»
2 Sun

microsystems

Sun™ ONE Application Framework
Tutorial

Sun™ ONE Studio 5 update 1

Sun Microsystems, Inc.
Www . sSun.com

Part No. 817-4358-10
October 2003, Revision A

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

www.sun.com
http://www.sun.com/hwdocs/feedback

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
Earticular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
ttp:/ /www.sun.com/ patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIXis a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans ce
document.

En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés a

http:/ /www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et dans les
autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent 1'utilisation, la copie, la distribution et
la d%compilation. Aucune partie de ce produit ou focument ne peut étre reproduite sous aucune forme, parquelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents

Preface 9

How This Book Is Organized 9
Using UNIX Commands 10

Related Documentation 11

Accessing Sun Documentation 11
Contacting Sun Technical Support 12

Sun Welcomes Your Comments 12

Before You Begin 13
Primary Features of the Sun ONE Application Framework 13
QA Certification 14

Getting Started 15
Introduction 15
Writing Sun ONE Application Framework Applications 16
J2EE/Sun ONE Application Framework Terminology 17
How Sun ONE Application Framework Applications Are Organized 18
About the Sun ONE Application Framework Tutorial 19

Tutorial Sections (Links to) 21
Sections 1.1—1.3 21

Sections 2.1—2.6 22
Sections 3.1—3.3 22
Sections 4.1—4.5 23

4. Tutorial—Section 1.1
Application Infrastructure 25

Task 1: New Sun ONE Web Application 25
Create an Application Wizard 25
Application Servlet 30
Module Servlet 31
Advanced Tip - Modules 31

5. Tutorial—Section 1.2
Create Login Page 33

Task 2: Create the Login Page 33
Add a ViewBean 33
Add Display Fields to the Login Page 37
Add Code to the Login Button 42

6. Tutorial—Section 1.3
Test Run the Login Page 45

Task 3: Test Run the Login Page 45
Compile the Web Application 45
Test Run the Login Page 46
Test a Successful Login 48
Test an Unsuccessful Login 48

Alternative Runtime Environments 49

7. Tutorial—Section 2.1
Prepare Application to Access SQL Database

Task 1: Accessing a SQL Database 51

Connect to the Sample Database 51

4 Sun ONE Application Framework Tutorial * October 2003

10.

11.

12.

JDBC Datasources 53

Tomcat (and other non-JNDI containers) SQL Connection Preparation 57

Tutorial—Section 2.2
Create the CustomerModel 61

Task 2: Create the CustomerMode 61
Create a JDBC™ SQL Model 61
Mark the Model's Key Field(s) 67
Add Connection Code for Non-JNDI Enabled Containers 68

Tutorial—Section 2.3
Create Customer Page 71

Task 3: Create the Customer Page 71
Add a ViewBean 71
Add a Button Component 78
Making a Model Auto Update 82
Add a Hidden Field to the Customer Page 84
Format the JSP 88

Tutorial—Section 2.4
Test Run the Customer Page 91

Task 4: Test Run the Customer Page 91
Test a Customer Update 92

Tutorial—Section 2.5
Link Login Page to Customer Page 95

Task 5: Link the Login Page to the Customer Page 95
Edit the handleLoginRequest Method in LoginPage 95

Tutorial—Section 2.6
Run Application 99

Task 6: Run the Application 99

Contents

5

13.

14.

15.

16.

17.

Tutorial—Section 3.1
Create a Command Component 103

Task 1: Create a Command Component 103
Create the UserAccessCommand Component 103
Add Code to the execute Method 107

Configure a Button's Command Descriptor 109

Tutorial—Section 3.2
Add a Logout Link to the Customer Page 117

Task 2: Add an HREF to a Customer Page 117
Configure an HREF's Command Descriptor 118
Format the HREF tag in the Customer JSP 123

Tutorial—Section 3.3
Test Run the Login/Logout Command Component 125

Task 3: Test Run the Login/Logout Command 125

Tutorial —Section 4.1
Prepare to Create a Web Service Model 129

Task 1: Web Service User Registration and Downloading 129
Download the Web Service SDK 129
Register to Use the Web Service 130
Create the Web Service Model 130

Tutorial—Section 4.2
Create the Google Search Page 135

Task 2: Create the Google Search Page 135
Add a Page Component 135
Add More Visual Components to the Page 142
Enable the Search Button 147
Manual Code Technique 148
Point & Click Technique (code-free) 148

Sun ONE Application Framework Tutorial * October 2003

Format the JSP Content 152

18. Tutorial—Section 4.3
Test Run the Google Search Page 155

Task 3: Test Run the Google Search Page 155
Try a Search 156

19. Tutorial—Section 4.4
Add Results Listing to the Google Search Page 157

Task 4: Create a TiledView Pagelet 157
Add a TiledView 157
Configure the TiledView Pagelet Component 164
Getting the Correct Primary Model Dataset Name 166
Add the Pagelet to a Page 169
Formatting the JSP 172

20. Tutorial—Section 4.5
Test Run the Google Search Page 175

Task 5: Test Run the Google Search Page with Results 175
Try a Search 176

Contents

7

8 Sun ONE Application Framework Tutorial * October 2003

Preface

This Sun™ ONE Application Framework Tutorial introduces developers to the
mechanics and techniques used to build Web applications with the Sun ONE
Application Framework tools.

It is intended for developers who are at least somewhat familiar with building Web
applications using existing J2EE Web technologies (servlets and JSPs), but new to
building Web applications with the Sun ONE Application Framework.

How This Book Is Organized

In the following chapter, you see an overview of the primary features of the Sun
ONE Application Framework and toolset (IDE) for enterprise Web application
development.

m Chapter 1, “Before You Begin” on page 13.

In the following chapter, you see an outline of the mechanics of using the Sun™

ONE Application Framework tools to build a J2EE Web application.

m Chapter 2, “Getting Started” on page 15.

In the following chapters, you create the application infrastructure needed for all
subsequent chapters, and add your first Sun ONE Application Framework page.

m Chapter 4, “Tutorial—Section 1.1 Application Infrastructure” on page 25.

m Chapter 5, “Tutorial—Section 1.2 Create Login Page” on page 33.

m Chapter 6, “Tutorial—Section 1.3 Test Run the Login Page” on page 45.

In the following chapters, you expand the existing application by adding a SQL-

based model, and a page to display that model's data. You then link the two
application pages together so they show coordinated data.

m Chapter 7, “Tutorial —Section 2.1 Prepare Application to Access SQL Database”
on page 51.

m Chapter 8, “Tutorial—Section 2.2 Create the CustomerModel” on page 61.
m Chapter 9, “Tutorial—Section 2.3 Create Customer Page” on page 71.
m Chapter 10, “Tutorial—Section 2.4 Test Run the Customer Page” on page 91.

m Chapter 11, “Tutorial—Section 2.5 Link Login Page to Customer Page” on
page 95.

m Chapter 12, “Tutorial—Section 2.6 Run Application” on page 99.
In the following chapters, you create a Command component that can be reused by
many buttons and HREFs within the same application. This is the alternative

technique to implementing request handling code in the button or HREF's handle
request event inside its parent container view class.

m Chapter 13, “Tutorial—Section 3.1 Create a Command Component” on page 103.

m Chapter 14, “Tutorial—Section 3.2 Add a Logout Link to the Customer Page” on
page 117.

m Chapter 15, “Tutorial—Section 3.3 Test Run the Login/Logout Command
Component” on page 125.

In the following chapters, you expand the existing application by adding a Web
service-based model and a page to display that model's data. You need to register for
and download the Google developer's SDK to build a model for a Web service.

m Chapter 16, “Tutorial—Section 4.1 Prepare to Create a Web Service Model” on
page 129.

m Chapter 17, “Tutorial—Section 4.2 Create the Google Search Page” on page 135.
m Chapter 18, “Tutorial—Section 4.3 Test Run the Google Search Page” on page 155.

m Chapter 19, “Tutorial—Section 4.4 Add Results Listing to the Google Search Page”
on page 157.

m Chapter 20, “Tutorial—Section 4.5 Test Run the Google Search Page” on page 175.

Using UNIX Commands

This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. See the following for this information:

m Software documentation that you received with your system

m Solaris™ operating environment documentation, which is at

10 Sun ONE Application Framework Tutorial * October 2003

http://docs.sun.com

Related Documentation

Application

Title

Part Number

Sun ONE Application
Framework 2.1

Sun ONE Application
Framework 2.1

Sun ONE Application
Framework 2.1

Sun ONE Application
Framework 2.1

Sun ONE Application
Framework 2.1

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Overview, Sun™ ONE Studio 5 update 1

Sun ONE Application Framework IDE
Guide, Sun ONE Studio 5 update 1

Sun ONE Application Framework
Developer’s Guide, Sun ONE Studio 5
update 1

Sun ONE Application Framework
Component Author’s Guide, Sun ONE
Studio 5 update 1

Sun ONE Application Framework
Component Reference Guide, Sun ONE
Studio 5 update 1

Sun ONE Application Framework Tag
Library Reference, Sun ONE Studio 5
update 1

817-4360-10

817-4104-10

817-4359-10

817-4362-10

817-4661-10

817-4361-10

Accessing Sun Documentation

You can view, print, or purchase a broad selection of Sun documentation, including

localized versions, at:

http://www.sun.com/documentation

Preface

1

http://www.sun.com/documentation
http://docs.sun.com

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback
Please include the title and part number of your document with your feedback:

Sun ONE Application Framework Tutorial, part number 817-4358-10

12 Sun ONE Application Framework Tutorial * October 2003

http://www.sun.com/hwdocs/feedback
http://www.sun.com/service/contacting

CHAPTER 1

Before You Begin

Welcome to the Sun™ ONE Application Framework, the J2EE Web application
framework and toolset (IDE) for enterprise Web application development.
This chapter contains the following topics:

m Primary Features of the Sun ONE Application Framework
m QA Certification

Primary Features of the Sun ONE
Application Framework

The primary features of the Sun ONE Application Framework are as follows:
m Turnkey J2EE™ application development

m High performance, proven J2EE framework runtime

m Full component-based development

m Graphical application builder toolset as follows:

» Logical application tree explorer view

= Automated synchronization of changes between application components and

JSPs
» High-level wizards

m Support for Web Services Model (Enterprise Edition only)

13

The Sun ONE Application Framework is used by the following;:

m Large enterprises doing medium-, large-, or massive-scale enterprise Web
applications

m Financial, Manufacturing, Government, Education, Health Care, and
Telecommunications sectors

The Sun ONE Application Framework is a valuable tool that does the following:

m Guides naive and junior Java™/J2EE Developers

» Provides exceptional ease of use and an easy learning curve with the graphical
development tools

» Leverages complex J2EE APIs for those without detailed knowledge

» Provides the ability for inexperienced developers to learn J2EE as they build
high-performance enterprise applications

m Complements advanced Java/J2EE developers and architects

» Provides the ability for advanced developers to gain higher productivity by
avoiding tedious low-level J2EE development

» Offers architects well-defined points from which to extend the application
architecture

m Accelerates Web Application development and skill/component reuse by
providing easy entree into the J2EE API world

This document shows you how to use the Sun ONE Application Framework features
to do the following;:

Create a Sun ONE Web Application

Create a page (ViewBean and TiledViews) and an associated JSP
Create and use a Mode (JDBC™ SQL and WebService-based models)
Link pages together

QA Certification

m Solaris 8" Operating System
m Solaris™ 9 Operating System
m Windows 2000 Operating System
m JavaSoft"" RI and Apache Tomcat

= Sun™ ONE Application Server 6.5 and 7.0, WebLogic, WebSphere
(J2EE container testing done via WAR import export)
m Sun™ ONE Studio 4.1, Enterprise Edition

™

m Sun ONE Studio 4.1, Community Edition

14 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 2

Getting Started

This chapter outlines the mechanics of using the Sun" ONE Application Framework

tools to build a J2EE ™ Web application.

This chapter contains the following topics:

m Introduction
m Writing Sun ONE Application Framework Applications
m About the Sun ONE Application Framework Tutorial

Introduction

This document introduces developers to the mechanics and techniques used to build
Web applications with the Sun ONE Application Framework tools.

It is intended for developers who are at least somewhat familiar with building Web
applications using existing J2EE Web technologies (servlets and JSPs), but new to
building Web applications with the Sun ONE Application Framework.

This document assumes Java expertise and familiarity with the development and
deployment procedures for the specific servlet container and development tools
being used.

Because the Sun ONE Application Framework is foremost a design pattern and a set
of interfaces, the examples in this document show only the most basic way of
creating a Sun ONE Application Framework application, by extending existing Sun
ONE Application Framework implementation base classes and manually
constructing certain application objects. This is only one possible way to create a Sun
ONE Application Framework application.

15

There are two reasons for not showing more advanced techniques in this document.
First, starting at a fundamental level is the most direct way to impart how the Sun

ONE Application Framework works to someone new to the framework. Being able
to see exactly how the framework interacts with the application is critical to getting
the most out of the Sun ONE Application Framework.

Second, building an application using these fundamental techniques is a prerequisite
to fully understanding the many possible ways to build Sun ONE Application
Framework applications. Features that extend the Sun ONE Application Framework
to add additional capabilities are built on the techniques demonstrated in this
document. After understanding these basic examples, you have a greater
understanding of how these features extend and complement the Sun ONE
Application Framework core, and you are able to optionally decide not to use them
and instead construct your own Sun ONE Application Framework extensions (or
simply fall back to a more basic approach where necessary).

The ultimate goal of this document then is to introduce developers to the most
fundamental way to build Sun ONE Application Framework applications, so they
become familiar with Sun ONE Application Framework's interactions with
applications built on top of the framework, and more fluent in the Sun ONE
Application Framework itself.

16

Writing Sun ONE Application
Framework Applications

Writing a Sun ONE Application Framework application consists of first laying out
an application structure, and incrementally adding Sun ONE Application
Framework objects to that structure. Although this can be done entirely by hand and
from scratch, the task has been simplified by creating a Sun ONE Application
Framework tools module for the Sun™ ONE Developer Studio that assists
developers in writing their Sun ONE Application Framework applications. With the
assistance of these tools, creating a Sun ONE Application Framework application
becomes a simple process of generating Sun ONE Application Framework
components using wizards, and customizing them to an application.

Before demonstrating the creation of a simple Sun ONE Application Framework
application, you will cover the basics of how a Sun ONE Application Framework
application is structured.

Sun ONE Application Framework Tutorial * October 2003

J2EE/Sun ONE Application Framework
Terminology

There are terms in this document such as application, module, and components.
These terms can be confusing, because they are also used in more general Web
architecture and development discussions.

The following table contains a list of the most important terms found in this tutorial.

Term

Description

*J2EE component

*J2EE module

*J]2EE Web
application

Sometimes referred to as J2EE application components; concrete
software components which are deployed, managed, and executed
on a J2EE server including EJBs, Servlets, and Java Server Pages
(JSPs); there are components including HTML and Applets which
are also J2EE components but these are not relevant to the Sun ONE
Application Framework Web application discussion.

Represents the basic unit of composition of a J2EE application. A
J2EE module consists of one or more J2EE components and one
component-level deployment descriptor. J2EE modules can be
deployed as stand-alone units or can be assembled with a J2EE
application deployment descriptor and deployed as a J2EE
application. Servlet and/or JSP components are packaged as a J2EE
module and deployed as a WAR file. EJB components are packaged
as a J2EE module and deployed as a JAR file. An arbitrary number
or WAR files and JAR files may be combined to form a J2EE
application and deployed as an EAR file. WAR files (J2EE modules
which are also known as J2EE Web applications) may be deployed
stand-alone on a J2EE server.

Stand-alone J2EE modules containing J2EE components deployable
in a J2EE servlet container (Web application container). Depending
on the context of the term application or J2EE application, the intent
may be to refer to a J2EE Web application. There are products such
as the Sun ONE Application Server 7 and Apache Tomcat that
support J2EE Web applications, in that they can manage J2EE
modules consisting of Servlets and JSPs, but they cannot manage a
complete J2EE application which may have EJB J2EE modules.

Chapter 2 Getting Started

17

Term Description

*J2EE application Consists of one or more J2EE modules and one J2EE application
deployment descriptor, packaged using the Java archive (JAR) file
format into a file with a . ear (enterprise archive) filename

extension.
Sun ONE Refers to both a logical and physical partition of content and
Application components within a Sun ONE Application Framework application
Framework module (not to be confused with a J2EE module).
Sun ONE In informal terms, a Sun ONE Application Framework application is
Application a J2EE Web application that has been written using the Sun ONE
Framework Application Framework. It consists of at least one J2EE module (the
application Web application), but may also include other standard J2EE

components or modules. A minimal Sun ONE Application
Framework application is a J2EE Web application consisting of one
WAR file. In formal terms, a Sun ONE Application Framework
application is a collection of related Sun ONE Application
Framework modules, all running in the same servlet context. In this
sense, Sun ONE Application Framework application refers only to
this logical Sun ONE Application Framework abstraction.

* Refer to the Java 2 Platform Enterprise Edition Specification v1.2 (J2EE) section
J2EE8.1 for a detailed explanation of this term.

How Sun ONE Application Framework
Applications Are Organized

The Sun ONE Application Framework provides formal application and module
entities. A Sun ONE Application Framework application is a base Java package that
contains one or more sub-packages (Sun ONE Application Framework modules). It
is perfectly acceptable for an application to consist of only one module, and it is
likely be the common situation for smaller applications. Each module inherits
behavior from its parent application-level components, and might also customize
this behavior separately from other modules.

In J2EE Web application container terms, a Sun ONE Application Framework
application corresponds one-to-one with a servlet context, and thus is subject to the
constraints enforced by the container for servlet contexts.

Before starting to develop your application, you should first decide how it should be
organized:

m Determine which modules will be grouped together into your Sun ONE
Application Framework application.

18 Sun ONE Application Framework Tutorial * October 2003

Avoid over-categorizing your application into several modules simply because
the Sun ONE Application Framework provides this capability. In many cases, one
module is sufficient.

m Decide on an application package name.

The application package name can be arbitrarily complex and will likely reflect
your organization's packaging strategy. Each of your modules becomes a package
beneath this application package.

m Assign a deployment-time or published Web application name.

In Apache Tomcat, the directory immediately beneath the /webapps directory
would bear this name. In the Sun™ ONE Application Server, the directory
immediately beneath the $instance_dir/applications/j2ee-modules
directory would bear this name. The deployed application name is the same as
the name WAR file name.

For example, if you have two Application Framework modules (named modulel and
module?) that comprise a Sun ONE Application Framework application, you would
call this application myapp. The full application package name would be
com.mycompany . myapp.

m The application package would be com.mycompany . myapp
m The modulel package would be com.mycompany .myapp .modulel
m The module? package would be com.mycompany .myapp . module2

In general, the application package name should be different from that of any of its
modules.

For example, your first instinct might be to name both your application and its
primary module foo. This can easily lead to confusion for someone trying to
understand your application and your application development tools. Instead,
consider naming the application package something like fooapp, or calling the
primary module something like main or modulel. This makes your application
structure much easier to understand, especially when you add to it in the future.

About the Sun ONE Application
Framework Tutorial

You will now develop a simple application so you can experience using the Sun
ONE Application Framework and its tools. This application consists of two pages: a
login page, and a customer account page, and demonstrates the following:

m Retrieving field values submitted by the user.
m Returning a status message to the user.

Chapter 2 Getting Started 19

Using a QueryModel to retrieve customer information.

Using a QueryModel to update customer information.
Coordinating user input with QueryModel SQL WHERE criteria.
Moving from one page to another.

Using a WebServiceModel to perform a Google Internet search.
Displaying the multiple search results of a WebServiceModel.

This tutorial is divided into sections and tasks the steps required to develop the
application. Each section addresses a broad topic, at the end of which you have an
application that you can run.

Each task within a chapter is a relatively self-contained topic and contains several
more detailed steps.

20 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 3

Tutorial Sections (Links to)

This chapter outlines the sections contained in this Sun™ ONE Application

Framework Tutorial.

This section lists the links to the various tasks as follows:

Sections 1.1—1.3
Sections 2.1—2.6
Sections 3.1—3.3
Sections 4.1—4.5

Sections 1.1—1.3

In Sections 1.1 through 1.3, you create the application infrastructure needed for all
subsequent chapters, and add your first Sun ONE Application Framework page.

m Section 1.1

Task 1: New Sun ONE Web Application
m Section 1.2

Task 2: Create the Login Page
m Section 1.3

Task 3: Test Run the Login Page

21

Sections 2.1—2.6

In Sections 2.1 through 2.6, you expand the existing application by adding a SQL-
based model, and a page to display that model's data. You then link the two
application pages together so they show coordinated data.

m Section 2.1

Task 1: Accessing a SQL Database
m Section 2.2

Task 2: Create the CustomerMode
m Section 2.3

Task 3: Create the Customer Page
m Section 2.4

Task 4: Test Run the Customer Page
m Section 2.5

Task 5: Link the Login Page to the Customer Page
m Section 2.6

Task 6: Run the Application

22

Sections 3.1—3.3

In Sections 3.1 through 3.3, you create a Command component that can be reused by
many buttons and HREFs within the same application. This is the alternative
technique to implementing request handling code in the button or HREF's handle
request event inside its parent container view class.

m Section 3.1

Task 1: Create a Command Component
m Section 3.2

Task 2: Add an HREF to a Customer Page
m Section 3.3

Task 3: Test Run the Login/Logout Command

Sun ONE Application Framework Tutorial * October 2003

Sections 4.1—4.5

In Sections 4.1 through 4.5, you expand the existing application by adding a Web
service-based model and a page to display that model's data. You need to register for
and download the Google developer's SDK to build a model for a Web service.

Section 4.1

Task 1: Web Service User Registration and Downloading
Section 4.2

Task 2: Create the Google Search Page

Section 4.3

Task 3: Test Run the Google Search Page

Section 4.4

Task 4: Create a TiledView Pagelet

Section 4.5

Task 5: Test Run the Google Search Page with Results

Chapter 3 Tutorial Sections (Links to) 23

24 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 4

Tutorial—Section 1.1
Application Infrastructure

™

This chapter describes how to create the Sun™™ ONE Application Framework (also
known as Application Framework, App Framework, S1AF, and JATO) application
infrastructure needed for all subsequent tasks.

Task 1: New Sun ONE Web Application

Before developing any pages, you need to create the Sun ONE Application
Framework application infrastructure (the WAR directory structure and supporting
files). This is a onetime requirement for each Sun ONE Application Framework
application.

Create an Application Wizard

Before you create the application, you need to decide where the application should
be located. Typically, developers develop the application directly in the webapps
directory of a servlet container so the application can be tested without deploying it
to the target runtime environment. Since you are already using the Sun"' ONE
Studio (Studio), you can locate the application anywhere and use the built-in Sun’

ONE Application Server 7 module to test it in place.

M

. Select the Sun ONE Studio menu option File -> New.

The Choose Template panel displays.

25

26

New Wizard

Steps Choose Template

Choose Template Select a Template:

= Templates

B [iieh Seewice

[Folder
Q@ = Sun OME Application Framework (JATO)
Aaplication
Command
Convert Application
JDBEC Datasource
Model
Page (VWiewBean)
Pagelet [Containerview:)
[JavaPackage
@ [JEE

B E@EED

Template Description:

Uszing this ternplate, you can create a new Sun OMNE Application Framework (JATO)
JZEE Web application.

An application consists of a set of cooperating modules, each comprised of wew and
maodel components which together present and allow interaction with application data,

| = Back || Mext = || Finizh || Eancel || Help

2. Expand the Sun ONE Application Framework folder.

3. Select Application.

4. Click Next.
The Application Lo

cation panel displays.

Sun ONE Application Framework Tutorial ® October 2003

Application Location

Thiz wizard helps vou creste a nevy Sun OME Application Framework (JATO) web application. This
application will he & standard J2EE Wieh application that uses Sun OME Application Frameswark
patterns and wwhich has the ahility to use component-hased Sun ONE Application Frameswwaork
application ohjects.

Select the location where the new application directory will be crested. After wou creste the
application, it wil automatically be mounted for you onthe special Sun ONE Web Applications tab.

Easze Directory: |C:\.Sun'lstudi05_se‘twebapps | |

Yieh Context Mame: ListoTutorisl |

Mew Application Directaory: |C:ISunis‘tudioS_se‘twebappsUatoTutorial |

| = Back || Mext = || Finizh || Cancel || Help |

The default base directory is your Sun ONE Studio user-dir, which might be
different than the one shown in this example. You can choose any existing directory
to be your base directory for your Sun ONE Application Framework applications.

Note — Many developers use the webapps directory of the servlet container in
which the application is deployed.

Later in this tutorial, you will see how to run your Sun ONE Application Framework
Web application using the Sun ONE Studio, so you can put your Web application
anywhere you want.

Enter JatoTutorial in the Web Context Name field.

The New App Directory field is populated after you make entries in the Base
Directory and Context Name fields.

Click Next.
The Application Properties panel displays.

Chapter 4 Tutorial—Section 1.1 Application Infrastructure 27

New Wizard - Application |

Application Properties

Thizs panel lets you customize several of your spplication's key properties. You can change the display natne of
Application Properties the application to any string you wish (including spaces). You may also choose the name of the top-level

hlo i application package and the class name of the serviet that will serve as the base class for your application's
front controllers. If you are unsure how to customize these values, you can just take the defaults presented
here.

wigh Cortext Marme: |JatoTutoriaI |

Application Display Nane: |.Jato Tutarial |

Application Package: |iatcdu10rial |

Application Servlet Class: |JatoTw0rialAppServletBase |

| || ext» || Finish || Cancel || Hep |

The fields on this panel are populated using the value of the Web Context Name field
from the previous panel.

For this tutorial, accept the default values.

7. Click Next.
The Module Properties panel displays.

28 Sun ONE Application Framework Tutorial ® October 2003

Module Properties

Every Sun OME Application Frameswork (JATO) application must have st least one module. A maoduls inthe Sun
OME Application Framesvork is & logical grouping of application functionality, and helps you partition your

Module Properties application into functional groups.

Thiz panel lets you customize the inttial module that will be created with your application. You may choose the
name of the module package s well as the class natme of the servlet that will serve as the front controller for
thiz module. Mote, you cah add additional modules or customize existing modules later, so if wou are unsure
wehat to do st this point you can just take the defautts presented here.

EBaze Package Mame: |ia101utorial

Maodule Package: |main

hoclule Serviet Clazs: |MainModuIeSer\-'Iet

| = Back || Mext = || Finizh || Cancel || Help

10

For this tutorial, accept the default values.
Click Finish.
Click OK.

The application is created.

Note — The processing time depends upon your machine.

The new application displays in the Sun ONE Application tree in the Sun ONE
Studio Explorer which is labeled Sun ONE Web Apps.

Expand the modules node in the Sun ONE Web Apps Explorer to see the
application layout and observe the code in the two servlet classes that were
created.

m JatoTutorial AppServletBase
m MainModuleServlet

Chapter 4 Tutorial—Section 1.1 Application Infrastructure

29

urce Editor [MainModuleServlet] 1ol
B o SE b ||| B e v @ B e 28 00 Lo
B Sun ONE Weh Applications 16 public class MainModule3ervlet extends JatoTutorialippServletBase
Jato Tutorial 17 {
&ﬁ Settings & Configuration 1a /¢ Uncomment this method to take some 2ction before sdch request, sud
§ 3 ppplication Classes 12 A as logring or 2ccess checking, Applications that wisk to avold
P A jatotutorial 20 // processing the request normally should perform soms reguest hendl
? 9 tmaln 21 /7 here and then throw a CompleteRequestException at the end of the J
o MaintdoculeSeryiet zz £F to aveid processing the recuest rurther. MNote that an event in tl
e- JataTutorialAppservietBase 23 S class will override behavior in the application servlet base clas
& O Documents 24 S5 protected void onBeforeRequest(RequestContext requestContext)
25 /5 throws ServletException
&5 Sun ONE Wieh Apps ¥ 26 40 f
ar Ao)
xBw v @ 28
il i s PR — z9 I Uncomen.t this methofii to take some dction after r?dch request, su
30 S as logging or releasing resources. This method is the last metho
Natne MaitiModuleSer viet 31 S/ fired during hendling of a request, and it is always fired, even
Synchronization Mode | Confirm All Changes 3z AF wken an exception is thrown during @ regquest. Note that an event
Template False 33 A4 this class will override bekavior in the application servlet base
Rl 34 44 protected void ondfterRequest (RequestContext requestContext)
35S0
g Module Chsunstudios_sevwebappsllatoTutorisl 6)
37
Properties 3 £ Uncomwent this method to take some action when 4 new session is of
39 S5 such as logging or pre-populating session values. Note that modu
4an A5 servlet subclasses can override this event to perfors module-spec
4l S actions. Note that ap event in this class will override behavior
a4z S application servlet base class.
43 /7 protected void caNewSession(RegquestContert reguestContext)
a4 /7 throws ServletException
45 A0 o
46 S0)
a7
45 A4 Uncomwent this method to take action when @ user's session times =
1:1 INS
L MaintoduleServiet ><|

Application Servlet

The application servlet, JatoTutorialAppServletBase, has no special meaning
to the application except that it is meant to be a super class for all module servlets in
the application.

The Sun ONE Application Framework module servlets have events that can be
implemented to customize and control the session and request life cycle.

For example:

onNewSession
onSessionTimeout
onBeforeRequest
onAfterRequest

30 Sun ONE Application Framework Tutorial ® October 2003

It is common that all module servlets within the same application require the same
behavior for all of these events. Therefore, it is a good idea to implement such
behavior for these events in a class that all module servlets can extend.

However, technically speaking, the application servlet is not required. You can
customize the hierarchy of the module servlet as long as that hierarchy derives from
the Sun ONE Application Framework's
com.iplanet.jato.ApplicationServletBase file.

This application has only one module, and by definition, one module servlet. So the
role of the application servlet is not as beneficial as it would be in multi-module
applications.

Module Servlet

The module servlet, MainModuleServlet, is the actual servlet that is invoked for
every request. All access to the application goes through this front controller servlet
before control is handed to the appropriate request handler class (implemented later
in this tutorial).

Not much code is required in this class. All of the necessary request handling code is
located in the Sun ONE Application Framework's
com.iplanet.jato.ApplicationServletBase file. Advanced developers can
gain some insight on how requests are handled by reviewing the source code in the
com.iplanet.jato.ApplicationServletBase class.

Advanced Tip - Modules

Notice that if the main module folder is selected, its properties are reflected in the
property sheet at the bottom of the Studio Explorer window. Notice that its Module
property is True. By changing it to False, this module becomes an ordinary
folder/package, and the entries in the web.xm1 file (a standard Web application
configuration file) for the MainModuleServlet are removed.

You can make any ordinary folder a Sun ONE Application Framework module by
right-clicking the folder and selecting the Convert to Module action. You are then
prompted to select a Java servlet class from that folder to be the module servlet, or
you can provide a name to create a new one.

Chapter 4 Tutorial—Section 1.1 Application Infrastructure 31

32 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 5

Tutorial—Section 1.2
Create Login Page

™

This chapter describes how to add your first Sun™™ ONE Application Framework
page to the application infrastructure you created.

Task 2: Create the Login Page

Create the first page of the application.

Add a ViewBean

1. Select the main module folder from the Sun ONE Web Apps Explorer.

33

_ioix
o = 4 b b

EE Sun ONE Web Spplication Y ——
o] Jato Tutorisl S (MR

od ﬁ Settings & Configuration
@ 2 rpplication Claszes
@ 3 jatotutorisl
?
& @™ mainhoduleServiet
@ JatoTutorialdppServietBase
@ [0 Documerts

2. Click the Add Page button on the Sun ONE Application Framework toolbar
Or:

a. Select the Sun ONE Studio menu option File -> New.
b. Expand Sun ONE Application Framework (JATO) node
c. Select Page (ViewBean)

d. Click Next.
Or:

a. Right-click the main module folder.

b. Select Add.

c. Select Page (ViewBean).
3. Expand the Sun ONE Application Framework folder.
4. Select View.

5. Click Next.
The View Location panel displays.

34 Sun ONE Application Framework Tutorial ® October 2003

Mew Wizard - Page (¥iewBean)

Select View Type

A Sun OME Application Frameswark page is comprised of a single Java file (called & "ViewBean") ancd
one or more JEPs associsted with that YiewBean. & page's ViewBean is the place where you can

P customize the page's behavior by overriding methods and adding evert handlers to respond to both
display and reguest handing events. A ViewBean can contain pagelets or other visual components to

Ccomprise a page in your applcation.

IMarme: |L0ginPage |

Package: |iatcﬁutorial.main | Browese. .

Select a hase component to specialize in the component's Java file:

vl Basic ViewBeah

Component class: com.planet jato view BasicliewBean

Description: A basic YiewBean

| = Back || Mext = || Finizh || Cancel || Help

6. Enter LoginPage in the Name field (to replace <default>).
7. In the View beans tab, select Basic ViewBean.

8. Click Next.
The Associate JSP panel displays.

Chapter 5 Tutorial—Section 1.2 Create Login Page 35

rd - Page (¥iewBean) EI

Associate JSP

Page components must be paired with JSP tags in order to be displayed, or rendered, to a client of your
application. Pages normally reguire a JSP to be created for them since they have no other rendering
mechanism (unlike pagelets, which can use their parent container's JSP). Mote that if for some reason
you decide not to creste a JSP at this time, you may still add JSPs to your page at & later time.

1 Mo JSP for this compornemt

@) Create & JSP for this component:
~JSP Template

[Lize default JSP template

Template File: [MWEB-INFfatotemplatesispDefautPage jsp |

~Target JSP

Folder; |Doc:uments: fatotutorialimain | Browse...

[Llse formatting to beautity fields on JSP

| = Back || Mext = || Finizh || Cancel || Help

Accept all defaults.
9. Check the Use formatting to beautify fields on JSP option.
10. Click Finish.

The ViewBean is created.

Note — There are additional steps in the Page wizard. However, those steps involve
model field binding which is not required for the LoginPage. In a later task, you will
use these additional steps.

36 Sun ONE Application Framework Tutorial ® October 2003

¥ Sun ONE Application Framework [Sii - | Dlll

Hage® EEEE P P

Bl Sun OMNE Wb Spplications
@ Jato Tutarial
@'ﬁ Settings & Configuration
9 @ applicstion Classes
@ 3 jatotutorial
@ 5 main
& 5
e MainModuleServist
@ JatoTutorisldppServieiBase
@ [Dpocumerts

B Sun ONE Web Apps %

B v
Auto Deleting Models
Auto Executing Models

B ®

Auto Inzerting Mocels
Auto Retrieving Models
Auto Updating Models

Component Class jatotutorial. main LoginFage

Componettinfo Class ot planet jato view Basichiswb

Marme: LoginPage
“alidation Exception Handler | Default (throw: “alidationException;
“izible True

| Froperties

1

.

ource Editor [LoginPage] ;|g|1|
=no selection= v| =gl Y2 Boap e & @ e =

T

17 public class LoginPage extemds BasicViewBean

18 {

19 SEE

20 * Default constructor

21 *

22 *

23 public LoginPage)

Z4 {

25 Super () :

26)

27

28

29 S Non-visual component initizlization

3o

31

e

33

34

35 S Instance initializer - set properties

36 {

37 setDefaul tDisplaylUPL (" /jatotutorial /main/LoginPage. jsp™) 2

38)

39

40

41

4z Fo8

Fikc) * Registers sach child in this container.

44 # cprcen-WARNING: < ep> This code was sutomatically generated, do not edit!

5 * =

| N a1 |
1:1 |l

k_ LoginPage * |

Double-click LoginPage.

The generated source code displays in the Sun ONE Studio editor.

Note — Because you elected to created a JSP when you created the LoginPage, a JSP
was added to the Documents folder in a directory structure that mirrors the
ViewBean's package structure (/jatotutorial/main).

For convenience, a link to the JSPs that use the LoginPage are placed in the node of
the JSP, which is under the LoginPage node.

Add Display Fields to the Login Page

12. Expand the LoginPage node.

13. Select the Visual Components node under the LoginPage node.

Chapter 5 Tutorial—Section 1.2 Create Login Page 37

un OME Application Framework [Sun'D)

e ed® BEEE

Bl Sun OMNE Wek Spplications
o] Jata Tutarial

o &

=10l]
40 b

Seftings & Configuration
@ 2 rpplication Claszes

@ 3 jatotutorisl
© 51 main

@ LoginPage

og Java Source

@ (B ISP Pages

@ pon-visual Componerts
¢ &
Mone [%
" MainModuleServist

® JatoTutorialippServietBase
© [0 Documents

85 Sun OME Web Apps
&

=Mo Properties=

X8 w v

14. In the Sun ONE Application Framework Component Palette, click the Static Text
Field option.

38 Sun ONE Application Framework Tutorial ® October 2003

omponent Paletke o] |

Refresh palette (debug-only)

@ Yisual Components

g Standard Components

= Button

Check Box

Combo Box

[E¥ Data-Driven Cotrbo Box
[Data-Driven List Box
Data-Driven Radio Buttans
@ File Upload

&= Hidlen Field

@B Hyperlink (HREF)
E lracge

List Box

I= Password Field
Radio Buttons
A Static Text Field [%
t= Text Field

Text Area

= validating Text Field

0= validating Text Area

Application Visual Components

(] Mon-visual Components

Click & compaonent to add it to the select...

|\ Component Palette =

A static text visual component is added to the Visual Components node.

The default name is staticText1.

Chapter 5 Tutorial—Section 1.2 Create Login Page

39

40

15.
16.
17.

18.

19.
20.

21.

Q@ LoginPage
& B Java Source
@ B JSP Pages
@ ® non-Yisusl Components
@ ﬁ] Yisual Components
A staticTesdt
& [B" painModuleServiet

Right-click the staticText1 field name.
Select Rename.
Rename the field to message.

Add two more display fields.

The following table contains a list of the two visual component types with each of
their names and the initial value for the Button type.

Type Name Initial Value
Text Field customerNum
Button login Object Type: String

Object Value: Login

The three display fields display under the Visual Components node of the
LoginPage.

] LoginPage
& B Java Source
@ B JSP Pages
@ B mon-Vizual Components
Q E] Wisual Components

A message
0= customerum
= Jogin

Adding display fields to the Page also adds the appropriate JSP tags for the display
fields to the JSPs that are using this Page.

Set the button’s Initial Value property by selecting login.
Click in the Initial Value property value entry area.

Enter the string Login.

The button's value is the string that displays on the button in the browser.

Sun ONE Application Framework Tutorial * October 2003

@

Q LoginPage

& [B* MaintoduleServiet

@ O Documents

& B Java Source

@] ISP Pages

@ B mon-Vizual Components
@ M visusl Componerts

A message
0= custormerbum
= Jogin

JatoTutorialbppServietBasze

% Rurtime

G L £ Project JATO Tutorisl -

@ Filesystems = L Bt Sun ONE Wyiek Apps =

¥ 2 1R ¥=

B @

Initial % alue

|L|:|gin |

hodel Field Binding

hodel Reference

Default (use parent's default model)

Matne

laggiry

Feguest Handler

Default (fire handleReguest event)

Yizikle

True

22. Open the LoginPage's JSP to see the tags for the three display fields.

23.

a. Expand the JSP Pages node under the LoginPage node.

b. Double-click the LoginPage JSP to open it in the Sun ONE Studio editor.

Format your JSP layout however you want.

Note — Because you checked the option in the page wizard to beautify the JSP page
contents, some basic formatting was applied to get you started. However, you will
probably want to modify things a bit more.

For example, adjust the customerNum label so that it is proper case, and remove the
unnecessary label for the button and the static text message field.

You can edit it directly in the Sun ONE Studio editor, or you can use your favorite
WYSWIG HTML editor.

Chapter 5 Tutorial—Section 1.2 Create Login Page

41

Here is an example of some minimal JSP changes (only pertinent code is shown
here). Some HTML source code appears in bold type below for emphasis.

<jato:form name="LoginPage" method="post">
<table border=0 cellspacing=2 cellpadding=2 width="100%">
<tr>
<td align=right valign=middle width="20%"></td>
<td align=left valign=middle><jato:text name="message"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%">Customer Num:</td>
<td align=left valign=middle><jato:textField name="customerNum"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%"></td>
<td align=left valign=middle><jato:button name="login"/></td>
</tr>
</table>

</jato:form>

Add Code to the Login Button

24. Right-click the login button.

25. Select Events -> handleRequest

42 Sun ONE Application Framework Tutorial * October 2003

] LoginPage
& B Java Source
@ B ISP Pages
& B pon-visual Components
@ @ﬂ “izual Components

M meszzage
0= customerbum
= lagin
| " Mainrﬂudule beginDisplay
it JatoTutorialfpps cut el enciDizplay
sumerts
Copry Ctrl-C
Dielete Delete
. B Sun ONE
Rename. ..
=
#— . . howve L
= corn.iplanet jatd howve Dowen
Hazz | comiplanct jatg Propedies

Loctin Tiawa lano Strincl ”

The LoginPage. java file opens and the handleLoginRequest event stub is
inserted.

. Implement the login button handle request code.

Replace the following default code:

getParentViewBean () . forwardTo (getRequestContext ()) ;

with the code shown in bold below:

Chapter 5 Tutorial—Section 1.2 Create Login Page 43

public void handlelLoginRequest (RequestInvocationEvent event)

{
// Retrieve the customer number
String custNum = getDisplayFieldStringValue (CHILD_ CUSTOMER_NUM) ;
String theMessage = "";

// Check the customer number

if (custNum.equals("1") ||
custNum.equals("777") ||
custNum.equals("410"))

{
theMessage = "Congratulations, " + custNum +
", you are now logged in!";
}
else
{
theMessage = "Sorry, " + custNum +
", your customer number was incorrect!";
}

// Set the output status message
getDisplayField (CHILD_ MESSAGE) .setValue (theMessage) ;

// Redisplay the current page
forwardTo() ;

44 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 6

Tutorial—Section 1.3
Test Run the Login Page

This chapter describes how to run your Sun™ ONE Application Framework

application.

Task 3: Test Run the Login Page

Compile the Web Application

1. Select the Application Name folder.

45

[sun ONE Application Framework [Su - |E||ﬂ

a2 aed BEEE |4 B
Bl Sun ONE Wik Applications h
v L
Settmgs & Configuration

Loy r;l Application Clazzes
& [0 Documerts

ﬂa Sun ORE Weh Apps #

X m # = B @
Content Language | textitml
Context Root LlatoTutarial
Context Roaot Folder | C:Suntstudios_sevwebappsilatoTutor
JDEC Datasources | jdbcidbc-pointbase

Mame Jata Tutarial

Tetnplate Falze

2. Click the Deploy button on the Sun ONE Application Framework toolbar at the
top of the Explorer window.

This compiles the entire Web application (those classes that need to be compiled)
and deploys it to the Sun™ ONE Application Server in one step.

If you followed all of the tutorial instructions, the Web application compiles and
deploys without error. See the Sun™ ONE Studio Output window for error
messages.

This deployment step is required for any change you make to any of the resources in
your Web application when running it in the Sun"™ ONE Application Server 7
(Application Server).

Test Run the Login Page

1. Select LoginPage.

46 Sun ONE Application Framework Tutorial ® October 2003

(5} Sun ONE Application Framework [Sun ONE

=10l]

e e A v

BB Sum ONE Wish Applications o

o] Jata Tutarial
9‘@ Settings & Configuration
@ 2 rpplication Claszes
@ 3 jatotutorisl
© 51 main
& F LoginPage
e MaintoduleSerylet
@ JatoTutorialAppServietBase
& [0 Documerts

Execute Page

B Suh ONE Wb Apps %

=

x 18 1w

Auto Deleting Models

B @&

Auto Executing Models

Auto Inserting Models

Auto Retrieving Models

Auto Updsting Models

Component Class

jatotutorial main LoginPage

[l

L Properties

2. Click the Execute Page button located on the Sun ONE Application Framework
toolbar at the top of the Explorer window.

Note — The Execute Page (Redeploy) button (just to the right of the Execute button

on the Sun ONE Application Framework

toolbar) forces the Sun ONE Application

Server to reload all resources (for example, JSPs, classes, and so on). It actually

restarts the Sun ONE Application Server.

This is necessary if the Sun ONE

Application Server must be restarted to pick up the new changes so that it does not

use objects in memory.

For some browsers, you might have to close all instances of that browser before you

can rerun any page in your application.

A default browser starts the application.

Chapter 6 Tutorial—Section 1.3 Test Run the Login Page

47

Test a Successful Login

1. Enter a valid login (for example, 1, 777, or 410 are valid (hard-coded) customer
numbers).

2. Click Login.

Caution — If you press the enter key while in the text field, the form is submitted for
you. However, the server does not know which button to address from this submit
action. The <jato:form> tag provides an attribute defaultCommandChild that can be
used to tell the server which button should be activated in the default case.

Refer to the tag library documentation for more information on this feature.

However, for now, just click the button directly.

The login page should refresh displaying the success message.

() Netscape

o File Edit Wiew Go Bookmarks Tools ‘Window Help

@ O @ O |¢ hktpsfflocalbostf JataTukarialimain/LoginPage |

. B, DMal 48 Home G Radio ©4 Search 3Bookmarks C3Personal T3 Triathlon
EEI 0http:,I',I'I-:u:alhu:ust,l'Jatu:uTutu:urial,l'main,l'L-:uginF'age]

Congratulations, 777, you are nowr logged ind

Customer Mum: |?‘??

Login |

Test an Unsuccessful Login

1. Enter an invalid login name (for example, foo, 8, or 14 - anything other than the
valid, hard-coded customer numbers described above).

2. Click Login.
The login page should refresh displaying the failure message

48 Sun ONE Application Framework Tutorial ® October 2003

() Netscape

.| File Edit Wew Go Bookmarks Tools Window Help

@Q O @ O |0http:,l',l'lu:u:alhu:ust,l'Jatu:-Tutu:uriaI,l'main,l'Lu:uginF‘age |

- B, DMal 45 Home G Radio © Search E3Bookmarks E3Personal C3Triathlon
E':l 0htl:p:,l',l'Il:u:alh-:usl:,l'Jatl:uTut-:urial,l'main,l'LDginF‘age]

r

Sorry, 14, your custoreer nureber was incorrect!

Customer Mum: |1 4

Login |

Alternative Runtime Environments

1. If you prefer to test run you application outside of the Sun ONE Studio, compile
and package your application into a WAR file and place the WAR file in the
webapps directory (this varies from container to container, but most call it
webapps).

2. You need to add the PointBase driver file to the servlet container's classpath. The
driver can be found in the installation directory of the Sun ONE Studio, as
follows:

<studio-install-
dir>/appserver7/pointbase/server/lib/pbserver42RE. jar

The easiest way to accomplish this is to copy this driver to your application’s web-
inf/1ib directory.

3. Open a browser and run it with the URL appropriate to the servlet container.
The only possible variation is the page name (LoginPage) at the end of the URL.

Apache Tomcat or Caucho Resin servlet containers:
http://localhost:8080/JatoTutorial/main/LoginPage

Note — You might find it necessary to refer to this task again during this tutorial.

Chapter 6 Tutorial—Section 1.3 Test Run the Login Page 49

50 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 7

Tutorial—Section 2.1
Prepare Application to Access SQL
Database

This chapter describes how to expand the application and prepare the Sun"™ ONE
Application Framework application to access a SQL Database.

Expand the existing application by adding a SQL-based model and a page to display
that model's data.

Link the two application pages together so they show coordinated data.

Task 1: Accessing a SQL Database

Connect to the Sample Database

Note — The remainder of the tutorial assumes the presence of an RDBMS database
which is used as a prerequisite for introducing you to some additional Sun ONE
Application Framework features.

There is no requirement for an Sun ONE Application Framework application to
access an RDBMS. Therefore, your actual applications might not access an RDBMS,
but rather some other enterprise system that requires another form of preparation,
setup, and connection.

The step that follows (starting the PointBase Network Server) uses a Sun™ ONE

Studio tool that is not actually a part of the Sun ONE Application Framework toolset
module. However, the sample database, the PointBase Network Server, and the tools
to connect to it are included with all of the various versions of the Sun ONE Studio.

51

1. Select the menu option Tools -> PointBase Network Server -> Start Server from
the Sun ONE Studio to start the PointBase Network Server (database server).

Toolz | Windowy Help

ﬂ PointBaze Metwork Server b
Capture Database Schema...

Configure

Start Console
Esl JDEC Form wizard... Start Server %

€% JSP Tag Library Repasitary...

ﬁ o To Class... Alt+ S hift-0

Caution — Depending upon how you installed the Sun ONE Studio and the Sun
ONE Application Server, you might get an error message that prohibits you from
starting the PointBase Network Server. If this happens, you just need to configure it
first. If you were able to start the server, skip to the JDBC Datasources section.

2. Select Tools -> PointBase Network Server -> Configure.

Tools | Windawy Help

W4 FointBase Metwork Server » Configure I
= Capture Database Schema... Start u:.:.nsnle[f\\s'
@ JOBEC Form YWizard... Start Server

4 %3 JSP Tag Library Repositary...
fﬁ Go To Clazs... Alt+Shift0

A dialog displays that prompts for a file storage location and a port number.

3. Accept the defaults by clicking OK.

52 Sun ONE Application Framework Tutorial * October 2003

N

= W

& Configure PointBase x|

Installation directory: |C:'ISun'l.&ppServer?'l.pDir‘|thase |

Server port number: |'EIIZIEIE |

0]34 %J Canicel

You receive two dialogs warning that a file already exists, and asking if it is OK to
overwrite them.

. Click OK to overwrite both of them.

Your PointBase Network Server is ready to be started.

JDBC Datasources

You can create a JDBC Datasource using the Sun ONE Application Framework JDBC
Datasource wizard.

However, by default, one was created for you that points to the PointBase sample
database that ships with the Sun ONE Studio.

If you need to create additional JDBC Datasources for a different database other than
the one used in the tutorial, use the following steps.

(Otherwise, read over to become familiar with this topic, or skip to the Tomcat (and
other non-JNDI containers) SQL Connection Preparation section.)

. Under the Sun ONE Application Framework Web application node (Jato Tutorial),
expand the Settings & Configuration folder.

. Expand the Design-Time Resources folder.
. Right-click the JDBC Datasources node.

. Select Add JDBC Dataource.

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 53

54

A Explorer [Sun ONE Web Apps]

TEe® HEHEBE e

=101 x|

Bl Sun ONE Wik Applications
o Jato Tutarial
Q ﬁ Settings & Configuration
E General
& Logging
Deployment Descriptor [wekb . xmi]
@ % Component Libraries
@ | Design-Time Fesources

Q JOEC Datazource
jdbcidbc-point

© 0 Templates Propetties

B =3 Application Classes
@ [0 Documerts

|| & sun ONE Wik pps % [(D

The Define JDBC datasource panel displays.

Sun ONE Application Framework Tutorial ® October 2003

IMNew Wizard - JDBC Datasource

Define datasource

Specifty the datasource name, application, and ether a Sun ONE Studio JOBEC
connection or database schema object:

Important: This wizard lets you define a datasource alias for desigh-time
purposes opy. You must define a matching JOEC datazource in your J2EE
cantainer separately for use st rurtime.

JOBC datazource name: idbcIl:defauﬂ name= |

Target applicatiorn: | Jato Tutarial - |

Define using:

Y Existing Sun SOMNE Studio cannection

= Select from the list = i

) Database achetna object

Fleaze zelect an existing connection

| = Back || Mext = H Finizh || Cancel || Help

5. Enter the preferred datasource name in the New datasource name textbox.

6. In the Select connection combo box, select the appropriate JDBC connection.

If the connection you need does not exist, you must create one. This is performed by
a tool that is outside the scope of the Sun ONE Application Framework tools. You
need to select the Runtime tab in the Explorer window, expand the Databases node,
right-click it, and select Add Connection. You might need to add a driver for your
database before you can add a connection. See the Sun ONE Studio online help for

more details.

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 55

56

H Explorer [Runtime]

=101 %]

% Furtitne

- Server Registry

@ & DD Server Registry
@ & Processes

@ &, Bean Erowser

Q jelbcpg
@] Ta|
&;l \id Dizable Debugy
@1 Pr{ Cut il

(2] Debugger | ., Ctrl-C

€ HITPSerw S

@-g WICS Comi
U WL Ertity | TO0lE
Propetties

Enable Debug

2izample [phpublic

|Database Explorer Mocdule Home

% Rurtime =

7. Click Finish.

A new JDBC Datasource node is created.

Sun ONE Application Framework Tutorial ® October 2003

A Explorer [Sun ONE Web Apps] - |I:I|E|

=N ‘e

L

Bl Sun ONE Wik Applications
o Jato Tutarial
Q % Settings & Configuration

E General

& Logging

Deployment Descriptor [wekb . xmi]

CE) Component Libraries

| Design-Time Fesources

Q JOEC Datazources
jdhedbe-pairtbase
jdbcizample

@ O Templates %

& = Application Classes

@ [0 Documents

Lﬂi Sun OME Web Apps # L [Filesystems * L% Rurtime *

Note — JDBC Datasources are only needed at design-time when creating JDBC SQL
Models (tables and stored procedures). The JDBC SQL Model wizard presents a
selection of the datasources that have been created.

The JDBC Datasources are not involved in the runtime environment. You must
configure your runtime container with the proper JNDI settings, unless you are
using direct JDBC URLSs to connect to databases.

Tomcat (and other non-JNDI containers) SQL
Connection Preparation

Note — If you are using the Sun ONE Application Server to run your tutorial
application, you can skip this step, because JNDI is supported.

If you are using the built-in Tomcat engine, or running the tutorial application in
another servlet container that does not support JNDI, you need to make a few minor
modifications to the application servlet base class (JatoTutorial AppServletBase) in
your application.

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 57

1. Expand the Application Classes folder.
2. Expand the jatotutorial package folder.
3. Double-click the JatoTutorialAppServletBase class to open it.

There is a lot of commented-out event code in here with comments describing what
you can do with the events. Ignore them as you do not need any of them for this
tutorial application.

You need to add a static initializer to perform the following:
a. Instruct the Sun ONE Application Framework not to use JNDI lookups
b. Load the PointBase JDBC driver

c. Map the JDBC Datasource (jdbc/jdbc-pointbase) to the PointBase sample
database's JDBC connection URL

The following code sample shows the code that needs to be added to the
JatoTutorial AppServletBase class. Only the bold code needs to be added. Much of
the code/comments from the JatoTutorial AppServletBase class has been omitted
here.

58 Sun ONE Application Framework Tutorial ® October 2003

public class JatoTutorialAppServletBase extends ApplicationServletBase

{

static

{

// Turn off JNDI lookup (turn on DriverManager use)
SQLConnectionManagerBase.setUsingJNDI (false);

try
{
// load the PointBase JDBC driver
Class.forName ("com.pointbase.jdbc.jdbcUniversalDriver") ;

}

catch (ClassNotFoundException e)

{
// if the driver is unavailable, an exception will be thrown
e.printStackTrace();

}

SQLConnectionManagerBase.addDataSourceMapping("jdbc/jdbc-pointbase”,
"jdbc:PointBase://localhost:9092/sample");

} // static init

Your application will now use a JDBC URL directly to make a connection to the

database instead of using the connection pooling via JNDIL

Important: If you value performance in your Web application, use JNDI for

production.

m If you are not going to be testing the tutorial in the Sun ONE Application Server,
you need to copy the PointBase client library JAR file (pbserver42RE. jar) into

your WEB-INF/1lib directory.
You can get the PointBase client library from the following directory:

<studio-install-dir>/appserver7/pointbase/server/lib

m If you are using a different database, you might need to place that database
vendor's client library in your WEB-INF/1ib directory or in your servlet
container's 1ib/ext directory (somewhere in the classpath). Place it in the Web

application’s WEB-INF/1ib directory.

m This is not necessary for the Sun ONE Application Server because the PointBase

libraries are already included in its classpath.

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database

60 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 8

Tutorial—Section 2.2
Create the CustomerModel

This chapter describes how to create a model to access the RDBMS in the Sun™ ONE
Application Framework application.

Task 2: Create the CustomerMode

Create a JDBC™ SQL Model

1. Select the main module folder.

2. Click the Add Model button on the Sun ONE Application Framework toolbar.

61

5] Sun ONE Application Framework [Prope - |I:I|£|

=G b b
Eh Sun OME Web Applications
¢ Jato Tutorisl

ﬂ'ﬁ Settings & Configuration
@ 3 application Classes
@ 3 jstotutorisl
o & main
@ F LoginPage
&= MaintdoduleServist
&= JatoTutorisl&ppSeryietBase
@ [0 Documerts

ol

Lr

Bl Sun ONE Wieb fpps *

Xt - B @

Miocule True

Marne main

The Select Model Type panel displays.

62 Sun ONE Application Framework Tutorial ® October 2003

New Wizard - Model

Select Model Type

A Sun OME Application Framewark model encapsulates application data and fuhctions a3 a resource
for visual cotnponents in your spplication. Models typically have fields (named values) that visual
components can bind to, allowing them to display the model's data. Many models are also executable,
meaning that they expose behavior for retrieving or operating on data. Your spplication can use
existing model types to access enterprize resources or creste new model types to access or
encapsulate enterprise data in ah application-specific way.

[arme: |Customerrv10del

Package: |iatc|th0riaI.main | Browvse...

Select a hase component to specialize in the componert's Java file;

Eean Adapter Model

Custam Macel

Cuztom Simple/Dataset Model
Custom Tree Model

HTTP Session Wodel

JDBEC SGL Query Model

JDEC Stored Procedure o nﬁ

Ohject Adapter Madel A model for perfarming SAL gqueries against ah RDEMS using JDBC

Resource Bundle Model
Wieh Service Model

DEEDEEEEEEHE

Cotmponett class: comiplanet jato.model sol GueryModelBase

Description: A model for performing SGL gueties against an RDEMS using JOBC

| = Back || Mext = || Finish || Cancel || Help

3. Enter CustomerModel in the Name field.

4. Select JDBC SQL Query Model from the model component list.

The list you see might vary depending on the Sun ONE Application Framework
version and the possible addition of custom or third party component libraries.

5. Click Next.

The Select Datasource page displays.

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel

63

64

Select Datasource

Pleaze select the datasource fromm which you want to generate this Model.
|

Select Datasource = Select fram the list =

o - Select fram the list =

Select a datasource

| = Back || Mgt = || Finizh || Cancel

Help

6. Select jdbc/jdbc-pointbase from the combo box.
7. Click Next.

The Select Database Tables page displays.

Sun ONE Application Framework Tutorial ® October 2003

New Wizard - Model x|

Select Database Tables

Available Tables: Selected tables:

ACCOUNT CUSTOMER_TBL

e - CUSTOMERREWIEW
Select Database Tables

DISCOUNT_CODE_TEL
MANUF &CTURE_TEL
MICRO_MARKETS_TEL
CFFICE_TEL
OFFICE_TFE_CODE_TEL

PARTS
PRODUCT < Remove
PRODLICTINY
PRODUCT_CODE_TEL

PRODUCT_TEL Aedd &)l ==

RESTALRAMNT
S4LES_REP_DATS_TEL ’m
SALES_REP_TEL
SHLES_TAX_CODE_TEL
SUPPLIERS

| = Back || Next::| || Finizh || Cancel || Help

8. Select CUSTOMER_TBL.
9. Click Add.

10. Click Next.
The Select Table Columns page displays.

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 65

66

New Wizard - Model

Select Table Columns

Available Columns:

2 T
Select Table Columns

= Remove

A Bl ==
== Remove &l

Selected calumnis:

1l cusTOMER_TBL FAX

Al cusTOMER_TEL LAST SalE Da
Al cuSTOMER_TEL LAST _SALE_TiM
Bl cusTOMER_TEL MAME

Al cusToOMER_TEL PHOME

Al cusToMER_TEL STATE

Al cusTomeER_TBEL ZIP

Back Mext =
| <me | |

Finizh || Cancel || Help |

11. Click Add All to include all of the columns in your Model.

12. Click Finish to create the Model.

The CustomerModel object is created in the main module.

Sun ONE Application Framework Tutorial ® October 2003

131 ource Editor [CustomerModel] 131
ol =
ﬁ = % q_ & r‘g b B =no selection= w2 oEs E 4 L]
pE3)
B Sun ONIE Web Applications 15 public class CustomerModel extends QueryModelBase 1
@ @] Jato Tutorial 16 |
@'@ Seftings & Configuration 17 A
@ 2 Application Classes 13 # Defeult constructor
@ S jatotutorial 13 =
95 main 20 Ey
[
¢ B Customertfodel b zl public Customeriodel(
& [& Java Source - |
? Columng 23 swer () :
[Bl cusTOMER_TEL_SDOR_LM1 24 " ’
[fl cusTOMER_TBL_ADDR_LMZ ¥
[f cusTomeEr_TEL_CTy o) o)
I:m CUSTOMER_TEL_CREDIT_LIMIT 26 public static final 3rring FIELD CUSTOMER TEL_ADDR LNl = "CUSTOMER_TEL_ADDR LN1™:
[cusTomer TEL cusTomer ||| 27 public static fimal String FIELD_CUSTOMER_TEL_ADDR_LNZ = "CUSTOMER_TBL_ADDR_LNZ";
[l CUSTOMER TEL DISCOUMT 28 public static fimal String FIELD CUSTOMER_TBL_CITY = "CUSTOMER_TBL_CITT";
[ﬂ] CUSTOMER_TBL_EMAIL 29 public static fimal 3cring FIELD CUSTOMER TEL_CREDIT_LIMIT = "CUSTOMER_TEL_CREDIT _LIMIT™?
[cusToMER_TBL_Fax 30 public static fimal 3tring FIELD_CUSTOMER_TEL_CUSTOMER_NUM = "CUSTOMER_TEL_CUSTOMER_NUM";
Eﬂ] CUSTOMER_TEL_LAST_SALE [31 public static fimal String FIELD _CUSTOMER_TEL_DISCOUNT _CODE = "CUSTOMER_TEL_DISCOUNT _CODE|
m] CUSTOMER _TEL_LAST_SALE_T 3z public static fimal 3rring FIELD CUSTOMER TEL_EMATL = "CUSTOMER_TEBL_EMATL™:
Eﬂ] CUSTOMER_TEL_PMAME 33 public static fimal String FIELD CUSTOMER_TEL_FAX = "CUSTOMER_TEL_FiX";
[B] cusTOMER_TBL_PHONE 34 public static final String FIELD CUSTOMER_TBL_LAST SALE _DATE = "CUSTOMER_TEL_LAST SALE_DAl
[Bl cusToMER_TBL_STATE 35 public static fimal 3tring FIELD CUSTOMER_TEL_LAST SALE_TIME = "CUSTOMER TBL_LAST SALE TT
e (B cusTomer_teL_zp 36 public static fimal 3tring FIELD_CUSTOMER_TEL_NAME = "CUSTOMER_TEL_NAME";
E, Longage 37 public static final String FIELD CUSTOMERE_TEL_FHONE = "CUSTOMER_TEL_FHONE™:
& WaintoduleServiet 38 public static fimal 3tring FIELD CUSTOMER_TEL_STATE = "CUSTOMER TBL STATE™:
JatoTutorial&ppServietBase N . - . . : = — =
38 public static fimal String FIELD CUSTOMER_TEL_ZIP = "CUSTOMER_TEL_ZIP";
@ @ Documerts " - i e
[» a1
52 Rurtitne: xL < Project JATO Tutorial xl Az public static con.iplanet.jato.model.sgl, QueryField3chena Coluuns fchema = new com. iplane)
[Filesystems * | &5 Sun ONE Wek Apps % | 43
44
¥R = @ 45 static
| 46 { /7 Begin Model Field declaration
47 A7 Wext field
|
43 com. iplanet.jato.wodel. sql.QueryFieldbescriptor CUSTOMER TEL_ADDR LNl Descriptor =
Data Source jdbcidbc-pointhase 49 new com.iplanet,jato.model.sgl.QueryFieldDescriptor();
Modifying Guery Tahle | CUSTOMER_TEL 50
Mame Customerhodel i { #/ begin local variable scope
52 CUSTOMER,_TEL_ADDE,_LN1 Descriptor.setCol ("ADDE_LN1™);
Select S0L Template | SELECT ALL CUSTOMER_TEL ADDR_LR1 I
Static Wwhere Criteria

l Properties l CustomerMoclel ’<|

13. Expand the CustomerModel to see all of the columns.

14. Double-click the CustomerModel folder to view the code in the CustomerModel
Java class.

Mark the Model's Key Field(s)

Note — Due to a special type of key field indicator in the PointBase database schema
metadata, the Model wizard does not properly detect the key field
CUSTOMER_TBL_CUSTOMER_NUM. Therefore, you must set the key field manually.

This is not a problem if you create the datasource from a database schema object,
and is also not a problem for non-PointBase databases, such as Oracle.

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 67

68

1. Under the Columns node of the CustomerModel, select the
CUSTOMER_TBL_CUSTOMER_NUM model field.

2. In the property sheet, select the Model Field Properties tab.

If the Properties tab is not visible, click the View -> Properties menu option, or right-
click the key field column and select the Properties action.

3. Change the value of the Key Field property from false to true.

Colutnn Mame CUSTOMER_ MU

Computed Field Falze

Ernpaty Forrmulz rull

Ernpity Walue Palicy Exclude

Field Type java lang Integer

Inzert Farmula rull

Inzert Yalue Source Application

Key Field Falze 7
Cwalified Column Mame Truie %

Supported Operations Falze

Add Connection Code for Non-JNDI Enabled
Containers

For servlet containers that do not support JNDI data sources, you can rely on explicit
use of a JDBC driver.

Note — In section 2.1 of this tutorial (Task 1: Accessing a SQL Database), if you are
testing your this application in a servlet container that does not support JNDI, you
disabled the use of JNDI and declared the explicit use of the PointBase JDBC driver
in the SQLConnectionManagerImpl class.

If you are testing in a servlet container that does not support JNDI, you must set the
connection username and password explicitly in the model so that a proper database
connection can be created before the model is executed.

Note — For production environments, you should use JNDI connections.

Sun ONE Application Framework Tutorial * October 2003

Add the bold code below to the CustomerModel's constructor.

public CustomerModel ()
{
super () ;
setDefaultConnectionUser ("pbpublic");
setDefaultConnectionPassword ("pbpublic");

While providing the datasource username and password as demonstrated above is
not a good practice for a real world application, it is practical for this tutorial. Take
extra care to obtain and provide the username and password in a more secure and
robust implementation. When using the JNDI method, this code is unnecessary and
this login information is provided by the configured JNDI connections in the
application server.

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 69

70 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 9

Tutorial—Section 2.3
Create Customer Page

This chapter describes how to create a page in the Sun"" ONE Application
Framework that displays data from a model that accesses a relational database.

Task 3: Create the Customer Page

You will now create the second page of the application. However, this page will be
bound to a model. This binding process automatically creates display fields on the
page that display the data that is stored in the model's fields.

Add a ViewBean

1. Select the main module.

2. Click the Add Page button on the Sun ONE Application Framework toolbar.

71

72

5] Sun ONE Application Framework [Sund

=101 x|

£ o9& 6@ A b b

Bl Sun OME Wish Applicatio

g,
| &ddl Page (ViewEean)... |

@ Jata Tutarial
ﬂ'ﬁ Settings & Configuration
@ 3 application Classes
@ 3 jstotutorial
¢ &
&= Customeriodel
@ F LoginPage
&= MaintdoduleServist
& B"¥ JatoTutorislappServistBase
@ [0 Documerts

Bl Sun OME Web fpps *

xBw -~ B @

hadule True

Marne mEin

The Select View Type panel displays.

Sun ONE Application Framework Tutorial ® October 2003

|Mew Wizard - Page (YiewBean) 5[

Select View Type

Template A Sun ORE Application Frammeswork pade iz comprized of a single Java file (caled a
Select View Type "“iewyBean') and one or more JSPs azsocisted with that ViewBean. A page's
ViewBean is the place where you can customize the page's behavior by overriding
methads and adding event handlers to respond to both display and reguest handling
events. A ViewBean can contain pagelets or ather visual components to comprise a
page in your apploation.

Iame: |CustamerPage |

Package: |ia1u:|tutu:urial.main | Browse...

Select 3 base component to specialize in the component's Java file:

7 Basic WiewBean |

A bazic ViewBean

Componert class: corniplanet jato viesw BazicYiewBean

Description: A bazic ViewBean

| = Back H et = || Finizh || Cancel H Help

3. Enter CustomerPage in the Name field (to replace <default>).
4. Select Basic ViewBean to create a ViewBean type Page component.

5. Click Next.
The Associate JSP panel displays.

Chapter 9 Tutorial—Section 2.3 Create Customer Page 73

1.
3.
4.

ard - Page (YiewBean) il

Associate JSP

] Page components must be paired with JSP tags in order to be displayed, of rendered, to
= Ype a client of your application. Pages narmally require & JSP to be created for them since

Associate J5P they have no other rendeting mechanistn (Unlike pagelets, which can use their parent

h cartainer's JSP). Mote that it for some reason you decide not to create & JSP at this time,

waou may still add JSPs to your page at & later time.

) Mo JSP for this camponent

(@) Create a JSP for this companert:
~JSP Template

[¥] Use defautt JSP template

Template File: (WEB-INF jatofemplates spDefautPags jsp |

~Target JSP

Falder: |D|:|cumer113: fatatutorizlimain | Browyse.

|7[Llse Tormatting to beautity fields on JSP

|Check this box it vou want the fields on the JSP generated in a labelled table format

| = Back H et = || Finizh || Cancel H Help

74

6. Click the Use formatting to beautify fields on JSP check box to apply some basic
formatting.

7. Click Next.
The Model Associations panel displays.

Sun ONE Application Framework Tutorial ® October 2003

Mew Wizard - Page (YiewBean) 5[

Model Assocations

Select the models you wish to associate with this views:

Lo Current Application Componernts

Model A i @ 3 jatotutorial
odel ASS0cations ? @ rain

Bird Figld=

- Custarmertodel
@ @& Sun OME Applicstion Framework Component Library

Componert class: jatotutorial main. CustomerModel

Description; A& model for performing SC0L gueries against ah RDEMSE using JDBEC

Currertly chosen madels:
Customerhiocdel

| = Back H et = || Finizh || Cancel H Help

8. Expand Current Application Components to expose jatotutorial -> main.
9. Select Customer model.
10. Click Add.

11. Click Next.
The Bind Display Fields panel displays.

Chapter 9 Tutorial—Section 2.3 Create Customer Page

75

|Mew Wizard - Page (YiewBean) 5[

Bind Display Fields

Select model: | Cuztomertdodel b |

Al cUSTOMER_TEL _ADDR_LK | Display field as:

Tl CUSTOMER_TEL_ADDR_LN2) statie text
Bind Display Fields T8l cusToMER_TBL_CITY 2t
"Bl CLUSTOMER_TEL_CREDIT_LIMIT ® Text field

Al cusTOMER_TEL_CUSTOMER_MUM
LBl cUSTOMER_TBL_DISCOUMT_CODE
LAl cusTOMER_TEL_EMAIL

"Bl cusTOMER_TEL_Fax

LBl cUSTOMER_TBL_LAST_SaLE_DATE
Bl cuSTOMER_TEL_LAST_SALE_TIME
Bl cUSTOMER_TEL _MAME

LBl cUSTOMER _TEL_PHOME
CUSTOMER TBL STATE

Biound fields:

A customerThiCustamertum [CUSTOMER_TBL_CUSTOMER_M hdceve Up
= customerThiEmail [CUSTOMER _TEL_EMAIL]

E= custamer ThiMame [CUSTOMER_TEL_MAME]

%J

Remaove field(=)

| = Back H Pt = || Finizh || Cancel H Help |

76

You only need to add three fields.
12. Add the first field.

a. Select the CUSTOMER_TBL_CUSTOMER_NUM field.
Accept the Static text default.

b. Click Add field(s).
The CUSTOMER_TBL_CUSTOMER_NUM field is added to the Bound fields list box.

13. Add the second and third fields simultaneously.

a. Select the CUSTOMER_TBL_EMAIL and CUSTOMER_TBL_NAME fields (hold down
the Ctrl key to select multiple non-sequential fields).

b. Select Text field.

Sun ONE Application Framework Tutorial ® October 2003

c. Click Add field(s).

The CUSTOMER_TBL_EMAIL and CUSTOMER_TBL_NAME fields are added to the
Bound fields list box.

14. Click Finish.

You have created the ViewBean.

£5Y Sun ONE Application Frameworlk [Sun 0

e ed AEEE 4P D

10/ x]

B0 Sun OME Wk Applications

B Source Editor [CustomerPage] =10jx
=no selection= '| Q=R B osp @ i

17 public class CustomnerPage extends BazsicViewEean

-

15
@ @ Jsto Tutorial 1o ! as
@&} Settings & Configurstion
I an # Default comstructor
G 2 Application Classes .
@ 3 jatotutorial el
@ 53 main 2z i)
& faintioculeServiet 23 bublic CustomerPaye ()
@ B UserAccessCommand 24 {
@ CustamerPage a5 super () ;
& Java Source 26)
D ® JSPPages 27
@ B CustomerPage Z8
P (® Non-Visual Components 29 A4 Nom-visual component initislization
& customertodel 30 private com.iplanet.jato.model.SimpleModelReference customerModel;
@ updstevwebAction 31
@ uzerfcceszCommand 3z e
? @ AV‘SUEI Components 33 # Creates the non-visnal components
cus‘tomerTblCus‘t.omerNum 34 # wprcem WARNING < en> This code was automatically geperated, do not edit!
= customer ThIEmEI a5 .
= customerThibame o .
=B hiddenkey / L
= ypdate 37 private wvoid initComponents ()
@B ogout - 3% {
39 custonerModel = new com.iplanet.jato.model.SimpleModelReference () ;
(. B Sun OhE Web Apps % | o
— 4L AF begin local variable scope
x@Be = e o e v . .
4z custonerModel . setModelClassHame (" jatotutorial.main, CustonerModel™) ;
Auto Deleting Models 43 } /7 end local variable scope
ALto Executing Models 44
ALto Inserting Models 45 }
46
Auto Retrieving Model. =t Mol . P
DIEHHIY LTS [Euctomerhiodl] a7 A4 Instance ipitializer — non-visual components
Auto Updating Models A {
Component Class jatatutorial main CustomerPage 49 initComponents () ;
Componentinfo Class com.iplanet jsto viewe BaszicyiewBeanCom) 50 i
5L
Mame CustomerPage -
“alidation Exception Handler | Defautt (throw YalidstionException) 53
54
A 313
| Propertes | al
1:1

L_@ CustomerPage ><|

15. Double-click CustomerPage.

The code displays in the right-hand panel.

Expand all the subnodes of the CustomerPage to see the JSP Page, Visual
Components, and Non-Visual Components that were automatically generated by the

wizard.

Chapter 9 Tutorial—Section 2.3 Create Customer Page

77

78

Note — Like the LoginPage, a JSP for the CustomerPage was added to the
Documents folder (/jatotutorial/main), and there is a link to that JSP under this
ViewBean's JSPs folder.

You see three visual components that were created because you indicated that you
wanted to bind to the CustomerModel's fields. This allows data to automatically be
displayed on the Customer page and changes to those fields to be automatically
mapped back into the model, at which point you can execute the model to perform
an update to the database. All of the SQL generation and connection creation are
handled for you by the Sun ONE Application Framework.

If you really want or need to work with the JDBC API directly, the Application
Framework does not require that you use all of the features it provides, and you are
free to handle all of the JDBC responsibilities on your own. In other words, you can
pick and choose what you need to use in the Sun ONE Application Framework, but
it is most likely that the Sun ONE Application Framework's implementation is
exactly what you need.

You also see an entry under the Non-Visual Components node which is a reference to
the CustomerModel class.

Add a Button Component

. Add a button to the CustomerPage.

The following table contains the specifications for adding a button to the
CustomerPage. Use the Component Palette to add the button, just like you added
the fields for the Login Page.

. If the Component Palette is not visible, select menu option:

View -> Sun ONE Application Framework -> Component Palette.

The table shown below lists the specifications for adding a button to the
CustomerPage. The left column shows the button type, the middle column shows
the name, and the right column shows the initial value.

Type Name Initial Value

Button update Update

. Enable the button to update the customer record.

a. Select the update button field.

Sun ONE Application Framework Tutorial * October 2003

b. In the property sheet of the button, click the value area of the RequestHandler
property.
The ellipsis button displays.

c. Click the ellipsis button.

The Command Descriptor editor launches.

Chapter 9 Tutorial—Section 2.3 Create Customer Page 79

80

4/Request Handler

Instance of type cormiplanet jato.command CommandDescriptar

i) Lse existing shated instance

@ Create neswy shared instance

User-Defined Command (Default)
Execute Model Command

Execute Model and Gota Page Command
Farward Comrmand

Goto Page Comrmandd

Include Commanc

Redirect Command

WebAction Camrmand

¥z v - @

Operation Matme ACTION _REFREZH

WebhtctionHandler Path [|ACTION_CLEAR

ACTION_DELETE
ACTHOR_EXECUTE
ACTION_FIRST
ACTION_MSERT
ACTHORN_LAST
ACTION_MEXT
ACTION_PREVIOUS
ACTION_REFRESH
ACTION_UPDATE .

£

Properties L Component Properties

Camponent Expert Properties L Code Generation |

O

Canicel

4. Select Create new shared instance.

5. Select WebAction Command from the list.

Sun ONE Application Framework Tutorial * October 2003

. In the Properties tab, change the name to updateWebAction.

. Select the Component Properties tab at the bottom of the editor.
. Select ACTION_UPDATE for the Operation Name property.
Accept the defaults for the other two properties.

. Click OK.

You have finished setting this property.

Note — A new entry is added under the Non-Visual Components node, and the
Command Descriptor property is set.

Chapter 9 Tutorial—Section 2.3 Create Customer Page 81

82

Q CustomerPage

- Java Source

@ (8 ISP Pages

@ W pon-visual Componerts
& customerhlocdel
& updatewiehsction

o ﬁ] Yisual Components %
A customerThICustomerturm
0= customerThiEmai
0= custormerThikame
= update

- LoginPage
o
e B JatoTutorial&ppServietBasze
@ [0 Documerts

Mainbodulezerviet

B Rurtitme 5 L £ Project JATO Tutorial
[Filesystems = L Beg Sun OME Wek Apps # |
i @
Initizl 3 alue Update [java lang. String]

hodel Field Binding

hModel Reference

Detault (use parent's default model)

Marme buttarn
Request Handler updateiiebAction
Yizikle True

Making a Model Auto Update

You now need to add the customerModel reference as an Auto Updating Model on

the CustomerPage.

You accomplish this by populating the Page's Auto Updating Models property with
the appropriate model reference—in this case, the customerModel reference that was
created for you by the wizard as a result of the model association or field binding

you specified.

Sun ONE Application Framework Tutorial * October 2003

. Select the CustomerPage node.

. Click the value area for the Auto Updating Models property.

non

The ellipsis button ("...") displays.

. Click the ellipsis button.
The Auto Updating Models custom editor launches.
Note that the Properties area is blank when this editor first displays.

. Click New.
This adds an entry.

. Select customerModel from the Auto Updating Models combo box.

. Click OK.

The property should now have the [customerModel] entry.

Chapter 9 Tutorial—Section 2.3 Create Customer Page

83

=, i

51 main
& B mainModuleServiet
o CustomerviewBesn
- LocinyiewBesn
o Customerhdocel

[3 Filesystems

" FE Javadoc

2 Runtime | 803 Sun ONE Web Spps |

¥ 2

| B @

Auta Deleting Models rll
Ao Executing Maodels ridll
Auta Inzerting Models il
Auto Retrieving Maodels [customerdadel]

Auto Updsting Models

[customerhdodel] [
jatntutu:urial.main.CustEFﬁerViewEie

Component Class

Cormponertinfo Class corn.iplanet jata view: BasichiewH

Matne CustomeryviewBean

Note — The combination of the button's update Web action command descriptor and
the auto retrieving or updating models configuration causes the CustomerModel to
be executed when the Customer page is displayed or when the CustomerPage's
Update button is clicked.

As an alternative to the declarative auto execution of this model, you can also write
some code to perform the same purpose. Commonly, this code would be
implemented in the Update button's handleUpdateRequest event (similar to how the
code was implemented for the Login button on the Login page).

Add a Hidden Field to the Customer Page

1. Expand the CustomerPage node.
. Expand the Visual Components node.

. Select the Visual Components node.

= W N

. Select add a Hidden Field component using the Component Palette.

A hidden field is added to the CustomerPage's Visual Components node.

84 Sun ONE Application Framework Tutorial ® October 2003

5. Rename the hidden field as hiddenKey.

6. Bind the hiddenKey field to the same model field that the
customerTblCustomerNum static text field is bound.

7. Select the hiddenKey field.

8. On the property sheet, set the Model Reference property to customerModel by
selecting from the drop down box.

Q CustomerPage
- Java Source
@ B JSP Pages
& B pon-visual Components
o ﬁ] “isual Components
A customerThICustomertum
0= customerThiEmai
0= customerThikame
= ypdate
=B hiddenkey
& F LoginPage
o MainMaoduleServiet
e F JatoTutorial&ppSeryietBaze
€ [0 Documerts

BE Rurtite & L £ Project JATO Tutorial K
) Filezystems * L Bech Sun ORE Wek Apps *

¥z I8 = @

Initial 3 alue
hodel Field Binding
Model Reference customerhiodel w |
Marme Default (use parent's default model)

o customertodel |
Yizikle ['j&.

9. Set the Model Field Binding property.
a. Click in the value area of the Model Field Binding property.
b. Click the ellipsis button to launch the Model Field Binding property editor.

Chapter 9 Tutorial—Section 2.3 Create Customer Page 85

Z_'_;_._?'_'.IPruperI:r Editor: Model Field Binding {class comuig 5'

Field Bindings

Read field name: | | &

E Uze =ame field name for read and write

Cancel Help

10. Click the ellipsis button of the Read field name property to launch the Model Field
Chooser editor.

#IChoose a Model Field X

Chooze a model field fram the available fislds below:

[Predefined Fislds || Ot FiEl

fl cusTOMER_TEL_ADDR_LM1

fl cusTOMER_TBEL_ADDR_LN2

Hl cusTomER_TBL_CIT™Y

fl cusTOMER_TEL_CREDIT_LIMIT

-l cuSTOMER_TEL_CUSTOMER_MUR
fl cusTOMER_TBL_DISCOUNT _CODE %
Hl cusTOMER_TEL_EMaIL

fl cusTOMER_TBL_FAxX

fl cusTOMER_TBL_LAST_SALE_DATE
|l cusTOMER_TBL_LAST_SALE_TIME
fl cusTOMER_TBL_MAME

fl cusTOMER_TBL_PHOME

|fl cusTOMER_TBL_STATE

fl cusToMER_TEL_ZIP

Ok Cancel Help

11. Select CUSTOMER_TBL_CUSTOMER_NUM.

86 Sun ONE Application Framework Tutorial ® October 2003

12. Click OK.

The read and write fields are populated with the
CUSTOMER_TBL_CUSTOMER_NUM model field.

13. Click OK.

This completes setting the Model Field Binding property for the hiddenKey display

field.

o CustomerPage
&= Java Source
@ B JSP Pages
@ [non-visual Components
0 ﬁ] “isual Components

A customerThICustomertum
0= customerThiEmai

0= customerThikame

= ypdate

=Y hiddenkey

- LoginPage
o MainMaoduleServiet
e B JatoTutorial&ppSeryietBasze
@ [Documerts

% Furtime

2l 3 Project JATO Tutarial

@ Filezystems = L B SLn OME Wiek Apps * |

B @&

Initial % alue

hodel Field Binding

CUSTOMER _TEL _CUSTOMER_MURM

Model Reference customerhodel h
Matme hiddenkey
Yizikle True

Because the static text field is not an HTML input field, it's value will not be
submitted back to the server when the update button is clicked. And because the

customer number is the key field in the database table, the update logic needs this
key value in order to limit the update to a single database row. This value must be

posted back along with the other input field values so that you can perform an

update on the proper customer record rather than updating every record in the table.

Chapter 9 Tutorial—Section 2.3 Create Customer Page

87

88

To achieve this, you will preserve the customer number field value in a hidden field,
which will be posted back on form submit and mapped back into the
CUSTOMER_TBL_CUSTOMER_NUM model field.

Caution — If you neglect this step, no key field value is submitted with the form.
The resulting JDBC update statement would lack a WHERE clause, and therefore
result in the unintentional modification of the entire table.

This is not exactly the way you would implement this in the real world. For security
reasons, you would not want to expose the key field in the HTML as an input field
that hackers could modify.

Note — This is not an issue specific to the Sun ONE Application Framework, but
rather one that must be addressed by any Web application, no matter which
framework (or no framework) is used to implement Web applications

The Sun ONE Application Framework provides a value add feature called Page
Session that provides a technique to implement this solution more securely, but is
outside the scope of this tutorial. Refer to the JatoSample application and the Sun
ONE Application Framework Developer’s Guide for more details.

Format the JSP

. Expand the JSPs node under CustomerPage node.
. Double-click the CustomerPage JSP to open it in the editor window.

. Provide propercase labels for the fields.

Following is an example of minimal JSP formatting (only pertinent code is shown
here). Some of the HTML source code is shown in bold for clarity.

Sun ONE Application Framework Tutorial * October 2003

<jato:form name="CustomerPage" method="post">

<table border=0 cellspacing=2 cellpadding=2 width="100%">
<tr>

<td align=right valign=middle width="20%">Customer #:</td>

<td align=left valign=middle><jato:text name="customerTblCustomerNum"/></td>
</tr>
<tr>

<td align=right valign=middle width="20%">Email:</td>

<td align=left valign=middle><jato:textField name="customerTblEmail"/></td>
</tr>
<tr>

<td align=right valign=middle width="20%">Name:</td>

<td align=left valign=middle><jato:textField name="customerTblName"/></td>
</tr>
</table>

<jato:button name="update"/>
<jato:hidden name="hiddenKey"/>
</jato:form>

Chapter 9 Tutorial—Section 2.3 Create Customer Page 89

90 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 10

Tutorial—Section 2.4
Test Run the Customer Page

This chapter describes how to run your Sun™ ONE Application Framework

application.

Task 4: Test Run the Customer Page

Important: Make sure the PointBase Network Server is running. If it is not, you can
start it by doing the following:

. Select menu option Tools -> PointBase Network Server -> Start Server.
. Right-click the Application Classes node.

. Select the Compile All action.

If you are running on Sun'" ONE Application Server, you must Deploy the
application when changes are made.

. Select the Sun ONE Application Framework application node (JatoTutorial), and

click the Deploy button on the Sun ONE Application Framework toolbar.

. Select the CustomerPage node, and click the Execute Page (Redeploy) button.

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

91

92

5] Sun ONE Application Framework [Properties of Cusko - |I:I|£|

He® e BEEE 4D

Eh Sun OME Web Applications
@ Jata Tutarial
&= ﬁ Settings & Configuration
@ 3 application Classes
@ 3 jstotutorisl
& main
&= Customeriodel
@ CustomerPage
@ F LoginPage
&= MaintdoduleServist
& [B"™ JataTutarislappServietBase
@ [0 Documerts

)

|Exeu:ute Page (Redeploy)

Bl Sun OME Weh fApps *

A default browser starts the application.

Test a Customer Update

1. Make a change to one or both of the fields.

Sun ONE Application Framework Tutorial ® October 2003

(M) Netscape

. File Edit Wew Go Bookmarks Tools Window Help

e Q @ Q ohttp Hocalhost) latoTutorialmainfCustomer Page |

alf E,. [=Mal 45 Home Gg Radio @LSearch E3Bookmarks EJPersonal EdTriathlan E
ohttp Hlocalhostflato. .. alfmain) CustomerPage]

Customer #: 1

Email: |superu:u:um@au:u|.u:u:um

Name: |SuperCom

|lpdate I

In this figure, the email name and customer name were changed.

2. Click Update.

() Netscape

. File Edit Wew Go Bookmarks Tools Window Help

FY

@ﬂ Q @ Q |‘¢http:,I',l'I-:u:thcust,l'Jatu:uTutcurial,l'main,l'Custu:umerF‘age;jsessiu:uniu:l=f |

F Y

j-'r E}x_.‘ IMal 4% Home §p Radin Sl Search | C3JBookmarks E3Personal E3Tristhlon E3LFe £3

&) | 4 http:/flocalhost{Ja, .. 749658501 D032 CESEFZ]

Customer #: 1

Email: |superdntcnm@anl.cnm

MName: |SuperD otCom

|lpdate I

Chapter 10 Tutorial—Section 2.4 Test Run the Customer Page 93

94 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 1 1

Tutorial—Section 2.5
Link Login Page to Customer Page

M

This chapter describes how to link the LoginPage to the CustomerPage in the Sun’
ONE Application Framework application, filtering the data the Customer page
displays based on the customer's login.

Task 5: Link the Login Page to the
Customer Page

Edit the handleLoginRequest Method in
LoginPage
Edit the LoginPage. java file.

Modify the logic in the handleLoginRequest () method as shown in the code
example below so that in the event of a successful login, the Customer page displays
with the customer data that corresponds to the value entered in the User Name field.

95

96

Note — In the code example below, the only legal values for the User Name field are
also CustomerID values from the customer table.

Therefore, you can take the Login ID value and apply it to the WHERE clause used
by the CustomerModel.

This ensures that the data retrieved by the CustomerModel corresponds to the
appropriate CustomerID.

Make code changes cautiously.

The code that appears below practically replaces all of the code that appeared
previously in this event.

Adding just what appears to be the delta will likely lead to errors. It is best to just
delete the current code and replace with the following.

Following is the code you need to enter to modify the logic in the
handleLoginRequest () method.

Sun ONE Application Framework Tutorial * October 2003

public void handleloginRequest (RequestInvocationEvent event)

{
// Retrieve the customer number
String custNum = getDisplayFieldStringValue (CHILD_CUSTOMER_NUM) ;
String theMessage = "";
// Check the customer number
// Note, we don't check the password in this example
if (custNum.eqgualsIgnoreCase("1") ||
custNum.equals ("777") ||
custNum.equals ("410"))
{
// Instead of returning the login page, display the Customer
// page for the customer that matches the customer number
// Get a reference to the CustomerModel
CustomerModel model =
(CustomerModel) getModel (CustomerModel .class) ;
// Modify the where criteria to reflect the customer number used to login
model .clearUserWhereCriterial() ;
model .addUserWhereCriterion (
"CUSTOMER_TBL_CUSTOMER_NUM", new Integer (custNum)) ;
// Display the Customer page
getViewBean (CustomerPage.class) . forwardTo (event.getRequestContext ()) ;
}
else
{
theMessage = "Sorry, "+ custNum +
",your customer number was incorrect!";
// Set the output status message
getDisplayField (CHILD_MESSAGE) .setValue (theMessage) ;
forwardTo () ;
}
}

Chapter 11 Tutorial—Section 2.5 Link Login Page to Customer Page 97

98 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 12

Tutorial—Section 2.6
Run Application

This chapter describes how to run the Sun,, ONE Application Framework
application now that you have added an additional page to your application and
have linked it to the first page.

Task 6: Run the Application

Important: Make sure the PointBase Network Server is running.

™

If it is not running, you can start it in the Sun ™ ONE Studio as follows:

. Select menu option Tools -> PointBase Network Server -> Start Server.

Since you have made modifications to a few classes, be sure to compile the
application.

. Right-click the Application Classes node, and select the Compile All action.

If you are running on Sun"' ONE Application Server, you must Deploy the
application when changes are made.

click the Deploy button on the Sun ONE Application Framework toolbar.

. Select the LoginPage node, and click the Execute Page (Redeploy) button

. Select the Sun ONE Application Framework Application node (JatoTutorial), and

Using this execute and redeploy option restarts the server to ensure that the server

picks up all changes and does not use any cached resources.

929

5] Sun ONE Application Framework [Properties of Cusk

He® e BEEE 4D

=101 x|

Eh Sun OME Web Applications
@ Jata Tutarial
&= ﬁ Settings & Configuration
@ 3 application Classes
@ 3 jstotutorisl

& main
&= Customeriodel
&= CustomerPage
&= LoginPage
&= MaintdoduleServist

& [B"™ JataTutarislappServietBase
@ [0 Documerts

b,
|Exeu:ute Page (Redeploy)

Bl Sun OME Weh fApps *

A default browser starts the application.

5. Enter a valid customer number (1, 777, or 410).

(M) Netscape

o FEile Edit wiew Go Bookmarks Tools

Window Help

FY

{ Q @ @ @ ‘|¢http:,r,fl.:..:th.:.st,l'JataTutarial,l'main,l'L-:nginF'age ﬂl

‘Jr'r =1 \"-.‘ CAMal 4% Home G2 Radio Y Search

FBookmarks E3Personal E3Tristhlon

é ohttp:,l',l'lu:u:aIhu:ust,l'Jatu:uTutu:uriaI,l'main,l'Lu:uginPage]

Customer Mum: I???
Login |

6. Click Login.

You should see the Customer page with the customer record that corresponds to the

customer number that you used to login.

100 Sun ONE Application Framework Tutorial ¢ October 2003

() Netscape

. File Edit Mew Go Bookmarks Tools Window Help

| @ﬂ Q @ Q |0http:,l',l'lu:u:alhu:ust,l'Jatu:-Tutu:uriaI,l'main,l'Lu:uginF‘age I

oy §.-'r B, [EMal 4% Home G2 Radio Cl, Search | [JBookmarks JPersonal 3 Triathlan
“é 0htl:p:,l',l'Il:u:alh-:usl:,l'Jatl:uTut-:urial,l'main,l'LDginF‘age]

Customer #: 777

customerTh1Email: |www_westv.cum

customerThIName: [\west'Valey Inc.

|lpdate |

Chapter 12 Tutorial—Section 2.6 Run Application 101

102 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 13

Tutorial—Section 3.1
Create a Command Component

This chapter describes how to create a Command component that can be reused by
many command fields (button and HREF components) within the same application.
This is the alternative technique to implementing request handling code in the
command field's handle request event inside its parent page/pagelet class
(handleLoginRequest in LoginPage, for example).

Commands provide great power and flexibility when it comes to code reuse. Any
arbitrary Java class can become a Command component simply by implementing the
com.iplanet.jato.command.Command interface. In this tutorial, you will create a new
Command class using the Sun™ ONE Application Framework Command wizard to
create a login/logout command which will replace the request handler event for the
Login button. This Command component can then be reused by command fields on
other pages and pagelets if required.

1.

Task 1: Create a Command Component

Create the UserAccessCommand Component

Create a Command component using the Sun ONE Application Framework
Command wizard.

Select the main module folder, then click the Add Command button on the Sun
ONE Application Framework toolbar.

103

¥ Sun OME Application Framework [Sun =10l x|

i =) 4 b
B Sun ONE ek Applications T ——
o Jato Tutorizl

ﬂ'ﬁ Settings & Configuration
@ 3 application Classes
@ 3 jstotutorial
¢ &
&= Customeriodel
@ E CustomerPage
@ F LoginPage
&= MaintdoduleServist
&= JatoTutorisl&ppSeryietBase
@ [0 Documerts

| & Sun ONE Wk Apps * |

X [lglw v ®

Mocule True

Matrne rmEin

The Select Command Type panel displays.

104 Sun ONE Application Framework Tutorial * October 2003

INew Wizard - Command x|

Select Command Type

Template Matne: |User.&ccessf20mmand |
Select Command Type

Package: |ia1u:|tutu:urial.main | Browese...

Select the component to base this command on;
Bagic Command .,
Command Chain

Component class: com.iplanet jato.command BasicCommand

Description: An abstract command component to be completed by the..

| = Back || Mext = H Finizh || Cancel || Help

2. Enter UserAccessCommand in the Name textbox.
3. Select Basic Command.

4. Click Finish.

The UserAccessCommand component is added to the application.

Chapter 13 Tutorial—Section 3.1 Create a Command Component 105

=10l Source Editor [UserAccessCommand] =0 x|
B a8 e drp & =no selection= '|'}Q'E':4: Bosn 5T
1 package jatotutorial.main;
B Sun ONE Weh Applications 3
? Jata Tutorial 3 import jawva.io.*:
o= ﬁ Settings & Configuration | . .
D 3 application Claszes 4 :!.IT!;IDrt :l|ava.utll. i
@ = jatotutorial 5]_erort, ?avax.servlet.*:
® @ main & import jawax.servlet.http.¥;
& CustomertModsl 7 import cowm.iplanet,jato.¥;
& CustomerPage 5 import com.iplanet.jato.conmand. *;
(o LoginPage 9 import con.iplanet.jato.view.®;
&= MainkoduleServiet 10 import com.iplanet.jato.wview.event.*;
@ 11 import com.iplanet,jato.model.*;
o Java Source % 1z
JatoTutorialdppServietBase 13 #*=
© [0 Documents 14 #
L5 .
| Dsnoeverame > [BRmme]]|
)i(m l.a‘y 5: @ i; public class UserdccezsConmand extends EasicCommand
Componert Class Jjatotutorizl rmain UserAccessCommand 19 { Es
Componertinto Class | com.planet jato.command BagicCammand 20 # Default comstructor
Mame UserfccessCommand 2l #
Z2 =4
Properties 23 public UserfccessCommand ()
24 {
25 sSuper();
26 1
27
28 public woid execute (ConmandEvent event)
29 throws ConmandException
30 {
3l S TODO: perforn compand-specific behavior here
32 H
33
34
35 S Imstance imitializer — set properties
36 {
37 }
35
39}
40
1:27 |z

User&ccessCommand *

Double-click the UserAccessCommand to open the Java source code for this
component in the editor window.

It is quite a simple class that extends BasicCommand. BasicCommand implements
the Command interface which declares only one method:
public void execute(CommandEvent) throws CommmandException

106 Sun ONE Application Framework Tutorial ¢ October 2003

This command currently does nothing. You will need to add some code to the
execute method to do what you need it to do, which is, to perform a user login or
logout based on the operation name that is passed in via the CommandEvent
parameter. The operation names are completely up to the developer (you). The
following steps and tasks instruct you on how to pass and evaluate your custom
operation names.

Add Code to the execute Method

This step requires nothing more than writing a little code. This might seem like a lot
of code, but much of it is reimplementation of the handleLoginRequest event from
the LoginPage. This replaces the need for that button event.

Add the following code to the execute method of the UserAccessCommand class.

public void execute (CommandEvent event) throws CommandException

{

// get the RequestContext
RequestContext requestContext = event.getRequestContext () ;

// get the J2EE HttpSession
javax.servlet.http.HttpSession session =

// get the operation name that was passed in
// by the commandfield object (button/href)
String opName = event.getOperationName () ;

// get the LoginPage
LoginPage loginVB = (LoginPage)requestContext

// perform user login

if (opName.equals("login"))

{

requestContext.getRequest () .getSession() ;

.getViewBeanManager () .getViewBean (LoginPage.class) ;

// get the customer number that was entered
int custNum = loginVB.getDisplayFieldIntValue (
LoginPage.CHILD_CUSTOMER_NUM) ;

// get the Customer model
CustomerModel customerModel = (CustomerModel)requestContext
.getModelManager () .getModel (CustomerModel.class) ;

// execute the CustomerModel with the customer number as criteria
// to see if the user exists in the database

Chapter 13 Tutorial—Section 3.1 Create a Command Component 107

customerModel .clearUserWhereCriterial() ;
customerModel .addUserWhereCriterion (
"CUSTOMER_TBL_CUSTOMER_NUM", new Integer (custNum)) ;

try

customerModel .executeSelect (null) ;

catch (ModelControlException e)

{

Log.log ("Exception caught in UserAccessCommand.execute() :
+ e.toString());

catch (java.sql.SQLException e)
{

Log.log ("Exception caught in UserAccessCommand.execute() :
+ e.toString());

// valid customer number entered
if (customerModel.getNumRows () == 1)
{
// Display the Customer page
requestContext.getViewBeanManager () .getViewBean (
CustomerPage.class) . forwardTo (requestContext) ;

// put the customer number into an HttpSession attribute
// for potential use in a later request
session.setAttribute ("hsaCustNum", new Integer (custNum)) ;

}
// invalid customer number entered
else
{
String msg = "Sorry, " + custNum +

" is not a valid customer number.";

// Set the output status message
loginVB.getDisplayField(
LoginPage.CHILD_MESSAGE) .setValue (msqg) ;
loginVB. forwardTo (requestContext) ;
}
} // if opName = login

// perform user logout
else if (opName.equals("logout"))

{

// get the customer number from session to use in the logout message

108

Sun ONE Application Framework Tutorial * October 2003

else

String hsaCustNum = session.getAttribute ("hsaCustNum") .toString() ;

String msg = "Customer " + hsaCustNum +
", you have logged out successfully.";

// invalidate the user's HttpSession
session.invalidate() ;

// Set the logout message and display the Login page
loginVB.getDisplayField(LoginPage.CHILD_MESSAGE) .setValue (msg) ;
loginVB. forwardTo (requestContext) ;

else if opName = logout

throw new CommandException (
"Unknown UserAccessCommand operation name: " + opName) ;

Before you can test run this code, you need to configure a command field (Button or

HREF) to use it.

Configure a Button's Command Descriptor

Configure the login button to use the UserAccessCommand component via the

Command Descriptor property of the button. This also works the same for HREFS.

1. Expand the LoginPage node, and expand the Visual Components node.

2. Select the login button under Visual Components.

Chapter 13 Tutorial—Section 3.1 Create a Command Component

109

o LoginPage
& Java Source
@ B JSP Pages
@ non-Yisual Components
@ @ Yisual Componerts

A mezsage
0= customerbum
= Jogin

- MaintoduleServiet
- zer&cocessCammand
& JatoTutorial&ppServietBase
@ [0 Documerts

¥ B w v &

Camponert Clazs cotn iplanet jato vievy BazicCommandField

Camponentinfa Class | com.iplanet jato viess btml2 ButtonComgpon

Initizl “alue Login [java lang. String)

hadel Field Binding

Model Reference Default (use parent's default model)
Makre Igin

Request Handler ||Defaurt (fire handleRequest ev ... ™ ||
Wisible True

3. Click the ellipsis button for the Request Handler property.
This displays the Command Descriptor editor.

110 Sun ONE Application Framework Tutorial ¢ October 2003

#|Request Handler

“Instance of type com.iplanet jato.command Commandbescriptor

i) Lse existing shated instance

| Default (fire handleReguest event) e |

@ Create neswy shared instance

& User-Defined Command (Default)
Execute Model Command

Execute Model and Gota Page Command
Farward Comrmand

Goto Page Comrmandd

Include Commanc

Redirect Command

WebAction Camrmand

Component Class

Pl - B @

com.iplanet jato command CommandDescriptor |

T

|user.&u:u:ess¢u:ummand| . |

Ok Cahicel

4. Select User-Defined Command (Default) from the list under the Create new shared
instance radio button choice.

5. Change the Name property to userAccessCommand

Chapter 13 Tutorial—Section 3.1 Create a Command Component

111

112

6. Select the Component Properties tab at the bottom of the editor.

W Request Handler

Instance of type com.iplanet jato command CommandDescriptor

) Use existing shared instance

| Detault (fire handleReguest evert)

(W) Create new shared instance

& Uszer-Defined Cofmmand (Defaul)
Execute Model Command

Execute Model and Gota Page Command
Forward Command

Gota Page Command

Include Comrmandd

Redirect Command

Webaction Command

xEer = B @

Cotmmand Class Matne |

Operation Matme DEFALLT

Parameters 1

[Propetties L Carmponent Propetties LC-:nde Generation

Ok

Cancel

7. Click the ellipsis button for the Command Class Name property.

This displays the Command Class Chooser dialog.

Sun ONE Application Framework Tutorial * October 2003

10.

11.

#lProperty Editor: Command Class Name (cla

@ 3 jatotutorial
5l main

UzerAccessCommand

@ & Sun OME Application Framework S‘thﬂard Cormponent Library

CIE S jetatutarial main User AccessComimand
clazs:
Description: An abstract command component to be completed by

the developer

QK

Cancel

. Select the UserAccessCommand command component.

Click OK.

Change the Operation Name from DEFAULT to login.

Recall in the code what you implemented for the execute method in the

. Expand the Current Application Components node, then jatoturial, and then main.

UserAccessCommand class. You have an if/else block that is expecting either login
or logout as an operation name. These are case sensitive, so you need to be sure you
set this correctly, or you will receive the CommandException (Unknown operation

name) when you test run this command.

Chapter 13 Tutorial—Section 3.1 Create a Command Component

113

4/Request Handler x|
Instance of type cormiplanet jato.command CommandDescriptar

i) Lse existing shated instance

| Default (fire handleReguest event) e |

@ Create neswy shared instance

& User-Defined Command (Default)
Execute Model Command

Execute Model and Gota Page Command
Farward Comrmand

Goto Page Comrmandd

Include Commanc

Redirect Command

WebAction Camrmand

x Bl x] B @

Command Class Mame | jatotutorial main User AccessCommand

Operation Mame |I|:-gin .

Parameters i

[Propetties L Campanent Properties LC-:nde Generation

Ok Cahicel

12. Click OK to finish setting the Command Descriptor property for the login button.

Now, when you run the Login page and click the Login button, the
UserAccessCommand component handles the request instead of the code in the
handleLoginRequest event in the LoginPage.

114 Sun ONE Application Framework Tutorial * October 2003

You can leave the code in the handleLoginRequest event as is, because it will be
never be invoked, unless you reconfigure the login button to use the request handler
event instead of the command component.

This is because the Sun ONE Application Framework first looks for a Command
Descriptor for the command field. If the Command Descriptor is not implemented, it
then attempts to invoke the handle<CommandField>Request event. If the event is
not implemented, you receive a request handler not found exception.

Chapter 13 Tutorial—Section 3.1 Create a Command Component 115

116 Sun ONE Application Framework Tutorial October 2003

CHAPTER 14

Tutorial—Section 3.2
Add a Logout Link to the Customer
Page

This chapter describes how to add an HREF to a page that uses a Command
component.

Task 2: Add an HREF to a Customer Page

1. Select the CustomerPage node.

2. Add a Hyperlink (HREF) component using the Component Palette.
An HREF command field is added to the CustomerPage's Visual Components node.

3. Rename the HREF as logout.

117

118

o CustormerPage
& B Java Source
@ B JSP Pages
@ (B Non-visual Components
@ @ visual Componerts
A customerTHICustomerum
f= customer ThIEmsil
custamer ThiMatme
hiddenkey
Update
logout

(SRR

Configure an HREF's Command Descriptor

Configure the logout HREF to use the UserAccessCommand component via the
Command Descriptor property of the button. This is identical to the button
Command Descriptor configuration in the previous task, except the operation name
will be logout instead of login.

1. Select the logout HREF under CustomerPage's Visual Components node.

2. Click the ellipsis button for the Request Handler property.
This displays the Request Handler editor.

Sun ONE Application Framework Tutorial * October 2003

#|Request Handler

“Instance of type com.iplanet jato.command Commandbescriptor

i) Lse existing shated instance

| Default (fire handleReguest event) e |

@ Create neswy shared instance

& User-Defined Command (Default)
Execute Model Command

Execute Model and Gota Page Command
Farward Comrmand

Goto Page Comrmandd

Include Commanc

Redirect Command

WebAction Camrmand

Component Class

Pl - B @

com.iplanet jato command CommandDescriptor |

T

|user.&u:u:ess¢u:ummand| . |

Ok Cahicel

3. Select User-Defined Command (Default) from the list under the Create new shared
instance radio button choice.

4. Change the name to userAccessCommand

Chapter 14 Tutorial—Section 3.2 Add a Logout Link to the Customer Page

119

120

5. Select the Component Properties tab at the bottom of the editor.

W Request Handler

Instance of type com.iplanet jato command CommandDescriptor

) Use existing shared instance

| Detault (fire handleReguest evert)

(W) Create new shared instance

& Uszer-Defined Cofmmand (Defaul)
Execute Model Command

Execute Model and Gota Page Command
Forward Command

Gota Page Command

Include Comrmandd

Redirect Command

Webaction Command

xEer = B @

Cotmmand Class Matne |

Operation Matme DEFALLT

Parameters 1

[Propetties L Carmponent Propetties LC-:nde Generation

Ok

Cancel

6. Click the ellipsis button for the Command Class Name property.

Sun ONE Application Framework Tutorial * October 2003

This displays the Command Class Chooser dialog.

&4¥|Property Editor: Command Class Name (cla EI

@ 3 jstotutorial
@ E1 rmain
UsericcezsCommand
@ i&h Sun OME Application Framewwark S‘thﬂard Component Likrary

Tl A= jetatutarial main UserAccessComimand
class:
S A abstract command component to be completed by

the developer

Ok Cahicel

7. Expand the Current Application Components node, then expand jatoturial, and
then main.

8. Select the UserAccessCommand command component.
9. Click OK.
10. Change the Operation Name from DEFAULT to logout.

Recall in the code what you implemented for the execute method in the
UserAccessCommand class. You have an if/else block that is expecting either login
or logout as an operation name.

These are case sensitive, so be sure you set this correctly, or you will receive the
CommandException (Unknown operation name) when you test run this command.

Chapter 14 Tutorial—Section 3.2 Add a Logout Link to the Customer Page 121

4/Request Handler x|
Instance of type cormiplanet jato.command CommandDescriptar

i) Lse existing shated instance

Default (fire handleReguest event) 7

@ Create nesw shared instance

Uzer-Defined Command [Default)
Execute Model Command

Execute Model and Gota Page Command
Forward Cormmand

Goto Page Cammand

Include Commancd

Redirect Command

Wiebction Command

¥ Uz v vc @

Command Class Mame | jatotutorial main User AccessCommand

Operation Mame |I|:-g-:|ut I

Parameterz {}

[Propetties L Carmponent Propetties LC-:nde Generation

Ok Cancel

11. Click OK to finish setting the Request Handler property for the logout HREF.

When you login with a valid customer number, you are taken to the Customer page.
The logout link displays. When clicked, the logout operation name is passed into the
UserAccessCommand to invalidate the user's session and display the Login page
with the logout message.

122 Sun ONE Application Framework Tutorial * October 2003

Format the HREF tag in the Customer JSP

When you added the logout HREF field to the CustomerPage, an HREF tag was
added to the CustomerPage. jsp file. However, the link displays with the default
name of the HREEF, hrefl, which is not the required text.

. Expand the JSPs node under CustomerPage.
. Double-click the CustomerPage JSP node to open the JSP in the editor window.

. Find the logout HREF tag and modify the body content portion to display Logout
instead of href1.
<jato:href name="logout">Logout</jato:href>

You can position the HREF tag anywhere you prefer, so long as it is nested between
the useViewBean tags and is part of the HTML's body section (between the body tags).

Unlike the button, an HREF is not required to be part of the form, so it can be
positioned outside the form tags (<jato:form>).

Chapter 14 Tutorial—Section 3.2 Add a Logout Link to the Customer Page 123

124 Sun ONE Application Framework Tutorial October 2003

CHAPTER 15

Tutorial—Section 3.3
Test Run the Login/Logout
Command Component

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 3: Test Run the Login/Logout
Command

Important: Make sure the PointBase Network Server is running. If it is not, you can

™

start it in the Sun = ONE Studio as follows:
1. Select menu option Tools -> PointBase Network Server -> Start Server.

Since you have created a new class and made modifications to two other classes, be
sure to compile/deploy the application.

2. Right-click the Application Classes node, and select the Compile All action.

3. If you are running on Sun™ ONE Application Server, you must Deploy the
application when changes are made.
Select the Sun ONE Application Framework Application node (JatoTutorial), and
click the Deploy button on the Sun ONE Application Framework toolbar.

4. Select the LoginPage node, and click the Execute Page (Redeploy) button

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

A default browser starts the application.

125

Note — In sections 3.1 and 3.2, you hardcoded three customer numbers into the login
validation. The new UserAccessCommand will validate the entered customer
number against the database.

For your convenience, a list of the valid customer numbers from the sample
PointBase database is as follows: 1, 2, 3, 25, 36, 106, 149, 409, 410, 722, 753, 777, 863

5. Enter an invalid customer number first.

(M) Netscape

. FEile Edit wew @o Bookmarks Tools Window Help

@Q O @ Q |0http:,l',l'Iu:n:aIhn:nst,l'Jatn:nTutn:nrial,l'main,l'L-:nginF'age
=

- B, Mal 4% Home §9 Radin © Search CJBookmarks SPersonal C31
E':I ohttp:,l',l'lu:u:aIhu:ust,l'Jatu:uTutu:uriaI,l'main,l'Lu:uginPage]

Sorry, 14 is not avalid custormer nurber.

Customer Num: |1 4

Login |

6. Enter a valid customer number.

126 Sun ONE Application Framework Tutorial * October 2003

() Netscape

. File Edit Wew Go Bookmarks Tools Window Help

| ©ﬂ Q @ Q |°http:,I',I'I-:u:aIhl:ust,l'Jatl:uTutl:urial,l'main,l'L-:uginP'age

‘ B, [EMal 4% Home G2 Radio Ql, Search | E3Bookmarks E3Personal E3Tr
*él 0http:,l',l'Iu:u:aIhu:ust,l'JatDTutDriaI,l'main,l'LDginPage]

Customer #: 777

customerTh1Email: |viw westy.com

customerThIName: [\westValey Irc.

|lpdate I Logont

7. Try the Logout link.

() Netscape

. File Edit Wew Go Bookmarks Tools Window Help

@G Q @ Q |°http:,I',I'I-:u:aIhl:ust,l'Jal:l:uTul:l:urial,l'main,l'Custl:nmerF‘agE |

‘J.-'r E,x'-_x (AMal 4% Home G Radio ©Y Search EJBookmarks E3Personal C3Triathlon
‘E:I Ohttp:,l',l'lucalhust,l'Ja...uLI4IsCP.P.B4::P.AAP.P.E4]

Custorner T, wou have logged ont successfully.

Customer Num: |

Ladin |

Chapter 15 Tutorial—Section 3.3 Test Run the Login/Logout Command Component 127

128 Sun ONE Application Framework Tutorial * October 2003

CHAPTER 16

Tutorial—Section 4.1

Prepare to Create a Web Service
Model

This chapter describes how to expand the application to access data via a Web
service. You must be running a version of the Sun™ ONE Studio that includes the
Web service model wizard. You must also have a connection to the Internet without
a proxy/firewall which will interfere with communication to the Web service.

You can expand the existing application by adding a Web service-based model and a
page to display that model's data. First, there are some resources you need to
download to build a model for a Web service, and you need to register as a user for
this Web service.

Task 1: Web Service User Registration
and Downloading

Download the Web Service SDK

Download the Google Web service software SDK that contains the WSDL file that
the Sun™ ONE Application Framework needs to create the Web Service model.

. To download the Google Web Service SDK, go to

http://www.google.com/apis/download.html

. Accept the agreement.
. Click the Download button.

. Save the file on your hard drive.

129

http://www.google.com/apis/download.html

130

Open the zip file and extract the googleapi/GoogleSearch.wsdl file to your
application's lib directory (. ../JatoTutorial/WEB-INF/1ib). There are three
versions of this file in the zip file. Be sure to get the only one that is not under the
dotnet directory. That is all you need to build the Web service model.

Note — When you copy a new file into your applications file structure, occasionally
it takes the Sun ONE Studio some time to refresh its state.

If it appears that the Sun ONE Studio is taking too long to recognize the new file,
you can go to the Filesystems or Project tab, right-click the lib directory, and select
the Refresh Folder action.

Register to Use the Web Service

To use the Google Web service, you must register as a user to receive a key that is
passed to the Web service with each query.

. To register with Google, go to

https://www.google.com/accounts/NewAccount?continue=
http://api.google.com/createkey&followup=
http://api.google.com/createkey

. Enter an email address and password to register a new account.

You will receive an email to verify your account. Once you verify your account, you
will receive another email with your key (it is a long string of letters and numbers).
Keep this email handy because you will need it when you create the Web service
model.

Create the Web Service Model

Using the WSDL file, you will create a Web service model that will perform an
Internet search using the Google Internet search engine via their Web service.

. Select the main module folder.

. Click the Add Model button on the Sun ONE Application Framework toolbar.

The Select Model Type panel displays.

Sun ONE Application Framework Tutorial * October 2003

https://www.google.com/accounts/NewAccount?continue=http://api.google.com/createkey&followup=http://api.google.com/createkey

New Wizard - Model x|

Select Model Type

A Sun OME Application Framewark model encapsulates application data and fuhctions a3 a resource
for visual cotnponents in your spplication. Models typically have fields (named values) that visual
components can bind to, allowing them to display the model's data. Many models are also executable,
meaning that they expose behavior for retrieving or operating on data. Your spplication can use
existing model types to access enterprize resources or creste new model types to access or
encapsulate enterprise data in ah application-specific way.

[arme: |GoogIeSearchM0del |

Package: |iatc|th0riaI.main | Browvse...

Select a base component to specialize in the companent's Java file:
Eean Adapter Model

Custam Macel

Cuztom Simple/Dataset Model
Custom Tree Model

HTTP Session Wodel

JOBC SGL Query Model

JDEC Stored Procedure Model
Ohject Adapter Mode!
Resource Bundle Model

Wieh Service Model

HEIEEEEEEE

Component class: comliplanet jato. model ws WehServicehMode]

Description; A model for executing web services using JAX-FPC

| = Back || Mext = || Finish || Cancel || Help

3. Enter GoogleSearchModel in the Model name textbox.
4. Select Web Service Model from the model component list.

5. Click Next.
The Select Local WSDL File panel displays.

Chapter 16 Tutorial—Section 4.1 Prepare to Create a Web Service Model 131

132

ew Wizard - Model x|

Select Local WSDL File

8 Filezystems
P 3 ChSumstudios_sewvebappsiJatoTutorial
9 WEE-INF
3 b
&
@ 3 Clazzes %
@ 0 jato
&0 td
@ [jatotutorisl
@ 32 Chsumstudios_sewvebappstlataTutarisl : AWEB-INF folaszes
& 5 jsto-z_1_0jar

3. Select Local WSDL File

| = Back || st = || Finizh || Cancel || Help |

Navigate down the JatoTutorial application directory structure to the 1ib directory
(JatoTutorial /WEB-INF/1ib), and select GoogleSearch (the WSDL file).

Your file might be in a subdirectory of the 1ib directory. When you extracted it from
the zip file, it was in a base directory called googleapi.

6. Click Finish to create the Web service model.

The GoogleSearchModel object is created in the main module.

Sun ONE Application Framework Tutorial ® October 2003

L= (gl
o a® RS =no salection= V‘ QY Bosp Y e @
L Sun ONE Wb appiications 14 public class GoogleSearchModel extemds UehServiceModel =
@ @ Jsto Tutorisl e
Lol Settings & Configuration 16 [
@ @ application Classes 17 # Defanlt constructor
@ a jatotutorial 18 *
@5 main 19 7
@ Customerhode! 20 public GoogleSearchModel ()
CustomerPage 21 {
@ ZoogleSesrchidodel 5 Super () !
Lo ¥ Jawa Source 23 1
[Ficlds 24
@ ™ Operations 25
@ doGetCachedPage 26
@ doSpelingSuggestion 27
&5 Log;Pa::GnngleSaarch 28 public static com.iplanet.jato.model.ModelFieldGroup Fields Schema = mew com.iplanet.
MainMoculeServlet =
& B UseraccessCommand & B
JatoTutorialAppServietBase &l ELaLls . . .
e stups 32 { // Begin Model Field declaration
9D pottordl [33
@ & main 34
e [0 GoogleSearchidodelcencient 35 } A4 End Model Field declaration
@[GoogleSearchiadel 36
© [Documents 37
38
L@ Sun ONE Weh Apps ¥ 52 Runtime * 39 public static fimal String OPERATION DO_GET CACHED PAGE = "doGetCachedPage™;
40 public static fimal String OPERATION DO_SPELLING SUGGESTION = "dofpellingiuggestion™;
BB] [-] 41 public static fimal String OPERATION DO _GOOGLE SEARCH = "doGoogleSearch™;
42
43 public static com.iplanet.jato.model.object.Operations operations = mew com.iplanet.ja
44
Default Dataset Mame 45 static
J&X RPC Stub Factory | [com iplanet jato model ves JaxRpcStubF 46 { /7 Begin Model Operation declarations
— GoolsSearchhode! 47 com. iplanet. jato.model. object. Operation doGetCachedPage Operation =
48 mew com.iplanet.jato.model.ocbject.Operation();
L Propetties ®© . .
50 { A4 begin lacel variable scope
51 doGetCachedPage Operation.setHame ("doGetCachedPage™)
52 doGetCachedPage Operation.setOperationHame ("doGetCachedPage™); E
B 1 »]
11|
GoogleSearchidodel * |

7. Double-click the GoogleSearchModel node to view the code in the
GoogleSearchModel class.

This Web service has a few operations that can be used. The following tasks focus
only on the doGoogleSearch operation.

Chapter 16 Tutorial—Section 4.1 Prepare to Create a Web Service Model 133

Note — When you look at your application file structure, you see a new folder
named stubs. This folder was created by the Web Service Model wizard as a package
to store any stub classes that are needed to support the use of Web services.

This is one of many great benefits provided the Web service model wizard. To use a
Web service, there are many classes that need to be created. Browse this package
folder to see how much work was actually performed.

Rest assured that you will not have to look at these files. All of the tedious work is
done for you. You only need to work with the Web service model class and, even
then, it requires only minimal manual coding, or most times, none at all.

134 Sun ONE Application Framework Tutorial October 2003

CHAPTER 17

Tutorial—Section 4.2
Create the Google Search Page

This chapter describes how to create a page in the Sun"" ONE Application
Framework that displays data it gets from a model that accesses data from a Web
service.

Task 2: Create the Google Search Page

Add a Page Component

1. Select the main module folder.

2. Click the Add Page button on the Sun ONE Application Framework toolbar.
The Select View Type panel displays.

135

Mew Wizard - Page (¥iewBean) 1'

Select View Type

A Sun OME Application Frameswark page is comprised of a single Java file (called & "ViewBean") ancd
one or more JEPs associsted with that YiewBean. & page's ViewBean is the place where you can
customize the page's behavior by overriding methods and adding evert handlers to respond to both
display and reguest handing events. A ViewBean can contain pagelets or other visual components to
Ccomprise a page in your applcation.

IMarme: |GoogIeSearchPage |

Package: |iatcﬁutorial.main | Browese. .

Select a hase component to specialize in the component's Java file:
Basic ViewBean

Cotiponett class: comiplanet jato view: BasicViewBean

Description: A basic ViewBean

| <Back || wexts || Fnish || cancel || e

3. Enter GoogleSearchPage in the Name field (to replace <default>).
4. Select Basic ViewBean.

5. Click Next.
The Associate JSP panel displays.

136 Sun ONE Application Framework Tutorial ¢ October 2003

Mew Wizard - Page (¥iewBean)

Associate JSP
h ation:

Associate JSP

Page components must be paired with JSP tags in order to be displayed, or rendered, to a client of your
application. Pages normally reguire a JSP to be created for them since they have no other rendering
mechanism (unlike pagelets, which can use their parent container's JSP). Mote that if for some reason
you decide not to creste a JSP at this time, you may still add JSPs to your page at & later time.

1 Mo JSP for this compornemt
@) Create & JSP for this component:

~JSP Template
[Lize default JSP template

Template File: [MWEB-INFfatotemplatesispDefautPage jsp |

~Target JSP

Folder; |Doc:uments: fatotutorialimain | Browse...

l_i Llse formatting to beautity fields on JSP

| <Back || wexts || Fnish || cancel || e

6. Check the Use formatting to beautify fields on JSP option.

7. Click Next.

The Model Associations panel displays.

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page

137

138

rd - Page {¥iewBean})

: P
Model Assocations
D i

Model Assocations

Select the models you wish to associate with this view:
o Current Application Components
@ & jatotutorisl
@ 5 main
=5 Customerhiodel
Lo GoogleSearchiodel
@ O stubs
@& Sun CMNE Application Framework Component Library

Cotmponent class: jatotutorial main GoogleSearchiodel

Description; A model for executing wweh services using JAX-RPC

Currertly chosen madels:
GoogleSearchiods] |

Remave =

| <Back || wexts || Fnish || cancel || e

8. Expand Current Application Components to expose jatotutorial -> main.

9. Select GoogleSearchModel.

10. Click Add.
11. Click Next.

The Bind Display Fields panel displays.

Sun ONE Application Framework Tutorial ® October 2003

New Wizard - Yiew x|

Bind Display Fields

Select mocel: | GoogleSearchiiodel - |

@ @ Adapted Bean: stubs jatotutorial main GoogleSearchiodelGe & | Display field as:
@ ™ Operations: stubs jatotutorial main SoogleSearchModelGendl
nd Display Fields @ ® doGetCachedPage
@ @ doSpelingSuggestion
@ @ doGoogleSearch
@ @ Retuns stubs jatotutarial main. GoogleSearchivlodeld
@ 23 Parameters
@ %9 key -= String
@ %% g-=String
& %o start = irt
% maxResults - int
@ % fiter -» hoolean
restrict -= String
safeSearch = boolean

1 Static tewt
(@) Tevt field

b
Selected Binding: doGoogleSearch.g | Al figldl =)

Bound fields:

= doGoogleSearch [doGoogleSearch.g] Move up

Remove field=)

| = Back || Pt = || Finizh || Cancel || Help |

12. Add the first field (as seen above):
a. Expand the doGoogleSearch operation node.
b. Expand the Parameters node.
c. Select the g field (q for query string: q -> String).
d. Select the Text field option.

e. Click Add field(s).
The q field is added to the Bound fields list box.

Note — You are not finished with this wizard panel yet.

13. Add the following fields as Text fields (WebService model fields are not multi
selectable like JDBC model fields):

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 139

140

14.

15.

16.

a. start
b. maxResults
c. restrict

Add the following fields as Static text fields (not Text fields):

(Expand the Returns: ... node [above the Parameters node])
a. searchTime

b. startIndex

c. endIndex

d. estimatedTotalResultsCount

Click Finish.

You have created the GoogleSearchViewBean.

The wizard automatically sets the Auto Retrieving Models property with the
model that was used in the Page wizard. Normally, this is a desired setting, and

therefore, the wizard assumes that it should be configured that way. However,
with the Web service model, this is not the case.

a. Launch the Auto Retrieving Models custom editor by clicking its ellipsis
button.

b. Select the googleSearchModel reference in the indexed list, and click the Delete
button to remove it from the list.

c. Click the OK button to save the modifications.

Sun ONE Application Framework Tutorial * October 2003

£5 Sun ONE Appl Framework [Properties of G

ource Editor [GoogleSearchPage]

=10l x|

X

Gog e REEE 4 F <no selection= v rae 2 Boan % e & -
B3 Sun ONEWish Applications = 17 public class GoogleSearchPage extends BasicViewBean el
] Jato Tutorial B2 HE

© @} Settings & Configuration . o L
© @ applostion Casses 20 # Default constructor
@ A jetotutorial 21 -
@& main 2z *
@ CustomerModel 23 public GoogleSearchPaye ()
O 5 CustomerPage 24 {
& B GoogleSsarchiodel 25 super|():)
o = GoogleSearchPece % 26 i
@ @™ Java Source 27
@ (B 5P Pages 26
© 5 GoogleSearchPage 29 /¢ Nen-visual component initiszlization
G (B Mon-Visual Companents 30 private con.iplanet.jato.model.SinpleModelReference googleSearchModel:
@ googleSearchiodel a1
@ M visuel Componerts 32 £
e 33 # Crestes the non-visual components _ _
4= cocoogieSearchiasResults 34 # epreen:WARNING: < /em> This code was automaticelly gemersted, do not sdit!
f= doGoogleSearchRestrict s N
A doGoogleSearchRESULTSearchTime I 36 o
A dotongleSearchRESUL Ttartindex E private void initComponents ()
A doGoogleSearchRESUL TEndindes 38 {
A doGongleSearchRESULTEStimatedTatalResuttsCount 39 googlefearchModel = mew com. iplanet.jato.model.SimpleModelReference () ;
@ E LaginPage =] 40
a1 { # begin locel variable scope

&5 Sun ONEWeb Apps LE Runirng 42 googleSearchModel.setModelClassHame ("jatotutorial. nain, Googledearchifodel™)

X B e g & 43 Yy /¢ end local variable scope
a4

Auto Deleting Modeks as y
Atn Executing Models a5
Auto Inssrting Modists a7 /¢ Instance initializer — non—visusl components
#uto Retrieving Models 8 oo

438 initComponents ()

Atn Updsting Models 50 y

51
52

Hame GoogleSearchPage :i
“alidation Exception Handler | Default ithrow ValidationException] 55 i RS RS — Gl R
Wisihle True 114 ! -
L Propetties 1:1 HINSH

ogleSesrchPage * |

™ GonaleSearchModel %

17. Rename the fields to have shorter, simpler names (select the field and click F2 to

rename).

The following table shows the longer field names in the left column, and the shorter
names in the right column.

doGoogleSearchQ
doGoogleSearchStart
doGoogleSearchMaxResults
doGoogleSearchRestrict
doGoogleSearchRESULTSSearchTime
doGoogleSearchRESULTSStartIndex
doGoogleSearchRESULTSEndIndex

doGoogleSearchRESULTSEstimated TotalResultsCount

to queryString
to start

to max

to restrict

to searchTime
to startIndex
to endIndex

to estTotal

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page

141

142

Y

[

Set the properties for the start and max text fields according to the table shown
below.

Note that you do not need to set properties for the restrict field.

Important: Launch the Initial Value editor by clicking the ellipsis button so you can
select the Integer type. If you type the value in place in the property sheet, it is
treated as a String.

Name Initial Value

start Type: Integer
Value: 0

maxResults Type: Integer
Value: 5

You have created four search fields and four result fields for this page component, but
you will need a few more search fields (required fields by the Google Web service).
These are added and bound to the GoogleSearchModel one at a time. You want these
fields to be added as something other than text or static text fields, which is why you
add these outside of the Page wizard.

Add More Visual Components to the Page

Select the GoogleSearchPage.

Add a Basic Hidden Field using the Component Palette.
The default name is hiddenl.

Rename the default as key.

Set the Model Reference property for the key field.

Sun ONE Application Framework Tutorial * October 2003

] GoogleSearchPage
& B Java Source
@ B JSP Pages
@ B mon-visual Components
9 @ isual Compaonents
guery=tring
start
rax
restrict
zearchTime
startindex
endinde:x
estTatal
3 key
@ F LoginPage
Lo MaintoduleServiet

Lﬂ]SunONEW&h.&ppsxlm
Bk v~ B @

Camponert Class cotniplanet jato viewy BasicDisplayField

U e)

Cormponertlnfo Class | comiplanet jato viess himl2 HiddenComp

Initial % alue

Model Field Binding

|gungIeSearchMDdel ‘"’l
Default (use parent's default model)

Model Reference

Marne

Yisible

5. Select googleSearchModel from the drop down list.

6. Set the Model Field Binding property.

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 143

Component Class cam.iplanet jato view BazicDizplayField
Componentinfo Class | cam.iplanet jato.viessy hitml2 Hiddencomg
Initial % alue

Moclel Field Binding | -
Model Reference googleSearchiodel —%
Mame hidden

Wizible Trug

7. Click the ellipsis button to launch the Model Field Binding editor.

[Property Editor: Model Field Binding {class com.iplan X|

~Field Bindings

Read fisld narme: | | DI'%

Wirite field nakme: |

[¥] Uze =ame field name for resd and write

Ik, Cancel Help

8. Click the ellipsis button for the Read field name property in this editor.

144 Sun ONE Application Framework Tutorial ¢ October 2003

Z_'_;_.}_'.Ithuuse a Model Field

Chooze a madel field fram the available fields belovw:

[Fredefined e | other Fields

& @ doGetCachedPage
@ @ doSpelingSuggestion
2 @ doGoogleSearch

@ ™ Parameters
@ % key -= String
@ % q-= String %
@ % start = int
& %9 maxResutts -= int

@ % fitter -= hoolean
a

@ Cperations: stubs jatotutorial main.GoogleSearchiodelGenClient SGoogleSearchPo |

@ @ Returns stubs jatotutorial main. GoogleSearchiodelGencClient . GoogleSea

[4]

Selected Binding: doGoogleSearch key

1K

Cancel

Help

9. Expand the doGoogleSearch operation node, then expand the Parameters node.

10. Select key -> String.
11. Click OK.

The read and write fields are populated with the doGoogleSearch.key model field.

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page

145

146

12.

13.

14.

[ﬁE.IPrupertr Editor: Model Field Binding (class co 5'

Field Bindings

Read field name: |dDGDDg|ESE&rCh.kE‘:,-‘ | |

E Uze =ame field name for read and write

Ok Cancel Help

Click OK to finish setting the Model Field Binding property for the key hidden
display field.

Set the Initial value property (just above the Model field binding property) for the
key field using the key that was emailed to you from Google.

The default Type for the Initial Value property is String. You do not need to launch
the editor. Just enter the string value directly in the property cell.

=l ke
@ F LoginPage %
o= MainhoculeSeryvlet -

|| & Sun ONE Web 2pps * [5 Runtime * |

¥ g 8 = @

Initisl “alue |!zW.|'I\lQFHrtGIEiAngEiuEALAkaENdI
hodel Field Binding doGoogleSearch key -
hodel Reference googlezearchbdodel

[darne ke

“izible True

The key field's properties should look something as shown in the figure above,
however, your key's initial value will be different.
Using the Component Palette, add three more display fields.

The table shown below contains a list of the three display fields and the desired
property settings.

Sun ONE Application Framework Tutorial * October 2003

Type Name Initial Value Model Reference Model Field Binding

Basic Check Box filter googleSearchModel ~ doGoogleSearch/Parameters/filter

Basic Check Box safeSearch googleSearchModel = doGoogleSearch/Parameters/safeSearch
Basic Button search Type: String

Value: Search

Your GoogleSearch Page node structure should look something the following figure:

o GoogleSearchPage
@ [&"™ Java Source

¢ =

Loy

JZP Pages

% GooglezearchPage
@ ™ Non-visusl Components
& googleSearchhodel
& B visual Componerts

0= gueryString
0= start

0= max

0= restrict

A zearchTime
A startindex
A endindex
A estTotal
= ke

fitter
zafeSearch
= zearch

Enable the Search Button

Currently, the search button has not been implemented to do anything when it is
clicked. When the search button is clicked, you need to execute the Web service

model and then reload the page to see the results. All you see now is the statistical
information:

m start/end index

m estimated results count

m query time

In the next task, you add visual components to show a list of actual search results.

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page

147

For the button, there are two techniques from which you can choose to execute the
Web service model and reload the page. One technique is to write a few lines of
code. The other technique is all point-and-click. Choose only one technique to
implement.

Manual Code Technique

1. Right-click the search button.
2. Select Events.

3. Select handleRequest.

This inserts the handleSearchRequest event stub into the GoogleSearchPage class.

4. Implement the search button handle request code.
Replace the following default code:
getParentViewBean () . forwardTo (getRequestContext ()) ;

with the code shown in bold below:

public void handleSearchRequest (RequestInvocationEvent event) throws Exception

{

// get a reference to the Google web service model
GoogleSearchModel model = (GoogleSearchModel)getModel (
GoogleSearchModel.class);

// execute the model using the doGoogleSearch operation
// (the model execution context)
model .execute (new ModelExecutionContextBase ("doGoogleSearch"));

// redisplay the page which will now show the query statistical results
forwardTo() ;

148

Point & Click Technique (code-free)

1. Select the search button.

2. Launch the editor for its Request Handler property by clicking the ellipsis button.

Sun ONE Application Framework Tutorial * October 2003

Request Handler EI

“Instance of type com.iplanet jato.command Commandbescriptor

i) Lse existing shated instance

Default (fire handleReguest event) 7

@ Create nesw shared instance

Uzer-Defined Comtmand (Default)
Execute Model Command

Execute Model and Gota Page Command
Forward Cormmand

Goto Page Cammand

Include Commancd

Redirect Command

Wiebction Command

¥ Bl o= @
Component Class cnm.iplanet.jatu:u.view.u:nmmand.Exeu:ute.ﬂ-.nanrw4

[Matne |search.ﬂ-.ndﬁeh:uadt3|:ummand . |J

Ok Cancel

3. Select the Execute Model and Goto Page Command option.

4. Set the Name to searchAndReloadCommand.

On the Component Properties tab, you need to set all three properties.

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page

149

Executing Model Reference

hodel Operation Matne DEFALLT

Target YiewBean Class Mame

Component Propetties

5. For the Executing Model Reference property, launch its editor by clicking the
ellipsis button.

¥ Executing Model Reference x|

rInstance of type interface comliplanet jato model ModelRet

& (Mull Yalue)
& Model Reference (Default)

Bl i« ®

Instance Mame

Loak In Zession Falze

Model Clazss Marme |

Store In Session Falze [«:

i Ireoke:
l Properties

Ok Cancel

6. Select the Model Reference (Default) option.
7. Launch the Model Class Name property editor.

8. Browse and select the GoogleSearchModel.

150 Sun ONE Application Framework Tutorial ¢ October 2003

9. When you return to the editor above, and the Model Class Name property is set

properly, click OK.
The Model Operation Name

Executing Model Reference

is a drop down control.

[com.iplanet jato .deeI.SimpIer|

hodel Operstion Matme

Target WiewBean Clazs Mame

| doGoogleSearch w

doGetCachedPage
dozpellingSuggestion

10. Select doGoogleSearch from its option list.

11. Launch the Target ViewBean Class Name editor.

12. Browse and choose the GoogleSearchPage.

Your Request Handler editor should now appear as shown in the figure below.

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page

151

&¥Request Handler x|
Instance of type cormiplanet jato.command CommandDescriptar

i) ze existing shated instance

Default (fire handleReguest event) 7

@ Create nesw shared instance

Uzer-Defined Comtmand (Default)
Execute Model Command

Execute Model and Gota Page Command
Forward Cormmand

Goto Page Cammand

Include Commancd

Redirect Command

Wiebction Command

xBw = B @

Executing Model Reference [cariplanet jato model SimpletodelRefs

Model Operation Marme doGoogleSearch

Target VWiewBean Clazz Mame | jatatutorial main Google=earchPage

Propetties: L Cormponent Propetties |_
Component Expert Propetties L Code Generation |

Ok Cancel

13. Click OK to finish setting the button's Request Handler property.

An addition to the GoogleSearchPage's Non-Visual Components node displays:
searchAndReloadCommand.

Format the JSP Content

Before you test run this page, be sure to format the JSP as you prefer.

152 Sun ONE Application Framework Tutorial * October 2003

. Under the GoogleSearchPage, expand the JSPs node and double-click the
GoogleSearchPage JSP to open it in the Sun ONE Studio editor.

. Give the fields proper case names.

. Add a label attribute to the checkbox fields and delete the label that has been
created automatically.

. Give the page a title, and split it into two sections with a horizontal rule: input
fields on top and display-only static text fields on the bottom.

The most interesting pieces of the JSP/HTML code are shown in bold below:

Chapter 17 Tutorial—Section 4.2 Create the Google Search Page 153

<jato:form name="GoogleSearchPage" method="post">
<h2>Google Search</h2>
<table border=0 cellspacing=2 cellpadding=2 width="100%">
<tr>
<td align=right valign=middle width="20%">Search for:</td>
<td align=left valign=middle><jato:textField name="queryString"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%">Start:</td>
<td align=left valign=middle><jato:textField name="start"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%">Max Results:</td>
<td align=left valign=middle><jato:textField name="max"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%">Restrict Search:</td>
<td align=left valign=middle><jato:textField name="restrict"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%">Filter:</td>
<td align=left valign=middle><jato:checkbox name="filter" label=
"Filter?"/></td>
</tr>
<tr>
<td align=right valign=middle width="20%"></td>

<td align=left valign=middle><jato:checkbox name="safeSearch" label="Safe

Search?"/></td>
</tr>
</table>
<jato:button name="search"/>
<hr>
Search Time: <jato:text name="searchTime"/>
Results <jato:text name="startIndex"/>
to <jato:text name="endIndex"/>
of <jato:text name="estTotal"/>
<jato:hidden name="key"/>
</jato:form>

154 Sun ONE Application Framework Tutorial ® October 2003

CHAPTER 18

Tutorial—Section 4.3
Test Run the Google Search Page

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 3: Test Run the Google Search Page

Since you have made modifications to a few classes, be sure to compile the
application.

. Right-click the Application Classes node, and select the Compile All action.

If you are running on Sun ONE Application Server, you must Deploy the application
when changes are made.

. Select the Sun ONE Application Framework Application node (JatoTutorial), and

click the Deploy button on the Sun ONE Application Framework toolbar.

. Select the GoogleSearchPage node, and click the Execute Page (Redeploy) button.

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

A default browser starts the application.
The results portion of the page initially has zeroes for values.

The search will return values for those fields.

Caution — If you receive the following exception, you might have forgotten to do
step 15 of part 4.2.1 (remove the googleSearchModel from the GoogleSearchPage’s
Auto Retrieving Models property):

com. iplanet.jato.NavigationException: Exception encountered

155

156

during forward
Root cause = [com.iplanet.jato.model.ModelControlException: no
current dataset assigned yet]

Try a Search

1. Enter a search query string.

In the figure shown below, the Search for is lacrosse.

2. Click the Search button.

{0 Netscape

. File Edit Wew Go Bookmarks Tools Window Help

@Q Q @ O |°hl:l:p:,I',I'I-:u:aIhl:ust,l'Jatl:uT|.|I:l:urial,l'main,l'Gl:u:ugleSearchF‘age
=

. B DMal 4% Home (2 Radio © Search | E3Bookmarks E3Personal C3Triathlon
E':l 0 hitkps) flocalbostfJata, , ainfGoogleSearchPage]

Google Search

Search for: IIacrnsse

Start: |0

Max Resulis: |5

Resirict Search: |
I Filter?
I™ Safe Search?

Search I

Search Tire: 0.270036 Besults 1 to 5 of 1710000

3. Try other searches to see what results you receive.

Sun ONE Application Framework Tutorial * October 2003

CHAPTER 19

Tutorial—Section 4.4
Add Results Listing to the Google
Search Page

This chapter describes how to create a TiledView pagelet component to display a list
of results from a Web service model. The TiledView will be added to an existing
page component.

Task 4: Create a TiledView Pagelet

Add a TiledView

1. Select the main module, and click the Add Pagelet button on the Sun ONE
Application Framework toolbar.

157

158

5] Sun ONE Application Framework [Pre - II:I|5|

o =NC) > Db

Bl Sun OMNE Wb Applications
o Jato Tutorial | Al Pagelst (Containervisw).

9‘% Settings & Configuration
@ 3 application Classes
@ 3 jstotutorisl
o & main
&= Customeriodel
@ E CustomerPage
&= GoogleSearchiode]
@ [GoogleSearchPage
@ F LoginPage
&= MaintdoduleServist
&= User&cocezsCammand
&= JatoTutorisl&ppSeryietBase
@ [0 stubs
@ [0 Documerts

L Bl Sun OME Web fpps * m

X [lglw v ®

Mocule True

Matrne main

The Select View Type panel displays.

Sun ONE Application Framework Tutorial ® October 2003

Mew Wizard - Pagelet {Container¥iew) il

Select View Type

A Sun OME Application Framewark pagelet is & special type of Yiew component (genetically called &
"Contasinertiew", though it can be one of many specialized types) that can be reused throughout your
application. A&t minimum, & pagelet consists of a single Java file, but it can also have one or more JSP
fragments associated with it. Pagelets can be dynamically or statically included in pages or ather
pagelets to creste complex and powerful user interfaces,

IMarme: |SearchResunSPagelet |

Package: |iatcﬁutorial.main | Browese. .

Select a hase component to specialize in the component's Java file:
Basic Cortainer View
Basic Tiled Wiews .

Basic Tree Wiew (o - - - - -
|A hasic cortainer view that terstes over an associated model's data

Component class: comiplanet jato view BasicTiledYiew

Description: A basic containet view: that terates over an associated model's data

| = Back || Mext = || Finizh || Cancel || Help

2. Enter SearchResultsPagelet in the Name field (to replace <default>).

3. Select Basic Tiled View from the pagelet component type list.

4. Click Next.

The Associate JSP panel displays.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 159

Mew Wizard - Pagelet {Container¥iew) il

Associate JSP

Pagelet components must be paired with JSP tags in arder to be displayed, or rendered, to & client of
vour application. VWhile pages normally reguire a JSP to be created for them, pagelets may opt to not
creste their own JEP and instead use their parent container's JSP. If you choose to creste a JSP for a
pagelet component, it will automatically be included in its parent's JSP using & standard JSP include tag.
Thiz alloves you to creste modular JSP snippets for vour pagelet components to preserve the same look
ahd feel regardless of where that compaonernt is uzed (this may or may not be what you want,
depending on your component). Mote that it you decide not to create a JSP at this time, you may stil
add JSP=s to vour pagelet st a later time.,

@ Mo JSP for this componernt

() Create a JSP for this component:
~JSP Template

Lise default JSP template

Template File: | |

~Target JSP

| |

(= formatting to beautity fields on J2P

| = Back || Mext = || || Cancel || Help |

A matching JSP is not be created for this pagelet component. This pagelet
component's JSP tags and content will automatically be added directly to the parent
page component's JSP page.

160 Sun ONE Application Framework Tutorial ¢ October 2003

Note — The question is whether to create a JSP for a pagelet component or not. There
are pros and cons to both possibilities. The deciding factor is how the pagelet
component will be reused on the JSP side. If the pagelet is meant to be rendered the
same regardless of what page (or another pagelet) parents it, then you should create
a JSP for the pagelet. This single JSP pagelet file will be included (JSP file include
directive) in every parenting page and pagelet JSP that requires it. Therefore, any
change made to the JSP pagelet file will be reflected wherever it was included.

However, if the pagelet requires the flexibility of being rendered in a different way
for various parenting JSP pages and pagelets, the JSP pagelet content must be inlined
and customized in each of its parenting JSP page or pagelet files.

The nuances of these techniques might not be clear to you right away, but do not be
concerned. As you become more skilled with JSPs and the Sun ONE Application
Framework, you will begin to fully understand the flexibility and power of the
reusability of the Sun ONE Application Framework page and pagelet components.

For more information, read the notes that are included on this wizard panel, and
refer to the Sun ONE Application Framework Developer's Guide and the Sun ONE
Application Framework Component Developer’s guide.

. Click Next.
The Model Associations panel displays.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 161

162

Mew Wizard - Pagelet {Container¥iew) il

Model Assocations

Eiiru

Model Assocations

Select the models you wish to associate with this view:
] Current Application Components
@ & jatotutorisl
@ 5 main

=5 Customerhodel

e- oogleSearchidade!
@ O stubs
@& Sun CMNE Application Framework Component Library

Componert class: jatotutorial main GoogleSearchidodel

Description: A model for executing weh services using JAX-RPC

Currertly chosen maodels:

GoogleSearchiodel | = Add
Remave =

| = Back || Mext = || Finizh || Cancel || Help

6.

7.

8.

9.

Expand Current Application Components to expose jatotutorial/main.
Select GoogleSearchModel.
Click Add.

Click Next.
The Bind Display Fields panel displays.

Sun ONE Application Framework Tutorial ® October 2003

Bind Display Fields

Select mocel: | GoogleSearchiiodel

docurmeritFitering -= boolesn
endindex = int

estimatelsExact -= boolean
estimatedTotalResultsCount -= int
resultElernents -= stubs jstotutorial main GoogleSearchi
URL -= String

cachedSize -= String

directoryCategory -= stubs jatatutarial main Googl
directaryTitle -= String

hostMarne -= String

relstedinformationPresent -= boolean

shippet -= String

summary -= String

title -= String

P99 Q

?PP99Q 999 EIEIEE

EEEEEEREE

| Display field as:

() Static text
() Text field

Selected Binding: doGoogleSearch RESULT: resultElements[[isumrmaty

Bound fields:

| Al field(=z)

A dozoogleSearchRESULTResultElementsTitle [doGoogleSearch RESULT res
A dozoogleSearchRESULTResultElementsURLY [doGoogleSearch RESULT: reg
A dozoogleSearchRESULTResultElementsSummary [doGoogleSearch RESULT.

orve up

Remowve figld(=)

| epack | oo [Eien ||

Cancel | | Help |

10.
11.
12.

13.

14.

Expand the doGoogleSearch node.
Expand the Returns node.
Expand the resultElements node.

Add the following three return parameters as Static text fields:

m title
s URL
m summary

Click Finish.

You have created the SearchResultsPagelet TiledView with three fields that are

bound to some return parameters in the GoogleSearchModel.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page

163

Hoged EEEE 4D

B Sun ONEWWeb Applications
] Jata Tutorial
E*& Settings & Configuration
Q 3@ Application Classes
@ A jetotutorial

Customertdods]
CustornetPage
GoogleSearchiodel
GangleSearchPage
LoginPage
MainkaduleServiet
SearchResultsPagelet
& [B JavaSource
9 B JSP Pagelets
Mone
D Mon-visual Components
@ googleSearchMods!
Lo [Eﬂ Wizsual Components
A doGoogleSearchRESULTResultElementsURL
A doGoogleSearchRESULTResuitElementsSummary
A doGoogleSearchRESULTResUElemertsTile
& B UserdccessCommand

£ Sun ONEWeh Apps * || 55 Runtime %
¥ R]

Ao Retrieving Models

v=

Max Display Tiles i

Marme SearchResuttsPagelet

Prirmary Model Dataset Marme

Prirmary Model Reference
Walidatioh Exception Handler

|| Progertics

Detautt (throw ValidationException]

i Source Editor [SearchResultsPagelet] =10l]
«no selections " SO B L, R E I e A
T =
17 public class SearchResultsPagelet extends BasicTiledView 1
18 {
13 SEE
20 # Default constructor
z1 “ 2
23 4
23 public SearchResultsPagelet (View parent, String name)
z4 i
a5 SUPEr (Parent,naue) ;
26 1
27
28
z9 A Non—visual component initialization
30 private com.iplanet.jato.model. SimpleModelReference googleSearchModel:)
3l
3z SEE
33 # Creates the non-visual components
34 £ cprcenAWARNING: = fem> This code was eutomatically gemerated, do not edit!
G 8
36 2
37 private void initComponents ()
38 {
a9 googleSearchModel = new com.iplanet.jato.model.SimpleModelReference () ;
40
a1 { /7 begin local variable scope
4z googledearchModel . setModelClassHame (" jatotutorial . main. GoogledearchModel™) »
43 } /7 end local variagble scope
Qi
a5 '
a8
a7 A Instance initielizer — pon-visuzl components
ag {
49 initComponentsi):
50 '
5l
52
53
54
55 ¥ Instance initializer - set properties -
= L =
1:1 ||
I} GoogleSearchPage * SearchResultsPagelet *

15. Rename the fields to have shorter, simpler names.

The following table shows the longer field names in the left column, and the shorter
names in the right column.

doGoogleSearchRESULTSTitle to title

doGoogleSearchRESULTSURL

to url

doGoogleSearchRESULTSSummary

to summary

Configure the TiledView Pagelet Component

You need to set three properties for a TiledView pagelet component.

Properties are filled in with the necessary values in the figure shown below.

164 Sun ONE Application Framework Tutorial * October 2003

o] SesrchResultsPagelst
- Java Source
@ (B ISP Pagelets
@ B pon-visual Components
E"ﬁ] Yisual Components
@ [UsersccessCommand
0y JatoTutorial&ppServietBasze
@ @ stubs
@ [0 Documerts

| = I B Sun OME Wish Apps *
X g w2 ®

Auto Retrieving Maodels

M= Display Tiles 5

Matne SearchRezuttzPagelet

Pritnary Model Dataset Mame | doGooglezearch RESULT: resultElements

Prirnary Model Reference googleSearchhodel

Yalidation Exception Handler | Default (throw YWalidationException)

Wigible Trug
l Properties

. Select the SearchResultsPagelet TiledView.

. In the property sheet, set the Primary Model Reference by selecting
googleSearchModel from the drop down list.

The primary model is the model that controls the iteration of the TiledView when it
is being displayed.

. Set the Max Display Tiles to 5.

This will limit the number of displayed results to 5 items.

A value of -1 (the default) means retrieve/display all possible results.

. Set the Primary Model Dataset Name property to be
doGoogleSearch.RESULT:/resultElements.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 165

Getting the Correct Primary Model Dataset Name

A TiledView requires a primary model of type DatasetModel so that the view will
have a domain for the tiles. In the case that the primary model is a
MultiDatasetModel, you might optionally specify the Primary Model Dataset Name so
that the TiledView will automatically set the CurrentDatasetName on the
MultiDatasetModel in both the display and submit cycle.

It is not imperative that you fully understand this concept, yet. To put it into simpler
terms, a Web service model can have more than one result set. The Primary Model
Dataset Name property just lets you specify which one to use, by default, for a
particular TiledView.

The Primary Model Dataset Name value is provided for you in this tutorial, but how
would you know what this value should be if you were to do this on your own? If
you know Web services well enough, you probably know this answer without a
problem. You worst enemy would be a typo causing some nasty runtime exceptions.

Currently, the Application Framework tools do not have a direct way to set this
value by browsing the Web service, and selecting a key path. But there is a one-off
Web service browsing technique for getting to this value so that you can copy it,
then paste it into the property.

Start by selecting the GoogleSearchModel in your application.

1. Right click the model, and select Browse/Add Object Field Bindings.
- GoogleSearchiiode] 1l
- GoogleSearchPage | DPen

' g LaginPage Vieww Ohject Defintion
- MaintdoduleServlet

Edit Object Definiti
- SearchResultsPagel e T
- U=zer&cocessCommal
[JstoTutorislsppSerstE
stubs
Update Genetated Code
cuments

Broveseiidd Object Field Bindings
Camplete Mizsing Qperations %

The Web Service Field Bindings editor is launched.

166 Sun ONE Application Framework Tutorial * October 2003

+Select a field binding and click DKE x|

Browyzesfdd Ohject Field Bindings

e Properties: stubs jatotutorial rmain. GoogleSearc
o |‘:3| Operations: stubs jatotutorial main. GoogleSeard
B @ doSetCachedPage
B 2 doSpelingSuggestion

B & doGoogleSesrch

1 |§:§ §:| [»
Selected Binding: fdoGoogleSearchil

Ok Cancel

2. Navigate down the operation path where the fields in the TiledView are bound.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 167

dlSelect a field binding and click DK to add field x|

Browyzesfdd Ohject Field Bindings

e Properties: stubs jatotutarial main GoogleSearchiodelZencClient GoogleSearch =
@ ™ Operstionz stubs jatotutorial main. GoogleSearchiodelGenclient. GoogleSeard
B @ doSetCachedPage
B 2 doSpelingSuggestion
@ @ doSoogleSesrch
o B FReturns: stubsz jatotutorial main GoogleSearchiodelGenClient Google
&= "',., directoryCategories -= stubs jatotutorial main GoogleSearchiode
@ [documentFittering -= boolean
@ [endindex -= int

@ [a estimatelsExact -= boolean
@ [estimatedTotalResutsCount -= int
o "',., resultElements -= stubs jatotutarial main GoogleSearchiodelZen
@ [a URL -= String
@ [cachedSize -= String
0 "' directoryCategory -= stubs jatotutorial main. GoogleSearchivio
@ [& directoryTitle -= String
@ [& hosthlame -= String
@ [relatedinformationPresent -= boolean
@ [& snippet -= String
@ & summary -= String
@ [& title -= String |
@ [sesrchComments = String il
4 [: | ¥]

Selected Dataset. doGoogleSearch.RESULT:resultElements

Ok Cancel

3. Select the parent node of the fields: resultElements

Notice the bold-faced Selected Dataset value at the bottom of this editor:
doGoogleSearch. RESULT:/resultElements.

Although it does not appear to be selectable, you can use your mouse to click/drag
select it.

168 Sun ONE Application Framework Tutorial * October 2003

© [0 title = String |
@ [sesrchComments -= String el
4 [[»]
Selected Dataszet: duGuugIeSearch.RESULT:J'resuItEIemerrts%
(8].4 Cancel

4. Highlight it and press Ctrl-C to copy the value to the buffer.

5. You can now Cancel out of this editor.
Do not click OK, as doing so adds a field to your Web service model. Although there
is no harm in this, you do not need the field.

6. Select the SearchResultsPagelet TiledView node, and paste the value into its
Primary Model Dataset Name property.

Add the Pagelet to a Page

A pagelet cannot display without the help of a root view. A page (a ViewBean) is a
root view. A root view is a container view that can contain other views, but cannot
be contained by another container view. All view hierarchies must have a root view.
How many levels of views below the root view is completely arbitrary and up to the
developer.

This is much like PC filesytems with drives and directories. A drive (analogous to a
page) is always at the top of every absolute path (the root), and there are never any
drives that are not at the top level of the path.

Directories (analogous to pagelets) must be contained under drives or other
directories. These directories can be nested arbitrarily deep under a drive.

Files (analogous to display fields) must be contained by drives or directories. Files
cannot contain other files, directories, or drives.

1. Expand the GoogleSearchPage node.

2. Right-click the GoogleSearchPage's Visual Components node, and select Add
Visual Component.

This launches the Component Browser.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 169

170

#|Component Browser

Chooze a component from the choices below:

o Current &pplication Componerts
@ 3 jatotutorial
8 main
&= SearchResuttsPagelet %
@ [stubs
@ &l Sun ONE Application Framework Component Likbrary

el jatotutorial main SearchResutsPagelet
clazs:

L A bazic container viesy that iterates aver an
De=crigtion:

azzociated model's data

Ok Cancel

3. Expand the Current Application Components node.

4. Expand jatotutorial.

5. Expand the main node.

6. Select the SearchResultsPagelet TiledView component.
7. Click OK.

Sun ONE Application Framework Tutorial * October 2003

o] GoogleSearchPage
& B Java Source
@ 8 JSP Pages
@ B mon-visual Components
9 ﬁ] Yizual Componerts

0= queryString
0= start
0= max
b= restrict
A zearchTime
A startindex
A endindex
A estTotal
BB ey
filter
safeSearch
= zearch

o] searchResultzPagelet]
& A (itle
e A ur

@ A zummary
@ FE |LoginPage
- MaintoduleServiet
o] SesrchResuttsPagelst
& B Java Source
@ ISP Pagelets
@ B mon-visual Components
9 ﬁ] Yizual Componerts

A
A
A

The SearchResultsPagelet TiledView is added as a visual component under the

title

Lirl
SUmMmary

GoogleSearchPage just like the other visual components. Notice that the pagelet does
not have a JSP itself. The pagelet and the other visual components that are contained
by the pagelet will have tags added to the parenting page component's JSP page. A
pagelet component can be reused by multiple page components, but this is a topic

outside the scope of this tutorial.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page

171

Formatting the JSP

1. Open the JSP by double clicking the GoogleSearchPage JSP page node.
At the bottom of the JSP, the TiledView pagelet and contained display field tags have
been inserted, but without any formatting.

You can add all the HTML markup you want, but the display field tags that belong
to the SearchResultsPagelet TiledView must be nested inside of the
jato:tiledview tags.

2. Feel free to be creative with the HTML formatting or use the following content to
get you started.

Note — All of this content is inserted just before the ending JATO form tag
(</jato:form>), leaving the current content untouched. All of the content between
the body tags is being presented here. However, only the bold code needs to be
added.

172 Sun ONE Application Framework Tutorial * October 2003

<body>
<jato:form name="GoogleSearch" method="post">

<jato:hidden name="key"/>
<hl>Google Search</hl>

<h2>Search Criteria</h2>

Search for: <jato:textField name="queryString"/>

Start: <jato:textField name="start"/>

Max results: <jato:textField name="max"/>

<jato:checkbox name="filter" label="Filter?"/>

<jato:checkbox name="safeSearch" label="Safe Search?"/>

Restrict: <jato:textField name="restrict"/>

<jato:button name="search"/>

<hr size="3">

<h2>Results</h2>

Search Time: <jato:text name="searchTime"/>

<jato:text name="startIndex"/> to <jato:text name="endIndex"/>
of <jato:text name="estTotal"/>

<jato:tiledView name="searchResultsPageletl">

<hr size="1">

Title: <jato:text name="title" escape="false"/>

<a href="<jato:text name='url'/>" target="_blank">
<jato:text name="url"/>

Summary: <jato:text name="summary" escape="false"/>

</jato:tiledview>

</jato:form>
</body>

A few things above need to be explained:

First, take a look at the escape attributes for the title and summary field tags. The
default is true, which means escape all special characters. This means that any
HTML markup that is returned in the value of this field will be visible to the end
user. This Web service places bold tags () around any words that match the
query string that was entered by the end user. So, by specifying escape=false, you
are telling this tag that you want the markup to be rendered as HTML markup, not
displayed to the end user. Experiment with this attribute by making one tag false and
the other frue to see the difference.

Chapter 19 Tutorial—Section 4.4 Add Results Listing to the Google Search Page 173

174

Second, notice that there are two occurrences of the tag that represents the url field.
A simple copy/paste of the tag allows you to display the same dynamic data many
times. In this case, the first instance of the tag will populate the href attribute of the
anchor tag (<a href="...").

Notice also that the name attribute of this instance of the url field tag uses single
quotes. This is because this tag is contained inside of double quotes for the href
attribute value. Using double quotes nested inside of double quotes should render
perfectly fine at runtime, but many HTML editors will indicate an error condition for
this case. Using the single quotes inside the double quotes should remedy these
situations.

The second instance of the url field's tag is used to display it as the link text to the
user.

Everything between the two jato:tiledview tags will appear once per row of
data that is returned (five times in this example).

Sun ONE Application Framework Tutorial * October 2003

CHAPTER 20

Tutorial—Section 4.5
Test Run the Google Search Page

This chapter describes how to run your Sun™ ONE Application Framework
application.

Task 5: Test Run the Google Search Page
with Results

Since you have created a new class and made modifications to two other classes, be
sure to compile/deploy the application.

. Right-click the Application Classes node, and select the Compile All action.

If you are running on Sun ONE Application Server, you must Deploy the application
when changes are made.

. Select the Sun ONE Application Framework Application node (JatoTutorial), and

click the Deploy button on the Sun ONE Application Framework toolbar.

. Select the GoogleSearchPage node, and click the Execute Page (Redeploy) button

Using this execute and redeploy option restarts the server to ensure the server picks
up all changes and does not use any cached resources.

A default browser starts the application.

The results portion of the page initially have zeroes for values. The search returns
values for those fields and a list of five links that satisfy the query string.

175

Try a Search

1. Enter a search query string.
In the figure shown below, the Search for is lacrosse.

2. Click the Search button.

176 Sun ONE Application Framework Tutorial * October 2003

_iBix

. File Edit Wew Go Bookmarks Tools Window Help

|
o @Q O @ Q |¢http:,l',l'Iocthost,l'JatoTutor | [@kSearch] c-;:_go @

. B, EMal 4 Home G Radia €l Search | EdBackmarks EPersonal E3Triathlan FoLiFe 3

E':l ¢ http:fflocalhost/Jato, . ain/GoogleSearchPage] B

Google Search

Search for: W
Start: [0
MaxResults: [
Restrict Search: I—
I Filter?
I™" Safe Search?

Search I

Search Time: 0.108852 Results 1 to 5 of 1710000

Title: U5 Lacrosse -- The Governing Body of Tlen's & Wornen's Lacrosse
httpihanana Jacrosse.o
Surnrnary: This i the nationsl governing body of Tacresse in the Urdted States with a bimonthly Lacrosse Idagazine.

Title: Lacrosse
http e e-lacrosse com/
Surnrnary: Wornthly onlive magazine with lacrosse information, scores, and reviews.

Title: LACROSSE COM

hittpifanana Jacrosse cornf
Surnrnary: Full range for lacrosse gear and accessories for men and womer.

Title: LaCrosse Footwear
httpoiwng Jacrosse-outdoors corm
Surnrnary: Desighe, develops, manifaetures and markets premmium quality protecttee footwear and rairowear, such...

Title: Wartior Lacrosse : Lacrosse Stick, Lacrosse Equiprient, Lacrosse ...
httpiwngw wrarrorlacrosse com'
Surnrnary: Product specifications for this manufacturer's line of heads, handles, gloves and protectbee equipruent.

D2 A S B [ome | skl

3. Try other searches to see what results you receive.

Chapter 20 Tutorial—Section 4.5 Test Run the Google Search Page 177

178 Sun ONE Application Framework Tutorial October 2003

Index

A

Add a ViewBean, 33

Add JDBC Datasource option, 53

Add Model button, 61

Add Page button, 71

Advanced Tip - Modules, 31

Alternative runtime environments, 49

Application Framework application,
description, 18

Application Framework applications, how
organized, 18

Application Framework JDBC Datasource
wizard, 53

Application Framework module, description, 18

application layout, observe, 29

Application Location panel, 26

Application Name folder, select, 45

application pages, link, 51

Application Properties panel, 27

Application Servlet, 30

application servlet not required, 31

application servlet, JatoTutorial AppServletBase,
super class, 30

Application, Run the, 99

application, tutorial, about, 19

Associate JSP panel, 35,73

assumptions for this tutorial, 15

audience for this tutorial, 15

Auto Retrieving Models combo box, 83

Auto Retrieving Models custom editor, 83

Auto Retrieving Models property, 83

base directory, default, 27

Basic ViewBean option, select, 35
basics covered in tutorial, 15
Before You Begin, 13 to 14

Bind Display Fields panel, 75
Bound fields list box, 76

Button Command Descriptor, configure, 109

Button Component, add, 78

(o

Certification, QA, 14

Choose Template panel, 25

Columns node of the CustomerModel, 68
Command Component, create, 103
Command Descriptor editor, 79
Command Descriptor property, set, 81
comments, send to Sun, 12
Component Palette, 78

Create an Application Wizard, 25
Current Application Components, 75
Customer Page, add hidden field, 84
Customer Page, create, 71

Customer Page, test run, 91

customer record, enable button to update, 78

179

Customer Update, test, 92
CustomerMode, Create, 61

CustomerModel object, created in main module, 66

CustomerPage, 77
CustomerPage node, 83

D

deployment step required, 46
Design-Time Resources folder, 53
directory location for new application, 25
Display Fields, add to Login page, 37
documentation

accessing, 11

E

events, module servlet, about, 30
execute Method, add code to, 107
Execute Page (Redeploy) button, 47
Execute Page button, 47

F

Features, Application Framework, 13
feedback, for Sun, 12

first page of application, create, 33
front controller servlet, 31

G

Getting Started, 15, 15 to 20

Google Search Page, create, 135

Google Search Page, test run, 155

Google Search Page, test run, with results, 175

Google Web service software SDK, download, 129

H

handleLoginRequest Method in LoginPage,
edit, 95

HREF Command Descriptor, configure, 118
HREF tag in Customer JSP, format, 123
HREF, add to a Customer page, 117

infrastructure, need to create, 25

J

J2EE application, description, 18
J2EE component, description, 17
J2EE module, description, 17

J2EE Web application, description, 17

J2EE/Sun ONE Application Framework
Terminology, 17

JDBC datasource panel, 54

JDBC Datasources, 53

JDBC Datasources node, 53

JDBC Datasources, create additional, 53
JDBC SQL Model, create, 61

JDBC URL, makes connection to database, 59
JSP Content, format, 152

JSP, format the, 88

JSP, formatting, 172

L

location, directory, for new application, 25
login name, invalid, 48

Login Page, create, 33

Login Page, link to Customer Page, 95
Login Page, test run, 45, 46

Login, test a successful, 48

Login/Logout Command, test run, 125
LoginPage, 46

LoginPage node, 37

M
main module folder, 61
MainModuleServlet, 31

180 Sun ONE Application Framework Tutorial ¢ October 2003

Manual Code Technique, 148

Model Associations panel, 74

Model Auto Retrieve, making, 82

Model Field Properties tab in property sheet, 68
Model’s Key Field(s), mark, 67

Module Properties panel, 28

Module Servlet, 31

module servlet hierarchy, can be customized, 31
module, only one in this application, 31

N
New App Directory field, 27
New datasource name textbox, 55

Non-JNDI Enabled Containers, add connection
code for, 68

Non-Visual Components node, 81

o)

Operation Name property, 81

organization of Application Framework
applications, 18

P

Page Component, add, 135

Pagelet, add to a page, 169

part number, IDE Guide, 12

Point & Click Technique (code-free), 148

PointBase driver, 49

PointBase Network Server (database server),
starting, 51

Preface, 9 to 12

Primary Model Dataset Name, getting correct, 166

Q
QA Certification, 14

R

RDBMS database, assumption, 51
related documentation, 11

Rename option, 40

RequestHandler property, 79

Runtime Environments, alternative, 49

S

Sample Database, connect to, 51
Search Button, enable, 147
Search, try a, 156, 176

Section 4.1, Prepare to Create a Web Service
Model, 129 to 134

Section 4.2, Create the Google Search Page, 135 to
154

Section 4.3, Test Run the Google Search Page, 155 to
156

Section 4.4, Add Results Listing to the Google
Search Page, 157 to 174

Section 4.5, Test Run the Google Search Page, 175 to
177

Select connection combo box, 55
Select Database Tables page, 64
Select Datasource page, 63

Select Model Type panel, 62

Select Table Columns page, 65
Select View Type panel, 72

servlet classes created, 29

Settings & Configuration folder, 53
SQL Database, accessing, 51
SQL-based model, add, 51
SQL-based model, add page to display data, 51
Static Text Field option, 38

success message, 48

successful login, test, 48

Sun documentation, accessing, 11

Sun ONE Application Framework
Primary Features, 13

Sun ONE Studio editor display, 37
Sun ONE Web Application, new, 25
Sun technical support, 12

Index 181

super class, application servlet, U
JatoTutorial AppServletBase, 30

Unsuccessful Login, test, 48
support, technical, 12

Use formatting to beautify fields on JSP - option, 36
Use formatting to beautify fields on JSP check

box, 74
T UserAccessCommand Component, create, 103

technical support, 12

Terminology, J2EE/Sun ONE Application
Framework, 17 \Vj

TiledView Pagelet Component, configure, 164

TiledView Pagelet, create, 157

TiledView, add, 157 ViewBean - created, 77

Tomcat (and other non-JNDI containers) SQL ViewBean, add, 71
Connection Preparation, 57

tree, Sun ONE Application, 29
tutorial basics, 15

Tutorial Sections (Links to), 21 to 23
Tutorial, about, 19

tutorial, goal of, 16

View beans tab, Basic ViewBean option, 35
View Location panel, 34

Visual Components node, 37
Visual Components, add more to page, 142

w

Tutorial-Section 1.1, Application Infrastructure, 25 Web Application, compile, 45

to 31 Web Service Model, create, 130
Tutorial-Section 1.2, Create Login Page, 33 to 44 Web Service SDK, download, 129
Tutorial-Section 1.3, Test Run the Login Page, 45 to Web Service User Registration and

49 Downloading, 129
Tutorial-Section 2.1, Prepare Application to Access Web Service, register to use, 130

SQL Database, 51 to 59 writing Application Framework applications,
Tutorial-Section 2.2, Create the CustomerModel, 61 discussion, 16

to 69
Tutorial-Section 2.3, Create Customer Page, 71 to

88

Tutorial-Section 2.4, Test Run the Customer
Page, 91to 93

Tutorial-Section 2.5, Link Login Page to Customer
Page, 95 to 97

Tutorial-Section 2.6, Run Application, 99 to 100

Tutorial-Section 3.1, Create a Command
Component, 103 to 115

Tutorial-Section 3.2, Add a Logout Link to the
Customer Page, 117 to 123

Tutorial-Section 3.3, Test Run the Login/Logout
Command Component, 125 to 127

182 Sun ONE Application Framework Tutorial * October 2003

	Sun™ ONE Application Framework Tutorial
	Contents
	Preface
	Before You Begin
	Primary Features of the Sun ONE Application Framework
	QA Certification

	Getting Started
	Introduction
	Writing Sun ONE Application Framework Applications
	J2EE/Sun ONE Application Framework Terminology
	How Sun ONE Application Framework Applications Are Organized

	About the Sun ONE Application Framework Tutorial

	Tutorial Sections (Links to)
	Sections 1.1—1.3
	Sections 2.1—2.6
	Sections 3.1—3.3
	Sections 4.1—4.5

	Tutorial—Section 1.1 Application Infrastructure
	Task 1: New Sun ONE Web Application
	Create an Application Wizard
	Application Servlet
	Module Servlet
	Advanced Tip - Modules

	Tutorial—Section 1.2 Create Login Page
	Task 2: Create the Login Page
	Add a ViewBean
	Add Display Fields to the Login Page
	Add Code to the Login Button

	Tutorial—Section 1.3 Test Run the Login Page
	Task 3: Test Run the Login Page
	Compile the Web Application
	Test Run the Login Page
	Test a Successful Login
	Test an Unsuccessful Login
	Alternative Runtime Environments

	Tutorial—Section 2.1 Prepare Application to Access SQL Database
	Task 1: Accessing a SQL Database
	Connect to the Sample Database
	JDBC Datasources
	Tomcat (and other non-JNDI containers) SQL Connection Preparation

	Tutorial—Section 2.2 Create the CustomerModel
	Task 2: Create the CustomerMode
	Create a JDBC™ SQL Model
	Mark the Model's Key Field(s)
	Add Connection Code for Non-JNDI Enabled Containers

	Tutorial—Section 2.3 Create Customer Page
	Task 3: Create the Customer Page
	Add a ViewBean
	Add a Button Component
	Making a Model Auto Update
	Add a Hidden Field to the Customer Page
	Format the JSP

	Tutorial—Section 2.4 Test Run the Customer Page
	Task 4: Test Run the Customer Page
	Test a Customer Update

	Tutorial—Section 2.5 Link Login Page to Customer Page
	Task 5: Link the Login Page to the Customer Page
	Edit the handleLoginRequest Method in LoginPage

	Tutorial—Section 2.6 Run Application
	Task 6: Run the Application

	Tutorial—Section 3.1 Create a Command Component
	Task 1: Create a Command Component
	Create the UserAccessCommand Component
	Add Code to the execute Method
	Configure a Button's Command Descriptor

	Tutorial—Section 3.2 Add a Logout Link to the Customer Page
	Task 2: Add an HREF to a Customer Page
	Configure an HREF's Command Descriptor
	Format the HREF tag in the Customer JSP

	Tutorial—Section 3.3 Test Run the Login/Logout Command Component
	Task 3: Test Run the Login/Logout Command

	Tutorial—Section 4.1 Prepare to Create a Web Service Model
	Task 1: Web Service User Registration and Downloading
	Download the Web Service SDK
	Register to Use the Web Service
	Create the Web Service Model

	Tutorial—Section 4.2 Create the Google Search Page
	Task 2: Create the Google Search Page
	Add a Page Component
	Add More Visual Components to the Page
	Enable the Search Button
	Manual Code Technique
	Point & Click Technique (code-free)
	Format the JSP Content

	Tutorial—Section 4.3 Test Run the Google Search Page
	Task 3: Test Run the Google Search Page
	Try a Search

	Tutorial—Section 4.4 Add Results Listing to the Google Search Page
	Task 4: Create a TiledView Pagelet
	Add a TiledView
	Configure the TiledView Pagelet Component
	Getting the Correct Primary Model Dataset Name
	Add the Pagelet to a Page
	Formatting the JSP

	Tutorial—Section 4.5 Test Run the Google Search Page
	Task 5: Test Run the Google Search Page with Results
	Try a Search

	Index

