web Context Name field
from the previous panel.

For this tutorial, accept the default values.

7. Click Next.

The Module Properties panel displays.
28 Sun ONE Application Framework Tutorial • October 2003

For this tutorial, accept the default values.

8. Click Finish.

9. Click OK.

The application is created.

Note – The processing time depends upon your machine.

The new application displays in the Sun ONE Application tree in the Sun ONE
Studio Explorer which is labeled Sun ONE Web Apps.

10. Expand the modules node in the Sun ONE Web Apps Explorer to see the
application layout and observe the code in the two servlet classes that were
created.

� JatoTutorialAppServletBase
� MainModuleServlet
Chapter 4 Tutorial—Section 1.1 Application Infrastructure 29

Application Servlet
The application servlet, JatoTutorialAppServletBase, has no special meaning
to the application except that it is meant to be a super class for all module servlets in
the application.

The Sun ONE Application Framework module servlets have events that can be
implemented to customize and control the session and request life cycle.

For example:

� onNewSession
� onSessionTimeout
� onBeforeRequest
� onAfterRequest
30 Sun ONE Application Framework Tutorial • October 2003

It is common that all module servlets within the same application require the same
behavior for all of these events. Therefore, it is a good idea to implement such
behavior for these events in a class that all module servlets can extend.

However, technically speaking, the application servlet is not required. You can
customize the hierarchy of the module servlet as long as that hierarchy derives from
the Sun ONE Application Framework's
com.iplanet.jato.ApplicationServletBase file.

This application has only one module, and by definition, one module servlet. So the
role of the application servlet is not as beneficial as it would be in multi-module
applications.

Module Servlet
The module servlet, MainModuleServlet, is the actual servlet that is invoked for
every request. All access to the application goes through this front controller servlet
before control is handed to the appropriate request handler class (implemented later
in this tutorial).

Not much code is required in this class. All of the necessary request handling code is
located in the Sun ONE Application Framework's
com.iplanet.jato.ApplicationServletBase file. Advanced developers can
gain some insight on how requests are handled by reviewing the source code in the
com.iplanet.jato.ApplicationServletBase class.

Advanced Tip - Modules
Notice that if the main module folder is selected, its properties are reflected in the
property sheet at the bottom of the Studio Explorer window. Notice that its Module
property is True. By changing it to False, this module becomes an ordinary
folder/package, and the entries in the web.xml file (a standard Web application
configuration file) for the MainModuleServlet are removed.

You can make any ordinary folder a Sun ONE Application Framework module by
right-clicking the folder and selecting the Convert to Module action. You are then
prompted to select a Java servlet class from that folder to be the module servlet, or
you can provide a name to create a new one.
Chapter 4 Tutorial—Section 1.1 Application Infrastructure 31

32 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 5

Tutorial—Section 1.2
Create Login Page

This chapter describes how to add your first Sun™ ONE Application Framework
page to the application infrastructure you created.

Task 2: Create the Login Page
Create the first page of the application.

Add a ViewBean
1. Select the main module folder from the Sun ONE Web Apps Explorer.
33

2. Click the Add Page button on the Sun ONE Application Framework toolbar

Or:

a. Select the Sun ONE Studio menu option File -> New.

b. Expand Sun ONE Application Framework (JATO) node

c. Select Page (ViewBean)

d. Click Next.

Or:

a. Right-click the main module folder.

b. Select Add.

c. Select Page (ViewBean).

3. Expand the Sun ONE Application Framework folder.

4. Select View.

5. Click Next.

The View Location panel displays.
34 Sun ONE Application Framework Tutorial • October 2003

6. Enter LoginPage in the Name field (to replace <default>).

7. In the View beans tab, select Basic ViewBean.

8. Click Next.

The Associate JSP panel displays.
Chapter 5 Tutorial—Section 1.2 Create Login Page 35

Accept all defaults.

9. Check the Use formatting to beautify fields on JSP option.

10. Click Finish.

The ViewBean is created.

Note – There are additional steps in the Page wizard. However, those steps involve
model field binding which is not required for the LoginPage. In a later task, you will
use these additional steps.
36 Sun ONE Application Framework Tutorial • October 2003

11. Double-click LoginPage.

The generated source code displays in the Sun ONE Studio editor.

Note – Because you elected to created a JSP when you created the LoginPage, a JSP
was added to the Documents folder in a directory structure that mirrors the
ViewBean's package structure (/jatotutorial/main).

For convenience, a link to the JSPs that use the LoginPage are placed in the node of
the JSP, which is under the LoginPage node.

Add Display Fields to the Login Page
12. Expand the LoginPage node.

13. Select the Visual Components node under the LoginPage node.
Chapter 5 Tutorial—Section 1.2 Create Login Page 37

14. In the Sun ONE Application Framework Component Palette, click the Static Text
Field option.
38 Sun ONE Application Framework Tutorial • October 2003

A static text visual component is added to the Visual Components node.

The default name is staticText1.
Chapter 5 Tutorial—Section 1.2 Create Login Page 39

15. Right-click the staticText1 field name.

16. Select Rename.

17. Rename the field to message.

18. Add two more display fields.

The following table contains a list of the two visual component types with each of
their names and the initial value for the Button type.

The three display fields display under the Visual Components node of the
LoginPage.

Adding display fields to the Page also adds the appropriate JSP tags for the display
fields to the JSPs that are using this Page.

19. Set the button’s Initial Value property by selecting login.

20. Click in the Initial Value property value entry area.

21. Enter the string Login.

The button's value is the string that displays on the button in the browser.

Type Name Initial Value

Text Field customerNum

Button login Object Type: String
Object Value: Login
40 Sun ONE Application Framework Tutorial • October 2003

22. Open the LoginPage's JSP to see the tags for the three display fields.

a. Expand the JSP Pages node under the LoginPage node.

b. Double-click the LoginPage JSP to open it in the Sun ONE Studio editor.

23. Format your JSP layout however you want.

Note – Because you checked the option in the page wizard to beautify the JSP page
contents, some basic formatting was applied to get you started. However, you will
probably want to modify things a bit more.

For example, adjust the customerNum label so that it is proper case, and remove the
unnecessary label for the button and the static text message field.

You can edit it directly in the Sun ONE Studio editor, or you can use your favorite
WYSWIG HTML editor.
Chapter 5 Tutorial—Section 1.2 Create Login Page 41

Here is an example of some minimal JSP changes (only pertinent code is shown
here). Some HTML source code appears in bold type below for emphasis.

Add Code to the Login Button
24. Right-click the login button.

25. Select Events -> handleRequest

<jato:form name="LoginPage" method="post">
<table border=0 cellspacing=2 cellpadding=2 width="100%">
<tr>
 <td align=right valign=middle width="20%"></td>
 <td align=left valign=middle><jato:text name="message"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%">Customer Num:</td>
 <td align=left valign=middle><jato:textField name="customerNum"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%"></td>
 <td align=left valign=middle><jato:button name="login"/></td>
</tr>
</table>
</jato:form>
42 Sun ONE Application Framework Tutorial • October 2003

The LoginPage.java file opens and the handleLoginRequest event stub is
inserted.

26. Implement the login button handle request code.

Replace the following default code:

getParentViewBean().forwardTo(getRequestContext());

with the code shown in bold below:
Chapter 5 Tutorial—Section 1.2 Create Login Page 43

public void handleLoginRequest(RequestInvocationEvent event)
{
 // Retrieve the customer number

String custNum = getDisplayFieldStringValue(CHILD_CUSTOMER_NUM);
String theMessage = "";

 // Check the customer number
if (custNum.equals("1") ||

 custNum.equals("777") ||
 custNum.equals("410"))

 {
 theMessage = "Congratulations, " + custNum +
 ", you are now logged in!";
 }

 else
 {
 theMessage = "Sorry, " + custNum +
 ", your customer number was incorrect!";
 }

 // Set the output status message
getDisplayField(CHILD_MESSAGE).setValue(theMessage);

 // Redisplay the current page
forwardTo();

}

44 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 6

Tutorial—Section 1.3
Test Run the Login Page

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 3: Test Run the Login Page

Compile the Web Application
1. Select the Application Name folder.
45

2. Click the Deploy button on the Sun ONE Application Framework toolbar at the
top of the Explorer window.

This compiles the entire Web application (those classes that need to be compiled)
and deploys it to the Sun™ ONE Application Server in one step.

If you followed all of the tutorial instructions, the Web application compiles and
deploys without error. See the Sun™ ONE Studio Output window for error
messages.

This deployment step is required for any change you make to any of the resources in
your Web application when running it in the Sun™ ONE Application Server 7
(Application Server).

Test Run the Login Page
1. Select LoginPage.
46 Sun ONE Application Framework Tutorial • October 2003

2. Click the Execute Page button located on the Sun ONE Application Framework
toolbar at the top of the Explorer window.

Note – The Execute Page (Redeploy) button (just to the right of the Execute button
on the Sun ONE Application Framework toolbar) forces the Sun ONE Application
Server to reload all resources (for example, JSPs, classes, and so on). It actually
restarts the Sun ONE Application Server. This is necessary if the Sun ONE
Application Server must be restarted to pick up the new changes so that it does not
use objects in memory.

For some browsers, you might have to close all instances of that browser before you
can rerun any page in your application.

A default browser starts the application.
Chapter 6 Tutorial—Section 1.3 Test Run the Login Page 47

Test a Successful Login
1. Enter a valid login (for example, 1, 777, or 410 are valid (hard-coded) customer

numbers).

2. Click Login.

Caution – If you press the enter key while in the text field, the form is submitted for
you. However, the server does not know which button to address from this submit
action. The <jato:form> tag provides an attribute defaultCommandChild that can be
used to tell the server which button should be activated in the default case.

Refer to the tag library documentation for more information on this feature.

However, for now, just click the button directly.

The login page should refresh displaying the success message.

Test an Unsuccessful Login
1. Enter an invalid login name (for example, foo, 8, or 14 - anything other than the

valid, hard-coded customer numbers described above).

2. Click Login.

The login page should refresh displaying the failure message
48 Sun ONE Application Framework Tutorial • October 2003

Alternative Runtime Environments
1. If you prefer to test run you application outside of the Sun ONE Studio, compile

and package your application into a WAR file and place the WAR file in the
webapps directory (this varies from container to container, but most call it
webapps).

2. You need to add the PointBase driver file to the servlet container's classpath. The
driver can be found in the installation directory of the Sun ONE Studio, as
follows:

<studio-install-
dir>/appserver7/pointbase/server/lib/pbserver42RE.jar

The easiest way to accomplish this is to copy this driver to your application’s web-
inf/lib directory.

3. Open a browser and run it with the URL appropriate to the servlet container.

The only possible variation is the page name (LoginPage) at the end of the URL.

Apache Tomcat or Caucho Resin servlet containers:
http://localhost:8080/JatoTutorial/main/LoginPage

Note – You might find it necessary to refer to this task again during this tutorial.
Chapter 6 Tutorial—Section 1.3 Test Run the Login Page 49

50 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 7

Tutorial—Section 2.1
Prepare Application to Access SQL
Database

This chapter describes how to expand the application and prepare the Sun™ ONE
Application Framework application to access a SQL Database.

Expand the existing application by adding a SQL-based model and a page to display
that model's data.

Link the two application pages together so they show coordinated data.

Task 1: Accessing a SQL Database

Connect to the Sample Database

Note – The remainder of the tutorial assumes the presence of an RDBMS database
which is used as a prerequisite for introducing you to some additional Sun ONE
Application Framework features.

There is no requirement for an Sun ONE Application Framework application to
access an RDBMS. Therefore, your actual applications might not access an RDBMS,
but rather some other enterprise system that requires another form of preparation,
setup, and connection.

The step that follows (starting the PointBase Network Server) uses a Sun™ ONE
Studio tool that is not actually a part of the Sun ONE Application Framework toolset
module. However, the sample database, the PointBase Network Server, and the tools
to connect to it are included with all of the various versions of the Sun ONE Studio.
51

1. Select the menu option Tools -> PointBase Network Server -> Start Server from
the Sun ONE Studio to start the PointBase Network Server (database server).

Caution – Depending upon how you installed the Sun ONE Studio and the Sun
ONE Application Server, you might get an error message that prohibits you from
starting the PointBase Network Server. If this happens, you just need to configure it
first. If you were able to start the server, skip to the JDBC Datasources section.

2. Select Tools -> PointBase Network Server -> Configure.

A dialog displays that prompts for a file storage location and a port number.

3. Accept the defaults by clicking OK.
52 Sun ONE Application Framework Tutorial • October 2003

You receive two dialogs warning that a file already exists, and asking if it is OK to
overwrite them.

4. Click OK to overwrite both of them.

Your PointBase Network Server is ready to be started.

JDBC Datasources
You can create a JDBC Datasource using the Sun ONE Application Framework JDBC
Datasource wizard.

However, by default, one was created for you that points to the PointBase sample
database that ships with the Sun ONE Studio.

If you need to create additional JDBC Datasources for a different database other than
the one used in the tutorial, use the following steps.

(Otherwise, read over to become familiar with this topic, or skip to the Tomcat (and
other non-JNDI containers) SQL Connection Preparation section.)

1. Under the Sun ONE Application Framework Web application node (Jato Tutorial),
expand the Settings & Configuration folder.

2. Expand the Design-Time Resources folder.

3. Right-click the JDBC Datasources node.

4. Select Add JDBC Dataource.
Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 53

The Define JDBC datasource panel displays.
54 Sun ONE Application Framework Tutorial • October 2003

5. Enter the preferred datasource name in the New datasource name textbox.

6. In the Select connection combo box, select the appropriate JDBC connection.

If the connection you need does not exist, you must create one. This is performed by
a tool that is outside the scope of the Sun ONE Application Framework tools. You
need to select the Runtime tab in the Explorer window, expand the Databases node,
right-click it, and select Add Connection. You might need to add a driver for your
database before you can add a connection. See the Sun ONE Studio online help for
more details.
Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 55

7. Click Finish.

A new JDBC Datasource node is created.
56 Sun ONE Application Framework Tutorial • October 2003

Note – JDBC Datasources are only needed at design-time when creating JDBC SQL
Models (tables and stored procedures). The JDBC SQL Model wizard presents a
selection of the datasources that have been created.

The JDBC Datasources are not involved in the runtime environment. You must
configure your runtime container with the proper JNDI settings, unless you are
using direct JDBC URLs to connect to databases.

Tomcat (and other non-JNDI containers) SQL
Connection Preparation

Note – If you are using the Sun ONE Application Server to run your tutorial
application, you can skip this step, because JNDI is supported.

If you are using the built-in Tomcat engine, or running the tutorial application in
another servlet container that does not support JNDI, you need to make a few minor
modifications to the application servlet base class (JatoTutorialAppServletBase) in
your application.
Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 57

1. Expand the Application Classes folder.

2. Expand the jatotutorial package folder.

3. Double-click the JatoTutorialAppServletBase class to open it.

There is a lot of commented-out event code in here with comments describing what
you can do with the events. Ignore them as you do not need any of them for this
tutorial application.

You need to add a static initializer to perform the following:

a. Instruct the Sun ONE Application Framework not to use JNDI lookups

b. Load the PointBase JDBC driver

c. Map the JDBC Datasource (jdbc/jdbc-pointbase) to the PointBase sample
database's JDBC connection URL

The following code sample shows the code that needs to be added to the
JatoTutorialAppServletBase class. Only the bold code needs to be added. Much of
the code/comments from the JatoTutorialAppServletBase class has been omitted
here.
58 Sun ONE Application Framework Tutorial • October 2003

Your application will now use a JDBC URL directly to make a connection to the
database instead of using the connection pooling via JNDI.

Important: If you value performance in your Web application, use JNDI for
production.

� If you are not going to be testing the tutorial in the Sun ONE Application Server,
you need to copy the PointBase client library JAR file (pbserver42RE.jar) into
your WEB-INF/lib directory.

You can get the PointBase client library from the following directory:

<studio-install-dir>/appserver7/pointbase/server/lib

� If you are using a different database, you might need to place that database
vendor's client library in your WEB-INF/lib directory or in your servlet
container's lib/ext directory (somewhere in the classpath). Place it in the Web
application’s WEB-INF/lib directory.

� This is not necessary for the Sun ONE Application Server because the PointBase
libraries are already included in its classpath.

public class JatoTutorialAppServletBase extends ApplicationServletBase
{

static
{
// Turn off JNDI lookup (turn on DriverManager use)
SQLConnectionManagerBase.setUsingJNDI(false);

try
{

// load the PointBase JDBC driver
Class.forName("com.pointbase.jdbc.jdbcUniversalDriver");

}

catch (ClassNotFoundException e)
{

// if the driver is unavailable, an exception will be thrown
e.printStackTrace();

}

SQLConnectionManagerBase.addDataSourceMapping("jdbc/jdbc-pointbase",
"jdbc:PointBase://localhost:9092/sample");

} // static init

}

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 59

60 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 8

Tutorial—Section 2.2
Create the CustomerModel

This chapter describes how to create a model to access the RDBMS in the Sun™ ONE
Application Framework application.

Task 2: Create the CustomerMode

Create a JDBC™ SQL Model
1. Select the main module folder.

2. Click the Add Model button on the Sun ONE Application Framework toolbar.
61

The Select Model Type panel displays.
62 Sun ONE Application Framework Tutorial • October 2003

3. Enter CustomerModel in the Name field.

4. Select JDBC SQL Query Model from the model component list.

The list you see might vary depending on the Sun ONE Application Framework
version and the possible addition of custom or third party component libraries.

5. Click Next.

The Select Datasource page displays.
Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 63

6. Select jdbc/jdbc-pointbase from the combo box.

7. Click Next.

The Select Database Tables page displays.
64 Sun ONE Application Framework Tutorial • October 2003

8. Select CUSTOMER_TBL.

9. Click Add.

10. Click Next.

The Select Table Columns page displays.
Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 65

11. Click Add All to include all of the columns in your Model.

12. Click Finish to create the Model.

The CustomerModel object is created in the main module.
66 Sun ONE Application Framework Tutorial • October 2003

13. Expand the CustomerModel to see all of the columns.

14. Double-click the CustomerModel folder to view the code in the CustomerModel
Java class.

Mark the Model's Key Field(s)

Note – Due to a special type of key field indicator in the PointBase database schema
metadata, the Model wizard does not properly detect the key field
CUSTOMER_TBL_CUSTOMER_NUM. Therefore, you must set the key field manually.

This is not a problem if you create the datasource from a database schema object,
and is also not a problem for non-PointBase databases, such as Oracle.
Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 67

1. Under the Columns node of the CustomerModel, select the
CUSTOMER_TBL_CUSTOMER_NUM model field.

2. In the property sheet, select the Model Field Properties tab.

If the Properties tab is not visible, click the View -> Properties menu option, or right-
click the key field column and select the Properties action.

3. Change the value of the Key Field property from false to true.

Add Connection Code for Non-JNDI Enabled
Containers
For servlet containers that do not support JNDI data sources, you can rely on explicit
use of a JDBC driver.

Note – In section 2.1 of this tutorial (Task 1: Accessing a SQL Database), if you are
testing your this application in a servlet container that does not support JNDI, you
disabled the use of JNDI and declared the explicit use of the PointBase JDBC driver
in the SQLConnectionManagerImpl class.

If you are testing in a servlet container that does not support JNDI, you must set the
connection username and password explicitly in the model so that a proper database
connection can be created before the model is executed.

Note – For production environments, you should use JNDI connections.
68 Sun ONE Application Framework Tutorial • October 2003

Add the bold code below to the CustomerModel's constructor.

While providing the datasource username and password as demonstrated above is
not a good practice for a real world application, it is practical for this tutorial. Take
extra care to obtain and provide the username and password in a more secure and
robust implementation. When using the JNDI method, this code is unnecessary and
this login information is provided by the configured JNDI connections in the
application server.

public CustomerModel()
{
 super();

setDefaultConnectionUser("pbpublic");
setDefaultConnectionPassword("pbpublic");

}

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 69

70 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 9

Tutorial—Section 2.3
Create Customer Page

This chapter describes how to create a page in the Sun™ ONE Application
Framework that displays data from a model that accesses a relational database.

Task 3: Create the Customer Page
You will now create the second page of the application. However, this page will be
bound to a model. This binding process automatically creates display fields on the
page that display the data that is stored in the model's fields.

Add a ViewBean
1. Select the main module.

2. Click the Add Page button on the Sun ONE Application Framework toolbar.
71

The Select View Type panel displays.
72 Sun ONE Application Framework Tutorial • October 2003

3. Enter CustomerPage in the Name field (to replace <default>).

4. Select Basic ViewBean to create a ViewBean type Page component.

5. Click Next.

The Associate JSP panel displays.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 73

6. Click the Use formatting to beautify fields on JSP check box to apply some basic
formatting.

7. Click Next.

The Model Associations panel displays.
74 Sun ONE Application Framework Tutorial • October 2003

8. Expand Current Application Components to expose jatotutorial -> main.

9. Select Customer model.

10. Click Add.

11. Click Next.

The Bind Display Fields panel displays.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 75

You only need to add three fields.

12. Add the first field.

a. Select the CUSTOMER_TBL_CUSTOMER_NUM field.

Accept the Static text default.

b. Click Add field(s).

The CUSTOMER_TBL_CUSTOMER_NUM field is added to the Bound fields list box.

13. Add the second and third fields simultaneously.

a. Select the CUSTOMER_TBL_EMAIL and CUSTOMER_TBL_NAME fields (hold down
the Ctrl key to select multiple non-sequential fields).

b. Select Text field.
76 Sun ONE Application Framework Tutorial • October 2003

c. Click Add field(s).

The CUSTOMER_TBL_EMAIL and CUSTOMER_TBL_NAME fields are added to the
Bound fields list box.

14. Click Finish.

You have created the ViewBean.

15. Double-click CustomerPage.

The code displays in the right-hand panel.

Expand all the subnodes of the CustomerPage to see the JSP Page, Visual
Components, and Non-Visual Components that were automatically generated by the
wizard.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 77

Note – Like the LoginPage, a JSP for the CustomerPage was added to the
Documents folder (/jatotutorial/main), and there is a link to that JSP under this
ViewBean's JSPs folder.

You see three visual components that were created because you indicated that you
wanted to bind to the CustomerModel's fields. This allows data to automatically be
displayed on the Customer page and changes to those fields to be automatically
mapped back into the model, at which point you can execute the model to perform
an update to the database. All of the SQL generation and connection creation are
handled for you by the Sun ONE Application Framework.

If you really want or need to work with the JDBC API directly, the Application
Framework does not require that you use all of the features it provides, and you are
free to handle all of the JDBC responsibilities on your own. In other words, you can
pick and choose what you need to use in the Sun ONE Application Framework, but
it is most likely that the Sun ONE Application Framework's implementation is
exactly what you need.

You also see an entry under the Non-Visual Components node which is a reference to
the CustomerModel class.

Add a Button Component
1. Add a button to the CustomerPage.

The following table contains the specifications for adding a button to the
CustomerPage. Use the Component Palette to add the button, just like you added
the fields for the Login Page.

2. If the Component Palette is not visible, select menu option:

View -> Sun ONE Application Framework -> Component Palette.

The table shown below lists the specifications for adding a button to the
CustomerPage. The left column shows the button type, the middle column shows
the name, and the right column shows the initial value.

3. Enable the button to update the customer record.

a. Select the update button field.

Type Name Initial Value

Button update Update
78 Sun ONE Application Framework Tutorial • October 2003

b. In the property sheet of the button, click the value area of the RequestHandler
property.

The ellipsis button displays.

c. Click the ellipsis button.

The Command Descriptor editor launches.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 79

4. Select Create new shared instance.

5. Select WebAction Command from the list.
80 Sun ONE Application Framework Tutorial • October 2003

6. In the Properties tab, change the name to updateWebAction.

7. Select the Component Properties tab at the bottom of the editor.

8. Select ACTION_UPDATE for the Operation Name property.

Accept the defaults for the other two properties.

9. Click OK.

You have finished setting this property.

Note – A new entry is added under the Non-Visual Components node, and the
Command Descriptor property is set.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 81

Making a Model Auto Update
You now need to add the customerModel reference as an Auto Updating Model on
the CustomerPage.

You accomplish this by populating the Page's Auto Updating Models property with
the appropriate model reference—in this case, the customerModel reference that was
created for you by the wizard as a result of the model association or field binding
you specified.
82 Sun ONE Application Framework Tutorial • October 2003

1. Select the CustomerPage node.

2. Click the value area for the Auto Updating Models property.

The ellipsis button ("...") displays.

3. Click the ellipsis button.

The Auto Updating Models custom editor launches.

Note that the Properties area is blank when this editor first displays.

4. Click New.

This adds an entry.

5. Select customerModel from the Auto Updating Models combo box.

6. Click OK.

The property should now have the [customerModel] entry.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 83

Note – The combination of the button's update Web action command descriptor and
the auto retrieving or updating models configuration causes the CustomerModel to
be executed when the Customer page is displayed or when the CustomerPage's
Update button is clicked.

As an alternative to the declarative auto execution of this model, you can also write
some code to perform the same purpose. Commonly, this code would be
implemented in the Update button's handleUpdateRequest event (similar to how the
code was implemented for the Login button on the Login page).

Add a Hidden Field to the Customer Page
1. Expand the CustomerPage node.

2. Expand the Visual Components node.

3. Select the Visual Components node.

4. Select add a Hidden Field component using the Component Palette.

A hidden field is added to the CustomerPage's Visual Components node.
84 Sun ONE Application Framework Tutorial • October 2003

5. Rename the hidden field as hiddenKey.

6. Bind the hiddenKey field to the same model field that the
customerTblCustomerNum static text field is bound.

7. Select the hiddenKey field.

8. On the property sheet, set the Model Reference property to customerModel by
selecting from the drop down box.

9. Set the Model Field Binding property.

a. Click in the value area of the Model Field Binding property.

b. Click the ellipsis button to launch the Model Field Binding property editor.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 85

10. Click the ellipsis button of the Read field name property to launch the Model Field
Chooser editor.

11. Select CUSTOMER_TBL_CUSTOMER_NUM.
86 Sun ONE Application Framework Tutorial • October 2003

12. Click OK.

The read and write fields are populated with the
CUSTOMER_TBL_CUSTOMER_NUM model field.

13. Click OK.

This completes setting the Model Field Binding property for the hiddenKey display
field.

Because the static text field is not an HTML input field, it's value will not be
submitted back to the server when the update button is clicked. And because the
customer number is the key field in the database table, the update logic needs this
key value in order to limit the update to a single database row. This value must be
posted back along with the other input field values so that you can perform an
update on the proper customer record rather than updating every record in the table.
Chapter 9 Tutorial—Section 2.3 Create Customer Page 87

To achieve this, you will preserve the customer number field value in a hidden field,
which will be posted back on form submit and mapped back into the
CUSTOMER_TBL_CUSTOMER_NUM model field.

Caution – If you neglect this step, no key field value is submitted with the form.
The resulting JDBC update statement would lack a WHERE clause, and therefore
result in the unintentional modification of the entire table.

This is not exactly the way you would implement this in the real world. For security
reasons, you would not want to expose the key field in the HTML as an input field
that hackers could modify.

Note – This is not an issue specific to the Sun ONE Application Framework, but
rather one that must be addressed by any Web application, no matter which
framework (or no framework) is used to implement Web applications

The Sun ONE Application Framework provides a value add feature called Page
Session that provides a technique to implement this solution more securely, but is
outside the scope of this tutorial. Refer to the JatoSample application and the Sun
ONE Application Framework Developer's Guide for more details.

Format the JSP
1. Expand the JSPs node under CustomerPage node.

2. Double-click the CustomerPage JSP to open it in the editor window.

3. Provide propercase labels for the fields.

Following is an example of minimal JSP formatting (only pertinent code is shown
here). Some of the HTML source code is shown in bold for clarity.
88 Sun ONE Application Framework Tutorial • October 2003

<jato:form name="CustomerPage" method="post">

<table border=0 cellspacing=2 cellpadding=2 width="100%">
<tr>
 <td align=right valign=middle width="20%">Customer #:</td>
<td align=left valign=middle><jato:text name="customerTblCustomerNum"/></td>

</tr>
<tr>
 <td align=right valign=middle width="20%">Email:</td>
 <td align=left valign=middle><jato:textField name="customerTblEmail"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%">Name:</td>
 <td align=left valign=middle><jato:textField name="customerTblName"/></td>
</tr>
</table>

<jato:button name="update"/>
<jato:hidden name="hiddenKey"/>
</jato:form>
Chapter 9 Tutorial—Section 2.3 Create Customer Page 89

90 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 10

Tutorial—Section 2.4
Test Run the Customer Page

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 4: Test Run the Customer Page
Important: Make sure the PointBase Network Server is running. If it is not, you can
start it by doing the following:

1. Select menu option Tools -> PointBase Network Server -> Start Server.

2. Right-click the Application Classes node.

3. Select the Compile All action.

If you are running on Sun™ ONE Application Server, you must Deploy the
application when changes are made.

4. Select the Sun ONE Application Framework application node (JatoTutorial), and
click the Deploy button on the Sun ONE Application Framework toolbar.

5. Select the CustomerPage node, and click the Execute Page (Redeploy) button.

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.
91

A default browser starts the application.

Test a Customer Update
1. Make a change to one or both of the fields.
92 Sun ONE Application Framework Tutorial • October 2003

In this figure, the email name and customer name were changed.

2. Click Update.
Chapter 10 Tutorial—Section 2.4 Test Run the Customer Page 93

94 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 11

Tutorial—Section 2.5
Link Login Page to Customer Page

This chapter describes how to link the LoginPage to the CustomerPage in the Sun™

ONE Application Framework application, filtering the data the Customer page
displays based on the customer's login.

Task 5: Link the Login Page to the
Customer Page

Edit the handleLoginRequest Method in
LoginPage
Edit the LoginPage.java file.

Modify the logic in the handleLoginRequest() method as shown in the code
example below so that in the event of a successful login, the Customer page displays
with the customer data that corresponds to the value entered in the User Name field.
95

Note – In the code example below, the only legal values for the User Name field are
also CustomerID values from the customer table.

Therefore, you can take the Login ID value and apply it to the WHERE clause used
by the CustomerModel.

This ensures that the data retrieved by the CustomerModel corresponds to the
appropriate CustomerID.

Make code changes cautiously.

The code that appears below practically replaces all of the code that appeared
previously in this event.

Adding just what appears to be the delta will likely lead to errors. It is best to just
delete the current code and replace with the following.

Following is the code you need to enter to modify the logic in the
handleLoginRequest() method.
96 Sun ONE Application Framework Tutorial • October 2003

public void handleLoginRequest(RequestInvocationEvent event)
{

// Retrieve the customer number
String custNum = getDisplayFieldStringValue(CHILD_CUSTOMER_NUM);
String theMessage = "";

// Check the customer number
// Note, we don't check the password in this example

if (custNum.equalsIgnoreCase("1") ||
custNum.equals("777") ||
custNum.equals("410"))

{
// Instead of returning the login page, display the Customer
// page for the customer that matches the customer number

// Get a reference to the CustomerModel
CustomerModel model =

(CustomerModel)getModel(CustomerModel.class);

// Modify the where criteria to reflect the customer number used to login
model.clearUserWhereCriteria();
model.addUserWhereCriterion(

"CUSTOMER_TBL_CUSTOMER_NUM", new Integer(custNum));

// Display the Customer page
getViewBean(CustomerPage.class).forwardTo(event.getRequestContext());

}

else
{

theMessage = "Sorry, "+ custNum +
",your customer number was incorrect!";

// Set the output status message
getDisplayField(CHILD_MESSAGE).setValue(theMessage);
forwardTo();

 }
}

Chapter 11 Tutorial—Section 2.5 Link Login Page to Customer Page 97

98 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 12

Tutorial—Section 2.6
Run Application

This chapter describes how to run the Sun™ ONE Application Framework
application now that you have added an additional page to your application and
have linked it to the first page.

Task 6: Run the Application
Important: Make sure the PointBase Network Server is running.

If it is not running, you can start it in the Sun™ ONE Studio as follows:

1. Select menu option Tools -> PointBase Network Server -> Start Server.

Since you have made modifications to a few classes, be sure to compile the
application.

2. Right-click the Application Classes node, and select the Compile All action.

If you are running on Sun™ ONE Application Server, you must Deploy the
application when changes are made.

3. Select the Sun ONE Application Framework Application node (JatoTutorial), and
click the Deploy button on the Sun ONE Application Framework toolbar.

4. Select the LoginPage node, and click the Execute Page (Redeploy) button

Using this execute and redeploy option restarts the server to ensure that the server
picks up all changes and does not use any cached resources.
99

A default browser starts the application.

5. Enter a valid customer number (1, 777, or 410).

6. Click Login.

You should see the Customer page with the customer record that corresponds to the
customer number that you used to login.
100 Sun ONE Application Framework Tutorial • October 2003

Chapter 12 Tutorial—Section 2.6 Run Application 101

102 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 13

Tutorial—Section 3.1
Create a Command Component

This chapter describes how to create a Command component that can be reused by
many command fields (button and HREF components) within the same application.
This is the alternative technique to implementing request handling code in the
command field's handle request event inside its parent page/pagelet class
(handleLoginRequest in LoginPage, for example).

Commands provide great power and flexibility when it comes to code reuse. Any
arbitrary Java class can become a Command component simply by implementing the
com.iplanet.jato.command.Command interface. In this tutorial, you will create a new
Command class using the Sun™ ONE Application Framework Command wizard to
create a login/logout command which will replace the request handler event for the
Login button. This Command component can then be reused by command fields on
other pages and pagelets if required.

Task 1: Create a Command Component

Create the UserAccessCommand Component
Create a Command component using the Sun ONE Application Framework
Command wizard.

1. Select the main module folder, then click the Add Command button on the Sun
ONE Application Framework toolbar.
103

The Select Command Type panel displays.
104 Sun ONE Application Framework Tutorial • October 2003

2. Enter UserAccessCommand in the Name textbox.

3. Select Basic Command.

4. Click Finish.

The UserAccessCommand component is added to the application.
Chapter 13 Tutorial—Section 3.1 Create a Command Component 105

Double-click the UserAccessCommand to open the Java source code for this
component in the editor window.

It is quite a simple class that extends BasicCommand. BasicCommand implements
the Command interface which declares only one method:
public void execute(CommandEvent) throws CommmandException
106 Sun ONE Application Framework Tutorial • October 2003

This command currently does nothing. You will need to add some code to the
execute method to do what you need it to do, which is, to perform a user login or
logout based on the operation name that is passed in via the CommandEvent
parameter. The operation names are completely up to the developer (you). The
following steps and tasks instruct you on how to pass and evaluate your custom
operation names.

Add Code to the execute Method
This step requires nothing more than writing a little code. This might seem like a lot
of code, but much of it is reimplementation of the handleLoginRequest event from
the LoginPage. This replaces the need for that button event.

Add the following code to the execute method of the UserAccessCommand class.

public void execute(CommandEvent event) throws CommandException
{

// get the RequestContext
RequestContext requestContext = event.getRequestContext();

// get the J2EE HttpSession
javax.servlet.http.HttpSession session =

requestContext.getRequest().getSession();

// get the operation name that was passed in
// by the commandfield object (button/href)
String opName = event.getOperationName();

// get the LoginPage
LoginPage loginVB = (LoginPage)requestContext

.getViewBeanManager().getViewBean(LoginPage.class);

// perform user login
if (opName.equals("login"))
{

// get the customer number that was entered
int custNum = loginVB.getDisplayFieldIntValue(

LoginPage.CHILD_CUSTOMER_NUM);

// get the Customer model
CustomerModel customerModel = (CustomerModel)requestContext

.getModelManager().getModel(CustomerModel.class);

// execute the CustomerModel with the customer number as criteria
// to see if the user exists in the database
Chapter 13 Tutorial—Section 3.1 Create a Command Component 107

customerModel.clearUserWhereCriteria();
customerModel.addUserWhereCriterion(

"CUSTOMER_TBL_CUSTOMER_NUM", new Integer(custNum));

try
{

customerModel.executeSelect(null);
}

catch (ModelControlException e)
{

Log.log("Exception caught in UserAccessCommand.execute(): "
+ e.toString());

}

catch (java.sql.SQLException e)
{

Log.log("Exception caught in UserAccessCommand.execute(): "
+ e.toString());

}

// valid customer number entered
if (customerModel.getNumRows() == 1)
{

// Display the Customer page
requestContext.getViewBeanManager().getViewBean(

CustomerPage.class).forwardTo(requestContext);
// put the customer number into an HttpSession attribute
// for potential use in a later request
session.setAttribute("hsaCustNum", new Integer(custNum));

}

// invalid customer number entered
else
{

String msg = "Sorry, " + custNum +
" is not a valid customer number.";

// Set the output status message
loginVB.getDisplayField(

LoginPage.CHILD_MESSAGE).setValue(msg);
loginVB.forwardTo(requestContext);

}
} // if opName = login

// perform user logout
else if (opName.equals("logout"))
{

// get the customer number from session to use in the logout message
108 Sun ONE Application Framework Tutorial • October 2003

Before you can test run this code, you need to configure a command field (Button or
HREF) to use it.

Configure a Button's Command Descriptor
Configure the login button to use the UserAccessCommand component via the
Command Descriptor property of the button. This also works the same for HREFS.

1. Expand the LoginPage node, and expand the Visual Components node.

2. Select the login button under Visual Components.

String hsaCustNum = session.getAttribute("hsaCustNum").toString();

String msg = "Customer " + hsaCustNum +
", you have logged out successfully.";

// invalidate the user's HttpSession
session.invalidate();

// Set the logout message and display the Login page
loginVB.getDisplayField(LoginPage.CHILD_MESSAGE).setValue(msg);
loginVB.forwardTo(requestContext);

} // else if opName = logout

else
throw new CommandException(

"Unknown UserAccessCommand operation name: " + opName);
}

Chapter 13 Tutorial—Section 3.1 Create a Command Component 109

3. Click the ellipsis button for the Request Handler property.

This displays the Command Descriptor editor.
110 Sun ONE Application Framework Tutorial • October 2003

4. Select User-Defined Command (Default) from the list under the Create new shared
instance radio button choice.

5. Change the Name property to userAccessCommand
Chapter 13 Tutorial—Section 3.1 Create a Command Component 111

6. Select the Component Properties tab at the bottom of the editor.

7. Click the ellipsis button for the Command Class Name property.

This displays the Command Class Chooser dialog.
112 Sun ONE Application Framework Tutorial • October 2003

8. Expand the Current Application Components node, then jatoturial, and then main.

9. Select the UserAccessCommand command component.

10. Click OK.

11. Change the Operation Name from DEFAULT to login.

Recall in the code what you implemented for the execute method in the
UserAccessCommand class. You have an if/else block that is expecting either login
or logout as an operation name. These are case sensitive, so you need to be sure you
set this correctly, or you will receive the CommandException (Unknown operation
name) when you test run this command.
Chapter 13 Tutorial—Section 3.1 Create a Command Component 113

12. Click OK to finish setting the Command Descriptor property for the login button.

Now, when you run the Login page and click the Login button, the
UserAccessCommand component handles the request instead of the code in the
handleLoginRequest event in the LoginPage.
114 Sun ONE Application Framework Tutorial • October 2003

You can leave the code in the handleLoginRequest event as is, because it will be
never be invoked, unless you reconfigure the login button to use the request handler
event instead of the command component.

This is because the Sun ONE Application Framework first looks for a Command
Descriptor for the command field. If the Command Descriptor is not implemented, it
then attempts to invoke the handle<CommandField>Request event. If the event is
not implemented, you receive a request handler not found exception.
Chapter 13 Tutorial—Section 3.1 Create a Command Component 115

116 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 14

Tutorial—Section 3.2
Add a Logout Link to the Customer
Page

This chapter describes how to add an HREF to a page that uses a Command
component.

Task 2: Add an HREF to a Customer Page
1. Select the CustomerPage node.

2. Add a Hyperlink (HREF) component using the Component Palette.

An HREF command field is added to the CustomerPage's Visual Components node.

3. Rename the HREF as logout.
117

Configure an HREF's Command Descriptor
Configure the logout HREF to use the UserAccessCommand component via the
Command Descriptor property of the button. This is identical to the button
Command Descriptor configuration in the previous task, except the operation name
will be logout instead of login.

1. Select the logout HREF under CustomerPage's Visual Components node.

2. Click the ellipsis button for the Request Handler property.

This displays the Request Handler editor.
118 Sun ONE Application Framework Tutorial • October 2003

3. Select User-Defined Command (Default) from the list under the Create new shared
instance radio button choice.

4. Change the name to userAccessCommand
Chapter 14 Tutorial—Section 3.2 Add a Logout Link to the Customer Page 119

5. Select the Component Properties tab at the bottom of the editor.

6. Click the ellipsis button for the Command Class Name property.
120 Sun ONE Application Framework Tutorial • October 2003

This displays the Command Class Chooser dialog.

7. Expand the Current Application Components node, then expand jatoturial, and
then main.

8. Select the UserAccessCommand command component.

9. Click OK.

10. Change the Operation Name from DEFAULT to logout.

Recall in the code what you implemented for the execute method in the
UserAccessCommand class. You have an if/else block that is expecting either login
or logout as an operation name.

These are case sensitive, so be sure you set this correctly, or you will receive the
CommandException (Unknown operation name) when you test run this command.
Chapter 14 Tutorial—Section 3.2 Add a Logout Link to the Customer Page 121

11. Click OK to finish setting the Request Handler property for the logout HREF.

When you login with a valid customer number, you are taken to the Customer page.
The logout link displays. When clicked, the logout operation name is passed into the
UserAccessCommand to invalidate the user's session and display the Login page
with the logout message.
122 Sun ONE Application Framework Tutorial • October 2003

Format the HREF tag in the Customer JSP
When you added the logout HREF field to the CustomerPage, an HREF tag was
added to the CustomerPage.jsp file. However, the link displays with the default
name of the HREF, href1, which is not the required text.

1. Expand the JSPs node under CustomerPage.

2. Double-click the CustomerPage JSP node to open the JSP in the editor window.

3. Find the logout HREF tag and modify the body content portion to display Logout
instead of href1.

<jato:href name="logout">Logout</jato:href>

You can position the HREF tag anywhere you prefer, so long as it is nested between
the useViewBean tags and is part of the HTML's body section (between the body tags).

Unlike the button, an HREF is not required to be part of the form, so it can be
positioned outside the form tags (<jato:form>).
Chapter 14 Tutorial—Section 3.2 Add a Logout Link to the Customer Page 123

124 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 15

Tutorial—Section 3.3
Test Run the Login/Logout
Command Component

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 3: Test Run the Login/Logout
Command
Important: Make sure the PointBase Network Server is running. If it is not, you can
start it in the Sun™ ONE Studio as follows:

1. Select menu option Tools -> PointBase Network Server -> Start Server.

Since you have created a new class and made modifications to two other classes, be
sure to compile/deploy the application.

2. Right-click the Application Classes node, and select the Compile All action.

3. If you are running on Sun™ ONE Application Server, you must Deploy the
application when changes are made.

Select the Sun ONE Application Framework Application node (JatoTutorial), and
click the Deploy button on the Sun ONE Application Framework toolbar.

4. Select the LoginPage node, and click the Execute Page (Redeploy) button

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

A default browser starts the application.
125

Note – In sections 3.1 and 3.2, you hardcoded three customer numbers into the login
validation. The new UserAccessCommand will validate the entered customer
number against the database.

For your convenience, a list of the valid customer numbers from the sample
PointBase database is as follows: 1, 2, 3, 25, 36, 106, 149, 409, 410, 722, 753, 777, 863

5. Enter an invalid customer number first.

6. Enter a valid customer number.
126 Sun ONE Application Framework Tutorial • October 2003

7. Try the Logout link.
Chapter 15 Tutorial—Section 3.3 Test Run the Login/Logout Command Component 127

128 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 16

Tutorial—Section 4.1
Prepare to Create a Web Service
Model

This chapter describes how to expand the application to access data via a Web
service. You must be running a version of the Sun™ ONE Studio that includes the
Web service model wizard. You must also have a connection to the Internet without
a proxy/firewall which will interfere with communication to the Web service.

You can expand the existing application by adding a Web service-based model and a
page to display that model's data. First, there are some resources you need to
download to build a model for a Web service, and you need to register as a user for
this Web service.

Task 1: Web Service User Registration
and Downloading

Download the Web Service SDK
Download the Google Web service software SDK that contains the WSDL file that
the Sun™ ONE Application Framework needs to create the Web Service model.

1. To download the Google Web Service SDK, go to
http://www.google.com/apis/download.html

2. Accept the agreement.

3. Click the Download button.

4. Save the file on your hard drive.
129

http://www.google.com/apis/download.html

Open the zip file and extract the googleapi/GoogleSearch.wsdl file to your
application's lib directory (.../JatoTutorial/WEB-INF/lib). There are three
versions of this file in the zip file. Be sure to get the only one that is not under the
dotnet directory. That is all you need to build the Web service model.

Note – When you copy a new file into your applications file structure, occasionally
it takes the Sun ONE Studio some time to refresh its state.

If it appears that the Sun ONE Studio is taking too long to recognize the new file,
you can go to the Filesystems or Project tab, right-click the lib directory, and select
the Refresh Folder action.

Register to Use the Web Service
To use the Google Web service, you must register as a user to receive a key that is
passed to the Web service with each query.

1. To register with Google, go to

https://www.google.com/accounts/NewAccount?continue=
http://api.google.com/createkey&followup=
http://api.google.com/createkey

2. Enter an email address and password to register a new account.

You will receive an email to verify your account. Once you verify your account, you
will receive another email with your key (it is a long string of letters and numbers).
Keep this email handy because you will need it when you create the Web service
model.

Create the Web Service Model
Using the WSDL file, you will create a Web service model that will perform an
Internet search using the Google Internet search engine via their Web service.

1. Select the main module folder.

2. Click the Add Model button on the Sun ONE Application Framework toolbar.

The Select Model Type panel displays.
130 Sun ONE Application Framework Tutorial • October 2003

https://www.google.com/accounts/NewAccount?continue=http://api.google.com/createkey&followup=http://api.google.com/createkey

3. Enter GoogleSearchModel in the Model name textbox.

4. Select Web Service Model from the model component list.

5. Click Next.

The Select Local WSDL File panel displays.
Chapter 16 Tutorial—Section 4.1 Prepare to Create a Web Service Model 131

Navigate down the JatoTutorial application directory structure to the lib directory
(JatoTutorial/WEB-INF/lib), and select GoogleSearch (the WSDL file).

Your file might be in a subdirectory of the lib directory. When you extracted it from
the zip file, it was in a base directory called googleapi.

6. Click Finish to create the Web service model.

The GoogleSearchModel object is created in the main module.
132 Sun ONE Application Framework Tutorial • October 2003

7. Double-click the GoogleSearchModel node to view the code in the
GoogleSearchModel class.

This Web service has a few operations that can be used. The following tasks focus
only on the doGoogleSearch operation.
Chapter 16 Tutorial—Section 4.1 Prepare to Create a Web Service Model 133

Note – When you look at your application file structure, you see a new folder
named stubs. This folder was created by the Web Service Model wizard as a package
to store any stub classes that are needed to support the use of Web services.

This is one of many great benefits provided the Web service model wizard. To use a
Web service, there are many classes that need to be created. Browse this package
folder to see how much work was actually performed.

Rest assured that you will not have to look at these files. All of the tedious work is
done for you. You only need to work with the Web service model class and, even
then, it requires only minimal manual coding, or most times, none at all.
134 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 17

Tutorial—Section 4.2
Create the Google Search Page

This chapter describes how to create a page in the Sun™ ONE Application
Framework that displays data it gets from a model that accesses data from a Web
service.

Task 2: Create the Google Search Page

Add a Page Component
1. Select the main module folder.

2. Click the Add Page button on the Sun ONE Application Framework toolbar.

The Select View Type panel displays.
135

3. Enter GoogleSearchPage in the Name field (to replace <default>).

4. Select Basic ViewBean.

5. Click Next.

The Associate JSP panel displays.
136 Sun ONE Application Framework Tutorial • October 2003

6. Check the Use formatting to beautify fields on JSP option.

7. Click Next.

The Model Associations panel displays.
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 137

8. Expand Current Application Components to expose jatotutorial -> main.

9. Select GoogleSearchModel.

10. Click Add.

11. Click Next.

The Bind Display Fields panel displays.
138 Sun ONE Application Framework Tutorial • October 2003

12. Add the first field (as seen above):

a. Expand the doGoogleSearch operation node.

b. Expand the Parameters node.

c. Select the q field (q for query string: q -> String).

d. Select the Text field option.

e. Click Add field(s).

The q field is added to the Bound fields list box.

Note – You are not finished with this wizard panel yet.

13. Add the following fields as Text fields (WebService model fields are not multi
selectable like JDBC model fields):
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 139

a. start

b. maxResults

c. restrict

14. Add the following fields as Static text fields (not Text fields):

(Expand the Returns: ... node [above the Parameters node])

a. searchTime

b. startIndex

c. endIndex

d. estimatedTotalResultsCount

15. Click Finish.

You have created the GoogleSearchViewBean.

16. The wizard automatically sets the Auto Retrieving Models property with the
model that was used in the Page wizard. Normally, this is a desired setting, and
therefore, the wizard assumes that it should be configured that way. However,
with the Web service model, this is not the case.

a. Launch the Auto Retrieving Models custom editor by clicking its ellipsis
button.

b. Select the googleSearchModel reference in the indexed list, and click the Delete
button to remove it from the list.

c. Click the OK button to save the modifications.
140 Sun ONE Application Framework Tutorial • October 2003

17. Rename the fields to have shorter, simpler names (select the field and click F2 to
rename).

The following table shows the longer field names in the left column, and the shorter
names in the right column.

doGoogleSearchQ to queryString

doGoogleSearchStart to start

doGoogleSearchMaxResults to max

doGoogleSearchRestrict to restrict

doGoogleSearchRESULTSSearchTime to searchTime

doGoogleSearchRESULTSStartIndex to startIndex

doGoogleSearchRESULTSEndIndex to endIndex

doGoogleSearchRESULTSEstimatedTotalResultsCount to estTotal
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 141

Set the properties for the start and max text fields according to the table shown
below.

Note that you do not need to set properties for the restrict field.

Important: Launch the Initial Value editor by clicking the ellipsis button so you can
select the Integer type. If you type the value in place in the property sheet, it is
treated as a String.

You have created four search fields and four result fields for this page component, but
you will need a few more search fields (required fields by the Google Web service).
These are added and bound to the GoogleSearchModel one at a time. You want these
fields to be added as something other than text or static text fields, which is why you
add these outside of the Page wizard.

Add More Visual Components to the Page
1. Select the GoogleSearchPage.

2. Add a Basic Hidden Field using the Component Palette.

The default name is hidden1.

3. Rename the default as key.

4. Set the Model Reference property for the key field.

Name Initial Value

start Type: Integer
Value: 0

maxResults Type: Integer
Value: 5
142 Sun ONE Application Framework Tutorial • October 2003

5. Select googleSearchModel from the drop down list.

6. Set the Model Field Binding property.
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 143

7. Click the ellipsis button to launch the Model Field Binding editor.

8. Click the ellipsis button for the Read field name property in this editor.
144 Sun ONE Application Framework Tutorial • October 2003

9. Expand the doGoogleSearch operation node, then expand the Parameters node.

10. Select key -> String.

11. Click OK.

The read and write fields are populated with the doGoogleSearch.key model field.
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 145

12. Click OK to finish setting the Model Field Binding property for the key hidden
display field.

13. Set the Initial value property (just above the Model field binding property) for the
key field using the key that was emailed to you from Google.

The default Type for the Initial Value property is String. You do not need to launch
the editor. Just enter the string value directly in the property cell.

The key field's properties should look something as shown in the figure above,
however, your key's initial value will be different.

14. Using the Component Palette, add three more display fields.

The table shown below contains a list of the three display fields and the desired
property settings.
146 Sun ONE Application Framework Tutorial • October 2003

Your GoogleSearch Page node structure should look something the following figure:

Enable the Search Button
Currently, the search button has not been implemented to do anything when it is
clicked. When the search button is clicked, you need to execute the Web service
model and then reload the page to see the results. All you see now is the statistical
information:

� start/end index
� estimated results count
� query time

In the next task, you add visual components to show a list of actual search results.

Type Name Initial Value Model Reference Model Field Binding

Basic Check Box filter googleSearchModel doGoogleSearch/Parameters/filter

Basic Check Box safeSearch googleSearchModel doGoogleSearch/Parameters/safeSearch

Basic Button search Type: String
Value: Search
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 147

For the button, there are two techniques from which you can choose to execute the
Web service model and reload the page. One technique is to write a few lines of
code. The other technique is all point-and-click. Choose only one technique to
implement.

Manual Code Technique
1. Right-click the search button.

2. Select Events.

3. Select handleRequest.

This inserts the handleSearchRequest event stub into the GoogleSearchPage class.

4. Implement the search button handle request code.

Replace the following default code:

getParentViewBean().forwardTo(getRequestContext());

with the code shown in bold below:

Point & Click Technique (code-free)
1. Select the search button.

2. Launch the editor for its Request Handler property by clicking the ellipsis button.

public void handleSearchRequest(RequestInvocationEvent event) throws Exception
{

// get a reference to the Google web service model
GoogleSearchModel model = (GoogleSearchModel)getModel(

GoogleSearchModel.class);

// execute the model using the doGoogleSearch operation
// (the model execution context)
model.execute(new ModelExecutionContextBase("doGoogleSearch"));

// redisplay the page which will now show the query statistical results
forwardTo();

}

148 Sun ONE Application Framework Tutorial • October 2003

3. Select the Execute Model and Goto Page Command option.

4. Set the Name to searchAndReloadCommand.

On the Component Properties tab, you need to set all three properties.
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 149

5. For the Executing Model Reference property, launch its editor by clicking the
ellipsis button.

6. Select the Model Reference (Default) option.

7. Launch the Model Class Name property editor.

8. Browse and select the GoogleSearchModel.
150 Sun ONE Application Framework Tutorial • October 2003

9. When you return to the editor above, and the Model Class Name property is set
properly, click OK.

The Model Operation Name is a drop down control.

10. Select doGoogleSearch from its option list.

11. Launch the Target ViewBean Class Name editor.

12. Browse and choose the GoogleSearchPage.

Your Request Handler editor should now appear as shown in the figure below.
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 151

13. Click OK to finish setting the button's Request Handler property.

An addition to the GoogleSearchPage's Non-Visual Components node displays:
searchAndReloadCommand.

Format the JSP Content
Before you test run this page, be sure to format the JSP as you prefer.
152 Sun ONE Application Framework Tutorial • October 2003

1. Under the GoogleSearchPage, expand the JSPs node and double-click the
GoogleSearchPage JSP to open it in the Sun ONE Studio editor.

2. Give the fields proper case names.

3. Add a label attribute to the checkbox fields and delete the label that has been
created automatically.

4. Give the page a title, and split it into two sections with a horizontal rule: input
fields on top and display-only static text fields on the bottom.

The most interesting pieces of the JSP/HTML code are shown in bold below:
Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 153

<jato:form name="GoogleSearchPage" method="post">
<h2>Google Search</h2>
<table border=0 cellspacing=2 cellpadding=2 width="100%">
<tr>
 <td align=right valign=middle width="20%">Search for:</td>
 <td align=left valign=middle><jato:textField name="queryString"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%">Start:</td>
 <td align=left valign=middle><jato:textField name="start"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%">Max Results:</td>
 <td align=left valign=middle><jato:textField name="max"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%">Restrict Search:</td>
<td align=left valign=middle><jato:textField name="restrict"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%">Filter:</td>
 <td align=left valign=middle><jato:checkbox name="filter" label=
"Filter?"/></td>
</tr>
<tr>
 <td align=right valign=middle width="20%"></td>
 <td align=left valign=middle><jato:checkbox name="safeSearch" label="Safe
Search?"/></td>
</tr>
</table>
<jato:button name="search"/>
<hr>
Search Time: <jato:text name="searchTime"/>
Results <jato:text name="startIndex"/>
 to <jato:text name="endIndex"/>
 of <jato:text name="estTotal"/>
<jato:hidden name="key"/>
</jato:form>
154 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 18

Tutorial—Section 4.3
Test Run the Google Search Page

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 3: Test Run the Google Search Page
Since you have made modifications to a few classes, be sure to compile the
application.

1. Right-click the Application Classes node, and select the Compile All action.

If you are running on Sun ONE Application Server, you must Deploy the application
when changes are made.

2. Select the Sun ONE Application Framework Application node (JatoTutorial), and
click the Deploy button on the Sun ONE Application Framework toolbar.

3. Select the GoogleSearchPage node, and click the Execute Page (Redeploy) button.

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

A default browser starts the application.

The results portion of the page initially has zeroes for values.

The search will return values for those fields.

Caution – If you receive the following exception, you might have forgotten to do
step 15 of part 4.2.1 (remove the googleSearchModel from the GoogleSearchPage’s
Auto Retrieving Models property):

com.iplanet.jato.NavigationException: Exception encountered
155

during forward
Root cause = [com.iplanet.jato.model.ModelControlException: no
current dataset assigned yet]

Try a Search
1. Enter a search query string.

In the figure shown below, the Search for is lacrosse.

2. Click the Search button.

3. Try other searches to see what results you receive.
156 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 19

Tutorial—Section 4.4
Add Results Listing to the Google
Search Page

This chapter describes how to create a TiledView pagelet component to display a list
of results from a Web service model. The TiledView will be added to an existing
page component.

Task 4: Create a TiledView Pagelet

Add a TiledView
1. Select the main module, and click the Add Pagelet button on the Sun ONE

Application Framework toolbar.
157

The Select View Type panel displays.
158 Sun ONE Application Framework Tutorial • October 2003

2. Enter SearchResultsPagelet in the Name field (to replace <default>).

3. Select Basic Tiled View from the pagelet component type list.

4. Click Next.

The Associate JSP panel displays.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 159

A matching JSP is not be created for this pagelet component. This pagelet
component's JSP tags and content will automatically be added directly to the parent
page component's JSP page.
160 Sun ONE Application Framework Tutorial • October 2003

Note – The question is whether to create a JSP for a pagelet component or not. There
are pros and cons to both possibilities. The deciding factor is how the pagelet
component will be reused on the JSP side. If the pagelet is meant to be rendered the
same regardless of what page (or another pagelet) parents it, then you should create
a JSP for the pagelet. This single JSP pagelet file will be included (JSP file include
directive) in every parenting page and pagelet JSP that requires it. Therefore, any
change made to the JSP pagelet file will be reflected wherever it was included.

However, if the pagelet requires the flexibility of being rendered in a different way
for various parenting JSP pages and pagelets, the JSP pagelet content must be inlined
and customized in each of its parenting JSP page or pagelet files.

The nuances of these techniques might not be clear to you right away, but do not be
concerned. As you become more skilled with JSPs and the Sun ONE Application
Framework, you will begin to fully understand the flexibility and power of the
reusability of the Sun ONE Application Framework page and pagelet components.

For more information, read the notes that are included on this wizard panel, and
refer to the Sun ONE Application Framework Developer's Guide and the Sun ONE
Application Framework Component Developer's guide.

5. Click Next.

The Model Associations panel displays.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 161

6. Expand Current Application Components to expose jatotutorial/main.

7. Select GoogleSearchModel.

8. Click Add.

9. Click Next.

The Bind Display Fields panel displays.
162 Sun ONE Application Framework Tutorial • October 2003

10. Expand the doGoogleSearch node.

11. Expand the Returns node.

12. Expand the resultElements node.

13. Add the following three return parameters as Static text fields:

� title
� URL
� summary

14. Click Finish.

You have created the SearchResultsPagelet TiledView with three fields that are
bound to some return parameters in the GoogleSearchModel.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 163

15. Rename the fields to have shorter, simpler names.

The following table shows the longer field names in the left column, and the shorter
names in the right column.

Configure the TiledView Pagelet Component
You need to set three properties for a TiledView pagelet component.

Properties are filled in with the necessary values in the figure shown below.

doGoogleSearchRESULTSTitle to title

doGoogleSearchRESULTSURL to url

doGoogleSearchRESULTSSummary to summary
164 Sun ONE Application Framework Tutorial • October 2003

1. Select the SearchResultsPagelet TiledView.

2. In the property sheet, set the Primary Model Reference by selecting
googleSearchModel from the drop down list.

The primary model is the model that controls the iteration of the TiledView when it
is being displayed.

3. Set the Max Display Tiles to 5.

This will limit the number of displayed results to 5 items.

A value of -1 (the default) means retrieve/display all possible results.

4. Set the Primary Model Dataset Name property to be
doGoogleSearch.RESULT:/resultElements.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 165

Getting the Correct Primary Model Dataset Name
A TiledView requires a primary model of type DatasetModel so that the view will
have a domain for the tiles. In the case that the primary model is a
MultiDatasetModel, you might optionally specify the Primary Model Dataset Name so
that the TiledView will automatically set the CurrentDatasetName on the
MultiDatasetModel in both the display and submit cycle.

It is not imperative that you fully understand this concept, yet. To put it into simpler
terms, a Web service model can have more than one result set. The Primary Model
Dataset Name property just lets you specify which one to use, by default, for a
particular TiledView.

The Primary Model Dataset Name value is provided for you in this tutorial, but how
would you know what this value should be if you were to do this on your own? If
you know Web services well enough, you probably know this answer without a
problem. You worst enemy would be a typo causing some nasty runtime exceptions.

Currently, the Application Framework tools do not have a direct way to set this
value by browsing the Web service, and selecting a key path. But there is a one-off
Web service browsing technique for getting to this value so that you can copy it,
then paste it into the property.

Start by selecting the GoogleSearchModel in your application.

1. Right click the model, and select Browse/Add Object Field Bindings.

The Web Service Field Bindings editor is launched.
166 Sun ONE Application Framework Tutorial • October 2003

2. Navigate down the operation path where the fields in the TiledView are bound.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 167

3. Select the parent node of the fields: resultElements

Notice the bold-faced Selected Dataset value at the bottom of this editor:
doGoogleSearch.RESULT:/resultElements.

Although it does not appear to be selectable, you can use your mouse to click/drag
select it.
168 Sun ONE Application Framework Tutorial • October 2003

4. Highlight it and press Ctrl-C to copy the value to the buffer.

5. You can now Cancel out of this editor.

Do not click OK, as doing so adds a field to your Web service model. Although there
is no harm in this, you do not need the field.

6. Select the SearchResultsPagelet TiledView node, and paste the value into its
Primary Model Dataset Name property.

Add the Pagelet to a Page
A pagelet cannot display without the help of a root view. A page (a ViewBean) is a
root view. A root view is a container view that can contain other views, but cannot
be contained by another container view. All view hierarchies must have a root view.
How many levels of views below the root view is completely arbitrary and up to the
developer.

This is much like PC filesytems with drives and directories. A drive (analogous to a
page) is always at the top of every absolute path (the root), and there are never any
drives that are not at the top level of the path.

Directories (analogous to pagelets) must be contained under drives or other
directories. These directories can be nested arbitrarily deep under a drive.

Files (analogous to display fields) must be contained by drives or directories. Files
cannot contain other files, directories, or drives.

1. Expand the GoogleSearchPage node.

2. Right-click the GoogleSearchPage's Visual Components node, and select Add
Visual Component.

This launches the Component Browser.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 169

3. Expand the Current Application Components node.

4. Expand jatotutorial.

5. Expand the main node.

6. Select the SearchResultsPagelet TiledView component.

7. Click OK.
170 Sun ONE Application Framework Tutorial • October 2003

The SearchResultsPagelet TiledView is added as a visual component under the
GoogleSearchPage just like the other visual components. Notice that the pagelet does
not have a JSP itself. The pagelet and the other visual components that are contained
by the pagelet will have tags added to the parenting page component's JSP page. A
pagelet component can be reused by multiple page components, but this is a topic
outside the scope of this tutorial.
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 171

Formatting the JSP
1. Open the JSP by double clicking the GoogleSearchPage JSP page node.

At the bottom of the JSP, the TiledView pagelet and contained display field tags have
been inserted, but without any formatting.

You can add all the HTML markup you want, but the display field tags that belong
to the SearchResultsPagelet TiledView must be nested inside of the
jato:tiledView tags.

2. Feel free to be creative with the HTML formatting or use the following content to
get you started.

Note – All of this content is inserted just before the ending JATO form tag
(</jato:form>), leaving the current content untouched. All of the content between
the body tags is being presented here. However, only the bold code needs to be
added.
172 Sun ONE Application Framework Tutorial • October 2003

A few things above need to be explained:

First, take a look at the escape attributes for the title and summary field tags. The
default is true, which means escape all special characters. This means that any
HTML markup that is returned in the value of this field will be visible to the end
user. This Web service places bold tags () around any words that match the
query string that was entered by the end user. So, by specifying escape=false, you
are telling this tag that you want the markup to be rendered as HTML markup, not
displayed to the end user. Experiment with this attribute by making one tag false and
the other true to see the difference.

<body>
<jato:form name="GoogleSearch" method="post">

<jato:hidden name="key"/>
<h1>Google Search</h1>

<h2>Search Criteria</h2>
Search for: <jato:textField name="queryString"/>

Start: <jato:textField name="start"/>

Max results: <jato:textField name="max"/>

<jato:checkbox name="filter" label="Filter?"/>

<jato:checkbox name="safeSearch" label="Safe Search?"/>

Restrict: <jato:textField name="restrict"/>

<jato:button name="search"/>
<hr size="3">

<h2>Results</h2>
Search Time: <jato:text name="searchTime"/>

<jato:text name="startIndex"/> to <jato:text name="endIndex"/>
of <jato:text name="estTotal"/>

<jato:tiledView name="searchResultsPagelet1">
<hr size="1">
Title: <jato:text name="title" escape="false"/>

<a href="<jato:text name='url'/>" target="_blank">
 <jato:text name="url"/>

Summary: <jato:text name="summary" escape="false"/>

</jato:tiledView>

</jato:form>
</body>
Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 173

Second, notice that there are two occurrences of the tag that represents the url field.
A simple copy/paste of the tag allows you to display the same dynamic data many
times. In this case, the first instance of the tag will populate the href attribute of the
anchor tag (<a href="...").

Notice also that the name attribute of this instance of the url field tag uses single
quotes. This is because this tag is contained inside of double quotes for the href
attribute value. Using double quotes nested inside of double quotes should render
perfectly fine at runtime, but many HTML editors will indicate an error condition for
this case. Using the single quotes inside the double quotes should remedy these
situations.

The second instance of the url field's tag is used to display it as the link text to the
user.

Everything between the two jato:tiledView tags will appear once per row of
data that is returned (five times in this example).
174 Sun ONE Application Framework Tutorial • October 2003

CHAPTER 20

Tutorial—Section 4.5
Test Run the Google Search Page

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 5: Test Run the Google Search Page
with Results
Since you have created a new class and made modifications to two other classes, be
sure to compile/deploy the application.

1. Right-click the Application Classes node, and select the Compile All action.

If you are running on Sun ONE Application Server, you must Deploy the application
when changes are made.

2. Select the Sun ONE Application Framework Application node (JatoTutorial), and
click the Deploy button on the Sun ONE Application Framework toolbar.

3. Select the GoogleSearchPage node, and click the Execute Page (Redeploy) button

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

A default browser starts the application.

The results portion of the page initially have zeroes for values. The search returns
values for those fields and a list of five links that satisfy the query string.
175

Try a Search
1. Enter a search query string.

In the figure shown below, the Search for is lacrosse.

2. Click the Search button.
176 Sun ONE Application Framework Tutorial • October 2003

3. Try other searches to see what results you receive.
Chapter 20 Tutorial—Section 4.5 Test Run the Google Search Page 177

178 Sun ONE Application Framework Tutorial • October 2003

Index
A
Add a ViewBean, 33
Add JDBC Datasource option, 53
Add Model button, 61
Add Page button, 71
Advanced Tip - Modules, 31
Alternative runtime environments, 49
Application Framework application,

description, 18
Application Framework applications, how

organized, 18
Application Framework JDBC Datasource

wizard, 53
Application Framework module, description, 18
application layout, observe, 29
Application Location panel, 26
Application Name folder, select, 45
application pages, link, 51
Application Properties panel, 27
Application Servlet, 30
application servlet not required, 31
application servlet, JatoTutorialAppServletBase,

super class, 30
Application, Run the, 99
application, tutorial, about, 19
Associate JSP panel, 35, 73
assumptions for this tutorial, 15
audience for this tutorial, 15
Auto Retrieving Models combo box, 83
Auto Retrieving Models custom editor, 83

Auto Retrieving Models property, 83

B
base directory, default, 27
Basic ViewBean option, select, 35
basics covered in tutorial, 15
Before You Begin, 13 to 14
Bind Display Fields panel, 75
Bound fields list box, 76
Button Command Descriptor, configure, 109
Button Component, add, 78

C
Certification, QA, 14
Choose Template panel, 25
Columns node of the CustomerModel, 68
Command Component, create, 103
Command Descriptor editor, 79
Command Descriptor property, set, 81
comments, send to Sun, 12
Component Palette, 78
Create an Application Wizard, 25
Current Application Components, 75
Customer Page, add hidden field, 84
Customer Page, create, 71
Customer Page, test run, 91
customer record, enable button to update, 78
179

Customer Update, test, 92
CustomerMode, Create, 61
CustomerModel object, created in main module, 66
CustomerPage, 77
CustomerPage node, 83

D
deployment step required, 46
Design-Time Resources folder, 53
directory location for new application, 25
Display Fields, add to Login page, 37
documentation

accessing, 11

E
events, module servlet, about, 30
execute Method, add code to, 107
Execute Page (Redeploy) button, 47
Execute Page button, 47

F
Features, Application Framework, 13
feedback, for Sun, 12
first page of application, create, 33
front controller servlet, 31

G
Getting Started, 15, 15 to 20
Google Search Page, create, 135
Google Search Page, test run, 155
Google Search Page, test run, with results, 175
Google Web service software SDK, download, 129

H
handleLoginRequest Method in LoginPage,

edit, 95

HREF Command Descriptor, configure, 118
HREF tag in Customer JSP, format, 123
HREF, add to a Customer page, 117

I
infrastructure, need to create, 25

J
J2EE application, description, 18
J2EE component, description, 17
J2EE module, description, 17
J2EE Web application, description, 17
J2EE/Sun ONE Application Framework

Terminology, 17
JDBC datasource panel, 54
JDBC Datasources, 53
JDBC Datasources node, 53
JDBC Datasources, create additional, 53
JDBC SQL Model, create, 61
JDBC URL, makes connection to database, 59
JSP Content, format, 152
JSP, format the, 88
JSP, formatting, 172

L
location, directory, for new application, 25
login name, invalid, 48
Login Page, create, 33
Login Page, link to Customer Page, 95
Login Page, test run, 45, 46
Login, test a successful, 48
Login/Logout Command, test run, 125
LoginPage, 46
LoginPage node, 37

M
main module folder, 61
MainModuleServlet, 31
180 Sun ONE Application Framework Tutorial • October 2003

Manual Code Technique, 148
Model Associations panel, 74
Model Auto Retrieve, making, 82
Model Field Properties tab in property sheet, 68
Model’s Key Field(s), mark, 67
Module Properties panel, 28
Module Servlet, 31
module servlet hierarchy, can be customized, 31
module, only one in this application, 31

N
New App Directory field, 27
New datasource name textbox, 55
Non-JNDI Enabled Containers, add connection

code for, 68
Non-Visual Components node, 81

O
Operation Name property, 81
organization of Application Framework

applications, 18

P
Page Component, add, 135
Pagelet, add to a page, 169
part number, IDE Guide, 12
Point & Click Technique (code-free), 148
PointBase driver, 49
PointBase Network Server (database server),

starting, 51
Preface, 9 to 12
Primary Model Dataset Name, getting correct, 166

Q
QA Certification, 14

R
RDBMS database, assumption, 51
related documentation, 11
Rename option, 40
RequestHandler property, 79
Runtime Environments, alternative, 49

S
Sample Database, connect to, 51
Search Button, enable, 147
Search, try a, 156, 176
Section 4.1, Prepare to Create a Web Service

Model, 129 to 134
Section 4.2, Create the Google Search Page, 135 to

154
Section 4.3, Test Run the Google Search Page, 155 to

156
Section 4.4, Add Results Listing to the Google

Search Page, 157 to 174
Section 4.5, Test Run the Google Search Page, 175 to

177
Select connection combo box, 55
Select Database Tables page, 64
Select Datasource page, 63
Select Model Type panel, 62
Select Table Columns page, 65
Select View Type panel, 72
servlet classes created, 29
Settings & Configuration folder, 53
SQL Database, accessing, 51
SQL-based model, add, 51
SQL-based model, add page to display data, 51
Static Text Field option, 38
success message, 48
successful login, test, 48
Sun documentation, accessing, 11
Sun ONE Application Framework

Primary Features, 13
Sun ONE Studio editor display, 37
Sun ONE Web Application, new, 25
Sun technical support, 12
Index 181

super class, application servlet,
JatoTutorialAppServletBase, 30

support, technical, 12

T
technical support, 12
Terminology, J2EE/Sun ONE Application

Framework, 17
TiledView Pagelet Component, configure, 164
TiledView Pagelet, create, 157
TiledView, add, 157
Tomcat (and other non-JNDI containers) SQL

Connection Preparation, 57
tree, Sun ONE Application, 29
tutorial basics, 15
Tutorial Sections (Links to), 21 to 23
Tutorial, about, 19
tutorial, goal of, 16
Tutorial-Section 1.1, Application Infrastructure, 25

to 31
Tutorial-Section 1.2, Create Login Page, 33 to 44
Tutorial-Section 1.3, Test Run the Login Page, 45 to

49
Tutorial-Section 2.1, Prepare Application to Access

SQL Database, 51 to 59
Tutorial-Section 2.2, Create the CustomerModel, 61

to 69
Tutorial-Section 2.3, Create Customer Page, 71 to

88
Tutorial-Section 2.4, Test Run the Customer

Page, 91 to 93
Tutorial-Section 2.5, Link Login Page to Customer

Page, 95 to 97
Tutorial-Section 2.6, Run Application, 99 to 100
Tutorial-Section 3.1, Create a Command

Component, 103 to 115
Tutorial-Section 3.2, Add a Logout Link to the

Customer Page, 117 to 123
Tutorial-Section 3.3, Test Run the Login/Logout

Command Component, 125 to 127

U
Unsuccessful Login, test, 48
Use formatting to beautify fields on JSP - option, 36
Use formatting to beautify fields on JSP check

box, 74
UserAccessCommand Component, create, 103

V
View beans tab, Basic ViewBean option, 35
View Location panel, 34
ViewBean - created, 77
ViewBean, add, 71
Visual Components node, 37
Visual Components, add more to page, 142

W
Web Application, compile, 45
Web Service Model, create, 130
Web Service SDK, download, 129
Web Service User Registration and

Downloading, 129
Web Service, register to use, 130
writing Application Framework applications,

discussion, 16
182 Sun ONE Application Framework Tutorial • October 2003

	Sun™ ONE Application Framework Tutorial
	Contents
	Preface
	Before You Begin
	Primary Features of the Sun ONE Application Framework
	QA Certification

	Getting Started
	Introduction
	Writing Sun ONE Application Framework Applications
	J2EE/Sun ONE Application Framework Terminology
	How Sun ONE Application Framework Applications Are Organized

	About the Sun ONE Application Framework Tutorial

	Tutorial Sections (Links to)
	Sections 1.1—1.3
	Sections 2.1—2.6
	Sections 3.1—3.3
	Sections 4.1—4.5

	Tutorial—Section 1.1 Application Infrastructure
	Task 1: New Sun ONE Web Application
	Create an Application Wizard
	Application Servlet
	Module Servlet
	Advanced Tip - Modules

	Tutorial—Section 1.2 Create Login Page
	Task 2: Create the Login Page
	Add a ViewBean
	Add Display Fields to the Login Page
	Add Code to the Login Button

	Tutorial—Section 1.3 Test Run the Login Page
	Task 3: Test Run the Login Page
	Compile the Web Application
	Test Run the Login Page
	Test a Successful Login
	Test an Unsuccessful Login
	Alternative Runtime Environments

	Tutorial—Section 2.1 Prepare Application to Access SQL Database
	Task 1: Accessing a SQL Database
	Connect to the Sample Database
	JDBC Datasources
	Tomcat (and other non-JNDI containers) SQL Connection Preparation

	Tutorial—Section 2.2 Create the CustomerModel
	Task 2: Create the CustomerMode
	Create a JDBC™ SQL Model
	Mark the Model's Key Field(s)
	Add Connection Code for Non-JNDI Enabled Containers

	Tutorial—Section 2.3 Create Customer Page
	Task 3: Create the Customer Page
	Add a ViewBean
	Add a Button Component
	Making a Model Auto Update
	Add a Hidden Field to the Customer Page
	Format the JSP

	Tutorial—Section 2.4 Test Run the Customer Page
	Task 4: Test Run the Customer Page
	Test a Customer Update

	Tutorial—Section 2.5 Link Login Page to Customer Page
	Task 5: Link the Login Page to the Customer Page
	Edit the handleLoginRequest Method in LoginPage

	Tutorial—Section 2.6 Run Application
	Task 6: Run the Application

	Tutorial—Section 3.1 Create a Command Component
	Task 1: Create a Command Component
	Create the UserAccessCommand Component
	Add Code to the execute Method
	Configure a Button's Command Descriptor

	Tutorial—Section 3.2 Add a Logout Link to the Customer Page
	Task 2: Add an HREF to a Customer Page
	Configure an HREF's Command Descriptor
	Format the HREF tag in the Customer JSP

	Tutorial—Section 3.3 Test Run the Login/Logout Command Component
	Task 3: Test Run the Login/Logout Command

	Tutorial—Section 4.1 Prepare to Create a Web Service Model
	Task 1: Web Service User Registration and Downloading
	Download the Web Service SDK
	Register to Use the Web Service
	Create the Web Service Model

	Tutorial—Section 4.2 Create the Google Search Page
	Task 2: Create the Google Search Page
	Add a Page Component
	Add More Visual Components to the Page
	Enable the Search Button
	Manual Code Technique
	Point & Click Technique (code-free)
	Format the JSP Content

	Tutorial—Section 4.3 Test Run the Google Search Page
	Task 3: Test Run the Google Search Page
	Try a Search

	Tutorial—Section 4.4 Add Results Listing to the Google Search Page
	Task 4: Create a TiledView Pagelet
	Add a TiledView
	Configure the TiledView Pagelet Component
	Getting the Correct Primary Model Dataset Name
	Add the Pagelet to a Page
	Formatting the JSP

	Tutorial—Section 4.5 Test Run the Google Search Page
	Task 5: Test Run the Google Search Page with Results
	Try a Search

	Index

