
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ ONE Application Framework
Component Author’s Guide

Sun™ ONE Studio 5 update 1

Part No. 817-4362-10
October 2003, Revision A

www.sun.com
http://www.sun.com/hwdocs/feedback

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document.

En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent l'utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFAÇON.

Contents

Preface 7

How This Book Is Organized 7

Using UNIX Commands 8

Related Documentation 8

Accessing Sun Documentation 9

Contacting Sun Technical Support 10

Sun Welcomes Your Comments 10

1. Overview and Component Architecture 11

Component-Based Development (CBD) 11

What is a Sun ONE Application Framework Component? 12

Sun ONE Application Framework Component Libraries 13

The Sun ONE Application Framework Component Library 14

The Component Class 14

The ComponentInfo Class 15

2. Developing Components 17

Develop Your First Component 17

Decide the Type of the Component 17

Create the Component Class 18
3

Create the ComponentInfo Class 19

Create the Component Library Manifest 21

Create the Component Library JAR File 22

Test the Component 23

Ship It! 29

Sun ONE Application Framework Components in More Detail 29

Distributable vs. Application-Specific (Non-Distributable) Components 30

Extensible vs. Non-Extensible Components 31

ComponentInfo in More Detail 37

Specialized ComponentInfo Interfaces 40

ExtensibleComponentInfo 40

Other Types of Specialized ComponentInfo 40

Standard Implementations of ComponentInfo 41

3. Developing View Components 43

View Components 43

ViewComponentInfo 44

ContainerViewComponentInfo 44

Develop a Non-Extensible View Component 45

Create the Validator Interface 46

Create a Custom JSP TagHandler Class 51

Create the ComponentInfo Class 52

Create a New Tag Library TLD File 54

Augment the Component Library Manifest 56

Re-create the Component Library JAR File 58

Test the New Component 58

Ship It! 67

Develop an Extensible View Component 67

Create the MissingTokensEvent Class 69
4 Sun ONE Application Framework Component Author’s Guide • October 2003

Create the Sun ONE Application Framework Component Class 70

Create the Extensible Component's Java Template 72

Create the ComponentInfo Class 74

Augment the Component Library Manifest 77

Re-create the Component Library JAR File 78

Test the New Component 78

4. Developing Model Components 85

Model Components 85

ModelComponentInfo 85

ExecutingModelComponentInfo 85

Developing a Non-Extensible Model Component 86

Developing an Extensible Model Component 86

Key XML Document Model Design points 87

Create the ModelFieldDescriptor class 89

Create the Sun ONE Application Framework Component Class 91

Create the Extensible Component's Java template 100

Create the ComponentInfo Class 101

Augment the Component Library Manifest 105

Re-create the Component Library JAR File 105

Test the New Component 106

5. Developing Command Components 129

Developing an Extensible Command Component 129

Create the Extensible Component's Java template 133

Create the ComponentInfo Class 134

Augment the Component Library Manifest 136

Re-create the Component Library JAR File 137

Test the New Component 138
Contents 5

6. ConfigurableBeans (Non-Visual Components) 153

ConfigurableBeans (Non-Visual Components) 153

Configurable Bean Example: CommandDescriptor 160

7. Developing and Distributing Non-Extensible Model, Command and
ContainerView Components 165

Develop a Non-Extensible Model, ContainerView or Command Component 166

Distributing a Non-extensible Model, ContainerView or Command Component
169

The Object Definition File (non-extensible component metadata) 172

8. Design Actions 175

Developing Extensible Components which have Component Design Actions 175

What is a Component Design Action? 176

Exposing Design Action in ComponentInfo 177

A. Component Library Structure 181

Component Library Overview 181

Component Library Structure 181

The Component Manifest 182

Automated Unpacking of Component Tag Libraries (TLD) files 190

Automated Unpacking of "Additional Files" 192

Index 195
6 Sun ONE Application Framework Component Author’s Guide • October 2003

Preface

This Sun™ ONE Application Framework Component Author’s Guide describes the Sun
ONE Application Framework component architecture and the process whereby
component authors can design, create, and distribute new components. This book is
intended for prospective Sun ONE Application Framework component authors, and
assumes that these component authors are already familiar with the Sun ONE
Application Framework architecture.

How This Book Is Organized
Chapter 1, Overview and Component Architecture provides an overview of
Component-Based Development (CBD), Sun ONE Application Framework
Component Library, the Component Class, and the ComponentInfo Class.

Chapter 2, Developing Components provides a description of the fundamental steps
involved in creating, distributing, and using a Sun ONE Application Framework
component.

Chapter 3, Developing View Components provides a description of the fundamental
steps involved in developing view components.

Chapter 4, Developing Model Components provides a description of the
fundamental steps involved in developing model components.

Chapter 5, Developing Command Components provides a description of the
fundamental steps involved in developing command components.

Chapter 6, ConfigurableBeans (Non-Visual Components) introduces how the IDE
toolset makes use of the ConfigurableBean, the role it plays, and the relationship
between Sun ONE Application Framework and the ConfigurableBean types.
7

Chapter 7, Developing and Distributing Non-Extensible Model, Command and
ContainerView Components introduces the steps to develop and distribute non-
extensible Model, Command, and ContainerView components.

Chapter 8, Design Actions describes developing extensible components which have
component design actions, defines a component design action, and shows how to
expose design action in ComponentInfo.

Chapter A, Component Library Structure offers an overview of the component
library and the component library structure, and details the component manifest,
with a description of automated unpacking of component tag libraries (TLD) files,
and automated unpacking of "Additional Files".

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. See the following for this information:

� Software documentation that you received with your system

� Solaris™ operating environment documentation, which is at

http://docs.sun.com

Related Documentation

Application Title Part Number

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Overview, Sun™ ONE Studio 5 update 1

817-4360-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework Tutorial,
Sun ONE Studio 5 update 1

817-4358-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework IDE
Guide, Sun ONE Studio 5 update 1

817-4104-10
8 Sun ONE Application Framework Component Author’s Guide • October 2003

http://docs.sun.com

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Developer's Guide, Sun ONE Studio 5
update 1

817-4359-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework
Component Reference Guide, Sun ONE
Studio 5 update 1

817-4661-10

Sun ONE Application
Framework 2.1

Sun ONE Application Framework Tag
Library Reference, Sun ONE Studio 5
update 1

817-4361-10

Application Title Part Number
Preface 9

http://www.sun.com/documentation

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun ONE Application Framework Component Author’s Guide, part number 817-4362-10
10 Sun ONE Application Framework Component Author’s Guide • October 2003

http://www.sun.com/hwdocs/feedback
http://www.sun.com/service/contacting

CHAPTER 1

Overview and Component
Architecture

Component-Based Development (CBD)
Component-Based Development (CBD) is a highly regarded engineering strategy
whereby the production, distribution, and consumption of components contribute to
more efficient and reliable application development. Mature CBD combines a robust
component model with a component-aware IDE.

The producers of components (component authors) are responsible for developing
components according to the specification of a particular component model
(component architecture). A component model formalizes component structure and
specifies a means of component distribution. A mature component model also
allows each component to be self-describing, so that it can advertise its features to
component consumers. Components are typically distributed as collections known
as component libraries.

Components can come in a variety of flavors intended for use in different
development scenarios. For example, components can be designed in a very generic,
or horizontal fashion to cut across a range of specific development needs. These
components tend to be the broadest components available, with their strength being
flexibility and customizability. These types of components are usable by many
different application developer populations, across projects and companies, and in
the Web application space, and generally are not biased toward any particular look
and feel. Alternatively, other components can be designed to satisfy a narrower,
vertical set of development needs. These components are tailored to a particular
usage scenario, allowing them to provide high-level features and high ease-of-use.
These types of components are less broadly usable, but because their scope is more
narrowly defined, they can keep parameterization to a minimum and use a
particular look and feel.
11

The consumers of components are typically application developers. In CBD,
application development consists primarily of aggregating or assembling a
particular application from a collection of reusable components. The greater the
coverage provided by the components, the smaller the amount of application-
specific code.

A component-aware IDE is necessary to expose components to the component
consumers. The IDE leverages the self-describing nature of components to
dynamically present components for instantiation and configuration. The IDE is the
final piece of the puzzle, but it is very significant. Without a component-aware IDE,
the component model exists only on paper. Without a component-aware IDE,
developers can only use a component as they would any other Java class, through its
public API. A component-aware IDE, on the other hand, allows developers to
browse through collections of components, visually assemble components into
application entities, and configure components by declaratively filling in
component-specific property sheets.

The rest of this document describes the Sun™ ONE Application Framework
component model, and the manner in which component authors can leverage that
component model to create powerful component libraries.

What is a Sun ONE Application Framework
Component?
Since its inception, the Sun ONE Application Framework application has supported
a component model for certain types of objects. However, the prior component
model relied on developers to learn each component's API and write code to use that
component in their applications. Although this level of functionality was sufficient
and provided a significant productivity advantage over contemporary competitors,
the Sun ONE Application Framework version 2.1 has significantly extended its
component model to encompass all types of primary Sun ONE Application
Framework application objects (Views, Models, and Commands). Furthermore, the
Sun ONE Application Framework module for the Sun™ ONE Studio now provides a
full featured, component-aware IDE that creates a visual development environment
for Sun ONE Application Framework applications.

In Sun ONE Application Framework 2.1 terms, a component is one of the various
types of supported component classes (Views, Models, and Commands) in
conjunction with metadata information. This metadata is encapsulated in a Sun ONE
Application Framework-specific class called a ComponentInfo class. At design-
time, the Sun ONE Studio can inspect the ComponentInfo and present the
component in an easy-to-use visual fashion.
12 Sun ONE Application Framework Component Author’s Guide • October 2003

The metadata stored in ComponentInfo classes is intended to enable automated use
of the component in a development environment, such as the Sun ONE Studio.
Developers can still manually create and use various types of components in their
applications without defining a ComponentInfo class.

Sun ONE Application Framework Component
Libraries
The Sun ONE Application Framework component model requires that components
intended for discovery by the IDE toolset must be packaged into a specific
component library format. A Sun ONE Application Framework component library
consists of a standard JAR file containing the component classes, ComponentInfo
metadata classes, and a single component library manifest file. The component
library manifest file is described in detail later in this document.

Note – A component library JAR can contain any number of non-component related
classes. It is just a standard JAR file with some component-model-specific additions.

Application developers make use of the Sun ONE Application Framework
component libraries by placing them in their Web application's WEB-INF/lib
directory. The IDE toolset automatically recognizes and mounts any component
libraries placed in that directory. After the IDE toolset has discovered and inspected
the libraries (it might take a minute or two due to background thread latency), the
library components are available for use within the application. The components are
then said to be registered with the IDE toolset.

Hint: The library manifest inspection and component registration process recurs
every time a Sun ONE Application Framework application is remounted within the
IDE toolset. This is natural and should be expected, because the component model is
entirely dynamic. However, both component authors and application developers
should be aware of this process and understand that the accidental or intentional
removal of a component library from the application’s WEB-INF/lib directory
results in the expected omission of those components the next time the application is
mounted.

Sun ONE Studio troubleshooting hint: A common mistake of newcomers to the
Sun ONE Studio is to improperly mount a Web application. The Sun ONE Studio's
Web application module (upon which the Sun ONE Application Framework toolset
module is built) only recognizes a mounted file system as a Web application if the
mount point corresponds with the root of the Web application structure. If you do
not mount the Web application at its root directory, the Sun ONE Studio treats it as a
conventional file system, and fails to provide the Sun ONE Application Framework
application view that you expect. Keep this in mind as you build and test your first
Chapter 1 Overview and Component Architecture 13

components. The easiest way to avoid any confusion in this regard is to use the
Mount Sun ONE Web Application action of the IDE instead of the Mount File
System action.

The Sun ONE Application Framework
Component Library
The Sun ONE Application Framework Component Library contains the core
interfaces, run-time classes, and many basic components that you use to create a Sun
ONE Application Framework application. The standard Sun ONE Application
Framework Component Library is packaged as a single JAR file, and should appear
in your application's WEB-INF/lib directory.

When creating a Sun ONE Application Framework application using the IDE toolset,
the current version of the standard Sun ONE Application Framework Component
Library is automatically added to the application's WEB-INF/lib directory. If you
open an application created in a previous version of the IDE toolset, you might be
prompted to upgrade the application, including the Sun ONE Application
Framework run-time library.

The Component Class
A Sun ONE Application Framework component class is the class which defines a
Sun ONE Application Framework run-time type, a View, a Command, or a Model.

The author of the component class is only concerned with design-time
considerations to the extent that a JavaBean developer would do so. That is to say, as
a component author, you must anticipate the properties which you would like to
expose to design time configuration and define appropriate get and set methods.
However, unlike the JavaBean model, the Sun ONE Application Framework
component model does not eagerly expose all get and set methods as properties.
That is because the Sun ONE Application Framework recognizes that there are many
get and set methods in the Sun ONE Application Framework core from which the
components derive which are not appropriate for design time configuration.
Therefore, the Sun ONE Application Framework component model limits the
exposed properties to those which are explicitly specified in the companion
ComponentInfo class.
14 Sun ONE Application Framework Component Author’s Guide • October 2003

The ComponentInfo Class
The ComponentInfo class is the heart and soul of the Sun ONE Application
Framework 2.1 component model. Logically speaking, a Sun ONE Application
Framework component can be referred to as a tuple comprised of a component class
and a ComponentInfo class. The ComponentInfo class provides the metadata that
is introspected by the IDE toolset to provide the component's design-time presence.
When you author a ComponentInfo class, you can focus exclusively on design-time
considerations. The ComponentInfo class plays no run-time role in the Sun ONE
Application Framework.
Chapter 1 Overview and Component Architecture 15

16 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 2

Developing Components

Develop Your First Component
This chapter provides a description of the fundamental steps involved in creating,
distributing, and using a Sun ONE Application Framework component.

Approach this as an exercise, and actually build and test drive the component. After
completing this section, you should have a good understanding of the process. Do
not worry about trying to understand every detail at this point. The rest of this
document delves into details concerning the various types of components, the
details of the metadata formats, and the extra optional features available to
component authors.

This section assumes basic familiarity with the Sun ONE Application Framework
application.

Decide the Type of the Component
An ultra-simple example is contrived to focus on technique. You will create a new
DisplayField component called "MyTextField". The objective is to have this
component expose a new property called "Foo" that will take a boolean value.
Application developers will be able to visually select MyTextField and add it to
their Sun ONE Application Framework pages. It is expected that the component will
have all of the properties of the standard Sun ONE Application Framework
TextField component, plus the new Foo property.
17

Create the Component Class
A new component class is not always needed in Sun ONE Application Framework.
This subtlety is discussed later in this document. This example, however, does
require a new component class, so you will begin with that.

1. In any Java editor create the package mycomponents.

2. Create the mycomponents.MyTextField class.

3. Make MyTextField extend com.iplanet.jato.view.BasicDisplayField.

4. Implement the appropriate constructor for the component type.

All DisplayField components must implement a two-arg constructor that takes a
View "parent" and a String "name". The IDE toolset assumes that all DisplayField
components will implement this constructor.

5. Add a get and set method for the new boolean property named "Foo".

After these steps, mycomponents/MyTextField.java should look as follows:

package mycomponents;

import com.iplanet.jato.view.*;

/**
*
* @author component author
*/

public class MyTextField extends BasicDisplayField {

/** Creates a new instance of MyTextField */
public MyTextField(View parent, String name) {

super(parent, name);
}

public boolean getFoo() {
return foo;

}

public void setFoo(boolean value) {
foo = value;

}

boolean foo;
}

18 Sun ONE Application Framework Component Author’s Guide • October 2003

Although you are creating a new property on this component, how this property
actually interacts with the component at run-time is not defined. That is up to you as
the component author and is beyond the scope of this part of the document.

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example, you extend an existing
ComponentInfo and, in true OO style, simply augment it. You could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

1. Create the class mycomponents.MyTextFieldComponentInfo.

2. Make MyTextFieldComponentInfo extend
com.iplanet.jato.view.html2.TextFieldComponentInfo.

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic
design-time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you want to expose in the IDE.

Utilize inheritance to add the new Foo property to those properties already defined
in TextFieldComponentInfo.

After these steps, mycomponents/MyTextFieldComponentInfo.java should
look like the code that follows:

Note – In the following sample code, for demonstration purposes, String values
have been embedded directly. If you anticipate the need to localize your display
strings, utilize resource bundles.

package mycomponents;

import java.util.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.view.html2.*;

public class MyTextFieldComponentInfo extends TextFieldComponentInfo {

public MyTextFieldComponentInfo()
{

Chapter 2 Developing Components 19

super();
}

public ComponentDescriptor getComponentDescriptor() {

// identify the component class
ComponentDescriptor result=new ComponentDescriptor(

"mycomponents.MyTextField");

// The name will be used to determine a name for the component instance
result.setName("MyTextField");

// The display name will be used to show the component in a chooser
result.setDisplayName("MyTextField Component");

// The description will be the tool tip text for the component
result.setShortDescription("A simple demonstration of a new component");

return result;
}

public ConfigPropertyDescriptor[] getConfigPropertyDescriptors() {

if (configPropertyDescriptors!=null)
return configPropertyDescriptors;

// Get any properties defined in the super class
configPropertyDescriptors=super.getConfigPropertyDescriptors();
List descriptors=new LinkedList(

Arrays.asList(configPropertyDescriptors));

ConfigPropertyDescriptor descriptor = null;

// Add the "foo" property
descriptor=new ConfigPropertyDescriptor("foo",Boolean.TYPE);
descriptor.setDisplayName("Foo Property");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptor.setDefaultValue(new Boolean(false));
descriptors.add(descriptor);

// Create/return the array
configPropertyDescriptors = (ConfigPropertyDescriptor[])

descriptors.toArray(
new ConfigPropertyDescriptor[descriptors.size()]);

return configPropertyDescriptors;
}

private ConfigPropertyDescriptor[] configPropertyDescriptors;
}

20 Sun ONE Application Framework Component Author’s Guide • October 2003

Create the Component Library Manifest
Sun ONE Application Framework components are packaged and distributed in
ordinary JAR files. Any classes (component, ComponentInfo, and any other ancillary
files) should be placed in the JAR in accordance with standard Java convention.
Additionally, the Sun ONE Application Framework requires that a component
library JAR contains a special Sun ONE Application Framework library manifest file.
This is a simple XML document that describes the collection of components in the
library. Library manifests might declare any number of components. In this case, just
declare the one component that you have just authored.

The Sun ONE Application Framework library manifest must be named
complib.xml. Within the JAR file, the Sun ONE Application Framework library
manifest must be placed in the /COMP-INF directory.

1. Create the file called complib.xml.

2. Add the minimum information to satisfy the Sun ONE Application Framework
library manifest requirements.

3. Add a component declaration for the MyTextField component.

After these steps, the COMP-INF/complib.xml file should look like the code that
follows:

Note – If you use a tool to create the XML file, be sure that it looks like this. Some
XML tools automatically insert a root element when you create the file. Make sure
the root element is <component-library> as indicated below. An improper XML file
will cause the IDE toolset to fail to discover your component library.
Chapter 2 Developing Components 21

Create the Component Library JAR File
JAR up the component classes so they can be ready for distribution as a library.

The name of the JAR file is arbitrary.

1. In this case, name the JAR file mycomponents.jar.

You can omit the Java source files from the JAR.

2. You should include in the JAR any necessary ancillary resources, such as icon
images or resource bundles. In this case there are none.

The mycomponents.jar internal structure should look like the code that follows:

<?xml version="1.0" encoding="UTF-8"?>
<component-library>

<tool-info>
<tool-version>2.1.0</tool-version>

</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>
<!-- Your icon here
<icon>

<small-icon>/com/iplanet/jato/resources/complib.gif</small-icon>
</icon>
-->
<interface-version>1.0.0</interface-version>
<implementation-version>20030221</implementation-version>

<component>
<component-class>mycomponents.MyTextField</component-class>
<component-info-class>mycomponents.MyTextFieldComponentInfo</component-

info-class>
</component>

</component-library>

mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
COMP-INF/complib.xml
22 Sun ONE Application Framework Component Author’s Guide • October 2003

Test the Component
Your library is now ready for testing and distribution. You should test it in a sample
project. This stage requires the use of the Sun ONE Studio with the Sun ONE
Application Framework module installed and enabled. If you have never built a Sun
ONE Application Framework application in the Sun ONE Studio, before continuing,
you should first complete the Sun ONE Application Framework Tutorial that is
included with the Sun ONE Application Framework document set.

Caution – You are free to test your component(s) in any existing Sun ONE
Application Framework application, however, you should create a new Sun ONE
Application Framework application to serve as the test application for all of the
example components that you will build in the course of completing the exercises
within this guide. The instructions that follow generally assume that the names for
your test objects were generated according to Sun ONE Application Framework
defaults (for example, Page1, and so on) and you will have an easier time following
the instructions if your test application's object names match those in the
instructions.

1. Create a new Sun ONE Application Framework application in the Sun ONE
Studio.

The name of the application is up to you.

2. From the filesystem, copy the new mycomponents.jar file into the WEB-INF/lib
directory within your test application.

3. Wait for the Sun ONE Studio background thread to discover that a new JAR has
been deployed in the application’s WEB-INF/lib directory.

This takes several seconds, depending upon the value Sun ONE Studio background
thread Refresh Interval. The library is fully recognized and functional when a new
library node appears under the Sun ONE Application Framework application's
Settings and Configuration -> Component Libraries node as shown below.
Chapter 2 Developing Components 23

4. Create a new Page (ViewBean) object.

Take the wizard defaults and the IDE names it "Page1".

5. Select and expand the newly created Page1 node.
24 Sun ONE Application Framework Component Author’s Guide • October 2003

6. Add an instance of "MyTextField Component" to Page1.

This can be accomplished in either of two equally valid user interface actions.

� First you can utilize the Component Palette (below).

� Expand the "Visual Components" section.
� Click the "MyTextField Component" item.

This adds an instance to whatever page node has focus at that moment.

� Alternatively, you can select Page1's Visual Components sub-node.

Right-click, and select the Add Visual Component action from the pop-up menu.

Note the generic icons for both the library "My First Component Library" and the
component "MyTextField Component". This occurs because, in this example, you
did not specify any specific icons. That is just one of the features that you learn
about in the rest of this document.
Chapter 2 Developing Components 25

The Component Browser (below) is an alternative to the Component Palette (above).
In the rest of this document, any instruction that involves adding a visual
component can be fulfilled by using either the Component Palette or the Component
Browser. They are functionally interchangeable, and users are free to use either, or
both, at all times.
26 Sun ONE Application Framework Component Author’s Guide • October 2003

After selecting the MyTextField Component from either the Component Palette or
the Component Browser, observe how a child View named "myTextField1" is added
to the page.

7. Select the child node myTextField1.

Observe how the IDE's property sheet has added Foo Property, the new custom
property, in addition to the inherited TextField component properties.
Chapter 2 Developing Components 27

Test the behavior of Foo Property to make sure it behaves the way you, as component
author, expect.

You should be able to assign Foo Property the value True or False.

8. In this example, set Foo Property to True.

9. Observe the code generation inside the Page1 java file.

You should see a block of code inside the createChildReserved method that
looks like the following code (the indenting in your code might differ from what you
see below):
28 Sun ONE Application Framework Component Author’s Guide • October 2003

Ship It!
Once you are done testing and refining your component, you can distribute the
component library JAR file to your developer community. It is up to application
developers to add the component JAR file to each application in which they want to
utilize the components.

Sun ONE Application Framework
Components in More Detail
Sun ONE Application Framework components are designed to enable application
developers to more rapidly define Sun ONE Application Framework run-time types
(Views, Commands, and Models). However, the manner in which Sun ONE
Application Framework components are integrated into the application developer’s
design-time experience varies in accordance with the range of Java's object oriented
opportunities (for example, class sub-typing vs. object instantiation).

As an experienced Java programmer, a Sun ONE Application Framework component
author should easily anticipate the manner in which Sun ONE Application
Framework application developers will integrate a new component into their
development processes. The component author will know that the application
developer expects to subclass one type of component, and instantiate another type of
component. Component authors understand that in some circumstances they can
distribute a component as a fully enabled, fully configured black box, and in other
cases they require the application developer to configure each usage of the
component.

The Sun ONE Application Framework component model and the IDE toolset
combine to empower component authors and application developers to exploit the
full range of Java object orientation. This section details the specific terminology that

...
else if (name.equals(CHILD_MY_TEXT_FIELD1)) {

mycomponents.MyTextField child =
new mycomponents.MyTextField(this, CHILD_MY_TEXT_FIELD1);

child.setFoo(true);
return child;

}
...
Chapter 2 Developing Components 29

the Sun ONE Application Framework component model uses to differentiate each
component's role as an object oriented building block. The discussion of components
is often filled with highly overloaded terms. To provide the grounds for a more
precise discussion of Sun ONE Application Framework components, some
terminology has been developed to avoid reliance on confusingly overloaded terms.

Distributable vs. Application-Specific (Non-
Distributable) Components
Technically speaking, every Sun ONE Application Framework object (Model, View
or Command) is a component. However, not all Sun ONE Application Framework
components are destined for distribution in a component library. Some components
are simply built as part of the standard process of building the application within
the Sun ONE Studio, in which every Model, View, and Command is, technically
speaking, a component. This distinction is acknowledged by referring to components
which are included in libraries as distributable components, and components which
are simply built within applications, as application-specific components, or non-
distributable components. This is purely a distinction of terminology, not a hard
formal distinction. Distributable components and application-specific component do
not differ by type. The distinction is merely a soft categorization, meant to help
distinguish the component author's role from the application developer's role.
Application developers develop application-specific components. Component
authors develop distributable components.

The first term, application-specific components, or non-distributable components
refers to components which are only reusable within the application in which they
are defined. They are not packaged into a component library. They generally do not
have an explicit ComponentInfo associated with them. As an example, when
application developers build a ContainerView or Model in their applications, they
are implicitly building application-specific components. This is akin to a
javax.swing application developer building an application specific panel or frame.
Because the IDE toolset knows how to manipulate these application-specific
components directly, they are usable within the same application without any
additional work by the developer. For instance, after creating a new application
specific Model, the application developer can then visually connect that new Model
to Views within the current application. Development of an application-specific
component is transparent and implicit and requires no component authoring
knowledge per se.

Application-specific (non-distributable) components are:

� Implicitly developed by the casual application developer.
� Designed for use only within the current application.
� Not accompanied by any explicit ComponentInfo.
30 Sun ONE Application Framework Component Author’s Guide • October 2003

By contrast, distributable components refers to components which are reusable
across many applications. Component authors package distributable components
into component libraries. Component authors typically develop an explicit
ComponentInfo class for each distributable component. Usually, the creation of a
distributable component requires more foresight in design due to its greater
ambition for reuse. To use the javax.swing analogy again, a distributable
component would be a new sub-type of javax.swing.JPanel which is distributed
for use in many new applications. In the Sun ONE Application Framework
application, a distributable component might be a new type of DisplayField, or a
specialized, but highly reusable type of ContainerView.

Distributable components are:

� Explicitly developed by someone with an understanding of the component model
(a component author).

� Designed for reuse across applications.

� Accompanied by an explicit ComponentInfo class.

� Packaged into a library for distribution.

Of course, in accordance with common bottom-up design practices, it is not
uncommon for an application-specific component to be explicitly "promoted" to
distributable status. This happens when a development team identifies it as a valid
candidate for reuse across applications. This is normal, expected, and encouraged.
The promotion of a application-specific component to distributed status merely
entails fulfilling the tasks that will be identified as standard for distributable
components.

Therefore, in deference to the simplicity/transparency of creating application-
specific components versus the relative complexity of authoring distributable
components, the bulk of this document is dedicated to describing the process of
authoring distributable components.

Extensible vs. Non-Extensible Components
In Sun ONE Application Framework component libraries, there is a formal
distinction between extensible and non-extensible components. Component authors
are responsible for designating a component as either extensible or non-extensible.
This distinction allows component authors to control the manner in which the
component-aware IDE toolset will expose a given component for usage by
application developers. The IDE toolset will expose both extensible and non-
extensible components in well-defined, but distinct fashions.

It is worth noting that while the distinction between extensible and non-extensible is
important to a component author, practically speaking, component consumers are
totally unaware of the distinction. That it to say, the IDE toolset will never present
the application developer with either of these terms. Rather, the IDE toolset will
Chapter 2 Developing Components 31

automatically manage these subtleties so that application developers can just
concentrate on building their applications. Application developers will generally
never need to worry about whether a component is extensible or not, or even
whether it has a ComponentInfo class.

Extensible Components

Extensible components are appropriate in those cases where the application
assembly calls for the declaration of a new Sun ONE Application Framework sub-
type (for example, a new type of Model, a new type of ContainerView, a new type of
Command).

The IDE toolset will present extensible components for direct sub-classing by
application developers. When an application developer selects an extensible
component from the list of available components, the net result will be that the IDE
toolset will create a new Java class that extends the selected component's class. A
component author should designate a component as an extensible component if it is
envisioned that the proper usage of a given component is through application
specific sub-typing. Effectively, the Sun ONE Application Framework dictates where
extensible components fit in. Wherever the Sun ONE Application Framework
framework designates that an application entity must be a sub-type of a framework
entity, that is where extensible components come into play.

Extensible components are designated by an <extensible-component> element within
the component library manifest, as shown in the following example:

Extensible components:

� Allow application developers to create new types which extend the extensible
component.

� Might be abstract.

� Can specify a component-specific Java file to serve as the template for the new
type.

Examples are: Extensible ViewBean, ContainerViews, Model or Command
components.

<extensible-component>
<component-class>com.iplanet.jato.view.BasicViewBean</component-class>
<component-info-class>com.iplanet.jato.view.BasicBeanComponentInfo</component-info-

class>
</extensible-component>
32 Sun ONE Application Framework Component Author’s Guide • October 2003

Non-Extensible Components

Non-extensible components are appropriate for those cases where the application
assembly calls for the simple declaration and configuration of instances.

The net result of an application developer selecting a non-extensible component is
that a new instance of the non-extensible component is declared in the application-
specific class. For example, whenever a developer adds a text field or a button to a
ContainerView, the IDE toolset will turn that design decision into a declaration of
an instance of the text field or button in ContainerView class. In this manner,
application developers populate the application-specific classes with instances of
non-extensible components. This is the classic "assembly" model of component based
development.

Again, the Sun ONE Application Framework dictates where this is appropriate. For
instance, in developing an application-level Page (ViewBean) or Pagelet
(ContainerView) component, the application developer expects to be able to add
child view objects (such as DisplayFields) to that component. Consequently, the IDE
toolset will present the application developer with a list of non-extensible
components for direct addition to the page or pagelet.

Non-extensible components are designated by a <component> element within the
component library manifest, as shown in the following example:

Non-extensible components:

� Allow application developers to easily declare and configure new instances of the
component.

� Cannot be abstract.

� Fine grained component example: DisplayField components.

� Coarse grained example: pre-packaged, fully configured non-extensible
ContainerViews, Models and Commands.

Extensible & Non-Extensible Components in the IDE

If you still find it confusing to distinguish extensible and non-extensible
components, it might help at this point to refer to the Sun ONE Studio to see how
the IDE toolset transparently exposes extensible and non-extensible components.

1. Open a Sun ONE Application Framework project and select a "module" folder.

<component>
<component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
<component-info-class>com.iplanet.jato.view.html2.ListBoxComponentInfo</component-

info-class>
</component>
Chapter 2 Developing Components 33

2. Right-click, and choose Add->Model or Add->Page (ViewBean) or Add->Pagelet
(ContainerView).

These actions invoke wizards which contain an embedded extensible component
browser pictured below.

3. Complete either of the wizards, and you will see that the IDE toolset creates a new
class that extends the extensible component's class.
34 Sun ONE Application Framework Component Author’s Guide • October 2003

4. Select an existing page or pagelet node.

Expand the top node so you can see its inner Visual Components node.

5. Select the Visual Components sub-node, right-click, and select the Add Visual
Component action.

This invokes the non-extensible component browser shown below.

6. Complete the selection of a child view and notice that this does not result in the
creation of a new class, but rather adds a child element to the currently selected
class.
Chapter 2 Developing Components 35

The figure above shows the Non-Extensible component browser employed in the
context of "Add Visual Component" action. This figure shows the browser fully
expanded to show two libraries and the current application's non-extensible
components.

In other areas of the IDE, the non-extensible component browser is used to select
Page/Pagelets, or Models, or Commands for assignment to certain property values.
For instance, wherever a Sun ONE Application Framework use relationship is
expressed in a property (for example, a View uses a Model), the property editor can
leverage the non-extensible component browser to enable the application developer
to select a valid target object.
36 Sun ONE Application Framework Component Author’s Guide • October 2003

For instance, properties of type Model Class Name are edited using a non-extensible
Component Browser which shows non-extensible Model components in the mounted
component libraries (if any), and also any Models which have been added to the
current application. Similar behavior applies to editing the "Command Class Name"
property, but in that case, Command components are selected instead of Models.

The figure above shows the Non-Extensible component browser employed in context
of a Model Class Name property editor. This figure shows the browser fully
expanded to show two libraries and the current application's non-extensible Model
components.

ComponentInfo in More Detail
The ComponentInfo class is the heart and soul of the Sun ONE Application
Framework 2.1 component model. Logically speaking, a Sun ONE Application
Framework component can be defined as a tuple comprised of a component class
and a ComponentInfo class. The ComponentInfo class provides the metadata that
is introspected by the IDE toolset in order to provide the component's design-time
Chapter 2 Developing Components 37

presence. When you author a ComponentInfo class, you can focus exclusively on
design-time considerations. The ComponentInfo class plays no run-time role in the
Sun ONE Application Framework.

Specific ComponentInfo classes must implement the
com.iplanet.jato.component.ComponentInfo interface, or one of its sub-
interfaces. ComponentInfo class names must end with the "ComponentInfo" suffix.
Whenever practical, the ComponentInfo class should share the same base name as
the component class (for example, Foo and FooComponentInfo).

Here is an early glimpse into the Sun ONE Application Framework Component
Library manifest. In the following snippet, you can see the simple declaration of a
component as a component class and ComponentInfo tuple. Note in this example
the extra designation of the <extensible-component> tag (for complete details of the
Sun ONE Application Framework component manifest, see The Component
Manifest, found in Chapter A, Component Library Structure.

However, the Sun ONE Application Framework allows ComponentInfo classes to
differ in base name from their associated component class. In fact, the Sun ONE
Application Framework allows more than one ComponentInfo class to be
associated with the same component class. As stated earlier, logically speaking, a
component is a tuple comprised of a component class and a ComponentInfo. The
surprise is that the same component class might participate in more than one of
these tuples.

This might not be immediately intuitive to most component authors, but it is a very
effective and powerful feature of the Sun ONE Application Framework component
model. For instance, in the com.iplanet.jato.view.html2 package, there are
several ComponentInfo classes which are actually associated with the same
component class. For example, the ListBoxComponentInfo,
RadioButtonsComponentInfo and ComboBoxComponentInfo classes all specify
com.iplanet.jato.view.BasicChoiceDisplayField as their component
class.

Following is another actual snippet from the Sun ONE Application Framework
Component Library manifest where you can see the component tuples described
above:

<extensible-component>
<component-class>com.iplanet.jato.view.BasicViewBean</component-class>
<component-info-class>com.iplanet.jato.view.BasicViewBeanComponentInfo</component-

info-class>
</extensible-component>
38 Sun ONE Application Framework Component Author’s Guide • October 2003

These pairs form three distinct tuples, and therefore, three distinct logical
components. The value presented by this freedom is that new component variations
can be created by simply defining new ComponentInfo classes.

Note – To be anything more than just equivalent to other components that use the
same component class, the new components must either expose existing component
properties not exposed by other components (for example, only
ListBoxComponentInfo exposes the "Allow Multiple Choices" property), or
change other meaningful component metadata. In the examples provided above, the
components primarily differ in the JSP tags that they declare, thereby drastically
changing the way these components look and feel when added to an HTML page.
However, the component functionality itself is essentially the same among all of
them. The ability to declare different tags, and thus different rendering mechanisms
for a component, is the most compelling reason to define components that use the
same component underlying component class.

Unlike declarative metadata, a ComponentInfo is specified as a Java class.
Therefore, new ComponentInfo classes can derive from existing ComponentInfo
classes and benefit from standard inheritance of superclass functionality. The
com.iplanet.jato.component.SimpleComponentInfo class can serve as a
reliable starting point for any new ComponentInfo class, if there is not a more
specific and more appropriate subtype already available.

<component>
<component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
<component-info-class>com.iplanet.jato.view.html2.ListBoxComponentInfo</component-

info-class>
</component>
<component>

<component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
<component-info-

class>com.iplanet.jato.view.html2.RadioButtonsComponentInfo</component-info-class>
</component>
<component>

<component-class>com.iplanet.jato.view.BasicChoiceDisplayField</component-class>
<component-info-class>com.iplanet.jato.view.html2.ComboBoxComponentInfo</component-

info-class>
</component>
Chapter 2 Developing Components 39

Specialized ComponentInfo Interfaces
The Sun ONE Application Framework provides several specialized sub-types of the
ComponentInfo which allow component authors to specify additional metadata
that is appropriate for certain components. The IDE toolset leverages the additional
metadata to provide special visual development support congruent with the
additional metadata.

ExtensibleComponentInfo
The com.iplanet.jato.component.ExtensibleComponentInfo interface
allows developers to provide additional metadata that is specifically appropriate for
extensible components. In the IDE toolset, extensible components serve as the base
classes when developers create new Sun ONE Application Framework types
(Models, Pages/Pagelets, and Commands). To this end, the extra metadata defined
in the ExtensibleComponentInfo interface allows the component author to
influence the construction of the new type. Specifically, component authors might
specify a Java class template to serve as the starting point for every new type
derived from the extensible component.

Other Types of Specialized ComponentInfo
There are several other specialized types of ComponentInfo:

� com.iplanet.jato.component.ExtensibleComponentInfo
� com.iplanet.jato.view.ViewComponentInfo
� com.iplanet.jato.view.ContainerViewComponentInfo
� com.iplanet.jato.command.CommandComponentInfo
� com.iplanet.jato.model.ModelComponentInfo
� com.iplanet.jato.model.ExecutingModelComponentInfo

Details of these interfaces are discussed later in sections describing the steps
required to create components of the various types to which these specialized
ComponentInfo interfaces pertain.
40 Sun ONE Application Framework Component Author’s Guide • October 2003

Standard Implementations of ComponentInfo
Since the Sun ONE Application Framework component model is based on well-
defined interfaces, component authors are free to implement these interfaces from
scratch for any new component. However, the Sun ONE Application Framework
generally provides ready-made implementations of all of the various specialized
ComponentInfo interfaces, and component authors are encouraged to extend one of
the existing implementations when writing their own components. This saves you
labor and speeds your authoring process.
Chapter 2 Developing Components 41

42 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 3

Developing View Components

This section assumes that you have already read Develop Your First Component
found in Chapter 2, “Developing Components” on page 17.

View Components
For background on Sun ONE Application Framework Views, see the Sun ONE
Application Framework Developer's Guide.

View components are also referred to as visual components. The View term comes
from the Model-View-Controller design pattern. Most of the types in the
com.sun.iplanet library use the term view for this reason. The IDE however, caters to
corporate developer expectations by using the term visual component more
frequently than view, and page more frequently than ViewBean. For the purposes of
this document, view component and visual component are synonymous. Child view
component and child visual component are synonymous. Page component and
ViewBean component are synonymous. Pagelet component and ContainerView
component are synonymous.

Broadly speaking, there are two types of view components, extensible and non-
extensible view components.

Extensible view components are custom implementations of Sun ONE Application
Framework ContainerViews which are intended for further specialization by
application developers. For instance, in the Sun ONE Application Framework
Component Library, the Basic Container View, Basic Tiled View, and Basic ViewBean
are all examples of extensible view components.

Do not read too much into the statement "specialization by application developers"
above. Frequently, the only specialization an application developer will make is the
addition of child view components (which is done via the IDE), and the logic
associated with them.
43

The most recognizable, and easily comprehended non-extensible view components
are custom implementations of the DisplayField interface. The Sun ONE Application
Framework Component Library contains over a dozen DisplayField components.
These fall easily into the classic widget or visual control category, and component
developers and application developer alike intuitively relate to these components.
As we shall see, the Sun ONE Application Framework goes well beyond this
minimal component story and offers more potential in the component domain than
many component authors and application developers might have seen before.

For instance, a less recognizable non-extensible view component would be ANY
concrete ContainerView implementation created by the IDE toolset. Put bluntly,
every ContainerView an application developer creates is a non-extensible
component. This is a subtlety of the Sun ONE Application Framework approach
where nearly everything is a component. Where these various type of components
differ is in the way in which they are packaged for distribution and reuse.

ViewComponentInfo
The ViewComponentInfo interface allows component authors to specify additional
metadata that is applicable to all view components. This interface is applicable to
both extensible and non-extensible view components, and contains metadata such as
which JSP tags should be associated with the view component.

We have indicated above that it is possible and expected that multiple
ComponentInfo classes can be paired with a single component class to produce a
variety of components. For example, the ListBoxComponentInfo,
RadioButtonsComponentInfo and ComboBoxComponentInfo all specify
BasicChoiceDisplayField classes as their component class. These form three
distinct tuples, and hence three distinct logical components. One of the key ways in
which these three components differ from each other is that they each implement the
ViewComponentInfo's getJspTagDescriptors() method to return a different
JspTagDescriptor. In summary, these components are nearly identical to each other
except for the different JSP tags which the IDE toolset will generate when an
instance of the component is added to the application. The opportunity this presents
to component authors is quite liberating. A component author could create a whole
new library of JSP tags that generate different markup and pair them with existing
component classes simply by implementing additional ComponentInfo classes.

ContainerViewComponentInfo
The ContainerViewComponentInfo interface allows component authors to
additional metadata that is applicable to all ContainerView components. This
interface is only applicable to extensible view components.
44 Sun ONE Application Framework Component Author’s Guide • October 2003

Develop a Non-Extensible View
Component
In this section we shall describe how to create a new TextField component that
supports a rudimentary input validation feature. In the interest of simplicity, we
shall keep the validation design and implementation to a minimum. This exercise is
intended to focus on the mechanics of non-extensible view component design and as
such, will only scratch the surface of validation support possibilities.

Note – The Sun ONE Application Framework Component Library 2.1.0 already
contains a fully productized ValidatingTextField component. This educational
exercise will result in your creating a validating text field component that
approximates the Sun ONE Application Framework Component library's
functionality. But the resulting component from this exercise will not be equivalent
to the one in Sun ONE Application Framework Component library because this
exercise will not attempt to implement all of the features of that productized
component.

This example will allow us to cover several additional Sun ONE Application
Framework component model topics, leveraging ViewComponentInfo, developing a
new JSP tag and developing a ConfigurableBean.

Our validating text component should support the following design-time
functionality:

� Expose a property called "Validator". This property will take a reference to a
Validator object. The DisplayField will delegate validation to the Validator object.

� Expose a property called "Validation Failure Message". This property will take a
simple String.

Our validating text component should support the following run-time functionality:

� Upon input, the component will delegate its input value for validation by the
Validator object.

� If the value is invalid and the application redisplays the page, the validating
component should display the invalid value followed by the application
developer supplied validation failure message.

To meet these requirements, we will design and implement the following classes:

� Component class - mycomponents.ValidatingDisplayField

� ComponentInfo class -
mycomponents.ValidatingTextFieldComponentInfo
Chapter 3 Developing View Components 45

� JSP TagHandler class - mycomponents.ValidatingTextFieldTag

� A Validator interface - mycomponents.Validator

� An implementation of the Validator interface - mycomponents.TypeValidator

We shall also define a new JSP tag library - mycomponents.tld

Finally we shall edit the mycomponents complib.xml to add the new component,
taglibrary and ConfigurableBean to the Sun ONE Application Framework
component library.

Create the Validator Interface
1. In any Java editor create the class mycomponents.Validator

2. Define a very simple validation API.

Design principle hint: In designing the Validator as an interface we are setting the
stage to leverage the power of the Sun ONE Application Framework component
model's ConfigurableBean story. Specifically, we will subsequently define a
ValidatingTextField property to be of type "Validator". And as we shall see, the IDE
toolset will allow the application developer to choose from a dynamically list of
ConfigurableBean types which implement that interface. Furthermore, third party
component authors can augment this component story by authoring an distributing
additional ConfigurableBean implementations of the same interface.

After these steps, mycomponents/Validator.java should look like this

Create at least one implementation of the Validator interface

1. In any Java editor create the class mycomponents.TypeValidator

package mycomponents;

/**
*
* @author component-author
*/

public interface Validator {

/**
*
*
*/
public abstract boolean validate(Object value);

}

46 Sun ONE Application Framework Component Author’s Guide • October 2003

2. Add a String property called ValidationRule

3. Implement the Validator interface

After these steps, mycomponents/Validator.java should look like this:

package mycomponents;
import com.iplanet.jato.model.*;
import com.iplanet.jato.util.*;

public class TypeValidator implements Validator
{

public TypeValidator()
{

super();
}

public String getValidationRule()
{

return rule;
}

public void setValidationRule(String value)
{

rule=value;
}

public boolean validate(Object value)
{

if (getValidationRule()==null)
throw new ValidationException("No validation rule has been set");

try
{

value=TypeConverter.asType(getValidationRule(),value);
}
catch (Exception e)
{

return false;
}

return true;
}
//
// Instance variables
//

private String rule;
}

Chapter 3 Developing View Components 47

Design hint: The rudimentary implementation of TypeValidator above exposes the
ValidationRule as a simple String property. In the absence of any further work, the
IDE toolset will expose this property for editing with the default String editor. This
will require application developers to explicitly set the value of the property to
"java.lang.String" or "java.lang.Integer" or "java.lang.Float". That is not a very user
friendly user interface. Since this ValidationRule falls into the ConfigurableBean
category, the component author can make use of the full JavaBean component model
to improve the user experience. Ideally, a component author would also design and
deploy a custom property editor for this property. In this case, a simple drop down
list property editor would be a big improvement over the default String editor. Then
the component author can create a TypeValidatorBeanInfo which would specify the
custom property editor of his choice. For more on this topic see Component Design
Guidelines.

Create the Sun ONE Application Framework Component Class

1. In any Java editor create the class mycomponents.ValidatingDisplayField

2. Make ValidatingDisplayField extend
com.iplanet.jato.view.BasicDisplayField

3. Implement the appropriate constructor for the component type.

All DisplayField components must implement a two-arg constructor that takes a
View parent and a String name. The IDE toolset assumes that all DisplayField
components will implement this constructor.

4. Add a get and set method for the property Validator

5. Add a get and set method for the property ValidationFailureMessage

6. Implement the remaining methods that are required to fulfill our requirements.

� A flag to indicate the valid/invalid state

� A buffer to hold the invalid value(s) for redisplay.

� Overridden implementations of setValue which will invoke the Validator

� Overridden implementations of getValue which will conditionally return the
buffered invalid value

After these steps, mycomponents/ValidatingDisplayField.java should look like this:

package mycomponents;
import com.iplanet.jato.view.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.util.*;

public class ValidatingDisplayField extends BasicDisplayField {
48 Sun ONE Application Framework Component Author’s Guide • October 2003

public ValidatingDisplayField(View parent, String name) {
super(parent, name);

}

public Validator getValidator()
{

return validator;
}

public void setValidator(Validator value)
{

validator=value;
}

public String getValidationFailureMessage()
{

return validationFailureMessage;
}

public void setValidationFailureMessage(String value)
{

validationFailureMessage=value;
}

public boolean isValid()
{

return isValid;
}

public void setValid(boolean value)
{

isValid = value;
}

//
// Value methods
//

public Object getValue()
{

if (!isValid())
return getInvalidValue();

else
return super.getValue();

}

public Object getInvalidValue()
{

if (invalidValue !=null)
return invalidValue;
Chapter 3 Developing View Components 49

else
return null;

}

public void setValue(Object value)
{

if (value!=null && getValidator()!=null)
{

if (getValidator().validate(value))
{

try
{

super.setValue(value);
setValid(true);

}
catch (ValidationException e)
{

setValid(false);
invalidValue=value;
setValidationFailureMessage("Exception setting value \""+

"on model: "+ e.getMessage());
}

}
else
{

setValid(false);
invalidValue=value;

}
}
else

super.setValue(value);
}

//
// Instance variables
//

private Validator validator;
private String validationFailureMessage;
private boolean isValid = true;

private Object invalidValue;
}

50 Sun ONE Application Framework Component Author’s Guide • October 2003

Create a Custom JSP TagHandler Class
Our requirements call for the ValidatingComponent class to display its validation
error message. One way to achieve this, and the approach we shall pursue here, is to
pair our new component with a custom JSP TagHandler class. This will allow us to
fully control the rendering of the component.

1. In any Java editor create the class mycomponents.ValidatingTextFieldTag

2. Extend this class from com.iplanet.jato.taglib.html.TextFieldTag

3. Override the doEndTag method to conditionally append the validation error
message whenever the component is not valid.

After these steps, mycomponents/ValidatingTextFieldTag.java should look like this:

package mycomponents;
import com.iplanet.jato.util.*;
import javax.servlet.jsp.*;
import com.iplanet.jato.taglib.html.*;
import com.iplanet.jato.util.*;
import com.iplanet.jato.view.*;
public class ValidatingTextFieldTag extends TextFieldTag
{

public ValidatingTextFieldTag()
{

super();
}

public int doEndTag()
throws JspException

{
int result=super.doEndTag();

ContainerView parentContainer=getParentContainerView();
View child=parentContainer.getChild(getName());
checkChildType(child,ValidatingDisplayField.class);

ValidatingDisplayField field=(ValidatingDisplayField)child;
// If the field is valid, do nothing.
if (field.isValid())

return result;

// Append the validation error message in Red
NonSyncStringBuffer buffer=new NonSyncStringBuffer(

" ");
buffer.append(field.getValidationFailureMessage());
buffer.append("");
writeOutput(buffer);
Chapter 3 Developing View Components 51

Note – The Sun ONE Application Framework component model allows component
authors to specify multiple JSP TagHandlers for a given component. For more on
that subject see the JspTagDescriptor API.

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example we will extend an existing
ComponentInfo class and in true OO style, simply augment it. We could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

Note that in this example we are going beyond the functionality revealed in our first
component example. Below, we are going to take advantage of the key metadata
opportunity provided by the ViewComponentInfo interface, the ability to describe
JSP tag(s) for a given component.

1. Create the class mycomponents.ValidatingTextFieldComponentInfo.

2. Make the ValidatingTextFieldComponentInfo class extend
com.iplanet.jato.view.html2.TextFieldComponentInfo

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic
design-time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you wish to expose in the IDE.

� Add a ConfigPropertyDescriptor for the Validator property.

� Add a ConfigPropertyDescriptor for the ValidationFailureMessage
property.

return result;
}

}

52 Sun ONE Application Framework Component Author’s Guide • October 2003

6. Implement the getJspTagDescriptors() method to specify the JSP tag which
you wish the IDE toolset to automatically add to associated JSP(s) whenever an
instance of this component is added to a ViewBeans/ContainerViews.

After these steps, mycomponents/ValidatingTextFieldComponentInfo.java
should look like this:

In this sample code we have embedded String values directly for ease of
demonstration. If you anticipate the need to localize your display strings, we
encourage you to utilize resource bundles.

package mycomponents;
import java.beans.*;
import java.util.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.taglib.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.html2.*;

public class ValidatingTextFieldComponentInfo extends TextFieldComponentInfo {

public ValidatingTextFieldComponentInfo() {
super();

}

public ComponentDescriptor getComponentDescriptor()
{

// identify the component class
ComponentDescriptor result=new ComponentDescriptor(

"mycomponents.ValidatingDisplayField");

// The name will be used to determine a name for the component instance
result.setName("ValidatingTextField");

// The display name will be used to show the component in a chooser
result.setDisplayName("ValidatingTextField Component");

// The description will be the tool tip text for the component
result.setShortDescription("A simple validating text field component");

return result;
}

public ConfigPropertyDescriptor[] getConfigPropertyDescriptors()
{

if (configPropertyDescriptors!=null)
return configPropertyDescriptors;

// get any properties defined in the super class
configPropertyDescriptors=super.getConfigPropertyDescriptors();
Chapter 3 Developing View Components 53

Create a New Tag Library TLD File
Since we have defined a new JSP TagHandler. We must create a JSP library TLD file
for our component library.

Please note that there is a 'soft' restriction on your custom JSP library. During IDE
operations a logical object model is created for the working JSP files. This JSP object
model is used by the page and pagelet view component mechanisms to manage the

List descriptors=new LinkedList(Arrays.asList(configPropertyDescriptors));

ConfigPropertyDescriptor descriptor = null;

descriptor=new ConfigPropertyDescriptor(
"validator",Validator.class);

descriptor.setDisplayName("Validator");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptors.add(descriptor);

descriptor=new ConfigPropertyDescriptor(
"validationFailureMessage",String.class);

descriptor.setDisplayName("Validation Failure Message");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptors.add(descriptor);

// Create/return the array
configPropertyDescriptors = (ConfigPropertyDescriptor[])

descriptors.toArray(
new ConfigPropertyDescriptor[descriptors.size()]);

return configPropertyDescriptors;
}

public JspTagDescriptor[] getJspTagDescriptors()
{

JspTagAttributeDescriptor[] attrs=new JspTagAttributeDescriptor[1];
attrs[0]=new JspTagAttributeDescriptor(

TagBase.ATTR_NAME,JspTagDescriptor.ASSUMED_PROPERTY_NAME,null);

JspTagDescriptor htmlTagDescriptor=new JspTagDescriptor(
JspTagDescriptor.ENCODING_HTML,"validatingTextField",
"/WEB-INF/mycomplib.tld",attrs);

return new JspTagDescriptor[] {htmlTagDescriptor};
}

private ConfigPropertyDescriptor[] configPropertyDescriptors;
}

54 Sun ONE Application Framework Component Author’s Guide • October 2003

placement of tags in the JSP will the views are mutated. While parsing the JSP file to
create the JSP object model, tags for Sun ONE Application Framework component
tag libraries have special treatment. If your custom JSP tag library has additional
tags which are not related to a Sun ONE Application Framework view component,
these tags might be categorized incorrectly in the JSP object model. You should
isolate your Sun ONE Application Framework related tags in their own tag library.
Internally in the JSP object model, tags from tag libraries specified in the component
library manifest will be categorized as "JATO" tags while all other tags in the JSP file
are categorized as "OTHER" tags. The reason why this is a 'soft' restriction is that
there is only an edge case where a non Sun ONE Application Framework tag would
interfere with view component tag management. If a non Sun ONE Application
Framework tag remains in your component tag library, and if that tag has an
attribute "name" who's value collides with a "name" attribute of a true Sun ONE
Application Framework tag, the JSP object model might not operate properly. In
other words, if you have non Sun ONE Application Framework tags which have a
"name" attribute, you should try and isolate these tags in separate tag library to
avoid edge case problems.

The library TLD file name is arbitrary. Its location within the library is also arbitrary.
In a later step we shall declare the new TLD file in our component manifest. A full
discussion of JSP tld files is beyond the scope of this document. Suffice to say, for
this example we only need to declare a new library (mycomlib) containing a single
tag element (validatingTextField). All of the tag attributes can be copied verbatim
from the declaration of the TextField tag in the Sun ONE Application Framework
Component Library's jato.tld file. You can find the jato.tld file located in the WEB-
INF\tld\com_iplanet_jato directory of any Sun ONE Application Framework
application created by the Sun ONE Studio.

1. Create the file mycomponents/mycomplib.tld

2. Add the basic tld information to declare a new tag library.

3. Add a tag element for our new tag validatingTextField and its corresponding tag-
class mycomponents.ValidatingTextFieldTag
Chapter 3 Developing View Components 55

4. Complete the tag element declaration by adding all desired tag attributes. Our
recommendation in this case is to simply copy those already defined in jato.tld
for the Sun ONE Application Framework Component Library's TextField tag

After these steps, the mycomponents/mycomplib.tld file should look like this

Augment the Component Library Manifest
We have already created the component manifest in the earlier example. So now we
will simple add additional information. Note that we will add additional types of
information not seen in the prior example.

The Sun ONE Application Framework library manifest must be named complib.xml.
Within the JAR file, the Sun ONE Application Framework library manifest must be
placed in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<!-- template test -->

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>mycomponents.mycomplib</short-name>
<display-name>mycomponents.mycomplib</display-name>
<tag>

<name>validatingTextField</name>
<tag-class>mycomponents.ValidatingTextFieldTag</tag-class>
<body-content>empty</body-content>
<display-name>Validating Text Field</display-name>
<description></description>
<attribute>

<name>name</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

<type>String</type>
</attribute>

...
<!-- more attribute definitions follow -->

...

</tag>
</taglib>
56 Sun ONE Application Framework Component Author’s Guide • October 2003

2. Add a component element to declare the ValidatingTextField component.

3. Add a ConfigurableBean element to declare the mycomponents.TypeValidator

4. Add a taglib element to declare the mycomplib.tld.

After these steps, the COMP-INF/complib.xml file should look like this. Make sure
that the tld is a well formed XML document. Even something as minor as an
inappropriate leading spaces before the first XML tag can create a malformed
document. If your tld file is not well formed XML, certain servlet containers will fail
to load your entire Web application. Such errors might be difficult to track down.

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
<tool-info>
<tool-version>2.1.0</tool-version>
</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>
<!-- Your icon here
<icon>
<small-icon>/com/iplanet/jato/resources/complib.gif</small-icon>
</icon>
-->
<interface-version>1.0.0</interface-version>
<implementation-version>20030221</implementation-version>

<component>
<component-class>mycomponents.MyTextField</component-class>
<component-info-class>mycomponents.MyTextFieldComponentInfo</component-info-class>
</component>
<component>
<component-class>mycomponents.ValidatingDisplayField</component-class>
<component-info-class>mycomponents.ValidatingTextFieldComponentInfo</component-info-class>
</component>

<configurable-bean>
<bean-class>mycomponents.TypeValidator</bean-class>
</configurable-bean>

<taglib>
<taglib-uri>/WEB-INF/mycomplib.tld</taglib-uri>
<taglib-resource>/mycomponents/mycomplib.tld</taglib-resource>
<taglib-default-prefix>mycomp</taglib-default-prefix>
</taglib>

</component-library>
Chapter 3 Developing View Components 57

Re-create the Component Library JAR File
Once again Jar up the component classes as we did in the first example so that they
can be ready for distribution as a library.

1. The name of the JAR file is arbitrary. In this case, name it "mycomponents.jar"

2. You can omit the Java source files from the JAR

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles. In this case there are none.

In this case we are now including several new classes and a new JSP tag library.

4. The mycomponents.jar internal structure should look like this:

Test the New Component
Your library is now ready for testing and distribution. We recommend testing it in a
sample project. This stage requires the use of the Sun ONE Studio with the Sun ONE
Application Framework module installed and enabled. If you have never built a Sun
ONE Application Framework application in the Sun ONE Studio we suggest that
you stop now, and before continuing, complete the Sun ONE Application Framework
Tutorial.

mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
58 Sun ONE Application Framework Component Author’s Guide • October 2003

1. Deploy the new version of the library into your previously created test
application

� Important Sun ONE Studio note - the Studio will not let you delete or copy over
a jar file that is currently mounted. This presents a bit of a challenge when
iteratively developing a component library and testing that library in a test
application. We recommend the following for repeatedly testing new versions of
the same library jar file within a test application.

� Unmount the test application.

� After the unmount is complete, go to your operating system file system and copy
the new library jar file over the old library jar file in the unmounted test
application's WEB-INF/lib directory.

� Remount the test application, the test application should now pick up the new
library version.

� Normally, those steps work fine. If you encounter a spurious failure that either
prevents you from copying the new jar over the old jar, or failure to remount the
test application properly, the fallback strategy is to restart the Studio.

2. Select the previously created Page1 object

3. Add an instance of the ValidatingTextFieldComponent to Page1. You can either
select the component from the Component Palette, or select the Page1's Visual
Components sub-node, right-click, and select the Add Visual Component... action
from the pop-up menu.
Chapter 3 Developing View Components 59

60 Sun ONE Application Framework Component Author’s Guide • October 2003

4. Select the "ValidatingTextField Component" from the list and observe how a child
view named "validatingTextField1" is added to the page.

5. Now select the validatingTextField1 visual component node. Observe how the
IDE's property sheet now displays our custom Validator and Validation Failure
Message properties in addition to the inherited TextField component properties.
Chapter 3 Developing View Components 61

6. Edit the Validation Failure Message property. Set it to "This is a test failure
message" (or anything you like).

7. Edit the Validator property.

This should bring up the following dedicated ConfigurableBean editor. For test
purposes, set the validationRule property to "java.lang.Integer".

Make sure you specify the fully qualified class name for the validationRule property.
Just "Integer" will not evaluate properly at run-time, it must be fully qualified, as in
"java.lang.Integer".
62 Sun ONE Application Framework Component Author’s Guide • October 2003

8. Now observe the code generation inside the page's java file. You should see a
block of code inside the createChildReserved method that looks like the
following (the indenting in your code might differ):
Chapter 3 Developing View Components 63

9. Open the associated JSP file to observe the inclusion of the validatingTextField
tag.

Note also the automatic inclusion of a mycomplib.tld directive. (The overall look of
your test application's JSP may differ from the one below, depending upon whether
you have added other child views you to your test page in addition to
validatingTextField1)

...
else if (name.equals(CHILD_VALIDATING_TEXT_FIELD1)) {
mycomponents.ValidatingDisplayField child =
new mycomponents.ValidatingDisplayField(this, CHILD_VALIDATING_TEXT_FIELD1);
mycomponents.TypeValidator validatorVar =
new mycomponents.TypeValidator();

{ // begin local variable scope
validatorVar.setValidationRule("java.lang.Integer");
} // end local variable scope
child.setValidator(validatorVar);
child.setValidationFailureMessage("This is a test failure message");
return child;
}
...

<%@page contentType="text/html; charset=ISO-8859-1" info="Page1" language="java"%>
<%@taglib uri="/WEB-INF/jato.tld" prefix="jato"%>
<%@taglib uri="/WEB-INF/mycomplib.tld" prefix="mycomp"%>

<jato:useViewBean className="testmycomplib.main.Page1">

<html>
<head>
<title>Page1</title>
</head>
<body>
<jato:form name="Page1" method="post">
<jato:textField name="myTextField1"/>
<mycomp:validatingTextField name="validatingTextField1"/>
</jato:form>
</body>
</html>

</jato:useViewBean>
64 Sun ONE Application Framework Component Author’s Guide • October 2003

10. Before you can effectively test run Page1, you will need to add a button and
request handling code. For your test purposes, we suggest that you take the
following steps to add a button and some request handling code, which will
redisplay the page following a submit. This will allow us to see if the
ValidatingTextComponent is behaving as designed. If you have not done so
already add a button and some request handling code, follow the steps below.

Note – The steps below, represent conventional Sun ONE Application Framework
application development practice, the details of which are beyond the scope of this
document. These steps, or similar ones, are required to create an effective test page).

� Add an instance of the Sun ONE Application Framework Library's Basic Button
to Page1. You may either select the component from the Component Palette or
select the Page1's Visual Components sub-node, right mouse and select the Add
Visual Component... action from the pop-up menu.

� This will add a "button1" child to your test ViewBean

� Now, select the button1 visual component node.

� Right mouse and select the pop up menu's Events->handleRequest action.

� This will add an event handler method named handleButton1Request to your
ViewBean's Java file.

� For this test, you will not need to modify the body of handleButton1Request since
it is auto-generated to redisplay the current page, which is precisely the test we
are looking for.

� Make sure your request handler looks like this:

11. Test run Page1.

See the Sun ONE Application Framework Tutorial if you do not already know how to
test run a Sun ONE Application Framework ViewBean.

12. The Page1 output should appear in a browser looking like this (it now contains
two text fields, one instance of MyTextField and one instance of
ValidatingTextField.

public void handleButton1Request(RequestInvocationEvent event) throws Exception {
getParentViewBean().forwardTo(getRequestContext());
}

Chapter 3 Developing View Components 65

13. Enter an invalid value (for example, any value other than an integer) in the
ValidatingTextField's text input and submit the page.

The page should immediately be redisplayed with the text of the Validation Error
Message property immediately following the ValidatingTextField.

14. Enter a valid value (for example, 55 or any other valid integer) and submit the
page.

The page should be redisplayed without the Validation Error Message text.

If you continue to get the Validation Error Message, go back and verify that you set
the value of validatingTextField1's Validator->ValidationRule property to
"java.lang.Integer", not just "Integer".
66 Sun ONE Application Framework Component Author’s Guide • October 2003

Ship It!
Now that your component is functioning properly you may ship it. However, you
may also go back and enhance it. For instance, you may decide that requiring the
end user to type "java.lang.Integer" into the Validator's ValidationRule property is
unacceptably error prone. If so, then you should spend a little time and develop a
custom property editor. The details of that are beyond the scope of this document,
but can be found in any basic JavaBean reference.

Develop an Extensible View Component
In this section we shall describe how to create a new ViewBean component that
supports a rudimentary page level security feature. In the interest of simplicity, we
shall keep the security model and implementation to a minimum. This exercise is
intended to focus on the mechanics of extensible View component design and as
such, will only scratch the surface of security model possibilities. Upon completion
of this section you should have a good understanding of the role of extensible
components within the Sun ONE Application Framework. Please bear in mind that
this example will implement several optional features and goes beyond the bare
minimum required to author an extensible View component.

This example will allow us to introduce several additional Sun ONE Application
Framework component model topics

� ExtensibleComponentInfo
� Component supplied Java templates
� IndexedConfigPropertyDescriptor
� EventHandlerDescriptor

As a basic design principle, the Sun ONE Application Framework prefers to be
enabling rather than prescriptive when it comes to application and page level
security, since developer preferences in this domain vary widely. This example
Chapter 3 Developing View Components 67

demonstrates that the Sun ONE Application Framework can easily enable an
arbitrary page level security model. It is not meant to suggest that this example is
the ultimate or recommended implementation.

Our secure ViewBean component should support the following design-time
functionality:

� Each secure ViewBean will expose an indexed property called “RequiredTokens”.
Application developers will configure this property to specify an arbitrary list of
“required” String tokens (i.e. the tokens that are required to gain access to the
current page)

� Each secure ViewBean will expose an indexed property called "GrantTokens".
Application developers will configure this property to specify an arbitrary list of
"grant" String tokens (i.e. the tokens that will be granted to the user after they
successfully access the current page)

� Each secure ViewBean will expose the "handleMissingTokens" event handler for
custom implementation. This means Sun ONE Studio developers can select the
"handleMissingTokens" from the "Events" pop up menu, and the IDE toolset will
automatically insert the event handler into the current secure ViewBean's Java
file. This is an advanced and optional feature of the Sun ONE Application
Framework component model.

Our secure ViewBean component should support the following run-time
functionality:

� Each secure ViewBean can "grant" tokens to users who successfully access the
current secure ViewBean. Thus, an application user will "accumulate" tokens as
they proceed through the application.

� Also, each secure ViewBean will limit run-time access to itself through a simple
comparison of required tokens to user accumulated tokens. If the application user
has not accumulated all of the required tokens, a MissingTokensEvent will be
fired. A specific event handler method called handleMissingTokens will be
invoked. The secure ViewBean base class implementation of
handleMissingTokens will throw a SecurityCheckException. The Sun ONE
Application Framework will automatically process an uncaught
SecurityCheckException as it does any uncaught exception (i.e. it will return the
standard Sun ONE Application Framework error page to the user). Individual
secure ViewBeans can override the implementation of the handleMissingTokens
in order to perform arbitrary context specific behavior.

This run-time model assumes that both the grant tokens and the required tokens will
be specified on a per secure ViewBean basis by the application developers.

The implementation of the secure ViewBean component is responsible for tracking
the accumulated tokens at run-time and enforcing the security model described
above. The implementation shall store the accumulated tokens per user in a special
HttpSession attribute.
68 Sun ONE Application Framework Component Author’s Guide • October 2003

Please note, the choice to implement the base class version of handleMissingTokens
to throw a SecurityCheckException is purely arbitrary. Alternatively, we could
implement that method to transfer control to a more user friendly error page, or
anything else that the component author prefers. Strictly in the interest of brevity
and simplicity, we choose to throw a SecurityCheckException.

To meet these requirements, we will design and implement the following classes:

� Component class - mycomponents.SecureViewBean
� ComponentInfo class - mycomponents.SecureViewBeanComponentInfo
� A simple event class - mycomponents.MissingTokensEvent

Additionally, we will implement a custom Java template which the IDE toolset will
use as the basis for application specific sub-types of our SecureViewBean.

Finally we shall edit the mycomponents complib.xml to add the new component to
the Sun ONE Application Framework component library.

Create the MissingTokensEvent Class
1. In any Java editor create the class mycomponents.MissingTokensEvent

2. Define a very simple event API, that will allow the event handler to discover
which tokens were missing.

After these steps, mycomponents/MissingTokensEvent.java should look like this
Chapter 3 Developing View Components 69

Create the Sun ONE Application Framework
Component Class

1. In any Java editor create the class mycomponents.SecureViewBean

2. Make SecureViewBean extend com.iplanet.jato.view.BasicViewBean

3. Implement the appropriate constructor for the component type. All ViewBean
components must implement a no-arg constructor.

4. Add a get and set method for the property named "RequiredTokens"

5. Add a get and set method for the property named "GrantTokens"

6. Implement the remaining methods that are required to fulfill our component
specific requirements.

� Overridden implementation of the securityCheck method which will enforce the
component's page security model

package mycomponents;
import java.util.*;

public class MissingTokensEvent extends Object {

public MissingTokensEvent(List tokens) {
missingTokens = new ArrayList(tokens);

}

public String toString() {
Iterator iter = missingTokens.iterator();
StringBuffer buff = new StringBuffer();
buff.append("MissingToken count[" + missingTokens.size() + "] ");
while(iter.hasNext()) {

buff.append("Token[" + (String)iter.next() + "] ");
}
return buff.toString();

}

public ArrayList getMissingTokens() {
return missingTokens;

}

private ArrayList missingTokens = null;

}

70 Sun ONE Application Framework Component Author’s Guide • October 2003

� Default implementation of the component's handleMissingTokens method.

After these steps, mycomponents/SecureViewBean.java should look like this:

package mycomponents;
import java.util.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.*;

public class SecureViewBean extends BasicViewBean {

public SecureViewBean()
{

super();
}

public String[] getRequiredTokens()
{

return requiredTokens;
}

public void setRequiredTokens(String[] value)
{

requiredTokens = value;
}

public String[] getGrantTokens()
{

return grantTokens;
}

public void setGrantTokens(String[] value)
{

grantTokens = value;
}

public void securityCheck() throws SecurityCheckException
{

super.securityCheck();

// Get the accumulated tokens from session.
HashSet accumulated = (HashSet)

getSession().getAttribute("AccumulatedTokens");
// Defensively prepare the accumulated collection
if(accumulated == null)

accumulated = new HashSet();

// Check to see if required tokens are present
if(requiredTokens.length > 0) {

// Check for presence of required tokens
List missingTokens = new ArrayList();
Chapter 3 Developing View Components 71

Create the Extensible Component's Java Template
Extensible components serve as base classes for application defined entities.
Therefore, the Sun ONE Application Framework component model provides
extensible component authors the opportunity to provide a custom Java template.
The IDE toolset will, subsequently, use the component supplied template to create
the application specific sub-type. Component authors can utilize the custom
template to enhance the application developer's experience. Component authors
may prepare the component specific Java template with a set of template tokens
defined in com.iplanet.jato.component.ExtensibleComponentInfo. For token details
see ExtensibleComponent API.

for(int i=0; i<requiredTokens.length; i++)
{

if(! accumulated.contains(requiredTokens[i]))
missingTokens.add(requiredTokens[i]);

}

if(missingTokens.size() > 0)
handleMissingTokens(new MissingTokensEvent(missingTokens));

}

// Now add the current grant tokens to the accumulated.
// Note, as expected, we will not reach this point if the
// handleMissingTokens throws an Exception.
for(int i=0; i<grantTokens.length; i++)
{

accumulated.add(grantTokens[i]);
}
getSession().setAttribute("AccumulatedTokens", accumulated);

}

public void handleMissingTokens(MissingTokensEvent e)
throws SecurityCheckException

{
// This default implementation will just trigger conventional
// Sun ONE Application Framework SecurityCheckException handling
throw new SecurityCheckException(e.toString());

}

private String[] requiredTokens = new String[0];
private String[] grantTokens = new String[0];

}

72 Sun ONE Application Framework Component Author’s Guide • October 2003

Component authors may also utilize any arbitrary Java constructs within the Java
template (for example, import statements, methods, variables, interface declarations,
and so on). Minimally, the custom template will ensure that the new Java class
extends from the extensible component class.

In this example we will keep the template utterly minimal.

� Create a new directory mycomponents.resources

� In any text editor create the template
mycomponents.resources.SecureViewBean_java.template

� The template contents should look like this. Note the tokens follow a __TOKEN__
pattern.

package __PACKAGE__;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.iplanet.jato.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.event.*;
import com.iplanet.jato.model.*;
import mycomponents.*;

/**
*
*
*/

public class __CLASS_NAME__ extends SecureViewBean
{

/**
* Default constructor
*
*/

public __CLASS_NAME__()
{

super();
}

}

Chapter 3 Developing View Components 73

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example we will extend an existing
ComponentInfo and in true OO style, simply augment it. We could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

Note that in this example we are going beyond the functionality revealed in our
earlier component examples. Below, we are going to take advantage of two new
metadata opportunities provided by the ExtensibleComponentInfo interface, the
opportunity to specify a Java template, and the opportunity to describe event
handler methods for the extensible component.

1. Create the class mycomponents.SecureViewBeanComponentInfo.

2. Make SecureViewBeanComponentInfo extend
com.iplanet.jato.view.BasicViewBeanComponentInfo

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic design-
time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you wish to expose in the IDE.

� Add an IndexedConfigPropertyDescriptor for the RequiredTokens property.
� Add an IndexedConfigPropertyDescriptor for the GrantTokens property.

6. Implement the getPrimaryTemplateAsStream() method to return a Java template
file which you wish the IDE toolset to use as the starting point for new classes
derived from this extensible component.

7. Implement the getEventHandlerDescriptors() method to provide a design-time
description of any event handler methods which you wish the IDE toolset to
expose for automated insertion into new classes derived from this extensible
component.

After these steps, mycomponents/SecureViewBeanComponentInfo.java should look
like this:

In this sample code we have embedded String values directly for ease of
demonstration. If you anticipate the need to localize your display strings, we
encourage you to utilize resource bundles.

package mycomponents;
import java.util.*;
import java.io.*;
import com.iplanet.jato.*;
import com.iplanet.jato.component.*;
74 Sun ONE Application Framework Component Author’s Guide • October 2003

import com.iplanet.jato.view.*;

public class SecureViewBeanComponentInfo extends BasicViewBeanComponentInfo
{

public SecureViewBeanComponentInfo()
{

super();
}

public ComponentDescriptor getComponentDescriptor()
{

final String CLASS_NAME="mycomponents.SecureViewBean";

ComponentDescriptor descriptor=new ComponentDescriptor(
CLASS_NAME);

descriptor.setName("SecurePage");
descriptor.setDisplayName("Secure ViewBean");
descriptor.setShortDescription(

"A Page with a token based security model");
return descriptor;

}

public ConfigPropertyDescriptor[] getConfigPropertyDescriptors()
{

if (configPropertyDescriptors!=null)
return configPropertyDescriptors;

configPropertyDescriptors=super.getConfigPropertyDescriptors();
List descriptors=new LinkedList(Arrays.asList(configPropertyDescriptors));

ConfigPropertyDescriptor descriptor = null;

descriptor=new IndexedConfigPropertyDescriptor(
"grantTokens",String.class); // NOI18N

descriptor.setDisplayName("Grant Tokens"); // NOI18N
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptors.add(descriptor);

descriptor=new IndexedConfigPropertyDescriptor(
"requiredTokens",String.class); // NOI18N

descriptor.setDisplayName("Required Tokens"); // NOI18N
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptors.add(descriptor);

// Create/return the array
configPropertyDescriptors = (ConfigPropertyDescriptor[])

descriptors.toArray(
Chapter 3 Developing View Components 75

new ConfigPropertyDescriptor[descriptors.size()]);
return configPropertyDescriptors;

}

public String getPrimaryTemplateEncoding()
{

/* Production version would be resource bundle driven, like this:
return getResourceString(getClass(),
"PROP_SecureViewBean_SOURCE_TEMPLATE_ENCODING", "ascii");
*/

return "ascii";
}

public InputStream getPrimaryTemplateAsStream()
{

/* Production version would be resource bundle driven, like this:

return SecureViewBeanComponentInfo.class.getClassLoader().
getResourceAsStream(
getResourceString(getClass(),
"RES_SecureViewBeanComponentInfo_SOURCE_TEMPLATE",""));
*/

return SecureViewBeanComponentInfo.class.getResourceAsStream(
"/mycomponents/resources/SecureViewBean_java.template");

}

public EventHandlerDescriptor[] getEventHandlerDescriptors()
{

if (eventHandlerDescriptors!=null)
return eventHandlerDescriptors;

eventHandlerDescriptors=super.getEventHandlerDescriptors();
List descriptors=new LinkedList(

Arrays.asList(eventHandlerDescriptors));

EventHandlerDescriptor descriptor =new EventHandlerDescriptor(
"handleMissingTokens",
"handleMissingTokens",
"public void handleMissingTokens(MissingTokensEvent e)" +
"throws SecurityCheckException",
"throw new SecurityCheckException(e.toString());",
"");

descriptors.add(descriptor);

// Create/return the array
eventHandlerDescriptors = (EventHandlerDescriptor[])

descriptors.toArray(
76 Sun ONE Application Framework Component Author’s Guide • October 2003

Augment the Component Library Manifest
We have already created the component manifest in the earlier example. So now we
will simple add additional information. Note that we will add additional types of
information not seen in the prior example.

The Sun ONE Application Framework library manifest must be named complib.xml.
Within the JAR file, the Sun ONE Application Framework library manifest must be
placed in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml

2. Add an extensible-component element to declare the SecureViewField component.

After these steps, the COMP-INF/complib.xml file should look like this. In the
interest of clarity, we are only showing the significant delta to the prior version of
this file shown earlier.

new EventHandlerDescriptor[descriptors.size()]);
return eventHandlerDescriptors;

}

private ConfigPropertyDescriptor[] configPropertyDescriptors;
private EventHandlerDescriptor[] eventHandlerDescriptors;

}

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
<tool-info>
<tool-version>2.1.0</tool-version>
</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>

...

<extensible-component>
<component-class>mycomponents.SecureViewBean</component-class>
<component-info-class>mycomponents.SecureViewBeanComponentInfo</component-info-

class>
</extensible-component>

...

</component-library>
Chapter 3 Developing View Components 77

Re-create the Component Library JAR File
Once again, Jar up the component classes as we did in the first example so that they
can be ready for distribution as a library.

1. The name of the JAR file is arbitrary. In this case, name it "mycomponents.jar"

2. You may omit the Java source files from the JAR

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles.

In this case we are including several new classes and a Java template file

4. The mycomponents.jar internal structure should look like this:

Test the New Component
1. Deploy the new version of the library into your previously created test

application

� Important Sun ONE Studio note: The Studio will not let you delete or copy over
a jar file that is currently mounted. This presents a bit of a challenge when
iteratively developing a component library and testing that library in a test
application. We recommend the following for repeatedly testing new versions of
the same library jar file within a test application.

� Unmount the test application.

� After the unmount is complete, go to your operating system file system and copy
the new library jar file over the old library jar file in the unmounted test
application's WEB-INF/lib directory.

� Remount the test application, the test application should now pick up the new
library version.

mycomponents/resources/SecureViewBean_java.template
mycomponents/MissingTokensEvent.class
mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/SecureViewBean.class
mycomponents/SecureViewBeanComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
78 Sun ONE Application Framework Component Author’s Guide • October 2003

� Normally, those steps work fine. If you encounter a spurious failure that either
prevents you from copying the new jar over the old jar, or failure to remount the
test application properly, the fallback strategy is to restart the Studio.

2. Create a new ViewBean object.

The new ViewBean wizard should now look like this:

3. Select the "Secure ViewBean" from the component list and complete the wizard.
Take the default settings and let the wizard create SecurePage1 for you. (You may
select Finish in the wizard stage above)

4. After the wizard completes you can see that the IDE toolset has created a new
class based on the component supplied template.

5. In order to test our security model, create a second SecureViewBean.

6. You application should now contain two SecureViewBeans (SecurePage1 and
SecurePage2).

The new SecureViewBeans contain the Grant Tokens and Required Tokens
properties.
Chapter 3 Developing View Components 79

7. Now test the security model by introducing some values into the token properties.
Select SecurePage1's Grant Tokens property.

If you select the ellipsis in the property sheet it will bring up the indexed String
property editor. Add the value "login" to that property. Feel free to add additional
tokens.
80 Sun ONE Application Framework Component Author’s Guide • October 2003

8. Select the other Secure ViewBean, SecurePage2. Select its Required Tokens
property, and add the value "login".

9. You have now established a page security rule in your application. SecurePage2
requires the "login" token, and SecurePage1 grants the "login" token. Therefore,
an end user who does not visit SecurePage1 BEFORE SecurePage2 should trigger
a security exception.

10. Add some static content to the SecurePage2's associated JSP, SecurePage2.jsp,
since this is currently a blank page. For example, put the text "Welcome to
Secure2" into SecurePage2.jsp so you will recognize it in the browser

11. Test run SecurePage2.

Instead of seeing SecurePage2.jsp's content you should see this message in the
browser: If you see this message, it means that the SecureViewBean security model
has worked as intended. At least the access prevention has worked.
Chapter 3 Developing View Components 81

12. Now, create a link between SecurePage1 and SecurePage2 so that you can test the
positive path. There are several ways to do this, feel free to implement your own
link. The instructions which follow are just one approach.

� Add an instance of the Sun ONE Application Framework Library's Basic Button
to SecurePage1. You may either select the component from the Component Palette
or select the SecurePage1's Visual Components sub-node, right mouse and select
the Add Visual Component... action from the pop-up menu.

� This will add a "button1" child to your test ViewBean

� Now, select the button1 visual component node.

� Right mouse and select the pop up menu's Events->handleRequest action.

� This will add an event handler method named handleButton1Request to your
SecurePage1's Java file.

� Now rework the body of the handleButton1Request to look like this

13. Test run the page flow from SecurePage1 to SecurePage2

� Test run SecurePage1

� Secure1 should appear in the browser as a blank page with a single button labeled
"Submit". (the user should now have been granted the "login" token.

� Press the Submit button. This will trigger the handleButton1Request logic which
will forward the request to SecurePage2.

public void handleButton1Request(RequestInvocationEvent event) throws Exception {
getViewBean(SecurePage2.class).forwardTo(getRequestContext());
}

82 Sun ONE Application Framework Component Author’s Guide • October 2003

� The contents of SecurePage2.jsp should show up in the browser. (because the user
had accumulated the required tokens).

Ship It? Not yet, first test the EventHandlerDescriptor feature
(handleMissingTokens)

Recall that the SecureViewBeanComponentInfo declares an EventHandlerDescriptor
which described an event handler called handleMissingTokens. Now you need to
test this feature.

1. Select the SecurePage2 node.

2. Right mouse and select the pop up menu's Events->handleMissingTokens option.
This should insert the handleMissingTokens method skeleton into
SecurePage2.java and automatically position the Java editor at that method.

3. Edit that method to automatically route users back to SecurePage1 when this
event is triggered.

This is just an arbitrary means of testing the event handler. Application developers
can implement this handler any way they want.

4. Test run SecurePage2 again.

This time the browser should return SecurePage1 because the event handler took
control.

public void handleMissingTokens(MissingTokensEvent e)throws SecurityCheckException {
// Route invalid access users to SecurePage1
appMessage("You need to go to Secure1 before Secure2");
getViewBean(SecurePage1.class).forwardTo(getRequestContext());
// Stop further processing of the original request.
throw new CompleteRequestException();

}

Chapter 3 Developing View Components 83

84 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 4

Developing Model Components

This section assumes that you have already read Develop Your First Component
found in Chapter 2, “Developing Components” on page 17.

Model Components
The obvious Model components are the extensible Model components. Extensible
Model components are custom implementations of the Model class which are
intended for specialization by application developers. The specialization by
application developers will usually consist of application developers adding schema
information to their application specific Models. The Sun ONE Application
Framework Component Library contains a number of extensible Model components,
such as QueryModelBase, WebServiceModel, SessionModel, ObjectAdapterModel
and CustomModel.

ModelComponentInfo
The ModelComponentInfo interface allows component authors to define additional
metadata that is applicable to all Model components.

ExecutingModelComponentInfo
The ExecutingModelComponentInfo interface allows component authors to define
additional metadata that is applicable to all Model components whose component
class implements the com.iplanet.jato.model.ExecutingModel interface.

Is it possible to create a non-extensible Model component? The answer is yes. In fact,
whenever an application developer creates a new Model via the Model wizard, they
are in fact extending an extensible Model component and creating an application-
85

specific Model. This new application specific Model is by definition a non-extensible
component. Whenever an application developer attempts to fill out a property of
type ModelReference, the IDE toolset will invoke a component browser that allows
the application developer to choose from a set of existing non-extensible Models. For
instance when an application developer specifies a DisplayField's Model Reference
property, the IDE toolset presents them with a browser that allows them to select a
Model.

Is it possible to create one of these non-extensible Models and add it to a library so
that it can be distributed? Again, the answer is yes. See the section Developing and
Distributing Non-Extensible Model, Command and ContainerView Components
below.

Developing a Non-Extensible Model
Component
A non-extensible Model component is a concrete Model that has been created within
the IDE from an extensible Model component. It is no different from an application
specific Model, except that is distributed in a jar file and can be incorporated into
multiple applications. The distribution technique is common for non-extensible
Models, ContainerViews and Commands. See the section Developing and
Distributing Non-Extensible Model, Command and ContainerView Components

Developing an Extensible Model
Component
In this section we shall describe how to create a new extensible Model component
that acts as an adapter to an arbitrary XML document. The adapter pattern is one of
the patterns which Sun ONE Application Framework Models are well suited to
implement. In this example, the Model component will allow Sun ONE Application
Framework Views to access arbitrary XML document data in an Sun ONE
Application Framework consistent way. View developers will not need to know
anything about the XML internals, or any XML specific APIs. Instead the View
developers will interact with the XML document Model as they would any other Sun
ONE Application Framework Model. This hightlights one of the key aspects of Sun
ONE Application Framework Model design. Sun ONE Application Framework
86 Sun ONE Application Framework Component Author’s Guide • October 2003

Models are intended primarily to serve as application resources which are used by
Views. For more on the relationship between Sun ONE Application Framework
Views and Models see Sun ONE Application Framework Developer's Guide.

Designing a new extensible Model is generally a non-trivial undertaking. The
following example is sophisticated, yet concise enough for this guide. As with any
Model, alternative designs are possible. As with any example, further refinement is
encouraged for a production quality version. Remember, the objective of this section,
is to familiarize yourself with the mechanics of Sun ONE Application Framework
extensible Model implementation.

This example will allow us to introduce several additional Sun ONE Application
Framework component model topics

� ExtensibleModelComponentInfo
� ModelFieldGroupDescriptor
� ModelFieldDescriptor

Key XML Document Model Design points
1. This Model will not be a business delegate. Some models ARE both adapters and

business delegates (e.g. the Sun ONE Application Framework standard
component library's JDBC SQL Query Model is both an adapter and a business
delegate because it is responsible for communicating with the enterprise tier). The
XML Document Model will not be responsible for the lifecycle of the XML
Document. It will assume that the application has managed to acquire the XML
document. The Model does not care how the application acquires the XML
document. The Model will rely on the application to place the XML document
within a well defined location. The Model will access the XML document from
that location, as needed. There are several benefits to this design decision beyond
just making the Model's job simpler. For one, this approach will allow > 1 XML
Document Model access to the same XML Document. During the testing of the
component we shall see how this Document-Model cardinality will benefit
application developers. Another benefit is that it allows application developers to
seamlessly leverage non-Sun ONE Application Framework infrastructure code
that they may already have written to manage the document lifecycle.

2. This Model will limit its ambition to serving as a read-only Model. This means
that the Model will support retrieval and display of XML document data, but it
will not facilitate modification of document data. The implementation of full
XML document update support is beyond the scope of this document.
Furthermore, it is perfectly justifiable for a Model to limit its ambition to a well
defined feature set, as long as the Model documentation makes it clear what is
and is not supported. Application developers will then limit the use of the Model
according to its documented usage.
Chapter 4 Developing Model Components 87

Our XML Document Model component should support the following design-time
functionality:

� Each XML Document Model will expose a property called "Document Scope".
Application developers will configure this property to specify one of three
standard servlet container scopes, request scope, session scope or application
scope. By setting this property the application developer commits to placing the
XML document in the specified scope at run-time. The Model will then fetch the
document from the specified scope at run-time. The default value for this
property will be request scope.

� Each XML Document Model will expose a property called "Document Scope
Attribute Name". This is a companion property to "Document Scope". Application
developers will configure this property to specify a scoped attribute name. By
setting this property the application developer commits to placing the XML
document in the specified scope and attribute name.

� Each XML Document Model will expose a property called "Base Dataset Name".
Application developers will configure this property to specify an offset into the
XML Document. The dataset name will be specified as an XPath expression.
Within a given Model all ModelField specific XPath expressions will be relative to
the "Base Dataset Name". This property may be left blank, in which case, Model
Field specific XPath expressions will be assumed to be absolute.

� Each XML Document Model will allow application developers to add an arbitrary
number of Model Fields to the Model at design-time.

� Application developers can configure each Model Field to have an arbitrary
field name.

� Application developers can configure each Model Field to access a value
within the XML Document. This access must be configured as an XPath
expression (either relative to the "Base Dataset Name", or absolute in the
absence of any "Base Dataset Name").

� View developers will be able to bind to the Model Fields in the Sun ONE
Application Framework conventional manner.

Our XML Document Model component should support the following run-time
functionality:

� The XML Document Model will defensively access the XML Document by
retrieving it from the named attribute within the specified scope.

� The XML Document Model will implement the key com.iplanet.jato.model.Model
method "getValue(String fieldName)" to resolve a field name to an XPath
expression, and an XPath expression to a value within the document.

� The XML Document Model will implement the
com.iplanet.jato.model.DatasetModel interface. All DatasetModels provide
consistent access to multiple discreet sets of data. In this case, a dataset would be
a section of the XML Document for which an XPath expression would return > 1
nodes. The implementation of the DatasetModel interface will allow application
88 Sun ONE Application Framework Component Author’s Guide • October 2003

developers to use the DatasetModel API to iterate across the multiple values
within the dataset. The conventional, but not only, means for achieving this is to
associate a TiledView with a DatasetModel.

Please note, the implementation shown below will take shortcuts in the interest of
brevity. The sample code contains some comments which point out areas where run
time optimizations are possible but would require more complex code beyond the
scope of this exercise.

In order to meet these requirements, we will design and implement the following
classes:

� Component class - mycomponents.XMLDocumentModel\

� ComponentInfo class - mycomponents.XMLDocumentModelComponentInfo

� A ModelFieldDescriptor class -
mycomponents.XMLDocumentModelFieldDescriptor

Additionally, we will implement a custom Java template which the IDE toolset will
use as the basis for application specific sub-types of our XMLDocumentModel.

Finally we shall edit the mycomponents complib.xml to add the new component to
the Sun ONE Application Framework component library.

Create the ModelFieldDescriptor class
The Sun ONE Application Framework component model provides extensible Model
component authors with the opportunity to specify an arbitrary implementation of
the com.iplanet.jato.model.ModelFieldDescriptor interface. This is a very minimal
interface. Each implementation of ModelFieldDescriptor must also be a JavaBean.
Model component authors should design a ModelFieldDescriptor as a bean that can
be configured by application developers in order to define a model field at design-
time. Component authors, thus have tremendous freedom to design model fields
which can expose all the design-time configuration opportunity they want, as long
as it can be expressed as a JavaBean.

In our example, our model field design-time configuration needs are trivial. We need
to allow the application developer to configure each model field with an XPath
expression.

1. In any Java editor create the class
mycomponents.XMLDocumentModelFieldDescriptor

2. Implement the basic com.iplanet.jato.model.ModelFieldDescriptor interface

3. Add a get and set method for the property XPath.
Chapter 4 Developing Model Components 89

4. Add a get and set method for the property FieldClass. This is an optional property.
If populated, at run-time the Model will coerce the raw value retrieved with the
XPath expression into the type specified by the FieldClass property.

After these steps, mycomponents/XMLDocumentModelFieldDescriptor.java should
look like this

package mycomponents;

import java.io.*;
import java.util.*;
import com.iplanet.jato.model.*;

/**
*
*
*
*/

public class XMLDocumentModelFieldDescriptor extends Object
implements ModelFieldDescriptor, Serializable

{

public XMLDocumentModelFieldDescriptor()
{

super();
}

public String getName()
{

return name;
}

public void setName(String name)
{

this.name = name;
}

public String getXPath()
{

return xpath;
}

public void setXPath(String xpath)
{

this.xpath = xpath;
}

public Class getFieldClass()
{

return fieldClass;
90 Sun ONE Application Framework Component Author’s Guide • October 2003

Create the Sun ONE Application Framework
Component Class

1. In any Java editor create the class mycomponents.XMLDocumentModel

2. Make XMLDocumentModel extend com.iplanet.jato.view.DatasetModelBase

3. Make XMLDocumentModel implement com.iplanet.jato.view.MultiDatasetModel

4. Implement the appropriate constructor for the component type. All Model
components must implement a no-arg constructor.

5. Add a get and set method for the property named "DocumentScope"

6. Add a get and set method for the property named
"DocumentScopeAttributeName"

7. Add a get and set method for the property named "CurrentDatasetName". Note we
shall give this property a more user friendly display name "Base Dataset Path",
but that work will be done in the XMLDocumentModelComponentInfo.

8. Implement the remaining methods that are required to fulfill our component
specific requirements.

� Implement the methods which DatasetModelBase left abstract.

� Implement the methods required by MultiDatasetModel interface.

� Implement any helper methods which are needed to fulfill the XML Document
adaptation.

After these steps, mycomponents/XMLDocumentModel.java should look like this

}

public void setFieldClass(Class fieldClass)
{

this.fieldClass = fieldClass;
}

private String xpath;
private String name;
private Class fieldClass; // DO NOT change this init to a default value

}

package mycomponents;
import java.util.*;
import com.iplanet.jato.*;
import com.iplanet.jato.model.*;
Chapter 4 Developing Model Components 91

import com.iplanet.jato.model.custom.*;
import com.iplanet.jato.util.*;
import org.w3c.dom.*;
import org.w3c.dom.traversal.*;
import org.apache.xpath.XPathAPI;
import javax.xml.transform.*;
import javax.servlet.jsp.PageContext;

/**
*
* @author component-author
*/

public class XMLDocumentModel extends DatasetModelBase implements MultiDatasetModel
{

public XMLDocumentModel()
{

super();
}

//
// Properties
//

public String getCurrentDatasetName()
{

// Add some defensive logic to ensure a valid currentDatasetName
if(currentDatasetName == null || currentDatasetName.trim().equals(""))

currentDatasetName = "/";
return currentDatasetName;

}

public void setCurrentDatasetName(String datasetName)
{

this.currentDatasetName = datasetName;
}

public int getDocumentScope()
{

return documentScope;
}

public void setDocumentScope(int documentScope)
{

this.documentScope = documentScope;
}

public String getDocumentScopeAttributeName()
92 Sun ONE Application Framework Component Author’s Guide • October 2003

{
return documentScopeAttr;

}

public void setDocumentScopeAttributeName(String name)
{

this.documentScopeAttr = name;
}

public void setDocument(Document value)
{

doc = value;
}

public Document getDocument()
{

if(doc == null) {
// Use the scope and attribute name to find the document
// The assumption is that the application logic has placed doc
// in the appropriate scope.
RequestContext rc = RequestManager.getRequestContext();
String attr = getDocumentScopeAttributeName();
switch (getDocumentScope())
{

case PageContext.REQUEST_SCOPE:
doc = (Document)
rc.getRequest().getAttribute(attr);
break;

case PageContext.APPLICATION_SCOPE:
doc = (Document)
rc.getServletContext().getAttribute(attr);
break;

case PageContext.SESSION_SCOPE:
doc = (Document)
rc.getRequest().getSession().getAttribute(attr);
break;

default:
throw new IllegalArgumentException(
"DocumentScope is set to an invalid value " +

getDocumentScope());
}

if(DEBUG)
System.out.println("XMLDocumentModel.getModel doc is " +
(doc==null?"null":"not null"));

}
return doc;

}

Chapter 4 Developing Model Components 93

//
// Model Interface Methods
//

public Object getValue(String name)
{

Node node=null;
try
{

node=getNode(name);
}
catch (Exception e)
{

throw new ModelValueException("Exception getting value for "+
"field \""+name+"\"",e);

}

if (node==null)
return null;

Object result=null;
if (isTextNode(node) || isAttributeNode(node))
{

result=node.getNodeValue();

XMLDocumentModelFieldDescriptor descriptor=(XMLDocumentModelFieldDescriptor)
getFieldGroup().getFieldDescriptor(name);

if (descriptor.getFieldClass()!=null)
result=TypeConverter.asType(descriptor.getFieldClass(),result);

}
else
{

// Return the node as is and let the caller figure out what to
// do with it--this could've been what they actually wanted
result=node;

}

return result;
}

public Object[] getValues(String name)
{

NodeList nodes=null;
try
{

nodes=getNodes(name);
}
catch (Exception e)
{

throw new ModelValueException("Exception getting values for "+
94 Sun ONE Application Framework Component Author’s Guide • October 2003

"field \""+name+"\"",e);
}

if (nodes==null)
return new Object[0];

Object[] result=null;
try
{

List resultList=new LinkedList();
for (int i=0; i<nodes.getLength(); i++)
{

Node node=nodes.item(i);
if (isTextNode(node) || isAttributeNode(node))
{

Object data=node.getNodeValue();

XMLDocumentModelFieldDescriptor descriptor=
(XMLDocumentModelFieldDescriptor)

getFieldGroup().getFieldDescriptor(name);
if (descriptor.getFieldClass()!=null)
{

data=TypeConverter.asType(descriptor.getFieldClass(),
data);

}

resultList.add(data);
}
else
{

// Return the node as is and let the caller figure out what
// to do with it--this could've been what they actually
// wanted
resultList.add(node);

}
}

result=resultList.toArray();
}
catch (Exception e)
{

throw new ModelValueException("Exception getting values "+
"for field \""+name+"\"",e);

}

return result;
}

public void setValue(String name, Object value)
Chapter 4 Developing Model Components 95

{
// Ignore

}

public void setValues(String name, Object[] value)
{

// Ignore
}

//
// DatasetModel Interface Methods
//

protected NodeList getCurrentDatasetNodeList()
throws ModelControlException

{
if (nodeList!=null)

return nodeList;

if (getDocument()==null)
{

throw new ModelControlException(
"No XML document has been provided");

}

try
{

// Note: instead of XPathAPI, we can use CachedXPathAPI to improve
// the efficiency of this call. This requires some additional
// complexity not useful in this example, however.
// Also, we could potentially move away from use Apache-specific
// code by using the org.w3c.dom.xpath package, as long as the
// XML parser supported DOM Level 3.
nodeList=XPathAPI.selectNodeList(getDocument(),

getCurrentDatasetName());
}
catch (TransformerException e)
{

throw new ModelControlException("Exception getting NodeList for "+
"dataset \""+getCurrentDatasetName()+"\"");

}

return nodeList;
}

public int getLocationOffset()
{

return 0;
}

96 Sun ONE Application Framework Component Author’s Guide • October 2003

public int getLocation()
throws ModelControlException

{
Integer index=(Integer)datasetContexts.get(getCurrentDatasetName());
if (index==null)
{

// Call just to check for NodeList validity
getCurrentDatasetNodeList();
return -1;

}

return index.intValue();
}

public void setLocation(int value)
throws ModelControlException

{
int maxLength=getCurrentDatasetNodeList().getLength();
if (value>=maxLength || value<-1)
{

throw new ModelControlException("Location index out of "+
"range (max value = "+(maxLength-1)+")");

}

datasetContexts.put(getCurrentDatasetName(),new Integer(value));
}

public int getSize()
throws ModelControlException

{
return getCurrentDatasetNodeList().getLength();

}

public void setSize(int value)
throws ModelControlException

{
throw new ModelControlException("Unsupported operation; "+

"model size cannot be set");
}

protected boolean ensureValidDataPosition()
throws ModelControlException

{
if (getSize()==0)

return false; // No data to retrieve
else
if (getLocation()==-1)
Chapter 4 Developing Model Components 97

{
// If we're currently before the first item, we need to move
// to the first item to retrieve some data
if (!first())

throw new ModelControlException("Could not move to first item");
}

return true;
}

//
// XML Node methods
//

public Node getNode(String fieldName)
throws ModelControlException, TransformerException

{
if (!ensureValidDataPosition())

return null;

Node contextNode=getCurrentDatasetNodeList().item(getLocation());

// Note: instead of XPathAPI, we can use CachedXPathAPI to improve
// the efficiency of this call. This requires some additional
// complexity not useful in this example, however.
// Also, we could potentially move away from use Apache-specific
// code by using the org.w3c.dom.xpath package, as long as the
// XML parser supported DOM Level 3.
Node n = XPathAPI.selectSingleNode(contextNode,getFieldXPath(fieldName));
if(DEBUG) {

if(n == null)
System.out.println("Warning: getNode found no node at[" +

getFieldXPath(fieldName) + "]");
}
return n;

}

public NodeList getNodes(String fieldName)
throws ModelControlException, TransformerException

{
if (!ensureValidDataPosition())

return null;

Node contextNode=getCurrentDatasetNodeList().item(getLocation());

// Note: instead of XPathAPI, we can use CachedXPathAPI to improve
// the efficiency of this call. This requires some additional
// complexity not useful in this example, however.
// Also, we could potentially move away from use Apache-specific
// code by using the org.w3c.dom.xpath package, as long as the
// XML parser supported DOM Level 3.
98 Sun ONE Application Framework Component Author’s Guide • October 2003

NodeList nl = XPathAPI.selectNodeList(contextNode,getFieldXPath(fieldName));
if(DEBUG) {

if(nl == null)
System.out.println("Warning: getNodes found no nodes at[" +

getFieldXPath(fieldName) + "]");
}
return nl;

}

public static boolean isTextNode(Node node)
{

if (node==null)
return false;

return (node instanceof CharacterData);
}

public static boolean isAttributeNode(Node node)
{

if (node==null)
return false;

return node.getNodeType()==Node.ATTRIBUTE_NODE;
}

//
// Helper method
//
public String getFieldXPath(String fieldName)
{

XMLDocumentModelFieldDescriptor descriptor=(XMLDocumentModelFieldDescriptor)
getFieldGroup().getFieldDescriptor(fieldName);

return descriptor.getXPath();
}
//
// Instance variables
//

private int documentScope = PageContext.REQUEST_SCOPE; // request scope by default
private String documentScopeAttr = "testDoc";
private String currentDatasetName;
private Document doc;

private NodeList nodeList;
private Map datasetContexts=new HashMap();
private String datasetName;

private static final boolean DEBUG = true;
}

Chapter 4 Developing Model Components 99

Create the Extensible Component's Java template
Extensible components serve as base classes for application defined entities.
Therefore, the Sun ONE Application Framework component model provides
extensible component authors the opportunity to provide a custom Java template.
The IDE toolset will, subsequently, use the component supplied template to create
the application specific sub-type. Component authors can utilize the custom
template to enhance the application developer's experience. Component authors
may prepare the component specific Java template with a set of template tokens
defined in com.iplanet.jato.component.ExtensibleComponentInfo. For token details
see ExtensibleComponent API.

Component authors may also utilize any arbitrary Java constructs within the Java
template (for example, import statements, methods, variables, interface declarations,
and so on). Minimally, the custom template will ensure that the new Java class
extends from the extensible component class. Component authors may also use the
template as a means of communicating to the developer documentation inline in the
source so as to provide "recommended steps" or conditions or boundaries to keep in
mind while specializing.

In this example we will keep the template utterly minimal.

� In any text editor create the template
mycomponents.resources.XMLDocumentModel_java.template

� The template contents should look like this. Note the tokens follow a __TOKEN__
pattern.

package __PACKAGE__;

import java.io.*;

import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.iplanet.jato.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.util.*;
import mycomponents.*;

/**
*
*
* @author
*/

public class __CLASS_NAME__ extends XMLDocumentModel
{

/**
* Default constructor
100 Sun ONE Application Framework Component Author’s Guide • October 2003

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example we will extend an existing
ComponentInfo and in true OO style, simply augment it. We could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

Note that in this example we are going beyond the functionality revealed in our
earlier component examples. Below, we are going to take advantage of a new
metadata opportunity provided by the ExtensibleModelComponentInfo interface,
the opportunity to describe an arbitrary Model Field type.

1. Create the class mycomponents.XMLDocumentModelComponentInfo.

2. Make XMLDocumentModelComponentInfo extend
com.iplanet.jato.model.ExtensibleModelComponentInfo

3. Implement the no-arg constructor.

4. Implement the getComponentDescriptor() method to provide the basic design-
time description of the component.

5. Implement the getConfigPropertyDescriptors() method to identify which
properties you wish to expose in the IDE. Note the use of default values within
the ConfigPropertyDescriptor declarations.

� Add a ConfigPropertyDescriptor for the DocumentScope property.
� Add a ConfigPropertyDescriptor for the DocumentScopeAttributeName property.
� Add a ConfigPropertyDescriptor for the CurrentDatasetName property.

6. Implement the getPrimaryTemplateAsStream() method to return a Java template
file which you wish the IDE toolset to use as the starting point for new classes
derived from this extensible component.

7. Implement the getModelFieldGroupDescriptors() method to provide a design-
time description of the model field type required by the Model.

*
*/

public __CLASS_NAME__()
{

super();
}

}

Chapter 4 Developing Model Components 101

Do not get confused by the extra level of indirectness suggested by
ModelFieldGroupDescriptor on top of ModelFieldDescriptor. The
ModelFieldDescriptor is the vital feature we want you to focus on. The
ModelFieldGroupDescriptor is an advanced optional feature. Suffice to say that most
Sun ONE Application Framework Model components can simply make use of the
standard com.iplanet.jato.model.ModelFieldGroup.

After these steps, mycomponents/XMLDocumentModelComponentInfo.java should
look like this:

In this sample code we have embedded String values directly for ease of
demonstration. If you anticipate the need to localize your display strings, we
encourage you to utilize resource bundles.

package mycomponents;

import java.util.*;
import java.io.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.model.*;

/**
*
*
*/

public class XMLDocumentModelComponentInfo extends ExtensibleModelComponentInfo
{

public XMLDocumentModelComponentInfo()
{

super();
}

public ComponentDescriptor getComponentDescriptor()
{

// identify the component class
ComponentDescriptor result=new ComponentDescriptor(

"mycomponents.XMLDocumentModel");

// The name will be used to determine a name for the component instance
result.setName("XMLDocumentModel");

// The display name will be used to show the component in a chooser
result.setDisplayName("XML Document Model");

// The description will be the tool tip text for the component
result.setShortDescription("A simple demonstration of a new model component");

return result;
102 Sun ONE Application Framework Component Author’s Guide • October 2003

}

public String getPrimaryTemplateEncoding()
{

/* Production version would be resource bundle driven, like this:
return getResourceString(getClass(),
"PROP_XMLDocumentModel_SOURCE_TEMPLATE_ENCODING", "ascii");
*/

return "ascii";
}

public InputStream getPrimaryTemplateAsStream()
{

/* Production version would be resource bundle driven, like this:
return XMLDocumentModelComponentInfo.class.getClassLoader().
getResourceAsStream(
getResourceString(getClass(),
"RES_XMLDocumentModelComponentInfo_SOURCE_TEMPLATE",""));
*/

return XMLDocumentModelComponentInfo.class.getResourceAsStream(
"/mycomponents/resources/XMLDocumentModel_java.template");

}

public ConfigPropertyDescriptor[] getConfigPropertyDescriptors()
{

if (configPropertyDescriptors!=null)
return configPropertyDescriptors;

configPropertyDescriptors=super.getConfigPropertyDescriptors();
List descriptors=new LinkedList(Arrays.asList(configPropertyDescriptors));

ConfigPropertyDescriptor descriptor = null;

descriptor=new ConfigPropertyDescriptor(
"documentScope",Integer.TYPE);

descriptor.setDisplayName("Document Scope");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptor.setDefaultValue(new Integer(

javax.servlet.jsp.PageContext.REQUEST_SCOPE));
descriptors.add(descriptor);

descriptor=new ConfigPropertyDescriptor(
"documentScopeAttributeName",String.class);

descriptor.setDisplayName("Document Scope Attribute Name");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptor.setDefaultValue("");
Chapter 4 Developing Model Components 103

descriptors.add(descriptor);

descriptor=new ConfigPropertyDescriptor(
"currentDatasetName",String.class);

descriptor.setDisplayName("Base Dataset Path");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptor.setDefaultValue("");
descriptors.add(descriptor);

// Create/return the array
configPropertyDescriptors = (ConfigPropertyDescriptor[])

descriptors.toArray(
new ConfigPropertyDescriptor[descriptors.size()]);

return configPropertyDescriptors;
}

public ModelFieldGroupDescriptor[] getModelFieldGroupDescriptors()
{

if(null != modelFieldGroupDescriptors)
return modelFieldGroupDescriptors;

List descriptors=new ArrayList();
ModelFieldGroupDescriptor descriptor=null;

descriptor = new ModelFieldGroupDescriptor(
"Fields",
ModelFieldGroup.class,
new ConfigPropertyDescriptor[0],
XMLDocumentModelFieldDescriptor.class,
"addFieldDescriptor",
"setFieldGroup");

descriptor.setFieldBaseName("field");
descriptor.setFieldTypeDisplayName("Field");
descriptor.setGroupDisplayName("Fields");
descriptor.setFieldPropertyEditorClass(null);
descriptors.add(descriptor);

modelFieldGroupDescriptors = (ModelFieldGroupDescriptor[])
descriptors.toArray(

new ModelFieldGroupDescriptor[descriptors.size()]);
return modelFieldGroupDescriptors;

}

private ModelFieldGroupDescriptor[] modelFieldGroupDescriptors;
private ConfigPropertyDescriptor[] configPropertyDescriptors;

}

104 Sun ONE Application Framework Component Author’s Guide • October 2003

Augment the Component Library Manifest
We have already created the component manifest in the earlier example. So now we
will simple add additional information. Note that we will add additional types of
information not seen in the prior example.

The Sun ONE Application Framework library manifest must be named complib.xml.
Within the JAR file, the Sun ONE Application Framework library manifest must be
placed in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml

2. Add an extensible component element to declare the XMLDocumentModel
component.

After these steps, the COMP-INF/complib.xml file should look like this. In the
interest of clarity, we are only showing the significant delta to the prior version of
this file shown earlier.

Re-create the Component Library JAR File
Once again Jar up the component classes as we did in the first example so that they
can be ready for distribution as a library.

1. The name of the JAR file is arbitrary. In this case, name it "mycomponents.jar"

2. You may omit the Java source files from the JAR

<?xml version="1.0" encoding="UTF-8"?>
<component-library>
<tool-info>
<tool-version>2.1.0</tool-version>
</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>

...

<extensible-component>
<component-class>mycomponents.XMLDocumentModel</component-class>
<component-info-class>mycomponents.XMLDocumentModelComponentInfo</component-info-

class>
</extensible-component>

...

</component-library>
Chapter 4 Developing Model Components 105

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles. In this case there are none.

In this case we are now including several new classes and a Java template file

4. The mycomponents.jar internal structure should look like this:

Test the New Component
1. Deploy the new version of the library into your previously created test

application.

Important Sun ONE Studio note - the Studio will not let you delete or copy over a
JAR file that is currently mounted unless this is done via the IDE using ANT tasks
which share the same VM as the IDE and share the file locks. Actually, we
recommend shutting down the Sun ONE Studio whenever you need to replace one
of the JAR files that are currently mounted. So if you are trying to test the new
version of component library in a project that is already opened inside the Sun ONE
Studio, we recommend that your first shut down the Sun ONE Studio. Once the Sun
ONE Studio has released its hold on the old copy of the library JAR file, you can
copy the new version of the JAR file over the old version. After successfully
deploying the new version of the library, you may re-open the application in Sun
ONE Studio.

2. Create a new Model object. (If you have not done this before, please complete the
Sun ONE Application Framework Tutorial. The new Model wizard should now
look like this. (Note, depending on the version of Sun ONE Application
Framework, you may not see all of the models that are pictured below. The
important point is that you see the entry for "XML Document Model").

mycomponents/resources/SecureViewBean_java.template
mycomponents/resources/XMLDocumentModel_java.template
mycomponents/MissingTokensEvent.class
mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/SecureViewBean.class
mycomponents/SecureViewBeanComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/XMLDocumentModel.class
mycomponents/XMLDocumentModelComponentInfo.class
mycomponents/XMLDocumentModelFieldDescriptor.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
106 Sun ONE Application Framework Component Author’s Guide • October 2003

3. Select the "XML Document Model" from the component list and complete the
wizard. Take the default settings and let the wizard create
"XMLDocumentModel1" for you.

4. After the wizard completes you can see that the IDE toolset has created a new
class based on the component supplied template.

5. In order to test our mode fully, create a second XML Document Model.

Your application should now contain two XML Document Models
(XMLDocumentModel1 and XMLDocumentModel2). Note the Base Dataset Name,
Document Scope, and Document Scope Attribute Name properties.
Chapter 4 Developing Model Components 107

� Also note above that the Document Scope property value is the raw integer 2.
That is because XMLDocumentModelComponentInfo declared the
DocumentScope property thus. The type is Integer.Type, and the default value is
javax.servlet.jsp.PageContext.REQUEST_SCOPE. The net effect in the IDE will use
the default Integer property editor which will express the raw integer value, in
this case 2.

descriptor=new ConfigPropertyDescriptor(
"documentScope",Integer.TYPE);

descriptor.setDisplayName("Document Scope");
descriptor.setHidden(false);
descriptor.setExpert(false);
descriptor.setDefaultValue(new Integer(

javax.servlet.jsp.PageContext.REQUEST_SCOPE));
descriptors.add(descriptor);
108 Sun ONE Application Framework Component Author’s Guide • October 2003

� You would be correct in thinking that this is a poor user interface since most
developers will not know that 2 corresponds to request scope. Therefore, as a
follow up exercise we shall later show you how to substitute a more user friendly
property editor in place of the default Integer property editor.

6. In order to test our new Model component we need a suitable XML document. We
shall contrive a test case by placing an arbitrary XML file on disk, and at run time
the test application will read the document from disk and place it into the request
scope. Please remember our XML Document Model component does not care
where the XML document comes from. In the real world, the XML document will
probably be dynamically fetched by the application from the enterprise tier. That
is of no concern to our XML Document Model.

� In any text editor, copy the following XML into a file named "author.xml".

� Place author.xml in the same application module directory as
XMLDocumentModel1 and XMLDocumentModel2. The code we will enter below
will assume that it is in the same directory as our test Models. This is purely a
convention of this exercise.

� Review author.xml for a moment. Notice that for a single author, there are
many book entries. Now is the time to point out, that we will actually utilize
the two models (XMLDocumentModel1 and XMLDocumentModel2) to access
different parts of the same XML document. We shall configure
XMLDocumentModel1 to access the scalar author information, name and
details. We shall configure XMLDocumentModel2 to access the non-scalar

<?xml version="1.0"?>
<author>

<name first="Charles" last="Dickens"/>
<details birth="1812" death="1870"/>
<works>

<book title="Great Expectations" publisher="Penguin USA " pages="544"/>
<book title="Nicholas Nickleby" publisher="Penguin USA " pages="816"/>
<book title="A Tale of Two Cities" publisher="Signet Classic" pages="371"/>
<book title="Hard Times" publisher="Bantam Classic" pages="280"/>
<book title="Oliver Twist" publisher="Tor Books" pages="496"/>
<book title="David Copperfield " publisher="Penguin USA " pages="912"/>
<book title="A Christmas Carol" publisher="Bantam Classics" pages="102"/>
<book title="Our Mutual Friend" publisher="Indypublish.Com" pages="472"/>
<book title="Bleak House" publisher="Penguin USA " pages="1036"/>
<book title="The Pickwick Papers " publisher="Penguin USA " pages="848"/>
<book title="The Haunted House" publisher="Hesperus Press" pages="128"/>
<book title="Little Dorrit" publisher="Indypublish.Com" pages="460"/>
<book title="Barnaby Rudge" publisher="Viking Press" pages="766"/>
<book title="The Mystery of Edwin Drood" publisher="Penguin USA" pages="432"/>
<book title="Sketches by Boz" publisher="Penguin USA" pages="635"/>

</works>
</author>
Chapter 4 Developing Model Components 109

collection of books. We chose this approach when we designed the
XMLDocumentModel because it simplifies both the implementation of the
Model component and simplifies the usage of the component within an
application.

7. Configure XMLDocumentModel1 to access the scalar author information

� Select the XMLDocumentModel1 node.

� Edit its Document Scope Attribute Name property. Set the value to
"authorDocument".

� Leave the Document Scope and the Base Dataset Path properties unchanged.

� Expand the XMLDocumentModel1 node so that you can see its Fields sub-node.

� Select the Fields sub-node.

� Right mouse and select the pop up menu's Add Field ... action. This will
automatically add a field with a default name. In this case the default name will
be "field1".
110 Sun ONE Application Framework Component Author’s Guide • October 2003

� Repeat the previous step to create additional fields "field2", "field3", and "field4".
For the purposes of this exercise we will leave the names unchanged. In a real
application, the Model developer would probably change the field names to make
them more descriptive of their role.

� Select the field1 node. Select the Model Field Properties tab on its property sheet.

� Edit field1's XPath property. Set the value to the XPath expression
"/author/name/@first"

� Repeat the previous step and adjust the XPath property for the remaining three
fields as follows

� Set field2's XPath value to "/author/name/@last"

� Set field3's XPath value to "/author/details/@birth"

� Set field4's XPath value to "/author/details/@death"

8. Configure XMLDocumentModel2 to access the "books" dataset.

� Select the XMLDocumentModel2 node.

� Edit its Document Scope Attribute Name property. Set the value to
"authorDocument".
Chapter 4 Developing Model Components 111

� Edit its Base Dataset Path property. Set the value to the XPath expression
"/author/works/book". That is an XPath expression that will address the
collection of book entries (i.e. a Sun ONE Application Framework dataset).

� Leave the Document Scope property unchanged.

� Expand the XMLDocumentModel2 node so that you can see its Fields sub-node.

� Select the Fields sub-node.

� Right mouse and select the pop up menu's Add Field ... action to add "field1",
"field2", and "field3".

� Edit each field's XPath property to XPath expressions relative to the value of the
Base Dataset Path property set above.

� Set field2's XPath value to "@title"

� Set field2's XPath value to "@publisher"

� Set field2's XPath value to "@pages"
112 Sun ONE Application Framework Component Author’s Guide • October 2003

The models have now been configured. Now you need to create some Views to use
the Models, and also provide some application logic to read the author.xml
document from disk and store it in the request scope attribute "authorDocument".
First, create the Views.

Advisory: Read this next step fully before attempting, since if you follow the
instructions correctly you can save some time and effort by utilizing the full
capability of the "New View" wizard. It is perfectly acceptable to create a ViewBean
that will exercise the XMLDocumentModel1 without following the steps detailed
below and you are free to create the ViewBean according to your preferred style. But
for newcomers to the Sun ONE Application Framework, the following steps are,
hopefully, the most concise.

9. Create the AuthorPage

� Invoke the "New View" wizard. In the Select View Type panel (below) select the
"Basic ViewBean" component. Explicitly set the Name to be "AuthorPage". Then
press Next.
Chapter 4 Developing Model Components 113

� Take the default values in the Associate JSP panel and press Next.

� In the Model Associations panel (below) expand the Current Application
Components node until you find "XMLDocumentModel1". Select
"XMLDocumentModel1" and press the Add button to create the association
between the ViewBean and the Model. That will cause the
"XMLDocumentModel1' to appear in the Currently chosen models section of the
panel. Then press Next.
114 Sun ONE Application Framework Component Author’s Guide • October 2003

� In the Bind Display Fields panel (below) select all four of the Model fields that are
available and press the Add Fields button. That will cause 4 entries to appear in
the Bound Fields section of the panel. Then press Finish.
Chapter 4 Developing Model Components 115

� After completing the wizard in the manner described above, you should find that
the AuthorPage node looks like this. The individual child display fields should be
properly bound to the corresponding XMLDocumentModel1 fields.
116 Sun ONE Application Framework Component Author’s Guide • October 2003

10. Open AuthorPage.java and add the following code to the constructor. This code
will read the "author.xml" document from disk and store it in the request scope
attribute named "authorDocument", which is where the XMLDocumentModel1
expects to find it. The choice of placing this code here in the AuthorPage
constructor is simply an arbitrary test stratagem. As stated before, the
XMLDocumentModel does not care how or when the XML document is placed
into the agreed upon attribute as long as it is there when the Model is accessed.
Please note the extra import statements at the top. Also, please note the
Chapter 4 Developing Model Components 117

getResourceAsStream method's parameter must take a parameter which reflects
the name of your test application (e.g.
getResourceAsStream("/testmycomplib/main/author.xml")

11. Compile all the classes in the application and test run the AuthorPage

Author should appear in the browser as follows:

import org.w3c.dom.*;
import org.xml.sax.InputSource;
import javax.xml.parsers.DocumentBuilderFactory;

/**
*
*
*/

public class AuthorPage extends BasicViewBean
{

/**
* Default constructor
*
*/

public AuthorPage()
{

super();
try {

InputSource in = new InputSource(AuthorPage.class.
getResourceAsStream("/testmycomplib/main/author.xml"));

DocumentBuilderFactory dfactory = DocumentBuilderFactory.newInstance();
dfactory.setNamespaceAware(true);
Document doc = dfactory.newDocumentBuilder().parse(in);
doc.normalize(); // Make sure text in the document is in normal form
RequestManager.getRequest().setAttribute("authorDocument", doc);
System.out.println("Author XML Document has been put into request");

}
catch(Exception e) {

System.out.println("Exception trying to load author.xml" + e);
}

}

118 Sun ONE Application Framework Component Author’s Guide • October 2003

12. Create a TiledView. Now you want to test XMLDocumentModel2 and its dataset
capability. For this you will need to create a TiledView. Essentially, duplicate the
steps taken in creating AuthorPage, but select a "Basic TiledView" instead of a
"Basic ViewBean" and associate it with XMLDocumentModel2 instead of
XMLDocumentModel1. Here are the detailed steps.

Invoke the "New View" wizard. In the Select View Type panel (below) select the
"Basic Tiled View" component. Explicitly set the Name to be "Books". Then press
Next.

� Take the default values in the Associate JSP panel and press Next.
Chapter 4 Developing Model Components 119

� In the Model Associations panel (below) expand the Current Application
Components node until you find "XMLDocumentModel2". Select
"XMLDocumentModel2" and press the Add button to create the association
between the TiledView and the Model. That will cause the
"XMLDocumentModel2' to appear in the Currently chosen models section of the
panel. Then press Next.

� In the Bind Display Fields panel (below) select all three of the Model fields that
are available and press the Add Fields button. That will cause 3 entries to appear
in the Bound Fields section of the panel. Then press Finish.
120 Sun ONE Application Framework Component Author’s Guide • October 2003

� After completing the wizard in the manner described above, you should find that
the Books TiledView node looks like this. The individual child display fields
should be properly bound to the corresponding XMLDocumentModel2 fields.
Chapter 4 Developing Model Components 121

13. The TiledView requires one additional configuration step that you have not seen
before in this guide. You need to configure the :Book TiledView's Primary Model
Reference property to reference "XMLDocumentModel2". If you do not configure
this property, the test run of this TiledView will show no data. That is a common
Sun ONE Application Framework application developer error.

Edit the Primary Model Reference property (below), and from its drop down list
select the "xmldocumentModel2" value.
122 Sun ONE Application Framework Component Author’s Guide • October 2003

14. Before you can test run the Books TiledView, you must add it to a ViewBean. To
make our example more interesting, we want you to add the Books TiledView as a
child of the AuthorPage. This is a good example of Sun ONE Application
Framework's hierarchical view support.

Add an instance of Books TiledView to AuthorPage. Again, you can achieve this by
selecting Books TiledView from either the Component Palette or the Component
Browser, just as you did earlier with the various text fields and button components.
Except this time, the component will be located in the Current Application
Components section of either the Component Palette or Component Browser.
Chapter 4 Developing Model Components 123

124 Sun ONE Application Framework Component Author’s Guide • October 2003

� After adding Books as a child view, the AuthorPage node should look like this;
Chapter 4 Developing Model Components 125

15. Now, you can format the JSP associated with the AuthorPage to suit your taste. By
default when you add a container view child to a ViewBean, the IDE toolset will
add the container view child and its children's tags to the ViewBean's JSP(s). The
application developer may use the Synchronize to View action on the JSP node to
batch remove tags for any child container view children. Lets take this
opportunity to also add some basic formatting to the JSP so it renders more neatly.

a. Select and expand the AuthorPage's JSPs node.

b. Select the actual AuthorPage.jsp node.

c. Double click the AuthorPage.jsp node to open the JSP file in the editor so you
can edit it.
126 Sun ONE Application Framework Component Author’s Guide • October 2003

d. Now add some very basic formatting (e.g. <p> and
) to the AuthorPage.jsp
so that we will get some separation between rows of Book data. When done,
the AuthorPage.jsp should look something like this:

16. Finally, test run AuthorPage again. Make sure you select the ExecutePage
(Redeploy) action, not the Execute Page action, otherwise you will not see the
effects of the recent changes.

The contents of AuthorPage.jsp should show up in the browser. (because the user
had accumulated the required tokens).

<%@page contentType="text/html; charset=ISO-8859-1" info="AuthorPage" language="java"%>
<%@taglib uri="/WEB-INF/jato.tld" prefix="jato"%>

<jato:useViewBean className="testmycomplib.main.AuthorPage">

<html>
<head>
<title></title>
</head>
<body>

<jato:form name="Author" method="post">

<jato:text name="field1"/>
<jato:text name="field2"/>
<jato:text name="field3"/>
<jato:text name="field4"/>
<p>
<jato:tiledView name="books1">

<jato:text name="field1"/>
<jato:text name="field2"/>
<jato:text name="field3"/>
</jato:tiledView></jato:form>

</body>
</html>

</jato:useViewBean>
Chapter 4 Developing Model Components 127

Ship It? Not yet, provide a custom editor for that "Document Scope" property

Recall that the XMLDocumentModel's Document Scope property is currently
vulnerable to user error, because it exposes a raw int value for direct editing. What
you really need is a custom editor that presents the application developer with a fool
proof drop down list containing only valid choices. You would normally spend a
little time and develop a custom property editor. The details of that are beyond the
scope of this document, but can be found in any basic JavaBean reference.
128 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 5

Developing Command Components

This section assumes that you have already read Develop Your First Component
found in Chapter 2, “Developing Components” on page 17.

Developing an Extensible Command
Component
In this section we shall describe how to create a new Command component that
adds value on top of the ValidatingDisplayField we created in the Developing a
Non-Extensible View Component section found in Chapter 3, “Developing View
Components” on page 43. We shall call this the ValidatingCommand component and
it will encapsulate some reusable logic related to the processing of pages which
contain instances of the ValidatingDisplayField.

This exercise is intended to focus on the mechanics of extensible Command
component design and as such, will only scratch the surface of extensible Command
possibilities.

As you will see, the mechanics of creating extensible Commands are very
straightforward. If you have completed the previous sections you know the
mechanics by now. The reality is that Commands are structurally simple. This
section will reinforce your familiarity with the command design pattern, introduce
you to its role in the Sun ONE Application Framework, and hopefully encourage
you to become creative in leveraging this simple but powerful pattern.

This example will allow us to introduce several additional Sun ONE Application
Framework component model topics

� CommandComponentInfo
� CommandDescriptor

Our validating Command component should support the following design-time
functionality:
129

� Allow developers to subclass our ValidatingCommand and add some application
specific behavior on top of the behavior encapsulated in the base class.

Specifically, subclass developers will focus on implementing two component
specific methods handleInvalid and handleValid instead of the conventional
Command execute method. The application command developer will rely on the
component base class to determine if the page on which the component has been
activated is valid or invalid, and invoke the appropriate handler. Therefore,
application command developers can focus on responding to the valid or invalid
state and not need to worry about detecting the state.

� The extensible command allows component authors to specify configuration
properties, like we did with the View and Model components. However, in this
example we will not need to define any.

Our validating Command component should support the following run-time
functionality:

The ValidatingCommand base class implementation of the execute method will
perform a deep search on the submitted ViewBean, detect any and all instances of
ValidatingTextField and check to see if any of those fields are invalid.

� If any field is found to be invalid, the ValidatingCommand base class will
invoke the handleInvalid method. It is assumed that ValidatingCommand will
override the handleInvalid method if they wish to perform some command
specific behavior. The base class implementation of handleInvalid will simply
redisplay the invalid page. This behavior may be deemed sufficient in some
cases.

� If no fields are found to be invalid, the ValidatingCommand base class will
invoke the handleValid method. It is assumed that ValidatingCommand will
override the handleValid method to perform some command specific behavior.
The base class implementation of handleValid is an abstract method. This
command assumes that the application specific command developer will
implement the handleValid method.

The choice to implement this Command component as outlined above is purely a
matter of style. As pointed out the command pattern is elementary. Therefore,
personal OO style will factor largely into component authors designs.

To meet these requirements, we will design and implement the following classes:

� Component class - mycomponents.ValidatingCommand
� ComponentInfo class - mycomponents.ValidatingCommandComponentInfo

Additionally, we will implement a custom Java template which the IDE toolset will
use as the basis for application specific sub-types of our ValidatingCommand.

Finally we shall edit the mycomponents complib.xml to add the new component to
the Sun ONE Application Framework component library.
130 Sun ONE Application Framework Component Author’s Guide • October 2003

Note this example assumes the co-existence of the
mycomponents.ValidatingDisplayField. If you have not already completed the
Developing a Non-Extensible View Component section, please do so before
continuing.

Create the Sun ONE Application Framework Component Class

1. In any Java editor create the class mycomponents.ValidatingCommand

2. Make ValidatingCommand extend com.iplanet.jato.comand.BasicCommand

3. Implement the appropriate constructor for the component type. All Command
components must implement a no-arg constructor.

4. Implement the remaining methods that are required to fulfill our component
specific requirements.

� Implementation of execute method which will enforce the component's validation
logic.

� Default implementation of the component's handleInvalid method.

� Abstract declaration of the component's handleValid method.

After these steps, mycomponents/ValidatingCommand.java should look like this

package mycomponents;
import java.util.*;
import com.iplanet.jato.*;
import com.iplanet.jato.command.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.event.*;

public abstract class ValidatingCommand extends Object implements Command {

public ValidatingCommand() {
super();

}

public void execute(CommandEvent event) throws CommandException {
Map map=event.getParameters();

try {
boolean isValid = true;
ViewBean viewBean = ViewBase.getRootView((View)event.getSource());
List vFields = getValidatingTextChildren(viewBean);
Iterator iter = vFields.iterator();
Chapter 5 Developing Command Components 131

while(iter.hasNext()) {
ValidatingDisplayField vText = (ValidatingDisplayField)iter.next();
if(! vText.isValid()) {

isValid = false;
break;

}
}

if(isValid) {
handleValid(event);

}
else {

handleInvalid(event, viewBean);
}

}
catch (Exception e) {

if (e instanceof CommandException)
throw (CommandException)e;

else {
throw new CommandException(

"Error executing ValidatingCommand",e);
}

}
}

public List getValidatingTextChildren(ContainerView container) {
List result=new LinkedList();

String[] childNames=container.getChildNames();
for (int i=0; i<childNames.length; i++) {

Class childType=container.getChildType(childNames[i]);
if (ValidatingDisplayField.class.isAssignableFrom(childType)) {

ValidatingDisplayField child=(ValidatingDisplayField)
container.getChild(childNames[i]);
result.add(child);

}
else if (ContainerView.class.isAssignableFrom(childType)) {

ContainerView child=
(ContainerView) container.getChild(childNames[i]);

result.addAll(getValidatingTextChildren(child));
}

}
return result;

}

public abstract void handleValid(CommandEvent event) throws CommandException;
132 Sun ONE Application Framework Component Author’s Guide • October 2003

Create the Extensible Component's Java template
Extensible components serve as base classes for application defined entities.
Therefore, the Sun ONE Application Framework component model provides
extensible component authors the opportunity to provide a custom Java template.
The IDE toolset will, subsequently, use the component supplied template to create
the application specific sub-type. Component authors can utilize the custom
template to enhance the application developer's experience. Component authors
may prepare the component specific Java template with a set of template tokens
defined in com.iplanet.jato.component.ExtensibleComponentInfo. For token details
see ExtensibleComponent API.

Component authors may also utilize any arbitrary Java constructs within the Java
template (for example, import statements, methods, variables, interface declarations,
and so on). Minimally, the custom template will ensure that the new Java class
extends from the extensible component class.

In this example we will use the template to assist the developer in their
implementation of methods which are declared abstract in the base class.

� In any text editor create the template
mycomponents.resources.ValidatingCommand_java.template

� The template contents should look like this. Note the tokens follow a __TOKEN__
pattern.

public void handleInvalid(CommandEvent event, ViewBean invalidVB)
throws CommandException {
// default implementation is to just redisplay the invalid page
invalidVB.forwardTo(event.getRequestContext());

}

}

Chapter 5 Developing Command Components 133

Create the ComponentInfo Class
The ComponentInfo class defines the design-time metadata that the IDE toolset
requires to incorporate the component. In this example we will extend an existing
ComponentInfo and in true OO style, simply augment it. We could, of course,
choose to implement the ComponentInfo interface from scratch, but that would be
unproductive in this case.

In this example, we are not going beyond the functionality revealed in our earlier
component examples.

package __PACKAGE__;

import com.iplanet.jato.*;
import com.iplanet.jato.command.*;
import com.iplanet.jato.model.*;
import com.iplanet.jato.view.*;
import com.iplanet.jato.view.event.*;
import mycomponents.*;

/**
*
*
*/

public class __CLASS_NAME__ extends ValidatingCommand
{

/**
* Default constructor
*
*/

public __CLASS_NAME__()
{

super();
}

/**
*
*
*/

public void handleValid(CommandEvent event) throws CommandException
{

// TODO - Developers must implement this method.
}

}

134 Sun ONE Application Framework Component Author’s Guide • October 2003

1. Create the class mycomponents.ValidatingCommandComponentInfo.

2. Make ValidatingCommandComponentInfo extend
com.iplanet.jato.command.BasicCommandComponentInfo

3. Implement the no-arg constructor.

4. No need to Implement the getComponentDescriptor() method since we do not
need to define any new properties.

5. Implement the getPrimaryTemplateAsStream() method to return a Java template
file which you wish the IDE toolset to use as the starting point for new classes
derived from this extensible component.

After these steps, mycomponents/ValidatingCommandComponentInfo.java should
look like this:

Note – In this sample code we have embedded String values directly for ease of
demonstration. If you anticipate the need to localize your display strings, we
encourage you to utilize resource bundles.

package mycomponents;
import java.util.*;
import java.awt.Image;
import java.io.*;
import com.iplanet.jato.component.*;
import com.iplanet.jato.command.*;

public class ValidatingCommandComponentInfo extends BasicCommandComponentInfo {

public ValidatingCommandComponentInfo()
{

super();
}

public ComponentDescriptor getComponentDescriptor()
{

// identify the component class
ComponentDescriptor result=new ComponentDescriptor(

"mycomponents.ValidatingCommand");

// The name will be used to determine a name for the component instance
result.setName("ValidatingCommand");

// The display name will be used to show the component in a chooser
result.setDisplayName("Validating Command");
Chapter 5 Developing Command Components 135

Augment the Component Library Manifest
We have already created the component manifest in the earlier example. So now we
will simple add additional information. Note that we will add additional types of
information not seen in the prior example.

The Sun ONE Application Framework library manifest must be named complib.xml.
Within the JAR file, the Sun ONE Application Framework library manifest must be
placed in the /COMP-INF directory.

1. Create/Open the file COMP-INF/complib.xml

2. Add an extensible component element to declare the ValidatingCommand
component.

// The description will be the tool tip text for the component
result.setShortDescription("A validating command component");

return result;
}

public String getPrimaryTemplateEncoding()
{

/* Production version would be resource bundle driven, like this:
return getResourceString(getClass(),
"PROP_ValidatingCommand_SOURCE_TEMPLATE_ENCODING", "ascii");
*/

return "ascii"; // NOI18N
}

public InputStream getPrimaryTemplateAsStream()
{

/* Production version would be resource bundle driven, like this:

return ValidatingCommandComponentInfo.class.getClassLoader().
getResourceAsStream(
getResourceString(getClass(),
"RES_ValidatingCommandComponentInfo_SOURCE_TEMPLATE",""));
*/

return mycomponents.ValidatingCommandComponentInfo.class.getResourceAsStream(
"/mycomponents/resources/ValidatingCommand_java.template"); // NOI18N

}

}

136 Sun ONE Application Framework Component Author’s Guide • October 2003

After these steps, the COMP-INF/complib.xml file should look like this. In the
interest of clarity, we are only showing the significant delta to the prior version of
this file shown earlier.

Re-create the Component Library JAR File
Once again, JAR up the component classes as we did in the first example so that they
can be ready for distribution as a library.

1. The name of the JAR file is arbitrary. In this case, name it "mycomponents.jar"

2. You may omit the Java source files from the JAR

3. You should include in the JAR any necessary ancillary resources, like icon images,
or resource bundles. In this case there are none.

In this case we are now including several new classes and a Java template file

<?xml version="1.0" encoding="UTF-8"?>
<component-library>

<tool-info>
<tool-version>2.1.0</tool-version>

</tool-info>
<library-name>mycomponents</library-name>
<display-name>My First Component Library</display-name>

...

<extensible-component>
<component-class>mycomponents.ValidatingCommand</component-class>
<component-info-class>mycomponents.ValidatingCommandComponentInfo</component-info-

class>
</extensible-component>

...

</component-library>
Chapter 5 Developing Command Components 137

4. The mycomponents.jar internal structure should look like this:

Test the New Component
Additional Sun ONE Application Framework IDE toolset features introduced in this
section:

� The new Command Wizard
� The Command Descriptor property editor

1. Deploy the new version of the library into your previously created test
application

Important Sun ONE Studio note: The Studio will not let you delete or copy over a
JAR file that is currently mounted. Actually, we recommend shutting down the Sun
ONE Studio whenever you need to replace one of the JAR files that are currently
mounted. So if you are trying to test the new version of component library in a
project that is already opened inside the Sun ONE Studio, we recommend that your
first shut down the Sun ONE Studio. Once the Sun ONE Studio has released its hold
on the old copy of the library JAR file, you can copy the new version of the JAR file
over the old version. After successfully deploying the new version of the library, you
may re-open the application in Sun ONE Studio.

2. Create a new Command object. (If you have not done this before, complete the
Sun ONE Application Framework Tutorial).

The "New Command" wizard should now look like this:

mycomponents/resources/SecureViewBean_java.template
mycomponents/resources/ValidatingCommand_java.template
mycomponents/resources/XMLDocumentModel_java.template
mycomponents/MissingTokensEvent.class
mycomponents/MyTextField.class
mycomponents/MyTextFieldComponentInfo.class
mycomponents/SecureViewBean.class
mycomponents/SecureViewBeanComponentInfo.class
mycomponents/TypeValidator.class
mycomponents/ValidatingCommand.class
mycomponents/ValidatingCommandComponentInfo.class
mycomponents/ValidatingDisplayField.class
mycomponents/ValidatingTextFieldComponentInfo.class
mycomponents/ValidatingTextFieldTag.class
mycomponents/Validator.class
mycomponents/XMLDocumentModel.class
mycomponents/XMLDocumentModelComponentInfo.class
mycomponents/XMLDocumentModelFieldDescriptor.class
mycomponents/mycomplib.tld
COMP-INF/complib.xml
138 Sun ONE Application Framework Component Author’s Guide • October 2003

3. Select "Validating Command" from the component list and complete the wizard.
Take the default settings and let the wizard create ValidatingCommand1 for you.

4. After the wizard completes you can see that the IDE toolset has created a new
class based on the component supplied template.

5. You application should now contain a ValidatingCommand1 object.
Chapter 5 Developing Command Components 139

6. The remaining steps assume that your test application already contains two pages
that we can leverage in testing your new ValidatingCommand.

The two pages you will need are Page1 from the Develop a Non-Extensible View
Component section and SecurePage1 from the Develop an Extensible View
Component section. You can see those ViewBeans in the test application explorer
graphic just above.

7. First, you need to complete the coding of ValidatingCommand1.

As designed, the superclass will handle validation state detection, while the
application specific class (e.g ValidatingCommand1) is responsible for determining
what to do when the submitted page is valid. This is a very application specific
determination. So in the interest of simply testing the component we will code its
handleValid method to just display SecurePage1.

a. Open the java source for ValidatingCommand1
140 Sun ONE Application Framework Component Author’s Guide • October 2003

b. Implement its handleValid method

8. In order to test a ValidatingCommand component, in particular, you need a
ViewBean that contains some ValidatingDisplayFields. Fortunately, we created
just such a ViewBean earlier, Page1

� Select the Page1 node

9. To test any Command component, you need to set up a uses relationship between
a command client (for example, a CommandField like a Button or HREF) and your
command object. At run-time, the CommandField will use (activate) the command
object. At design-time one establishes this uses relationship by configuring a
CommandDescriptor (to declaratively describe a Command instance) and
associating this CommandDescriptor with a CommandField. The IDE toolset
actually makes this relatively easy by allowing developers to initiate this multi-
step configuration process by selecting the CommandField first and it will
automatically walk you through the configuration of the CommandDescriptor as
part of the CommandField configuration. Learning is doing, so follow the steps
below and see.

a. Select its Visual Components sub-node.

b. Select the node for button1 (below)

public void handleValid(CommandEvent event) throws CommandException
{

ViewBean next = event.getRequestContext().getViewBeanManager().getViewBean(
SecurePage1.class);

next.forwardTo(event.getRequestContext());
}

Chapter 5 Developing Command Components 141

10. Edit button1's Request Handler property. Click on the property's ellipsis to bring
up the full blown Command Descriptor Property Editor. This is a very
sophisticated editor and takes some effort to get familiar with it, but the pay off is
substantial, as it offers exciting additional opportunities to component authors
which we will discuss later. First you must become comfortable using the editor.
The Command Descriptor Property Editor contains a dynamic list of available
CommandDescriptor types and it also contains an embedded property sheet (at
bottom of editor) which will dynamically display the properties for the type of
CommandDescriptor that is selected (this will become more clear in subsequent
steps).
142 Sun ONE Application Framework Component Author’s Guide • October 2003

11. Select the Create new shared instance radio button.

We will explain the meaning of "shared instance" in just a few more steps when it
will be easier to clarify.

12. Select the "User-Defined Command (Default)" item from the list of available
descriptor types (see graphic above). As you select a given command descriptor
type, the bottom section of the editor will display the properties which are
particular to the type of descriptor you selected. Your property editor should look
like this:
Chapter 5 Developing Command Components 143

13. Note that the embedded property sheet contains three tabs Properties, Component
Properties and Code Generation. Select the Component Properties tab.

� Within the Component Properties tab select the Command Class Name property
(below)
144 Sun ONE Application Framework Component Author’s Guide • October 2003

14. The Command Class Name property is of type java.lang.String, but at this time,
instead of directly typing into the exposed property field, select the ellipsis to
bring up the full blown editor. You should now see that the Command Class
Name property editor is actually the same non-extensible Component browser
that we have seen in several other contexts. In this context, though, it intentionally
filters the list of components to those which are appropriate for the context (i.e.
Command components). Fully expand the Current Application Components node
and you should see "ValidatingCommand1" available (below).
Chapter 5 Developing Command Components 145

15. Select the "ValidatingCommand1" node from the property editor and click OK
(above).

Notice that the Command Class Name property in the CommandDescriptor's
embedded property sheet now contains the fully qualified class name for
ValidatingCommand1 (below).
146 Sun ONE Application Framework Component Author’s Guide • October 2003

You could have directly typed in the fully qualified name of the Command class (e.g.
<yourTestApplication>.main.ValidatingTest1) into the Command Class Name
property. But direct editing of the Command Class Name property is really only
recommended for special cases (e.g. where you need to refer to a Command Class
that exists only as a .class file and is therefore not visible for direct selection in the
Command Component browser we saw above.

16. Finally, click the OK button to complete the configuration of the
CommandDescriptor.
Chapter 5 Developing Command Components 147

17. Before further configuration, spend a moment to fully understand the impact of
the previous configuration on the Page1. First, note that the value of button1's
Request Handler property now reads "commandDescriptor1" (below).

18. Naturally, you should ask yourself, "where is commandDescriptor1?". Also you
are probably still wondering about that "Create new shared instance" radio button
in the CommandDescriptor property editor that you selected (above). The answer
to both of those mysteries is revealed by expanding the Page1's Non-Visual
Components node (below). There you will find a new non-visual component node
"commandDescriptor1". It is the CommandDescriptor object you configured just
148 Sun ONE Application Framework Component Author’s Guide • October 2003

moments ago. It is a CommandDescriptor that you configured as a "shared
instance". In order to visually express its "shared" nature, the IDE toolset provides
the "Non-visual Components" node to house all of these shared instances.

The "Non-Visual Components" node is an Sun ONE Application Framework
component model construct. It provides a ContainerView scoped space for the
configuration of JavaBean objects (i.e. Configured Beans) which are referenceable by
properties elsewhere in the current ContainerView. In this example,
"commandDescriptor1" is a configured CommandDescriptor (which is a JavaBean),
which is referenced by button1's Request Handler property. The key to this
component model feature, is that the same configured non-visual component may be
referenced by more than one property within the current ContainerView scope (e.g.
more than one button or HREF could have its CommandDescriptor property also set
to refer to commandDescriptor1. A quick glance at the IDE toolset generated Java
code for Page1 would reveal how this is expressed in Java terms. The benefits to
both component authors and application developers are substantial. As a further
clarification, not only may multiple CommandFields (for example, Buttons, HREFs,
Chapter 5 Developing Command Components 149

and so on) share commandDescriptor1 by each referring to it in their specific
"Command Descriptor" property, but any property within the current ContainerView
whose type is assignable from com.iplanet.jato.command.CommandDescriptor may
be set to refer to commandDescriptor1. In essence, the non-visual components are
class scoped, IDE configurable JavaBean objects which may be referenced in a type
safe manner by any number of other visual components within the class. At this time
the IDE toolset does not support the ability to have one non-visual component refer
to another non-visual component.

Also note, application developers must understand and respect the shared nature of
the non-visual components. Modifications to the configuration of an existing non-
visual component will indirectly affect all circumstances in which that instance of
the non-visual component is referenced at run-time.This is precisely why the
CommandDescriptor editor (or more generally, the non-visual component editor)
always allows one to "Create a new shared instance" of a non-visual component.
More often than not, multiple CommandFields within a given ContainerView will
not share the same instance of CommandDescriptor, but rather, refer to different and
distinctively configured instances of CommandDescriptor.

19. Now you have configured Page1 to instantiate ValidatingCommand1 and invoke
its execute method whenever button1 is indicated in a form submit. Test run the
page flow from Page1 to SecurePage1 which is now controlled by
ValidatingCommand1.

� Test run Page1
� The contents of Page1.jsp should show up in the browser

20. Enter an invalid value (any non-integer) in the ValidatingTextField text input and
submit the page. The page should immediately be redisplayed with the text of the
"Validation Error Message" property immediately following the
ValidatingTextField.
150 Sun ONE Application Framework Component Author’s Guide • October 2003

21. Enter a valid value (e.g. 55 or any other valid Integer) and submit the page. Now
instead of Page1 being redisplayed as it was earlier in this guide, the logic within
ValidatingCommand1 will display SecurePage1.
Chapter 5 Developing Command Components 151

152 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 6

ConfigurableBeans (Non-Visual
Components)

ConfigurableBeans (Non-Visual
Components)
ConfigurableBeans are JavaBean types which have been explicitly designated as
ConfigurableBeans in a component library manifest. The IDE toolset automatically
inspects all component library manifests and builds a dynamic list of
ConfigurableBean types in memory. After the component manifest has been
inspected these types are said to be registered with the IDE toolset.

Here is a snippet of the Sun ONE Application Framework Component Library
manifest that declares some ConfigurableBeans. As you can see, the designation is
very straightforward.

First, we must note that the technical name for these components is
ConfigurableBeans. That is the name by which these entities are declared within the
component library manifest. However, within the IDE toolset, application
developers see the more developer friendly term Non-Visual Components.

<configurable-bean>
<bean-class>com.iplanet.jato.model.SimpleModelReference</bean-class>

</configurable-bean>
<configurable-bean>

<bean-class>com.iplanet.jato.command.CommandDescriptor</bean-class>
</configurable-bean>
<configurable-bean>

<bean-class>com.iplanet.jato.view.command.WebActionCommandDescriptor</bean-class>
</configurable-bean>
153

Non-Visual Components node

Only component authors need understand that ConfigurableBeans and Non-Visual
Components are essentially the same thing. Technically speaking, the Non-Visual
Components which are visible as a sub-node of a ContainerView are really just a
special case of the IDE toolset exposing ConfigurableBeans as nodes. So formally
speaking, all Non-Visual Components are ConfigurableBeans, but not all
ConfigurableBeans are Non-Visual Components. There are in fact other cases of
ConfigurableBeans being used within the IDE toolset which do not appear as explicit
nodes. See ConfigPropDescriptors API - Value Policy.

How does the IDE toolset make use of the ConfigurableBean? What role do they
play?

It is fair to say that ConfigurableBeans are just ordinary JavaBean types which play a
well defined but subtle role within the Sun ONE Application Framework IDE
toolset. The Sun ONE Application Framework component model relies on
ConfigurableBeans to complement the standard Sun ONE Application Framework
components (Model, View, Commands). Specifically, ConfigurableBeans complete
the story begun by Sun ONE Application Framework ConfigPropertyDescriptors. A
154 Sun ONE Application Framework Component Author’s Guide • October 2003

component author adds ConfigPropertyDescriptors to ComponentInfo whenever he
needs to specify a configuration property that he wishes to expose for design time
configuration. Each ConfigPropertyDescriptor specifies a property "type".
Application developers must edit/configure these properties within the IDE. Since
the properties are typed, the IDE toolset can leverage this formalism, and provide a
type specific editor. For example, if the configuration property type is Boolean.TYPE
then the IDE will invoke the standard Boolean editor. This behavior is typical of any
JavaBean aware IDE.

However, the Sun ONE Application Framework IDE toolset offers functionality
above and beyond that of the standard JavaBean editor. This extra functionality
involves the special treatment that the IDE toolset provides for Sun ONE
Application Framework configuration properties whose property types correspond
to ConfigurableBean designated types. The IDE toolset uses a lookup algorithm to
determine if the configuration property type corresponds to a registered
ConfigurableBean type and if so it automatically invokes one of two special
ConfigurableBean editors. These special Sun ONE Application Framework
ConfigurableBean editors are shown below.
Chapter 6 ConfigurableBeans (Non-Visual Components) 155

156 Sun ONE Application Framework Component Author’s Guide • October 2003

Chapter 6 ConfigurableBeans (Non-Visual Components) 157

The IDE toolset will invoke one of the two editors above based on a further subtlety
in the ConfigPropertyDescriptor, known as the value policy. The details of value
policy are beyond the scope of this section, for more information see
ConfigPropDescriptors API - Value Policy. For this section, it is sufficient to observe
that while their layout is radically different both of the ConfigurableBean editors
provide a common core functionality. Both of these editors provide the application
developer with a dynamic list of ConfigurableBean types which are assignable from
the configuration property type. That is the key value add of the ConfigurableBean
component. It is this mechanism which allows the IDE to seamlessly and
dynamically incorporate new choices into properties that otherwise would normally
be severely restricted. For instance, the IDE will enable the editing of a configuration
property of type CommandDescriptor with the ConfigurableBean editor that
displays a dynamic list of CommandDescriptor sub-types. The application developer
158 Sun ONE Application Framework Component Author’s Guide • October 2003

first selects the type of CommandDescriptor from the list, and then configures an
instance of that type. The properties of the selected sub-type, of course, are
dynamically exposed via conventional JavaBean logic.

Instead of being limited to a very plain vanilla CommandDescriptor editor which
would be the case if left to the standard JavaBean handling, the Sun ONE
Application Framework IDE toolset provides an unlimited opportunity for
component authors to introduce custom ConfigurableBean types with their own sets
of properties and potentially custom property editors. The IDE then transparently
leverages these type/property sheet/editor combinations into the IDE as new
offerings for simply defined properties. Effectively, the ConfigurableBean editor
introduces an extra level of indirection that is extremely powerful and somewhat
unprecedented. It is so unprecedented that it may take component authors some
time to actually fully appreciate the opportunity that this offers them.

What is the relationship between Sun ONE Application Framework and the
ConfigurableBean types?

ConfigurableBeans are really a value added feature of the Sun ONE Application
Framework component model. Note that component authors are not required to
utilize the ConfigurableBean feature. There is no formal notion of ConfigurableBean
in the Sun ONE Application Framework run-time environment, or framework API.
Rather, ConfigurableBeans are a feature offered by the component model to
empower component authors and make the IDE experience richer for developers.
Component authors are encouraged to come up with new ConfigurableBean types to
either augment existing components, or enhance entirely new components.

The Sun ONE Application Framework Component Library does define quite a few
ConfigurableBean types. Component authors should familiarize themselves with the
usage of these ConfigurableBean types, as they provide the best illustration of the
feature. Component authors should understand the manner in which the Sun ONE
Application Framework standard components declare configuration properties
which are satisfied by ConfigurableBean types. In addition to writing new
components, component authors should understand that they can also immediately
augment the existing Sun ONE Application Framework components by providing
additional ConfigurableBean types that are appropriate for the already defined Sun
ONE Application Framework configuration properties identified below.

Following is a table to help guide your review.
Chapter 6 ConfigurableBeans (Non-Visual Components) 159

Configurable Bean Example: CommandDescriptor
The obvious Command components are the extensible Command components.
Extensible Command components are custom implementations of the
com.iplanet.jato.command.Command interface, which are intended for
specialization by application developers. The specialization by application
developers will usually consist of application developers adding custom logic to
their application specific Commands. Command objects have minimal formal
structure, being arbitrary implementations of a very simple interface,
com.iplanet.jato.command.Command. Therefore, there is not as much of an
opportunity to formalize the construction of new Command types within the IDE
beyond the specification of properties.

ComponentInfo ConfigPropertyDescriptor
ConfigBeans Assignable From
Property Type

BasicDisplayFieldComponentInfo ConfigPropertyDescriptor(
"modelReference",
com.iplanet.jato.model.ModelRefere
nce.class)

com.iplanet.jato.model.Simple
ModelReference

BasicCommandFieldComponentInfo ConfigPropertyDescriptor(
"commandDescriptor",
com.iplanet.jato.command.Comman
dDescriptor.class)

com.iplanet.jato.command.Co
mmandDescriptor
com.iplanet.jato.view.comman
d.WebActionCommandDescrip
tor
com.iplanet.jato.view.comman
d.ExecuteModelCommandDes
criptor
com.iplanet.jato.view.comman
d.GotoViewBeanCommandDes
criptor

ObjectAdapterModelComponentInfo ConfigPropertyDescriptor(
"objectFactory",
com.iplanet.jato.model.object.ObjectF
actory.class)

com.iplanet.jato.model.object.f
actory.SessionAttributeFactory
com.iplanet.jato.model.object.f
actory.ApplicationAttributeFac
tory
com.iplanet.jato.model.object.f
actory.RequestAttributeFactory

BasicChoiceDisplayFieldComponentI
nfo

IndexedConfigPropertyDescriptior(
"choices",com.iplanet.view.Choice.cla
ss)

com.iplanet.jato.view.SimpleC
hoice
160 Sun ONE Application Framework Component Author’s Guide • October 2003

Additionally, the Sun ONE Application Framework offers other Command
component opportunities. To understand this opportunity, it is necessary for the
component author to fully understand the formal role of CommandDescriptors.
Effectively, CommandDescriptors are configurable beans that allow for the design-
time configuration of Command object instances.

The Sun ONE Application Framework and the IDE toolset utilize
CommandDescriptors to allow the application developer to configure the usage of
Command objects. That is to say, there is a formal uses relationship between
CommandFields and Command objects and this relationship is mediated by
CommandDescriptors. CommandFields are Views (e.g. Buttons and HREFs) which
invoke Command objects when activated. The application developer specifies which
Command object will be invoked when the CommandField is activated via the
field's Command Descriptor property. A CommandDescriptor is a Sun ONE
Application Framework object that encodes the information needed at run-time to
construct a particular instance of a Command class and invoke it. Minimally, the
CommandDescriptor specifies which Command class should be instantiated at run-
time. The CommandDescriptor also allows developers to specify Command specific
parameterized values. For instance, it is very common for a single Command object
to be associated with multiple CommandFields. Each CommandField would employ
a distinctly configured CommandDescriptor to direct and influence the execution of
the Command. For more detailed information on this subject, see the Sun ONE
Application Framework Developer's Guide.
Chapter 6 ConfigurableBeans (Non-Visual Components) 161

162 Sun ONE Application Framework Component Author’s Guide • October 2003

Given the role of the CommandDescriptor, the opportunity exists for component
authors to create a very rich Command component story through the combination of
non-extensible Command components and component specific CommandDescriptor
classes. For instance, a component author can create and distribute a non-extensible
Command component plus a custom CommandDesciptor class designed to allow
developers to visually configure the invocation of the non-extensible Command
component. The custom CommandDescriptor, itself, can be distributed as a
ConfigurableBean component. ConfigurableBeans are visually exposed by the IDE
toolset as Non-Visual Components.
Chapter 6 ConfigurableBeans (Non-Visual Components) 163

164 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 7

Developing and Distributing Non-
Extensible Model, Command and
ContainerView Components

Recall that there is a fundamental difference between extensible and non-extensible
components, see the earlier section Extensible vs. Non-Extensible Components. In
the previous exercises we demonstrated the development, distribution and test cycle
for five components. All but two of those were extensible components.

� MyTextField (non-extensible DisplayField component)
� ValidatingDisplayField (non-extensible DisplayField component)
� SecureViewBean (extensible ViewBean component)
� XMLDocumentModel (extensible Model component)
� ValidatingCommand (extensible Command component)

What about the possibility of developing and distributing non-extensible Model,
ContainerView and Command components?

The short answer is that such components are possible, easy to develop and easy to
distribute. A non-extensible Model, ContainerView or Command component is a
concrete Model, ContainerView or Command that has been created within the IDE
from an extensible Model, ContainerView or Command component. It is no different
from an application specific Model, ContainerView or Command, except that is
subsequently distributed in a component library JAR file with the express purpose of
being incorporated into multiple applications, like any other distributed component.
The distribution technique is common for non-extensible Models, ContainerViews
and Commands.

Why would someone develop and distribute non-extensible Model, ContainerView
and Command components?

Non-extensible Model, ContainerView and Command components provide several
opportunities for component authors to deliver highly leveraged components to
their component consumers. The discussion which follows, only scratches the
surface of this topic. The most obvious opportunity provided by non-extensible
Model, ContainerView and Command components is the opportunity for component
authors to move beyond delivering small building blocks to large reusable
165

application and organization sized components.Non-extensible Model,
ContainerView and Command components typically form the top end of the
component food chain. They allow component authors to deliver arbitrarily
complex, very coarse grained components. If you consider DisplayField components
to be the most fine grained components, the non-extensible Model, ContainerView
and Command components are at the opposite end of the component spectrum.
Companies or organizations can create very sophisticated horizontal or vertical
libraries of non-extensible Model, ContainerView and Command components from
which application developers can assemble applications out of very large, very
reusable, very powerful building blocks.

For instance, non-extensible Model components can provide pre-packaged ready to
use access to specific organizational data. Application developers can then simply
define new Views and visually bind these applications specific Views to the pre-
packaged Model. Non-extensible ContainerView components can deliver pre-
configured visual building blocks comprised of arbitrarily complex aggregations of
smaller Views. Non-extensible Command components can provide plug and play
behavior. Non-extensible components can be preconfigured to use other non-
extensible components within the library. For example, a ShoppingCart
ContainerView component can be pre-configured to use a companion non-extensible
Model component. Together, such preconfigured ContainerView and Model
components provide ready to use already integrated visual presentation and data
access. On top of that, the component author could preconfigure said ContainerView
component to use one or more non-extensible Command components, thereby
adding already integrated command behavior to the composite. We hope you can get
the picture. Organizations can create toolboxes comprised of collections of integrated
non-extensible Model, ContainerView and Command components. These toolboxes
can be used internally to facilitate the rapid development of applications or even
delivered to partners as part of a broader business to business architecture. The
opportunity is really boundless.

Develop a Non-Extensible Model,
ContainerView or Command
Component

1. Develop the component within the Sun ONE Application Framework IDE as you
would an ordinary Sun ONE Application Framework application object.

� Use the appropriate Model, ContainerView or Command wizard to construct the
component.

� Configure the component's properties
166 Sun ONE Application Framework Component Author’s Guide • October 2003

� Add arbitrary behavior to the component's Java class

� (ContainerView components only) Optionally add zero or more child view
components to the ContainerView.

� (ContainerView components only) Optionally associate zero or more JSP pagelets,
to provide the rendering specification for the ContainerView component.

� (Model components only) Optionally add zero or more model fields or model
operations to the Model.

2. Create a ComponentInfo class for the new component.

This is highly recommended, though strictly speaking not required. A component
specific ComponentInfo is recommended to minimally provide a component specific
ComponentDescriptor. Optionally, the ComponentInfo can be used to specify any
and all of the advanced component model features which are appropriate for non-
extensible components.

Special Note - In order to visually create any non-extensible Model, ContainerView
or Command components within the Sun ONE Studio, you must construct the
components within the context of an Sun ONE Application Framework application.
That is to say, you must, first create an Sun ONE Application Framework application
before you can leverage the IDE toolset to create any new non-extensible Model,
ContainerView or Command components. This is because the IDE toolset does not
currently support a "library only design" mode. Future versions of the Sun ONE
Application Framework IDE toolset may allow developers to choose between a "new
library" or a "new application", but currently, you can only leverage the Sun ONE
Application Framework new object wizards within an Sun ONE Application
Framework application. The fact that a component author will design these new
components within an "application" has no bearing on the future independence of
the components. The application merely provide the IDE toolset recognized context
that allows the component author to leverage the complete visual IDE feature set
during the authoring process. The ultimate end product of the component authoring
will be the component's Java resources which are totally independent of the
application in which they might have been originally visually designed.

Assuming that you intend to create a new Sun ONE Application Framework
application merely for the purposes of designing some new non-extensible Model,
ContainerView or Command components, the name of the application itself does not
matter. One recommended approach is to consider the application as a convenient
"test application" for your new non-extensible Model, ContainerView or Command
components. Then after you are satisfied with their performance within the test
application you add the new components to a component library JAR file.

The IDE Toolset will treat a Sun ONE Application Framework component's
ComponentInfo Java source as "part" of the component. This means that the
ComponentInfo Java source node will appear as a child of the component's primary
node, just as the component's Java source appears as a child of the component's
primary node.
Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 167

168 Sun ONE Application Framework Component Author’s Guide • October 2003

Distributing a Non-extensible Model,
ContainerView or Command
Component

1. Add a component element to the component library's complib.xml with one
additional sub-element not discussed previously

� The component element must include a design-reference-resource sub-element

� The design-reference-resource sub-element must specify the location of the
component's object definition resource

2. Add the non-extensible component to a Sun ONE Application Framework
component library JAR

� Include any classes and other component specific resources as you would for any
Sun ONE Application Framework component

� Include the component's object definition file. This is the key distinction as this is
not required for the other components discussed n this guide

� Include any special "Additional Files" resources. See below Unpacking of
"Additional Files"

Common additional file resources will include ContainerView components'
associated JSP pagelet files

Here is an example of a non-extensible component entry in a complib.xml

The emphasis on non-extensible Models, ContainerViews and Commands being
created within the IDE is intentional and important. All preceding component
examples in this guide did not assume or require that the component types
themselves be developed inside of the Sun ONE Studio. The visual use of the
components within the IDE did require the use of the Sun ONE Application
Framework enabled Sun ONE Studio, but the authoring of the component classes,
ComponentInfo, complib.xml, and the preparation of the component library JAR
files did not assume or require the use of the Sun ONE Studio. However, with non-
extensible Models, ContainerViews, and Commands that is not the case. They must

<component>
<component-class>mycomponents.MyFooCommand</component-class>
<component-info-

class>com.iplanet.jato.command.BasicCommandComponentInfo</component-info-class>
<design-reference-resource>/mycomponents/MyFooCommand.command</design-reference-

resource>
</component>
Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 169

be developed within the IDE because it is only the IDE which can generate the non-
extensible component metadata, called the object definition file. In short, the key to
distributing a non-extensible Model, ContainerView, or Command is to distribute its
object definition file along with the class and ComponentInfo.

Can a component author mix non-extensible Model, Command and ContainerView
components in the same library with extensible Model, Command and
ContainerView components?

Absolutely yes. This is expected and encourage.

After non-extensible Model, Command and ContainerView components have been
distributed in a Sun ONE Application Framework component library, how do
application developer's make use of the components?

The non-extensible Model, Command and ContainerView components within a
given Sun ONE Application Framework component library will appear in the IDE
toolset in exactly the same IDE contexts that the current application's non-
extensible components appear. If this sounds tautological, it is intentionally so. Its
points out that from the Sun ONE Application Framework IDE toolset's
perspective all Model, View and Command objects are components. As far as the
IDE toolset is concerned it does not matter whether it discovers the components
in a component library JAR or within the current application space. The images
below will demonstrate this point by showing that the various component
choosers within the IDE toolset allow the application developer to choose freely
and transparently between library supplied non-extensible components and
application defined non-extensible components.
170 Sun ONE Application Framework Component Author’s Guide • October 2003

Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 171

The Object Definition File (non-
extensible component metadata)
Suffice to say that both component authors and application developers should
understand that the object definition files are produced by the IDE toolset and
should be treated as first class application resources.

� They should be preserved in source code control systems along with the
conventional application resources.

� They should not be edited by hand.

� They have zero run-time value and need not be deployed to the servlet container

� They do need to be distributed with non-extensible Model, ContainerView and
Command components

The following details of the object definition files are provided for information
purposes only. These are implementation details of the Sun ONE Application
Framework component model that neither component authors nor application
developers are required to know
172 Sun ONE Application Framework Component Author’s Guide • October 2003

The Sun ONE Application Framework IDE toolset stores design-time state in XML
format within its object definition files. The term object definition file is an arbitrary
designation for these files. The object definition files:

� Are XML files that conform to the Sun ONE Application Framework Model,
ContainerView and Command DTDs.

� Are the authoritative representation of Sun ONE Application Framework design-
time state

� They are produced by the IDE toolset to capture the application developer
design-time decisions (i.e. object hierarchy declarations property
configurations)

� They are read by the IDE toolset to restore the design-time state across Sun
ONE Studio sessions

� The IDE toolset generates Java code within the component's Java source file
which is a Java equivalent of the design-time state stored in the object
definition file. This code is generated into Sun ONE Studio Java source code
editor protected blocks (i.e. non-editable blocks).

� Have file suffixes recognized by the Sun ONE Application Framework IDE toolset
.model, .viewbean, .cview, and .command

� Have no run-time value at all

The IDE toolset generates Java code within the application class which is a Java
equivalent of the design-time state stored in the object definition file. Therefore,
the object definition files have absolutely no run-time role or presence.
Chapter 7 Developing and Distributing Non-Extensible Model, Command and ContainerView Components 173

174 Sun ONE Application Framework Component Author’s Guide • October 2003

CHAPTER 8

Design Actions

This section assumes that you have already read Develop Your First Component
found in Chapter 2, “Developing Components” on page 17, and “Developing Model
Components” on page 85.

Developing Extensible Components
which have Component Design Actions
This section of the document provides a description of the basic steps involved in
adding design actions to your extensible component. Component design actions
encapsulate arbitrary design time behavior for a component. The design action may
post an "About" or "Credits" dialog, perform validation, autoconfigure the
component, synchronize support files, display messages or warnings, open complex
editors and wizards and even read and edit the finest details of the component
object model. In order to support component design actions we introduce a new
interface to Sun ONE Application Framework component architecture called
DesignableComponentInfo. DesignableComponentInfo is an optional specialization
of ExtensibleComponentInfo that allows the component author to define special
design time behavior for extensible components. The practical use of
DesignableComponentInfo is to expose design actions to the developer in the IDE.
Any extensible command, model and view ComponentInfo classes may optionally
implement DesignableComponentInfo to expose
ComponentDesignActionDescriptors.

The IDE module only exposes design actions for extensible components and
therefore the DesignableComponentInfo specializes ExtensibleComponentInfo to
impose this rule.

When available, the IDE uses ComponentDesignActionDescriptors to present a
submenu list of the defined design actions in the component node's contextual menu
"Design Actions".
175

Because DesignableComponentInfo is a recent addition to the Sun ONE Application
Framework component architecture only the Bean Adapter Model uses
DesignableComponentInfo to expose the Update Properties design action.

What is a Component Design Action?
Although a component design action may be used to perform practically anything,
here are some guidelines to consider. The standard mechanism a developer expects
to use when configuring an extensible component during design time is the property
sheet of the primary component node and/or the contained property sheets of
subnodes. The component author should first turn to automatic support for config
properties and optionally any custom editors which may be applicable for complex
config properties. If the component author is using design actions to take the place
of config properties or custom editors then he or she may be going in the wrong
direction.

Discrete component config property editors alone are often not enough for managing
the design aspects of certain components. An editor for a config property will not
have scope to other config properties or other parts of the component object model.
Therefore, it is not possible to edit a subset of related config properties as a whole. In
the case of models and container views there is no way for a collection of model
fields or child views to be edit together. Also, there is currently no support in the
component architecture to specify wizards or initialization mechanisms to be used
by the developer when creating a new component. A solution to these issues is the
component design action. Finally, we will see later in this section that while
performing a component design action the component author is provided a context
in which very powerful design changes (even continuous and re-entrant design
changes) may be implemented.

A good example of a component design action may be found in Bean Adapter Model
in the Sun ONE Application Framework component library. Although the Bean
Adapter Model has a config property "Bean Type" which allows the developer to
specify the type/class of the adapted Java Bean, there is no easy way for the
developer to automatically generate model fields for the properties of the Bean. The
Update Properties design action of the Bean Adapter Model validates the Bean Type
config property and ensures that at least the full set of bean properties have
representative model fields. We can say that this design action is supports
continuous design because the action may be used as the adapted Bean changes.
176 Sun ONE Application Framework Component Author’s Guide • October 2003

An opportunity is provided with component design actions for component authors
to publish "black box" components which may even be configured by a mechanism
which does not even use the component object model. For instance, an existing view
or model component or even the foundation of a new component may already exists
which uses a custom runtime XML descriptor or properties file. In this case the
component author needs a way to provide editors for this custom configuration.
Advanced APIs of the ComponentDesignContext support such situations.

The rest of this section assumes that the reader has reviewed the JavaDocs for the
com.iplanet.jato.component.design and com.iplanet.jato.component.design.objmodel
packages. We will present a simple example of how to specify a
ComponentDesignAction for an extensible component using the
DesignableComponentInfo and ComponentDesignActionDescriptor APIs.

Exposing Design Action in ComponentInfo
To expose component design actions for your extensible component the first step is
to implement DesignableComponentInfo. In the example below we build onto the
XMLDocumentModel example. We will create a simple design action called "About"
which presents an informational dialog to the developer dumping some component
details including name, logical name, and config properties.

1. have your component info implement DesignableComponentInfo.

2. implement method getComponentDesignActionDescriptors() (see code example
below)

3. because the ComponentDesignActionDescriptor bean requires the
ComponentDesignAction class to be assigned, you will also need to create the
action class; the minimum that you need is a class implementing
ComponentDesignAction including the
performAction(ComponentDesignContext) method; an simple technique is to
have an inner class of the component info define the action class as is shown in
the code example below where we have the static inner class AboutDialog

The component design action mechanism will only call the default (no arg)
constructor of the design action class. Therefore, avoid using alternate constructors
for they simply will have no use.
Chapter 8 Design Actions 177

4. the performAction() method is not required to do anything other than return
promptly; in our minimal example below we will post a modal dialog and call a
helper method aboutDisplayMessage()

In this sample code we have embedded String values directly for ease of
demonstration. If you anticipate the need to localize your display strings, we
encourage you to utilize resource bundles. The following code represents what
needs to be added to the XMLDocumentModelComponentInfo.java. Non-relevant
code has been snipped as represented by the ellipsis " . . ."

. . .
import com.iplanet.jato.component.design.*;
import com.iplanet.jato.component.design.objmodel.*;

public class XMLDocumentModelComponentInfo extends ExtensibleModelComponentInfo
implements DesignableComponentInfo

{
. . .

public ComponentDesignActionDescriptor[] getComponentDesignActionDescriptors()
{

if(null != designActionDescriptors)
return designActionDescriptors;

List descriptors=new ArrayList();

ComponentDesignActionDescriptor descriptor = new
ComponentDesignActionDescriptor(AboutDialog.class);

descriptor.setName("About");

descriptor.setDisplayName("About");
descriptor.setShortDescription(

"Displays a small list of component details");
descriptors.add(descriptor);

designActionDescriptors = (ComponentDesignActionDescriptor[])
descriptors.toArray(

new ComponentDesignActionDescriptor[descriptors.size()]);
return designActionDescriptors;

}

public static class AboutDialog implements ComponentDesignAction
{

public void performAction(ComponentDesignContext context)
throws DesignActionException

{
javax.swing.JOptionPane.showMessageDialog(

context.getMainWindow(),
aboutDisplayMessage(context),
"XMLDocumentModel About Design Action",
178 Sun ONE Application Framework Component Author’s Guide • October 2003

In our AboutDialog design action we present a Swing informational modal dialog
box to the developer. We use the "MainWindow" property of the
ComponentDesignContext to place the Swing visual component. The message we
present comes from the helper method aboutDisplayMessage(). Again, we use the
various properties of the ComponentDesignContext to acquire information about the
component including its name, logical name, and we loop through the config
properties and dump their values. In order to access the config properties we take
advantage of object model interfaces ConfigPropertyNodeContainer and
ConfigPropertyNode. Note that this AboutDialog example may be used on
Command, ContainerView, ViewBean, and Model extensible components. This
example is not Model specific.

After compiling, packaging and using this component in an application, instances of
XMLDocumentModel will provide the design action "About"

javax.swing.JOptionPane.INFORMATION_MESSAGE);
}

private String aboutDisplayMessage(ComponentDesignContext context)
{

StringBuffer msg = new StringBuffer(
"Component Name: " +
context.getComponentInfo().getComponentDescriptor(

).getName() +
"\nComponent Logical Name: " +
context.getComponentLogicalName() + "\n");

ConfigPropertyNode[] props =
((ConfigPropertyNodeContainer)

context.getPrimaryObjectModel()).getConfigProperty
Node();

for(int i=0;i<props.length;i++)
{

props[i].dump(msg, "\t");
msg.append("\n");

}
return msg.toString();

}
}

. . .

private ComponentDesignActionDescriptor[] designActionDescriptors;
}

Chapter 8 Design Actions 179

The result of performing the design action is:
180 Sun ONE Application Framework Component Author’s Guide • October 2003

APPENDIX A

Component Library Structure

Component Library Overview
Sun ONE Application Framework components are packaged and distributed in
ordinary JAR files. The JAR file must contain

� A component library manifest (/COMP-INF/complib.xml)

� Component library specific Java resources (component classes, ComponentInfo
classes, resource bundles, component icon images, and any other ancillary files).
Any classes (component, ComponentInfo, and any other ancillary files) should be
placed in the JAR in accordance with standard Java convention.

Optionally, a Sun ONE Application Framework component library JAR may contain

� A special directory named /webapp

The contents of the /webapp directory are called the "Additional Files". This is a
Sun ONE Application Framework IDE toolset value add feature that allows
developers to distribute arbitrary additional files inside their component library
jar. The Sun ONE Application Framework Sun ONE Application Framework IDE
toolset will "unpack" these additional files into the Web application development
environment. See Automated Unpacking of "Additional Files" below

Component Library Structure
The contents of a Sun ONE Application Framework component library JAR must be
structured as follows:
181

The Component Manifest
Sun ONE Application Framework requires that each component library JAR contain
a special Sun ONE Application Framework component library manifest file. The
component library manifest file is a simple XML document that describes the
collection of components within the library. A component library manifest may
declare any number of components and associated Sun ONE Application
Framework component model resources.

The IDE toolset automatically introspects each JAR file mounted in an Sun ONE
Application Framework application's WEB-INF/lib directory. It specifically looks
inside the JAR for the component library manifest file. If the IDE toolset finds a valid
component library manifest file in the prescribed location within the JAR file, the
IDE toolset will expose any properly declared components for design time
utilization within the IDE toolset. If it does not find the component library manifest
file in the expected location within the JAR file, or if the component library manifest
is invalid, the IDE toolset will not recognize the JAR as a component library.

The component library manifest must comply with the following strict rules

� The component library manifest file must be named complib.xml

� The complib.xml file must be a well formed XML file

� The complib.xml file must comply with the jato-component-library_1_0.dtd
(shown below)

� The complib.xml file must be located in the component library JAR's /COMP-INF
directory

jato-component-library_1_0.dtd

<!--

The component-library element is the root element of the component
manifest

-->

<!ELEMENT component-library (tool-info, library-name, display-name,

description?, legal-notice?, icon?, interface-
version, implementation-version,

/COMP-INF/complib.xml
/[Java classes and resources]
/webapp/[additional files intended for IDE toolset design-time auto-extraction]

Note: The webapp directory is optional
182 Sun ONE Application Framework Component Author’s Guide • October 2003

author-info?, taglib*, component*, extensible-
component*,

configurable-bean*)>

<!--

The tool-info elements contains information about the tool
environment this

library was written against

-->

<!ELEMENT tool-info (tool-version)>

<!--

The tool-version element contains the interface version of Sun ONE
Application

Framework/JATO this library targets. Should be a dot-separated
version number,

for example "2.1.0".

-->

<!ELEMENT tool-version (#PCDATA)>

<!--

The library-name element contains the internal name of the component
library.

This name is expected to be globally unique, and should follow the
standard

Java package naming convention. For example, the library name of the
Sun ONE

Application Framework/JATO component library is "com.iplanet.jato",
the root of

its package structure.

-->

<!ELEMENT library-name (#PCDATA)>

<!--

The display-name element contains a short display name of the library
which

will be presented in GUI tools.

-->
Appendix A Component Library Structure 183

<!ELEMENT display-name (#PCDATA)>

<!--

The description element is used to contain descriptive text about its
parent

element.

-->

<!ELEMENT description (#PCDATA)>

<!--

The legal-notice element contains legal or copyright text that should
accompany

this library. This element is meant to provide an additional
opportunity to

keep this information in proximity to the library itself; however it
should not

be considered a sufficient means of conveying licensing terms or other
legally

binding terms to users of the library.

-->

<!ELEMENT legal-notice (#PCDATA)>

<!--

The icon element contains a small-icon and a large-icon element

which specify the location within the Web application for a small and

large image used to represent the Web application in a GUI tool. At a

minimum, tools must accept GIF format images.

-->

<!ELEMENT icon (large-icon?, small-icon?)>

<!--

The large-icon element contains the resource name within the library

of a file containing a large (32x32 pixel) icon image. The resource
name must

follow standard Java resource name syntax, with individual path
elements

separated by forward slashes ("/").

-->
184 Sun ONE Application Framework Component Author’s Guide • October 2003

<!ELEMENT large-icon (#PCDATA)>

<!--

The small-icon element contains the resource location within the
library

of a file containing a small (16x16 pixel) icon image. The resource
name must

follow standard Java resource name syntax, with individual path
elements

separated by forward slashes ("/").

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The author-info element contains information on the author(s) of this
library.

-->

<!ELEMENT author-info (author*, info-resource*) >

<!--

The author element contains information about a particular author of
the

library.

-->

<!ELEMENT author (author-name, description?, author-contact?) >

<!--

The author-name element contains the author's full name.

-->

<!ELEMENT author-name (#PCDATA)>

<!--

The author-contact element contains the author's contact information,
usually

an email address.

-->

<!ELEMENT author-contact (#PCDATA)>
Appendix A Component Library Structure 185

<!--

The info-resource element contains information describing external

informational resources relevant to this library, such as a link to a

publisher's homepage, a public link to API documentation, or a support
email

address.

-->

<!ELEMENT info-resource (info-resource-name, description?, info-
resource-contact?) >

<!--

The info-resource-name element contains an arbitrary descriptive name
of the

resource that can be presented to the user of the library.

-->

<!ELEMENT info-resource-name (#PCDATA)>

<!--

The info-resource-contact elements contains the actual contact
information

for the resource, such as an email address or HTTP link.

-->

<!ELEMENT info-resource-contact (#PCDATA)>

<!--

The interface-version element contains the interface version of this
library,

used to determine interface compatibility of the contained code. The
version

should be a dot-separated numeric version number, such as "1.0.0".
The version

number can contain as many dot-separated elements as desired.

-->

<!ELEMENT interface-version (#PCDATA)>

<!--

The implementation-version element contains the interface version of
this
186 Sun ONE Application Framework Component Author’s Guide • October 2003

library, used to determine the implementation version of the contained
code.

This version number usually takes the form of a timestamp or build
number.

The version should be a dot-separated numeric version number, such as

"2003.1.31". The version number can contain as many dot-separated
elements as

desired.

-->

<!ELEMENT implementation-version (#PCDATA)>

<!--

The taglib element declares any JSP tag libraries included in this
library.

Declared tag libraries will be automatically unpacked from the library
and

registered in the web.xml of the application under this URI.

-->

<!ELEMENT taglib (taglib-uri, taglib-resource, taglib-default-
prefix)>

<!--

The taglib-uri element contains a logical URI that will be used to
identify the

tag library within the application. This URI will be registered to
the declared

tab library descriptor in the application's web.xml file. Note that
this URI

is purely logical and need not have any relation to the physical
location of

the tag library descriptor file (which will be unpacked into a
physical location

determined solely by the GUI tool). This URI must match the TaglibURI
property

value in a component's JspTagDescriptor.

-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--
Appendix A Component Library Structure 187

The taglib-resource element contains the resource name of the tag
library's

taglib descriptor (.tld) file. The resource name must follow standard
Java

resource name syntax, with individual path elements separated by
forward

slashes ("/"). This file will automatically be extracted and
registered with

the application.

-->

<!ELEMENT taglib-resource (#PCDATA)>

<!--

The taglib-default-prefix element specifies the tag prefix that
should be used

for this tag library in JSP pages that use the tag library. For
example, the

default prefix for the Sun ONE Application Framework/JATO tag library
is "jato".

This prefix may be changed by the JSP author on any given page; this
element simply

gives the default name of the prefix when the tag library declaration
is automatically

added to a page.

-->

<!ELEMENT taglib-default-prefix (#PCDATA)>

<!--

The component element declares a non-extensible component within this
library.

All components must be declared in the component manifest in order to
be

recognized at design-time.

-->

<!ELEMENT component (component-class, component-info-class, design-
reference-resource?)>

<!--
188 Sun ONE Application Framework Component Author’s Guide • October 2003

The extensible-component element declares an extensible component
within this

library. All extensible components must be declared in the component
manifest

in order to be recognized at design-time.

-->

<!ELEMENT extensible-component (component-class, component-info-
class)>

<!--

The component-class element specifies the fully-qualified class name
of the

component.

-->

<!ELEMENT component-class (#PCDATA)>

<!--

The component-info-class element specifies the fully-qualified name
of the

component's ComponentInfo class.

-->

<!ELEMENT component-info-class (#PCDATA)>

<!--

The design-reference-resource specifies the metadata file resource
that will

be used at design-time to inspect the component. Components without
this

declaration will generally not be inspectable at design-time other
than through

ComponentInfo. The resource name must follow standard Java resource
name

syntax, with individual path elements separated by forward slashes
("/").

-->

<!ELEMENT design-reference-resource (#PCDATA)>

<!--
Appendix A Component Library Structure 189

The configurable-bean element declares a non-visual bean component
contained

within this library.

-->

<!ELEMENT configurable-bean (bean-class)>

<!--

The configurable-bean element specifies the fully-qualified class
name of the

non-visual component bean.

-->

<!ELEMENT bean-class (#PCDATA)>

Automated Unpacking of Component Tag
Libraries (TLD) files
As part of a Sun ONE Application Framework component library, a library
developer may provide one or more tag libraries to support rendering of the library's
View components. Tag libraries are declared in the component library's component
manifest file, and when the IDE toolset recognizes the component library, its tag
library descriptors (.tld files) are automatically unpacked from the library JAR file
for use by the application. In addition, the IDE toolset automatically adds tag library
entries to the web.xml file.

Tag library descriptor files are unpacked to a special location under the application's
WEB-INF/tld directory based on the name of the library to ensure that same-named
files from different libraries do not conflict. In this scheme, library names are
converted to directory names by replacing dots (".") with underscores ("_"). For
example, the Sun ONE Application Framework Component Library's internal library
name is "com.iplanet.jato", which is translated to "com_iplanet_jato" when
unpacking the tag library descriptor. The SCL's tag descriptor file ultimately appears
under the WEB-INF/tld/com_iplanet_jato directory in your application.

The tag descriptor's derived physical directory name is automatically registered to a
logical resource name in the web.xml file for use by the application. This logical
name is chosen by the component library author and specified in the component
library manifest. In the SCL's case, the descriptor is registered as the resource /WEB-
INF/jato.tld.
190 Sun ONE Application Framework Component Author’s Guide • October 2003

The tag descriptor unpacking mechanism makes use of timestamps to determine if
an existing file should be overwritten when a new version of the library is added to
an application. This feature ensures that upgrading of an application's component
libraries is just a single step for a developer.

Referring to the example "mycomponents" library described in this guide. The
library author has created a tag library tld file called mycomplib.tld and arbitrarily
placed it in the mycomponents package. Therefore, looking into the
mycomponents.jar file the tld appears physically located as follows:

Inside of the complib.xml the component author has declared a taglib element as
follows

Based on the configuration described by the taglib element, whenever the
mycomponens.jar is deployed into an Sun ONE Application Framework Web
application's WEB-INF/lib directory the IDE toolset will automatically perform the
following steps. These steps will allow the run-time JSP engine to properly locate the
tag library. This frees the application developer from having to perform any
configuration.

� Automatically adds the following entry to the Web application's web.xml file,
which sets up a conventional servlet container run-time mapping between the
logical resource and its physical location.

� Automatically extracts the mycomplib.tld file from the mycomponents.jar and
places it into the following location

/COMP-INF/complib.xml
/mycomponents/*.class
/mycomponents/mycomplib.tld
/mycomponents/...

<taglib>
<taglib-uri>/WEB-INF/mycomplib.tld</taglib-uri>
<taglib-resource>/mycomponents/mycomplib.tld</taglib-resource>
<taglib-default-prefix>mycomp</taglib-default-prefix>

</taglib>

<taglib>
<taglib-uri>/WEB-INF/mycomplib.tld</taglib-uri>
<taglib-location>/WEB-INF/tld/mycomponents/mycomplib.tld</taglib-location>

</taglib>

[current app]/WEB-INF/tld/mycomponents/mycomplib.tld
Appendix A Component Library Structure 191

Also, at design-time as the developer builds application Views the IDE toolset will
perform the following

� Automatically ensure that the appropriate tag library declaration is present in any
associated JSP files. Note that this declaration contains the "prefix" as specified by
the component author in the complib.xml's taglib element.

� Automatically ensures that as the IDE toolset adds additional component library
specific tags to the JSP, it also utilize the prefix declared in the taglib directive. For
example,

Sun ONE Application Framework recognizes that taglib prefix is a JSP page specific
directive. J2EE allows each page to declare arbitrary prefixes for the included tag
libraries via he tablib directive. The IDE toolset will always utilize the current taglib
directive declared prefix as it parses the JSP looking for tags or whenever it
automatically inserts additional tags into the JSP in conjunction with the developer's
View design decisions. The IDE toolset merely utilizes the complib.xml specified
taglib "prefix" in order to insert an initial taglib directive into the application JSP
files. Application developers may subsequently manually change the prefix declared
in the page specific taglib directive. The IDE toolset thenceforth utilize the newly
declared prefix for any additional tags, but it will not automatically change any
already declared tags to coincide with the adjusted prefix. This is an application
developer issue. We only mention it here so that component authors fully
understand the design-time usage of complib.xml's taglib element.

Automated Unpacking of "Additional Files"
Optionally, a Sun ONE Application Framework component library JAR may contain
arbitrary "Additional Files" arranged hierarchically underneath the /webapp
directory. Do not confuse a Sun ONE Application Framework component library
JAR's internal /webapp directory with the common servlet container directory
called "webapps". There is absolutely no relationship between the two.

The hierarchical arrangement of the files within the Sun ONE Application
Framework component library JAR's /webapp root is totally up to the discretion of
the component library author. As a value added feature, the Sun ONE Application
Framework IDE tools will "unpack" these additional files into the Web application
development environment in direct correspondence to the additional files location
relative to the /webapp root.

<%@taglib uri="/WEB-INF/mycomplib.tld" prefix="mycomp"%>

<mycomp:validatingTextField name="validatingTextField1"/>
192 Sun ONE Application Framework Component Author’s Guide • October 2003

Please not that this is a pure value added, totally optional, "resource distribution"
opportunity provided to component authors by the Sun ONE Application
Framework IDE toolset. The assumption is that the extracted files will provide some
arbitrary design time or run time value as determined by the component author. It is
further assumed that in order to provide this arbitrary value, the extracted files must
be extracted to the Web application's file system, otherwise they need not be placed
in the "Additional Files" (i.e. /webapp) section of the jar and should be placed in the
conventional location within the JAR where they will be picked up by the Java
runtime.

For example, consider a mycomponents.jar that contains the following /webapp
structure

When the mycomponents.jar, with the above content, is deployed into a Sun ONE
Application Framework application, the IDE toolset will extract the /webapp
content into the particular Sun ONE Application Framework application's structure.

For example, consider a Sun ONE Application Framework application called
"AppOne" which has the following initial structure created by the Sun ONE
Application Framework IDE toolset.

After "deploying" the mycomponents.jar (i.e. dropping it into AppOne/Web-
INF/lib), the IDE toolset will discover that it is a Sun ONE Application Framework
component library and extract the "additional files" which will result in the creation
of the following integrated structure

/mycomponents/...
/mycomponents/mycomplib.tld
/webapp/mycomponents/foo.jsp
/webapp/mycomponents/bar.jsp
/webapp/mycomponents/images/banner.gif
/webapp/WEB-INF/jato/templates/jsp/MyViewBeanJSP.jsp
/webapp/WEB-INF/jato/templates/jsp/FooContainerViewJSP.jsp
/webapp/WEB-INF/lib/helper.jar
/webapp/WEB-INF/mycomponents/config-files/configA.xml
/webapp/WEB-INF/mycomponents/config-files/configB.xml

AppOne/index.html
AppOne/WEB-INF/classes/...
AppOne/WEB-INF/jato/templates/jsp/DefaultViewBeanJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/DefaultContainerViewJSP.jsp
AppOne/WEB-INF/lib/jato-2_1_0.jar
AppOne/WEB-INF/tld/com_iplanet_jato/jato.tld
Appendix A Component Library Structure 193

Component library authors can leverage the Additional Files Feature in order to
provide any arbitrary resources which they consider appropriate for extraction.
Examples of common Additional Files are (but not limited to)

� Component specific JSP files (for example, component pagelets, and so on)

� Arbitrary Web application document resources (for example, images, static HTML
pages, style sheets, JavaScript, and so on)

� Additional arbitrary JAR files. For example, assume that the component library
relies on a custom XML parsing library. The component author can "bundle" that
JAR inside the component library JAR. This is potentially a more convenient
distribution model than requiring the application developer to deploy these extra
libraries manually.

� Arbitrary Web application WEB-INF resources. For example suppose the
component author designs a set of components which support extra configuration
via arbitrary configuration file(s). These configuration files can be "bundled" with
the component library and extracted into the appropriate location via the
Additional Files mechanism.

Note, the automated extraction of the component library tld file(s) is handled via a
different mechanism. The component library tld file(s) should not be located under
the /webapp root but rather placed in their normal "resource" appropriate location
within the component library jar (e.g. mycomplib.tld above). See Unpacking of
Component Tag Libraries - TLD file(s).

AppOne/index.html
AppOne/mycomponents/foo.jsp
AppOne/mycomponents/bar.jsp
AppOne/mycomponents/images/banner.gif
AppOne/WEB-INF/classes/...
AppOne/WEB-INF/jato/templates/jsp/DefaultViewBeanJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/DefaultContainerViewJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/MyViewBeanJSP.jsp
AppOne/WEB-INF/jato/templates/jsp/FooContainerViewJSP.jsp
AppOne/WEB-INF/lib/jato-2_1_0.jar
AppOne/WEB-INF/lib/mycomponents.jar
AppOne/WEB-INF/lib/helper.jar
AppOne/WEB-INF/mycomponents/config-files/configA.xml
AppOne/WEB-INF/mycomponents/config-files/configB.xml
AppOne/WEB-INF/tld/com_iplanet_jato/jato.tld
AppOne/WEB-INF/tld/mycomponents/mycomplib.tld
194 Sun ONE Application Framework Component Author’s Guide • October 2003

Index
B
book organization, 7

D
documentation

accessing, 9
related, 8

F
feedback

send to Sun, 10

P
part number, IDE Guide, 10
Preface, 7 to 10

R
related documentation, 8

S
Sun documentation, accessing, 9
Sun technical support, 10
support

technical, 10

T
technical support, 10

U
UNIX commands, using, 8
195

196 Sun ONE Application Framework Component Author’s Guide • October 2003

	Sun™ ONE Application Framework Component Author’s Guide
	Contents
	Preface
	Overview and Component Architecture
	Component-Based Development (CBD)
	What is a Sun ONE Application Framework Component?
	Sun ONE Application Framework Component Libraries
	The Sun ONE Application Framework Component Library
	The Component Class
	The ComponentInfo Class

	Developing Components
	Develop Your First Component
	Decide the Type of the Component
	Create the Component Class
	Create the ComponentInfo Class
	Create the Component Library Manifest
	Create the Component Library JAR File
	Test the Component
	Ship It!

	Sun ONE Application Framework Components in More Detail
	Distributable vs. Application-Specific (Non- Distributable) Components
	Extensible vs. Non-Extensible Components
	Extensible Components
	Non-Extensible Components
	Extensible & Non-Extensible Components in the IDE

	ComponentInfo in More Detail
	Specialized ComponentInfo Interfaces
	ExtensibleComponentInfo
	Other Types of Specialized ComponentInfo
	Standard Implementations of ComponentInfo

	Developing View Components
	View Components
	ViewComponentInfo
	ContainerViewComponentInfo

	Develop a Non-Extensible View Component
	Create the Validator Interface
	Create a Custom JSP TagHandler Class
	Create the ComponentInfo Class
	Create a New Tag Library TLD File
	Augment the Component Library Manifest
	Re-create the Component Library JAR File
	Test the New Component
	Ship It!

	Develop an Extensible View Component
	Create the MissingTokensEvent Class
	Create the Sun ONE Application Framework Component Class
	Create the Extensible Component's Java Template
	Create the ComponentInfo Class
	Augment the Component Library Manifest
	Re-create the Component Library JAR File
	Test the New Component

	Developing Model Components
	Model Components
	ModelComponentInfo
	ExecutingModelComponentInfo

	Developing a Non-Extensible Model Component
	Developing an Extensible Model Component
	Key XML Document Model Design points
	Create the ModelFieldDescriptor class
	Create the Sun ONE Application Framework Component Class
	Create the Extensible Component's Java template
	Create the ComponentInfo Class
	Augment the Component Library Manifest
	Re-create the Component Library JAR File
	Test the New Component

	Developing Command Components
	Developing an Extensible Command Component
	Create the Extensible Component's Java template
	Create the ComponentInfo Class
	Augment the Component Library Manifest
	Re-create the Component Library JAR File
	Test the New Component

	ConfigurableBeans (Non-Visual Components)
	ConfigurableBeans (Non-Visual Components)
	Configurable Bean Example: CommandDescriptor

	Developing and Distributing Non- Extensible Model, Command and ContainerView Components
	Develop a Non-Extensible Model, ContainerView or Command Component
	Distributing a Non-extensible Model, ContainerView or Command Component
	The Object Definition File (non- extensible component metadata)

	Design Actions
	Developing Extensible Components which have Component Design Actions
	What is a Component Design Action?
	Exposing Design Action in ComponentInfo

	Component Library Structure
	Component Library Overview
	Component Library Structure
	The Component Manifest
	Automated Unpacking of Component Tag Libraries (TLD) files
	Automated Unpacking of "Additional Files"

	Index

