
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Building J2EE™ Applications

Sun™ ONE Studio Programming Series

Part No. 816-7863-10
September 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.

In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

This product includes code licensed from RSA Data Security.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Ce produit comprend le logiciel licencié par RSA Data Security.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape et Netscape Navigator sont des marques de Netscape Communications Corporation aux Etats-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xi

1. Assembly, Deployment, and Execution Basics 1

Assembly Basics 1

J2EE Applications Are Modular 2

J2EE Applications Are Supported by the J2EE Runtime Environment 3

J2EE Applications Are Distributed 6

Visual Representations of Modules and Applications 9

Web Modules 10

EJB Modules 11

J2EE Applications 11

Property Sheets 12

Deployment Basics 13

Execution Basics 14

Using This Book 14

2. Scenario: A Web Module 17

The Interactions in This Module 18

Programming This Module 19

Creating the Welcome Page 20
iii

Programming the Servlet Methods 22

Mapping URLs to the Servlets 27

Other Assembly Tasks 30

3. Scenario: An EJB Module 37

The Interactions in This Module 38

Programming This Module 39

Creating Remote Interfaces for the Session Enterprise Bean 40

Creating Local Interfaces for the Entity Enterprise Beans 41

Using the Local Interfaces in the Session Enterprise Bean 42

Assembling the EJB Module 45

4. Scenario: Web Module and EJB Module 53

The Interactions in This Application 54

Programming This Application 54

Assembling the J2EE Application 55

Setting the Web Context for the Web Module 57

Linking the EJB Reference 59

Additional Assembly Tasks 62

5. Scenario: Web Module and Queue-mode Message-driven Bean 65

The Interactions in This Application 66

Programming the Message-driven Communication 67

Setting up the Application Server 67

Programming the Web Module 69

Programming the EJB Module 74

Assembling the J2EE Application 77

6. Scenario: J2EE Application Client and J2EE Application 79

The Interactions in This Application 80
iv Building J2EE Applications • September 2002

Programming This Application 82

Programming the J2EE Client Application 82

Working With the Server-side J2EE Application 94

7. Transactions 99

Default Transaction Boundaries 99

Redefining the Transaction Boundaries 101

8. Security 105

Web Module Security 105

EJB Module Security 110

J2EE Application Security 115

9. Deploying and Executing J2EE Modules and Applications 119

Visual Representations of Servers 119

The Server Registry Node 120

The Installed Servers Node 120

Server Product Nodes 120

Server Instance Nodes 121

Default Server Nodes 121

Server-specific Properties 122

Using Server Instance Nodes to Deploy and Execute 123

A. How the IDE Supports Deployment of J2EE Modules and Applications 125

Support for Iterative Development 125

The Server Plugin Concept 126

The Deployment Process Using a Plugin 127

Deploying Components Other Than Web Modules and J2EE Applications 128

Index 129
Contents v

vi Building J2EE Applications • September 2002

Figures

FIGURE 1-1 Multi-tiered Application Using J2EE Components and Modules 7

FIGURE 1-2 Web Module Node and Its Subnodes 10

FIGURE 1-3 EJB Module Node and Its Subnodes 11

FIGURE 1-4 J2EE Application Node and Its Subnodes 12

FIGURE 2-1 Web Module for a J2EE Application 17

FIGURE 2-2 Welcome Files Property Editor 22

FIGURE 2-3 EJB Reference Property Editor With Unlinked Reference 26

FIGURE 2-4 EJB Reference Property Editor With Linked Reference 27

FIGURE 2-5 Servlet Mappings Property Editor 29

FIGURE 2-6 Servlet Mappings Property Editor 30

FIGURE 2-7 Error Pages Property Editor 31

FIGURE 2-8 JSP Files Property Editor 33

FIGURE 2-9 Servlet Mappings Property Editor 34

FIGURE 2-10 Environment Entries Property Editor 36

FIGURE 3-1 Catalog EJB Module 37

FIGURE 3-2 Add EJB Reference Dialog Box 44

FIGURE 3-3 EJB Module Server-specific Properties 48

FIGURE 3-4 Add Resource Reference Dialog Box 50

FIGURE 3-5 Add Resource Reference Dialog Box, Server-specific Tab 51

FIGURE 4-1 Web Module and EJB Module Assembled Into J2EE Application 53
vii

FIGURE 4-2 Property Sheet for Catalog Web Module 58

FIGURE 4-3 Application Node’s EJB References Property Editor 60

FIGURE 4-4 Unlinked EJB Reference 61

FIGURE 4-5 Application Node’s Environment Entries Property Editor 62

FIGURE 5-1 J2EE Application With Queue-mode Message-driven Bean 65

FIGURE 5-2 Resource Environment Reference for a Queue 69

FIGURE 5-3 The JNDI Name for the Queue Reference 70

FIGURE 5-4 Resource Reference for QueueConnectionFactory 70

FIGURE 5-5 JNDI Name for the QueueConnectionFactory Reference 71

FIGURE 5-6 Message-driven Bean Property Sheet 75

FIGURE 5-7 Message-driven Bean’s J2EE RI Property Tab 76

FIGURE 6-1 J2EE Application With an Application Client 79

FIGURE 6-2 Application Client Node With Subnode for the Java Client Program. 87

FIGURE 6-3 Add EJB Reference Dialog Box 88

FIGURE 6-4 Add EJB Reference Dialog’s J2EE RI-specific Tab 89

FIGURE 6-5 Application Client and Server-side Application in the IDE 90

FIGURE 6-6 Application Client Property Sheet 91

FIGURE 6-7 Application Client’s J2EE RI-Specific Tab 92

FIGURE 6-8 J2EE Reference Implementation Login Screen 93

FIGURE 6-9 Application Client With Helper Class 96

FIGURE 7-1 Default Transaction Attribute Settings 100

FIGURE 7-2 Complex Transaction 101

FIGURE 7-3 Modified Transaction Settings 103

FIGURE 8-1 Web Module’s Security Roles Property Editor 106

FIGURE 8-2 Web Module’s Web Resource Collection Dialog Box 107

FIGURE 8-3 Web Module’s Security Constraints Property Editor 108

FIGURE 8-4 Web Module’s Edit Servlet Dialog Box 109

FIGURE 8-5 EJB Module’s Security Roles Property Editor 111

FIGURE 8-6 EJB Module’s Method Permissions Property Editor 112

FIGURE 8-7 Enterprise Bean’s Security Role Reference Property Editor 114
viii Building J2EE Applications • September 2002

FIGURE 8-8 EJB Module’s Security Role References Property Editor 114

FIGURE 8-9 EJB Module’s Security Role Reference Property Editor 115

FIGURE 8-10 J2EE Application’s Security Roles Property Editor 116

FIGURE 9-1 Server Registry and Default Subnodes 120

FIGURE 9-2 EJB Module’s J2EE RI-specific Properties 122

FIGURE A-1 Server Plugins Enable the IDE to Communicate With J2EE Runtime Environments 126
Figures ix

x Building J2EE Applications • September 2002

Before You Begin

The Sun™ Open Net Environment (Sun ONE) Studio 4 integrated development

environment (the IDE) is documented in a series of books known as the Sun ONE

Studio 4 Programming series. This book, Building J2EE™ Applications, explains how

you use the IDE to assemble, deploy, and execute applications that conform to the

architecture of the Java™ 2 Platform, Enterprise Edition (J2EE™ applications).

See the release notes for a list of environments in which you can create the examples

in this book. The release notes are available on this web page:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. You should have no trouble

translating the slight differences to your platform. Although almost all procedures

use the interface of the Sun™ ONE Studio 4 software, occasionally you might be

instructed to enter a command at the command line. Here too, there are slight

differences from one platform to another. For example, a Microsoft Windows

command might look like this:

To translate for UNIX® or Linux environments, simply change the prompt and use

forward slashes:

c:> cd MyWorkDir\MyPackage

% cd MyWorkDir/MyPackage
xi

http://forte.sun.com/ffj/documentation/index.html

Before You Read This Book

This book is intended for anyone who uses the Sun ONE Studio 4 IDE to assemble,

deploy, or execute J2EE applications. The first chapter summarizes the J2EE platform

concepts of assembly and deployment, and it should benefit anyone seeking a

general understanding of assembly and deployment.

This book assumes a familiarity with the following subjects:

■ Java programming language

■ J2EE concepts

■ Web and application server software

This book requires a knowledge of J2EE concepts, as described in the following

resources:

■ Java 2 Platform, Enterprise Edition Blueprints, Version 1.3

http://java.sun.com/j2ee/blueprints

■ Java 2 Platform, Enterprise Edition Specification, v 1.4

http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial (for J2EE SDK version 1.3)

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.
xii Building J2EE Applications • September 2002

http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs

How This Book Is Organized

The J2EE platform is a component-oriented approach to developing enterprise

applications. Business logic is encapsulated in Enterprise JavaBeans™ (EJB™)

components and web components. Components are assembled into modules, which

become units of logic that perform recognizable business tasks. Modules are then

assembled into J2EE applications, which perform entire business processes.

The J2EE platform provides a number of ways for the pieces of an application to

communicate with each other, including Java RMI and the Java Messaging Service.

This book is about using the Sun ONE Studio 4 development environment to

assemble components into modules and modules into applications. The book relies

on “scenarios” to present this information.

Chapter 1 summarizes the J2EE concepts of assembly and deployment. It also

identifies the J2EE units of modules and applications, and examines module and

application deployment descriptors. It also explains how to assemble modules and

applications in the IDE. In particular, it explains how to use module and application

property sheets to set up module and application deployment descriptors.

Chapter 2 is a scenario that shows how to assemble a web module. It presents a

short example of how a web module can be used as the front end of a J2EE

application and then shows how to program a web module that can be used in a

J2EE application.

Chapter 3 is a scenario that shows how to assemble an EJB module. It presents a

short example of how an EJB module can be used in a J2EE application and then

shows how to program a module that contains several enterprise beans.

Chapter 4 is a scenario that shows how to assemble a J2EE application by combining

a web module and an EJB module. It presents a short example of how the two kinds

of modules can be used together in a J2EE application and then shows how to

program the application. This scenario features synchronous interaction between the

two modules, using Java RMI.

Chapter 5 is a scenario that shows how to set up asynchronous communications

between modules using a message-driven enterprise bean, or MDB. It presents a

short example of how asynchronous communication can be used in a business

application and then shows how to program both the sending and receiving sides of

the asynchronous communication. This scenario features a web module

communicating with an EJB module, but the example can be applied to other

combinations of modules.

Chapter 6 is a scenario that shows how to set up communications between a J2EE

application client and a server-side J2EE application. It presents a short example of

how an application client can be used in a business application and then shows how
Before You Begin xiii

to program the application client. In this scenario, the application client uses Java

RMI to invoke an enterprise bean’s business method synchronously, but the example

can be applied to application clients that use asynchronous communication as well.

Chapter 7 explains how to program container-managed transactions with the IDE.

Chapter 8 explains how to secure the resources in a J2EE application using the IDE.

It shows how to set up security roles at the module level and how to use the roles to

restrict access to web resources and enterprise bean methods. It also shows how to

map the roles when the modules are combined into an application.

Chapter 9 explains how to deploy and execute assembled applications. In particular,

it explains how to tailor an application for a specific server product and then deploy

the application to that server.

Appendix A looks at the mechanism the IDE uses to interact with web and

application servers. It includes a detailed account of the deployment process.

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .cvspass file.

Use DIR to list all files.

Search is complete.

AaBbCc123 What you type, when contrasted

with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must save your changes.

AaBbCc123 Command-line variable; replace

with a real name or value

To delete a file, type DEL filename.
xiv Building J2EE Applications • September 2002

Related Documentation

Sun ONE Studio 4 documentation includes books delivered in Acrobat Reader (PDF)

format, release notes, online help, readme files for example applications, and

Javadoc™ documentation.

Documentation Available Online

The documents described in this section are available from the docs.sun.com SM

web site and from the documentation page of the Sun ONE Studio Developer

Resources portal (http://forte.sun.com/ffj/documentation).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

■ Release notes (HTML format)

Available for each Sun ONE Studio 4 edition. Describe last-minute release

changes and technical notes.

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 4 integrated development

environment (IDE) on each supported platform and include other pertinent

information, such as system requirements, upgrade instructions, application

server configuration instructions, command-line switches, installed subdirectories,

database integration, and information on how to use the Update Center.

■ Sun ONE Studio 4, Community Edition Getting Started Guide - part no. 816-7871-10

■ Sun ONE Studio 4, Enterprise Edition for Java Getting Started Guide - part no. 816-

7859-10

■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 816-7872-10

■ Sun ONE Studio 4 Programming series (PDF format)

■ This series provides in-depth information on how to use various Sun ONE

Studio 4 features to develop well-formed J2EE applications.Building Web
Components - part no. 816-7869-10

Describes how to build a web application as a J2EE web module using JSP

pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications - part no. 816-7863-10
Before You Begin xv

http://forte.sun.com/ffj/documentation/
http://docs.sun.com

Describes how to assemble EJB modules and web modules into a J2EE

application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 816-7864-10

Describes how to build EJB components (session beans, message-driven beans,

and entity beans with container-managed or bean-managed persistence) using

the Sun ONE Studio 4 EJB Builder wizard and other components of the IDE.

■ Building Web Services - part no. 816-7862-10

Describes how to use the Sun ONE Studio 4 IDE to build web services, to make

web services available to others through a UDDI registry, and to generate web

service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 816-7870-10

Describes how to use the JDBC productivity enhancement tools of the Sun

ONE Studio 4 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 4 tutorials (PDF format)

These tutorials demonstrate how to use the major features of each Sun ONE

Studio 4 edition.

■ Sun ONE Studio 4, Community Edition Tutorial - part no. 816-7868-10

Provides step-by-step instructions for building a simple J2EE web application.

■ Sun ONE Studio 4, Enterprise Edition for Java Tutorial - part no. 816-7860-10

Provides step-by-step instructions for building an application using EJB

components and Web Services technology.

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10

Provides step-by-step instructions for building a simple application for a

wireless device, such as a cellular phone or personal digital assistant (PDA).

The application will be compliant with the Java 2 Platform, Micro Edition

(J2ME™ platform) and conform to the Mobile Information Device Profile

(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Online Help

Online help is available inside the Sun ONE Studio 4 IDE. You can open help by

pressing the help key (F1 in Microsoft Windows and Linux environments, Help key

in the Solaris environment), or by choosing Help → Contents. Either action displays

a list of help topics and a search facility.
xvi Building J2EE Applications • September 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Examples

You can download examples that illustrate a particular Sun ONE Studio 4 feature, as

well as completed tutorial applications, from the Sun ONE Studio Developer

Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The site includes the applications used in this document.

Javadoc Documentation

Javadoc documentation is available within the IDE for many Sun ONE Studio 4

modules. Refer to the release notes for instructions on installing this documentation.

When you start the IDE, you can access this Javadoc documentation within the

Javadoc pane of the Explorer.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (816-7863-10) of this document in the subject line of

your email.
Before You Begin xvii

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

xviii Building J2EE Applications • September 2002

CHAPTER 1

Assembly, Deployment, and
Execution Basics

The modular nature of the J2EE platform means that you combine smaller units to

make larger ones. You combine components to create modules and then combine the

modules to create applications. This combining of smaller units to create larger ones

is known as assembly.

The J2EE modules and applications you assemble will need runtime services

provided by the platform, services such as container-managed persistence,

container-managed transactions, and container-managed security validation. So, as

you assemble components into modules and modules into applications, you must

determine which runtime services they need and specify those services in a J2EE

deployment descriptor. This is also part of the assembly process.

This chapter reviews the basic characteristics of J2EE modules and applications that

you must consider when you assemble. It also introduces the basics of assembling

with the Sun ONE Studio 4 IDE.

Assembly Basics

Assembly is a J2EE concept that covers a number of separate development tasks. If

you perform the assembly tasks correctly, you end up with modules and

applications that you can deploy to a J2EE application server and execute in the

server’s environment.

The greatest obstacle to successful assembly is the variability of the process. Every

module or application you assemble requires a different combination of runtime

services. Since there is no standard set of steps for assembling modules and

applications, you need to approach the process with some understanding of what a

correctly assembled module or application is. This section provides some

background information on J2EE modules and applications that should help you

understand the assembly process.
1

J2EE Applications Are Modular

A J2EE application is a collection of components, combined into modules, which are

themselves combined into an application. The J2EE mechanism for combining

components into modules and modules into applications is the deployment

descriptor, which is basically a list. The deployment descriptor for a module lists the

components in the module and the deployment descriptor for an application lists the

modules in the application.

To understand why the J2EE platform uses the deployment descriptor, consider how

the source code for an application is used. At edit time, components exist as a

number of source files in your development environment, and they cannot be

executed until you deploy them, or install them in a J2EE runtime environment.

Deploying an application compiles the source files identified by the deployment

descriptor and installs the compiled files in directories managed by the application

server. After the application is deployed you can execute it in the application

server’s environment. In other words, an application is created when you deploy it.

So the deployment descriptor is an edit time mechanism for specifying a set of files

that will be deployed together as a module or an application. When you assemble a

module or an application at edit time you are not actually modifying the source files.

You are simply preparing a deployment descriptor that identifies the contents of

your module or application, which will be used as input to the deployment process.

Deployment descriptors are XML files. They use specific XML tags to identify an

application and the modules that make up the application (or the module and the

components that make up the module). CODE EXAMPLE 1-1 is an example of a

deployment descriptor for an application.
2 Building J2EE Applications • September 2002

This example is the deployment descriptor for a J2EE application named

CatalogApp. It contains two modules, CatalogData and CatalogWebModule. Each

module is identified by a <module> tag.

Each of the modules in the application has its own module-level deployment

descriptor that lists the components in the module. (For examples of module-level

deployment descriptors, see CODE EXAMPLE 1-2 and CODE EXAMPLE 1-3.) When you

deploy this application the application server will read this deployment descriptor,

and then read the two module-level deployment descriptors, which identify the

source files for the individual J2EE components.

J2EE Applications Are Supported by the J2EE

Runtime Environment

At runtime, J2EE applications make extensive use of services provided by the J2EE

application server to which they have been deployed. Among the most significant of

these services are container-managed persistence, container-managed transactions

and container-managed security validation, but there are others.

To make use of these services, applications, and the modules that make up

applications, must tell the application server which services they need. The

mechanism for this is the deployment descriptor. For an example, consider J2EE

container-managed transactions. To use this service you define the appropriate

transaction boundaries when you program Enterprise JavaBeans components, by

setting each enterprise bean’s transaction attribute property. To convey this

CODE EXAMPLE 1-1 J2EE Application Deployment Descriptor

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 <?xml version="1.0" encoding="UTF-8"?>
 <display-name>CatalogApp</display-name>
 <description>J2EE Application CatalogApp</description>
 <module>
 <ejb>CatalogData.jar</ejb>
 <alt-dd>CatalogData.xml</alt-dd>
 </module>
 <module>
 <web>
 <web-uri>CatalogWebModule.war</web-uri>
 <context-root>catalog</context-root>
 </web>
 <alt-dd>CatalogWebModule.xml</alt-dd>
 </module>
</application>
Chapter 1 Assembly, Deployment, and Execution Basics 3

information to the runtime environment, this value is included in the deployment

descriptor for the EJB module that contains the enterprise bean. CODE EXAMPLE 1-2 is

the deployment descriptor for the EJB module named CatalogData (which was listed

in CODE EXAMPLE 1-1). The tags with the transaction attribute values appear at the

end of the deployment descriptor.

CODE EXAMPLE 1-2 EJB Module Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <display-name>CatalogData</display-name>
 <enterprise-beans>
 <session>
 <display-name>CatalogManagerBean</display-name>
 <ejb-name>CatalogManagerBean</ejb-name>
 <home>CatalogBeans.CatalogManagerBeanHome</home>
 <remote>CatalogBeans.CatalogManagerBean</remote>
 <ejb-class>CatalogBeans.CatalogManagerBeanEJB</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ItemBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>CatalogBeans.ItemBeanLocalHome</local-home>
 <local>CatalogBeans.ItemBeanLocal</local>
 <ejb-link>ItemBean</ejb-link>
 </ejb-local-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ItemDetailBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>CatalogBeans.ItemDetailBeanLocalHome</local-home>
 <local>CatalogBeans.ItemDetailBeanLocal</local>
 <ejb-link>ItemDetailBean</ejb-link>
 </ejb-local-ref>
 </session>
 <entity>
 <display-name>ItemBean</display-name>
 <ejb-name>ItemBean</ejb-name>
 <local-home>CatalogBeans.ItemBeanLocalHome</local-home>
 <local>CatalogBeans.ItemBeanLocal</local>
 <ejb-class>CatalogBeans.ItemBeanEJB</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <abstract-schema-name>ItemBean</abstract-schema-name>
 <cmp-field>
4 Building J2EE Applications • September 2002

 <field-name>itemsku</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>itemname</field-name>
 </cmp-field>
 <primkey-field>itemsku</primkey-field>
 <query>
 <query-method>
 <method-name>findAll</method-name>
 <method-params/>
 </query-method>
 <ejb-ql>SELECT Object (I) FROM ItemBean AS I</ejb-ql>
 </query>
 </entity>
 <entity>
 <display-name>ItemDetailBean</display-name>
 <ejb-name>ItemDetailBean</ejb-name>
 <local-home>CatalogBeans.ItemDetailBeanLocalHome</local-home>
 <local>CatalogBeans.ItemDetailBeanLocal</local>
 <ejb-class>CatalogBeans.ItemDetailBeanEJB</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <abstract-schema-name>ItemDetailBean</abstract-schema-name>
 <cmp-field>
 <field-name>itemsku</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>description</field-name>
 </cmp-field>
 <primkey-field>itemsku</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>

<description>This value was set as a default by Sun ONE Studio.</description>
 <method>
 <ejb-name>CatalogManagerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>

<description>This value was set as a default by Sun ONE Studio.</description>
 <method>
 <ejb-name>ItemBean</ejb-name>
 <method-name>*</method-name>

CODE EXAMPLE 1-2 EJB Module Deployment Descriptor (Continued)
Chapter 1 Assembly, Deployment, and Execution Basics 5

When the application that contains this EJB module is deployed and executed, the

J2EE application server will recognize the transaction boundaries specified in the

deployment descriptor and open and commit transactions (or roll them back) at the

appropriate points.

J2EE Applications Are Distributed

In addition to being modular and making use of runtime services, J2EE applications

are distributed. Each module in a J2EE application can be deployed to a different

machine and run in its own process to create a distributed application. FIGURE 1-1

shows a J2EE application, composed of two modules, implementing a typical multi-

tiered application architecture.

 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction>

<description>This value was set as a default by Sun ONE Studio.</description>
 <method>
 <ejb-name>ItemDetailBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

CODE EXAMPLE 1-2 EJB Module Deployment Descriptor (Continued)
6 Building J2EE Applications • September 2002

FIGURE 1-1 Multi-tiered Application Using J2EE Components and Modules

The web module is deployed on a machine that is dedicated to HTTP interactions

with users. The application server uses HTTP connections to send the web pages

defined in the web module to browsers running on user desktop machines. The EJB

module is deployed on another machine, dedicated to database operations. The

HTTP connections between web browser and web module and the distributed

interaction between the two modules are supported by the J2EE application server.

The J2EE platform provides a number of technologies that support different modes

of communication between modules, including:

■ web based communications (this is often used between end users and

applications) over HTTP connections

■ synchronous method invocation, using Java RMI-IIOP

■ asynchronous messaging, using JMS; messages can addressed to queues or to

topics

J2EE supports these different types of interaction with different kinds of

components. For example, the message-driven Enterprise JavaBean supports

asynchronous messaging between modules.

Selecting a mode for interactions between the modules in an application, and

choosing a component type to implement the interaction, are part of application

design. But when the time comes to assemble the application, you need to know

what kind of interaction was designed and how to implement it. This means that
Chapter 1 Assembly, Deployment, and Execution Basics 7

when you assemble you perform such tasks as setting up EJB references (to

implement Java RMI interactions), or setting up queues (to implement JMS

messaging interactions).

The J2EE platform also supports interactions between J2EE modules and the external

resources used by applications, such as data sources. The technologies that support

these interactions include:

■ JDBC/JTS

■ container-managed persistence

When you assemble an application, you also need to make sure that any external

resources the deployed application uses are identified correctly. Once again, the

deployment descriptor is the edit tine mechanism for identifying external resources.

CODE EXAMPLE 1-3 shows the deployment descriptor for a web module named

CatalogWebModule. This module is assembled, with an EJB module (the EJB module

whose deployment descriptor is shown in CODE EXAMPLE 1-2), into a J2EE

application. The technology used for the interaction between these two modules is

Java RMI. Java RMI depends on a remote EJB reference, which is declared at the end

of this deployment descriptor with the <ejb-ref> tag.

CODE EXAMPLE 1-3 Web Module Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <servlet>
 <servlet-name>AllItemsServlet</servlet-name>
 <servlet-class>AllItemsServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>DetailServlet</servlet-name>
 <servlet-class>DetailServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>AllItemsServlet</servlet-name>
 <url-pattern>/servlet/AllItemsServlet</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>DetailServlet</servlet-name>
 <url-pattern>/servlet/DetailServlet</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
8 Building J2EE Applications • September 2002

Visual Representations of Modules and
Applications

Most explanations of the J2EE assembly process look at the contents of deployment

descriptor files, such as those shown in the preceding code examples, and explain

how to code the XML for a deployment descriptor. The Sun ONE Studio 4

development environment provides visual representations of components, modules,

and applications, and instead of working with deployment descriptor files, you

work with Explorer window nodes that represent components, modules, and

applications.

Nodes that represent applications have subnodes for their modules, and module

nodes have subnodes for their components. As you assemble, the Explorer creates a

visual representation of the module or application you are creating. While you work

with the visual representation, the IDE creates a matching deployment descriptor.

Each node you work with has a property sheet that allows you to configure the

component, module, or application. Many of the properties correspond to

deployment descriptor tags. (There are more properties than deployment descriptor

tags.) This means that as you configure your component, module, or application by

 </session-config>
 <welcome-file-list>
 <welcome-file>
 index.jsp
 </welcome-file>
 <welcome-file>
 index.html
 </welcome-file>
 <welcome-file>
 index.htm
 </welcome-file>
 </welcome-file-list>
 <ejb-ref>
 <ejb-ref-name>ejb/CatalogManagerBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>CatalogBeans.CatalogManagerBeanHome</home>
 <remote>CatalogBeans.CatalogManagerBean</remote>
 <ejb-link>CatalogManagerBean</ejb-link>
 </ejb-ref>
</web-app>

CODE EXAMPLE 1-3 Web Module Deployment Descriptor (Continued)
Chapter 1 Assembly, Deployment, and Execution Basics 9

setting its properties, the IDE is adding tags to its deployment descriptor, which

identify the services needed from the application server, including those that enable

distributed interactions between modules.

The sections that follow introduce the IDE’s visual representations of modules and

applications.

Web Modules

The nodes and subnodes of a web module represent the individual files in the

module. Web modules have a standard directory structure (for more information see

Building Web Components), and this structure is represented in the Explorer window.

FIGURE 1-2 shows a web module in the Explorer.

The top-level node for a web module represents the web module’s top-level

directory. For the IDE to recognize a directory as a web module you must mount it

as an Explorer window filesystem. If a web module directory appears as a

subdirectory of another filesystem the IDE will not recognize it as a web module.

This is also covered in more detail in Building Web Components.

The top-level node has a subnode for a WEB-INF directory. The WEB-INF directory

has subnodes for a lib subdirectory, which is used for web components in JAR file

format, and a classes subdirectory, for any web components in .java file format.

The WEB-INF node also has a web.xml subnode that represents the module’s

deployment descriptor file. This is the standard directory structure for a web

module.

This particular web module also has nodes for a JSP page named myNewJSP, an

HTML page named index.html, and a taglib named myTagLib. These nodes

represent components and resources added by a web component provider. In

addition to these nodes, the classes directory contains a node for a servlet class

named myNewServlet, which is another resource added by the component provider.

FIGURE 1-2 Web Module Node and Its Subnodes
10 Building J2EE Applications • September 2002

Notice that this representation of a web module corresponds to a specific directory

and its contents. The deployment descriptor (the web.xml file) is included with the

source code.

EJB Modules

EJB modules are represented differently from web modules. The top-level node for

an EJB module does not represent a particular directory and its contents. Instead, the

EJB module node represents the module’s deployment descriptor. It functions as a

list of enterprise beans, which can be in one directory or in a number of directories

in different filesystems. The deployment descriptor specifies where the source code

for the components is located.

Representing EJB modules with “logical” nodes allows you to combine enterprise

beans from different directories in one EJB module. It also keeps the configuration

information in the deployment descriptor separate from the source code. When you

deploy an EJB module, a deployment descriptor file is generated and the source files

for the components identified in the deployment descriptor are compiled, from

wherever they happen to be in your filesystem, into an EJB JAR file.

FIGURE 1-3 shows an EJB module in the Explorer window. This module has subnodes

for three enterprise beans that have been included in the module. Each of these

enterprise beans could be in a different directory. It is even possible for a single

enterprise bean to be in several different places in the file system. For example, the

source code for the enterprise bean’s interfaces could be in one directory while the

classes that implement those interfaces could be in a different directory.

FIGURE 1-3 EJB Module Node and Its Subnodes

J2EE Applications

J2EE applications are also represented by logical nodes. Like an EJB module node,

the top-level node for a J2EE application does not represent a single directory or

filesystem. Instead, it represents the application-level deployment descriptor, and it

functions as a list of modules that make up the application. The source code for

these modules can be in more than one directory or filesystem.
Chapter 1 Assembly, Deployment, and Execution Basics 11

The IDE maintains the application-level deployment descriptor separately from the

source code, making it possible to use the same source code in more than one J2EE

application.Only when you deploy the application (or generate an EAR file for the

application) does the IDE take a copy of all the source files and associate them with

the deployment descriptor in an EAR file.

FIGURE 1-4 shows a J2EE application in the Explorer. The modules in FIGURE 1-2 and

FIGURE 1-3 have been added to the application, and are represented by subnodes of

the application node.

FIGURE 1-4 J2EE Application Node and Its Subnodes

Property Sheets

Every node that represents a J2EE module or application has a property sheet. The

property sheet has properties that let you describe the services the module or

application needs from the application server. These properties correspond to the

tags that appear in the module’s or application’s deployment descriptor, so that as

you set the values of properties you are supplying information that will be used in

the deployment descriptor. This means that you can work with the property sheet

instead of trying to edit and format the XML deployment descriptor with a text

editor. (Some of the properties do not correspond to deployment descriptor tags.)

■ In the case of a web module, the deployment descriptor exists as a file and the file

(web.xml) appears in the Explorer window. You can see this in FIGURE 1-2. This

means that the values you specify in the deployment descriptor are associated

with the source files.

■ In the case of an EJB module or a J2EE application the deployment descriptor file

is not generated until you deploy the module (which requires an EAR file) or

generate an EAR file. These actions generate a deployment descriptor file and

save it with a specific copy of the source files.

Many of the properties have property editors that help you select the correct values.

When you have the property sheet open, you open editors for individual properties

by clicking a property and then clicking the ellipsis (…) button. Procedures for using
12 Building J2EE Applications • September 2002

the property editors vary widely—some let you browse for IDE nodes, some let you

open another level of dialog, and so on. For the more complex property editors,

online help is available.

The property sheets have a number of tabs. The tab labeled Properties lists the

standard properties defined by the J2EE specifications. The other tabs have the

names of applications server products. These tabs collect additional information, not

defined in the J2EE specifications, but required by a specific application server

product. These tabs are referred to as the property sheet’s server-specific tabs. When

you assemble a module or application you need to work with both standard

properties and the server-specific properties for the server product you are using.

Deployment Basics

As mentioned, deployment is the process of compiling the source files that make up

a J2EE application and installing the compiled files into directories managed by a

J2EE application server. The process is carried out by the application server or

software distributed with the server, such as a deployment tool or an administration

tool.

In order to support iterative development—in which you code source files, run them

to test them, modify them, and run them again—the Sun ONE Studio 4 IDE makes it

possible for you to deploy and execute from within the IDE. Deployment is

performed by the application server software, and execution is in the application

server’s environment, but you can manage deployment and execution from within

the IDE. You can write J2EE source code, assemble a J2EE application, and using IDE

commands, you can deploy and execute your application. After executing and

testing it, you can modify the source code, redeploy the application, and execute the

new version. You can continue this process as long as necessary.

The actual procedure for deploying an application that you have assembled is very

simple. You simply right-click the application node and choose the Deploy

command. For this to work, however, the IDE must be set up to work with a

particular application server. This setup is summarized below. (Complete

instructions for this are included in the Sun ONE Studio 4, Enterprise Edition for Java
Getting Started Guide.)

1. Install the application server.

2. Install a module that enables communication between the IDE and the application

server. These modules are known as server plugins, and each plugin module

supports one application server product. A number of plugins are available for

widely used application server products. (If you are interested in a description of

the plugin’s functionality, see Appendix A.)
Chapter 1 Assembly, Deployment, and Execution Basics 13

3. Using the plugin, open communications between the IDE and the application

server.This creates an Explorer window node that represents a server instance.

4. Specify the application server to which your application will be deployed, by

referring to one of the server instance nodes.

5. Right-click the application node and issue the deploy command. This instructs the

deployment software to read the deployment descriptor represented by the

application node and process the source files listed in the deployment descriptor.

Execution Basics

After an application has been deployed it can be executed. The IDE associates the

application node with the deployed copy of the application, which means that you

can issue an execute command in the IDE, and the IDE will instruct the application

server to execute the deployed copy of the application.

A number of IDE nodes, including J2EE application nodes, have Execute commands.

When you right-click a node and choose Execute, the IDE, if necessary, deploys the

application and then executes it. The results of the Execute command depend on the

contents of the application. For example, if the application includes a web module,

the execute command will start a web browser and open the application’s URL.

You can also execute deployed applications entirely in the application server’s

environment (without using the IDE). For example, to execute an application that

includes a web mode, start a web browser and open a URL for the application.

Using This Book

The Java Community Process, supported by Sun Microsystems, Inc., has evolved

standards for designing distributed, enterprise applications with J2EE components.

The J2EE documentation listed in “Before You Read This Book” on page xii covers

these standards for application design and architecture.

This book is about how you implement these architectures with the Sun ONE Studio

4 IDE. It is about using the IDE to combine components and create J2EE modules,

making sure that all of the components interact in the way that the application

design specifies. It is also about combining J2EE modules to create J2EE applications,

making sure that the distributed interactions between the modules function in the

way that the application design calls for.
14 Building J2EE Applications • September 2002

This book covers this material by presenting a number of examples, or scenarios.

Each scenario presents a realistic combinations of components or modules, and

shows you how to combine them into a module or an application. The business

problems described in the scenarios are realistic, but the book is not really meant to

be a guide to designing J2EE applications. There are hints about the appropriate use

of J2EE technologies, but not exhaustive discussions.

The real purpose of these scenarios is to show you how to program specific kinds of

interactions between components and modules. Once you have decided on your

application design, you can use the scenarios in this book to help you program the

connections that are needed between the components and modules in your

application.

You probably won’t find everything you need in a single scenario, because each

scenario focuses on one or two kinds of J2EE interaction, and your real-world J2EE

application can include dozens or hundreds of components and relationships. For

each kind of connection, however, you should find an example in this book.

For example, to program one common type of J2EE application, with a web module

and an EJB module, you can look at Chapter 2, which covers assembling a web

module, Chapter 3, which covers assembling an EJB module, and Chapter 4, which

covers assembling a web module and an EJB module into a J2EE application. Then,

to see how you set up transactions see Chapter 7, and, for security, see Chapter 8.

This book is your guide to developing distributed enterprise applications with the

Sun ONE Studio 4 development environment. It shows you now to develop J2EE

modules, how to program your modules for different kinds of interactions, and how

to request enterprise services, such as security checking and transaction

management, from the J2EE platform.
Chapter 1 Assembly, Deployment, and Execution Basics 15

16 Building J2EE Applications • September 2002

CHAPTER 2

Scenario: A Web Module

FIGURE 2-1 shows a web module. Of the many possible combinations of web

components, this module contains two servlets and a static HTML page. It engages

in interactions that are typical of web modules in J2EE applications. Web modules

provide front ends for J2EE applications, so they must be able to interact with end

users over HTTP connections (represented in the figure by the arrows labeled #1),

and with services provided by EJB modules (the arrows labeled #3). There are also

interactions between the components in the module (represented by the arrows

labeled #2).

FIGURE 2-1 Web Module for a J2EE Application
17

The Interactions in This Module

This scenario looks at a web module that participates in the three types of

interaction shown in FIGURE 2-1. The module is part of a J2EE application that

supports a retail web site. Within the web site application, the web module is used to

provide front-end functionality for a J2EE application. This is a typical role for a web

module in a J2EE application.

From the shopper’s point of view the application is a series of web pages. Shoppers

use a web browser to open HTTP connections to a URL that maps to the

application’s context root and provide input with text fields, buttons, and other

controls that appear on the web pages. From the developer’s point of view, the

application is a set of components that receive and process requests.

This scenario uses a simple web module that processes two different requests to

show how web components can provide the necessary interaction between users,

web module, and EJB module. More specifically, displaying the online shopping

catalog uses these interactions:

1. An online shopper opens a connection to the application by starting a web

browser and opening the application’s root URL. This opens the application’s

welcome page. A real-world shopping site’s welcome page would display a

number of options, including requests for displaying items by category, requests

for keyword search, requests for information about live customer service, and so

on. This simple example shows only one link, to a display of the entire catalog.

2. The shopper clicks the link to the catalog display. This request is processed by the

servlet named in the request, AllItemsServlet. AllItemsServlet processes the

request by calling a business method of the EJB module, getAllItems, which

returns the data.

3. AllItemsServlet formats the data returned by getAllItems and adds them to an

HTML output stream. The end user’s web browser formats the HTML output into

a catalog display. The output includes links to detailed information about each

item.

4. The end user browses the displayed catalog, and clicks on one of the links to

detailed information. This request is processed by another servlet, DetailServlet.

DetailServlet processes the request by calling another business method of the EJB

module, getOneItemDetail, for the item detail information.

5. DetailServlet adds the data returned by the EJB module to an HTML output

stream, which is displayed to the end user as another web page.
18 Building J2EE Applications • September 2002

There are two possible requests in this scenario, and each of them is processed by a

separate web component. Servlets were used for this example, so there is an

AllItemsServlet and an ItemDetailServlet.

The HTML outputs written by these servlets are simple, and include only text. These

examples show you web components can process HTTP requests by using remote

methods calls to obtain data from an EJB module and then writing that data into an

HTML output stream. The same type of operation can be used by an experienced

web designer or web programmer to write much more complex output.

The type of interaction the web module has with the EJB module, Java RMI, is

determined by the design of the EJB module. For more on this, see “The Interactions

in This Module” on page 38.

For instructions on creating web components, writing enterprise business logic in

web components, and similar tasks, see Building Web Components.

Programming This Module

TABLE 2-1 summarizes the programming required to create the EJB module illustrated

in FIGURE 2-1.

TABLE 2-1 Programming Required for This Scenario

Application Element Programming Required

Application server None.

Web module Create the web module.

Create the welcome page, index.html. This page includes an HTML

link that executes the AllItemsServlet.

Create two servlets, AllItemsServlet and ItemDetailServlet.

Code the processRequest methods that process HTTP requests: and

generate HTTP responses. These processRequest methods:

1. Perform JNDI lookup in order to invoke EJB module business

methods.

2. Write the data they obtain from the module into the servlet’s

response.

Notice that the HTML page output by AllItemsServlet contains an

HTML link to ItemDetailServlet.

Set up servlet names for each servlet.

J2EE application To see how you add a web module to a J2EE application, see

Chapter 4.
Chapter 2 Scenario: A Web Module 19

The sections that follow show you how to perform many of these programming

tasks. Method signatures are used to show the inputs and outputs of each

interaction. The procedures show how to connect these inputs and outputs to other

components and other modules. Instructions for creating a web module, or adding

the web components to the module are not included. If you need to learn about

these tasks, see the online help or Building Web Components.

Creating the Welcome Page

The design for the catalog display web site is for users to begin their interaction with

the site at a welcome page. The welcome page, a typical web site feature, provides

an entry point for users that identifies the site, and presents the different options

available to them. Once they’ve seen the welcome page, users can click their way to

the features they want to use.

The user’s first request is to enter the application’s root URL. If a welcome page has

been provided, the server will display it.

Creating the HTML Page

In the Explorer window, the HTML file for you welcome page should be at the same

level as the web module’s WEB_INFnode. To create an HTML file at the right level:

1. Right-click the node for the filesystem that contains the green WEB-INF node, and
choose New → JSP & Servlet → HTML File. Supply the name index and click
Finish.

This creates an HTML file node in the Explorer and opens the new file in the source

editor.

2. Type in the HTML code for your welcome page.

CODE EXAMPLE 2-1 shows the HTML code for the simple welcome page used in this

scenario.
20 Building J2EE Applications • September 2002

This welcome page presents only one option to users, which is to display the entire

catalog. This option is presented as a text link named “Display the Catalog.” This

link uses a URL to specify one of the servlets in the module, AllItemsServlet. When

a user clicks on this link, the browser sends another request to the web module. This

request will be processed by executing AllItemsServlet’s doGet method, and the next

page the user sees is the page output by AllItemsServlet. (To see the page output by

AllItemsServlet, see CODE EXAMPLE 2-2.)

The welcome page for a real-world web site includes many links, to different

functions, but each follows the principle demonstrated in this example, that a page

displayed to the user contains links or actions that generate requests. Each request is

processed by some component in the web module, and that component responds by

writing out the next page that the user sees.

In this case, the link specifies a servlet name. The default action is to execute the

servlet’s doGet method. When specified, a link can execute the servlet’s other

methods, doPost, and so on. For more information on servlet methods, see Building
Web Components.

Specifying Your Page as the Welcome Page

When you create a web module in the IDE, the Welcome Files property lists some

default names for the welcome files. FIGURE 2-2 shows the Welcome Files Property

Editor with the default welcome file names. When a user accesses the root URL for

the application, the application server searches in the module directory for the files

named in this property. The first one found is displayed as the welcome page.

CODE EXAMPLE 2-1 Catalog Display Module Welcome Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
 <head>
 <title>Online Catalog</title>
 </head>
 <body>
<h2>
Inventory List Application
</h2>

<p>
Display the Catalog

</body>
</html>
Chapter 2 Scenario: A Web Module 21

The easiest way to create welcome file for the module is to create a file with one of

these default names and add it to the module. In this scenario, for example, you

created a file named index.html .

FIGURE 2-2 Welcome Files Property Editor

If you want to use a file with a different name for the module’s welcome page, open

the editor for the Welcome Files property and add the name of the file you want to

use. You can use the other buttons to reorder the files or to remove the default names

from the list or to move them below the name you add.

Programming the Servlet Methods

There are two parts to this, coding the method body and setting up a reference

declaration for the EJB reference used in the method body. The method body code is

covered first.

The servlets in this example were create with the IDE’s servlet template. Servlets

created with this template are HttpServlets, and they contain methods named

processRequest. The doGet and doPost methods both call processRequest, so the

code that actually processes a request is added to the processRequest method.
22 Building J2EE Applications • September 2002

The Method Body

CODE EXAMPLE 2-2 is the implementation of the AllItemsServlet’s processRequest

method. This method is executed when a user clicks on the Display the Catalog link

that appears on the welcome page. (The request generated by the browser names the

AllItemsServlet, by URL, but it does not specify a method, so the application server

performs the default action and executes the servlet’s doGet method, which calls

processRequest.)

This method implementation shows you how the servlet obtains the catalog data

and displays it to the user. There are three steps:

1. The servlet uses JNDI lookup to obtain a a remote reference to a session

enterprise bean in another module of the application.

2. The servlet calls getAllItems, a business method of the session bean. (For more

about the CatalogData module, see Chapter 3.)

3. The servlet writes the data returned by the remote method call into the HTML

output stream, which is returned to the user’s browser window.

CODE EXAMPLE 2-2 AllItemsServlet’s processRequest Method

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
throws ServletException, java.io.IOException {
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 /* output your page here */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>AllItemsServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>The Inventory List</h2>");

 out.println("<table>");
 out.println("<tr>");
 out.println("<td>Item");
 out.println("<td>Item SKU");
 out.println("<td>Detail");

 CatalogBeans.CatalogManagerBeanHome catHome;
 CatalogBeans.CatalogManagerBean catRemote;

 try {
 InitialContext ic = new InitialContext();

Object objref = ic.lookup("java:comp/env/ejb/CatalogManagerBean");
 catHome = (CatalogBeans.CatalogManagerBeanHome) objref;
Chapter 2 Scenario: A Web Module 23

The lookup statement specifies “CatalogManagerBean,” but this string is actually the

name of the reference, not the referenced enterprise bean. The enterprise bean’s

name is often used as the reference name, to make it easier to remember which bean

is meant. The actual enterprise bean is specified in the next step.

 catRemote = catHome.create();

 java.util.Vector allItems = catRemote.getAllItems();

 Iterator i = allItems.iterator();
 while (i.hasNext()) {

CatalogBeans.iDetail itemDetail = (CatalogBeans.iDetail)i.next();
 out.println("<tr>" +
 "<td>" +
 itemDetail.getItemname() +

 "<td>" +
 itemDetail.getItemsku() +

 "<td>" +
 "<a href=\"" + response.encodeURL("DetailServlet?sku=" +
itemDetail.getItemsku()) +
 "\"> " +
 "Get Item Detail" +
 "");
 }
 }
 catch (javax.naming.NamingException nE) {
 System.out.println("Naming Exception on Lookup" + nE.toString());
 }
 catch (javax.ejb.CreateException cE) {
 System.out.println("CreateException" + cE.toString());
 }
 catch (java.rmi.RemoteException rE) {
 System.out.println("RemoteException" + rE.toString());
 }
 catch (Exception e) {
 System.out.println(e.toString());
 }

 out.println("</table>");

 out.println("</body>");
 out.println("</html>");
 out.close();
 }

CODE EXAMPLE 2-2 AllItemsServlet’s processRequest Method (Continued)
24 Building J2EE Applications • September 2002

The Reference Declaration for the EJB Reference

A web component like AllItemsServlet, which is going to call methods of an

enterprise bean in an EJB module, does so by means of EJB references. There are two

parts to an EJB reference:

■ JNDI lookup code, which uses the JNDI naming facility to obtain a remote

reference to a named enterprise bean.

■ A declaration of the reference. This is used by the runtime environment to

identify that specific bean referred to by the lookup code.

The lookup code is in the processRequest method (see CODE EXAMPLE 2-2). To use the

lookup code, you need to set up a reference declaration. The reference declaration

maps the reference name used in the lookup statement to an actual enterprise bean

that will be deployed with the web module. To set up an EJB reference declaration

for a web module:

1. Right click the web.xml node, and then choose the following sequence of
commands from the contextual menu: Properties → References tab → EJB
References → ellipsis (…) button.

This opens the EJB references property editor.

2. Click the Add button.

This opens a dialog that you use to set up the reference declaration.

3. To add a reference declaration you must supply the reference name used in the
lookup statement and the home and remote interfaces used in the method calls.

FIGURE 2-3 shows the add dialog with these values in the fields. For the reference to

work at runtime, for the JNDI lookup to return a remote reference to an enterprise

bean, the reference must be linked to a specific enterprise bean, in the same

application. This must be done before you deploy and execute the application, but it

need not be done now.

At this point in development, you can leave the reference unlinked, and link it later,

after you assemble the web module into a J2EE application. In some circumstances,

you might choose to resolve the reference at this stage of development.

a. If the enterprise bean is not in your development environment, you cannot link
the reference. Supply the names of the interfaces and click OK. You must have
copies of the interfaces in you development environment, in order to compile
the JNDI lookup code.

FIGURE 2-3 shows the property editor setting up an unlinked reference. The Home

Interface and Remote Interface are specified but the Referenced EJB Name field is

empty. The reference will be linked later on the application property sheet.
Chapter 2 Scenario: A Web Module 25

FIGURE 2-3 EJB Reference Property Editor With Unlinked Reference

b. If the enterprise bean is available in your development environment, you can
link the reference now. Click the browse button next to the Referenced EJB
Name field. Use the dialog that appears to select the enterprise bean. Click OK.
FIGURE 2-3 shows the reference named ejb/CatalogManagerBean linked to
CatalogManagerBean.

Even when the enterprise bean is available, you might choose not to link the

reference now. There are a number of reasons not to. For example, if there is any

chance that your web component will be used in more than one application, you

do not want to link the reference on the module’s property sheet. Any subsequent

developer who uses the module could relink the link to some other enterprise

bean that implemented the same interfaces.
26 Building J2EE Applications • September 2002

FIGURE 2-4 EJB Reference Property Editor With Linked Reference

In this scenario, the reference is left unlinked, as shown in FIGURE 2-3, and it is linked

after the J2EE application is created, on the application node’s property sheet. See

“Linking the EJB Reference” on page 59.

Mapping URLs to the Servlets

The link you set up on the welcome page specified the business logic that executes

(when a shopper clicks the link) with the following URL:

For this link to work properly, the URL you supply must map to the servlet you

want to execute. To understand how this works, you need to know how URLs map

to web resources.

Chapter 2 Scenario: A Web Module 27

Understanding Servlet Mappings

In a deployed application, the URLs for web resources in the web module are the

result of appending names to a URL path. For the J2EE Reference Implementation,

the URL path has this general form:

The elements in this path are determined by the following:

■ The hostname is the name of the machine the application server is running on,

and the port is the port specified for that server instance’s HTTP requests. The

port number is usually assigned when the application server is installed. For the

J2EE RI that is installed with Sun ONE Studio 4, the HTTP port number is 8000.

■ The web context is a string that you specify as a property of the module, after you

add the module to a J2EE application (on the included web module’s property

sheet). It qualifies all of the web resources in the module.

■ The URL pattern is a string that identifies a specific servlet or JSP page. You

assign it on the web module property sheet.

In other words, the URL patterns you assign in your web module are relative to the

web context that you will assign later, when you add the module to a J2EE

application. The HTML in this scenario uses links that are relative to the web

context, so that whatever web context you supply when you assemble the

application, the links will work properly when you execute the application. For

information on setting the web context, see “Setting the Web Context for the Web

Module” on page 57.

Editing Servlet Mappings

When you create a servlet, the default behavior of the Servlet Wizard is to use the

class name you supply on the first page of the Servlet Wizard for the servlet name,

and to map the servlet name to a URL pattern that includes the servlet name.

FIGURE 2-5 shows the Servlet Mappings property editor for AllItemsServlet with

these default settings.

http:// hostnmame: port/ web_context/ URL_pattern
28 Building J2EE Applications • September 2002

FIGURE 2-5 Servlet Mappings Property Editor

If you deploy the web module with this servlet mapping, AllItemsServlet is

mapped to the following URL:

If you want to map another URL to the servlet, you use the servlet mappings

property editor to edit the mapping. This scenario changes the URL pattern to a

more useful value

To edit the servlet mapping:

1. Open the Servlet Mappings Property Editor. Right-click the web module’s
web.xml node and choose the following sequence of commands on the contextual
menu: Properties → Servlet Mappings → ellipsis (…) button.

The Servlet Mappings Property Editor will list all servlets in the module and any

mappings that have been set up for them.

2. Select the current mapping and click the Edit button.

This opens a dialog that lets you edit the servlet mapping. Type /allItems in the

URL Pattern field. Click OK. FIGURE 2-6 shows the servlet mappings edit dialog with

new mappings for AllItemsServlet and Detail Servlet.

http:// hostname: port/ web_context/servlet/AllItemsServlet
Chapter 2 Scenario: A Web Module 29

FIGURE 2-6 Servlet Mappings Property Editor

After you edit the servlet mapping, AllItemsServlet can be executed with the

following URL:

This is the URL you used for the link that appears on the welcome page (see

CODE EXAMPLE 2-1). Clicking on that link now executes AllItemsServlet.

Other Assembly Tasks

This section covers some assembly tasks that were not used in the scenario. You

might find them useful in your web modules.

Setting up Error Pages

If you want to specify error pages for the module, you need to identify them in the

module’s deployment descriptor. You do this in the Error Pages Property Editor. (To

open this property editor, right-click on the web.xml icon, and then choose the

following sequence from the contextual menu: Properties → Deployment Tab →
Error Pages → ellipsis (…) button.

You can identify errors either by an HTTP error code or a Java exception class.

Notice that the editor has two Add buttons, on for each category of error. For either

type, you just specify the error and map it to a page. FIGURE 2-7 shows the property

editor after an error page has been assigned to HTTP error code 404.

http:// hostnmame: port/ web_context/allItems
30 Building J2EE Applications • September 2002

FIGURE 2-7 Error Pages Property Editor

Setting up JSP Pages

If the web module you are assembling contains JSP page components, you have a

number of ways to execute those components. If you create a new JSP page named

myJsp, you can execute it in any of the following ways.

Executing JSP Pages With HTML Links

If you want to execute a JSP page from an HTML link, set the link up like the

following example.

Execute myJsp>
Chapter 2 Scenario: A Web Module 31

Executing JSP Pages Programmatically

If you create a JSP page with the IDE, no deployment descriptor entry is created for

it. This is not a problem when your business logic accesses the JSP page

programmatically. For example, the following code is from a servlet that executes

myJsp . Notice that it specifies the actual filename for the JSP page (myJsp.jsp):

Using URL to JSP Mappings

The preceding examples identify the JSP page to execute by it’s actual name,

myJsp.jsp . You can also map a URL pattern to a JSP page and then execute the

page by referring to its URL pattern.

To set up a URL mapping for a JSP page:

1. Set up a servlet name for the JSP page.

You do this with the JSP Files Property Editor.

a. Right-click the web.xml file, and then choose the following sequence of
commands form the contextual menu: Properties → Deployment Pane → JSP
Files → ellipsis (…) button.

This opens the property editor.

b. Click the Add button. This opens a dialog on which you can select a JSP page
file and assign a servlet name to it.

FIGURE 2-8 shows the JSP Files Property Editor after the servlet name

itemDetailPage has been mapped to myJsp.jsp .

...

response.setContentType("text/html");

 RequestDispatcher dispatcher;

 dispatcher = getServletContext().getRequestDispatcher ("/myJsp.jsp");

 dispatcher.include(request, response);

...
32 Building J2EE Applications • September 2002

FIGURE 2-8 JSP Files Property Editor

2. Map a URL pattern to the servlet name.

a. Open the Servlet Mappings Property Editor. Click the Servlet Mappings
property and click the ellipsis (…) button.

b. On the Servlet Mappings Property Editor, click the Add button. This opens a
dialog that lets you set up a new servlet mapping.

Type in the servlet name you assigned to the JSP page. Then type in the URL

pattern you want to map to the JSP page. FIGURE 2-9 shows the Servlet Mappings

Property Editor with the URL pattern ItemDetail mapped to the servlet name

ItemDetailPage.
Chapter 2 Scenario: A Web Module 33

FIGURE 2-9 Servlet Mappings Property Editor

After this mapping, the JSP page defined by the JSP file myJSP.jsp can now be

executed with the following URL:

Setting up Environment Entry References

There are two parts to an environment entry:

■ A JNDI lookup. The web component that is to use the environment entry uses the

JNDI naming facility to lookup the entry’s value.

■ An entry for the environment entry and its value in the web module’s

deployment descriptor. This entry declares the reference to the J2EE runtime

environment.

http:// hostnmame: port/ web_context/ItemDetail
34 Building J2EE Applications • September 2002

JNDI Lookup for Environment Entry References

A web component that uses the environment entry value needs code like the

following example:

The comments explain what each line does.

Reference Declaration for Environment Entries

Like the other kinds of J2EE references, you set this one up in a property editor. In

this case it is the Environment Entries Property Editor. (To open this property editor,

right-click on the web.xml node, and then choose the following sequence of

commands from the contextual menu: Properties → References tab → Environment

Entries → ellipsis (…) button.

Click the Add button to open a dialog that lets you add a new reference. To add a

reference you must supply a reference name that matches the JNDI name in the web

component code, a data type and an initial value. Use the description to help

application assemblers and deployers supply the correct value for their

environments. FIGURE 2-10 shows the Environment Entries Property Editor with

these fields filled in.

try {

// Obtain Initial Context--Opens Communication With JNDI Naming:

Context ic = new InitialContext();

// Request Lookup of Environment Entry Named “Cache Size”:

Integer cacheSize = (Integer)

 ic.lookup(“java:comp/env/NumberOfRecordsCached“);

}

catch(Exception e) {

System.out.println(e.toString());

e.printStackTrace();

return;

}

Chapter 2 Scenario: A Web Module 35

FIGURE 2-10 Environment Entries Property Editor
36 Building J2EE Applications • September 2002

CHAPTER 3

Scenario: An EJB Module

FIGURE 3-1 shows an EJB module that is typical in form—a session bean and several

entity beans—and engages in interactions that are typical for an EJB module. EJB

modules provide server-side services within a J2EE application, so they must be able

to interact with other modules in the application (this interaction is represented in

the figure by arrow labeled #1). Most EJB modules contain more than one EJB

component, and the enterprise beans interact with each other (represented in the

figure by arrow #2). Most EJB modules also interact with external resources, such as

relational database management systems (represented in the figure by arrow #3).

FIGURE 3-1 Catalog EJB Module
37

The Interactions in This Module

This scenario looks at an EJB module that participates in the three types of

interaction shown in FIGURE 3-1. The module is part of a J2EE application that

supports a retail web site. Within the web site application, this EJB module supplies

the data for the online catalog. This is a typical role for an EJB module in a J2EE

application.

Another module in the application functions as a client of the catalog EJB module.

This client module, typically a web module, requests the data, formats it, and

displays it to online shoppers. The catalog data EJB module’s responsibility is

getting the requested data from the database and passing it to the client module. The

catalog data EJB module must be able to process requests for data and return the

correct data. More specifically, providing the catalog data requires these interactions:

1. The client module asks the catalog data EJB module for some catalog data. In this

simple example, the client can ask either for a list of all the items in the catalog, or

for detailed information about one item.

2. The catalog data EJB module processes the request by generating a database

query that will get the requested data.

3. The catalog data EJB module executes the query and returns the data to the client

module. The client then formats the data and displays it to the user.

These interactions between the client module and the catalog EJB module have some

characteristics that determine both the J2EE technologies you choose to implement

them and the internal structure of the catalog data module. First, the interaction

between client modules and the catalog module is synchronous: online shoppers will

ask to see the catalog and wait for the application to display it. To provide a

synchronous interaction, you choose to implement this interaction with Java RMI.

This means that client modules will request catalog data by invoking methods of the

catalog data module.

Second, the interactions between client modules and the catalog EJB module are

session-oriented. An online shopper can look at a display of the whole catalog and

then request detail for a single item. With multiple end users looking at the catalog

simultaneously, your EJB module needs to map requests to user sessions and return

the correct data to each session. For this reason, you decide that clients need to

interact with a stateful session bean enterprise bean in the catalog module. The

session bean will manage the processing of each request submitted by a client

module. (For details of using session beans to model sessions, see Building Enterprise
JavaBeans Components.)
38 Building J2EE Applications • September 2002

For the database operations, J2EE provides a type of enterprise bean known as entity

enterprise beans. Entity beans model database tables, and they have methods that

execute queries and work with the data stored in the tables they model. The catalog

data is stored in two tables, so the catalog data module will have two entity

enterprise beans, each modeling one of these tables. Connections, query language,

and other aspects of the database operations are handled by these entity beans.

After considering these requirements, you design a module like the one illustrated in

FIGURE 3-1. Client modules interact only with the session enterprise bean. The

session bean manages the incoming requests and calls methods of the entity

enterprise beans to obtain the requested data.

Programming This Module

TABLE 3-1 summarizes the programming required to create the EJB module illustrated

in FIGURE 3-1.

TABLE 3-1 Programming Required for This Scenario

Application
Element Programming Required

Application

server

None.

EJB module Create a session bean (CatalogManagerBean) with remote interfaces

(remote interfaces are appropriate handling remote method invocations

from other modules). Add business methods that return catalog data to

the caller. One of these business methods returns all items in the catalog,

the other returns detail for any item selected by the client.

Create two entity enterprise beans (itemBean and itemDetailBean) to

represent the two database tables that contain the catalog data. Create

local interfaces for these entity enterprise beans (this is appropriate for

method invocations within the module). Add a method to the itemBean

that returns all items in the catalog. Requests for detail on a specific item

will use the itemDetailBean’s findByPrimayKey method. The session

bean calls these methods to obtain the catalog data.

Create detail classes (one for the Item table, one for the ItemDetail table).

The catalog data module will return these instances of these classes to

the caller.

Create the catalog data EJB module, which creates an EJB module node

in the IDE’s Explorer. Add the three enterprise beans to the module.

After creating the EJB module, specify the datasource for the catalog

data, as a property of the module.

J2EE application To see how you add an EJB module to a J2EE application see Chapter 4.
Chapter 3 Scenario: An EJB Module 39

The sections that follow show you how to perform many of these programming

tasks. Interfaces and method signatures are used to show the inputs to the catalog

data module and the outputs from it. The procedures show how to connect these

inputs and outputs to other components, other modules, and the catalog database.

Instructions for creating the enterprise beans, adding business methods, and

implementing the business methods with Java code are not included. If you need to

learn about these tasks, see the online help or Building Enterprise JavaBeans
Components.

Creating Remote Interfaces for the Session

Enterprise Bean

The design for the catalog data module is that client modules get catalog data by

calling methods of the stateful session bean, using Java RMI. To make this

interaction possible, the session enterprise bean must have remote interfaces. You

generate the remote interfaces when you create the session bean with the Session

Bean Wizard. (For more information on the Session Bean Wizard see the online

help.) CODE EXAMPLE 3-1 shows the completed home and remote interfaces for the

stateful session bean.

Client modules can do two things with this interface. When clients wants to see the

entire catalog, they calls the getAllItems() method; when they wants detail they call

the getOneItemDetail() method. (Most real-world shopping applications provide

more functionality that this. But the additional functionality would appear as more

methods in these interfaces.)

The implementations of these methods (shown in CODE EXAMPLE 3-4), which are

encapsulated by the catalog module, calls methods of the entity beans. The entity

beans connect to the database and return the requested data as entity bean instances.

CODE EXAMPLE 3-1 Home and Remote Interfaces for the Session Bean

public interface CatalogManagerBeanHome extends javax.ejb.EJBHome {
 public CatalogBeans.CatalogManagerBean create()
 throws javax.ejb.CreateException, java.rmi.RemoteException;
}

public interface CatalogManagerBean extends javax.ejb.EJBObject {
 public java.util.Vector getAllItems() throws java.rmi.RemoteException;
 public CatalogBeans.idDetail getOneItemDetail(java.lang.String sku)
 throws java.rmi.RemoteException;
}

40 Building J2EE Applications • September 2002

Because clients of the catalog data module do not update the database, the EJB

module does not need to return the data in the form of entity bean instances.

(Returning entity bean instances would allow the client to update fields of the

instances. The container tracks changes to entity bean instances and it would

automatically generates database updates.) Instead, to reduce the network

bandwidth consumed by passing remote references to entity bean instances, the

catalog data module returns instances of ordinary Java classes. These classes, known

as detail classes, have the same fields as the entity beans. Data from entity bean

instances is copied to detail class instances and the detail class instances are returned

to the client. For more information on using detail classes with entity enterprise

beans, see Building Enterprise JavaBeans Components.

To see how a client uses these remote interfaces to interact with the catalog data

module, see Chapter 2.

Creating Local Interfaces for the Entity Enterprise

Beans

To obtain the data that clients request, the CatalogManagerBean is going to call

methods of the entity beans. Since these calls are within the module, there is no need

for the entity beans to have resource-consuming remote interfaces. Instead, you can

use local interfaces. Local interfaces are much faster and more efficient than remote

interfaces, and you should use them whenever a remote interaction isn’t necessary.

Generate the local interfaces when you create the entity beans with the Entity Bean

Wizard. (For more information on the Session Bean Wizard see the online help.)

CODE EXAMPLE 3-2 shows the completed local interfaces for one of the entity beans.

The interfaces for the other entity bean are similar.

The CatalogManagerBean session bean can call findAll() to obtain a list of all the

items in the catalog.

CODE EXAMPLE 3-2 Local Home and Local Interfaces for a Entity Bean

public interface ItemBeanLocalHome extends javax.ejb.EJBLocalHome {
 public CatalogBeans.ItemBeanLocal findByPrimaryKey(java.lang.String aKey)
 throws javax.ejb.FinderException;
 public java.util.Collection findAll() throws javax.ejb.FinderException;
}

public interface ItemBeanLocal extends javax.ejb.EJBLocalObject {
 public CatalogBeans.iDetail getIDetail();
}

Chapter 3 Scenario: An EJB Module 41

Note – If you plan to test individual enterprise beans with the Sun ONE Studio 4

test application feature, you need to generate both remote and local interfaces. The

test application feature will generate a web module client that exercises one

enterprise bean’s methods, and the web module client needs the remote interfaces.

Using the Local Interfaces in the Session

Enterprise Bean

Client modules requests data by calling one of the CatalogManagerBean’s business

methods. (These are the methods declared in the CatalogManagerBean interface. See

CODE EXAMPLE 3-1.) The implementations of these business methods manage the

processing of the request for catalog data. They include calls to methods of the entity

beans. To call entity bean methods, the session bean needs local EJB references to the

local interfaces you created for the entity bean. Like most J2EE references, you need

to program two separate parts to the reference.

■ JNDI lookup code. Each of the session bean’s business methods includes code that

uses the JNDI naming facility to obtain a reference to an entity bean’s LocalHome.

■ A declaration of the reference. This is used by the runtime environment to

identify the specific bean referred to by the lookup code.

JNDI Lookup Code for Local EJB References

CODE EXAMPLE 3-3 is the implementation of the session bean’s getAllItems() method.

Client modules call this method when they want to obtain data that lists all of the

items in the online catalog. The method implementation shows you how the

CatalogManagerBean manages the request. There are three steps:

1. The session bean uses JNDI lookup to obtain a local reference to the entity bean.

2. The session bean calls the entity bean’s findAll() method.

3. The session bean copies the catalog data from entity bean instances to detail class

instances, adds the detail class instances to a vector and returns the vector to the

client.

Comments in the code identify these steps.
42 Building J2EE Applications • September 2002

The lookup specifies “ItemBean”, but this is actually the name of the reference, not

the name of the referenced enterprise bean. The enterprise bean’s name is often used

as the reference name, to make it easier to remember which enterprise bean is meant.

The enterprise bean is specified in the next step.

CODE EXAMPLE 3-3 CatalogManagerBean’s getAllItems Method

public java.util.Vector getAllItems() {

 java.util.Vector itemsVector = new java.util.Vector();

 try{

 if (this.itemHome == null) {

 try {

 // Use JNDI Lookup to Obtain Reference to Entity Bean’s Local

 InitialContext iC = new InitialContext();

 Object objref = iC.lookup("java:comp/env/ejb/ItemBean");

 itemHome = (ItemBeanLocalHome) objref;

 }

 catch (Exception e) {

 System.out.println("lookup problem" + e);

 }

 // Use Local Reference to Call findAll().

 java.util.Collection itemsColl = itemHome.findAll();

 if (itemsColl == null) {

 itemsVector = null;

 }

 else {

 // Copy Data to Detail Class Instances.

 java.util.Iterator iter = itemsColl.iterator();

 while (iter.hasNext()) {

 iDetail detail;

 detail = ((CatalogBeans.ItemBeanLocal) iter.next()).getIDetail();

 itemsVector.addElement(detail);

 }

 catch (Exception e) {

 System.out.println(e);

 }

 return itemsVector;

}

Chapter 3 Scenario: An EJB Module 43

Reference Declaration for Local EJB References

To complete the JNDI lookup code, you need to set up a reference declaration as a

CatalogManagerBean property. The reference declaration maps the reference name

(used in the lookup statement) to an actual enterprise bean. To set up a reference

declaration:

1. Right click the calling bean’s node (in this case the CatalogManagerBean), choose
Properties from the contextual menu, then choose the following sequence: the
References tab, and the EJB Local References property, the ellipsis (…) button, and
the Add button.

The Add button opens a dialog that lets you add a new reference declaration.

2. To add a reference declaration you must supply a reference name that matches the
name used in the lookup statement and map it to the name of the enterprise bean.

The typical way to do this is to type in the Reference Name, matching exactly the

string used in the JNDI lookup statement, and then click the Browse button. This

opens a dialog that lets you select the matching enterprise bean FIGURE 3-2. shows

the Add EJB References Dialog for the CatalogManagerBean, with these fields filled

in for a local reference to the ItemBean.

FIGURE 3-2 Add EJB Reference Dialog Box
44 Building J2EE Applications • September 2002

Assembling the EJB Module

After creating the enterprise beans that will make up the CatalogData module, you

need to create and configure the EJB module. In the Sun ONE Studio 4 IDE, you

configure the module on its property sheets by setting the module’s properties to

describe the module’s runtime behavior and request specific runtime services from

the J2EE environment.

The module’s properties include server-specific properties for different

implementations of the J2EE runtime environment (different application server

products).

Creating the EJB Module

There are two ways to create an EJB module in the IDE. Both procedures create an

EJB module node in the location you specify. The EJB module node represents a

description of the contents of the module. It identifies the source files for all the

components you add to the module, but it does not copy them to the directory

where you put the EJB module node. Keep this in mind when you decide where to

put your EJB module.

If you keep all of the source code for the module in a single filesystem, you could

put your EJB module node at the top level of that filesystem. If the source code for

the module is in different filesystems, even in filesystem that are owned by different

developers, you might create a set of directories containing only modules and J2EE

applications, which is separate from the filesystems containing the source code.

To create an EJB module from an enterprise bean node:

1. Right-click an enterprise bean node, and choose New EJB Module from the
contextual menu.

This opens a dialog in which you name the module and choose a place in the

filesystem for it. You choose a filesystem, directory, or package.

2. A node representing your new module is created underneath the filesystem,
directory, or node you selected, and the enterprise bean you right-clicked on to
begin the procedure is automatically included in the new module.

You can add more enterprise beans to the module. See “Adding Enterprise Beans

and Other Resources to the Module” on page 46.
Chapter 3 Scenario: An EJB Module 45

To create an EJB module from a filesystem, package, or directory node:

1. Right-click on a Explorer window node and then choose the following sequence
of commands from the contextual menu: New → J2EE → EJB Module.

This opens a dialog on which you name the module. Click OK.

2. A node representing your new module is created underneath the filesystem,
package, or directory you selected.

Both of these procedures represent your new module by a node in the directory you

chose. Information describing the module, information that will eventually be used

to generate a deployment descriptor for the module, is stored in this directory. The

source code for the components in the module is not copied into this directory.

Adding Enterprise Beans and Other Resources to the Module

Once you have created a module you can add enterprise beans to it. To add an

enterprise bean to an EJB module:

1. Right-click the module node and choose “Add EJB…” from the contextual menu.

This opens a dialog in which you can browse all your mounted filesystems for

enterprise beans.

2. Select an enterprise bean and click OK. This adds a node representing the
enterprise bean underneath the module node.

You can continue using this command until you have added all the enterprise beans

that belong in the module.

3. When you add an enterprise bean to a module, the IDE manages any
dependencies of the enterprise bean on other kinds of resources (Java classes,
files, and so on). It automatically includes these in the module when you compile
or deploy the module.

For the few exceptions to this, see “Identifying Extra Files” on page 51.

Notice that the source code for enterprise beans you add to the module is not copied

into the directory that holds the module node.
46 Building J2EE Applications • September 2002

Specifying a Datasource for the Entity Enterprise Beans

In this scenario, the CatalogData module must access a database to get the catalog

data. You need to specify the datasource as part of configuring, or assembling, the

module. Keep in mind that there are two times when you specify a datasource for an

entity bean. First, at development time, you can open a live connection to a database,

select a table, and tell the Entity Bean Wizard to create an entity bean that models

the table you selected. (You can also use a database schema instead of a live

connection.) This is covered in Building Enterprise JavaBeans Components.

Second, before you deploy the entity bean, you need to specify the database that will

be used at runtime. This section covers this second case. To specify a datasource for

use at runtime, you use the EJB module’s property sheet to configure a resource

reference for the datasource.

The way you set up the resource reference depends on the type of entity bean you

are working with:

■ If you are working with an container-managed entity bean, you identify the

datasource on one of the module’s server-specific property tabs. The server

product determines how you identify the datasource. In most cases, including the

J2EE Reference Implementation, you identify the datasource by JNDI name.

■ If you are working with a bean-managed entity bean, you must set up the

resource reference with JNDI lookup code and a reference declaration that maps

the lookup to the datasource JNDI name.

Using the Server-specific Tabs for Container-managed Entity Beans

For container-managed entity beans, you simply specify the datasource, by JNDI

name, on the module’s property sheet. The IDE creates the resource reference for

you automatically.

Data sources are assigned JNDI names when data sources are defined to a specific

application server. You need to supply the JNDI name that is valid for the J2EE

runtime environment (application server product) you are using, on the server-

specific tab for that particular runtime environment. FIGURE 3-3 shows the

CatalogData module’s J2EE RI tab. The Data Source JNDI name property contains

the JNDI name for the default Pointbase database.
Chapter 3 Scenario: An EJB Module 47

FIGURE 3-3 EJB Module Server-specific Properties

Both the J2EE RI server and the PointBase database server were installed with Sun

ONE Studio 4. In addition, the Pointbase database was defined to the J2EE RI server

as “jdbc/Pointbase,” so supplying this name in the Data Source JNDI Name

property points to a specific database instance.

If you are using a different database product with the J2EE RI server, you need to

use J2EE RI administration tools to define the datasource to the J2EE RI server. After

you do this, the datasource will have a recognizable JNDI name.

If you are going to deploy in a managed test environment or a production

environment, system administration will probably be responsible for defining data

sources to the application server. In this case you simply need to obtain the

datasource’s JNDI name.

If you are using an application server other than the J2EE RI, the application server

must be configured with a datasource definition. The procedures for this depend on

the application server product. Once again, in a managed test environment or a

production environment, this will probably be done by system administration.

Creating Resource Factory References Explicitly for Bean-managed
Entity Beans

If your EJB module contains entity beans that use bean-managed persistence, instead

of container-managed persistence, you’ve already written JDBC and JTA to extract

data from the database. This is covered in Building Enterprise JavaBeans Components.
48 Building J2EE Applications • September 2002

In addition, you must also explicitly code the resource reference that you use to

connect to a specific datasource. Like the local EJB references you coded for

CatalogManagerBean, this reference has two parts:

■ JNDI lookup code. Each of the session bean’s business methods includes code that

uses the JNDI naming facility to obtain a reference to an entity bean’s LocalHome.

■ A declaration of the reference. This is used by the runtime environment to

identify the specific bean referred to by the lookup code.

A datasource you specify with a explicit lookup must be a named resource, just as it

is when the resource reference is automatically generated for a container-managed

bean.

JNDI Lookup Code for Resource Factory References

CODE EXAMPLE 3-4 shows code you use in a BMP entity enterprise bean to look up a

datasource.:

Reference Declaration for Resource References

To set up a reference declaration, use the entity bean’s property sheet:

1. Right-click on the enterprise bean’s logical node, and then choose the following
sequence of commands from the contextual menu: Properties → References tab →
Resource References → ellipsis (…) button.

This opens the resource reference property editor.

CODE EXAMPLE 3-4 JNDI Lookup for a Database

try {
 // Obtain Initial Context--Opens Communication With JNDI Naming:
 Context ic = new InitialContext();
 // Request Lookup of Resource--In This Example a JDBC Datasource:
 javax.sql.DataSource hrDB = (javax.sql.DataSource)

ic.lookup(“java:comp/env/jdbc/Local_HR_DB“);
}
catch(Exception e) {
 System.out.println(e.toString());
 e.printStackTrace();
 return;
}

Chapter 3 Scenario: An EJB Module 49

2. Click the Add button to open a dialog that lets you add a new resource reference.

A reference must contain a reference name (the name used in the JNDI lookup

statement), a resource type and an authorization type. FIGURE 3-4 shows the Resource

Reference Property Add dialog with these fields filled with values that match

CODE EXAMPLE 3-4.

FIGURE 3-4 Add Resource Reference Dialog Box

Notice that unlike EJB references, resource references are not linked to other J2EE

components at assembly or deployment time. Instead the named resource is defined

separately in the application server’s environment. Enterprise beans use the JNDI

lookup to obtain references to these resources at runtime.This reference will connect

to that database instance.

3. Click on the Add dialog’s server specific tab to identify the resource.

FIGURE 3-5 shows the Add dialog’s J2EE RI tab. The JNDI Name field has a value of

jdbc/Pointbase. This value links the resource reference named jdbc/Local_HR_DB to

that specific database.
50 Building J2EE Applications • September 2002

FIGURE 3-5 Add Resource Reference Dialog Box, Server-specific Tab

Identifying Extra Files

In most cases the IDE recognizes the dependencies of the enterprise beans in the EJB

module and includes all needed files in the EJB JAR files it generates at deployment

time. There are a few types of dependencies, however that the IDE does not

recognize.

■ If an enterprise bean in your module uses a help file without calling it directly.

■ If an enterprise bean accesses a class dynamically and the class name appears in

the code only as a string and not as a class declaration.

In these and similar cases, the IDE does not recognize the dependency and does not

include the help file or class file in the archive file it creates. You need identify these

files so that they are available at run time.

To identify extra files:

1. Right-click the module node. From the contextual menu, choose the following
sequence: Properties → Extra Files → ellipsis (…) button.

This opens the Extra Files property editor.
Chapter 3 Scenario: An EJB Module 51

2. Select any extra file that should be deployed or archived as part of this module.

The Extra Files property editor lets you browse all mounted filesystems. Click the

extra files and click the Add button to add them to the list of extra files.

Excluding Duplicate JAR Files

In some cases you want to prevent the IDE from acting on some of the file

dependencies it recognizes. In particular, when a component in you module has a

dependency on a commonly used JAR file that you know will be present in the

runtime environment, you can prevent the IDE from adding an unnecessary copy of

the commonly used JAR file to archive files created for you module.

To exclude duplicate jar file:

1. Right-click the module node. From the contextual menu, choose the following
sequence: Properties → Library Jars to Exclude → ellipsis (…) button.

This opens the Library Jars to Exclude property editor. It displays a list of mounted

JAR files.

2. Select JAR file that should be excluded, and click the Add button to move them to
the list of library JARs to excluded.

Other Module Assembly Tasks

Specifying a runtime datasource for the CatalogData module is one task that you

perform as part of assembling and configuring an EJB module. Depending on the

module, there may be other assembly tasks. You need to determine what assembly

tasks are required. Questions that you might ask about the module include:

■ Have all the references used in the module been linked? There may be some

references to components in other modules, and these can only be linked after the

module has been assembled into a J2EE application.

■ Have generic security roles been set up for the module? Have any security role

references in the module’s enterprise beans been linked to these generic security

roles? Have method permissions been mapped to these generic security roles? For

more information on these issues, see Chapter 8.

■ Have container-managed transactions been defined? For more information on this

issue, see Chapter 7.
52 Building J2EE Applications • September 2002

CHAPTER 4

Scenario: Web Module and EJB
Module

FIGURE 4-1 shows a web module and an EJB module assembled into a J2EE

application. The interaction between the modules is Java RMI; servlets in the web

module make remote method calls to the EJB module. The other interactions that

appear in the figure—the HTTP requests and responses between the user’s browser

and the application, and the database queries that the application executes—were

programmed into the modules.

FIGURE 4-1 Web Module and EJB Module Assembled Into J2EE Application
53

The Interactions in This Application

This scenario looks at a J2EE application that participates in all the interactions

shown in FIGURE 4-1. The programming required for the HTTP interactions with

users is inside the web module, and it is covered in Chapter 2. The programming

required for the interaction with the database is inside the EJB module, and it is

covered in Chapter 3. This scenario is about assembling the two modules into a J2EE

application.

The one interaction that depends on the presence of both modules is the remote

method call between the modules. The logic needed for this interaction is already in

the modules. The web module contains JNDI lookup code and an EJB reference

declaration (see “The Reference Declaration for the EJB Reference” on page 25), and

the EJB module contains remote interfaces that support remote method calls (see

“Creating Remote Interfaces for the Session Enterprise Bean” on page 40).

The few tasks covered in this chapter assemble the two modules into a J2EE

application. After that, you can deploy the application as a unit and execute it. For a

description of the end user actions that lead to the remote method calls, see “The

Interactions in This Module” on page 18.

Programming This Application

TABLE 4-1 summarizes the programming required to create the J2EE application

described in this scenario.

TABLE 4-1 Programming Required for This Scenario

Application Element Programming Required

Application server None.

Web module See Chapter 2.

EJB module See Chapter 3.

J2EE application Create the Catalog application. This creates a J2EE application node

in the Sun ONE Studio 4 Explorer. Add the two modules to the

application.

Specify the web context for the web module.

Make sure the web module’s EJB references are correctly linked to

enterprise beans in the EJB module.
54 Building J2EE Applications • September 2002

The sections that follow use simple examples to demonstrate most of these

programming tasks.

Assembling the J2EE Application

After creating the modules that go into the Catalog application, you need to create

and configure a J2EE application that includes both modules. In the Sun ONE Studio

4 IDE, you do this by creating an application node and using the application node’s

property sheets to configure the application. You set the application’s properties to

describe its runtime behavior and to request specific runtime services from the J2EE

environment.

The application’s properties include both standard properties defined by the J2EE

specifications and sever-specific properties for different application server products.

Creating the J2EE Application

There are two ways to create a J2EE application in the IDE. Both procedures create

an application node in the location you specify. The J2EE application node represents

a description of the contents of the application. It identifies the source files for all the

components you add to the module, but it does not copy the source files to the

directory where you put the application node. Keep this in mind when you decide

where to put your J2EE application node.

If you keep all of the source code for the module in a single filesystem, you could

put your EJB module node at the top level of that filesystem. If the source code for

the module is in different filesystems, perhaps in filesystem that are owned by

different developers, you might create a set of directories containing only modules

and J2EE applications that is separate from the filesystems containing the source

code. Such a filesystem can help you see the structure of your application, which

will be different than the directory structure of the source code.

To create a J2EE application from a module node:

1. Right-click an EJB module node (or a web module-s WEB-INF node), and then
choose New J2EE Application from the contextual menu.

This opens a dialog in which you name the application and choose a place in the

filesystem for it. Choose a filesystem, directory, or package node and click Finish.

2. A node representing your new module is created underneath the filesystem,
directory, or node you selected, and the module you right-clicked to begin the
procedure is automatically included in the new application.

You can add more modules to the application. See “Adding Modules to the J2EE

Application” on page 56.
Chapter 4 Scenario: Web Module and EJB Module 55

To create an EJB module from a filesystem, package, or directory node:

1. Right-click on a Explorer window node and then choose the following sequence
of commands from the contextual menu: New → J2EE → J2EE Application.

This opens a dialog on which you name the application. Click OK.

2. A node representing your new application is created underneath the filesystem,
package, or directory you selected.

Both of these procedures represent your new module by a node in the directory you

chose. Information describing the module, information that will eventually be used

to generate a deployment descriptor for the module, is stored in this directory. The

source code for the components in the module is not copied into this directory.

Adding Modules to the J2EE Application

Once you have created an application you can add modules to it. To add a module

to an application:

1. Right-click the application node and choose “Add Module …” from the contextual
menu.

This opens a dialog in which you can browse all your mounted filesystems for

modules.

2. Select a module and click OK. This adds a node representing the module
underneath the application node.

■ To add a web module, select the module’s WEB-INF node.

■ To add an EJB module, select the module node.

Continue using this command until you have added all the modules that belong in

the application.

3. When you add a module to a J2EE application, the IDE notes any dependencies of
the enterprise bean on other kinds of resources (Java classes, files, and so on) and
automatically includes these in the module.

Notice that the source code for the modules you add to the applications is not copied

into the directory that holds the application node.
56 Building J2EE Applications • September 2002

Setting the Web Context for the Web Module

When you deploy a J2EE application to a J2EE application server, URLs are assigned

to web module resources by appending names to a URL path. For the J2EE Reference

Implementation, the URL path has this general form:

The elements of this path are determined by the following:

■ The hostname is the name of the machine the application server is running on,

and the port is the port specified for that server instance’s HTTP requests. The

port number is usually assigned when the application server is installed. For the

J2EE RI that is installed with Sun ONE Studio 4, the HTTP port number is 8000.

■ The web context is a string that you specify as a property of the module, after you

add the module to a J2EE application. It qualifies all of the web resources in your

module.

■ The URL Pattern is a string mapped to a specific servlet on the web module’s

property sheet. See “Mapping URLs to the Servlets” on page 27.

In other words, the URL patterns assigned on the web module’s property sheet are

relative to the context that you assign with this procedure. To set the web context:

1. Right-click the included web module node (this is the web module node under
the J2EE application node), and choose Properties from the contextual menu.

2. Click the Web Context property and type in the string you want to use.

FIGURE 4-2 shows the property sheet for the catalog web module. The web context is

set to catalog .

http:// hostnmame: port/ web_context/ URL_pattern
Chapter 4 Scenario: Web Module and EJB Module 57

FIGURE 4-2 Property Sheet for Catalog Web Module

With this value, URLs for web resources in the application will have this general

form:

If you don’t supply a web context, it defaults to blank, and URLs for web resources

in the application would have this general form:

http:// hostnmame: port/catalog/ URL_pattern

http:// hostnmame: port/ URL_pattern
58 Building J2EE Applications • September 2002

Linking the EJB Reference

The Java RMI interaction between the modules requires a linked EJB reference. The

web module contains both pieces of an EJB reference, the JNDI lookup code and the

reference declaration. To successfully perform the remote method call, the reference

must be linked to an enterprise bean that is in the application.

The scenario in Chapter 2 covered programming the reference. It explained that in

some conditions you might decide to link the reference on the web module’s

property sheet before you create the application, and in other conditions you would

choose the leave the reference unlinked on the web module’s property sheet, to be

linked later, when the web module is assembled into an application.

This section explains how to work with the application node’s enterprise bean

reference property. It explains how to check the status of references declared in an

application, and, when necessary, how to link them.

To work with the references in an application:

1. Open the application’s EJB References Property Editor.

Right-click the application node, and then choose the following sequence from the

contextual menu: Properties → EJB References → ellipsis (…) button.

2. Check the status of the EJB references.

This editor shows you all of the references that have been declared in the modules

that make up the application. References are identified by module and reference

name (the name used in the JNDI lookup statement).

FIGURE 4-3 shows this property editor for the application in this scenario. There is

one EJB reference, in the CatalogWebModule. The reference is named

ejb/CatalogManagerBean, and it is resolved by an enterprise bean in the EJB

module, named CatalogBeans.CatalogManagerBean.
Chapter 4 Scenario: Web Module and EJB Module 59

FIGURE 4-3 Application Node’s EJB References Property Editor

If a reference has not been linked, its Value field will be empty, and an Error Status

field will indicate a problem with the references. FIGURE 4-4 shows the same

reference, but in this case it was not linked on the web module property sheet.
60 Building J2EE Applications • September 2002

FIGURE 4-4 Unlinked EJB Reference

3. Link any unresolved references.

To do this, click the Override Value field. It will display a list of enterprise beans in

the application that implement the interfaces specified in the reference. Select one of

these enterprise beans. When the application executes, the method calls coded in the

web module will call the enterprise bean you select here.
Chapter 4 Scenario: Web Module and EJB Module 61

Additional Assembly Tasks

This section covers some assembly tasks that were not used in the scenario. You

might find them useful in your J2EE applications.

Overriding Environment Entries

If the application contains any environment entries, you might want to revise the

values that were set for them on the module property sheet. You can do this on the

application’s Environment Entries Property Editor. (To open this editor, right-click

on the application node, and then choose the following sequence from the contextual

menu: Properties → Environment Entries → ellipsis (…) button.)

This editor shows you all of the environment entries that have been declared in the

modules that make up the application. Environment entries are identified by name

(the name used in the JNDI lookup statement) and module.

FIGURE 4-5 shows this property editor for the modules in this scenario. There is one

environment entry, that was created on the web module’s property sheet. (See

“Setting up Environment Entry References” on page 34.) The reference is named The

environment entry is named NumberOfRecordsCached and it has a default value of

100, set on the web module’s property sheet.

FIGURE 4-5 Application Node’s Environment Entries Property Editor
62 Building J2EE Applications • September 2002

If you are working with the web module source files in your development

environment you can change this value on the module’s property sheet. If there is

any chance that the web module will be used in more than one application, however,

you are better off customizing this value on the application’s property sheet. If the

next person to use the web component changes the value on the module property

sheet, it will change the value in your application when you redeploy.

To override the value set on the module property sheet, click the checkbox in the

Override column and then supply the override value in the Override Value field.

Viewing and Editing Deployment Descriptors

In general, you should control the contents of a deployment descriptor by working

with module and application property sheets. By setting properties, you control the

contents of the deployment descriptor. The IDE does allow you to view the actual

XML deployment descriptors for modules and applicatons.

Viewing Deployment Descriptors

You can view deployment descriptors for J2EE applications, included web modules

and included EJB modules. To view a deployment descriptor, right-click on the node

and then choose View Deployment Descriptor from the contextual menu. The IDE

opens the deployment descriptor in the source editor, in read-only mode.

Editing an EJB Module Deployment Descriptor

You can edit EJB module deployment descriptors. To do this, right-click an EJB

module node and choose Edit Deployment Descriptor from the contextual menu.
Chapter 4 Scenario: Web Module and EJB Module 63

64 Building J2EE Applications • September 2002

CHAPTER 5

Scenario: Web Module and Queue-
mode Message-driven Bean

FIGURE 5-1 shows a J2EE application consisting of a web module front end and an

EJB module with business logic. The distinguishing feature of this application is the

asynchronous communication between the modules, which is initiated by the web

module and processed by the EJB module.

FIGURE 5-1 J2EE Application With Queue-mode Message-driven Bean
65

The Interactions in This Application

This scenario looks at a J2EE application that implements the kind of interaction

shown in FIGURE 5-1. This application is part of a retail web site. Within the web site,

the asynchronous communication with a message-driven bean is used in the check-

out process. The asynchronous interaction is used as follows:

1. An online shopper interacts with the front end provided by the web module. The

user searches for merchandise and adds items to an online shopping cart

managed by the web module. This activity opens a number of static HTML pages,

servlets, and JSP pages in the module. Some of these components invoke the

business methods of an EJB module, especially to obtain or record persistent data,

but all of this done is synchronously—you user requests some information and

then waits for the application to return before continuing. The web module

covered in Chapter 2 demonstrates this kind of application logic.

2. Eventually, your user does something that you want to handle asynchronously. A

typical example is completing the checkout procedure. At this point your user has

already reviewed the contents of the shopping cart, selected a shipping method,

and provided a credit card number. Your application needs to complete the order

process and then notify the user via email that the items are in stock and will be

shipped.

3. The web module initiates this asynchronous processing by sending a message

that identifies the customer and the order to a message queue. (The actual

customer and order details are in an order database.) The message queue is

outside the application—it is maintained by the application server.

4. A message-driven enterprise bean reads this message off the queue. The container

takes the message from the queue, and relays it to the message-driven bean by

invoking the message-driven bean’s onMessage method. The container passes the

message as an onMessage parameter.

5. The message-driven bean does not contain all the business logic to process the

order. It just examines the message and initiates the necessary processing. In this

scenario, the MDB initiates processing by invoking the business methods of other

enterprise beans in the module. This is likely to be a typical strategy. If you are

the developer of the EJB module you may well develop the session and entity

enterprise beans (write their business methods) that perform the actual

processing, as well as the message-driven bean.

There are other programming issues in this application, such as mapping URLs to

web module resources and programming the interactions between the session and

entity enterprise beans. These are covered in other scenarios that focus on those

issues.
66 Building J2EE Applications • September 2002

Programming the Message-driven
Communication

Now that you have seen how queue-based message-driven communication can be

used in a business application, you can see the programming that you, that

application developer, need to do to make it work.

The sections that follow use the scenario to explain each of these items in detail.

Setting up the Application Server

The front end of your message-driven application sends messages to a message

queue, and the back end, where most of the business logic resides, reads these

messages from the queue. The queue itself is created and maintained by the

application server. In a production environment, system administration will

probably define, configure, and manage the queues.

Setting up a Queue

You can use the application server’s default queue, but to be certain that there is no

contention for messages, you may want to create a separate queue for you

application.

TABLE 5-1 Programming Required by This Application

Application Element Setup Needed

Application Server Set up a Queue and a QueueConnectionFactory. You do this outside

the IDE, using the application server’s administration tools.

Web Module On the web component that will send the message, you declare

references to the queue and queue connection factory. In the

component source, you write code that uses JNDI lookup to obtain

references to the queue. You also write code that formats a message

and sends it.

EJB Module with

Message-driven

Enterprise Bean

On the message-driven bean, set up references that make the bean

the destination for the queue and queue connection factory. Code

the bean’s onMessage method.
Chapter 5 Scenario: Web Module and Queue-mode Message-driven Bean 67

In a development or test environment, you can create and manage the queue. For an

example of the set up you need to perform, the steps for using the J2EE reference

implementation’s administration tool to add a queue to the Reference

Implementation server are provided below:

1. Use the J2EE RI admin tool from the command line. Your working directory
should be <j2sdkee1.3_home>/bin.

2. To add the queue:

j2eeadmin -addJMSDestination jms/MyQueue queue

3. To confirm that you have added the queue:

j2eeadmin -listJmsDestination

4. Start the RI server:

j2ee -verbose

The startup messages should show the presence of jms/MyQueue .

When your application is deployed into a production environment or a managed

test environment, its queue and queue connection factory references can be linked to

the queue designated by the system administrators.

Setting up a QueueConnectionFactory

To use a queue, your application needs to open a queue connection. It does this by

calling the methods of a queue connection factory. (A queue connection factory is a

driver for the messaging system—the application calls the JMS API methods of the

connection factory, which interprets them for the particular implementation of JMS

API that is installed. Each application server is likely to have its own queue

connection factory, for its own implementation of the JMS APIs.)

Application servers may have default queue connection factories that are suitable for

development and testing. The J2EE reference implementation, for example, comes

with a default queue connection factory named jms/QueueConnectionFactory. It

should be suitable for development and testing purposes, and it is used by the code

in this scenario.

In a production environment, system administrators will probably configure queue

connection factories that are configured for a specific environment and its security

needs. When your application is deployed into a production environment or a

managed test environment, it can be configured to use the queue connection factory

designated by system administration.
68 Building J2EE Applications • September 2002

Programming the Web Module

In this scenario, messages are sent by a servlet in the web module. To send a

message, the servlet needs to use the queue and queue connection factory

designated for the application. It gets references to the queue and queue connection

factory from the application server environment, by means of JNDI lookup.

Like most J2EE references, these queue and queue connection factory references

consist of two parts, a declared reference in the web module’s deployment

descriptor and JNDI lookup code in the servlet. This section looks first at the

declared references and then at how the code uses the references.

The Reference Declaration for the Queue

In the Sun ONE Studio 4 IDE, reference declarations are set up as properties of the

servlet. The queue reference is a resource environment reference which is set up on

the web module’s resource environment property editor. FIGURE 5-1 shows the values

used in this scenario.

FIGURE 5-2 Resource Environment Reference for a Queue

Notice that there is a layer of indirection here. The name set up on the Standard tab

of this property editor is the name used in the JNDI lookup. But this is the name of

the reference, and not the actual JNDI name. The JNDI name is set up on one of the

server-specific tabs of this property editor. FIGURE 5-3 shows the reference name,

“QueueName,” mapped to the JNDI name “MyQueue.” If you turn back to “Setting

up the Application Server” on page 67, you will see that this is the queue created in

the J2EE RI and designated for this application. When the servlet’s JNDI code

performs a lookup on “QueueName,” it is automatically mapped to the JNDI name

“MyQueue,” and application server returns a reference to that queue.
Chapter 5 Scenario: Web Module and Queue-mode Message-driven Bean 69

FIGURE 5-3 The JNDI Name for the Queue Reference

The Reference Declaration for the QueueConnectionFactory

Declaring the reference for the queue connection factory references is similar. It is a

Resource Reference, and you set it up on the servlet’s resource reference property

editor. FIGURE 5-4 shows the values used in this scenario.

FIGURE 5-4 Resource Reference for QueueConnectionFactory
70 Building J2EE Applications • September 2002

For information on the other authorization types, see the coverage of message-

driven beans in Building Enterprise JavaBeans Components.

This reference uses the same indirection as the queue references. FIGURE 5-5 shows

the “defaultconnectionfactory” references mapped to the JNDI name for the J2EE

RI’s default queue connection factory.

FIGURE 5-5 JNDI Name for the QueueConnectionFactory Reference

The JNDI Lookup Code

Like other types of J2EE references, the declared references for a JMS queue and a

JMS connection factory are used in application code. The application performs JNDI

lookups to obtain references to objects named in the declared references, then uses

the references to request services. In this scenario, a servlet in the web module

performs the JNDI lookups and uses the queue and queue connection factory

references to open a connection to the queue and send a message to it.

CODE EXAMPLE 5-1 shows the code that performs the JNDI lookup, creates a message,

and sends it. It is in the servlet’s processRequest method. The code is commented to

identify each of the operations it performs.
Chapter 5 Scenario: Web Module and Queue-mode Message-driven Bean 71

Note that any type of client would use similar code to perform the same operations.

You could use similar code in an application client, or in an enterprise bean that was

acting as a message provider.

CODE EXAMPLE 5-1 Servlet’s processRequest Method

import java.io.*;
import javax.jms.*;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

...

protected void processRequest(HttpServletRequest request, HttpServletResponse
response) throws ServletException, java.io.IOException {

//Delete the default method body and insert the following lines:

response.setContentType("text/html");
java.io.PrintWriter out = response.getWriter();
Context jndiContext = null;
javax.jms.TextMessage msg = null;
QueueConnectionFactory queueConnectionFactory = null;
QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueSender queueSender = null;
TextMessage message = null;

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet</title>");
out.println("</head>");
out.println("<body>");

try {
// Connect to default naming service -- managed by app server
jndiContext = new InitialContext();

}
‘ catch (NamingException e) {

out.println("Could not create JNDI " + "context: " + e.toString());
}

try {
// Perform JNDI lookup for default QueueConnectionFactory and the
// Queue created in this scenario.
72 Building J2EE Applications • September 2002

For more information on creating and sending messages, see Building Enterprise
JavaBeans Components.

// Notice that the generic reference names are used here.
queueConnectionFactory = (QueueConnectionFactory) jndiContext.lookup

("java:comp/env/jms/DefaultConnectionFactory");
queue = (Queue) jndiContext.lookup("java:comp/env/jms/QueueName");

}
catch (NamingException e) {

out.println("JNDI lookup failed: " + e.toString());
}

try {
// Use references to connect to the queue and send a message.
queueConnection = queueConnectionFactory.createQueueConnection();
queueSession = queueConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
queueSender = queueSession.createSender(queue);
message = queueSession.createTextMessage();
message.setText("Hello World!");
queueSender.send(message);
}

}
catch (JMSException e) {

out.println("Exception occurred: " + e.toString());
}
finally {

if (queueConnection != null) {
try {

queueConnection.close();
}
catch (JMSException e) {}

}
} // end of finally
// and the end of code to insert

} // end of processRequest()

CODE EXAMPLE 5-1 Servlet’s processRequest Method (Continued)
Chapter 5 Scenario: Web Module and Queue-mode Message-driven Bean 73

Programming the EJB Module

In this scenario, the business logic for processing a shopper’s checkout request is in

the EJB module. It is initiated by a message from the web module front end. For this

to work, the EJB module needs to receive the message that the web module sends to

the queue.

To do this, it you create a message-driven enterprise bean that reads from the queue.

This section shows you how to program a message-driven bean so that it reads from

the designated queue. When the application is deployed, the container uses the

queue connection factory you specify for the bean to open a connection to the queue

you specify. You use references to specify the queue and queue connection factory.

The Message Driven Destination Property

The first thing you need to do is configure your message-driven bean to read

messages from a specific queue. In the Sun ONE Studio 4 IDE you do this on the

bean’s property sheet. FIGURE 5-6 shows the property sheet for the message-driven

bean used in this scenario. The Message Driven Destination property configures this

bean as the consumer of a queue.
74 Building J2EE Applications • September 2002

FIGURE 5-6 Message-driven Bean Property Sheet

The Queue and QueueConnectionFactory References

You also need to identify the queue and the queue connection factory that will be

used to open a queue connection. In the Sun ONE Studio 4 IDE, you do this on the

server-specific tab for the application server you will be using. FIGURE 5-7 shows the

J2EE RI properties tab for the same message-driven bean. The Connection Factory

Name property has been set to the JNDI name for the default J2EE connection

factory (jms/QueueConnectionFactory), and the Destination JNDI Name

property has been set the JNDI name for the J2EE RI queue that you created for this

application (jms/MyQueue).
Chapter 5 Scenario: Web Module and Queue-mode Message-driven Bean 75

FIGURE 5-7 Message-driven Bean’s J2EE RI Property Tab

When this message-driven bean is deployed, the RI container will automatically

open a connection to the queue you’ve specified, using the queue connection factory

you’ve specified.

The tabs for the other application servers have similar properties for specifying

queues and connection factories.

The onMessage Method

You add business logic to a message-driven bean by completing its onMessage

method. This method is automatically invoked when the container delivers a

message to the message-driven bean. In this example, the message-driven bean

immediately calls the appropriate business method of another enterprise bean in the

module. This is likely to be typical onMessage behavior. For more information about

writing onMessage methods, see Building Enterprise JavaBeans Components.
76 Building J2EE Applications • September 2002

Assembling the J2EE Application

Figure FIGURE 5-1 shows both the servlet (in a web module) and the message-driven

bean (in an EJB module) in a J2EE application To put these modules into a single

application, you simply create the application and add both modules to it. The two

modules contain all of the information needed to deploy and execute the message-

driven communication. There is no need to open the J2EE application’s property

sheet and perform any additional assembly work.

For information about creating an application and adding modules, see “Assembling

the J2EE Application” on page 55.
Chapter 5 Scenario: Web Module and Queue-mode Message-driven Bean 77

78 Building J2EE Applications • September 2002

CHAPTER 6

Scenario: J2EE Application Client
and J2EE Application

FIGURE 6-1 shows another J2EE application. Like the applications in the other

scenarios, this one has significant business logic in an EJB module. But, where the

earlier examples used web module front ends, this one uses a front end provided by

a J2EE client application.

FIGURE 6-1 J2EE Application With an Application Client
79

In other scenarios (see Chapter 4 and Chapter 5), a web module front end and an EJB

module with substantial business logic are assembled into a J2EE application, and

the application is deployed as a unit. End users use web browsers to access the web

pages defined in the web modules.

A J2EE application client also provides a user interface, but it is programmed,

deployed, and executed differently than a web module. An application client is a

separate Java program with its own main method. The application client is deployed

separately from the server-side J2EE application. In most cases it is deployed to an

end user’s machine. Since it is a separate program with its own main method, an

end user can start and stop the application client separately from the server-side

J2EE application.

The application client runs in a J2EE client container, which means that even though

the application client is deployed and executed separately from the server-side J2EE

application, it can use Java RMI to invoke the business methods of the server-side

application. And, when it does, it can participate in J2EE container-managed

transactions and container-managed security.

The Interactions in This Application

This scenario looks at a J2EE application that includes the type of interaction shown

in FIGURE 6-1. This application shows you how an application client is used and how

it participates in J2EE transactions and security. It is also an example of the kinds of

application design problems you can solve with an application client.

In most of the previous scenarios, the application has been an online shopping

catalog, and the end users have been online shoppers who access the online catalog

through web module front ends.

The online catalog application, however, has other end users besides the shoppers.

Items in the online catalog change frequently. Items are added, removed, put on sale,

and so on. These tasks aren’t performed by the shoppers, but by an application

administrator who is an employee of the online vendor.

The work performed by the administrator is more complicated than what the online

shoppers do. For example, adding a new item to the catalog requires setting up a

product record that is keyed by SKU, setting up the mixture of image and text that

appears in the online catalog, and setting up the keywords that online shoppers use

to search for products.

Shoppers typically interact rapidly with the application, requesting new pages from

the catalog, requesting more detailed information on a particular item, and so on.

The application administrator interacts differently with the application, typically

spending long periods of time working on a catalog entry before saving it. Only
80 Building J2EE Applications • September 2002

when saving a catalog entry does the application client need the services of the

server-side application. So, the application administrator could make use of business

logic that executes independently of the server-slide logic.

After considering the work that is performed by the application administrator, you

decide that an application client with its own business logic is a more appropriate

tool for administering the online catalog than a web interface provided by a web

module. The main interactions that will take place when this application runs are:

1. The server side of the application, which performs the actual database inserts,

updates, and deletes, is a J2EE application with session and entity enterprise

beans. It accesses the same databases that the online shoppers do. This

application is typically managed by system administration and is up and running

before the application administrator starts the application client.

2. The application administrator starts the application client to perform some

catalog management tasks. The application client runs in its own process, on the

administrator’s machine. Since it was deployed as a J2EE application client, it

runs in a J2EE client container. The application administrator logs in and

establishes a security identity.

3. The application administrator works with text and images to build a new catalog

entry. When the administrator completes a new catalog entry and clicks a Save

button, the application client uses JNDI lookup to obtain a remote reference to the

session bean in the server-side application, and uses Java RMI to invoke the

business method that inserts the new entry into the online catalog database. This

may lead to several inserts in different tables.

When the business method is invoked, the application administrator’s security

identity is passed to the server-side J2EE application. After the server-side EJB

container verifies that administrator is an authorized user, the business method

executes and inserts the new catalog entry. This enterprise bean business method

is transactional, so the EJB container starts a new transaction and commits it after

all the database insert operations are successfully completed.

There are other programming issues in this application, such as programming the

interactions between the session and entity enterprise beans. These are covered in

other scenarios that focus on those issues.
Chapter 6 Scenario: J2EE Application Client and J2EE Application 81

Programming This Application

TABLE 6-1 summarizes the programming required to create the J2EE application and

application client illustrated in FIGURE 6-1.

The sections that follow use a simple example to demonstrate each of these

programming tasks.

Programming the J2EE Client Application

In this scenario, the application client uses Java RMI to communicate with an

enterprise bean in the server-side application. The instructions that follow show you

how to write a very simple program that fits this scenario.

The instructions are divided into two main parts. The first explains how to write the

Java code for the client program. The second explains how to transform that

program into an application client that can be deployed to a J2EE application server.

TABLE 6-1 Programming Required for This Scenario

Application Element Programming Required

Application Server None.

J2EE Application

Client

First write a stand-alone Java program (a program with a main

method) that provides the necessary user interface and business

logic. At those points in the program flow where server-side

business methods are invoked, write JNDI lookups to obtain the

remote references for home and remote objects, then write the

remote invocations.

After writing the Java client program, transform it into a Java

application client. Set up declared references for the enterprise beans

named in the JDNI lookups. Identify the stub classes needed for the

JNDI lookup.

J2EE Application

(server side)

No special programming is required to make the application

accessible to an application client.

The server-side application must be deployed before the client is

completed, because deployment generates the stub classes needed

by the client.
82 Building J2EE Applications • September 2002

Writing the Client Code

What distinguishes an application client from other stand-alone Java programs is its

use of J2EE services, such as EJB references, to interact with other J2EE applications

running in other containers. CODE EXAMPLE 6-1 shows a simple way to implement

the JNDI lookup code in a Swing program.

Like other types of J2EE references, the EJB references in this application client

consist of the lookup code and corresponding declared references. The next section,

which transforms the program into a J2EE application client, explains how to set up

the reference declarations. The significant feature in this section is the lookup code.

Notice that the lookup code is similar to the lookup code used when web modules

invoke business methods of enterprise beans. The code that is needed for the J2EE

interactions has been commented and highlighted.

CODE EXAMPLE 6-1 A JFrame Class With JNDI Lookup Code

/*
 * helloClient.java
 *
 * Created on January 29, 2002, 4:56 PM
 */

package HelloClient;

import javax.naming.*;
import javax.rmi.PortableRemoteObject;
// Add an import statement for the enterprise bean
// home and remote interfaces.
import HelloBean.*;

/**
 *
 * @author J2EE Client Developer
 */
public class helloClient extends javax.swing.JFrame {

 // Declare the variables that will be used in the JNDI
 // lookup and the remote method invocation.
 HelloHome hHome = null;
 Hello hRemote = null;
 String returnedText = null;

 /** Creates new form helloClient */
 public helloClient() {
 initComponents();
 try {
Chapter 6 Scenario: J2EE Application Client and J2EE Application 83

 // Perform JNDI lookup, get remote reference to
 // enterprise bean’s home object:
 Context ic = new InitialContext();
 Object o = ic.lookup("java:comp/env/ejb/Hello");
 System.out.println("get the home");

hHome = (HelloHome) PortableRemoteObject.narrow(o, HelloHome.class);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is
 * always regenerated by the Form Editor.
 */
 private void initComponents() {
 invokeBeanButton = new javax.swing.JButton();
 returnTextField = new javax.swing.JTextField();

 getContentPane().setLayout(new
org.netbeans.lib.awtextra.AbsoluteLayout());

 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent evt) {
 exitForm(evt);
 }
 });

 invokeBeanButton.setText("Click Me");
invokeBeanButton.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {
 invokeBeanButtonActionPerformed(evt);
 }
 });

 getContentPane().add(invokeBeanButton, new
org.netbeans.lib.awtextra.AbsoluteConstraints(150, 130, -1, -1));

returnTextField.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 returnTextFieldActionPerformed(evt);
 }
 });

CODE EXAMPLE 6-1 A JFrame Class With JNDI Lookup Code (Continued)
84 Building J2EE Applications • September 2002

 getContentPane().add(returnTextField, new
org.netbeans.lib.awtextra.AbsoluteConstraints(110, 190, 160, -1));

 pack();
 }

private void returnTextFieldActionPerformed(java.awt.event.ActionEvent evt)
{
 // Add your handling code here:
 }

 private void invokeBeanButtonActionPerformed(java.awt.event.ActionEvent
evt) {
 // Add your handling code here:
 // Perform the remote method invocation and display
 // the return value in the text window.
 try {
 System.out.println("inside invokeBeanButtonActionPerformed");
 hRemote = hHome.create();
 System.out.println("performed create");
 returnedText = hRemote.sayHello();
 System.out.println("invoked sayHello");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 returnTextField.setText(returnedText);

 }

 /** Exit the Application */
 private void exitForm(java.awt.event.WindowEvent evt) {
 System.exit(0);
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 new helloClient().show();
 }

 // Variables declaration - do not modify
 private javax.swing.JTextField returnTextField;

CODE EXAMPLE 6-1 A JFrame Class With JNDI Lookup Code (Continued)
Chapter 6 Scenario: J2EE Application Client and J2EE Application 85

Your real-world application client will be more complex than this, so you may want

to test it at this point, before you deploy it to a J2EE application server. You can run

your program by executing its main method, either from the IDE or from the

command line. But, since it won’t be running in a J2EE client container yet, your

JNDI lookup calls and remote method invocations will fail. To test execute, you need

to comment the JNDI calls, and replace the remote invocations with code that

returns dummy values that will allow you to test your program’s logic. You can still

test your windowing code and business logic.

In this simple example, the JNDI lookup was added to the JFrame’s constructor. The

create method that returned an instance of the enterprise bean and the remote

invocation of sayHello were added to the button’s action performed method. This is

a simple way of adding J2EE code to a small program. A later section will consider

other strategies for adding J2EE code to a client program. The next step in the

scenario is transforming your Swing program into a J2EE application client.

Transforming the Program Into a J2EE Client Application

You have written a Java program that provides the functionality you need in an

application client. The procedures that follow explain how to use the Sun ONE

Studio 4 IDE to turn it into a J2EE application client.

Creating the Client Application Node and Adding the Client Code

To create a client application node and associate it with your client program:

1. Right-click on the folder or package in which you want to create you application
client. Choose New → J2EE → Application Client.

This creates an application client node in the explorer.

2. Right-click the application client node. Choose Set Main Class. Use the browser to
select your client class. Click OK.

 private javax.swing.JButton invokeBeanButton;
 // End of variables declaration
 }

CODE EXAMPLE 6-1 A JFrame Class With JNDI Lookup Code (Continued)
86 Building J2EE Applications • September 2002

FIGURE 6-2 Application Client Node With Subnode for the Java Client Program.

What you see in the IDE is a new sub node of the application client node for your

Java client program. FIGURE 6-2 shows an application node named HelloAppClient.

The helloClient program (shown in CODE EXAMPLE 6-1) was designated as the main

class for this application client node, and the IDE created a sub node named

helloClient. The application client node represents the deployable form of the Java

client program. You can use its properties to request specific J2EE services from the

client container. In this case, the HelloAppClient node represents the deployable

form of the helloClient program.

Declaring the EJB References

After creating an application client and associating a program with it, you need to

configure the application client. In this case, you wrote a Java client program that

invokes an enterprise bean business method, so you need to set up declared

references on the application client node that match the JNDI lookup in the program

code.

To set up an EJB Reference for an application client:

1. Right-click the application client node. Choose Properties. Click on the
References tab to bring it to the front. Locate the EJB References Property, click on
it, and click the ellipsis (…) button that appears. This opens the enterprise bean
reference property editor. Click Add to open the Add EJB Reference dialog.

FIGURE 6-3 shows the dialog. The values in the fields are correct for the program in

CODE EXAMPLE 6-1.
Chapter 6 Scenario: J2EE Application Client and J2EE Application 87

FIGURE 6-3 Add EJB Reference Dialog Box

2. Click on the tab for the J2EE application server you are using to bring it to the
front.

The fields that appear on this tab depend on the application server. FIGURE 6-4 shows

the tab for the J2EE Reference Implementation, which has a field for JNDI Name.

You use this field to identify the enterprise bean your application client will be

interacting with. You need to identify the enterprise bean by the JNDI name that was

specified when the enterprise bean was deployed. In this example the server-side

enterprise bean was deployed with the name Hello.
88 Building J2EE Applications • September 2002

FIGURE 6-4 Add EJB Reference Dialog’s J2EE RI-specific Tab

If you are using a different J2EE application server, click the Help button to access

online help for the fields on the tab.

3. Click OK to close the Add EJB Reference dialog, and OK again to close the
property editor.

Specifying the Target Application (or the Client Jar Path)

In addition to an enterprise bean reference, your application needs a copy of the stub

files that support the remote method invocation on the enterprise bean you

identified in the reference. These files are server-specific, and they are generated by

the application server’s deployment tool when the server-side application is

deployed. They are normally found in a JAR file generated when the server-side

application is deployed.

Some application servers (including WebLogic) are able to download the stub files to

the your application client when you execute it. If you are using one of these servers,

you don’t need to do anything with the stub files. You can proceed directly from

setting up the enterprise bean references to executing your application.
Chapter 6 Scenario: J2EE Application Client and J2EE Application 89

Other application servers require you to supply a copy of the stub JAR file before

you execute your application client. The J2EE Reference Implementation is one of

these servers, and this section contains procedures for telling the Reference

Implementation where to find stub JAR. When you deploy the application client to

the RI, a copy of the stub JAR will be included in the deployment.

If you are developing both the server-side application and the application client, you

probably have a copy of the server-side application mounted in the Explorer along

side your application client. If this is the case, you can simply identify the server-

side application as the application client’s target application, and the IDE will find

the client JAR file for you. FIGURE 6-5 shows HelloAppClient in the same fileystem as

the server-side application, which is represented by the HelloApplication node.

FIGURE 6-5 Application Client and Server-side Application in the IDE

To set the Target Application property:

1. Right-click on the application client. Choose Properties. Locate the Target
Application property, click on it and click on the ellipsis (…) button.

2. Use the browser to locate the server-side application’s node in you IDE. Select it
and click OK.

FIGURE 6-6 shows the HelloAppClient’s property sheet after it has been configured to

use the HelloApplication as its target application.
90 Building J2EE Applications • September 2002

FIGURE 6-6 Application Client Property Sheet

If you are developing your client for a server-side application that has already been

deployed on another machine, and you don’t have the server-side application on

your development machine, you can use a different property to provide the

application client with the path to the necessary client JAR. You may need to obtain

a copy of the client JAR file from the developer of the server-side application, or

from the system administrator who manages the server-side application.

If the server-side application was developed with Sun ONE Studio 4, you (or the

server-side developer or system administrator) can use the IDE to create the

necessary stub JAR file.

To create a client JAR file for a server-side application that is mounted in the IDE:

● Right-click on the J2EE application node. Choose Export Client Support. This
opens the Specify location for client jar dialog. Use it to specify a directory in
which to place the client JAR.

If the client JAR can’t be created this way, because the server-side application can’t

be mounted in the Sun ONE Studio 4 IDE, the server-side developer (or system

administrator) will have to obtain a copy of the client JAR generated by the

application server.

Once you have a copy of the client JAR, mount it in your file system, and use the

client JAR property to identify it to your application client.
Chapter 6 Scenario: J2EE Application Client and J2EE Application 91

To specify a client JAR for you application client:

● Right-click on the application client node. Choose Properties. Click on the tab for
the application server you are using to bring it to the front. Locate the property
that identifies the client JAR path, click on it and click on the ellipsis (…) button.

Figure FIGURE 6-7 shows the J2EE RI tab for the HelloAppClient node. This tab

provides a property named Stub Jar File, which you can use to identify the stub JAR

file.

FIGURE 6-7 Application Client’s J2EE RI-Specific Tab

For other application servers that require you to identify a client JAR file, the process

should be similar. First, you obtain a copy of the client JAR file. Then, on the server-

specific property tab, locate the property you use to identify the path to the stub JAR

file. Remember that some application servers, including WebLogic, automatically

download the client JAR to your application client when you execute it.

Executing the Application Client

To execute your application client:
92 Building J2EE Applications • September 2002

1. Make sure that you have chosen an application server for your application client.
Right-click the client application node and choose Properties. On the property
sheet, locate the Application Server property.

The initial value for this property is Default Application Server. If you execute with

this value for the property, your application client will be executed by the

application server instance that was selected as the default server instance. (To see

the default server, switch to the Explorer Window’s Runtime tab, locate the Server

Registry node and its Default Servers subnode.)

You can also specify a server instance with this property. Click the Application

Server property, then click the ellipsis (…) button. This opens the property editor.

2. Right-click the application client node and choose Execute.

This command runs your application client inside a client container provided by the

application server you specified in Step 1.

3. Some application servers (including the J2EE Reference Implementation) will
open a login screen at this point. Type in a valid username and password.

FIGURE 6-8 shows the J2EE RI login screen with the default J2EE RI username and

password (j2ee/j2ee).

FIGURE 6-8 J2EE Reference Implementation Login Screen

4. After you log in successfully, the application server will open execute your client
program’s main method.
Chapter 6 Scenario: J2EE Application Client and J2EE Application 93

Deploying the Application Client

If you prefer to deploy your application client and run it from the command line,

you can create a client JAR file. Executing a client JAR file requires the application

server’s tool for running clients.

To create a client JAR:

1. Right-click the application client node and choose Export Client Jar. Use the
dialog to specify the application server and the location of the client jar file.

2. You can move the client JAR file to another machine, if the application server has
been installed on that machine.

3. Run the client with the tool provided by the application server. (For the J2EE
Reference Implementation, the tool is named runclient.)

Working With the Server-side J2EE Application

In this scenario, the application client communicates with a server-side J2EE

application. The server-side application in FIGURE 6-1 consists of a single EJB module,

but this is not required. The server-side application could include several EJB

modules; it could even include a web module that provided different end-user

functionality than the application client does. (Assembling a web module and an EJB

module into a single J2EE application is covered in other scenarios.)

No special programming is required to make the server-side application accessible to

an application client. When you program an application client, however, you need

some information about the server-side application.

■ You need a JNDI name for every J2EE service that your program will be

communicating with. In this example, that was the JNDI name for an enterprise

bean in the server-side application. For your real-world application clients you

might need JNDI names for more than one enterprise bean, for a JMS queue and

queue connection factory, or for other J2EE resources.

■ If your application client is going to use Java RMI to communicate with an

enterprise bean on the server side, you need two things:

■ Copies of the enterprise bean’s home and remote interfaces.

■ Depending on the application server you are using, you may need copies of the

stub files that are generated when the server-side application is deployed. The

stub files are server-specific, so they must be generated by the application

server (not the IDE), as part of the deploy action. (If the server-side application

is mounted in the Sun ONE Studio 4 IDE, you can use the Export Client

Support command to generate a stub .jar file.) The stub files must generated

by the application server to which you will be deploying your application

client.
94 Building J2EE Applications • September 2002

In a production or managed test environment you may need to get this

information from system administration.

Transactions With a J2EE Application Client

Transactions are generally part of the server-side J2EE application, and defining

transaction boundaries is part of programming the server-side application. The

server-side container will start a transaction when the application client invokes a

transactional business method, and commit the transaction when all of the business

logic inside the transaction boundary completes successfully.

Varying This Scenario

This scenario explains how to program one type of interaction between an

application client and a server-side J2EE application. It shows an application client

that uses Java RMI to requests services from a server-side J2EE application. It also

show the J2EE code inside the swing class that has the main() method.

Using a Helper Class

The example (CODE EXAMPLE 6-1) showed the J2EE code inside the swing class that

provided the interface for the application. Putting all of the code in this class made it

easier for you to see everything that is required in a client application, but you may

want to program your real-world application clients differently.

One approach, that allows you to isolate your J2EE code from your user interface

and business logic, is to put your J2EE code into a helper class. FIGURE 6-9 shows a

client application that uses a helper class.
Chapter 6 Scenario: J2EE Application Client and J2EE Application 95

FIGURE 6-9 Application Client With Helper Class

Assume that this application client provides the functionality described in the

scenario (“The Interactions in This Application” on page 80), helping an application

administrator set up a new entry for an online catalog. In this version of the client,

however, when the end-user clicks the Save button, the windowing class does not

perform the JNDI lookup and remote invocation itself. Instead, it passes the new

catalog entry to the helper class. The Save button’s actionPerformed method would

now include code something like this:

The helper class’s saveNewEntry method performs the JNDI lookup and invokes the

necessary server-side methods. You set the enterprise bean references up in the same

way, on the application client node.

CODE EXAMPLE 6-2 Using the Helper Class

...
myHelperClass helper = new myHelperClass();
helper.saveNewEntry(newCatalogEntry);
....
96 Building J2EE Applications • September 2002

This approach makes it easier to test you Java client program. You can simply

replace the helper class with another Java class that returns dummy values.

Including Multiple Remote Method Invocations

Note that application clients are not limited to Java RMI interactions with one

enterprise bean in the server-side application. They can invoke the business methods

of multiple enterprise beans. To do this, your client needs to import the home and

remote interfaces of all the enterprise beans, and you need to add JNDI lookup code

for all of the enterprise beans. You also need to add references for all the enterprise

beans to the application client node.

Using Java Messaging

An application client can also use Java messaging to communicate with a server-side

application. To do this, you need to know the JNDI names that were assigned to the

queue and queue connection factory when the server-side application was deployed.

Instead of enterprise bean references, your application client needs a resource

environment reference for the queue (see “The Reference Declaration for the Queue”

on page 69) and a resource reference for the queue connection factory (see “The

Reference Declaration for the QueueConnectionFactory” on page 70), Your

application code needs JNDI lookups for these two references (see “The JNDI

Lookup Code” on page 71).
Chapter 6 Scenario: J2EE Application Client and J2EE Application 97

98 Building J2EE Applications • September 2002

CHAPTER 7

Transactions

This chapter covers the use of EJB module property sheets to program container-

managed transactions. For bean-managed transactions, see Building Enterprise
JavaBeans Components.

Default Transaction Boundaries

Transaction boundaries are determined by the Transaction Attribute properties of

the individual enterprise beans involved in the transaction. When you create an

enterprise bean with the IDE’s EJB wizards and specify container-managed

transactions, the bean is create with a default Transaction Attribute.

This section shows you how to view the default Transaction Attribute settings and

interpret them.

To open the Transaction Settings property editor and review the default settings:

● Right-click the EJB module node and choose the following sequence of commands
from the contextual menu: Properties → Transaction Settings property → ellipsis
(…) button.

FIGURE 7-1 shows the Transaction Settings Property Editor for an EJB module with

the default transaction attribute settings.
99

FIGURE 7-1 Default Transaction Attribute Settings

There are several things you should notice about this editor and the transaction

attribute settings:

■ All of the enterprise beans in the module are listed in this editor.

■ Each enterprise bean has its own transaction attribute, which appears after the

bean’s name. All of the enterprise beans in FIGURE 7-1 have the default setting,

which is Required .

■ You can expand the enterprise bean nodes and see the individual methods of the

enterprise beans. If a method does not have its own value for transaction

attribute, it inherits the value from the enterprise bean. None of the methods In

FIGURE 7-1 have their own transaction attribute values. This is the default setting.

Methods that have the Required transaction attribute must execute transactionally.

If the method is called without an active transaction, the container starts a new

transaction; if the method is called with an active transaction in progress, the

container includes the method in the active transaction. This is the default behavior

for your enterprise bean methods.
100 Building J2EE Applications • September 2002

Redefining the Transaction Boundaries

A business transaction in an EJB module often spans several enterprise beans. A

common architecture for an EJB module is a single session bean and several entity

beans. Clients call the session bean, and then the session bean calls methods of the

entity beans in the module. FIGURE 7-2 shows a transaction of this type.

FIGURE 7-2 Complex Transaction

You want the container to recognize the boundaries of this business transaction. You

want all of the work performed when a client calls the session bean and the session

bean calls several enterprise beans handled as a single database transaction, so that

it is either committed or rolled back together. You want the container to open a

transaction when a client calls the session bean, and keep the transaction open while

the session bean calls one or more entity beans. Eventually, when the last call made

to an entity bean returns, and the session bean method called by the client

completes, you want the container to commit the transaction. If this happens, all of

the work that resulted from the client’s call to the session bean is included in a single

database transaction.
Chapter 7 Transactions 101

To program transaction boundaries, you open the Transaction Settings property

editor and modify the transaction attributes of the enterprise beans involved in the

transaction. To modify transaction attributes:

1. Right-click the EJB module node and choose the following sequence of commands
from the contextual menu: Properties → Transaction Settings property → ellipsis
(…) button.

This opens the Transaction Settings Property Editor.

2. Expand the entity bean nodes.

3. Click a business method of the session bean to select it.

In this example you want the business methods of the session bean to start new

transactions whenever they are called, so you want to select the individual methods

and change their transaction attribute values.

4. Click the Transaction Attribute field and change the value.

This changes the transaction attribute for the method you selected. Notice that the

method name is now followed by the new transaction setting. In this example, the

new value is RequiresNew . This instructs the container to open a new transaction

whenever this method is called.

5. Continue until you have redefined the transaction boundaries.

In this example, the transaction attributes of the entity bean business methods are set

to Mandatory . You want these method to execute within the boundaries of the

transactions opened by the session bean methods, and Mandatory tells the

container that these methods can only be called if a transaction is already in

progress.
102 Building J2EE Applications • September 2002

FIGURE 7-3 Modified Transaction Settings

FIGURE 7-3 shows the Transaction Settings Property Editor after the Transaction

Attributes have been changed. The transaction boundaries now match the business

transactions. The changes are:

■ The transaction attributes of the session bean methods have been set to

RequiresNew , because you want the container to open a new transaction

whenever a client calls one of these methods.

■ The transaction attributes of entity bean business methods have been set to

Mandatory , which means that these methods must be called with a transaction in

progress. You want these methods to be called after the session bean has opened a

transaction, and you want these methods to execute entirely within the

boundaries of the session bean’s transaction.

Notice that the transaction attributes were modified on the method level, and the

method nodes now display the new transaction attribute values after the method

names.
Chapter 7 Transactions 103

For each EJB module that you work with, you need to analyze the business logic and

determine the different transaction models that are implied by the logic. Then use

the Transaction Attribute property editor to implement those transaction models by

setting the transaction attributes of the enterprise beans (or their methods) involved

in those transactions.
104 Building J2EE Applications • September 2002

CHAPTER 8

Security

In general, the J2EE model assumes that security is set up at the module level. It

assumes that component providers will consider security when designing and

developing business logic. Many component providers will have a general idea of

the user roles that will be accessing their business logic and which roles should be

allowed to access which functionality.

The sections that follow show how to use the IDE to set up security for web

modules, for EJB modules, and how to integrate the two when they are assembled

into an J2EE application.

Web Module Security

Suppose you are the component provider for a web module that works with human

resources data. You probably know which web resources should be available to all

employees for maintenance of their personal information, and which web resources

should be accessed only by human resources clerical roles, by human resources

supervisory roles, by auditing roles, and so on.

As the component provider and initial module assembler, you can set up generic

security roles that represent these roles and map them to the web resources you

create. These generic roles can later be mapped to the actual user names and group

names in the application server environment. This mapping can be done at the

application level, perhaps when the application is assembled, or perhaps later, when

the application is deployed into the production environment.

There may be projects when you are the component provider and initial module

assembler but you have no idea how security should be applied to your business

logic. In these cases, you can defer setting up security roles to a later stage of the
105

development process. For example, the application assembler can work with

module-level deployment descriptors before assembling the modules into an

application.

The sections that follow explain how to set up security roles at the module level and

map them to web resources.

Declarative security for web modules consists of mapping security roles to web

resources. To do this you need to:

1. Declare security roles.

2. Define the “web resources” you want to protect. Web resources are URIs in your

module.

3. Map security roles to web resources. This gives the mapped roles permission to

access the specified web resources.

Declaring Security Roles

You declare security roles on the Security Roles Property Editor. (To open this

property editor, right-click on the web.xml node, and then choose the following

sequence from the contextual menu: Properties → Security Tab → Security Roles →
ellipsis (…) button.)

The Add button on the property editor opens a dialog that lets you declare a new

security role; the Edit and Remove buttons let you work with roles that have already

been declared.

FIGURE 8-1 shows the Security Roles Property editor after two roles have been

declared, Meand EveryoneElse .

FIGURE 8-1 Web Module’s Security Roles Property Editor
106 Building J2EE Applications • September 2002

Defining Web Resources and Mapping Security Roles

You can both define web resources and specify the roles that are authorized to access

them in the Security Constraints Property Editor. (To open this property editor,

right-click on the web.xml node, and then choose the following sequence from the

contextual menu: Properties → Security Tab → Security Constraints → ellipsis (…)

button.)

The Add button on the property editor opens a dialog on which you can define a

web resource.

FIGURE 8-2 shows how to define the URL pattern /allItems as a web resource. (To

see how this URL pattern is mapped to a web component see “Mapping URLs to the

Servlets” on page 27 and “Setting up JSP Pages” on page 31.)

FIGURE 8-2 Web Module’s Web Resource Collection Dialog Box

Notice that you can choose to define the web resource as all of the HTTP methods

associated with the URL pattern or a subset of them.
Chapter 8 Security 107

In addition to defining web resources, you can map the web resources that you

define to security roles. After you complete this dialog, a summary of the

information will be displayed on the Security Constraints Property Editor. FIGURE 8-3

shows the Security Constraints Property Editor after a web resource is set up under

the name AllItems .

FIGURE 8-3 Web Module’s Security Constraints Property Editor

You can use the Edit and Remove buttons to modify any security constraint that

appears on the property editor.

Programmatic Security

If any of the web components in your module use programmatic security, you need

to map the security role references used in the security-checking code to the security

roles declared at the module level.

Web components that use the programmatic security feature contain code that

accesses the user’s credential directly and perform verification beyond that which is

performed by the container’s declarative security mechanism. For example:

Since roles are defined at the module level, they are likely to be unknown at the time

this component-level code is written. Therefore, the code uses a security role

reference (roleRefMe) which is later mapped to an actual security role. You

...
context.isCallerInRole(roleRefMe);
...
108 Building J2EE Applications • September 2002

perform this mapping on the Edit Servlet dialog. Open this dialog by selecting a

servlet that uses a role reference on the Servlet Property Editor and clicking Edit.

FIGURE 8-4 shows this dialog, with the reference roleRefMe mapped to the role Me.

FIGURE 8-4 Web Module’s Edit Servlet Dialog Box

Notice that roles must be declared at the module level before you can perform this

type of mapping.
Chapter 8 Security 109

EJB Module Security

Suppose you are a component provider. You have developed several enterprise

beans that accesses human resources data and you are assembling them into an EJB

module. You probably know which data should be available to all employees for

maintenance of their personal information, and which data should be accessed only

by human resources clerical roles, by human resources supervisory roles, by

auditing roles, and so on.

As the component provider and initial module assembler, you can set up generic

security roles that represent these roles and map them to the methods that access

those data. These generic roles can later be mapped to the actual user and group

names in the deployment environment. (This second mapping can be done at the

application level, perhaps when the application is assembled, or perhaps later, when

the application is deployed into the production environment.)

On another project, you are the component provider and the initial module

assembler but you have no idea how security should be applied to your business

logic. In these cases, you can defer setting up security to a later stage of the

development process. For example, the application assembler can work with

module-level security before assembling the modules into an application.

Setting up security for EJB modules consists of mapping security roles to enterprise

bean methods. To do this you need to:

1. Declare generic security roles that represent the categories of users that can use

the module’s services.

2. Map these security roles to the module’s enterprise bean methods. This

determines which roles are allowed to access which methods.

3. If the module contains enterprise beans that use the programmatic security

feature, map the security role references used in these enterprise beans to security

roles.

The sections that follow explain how to perform these assembly tasks.

Declaring Security Roles

You declare security roles on the Edit Module Role dialog. (To open this dialog,

right-click on the module node, and then choose the following sequence from the

contextual menu: Properties → Security Roles → ellipsis (…) button. When the

Security Roles Property Editor opens, click the Edit Module Roles button.)
110 Building J2EE Applications • September 2002

FIGURE 8-5 shows the Edit Module Role dialog after two roles have been declared, Me
and EveryoneElse .

FIGURE 8-5 EJB Module’s Security Roles Property Editor

Mapping Security Roles to Method Permissions

After declaring security roles for the module, you can give each role permission to

execute a specific subset of the enterprise beans in the module. You do this on the

Method Permissions Property editor. (To open this property editor, you work with the
included EJB nodes. There are the subnodes of the EJB module.)

Right-click a node that represents an enterprise beans included in the module, and

then choose the following sequence from the contextual menu: Properties → Method

Permissions → ellipsis (…) button.) The property editor is a table, with a row for

each of the enterprise bean’s methods and a column for each security role that has

been declared for the module. FIGURE 8-6 shows how the property editor looks with

the two security roles declared in the preceding section.
Chapter 8 Security 111

FIGURE 8-6 EJB Module’s Method Permissions Property Editor

There are a number of ways to use this dialog.

■ The buttons in the upper panel let you apply permissions globally. You can let

anyone call any method, or deny all access.

■ A finer focus of control is available if you choose Set Roles for Access to All

Methods. You can use the small table below the button to choose among the roles

declared for the module. If you put a check in a column, a role will be given

permission to execute all of the enterprise bean’s methods. In FIGURE 8-6, the

EveryoneElse column was checked. As a result, users with this role can execute

any of the enterprise bean’s methods. The Me column was not checked, and users

with this role cannot execute any of the enterprise bean’s methods.
112 Building J2EE Applications • September 2002

■ The finest focus of control is available when you work in the lower table. Click in

a row, and you can set permission for just one method. This setting is entirely

independent of the settings for other methods. For example, you could click in the

second row, for getAllItems, and set Access field to All Users. This lets any role

execute this method. You could then move to another row, set the Access field to

Set Role, and then select roles individually for that method.

This buttons below this table provide several shortcuts for editing in the table.

Programmatic Security

If any of the enterprise beans in your module use programmatic security, you need

to map the security references used in the security-checking code to the security

roles declared at the module level.

Enterprise beans that use the programmatic security feature contain code that

accesses the user’s credential directly and perform verification beyond that which is

performed by the container’s declarative security mechanism. For example:

Since security roles are defined at the module level, they are likely to be unknown at

the time this enterprise bean code is written. Therefore, the code uses a security role

reference (everyOne) which is mapped to an actual security role when you add the

enterprise bean to a module. The role must be declared as a property of the

enterprise bean. FIGURE 8-7 shows a role declared on an enterprise bean’s Security

Role Reference property editor. The role is unlinked.

...
context.isCallerInRole(everyOne);
...
Chapter 8 Security 113

FIGURE 8-7 Enterprise Bean’s Security Role Reference Property Editor

In this case, this role reference is mapped to a role at the module level. You perform

this mapping on the module’s Security Roles Property Editor. When you open this

editor is shows all security role references in the module and indicates whether they

are linked or unlinked. FIGURE 8-8 shows the editor with the everyOne reference still

unlinked.

FIGURE 8-8 EJB Module’s Security Role References Property Editor
114 Building J2EE Applications • September 2002

To map a reference, click in Security Role Link field and select a role. FIGURE 8-9

shows the property editor after the everyOne link has been mapped.

FIGURE 8-9 EJB Module’s Security Role Reference Property Editor

J2EE Application Security

The application assembler can find a newly assembled application in one of several

states:

■ If security roles were not defined for one or more modules in your application,

you need to define roles at the module level. See the preceding sections on web

module and EJB module security.

■ If security was set up at the module level with generic roles, similar roles may

have been given different names in different modules. When this is true you need

to map all equivalent roles to the same application-level role.

■ If the component providers who set up security at the module level knew the

deployment environment, and the module-level roles map to each other, you

might not need to do any additional mapping.
Chapter 8 Security 115

If additional mapping is needed, you do it on the application’s Security Roles

property editor. (To open this editor, right-click on the application node, and then

choose the following sequence from the contextual menu: Properties → Security

Roles → ellipsis (…) button.) FIGURE 8-10 shows this editor with security roles

defined at the module level.

FIGURE 8-10 J2EE Application’s Security Roles Property Editor

The security roles declared at the module level appear in the first two columns of the

dialog. Each role is identified by its module and name. For each module-level role,

the IDE creates a default application-level role, which has the same name as the

module-level role. The application-level roles are displayed in the Equivalent To

column.

There are two ways to resolve role discrepancies with this editor. The example in

FIGURE 8-10 shows an application with two modules. Each module has two security

roles. There is one discrepancy; the web module has a role named myself and the

EJB module has a role named Me. These roles are equivalent, so you would like to

have only one application-level role. In the figure, this discrepancy was resolved by

remapping the role myself to the role Me. What is actually happening here is that

both module-level roles, Meand myself , have been mapped to the same

application-level role, Me.

You can also create an entirely new role at the application level and map several

module-level roles to it. Suppose one of the modules in your applications has a role

named sa , and the other has a role named sadmin . You decide to resolve this
116 Building J2EE Applications • September 2002

discrepancy by creating a new application-level role named sysadmin . To do this

click the “Edit Application Roles” button. This opens a dialog in which you can

declare application-level roles.

After declaring the sysadmin role, you return to the Security Roles Property Editor.

Remap both of the module-level roles by clicking in their “Equivalent To” column.

This will display the application-level roles. Select the sysadmin role.
Chapter 8 Security 117

118 Building J2EE Applications • September 2002

CHAPTER 9

Deploying and Executing J2EE
Modules and Applications

The IDE’s deployment and execution feature supports the interactive development

of enterprise applications. Assuming that an appropriate web server or application

server has been installed, you (or a team) can develop and assemble a web

application or a J2EE application, deploy it, execute it for testing purposes, modify

the source code or component properties, redeploy and retest, and so on. Notice that

reassembly is not required unless your testing uncovers a problem with the

assembly.

For production deployment, the execution feature is not an alternative to the

deployment tools supplied with the server. When you finish testing an application,

you can generate a WAR or EAR file that can be deployed with the server’s

deployment tools.

This chapter covers deploying assembled web and J2EE applications from within the

IDE and then executing them through a web browser for testing purposes. The IDE

also has facilities for test execution at the component level. These facilities are

covered in Building Web Components, Building Enterprise JavaBeans Components, and

Building Web Services.

Visual Representations of Servers

In order to deploy a web or J2EE application to a server you need to interact with

the server. To simplify this process for you, Sun ONE Studio 4 represents web and

application servers as nodes in the Explorer window.

Like other Explorer window nodes, these server nodes have property sheets and

contextual menu commands, which help you manage your interactions with the

servers from inside the IDE. This section identifies and explains the server nodes.

(For an account of the mechanism that makes it possible to display these nodes, see

Appendix A.)
119

The Server Registry Node

At the top level is the Server Registry node. This node groups the other server-

related nodes. It has no commands or properties of its own. FIGURE 9-1 shows the

Server Registry with its default subnodes.

FIGURE 9-1 Server Registry and Default Subnodes

The Installed Servers Node

This node exists to group other nodes. It has no commands or properties of its own.

FIGURE 9-1 shows the Installed Servers node with its default subnodes.

Server Product Nodes

These are the subnodes of the Installed Servers node. Each of these nodes represents

a web or application server product that is recognized by the IDE. (These nodes

actually represent the presence of a IDE plugin module that is capable of interacting

with the specified server product. For more information on server plugins, see

Appendix A.) FIGURE 9-1 shows the IDE after default installation, with Installed

Server nodes for the Tomcat web server and the J2EE RI application server.

When a server product is installed and a corresponding server product node appears

in the Explorer window, the IDE is able to recognize instances of the server and

deploy applications to it. Each of these nodes has a contextual menu and a property

sheet, although the capabilities of each node are determined by the server product

and the plugin module.
120 Building J2EE Applications • September 2002

Procedures vary with server product, but, in general, to use a server you configure

one of these nodes to recognize a specific installation of the server product. For

example:

■ The Tomcat server is installed with the product, so the location of the server is

already known. No additional configuration is required to start Tomcat 3.2 and

deploy to it.

■ The J2EE Reference Implementation 1.3.1 is installed with the product, and the

location of the server executable is already known. An instance of the server is

created. You can right-click RI Instance 1 node, and use contextual menu

commands to start and stop the server.

For more information on setting up server products with the IDE, see the Sun ONE
Studio 4, Enterprise Edition for Java Getting Started Guide.

Server Instance Nodes

Below the server product nodes are nodes that represent instances of the server

products. When you deploy, you deploy to a specific server instance, so you must

have a server instance node for the server product you are using before you can

deploy.

■ For the J2EE RI, a server instance and a node to represent it are created when you

install the IDE. This node appears in FIGURE 9-1 as the RI Instance 1 node.

■ For other server products, you need to create a server instance and represent it

with a server instance node before deploying or executing. For instructions on

creating server instance nodes, see the Getting Started Guide.

You can use server instance nodes to stop and start the server instances they

represent. The procedure for doing this varies with the server product you are using.

Default Server Nodes

These nodes represent the server instances currently designated as the default server

instances. When a server instance is the default server instance, applications are

deployed to this instance unless you specify otherwise. (Application nodes have an

Application Server property. The default value of this property is Default Server. You

can change this value to the name of any server instance node.)

To make a server instance the default server, right-click the server instance node and

then choose Make Default from the contextual menu. In FIGURE 9-1 shows the default

server for J2EE applications is RI Instance 1.
Chapter 9 Deploying and Executing J2EE Modules and Applications 121

Server-specific Properties

The modules and applications you work with have property sheets, which you use

to describe the services your modules and applications need from the application

server. In addition to the Properties tab, which shows the properties defined by the

J2EE specifications, these property sheets have server-specific tabs, which show

properties that prompt you for information needed by a server product.

For example, FIGURE 9-2 shows an EJB module property sheet with the J2EE RI tab

selected. The module contains some CMP entity beans, and most of the properties

on this tab are used to supply information needed by the J2EE RI implementation of

container-managed persisitence.

FIGURE 9-2 EJB Module’s J2EE RI-specific Properties
122 Building J2EE Applications • September 2002

Using Server Instance Nodes to Deploy
and Execute

This section presents guidelines for deploying and executing a J2EE application from

within the IDE:

To deploy and execute an application:

1. Begin with an assembled J2EE application. Review the application for
completeness of assembly.

2. Choose an application server instance.

The application node has an Application Server property. The initial setting of the

property is Default Application Server. If you proceed with this setting, the IDE will

deploy you application to the server instance that is currently specified, in the Server

Registry, as the default server for J2EE applications.

You can also open the property editor for this property and choose a server instance

by name. The property editor is a browser, which lets you review all server instances

in the server registry and select one.

3. Deploy and execute the application by right-clicking the application node and
choosing the Execute command.

This will begin the deploy process. Monitor the process on the output window.

When deployment is complete, the IDE will execute the application in the

application server’s environment. What you see depends on the application. For

example, if the application contains a web module, execution will start a web

browser and open the application’s welcome page.

4. You can also deploy and execute in separate steps. Right-click the application and
choose the Deploy command. When deployment is complete, execute the
application yourself.

For example, if the application contains a web module, you can start a web browser

and open the application’s welcome page.
Chapter 9 Deploying and Executing J2EE Modules and Applications 123

124 Building J2EE Applications • September 2002

APPENDIX A

How the IDE Supports Deployment
of J2EE Modules and Applications

The preceding chapter briefly defined deployment for J2EE modules and

applications. This chapter looks at the mechanism that makes it possible to deploy

and execute a J2EE module or application from within the Sun ONE Studio 4 IDE.

Support for Iterative Development

The IDE’s deployment facility supports the iterative development of enterprise

applications. Assuming that an appropriate web server or application server has

been installed, you (or a team) can develop and assemble a web module or a J2EE

application, deploy it, execute it for testing purposes, modify the source code or

component properties, redeploy and retest, and so on. Notice that reassembly is not

required unless testing reveals a problem with the assembly.

For production deployment, the Sun ONE Studio 4 deployment facility is not an

alternative to server-supplied deployment tools. When you reach this stage of

development, export your application as a WAR or EAR file and deploy it with the

server-supplied tools.

This chapter explores the interaction between the IDE and the web server or

application server in detail. It explains what happens when you use the IDE’s

Deploy command. If you understand how the deployment facility works you can

use it effectively. The actual procedures for using the deployment facility are in

Chapter 9.
125

The Server Plugin Concept

Deployment means delivering the deployable form of a module or application to a

J2EE runtime environment. The runtime environment takes the form or a web or

application server. To deploy to a specific server the IDE must be able to issue valid

commands to the server’s deployment tool. In addition to this, most servers require

server-specific properties in addition to the J2EE standard deployment descriptor,

and the IDE must be able to supply these properties.

To enable the IDE to deploy to a variety of web and application servers, the concept

of a server plug-in has been developed. A plugin is an IDE module that manages the

interaction between the IDE and a specific server product. When you deploy an

application, you choose the server to which it will be deployed. The IDE uses the

appropriate plugin to process your Deploy command. This enables it to generate the

appropriate commands for the server’s deployment tool and include the appropriate

non-standard property files in the files it passes to the server. This is illustrated in

FIGURE A-1.

FIGURE A-1 Server Plugins Enable the IDE to Communicate With J2EE Runtime
Environments
126 Building J2EE Applications • September 2002

For the application developer who is deploying an application, the plugins provide:

■ Visual representations of the plugins in the IDE’s Explorer window. Each plugin

is represented by a server product node. Developers configure server product

nodes with the installation directories of their server products. For more

information on the appearance and use of server product nodes, see “Server

Product Nodes” on page 120.

■ Visual representations of running server instances as subnodes of the server

product nodes. Developers can choose any server instance represented in the

Explorer window as the target for a deployment. For more information on the

appearance and use of server instance nodes, see “Server Instance Nodes” on

page 121.

■ Server-specific tabs on component, module, and property sheets. These show the

non-standard properties required by a server product, and prompt developers for

the values required by a server product.

■ A mechanism for processing Deploy commands appropriately for the selected

server. The details of this processing are covered in the next section.

The Deployment Process Using a Plugin

1. When installing the IDE, install the web server or application server you will be

using and the appropriate plugin. (Some servers and some plugins are installed

by default. For a complete explanation, see the Sun ONE Studio 4, Enterprise
Edition for Java Getting Started Guide.)

2. Develop J2EE components for the application’s business logic.

3. Assemble the components into modules and then applications. Use property

sheets to supply J2EE standard deployment descriptor elements and non-

standard elements required by the server.

4. After the application is assembled, identify the target server instance.

5. Use the IDE’s Deploy command to begin the deployment process.

Chapter 9 has procedures for preparing an application for deployment and

issuing the Deploy command. This chapter is mainly concerned with what

happens after you issue the command.

6. The IDE identifies all of the files needed to create a WAR or EAR file for the

application.

This includes the J2EE components identified in the deployment descriptor, and

any Java classes or static resources used by those files. The IDE identifies all file

dependencies in the components.
Appendix A How the IDE Supports Deployment of J2EE Modules and Applications 127

7. The IDE identifies the server product to which the application is being deployed.

8. The plugin validates the files for the WAR or EAR file.

9. The IDE generates the WAR or EAR file for the application. This includes a J2EE

deployment descriptor, separate files with server-specific tags, and any stub or

skeleton classes required for remote method invocations.

10. The plugin passes the WAR or EAR file to the server.

Depending on the server product, the plugin may automatically clean up earlier

deployments of the same application or attempt to resolve conflicts with

applications already deployed to the server instance.

11. The server takes over, reads the deployment descriptors and the server-specific

deployment files, and deploys the WAR or EAR file according to its own

standards.

After this the developer can start a web browser and open an HTTP connection to

the deployed application running in the server. If the developer chose to execute a

web application, the IDE will automatically start a web browser and open the

application’s welcome page.

Deploying Components Other Than Web
Modules and J2EE Applications

Web modules and J2EE applications are the only items that can actually be deployed

to servers and executed. However, you may want to test smaller units of business

logic that you are developing. The Sun ONE Studio 4 IDE makes it possible to

deploy and execute smaller units of business logic by creating module and

applications that contain these components: It can also generate test clients for some

types of components. For more information on these features, see Building Web
Components and Building Enterprise JavaBeans Components.
128 Building J2EE Applications • September 2002

Index
A
application servers

creating instances, 121

in the Explorer window, 120

server-specific properties, 122

C
container managed transactions

defining with transaction attribute, 99, 102

context root property, 28, 57

D
datasources

specifying, 48

dependencies

recognized by the IDE, 46, 51

deployment

Forte for Java mechanism, 127

deployment descriptors

represented by property sheets, 12

E
EJB modules

deployment descriptors, 12

in the Explorer window, 11

relationship of module node to source code, 11

EJB references

for EJB modules, 42

in web components, 25

local, 42

enterprise bean references

linking with application properties, 59

linking with module property sheets, 25

entity enterprise beans

specifying data sources for, 48

environment entries

overriding with the application property

sheet., 62

setting up on module property sheets, 34

error pages

setting up for web module, 30

example applications

where to download, xvii

extra files, 51

I
installed servers node, 120

iterative development, 119

J
J2EE applications

assembling, 55

deployment descriptors, 12

executing, 123

in the Explorer window, 11

relationship of node to source code, 11
Index 129

J2EE Reference Implementation

creating server instances, 121

server product node, 121

Javadoc technology

using in the IDE, xvii

JNDI lookups

for EJB local references, 42

for EJB references, 25

JSP pages

appearance in web modules, 10

URLs for, 32

L
local references

JNDI lookup for, 42

M
method permissions

using security roles, 111

P
properties

server-specific, 13

property sheets

represent deployment descriptor tags, 12

R
resource references

EJB module property settings, 49

JNDI lookup for, 49

S
security

for enterprise bean methods, 111

for web resources in web module, 105

security role references

mapping to security roles, 109

using in business logic, 108

security roles

and EJB method permissions, 111, 113

for EJB modules, 110

for web modules, 106

mapped to security role references, 109

mapping to web resources, 107

server plugins

manage interaction between IDE and server, 126

represented by server product nodes, 120

server product nodes

configuring, 121

in Explorer window, 120

relationship to server plugins, 120

server registry

in the Explorer window, 120

server-specific properties, 13

servlet context

in URL for web resources, 28, 57

setting up for web application, 28, 57

servlets

alternate URL mapping, 29

appearance in web modules, 10

default URL mapping, 29

T
tag libraries

appearance in web modules, 10

Tomcat 3.2 web server

server product node for, 121

transaction attribute

setting, 99, 102

U
URLs

for JSP pages, 32

for web resources, 28, 57

W
web modules

deployment descriptors, 12

in the Explorer Window, 10

mounting in the Explorer Window, 10
Index 130 Building J2EE Applications • September 2002

setting up error pages, 30

web resources

defining, 107

web servers

creating instances, 121

in the Explorer window, 120

server-specific properties, 122

welcome files

default names, 22
Index 131

Index 132 Building J2EE Applications • September 2002

	Building J2EE™ Applications
	Contents
	Figures
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Sun Welcomes Your Comments

	Assembly, Deployment, and Execution Basics
	Assembly Basics
	J2EE Applications Are Modular
	J2EE Applications Are Supported by the J2EE Runtime Environment
	J2EE Applications Are Distributed

	Visual Representations of Modules and Applications
	Web Modules
	EJB Modules
	J2EE Applications
	Property Sheets

	Deployment Basics
	Execution Basics
	Using This Book

	Scenario: A Web Module
	The Interactions in This Module
	Programming This Module
	Creating the Welcome Page
	Creating the HTML Page
	Specifying Your Page as the Welcome Page

	Programming the Servlet Methods
	The Method Body
	The Reference Declaration for the EJB Reference

	Mapping URLs to the Servlets
	Understanding Servlet Mappings
	Editing Servlet Mappings

	Other Assembly Tasks
	Setting up Error Pages
	Setting up JSP Pages
	Setting up Environment Entry References

	Scenario: An EJB Module
	The Interactions in This Module
	Programming This Module
	Creating Remote Interfaces for the Session Enterprise Bean
	Creating Local Interfaces for the Entity Enterprise Beans
	Using the Local Interfaces in the Session Enterprise Bean
	JNDI Lookup Code for Local EJB References
	Reference Declaration for Local EJB References

	Assembling the EJB Module
	Creating the EJB Module
	Adding Enterprise Beans and Other Resources to the Module
	Specifying a Datasource for the Entity Enterprise Beans
	Identifying Extra Files
	Excluding Duplicate JAR Files
	Other Module Assembly Tasks

	Scenario: Web Module and EJB Module
	The Interactions in This Application
	Programming This Application
	Assembling the J2EE Application
	Creating the J2EE Application
	Adding Modules to the J2EE Application

	Setting the Web Context for the Web Module
	Linking the EJB Reference
	Additional Assembly Tasks
	Overriding Environment Entries
	Viewing and Editing Deployment Descriptors

	Scenario: Web Module and Queue- mode Message-driven Bean
	The Interactions in This Application
	Programming the Message-driven Communication
	Setting up the Application Server
	Setting up a Queue
	Setting up a QueueConnectionFactory

	Programming the Web Module
	The Reference Declaration for the Queue
	The Reference Declaration for the QueueConnectionFactory
	The JNDI Lookup Code

	Programming the EJB Module
	The Message Driven Destination Property
	The Queue and QueueConnectionFactory References
	The onMessage Method

	Assembling the J2EE Application

	Scenario: J2EE Application Client and J2EE Application
	The Interactions in This Application
	Programming This Application
	Programming the J2EE Client Application
	Writing the Client Code
	Transforming the Program Into a J2EE Client Application

	Working With the Server-side J2EE Application
	Transactions With a J2EE Application Client
	Varying This Scenario

	Transactions
	Default Transaction Boundaries
	Redefining the Transaction Boundaries

	Security
	Web Module Security
	Declaring Security Roles
	Defining Web Resources and Mapping Security Roles
	Programmatic Security

	EJB Module Security
	Declaring Security Roles
	Mapping Security Roles to Method Permissions
	Programmatic Security

	J2EE Application Security

	Deploying and Executing J2EE Modules and Applications
	Visual Representations of Servers
	The Server Registry Node
	The Installed Servers Node
	Server Product Nodes
	Server Instance Nodes
	Default Server Nodes

	Server-specific Properties
	Using Server Instance Nodes to Deploy and Execute

	How the IDE Supports Deployment of J2EE Modules and Applications
	Support for Iterative Development
	The Server Plugin Concept
	The Deployment Process Using a Plugin
	Deploying Components Other Than Web Modules and J2EE Applications

	Index

