
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Building Enterprise JavaBeans™

Components

Sun™ ONE Studio 4 Programming Series

Part No. 816-7864-10
September 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.

In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

This product includes code licensed from RSA Data Security.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Ce produit comprend le logiciel licencié par RSA Data Security.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape et Netscape Navigator sont des marques de Netscape Communications Corporation aux Etats-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xvii

1. Enterprise JavaBeans Concepts 1

The J2EE Architecture 2

The Roles of EJB Components 4

The Roles of Application Builders 5

Inside an EJB Application 6

The Elements of an Enterprise Bean 8

Bean Methods 8

Types of Interfaces 10

The Bean Class 12

EJB QL 13

The Deployment Descriptor 13

The Work Flow of an EJB Application at Runtime 14

An Enterprise Bean’s Development Life Cycle 15

The IDE’s Support for Enterprise Beans 16

Developing Enterprise Beans in the IDE 17

Creating Sets of Related CMP Entity Beans 17

Providing Transactions 18

Providing Persistence 18
iii

Providing Security 18

Creating Application Clients 19

Further Reading 19

2. Design and Programming Issues 21

Deciding Which Type of Bean You Need 21

Understanding Session Beans 22

Deciding When to Use a Stateless Session Bean 23

Deciding When to Use a Stateful Session Bean 24

Selecting a Transaction Mode 25

Understanding the Life Cycle of a Session Bean 26

Understanding Entity Beans 29

Taking Advantage of the EJB Container’s Services 30

Understanding the Life Cycle of an Entity Bean 31

Understanding Sets of Related CMP Entity Beans and Container-managed

Relationships 35

Understanding Message-Driven Beans 36

Using Message Sources (Destinations) 37

Deciding When to Use a Message-Driven Bean 37

Deciding When Another Bean Type Is Better 38

Understanding the Life Cycle of a Message-Driven Bean 39

Using Enterprise Beans in Applications 41

Using Exceptions to Handle Problems 41

Working With Deployment Descriptors 42

Enforcing Security Policies 42

Declaring Security in Enterprise Beans 43

Programming Security Into Enterprise Beans 43

Understanding the Application Servers and Databases 44

Further Reading 45
iv Building Enterprise JavaBeans Components • September 2002

3. Developing Session Beans 47

Using the EJB Builder With Session Beans 48

Selecting a Session Bean Type 49

Stateless or Stateful Session Beans 49

Container-Managed or Bean-Managed Transactions 51

Defining a Session Bean 52

Creating a Package 52

Starting the EJB Builder Wizard 52

Generating the Default Session Bean 53

Looking at a Session Bean’s Classes 55

Expanding the Nodes 56

Reviewing the Generated Classes 56

Default Create Method 57

Life-Cycle Methods 57

Completing Your Session Bean 59

Using Recommended Approaches When Working With Enterprise

Beans 59

Completing Create Methods 60

Completing a Stateless Bean’s Create Method 60

Completing a Stateful Bean’s Create Methods 60

Adding a Create Method to a Stateful Bean 61

Completing Life-Cycle Methods 61

Completing the ejbPassivate Method 62

Completing the ejbActivate Method 62

Adding Business Methods 63

Coding Transactions 63

Understanding Transaction Spans 64

Specifying Transaction Boundaries and Rollbacks 64
Contents v

After Creating Your Session Bean 67

Further Reading 67

4. Developing CMP Entity Beans 69

Using the EJB Builder With CMP Entity Beans 69

Comparing CMP and BMP Entity Beans 71

Creating Sets of Related CMP Entity Beans 72

Defining a CMP Entity Bean 72

Creating a Package 73

Having a Data Source Ready 73

Starting the EJB Builder Wizard 74

Generating a CMP Entity Bean’s Infrastructure 74

Specifying Persistent Fields From a Database Table 76

Creating Your Bean’s Persistent Fields From Scratch 82

Looking at a CMP Entity Bean’s Classes 84

Expanding the Nodes 85

Reviewing the Generated Classes 88

Default Finder Method 88

Persistent Fields and Accessor Methods 88

Primary-Key Class and Required Methods 90

A CMP Entity Bean’s Life-Cycle Methods 91

Completing Your CMP Entity Bean 92

Using Recommended Approaches When Working With Enterprise

Beans 93

Defining Create Methods 93

Adding or Replacing a Primary Key 95

Creating a New Primary Key 95

Handling Foreign Keys 97

Defining Business Methods 97
vi Building Enterprise JavaBeans Components • September 2002

Adding Finder Methods 98

Defining Home Methods 99

Defining Select Methods 100

Defining Additional Fields 101

After Creating Your CMP Entity Bean 101

Further Reading 101

5. Developing Sets of Related CMP Entity Beans 103

Using the EJB Builder With Sets of Related CMP Entity Beans 104

Creating All Related CMP Entity Beans at Once 104

Creating a Set of Related CMP Entity Beans One at a Time 105

Defining a Set of Related CMP Entity Beans 105

Creating a Package 106

Preparing to Use a Database or Schema 106

Starting the EJB Builder Wizard 107

Generating the Bean Set’s Infrastructure 107

Using a Database Connection 108

Using a Database Schema Object 114

Looking at the Components of a CMP Entity Bean Set 115

Expanding the EJB Module’s Node 116

Reviewing the Generated Classes 117

Completing Your Set of Related CMP Entity Beans 117

Using Recommended Approaches When Working With Enterprise

Beans 118

Adding a Bean to the Set 119

After Creating Your Set of Related CMP Beans 121

6. Developing BMP Entity Beans 123

Deciding on an Approach 123
Contents vii

Building a BMP Entity Bean 124

Creating a Package 124

Starting the EJB Builder Wizard 124

Generating a BMP Entity Bean’s Infrastructure 125

Looking at a BMP Entity Bean’s Classes 125

Expanding the Nodes 126

Reviewing the Generated Classes 126

findByPrimaryKey Method 126

A BMP Entity Bean’s Life-Cycle Methods 127

Completing Your BMP Entity Bean 128

Using Recommended Approaches When Working With Enterprise

Beans 129

Adding Persistence Logic 129

Adding a Primary-Key Class 129

Adding Methods 130

Defining Create Methods 130

Adding Finder Methods 131

Defining Business and Home Methods 131

After Creating Your BMP Entity Bean 132

Further Reading 132

7. Developing Message-Driven Beans 133

Using the EJB Builder With Message-Driven Beans 134

Deciding on Transaction Management 135

Defining a Message-Driven Bean 136

Creating a Package 136

Starting the EJB Builder Wizard 136

Generating the Basic Message-Driven Bean 137

Looking at Your Message-Driven Bean in the Explorer 137
viii Building Enterprise JavaBeans Components • September 2002

Expanding the Nodes 138

Reviewing the Generated Class 138

Completing Your Message-Driven Bean 139

Using Recommended Approaches When Working With Enterprise

Beans 140

Completing the onMessage Method 140

Completing the setMessageDrivenContext Method 141

After Creating Your Message-Driven Bean 141

Specifying a Message-Driven Destination 142

Specifying a Message Selector 143

Specifying Resources for Client Message-Driven Beans 143

Specifying Resource Factories 143

Specifying Resources 144

Specifying Resources for Listener Message-Driven Beans Deployed to the

RI 145

Avoiding Pitfalls of Message-Driven Beans 146

Further Reading 146

8. Preparing Enterprise Beans for Deployment 147

Understanding Deployment Information 147

Looking at a Generated Deployment Descriptor 148

Editing an EJB Module’s Deployment Descriptor 149

Editing an EJB Module’s Deployment Descriptor Directly 149

Reverting to the EJB Module’s Last Generated Descriptor 149

Using Properties to Edit a Deployment Descriptor 150

Specifying Bean Properties 150

Using the Properties Tabbed Pane 150

Properties of Entity Beans 151

Properties of Session Beans 152
Contents ix

Properties of Message-Driven Beans 152

Using the References Tabbed Pane 153

Specifying EJB Local References 153

Specifying EJB References 155

Specifying Environment Entries 155

Specifying Resource Environment References 156

Specifying Resource References 156

Specifying Security-Role References 158

Using the J2EE RI Tabbed Pane 159

Setting J2EE RI Properties for Individual Session and Entity Beans

159

Setting J2EE RI Properties for Message-Driven Beans 160

Creating an EJB Module 161

Deciding What Should Go Into an EJB Module 162

Putting Enterprise Beans in an EJB Module 162

Setting Database-related Properties for CMP Entity Beans 163

Understanding the RI’s Generated SQL 165

If Your CMP Beans Don’t Need to Use an Existing Database Table 165

If Your CMP Beans Need To Use an Existing Database Table 168

If Your EJB Module Contains an EJB 1.1 CMP Entity Bean 168

Understanding the Order of CMP Field Values 170

Adding Transaction Attributes to an EJB Module 170

Changing EJB References Within the EJB Module or Application 172

Overriding a Reference at the Module Level 173

Overriding a Reference at the Application Level 174

Creating an EJB JAR 174

Adding a JAR File to an EJB Module 174

9. Testing Enterprise Beans 177
x Building Enterprise JavaBeans Components • September 2002

Fulfilling the Prerequisites for Testing 177

Preparing to Deploy to the J2EE RI 178

Preparing to Test Beans Against the PointBase Database 178

Starting the Database Server and Web Browser 179

Generating Test Objects 180

Deploying the Test Application to a Server 182

Deploying and Executing the Test Application in One Step 183

Executing the Test Application 184

Using the Test Client to Test Your Beans 184

Understanding the Test Client Page 184

Testing the Sample Bean’s Home Interface 186

Testing the Sample Bean’s Business Method 187

Creating New Testing Classes 188

Making Changes After Deployment 188

Preparing to Test: Some Variations 189

If You Want to Test a CMP or BMP Bean 189

If You Want to Test a Bean With EJB References 190

Adding Remote Interfaces to a Bean 190

A. Working With Enterprise Beans 195

Using Recommended Approaches When Editing Beans 195

Working Through the Logical Node 195

Using the Customizer or Property Sheet 197

Using the Source Editor to Edit Beans 197

Understanding the IDE’s Error Information 199

Compiling and Validating Enterprise Beans 199

Saving Your Changes 201

Renaming an Enterprise Bean 201
Contents xi

Modifying a Bean Based on Another Bean 202

Copying and Pasting an Enterprise Bean 202

Exchanging Bean Classes or Interfaces 203

Editing a Bean’s Methods 204

Viewing a Method 204

Changing an Entity Bean’s Fields 204

Renaming a Field 205

Changing the Type of a Field 205

Deleting an Enterprise Bean 205

B. Migrating and Upgrading EJB 1.1 Enterprise Beans 207

Understanding Updates in the Current Release 207

Making Specific Changes 209

Converting a CMP 1.x Entity Bean 209

Avoiding the Use of New Features in an Old Bean 210

Don’t Add Local Interfaces to a CMP 1.x Entity Bean 210

Don’t Add Local EJB References, Either 210

Changing the PointBase User Name and Password 211

Avoiding the transient Modifier 211

Shifting a Bean’s RI Properties to the EJB Module Level 212

Changing CMP Entity Bean Properties Before Testing the Bean 212

Index 215
xii Building Enterprise JavaBeans Components • September 2002

Figures

FIGURE 1-1 Model J2EE Application as Supported by the Sun ONE Studio IDE 3

FIGURE 1-2 Typical Basic Configuration for an EJB Application 4

FIGURE 1-3 Example of an Application With All Three Kinds of Enterprise Beans 7

FIGURE 1-4 Work Flow Inside the Application at Runtime 14

FIGURE 1-5 Development, Assembly, and Deployment of an Enterprise Bean 15

FIGURE 1-6 Generated Elements of an Enterprise Bean Shown in the Explorer Window 17

FIGURE 2-1 Basic Choices About Enterprise Beans in the Sun ONE Studio IDE 22

FIGURE 3-1 Possible Wizard Selections for a Stateless (or Stateful BMT) Session Bean 53

FIGURE 3-2 Default Classes of a Typical Session Bean With Remote Interfaces 55

FIGURE 3-3 Explorer’s Detailed View of a Typical Session Bean With Remote Interfaces 56

FIGURE 4-1 Selections in the EJB Builder Wizard for CMP Entity Beans 75

FIGURE 4-2 Default Classes of a Typical CMP Entity Bean 84

FIGURE 4-3 Explorer’s Detailed View of a Typical CMP Entity Bean With Local Interfaces 86

FIGURE 4-4 Explorer’s Detailed View of a Typical CMP Entity Bean With a Composite Primary Key 87

FIGURE 5-1 Selections in the EJB Builder Wizard for a CMP Entity Bean Set 108

FIGURE 5-2 Default Classes of a Typical Set of Related CMP Entity Beans 116

FIGURE 5-3 Expanded Nodes of an EJB Module Containing Related CMP Entity Beans 117

FIGURE 6-1 Explorer’s Detailed View of a BMP Entity Bean 126

FIGURE 7-1 Default Class and Methods of a Typical Message-Driven Bean 137

FIGURE 7-2 Explorer’s Detailed View of a Typical Message-Driven Bean 138
xiii

FIGURE 8-1 References Tabbed Pane of the Properties Dialog Box for a CMP Entity Bean 153

FIGURE 8-2 J2EE RI Tabbed Pane Showing Properties for an EJB Module Containing CMP Beans 164

FIGURE 8-3 Table-related Settings for a CMP Entity Bean in an EJB Module 166

FIGURE 8-4 Example of SQL Code Generated by the RI Plugin for a CMP Bean’s createTable
Method 167

FIGURE 8-5 Example of SQL Code Generated for a CMP Bean’s Finder Method 169

FIGURE 8-6 EJB Local References Property Editor, Showing an Example of Override Selections for an
Enterprise Bean’s Local References 173

FIGURE 9-1 Example of Test Objects Generated for Enterprise Beans 181

FIGURE 9-2 Client JSP Page Generated to Test Simple Session Bean dollarToYen 185

FIGURE 9-3 Customizer for Adding an Interface Class to a Bean 192
xiv Building Enterprise JavaBeans Components • September 2002

Tables

TABLE 3-1 Deciding Between Stateless and Stateful Session Beans 50

TABLE 3-2 Deciding Between Container-Managed and Bean-Managed Transactions 51

TABLE 3-3 Purpose of Life-Cycle Methods In a Session Bean Class 58

TABLE 3-4 Purpose of Session-Synchronization Methods in a Session Bean Class 59

TABLE 3-5 Relationship Between Transactions and Methods 64

TABLE 4-1 Deciding Between CMP and BMP Entity Beans 71

TABLE 4-2 Purpose of Default Life-Cycle Methods in a CMP Entity Bean
Class 91

TABLE 6-1 Purpose of Default Life-Cycle Methods in a BMP Entity Bean
Class 127

TABLE 7-1 Deciding Between Container-Managed and Bean-Managed Transactions 135

TABLE 7-2 Purpose of ejbCreate and onMessage Methods in a Message-Driven Bean’s Bean
Class 139

TABLE 7-3 Purpose of Default Life-Cycle Methods in a Message-Driven Bean’s Bean Class 139

TABLE 7-4 Example of a setMessageDrivenContext Method 141
xv

xvi Building Enterprise JavaBeans Components • September 2002

Before You Begin

This book describes how to build Enterprise JavaBeans™ components (enterprise

beans) using the Sun™ Open Net Environment (Sun ONE) Studio, Enterprise Edition

for Java, integrated development environment (IDE).

Enterprise beans come in several varieties. A session bean can be stateful or stateless,

and can manage its own transactions or have them managed by the EJB™ container.

An entity bean can manage its own persistence or let the container manage its

relationship with the underlying database. You can use the Sun ONE Studio IDE to

build those enterprise beans as well as message-driven beans and sets of entity beans

whose relationships are managed by the EJB container. Flexible support is available

to the developer in building all of these types of enterprise beans. The IDE

streamlines the task of coding and helps ensure that the results are consistent with

the Java 2 Platform, Enterprise Edition Blueprints (the J2EE™ Blueprints).

Another book in this series, Building J2EE Applications, suggests designs for

industrial-strength applications that use enterprise beans and other J2EE

components. It offers various application scenarios, and explains how to assemble

finished enterprise beans and other components into modules, how to deploy them

in applications, and how to run those applications. This book, Building Enterprise
JavaBeans Components, concentrates on the design and creation of enterprise beans,

and on basic issues of assembly, deployment, and testing. If you are responsible for

providing enterprise beans, assembling them into applications, and deploying them

on application servers, you should refer to both books.

You can use the Sun ONE Studio IDE to create the examples in this book on the

systems listed in the Release Notes. Find the Release Notes on the following website:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. You should have no trouble

translating the slight differences to your platform. Although almost all procedures

use the IDE’s user interface, you might occasionally be instructed to enter a

command at the command line. Here too, there are slight differences from one
xvii

http://forte.sun.com/ffj/documentation/index.html

platform to another. For example, a Microsoft Windows command might look like

this:

To translate for UNIX® or Linux environments, simply change the prompt and use

forward slashes:

Before You Read This Book

If you want to use the Sun ONE Studio IDE to build enterprise beans, you will

benefit from reading this document. Before you start, you should be familiar with

the following subjects:

■ The Java programming language

■ The EJB component model

■ The JDBC™ API and JDBC-enabled driver syntax

■ Relational database concepts (such as tables, columns, and keys)

■ How to use the chosen database

■ The Java Message Service (JMS) API

■ XML syntax

To develop enterprise beans, you need to know J2EE concepts and generally to

understand enterprise beans. Whenever further details are needed, refer to the

following list of resources:

■ Enterprise JavaBeans Specification, version 2.0

http://java.sun.com/products/ejb/docs.html

■ Java 2 Platform, Enterprise Edition Blueprints

http://java.sun.com/j2ee/blueprints

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial (for J2EE SDK version 1.3)

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

■ Java Message Service Tutorial
http://java.sun.com/products/jms/tutorial/index.html

■ Java Transaction API (JTA) Specification
http://java.sun.com/products/jta

c:\> cd MyWorkDir\MyPackage

% cd MyWorkDir/MyPackage
xviii Building Enterprise JavaBeans Components • September 2002

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/products/jms/tutorial/index.html
http://java.sun.com/products/jta

At some stages of bean development, you also need to know about specific

application servers. Refer to a server’s documentation for details.

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.

How This Book Is Organized

Chapter 1 introduces J2EE and Enterprise JavaBeans concepts, and gives an

overview of the Sun ONE Studio IDE’s support for creating enterprise beans and

assembling them into EJB modules.

Chapter 2 discusses design and programming issues for those who use the IDE to

build enterprise beans and assemble EJB modules.

Chapter 3 tells how to use the IDE to create stateless or stateful session beans that

manage their own transactions or delegate their transaction management to the EJB

container.

Chapter 4 tells how to use the IDE to create single entity beans with container-

managed persistence (CMP entity beans).

Chapter 5 tells how to use the IDE to create sets of CMP entity beans with their

relationships automatically included.

Chapter 6 tells how to use the IDE to create entity beans with bean-managed

persistence (BMP entity beans).

Chapter 7 tells how to use the IDE to create message-driven beans.

Chapter 8 shows how to prepare a bean for deployment by specifying properties on

the bean and its EJB module.

Chapter 9 explains how to use the IDE’s testing feature to test enterprise beans.

Appendix A contains instructions for working with enterprise beans in the IDE.

Appendix B provides tips on updating and converting EJB 1.1 enterprise beans so

that they are maintainable and executable in the current version of the IDE.
Before You Begin xix

http://java.sun.com/products/jta

Typographic Conventions

Related Documentation

Sun ONE Studio 4 documentation includes books delivered in Acrobat Reader (PDF)

format, online help, release notes, readme files for example applications, and

Javadoc™ documentation.

Documentation Available Online

The documents described in this section are available from the docs.sun.com SM

web site and from the documentation page of the Sun ONE Studio Developer

Resources portal (http://forte.sun.com/ffj/documentation).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

■ Release Notes (HTML format)

Available for each Sun ONE Studio 4 edition. Describe last-minute release

changes and provide technical notes.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your.cvspass file.

Use DIR to list all files.

Search is complete.

AaBbCc123 What you type, when contrasted

with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must save your changes.

AaBbCc123 Command-line variable; replace

with a real name or value

To delete a file, type DEL filename.
xx Building Enterprise JavaBeans Components • September 2002

http://docs.sun.com
http://forte.sun.com/ffj/documentation/

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 4 integrated development

environment (IDE) on each supported platform and include other pertinent

information, such as system requirements, upgrade instructions, application

server configuration instructions, command-line switches, installed subdirectories,

database integration, and information on how to use the Update Center.

■ Sun ONE Studio 4, Community Edition Getting Started Guide - part no. 816-7871-10

■ Sun ONE Studio 4, Enterprise Edition for Java Getting Started Guide - part no. 816-

7859-10

■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 816-7872-10

■ The Sun ONE Studio 4 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio

4 features to develop well-formed J2EE applications.

■ Building Web Components - part no. 816-7869-10

Describes how to build a web application as a J2EE web module using JSP

pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications - part no. 816-7863-10

Describes how to assemble EJB modules and web modules into a J2EE

application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 816-7864-10 (this book)

■ Building Web Services - part no. 816-7862-10

Describes how to use the Sun ONE Studio 4 IDE to build web services, to make

web services available to others through a UDDI registry, and to generate web

service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 816-7870-10

Describes how to use the JDBC productivity enhancement tools of the Sun

ONE Studio 4 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 4 tutorials (PDF format)

These tutorials demonstrate how to use the major features of each Sun ONE

Studio 4 edition.

■ Sun ONE Studio 4, Community Edition Tutorial - part no. 816-7868-10

Provides step-by-step instructions for building a simple J2EE web application.

■ Sun ONE Studio 4, Enterprise Edition for Java Tutorial - part no. 816-7860-10

Provides step-by-step instructions for building an application using EJB

components and Web Services technology.

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10
Before You Begin xxi

Provides step-by-step instructions for building a simple application for a

wireless device, such as a cellular phone or personal digital assistant (PDA).

The application will be compliant with the Java 2 Platform, Micro Edition

(J2ME™ platform) and conform to the Mobile Information Device Profile

(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at

http://forte.sun.com/ffj/documentation/
tutorialsandexamples.html

Online Help

Online help is available inside the Sun ONE Studio IDE. You can open help by

pressing the help key (F1 in Microsoft Windows and Linux environments, Help key

in the Solaris environment), or by choosing Help → Contents. Either action displays

a list of help topics and a search facility.

Examples

You can download several examples that illustrate a particular Sun ONE Studio 4

feature, as well as completed tutorial applications, from the Sun ONE Studio

Developer Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Javadoc Documentation

Javadoc documentation is available within the IDE for many Sun ONE Studio 4

modules. Refer to the release notes for instructions on installing this documentation.

When you start the IDE, you can access this Javadoc documentation within the

Javadoc pane of the Explorer.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can email your comments to Sun at:

docfeedback@sun.com
xxii Building Enterprise JavaBeans Components • September 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Please include the part number (816-7864-10) of this document in the subject line of

your email.
Before You Begin xxiii

xxiv Building Enterprise JavaBeans Components • September 2002

CHAPTER 1

Enterprise JavaBeans Concepts

Enterprise JavaBeans™ components (enterprise beans) are key building blocks in the

the Java™ 2 Platform, Enterprise Edition (J2EE™) architecture. This chapter

introduces:

■ The main ideas behind the J2EE architecture

■ The roles of enterprise beans and other elements of the J2EE model’s EJB™ tier

■ The components and work flow of an EJB application

■ The EJB Builder, which is a collection of wizards and other GUI support in the

Sun™ Open Net Environment (Sun ONE) Studio, Enterprise Edition for Java

software (Sun ONE Studio 4 IDE, the integrated development environment)

If you are already conversant with J2EE and developing enterprise beans, and you

just want to know specifically how to use the IDE to create and work with your

beans, see Chapters 3 through 9 and the appendixes.

An enterprise bean is usable only when it has been placed with any related beans in

an EJB module, assembled into an application, and deployed on a server. The tasks

of development, assembly, and deployment can be distributed among developers or

working units according to their expertise. This document focuses on the work that

the EJB developer does before handing over a finished enterprise bean or related

group of beans to be assembled into an application and deployed on a server.

Another document in this series, Building J2EE Applications, discusses J2EE

application design, assembly, and deployment.

Note – The Sun ONE Studio 4 IDE supports Enterprise JavaBeans Specification,

version 2.0.
1

The J2EE Architecture

The Java 2 Platform, Enterprise Edition (J2EE) documents describe a services-based

application architecture within which transactional, scalable, secure, portable Java

components can be deployed and redeployed. Combining tiers of databases, servers,

and client-access mechanisms on the J2EE model, your organization can develop

applications that support your entire enterprise.

A J2EE application architecture typically has the following major features:

■ A client tier. According to the J2EE specification, this tier can contain HTML or

Java applets running in a browser, Extensible Markup Language (XML)

documents transmitted through HTTP, and Java clients running in a client

container.

The Sun ONE Studio 4 IDE supports the execution and deployment of

applications that use Java clients, JSP pages, servlets, and other enterprise beans

as clients.

■ One or more EJB or server tiers. These tiers can contain:

■ Presentation logic. Servlets or JavaServer Pages™ (JSP™ pages) running in web

servers.

■ Application logic. Enterprise JavaBeans components (enterprise beans)

running in application servers.

■ A database tier.

The server tiers of a typical J2EE application can contain any or all of the elements

shown in FIGURE 1-1.
2 Building Enterprise JavaBeans Components • September 2002

FIGURE 1-1 Model J2EE Application as Supported by the Sun ONE Studio IDE

An enterprise bean is a Java component, a set of Java interfaces and classes that

make up a business entity. These interfaces and classes contain methods that

implement business logic on an application server. One type of enterprise bean also

contains fields that can be mapped to database columns. Another type of enterprise

bean can manage interactions between other enterprise beans in the same

application. Enterprise beans can be combined with any of the different types of

components shown in FIGURE 1-1 to create applications.

Although both enterprise beans and JavaBeans™ components are written in the Java

programming language, they are not the same. You can use JavaBeans components

with design tools to customize instances of Java classes, and you can link the

customized objects through events. Enterprise beans, on the other hand, implement

distributed, container-managed transactional services for multiple users.

The design of the EJB tier carries the modularity and portability of Java components

several steps farther. For that reason, your job as an EJB developer is more modular:

You can focus more on the business data of an application than on distributed

computing. When you build an application using JavaBeans components, you must

also build the server framework. However, when you build an application on the

J2EE model using enterprise beans, the server-side infrastructure is already built into

the application server. You don’t need to provide generic services such as support

for transactions, security, or remote access.

Browser

HTML

Applet

Servlet

JSP

Enterprise
Bean

Enterprise
Bean

Web Server and
Servlet Container

Database

Java

Client Enterprise
Bean

Application Server
and EJB Container

The EJB Tier

Client
Chapter 1 Enterprise JavaBeans Concepts 3

The Roles of EJB Components

The most basic configuration for a typical EJB application is shown in FIGURE 1-2: an

application client, an application server, the EJB container, at least one enterprise

bean, and a data store of some kind. In this figure, a database is used.

FIGURE 1-2 Typical Basic Configuration for an EJB Application

The contracts (that is, the interaction and implied agreements) between an enterprise

bean, its EJB container, and the application server lend flexibility and power to the

J2EE application, while simplifying the task of creating enterprise beans.

The EJB container is more a concept than an object. It’s the environment that

surrounds the enterprise beans on the EJB server to provide life-cycle management,

security, distributed transaction support, and other services.

One or more enterprise beans can be deployed in a single container, which uses the

standard Java Naming and Directory Interface™ (JNDI) API to locate an individual

bean and make it available to a client.

The container intercedes between its beans and their clients. When a client needs

work done by an enterprise bean, the container intercepts the method call. Working

on behalf of many enterprise beans and their clients, the container can manage

services (such as security and transactions) across calls, components, and even other

containers running on other servers. This design feature allows the container to

apply its services flexibly and transparently.

For individual enterprise beans, the container is designed to manage database

persistence and transactions. This ensures a standard approach to state-management

events. It also means that your beans can perform database-access operations

without you, the EJB developer, having to write the SQL code or use the JDBC™ API

directly (unless you need to override the container’s default behaviors).

The container’s services ensure that persistent data in an enterprise bean is saved if

a client terminates or if the server shuts down.

EJB container

Application server

Enterprise
bean Database

Client
4 Building Enterprise JavaBeans Components • September 2002

The application server provides lower-level support such as naming, directory, and

email services.

Enterprise beans are of three main types: session beans, entity beans, and message-

driven beans. These types are discussed in more detail starting in Chapter 2, but to

briefly describe the role of each type:

■ A session bean manages the conversation between a client and the EJB server, and

can direct complex interactions with entity beans. For example, a session bean can

pass in requests for data to entity beans, package the resulting data, and pass it

back out to a client.

■ An entity bean usually represents an entity, or a table of data, in a database. Many

entity beans can work cooperatively inside a Java virtual machine (JVM™) on an

application server.

■ A message-driven bean forms a functional layer between client and server. This

type of bean receives client message notifications and starts asynchronous

interactions among other enterprise beans that are deployed to the server.

Finished enterprise beans are packaged into an EJB module (which is a logical

construct for an EJB JAR file) for assembly into an application and deployment on a

server. An application server can house one or more J2EE applications, a J2EE

application can house one or more EJB modules, and an EJB module can house one

or more enterprise beans.

The Roles of Application Builders

The J2EE architecture implies a methodology and supports the division of

responsibilities in the application-building process into different roles. In a typical

development organization, some team members have more knowledge of the

business, while others are more adept at systems-level development. If the J2EE

model is applied to an organization where not everyone is responsible for the same

kind of work, the business or domain experts might take the role of bean provider or

EJB developer, while the more systems-minded developers might do the assembly

and deployment work.

At least three roles are common in development environments:

■ EJB development. The EJB developers (who are application developers and,

often, domain experts) builds enterprise beans without having to focus on the

surrounding framework. For testing purposes and for convenience, these people

might also package finished beans into EJB modules.
Chapter 1 Enterprise JavaBeans Concepts 5

■ EJB module assembly. The assembler or assemblers can make final groupings of

finished enterprise beans into EJB modules, and combine those and other J2EE

building blocks into applications. The modularity of J2EE design enables

container-neutral decisions at this stage.

■ Deployment. One or more deployers can deploy J2EE applications in a specific

environment, making container-specific and server-specific decisions.

The IDE, with its built-in support for enterprise beans, is designed to serve the J2EE

approach to building applications. When you use this IDE to build your enterprise

beans, you can concentrate on writing the business logic your application needs. In

the EJB development role, you need to make only minimal gestures toward the

assembly and deployment steps.

However, when necessary, one person can assume all three roles. The IDE provides

seamless support for all stages of enterprise bean development, assembly, and

deployment.

Inside an EJB Application

In the typical EJB application shown in FIGURE 1-3, many client programs can get

access simultaneously to the heart of the application, which resides on the EJB server

and is managed by the EJB container. Within the EJB tier, instances of two different

session beans (one prompted by a message-driven bean) manage interactions with

instances of four different entity beans to let clients look up calendar appointments

and schedule meeting spaces. Data from the database is read into instances of the

entity beans, and clients’ updates to the entity-bean instances are posted to the

database.
6 Building Enterprise JavaBeans Components • September 2002

FIGURE 1-3 Example of an Application With All Three Kinds of Enterprise Beans

Database

EJB Container

Session Beans Entity Beans

CalendarMgr

MtgScheduler

Room

Activity

User

ToDoItem

Application
Clients

Application Server

Message Queue

RequestRoom

Message-Driven Bean

msg
msg

Client

Client

Client

Client
Chapter 1 Enterprise JavaBeans Concepts 7

The Elements of an Enterprise Bean

Every enterprise bean has at least one class.

■ A message-driven bean needs only its bean class, with no interfaces.

■ A session bean typically is composed of three elements: its bean class and two

remote-type interfaces (the home interface and the remote interface). However, a

session bean can have local-type interfaces as well.

■ An entity bean typically has three elements: its bean class and two local-type

interfaces (the local home interface and the local interface). An entity bean can

also have remote-type interfaces, and it might have a primary-key class.

For more information about enterprise bean interfaces, see “Types of Interfaces” on

page 10.

Responsibilities in regard to the elements of an EJB application are as follows:

■ As the EJB developer, you use the IDE to generate the bean class and the

interfaces for each enterprise bean. For an entity bean, you also define a primary-

key class, if needed. You complete the code that the IDE generates, and you

declare deployment information.

■ The container in which the bean is deployed implements the bean’s interfaces and

manages interactions between components and the data storage.

■ The client using the bean creates its own stubs to call the bean’s interfaces, which

interact with the bean class to get the application’s work done. Or, the client sends

messages to a destination, and a message-driven bean listens for those messages

and interacts as requested with a session bean.

Bean Methods

A J2EE application gets its work done through methods that the client calls on the

bean. The kinds of methods that an enterprise bean includes are briefly discussed

next (and are discussed in detail in Chapters 3 through 7). All method declarations

are added either automatically by the IDE or explicitly by the developer. To add all

necessary parts of a method declaration, you follow a single, short sequence of

actions in dialog boxes. The IDE generates the corresponding parts of the method

and places them in the appropriate classes.

■ Finder Methods. The client goes through the home interface to find an entity

bean instance by its primary key. The developer can also add other finder

methods.

The IDE automatically generates a findByPrimaryKey method declaration in

the local home interface of every entity bean (and in the bean’s home interface, if

it has one). The IDE also places a corresponding ejbFindByPrimaryKey method

declaration in the bean class of every entity bean that manages its own

persistence (that is, a bean-managed persistent entity bean, or BMP entity bean).
8 Building Enterprise JavaBeans Components • September 2002

If the developer adds another finder method, the IDE automatically places the

corresponding method declarations in the local home (and home) interface and,

for BMP entity beans, in the bean class.

Added finder methods include EJB Query Language (EJB QL) statements, which

the bean’s application server plugin converts automatically to the kind of SQL

code the server needs.

■ Create Methods. The container initializes the enterprise bean instance, using the

create method’s arguments.

The IDE automatically generates a create method declaration in the home

interface of every session bean (and in the bean’s local home interface, if it has

one). The IDE places a corresponding ejbCreate method declaration in the bean

class.

The IDE also generates an ejbCreate method declaration in the bean class of

every message-driven bean.

Since an entity bean doesn’t have to contain a create method, the IDE doesn’t

automatically generate a declaration for an entity bean. However, if the developer

adds a create method to an entity bean, the IDE generates the corresponding

create , ejbCreate , and ejbPostCreate method declarations in the

appropriate classes. An entity bean can have more than one create method.

■ Business Methods. A client calls business methods on a bean through the bean’s

remote interface (or local interface, as applicable).

The developer explicitly adds business methods to the bean; the IDE doesn’t

generate any default business method declarations. However, when the developer

does specify a business method, the IDE places matching method declarations in

the bean class and in the remote, local, or remote and local interfaces.

■ Home Methods. An entity bean can use a home method for a lightweight

operation that doesn’t require access to any particular instance of the bean. (By

contrast, a business method does require access to a particular instance.) The

developer explicitly adds a home method, and the IDE generates the

corresponding method declaration in the bean class and the bean’s local home or

home interface. An entity bean can have any number of home methods.

■ Select Methods. An entity bean that delegates its persistence to the container

(that is, a container-managed persistent entity bean, or CMP entity bean) can use

a select method. Like a finder method, a select method can query the database

and return a local or remote interface or a collection. In addition, a select method

can query a related entity bean within the same EJB module and return values

from its persistent fields. Select methods aren’t exposed in remote-type interfaces

and can’t be invoked by a client.

The developer explicitly adds one or more select methods to the bean class. Select

methods include EJB Query Language (EJB QL) statements, which the bean’s

application server plugin converts automatically to the kind of SQL code the

server needs.
Chapter 1 Enterprise JavaBeans Concepts 9

■ OnMessage Methods. A client sends a message through a Java Message Service

(JMS) destination to call an onMessage method on a message-driven bean.

The IDE automatically generates the onMessage method declaration in the bean’s

class. The developer completes the method body.

■ Life-cycle Methods. The container calls several methods to manage the life cycle

of an enterprise bean. Depending on the type of bean, the container works

through the methods in slightly different ways. The developer has the option of

specifying parameters for some of these methods.

The IDE automatically generates the appropriate life-cycle method declarations

for each type of bean and places them in the bean class.

Types of Interfaces

Since session beans are often called by application clients, which live outside the

enterprise beans’ application server, the IDE offers remote-type interfaces (that is, a

remote interface and a home interface) as a default for each session bean. However,

depending on how a particular session bean will be called, the developer can choose

either or both types of interfaces when creating the bean.

Entity beans are normally called by session beans and by other entity beans inside

the same application server. Such entity beans need only local-type interfaces (that

is, a local interface and a local home interface). Local-type interfaces save processing

time because they pass parameters by reference instead of serializing the parameter

values. However, again, depending on the situation, the developer can apply either

or both kinds of interfaces to an entity bean.

Note – Any bean that will be tested using the IDE’s testing feature must have

remote interfaces.

All four of these interface types are discussed next.

The Remote Interface

A client views and gets access to the enterprise bean through the bean’s remote

interface. Signatures for the business methods that the client can call on the bean are

in the remote interface, but the complete code for the business methods is in the

bean class. The container creates a class that implements the remote interface.

The remote interface extends javax.ejb.EJBObject . A client uses this interface to

locate the home interface through a JNDI lookup call, calls a method on the home

interface to retrieve a specific instance of the bean (with the remote interface as the

return type), and then calls business methods on that instance.
10 Building Enterprise JavaBeans Components • September 2002

When you use the Sun ONE Studio 4 IDE to create an enterprise bean with the

remote-type interfaces (through which the bean can be called from outside the

server), the EJB Builder’s GUI support and validation help ensure that the remote

interface’s methods follow the rules defined in the J2EE documents. Those rules

include the following:

■ The method signatures in the remote interface have corresponding methods in the

bean class.

■ The arguments and return values are valid RMI types.

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the IDE’s Explorer window:

The default label is the name of the enterprise bean.

The Home Interface

The enterprise bean’s home interface extends javax.ejb.EJBHome and defines the

create and finder methods that the client can call on the enterprise bean. A client

uses JNDI to locate the home interface, and the container provides a class that

implements the home interface.

When you use the IDE to create an enterprise bean with remote-type interfaces, the

EJB Builder’s GUI support and validation help ensure that the home interface’s

methods follow the basic rules for enterprise beans. Those rules include the

following:

■ The method signatures in the home interface have corresponding methods in the

bean class (except in the case of finder methods in an enterprise bean that relies

on the container to manage its persistence).

■ The arguments and return values are valid RMI types.

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the IDE’s Explorer window:

The default label is bean_nameHome.

The Local Interface

The local interface is similar to the remote interface in some respects. This type of

interface contains signatures for the business methods that can be called on the bean.

The methods’ complete code is in the bean class. The container creates a class that

implements the local interface. However, a call to a bean’s local interface must come

from another bean or a web component inside the same server.
Chapter 1 Enterprise JavaBeans Concepts 11

The local interface extends javax.ejb.EJBOLocalObject . A client uses this

interface to locate the local home interface through a JNDI lookup call, calls a

method on the local home interface to retrieve a specific instance of the bean (with

the remote interface as the return type), and then calls business methods on that

instance.

When you use the Sun ONE Studio IDE to create an enterprise bean with local-type

interfaces, the EJB Builder’s GUI support and validation help ensure that the local

interface’s methods follow the rules defined in the J2EE documents. Those rules

include the following:

■ The method signatures in the local interface have corresponding methods in the

bean class.

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the IDE’s Explorer window:

The default label is Local bean_name.

The Local Home Interface

Similar in some ways to the home interface, the enterprise bean’s local home

interface extends javax.ejb.EJBLocalHome and defines the create and finder

methods that can be called on the enterprise bean by another bean within the same

server. The container provides a class that implements the local home interface.

When you use the IDE to create an enterprise bean with local-type interfaces, the EJB

Builder’s GUI support and validation help ensure that the local home interface’s

methods follow the basic rules for enterprise beans. Those rules include the

following:

■ The method signatures in the local home interface have corresponding methods

in the bean class (except in the case of finder methods in an enterprise bean that

relies on the container to manage its persistence).

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the Explorer window:

The default label is Local bean_nameHome.

The Bean Class

The bean class is the heart of the enterprise bean, containing the implementation

defined in the other two classes. The bean class of an entity bean extends the

javax.ejb.EntityBean interface, the bean class of a session bean extends

javax.ejb.SessionBean , and the bean class of a message-driven bean extends
12 Building Enterprise JavaBeans Components • September 2002

javax.ejb.MessageDrivenBean . The bean class implements the enterprise

bean’s finder, create, business, home, and select methods. The class also implements

life-cycle methods that the container calls.

When you use the Sun ONE Studio IDE to create an enterprise bean, the EJB

Builder’s GUI support and validation help ensure that the bean class follows these

and other basic rules for enterprise beans:

■ The class is defined as public and abstract.

■ The class contains a public constructor with no parameters.

■ The class implements an ejbCreate method to match each create method

defined in the home or local home interface.

■ The class, if it is an entity bean that manages its own persistence, contains an

ejbFind method to match each finder method in the home or local home

interface.

A bean class node looks like this in the IDE’s Explorer window:

The default label is the name of the enterprise bean plus Bean.

EJB QL

When you add a finder method or a select method to a CMP entity bean, you embed

a statement in the EJB Query Language to define the method’s query. In a query

written in EJB QL, your bean can navigate over the relationships defined in its

abstract schema, that is, the part of your bean’s deployment descriptor that defines

the bean’s persistent fields and relationships. An EJB QL query can span the abstract

schemas of all related entity beans that are packaged in the same EJB JAR file.

When your bean is deployed to an application server, your EJB QL queries are

translated into the target language of the underlying data store. Thus, an entity bean

that uses EJB QL is portable across different data stores.

The Deployment Descriptor

The enterprise bean’s deployment descriptor states how the bean is to be deployed

in the server. The deployment descriptor, which is an XML file, lists and describes

the classes that compose the enterprise bean, the bean’s references to other beans,

settings for the environment in which the bean will operate, and how the bean

should be managed at runtime. This file also lists the persistent fields of an entity

bean that delegates its persistence management to the container.

When you use the Sun ONE Studio IDE to create an enterprise bean, the EJB Builder

automatically creates a deployment descriptor and ensures that it follows the J2EE

standard. (Because you normally work through the enterprise bean’s property sheets
Chapter 1 Enterprise JavaBeans Concepts 13

rather than manipulating the deployment descriptor directly, the descriptor file does

not appear in the IDE’s Explorer window. However, you can open the descriptor file

through the Explorer.)

The Work Flow of an EJB Application at Runtime

At runtime, the application client communicates first with the enterprise bean’s

home interface and then with the remote interface, but never directly with the

enterprise bean object. All work is done for the client through the EJB container.

At runtime, these application elements interact as shown in FIGURE 1-4. The figure’s

numbered steps are explained next. (Notice that this is a generic view of the work

flow. The example uses only one enterprise bean with remote-type interfaces. Some

steps, for example, instance pooling, do not apply to certain types of enterprise

beans.)

FIGURE 1-4 Work Flow Inside the Application at Runtime

Application Server

EJB Container

Client

CalendarMgr
home stub

CalendarMgr
remote stub

CalendarMgr
home object

CalendarMgr
remote object

CalendarMgr
bean class

CalendarMgr
instance

Pooled
bean

instances

Database

2 4

3

4
5

6

1 4

App
14 Building Enterprise JavaBeans Components • September 2002

1. The client finds the enterprise bean in the application server and container. (That

is, the client uses a JNDI lookup method to get a remote reference to the

enterprise bean’s home interface.) A corresponding home stub is created in the

client.

2. A home object is created on the server side to implement the bean’s home

interface. The home stub asks the bean’s home object (which acts as a factory) to

have an instance of the enterprise bean created for the use of this client in this

session.

3. The container takes a bean instance from the pool.

4. A remote object is created on the server side to implement the bean’s remote

interface. The client works through its remote stub and the remote object to call

business methods on the bean instance.

5. Data is read from the database into the bean instance and transmitted to the

client. Any updates are written to the database in transactions.

6. The client has received the results it asked for, and the container returns the

instance to the pool.

Notice how this architecture supports multiple concurrent users without

multithreaded programming. Because enterprise bean users get their own instances

of the bean from the pool, the developer can write simple, single-threaded code.

An Enterprise Bean’s Development Life Cycle

As depicted in FIGURE 1-5, an enterprise bean goes through several steps after you

create it, but before it is ready for use.

FIGURE 1-5 Development, Assembly, and Deployment of an Enterprise Bean

As an EJB developer using the Sun ONE Studio IDE, you follow these basic steps to

create an enterprise bean and prepare it for assembly and deployment:

An enterprise
bean is
created.

One or more modules
are assembled into a
J2EE application.

The J2EE application
is deployed to a
container and server,
and is tested.

One or more
enterprise beans
are assembled
into an EJB
module.
Chapter 1 Enterprise JavaBeans Concepts 15

1. Use the EJB Builder wizard and other GUI support (as described in Chapters 3

through 7) to generate the enterprise bean’s classes.

2. Use the IDE’s Source Editor and GUI support to code the enterprise bean. If you

can let the EJB container manage your session bean’s transactions and your entity

bean’s persistence, you have much less code to write.

3. Use the IDE to package the enterprise bean, along with any other related

enterprise beans, in an EJB module. Use the EJB’s property sheets to add your

beans’ external dependencies to the deployment descriptor.

4. Use the IDE’s EJB test application as described in Chapter 9 to create an EJB web

test client for the bean and to run tests. To prepare for this step, you perform

some assembly and deployment steps. Notice that the bean can be deployed later

in a production environment to a different server.

The IDE’s Support for Enterprise Beans

The Sun ONE Studio IDE invisibly takes care of, or automates, many tasks that you

would be obliged to do if you developed your enterprise beans by hand. Here are a

few of the tasks you do not have to do when you use the IDE:

■ Write method declarations for the basic classes. The IDE generates the necessary

classes for each bean and the method declarations within those classes.

■ Provide code to manage persistence. The application server takes care of those

tasks for you when you create CMP beans.

■ Provide code to manage transactions. The application server takes care of those

tasks for you when you create CMP beans or when you choose to let the container

manage transactions for your session beans and message-driven beans.

■ Keep your bean classes, interfaces, and methods in synch. The IDE maintains

consistency for you.

■ Write XML code for the deployment descriptor. The IDE generates this file.

■ Manually create a test client to test the enterprise bean. The IDE provides

comprehensive, GUI-based support for testing session and entity beans.

■ Search the J2EE documentation. The enterprise bean source code generated by the

IDE conforms to J2EE standards. The code automatically includes comments and

references to related documentation. The IDE also provides the following:

■ Code completion for the application programming interface (API)

encompassed by the J2EE standard. (Press Ctrl–Space when you’re editing

code.)

■ Convenient access to the pertinent Javadoc™ documentation. (Press Shift–F1 on

the selected class or interface name.)
16 Building Enterprise JavaBeans Components • September 2002

Developing Enterprise Beans in the IDE

You use the EJB Builder Wizard to generate the infrastructure of your enterprise

bean. The wizard is tailored to the type of bean you’ve chosen: a session, entity, or

message-driven bean, with options for the source of the bean’s persistent data and

for management of the bean’s transactions and persistence. The wizard leads you

through the steps of creating all the basic components.

FIGURE 1-6 shows the elements of a typical enterprise bean that the IDE generates for

you, and how the elements appear in the IDE’s Explorer window. This figure uses

the example of a session bean with remote-type interfaces.

FIGURE 1-6 Generated Elements of an Enterprise Bean Shown in the Explorer Window

After using the wizard to generate these basic elements, you use the EJB Builder’s

other GUI features to add methods to your bean, and you use the Source Editor to

finish coding the bean.

Creating Sets of Related CMP Entity Beans

The EJB Builder Wizard allows you, in one process, to generate the infrastructure of

an entire set of CMP entity beans along with an EJB module to house them. This

feature is particularly useful if the database tables that your beans represent are

related by foreign keys. In the entity bean set, these foreign keys are preserved as

container-managed relationships.

CalendarMgr
home interface

CalendarMgr
bean class

CalendarMgr
remote interface

A logical node generated
by the IDE for you to use
in working with your bean
Chapter 1 Enterprise JavaBeans Concepts 17

Providing Transactions

In the enterprise bean model, transactional behavior is designed to be handled both

implicitly and declaratively. When a method is invoked on a bean instance, the EJB

container intervenes and manages the transaction for you. You don’t have to be

expert in writing transactions; you don’t have to write or debug code that controls

transaction boundaries. By making a simple selection in the EJB Builder wizard, you

can declare your bean’s transactional attributes, and you can fine-tune those

attributes later using the property sheets of the bean’s EJB module.

Sometimes, however, you might need to program transactions explicitly in a session

bean. The IDE lets you declaratively override the container and supports the use of

the JDBC API and the Java Transaction API (JTA) to manage your beans’

transactional behavior.

Providing Persistence

As with transactions, the IDE allows you to delegate your beans’ persistence

handling entirely to the EJB container, or to code persistence yourself. If you handle

it yourself, you can write JDBC code. If you want container-managed persistence,

you start by making a few selections in the EJB Builder wizard, and finish by making

a few declarations in a property sheet to enable the container to find your

underlying data store.

Providing Security

If you want only users in certain roles to call certain methods in your enterprise

bean, you can add programmatic security to your bean. However, you don’t have to

write full security routines in your bean’s source code. A security reference in your

bean code matches a security role that you declare for a method. To make that

match, you simply change a field in the bean’s property sheet, and the security

information is added to the bean’s deployment descriptor.

When a client tries to call that a secured method on your bean, the EJB container

compares the user’s role with your access control list (the user roles that you have

authorized to execute the bean’s methods), and permits or refuses execution.
18 Building Enterprise JavaBeans Components • September 2002

Creating Application Clients

In addition to developing the enterprise beans that make up the EJB tier of your

application, you can use the IDE to create an application client. In this context, an

application client is a stand-alone Java program that starts with its own main

method, runs in a J2EE client container, and interacts with other J2EE application

components including EJB modules. For details on the design and development of

clients, refer to Building J2EE Applications.

Further Reading

For details on the design of enterprise beans and the EJB tier, refer to Enterprise
JavaBeans Specification, version 2.0 at:

http://java.sun.com/products/ejb/docs.html

Other information sources are listed in “Before You Read This Book” on page xviii.
Chapter 1 Enterprise JavaBeans Concepts 19

http://java.sun.com/products/ejb/docs.html

20 Building Enterprise JavaBeans Components • September 2002

CHAPTER 2

Design and Programming Issues

If you’re not already familiar with the design and programming issues associated

with enterprise beans, you need to consider the differences between various kinds of

beans and what they are meant to do. You should be aware of the life cycle of each

kind of bean, how methods and exceptions are applied, and how beans are set up for

reuse in different application environments. You need to understand how

persistence, transactions, and security are handled. This chapter discusses those

topics, and ends with a list of recommended readings for further details.

Deciding Which Type of Bean You Need

The Enterprise JavaBeans Specification, version 2.0, defines three types of enterprise

beans: session beans, entity beans, and message-driven beans. There are also several

types of session and entity beans, each with built-in functionality for different

purposes. The EJB Builder in the Sun ONE Studio IDE guides you and streamlines

the process of creating all these types of enterprise beans.

To help you make design decisions before you start, this chapter describes the

enterprise bean types.

FIGURE 2-1 shows the basic choices before you when you use the IDE’s template to

create enterprise beans.
21

FIGURE 2-1 Basic Choices About Enterprise Beans in the Sun ONE Studio IDE

Understanding Session Beans

A session bean acts as the traffic director for an application, controlling the work

flow of the application and encapsulating its business processes. If you think of a

model-view-controller architecture, a session bean is like the controller tier, but in an

EJB application. On behalf of a client, a session bean can do work such as accessing

a database or calculating balances. A session bean doesn’t represent database data

directly, but it can access the database or manipulate entity beans that access the

database.

In the context of an application that uses enterprise beans, a session bean manages

the conversation between a single client and the parts of the application that reside

on the EJB server and are managed by the EJB container. These other application

parts often include entity beans and (in its own separate tier) the database with

which any persistence-capable beans interact.

New > J2EE

BMP Entity EJB

Session EJB

Remote Interface Only

Stateless
Stateful
Container-Managed Transactions
Bean-Managed Transactions
Remote Interface Only (Default)

Message-Driven EJB

CMP Entity EJB

Related CMP Entity EJBs

Container-Managed Transactions
Bean-Managed Transactions

Both Remote and Local Interfaces

Remote Interface Only
Local Interface Only (Default)
Both Remote and Local Interfaces

Table From Database Connection
Table From Database Schema Object
Create From Scratch

Local Interface Only
Both Remote and Local Interfaces

Use Tables From Database Connection
Use Tables From Database Schema

Container-Managed Relationships

Local Interface Only (Default)

Local Interface Only
Both Remote and Local Interfaces
22 Building Enterprise JavaBeans Components • September 2002

A session bean can manipulate one or more entity beans, control interactions

between them, and bridge gaps between the data represented by the entity beans

and the business logic that acts on the data. A single session bean can direct

transactional work by several entity beans in the same application.

The conversation (or session) that the session bean manages is transient and so is

any data in the session bean. When the client-server session is over, or when the

client or the server shuts down, the instance of the session bean that the client

created for that session is destroyed. However, the client can store a handle to the

session, shut down, and then resume the session later.

A session bean has no primary key. Unlike an entity bean, a session bean is intended

for use by only one client at a time. Therefore the session bean can appear

anonymous to the client; the bean doesn’t need the unique identity that a primary

key provides.

Occasionally, a session bean represents an entity, as does the ShoppingCart object

in an application for ordering merchandise online. However, most session beans are

not intended to save entity state to a database. For example, while a user is

shopping, the ShoppingCart bean instance temporarily holds items that the user

intends to buy. If the server goes down before the user has actually committed to

buying the items, it would be inappropriate to save those items to the database in a

transaction. A common design approach is to let that data go and have the user start

a new shopping cart with the next session.

Deciding When to Use a Stateless Session Bean

The conversation carried on between the client and the session bean can be short

and simple, involving only work that can be accomplished by loading the

parameters of one method. Or a session bean can manage a long, complicated

conversation that involves many methods and database transactions. Such a

conversation requires the session bean to retain information between method

invocations.

In the first situation, a session that consists of a request and a response, a stateless

session bean is best. A stateless bean retains no state between method calls. Such a

lightweight bean costs the application few resources, is easy for the container to

manage, and promotes faster processing. A stateless bean can provide better

scalability to an application that has many clients.

Of course, the tradeoff is that this bean can do less with data. A stateless bean

operates only on the arguments that the client passes to it. Every call to a method of

a stateless bean is independent of previous calls.
Chapter 2 Design and Programming Issues 23

For example, a stateless bean can get the ZIP code for an address. Each retrieval can

be completed in one method call, getZip , because all the information needed to

process the retrieval is in the method parameters. Any transactions are completed

within the method call and within the container. (Transactions are discussed a little

later in this chapter and in Chapter 3.)

The instance variables of a stateless bean can contain state only while the method

executes. All instances of a stateless bean are the same when they are pooled. As a

result, the EJB container can pool and assign bean instances very flexibly, swapping

instances in and out between the client’s method calls. In effect, clients can share

stateless beans. These beans seem anonymous to their clients.

A session bean can be stateless if it is designed to be used sequentially by many

different clients and needs no tailoring to suit a specific client. A stateless bean holds

no state information for a specific client. However, the bean can have state that isn’t

specific to a client, for example, an open database connection.

Deciding When to Use a Stateful Session Bean

The conversation between the client and the session bean can be complicated. The

bean might need more than one method to encapsulate business logic and the

application might need the session bean to remember state between and across

method calls. By definition, such a bean is stateful. If your client is an interactive

application, or if the session bean’s state must be initialized when it is created, use a

stateful bean.

The bean’s state can be written to a database if necessary. The state is specific to the

client and is held in memory during the session, but is not persistent. If a stateful

session bean must be removed from memory, the EJB container manages the state.

The state of the bean instance can survive a session, but not the client’s termination

or a server crash.

Notice that the ejbRemove method is not called after a container crash, a timeout

while the instance is passivated, or a system exception thrown by a method. You

might need to provide a clean-up program for such an event.

A stateful bean is not shared by more than one client. By servicing only one client,

the bean can maintain conversational state throughout the session. Stateful bean

instances are not pooled.

The online shopping cart mentioned earlier in this chapter is an example of how

stateful session beans can be used. Just as the logical business transaction of

shopping includes multiple individual decisions by the user, so the stateful bean in

this application includes multiple method calls. The ShoppingCart bean must

accumulate items that the user has chosen until the user is ready to review the list of

items, approve or reject each one, and place the order.
24 Building Enterprise JavaBeans Components • September 2002

Selecting a Transaction Mode

Whether you’re programming a stateless or a stateful session bean, you must make

one of these selections in the EJB Builder wizard:

■ Container-Managed Transactions. The bean’s transactions are managed by the

EJB container, and you don’t intend to provide code to manage transactions. The

result is referred to as a CMT session bean.

■ Bean-Managed Transactions. The bean manages its own transactions, and you

intend to explicitly demarcate each transaction as you code the bean’s methods.

The result is referred to as a BMT session bean.

For a CMT session bean, you have less coding to do and all the transactions are

handled in a predictable, consistent way. Also, the transaction policy that you select

for your bean can be changed declaratively. The tradeoff is that each method can be

associated with no more than one transaction. The container typically has a

transaction begin just before a method starts, and commits the transaction just before

the method exits. Nested and multiple transactions are not allowed in a single

method.

Assigning Transaction Attributes

If you decide to let the EJB container manage your bean’s transactions, the container

looks for transaction attributes on your bean or on specific methods within your

bean. A transaction attribute specifies the scope of a transaction: which methods it

includes and how the results of those methods are treated in relation to the

transaction. These attributes are assigned as follows.

■ CMT session beans. The IDE automatically assigns the Required transaction

attribute to every CMT session bean, and that transaction attribute applies to

every business method in your bean. However, you can manually assign a

transaction attribute to a particular method or set an overriding transaction

attribute for the bean. (You set transaction attributes for a CMT bean at the EJB

module level.)

■ Entity beans. The same is true for entity beans, all of which have container-

managed transactions.

You don’t set transaction attributes for a BMT session bean. All of its transaction

boundaries must be explicitly demarcated in the bean class.
Chapter 2 Design and Programming Issues 25

Using JTA or JDBC

To code bean-managed transactions explicitly, you can use the Java Transaction API

(the javax.transaction.UserTransaction interface, or JTA) or the JDBC API.

■ JTA. If you’re using the Sun ONE Studio IDE to create new BMT session beans,

consider using JTA. It can be more powerful and flexible than the JDBC API.

■ The JDBC API. On the other hand, if you’re wrapping legacy code inside a

session bean, and that code uses JDBC technology or encapsulates SQL code, it’s

a good idea to use the JDBC API.

JTA can include transactions for other resources such as the JDBC API. When you

use JTA to code transactions in an enterprise bean, you’re using the JDBC API for

database connections and JTA for transactions.

In handling transactions, your bean’s method calls the JTA methods, which then call

the lower-level routines of the Java Transaction Service (JTS), the transaction

manager used by the Java 2 Platform, Enterprise Edition (J2EE). Because of that level

of indirection, JTA lets you demarcate transactions independently of the transaction-

manager implementation. A JTA transaction can also span updates to multiple

databases from different vendors.

A JDBC transaction is controlled by the transaction manager of the database you’re

using.

A disadvantage of using JTA is that it doesn’t support nested transactions. One

transaction must end before another starts.

For more information on transactions, refer to Building J2EE Applications.

Understanding the Life Cycle of a Session Bean

At runtime, the application server creates bean instances as requested by EJB clients.

A bean instance passes through several stages of activity managed by the EJB

container. When the instance is no longer needed, it is destroyed.

The individual stages in a session bean’s life, the methods that cause the bean to

transition between stages, and the programmer’s responsibilities are described next.
26 Building Enterprise JavaBeans Components • September 2002

Creating and Initializing a Bean Instance

A session bean’s runtime life cycle starts when an EJB client requests some work

from the bean. This stage of the life cycle goes as follows:

The client calls a create method on the bean’s home (or local home) interface. In

response, the container calls these three methods in sequence:

1. newInstance to create a new instance of the session bean

2. setSessionContext to associate the instance with a session-context object

3. ejbCreate to initialize the instance

Note – The IDE generates method signatures for the setSessionContext and

ejbCreate methods. It’s up to the programmer to complete the body of the

methods.

The client receives a reference to the bean instance’s remote object.

Executing Business Logic

Now that a bean instance has been created and initialized, the EJB client asks the

instance to do some work. This stage of the life cycle goes as follows:

The client calls a business method on the bean’s remote object. In response, the

container does the following:

■ Checks security permissions to make sure that the requestor is entitled to execute

that business method

■ Applies the transaction control specified by the method’s transaction attribute

■ Calls a business method on the instance

The client receives the result of the business method.

Note – The programmer can specify security control either programmatically,

within the bean code, or declaratively, using the property inspector of the EJB

module. The programmer uses the EJB module’s property sheet to set transaction

attributes for a bean’s methods.
Chapter 2 Design and Programming Issues 27

Removing the Bean Instance

The client is finished with the session and can let go of the bean instance. This stage

of the life cycle goes as follows:

The client calls the remove method on either the home (or local home) interface or

the remote (or local) interface. In response, the container calls the ejbRemove
method to close any open resources that the instance has used. The container

removes the instance from memory.

Note – The IDE generates the method signature for the ejbRemove method. It’s up

to the programmer to complete the method’s code.

Pooling Stateless Instances

Ordinarily, in a production environment, many clients concurrently request work

from an enterprise bean. To support this need, the container can concurrently create

many instances of a stateless session bean and can pool them for use. The container

can populate the instance pool at its own discretion.

An instance of a stateless session bean maintains no client-related state information

between method calls. Therefore, stateless session bean instances in a pool are

interchangeable. The container can call different session beans from the pool to

handle requests from a single client.

So that the container always has an adequate supply of stateless session bean

instances to serve the volume and frequency of client requests, it keeps adjusting the

volume of pooled instances. For example, the container creates new instances of a

stateless session bean when the number of client requests increases, and removes

instances when memory becomes scarce. To maintain its pool, the container calls the

stateless session bean’s ejbCreate and ejbRemove methods at its own discretion.

Passivating Stateful Instances

A stateful session bean must maintain its conversational state with the client

throughout the client’s session. Therefore, the EJB container does not pool instances

of stateful session beans. Instead, the container only creates and removes stateful

bean instances upon explicit instructions from the client.

However, to control the use of resources, the container might still need to control the

number of active stateful session bean instances at a given time. When memory

becomes scarce, the container can passivate an instance, writing the instance’s

conversational state to secondary storage so that it can be used to handle another

client’s session. On passivation, the container first calls the instance’s
28 Building Enterprise JavaBeans Components • September 2002

ejbPassivate method, which the programmer codes to release resources and put

all fields in a serializable state. The container then writes the instance’s non-transient

fields to secondary storage.

When a client calls a business method on a stateful bean instance that has been

passivated, the container restores the instance’s state from secondary storage and

calls the ejbActivate method on the instance. The programmer codes this method

to acquire resources that were released by the ejbPassivate method, and to

restore the values of fields that were not serializable.

Note – The IDE generates the method signatures for the ejbPassivate and

ejbActivate methods in both stateless and stateful session beans. It’s up to the

programmer to complete the code for these methods.

Synchronizing State in a Session

A programmer can choose to implement the session-synchronization interface in a

stateful CMT session bean. During the stateful bean’s life cycle and at certain points

in a transaction, the container uses the interface to notify the instance that it is about

to enter or complete a transaction. The programmer can program the methods on

this interface to synchronize the bean’s instance variables with the data store’s most

current data, or to abort the transaction. The interface includes three methods:

afterBegin , beforeCompletion , and afterCompletion .

Note – The IDE generates the method signatures for the session-synchronization

methods. It’s up to the programmer to complete the code for these methods.

Understanding Entity Beans

An entity bean represents persistent data in an underlying data store. This type of

bean provides an object view of a set of data such as rows in a database table. Each

entity bean instance contains one entity of that data and can also contain business

logic that is intrinsic to the entity. A client, or a session bean working on behalf of a

client, can use an entity bean to find or insert data in a database.

An entity bean’s state isn’t dependent on its environment. With its primary key and

its remote reference, the bean can survive a crash of the server, the EJB container, or

the client. The entity’s state automatically reverts to the way it was after the last

committed transaction.
Chapter 2 Design and Programming Issues 29

Because each client gets its own instance of the entity bean, many different users can

share access to one set of data. If two clients execute the same finder method on an

entity bean, they both reference the same remote object. Each find is independent,

which eliminates contention problems. Multithreaded code is not needed in an

enterprise bean. (However, there might be a situation in which you need to run

concurrent processes. With message-driven beans, you can approximate

multithreading in a J2EE application. That discussion can be found in

“Understanding Message-Driven Beans” on page 36.)

A client finds a particular entity bean by its unique object identifier, which is the

bean’s primary key.

Taking Advantage of the EJB Container’s Services

All transactions that are part of an entity bean are automatically managed by the EJB

container. When you have finished coding a bean and have created an EJB module

for it, you use the module’s property sheets to declare the bean’s transaction

attributes. The container demarcates the bean’s transaction boundaries accordingly.

The IDE automatically assigns the default transaction attribute to all business, create,

remove, finder, select, and home methods in your entity bean.

As an EJB programmer, you can choose to have your entity bean’s persistence

managed by the container, or you can code the bean yourself to manage its

relationship with the data store.

When you use the IDE to create an entity bean with container-managed persistence,

that is, a CMP entity bean, you complete the bean class without writing JDBC calls

to the data store. The container provides the code to synchronize your bean’s

instance variables with the data store. You provide information to the container on

how to map the instance variables to columns in database tables. You also use the

EJB query language (EJB QL) to define how servers will implement your bean’s

query methods.

An EJB QL query in a finder method can be used by a client to select an existing

entity object. Or, without exposing the result to the client, an EJB QL query in a

select method can select objects or values related to the state of an entity bean. To

find this kind of information, the EJB QL query can use the bean’s abstract

persistence schema, which defines the bean’s persistent fields and relationships and

is part of the bean’s deployment descriptor.

Suppose you are deploying your application to the J2EE reference-implementation

server. The server looks at your bean’s methods and the EJB QL queries you have

supplied, and generates its own server-specific SQL statements to do this mapping.

In some cases, you might want or need to adjust the SQL that a given server plugin

generates for its own use, assuming that the server allows access to its generated

SQL. For example, if you are using the J2EE reference implementation (RI) server
30 Building Enterprise JavaBeans Components • September 2002

and if your application includes a CMP entity bean that was created in the EJB 1.1

environment, you must make a few small changes in the server’s generated SQL for

certain methods. You can also change any CMP entity bean’s mapping rules by

adjusting the generated SQL.

Relationships between entity beans can be managed by the EJB container. If you

generate a set of related CMP entity beans from a database in which tables use

foreign keys, the IDE automatically preserves these relationships.

Put simply, the advantages of using container-managed persistence are that you

have less coding to do and that the resulting entity bean is not dependent on any

particular data store.

At some point, you might need to create an EJB application in which you wrap

legacy code that isn’t supported by mapping tools. Or, you might need to implement

complex joins between tables, or even between different databases (for example,

non-relational databases). In these situations, depending on the capabilities of the

application server you use to deploy your EJB application, you might need to choose

bean-managed persistence and code all database calls yourself in the entity bean

class. If the server supports the persistence style you need, then container-managed

persistence is the best approach. However, as a general rule, bean-managed

persistence affords more flexibility in how an entity’s state is managed.

Understanding the Life Cycle of an Entity Bean

The application server creates a pool of entity bean instances to be used by EJB

clients. At runtime, a bean instance passes through several stages of activity as

requested by the bean’s client and as managed by the EJB container. When the

instance is no longer needed, it is destroyed.

The individual stages in an entity bean’s life, the methods that cause the bean to

transition between stages, and the programmer’s responsibilities are described next.

Creating and Managing a Pool of Bean Instances

An entity bean’s runtime life cycle starts when the container creates and pools

instances of the bean.

Many EJB clients might concurrently need many entity beans to do work for them.

At its own discretion, the container creates and pools multiple, anonymous instances

of a bean before they are needed. These instances can be used to run queries with

finder methods, or they can be assigned identities. When a particular instance is

needed to hold data from the data store, the container transitions a pooled instance

into the ready state. (A ready instance has a primary key that uniquely identifies it.)

Finally, the container can adjust the size of the pool by constructing new instances or

deleting unneeded ones.
Chapter 2 Design and Programming Issues 31

To create a new instance for the pool, the container calls:

1. The newInstance method to create a new instance of the entity bean

2. The setEntityContext method to associate the instance with an entity-context

object

The instance is now in the pooled state.

The container cycles instances between the ready state and the pooled state. When

the client requests an entity using its identity, but the corresponding instance is not

in the ready pool, the container transitions an instance from the pooled state to the

ready state. As part of this process, the container calls the ejbActivate method on

the instance. The programmer can code this method to acquire resources that are

needed by instances with identity, but not by instances in the pooled state. The

container then loads the values of the entity’s instance variables and associates the

instance with its remote object.

The instance is now ready.

Notice that the ejbActivate method does not load the values of the entity’s

instance variables. For BMP entity beans, this is handled by the ejbLoad method;

for CMP entity beans, it’s handled by the container.

When the container has too many instances in the ready state, it can passivate one or

more instances, moving them into the pooled state. As part of this process, the

container calls the ejbPassivate method on the instance. The programmer can

code this method to release resources that are not needed by instances in the pooled

state. The container also dissociates the instance from its remote object, and stores

the current values of the entity’s instance variables in the database.

Again, the ejbPassivate method does not store the values of the entity’s instance

variables in the database. For BMP entity beans, this is handled by the ejbStore
method; for CMP entity beans, it’s handled by the container.

To remove an inactivated instance from the pool, the container calls the

unsetEntityContext method on the instance and dissociates the instance from its

entity-context object. The container then destroys the instance.

Note – The IDE generates method signatures for the setEntityContext ,

unsetEntityContext , ejbActivate , and ejbPassivate methods. It’s up to the

programmer to complete the methods when specific entity contexts or resources are

needed.
32 Building Enterprise JavaBeans Components • September 2002

Using a Bean Instance to Create a New Entity

Whenever an EJB client wants to create a new entity (to insert data into the data

store), the client calls a create method on the bean’s home interface. In response, the

container:

1. Does the appropriate security checking and applies the transaction control

specified by the method’s transaction attribute.

2. Calls the ejbCreate method on an instance in the pool. In a CMP entity bean,

this method initializes the persistent field values to prepare for the container to

populate the data store. In a BMP entity bean, this method initializes field values

and inserts the record into the database.

3. Creates a remote object for the bean, and associates it with the new bean instance.

4. Calls the ejbPostCreate method on the instance to complete initialization.

Because the container has already assigned an identity to the bean instance, the

ejbPostCreate method can forward identity information, such as the associated

remote (or local) interface or primary key, to another enterprise bean.

The client receives a reference to the instance’s remote object. The instance is now in

the ready state and can run business methods for the client. See “Executing Business

Logic” on page 34.

Note – The IDE generates method signatures for ejbCreate and ejbPostCreate .

It’s up to the programmer to complete those methods. The programmer must also

specify the security control and transaction attributes to be applied by the container.

Locating an Existing Bean Instance

An EJB client can locate one or more existing entities by calling a finder method on

the bean instance’s home object. A finder method returns one or more entities that

meet specific search criteria. Besides the findByPrimaryKey method, an entity

bean can have any number of other finder methods.

When a client calls a finder method on an instance’s home object, the following steps

happen:

1. The container does the appropriate security checking and applies the transaction

control specified by the method’s transaction attribute.

2. The container calls a finder method on an anonymous instance in the pool.

3. The finder method returns the primary key of the instance (or multiple keys of

multiple instances, if appropriate). Notice that only the primary key is returned.
Chapter 2 Design and Programming Issues 33

4. The container locates or creates a remote object with each primary key and

returns a reference to the object to the client.

Note – The IDE generates a method signature for the findByPrimaryKey method.

It’s up to the programmer to furnish any other finder methods that a particular bean

might need.

The client can go on to call business methods on the located instance, using the

methods named in the remote object. See “Executing Business Logic” on page 34.

Executing Business Logic

When an EJB client needs an entity-bean instance to do some work, the client calls a

business method on the instance’s remote object. In response, the container:

1. Does the appropriate security checking and applies the transaction control

specified by the method’s transaction attribute.

2. Calls a business method on the instance.

The business method finishes and the client receives the result. When appropriate,

the container passivates the instance as discussed in “Creating and Managing a Pool

of Bean Instances” on page 31.

Note – The IDE provides support for creating business-method signatures on both

the remote (or local) interface and the bean class. It’s up to the programmer to finish

coding the business method in the bean class.

Using a Bean Instance to Remove an Existing Entity

Whenever an EJB client wants to remove an existing entity (to delete data from the

data store), the client calls a remove method on the instance’s home or remote object.

In response, the container:

1. Does the appropriate security checking and applies the transaction control

specified by the method’s transaction attribute.

2. Calls the ejbRemove method on the instance. A CMP entity bean instance

responds by readying the data for the container to delete. A BMP entity bean

instance responds by deleting the data.

3. Commits the transaction as appropriate.
34 Building Enterprise JavaBeans Components • September 2002

Note – The IDE generates a method signature for the ejbRemove method. It’s up to

the programmer to complete the method.

Synchronizing an Instance With the Data Store

At certain points during a transaction, the container must make sure that the data in

the bean instance is synchronized with the data in the data store. To do this, the

container:

■ Calls the ejbLoad method on the instance when the entity enters an active

transaction.

■ In a CMP entity bean, this method is called after the container has read the

entity object’s state from the data store into the bean’s container-managed

fields. The programmer can use this method to perform some computation on

the values of the fields that were read by the container.

■ In a BMP entity bean, this method usually reads the data from the underlying

data store and assigns the values to the bean’s instance variables.

■ Calls the ejbStore method on the instance when the transaction is committed or

when the instance is passivated.

■ In a CMP entity bean, the container calls this method first, before writing the

container-managed fields to the data store. The programmer can use this

method to prepare the container-managed fields before they are written to the

data store.

■ In a BMP entity bean, this method writes the values in its instance variables to

the underlying data store.

Note – The IDE generates method signatures for the ejbLoad and ejbStore
methods. In a BMP entity bean, it’s up to the programmer to complete those

methods. In a CMP entity bean, those methods typically require no further coding,

because the container manages synchronization with the data store.

Understanding Sets of Related CMP Entity Beans

and Container-managed Relationships

If you wish, you can use the EJB Builder wizard that generates the infrastructure of

one CMP entity bean at a time. However, if you want to base several CMP entity

beans on database tables that have foreign keys or table-to-table joins, it’s easier and

more reliable to generate the infrastructure for the whole group of beans at one time.

A special EJB Builder wizard displays the tables in a database or schema, and, from
Chapter 2 Design and Programming Issues 35

the tables you select, generates a corresponding set of CMP entity beans. Along with

the beans, the wizard creates logical entities to model foreign keys and joins between

database tables, and generates an EJB module to store and track the set of beans and

relationships.

A CMP entity bean that you created as part of a set is no different from a CMP entity

bean that you created individually. Its function, capacities, properties, and life cycle

are the same. However, if you use the wizard to generate a set of related CMP entity

beans, you don’t have to hand-code information about the enterprise-bean

equivalent of joins and foreign keys. The IDE presents these links as logical fields

called container-managed relationship (CMR) fields. A CMR field is like a foreign

key. In an EJB QL query, you can perform the equivalent of a table-to-table join using

a CMR field instead of a CMP field.

In accordance with the Enterprise JavaBeans Specification, the EJB container manages

CMRs to ensure referential integrity between associated CMP entity beans. The IDE

uses the Collections API to let you manipulate your beans’ CMRs. Information about

CMRs is stored at the level of the EJB module in which a set of related beans resides.

In the bean class are abstract accessor methods that specify a CMR’s directionality

and cardinality. For example, in a relationship between the beans Order and

LineItems :

■ The Order bean has the methods getLineItems and setLineItems . These

methods give the Order bean access to the collection that represents an order’s

line items.

■ The LineItems bean has the methods getOrder and setOrder . These methods

give the Order bean access to the order to which the line items belong.

A CMR allows for cascade-delete functionality, which is specified declaratively and

stored in the deployment descriptor.

A CMR field provides access to local instances of a CMP entity bean; thus, only a

bean with local-type interfaces can have CMR fields.

Understanding Message-Driven Beans

A special kind of enterprise bean acts as a go-between for application components,

taking messages from the client and acting on the messages to start processes

asynchronously. This is the message-driven bean, which combines many features of

enterprise beans with the ability to be a listener for the Java Message Service (JMS)

message-oriented middleware (MOM). With message-driven beans, you can

approximate threading or parallel processing in an EJB environment.

Whereas in another J2EE application an enterprise bean might respond to RMI calls,

a message-driven bean listens to certain resources for messages arriving from other

application components, usually the client. When such a message arrives, regardless
36 Building Enterprise JavaBeans Components • September 2002

of what processes or servers are running at the time, the message-driven bean is

notified of the message receipt by the invocation of the onMessage method. The

message-driven bean then acts on the message, calling a stateless session bean to

start a process.

Using Message Sources (Destinations)

A destination is a resource to which a client sends messages and to which a

message-driven bean listens. A destination can be a queue or a topic.

■ Queue. A message queue uses the point-to-point or “pull” model (analogous to

email from a sender to a receiver). The client sends messages to a queue object. A

message-driven bean polls the queue periodically and consumes messages meant

for that bean. One message is sent to one consumer.

■ Topic. A message topic uses the publish-and-subscribe or “push” model

(analogous to an online news subscription). The client sends a message to a topic

object. All consumers who subscribe to that topic receive a copy of the message.

One message can be broadcast to many consumers.

A topic subscription can be durable or non-durable.

■ Durable. Messages are saved for the consumer, which can retrieve them the

next time it connects to the system.

■ Non-durable. Messages are available to the consumer only when it is

connected, and old messages aren’t saved.

Deciding When to Use a Message-Driven Bean

An application using message-driven beans has minimal dependence on the state of

other application components. A message-driven bean is designed for one-way

operation.

As long as a destination is available, an application client can reliably send a

message to it, whether or not the message-driven bean’s server or the target

application are currently deployed. The container doesn’t have to wait for a client-

invoked process to complete. The client can even be decoupled from the server while

the message-driven bean and its called bean do their work. One or many clients can

send messages to one or many servers, invoking multiple processes.

If an application needs to start a process that might go on a long time, if a server

might go down, or if, for any other reason, resources might become unavailable

before the message arrives, you can use a middle layer of message-driven beans to

keep processing going. A message-driven bean is ideal if your client needs to start a

process and then continue to be available to the user. For example, in a shopping

application, you could use a message-driven bean to check the customer’s credit
Chapter 2 Design and Programming Issues 37

card number for validity while the customer continues to browse the product list.

The client component of the application sends a message to the message-driven bean

and then continues processing.

The use of message-driven beans can help your application with load balancing and

scheduling. For example, you can start processes at your database’s off-peak times.

Asynchronous processing is particularly advantageous for communications and

processing over different time zones and geographically dispersed systems.

If your application needs to interface with another application it doesn’t know much

about, you can use message-driven beans to loosely couple the applications. Many

legacy systems use messaging and can be interfaced in this way with J2EE

applications.

A message-driven bean interacts with the JMS environment only when the bean’s

onMessage method is called. The message-driven beans that you generate using

IDE’s EJB Builder wizard incorporate JMS transparently, so that you don’t have to

write JMS code. Because you specify the JMS connections and the message channels

(destinations) as properties on the bean, you can easily change a single message-

driven bean to point toward a different destination if needed.

Deciding When Another Bean Type Is Better

In certain situations, message-driven beans are not appropriate. For example:

■ When you need to return data. A message-driven bean must be hand-coded to

return anything other than VOID, and a specific client must be targeted. If you

need to return a result, a session bean is more efficient.

■ When you need confirmation that an operation has succeeded. A message-driven

bean can’t throw exceptions as other enterprise beans can.

■ When the bean’s operation is part of a transaction that must complete within a

given time.

■ When the server needs to know the client’s security identity. Messaging doesn’t

propagate this identity to the message-driven bean. With this kind of bean, all

instances are the same.

■ When performance is an issue. Messaging becomes a middle layer between the

client and the server. Even though message-driven beans are relatively

lightweight, an extra layer can add time to your system response.

■ When you want your application to stay small and uncomplicated. An

application that doesn’t need asynchronous processing can be easier to code and

debug.
38 Building Enterprise JavaBeans Components • September 2002

Understanding the Life Cycle of a Message-Driven Bean

At runtime, an application client sends messages to a destination to which a message

bean is listening. When these messages arrive, the application server creates

instances of the bean to service the client’s requests.

This type of bean has a very simple life cycle. As with a stateless session bean, its

instances pass through several stages of activity managed by the EJB container, and

when an instance is no longer needed, it is destroyed.

The individual stages in a message-driven bean’s life, the methods that cause the

bean to transition between stages, and the EJB programmer’s responsibilities are

described next.

Creating and Initializing a Bean Instance

A message-driven bean’s runtime life cycle starts when a client sends a message to a

queue or a topic, to be consumed (read and processed) by a message-driven bean. In

response, the EJB container calls these three methods in sequence:

1. newInstance to create new instances of the message-driven bean

2. setMessageDrivenContext to associate each instance with a message-driven-

context object

3. ejbCreate to initialize the instances

Note – The IDE generates method signatures for the setMessageDrivenContext
and ejbCreate methods. It’s up to the programmer to complete the body of the

methods as needed.

After sending the message, the client doesn’t need to be involved again unless

results are returned.

Invoking Another Bean to Execute Business Logic

Now that instances of the message-driven bean have been created and initialized,

the instance and the container collaborate as follows:

■ A bean instance consumes the message and finds out what work the client has

requested

■ The bean instance asks the container to create instances of the appropriate

stateless session bean
Chapter 2 Design and Programming Issues 39

■ The container creates the session-bean instances and applies the transaction

control specified by the transaction attribute of the message-driven bean’s

onMessage method

■ The message-driven bean instance calls a business method on an instance of the

stateless session bean

Eventually, if appropriate, the client can make a separate call to the session bean or

another enterprise bean in the server and receive the result of the business method.

Note – The IDE generates the method signature for the onMessage method. It’s up

to the programmer to complete the body of the method. Also, the programmer uses

the EJB module’s property sheet to set transaction attributes for a bean’s methods.

Removing the Bean Instance

When the message-driven bean has handed off its assigned task to another bean in

the application, its job is done. The container calls the ejbRemove method on the

message-driven bean instance to close any open resources that the instance has used.

The container removes the instance from memory.

Note – The IDE generates the method signature for the ejbRemove method. It’s up

to the programmer to complete the method’s code, if needed.

Pooling Message-Driven Bean Instances

As is true for stateless session beans, the container can concurrently create and pool

many instances of a message-driven bean. The container populates the instance pool

at its own discretion, creating new instances when the number of arriving messages

increases and removing instances when memory becomes scarce.

An instance of a message-driven bean maintains no state information, and so

message-driven bean instances in a pool are identical and interchangeable.

The J2EE specification does not guarantee that messages to multiple instances of a

message-driven bean will be delivered in any particular order; therefore, the

application must be able to handle out-of-order messages.
40 Building Enterprise JavaBeans Components • September 2002

Using Enterprise Beans in Applications

The needs of your application dictate whether and how to combine message-driven,

session, and entity beans. In some cases, you might get the best results by using only

one kind of bean. In the case of a very simple application (for example, an

application that performs only one CRUD operation), you might place a single

session bean or entity bean in the EJB module. In other cases, you will want to

exercise the full power and capability of several types of enterprise beans.

You can continue to increase the scope and power of an application by adding

enterprise beans to an EJB module. EJB applications are highly extensible.

Here are a few possible combinations of enterprise beans and other components in

applications:

■ An EJB module containing one stateful session bean and several CMP entity

beans. The session bean models user sessions. In each session, an instance of the

session bean directs instances of the entity beans to retrieve and write data from

and to a database. The EJB container handles persistence and transactions for the

entity beans.

■ An EJB module containing several CMP entity beans. This module interacts with

a web module within the same application. The web module acts as the

application client, and one or more of its components call methods on individual

entity beans within in the EJB module. The entity beans interact with the database

and return results through the web module components to the end user.

■ An EJB module containing a message-driven bean, a session bean, and one or

more entity beans. This module interacts with a web module in which a client

component sends messages to a queue. The message-driven bean listens to the

queue, consumes messages, and starts asynchronous processes in the session

bean, which causes database work to be done by the entity beans.

These scenarios and more are discussed in detail in Building J2EE Applications.

Using Exceptions to Handle Problems

In the bean class, you define how your bean is to handle problems it encounters at

runtime. A system-level problem (such as an unavailable database connection, a

database so full that an SQL insert fails, or an object that can’t be found) is expressed

in a system exception that uses the javax.ejb.EJBException interface. The

container sees an exception of this kind, wraps it in a remote exception, and passes it

back to the client to be handled by a system administrator.
Chapter 2 Design and Programming Issues 41

An application-level problem (such as an error in the business logic of an enterprise

bean, or an input error), can be addressed with a predefined exception such as the

javax.ejb package offers, or with a customized exception that the programmer

writes. The container sees an exception of this kind and passes it back to the client

for handling.

When you use the Sun ONE Studio IDE wizards to create an enterprise bean or its

methods, the IDE includes the required exceptions in the method signatures. For

example, java.rmi.RemoteException is included in the signature of all methods

on the home and remote interfaces. As another example,

javax.ejb.CreateException is included in the signature of all create methods.

When you create a method using the GUI support available from the IDE’s Explorer

window, you are also given the option of specifying application-level exceptions that

should be thrown by the method. These application exceptions are automatically

added to both the remote (or local) interface and the bean class.

Working With Deployment Descriptors

The basic design of enterprise beans makes them reusable in different applications

and deployable in different servers. Toward that end, all the information that a

particular server needs to know at runtime is captured in an XML meta-file called

the deployment descriptor. This descriptor file includes information about the bean’s

structure, its relationships to other beans, where its data store is, what is needed for

the user to gain access to the data store, and all other external dependencies.

Whenever you create an enterprise bean, the IDE generates a starter deployment

descriptor for the bean. You use the bean’s property sheets to declare whatever you

know of the bean’s external dependencies. When you assemble beans into an EJB

module, the IDE gives you the opportunity to override the default values of bean

properties, and to set properties for the EJB module as a whole. These properties can

also be set through the EJB module’s property sheets. At deployment time, the IDE

generates the EJB module’s deployment descriptor, incorporating all specified

properties.

Enforcing Security Policies

The EJB container offers you mechanisms for securing your application, that is, for

restricting the set of users who can call methods on an enterprise bean. You can

specify the security policies for your application either declaratively or
42 Building Enterprise JavaBeans Components • September 2002

programmatically. Declarative security is specified within the deployment

descriptor, and therefore it can be changed at any point up through deployment.

Programmatic security is defined within the code of the enterprise bean, and

therefore it is supplied by the programmer.

In most cases, declarative security is preferable. It’s easier to provide, and it’s

configurable throughout the development, assembly, and deployment process.

Programmatic security is more complicated. However, it provides a more granular

control of security, and therefore it’s sometimes the only option to meet the security

requirements of an application. For example, if you want to perform different logic

within the body of a method depending on the identity of the caller, you must use

programmatic security.

To specify security policies for your enterprise beans, you define a set of security

roles for your application. A security role is a set of users who share common

permissions for executing the methods of your enterprise beans.

With declarative security, each security role is assigned a set of bean methods that

callers in that role are permitted to execute. At runtime, the container checks the

security role of each caller, and decides whether the caller is permitted to execute the

requested method.

In providing programmatic security, you can use methods supplied by the container

(getCallerPrincipal and isCallerInRole) to determine the identity or role of

the caller, and then you can use conditional logic as appropriate.

Declaring Security in Enterprise Beans

You declare security roles and method permissions after you have assembled the

enterprise beans into an EJB module. On the module’s property sheet, you define

security roles for the EJB module. On the property sheet of the assembled EJB

component, you define, for each security role, the list of methods that a caller in that

role is permitted to execute.

When you take the declarative approach, you can modify the security permissions at

any time during development and testing. Also, you can use different security roles

and method permissions for each different EJB module that includes your bean.

Programming Security Into Enterprise Beans

Programmatic security allows you to determine:

■ The individual identity of the caller

■ Whether the caller has a particular security role
Chapter 2 Design and Programming Issues 43

With this information, you can branch your logic conditionally, depending on the

identity or role of the caller.

To programmatically determine the identity of the caller, you use the

getCallerPrincipal method on the javax.ejb.EJBContext object. This

returns a java.security.Principal object, which allows you to get the caller’s

name. You might use this to query a database for more information about the caller.

To programmatically determine whether the caller has a particular logical role, use

the isCallerInRole(String roleName) method on the javax.ejbEJBContext
object. This returns a Boolean value indicating whether the caller has the specified

logical role. If you use the isCallerInRole method, you must also declare the

roleName used in your code as a security-role reference on the bean’s property sheet.

At assembly time, when the bean is included in an EJB module, the assembler can

map the bean’s security-role reference to one of the security roles defined in the EJB

module. Therefore, the programmer does not need to know the actual security role

names before they are determined at assembly time.

For more information on implementing security features in enterprise beans and

J2EE applications, refer to Building J2EE Applications.

Understanding the Application Servers
and Databases

The enterprise beans that you create using the Sun ONE Studio IDE are typically

tested using the application server that comes with the IDE. This is the J2EE

Reference Implementation (the RI), a non-commercial, operational server made

freely available for demonstrations, prototyping, and educational use. You can test

your enterprise beans on the RI to see how they will behave under different

application conditions. All examples in this manual use the RI as the application

server.

Refer to the Sun ONE Studio 4 Release Notes for information on any other

application servers and server plugins that are available for the IDE.

The entity beans you create using the IDE can be tested using the database that is

included: PointBase Server 4.2 Restricted Edition. All examples in this manual use

PointBase as the database.
44 Building Enterprise JavaBeans Components • September 2002

Further Reading

In addition to the specifications and blueprints mentioned earlier in this book, there

are many information resources for EJB programmers. For example, the following

documents suggest ways that you can improve the design and programming of your

enterprise beans:

■ Sun ONE Studio 4 tutorials and example applications

http://forte.sun.com/ffj/documentation/
tutorialsandexamples.html

■ Java 2 Platform, Enterprise Edition Blueprints

http://java.sun.com/j2ee/blueprints

■ Designing Enterprise Applications with the J2EE Platform, Second Edition, at:

http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications_2e/index.html

■ “Seven Rules for Optimizing Entity Beans” by Akara Sucharitakul, at:

http://developer.java.sun.com/developer/technicalArticles/ebeans/
sevenrules/

■ “Working with J2EE Application Clients” by Monica Pawlan, at:

http://developer.java.sun.com/developer/technicalArticles/J2EE/
appclient/

■ “Designing Entity Beans for Improved Performance” by Beth Stearns, at:

http://developer.java.sun.com/developer/technicalArticles/ebeans/
ejbperformance/
Chapter 2 Design and Programming Issues 45

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://java.sun.com/j2ee/blueprints
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/index.html
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://developer.java.sun.com/developer/technicalArticles/J2EE/appclient/
http://developer.java.sun.com/developer/technicalArticles/ebeans/ejbperformance/

46 Building Enterprise JavaBeans Components • September 2002

CHAPTER 3

Developing Session Beans

You can use the EJB Builder in the Sun ONE Studio 4 IDE to program the session

beans that perform server-side business logic on behalf of clients in your Enterprise

JavaBeans application. This chapter discusses the process of creating and working

with stateless and stateful session beans.

A session bean of either type can use the EJB container to manage transactions, or

you can code a session bean to manage its own transactions. Session beans access

persistent data using the JDBC API and the Java Transaction API (JTA). A session

bean can manage one or more entity beans.

The IDE provides wizards that help you create the parts of an enterprise bean: a

bean class and its two or four interfaces. The default is a remote interface and a

home interface, but you can substitute or add a local interface and a local home

interface. Much of the task of creating the session bean is automated for you.

When you’re programming session beans, you have many options in addition to

those described in this chapter. Although the Sun ONE Studio IDE is designed to

take care of much of your coding work, the IDE also supports those options flexibly

and leaves many decisions up to you. For detailed instructions in coding session

beans, refer to the resources listed in “Before You Read This Book” on page xviii, or

to one of the many excellent texts on programming enterprise beans.
47

Using the EJB Builder With Session
Beans

The EJB Builder is a collection of wizards, property sheets, and editors with which

you can build enterprise beans consistently and easily. To see if the EJB Builder is

installed, go to the main window and choose Tools → Options → IDE Configuration

→ System → Modules → J2EE Support. If you see EJB 2.0 Builder in the list of

modules, and the Enabled field in the property sheet is set to True, the EJB Builder is

ready for use.

You can take several approaches to creating your session beans in the Sun ONE

Studio IDE. However, you get the most comprehensive support and, in general, the

fastest path to bean completion, if you use the approach recommended in this

chapter. The methodology described here takes full advantage of the IDE’s ability to

ensure consistency and its adherence to the J2EE standard.

For best results, use the EJB Builder to program session beans by:

■ Creating a session bean and its required classes.

When you finish the EJB Builder wizard’s short sequence, you have the

framework of your session bean. The bean’s three (or five) classes and a logical

node are shown in the Explorer’s Filesystems tabbed pane. The wizard generates

declarations for all classes, and you supply the methods’ implementations.

The logical node is the best place from which to work with a session bean. All

logical nodes appear in the Explorer with this icon:

■ Adding methods, parameters, and exceptions.

Use the IDE’s GUI support as described later in this chapter. You can add a

method to a bean by using a dialog box available from the contextual menu or by

directly editing the set of required classes.

■ Setting values in a bean’s deployment descriptor.

Use the session bean’s property sheet, available at the logical node, to edit

properties.

From a session bean’s logical node, you can validate the bean. You can also use the

IDE’s testing feature against your bean.
48 Building Enterprise JavaBeans Components • September 2002

Selecting a Session Bean Type

A session bean handles interaction between a client and an application service; the

duration of this interaction is the session. Should your session bean be stateful or

stateless? Should it manage its own transactions or have its container manage them?

All of these choices are discussed next.

The EJB Builder is designed to support all of these choices, and you use the same

wizard to generate the session bean’s infrastructure. Later, you finish specifying each

type of session bean.

Details follow in these sections:

■ “Stateless or Stateful Session Beans” on page 49

■ “Container-Managed or Bean-Managed Transactions” on page 51

Stateless or Stateful Session Beans

The main purpose of a session bean is to perform work on behalf of a client

application, that is, to help a client carry on a conversation with one or more entity

beans on the server side. When such a conversation consists of more than a simple

question and a simple answer, the conversation’s manager (that is, the session bean)

must remember certain information until the conversation is finished. In that case,

the session bean must have state. A stateless session bean might manage a less

complex conversation.
Chapter 3 Developing Session Beans 49

A more detailed discussion of this choice is in Chapter 2. TABLE 3-1 highlights some

of the design considerations.

TABLE 3-1 Deciding Between Stateless and Stateful Session Beans

Issue Stateless Stateful

Scope A stateless session bean manages a

simple interaction between a client

and an entity, and calls only one

method per session.

A stateful session bean manages a

more complex interaction between a

client and an entity, and calls more

than one method per session.

Initialization A stateless bean carries no data

that must be initialized.

A stateful bean’s state must be

initialized. For example, if the bean is

designed to set up access to remote

resources, it acquires a reference to a

resource factory.

Information

saved

During its session, a stateless bean

saves no state information

between method invocations.

During its session, a stateful bean

maintains a conversational state

between the client and server. It saves

state information between method

invocations but discards the

information when the session ends.

Relationship

with clients

A stateless bean instance performs

one operation on behalf of one

client at a time. Once it has

completed a method call, the

instance can be pooled and

reassigned to a different client,

even during the same session.

A stateful bean instance performs a

series of operations on behalf of one

client at a time. Once that client’s

session is complete, the bean instance

is destroyed, not pooled.

Application

examples

A stateless bean could represent a

catalog viewer. The bean’s one

method lets the end user look up

an item in an online catalog.

A stateful bean could represent an

online shopping cart that invokes

several methods to accumulate items

until the end user is ready to start

processing the entire order.
50 Building Enterprise JavaBeans Components • September 2002

Container-Managed or Bean-Managed

Transactions

As is discussed in more detail in Chapter 2, you must specify whether your bean’s

container or the bean itself will manage the bean’s transactions. TABLE 3-2

summarizes the differences between these choices.

In a typical enterprise bean using container-managed transactions (CMT), the

container begins the transaction just before a method starts and commits the

transaction just before the method exits. With CMT, you can let the client control the

transaction. For example, a client might string together a logical business transaction

by using different methods called by a stateful CMT session bean.

In a session bean with bean-managed transactions (BMT), you must specify in the

code where a transaction begins and ends.

TABLE 3-2 Deciding Between Container-Managed and Bean-Managed Transactions

Issue Container-Managed Transactions Bean-Managed Transactions

How transaction

boundaries are set

The EJB container decides

when to begin and commit a

transaction according to the

Java 2 Platform, Enterprise
Edition Specification.

The programmer explicitly

codes the transaction’s

boundaries to obtain finer-

grained control over

transactions.

Transaction manager The container itself is the

transaction manager.

To manage transactions, use

JTA, which can include

transactions for other resources

such as JDBC.

Transactions and

methods

One transaction is allowed

per method. However, a

method does not have to be

associated with a transaction.

This case is more complex, but

you can code more than one

transaction per method.
Chapter 3 Developing Session Beans 51

Defining a Session Bean

The EJB Builder wizard automates much of the task of creating the three default

classes that your session bean requires: a bean class, and the interfaces you choose

(remote, local, or both remote and local). To define a session bean, you take the

following steps:

1. Select or create a package to contain the session bean.

2. Use the EJB Builder wizard to generate the infrastructure of your session bean.

3. Add create and business methods to the bean’s code.

4. Complete the bodies of the methods you added.

These basic steps are explained in detail next.

Creating a Package

If you need to create a package to house your session bean, select a filesystem, right-

click, and choose New Package.

Starting the EJB Builder Wizard

When you’re ready to create a session bean, do as follows:

1. In the IDE’s main window, choose View → Explorer to open the Explorer window.

2. In the Filesystems pane of the Explorer, select the package where you want your
session bean to reside.

3. Right-click and choose New → J2EE → Session EJB.

The EJB Builder wizard appears. Notice that the panel on the left shows the current

step and the steps you still must complete before your entity bean is created.
52 Building Enterprise JavaBeans Components • September 2002

Generating the Default Session Bean

In the EJB Builder’s Session Bean Name and Properties pane, you must make choices

about state, transaction type, and type of interfaces. Do as follows:

1. Type a name for your session bean, and select the type of session bean you need.

Click the appropriate buttons to specify your bean’s state, transaction mode, and

which type of interfaces to implement. FIGURE 3-1 shows your choices. Notice the

defaults: Stateless, Container-Managed, and Remote Interface Only.

FIGURE 3-1 Possible Wizard Selections for a Stateless (or Stateful BMT) Session Bean

Note – The selections you make in this first pane of the wizard determine the code

that the wizard generates. If you later want to change any of these most basic

selections, you can use the bean’s property sheets, as described in Chapter 8.
Chapter 3 Developing Session Beans 53

2. Click Next.

The Session Bean Class Files pane appears as shown next for a stateless session bean.

For a stateful session bean, you have an additional selection to make: Session

Synchronization.

This selection is explained in TABLE 3-4 and in “Using Session Synchronization” on

page 65.

3. Check the bean class and interfaces, and change them if necessary.

The classes that make up your session bean are shown with their paths in this pane.

■ You can change the package location of the bean.

■ You can use a Modify button to change any of the class names, specifying either a

class that already exists or creating a new one. For example, you might be

implementing a bean whose home and remote interfaces have already been

specified, and now you want to generate a new bean class.

If you specify any classes outside the named package, the resulting bean classes

appear differently than shown in FIGURE 3-2.

■ Don’t change the superclass of your bean’s interfaces. (The IDE’s code generator

delegates to the superclass implementation, if one exists. However, as a general

principle, you should inspect the code.)
54 Building Enterprise JavaBeans Components • September 2002

Before you change these fields, also consider the following points:

■ Server requirements. The EJB Builder wizard lets you move parts of the session

bean to other locations. For example, you can change the package name on one or

more of the related objects so that the bean class is in one directory and the home

and remote interfaces are in another. First, however, you should find out whether

the application server you plan to use supports this distribution of files.

■ Reuse of classes. At this point you can, if you want, substitute a bean class or

home and remote interfaces from another session bean. The wizard prompts you

if the class you substitute is missing any required methods or exceptions.

■ Package and directory names. Use valid Java identifiers.

4. Click Finish when you’re done.

The wizard automatically generates the parts of your session bean’s infrastructure.

These parts are discussed next.

Looking at a Session Bean’s Classes

The EJB Builder wizard generates the default session bean classes for you and sets

up the relationships between all the classes. FIGURE 3-2 shows how a typical session

bean (all of whose classes are in the same package) appears in the Explorer’s

Filesystems pane.

FIGURE 3-2 Default Classes of a Typical Session Bean With Remote Interfaces

The nodes marked with the class icon represent classes of the session bean. The

node marked with the bean icon is a logical node for the session bean. Do all

your editing in the logical node. The example bean’s primary nodes are described

next.

■ The remote interface extends the javax.ejb.EJBObject interface and provides

signatures for the session bean’s business methods that are called from outside

the bean’s EJB module.

■ The bean class implements the javax.ejb.SessionBean interface and

implements the session bean’s methods.

■ The home interface extends the javax.ejb.EJBHome interface and provides

signatures for the session bean’s create methods that are called from outside the

bean’s EJB module.

Remote interface

Bean class
Home interface

Logical node
Chapter 3 Developing Session Beans 55

■ If you chose a local interface, you see a node labeled Local bean_name. This

interface extends the javax.ejb.EJBLocalObject interface and provides

signatures for the session bean’s business methods that are called from within the

bean’s EJB module.

■ If you chose a local home interface, you see a node labeled Local bean_nameHome.
This interface extends the javax.ejb.EJBLocalHome interface and provides

signatures for the session bean’s create methods that are called from within the

bean’s EJB module.

■ The logical node is created in the Explorer to group all the elements of your

enterprise bean and let you work with them more conveniently.

Expanding the Nodes

When you expand the four nodes under your session bean’s package node, you see

something like the tree view in FIGURE 3-3.

FIGURE 3-3 Explorer’s Detailed View of a Typical Session Bean With Remote Interfaces

Reviewing the Generated Classes

The EJB Builder has automatically placed a create method and several life-cycle

methods in your session bean. These methods are discussed next.

The three main parts
of this session bean

Default create method

No business methods
yet

Remote interface
Logical node

Bean class
Home interface
56 Building Enterprise JavaBeans Components • September 2002

Default Create Method

The wizard places the following ejbCreate method signature in every session bean

class:

The corresponding create method is placed in the session bean’s home interface:

See “Completing Create Methods” on page 60 for more information.

Life-Cycle Methods

The wizard adds the life-cycle methods shown next to the bean class of any session

bean.

public void ejbCreate() {
}

public interface AcctBalHome extends EJBHome {
public AcctBal create()

throws RemoteException, CreateException;
}

public void setSessionContext(SessionContext context) {
this.context = context; }

public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}

Chapter 3 Developing Session Beans 57

TABLE 3-3 shows the purposes of these methods in the session bean class.

If you have opted to have your session bean use the session-synchronization

interface, the wizard generates three more methods in the bean class:

TABLE 3-3 Purpose of Life-Cycle Methods In a Session Bean Class

Method Purpose

setSessionContext This method lets you store the SessionContext reference in a

field and populate instance variables. You can use it to allocate

resources that last for the session bean’s lifetime, resources such

as a database-connection factory. By default, the EJB Builder

wizard generates code that assigns the SessionContext to a

field named context .

ejbActivate This method initializes the bean, prepares it for use, and acquires

the resources needed by the instance.

ejbPassivate Before the bean instance is passivated, this method releases the

resources the bean was using.

ejbRemove This method releases resources that were acquired within the

ejbCreate and business methods.

public void afterBegin() {
}
public void beforeCompletion() {
}
public void afterCompletion(boolean committed) {
}

58 Building Enterprise JavaBeans Components • September 2002

The session-synchronization methods are explained in TABLE 3-4.

Completing Your Session Bean

The steps to completion of your session bean vary by the type of bean you have

chosen. Guidelines follow for:

■ Completing Create Methods

■ Completing Life-Cycle Methods

■ Adding Business Methods

■ Coding Transactions

Using Recommended Approaches When Working

With Enterprise Beans

Appendix A discusses the best ways to make changes in your enterprise beans, and

the errors and anomalies that you might see if you use other approaches. As a

general rule, you should work through the logical node rather than the individual

class nodes, use the bean’s property sheets or the Customizer dialog box to edit

methods, and use the IDE’s Source Editor to complete or edit any bean code that

isn’t available to you through one of the dialog boxes.

TABLE 3-4 Purpose of Session-Synchronization Methods in a Session Bean Class

Method Purpose and Use

afterBegin This method tells the instance that a new transaction has begun.

The EJB container calls the method right before it calls the

business method. In afterBegin , you can load instance variables

from the database.

beforeCompletion This method tells the instance that a business method has

completed, but the transaction has not been committed yet. This is

the session bean’s last chance to roll back the transaction. If the

database hasn’t yet been updated with the instance variables, you

can code that update in the method body.

afterCompletion This method tells the instance that the transaction has completed.

In its one parameter, the Boolean value true means the

transaction was committed, and false means the transaction was

rolled back. If the transaction failed and was rolled back, this

method can make the session bean refresh its instance variables

from the database.
Chapter 3 Developing Session Beans 59

Completing Create Methods

If your bean is stateless, it takes only one create method, which can have no

parameters. A stateless session bean can contain no user-specific or client-specific

data.

If your bean is stateful, it can have one or more create methods, each of which can

have parameters.

In any case, work under the logical node. Open the create method in the Source

Editor by selecting the node labeled create() , right-clicking, and choosing Open.

Complete the generated create method in the Source Editor.

Completing a Stateless Bean’s Create Method

In a stateless session bean, the create method is often used to connect to resources.

For example, this method can look up a resource-factory reference and store it as a

field, so that JDBC connections can be acquired in later method calls.

Completing a Stateful Bean’s Create Methods

In a stateful session bean, you can use a create method’s parameters to look up a

resource-factory reference or to send client-specific information (such as a user name

and password), as shown in CODE EXAMPLE 3-1. The method can store the

information for later use. Notice that this create method uses a helper class,

IdVerifier .

CODE EXAMPLE 3-1 Create Method in a Stateful Session Bean

public void ejbCreate(String userid, String pwd)

throws CreateException {

if (userid == null) {

throw new CreateException("Please enter a user ID.");

}

else {

this.userid = userid;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(pwd)) {

this.pwd = pwd;

}

60 Building Enterprise JavaBeans Components • September 2002

Adding a Create Method to a Stateful Bean

To add one or more create methods to your stateful session bean, do as follows:

1. Select the bean’s logical node, right-click, and choose Add Create Method.

The Add Create Method dialog box appears.

2. Type a method name starting with create , add parameters and exceptions as
necessary, and click OK.

The create method signature is generated in your bean’s home interface and the

corresponding ejbCreate method is generated in the bean class.

3. Finish any coding needed in the Source Editor.

Under the bean’s logical node, expand the Classes node, select Bean Class , right-

click, and choose Open.

Completing Life-Cycle Methods

The EJB Builder has generated four life-cycle methods for you. For a stateless session

bean, the generated methods are sufficient. In a stateful session bean, you might

need to add code to two of these methods: ejbPassivate and ejbActivate .

For example, your stateful bean might contain nonserializable fields that became

serializable by replacing references. Or, your bean’s conversational state might

contain open resources, which the container can’t retain when the bean’s instance is

passivated. In each case, you must complete the ejbPassivate method to release

the nonserializable fields. Then complete the corresponding ejbActivate method

to restore those fields.

else {

throw new CreateException("Invalid password: " + pwd);

}

contents = new Vector();

}

CODE EXAMPLE 3-1 Create Method in a Stateful Session Bean (Continued)
Chapter 3 Developing Session Beans 61

Completing the ejbPassivate Method

This method must leave the instance fields ready to be serialized by the container.

For example, as shown in CODE EXAMPLE 3-2, you must close all JDBC connections in

this method and assign the instance’s fields that store the connections to null .

Completing the ejbActivate Method

This method must make the instance fields available again, as demonstrated in

CODE EXAMPLE 3-3.

CODE EXAMPLE 3-2 ejbPassivate Method

public void ejbPassivate() {

 try {

 con.close();

 } catch (Exception ex) {

 throw new EJBException("ejbPassivate Exception: " +

ex.getMessage());

} finally {

con = null;

 }

 }

CODE EXAMPLE 3-3 ejbActivate Method

public void ejbActivate() {

 try {

 InitialContext ic = new InitialContext();

 DataSource ds = (DataSource) ic.lookup(dbName);

 con = ds.getConnection();

 } catch (Exception ex) {

 throw new EJBException("ejbActivate Exception: " +

ex.getMessage());

 }

 }
62 Building Enterprise JavaBeans Components • September 2002

Adding Business Methods

In a session bean, you add business methods to run business tasks for the client.

Such a method in a session bean might access a database, or it might manage one or

more entity beans that use their persistent fields to manipulate database entities.

To add a business method to your stateful session bean, do as follows:

1. Select the bean’s logical node, right-click, and choose Add Business Method.

The Add Business Method dialog box appears.

2. Name the method, check to be sure the return type is appropriate, add parameters
and exceptions as necessary, and click OK.

The business method signature is generated in your bean’s remote interface and the

corresponding method in the bean class.

3. Finish any coding needed in the Source Editor.

Under the bean’s logical node, expand the Classes node, select Bean Class , right-

click, and choose Open.

If your session bean needs access to the database, you might be able to reduce JDBC

calls in the bean (and save system resources and network bandwidth) by

encapsulating database access in a data access object (a DAO). A DAO can do the

actual work of fetching data for the session bean. Using a DAO might make your

session bean’s code more simple and straightforward, and it might free your bean

from dependence on a particular vendor tool or database.

Coding Transactions

The way you code transactions differs depending on whether your session bean is

stateful or stateless, and whether it uses BMT or CMT. Guidelines follow for

specifying transaction boundaries, dealing with rollbacks, and using the

session-synchronization interface.
Chapter 3 Developing Session Beans 63

Understanding Transaction Spans

The allowable span of a transaction differs according to the type of session bean.

TABLE 3-5 summarizes those differences. Notice that CMT and statefulness give a

bean more flexibility.

Specifying Transaction Boundaries and Rollbacks

This section discusses guidelines for coding the starting and ending points of

transactions in both CMT and BMT beans. Two start with, keep in mind these two

general rules:

■ Nested transactions are not allowed in session beans or in JTA code.

■ Code is easier to maintain when JDBC and JTA transactions are not mixed. JTA is

generally preferable because it can include transactions for other resources,

including JDBC.

In CMT Beans

In a CMT bean, all transactions’ boundaries are set by the EJB container, which

means that you don’t specify where a transaction begins or ends. Usually, the EJB

container begins a transaction just before a method starts and commits the

transaction just before the method ends.

Don’t call any method that could interfere with the container’s transaction

boundaries. Problematic methods are:

■ commit , setAutoCommit , and rollback methods of java.sql.Connection
■ getUserTransaction method of javax.ejb.EJBContext
■ Any method of javax.transaction.UserTransaction

TABLE 3-5 Relationship Between Transactions and Methods

In a stateless BMT bean (that manages its

own transactions), a transaction can span

only one method.

In a stateful BMT bean, a transaction can

span one or more methods on the same

session bean.

In a stateless CMT bean (whose transactions

are managed by the container), a transaction

can span more than one method, but each

method must be on a different session bean.

In a stateful CMT bean, a transaction can

span one or more methods on the same

session bean.
64 Building Enterprise JavaBeans Components • September 2002

A session bean can roll back a container-managed transaction in two ways:

■ If a system exception is thrown, the container automatically rolls back the

transaction.

■ Calling the setRollBackOnly method of javax.ejb.EJBContext tells the

container to roll back the transaction even if an application exception is thrown.

In BMT Beans

In a BMT bean, you must explicitly code the beginning and ending of each

transaction. Demarcate transaction boundaries explicitly using the interface

javax.transaction.UserTransaction . In the following code sample, the JTA

interface is used:

When the updates specified by a transaction are saved, the transaction ends with a

commit. When the transaction fails, it is rolled back, which means that the effects of

all statements in the transaction are undone. When you provide for rollbacks in a

session bean with BMT, don’t use the methods getRollbackOnly or

setRollbackOnly . Those two methods are for use only with an EJB container.

Using Session Synchronization

A stateful CMT session bean can use the session-synchronization interface, which

gives the bean more control over database data cached within transactions.

This interface provides callback methods that the EJB container calls before starting,

committing, or rolling back a transaction. Using this interface, a session bean’s

instance variables are automatically synchronized with their corresponding values in

the database at specific stages in the transaction. If the transaction doesn’t complete,

the session bean can roll back the values of the bean’s instance variables.

■ afterBegin . The container calls this method on the session bean before the first

business method within a transaction. Youcan code this method to do any

database work required by the instance within the scope of the transaction.

■ beforeCompletion . The container calls this method when the session bean’s

client has completed work on its current transaction but before committing the

resource managers used by the instance. You can code this method to write out

UserTransaction ut = ejbContext.getUserTransaction();
ut.begin();
// perform transactional work here
ut.commit();
Chapter 3 Developing Session Beans 65

any database updates the bean has cached. In this method, you can also cause the

transaction to roll back by invoking the setReadbackOnly method on its session

context.

■ afterCompletion . The container calls this method to signal that the current

transaction has completed. The status True is sent if the transaction committed,

and False if the transaction was rolled back. You can code this method to

manually reset the instance’s state if the transaction was rolled back.

To add the session-synchronization interface to your session bean, make the

following choices in the wizard:

1. In the first pane of the session bean wizard, in the State section, choose Stateful.

2. In the second pane of the wizard, choose Implement Session Synchronization
Interface.

If you make these selections, code like that shown in CODE EXAMPLE 3-4 is inserted

into your session bean class. In the example, checkingBalance and

savingBalance variables have been loaded into the afterBegin method.

The sample afterCompletion method shown in CODE EXAMPLE 3-5 allows the

account-balance fields in the session bean to be refreshed from the database if the

transaction fails and is rolled back.

CODE EXAMPLE 3-4 Example of an afterBegin Method

public void afterBegin() {

System.out.println("afterBegin()");

try {

checkingBalance = selectChecking();

savingBalance = selectSaving();

} catch (SQLException ex) {

throw new EJBException("afterBegin Exception: " +

ex.getMessage());

}

}

66 Building Enterprise JavaBeans Components • September 2002

After Creating Your Session Bean

Your session bean still needs to be prepared to work in its eventual environment. For

information on the deployment descriptor, how to use property sheets, and other

considerations of module assembly and application deployment, see Chapter 8.

Recommendations for working with finished enterprise beans are given in

Appendix A.

Further Reading

Enterprise beans can be a very powerful and flexible part of your application.

Creating the basic parts of an enterprise bean can be very simple, especially with a

tool like the Sun ONE Studio IDE. However, completing the bean so that it fulfills

the needs of your application can be very complex. For details, refer to Enterprise
JavaBeans Specification, version 2.0 at:

http://java.sun.com/products/ejb/docs.html

CODE EXAMPLE 3-5 Example of an afterCompletion Method

public void afterCompletion(boolean committed) {

System.out.println("afterCompletion: " + committed);

if (committed == false) {

try {

checkingBalance = selectChecking();

savingBalance = selectSaving();

} catch (SQLException ex) {

throw new EJBException("afterCompletion SQLException: " +

ex.getMessage());

}

}

}

Chapter 3 Developing Session Beans 67

http://java.sun.com/products/ejb/docs.html

68 Building Enterprise JavaBeans Components • September 2002

CHAPTER 4

Developing CMP Entity Beans

The EJB Builder in the Sun ONE Studio IDE enables you to program the entity beans

you need to represent data in your J2EE application. This chapter focuses on how

you develop individual entity beans with container-managed persistence (CMP

entity beans).

The IDE provides wizards that let you create the classes required for an Enterprise

JavaBeans component (enterprise bean): a bean class, interfaces (local, remote, or

both), and sometimes a primary-key class. Much of the task is automated for you.

When programming entity beans, you have many options in addition to those

described in this chapter. Although the Sun ONE Studio IDE is designed to take care

of much of your coding work, the IDE also supports those options flexibly and

leaves many decisions up to you. For more information, refer to the resources listed

in “Before You Read This Book” on page xviii, or to one of the many excellent texts

on programming enterprise beans.

Using the EJB Builder With CMP Entity
Beans

The EJB Builder is a collection of wizards, property sheets, and editors with which

you can build enterprise beans consistently and easily. To see if the EJB Builder is

installed, go to the main window and choose Tools → Options →
IDE Configuration → System → Modules → J2EE Support. If you see EJB 2.0 Builder

in the list of modules, and the Enabled field in the property sheet is set to True, the

EJB Builder is ready for use.
69

You can take several approaches to creating entity beans in the Sun ONE Studio IDE.

However, you get the most comprehensive support and, in general, the fastest path

to bean completion, if you use the approach recommended in this chapter. The

methodology described here takes full advantage of the IDE’s ability to ensure

consistency and its adherence to the J2EE standard.

For best results, use the EJB Builder to program entity beans by:

■ Creating an entity bean and its required classes. After using the EJB Builder

wizard, you have the framework of your entity bean. The bean’s three or four

necessary classes and a logical node are shown in the Explorer’s Filesystems

tabbed pane. The wizard generates declarations for two of these classes: the home

and remote interfaces. The generated bean class contains declarations of required

methods, as well as any persistent fields you specified. You then supply the

implementations of the required methods.

The logical node is the best place from which to work with an entity bean. All

logical nodes appear in the Explorer with this icon:

■ Adding methods, parameters, and exceptions. Use the IDE’s GUI support as

described later in this chapter. You can add a method to a bean by using a dialog

box available from the contextual menu or by directly editing the set of required

classes.

■ Setting values in a bean’s deployment descriptor. Use the entity bean’s property

sheet, available at the logical node, to edit properties.

From an entity bean’s logical node, you can validate the bean, add methods to its

classes, add fields, specify deployment-related properties for the bean, create an EJB

module to facilitate the bean’s deployment in a production application. You can also

use the IDE’s testing feature against your bean.
70 Building Enterprise JavaBeans Components • September 2002

Comparing CMP and BMP Entity Beans

Before you begin creating an entity bean, first consider whether to use CMP or BMP.

The IDE’s EJB Builder supports either type of entity bean, but you use different

processes to create the two types. A more detailed discussion of this choice is in

Chapter 2; here, TABLE 4-1 highlights some of the design considerations.

The rest of this chapter addresses how to create CMP entity beans and issues to

consider during development. For the process of creating BMP entity beans, see

Chapter 6.

TABLE 4-1 Deciding Between CMP and BMP Entity Beans

Issue CMP BMP

Relationship

with the

database

A CMP entity bean depends on

its container to manage its

relationship with a database, and

is not dependent on any

particular data store.

A BMP entity bean handles its own

relationship with a specified database.

Persistence The container manages database

access for this and every other

CMP entity bean in the

application. The bean code does

not include calls to the database.

The bean’s persistent state is

represented by virtual persistent

fields.

A BMP entity bean contains all the code

connecting it to a specified database. A

BMP entity bean with persistent data

(coded as instance variables) also must

contain all necessary calls to the

database. All SQL code must be added

by hand. If your EJB container doesn’t

provide adequate persistence mapping

to the data store, you must create a BMP

entity bean.

Process The basic structure of a CMP

entity bean (the default classes)

is simpler and quicker to create.

Less coding is needed.

A BMP entity bean requires more

coding, which might be an attractive

option for experienced JDBC

programmers.

Design scope A single CMP entity bean

normally represents only one

table, but a bean can be mapped

to two or more tables.

A BMP entity bean can be hand-coded

to represent one or more tables.

Power and

flexibility

A CMP entity bean depends on

its container for access to a

database, but this bean can be

deployed in many different

database environments.

An individual BMP entity bean is

manually programmed for database

access. A BMP entity bean works only in

the environment for which it was

written.
Chapter 4 Developing CMP Entity Beans 71

Creating Sets of Related CMP Entity
Beans

Many J2EE applications contain related CMP entity beans. That is, two CMP entity

beans can have a relationship that is represented by a container-managed

relationship (CMR) field. This relationship is analogous to the situation in a database

or database schema when two entities or tables contain a related column. For

example, a schema might include the tables Customer , Order , LineItem , and

Part . Order has a foreign key to Customer , LineItem has a foreign key to Order ,

and LineItem also has a foreign key to Part .

The IDE makes it easy to create a whole set of related CMP entity beans at once.

When you use the EJB Builder wizard to generate a set of CMP entity beans to

manipulate related database entities, the wizard recreates the entities’ relationships

in your CMP entity beans, and lets you specify additional relationships between

beans. These relationships are represented in a CMP entity bean as CMR fields, and

they can be edited for cardinality, type, and cascade-delete capability.

If you want to create a set of related CMP entity beans, or if you want to preserve

foreign-key relationships between two entity beans, see Chapter 5.

Defining a CMP Entity Bean

The EJB Builder wizard automates much of the task of creating the minimum classes

that your CMP entity bean requires: a bean class, and the interfaces you choose (local,

remote, or both local and remote). If you specify a composite primary key, or if a table

you chose requires a composite primary key, the wizard also creates a primary-key

class for you. To define a CMP entity bean, you take the following steps:

1. Select or create a package to contain the bean.

2. Use the EJB Builder wizard to generate the infrastructure of your CMP entity

bean.

3. As appropriate, add create, business, finder, select, and home methods to the

bean.

4. Complete the bodies of the methods you added.

5. If necessary, add a primary-key class.

These basic steps are explained in detail next.
72 Building Enterprise JavaBeans Components • September 2002

Creating a Package

If you need to create a package to house your entity bean, select a filesystem, right-

click, and choose New Java Package.

Having a Data Source Ready

A CMP entity bean is modeled on an actual table from a database, and the bean’s

persistent fields are meant to echo the table’s columns. Using the EJB Builder

Wizard, you can obtain the table from a live database connection or a database

schema object (a snapshot of a database). Or, in one of the wizard’s panes, you can

manually specify the table’s columns as your bean’s persistent fields, and then at

deployment the fields can be mapped to database columns.

Notice that EJB containers vary in how they treat column-to-field mappings. The

PointBase database server is included in the IDE and represented in the following

examples. If you’re using another database server with the IDE, refer to its

documentation for details.

Consider the following when deciding which form of data source to use:

■ Live database connection. If you plan to build your CMP entity bean from a table

in a live database, the database server must be running, and you must be

connected to it. You can do this either before or after you start the EJB Builder

Wizard. The following instructions pertain to starting the server before starting

the wizard. Instructions for starting the server within the wizard are in “Selecting

a Table From a Database Connection” on page 77.

First, before you start the IDE, make sure that its 4 lib/ext directory contains

the driver files for any database that was not automatically loaded when the IDE

was installed. This is the only way to ensure that you can select the right database

driver when creating your new schema. You can’t mount the driver files in the

Explorer or place the driver files in the CLASSPATH envvariable.

Starting: To start the PointBase database, choose Tools → PointBase Network

Server → Start Server from the main window.

Connecting: To connect to the running PointBase database, go to the Runtime

tabbed pane of the Explorer. Expand the Databases and Drivers nodes. Select the

node whose label begins with jdbc:pointbase and whose icon appears broken

in two. Right-click the node and choose Connect. The PointBase icon becomes

whole, and sub-nodes appear for the database tables, views, and procedures.

This is the best way to connect to the database, especially if you’re going to be

creating more than one entity bean. Alternatively, you can start the database

before you start the EJB Builder Wizard, and then you can connect to the database

from within the wizard. However, if you do that, you must reconnect for every

entity bean you create.
Chapter 4 Developing CMP Entity Beans 73

■ Database schema. If you plan to build your bean from a table in a database

schema, you must have the schema available in the Filesystems pane of the IDE’s

Explorer window.

Starting the EJB Builder Wizard

When you’re ready to create a single CMP entity bean, do as follows:

1. In the IDE’s main window, choose View → Explorer to open the Explorer window.

2. In the Filesystems pane of the Explorer, select the Java package where you want
your CMP entity bean to reside.

3. Right-click and choose New → J2EE → CMP Entity EJB.

The EJB Builder wizard appears. Notice that the panel on the left shows the current

step and the steps you still must complete to generate the infrastructure of your

CMP entity bean.

Generating a CMP Entity Bean’s Infrastructure

In the EJB Builder‘s CMP Entity Bean Name and Properties pane, as shown in

FIGURE 4-1, you name your CMP entity bean. Here, you also make choices about

where your bean will get its persistent fields and which kinds of interfaces your

bean will have. You can also change the bean’s package location, if you like.
74 Building Enterprise JavaBeans Components • September 2002

FIGURE 4-1 Selections in the EJB Builder Wizard for CMP Entity Beans

The following tables describe these selections and point to your next instructions in

this chapter.

In the radio-button box labeled Source for Entities and Fields, consider the following

selections.

Table From

Database

Connection

Select this if your CMP entity bean will

represent a table from an existing

database.

See “Selecting a Table From

a Database Connection” on

page 77.

Table From

Database

Schema Object

Select this if you have a database schema

available, and you don’t want to connect

to a live database.

See “Selecting a Table From

a Database Schema Object”

on page 79.
Chapter 4 Developing CMP Entity Beans 75

In the radio-button box labeled Component Interfaces, consider the following

selections.

When you have made your selection and clicked Next, the wizard presents

appropriate follow-up tasks, which are described next.

Specifying Persistent Fields From a Database Table

If you have chosen to specify persistent fields from a database, you must already be

connected to a live database or have available an existing database schema object.

For more information, see “Having a Data Source Ready” on page 73 and

“Capturing a Database Schema” on page 79. The EJB Builder wizard maps columns

from a table of the database (Table from Database Connection) or from a schema

(Table from Database Schema Object) to create your entity bean’s persistent fields.

Both choices provide the same result in your finished entity bean.

Most application servers let you map a bean’s CMP fields to database columns at

deployment time. The server then dynamically generates SQL statements for that

mapping within the server process. However, the J2EE reference implementation

server (the RI) generates static SQL statements that encode its mapping. For this

reason, any changes must be done by editing the generated SQL statements directly.

This editing is discussed in Chapter 8.

CMP 2.x Bean

Class

Select this if your CMP entity bean will be

based on an existing bean class that

follows the EJB 2.0 specification.

See “Using a CMP 2.x Bean

Class” on page 80.

CMP 1.x Bean

Class

Select this if your CMP entity bean will be

based on an existing bean class that

follows the EJB 1.x specification.

See “Using a CMP 1.x Bean

Class” on page 81.

Create From

Scratch

Select this if you will specify all the CMP

fields yourself.

See “Creating Your Bean’s

Persistent Fields From

Scratch” on page 82.

Remote Interface Only Select this if an external client calls methods on your CMP entity

bean, and your bean is never called by local clients.

Local Interface Only

(Default)

Leave this selection active if your bean is called only through its

local interfaces, never directly by an external client.

Both Remote and Local

Interfaces

Select this if your bean is called by both external and local

clients (which can also be other beans).
76 Building Enterprise JavaBeans Components • September 2002

Selecting a Table From a Database Connection

If you have direct access to the database itself, and if contention among database

users is not a problem, you might want to use the direct database connection. (If you

need to start and connect to a database, see “Having a Data Source Ready” on

page 73.)

You should now be in the wizard’s Table from Database Connection pane. The

databases to which you can connect your entity bean appear in the wizard pane’s

tree view. Do as follows:

1. Select a database.

Depending on the status of the database, use one of the following approaches.

■ The database is installed but no connection is available. If you have a database

installed but no connection is defined, click Add Connection (or New

Connection). In the dialog box that appears or is enabled, do as follows:

a. Select the database from the Name combination box.

b. Check the Driver field to make sure the path is correct.

c. Specify the required information in the Database URL field.

d. Supply a user name and password if any are needed for your database.

e. Check the Remember Password During This Session box if appropriate.

f. Click OK. In the wizard’s Table from Database Connection pane, click Next.

The connection becomes available.

■ The database is installed but the connection is defined. If you have a database

installed and a connection is defined but not active, the database node is shown

as a broken icon. Do as follows:

a. Select the database and click Connect to Database.

You see the broken halves become a whole icon.

b. Expand the database node until the Tables node appears.

If you get an Unable to connect error message, make sure that the database

is up and running.

■ The database is installed and the connection is active. If your connection to the

database is already defined and active (for example, if you are now creating a

second entity bean using the same connection as the first), the icon appears

whole, not broken. In this case, all you need to do is expand the database node to

find the Tables node.
Chapter 4 Developing CMP Entity Beans 77

2. Descend through the selected database’s hierarchy until you see a node for the
table that you want to map to your bean. Select a table and click Next.

You see the CMP Fields pane. This pane displays side by side the columns in your

database table and the corresponding fields that the EJB Builder Wizard will create

in your new CMP entity bean. The wizard will map those database columns to your

bean’s persistent fields.

3. Check the Java field names and types, and make any necessary changes.

The IDE has assigned default names and types to your Java fields. You can change

the names and types if necessary, selecting a field and clicking the Edit button to see

other permissible data types.

For more information, refer to Chapter 8, “Mapping SQL and Java Types” of Getting
Started with the JDBC API. You can find the document at:

http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/
GettingStartedTOC.fm.html

4. Click Next. (Or, if you don’t want to examine or change the default classes that the
wizard assigns, skip this step and click Finish.)

The CMP Entity Bean Class Files pane of the wizard appears, listing the parts of

your entity bean’s infrastructure: the bean class, the interfaces you chose (local,

remote, or both), and the type of the primary-key class.

In this pane, you can accept or change your bean’s classes. The wizard lets you

specify another bean class, interface, or primary-key class if you wish. As you see if

you click one of the Modify buttons, you can specify another package for the class or

interface to reside in or to come from.

■ For example, you can change the package name on one or more of the related

objects so that the bean class is in one directory and the home and remote

interfaces are in another.

However, first you should find out whether the application server you plan to use

supports this distribution of files.

■ If you specify an existing class or interface that is missing any required methods

or exceptions, you get an error message.

■ You must use valid Java identifiers in package and directory names.

5. Click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.

See “Looking at a CMP Entity Bean’s Classes” on page 84 for more discussion.
78 Building Enterprise JavaBeans Components • September 2002

http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html

Capturing a Database Schema

You might need to build your CMP entity bean on a table from a database schema

rather than connecting directly to the database. If you don’t already have a schema,

you can use the IDE’s Database Schema wizard to create one. First, if you need to

start and connect to a database, see “Having a Data Source Ready” on page 73. Then

do as follows:

1. In the Sun ONE Studio IDE, open the Database Schema wizard in either of the
following ways:

■ Select the package node in the Explorer. Right-click and choose

New → Databases → Database Schema.

■ From the main window, choose Tools → Capture Database Schema.

2. As directed by the wizard, specify the database to be used and select the tables to
be included in your schema.

The progress bar shows the number of tables and views captured.

Selecting a Table From a Database Schema Object

If database access is restricted but schema objects have been made available, you

might want to build your CMP entity bean using a table from a schema. (If you

don’t have a schema available and need to create one, see the foregoing section.)

Having selected Table from Database Schema Object on the first pane of the wizard,

you should now be in the Table from Database Schema Object pane. The directories

that have been mounted in the Explorer’s Filesystems pane appear in the wizard

pane. Do as follows:

1. Locate the database schema that contains the table on which you will build your
bean.

Descend through the selected schema’s hierarchy until you see a node for the table

that you want to map to your bean.

2. Expand the schema’s nodes until you find the table you want to use. Select the
table.

The Next and Finish buttons become active.

3. Click Next to review the database columns that will be mapped to your bean’s
persistent fields. (Or, click Finish to skip this step and the next, and have the
wizard generate your bean’s infrastructure.)

The CMP Fields pane appears, displaying side by side the columns in your database

table and the corresponding fields that the EJB Builder will create in your entity

bean. You can change field names and types if necessary, selecting a field and

clicking the Edit button to see other permissible data types.
Chapter 4 Developing CMP Entity Beans 79

4. Click Next to examine or change the default classes that the wizard assigns. (Or,
click Finish to skip this step and have the wizard generate your bean’s
infrastructure.)

The CMP Entity Bean Class Files pane of the wizard appears, listing the parts of

your entity bean’s infrastructure: the bean class, the interfaces you chose (local,

remote, or both), and the type of the primary-key class.

In this pane, you can accept or change your bean’s classes. The wizard lets you

specify another bean class, interface, or primary-key class if you wish. As you see if

you click one of the Modify buttons, you can specify another package for the class or

interface to reside in or to come from.

■ For example, you can change the package name on one or more of the related

objects so that the bean class is in one directory and the home and remote

interfaces are in another.

However, first you should find out whether the application server you plan to use

supports this distribution of files.

■ If you specify an existing class or interface that is missing any required methods

or exceptions, you get an error message.

■ You must use valid Java identifiers in package and directory names.

5. Click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.

See “Looking at a CMP Entity Bean’s Classes” on page 84 for more discussion.

Using a CMP 2.x Bean Class

You might want to base your new CMP entity bean on an existing CMP entity bean

that was created in the EJB 2.0 environment. In the wizard’s CMP Entity Bean Name

and Properties pane, you select CMP 2.x Bean Class and click Next. The wizard then

presents a navigation list from which you pick a bean class.

You should now be in the Select a CMP 2.x Bean Class pane. Do as follows:

1. Navigate to the bean class you want to use, and select the class.

Notice that the IDE presents only the bean class for selection, not the other elements

of the bean. When you have selected the class, the Next button is enabled.

2. Click Next.

The IDE presents the fields of the bean class you selected. Even if the original CMP

entity bean had a primary key, in this pane you must designate one or more fields as

the primary key.

3. Select the field that should be the primary key and click Edit.

The Edit Persistent Field dialog box appears.
80 Building Enterprise JavaBeans Components • September 2002

4. Make any necessary changes, including checking the Primary Key checkbox, and
click OK.

The CMP Fields pane shows the field you edited as the primary key.

Repeat Step 3 and Step 4 as needed for another field, if your bean needs a composite

primary key.

In this pane, you can’t remove a field or add a new field, but you can edit an existing

one.

5. Click Next.

The CMP Entity Bean Class Files pane lists the elements of the CMP entity bean you

are about to create.

If your bean needs to use another interface, use the Modify Interface button to

specify it.

If your bean needs a different primary key class, either a new one or an existing one,

use the Modify Class button to specify it.

6. When you are done, click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.

See “Looking at a CMP Entity Bean’s Classes” on page 84 for more discussion.

Using a CMP 1.x Bean Class

You might want to base your new CMP entity bean on an existing CMP entity bean

that was created in the EJB 1.0 environment. If you choose this option, your bean

will be a version 2.0 Enterprise JavaBean with a CMP version of 1.x, and the bean

will not support EJB 2.0 features like local and local home interfaces.

In the wizard’s CMP Entity Bean Name and Properties pane, you select CMP 1.x

Bean Class. (Notice that, when you’ve made this selection, only remote interfaces are

available.) Click Next. The wizard then presents a navigation list from which you

pick a bean class.

You should now be in the Select a CMP 1.x Bean Class pane. Do as follows:

1. Navigate to the bean class you want to use, and select the class.

Notice that the IDE presents only the bean class for selection, not the other elements

of the bean. When you have selected the class, the Next and Finish buttons are

enabled.

2. Click Next.

The IDE presents the fields of the bean class you selected. Even if the original CMP

entity bean had a primary key, in this pane you must designate one or more fields as

the primary key.
Chapter 4 Developing CMP Entity Beans 81

3. Select the field that should be the primary key and click Edit.

The Edit Persistent Field dialog box appears.

4. Make any necessary changes, including checking the Primary Key checkbox, and
click OK.

The CMP Fields pane shows the field you edited as the primary key.

Repeat Step 3 and Step 4 as needed for another field, if your bean needs a composite

primary key.

In this pane, you can’t remove a field or add a new field, but you can edit an existing

one.

5. Click Next.

The CMP Entity Bean Class Files pane lists the elements of the CMP entity bean you

are about to create.

If your bean needs to use another interface, use the Modify Interface button to

specify it.

If your bean needs a different primary key class, either a new one or an existing one,

use the Modify Class button to specify it.

6. When you are done, click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.

See “Looking at a CMP Entity Bean’s Classes” on page 84 for more discussion.

Creating Your Bean’s Persistent Fields From Scratch

In the EJB Builder’s Entity EJB Type pane, you might have selected Create From

Scratch because your database hasn’t yet been created, you don’t yet have access to

it, or you don’t know its location. Or, you might want the application server to create

the database when the application that contains the enterprise bean is deployed.

Your CMP entity bean’s container might require that your bean be mapped to a

database, but not until the assembly and deployment stage. When you select the

Create From Scratch option, the fields you specify are marked as persistent in the

deployment descriptor, which is later used to notify the container which fields it

should map into the database schema. This mapping is done just before the J2EE

application is deployed.

The IDE gives you the option of setting up your entity bean’s connection by stating

your bean’s Java field names. Later, during preparation for deployment, you can

specify the rest of the database connection information.
82 Building Enterprise JavaBeans Components • September 2002

In the wizard’s CMP Entity Bean Name and Properties pane, do as follows:

1. In the EJB Name field, type a name for your bean.

2. If you want your bean to reside in a different location than shown, use the Browse
button to select an existing Java package.

3. Select Create From Scratch and click Next.

The CMP Fields pane appears. The wizard has automatically supplied your bean one

default CMP field named defaultField .

4. If you want to name your CMP fields at this time, select the default field and click
Edit.

Name and define your field, following these guidelines:

■ Ordinarily, you would specify at least one primary-key field. However, a CMP

entity bean is not strictly required to have a primary key.

■ If your field needs a type not supplied in the combo box, you can specify another

type. Type the fully qualified pathname, for example, java.lang.Integer .

5. Click Add to define each additional persistent field individually.

6. Click Next to examine or change the default classes that the wizard assigns. (Or,
click Finish to skip this step and have the wizard generate your bean’s
infrastructure.)

The wizard’s CMP Entity Bean Class Files pane appears, listing the parts of your

entity bean’s infrastructure: the bean class, the interfaces you chose (local, remote, or

both), and the type of the primary-key class.

In this pane, you can accept or change your bean’s classes. The wizard lets you

specify another bean class, interface, or primary-key class if you wish. As you see if

you click one of the Modify buttons, you can specify another package for the class or

interface to reside in or to come from.

■ For example, you can change the package name on one or more of the related

objects so that the bean class is in one directory and the home and remote

interfaces are in another.

However, first you should find out whether the application server you plan to use

supports this distribution of files.

■ If you specify an existing class or interface that is missing any required methods

or exceptions, you get an error message.

■ You must use valid Java identifiers in package and directory names.

7. Click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder

Wizard. Now let’s look at the generated classes.
Chapter 4 Developing CMP Entity Beans 83

Looking at a CMP Entity Bean’s Classes

The EJB Builder wizard generates the default CMP entity bean classes for you and

sets up the relationships between all the classes. FIGURE 4-2 shows how a typical

CMP entity bean appears in the Explorer’s Filesystems pane. In this example, the

default, Local Interface Only , is in effect. This bean is called only by other

application components running in the same JVM.

FIGURE 4-2 Default Classes of a Typical CMP Entity Bean

Of the four nodes shown in FIGURE 4-2, three represent actual classes (marked with

class icons) and one is a logical node (marked with a bean icon). Do all your editing

in the logical node. The example bean’s primary nodes are described next.

■ The Explorer provides the logical node to group all the elements of your

enterprise bean and let you work with them more conveniently.

■ The bean class implements the javax.ejb.EntityBean interface and

implements the entity bean’s methods.

■ The local interface extends javax.ejb.EJBLocalObject and provides a way

for beans in the same container to communicate.

■ The local home interface extends javax.ejb.EJBLocalHome and provides

signatures for your create and finder methods.

If you created a primary-key class (for example, if your bean has a composite

primary key), the Explorer shows an additional node for your bean.

Bean’s logical node
Bean class
Local interface
Local home interface

Primary-key class
84 Building Enterprise JavaBeans Components • September 2002

If you chose Both Remote and Local Interfaces (if your bean might be used

both by beans in their own application’s JVM and by beans in another JVM), the

resulting CMP entity bean has all four interfaces.

■ The remote interface extends javax.ejb.EJBObject and declares the CMP

entity bean’s business methods.

■ The home interface extends javax.ejb.EJBHome and declares the create and

finder methods that the client can call on the CMP entity bean.

Expanding the Nodes

When you expand the nodes under your entity bean’s package node, you see

something like the tree view in FIGURE 4-3. (In this case, the default,

Local Interface Only , has been used.)

Remote interface

Home interface

Local interface

Local home interface
Chapter 4 Developing CMP Entity Beans 85

FIGURE 4-3 Explorer’s Detailed View of a Typical CMP Entity Bean With Local Interfaces

If you generated a new primary-key class, it appears in the Explorer as shown in

FIGURE 4-4.

Logical node

Local interface

The main parts of
the CMP entity
bean

No create
methods yet

Default finder
method

The persistent
fields you
selected

No home, select,
or business
methods yet

Local home
interface

Bean class
86 Building Enterprise JavaBeans Components • September 2002

FIGURE 4-4 Explorer’s Detailed View of a Typical CMP Entity Bean With a Composite
Primary Key

Logical node

Primary-key
class

Primary-key
class node

Primary key’s
two fields

Methods for
primary-key
class
Chapter 4 Developing CMP Entity Beans 87

Reviewing the Generated Classes

Any fields that were mapped from database columns appear in your CMP entity

bean. In addition, certain default methods are automatically placed in all entity

beans.

Default Finder Method

Because the Enterprise JavaBeans Specification requires every entity bean to be

locatable by its primary key, the method signature findByPrimaryKey is added

automatically to your entity bean’s home interface. In a CMP entity bean, the

method signature is enough because your bean’s container will implement the

findByPrimaryKey method.

Persistent Fields and Accessor Methods

The IDE generates and places in the bean class a get method and a set method for

every persistent field that you specified for your CMP entity bean. To see these

accessor methods, right-click the logical node and choose Open. The Source Editor

opens to display the generated bean class source code. Near the end of the code, you

see something like the following example:

public CustomerLocal findByPrimaryKey(java.lang.Integer aKey)
throws javax.ejb.FinderException;

public abstract java.lang.Integer getCustomerNum();

public abstract void setCustomerNum(java.lang.Integer

customerNum);

public abstract java.lang.String getDiscountCode();

public abstract void setDiscountCode(java.lang.String

discountCode);

public abstract java.lang.String getName();

public abstract void setName(java.lang.String name);
88 Building Enterprise JavaBeans Components • September 2002

The CMP fields themselves are declared in the deployment descriptor. To see them,

select the logical node’s bean class, right-click, and choose View Deployment

Descriptor. Here is a partial example of a deployment descriptor’s XML code that

declares the CMP fields customerNum , discountCode , and name for a CMP entity

bean whose persistence plan, or abstract schema, is known by the name Customer :

If you have not specified any persistent fields, your CMP entity bean contains one

CMP field, called defaultField , and the accessor methods on that field. This field

is automatically made the primary key.

After you use the wizard to define the CMP entity bean, you can always add CMP

fields. Add a field by selecting the bean’s logical node, right-clicking, and choosing

Add CMP Field. You can also designate a new CMP field as a primary key.

After creating your bean, you can still change the name of a CMP field. Make the

change only by selecting the CMP field under the logical node, right-clicking, and

choosing Rename. The EJB Builder prompts you for the extent of the change.

The rest of your CMP entity bean’s persistence (the actual SQL statements your bean

needs for assembly and deployment within the server) is handled later. You make

your bean portable across application and database servers by adding select or

finder methods with EJB QL statements. These EJB QL statements are kept in the

deployment descriptor for the EJB container and application server that you select.

During deployment, this EJB QL code is converted to server-specific database-access

code. Since most persistence is implemented using relational databases, SQL is the

usual target language. In the case of the J2EE reference implementation (RI) server,

the converted SQL code is displayed in the server’s tabbed pane of the bean’s

property sheets.

For details on preparing enterprise beans for deployment, see Chapter 8. For details

on writing EJB QL code, see the IDE’s online help.

<abstract-schema-name>Customer</abstract-schema-name>

<cmp-field>

<field-name>customerNum</field-name>

</cmp-field>

<cmp-field>

<field-name>discountCode</field-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

</cmp-field>

...

<primkey-field>customerNum</primkey-field>
Chapter 4 Developing CMP Entity Beans 89

Primary-Key Class and Required Methods

The EJB Builder wizard either mapped the database table’s primary key to a

primary-key field in your CMP entity bean or let you define one or more primary-

key fields. If your bean had a composite primary key, the wizard generated a

primary-key class. (If not, your bean doesn’t contain a primary-key class. Later,

when you need to create the primary-key field that maps to the database table’s

primary key, you must first create the primary-key class. See “Creating a New

Primary Key” on page 95.)

The primary-key class contains the set of data needed to uniquely identify an

instance of the bean. If the bean has a single primary-key field, the wizard uses the

field’s class as the bean’s primary-key class. If the bean has a composite primary key

(one made up of more than one persistent field), the wizard generates a primary-key

class with fields of the same name and type.

In addition, if a new primary-key class was generated, the EJB Builder inserted two

methods required for the container, as follows:

The equals method compares objects with the same id value, that is, keys that

evaluate to the same hash code. Call this method with a key value as its parameter.

The method must ascertain whether the passed key value matches the current key

value.

The hashCode method converts a key to an integer value so that the key can be

looked up quickly in a hash table. Make sure this method returns a hash-code key

for the current instance. The value doesn’t need to be unique, but your entity bean

will have better performance when there is little chance of a duplicate hash value.

The primary-key class must implement the java.io.Serializable interface, not

the java.rmi.Remote interface.

If you plan to use the IDE’s testing feature to exercise your CMP entity bean’s

methods, here are a couple of tips:

■ Include either an all-fields constructor in the bean’s primary-key class or set

methods for the class members.

■ Define an appropriate toString method to make the test application’s display

easier to interpret.

For more information on using the testing feature, see Chapter 9.

public boolean equals(java.lang.Object otherOb) {
...

}
public int hashCode() {

...
}

90 Building Enterprise JavaBeans Components • September 2002

A CMP Entity Bean’s Life-Cycle Methods

The wizard adds the following default life-cycle methods to the bean class of any

entity bean:

Table 4-2 describes the purposes of these methods in a CMP entity bean.

public void setEntityContext(EntityContext context) {
this.context = context;

}
public void unsetEntityContext() {

context = null;
}
public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbLoad() {
}
public void ejbStore() {
}
public void ejbRemove() {
}

TABLE 4-2 Purpose of Default Life-Cycle Methods in a CMP Entity Bean
Class

Method Purpose

setEntityContext This method lets you store the EntityContext reference in a

field and populate nonpersistent fields. You can use it to allocate

resources that are independent of the EJB object and last for the

entity bean’s lifetime (resources such as a database-connection

factory). By default, the EJB Builder wizard generates code that

assigns the EntityContext to a nonpersistent field named

context .

unsetEntityContext This method lets you deallocate resources and release memory

used by the entity bean instance, before the container destroys

the instance. By default, the EJB Builder wizard sets the value of

the context field to null .

ejbActivate This method initializes the bean, prepares it for use, and acquires

the resources needed by the instance.

ejbPassivate Before the bean instance is returned to the generic instance pool,

this method releases the resources the bean was using.
Chapter 4 Developing CMP Entity Beans 91

Completing Your CMP Entity Bean

To complete your CMP entity bean, do the following:

■ Define a create method if you want to let the bean’s client insert data into the

database. An entity bean can have more than one create method.

■ If necessary, add or replace a primary key.

■ Define all business methods that your bean needs.

■ Define any finder methods that your bean needs in addition to

findByPrimaryKey .

■ Define one or more home methods if a bean needs to perform an operation that

does not depend on any given bean instance.

■ Define one or more select methods, if you want your CMP entity bean to query

other beans within the same EJB module or to query the database and return a

local or remote interface.

■ Add code, if necessary, to complete your CMP entity bean’s setEntityContext ,

unsetEntityContext , ejbActivate , ejbPassivate , and ejbRemove
methods.

You might need to add one or more CMP fields if, while using the wizard, you

didn’t specify all the fields that your bean needs.

ejbLoad In a CMP entity bean, this method needs no further coding. The

container calls ejbLoad on a bean instance in the ready state

and synchronizes the bean instance’s state with the state of the

entity in the underlying database.

ejbStore In a CMP entity bean, this method needs no further coding. The

container calls ejbStore on a bean instance in the ready state.

The container synchronizes the state of the entity in the

underlying database with the bean’s state.

ejbRemove In a CMP entity bean, this method does some cleaning up to

prepare for the container’s data deletions.

TABLE 4-2 Purpose of Default Life-Cycle Methods in a CMP Entity Bean
Class (Continued)

Method Purpose
92 Building Enterprise JavaBeans Components • September 2002

Make the basic parts of your additions in the Explorer by using the GUI tools that

the IDE provides under the logical bean node. You provide the content of these

methods as follows:

1. Name the method and completely define the method signature within the

appropriate dialog box. Select the logical node, right-click, and choose Add Create

Method, Add Business Method, Add Finder Method, Add Home Method, or Add

Select Method. The EJB Builder propagates your method to the right classes of the

CMP entity bean.

2. Finish coding the method body within the Source Editor.

Using Recommended Approaches When Working

With Enterprise Beans

Appendix A discusses the best ways to make changes in your enterprise beans, and

the errors and anomalies that you might see if you use other approaches. As a

general rule, you should work through the logical node rather than the individual

class nodes, use the bean’s property sheets or the Customizer dialog box to edit

methods, and use the IDE’s Source Editor to complete or edit any bean code that

isn’t available to you through one of the dialog boxes.

Defining Create Methods

Your entity bean can have more than one create method. In each bean, the home

interface must have a create method, and the bean class must have corresponding

ejbCreate Xxx and ejbPostCreate Xxx methods. When you use the

recommended process, the IDE ensures that these methods are generated and

propagated correctly.

In a CMP entity bean, the ejbCreate Xxx method typically does the following:

■ Validates client-supplied arguments.

■ Initializes the instance’s variables (in a CMP entity bean, the CMP fields). The

container calls ejbCreate just before writing the bean’s CMP fields to the

database.

The ejbPostCreate Xxx method, which the IDE adds automatically, gives the

programmer the opportunity to forward information about the EJB object (such as

the home or remote interface) to any other enterprise beans that need to reference it.

The method can access the remote interface through EntityContext , which the

method receives from the container as a parameter. This method is typically used to

create dependent beans. For example, the Order bean’s ejbCreateLineItem
method might create the given line items in the ejbPostCreate Xxx method.
Chapter 4 Developing CMP Entity Beans 93

Define a new create method as follows:

1. Select the CMP entity bean’s logical node, right-click, and choose Add Create
Method.

The Add New Create Method dialog box appears.

2. Name your create method, using (if you like) an extension after create .

Now you need to add parameters to your method.

3. In the dialog box, click Add.

4. In the Enter Method Parameter dialog box, specify the parameter’s type and name.

In a CMP entity bean, the create method must return a primary-key type or the same

type as the primary key. As shown in the code example that follows, the method

signature in the bean class specifies the primary-key type. However, the method

body should return null , because the container manages the primary key of a CMP

entity bean.

5. Click OK.

The method you added now appears in the bean class code as ejbCreate Xxx and

in the home interface as create . The method ejbPostCreate Xxx also appears in

the bean class. If you happen to have the Source Editor open while you are adding

the method, notice that the code is immediately updated.

An example follows of ejbCreate and ejbPostCreate methods generated in the

bean class:

6. Use the Source Editor to add the return statement and all other necessary code to
your new create method.

The create method in CODE EXAMPLE 4-1 is designed for a web application that lets a

bank’s staff look up customer responses to a survey on service quality in the bank’s

branch offices. In the code example, an instance of a CMP entity bean is created with

the fields custname , branchno , and response .

public PrimaryKeyType ejbCreate(param1...) throws exc1

public String ejbCreate(java.lang.String custname)
throws CreateException {

}
public void ejbPostCreate(java.lang.String custname)

throws CreateException {
}

94 Building Enterprise JavaBeans Components • September 2002

Adding or Replacing a Primary Key

If you have deleted your entity bean’s primary-key class or if you need to add a

primary key to the class, use the property sheet as follows:

1. Select the logical node, right-click, and choose Properties.

The property sheet for your entity bean appears.

2. Select the Primary-Key Class field. Click the ellipsis (…) button.

The Property Editor dialog box appears.

3. Select an existing field or a class you have defined. Click OK.

The Primary-Key Class field now displays the return type of the new field or class.

Creating a New Primary Key

If you need to add a new primary key to an entity bean that has no primary-key

class, you must first add the new primary-key field or fields to the bean. Then, you

use the EJB Builder wizard to create a new entity bean with a primary-key class, for

temporary use. (We’ll call this the temporary bean.) Finally, you specify that the

original bean is to use the new primary-key class.

Follow these steps:

1. In the Explorer, find the package of the entity bean that needs a primary-key class.

2. Right-click the package and choose New → J2EE → CMP Entity EJB.

CODE EXAMPLE 4-1 Example of a Create Method in a CMP Entity Bean Class

public CustomerSurveyKey ejbCreateResponse(java.lang.String custName,
java.lang.String branchNo,java.lang.String response)
throws CreateException {

if ((branchNo == null) || (custName == null)){
throw new CreateException("Both the branch number and

the customer name are required.");
}
setCustName(custName);
setBranchNo(branchNo);
setResponse(response);

return null;
}

Chapter 4 Developing CMP Entity Beans 95

3. In the wizard, do the following:

a. Specify only the field or fields that your existing entity bean needs for its
primary key.

b. In the next-to-last panel, if you like, you can rename the primary-key class to
correspond to the original bean that will be using the class.

For example, if your bean is named Account , you might rename the class

AccountKey .

4. Click Finish.

Your temporary bean has now been created. Continue as follows:

5. In the Explorer window, if you like, you can delete the temporary bean’s classes
and logical nodes except for the primary-key class.

6. Right-click the original bean’s logical node and choose Properties.

7. In the property sheet’s Properties tabbed pane, click the Primary Key Class field
and then the ellipsis (…) button.

The Primary Key Class dialog box opens.

8. Click this option: Select an existing user-defined class.

A file chooser opens.

9. Navigate to the new primary-key class, select it, and click OK.

In the property sheet, the Primary Key Class field changes to show the name of the

new primary-key class.

A warning or error badge might appear on your bean’s logical node. Disregard it for

the moment. Dismiss the property sheet when you are done.

10. Right-click the original bean’s logical node and choose Validate EJB or Error
Information.

The IDE points out any errors you must resolve.

11. Fix all errors and revalidate or compile your bean.

The two methods required by the primary-key class, equals and hashcode , are not

regenerated during this process. Typically, therefore, you must change the class

names in the equals method. You might need to specify a different parameter type

in the findByPrimaryKey method and a different return type for any ejbCreate
methods in the bean class.

12. Save your work.
96 Building Enterprise JavaBeans Components • September 2002

Handling Foreign Keys

If you need to maintain a relationship between CMP entity beans that is

implemented as a foreign key, or if your bean needs multiple access to the data store,

you should consider creating a set of related CMP entity beans instead of creating

the beans separately. The EJB Builder wizard lets you create an entire related set at

once, with the source tables’ foreign keys intact and represented as container-

managed relationships (CMRs) between beans. See Chapter 5 for details.

Defining Business Methods

You add a business method to your CMP entity bean to perform the business logic

that needs to be encapsulated within the entity bean. Usually, a business method

manipulates one or more persistent fields, but it doesn’t access the database directly.

The task of the business method is to update the instance variables. The methods

ejbLoad and ejbStore are called by the EJB container as required by the semantics

of the transaction, and the variables are thus written to the database.

Note – It is best to keep business logic separate from database access code.

Define a business method as follows:

1. Select the logical node, right-click, and choose Add Business Method.

The Add New Business Method dialog box appears.

2. Type a name for the method, and specify a return type, parameters, and
exceptions. Click OK to dismiss the dialog box.

3. Finish the method’s coding in the Source Editor.

Or, in the Add New Business Method dialog box, you can simply type a name for

your new business method, click OK to dismiss the dialog box, and finish the coding

in the Source Editor.

The business method in CODE EXAMPLE 4-2 is designed for the same application

mentioned in CODE EXAMPLE 4-1. In this example, the bank customer’s phoned-in

comments are retrieved from the database.

CODE EXAMPLE 4-2 Example of a Business Method in a CMP Entity Bean

public java.lang.String retrieveComments() {
return phoneResponse();

}

Chapter 4 Developing CMP Entity Beans 97

To see any method you have created for an enterprise bean, expand the bean’s

logical node and navigate to the sub-node for the kind of method you want to view.

Right-click the method’s node and choose Open. The Source Editor opens the class

directly to the method code.

Adding Finder Methods

The EJB Builder wizard generates a default findByPrimaryKey method for you.

However, if you want your CMP entity bean to run additional queries, you must

define additional finder methods.

Alternatively, if you want a query to return the value of a related entity bean’s

persistent field, or if you don’t need the method to be invocable by a client, you can

use a select method. See “Defining Select Methods” on page 100 for more

information.

Add a finder method as follows.

1. Select the bean’s logical node, right-click, and choose Add Finder Method.

The Add New Finder Method dialog box appears.

2. Type a name for the method, starting with find .

3. Select one of the following return types:

■ A single object, which is shown with a default name

■ A collection

■ An enumeration

4. Specify parameters and exceptions.

5. Type EJB QL statements into the Select, From, and Where fields.

For detailed EJB QL syntax and examples, see the IDE’s online help. Also see “If

Your EJB Module Contains an EJB 1.1 CMP Entity Bean” on page 168 for special

instructions about the WHEREstatement in an older CMP entity bean’s finder

method.

If you’re not ready to input EJB QL statements at this point in the process, you can

turn off the compiler’s requirement for EJB QL code. See “Compiling and Validating

Enterprise Beans” on page 199. However, you must supply the correct EJB QL

statements before you deploy the bean to the RI.

A method’s EJB QL code goes into the deployment descriptor. You can edit or add

EJB QL statements using the Customizer or the method’s property sheets. However,

normally, you shouldn’t edit the bean’s deployment descriptor directly.

6. Click OK when you are finished.
98 Building Enterprise JavaBeans Components • September 2002

Open the Source Editor directly to a finder method as follows: Go to the CMP entity

bean’s logical node and navigate to Finder Methods. Select the finder method you

want, right-click, and choose Open. In the Source Editor, the home interface class

opens to the finder method. (Finder methods are not declared in the bean class.)

Here are two tasks a finder method in the Account example might do:

■ Find an AccountEJB instance that holds data for a specific account and returns a

remote object for that instance. For that purpose, you select the account by

account number.

■ Find an AccountEJB instance for every overdrawn account and return a

collection of their remote objects. For that purpose, you select for accounts with

negative balances.

You can edit the finder method either using the Customizer (right-click the method’s

node and choose Customize) or using the method’s property sheet (right-click the

method’s node and choose Properties).

Defining Home Methods

You can use a home method to perform an operation that does not depend on any

given instance of the entity bean. A home method, similar to a static method,

contains business logic that applies to all beans of a given class. (A business method,

on the other hand, has an identity and logic unique to one instance of the entity

bean.) A home method does not access the bean’s persistence state (instance

variables) or container-managed relationships.

For example, assume that your CMP entity bean Invoices reflects customer

invoices, and each invoice shows the amount the customer has paid. If you want to

see the total of all outstanding invoices, you can add a home method called

getAmountDue that iterates through the collection of bean instances and invokes a

business method to sum the balance due for all active invoices.

Define a home method as follows:

1. Select the logical node, right-click, and choose Add Home Method.

The Add New Home Method dialog box appears.

2. Type a name for the method.

3. Specify the return type, parameters, and exceptions.

4. Click OK when you are finished.

Alternatively, you can simply type a name for your new home method, click OK,

and finish the coding in the Source Editor.
Chapter 4 Developing CMP Entity Beans 99

If the CMP entity bean has two client views (both kinds of interfaces), the EJB

Builder asks you whether to include the home method on the local home interface,

the (remote) home interface, or both.

The IDE adds the home method to the home interface or interfaces, and it adds the

corresponding ejbHome method to the bean class.

Defining Select Methods

You can add one or more select methods if you want your CMP entity bean to query

the database and return a local or remote interface (or a collection of interfaces), or if

you want the method to return the value of a related entity bean’s persistent field (or

a collection of those values). A select method is related directly to the get method

that is created when a relationship between CMP entity beans is defined, and the

select method can be invoked only by a method (usually a business method) within

the entity bean class. A select method is not exposed in any remote-type interface,

and so it can’t be invoked by a client.

Add a select method as follows:

1. Select the bean’s logical node, right-click, and select Add Select Method.

2. Type a name for the method starting with ejbSelect .

3. Select one of the following return types:

■ A single object, which is shown with a default name

■ Any other type on the combination box list

4. Specify parameters and exceptions.

5. Type EJB QL statements into the Select, From, and Where fields.

For detailed EJB QL syntax and examples, see the IDE’s online help.

6. Click OK when you’re finished.

You can edit the select method either using the Customizer (right-click the

method’s node and choose Customize) or using the method’s property sheet (right-

click the method’s node and choose Properties).

The EJB QL code that you supply goes into the deployment descriptor. You can edit

or add EJB QL statements using the Customizer or the method’s property sheets.

However, you can’t edit the bean’s deployment descriptor directly.
100 Building Enterprise JavaBeans Components • September 2002

Defining Additional Fields

After creating your CMP entity bean, you can add CMP fields as follows:

● Select the logical node, right-click, and choose Add CMP Field.

Note – Don’t use the Source Editor to code the field directly in your bean class. The

IDE has no way to identify the field as persistent in the deployment descriptor.

After Creating Your CMP Entity Bean

Your CMP entity bean is now finished except for a few steps that prepare the bean to

work in its eventual environment. These final steps are described in Chapter 8.

Recommendations for working with finished enterprise beans are given in

Appendix A.

Further Reading

Enterprise beans can be a very powerful and flexible part of your application.

Creating the basic parts of an enterprise bean can be very simple, especially with a

tool like the Sun ONE Studio IDE. However, completing the bean so that it fulfills

the needs of your application can be very complex. For details, refer to the following

documents:

■ Enterprise JavaBeans Specification, version 2.0 at:

http://java.sun.com/products/ejb/docs.html

■ Java 2 Platform, Enterprise Edition Tutorial at:

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/CMP3.html

■ “CMP Example Overview” by Beth Stearns

http://java.sun.com/j2ee/sdk_1.3/techdocs/release/CMP-RI.html
Chapter 4 Developing CMP Entity Beans 101

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/CMP3.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/release/CMP-RI.html

102 Building Enterprise JavaBeans Components • September 2002

CHAPTER 5

Developing Sets of Related CMP
Entity Beans

Many J2EE applications contain related entity beans that use container-managed

persistence (CMP entity beans). That is, two CMP entity beans in an application

might contain a bean-to-bean relationship field, representing the way different

entities or tables in a database or a database schema might contain a related column.

For example, a schema might include the tables Customer , Order , LineItem , and

Part . Order has a foreign key to Customer , LineItem has a foreign key to Order ,

and LineItem also has a foreign key to Part .

This chapter describes how to use the EJB Builder in the Sun ONE Studio 4 IDE to

create a set of related CMP entity beans all at once, along with the necessary

interfaces. You can generate CMP entity beans from all entities in a database or

schema model, or you can select a subset of the entities. The wizard automatically

places the generated beans in an EJB module (see Chapter 8 for more information on

modules).

The wizard also considers any relationships between the entities in the data source

and preserves the relationships in the resulting CMP entity beans as logical entities

called CMR fields. In fact, the IDE does not allow you to accidentally overlook a

relationship between two database tables.

The wizard automates or prompts you for all the tasks involved in creating the

infrastructure of a set of related CMP entity beans.

When programming a set of related CMP entity beans, you have many options in

addition to those described in this chapter. For more information, refer to the

resources listed in “Before You Read This Book” on page xviii, or to one of the many

excellent texts on programming enterprise beans.
103

Using the EJB Builder With Sets of
Related CMP Entity Beans

The EJB Builder is a collection of wizards, property sheets, and editors with which

you can build enterprise beans consistently and easily. You get the most

comprehensive support and, in general, the fastest path to bean completion, if you

use the EJB Builder’s wizards and the approach recommended in this chapter. The

methodology described here takes full advantage of the IDE’s ability to ensure

consistency and its adherence to the J2EE standard.

Creating All Related CMP Entity Beans at Once

For best results, use the EJB Builder to program CMP entity beans by:

■ Creating a set of CMP entity beans and their required classes. After using the

EJB Builder wizard, you have the framework of your set of related CMP entity

beans. Each bean, with its necessary class, interfaces, and a logical node, is shown

in the Explorer’s Filesystems tabbed pane. The wizard generates declarations for

the interfaces. Each CMP entity bean’s generated bean class contains declarations

of required methods, as well as persistent fields matching the columns in the data

source.

The wizard prompts you to either include or explicitly exclude related beans. This

way, you can’t miss seeing a bean-to-bean relationship.

The logical node is the best place from which to work with an entity bean. All

logical nodes appear in the Explorer with this icon:

■ Adding methods, parameters, and exceptions. Use the IDE’s GUI support as

described later in this chapter. You can work partly in the GUI and partly in the

Source Editor to complete each CMP entity bean’s method implementations. For

example, you can add a method to a bean by using a dialog box available from

the contextual menu or by directly editing the set of required classes.

■ Setting values in a bean’s deployment descriptor. Use the entity bean’s property

sheet, available at the logical node, to edit properties for deployment purposes.

You can validate an individual CMP entity bean from the bean’s logical node. You

can also use the IDE’s testing feature against an individual bean.
104 Building Enterprise JavaBeans Components • September 2002

Creating a Set of Related CMP Entity Beans One

at a Time

If you wanted to, you could build a set of related CMP entity beans by hand,

generating the beans individually, adding them to an EJB module, and using the

module’s property sheets to declare the relationships (CMRs) between beans.

However, the EJB Builder wizard does this work for you automatically, and any

relationships between beans are more likely to be complete and accurate if you use

the wizard.

If you can’t take advantage of the EJB container’s persistence management, and you

must create a set of entity beans that manage their own persistence (BMP entity

beans), then you must manually code all relationships between the beans. See

TABLE 4-1 for the differences between CMP and BMP entity beans; see Chapter 6 for

details on creating BMP entity beans.

The rest of this chapter addresses how to create a set of related CMP entity beans all

at once, using the wizard, and issues to consider during development.

Defining a Set of Related CMP Entity
Beans

The EJB Builder wizard automates much of the task of creating the components of

your set of related CMP entity beans. For each CMP entity bean, the wizard does the

following:

■ Creates the minimum required classes, which consist of a bean class and the

interfaces you choose: local only, or both local and remote

■ Creates a primary-key class in the CMP entity bean, if a table you selected

requires a composite primary key or uses a simple Java type for the primary key

■ Creates relationships between CMP entity beans. These relationships appear as

accessor methods that return collections

■ Generates an EJB module to hold your set of related CMP entity beans

To define a set of related CMP entity beans, you take the following steps:

1. Select or create a package to contain the beans and the EJB module.

2. Use the EJB Builder wizard to generate the infrastructure of your set of related

CMP entity beans.
Chapter 5 Developing Sets of Related CMP Entity Beans 105

3. As appropriate, add create, business, finder, select, and home methods to each

CMP entity bean’s code.

4. Complete the bodies of the methods you added.

5. Add deployment information in the EJB module’s property sheets.

These basic steps are explained in detail next.

Creating a Package

If you need to create a package to house your set of related CMP entity beans, select

a filesystem, right-click, and choose New Java Package.

Preparing to Use a Database or Schema

You need to decide whether to model your set of related CMP entity beans on a

database or on a database schema (a snapshot of a database). The EJB Builder wizard

maps columns from a table of the database or schema to create the persistent fields

in your related CMP entity beans. Both choices provide the same result in your

finished entity bean.

When you build a set of related CMP entity beans, the EJB Builder also preserves

any relationships between the database tables and carries them over into the CMP

entity beans in the set.

Consider the following when deciding which form of data source to use:

■ Generating a set of related CMP entity beans from a live database. Assuming

that you have direct access to the database itself, and that contention among

database users is not a problem, you might want to use the direct database

connection to create your set of related CMP entity beans. If so, you must already

have the database up and running before you start the EJB Builder wizard.

■ Generating a set of related CMP entity beans from a database schema. If

database access is restricted but schema objects have been made available, you

might want to take a table from a schema. If so, the schema must be available to

you from the IDE’s Explorer window. If you don’t already have a schema, you

must capture one from a database.

For details on starting and stopping the PointBase database server that is included in

the IDE, and on capturing a database schema, see “Having a Data Source Ready” on

page 73.
106 Building Enterprise JavaBeans Components • September 2002

While you’re creating a set of related CMP entity beans, you need access to the

database, so the server must be running at least until you finish with the EJB Builder

wizard. (Later, when the application that uses the CMP entity beans is being

deployed and is executing, the database and application servers must also be

running, if you want the plug-in to create tables.)

The EJB Builder wizard provides information to the application server plug-in about

how the original database mapping was derived. If appropriate, the plug-in

incorporates this information into its default mapping. EJB containers vary in how

they treat column-to-field mappings. For details, refer to the documentation for your

container and server plug-in.

Starting the EJB Builder Wizard

When you’re ready to create a set of related CMP entity beans, do as follows:

1. In the IDE’s main window, choose View → Explorer to open the Explorer window.

2. In the Filesystems pane of the Explorer, select the package or filesystem where
you want your CMP entity bean to reside.

3. Right-click and choose New → J2EE → Related CMP Entity EJBs.

The EJB Builder wizard appears, displaying New Wizard – Related CMP Entity EJBs

in the window’s title bar. Notice that the panel on the left shows the current step and

the steps you still must complete before your set of related CMP entity beans is

created.

Generating the Bean Set’s Infrastructure

In the EJB Builder‘s Specify EJB Module Name and Data Source pane, you must

name the EJB module that will contain your set of related CMP entity beans. You

must also decide, as shown in FIGURE 5-1, where your CMP entity beans will get their

persistent fields and relationships.
Chapter 5 Developing Sets of Related CMP Entity Beans 107

FIGURE 5-1 Selections in the EJB Builder Wizard for a CMP Entity Bean Set

To make these basic decisions about your bean set, do as follows in the Specify EJB

Module Name and Data Source pane:

1. Type a name for the module.

If you have used an EJB Builder wizard to create an individual bean, as described in

Chapter 4, you remember that the input field was for the bean’s name. However,

individual beans in a set of related CMP entity beans are named by the wizard a

little later in the generation process. Here, type a name for the module that will

enclose your set of related CMP entity beans.

2. Select a database source:

■ Select Tables from Database Connection if the CMP entity beans you are creating

will represent tables from an existing database. (The database must already be up

and running.) See the next section.

■ Select Tables from Database Schema Object if you want to use an existing schema.

(The schema must have already been created, and it must be in a filesystem to

which you have access through the IDE’s Explorer.) See “Using a Database

Schema Object” on page 114.

3. Click Next.

Using a Database Connection

You should now be in the wizard’s Specify the Database Connection pane, having

selected Tables From Database Connection in the first wizard pane.

Make sure the database you’re using is running. If you’re using a database that is

not supplied with the IDE, make sure that the database driver files are in the Sun

ONE Studio 4 lib/ext directory, and start the database server.
108 Building Enterprise JavaBeans Components • September 2002

In the Specify the Database Connection pane, do as follows:

1. Click either Existing Connection or New Connection:

■ Select Existing Connection if you want to use an installed or supplied database

and the connection is defined but not active. Select a database from the combo

box. A login dialog box appears. Type the information required by your database

and click OK.

■ Select New Connection if you have a database installed but no connection has

been defined. Select a database driver from the combo box. A login dialog box

appears. Type the information required to connect to your database and click OK.

The tables that you can use to build your set of related CMP entity beans appear in

the next wizard pane, Select Database Tables.

2. From the Available Tables list on the left, select the tables you want and add them
to the Selected Tables list on the right.

If you like, the EJB Builder can preserve all relationships between tables and

replicate them in your set of related CMP entity beans.

Or, you can exclude any tables you don’t need, which means that any relationships

between those tables and the ones you have selected are gone. In the latter case, the

EJB Builder treats foreign-key columns and non-foreign-key columns in the same

way.

3. Click Next.

A table that you did select might have a foreign key that references a table you

didn’t select. If this is the case, a warning dialog box appears, listing all the related

tables you didn’t select. Consider whether any CMP entity bean in your set will ever

need access to data in any of those unselected tables.

For example, part of this dialog box is shown next. It contains a list of tables that you

did not select in the previous dialog box. Notice that by default all the tables are

checked for inclusion.
Chapter 5 Developing Sets of Related CMP Entity Beans 109

(The tables shown in this dialog box are those that are left over from the initial

selection list, shown in the previous dialog box, and that are accessible using foreign

keys. The set of tables you selected plus the set of tables in this dialog box constitute

the entire set of tables that would allow all foreign keys to be included in CMRs.)

If you don’t add a particular table to your set of related CMP entity beans now, you

can always do it later. However, at that point, you will also have to specify its

relationships with other CMP entity beans. If you think you might need the table

and your application’s performance isn’t likely to be affected, the least complicated

way is to add it now by leaving its checkbox selected.

4. In the warning dialog box, deselect the checkbox corresponding to any table you
do not want represented in your set of related CMP entity beans.

Don’t forget to use the scrollbar, if one appears.

When you click OK, all tables that you left selected become CMP entity beans in

your set, in addition to any tables you selected explicitly in Step 2.

The Edit CMP Entity EJB Data pane appears, showing the EJB module that is about

to be created, the CMP entity beans within that module, the EJB module name, and

the package name. The interesting part of this pane is shown next.

In this pane, if needed, you can select and edit a CMP entity bean, a field, or a

container-managed relationship (CMR) between two CMP entity beans. The IDE has

assigned default names and types to your beans and their fields, but you can make

changes if necessary.

Note – This pane is here for your convenience. If you want, after finishing with the

wizard, you can make the same types of changes using the logical nodes of the set of

related CMP entity beans and the EJB module.
110 Building Enterprise JavaBeans Components • September 2002

5. Edit one or more CMP entity beans, if necessary.

Select one of the included bean nodes and notice how the window changes. An

example is shown next.

Notice the icons that identify CMP fields () and container-managed relationships

().

You can make changes in the following places:

■ (Optional) In the EJB Name field, rename the selected CMP entity bean.

The EJB Builder wizard propagates the change to the bean class, the appropriate

interfaces, and the relationships between the beans.

■ (Optional) In the Abstract Schema Name field, rename the selected bean’s abstract

schema.

As you have been specifying your set of related CMP entity beans, you have also

been automatically creating part of the set’s deployment descriptor, namely, some

declarative instructions to the container for handling your beans’ persistence.

These particular instructions are called the abstract persistence schema or abstract

schema. When you add a finder or select method later (see “Adding Finder

Methods” on page 98), the EJB QL queries in the method use the abstract schema

name.

If you want, you can assign the schema a different name, but the default, which is

the bean name, is recommended.

■ (Optional) Use the Component Interfaces radio buttons to specify different

interfaces for the selected bean.

Unless you select Both Local and Remote Interfaces, each of the CMP entity beans

in your module is automatically given only a local interface and a local home

interface. If a CMP entity bean will be used by beans in another container (or, to

be more specific, in another JVM), then the bean needs both local and remote

interfaces.
Chapter 5 Developing Sets of Related CMP Entity Beans 111

6. Edit one or more CMP fields, if necessary.

Select a CMP field and notice how the window changes. An example is shown next.

If necessary, make changes in the following places:

■ (Optional) In the CMP Field Name field, overwrite the default name with another

name.

The EJB Builder wizard propagates the change to the bean class and the

appropriate interfaces, maintaining any relationship between this and another

field.

■ (Optional) In the CMP Field Type field, select another type for the field.

7. Edit a relationship between two CMP entity beans, if necessary.

The EJB Builder wizard shows any relationship between two beans as a separate

node. This node does not represent an actual object. It’s just a logical node, labeled

to show that a container-managed relationship (CMR) exists between the bean

you’ve selected and the bean named in the label. This relationship between CMP

entity beans is like the relationship between tables with a foreign key.

In the example shown next, the ProductCodeTbl bean has a CMR with the

ProductTbl bean, since the corresponding tables have a foreign key in common.

Select a CMR and notice how the window changes. An example is shown next.
112 Building Enterprise JavaBeans Components • September 2002

Make any necessary changes in the following places:

■ (Optional) In the EJB Relation Name field, change the name that the wizard has

assigned to the relationship between the two beans.

■ (Optional) In the Role Name field, change the role name.

Notice the two CMP entity beans described in the right side of the pane. The role

name describes the role of the bean shown in the top of the pane as it relates to

the bean in the bottom of the pane.

■ (Optional) In the CMR Field Name field, change the field name.

The wizard has given each bean’s CMR field a name that enables the beans to

navigate their relationship. A foreign key, for example, might be mapped to this

CMR field. A relationship can be unidirectional (that is, the two related CMP
Chapter 5 Developing Sets of Related CMP Entity Beans 113

entity beans have only one CMR field between them) or bidirectional (the pair

have two CMR fields). In the example shown here, the relationship is

bidirectional, and so each bean has a differently named CMR field.

A CMR field name becomes an abstract method in the bean class. This abstract

method doesn’t do any work directly on an entity.

If two CMP entity beans have multiple relationships between them, it’s a good

idea to add semantic meaning to the CMR field names. Do that here.

■ (Optional) Select the Cascade Delete checkbox if, when one bean’s relationship

record is deleted, you also want the other bean’s corresponding record to be

deleted.

This decision depends on the semantic meaning of the two beans’ relationships.

For example, an order might have several related line items. The relationship

between an order and a line item should always use Cascade Delete because if the

order doesn’t exist, neither should any of the line items. However, in peer

relationships, deleting the referenced side should not cause the referencing bean

to be deleted.

The EJB container handles referential integrity when it uses CMR fields to operate

on the relationship between two CMP entity beans.

8. When you are done, click Finish.

The infrastructure of your set of related CMP entity beans (the bean classes, the

types of interfaces you specified, and the interbean relationships) is generated

automatically by the EJB Builder. See “Looking at the Components of a CMP Entity

Bean Set” on page 115 for the next step.

Using a Database Schema Object

You should now be in the wizard’s Select Database Schema Object pane, having

selected Tables From Database Schema Object in the first wizard pane (see

FIGURE 5-1).

If you don’t already have a schema, you can use the IDE’s Database Schema wizard

to create one, as discussed in “Capturing a Database Schema” on page 79. Make sure

you can get to the schema through the IDE’s Explorer.

In the Select Database Schema Object pane, you see the filesystems to which you

have access through the Explorer. Your schema should be there. Do as follows:

1. Select the database schema that contains the tables you want represented in your
set of related CMP entity beans, and click Next.

You see a side-by-side display that consists of the list of available tables in your

database schema and a blank pane labeled Selected Tables.
114 Building Enterprise JavaBeans Components • September 2002

2. From the Available Tables list on the left, select the tables you want and add them
to the Selected Tables list on the right.

From this point on, the process and the GUI are just as described in “Using a

Database Connection” on page 108:

a. When you have selected all your tables, click Next.

b. In the next dialog, deselect the checkbox of any table you don’t want in your set
of related CMP entity beans. Click OK.

c. In the Edit CMP Entity EJB Data pane, edit beans, fields, or relationships as
needed.

3. When you are done, click Finish.

The infrastructure of your set of related CMP entity beans is generated automatically

by the EJB Builder.

Looking at the Components of a CMP
Entity Bean Set

The EJB Builder wizard generates the basic CMP entity bean classes for you and sets

up the relationships between all the beans and their classes. FIGURE 5-2 shows how a

typical set of related CMP entity beans and their EJB module appear in the

Explorer’s Filesystems pane. In this example, the default, Local Interfaces Only, has

been selected for a CMP entity bean whose references are to objects in the same

container, while Both Local and Remote Interfaces has been selected for another

CMP entity bean.
Chapter 5 Developing Sets of Related CMP Entity Beans 115

FIGURE 5-2 Default Classes of a Typical Set of Related CMP Entity Beans

With the exception of the EJB module node, the nodes in represent the same

components as are described in “Looking at a CMP Entity Bean’s Classes” on

page 84. Again, notice each bean’s logical node marked with a bean icon. Do all your

editing in the logical node.

Expanding the EJB Module’s Node

The interesting difference lies in the bean-to-bean relationships in a set of related

CMP entity beans. Those relationships are stored and displayed at the level of the

EJB module, as shown in FIGURE 5-3.

Bean class
Logical node of the OrderTbl bean

Local interface
Local home interface

EJB module enclosing the entire set
of related CMP entity beans

Remote interface of the
SalesTaxCode CMP bean

Logical node
Bean class
Home interface
Local interface
Local home interface
116 Building Enterprise JavaBeans Components • September 2002

FIGURE 5-3 Expanded Nodes of an EJB Module Containing Related CMP Entity Beans

Notice the module’s component bean nodes and relationship nodes. Notice also that

the beans displayed in the EJB module are only logical links, not copies of the actual

beans.

Reviewing the Generated Classes

Certain default methods, described in Chapter 4, are automatically placed in all

CMP entity beans. For details, see the discussion in “Reviewing the Generated

Classes” on page 88.

Completing Your Set of Related CMP
Entity Beans

To complete your set of related CMP entity beans, do the following:

■ Add any other CMP entity beans that your set needs, along with relationships to

beans already in the set.

■ Edit CMRs as needed.

■ Define a create method if you want to let a bean’s client insert data into the

database. An entity bean can have more than one create method, and adding

create methods is the same regardless of whether the CMP entity bean is on its

own or in a set of related beans. Follow the instructions in “Defining Create

Methods” on page 93.

■ If necessary, add or replace a primary key. Again, you do this in the same way for

all CMP entity beans. See the instructions in “Adding or Replacing a Primary

Key” on page 95.

EJB module node
CMP entity bean node

CMR node
Chapter 5 Developing Sets of Related CMP Entity Beans 117

■ Define all business methods that each of your beans needs, as explained in

“Defining Business Methods” on page 97.

■ Define any finder methods that your beans need in addition to

findByPrimaryKey . Instructions are in “Adding Finder Methods” on page 98.

■ Define one or more home methods if a bean needs to perform an operation that

does not depend on any given bean instance. See “Defining Home Methods” on

page 99.

■ Define one or more select methods, if you want a CMP entity bean to query other

beans within the same EJB module or to query the database and return a local or

remote interface. Details are in “Defining Select Methods” on page 100.

■ Add code, if necessary, to complete a bean’s setEntityContext ,

unsetEntityContext , ejbActivate , ejbPassivate , and ejbRemove
methods.

You might need to add one or more CMP fields to a bean if all the needed fields

were not generated for you.

Make the basic parts of your additions in the Explorer by using the GUI tools that

the IDE provides under the logical bean node. Provide the content of a method as

follows:

■ Name the method and completely define the method signature within the

appropriate dialog box. Select the logical node, right-click, and choose Add Create

Method, Add Business Method, Add Finder Method, Add Home Method, or Add

Select Method. The EJB Builder propagates your method to the right classes of the

CMP entity bean.

■ Finish coding the method body within the Source Editor.

Using Recommended Approaches When Working

With Enterprise Beans

Appendix A discusses the best ways to make changes in your enterprise beans, and

the errors and anomalies that you might see if you use other approaches. As a

general rule, you should work through the logical node rather than the individual

class nodes, use the bean’s property sheets or the Customizer dialog box to edit

methods, and use the IDE’s Source Editor to complete or edit any bean code that

isn’t available to you through one of the dialog boxes.
118 Building Enterprise JavaBeans Components • September 2002

Adding a Bean to the Set

After generating your set of related CMP entity beans, you might find that you need

another bean to represent a database table you didn’t select. If so, follow these steps:

1. Decide which CMP entity bean you will add to the set.

Since the wizard has already generated the CMP entity beans in your existing set,

the CMP entity bean you add to the set must already be generated, either as a single

bean or as part of another set of related CMP entity beans.

2. Select the EJB Module node of your set of related CMP entity beans, right-click,
and choose Add EJB.

The Add EJB to EJB Module dialog box appears. The tree view shows all filesystems

mounted in the IDE’s Explorer window.

3. Find the CMP entity bean you want to add to your set, select it, and click OK.

The bean is added to your set of related CMP entity beans.

4. Expand the EJB module node to see the set of related CMP entity beans, including
the CMP entity bean you just added.

The bean you added appears without any relationships defined to other beans. In

the following example, the new bean is Customer .

Now you need to add any relationships needed by your new CMP entity bean or by

other beans in the set.

5. Under the EJB Module node, select the two CMP entity beans between which you
want to add a relationship.

In this example, the Customer and OrderTbl bean nodes are selected.
Chapter 5 Developing Sets of Related CMP Entity Beans 119

6. Right-click and choose Add EJB Relation.

The Add EJB Relation dialog box appears, as shown next. The dialog box has three

main sections: a field that names the relationship between the two CMP entity beans,

a section describing the first entity bean, and a section describing the second entity

bean.
120 Building Enterprise JavaBeans Components • September 2002

7. Define the relationship between the two CMP entity beans.

The wizard has populated the fields with default information based on existing

information for the two selected beans. If necessary, you can make changes in the

following places:

■ (Optional) In the EJB Relation Name field, rename the relationship between the

two beans.

■ (Optional) In the Relationship Role Name field for either entity bean, give another

name to the role that the bean plays in the relationship.

■ (Optional) In the CMR Field Name field for either entity bean, specify by another

name the field that relates the two beans.

■ (Optional) In the CMR Type field for either entity bean, choose another type.

However, if you don’t change the CMR Field Name, you probably should leave

the CMR Type as it is.

■ (Optional) In the Multiplicity of BeanName section for either entity bean, change

the cardinality of that bean in the relationship. However, if you don’t change the

CMR Field Name or the CMR Type field, you probably should leave the

Multiplicity section as it is. Notice that if the radio button labeled Many is

selected, the Cascade Delete BeanName checkbox becomes available.

8. Click OK when you’re done.

Under the EJB Module node, the bean to which you added a relationship now shows

a relationship badge added to its main icon:

After Creating Your Set of Related CMP
Beans

Your set of related CMP entity beans is now finished except for a few steps that

prepare the set to work in its eventual application environment. These final steps are

described in Chapter 8.

Recommendations for working with finished enterprise beans are given in

Appendix A.
Chapter 5 Developing Sets of Related CMP Entity Beans 121

122 Building Enterprise JavaBeans Components • September 2002

CHAPTER 6

Developing BMP Entity Beans

The previous two chapters covered the development of entity beans that delegate

their persistence management to the EJB container. This chapter discusses how to

create and work with entity beans that contain all the code needed to manage their

own persistence, that is, bean-managed persistent (BMP) beans. There are many

similarities between the development of CMP beans and BMP entity beans; this

chapter focuses mainly on the differences.

The Sun ONE Studio IDE provides wizards that let you create the classes required

for any BMP entity bean: a bean class, remote or local interfaces or both, and

sometimes a primary-key class. To start with, the EJB Builder wizard automates the

task of creating a BMP entity bean’s infrastructure.

When programming entity beans, you have many options in addition to those

described in this chapter. Although the Sun ONE Studio IDE is designed to take care

of much of your coding work, the IDE also supports those options flexibly and

leaves many decisions up to you. For more information, refer to the resources listed

in “Before You Read This Book” on page xviii, or to one of the many excellent texts

on programming enterprise beans.

Deciding on an Approach

You can take several approaches to creating entity beans in the IDE. However, you

get the most comprehensive support and, in general, the fastest path to bean

completion, if you use the approach recommended in “Using the EJB Builder With

CMP Entity Beans” on page 69. This methodology takes full advantage of the IDE’s

ability to ensure consistency and its adherence to the J2EE standard.

If you’re not sure whether your entity bean needs to manage its own persistence,

look at TABLE 4-1.
123

Building a BMP Entity Bean

The EJB Builder wizard automates some of the work of creating your BMP entity

bean’s default classes. The default classes are generated by the wizard. However, the

wizard makes no assumptions about how you want your BMP entity bean to interact

with a database. The initial process of setting up the default classes can, therefore, be

very brief. To create a BMP entity bean, you take the following steps:

1. Select or create a package to contain the BMP entity bean.

2. Use the EJB Builder wizard to generate the infrastructure of your BMP entity

bean.

3. As appropriate, add a primary-key class to the bean.

4. As appropriate, add create, business, home, and finder methods to the bean’s

code.

5. Complete the bodies of the methods you added.

6. Write all persistence code. Complete any methods that affect data in the database.

These basic steps are discussed next.

Creating a Package

If you need to create a package to house your entity bean, select a filesystem, right-

click, and choose New Java Package.

Starting the EJB Builder Wizard

When you’re ready to create a BMP entity bean, do as follows:

1. In the IDE’s main window, choose View → Explorer to open the Explorer window.

2. In the Explorer, select the Java package where you want your BMP entity bean to
reside.

3. Right-click and choose New → J2EE → BMP Entity EJB.

The EJB Builder wizard appears.
124 Building Enterprise JavaBeans Components • September 2002

Generating a BMP Entity Bean’s Infrastructure

In the BMP Entity EJB pane of the wizard, do as follows:

1. Type a name for your BMP entity bean.

2. Decide whether to give your BMP entity bean only a local interface (the default),
only a remote interface, or both.

If necessary, you can change the package location of the bean.

3. Click Next. (Or, if you like, skip to the next step.)

The BMP Entity Bean Class Files pane shows the class files that will be generated for

your BMP entity bean. If necessary:

■ You can use the Modify button to change any of the class names, specifying a

class that already exists or creation of a new class. For example, you might be

implementing a bean whose home and remote interfaces have already been

specified, and now you want to generate a new bean class.

■ You can click the Modify button for any of the classes shown and change the

superclass. If you do, select a class that extends the appropriate interface.

4. Click Finish when you’re done.

The wizard generates the default classes of your BMP entity bean. These classes are

discussed next.

Looking at a BMP Entity Bean’s Classes

For a BMP entity bean, the EJB Builder wizard generates all the required entity bean

classes and sets up communications between them. However, you must code all the

persistence logic yourself.

In the Explorer’s Filesystems pane, a BMP entity bean has the same appearance as a

CMP entity bean, except that when you pause the cursor over the bean’s logical

node, the tool tip says BMP entity bean logical node .

The nodes marked with the class icon represent actual classes, while the one

marked with the coffee-bean icon is a logical node. Do all your editing in the

logical node.

A BMP entity bean’s classes implement the same interfaces as a CMP entity bean’s

classes. However, a BMP entity bean’s class is defined as public and not abstract.
Chapter 6 Developing BMP Entity Beans 125

Expanding the Nodes

When you expand the nodes under your BMP entity bean’s package node, you see

something like the tree view in FIGURE 6-1. In this case, the bean has been assigned

local-type interfaces. Notice that a BMP entity bean can have no select methods.

FIGURE 6-1 Explorer’s Detailed View of a BMP Entity Bean

If you generated a primary-key class, it shows up in the Explorer as another major

node.

Reviewing the Generated Classes

The EJB Builder wizard adds several default methods to every entity bean.

findByPrimaryKey Method

The method signature findByPrimaryKey is added automatically to your BMP

entity bean’s home interface, as shown in the following example:

Because this is a BMP entity bean, the wizard adds that method’s counterpart,

ejbFindByPrimaryKey , to the bean class:

public customer findByPrimaryKey(String aKey)
throws RemoteException, FinderException;

public String ejbFindByPrimaryKey(String aKey) {
return aKey;

}

No create methods yet

Required finder
method

Local interface

Logical node

Bean class

Local home
interface

No business or home
methods yet
126 Building Enterprise JavaBeans Components • September 2002

A BMP Entity Bean’s Life-Cycle Methods

The wizard adds default life-cycle methods to the bean class of your BMP entity

bean, as shown in CODE EXAMPLE 6-1.

The purposes of these methods in a BMP entity bean are described in TABLE 6-1. (For

comparison, see TABLE 4-2.)

CODE EXAMPLE 6-1 Default Life-Cycle Methods of a BMP Entity Bean

public void setEntityContext(javax.ejb.EntityContext aContext) {

context=aContext;

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbRemove() {

}

public void unsetEntityContext() {

context=null;

}

public void ejbLoad() {

}

public void ejbStore() {

}

TABLE 6-1 Purpose of Default Life-Cycle Methods in a BMP Entity Bean
Class

Method Purpose

setEntityContext This method lets you store the EntityContext reference in a

field and populate nonpersistent fields. You can use it to allocate

resources that are independent of the EJB object and last for the

entity bean’s lifetime, resources such as a database-connection

factory. By default, the EJB Builder wizard generates code that

assigns the EntityContext to a field named context .

ejbActivate This method initializes the bean, prepares it for use, and acquires

the resources needed by the instance.

ejbPassivate Before the bean instance is returned to the generic instance pool,

this method releases the resources the bean was using.
Chapter 6 Developing BMP Entity Beans 127

Completing Your BMP Entity Bean

To complete your BMP entity bean, do as follows:

■ Add all persistence logic.

■ Add a primary key class if your BMP entity bean has a composite primary key.

■ Define a create method if you want clients of your bean to be able to insert data

into the database. An entity bean can have more than one create method.

■ Define any finder methods that your BMP entity bean needs besides

findByPrimaryKey , and code the bodies of all the finder methods.

■ Code the ejbRemove method to remove the appropriate record from the

database.

■ Define and code all business and home methods that your BMP entity bean

needs.

■ Add private fields to maintain your entity’s state in memory and populate the

values of these fields.

ejbRemove In a BMP, this method executes SQL Delete statements and

removes data from the underlying data storage. Or, you can call

another object, such as a DAO, to remove data.

unsetEntityContext This method lets you deallocate resources and release memory

used by the entity bean instance, before the container destroys

the instance.

ejbLoad In a BMP, this method executes SQL Select statements and

loads data into the bean instance from the underlying data

source. This happens when the bean is activated or when the

entity is referenced within the context of a new transaction. Or,

you can call another object, such as a data access object (DAO), to

load data.

ejbStore In a BMP, this method executes SQL Update statements and

saves the bean’s state (the current values in the persistent fields)

to the underlying data storage. This happens when the bean is

passivated or when the transaction is committed. Or, you can call

another object, such as a DAO, to store data.

TABLE 6-1 Purpose of Default Life-Cycle Methods in a BMP Entity Bean
Class (Continued)

Method Purpose
128 Building Enterprise JavaBeans Components • September 2002

Using Recommended Approaches When Working

With Enterprise Beans

Appendix A discusses the best ways to make changes in your enterprise beans, and

the errors and anomalies that you might see if you use other approaches. As a

general rule, you should work through the logical node rather than the individual

class nodes, use the bean’s property sheets or the Customizer dialog box to edit

methods, and use the IDE’s Source Editor to complete or edit any bean code that

isn’t available to you through one of the dialog boxes.

Adding Persistence Logic

To make your BMP entity bean interact with the entity data store, you must write

code to access the data, manipulate persistent fields, and transfer data between your

bean instance’s variables and the data store. Use the Source Editor to write your

code. Use resource references (as discussed in Chapter 8) to specify the data source

that your bean will use.

Adding a Primary-Key Class

Use the Source Editor to add a primary-key class if:

■ You didn’t create a primary-key class when you created the BMP entity bean, and

your bean needs one.

■ You need to specify a primary key that can’t be represented by any existing class.

■ Your primary key has a type other than java.lang.String or an existing

primary-key class.

■ You must customize the definition of the equals and hashcode methods.

■ You want to wrap the primary key with some extra functionality, such as testing

the key for valid values before it is used with the database.

Make sure your primary-key class meets the following requirements:

■ The class has the access-control modifier public .

■ All fields are declared as public .

■ The class has a public default constructor.

■ The class implements the hashCode and equals methods.

■ The class is serializable: It implements the java.io.Serializable interface.

■ The class does not implement the java.rmi.Remote interface.

For more information, see the discussion in “Adding or Replacing a Primary Key”

on page 95.
Chapter 6 Developing BMP Entity Beans 129

Adding Methods

To start defining a new methods, go to the Explorer, right-click the logical bean

node, and take advantage of the GUI tools that are available from the contextual

menu. Use the dialog boxes to name a method and define its signature. The IDE

propagates your method automatically to the correct classes. Then finish coding

your method within the Source Editor.

Defining Create Methods

The home interface of your BMP entity bean can have a create method, and, if so, the

bean class must have corresponding ejbCreate and ejbPostCreate methods.

When you use the recommended process, the IDE ensures that these methods are

generated and propagated correctly.

The ejbCreate method in a BMP entity bean typically does the following:

1. Validates client-supplied arguments

2. Initializes the instance’s variables

3. Executes SQL Insert statements (or you can call another class, such as a DAO,

to insert data into the underlying data store)

4. Returns a primary key

In a BMP entity bean, you must provide the code that generates and executes the

necessary SQL Insert statement.

The ejbPostCreate method, which the IDE adds automatically, gives the

programmer the opportunity to forward information about the EJB object (such as

the home or remote interface) to any other enterprise beans that need to reference it.

The method can access the remote interface through EntityContext , which it

receives from the container as a parameter. This method is typically used to create

dependent beans. For example, the Order bean’s ejbCreateLineItem method

might create the given line items in the ejbPostCreate method.

Your entity bean can have more than one create method. Define a new create method

as follows:

1. Select the logical node, right-click, and choose Add Create Method.

The Add New Create Method dialog box appears.

2. Name your create method, using any extension after create .

Now you need to add parameters to your method.

3. In the dialog box, click Add.
130 Building Enterprise JavaBeans Components • September 2002

4. In the Enter Method Parameter dialog box, specify the parameter’s name and type.

Both the method signature in a BMP entity bean class and the method body return

the primary-key type.

5. Click OK to dismiss the Enter Method Parameter dialog box.

6. In the Add New Create Method dialog box, specify any additional exceptions.

7. Click OK to dismiss the Add New Create Method dialog box.

The method you added now appears in the bean class code as ejbCreate and in

the home interface as create . The method ejbPostCreate also appears in the

bean class.

8. Use the Source Editor to add the return statement and all other necessary code to
your new create method.

Adding Finder Methods

The EJB Builder has already generated a default finder method for you. In a BMP

entity bean, this method shows up in both the home interface (findByPrimaryKey)

and the bean class (ejbFindByPrimaryKey). However, if you want your entity

bean to execute additional queries, you must define additional finder methods.

If you follow these steps, your new finder method is automatically propagated to

your home interface and bean class:

1. Select the logical node, right-click, and choose Add Finder Method.

2. Type a name for the method starting with find . Specify parameters, exception,
and a return type. Click OK when you’re finished.

Finish coding your finder method or methods using the Source Editor. To fetch

primary keys from the data source, you must write JDBC code or use other means of

database access.

Defining Business and Home Methods

To add a business method to your BMP entity bean, do as follows:

● Under the logical node, select Business Methods, right-click, and choose Add
Business Method.

The Add New Business Method dialog box appears. At this point you can finish

coding the method’s parameters and exceptions in this dialog box, or you can

simply type a name for your new business method, click OK, and finish the coding

in the Source Editor.
Chapter 6 Developing BMP Entity Beans 131

A business method typically accesses and modifies the values of persistent fields,

but it doesn’t directly access the database. The EJB container calls the ejbLoad and

ejbStore methods as required by the semantics of the transaction.

Alternatively, you can add a home method to perform an operation that does not

depend on any given instance of the entity bean. See “Defining Home Methods” on

page 99 for a discussion of home methods.

After Creating Your BMP Entity Bean

Your BMP entity bean is now finished except for a few steps by which you prepare

the bean to work in its eventual environment. These final steps are described in

Chapter 8.

Recommendations for working with finished enterprise beans are given in

Appendix A.

Further Reading

Enterprise beans can be a very powerful and flexible part of your application.

Creating the basic parts of an enterprise bean can be very simple, especially with a

tool like the Sun ONE Studio IDE. However, completing the bean so that it fulfills

the needs of your application can be very complex. For details, refer to Enterprise
JavaBeans Specification, version 2.0 at:

http://java.sun.com/products/ejb/docs.html
132 Building Enterprise JavaBeans Components • September 2002

http://java.sun.com/products/ejb/docs.html

CHAPTER 7

Developing Message-Driven Beans

The EJB Builder in the Sun ONE Studio IDE enables you to develop the message-

driven beans that you need to support an application client’s requests for

asynchronous processes. This chapter discusses the process of creating and working

with message-driven beans. These beans’ transactions are normally managed by the

EJB container, but you can provide the transaction-management code yourself, if you

prefer.

There are several reasons to use a message-driven bean:

■ Performance and support for multitasking. The application client can send a

message and go on to other tasks without having to wait for a response to the

message. That is, the client invokes your message-driven bean asynchronously.

■ Reliability. If the application uses Java Message Services (JMS), no client requests

are lost unless tiers of the application go down at once.

However, message-driven beans aren’t always the right answer. For example, an

alternative would probably work better in the following cases:

■ When the client needs confirmation that a request was received or needs results to

be returned

■ When the operation is part of a time-sensitive transaction and can’t be done

during off-peak hours

■ When the application is small and uncomplicated, and adding another layer

would slow down building, debugging, and execution

For more pros and cons, see “Understanding Message-Driven Beans” on page 36.

The IDE provides a wizard that lets you create the single bean class required for a

message-driven bean. Because a message-driven bean merely takes messages from a

client and uses them to start other bean processes, no interface classes are needed.

The wizard automates much of the task of creating a message-driven bean, and you

finish the task using the IDE’s Source Editor and property sheets.
133

When programming message-driven beans, you have options besides those

described in this chapter. Although the Sun ONE Studio IDE is designed to take care

of much of your coding work, the IDE also supports those options flexibly and

leaves many decisions up to you. For more information, refer to the resources listed

in “Before You Read This Book” on page xviii, or to one of the many excellent texts

on programming enterprise beans.

Using the EJB Builder With Message-
Driven Beans

The EJB Builder is a collection of wizards, property sheets, and editors with which

you can build enterprise beans consistently and easily. To see if the EJB Builder is

installed, go to the main window and choose Tools → Options →
IDE Configuration → System → Modules → J2EE Support. If you see EJB 2.0 Builder

in the list of modules, and the Enabled field in the property sheet is set to True, the

EJB Builder is ready for use.

You can take several approaches to creating message-driven beans in the IDE.

However, you get the most comprehensive support and, in general, the fastest path

to bean completion, if you use the approach recommended in this chapter. The

methodology described here takes full advantage of the IDE’s ability to ensure

consistency and its adherence to the J2EE standard.

For best results, use the EJB Builder to program message-driven beans by:

■ Creating a bean’s one required class. After using the EJB Builder wizard, you

have the framework of your message-driven bean, which is made up of the bean

class and a logical grouping of the bean’s parts. Nodes for both the class and

logical grouping are shown in the Explorer’s Filesystems tabbed pane, along with

their subnodes. The wizard generates declarations of the two required methods,

ejbCreate and onMessage , for the bean class. You then supply the method

implementations.

The logical node is the best place to do work on a message-driven bean. All

logical nodes appear in the Explorer with this icon:

■ Completing the bean class code as necessary. Use the IDE’s support as described

later in this chapter.

■ Setting values in a bean’s deployment descriptor. Use the message-driven bean’s

property sheet from the logical node to edit properties.

From a message-driven bean’s logical node, you can validate the bean’s code.
134 Building Enterprise JavaBeans Components • September 2002

Deciding on Transaction Management

Before you begin creating a message-driven bean, first consider whether to have the

EJB container manage any transactions that your bean will do, or whether to write

that code yourself. You use different processes in the IDE’s EJB Builder to create the

two kinds of bean. TABLE 7-1 highlights the design considerations.

For more information on these selections, refer to the chapter on transactions in the

book Building J2EE Applications.

The rest of this chapter addresses how to create message-driven beans of each kind

and the issues to consider during development.

TABLE 7-1 Deciding Between Container-Managed and Bean-Managed Transactions

Issue Container-Managed Transactions Bean-Managed Transactions

Transaction

manager

The container itself is the

transaction manager.

You write code to manage

transactions by using JTA. This can

include transactions for other

resources such as JDBC.

Setting of

transaction

boundaries

The EJB container decides when

to begin and commit a

transaction according to the

Java 2 Platform, Enterprise Edition
Specification.

The programmer explicitly codes

the transaction’s boundaries to

obtain more granular control over

transactions.

Transaction

timing

The message-driven bean

receives a message and performs

its business logic in the same

transaction.

The transaction doesn’t start until

after the message-driven bean

receives the message.

Problem

handling

The container rolls back the

transaction and has the bean

acknowledge the message.

The message-driven bean responds

according to the acknowledgment

mode you specified after you

generated the bean.
Chapter 7 Developing Message-Driven Beans 135

Defining a Message-Driven Bean

The EJB Builder wizard automates much of the task of creating the one bean class

that your message-driven bean requires. To define a message-driven bean, you take

the following steps:

1. Select or create a package to contain the bean.

2. Use the EJB Builder wizard to generate the infrastructure of your message-driven

bean.

3. Complete the body of the onMessage method and, if necessary, the

setMessageDrivenContext and ejbCreate methods.

These basic steps are explained in detail next.

After you finish the steps covered in this chapter, you must add information to your

finished bean’s property sheet so that it can interact with other beans, find its

resources, and listen for the appropriate messages. These steps, which prepare your

finished bean to work in an application, are discussed in Chapter 8.

Creating a Package

If you need to create a package to house your message-driven bean, select a

filesystem, right-click, and choose New Java Package.

Starting the EJB Builder Wizard

When you’re ready to create a message-driven bean, do as follows:

1. In the IDE’s main window, choose View → Explorer to open the Explorer window.

2. In the Filesystems pane of the Explorer, select the package or filesystem where
you want your message-driven bean to reside.

3. Right-click and choose New → J2EE → Message-Driven EJB.

The EJB Builder wizard appears, displaying New Wizard–Message-Driven EJB in the

window’s title bar.
136 Building Enterprise JavaBeans Components • September 2002

Generating the Basic Message-Driven Bean

In the EJB Builder‘s Message-Driven Bean Name and Properties pane, name your

message-driven bean and decide how to manage any transactions the bean

performs. The default is Container-Managed Transactions, but you can decide to

provide all transaction management code in the bean class if you wish.

When you have made your selection, you can click Finish. (Or, you can click Next to

go to the pane in which you can specify an existing bean class for your message-

driven bean. After that, you click Finish.)

Your newly created message-driven bean appears in the Filesystems pane of the

IDE’s Explorer. The bean’s infrastructure (its basic bean class and its two component

methods) has been generated automatically by the EJB Builder.

Looking at Your Message-Driven Bean in
the Explorer

FIGURE 7-1 shows how a typical message-driven bean appears in the Explorer’s

Filesystems pane.

FIGURE 7-1 Default Class and Methods of a Typical Message-Driven Bean

Of the two primary nodes shown, one is a logical node (marked with a bean icon)

and one represents the actual class (marked with a class icon). Do all your editing in

the logical node. The bean’s two primary nodes are described next.

■ The logical node is created in the Explorer to group all the elements of your

message-driven bean and let you work with them more conveniently.

■ The bean class implements the javax.ejb.MessageDrivenBean and

javax.jms.MessageListener interfaces, and exposes the message-driven

bean’s methods.

Logical node

Bean class node
Chapter 7 Developing Message-Driven Beans 137

The Classes node contains the bean class code, which includes both methods. The

Create Method node points to the code that initializes your message-driven bean.

The OnMessage Method node points to the method that is invoked when a message

is received.

Expanding the Nodes

When you expand the two nodes under your message-driven bean’s package node,

you see something like the tree view in FIGURE 7-2.

FIGURE 7-2 Explorer’s Detailed View of a Typical Message-Driven Bean

Reviewing the Generated Class

The wizard automatically places certain default methods in each message-driven

bean: a create method, an onMessage method, and two life-cycle methods. As

shown in TABLE 7-2, the create method, ejbCreate , behaves much like create

methods in other types of enterprise beans, but onMessage is a new and different

kind of method.

Bean class

Message-driven
bean’s only class

Default create method

Default onMessage
method

Logical node
138 Building Enterprise JavaBeans Components • September 2002

The wizard also adds the default life-cycle methods described in TABLE 7-3.

Completing Your Message-Driven Bean

To complete your message-driven bean, do the following:

■ Add code to complete the body of your bean’s onMessage method.

■ Add any code that is necessary to complete your bean’s

setMessageDrivenContext method.

The ejbCreate and ejbRemove methods are not needed in simple message-

driven beans. However, if necessary, ejbCreate can be used to allocate resources

and ejbRemove to let the resources go.

■ Use the property sheets (the tabbed interface for the application server to which

your bean will be deployed) to specify the type of resource, the resource factory,

and the server that the message-driven bean will use. Details are supplied in

“Specifying Resources for Client Message-Driven Beans” on page 143 and also in

Chapter 8.

Make your additions in the Explorer by clicking bean components under the logical

bean node to open the Source Editor.

TABLE 7-2 Purpose of ejbCreate and onMessage Methods in a Message-Driven
Bean’s Bean Class

Method Purpose

ejbCreate This method initializes the message-driven bean, if necessary.

onMessage This method opens the message the message-driven bean has

received, decides what to do with it, and processes it.

TABLE 7-3 Purpose of Default Life-Cycle Methods in a Message-Driven Bean’s
Bean Class

Method Purpose

setMessageDrivenContext This method is called before ejbCreate , and it

associates the message-driven bean with a context

object.

ejbRemove This method is called just before the message-driven

bean instance is removed, to free up resources that are

no longer needed. In a simple message-driven bean,

this method might not even be used.
Chapter 7 Developing Message-Driven Beans 139

Using Recommended Approaches When Working

With Enterprise Beans

Appendix A discusses the best ways to make changes in your enterprise beans, and

the errors and anomalies that you might see if you use other approaches. As a

general rule, you should work through the logical node rather than the individual

class nodes, use the bean’s property sheets or the Customizer dialog box to edit

methods, and use the IDE’s Source Editor to complete or edit any bean code that

isn’t available to you through one of the dialog boxes.

Completing the onMessage Method

A single instance of your message-driven bean can handle only one message at a

time, and the bean can have only one onMessage method. An example of a

completed method follows.

public void onMessage(Message inMessage) {
TextMessage msg = null;

try {
if (inMessage instanceof TextMessage) {

msg = (TextMessage) inMessage;
System.out.println("MESSAGE BEAN: Message " +
"received: " + msg.getText());

} else {
System.out.println("Message of wrong type: " +
inMessage.getClass().getName());

}
} catch (JMSException e) {

System.err.println("MessageBean.onMessage: " +
"JMSException: " + e.toString());
context.setRollbackOnly();

} catch (Throwable te) {
System.err.println("MessageBean.onMessage: " +
"Exception: " + te.toString());

}
}

140 Building Enterprise JavaBeans Components • September 2002

Completing the setMessageDrivenContext
Method

The setMessageDrivenContext method stores the message-driven context

reference in a field and populates non-persistent fields. You can, if necessary, use this

method to allocate resources that are independent of the bean object and last as long

as the bean exists. These resources might include a queue-connection or topic-

connection factory.

By default, the EJB Builder wizard generates code that assigns the message-driven

context to a non-persistent field named context . Ordinarily, you don’t need to add

anything to the generated method. However, if you need to complete it, copy the

generated context into the instance variable. For example:

After Creating Your Message-Driven
Bean

Your message-driven bean is now finished, except for a few steps that prepare the

bean to work in its eventual environment. You must specify the following in the

bean’s property sheet:

■ The bean’s message-driven destination, that is, whether the bean gets its

messages from a queue or a topic

■ If the bean listens to a topic, whether its subscription is durable or non-durable

■ Whether a message selector (filter) has been applied to the bean to narrow down

the messages it gets

If your message-driven bean will receive messages from a client, and you plan to

deploy your bean to the J2EE reference implementation application server (RI), you

must specify the destination in the J2EE RI tabbed interface of the bean’s property

sheet.

TABLE 7-4 Example of a setMessageDrivenContext Method

public void setMessageDrivenContext(javax.ejb.MessageDrivenContext aContext) {
this.context=context;

}

Chapter 7 Developing Message-Driven Beans 141

If your message-driven bean will act as a client itself, sending messages to a

destination, you must specify the following in the References tabbed interface of the

bean’s property sheet:

■ The bean’s resource references (the connection factories it uses to access its

message-driven destinations)

■ The bean’s resource environment references (the actual destinations: queues or

topics)

These property settings are discussed next.

Specifying a Message-Driven Destination

To specify whether the message-driven bean will be a queue listener or a topic

listener, do as follows:

1. In the IDE’s Explorer window, right-click the message-driven bean’s logical node
and choose Properties.

The property sheet for the bean appears.

2. In the Properties tabbed interface, click the Message-Driven Destination field and
then the ellipsis (…) button.

The property editor appears.

3. Select Queue, Topic, or (Not Set).

■ Select Queue if clients will send messages only to this particular bean and you

need to use the point-to-point model.

■ Select Topic if you need to allow multiple clients to send messages to this bean,

using the publish-subscribe model. If you choose Topic, you must also specify

whether the bean’s subscription is durable or non-durable.

■ Select Durable if messages should be persisted until the bean consumes them.

This way, even if the bean’s application server crashes, the messages are

available when the bean is next available.

■ Select Non-durable if the bean should get only messages published while the

bean is available. All other messages are deleted.

■ Leave the Destination field blank (using the Not Set value) if you will set this

property later.

4. Click OK to dismiss the property editor.
142 Building Enterprise JavaBeans Components • September 2002

Specifying a Message Selector

If you want to filter your bean’s incoming messages, do as follows:

1. Click the Message Selector field and then the ellipsis (…) button.

A property editor appears.

2. Specify a filter if you wish to reduce the number of messages for which your bean
must listen.

3. Click OK to dismiss the property editor.

Specifying Resources for Client Message-Driven

Beans

The References tabbed interface of a message-driven bean’s property sheet contains

the Resource Reference and Resource Environment Reference fields. These fields are

completed on behalf of the client that sends messages. For example, your message-

driven bean might be part of an application in which a web module sends messages

to a queue for consumption by your bean. In that case, this Resource Reference and

this Resource Environment Reference should be specified by the provider of the web

module.

Or, if your message-driven bean is meant to act as a client within its own module,

sending messages to a queue or topic, you specify the resource factory and the

resource here.

Specifying Resource Factories

To associate the message-driven bean with a factory object that will create the

destination object, do as follows:

1. In the References tabbed interface, click the Resource References field and then
the ellipsis (…) button.

In the property editor are fields for specifying the connection factory that the client

(or message-driven bean as client) will use to gain access to its messaging resource.
Chapter 7 Developing Message-Driven Beans 143

2. Click the Add button.

The Add Resource Reference dialog box appears with two tabbed interfaces.

■ In the Standard tabbed interface:

■ Type the name of the object that will create your bean’s connection to its queue

or topic.

■ In the Type combo box, select the type of resource factory your bean will use.

This type should correspond to the choice you made in the Message-driven

Destination field of the Properties tabbed interface. See “Specifying Resource

Environment References” on page 156 for an explanation of the various types

of resource factories.

■ In the Authorization field, specify whether the EJB container or the application

client will authorize the bean to use the resource.

■ In the Sharing Scope field, specify whether the connection to this resource can

be shared by another enterprise bean in the same application. If two or more

beans can use the same resource in the same transaction context, the container

can carry out transactions locally and save time.

If you plan to deploy your message-driven bean to the RI, complete the following

fields.

■ In the J2EE RI tabbed interface:

■ In the JNDI Name field, type the name by which the resource factory is located.

■ In the User Information field, provide any information needed to gain access to

the resource.

■ In the Mail Configuration field, if appropriate to your situation, provide the

information that will be needed to use a JavaMail session factory.

3. When you’re finished, click OK to dismiss the dialog box.

Specifying Resources

To associate the message-driven bean with a particular destination object, do as

follows:

1. In the References tabbed interface, click the Resource Environment References
field and then the ellipsis (…) button.

In the property editor are fields for specifying the actual resources to which the

client (or message-driven bean as client) will send messages.
144 Building Enterprise JavaBeans Components • September 2002

2. Click the Add button.

The Add Resource Environment Reference dialog box appears with two tabbed

interfaces.

■ In the Standard tabbed interface:

■ Type the name of the queue or topic to which your client or bean will send

messages.

■ In the combo box, select a resource type.

If you plan to deploy your message-driven bean to the J2EE reference

implementation application server (RI), complete the following field.

■ In the J2EE RI tabbed interface, type the JNDI name by which the message

resource (the queue or topic) is located.

3. When you’re finished, click OK to dismiss the dialog box.

Specifying Resources for Listener Message-Driven

Beans Deployed to the RI

If your bean will be deployed to the RI, you must not only say whether it listens to

a queue or a topic. You must also specify the JNDI name of the resource so that the

RI can locate it. Do as follows:

1. In the J2EE RI tabbed interface, click the Destination JNDI Name field and then
the ellipsis (…) button.

2. In the property editor, specify the JNDI name of your bean’s messaging resource.

Use the form type/resource. For example, a messaging queue might be specified as

jms/myQueue .

Read more about message-driven destinations in Chapter 2 and more about setting

properties in Chapter 8.

Recommendations for working with finished enterprise beans are given in

Appendix A.
Chapter 7 Developing Message-Driven Beans 145

Avoiding Pitfalls of Message-Driven
Beans

The messaging tier of your application will run into fewer problems if you

understand the following possible complications.

■ Order of Messages. Your message-driven beans should be prepared to handle

messages that arrive out of sequence. A JMS server might deliver messages in any

order to a pool of message-driven beans.

■ Dropped ejbRemove Invocations. A simple message-driven bean doesn’t need to

use an ejbCreate or ejbRemove method. However, if your bean is more

complex and does use those methods, be aware that under certain circumstances

(such as a system or container crash), ejbRemove might not be called. In this

case, you should provide for the bean to do its own clean-up. This depends on the

behavior of your application server; for details, see your server’s documentation.

■ Poison messages. When you’re using the EJB Builder wizard to generate the

infrastructure of a message-driven bean that manages its own transactions, you

can set the bean property Acknowledge Mode to Auto . This setting makes the

bean automatically acknowledge each message it gets. This way, you avoid the

situation in which a transaction fails, the message destination never hears that the

message was received, and the destination keeps sending the message over and

over.

For detailed design considerations, refer to Enterprise JavaBeans Specification,

version 2.0 and to texts on programming enterprise beans.

Further Reading

Enterprise beans can be a very powerful and flexible part of your application.

Creating the basic parts of an enterprise bean can be very simple, especially with a

tool like the Sun ONE Studio IDE. However, completing the bean so that it satisfies

the needs of your application can be somewhat more complex. For details, refer to

Enterprise JavaBeans Specification, version 2.0 at:

http://java.sun.com/products/ejb/docs.html
146 Building Enterprise JavaBeans Components • September 2002

http://java.sun.com/products/ejb/docs.html

CHAPTER 8

Preparing Enterprise Beans for
Deployment

The foregoing chapters have focused on creating individual enterprise beans.

However, before a finished bean can be assembled into an application and deployed

in a production environment, three tasks remain to be done:

1. Furnish certain information about the bean’s external dependencies and operating

requirements. This information becomes part of the bean’s deployment descriptor,

which is discussed in the next section.

2. Form an EJB module around a group of beans that need to work cooperatively in

an application. Also, if necessary, add an EJB JAR file around the EJB module.

3. Test your beans and module, using the automated testing feature of the Sun ONE

Studio IDE.

Ordinarily, enterprise beans are assembled into an EJB module, one or more EJB

modules are assembled into an application, and the application is deployed to an

application server. However, an individual EJB module can also be deployed.

Another document in this series, Building J2EE Applications, discusses in detail the

design and assembly of applications and their deployment to servers.

Understanding Deployment Information

The deployment information you furnish in an enterprise bean’s property sheets

becomes part of the bean’s deployment descriptor. This is an XML-based text file

that captures information about the bean’s structure, its relationships to other beans,

and its other external dependencies. The deployment descriptor contains all the

instructions an application server needs when the bean’s application is deployed.

Any change in this descriptor can change the bean’s behavior in the application.
147

You automatically start a deployment descriptor for an enterprise bean when you

use the EJB Builder wizard to create the bean, as described in the foregoing chapters.

The wizard generates the bean’s basic descriptor.

When you place enterprise beans in an EJB module (as explained in “Creating an EJB

Module” on page 161), the IDE automatically generates a deployment descriptor for

the module as well. This descriptor file captures:

■ Each bean’s declarative meta-information (that is, information about the beans,

but not in the beans’ code) from the bean’s deployment descriptor

■ A higher level of information about how the beans fit into the application and the

deployment for which the module is designed

■ Security and transaction information that allows the EJB module to override such

information specified at the bean level

■ Instructions to the container about the data source on which an entity bean is

based

By changing the EJB module’s descriptor, you can change the application’s behavior

without touching the source code of the component beans.

The contents of a deployment descriptor are accessible through the property sheets

of the corresponding bean or module. If necessary, you can also edit an EJB module’s

descriptor directly. The following three sections describe how you can see and affect

the deployment descriptor.

Looking at a Generated Deployment Descriptor

To see the XML-based file that constitute the deployment descriptor of an enterprise

bean:

● In the Explorer window, select a bean’s logical node, right-click, and choose View
Deployment Descriptor. (Or, select an EJB module’s logical node, right-click, and
choose Deployment Descriptor → View.)

The Source Editor displays the file as read-only.
148 Building Enterprise JavaBeans Components • September 2002

Editing an EJB Module’s Deployment Descriptor

Ordinarily, you should edit a bean’s or EJB module’s deployment descriptor only

through property sheets on the bean or EJB module (as described in the next

section). When you edit this file using Properties, all you have to do is specify file

names and values (and possibly table and column names, if you’re working on an

entity bean). You don’t have to write any XML. You make your selections using a

dialog box, and the IDE automatically synchronizes the changes across the

appropriate classes of your enterprise bean.

However, if you need to, you can edit the deployment descriptor directly, and after

editing you can revert to the generated descriptor.

Editing an EJB Module’s Deployment Descriptor Directly

If you need to make a direct edit in the deployment descriptor file of an EJB module,

you can do it as follows:

● Right-click the EJB module’s node and choose Deployment Descriptor → Final
Edit.

After directly editing an EJB module’s deployment descriptor, you can still use the

property sheets to make changes that don’t affect the deployment descriptor. For

example, you can still go to the J2EE RI tabbed pane of the property sheet and

specify or change the Data Source JNDI Name, Data Source Password, or Data

Source User Name fields. (Be careful not to edit those fields in both the property

sheets and the deployment descriptor.) However, fields that represent items in the

deployment descriptor are closed to edits in the property sheets.

Reverting to the EJB Module’s Last Generated Descriptor

If you have used the Final Edit feature, but now want to go back to the last

generated version of the deployment descriptor and continue from there to make

changes in the property sheets, do as follows:

● Right-click the EJB module’s node and choose Deployment Descriptor → Revert
to Generated.

Note – If you choose Revert to Generated, any edits you made directly in the

deployment descriptor file will be lost.
Chapter 8 Preparing Enterprise Beans for Deployment 149

Using Properties to Edit a Deployment Descriptor

To use property sheets to add to, edit, or complete an enterprise bean’s or an EJB

module’s descriptor, do as follows:

● Select the bean’s or EJB module’s logical node, right-click, and choose Properties.

In the case of an enterprise bean, the Properties dialog box appears, showing at least

three tabbed panes:

■ Properties

■ References

■ J2EE RI (the reference-implementation server from the Java™ 2 Platform,

Enterprise Edition)

You also see a tabbed pane for any other application server’s plugin module that has

been installed with the IDE.

In the case of an EJB module, there are two default tabbed panes: Properties (which

includes reference fields) and J2EE RI.

The three default tabbed panes for enterprise beans are described next.

Specifying Bean Properties

Before you create an EJB module around enterprise beans, specify the individual

beans’ properties. These properties are discussed pane by pane in the following

sections: “Using the Properties Tabbed Pane” on page 150, “Using the References

Tabbed Pane” on page 153, and “Using the J2EE RI Tabbed Pane” on page 159.

Using the Properties Tabbed Pane

Since you’re familiar with your bean’s code, you’ll probably recognize most of the

fields in the Properties tabbed pane. Also notice the following:

■ In the Properties pane for any kind of enterprise bean, certain fields are read-only.

These fields were automatically completed by the EJB Builder wizard when you

created the bean. The properties named in these fields are so intrinsic to the bean

type that you shouldn’t need to change them. The only practical way to change

them would be to go back to the wizard and recreate the bean.
150 Building Enterprise JavaBeans Components • September 2002

■ The Name field and the fields naming the bean’s interfaces were completed by the

EJB Builder wizard when you created the bean (or you overrode the names in

those fields in the wizard, at creation time).

If you want your bean to use another existing class, you can override one of the

classes shown in these Properties fields.

If you want to change the name of a class but retain the same class content, you

must either make the change in the property editor for that class (not the property

editor for the logical bean node) or directly edit the class code in the Source

Editor.

■ The Large Icon and Small Icon fields are for any icons that you want to

accompany the enterprise bean and be available to tools like application servers.

For a large icon, the file must be a JPEG or GIF image 32x32 pixels in size, or

16x16 pixels for a small icon. The file must have the suffix .jpg or .gif .

■ The Security Identity field lets you specify the identity the enterprise bean will

use when it makes calls.

■ If you select Run As Specific Security Role and name a role, for example, a role

found in a related bean, your bean executes under that security role, and all

methods called by the bean carry that security role. In this way, the bean can

access data ordinarily reserved for the other bean. Or, you can specify the

bean’s default security role here.

■ If you select Use Caller’s Security Identity, the executing bean assumes the

security identity of the caller.

■ If you leave the Not Set value in this field, the bean executes under the security

identity defined at the application-server level or under the caller’s security

identity.

Some property types in this tabbed pane are unique to specific bean types, and these

properties are discussed next.

Properties of Entity Beans

In the Properties pane for any entity bean, you also see the following fields:

■ Primary Key Class. If you want to change what the EJB Builder wizard put here,

you can select an existing field, declare an unknown primary-key class, or select

an existing user-defined class.

■ Reentrant. If you want to avoid unintentional multithreading problems, leave this

field marked False. This way, if an instance of your bean executes a client request

in a given transaction context, and a second request for the same context arrives

for the same entity object, the container throws an exception to the second

request. However, if you really need to let your bean use another bean to make a

call to itself, mark this field True.
Chapter 8 Preparing Enterprise Beans for Deployment 151

In the Properties pane for a CMP entity bean, you also see the following fields:

■ Abstract Schema Name. The abstract schema defines the bean’s persistent fields

and relationships. Your CMP entity bean’s EJB QL queries are modeled on the

bean’s abstract persistence schema and its dependent object classes.

■ CMP Version. This read-only field reflects whether the CMP bean has a version

1.x bean class or a a version 2.x bean class.

Properties of Session Beans

In the Properties pane for a session bean, you also see the following fields:

■ Bean Type. If you want, you can change this value from Stateless to Stateful (or

the opposite).

■ Transaction Type. This field reflects whether the container or the bean manages

its transactions. If you change this field, the EJB Builder will look for

corresponding changes in your bean class code.

Properties of Message-Driven Beans

In the Properties pane for a message-driven bean, you also see the following fields:

■ Transaction Type. This field reflects whether the container or the bean manages

its transactions. The EJB Wizard populated this field, but you can change it if

necessary.

■ Acknowledge Mode. If the message-driven bean’s transaction type is Bean, you

see the Acknowledge Mode property in this tabbed pane. To make sure all

messages consumed by the bean are acknowledged, set this property to Auto . Or,

if you want the bean to acknowledge duplicate messages at its convenience, set

this property to Duplicates Allowed .

■ Message Selector. Use this field if you want to apply one or more filters to reduce

the number of incoming messages your message-driven bean must listen for. For

example, the following string causes the bean to receive only messages whose

AccountStatus property is set to Late or Delinquent .

AccountStatus = ‘Late’ OR AccountStatus = ‘Delinquent’

The syntax for message selectors, which is based on a subset of the SQL92

conditional expression syntax, is described in the JMS specification and the JMS

tutorial.

■ Message-Driven Destination. In this field, specify whether your message-driven

bean listens to a message queue, or whether it subscribes to a topic (and, in that

case, whether the subscription is durable or non-durable). The data in this field is

related to the data in certain fields on the property sheet’s tabbed interfaces for

application servers. Whatever you put in this field must correspond to what you
152 Building Enterprise JavaBeans Components • September 2002

put in the J2EE RI tabbed pane’s Connection Factory Name, Destination JNDI

Name, and Durable Subscription Name fields. For details, see “Setting J2EE RI

Properties for Message-Driven Beans” on page 160.

Using the References Tabbed Pane

To prepare your enterprise bean for assembly and deployment, you complete this

tabbed pane’s fields, which represent many of the enterprise bean’s external

dependencies. Some of the information can be stated at the bean level and then

overridden at the module or application level.

One example of a References tabbed pane is shown next.

FIGURE 8-1 References Tabbed Pane of the Properties Dialog Box for a CMP Entity Bean

Each field in this pane is described next, with instructions for completing the field.

Specifying EJB Local References

This field and the following one contain information about any other enterprise

beans whose methods your bean calls. You use the EJB Local References field to

specify references to beans that reside within the same JVM. An EJB local reference

accesses the local interface of a bean running in the same JVM, although the two

beans might be in different EJB modules. (For contrast, see “Specifying EJB

References” on page 155.)

You can specify the name of the implementing enterprise bean at development time,

and, if necessary, that setting can be overridden when your bean is assembled into

an EJB module.
Chapter 8 Preparing Enterprise Beans for Deployment 153

In the bean’s code, you use the JNDI interface to look up the home interface of

another bean. Before enclosing the bean in an EJB module, you also link the beans by

specifying those same references in the bean’s property sheet. The person who

assembles the application looks at the EJB References field to see which other beans

your bean must have access to in order to work as designed. The references specified

here at the bean level can be used or overridden at the module level, as needed in

the target environment.

Before multiple beans are enclosed in an EJB module, the references should be coded

in the bean class and the EJB references should be specified in the property sheet.

To specify EJB local references in the property sheet, do as follows:

1. Click the EJB Local References field, then the ellipsis (…) button.

The EJB Local References property editor appears.

2. Click Add.

The Add EJB Local Reference dialog box appears.

3. Complete the fields.

The following fields are mandatory.

Note – The easiest way to fill in these fields is to start with the Referenced EJB

Name field, selecting a local enterprise bean from the Browse list. The IDE then

automatically fills in the type field and the two interface fields. However, you can

change the interface fields if you need to.

■ Reference Name. The referenced bean’s name, as it is mentioned in the

context.lookup method call in your bean class code. Notice that the field

already contains ejb/ . The name is relative to the java:comp/env context under

the ejb/ subcontext. After the slash, type the name of the bean to which your

bean refers.

For example, the bean Account might look up a reference to the home interface

for the bean DiscountCodeTbl . The full reference name in this case would be

ejb/DiscountCodeTblHome , or you can supply another reference name that is

consistent with the name you used in the JNDI lookup code.

■ Referenced EJB Name. The name of the enterprise bean that implements the local

home and local interfaces specified in those fields. You can do any of the

following, depending on your situation:

■ Click Browse and select a bean. In this case, the IDE completes the Local Home

Interface and Local Interface fields for you.

■ Type over data in this field to specify another bean that implements those same

interfaces, and change the reference to another bean.

■ Leave this field blank until the bean has been assembled into an EJB module or

an application.
154 Building Enterprise JavaBeans Components • September 2002

■ Type. Whether the referenced bean is a session or entity bean.

■ Local Home Interface. The referenced bean’s local home interface.

■ Local Interface. The referenced bean’s local interface.

The description field is optional. That information might be helpful to the person

who assembles your EJB module into an application.

■ Description. The purpose of the referenced bean, or why your bean needs to

reference it.

Specifying EJB References

In the EJB References field, you specify links to any enterprise beans that reside

outside your bean’s JVM but whose methods your bean calls. You use the field as

you would the EJB Local References field, except that the reference you name here

points to the remote interface of a bean running in the another JVM.

Specifying Environment Entries

An environment entry, stored in your bean’s runtime environment, is a named data

value that depends on policy or procedure at the deployment site. Environment

entries can alter the behavior of an enterprise bean at deployment time without

modifying the source bean’s code. Any values that you set here in the property sheet

can be overridden at deployment time in the deployment descriptor of an EJB

module or an application.

For example, the Account bean can use the environment entry overdraftAllowed
(of type boolean). This variable might indicate whether or not a particular bank

that uses the Account bean allows customers to overdraw their account balances.

The Account bean looks up the value of overdraftAllowed to decide what

should happen if a customer’s request causes an overdraft.

To add an environment entry, do as follows for each environment:

1. Click the Environment Entry field and then the ellipsis (…) button.

The Environment Entry property editor appears.

2. Click Add.

The Add Environment Entry dialog box appears.

3. Complete the fields.

The following two fields are mandatory.

■ Name. The name of the environment variable.

■ Type. The data type of the variable.
Chapter 8 Preparing Enterprise Beans for Deployment 155

You can also complete the other two fields.

■ Description. The purpose of the variable, and any other information that the

assembler or deployer should know when using your bean in that environment.

■ Value. An initial value.

Specifying Resource Environment References

Use this field to specify any administered object your bean needs to use, such as a

JMS destination (a queue or topic). The resource environment reference is the

queue’s or topic’s logical name. This logical name must map to the name that

appears in your bean class’s InitialContext.lookup method. When your been

needs the resource that you specify in this field, an instance of the resource is created

by the factory mentioned in the next section.

To add a resource environment reference, do as follows for each object that you want

your bean to use:

1. Click the Resource Environment Reference field and then the ellipsis (…) button.

The Resource Environment References property editor appears.

2. Click Add.

The Add Resource Environment Reference dialog box appears.

3. Complete the fields.

The following fields are mandatory.

■ Name. The name that appears in the InitialContext.lookup method of your

bean class code.

■ Type. The type of resource factory. Specify your own type, or select one of the

following:

■ javax.jms.Queue , a Java Message Service queue.

■ javax.jms.Topic , a Java Message Service topic.

Specifying Resource References

This field contains the name of the factory that creates a connection to a resource

that your been needs. This resource might be a datasource (such as a relational

database), an administered object (such as a queue or topic), a JavaMail session, a

URL, or a J2EE connector (which lets you connect your bean to another application

system or EIS). The information in the Resource Reference field must correspond to

a JNDI lookup method call in your bean class code.
156 Building Enterprise JavaBeans Components • September 2002

To add a resource factory reference, do as follows for each resource that your bean

needs:

1. Click the Resource Factory Reference field and then the ellipsis (…) button.

The Resource Factory References property editor appears.

2. Click Add.

The Add Resource Reference dialog box appears.

3. Complete the fields.

The following fields are mandatory.

■ Name. The name that appears in the InitialContext.lookup method of your

bean class code. For example, for a JDBC resource factory named myDatabase ,

your lookup method might be coded as follows:

The corresponding name for the resource reference in this case would be

jdbc/myDataBase . Notice that the environment’s subcontext is represented by

jdbc/ .

■ Type. The type of resource factory. Specify your own type, or select one of the

following:

■ javax.sql.DataSource , a JDBC connection factory.

■ javax.jms.QueueConnectionFactory , a Java Message Service connection

factory.

■ javax.jms.TopicConnectionFactory , a Java Message Service connection

factory.

■ javax.mail.Session , a JavaMail session factory.

■ javax.resource.cci.ConnectionFactory , a connection factory that you

declare if you want your bean to connect to another application system or EIS.

An enterprise bean can use the Connector architecture Common Client

Interface (CCI) API and a resource adapter to get access to outside data. For

more information on implementing the CCI API in your application, refer to

the Java 2 Platform, Enterprise Edition Tutorial.

■ java.net.URL , a URL connection factory.

■ Authorization. How the user is authenticated and authorized to use the resource.

■ Container: The EJB container signs on to the resource manager, using

information supplied by the application deployer at deployment time.

javax.naming.InitialContext myContext =
new javax.naming.InitialContext();

javax.sql.DataSource mySource = (javax.sql.DataSource)
myContext.lookup(“java:comp/env/jdbc/myDataBase”);
Chapter 8 Preparing Enterprise Beans for Deployment 157

■ Application: The enterprise bean code causes the resource manager sign-on to

happen programmatically.

The following field is optional.

■ Sharing Scope. Whether the connection to this resource can be shared by another

enterprise bean in the same application. If two or more beans can use the same

resource in the same transaction context, the container can carry out transactions

locally and save time.

Specifying Security-Role References

If your enterprise bean does its own security checking, that is, if it checks to see if

the user has the authority to use your bean to perform a task, you must provide

security-role references in this field. (A message-driven bean needs no security role;

it merely propagates whatever security information came from a client in a message.

Any needed security checking is done later by either the container or the enterprise

bean from which the message-driven bean requests work.)

To use this field, you must also have provided corresponding code (programmatic

security) in your bean class. For example, your code might include the following

method from the javax.ejb.EJBContext interface:

isCallerInRole(rolename)

In that case, you also need to add all applicable role names as security-role

references in this property sheet.

Security roles can also be defined at the module level. For more information, refer to

Building J2EE Applications.

To add a security role at the bean level, do as follows:

1. Click the Security Role Reference field and then the ellipsis (…) button.

The Security Role References property editor appears.

2. Click Add.

The Add Security Role Reference dialog box appears.

3. Complete the fields.

■ Name. The name of the security role, as it appears in your bean class code. This

field is mandatory.

■ Description. An explanation of the role. This field is optional.

■ Security Role Link. A link to a security role in the deployment environment.

(This field is optional at the bean level. The data might not be available until

deployment time; the field typically is completed by the deployer.)
158 Building Enterprise JavaBeans Components • September 2002

Using the J2EE RI Tabbed Pane

The tabbed pane for the J2EE reference-implementation server (the J2EE RI, or

simply the RI) shows properties that are automatically assigned when you use the

EJB Builder to create an enterprise bean. These properties contain default values that

are appropriate for developing and testing your beans. However, before an entity

bean is deployed as part of an application, some of the values must be changed and

some blank fields must be filled.

If you’re looking at the J2EE RI-related properties of a message-driven bean, a

session bean, or an entity bean that manages its own persistence (a BMP bean), you

see little data. However, a great deal of information is needed for the J2EE RI-related

property fields of an EJB module that contains one or more CMP beans. There, you

see the IDE’s generated instructions to the container on how to intercede between

the bean and its underlying data storage.

First, let’s consider the property-field values that should go into the J2EE RI tabbed

pane for individual enterprise beans. Then, starting in “Creating an EJB Module” on

page 161, we will explore the process of creating an EJB module around enterprise

beans, and then, in the case of CMP beans, setting their database-related properties

at the EJB-module level.

Setting J2EE RI Properties for Individual Session and
Entity Beans

For a session bean, a CMP bean, or a BMP bean, this tabbed pane displays the Client

Authentication, JNDI Name, Run As Specified User, and SSL Required properties.

The J2EE RI properties tabbed pane for a session bean called ProcessOrder is shown

next.
Chapter 8 Preparing Enterprise Beans for Deployment 159

Supply values in these fields as follows:

■ Client Authentication. Specify whether the client will be authenticated through a

password (that is, the user must provide a user ID and a password) or a certificate

(that is, a public key certificate must be used, for greater security). Or, specify that

the bean must let the client choose between password or certificate

authentication.

■ JNDI Name. The RI plugin populates this field with a default value for the name

by which a JNDI lookup call locates your bean before creation. You can change

the name if you want, but you can’t leave it blank.

■ Run As Specified User. If you want the bean to use a specific security identity,

not the caller’s, specify the user identity here. If you selected Run-As Role in the

Security dialog box, you can select the user identity from that role.

■ SSL Required. The default is False. If the bean requires the Secure Socket Layer

protocol, change it to True.

When deploying a CMP entity bean to the RI, you first create an EJB module, then

you handle the bean’s relationships with its underlying data storage at the level of

the EJB module. See “Setting Database-related Properties for CMP Entity Beans” on

page 163 for details.

Setting J2EE RI Properties for Message-Driven Beans

A message-driven bean’s J2EE RI tabbed pane also contains fields that describe what

kinds of messages the bean consumes.
160 Building Enterprise JavaBeans Components • September 2002

Supply values in these fields as follows:

■ Client Authentication. As for other types of beans, specify here whether the

client will be authenticated through a password or a certificate, or that the bean

will let the client provide the means of authentication.

■ Connection Factory Name. Specify the name by which the message-driven bean’s

queue or topic connection factory is located.

■ Destination JNDI Name. Specify the name by which the message-driven bean’s

queue or topic is located.

■ Durable Subscription Name. If the message-driven bean subscribes to a topic

and has a durable subscription, specify the name here.

■ Run As Specified User. If you want the message-driven bean to use a particular

security identity, specify the identity here. Otherwise, the bean uses the caller’s

identity.

■ SSL Required. The default is False. If the bean requires the Secure Socket Layer

protocol, change it to True.

To set database-related properties for CMP beans, you must first have or create an

EJB module around the CMP beans. EJB modules are discussed next.

Creating an EJB Module

Perhaps you have designed an enterprise bean to work on its own, or perhaps you

have designed several beans to work cooperatively. In either case, you might want to

package your enterprise beans in an EJB module to be sure that the right beans are

together, and that all necessary information about the beans’ operating requirements

is packaged with them.

Enterprise beans don’t have to be in the same module to work together; they can be

in different modules as long as they are in the same JVM. However, sometimes it’s

convenient to keep cooperating beans together in the same module.

An EJB module is a logical entity in the IDE, a symbolic representation of its

physical counterpart, which is an EJB JAR (a Java archival file with the extension

.jar). The EJB module tracks the list of beans that need to be included in an EJB

JAR, along with the connections between the beans and the properties that need to

be set in the deployment environment. An EJB module is the smallest unit of

enterprise beans that can be deployed to an application server.
Chapter 8 Preparing Enterprise Beans for Deployment 161

As you can see in the IDE’s Explorer window, an EJB module node also represents

the module’s deployment descriptor, which lists the enterprise beans that compose

the module and specifies where the beans’ source code is loaded. The beans in an

EJB module can be in the same directory or in several directories, even in different

filesystems. Neither the beans nor copies of them actually reside in the EJB module.

Deciding What Should Go Into an EJB Module

Here are some general guidelines for deciding how many enterprise beans to

package in a single EJB module. (For details, refer to the documentation for the

Java 2 Platform, Enterprise Edition.) You might want to package your beans for any

of the following results.

■ Maximum reusability. If one enterprise bean is highly reusable, you might

package it in its own EJB module. When the application is assembled, this module

can be combined freely with other modules, to supply only the functionality that

the application needs and to keep the size of the application down.

You should group into one module any beans that are most likely to be used

together. For example, all CMP beans that were built in the EJB 2.0 environment

and that have relationships between them must be in the same module.

■ Maximum ease of assembly. The application assembler has less work to do if you

package in one module all the enterprise beans an application needs, or at least all

the beans in a chunk of the application. This can be an effective approach if

reusability isn’t an issue.

■ A balance between reusability and ease of assembly. For a J2EE application of

moderate size, you can probably group any related or closely coupled enterprise

beans in one module, and any singly reusable beans each in its own module.

Good candidates for grouping are beans with related functionality, dependencies

on each other, circular references, or common security profiles.

Putting Enterprise Beans in an EJB Module

To create an EJB module around a single enterprise bean, do as follows:

1. In the Explorer window, right-click the bean’s logical node and choose Create
New EJB Module.

2. In the New EJB Module dialog box, rename the module if necessary.

3. Select a location for the module from the tree view of your filesystem.

4. Click OK.
162 Building Enterprise JavaBeans Components • September 2002

To create an EJB module around multiple cooperating enterprise beans, follow the

steps above, but use the Control or Shift key to select at the same time all the beans

you want in the module.

Another way to create an EJB module around several beans is to right-click the

beans’ Java package, and choose New → J2EE → EJB Module. The IDE creates a new,

empty EJB module in the package. Right-click the module node and choose Add EJB.

In the file chooser that appears, use the Control or Shift key to select all the beans

you want to include.

See the contents of the module by expanding its node in the Explorer.

If you need to have multiple CMP beans working together within the EJB module, it

would have been best to start by using the EJB Builder wizard to create a set of

related CMP beans from a database or database schema. At the same time, the

wizard creates the surrounding EJB module. When you approach the task that way,

the IDE automatically preserves all the relationships between the beans.

However, if you need to add one enterprise bean to a module you’ve already

created, do as follows:

1. In the Explorer window, right-click the EJB module’s node and choose Add EJB.

A file chooser appears, showing a tree view of your filesystem.

2. Select an enterprise bean from the tree view.

3. Click OK.

Setting Database-related Properties for CMP

Entity Beans

The RI-related properties for a CMP entity bean are provided at the level of the EJB

module. FIGURE 8-2 shows the J2EE RI tabbed pane for an EJB module called

EJBModule_AccountsSouth . This EJB module, as you will see a little later,

contains several related CMP beans. Notice that the fields in this pane address the

relationship between the beans and their underlying data storage, and the role that

the container is to play in managing that relationship.
Chapter 8 Preparing Enterprise Beans for Deployment 163

FIGURE 8-2 J2EE RI Tabbed Pane Showing Properties for an EJB Module Containing CMP
Beans

Note – If you are going to use the IDE’s testing feature on a CMP bean, you might

want to wait until later to create that CMP bean’s EJB module. The testing process

creates an EJB module for you. This is not a module you can deploy in production,

but one that lets you test your CMP bean’s code and all its deployment settings. You

might save time by running your CMP bean through the testing process, finding out

how the properties you set there work, and afterward replicating those settings in a

“real” EJB module that you generate for production purposes, following the

instructions in this section. For information on testing enterprise beans, see

Chapter 9.

For all CMP beans, complete the following fields:

■ Data Source JNDI Name. The JNDI name of the data store that is to be updated

with the entity’s state. For example: jdbc\Pointbase , where jdbc indicates the

type of data storage and Pointbase indicates the particular data store.

■ Data Source Password. The password needed for access to the database.

■ Data Source UserName. The user name needed for access to the database.

Note – If you’re using the PointBase database server included in the IDE, type its

JNDI name as shown above, with initial capital only. The default user ID and

password are the same: pbpublic (remember to press the Enter or Return key after

typing the password).
164 Building Enterprise JavaBeans Components • September 2002

Depending on how you created the CMP bean or beans in the EJB module, and on

whether you want your CMP beans to use an existing database table, you treat the

rest of the RI-related property fields differently.

Understanding the RI’s Generated SQL

When you have used the EJB Builder wizard to create a CMP bean, and you leave

the default value True in the Automatically Generate SQL field, the J2EE RI plugin

provides the SQL statements that it will need to manage the bean’s associated

persistent records in the underlying database. The plugin uses the bean’s methods

and fields, and also any EJB QL code that you supplied for certain methods, to

produce SQL specifically for the server’s own use. This is true of all the servers

installed in the IDE: Each uses the bean’s code and your EJB QL to generate its own

server-specific SQL.

The plugin also can regenerate its SQL statements whenever you add a CMP field,

delete a CMP field, change the fields that make up the primary key, or change the

bean’s container-managed relationships. However, you can choose whether or not to

use this SQL regeneration feature. If you do use it, that is, if you leave the value set

to True, you shouldn’t edit the SQL statements unless your EJB module contains a

CMP bean with a version 1.x bean class. (In this case, see “If Your EJB Module

Contains an EJB 1.1 CMP Entity Bean” on page 168 for the one statement you will

need to modify.)

The generated statements are designed to do as follows:

■ Create a table when the bean is deployed. The table is named BeanTable (where

Bean is the name of your CMP bean). The table columns are named for their

corresponding CMP fields.

■ Drop the table when the bean is undeployed.

■ Delete, insert, select, and update records as the bean executes.

Guidelines follow for setting the database-related properties of CMP beans.

If Your CMP Beans Don’t Need to Use an Existing Database
Table

Perhaps your CMP beans don’t need to use an existing database table, and you want

the RI plugin to create a table for their use, for example during testing. In that case,

you can leave the default settings as they are in the Automatically Generate SQL

field and the Use Delimited Identifiers in SQL field.
Chapter 8 Preparing Enterprise Beans for Deployment 165

Note – Turn off delimited identifiers only if you are sure that your bean name, CMP

field names, and CMR field names are reserved words in the SQL database specified

as the data source.

Use the default setting in SQL Generation Target, or specify another database.

To see the default settings for table creation and drop, click the SQL Deployment

Settings field and then the ellipsis (…) button. The SQL Deployment Settings

property editor appears, as shown in FIGURE 8-3.

FIGURE 8-3 Table-related Settings for a CMP Entity Bean in an EJB Module

Notice that the table-related settings appear when a bean node is selected.

To see the default SQL statements that have been generated by the RI plugin for

your CMP beans, expand a bean node in this property editor and select one of the

bean’s methods. The method’s SQL statements appear, as shown in the example in

FIGURE 8-4.
166 Building Enterprise JavaBeans Components • September 2002

FIGURE 8-4 Example of SQL Code Generated by the RI Plugin for a CMP Bean’s
createTable Method

You should leave the server’s generated SQL statements as they are unless your EJB

module contains a CMP bean with a version 1.x bean class. In that case, see “If Your

EJB Module Contains an EJB 1.1 CMP Entity Bean” on page 168.

Caution – The IDE doesn’t prevent you from changing generated SQL statements in

a bean’s property sheets. However, wherever possible, you should instead make

your changes through the bean’s EJB QL statements, so that the plugins of any and

all application servers you use can propagate your changes automatically. A bean’s

server-specific SQL code is meant to be generated. You can lose changes that you

make in the generated SQL code.
Chapter 8 Preparing Enterprise Beans for Deployment 167

If Your CMP Beans Need To Use an Existing Database Table

If your CMP beans need to use an existing database table (for example, if you

generated the beans’ infrastructure from a table, and you want to test the beans

against that table), use the following settings:

The value True in the Automatically Generate SQL field means that when you

change your CMP beans’ persistent fields and container-managed relationships, the

RI plugin automatically regenerates your SQL statements and keeps them up to

date. (For the one exception to this rule, see the next section.)

Note – Be sure that none of your beans (tables) or their fields (columns) have names

that are reserved words in SQL.

Click the SQL Deployment Settings field and then the ellipsis (…) button. In the

property editor that appears, select each CMP bean that you will want to test against

the existing table. For each of those beans, deselect the checkboxes for Create Table

on Deploy and Delete Table on Undeploy. Deselected checkboxes mean that the RI

plugin won’t create any table for your bean to use, and that it won’t drop any table

when the bean’s application is no longer running.

Again, you shouldn’t have to adjust the generated SQL statements unless your EJB

module contains an EJB 1.1 CMP bean.

If Your EJB Module Contains an EJB 1.1 CMP Entity Bean

In an application, you might include one or more CMP entity beans that were

generated according to the previous EJB specification, using an earlier version of the

Sun ONE Studio IDE. Or, a CMP bean in your application might be based on a bean

class of version 1.x (for details on creating such a CMP bean, see Chapter 4). If so,

you can treat these CMP beans the same as you do EJB 2.0 CMP beans, with one

important change. You must go to the generated SQL and adjust the WHEREclause in

the finder method.

To make this edit, you should be in the EJB module’s property sheet, the J2EE RI

tabbed pane, and the SQL Deployment Settings field. Click that field and then the

ellipsis (…) button, and the SQL Deployment Settings property editor appears.

Automatically Generate SQL True (default)

SQL Generation Target (The database containing your table. This should be the

same database that the Data Source JNDI Name is

mapped to.)

Use Delimited Identifiers in SQL False
168 Building Enterprise JavaBeans Components • September 2002

Edit the WHEREclause as follows:

1. Find the EJB 1.1 CMP bean node and expand it.

2. Select the node for the bean’s finder method.

You see an SQL statement something like the one in FIGURE 8-5.

FIGURE 8-5 Example of SQL Code Generated for a CMP Bean’s Finder Method

3. Complete the WHEREclause.

■ For the FindByPrimaryKey method, if you are not using the plugin’s generated

SQL, you can change the column name. Otherwise, leave this method as it is.

■ For other finder methods, you must supply the constraint. For example, a finder

method called findByY2000Accounts might read as follows:

findInCustIDRange(double low, double high)

In that case, the SQL statement might read as follows:

SELECT “custID” FROM “CustomerTbl” WHERE “custID” > ?2000 AND
“custID” < ?2001

The number after the question marks indicates the corresponding parameter in

the method’s parameter list.

Your edits in the WHEREclause are preserved when the RI plugin regenerates the

SQL statements.

See Appendix B for more details on handling EJB 1.1 CMP entity beans in the

current version of the IDE.
Chapter 8 Preparing Enterprise Beans for Deployment 169

Understanding the Order of CMP Field Values

If you have occasion to change any of the SQL that the RI plugin generates for your

CMPs, you might need to understand how the values of the CMP fields are ordered.

The container sends the values of the CMP fields to the database in alphabetic order.

If your table columns do not have the same names as the CMP field names, you

must put the columns in the same order as the alphabetic order of their mapped

fields. For example, assume that your CMP bean class is named EmployeeEJB .

■ The source database table is named Employee .

■ Your CMP fields are named address , city , id , and name.

■ Your mapped table columns are named Mail_Address , City , Emp_ID, and

Emp_Name.

■ The default generated SQL for the INSERT statement is as follows:

INSERT INTO "EmployeeEJBTable" ("address", "city", "id", "name")
VALUES (?, ?, ?, ?)

In this example, you would need to change the SQL code as follows:

INSERT INTO "Employee" ("Mail_Address", "City", "Emp_ID",
"Emp_Name") VALUES (?, ?, ?, ?)

The table column names are in the same alphabetic order as the mapped CMP fields

(not the alphabetic order of the table columns). This is because the VALUES
parameters are sent in that order.

Adding Transaction Attributes to an EJB Module

Transaction attributes tell the EJB container how to control a CMT bean’s

transactions. In a session bean that manages its own transactions (a BMT bean), you

must explicitly code the bean’s transactions. In a CMT bean, you include no explicit

code for transactions; instead, you let the container control them based on

transaction attributes you assign to your bean’s methods.

By default, the IDE sets all bean methods to use the Required attribute. You can

assign different transaction attributes at the bean level or at the method level. For

example, if you don’t want a particular method to be included in the context of a

transaction, you can change that method’s attribute from Required to Not

Supported.

The transaction attributes are stored in the deployment descriptor, and they can be

edited using the EJB module’s property sheet. Before an EJB module that contains

CMT beans is assembled into an application, you should make sure that the

appropriate transaction attributes are specified for that module.
170 Building Enterprise JavaBeans Components • September 2002

When you change a transaction attribute for an individual bean or for a method in a

bean, the attribute is changed only for execution within that EJB module. The bean’s

source code has not been changed. If you reuse that bean within another EJB

module, you can apply a different set of transaction attributes.

To change a CMT bean’s transaction attributes within an EJB module, do as follows:

1. In the Explorer window, right-click the bean’s EJB module and select Properties.

In the Properties tabbed pane, notice that the Transaction Settings field displays the

value Container-transaction .

2. In the Properties tabbed pane, click the Container-transaction field, and click the
ellipsis (…) button.

The Transaction Settings dialog box appears. Notice that the larger pane displays the

module’s enterprise beans that use CMT, each bean with a transaction attribute that

applies to the entire bean.

■ To change a bean’s transaction attribute, select the bean and select another item

from the Trans-attribute combo box. The new attribute appears beside the bean’s

name in the larger window.

■ To change a particular method’s transaction attribute, expand the bean, select the

method, and select another item from the Trans-attribute combo box. The new

attribute appears beside the method’s name in the larger window, as shown next.

Notice that the bean’s other methods display no transaction attribute unless the

default attribute is overridden.
Chapter 8 Preparing Enterprise Beans for Deployment 171

While you’re working in the Transaction Settings dialog box, you can take the

opportunity to provide the application assembler a description of the transaction

settings for individual beans or methods in the module. For example, you might

want to explain why you’ve changed a particular transaction attribute in this EJB

module.

3. Click OK when you’re finished with transaction attributes.

Changing EJB References Within the EJB Module

or Application

In “Specifying EJB Local References” on page 153 and “Specifying EJB References”

on page 155, you saw how references between enterprise beans are declared at the

level of the individual bean. Those references also can be overridden as follows:

■ If the beans are in the same EJB module, you can override the references at the

level of the EJB module.

■ If the beans are in different EJB modules but within the same application, you can

override the references at the level of the application.

This feature is handy if, for example, you want to package a particular enterprise

bean in three different EJB modules to be used variously by one or more

applications.

To use this feature, you must provide the EJB module (or application) two or more

enterprise beans whose interfaces are the same. The feature works for local, remote,

or local and remote interfaces, but the beans’ interfaces must be identical, while the

bean classes or properties (deployment information) can differ.
172 Building Enterprise JavaBeans Components • September 2002

Overriding a Reference at the Module Level

To override a bean reference within the EJB module, do as follows:

1. In the Explorer window, right-click the bean’s EJB module and select Properties.

2. Click the applicable references field (EJB Local References or EJB References) and
then click the ellipsis (…) button.

The appropriate property editor appears.

3. Find the enterprise bean whose reference you want to override and click the
Override checkbox.

4. Click the Override Value field.

Below the Override Value field appears a combo box containing the names of the

enterprise beans you can select from. An example is shown in FIGURE 8-6.

FIGURE 8-6 EJB Local References Property Editor, Showing an Example of Override
Selections for an Enterprise Bean’s Local References

5. Select the reference you want the enterprise bean to use, and click OK.
Chapter 8 Preparing Enterprise Beans for Deployment 173

Overriding a Reference at the Application Level

To override a bean reference at the application level, do as follows:

1. In the Explorer window, right-click the bean’s application and select Properties.

2. Click the applicable references field (EJB Local References or EJB References) and
then click the ellipsis (…) button.

The appropriate property editor appears.

The property editors for EJB references and EJB local references are the same at the

module and application level. Continue with the same steps as described in the

previous section.

Creating an EJB JAR

After creating the EJB module, if you will be handing off the module to another part

of the organization for application assembly, you might want to create an EJB JAR.

This file can be used to export the module and its contents for use in an application.

Create the EJB JAR file as follows:

1. In the Explorer window, select the EJB module.

2. Right-click and select Export EJB JAR File.

The Output Window appears and shows you the progress as the module and its

contents are compiled. Notice any error messages in this window.

After the EJB JAR file has been created, you can still adjust the module or its

contents for use in this or another EJB JAR file.

One or more EJB modules can be placed in a J2EE application and deployed. For

details on assembly and deployment, refer to Building J2EE Applications.

Adding a JAR File to an EJB Module

You might want to let the enterprise beans in an EJB module take advantage of the

functionality offered by beans in another container. For example, if you have a

session bean that needs to authenticate a user, you can add a JAR file containing

beans that implement security checks. Add an existing EJB JAR file to your EJB

module as follows:

1. In the Explorer’s Filesystems pane, mount the filesystem that contains the JAR
file.

2. Right-click your EJB module’s mode and choose Properties.
174 Building Enterprise JavaBeans Components • September 2002

3. In the module’s property sheet, click the Extra Files field and then the ellipsis (…)
button.

4. In the Source pane, navigate to the JAR file you want to add, select the file, and
click Add.

The JAR file appears in the Files To Be Added pane.

5. Click OK to add the JAR.

When you deploy the EJB module, this JAR file is included in the module’s EJB JAR

file.
Chapter 8 Preparing Enterprise Beans for Deployment 175

176 Building Enterprise JavaBeans Components • September 2002

CHAPTER 9

Testing Enterprise Beans

As you develop enterprise beans, you might find it expedient to test them before

doing a full-scale application assembly and deployment to a production application

server. Using the Sun ONE Studio IDE, you generate a J2EE application for this

purpose, including a web module with JavaServer Pages™ (JSP™) test pages and an

EJB module for your bean. You then use the IDE’s test feature to display the JSP

page’s resulting HTML page in a web browser. In the HTML page, you can create

instances of an enterprise bean and exercise the bean’s methods.

The objects that the IDE creates for you are designed for use during the test process.

They are not intended for deployment in a production environment.

You can use the IDE’s testing feature with any supported database and application

server. The following instructions and example use PointBase as the test database,

the J2EE RI application server (the RI) as the test server, and Netscape Navigator as

the web browser.

Fulfilling the Prerequisites for Testing

Set-up can vary according to bean type. Your testing set-up can vary depending on

which type of enterprise bean you want to test. Some preparation pointers follow.

■ Consider how you want to set up the EJB module. To test a session bean, you

can simply use the EJB module generated by the testing feature. However, an

entity bean’s EJB module can be handled two different ways. See “If You Want to

Test a CMP or BMP Bean” on page 189.

Message-driven beans are not supported by the testing feature in this release of

the IDE.
177

■ Have all referenced beans in the same module. With the testing feature, you

exercise one bean at a time. However, the bean being tested must have any bean

it references available for its use. See “If You Want to Test a Bean With EJB

References” on page 190.

■ Remote references are required. Any enterprise bean you want to test must have

remote interfaces; it can also have local interfaces, but the testing feature requires

remote ones. A bean referred to by the bean you’re testing can have either or both

kinds of interfaces. For details, see “Adding Remote Interfaces to a Bean” on

page 190.

■ Your bean’s resources must be available. You must have the RI and the required

database server up and running. See the following section for details.

Variations on the set-up for enterprise bean tests are described in “If You Want to

Test a CMP or BMP Bean” on page 189.

Preparing to Deploy to the J2EE RI

To use the IDE’s testing feature on an enterprise bean, you must be able to deploy

your bean’s application to the RI, which must be installed locally on your machine.

At least one server instance of the RI must be running.

The RI server installation and instantiation should have been done automatically

when you installed the IDE. If you need detailed instructions, refer to the RI’s online

help.

Preparing to Test Beans Against the PointBase

Database

You can use the PointBase database, which is included in the IDE, to test any

enterprise bean that needs access to a database. (Normally, this means only entity

beans.)

■ If you have decided to let the testing feature create an EJB module for your use,

apply the following instructions when you reach that point in the process.

■ If you have decided to use an existing EJB module to test entity beans, be sure the

module’s properties are set so that your test application will be able to find and

log into the database.
178 Building Enterprise JavaBeans Components • September 2002

Set these properties as follows:

1. In the IDE’s Explorer window, right-click the EJB module node and choose
Properties.

The module’s property sheet appears.

2. In the J2EE RI tab of the Properties window, specify the connection to the
database as follows:

Note – In this window, type Pointbase with an initial capital only. After you type

the password, press Enter.

Two of the RI’s default settings make the server create a table for the bean being

tested, and drop the table when testing is done. If your bean must have live data

from a particular database table, make the following change:

3. Click the SQL Deployment Settings field and then the ellipsis (…) button.

The SQL Deployment Settings property editor appears.

4. Select the bean you want to test, and clear the following two checkboxes so that
they are blank:

■ Create table when deployed

■ Drop table when undeployed

5. Click OK and dismiss the EJB module’s property sheet.

6. Save your work with File → Save All.

Starting the Database Server and Web Browser

To start the PointBase database server, choose Tools → PointBase Network Server →
Start Server from the main menu.

Launch your web browser as you usually do.

You might want to minimize both of those windows, but don’t close them down

until you’re finished with your testing activities.

Field Your Input

Data Source JNDI Name jdbc/Pointbase

Data Source Password PBPUBLIC

Data Source UserName PBPUBLIC
Chapter 9 Testing Enterprise Beans 179

Generating Test Objects

Now you’re ready to use the IDE’s wizard to provide the EJB module, the web

module, and the application with which you will test your enterprise bean.

Follow these steps to generate test objects for your enterprise bean:

1. In the Explorer window, select the bean’s logical node, right-click, and choose
Create New EJB Test Application.

A wizard appears, showing default values for all the components needed to test

your application.

Note – If you right-click one bean and see that the Create New EJB Test Application

menu item is disabled, the bean probably has no remote interfaces. Follow the

directions in “Adding Remote Interfaces to a Bean” on page 190 and try again.

Notice that the Package field displays the current package name where your bean

resides. You can move the EJB module and test application objects that the wizard is

about to create by typing other package names into those fields.

In the next fields, you can also specify other package and module names if necessary.

However, if you plan to substitute an existing EJB module for the one that this

feature will generate, don’t specify the existing module here. Instead, you’ll use the

application’s property sheets later in the process.

Notice the selections in the Application Server combo box. You can use the RI as

your testing server, or you can use another server that you have specified as your

default server.

2. Mark the Auto Deploy checkbox or leave it blank.

If you mark the checkbox, the IDE automatically deploys your bean’s testing module

to the server as soon as you’ve finished creating it in the wizard. You might want to

use this approach if the bean you’re testing is stand-alone and needs no other beans

to do its work.

If you leave the checkbox blank, you will handle the deployment yourself in a later

step. Use this approach if your bean needs to be tested in conjunction with other

beans.
180 Building Enterprise JavaBeans Components • September 2002

3. Click OK to generate the EJB module, the web module, and the application, and
(if applicable) to deploy the application automatically.

A progress monitor tells you how the module generation and deployment are going.

When deployment is complete, a message appears in the IDE’s log window.

Assuming that you have let the wizard place what it produced in the bean’s

package, the generated objects for a bean named Account in a package named

Accounts_North would look like the example in FIGURE 9-1.

FIGURE 9-1 Example of Test Objects Generated for Enterprise Beans

Notice the generated objects that have been added to the bean’s package:

■ A logical web module

■ An EJB module containing the enterprise bean to be tested

■ A test application containing the EJB module and the web module

Unless you specified otherwise in the wizard, the IDE has placed the actual web

module (containing JSP pages and helper Java classes) in a new filesystem of its

own.

Notice also that the wizard created a new filesystem to contain the web module and

other objects for use in testing. When you expand the filesystem node, you see the

web module as the first subnode. This web module, shown next, contains the JSP

pages and helper Java classes.

EJB module

Logical web module

Test application

Actual web module
Chapter 9 Testing Enterprise Beans 181

You have now generated the basic test application. If your bean references any other

beans, add them to the EJB module as follows:

4. In the Explorer window, select the generated EJB module node, right-click, and
choose Add EJB.

5. In the tree view, navigate to the referenced enterprise bean, select it, and click OK.

The referenced bean is added to the EJB module, and a reference to the bean is

added to the test application.

Repeat Step 4 and Step 5 for each referenced bean.

Now, unless you marked the Auto Deploy checkbox in Step 2, you’re ready to

deploy your test application to a server. Or, if you prefer, you can deploy and

execute the application in one step. The following sections describe each approach.

Deploying the Test Application to a
Server

To deploy your test application to the RI, do the following:

1. In the Explorer window, select the J2EE application node, right-click, and choose
Deploy.

A progress monitor and output window tell you how the deployment is going. You

see a message, for example, indicating that the test application has been deployed on

the RI (which is referred to as localhost).

Web module
182 Building Enterprise JavaBeans Components • September 2002

2. Verify that your test application has been deployed by opening the J2EE command
window and checking for the statement “Application name_TestApp deployed.”

Tip – If your deployment failed, check to see that you set the IDE to run the J2EE RI

properly. Especially, notice whether the RI_Home property is set to your

J2EE_HOME value.

When the deployment is successful, you can follow the steps under “Executing the

Test Application” on page 184.

Deploying and Executing the Test Application in

One Step

To deploy your test application to a server and start it executing at the same time, do

the following:

● In the Explorer window, select the J2EE application node, right-click, and choose
Execute.

A progress monitor and output window tell you how the deployment and execution

are going. You see messages, for example, indicating that the application server has

been contacted, the enterprise bean or beans have been deployed on the server

(notice that the RI is referred to as localhost), the wrapper and RMI-IIOP code

have been compiled, the JAR or JARs for the server and client have been made, the

web server has been contacted and asked to run the test application, and all the

generated code has been saved.

When this double step is complete, a web browser appears and opens to the test

client, a JSP page that contains the GUI for testing your enterprise beans. An

example is shown in FIGURE 9-2.

Continue at “Using the Test Client to Test Your Beans” on page 184.
Chapter 9 Testing Enterprise Beans 183

Executing the Test Application

If you didn’t choose Execute to deploy and execute your test application in one step,

you can do the following to test your enterprise bean or beans:

● Open a web browser and type in the appropriate URL.

This URL has the following format if you are using the J2EE RI:

http://localhost: port/ application_name/

port is the port number you indicated when you installed the RI.

application_name is the name of the application.

The test application’s client, a JSP page, appears in the browser.

Using the Test Client to Test Your Beans

You follow the instructions on the test client’s JSP page to create instances of your

enterprise bean and call its business methods. The following section describes how

you might test a very simple session bean called dollarToYen , which converts

amounts in U.S. dollars to the equivalent values in Japanese yen. (This session bean

happens to reside in the Java package Converter .)

Understanding the Test Client Page

FIGURE 9-2 shows an example of a JSP page that the IDE has created for the

application client that was generated to test the example session bean.
184 Building Enterprise JavaBeans Components • September 2002

FIGURE 9-2 Client JSP Page Generated to Test Simple Session Bean dollarToYen

1

2

3

4

5

Chapter 9 Testing Enterprise Beans 185

As shown in FIGURE 9-2, the parts of the testing window are as follows:

1. The browser’s URL field shows the location of the test client’s JSP page. Your

client’s URL is generated automatically by the IDE’s testing feature. If you like,

you can use this URL to return to this testing window.

2. The Stored Objects frame shows the stack of objects created during your testing

sequence by the IDE or by your own actions, for example, when you have called

a method on an interface or on a bean class. Right now, only the home interface is

shown.

You can remove objects from the Stored Objects stack by using the Remove

Selected or Remove All button.

3. The EJB Navigation frame shows the objects that the IDE has generated so that

you can test your bean. If the bean you’re testing has references to other beans

and your EJB module contains more than one bean, this frame lists the created

objects in logical order, that is, in the order that one bean in the module calls

another.

In the EJB Navigation frame in FIGURE 9-2, you see

Converter.dollarToYenHome , which shows that the IDE has created the

session bean’s home interface. Later, you will click this home interface to create

and initialize a new instance of the session bean.

When you see more than one object listed in this frame, you click an object to

change focus to the bean component you want to test. When you click an object,

notice how the other frames change.

4. The Results of the Last Method Invocation frame shows, for example, the last

method you called and its parameters. Right now, since we haven’t yet begun

testing the session bean, nothing appears in this frame.

5. The bottom frame shows the methods that are now available for you to test. This

frame changes as you place focus on different components of the bean (listed in

the EJB Navigation frame).

Now let’s test the dollarToYen bean’s home interface and business method.

Testing the Sample Bean’s Home Interface

To verify that Converter.dollarToYenHome correctly creates an instance of the

session bean, do as follows:

1. In the EJB Navigation frame, click the home interface name.

2. In the bottom frame, click the Invoke button under the home interface name.

In this case, you click the Invoke button under Converter.dollarToYenHome .
186 Building Enterprise JavaBeans Components • September 2002

Notice the following changes in the page’s frames:

■ In the EJB Navigation frame, an instance of the bean has been added. In this

particular case, the instance is called Converter.dollarToYen and followed by

a process number.

■ In the Stored Objects frame, the bean instance has been added to the top of the

stack.

■ In the Results frame, the bean instance is reflected, along with the fact that the

create method was invoked with no parameters.

Now let’s test the dollarToYen bean’s business method.

Testing the Sample Bean’s Business Method

To verify that the instance of Converter.dollarToYen correctly converts U.S.

dollar amounts to Japanese yen, call the bean’s business method as follows:

1. In the EJB Navigation frame, click the bean name (under the home interface
name).

Notice that the Results frame is cleared and that the bottom frame’s list of invokable

methods now starts with the bean’s business method.

2. In the bottom frame, under the business method, type a parameter into the input
field and then click the Invoke button.

As shown next, we use the parameter 100 (and the IDE adds the .0).

After clicking Invoke, notice the following changes in the page’s frames:

■ In the Results frame, as shown next, are the result of the method invocation (the

result is 12755 yen , because the business method included a calculation of

127.55 yen to the dollar) and the parameter we input for testing purposes

(100 dollars).
Chapter 9 Testing Enterprise Beans 187

■ In the Stored Objects frame, the stack includes the result object and the parameter

object.

You can call any other bean methods that are shown in the bottom frame.

Creating New Testing Classes

When you create an object by invoking the bean’s other methods, that object can be

used to test the bean further. For example, the objects created so far by testing

Converter.dollarToYen also appear in a combo box, as shown in the following

example. You can select one of the objects and create a new class to use for testing.

Making Changes After Deployment

You can make changes in an enterprise bean and retest it without generating another

test application. However, you must redeploy the test application before testing a

bean any of whose components you have modified. Do this by closing the testing

window, going to the Explorer window, right-clicking the test application module,

and choosing Execute. Don’t try to redeploy a bean during the same testing session.
188 Building Enterprise JavaBeans Components • September 2002

Caution – The IDE generates an EJB module, a web module, and a J2EE application

that are designed only to be used to test your enterprise bean. These generated

objects are not meant to be modified. If you modify any of them, you might not be

able to deploy the J2EE application again.

Preparing to Test: Some Variations

As mentioned in “Fulfilling the Prerequisites for Testing” on page 177, if you’re not

testing something like a simple session bean that already has its remote interfaces,

you need to consider the preparatory steps described next.

If You Want to Test a CMP or BMP Bean

You can test an entity bean in one of the following ways:

■ You can test your bean in an EJB module that is automatically created for you

during the testing process and in which you declare data-source-related

properties before going on to test the bean.

■ You can create the bean’s EJB module outside the testing process (see “Putting

Enterprise Beans in an EJB Module” on page 162) and make all your properties

declarations there. Then, before you begin testing the bean, you can substitute the

EJB module you created for the one that the testing feature generates.

Either way, when you’re testing an entity bean, you must use an EJB module in

which the bean’s properties are declared. Since the EJB module generated by the

testing feature is designed only for test use, you will also have to create a “real” EJB

module for your production entity beans. You can do this before or after testing.
Chapter 9 Testing Enterprise Beans 189

If You Want to Test a Bean With EJB References

If you want to test an enterprise bean that is designed to interact with another bean,

(for example, if you’re testing a session bean that manages work done by an entity

bean), you must make sure the referenced bean is included in the EJB module.

You can take either of the following approaches:

■ Use an existing EJB module that has all the necessary properties specified. To do

this, you specify the EJB module in the Create a New EJB Test Application wizard,

using the Modify button.

■ Build the module around the referencing bean and add the referenced beans.
To do this, first create a test application around the bean you want to test. Then,

in the Explorer window, find the EJB module that the IDE created for you. Right-

click the EJB module node and choose Add EJB.

Before you generate the test application, make sure that all necessary EJB references

are specified in the beans’ property sheets, and that any necessary overrides are

specified in the EJB module’s property sheet. Otherwise, the test might fail or give

mixed results.

See “Specifying EJB References” on page 155 for details.

Adding Remote Interfaces to a Bean

If the bean you’re testing has only local interfaces, you can prepare it for testing by

copying the local interfaces to create remote ones. Briefly, you use existing interfaces

as follows:

■ Use the local interface (Local Bean_name) to create the corresponding remote

interface (Bean_name).

■ Use the local home interface (Local Bean_nameHome) to create the corresponding

home interface (Bean_nameHome).

Caution – Don’t try to use this process to add EJB 2.0 features (such as local

interfaces or references) to an EJB 1.1 CMP entity bean that has not been fully

updated to conform to the current version of the Enterprise JavaBeans Specification.

The resulting bean will be invalid and irreparable. See “Avoiding the Use of New

Features in an Old Bean” on page 210 for details.

Add remote interfaces one at a time. (These instructions start with the local interface

and the corresponding remote interface. Later you will repeat the process with the

local home interface and the home interface.)
190 Building Enterprise JavaBeans Components • September 2002

Do as follows:

1. In the Explorer window, right-click the interface node labeled Local Bean_name
and choose Copy from the menu.

2. Select the bean’s Java package, right-click, and choose Paste → Copy.

A copy of the interface appears in the folder, labeled Local Bean_name_1 .

3. Select the copy, right-click, and choose Rename. In the Rename dialog box, name
the copied interface according to the J2EE convention: Bean_name.

4. In the Explorer, right-click the bean’s logical node and choose Customize.

The Customizer dialog box appears.

Notice that the Customizer deals with many of the properties also available in the

property sheet that appears when you right-click the bean’s logical node and choose

Properties. You can change many of the bean’s properties in either dialog box.

However, the Customizer does deals only with properties on the bean itself, not with

properties relating to application servers. Also, if you want to add remote interfaces

to a bean, you can do so only in the Customizer.

5. In the Customizer dialog box, find the empty Remote Interface field and click the
Browse button.

The Select a Class file chooser appears, as shown in FIGURE 9-3.
Chapter 9 Testing Enterprise Beans 191

FIGURE 9-3 Customizer for Adding an Interface Class to a Bean

6. Navigate to the interface class you created by copying and pasting. Select the
interface node and click OK.

The class appears in the Remote Interface field.

(You will see later that the Remote Interface field in the bean’s property sheet has

automatically been updated.)

7. Dismiss the Customizer dialog box.
192 Building Enterprise JavaBeans Components • September 2002

8. In the Explorer, expand the logical bean node. Expand the Classes node, select the
new remote interface (labeled Remote Interface Class), and open it in the
Source Editor.

Edit the remote interface class to extend javax.ejb.EJBObject .

9. For each method in the remote class, add the exception
java.rmi.RemoteException .

10. For each ejbCreate method, change the return type to the new remote interface.

11. For each finder method that finds a single object, change the return type to the
new remote interface.

12. Compile your enterprise bean and resolve any errors.

13. Use the same process (Step 1 through Step 12) to create a home interface from a
copy of the local home interface.

However, in Step 8, edit the home interface class to extend javax.ejb.EJBHome .

Note – Be sure to remove from the two new interfaces any methods that cannot be

used as remote methods.
Chapter 9 Testing Enterprise Beans 193

194 Building Enterprise JavaBeans Components • September 2002

APPENDIX A

Working With Enterprise Beans

The relationships between the elements of an enterprise bean can be intricate and

complex. The Sun ONE Studio IDE makes certain assumptions to preserve the

integrity of your beans, but also flexibly supports various options for reusing beans.

This appendix prescribes the best practices for working with existing enterprise

beans.

Using Recommended Approaches When
Editing Beans

To be certain that changes take place as you intended, make your edits through the

enterprise bean’s logical node and property sheets. If you use these recommended

approaches, the IDE can ensure that the standards in the J2EE specification are

followed.

These approaches are explained next.

Working Through the Logical Node

As a general rule, you should go through the logical node of your enterprise bean to

make changes in the bean’s code. This node’s icon looks like a coffee bean:

The node was designed to organize all the elements of your enterprise bean.

When you work through the logical node, the IDE can most easily propagate the

changes correctly throughout the bean.

All the classes in your bean are represented under this one node, as if the bean were

a single object. There you can edit your enterprise beans without having to think

about which class must receive each change. For example:
195

■ When you add a new method to the Create Methods node under a bean’s logical

node, the body of that method (ejbCreate Xxx) and its related method

(ejbPostCreate Xxx, required for entity beans) are added to the bean class.

Depending on which types of interface the bean has, the corresponding method

signature (create Xxx) is added to the local home interface, the home interface,

or both.

■ When you add a new method to the Finder Methods node under an entity bean’s

logical node, the Add New Finder Method dialog box prompts you for the correct

name of the method. The method signature is added to the local home interface,

the home interface, or both.

■ In a CMP entity bean, the Add New Finder Method dialog box also prompts

you for EJB QL Select, From, and Where statements. When you deploy your

bean to a supported application server, this EJB QL code is automatically

converted into the kind of SQL that the server needs.

If you want to define a new finder or select method but you aren’t ready to

provide the EJB QL code yet, you can disable the EJB Compiler’s requirement

for EJB QL. See “Compiling and Validating Enterprise Beans” on page 199.

■ In a BMP entity bean, the corresponding ejbFind method is also added to the

bean class.)

■ When you add a new method to the Business Methods node under a bean’s

logical node, the method body is added to the bean class. Depending on which

types of interface the bean has, the method signature is added to the local

interface, the remote interface, or both.

■ When you add a new method to the Home Methods node under the logical node,

the method body is added to the bean class, and the method signature is added to

the appropriate interface or interfaces.

■ When you add a new method to the Select Methods node under a CMP entity

bean’s logical node, the Add New Select Method dialog box prompts you for all

the information needed to complete the method, including EJB QL statements.

The method body is added to the bean class.

In many cases, the IDE can propagate your changes and synchronize your bean’s

classes and interface even when you go through other nodes of your bean to edit the

Java code. However, you get the most consistent results by working through the

logical node.
196 Building Enterprise JavaBeans Components • September 2002

Using the Customizer or Property Sheet

When you need to modify a method’s name or return type, or when you need to edit

or add a parameter or exception, the best place to do so is in the method’s

Customizer dialog box or property sheet. Under the logical node, select the method,

right-click, and choose Customize or Properties.

■ The Customizer has the same format as the dialog box in which you created the

method.

■ The property sheet shows the method’s parts in tabbed interfaces that correspond

to the classes that the method inhabits.

Any change you make in one of these two places is validated and propagated in the

right form to the right classes.

When you need to add code to complete a method, use the IDE’s Source Editor.

Caution – If you make changes outside the logical node, by working within the

bean class node or one of the interface nodes, the EJB Builder still tries to propagate

your changes. However, in certain cases, you might need to manually ensure that

your code matches Sun’s J2EE specification. See the specific examples that follow.

Using the Source Editor to Edit Beans

You can create or modify any part of an enterprise bean by using the IDE’s Source

Editor exclusively. However, the IDE’s wizards and other GUI tools are designed to

save you work and to help prevent inconsistencies, so that you can produce

standard, J2EE-compliant enterprise beans quickly.

In some cases, if you bypass the assistance offered by the EJB Builder, you might get

mixed results. The EJB Builder tries to keep the changes you make in one class

synchronized appropriately with the other classes, but the tool might not always be

able to understand your intent and might not apply all the changes needed.

Therefore, if you make direct changes to class code, the result might be an enterprise

bean with errors that you must correct by hand.

A few examples follow:

■ You open a bean’s interface class (home, remote, local home, or local) in the

Source Editor, and you add code for a new method.

To be valid, a method must have a name and the correct return type, and the

method must throw the appropriate exceptions. If the new method is valid, it is

automatically added to the bean class. If not, the method remains as you coded it,

in the interface only.
Appendix A Working With Enterprise Beans 197

Afterward, you might find and fix the problem in the method. However, the EJB

Builder might not always be able to add the repaired method to the bean class;

you might have to add it yourself. Until you make the manual addition, the

method’s node in the Explorer displays an error badge with a red X. (See

“Understanding the IDE’s Error Information” on page 199.)

Here are two examples of how changes are propagated between classes:

■ If you correctly add a create method to the home interface, the EJB Builder

automatically adds the corresponding ejbCreate Xxx method to the bean

class.

■ If you correctly add an ejbCreate Xxx method to the bean class, the EJB

Builder automatically adds the corresponding create method to the appropriate

interface or interfaces.

■ You open a bean class in the Source Editor, and you add a finder method.

The compiler validates the code. Assuming that the method is valid, it is

automatically added to the correct interface or interfaces.

■ You open a bean class in the Source Editor, and you add a business method.

The compiler validates the code as far as is possible. However, it’s possible that

you might have intended your addition merely as a helper or utility method

within the bean class, and therefore the method is not propagated to the remote

or local interface.

■ You add a business method with the correct exception to a bean’s remote or local

interface.

The method is automatically propagated to the bean class.

■ You use the Source Editor to modify a create method in a bean’s home (or local

home) interface or a business method in a bean’s remote (or local) interface.

The EJB Builder propagates your changes to the bean class.

■ You modify the ejbCreate Xxx method in the bean class.

The compiler validates the code as far as is possible, but does not propagate the

change to the home or local home interface. (Relationships between Java interface

classes are treated similarly throughout the IDE.)

■ You modify a method in a bean’s home interface. In the process, you make the

method invalid by removing a required exception.

The compiler validates the code and provides error information, but does not

propagate the change to the bean class.

■ You enter a new create method in the bean class and give it a name other than

ejbCreate or ejbCreate Xxx. Or, you enter a new finder method in a home or

local home interface and name it other than findBy Xxx. (Or, you modify such a

method.)
198 Building Enterprise JavaBeans Components • September 2002

The compiler verifies that the declaration is syntactically correct and that the

return type and parameter types are valid Java classes that can be resolved.

Caution – Once you start working on a class in the Source Editor, your enterprise

bean is not saved until you explicitly save it.

Understanding the IDE’s Error
Information

If you create code that is inconsistent with the J2EE specification, a warning badge or

an error badge appears on a node’s icon in the Explorer. To see a description of the

problem, select the offending node, right-click, and choose Error Information or

Validate EJB.

This yellow triangle warning badge on the logical node means that the bean or

one of its classes might have a validation problem. Expand the logical node to see

where the problem lies. For instance, a method defined in the remote interface might

not be in the bean class, or a class might extend the wrong Java superclass. Even if

you can compile the bean, it will encounter problems.

This red X error badge on the logical node means that the bean or one of its

classes might have a severe problem. For instance, an entire class could be missing.

A bean bearing this error badge will not execute or even allow interaction.

Compiling and Validating Enterprise
Beans

The EJB Builder contains a custom compiler that validates your enterprise beans

against the Enterprise JavaBeans Specification. You can decide whether to have

compilation and validation done separately. However, when you select an enterprise

bean node, right-click it, and choose Validate EJB, the default action is to compile the

bean and then immediately validate it.

Notice that compilation alone does not catch all errors, and that if a bean has

compilation errors, it is not validated.
Appendix A Working With Enterprise Beans 199

Validation and compilation in the IDE serve different purposes. When you only

compile an enterprise bean, the IDE compiles the various classes that constitute the

bean. If these individual classes have Java code that is syntactically correct, the bean

can compile without errors, even if one class is not consistent with another or with

the J2EE specifications. To ensure consistency between the elements of an enterprise

bean, you must also validate the bean.

The EJB Compiler conforms to the IDE’s definitions of build , compile , and clean .

■ If the bean is out of date (that is, the bean’s deployment descriptor has been

modified, or a directly referenced Java class has been modified since the last

successful compilation), a compilation both compiles and validates the Java class

according to the Enterprise JavaBeans Specification.

■ A clean removes the directly referenced Java class files and the time stamp of the

last EJB compilation.

■ A build first performs a clean and then compiles the referenced classes.

In most cases, you can save considerable time by using the EJB Compiler with its

default options during your iterative development cycle. However, under certain

conditions (for example, if you must change a superclass after a successful

compilation), compilation does not catch Java or EJB validation errors. In such cases,

you might need to perform a build (possibly traversing several directories,

depending on the location of all your bean’s Java files) to detect or resolve

compilation errors.

The compiler also does some semantic checking of the EJB QL in the select and

finder methods of a CMP entity bean. Again, you can choose whether or not to have

the compiler require EJB QL statements. Sometimes, you might find it convenient to

turn off that requirement, so that you can develop, compile, and validate your

enterprise bean without receiving error messages about missing EJB QL statements.

However, you must add the EJB QL (and turn the compiler’s EJB QL requirement

option back on) before you deploy the bean to the IDE’s embedded application

server, the J2EE Reference Implementation (the RI). This server and some others

require EJB QL, which the server plugin converts to the SQL it needs in order to run

queries in your finder and select methods.

To set compilation and validation options for your enterprise bean, do as follows:

1. From the main menu, choose Tools → Options.

2. Expand the Options node, the Building node, and the Compiler Types node.

3. Select EJB 2.0 Compiler.
200 Building Enterprise JavaBeans Components • September 2002

4. In the property sheet, make your selections.

The default setting for both fields is True . Change the setting in the following cases:

■ Change the Require Compilation field to False if you want to be able to validate

your bean in a separate step before you compile it.

■ Change the Require EJB QL field to False if you want your bean to pass

validation without EJB QL statements in its finder and select methods.

If you have chosen to separate validation from compilation, validate your bean as

follows:

● In the Explorer’s Filesystems pane, select the bean’s logical node, right-click, and
choose Validate EJB.

Depending on the size of your bean, validation might take a few moments. When it’s

finished, an output window opens and displays messages about your bean.

When you compile an EJB module or do anything to a module that involves a

compile (such as exporting an EJB JAR file, or calculating the class files for export),

the module and all its component beans are validated automatically.

Saving Your Changes

In many cases, your work is saved automatically. However, this is not always true.

For example, compiling a bean does not always save it. When you exit from the IDE,

notice the confirmation dialog box and save the work you want to. For best results,

use File → Save All periodically while you work in the IDE.

Renaming an Enterprise Bean

When you rename a bean, you don’t have to manually rename all the bean’s related

objects and their internal references. Use the IDE’s GUI support as explained next,

and the IDE synchronizes all interfaces automatically (both their external object

names and related references within the source code). Do as follows:

1. Select the bean’s logical node, right-click, and choose Rename.

The Rename dialog box appears. As soon as you begin typing into the New Name

field, the checkbox options are activated.

2. Use the checkboxes to rename all the bean’s related objects at once.
Appendix A Working With Enterprise Beans 201

However, if you obtained one of your bean’s objects from elsewhere, carefully

consider whether or not you want to rename it. For example, if two or more entity

beans share the same home and remote interfaces, you might want to keep similar

interfaces named the same wherever they occur.

Caution – If you rename any one of the related objects independently, connections

between the objects can be lost.

Modifying a Bean Based on Another
Bean

An enterprise bean’s class can be based on a class from another bean. For example,

you can create an enterprise bean that uses another bean’s remote interface. When

you modify a class that is based on another class, you are actually modifying the

original class. The more recent bean points to the earlier bean’s class; you are not

working with a separate copy of the class file. This is part of the IDE’s design to

promote easy reuse of enterprise bean elements.

Copying and Pasting an Enterprise Bean

When you copy and paste a bean into another package, the IDE creates a node in the

new package that points to classes and interfaces in the original package. The IDE

does not make the assumption that you want everything in one package; some

developers need to reuse bean elements more flexibly. Therefore, if you want an

exact copy of one bean in another package, you must also ensure that the paths of all

the bean’s classes and interfaces are changed to the new package.

To copy and paste an enterprise bean from one package to another, do as follows:

1. In the Explorer’s Filesystems pane, right-click the logical node of the bean you
want to copy and choose Copy.

2. Right-click the package to which you want to copy the bean and choose
Paste → Copy.
202 Building Enterprise JavaBeans Components • September 2002

3. Expand the Classes node under the original bean’s logical node, right-click the
node for a class or interface, and choose Copy. Then paste the class or interface
into the destination package by right-clicking the destination package and
choosing Paste → Copy.

Repeat this step for each of the bean’s classes and interfaces.

4. Right-click the logical node of the copied bean and choose Properties.

5. In the property sheet, update each class to point to the destination package. Find
the following fields:

■ bean class

■ home interface (if any)

■ remote interface (if any)

■ local home interface (if any)

■ local interface (if any)

■ primary-key class (if any)

a. Click each field, then click the ellipsis (…) button.

b. In the property editor, navigate to the destination package, select the copy of
the class or interface you pasted into the package, and click OK.

The property value changes to PackageName.classname.

When you’re done, each class and interface property has the package name

appended to the original name. The destination package contains a complete copy of

the bean.

Exchanging Bean Classes or Interfaces

After you create an enterprise bean, you might need to change it to use an element

from another bean, such as a home or remote interface. To do this, use the bean’s

property sheet as follows:

1. In the Explorer window, select the bean that needs a different class or interface,
right-click, and choose Properties.

2. In the Properties tabbed pane, click the appropriate property (Bean Class, Home
Interface, Primary Key Class, or Remote Interface), and click the ellipsis (…)
button.

3. Navigate to the class or interface you want to use, select it, and click OK.

The property field shows the fully qualified path name of the new class or interface.

Your bean does not contain a copy of the new element. It merely points to the

original element.
Appendix A Working With Enterprise Beans 203

Editing a Bean’s Methods

When you have added a method using the GUI support available from the Explorer

window, you can edit the method in the Source Editor. If all you need to do is

complete the body of the method in the bean class, and your edits don’t affect any

other class or interface, you should use the Source Editor. However, for changes that

might have a ripple effect on other classes, you might need to synchronize the

changes in the bean’s related objects. For examples, see “Using the Source Editor to

Edit Beans” on page 197.

Or, you can simply use the Customizer dialog box as follows:

1. In the Explorer window, expand the logical node of the bean whose method you
want to edit. Navigate to the method.

2. Select the method, right-click, and choose Customize.

The Customizer dialog box appears with the same fields as the New Method dialog

box.

3. Edit the fields as needed. Click Close when you’re done.

The IDE propagates your changes throughout the bean.

Viewing a Method

To see any method you have created for an enterprise bean, expand the bean’s

logical node and navigate to the sub-node for the kind of method you want to view.

Right-click the method’s node and choose Open. The Source Editor opens the class

directly to the method code.

Changing an Entity Bean’s Fields

Depending on whether your entity bean uses container-managed or bean-managed

persistence, you use different methods to rename a field and to change a field’s type.
204 Building Enterprise JavaBeans Components • September 2002

Renaming a Field

In a CMP bean, use the GUI support available from the Explorer window. Do as

follows:

1. Expand the bean’s logical node and select the CMP field. Right-click, and choose
Rename.

2. Use the checkboxes to specify the extent of your change.

In a BMP bean, use the Source Editor to rename a persistent or a nonpersistent field.

Changing the Type of a Field

In a CMP bean, use the Explorer’s GUI support. Change a field’s type as follows:

1. Expand the bean’s logical node and select the CMP field. Right-click, and choose
Customize.

2. In the Customizer dialog box, select another type.

In a BMP bean, use the Source Editor to change the type of a persistent or a

nonpersistent field.

Deleting an Enterprise Bean

Regardless of the type of enterprise bean, delete a bean only as follows:

1. Select the bean’s logical node, right-click, and choose Delete.

The Confirm EJB Deletion dialog box appears.

2. Use the checkboxes to confirm that you want to delete all the bean’s related
objects at once.

If one of your bean’s related objects is used elsewhere, carefully consider whether or

not you want to delete it. For example, if several entity beans use the same primary-

key class, you should deselect its checkbox before deleting the rest of the bean’s

classes.

Caution – Don’t choose Edit → Delete from the menu bar when deleting beans; the

IDE simply deletes the selected class without trying to synchronize your bean’s

constituent classes.
Appendix A Working With Enterprise Beans 205

206 Building Enterprise JavaBeans Components • September 2002

APPENDIX B

Migrating and Upgrading EJB 1.1
Enterprise Beans

If you used the previous version of the Sun ONE Studio IDE to build enterprise

beans, that is, if your enterprise beans were built according to the Enterprise
JavaBeans Specification version 1.1 (EJB 1.1), you can migrate your beans to the

current version of the IDE and to Enterprise JavaBeans Specification version 2.0

(EJB 2.0). Depending on the type of EJB 1.1 enterprise bean and what you want to do

with it, the bean might be converted automatically by the IDE. Or, you might have to

make some manual changes, which are described in this appendix.

Understanding Updates in the Current
Release

Some of the differences between the current and previous IDE release involve

container-managed persistent (CMP) entity beans, their properties, and the

validation of enterprise beans in general. Notice the following points.

■ Most bean conversions are automatic. In most cases, when you import an EJB 1.1

enterprise bean into the current version of the IDE, the IDE automatically

converts it to an EJB 2.0 enterprise bean. However, CMP entity beans created in

the EJB 1.1 environment are a special case.

You can easily identify these beans by their version tag, a feature that was added

in the current IDE. In the property sheets for a CMP entity bean, in the CMP

Version field, you see that a bean created in the current IDE has the value 2.x ,

while the older CMP entity bean has the value 1.x. (We’ll refer to the older type

of bean as a CMP 1.x entity bean.)
207

■ EJB validation now catches more. In the current release of the IDE, validation has

been tightened up. You might find that this upgraded feature points out failures

in Java code that seemed to succeed in the previous release. An example is the

transient modifier, described next.

Use EJB Validate (from the contextual menu on the enterprise bean in the IDE’s

Explorer) or Build All (from the contextual menu on the package) to see whether

an application containing that bean can be deployed in the current version of the

IDE. If validation uncovers errors in your code, see the following sections.

Once the bean is validated successfully, assemble it into a module and an

application, and try to deploy it. If deployment fails, check to see whether

changes in the bean’s property sheets could be causing the problem.

■ Get rid of transient in session beans. The previous version of the IDE seemed

to allow the use of the transient modifier, but validation in this version catches

it and issues an error message. See “Avoiding the transient Modifier” on page 211

for instructions on finding and changing the modifier.

■ Old CMP entity beans are mainly OK to use in development, but update them
before deployment. If you have changed the bean’s transient modifier, you

shouldn’t experience any problems using CMP 1.x entity beans in your

development work with the current IDE. However, when you’re ready to deploy

a CMP 1.x entity bean in this IDE, you must make a few changes by hand, as

follows:

■ Shift certain bean properties to the EJB module for RI deployment. A

significant change in the current release is the way data source references are

declared for CMP entity beans that are deployed to the J2EE reference-

implementation application server (RI). The RI-related properties for such a

bean must now be set in the EJB module. For details, see “Shifting a Bean’s RI

Properties to the EJB Module Level” on page 212.

■ Edit generated SQL for RI deployment. If you’re deploying a CMP 1.x entity

bean to the RI, you must edit one of the SQL statements that the RI plugin

generates. Specifically, you must edit the WHEREclause in the SELECT
statement of the finder method. See “If Your EJB Module Contains an EJB 1.1

CMP Entity Bean” on page 168 for details.

When you have made these changes, the CMP entity bean still has the CMP

Version value 1.x; it hasn’t been converted to a CMP 2.x entity bean. However, the

bean and its existing interfaces should operate and deploy without problems in

the current IDE, assuming you’re deploying the beans to an application server

that complies with EJB 2.0.

■ Convert old CMP entity beans before adding new features. You can’t add new

EJB 2.0 features such as local interfaces to a CMP 1.x entity bean. If you need new

features in an old bean, you must first convert the bean manually to the CMP 2.x

level. These instructions are given in “Converting a CMP 1.x Entity Bean” on

page 209.
208 Building Enterprise JavaBeans Components • September 2002

Making Specific Changes

In the sections that follow are instructions for updating enterprise beans that were

created using the previous version of the IDE.

Converting a CMP 1.x Entity Bean

Sometimes you can’t recreate a CMP 1.x entity bean from scratch, but you want the

bean to be able to use new EJB 2.0 features such as local interfaces, local references,

select and home methods. In this case, you will probably need to manually upgrade

the bean. Convert it to a CMP 2.x bean as follows:

1. In the Explorer window, create a new Java package.

2. Copy the Java files from the CMP 1.x entity bean’s old package. Paste them into
the new package (as copies, not as links).

3. Use the EJB Builder Wizard as discussed in Chapter 4 to create a new CMP entity
bean.

On the last pane of the wizard, specify the copied classes as the bean’s remote and

home interfaces. Also specify the bean class and primary-key class.

For the moment, ignore the IDE’s warning that no CMP (persistent) fields have been

found.

4. Add fields as needed and make other edits to correct EJB Validation errors.

When you import any other kind of EJB 1.1 enterprise bean into the current version

of the IDE, the bean is automatically updated to conform to EJB 2.0.
Appendix B Migrating and Upgrading EJB 1.1 Enterprise Beans 209

Avoiding the Use of New Features in an Old Bean

If you try to use new features in an enterprise bean that was created using the

previous version of the IDE, the results cannot be predicted. Two examples follow.

Don’t Add Local Interfaces to a CMP 1.x Entity Bean

When you use the product as intended, EJB 1.1 beans have a different contextual

menu (the menu that appears in the Explorer window when you right-click the

bean’s logical node), and the menu options are limited. However, if you choose

Customize from the contextual menu, you see a window that seems to allow a local

home and a local interface file.

These fields are not editable directly, and the file paths of the local interface do not

appear on the property sheet of an EJB 1.1 CMP entity bean.

Caution – Do not add local interfaces in this way. If you do, you will not be able to

remove the interfaces again. The CMP entity bean will become invalid and cannot be

repaired.

Don’t Add Local EJB References, Either

The same caveat applies to local EJB references. They cannot be added to a CMP 1.x

entity bean, even though the Customizer window might appear to allow it. If you

have done so, you can go to the Customizer dialog box and delete the references you

added.

The EJB 2.0 standard is quite large, and its new coding practices are strongly

encouraged or enforced by the current version of the IDE. If possible, you should

recreate your old enterprise beans using the current IDE’s EJB Builder Wizard.

Carefully evaluate your code and upgrade it where necessary to conform to the

current EJB standard.

Note – You can add local interfaces and local EJB references, if needed, to another

type of EJB 1.1 enterprise bean, because the IDE converts those beans automatically

to conform to the current EJB standard. Either the Customizer dialog box or the

property sheet can be used to modify these enterprise beans.
210 Building Enterprise JavaBeans Components • September 2002

Changing the PointBase User Name and

Password

The default database user ID and password for the PointBase database have changed

from public to pbpublic . All property sheets must be modified to reflect the

change. Remember to press the Enter or Return key after typing the password.

Avoiding the transient Modifier

The previous version of the IDE seemed to allow statements of this form in session

beans:

public class HelloBean implements javax.ejb.SessionBean {
private transient SessionContext context;

In the previous version, validation did not catch the use of the transient modifier.

In the current version, validation catches and disallows that modifier.

A simple EJB Validate command on an EJB 1.1 session bean might not catch the use

of this modifier. To be sure your bean is validated completely, do the following:

1. In the Explorer window, select the bean.

2. In the main menu, choose Build → Build.

The IDE builds all the bean’s Java classes and performs a validation check. The

Compiler output window shows the result of the build, including any error

messages.

If the transient modifier is present in your session bean, you see an error when

building the bean or when a client executes against the bean. To correct the problem,

remove the word transient from the EJB Bean class, and then validate or build the

bean again. If validation or building is successful, deploy the bean and run the client

again.

Version 2.0 of the Enterprise JavaBeans Specification says:

The Bean Provider must assume that the content of transient fields may

be lost between the ejbPassivate and ejbActivate notifications.

Therefore, the Bean Provider should not store in a transient field a

reference to any of the following objects: SessionContext object;

environment JNDI naming context or any its subcontexts; home and

remote interfaces; or the UserTransaction interface.
Appendix B Migrating and Upgrading EJB 1.1 Enterprise Beans 211

Shifting a Bean’s RI Properties to the EJB Module

Level

For any CMP entity bean that is deployed to the RI, you must move its RI-related

properties from the bean level to the level of the EJB module.

The property sheets for enterprise beans have changed slightly. When one enterprise

bean calls another, a reference is set on the calling bean. Two changes must be made

so that this type of application can execute. If these changes are not made, you might

see a Cannot save deployment error. This type of error is probably due to

database-related information being in the wrong property sheets of a CMP entity

bean. To correct the problem, do as follows:

1. In the Explorer window, right-click the bean’s EJB module node and choose
Properties.

2. Go to the J2EE RI tabbed interface of the Properties window.

Three properties that were on the bean’s J2EE RI property sheet in the previous

version of the IDE now appear here. They represent the database connection that the

CMP entity bean will use.

3. Specify each property for the database.

If you’re using the PointBase database, type the following values:

■ In the Datasource JNDI Name field: jdbc/Pointbase (the JNDI name that exists

in the application server. Type Pointbase with only an initial capital)

■ In the Datasource Password field: pbpublic (the new password default. Press the

Enter or Return key after typing the password)

■ In the Datasource User Name field: pbpublic (the new user-name default)

Changing CMP Entity Bean Properties Before

Testing the Bean

In the previous release of the IDE, if a CMP enterprise bean had the correct

information for database connection, then the test application that was generated for

the bean could be deployed to the RI with no further changes.

In the current release, you don’t have to make any changes in the EJB test

application for session beans or bean-managed persistent (BMP) entity beans.

However, for CMP entity beans that you intend to deploy to the RI and test against

PointBase, a change is required. As mentioned earlier, the properties for the Data

Source JNDI Name, user ID, and password have been moved from the enterprise
212 Building Enterprise JavaBeans Components • September 2002

bean level to the EJB module level, the PointBase default user ID and password have

changed, and the JNDI name on an EJB reference’s J2EE RI tabbed interface has only

one property. A CMP bean’s property sheet is not updated automatically.

To change these properties, do as follows:

1. In the Explorer window, right-click the node for the EJB module that the testing
feature generated. Choose Properties.

2. In the property sheet, click the J2EE RI tab.

3. In the J2EE RI tabbed interface, update the three data source fields as explained in
“Shifting a Bean’s RI Properties to the EJB Module Level” on page 212.

If you try to deploy your application before setting those properties, you get an error

message, with the details of the error in the Deploying Application tab of the Output

Window.
Appendix B Migrating and Upgrading EJB 1.1 Enterprise Beans 213

214 Building Enterprise JavaBeans Components • September 2002

Index
A
abstract accessor methods, 36

abstract schema name, 89, 111, 121, 152

accessor methods, 36

acknowledgement mode for message-driven

beans, 146

activating

entity bean instances, 32

message-driven bean instances, 39

stateful session bean instances, 28

afterBegin method

in a stateful CMT session bean, 29, 59, 65

afterCompletion method

in a stateful CMT session bean, 29, 59, 66

anonymous instance

entity bean, 33

message-driven bean, 39

stateless session bean, 28

application assembly, refer to Building J2EE
Applications

application examples, refer to Sun ONE Studio 4

tutorials and examples at

http://forte.sun.com/ffj/documentati
on/

application server

EJB container services, 30

requirements, 55

RI provided with IDE, 44

RI requirements, 159 to 161, 163 to 170

tabbed pane on property sheets, 150

application-level problems, See exceptions

applications, configuring, 41

assembling beans into an EJB module, 162 to 163

attributes, See transaction attributes

avoiding message-driven bean problems, 146

B
back-end tier, See data store

base classes, See bean classes and interfaces

bean

class, 12

entity bean, 84, 115

message-driven bean, 138

session bean, 55

classes and interfaces, 8, 55 to 56, 84, 126

methods, introduction to, 8

properties, 42, 150 to 161

session bean types, 49

types, entity bean, 71, 105

bean home name, See abstract schema name

bean-managed persistence (BMP), 30

comparing with CMP, 71

completing the generated code, 128 to 132

bean-managed transactions (BMT), 25, 51, 53, 135

beforeCompletion method

in a stateful CMT session bean, 29, 59, 65

business methods, 9, 196

in entity beans, 34

in a BMP entity bean, 131

in a CMP entity bean, 97

in a message-driven bean, 39

in a session bean, 27, 63

compared to home methods, 99
Index 215

C
cardinality of a CMR, 36

cascade-delete functionality in a CMR, 36

changing

a primary-key class, 95

an entity bean’s fields, 204

beans, general rules, 195 to 199

field types, 205

to another bean class or interface, 203

checking security, 42

class files

of a session bean, 54

of an entity bean, 78

clean-up after server crash, 146

clients

relationships with enterprise beans, 22, 29

supported by the IDE, 2

CMP fields

adding, 101

and CMRs, 111

from database table columns, 76, 111

in a set of related CMP entity beans, 111

in a single CMP entity bean, 76

initializing values, 33

specifying individually, 82 to 83

CMRs (container-managed relationships)

introduction to, 36

adding, 119 to 121

editing, 112 to 114

in a set of related CMP entity beans, 112

managed by the EJB module, 117

code, finishing

entity beans, 31, 92 to 101, 117 to 121

message-driven beans, 139 to 141

session beans, 26, 59 to 67

coding security into enterprise beans, 43

commit method, 64

compiler options

include validation or not, 200

require EJB QL or not, 201

compiling compared to validating, 199

configuring an EJB application, 41

connection factories

for enterprise beans in general, 156

for message-driven beans, 142

connections to resources

for enterprise beans in general, 156

for message-driven beans, 142

consistency through validation, 199

container, See EJB container

container-managed persistence (CMP), 30, 71

container-managed transactions (CMT), 25, 51, 53,

135

contracts within J2EE architecture, 6

conversational session, 22 to 29

copying and pasting a bean, 202 to 203

create methods, 9, 196

in entity beans, 93 to 95, 130

in message-driven beans, 139

in session beans, 57, 60 to 61

to insert data into a data store, 33

creating

a new entity bean instance, 33

a new message-driven bean instance, 39

a new session bean instance, 27

an EJB module around enterprise beans, 161

testing objects, 180

customized exceptions, 42

customizer

adding interfaces to a bean, 190 to 193

modifying methods, parameters, and

exceptions, 197

D
data access object (DAO), 128

data store in the J2EE application model, 4

data synchronization, 35

database connections, 77 to 78

specifying in property sheets, 156 to 158

when generating a CMP entity bean, 73 to 74,

106

database mapping, 18

with CMP fields, 76 to 78, 108 to 114

database schema

capturing, 79

using to generate CMP fields, 79 to 80, ?? to 81,

?? to 82, 114 to 115

database server

included in the IDE, 44

using to generate CMP entity beans, 73
Index 216 Building Enterprise JavaBeans Components • September 2002

data-storage connections, 156 to 158

declaring

runtime information, 42, 141, 147 to 170

security, 43, 158

transaction attributes, 25, 170 to 172

deleting an enterprise bean, 205

deployment descriptor, 13, 42, 147

descriptor, See deployment descriptor

design recommendations, 45

destination, message-driven, 141

destroying, See removing

developer roles in the J2EE model, 5

development life cycle of an enterprise bean, 15

difference between

business and home methods, 99

container-managed and bean-managed

persistence, 30

container-managed and bean-managed

transactions, 25

enterprise beans and JavaBeans, 3

finder and select methods, 98

session and entity beans, 22, 29

stateless and stateful session beans, 23

using JTA and the JDBC API, 26

directionality of a CMR, 36

dropped ejbRemove invocations, 146

duplicate messages, 146

E
editing

bean methods, 204

beans, 195 to 199

CMRs, 112 to 114

EJB QL statements, 98

SQL statements in CMP beans’ property

sheets, 163 to 170

EJB 2.0 specification supported, 1

EJB Builder Wizard, 16, 48 to 67

defining a BMP entity bean, 123 to 132

defining a CMP entity bean, 69 to 101

defining a message-driven bean bean, 134 to 146

defining a session bean, 52 to 55

defining a set of related CMP entity beans, 104

to 115

generating CMP entity bean classes, 107 to 115

generating exceptions, 42

generating method signatures, 27, 32, 39

generating session bean classes, 55 to 59

propagating changes through bean classes, 195

to 199

EJB container

managing persistence, 30

managing transactions, 25

pooling entity bean instances, 31

pooling message-driven bean instances, 40

pooling stateless session bean instances, 28

role within a J2EE application, 4

services provided to entity beans, 30

EJB group, See set of related CMP entity beans

EJB JAR file, 5, 161 to 174

EJB module, 5

creating, 161 to 174

for testing purposes, 177

properties, 42

transaction attributes, 170 to 172

EJB QL, 196

editing, 98

errors, 201

foreign keys, 36

in finder methods, 9, 98

in select methods, 9, 100

required or not by compiler, 201

table-to-table joins, 36

EJB references, 155

ejbActivate method, 58, 91, 127

completing in a stateful session bean, 61 to 62

on entity bean instances, 32

on stateless session bean instances, 29

ejbCreate method, 130, 196

in a BMP entity bean, 130 to 131

in a CMP entity bean, 93 to 95

in a message-driven bean, 39, 139

in a session bean, 27, 60 to 61

in entity bean instances, 33

pooling stateless session bean instances, 28

ejbFind method, 196

ejbLoad method, 92, 128

on BMP entity bean instances, 32

on CMP entity bean instances, 92

to synchronize with the data store, 35

ejbPassivate method, 58, 91, 127

completing in a stateful session bean, 61 to 62

on entity bean instances, 32
Index 217

on stateless session bean instances, 29

ejbPostCreate method, 33, 130, 196

in a BMP entity bean, 130 to 131

in a CMP entity bean, 93 to 94

in a session bean, 60 to 61

ejbRemove method, 58, 92, 128, 139

pooling stateless session bean instances, 28

removing a database entity, 34

ejbStore method, 35, 92, 128

on BMP entity bean instances, 32

empty EJB group, See set of related CMP entity

beans

enterprise beans

classes, 8

deleting, 205

design recommendations, 45

development life cycle, 15

different from JavaBeans, 3

elements of a bean, 8

methods, 8

persistence, 18

relationship to EJB container

security, 18, 42, 158

testing, 177 to 189

transactions, 18

updating, 195 to 205

used in applications, 41

workflow, 14

entity

context method, 32

mapping bean to database, 18

represented by a session bean, 23

represented by an entity bean, 29

entity beans

introduction to, 29

bean class, 84, 115

completing the code for a BMP, 128 to 132

completing the code for a CMP, 92 to 101, 117 to

121

generating BMP classes, 124 to 125

generating CMP classes, 74 to 83, 107 to 115

home interface, 84, 115

life cycle, 31

locating instances, 33

methods, 8 to 9

pooled state, 32

primary keys, 33

primary-key class, 84

ready state, 32

relationship to EJB container, 30

remote interface, 84, 115

type, 71, 105

environment

entry on property sheet, 155 to 156

information for runtime, See deployment

descriptor

equals method, 90

error information, 199

evicting

a message-driven bean instance from

memory, 40

a session bean instance from memory, 28

an entity bean instance from the pool, 32

example applications, where to download, xxii

exceptions

customized, 42

java.rmi.RemoteException, 42

javax.ejb.CreateException, 42

javax.ejb.EJBException, 41

predefined, 42

remote, 41

system-level and application-level, 41, 65

executing business logic

in a message-driven bean, 39

in a session bean, 27

in entity beans, 34

Explorer window of the IDE, 52, 74, 107, 124, 136

external dependencies, See deployment descriptor

F
features of J2EE architecture, 2

filter for messages, See message selector

findByPrimaryKey method, 33, 126

finder methods, 8, 33, 88, 98 to 99, 131, 196

foreign keys, 97

G
generated code

CMP entity bean set classes, 104

deployment descriptor, 147

entity bean classes, 70
Index 218 Building Enterprise JavaBeans Components • September 2002

exceptions, 42

message-driven bean class, 134

method signatures in entity beans, 32

method signatures in message-driven beans, 39

method signatures in session beans, 29

session bean classes, 48

generating

testing objects, 180

getCallerPrincipal method, 43

getRollbackOnly method, 65

getter and setter methods, 36

getUserTransaction method, 64

gotchas for message-driven beans, avoiding, 146

H
hashCode method, 90

home interface, 11, 12

entity bean, 84, 115

session bean, 55

See also local home interface

home methods, 9, 196

compared to business methods, 99

I
IDE

best practices, 195 to 205

completing a BMP entity bean, 128 to 132

completing a CMP entity bean, 92 to 101, 117 to

121

completing a deployment descriptor, 147 to 170

completing a message-driven bean, 139 to 141

completing a session bean, 59 to 67

EJB compiler, 199

error information, 199

Explorer window, 52, 74, 107, 124, 136

saving changes, 201

Source Editor, 197

validating beans, 199

initializing

a message-driven bean instance, 39

a session bean instance, 27

an entity bean instance, 33

persistent fields, 33

state in stateful session beans, 50

inserting data into a data store

using a create method, 33

instance pool

entity beans, 31

message-driven beans, 40

stateless session beans, 28

isCallerInRole method, 43

J
J2EE

application architecture, 2

contracts, 6

developer roles, 5

documentation list, xviii

specification, Blueprints, xviii

J2EE reference-implementation server, See RI

JAR, See EJB JAR file

Java Message Service (JMS), 36

Java Transaction API, 26

Java Transaction Service (JTS), 26

java.io.Serializable, 90

java.rmi.Remote, 90

java.rmi.RemoteException, 42

java.security.Principal, 44

java.sql.Connection, 64

JavaBeans, different from enterprise beans, 3

Javadoc, using in the IDE, xxii

javax.ejb.CreateException, 42

javax.ejb.EJBContext, 64

javax.ejb.EJBException, 41

javax.ejb.EJBHome, 55, 84

javax.ejb.EJBObject, 55, 85

javax.ejb.EntityBean, 84

javax.ejb.MessageDrivenBean, 137

javax.ejb.MessageListener, 137

javax.ejb.SessionBean, 55

javax.transaction.UserTransaction, 64

JDBC API, 4, 26, 30 to 31

don’t mix with JTA code, 64

JNDI, 4, 154

JSP pages as clients, 2

JTA, 26, 64
Index 219

L
large icon, 151

life cycle

methods, 10

in a BMP entity bean, 127 to 128

in a CMP entity bean, 91 to 92

in a session bean, 61 to 62

of a message-driven bean, 39

of a session bean, 26

of an entity bean, 31

local home interface

introduction to, 12

See also home interface

local interface

introduction to, 11

See also remote interface

locating entity bean instances, 33

logical node, 55, 84, 116, 137, 195 to 196

M
maintaining enterprise beans, 195 to 205

maintaining state across method calls, 24

making changes to beans, 195 to 199

message order, 146

message selector, 141

message-driven beans

bean class, 138

completing the code, 139 to 141

developing, 133 to 146

methods, 8 to 9

onMessage method, 140

setMessageDrivenContext method, 141

transaction management, 135

message-driven destination, 141

message-oriented middleware, 36

methods on enterprise beans, 8

afterBegin, 29

afterCompletion, 29

beforeCompletion, 29

business, 9

create, 9, 33

editing, 204

ejbActivate, 29

ejbCreate, 27, 33, 39

ejbLoad, 32, 35

ejbPassivate, 29, 32

ejbPostCreate, 33

ejbRemove, 28, 34

ejbStore, 32, 35

equals, 90

findByPrimaryKey, 33

finder, 8, 33

getCallerPrincipal, 43

hashCode, 90

home, 9

isCallerInRole, 43

life-cycle, 10

newInstance, 27, 32, 39

onMessage, 10

permission to execute, 43

security, 18

select, 9

setEntityContext, 32

setMessageDrivenContext, 39

setSessionContext, 27

unsetEntityContext, 32

modifying a bean based on another bean, 202

modifying bean methods, 197 to 199

modifying beans in general, 195 to 205

module, See EJB module

multithreading

approximating with message-driven beans, 36

not needed in enterprise beans, 29

N
nested transactions, 26

newInstance method

in entity beans, 32

in message-driven beans, 39

in session beans, 27

nodes

entity bean, 84, 116, 137

logical, 55, 84, 116, 137

message-driven bean, 137

session bean, 55

O
onMessage method, 10, 140

optimizing enterprise beans, 45
Index 220 Building Enterprise JavaBeans Components • September 2002

order of messages, 146

out-of-sequence messages, 146

P
package (folder) node in Explorer, 52, 73, 106, 124,

136

parallel processing, approximating with message-

driven beans, 36

passivating

entity bean instances, 32

stateful session bean instances, 28

performance in enterprise beans, 45

permission to execute a method, 43

persistence, 18

completing BMP entity beans, 129

managed by the EJB container, 30

setting properties, 159 to 170

wizard selections for CMP entity beans, 74 to 75,

107 to 108

persistent fields, 88

specifying individually, 82 to 83

poison messages, 146

pooling

entity bean instances, 31

message-driven bean instances, 40

session bean instances, 24

stateless session bean instances, 28

predefined exceptions, 42

primary keys, 33

adding a new one to an entity bean, 95 to 96

adding more to an entity bean, 95

primary-key class, 129

in an entity bean, 84

required methods, 90

private fields, 128

problem handling with exceptions, 41

problems

error information, 199

system-level or application-level, See exceptions

working outside the logical node, 195 to 196

programmatic security, 43

project pane, See Explorer window

propagating changes, 195 to 199

properties of a bean, 150 to 161

property sheets, 42, 150 to 161

prototyping on the RI, 44

publish model for message-driven beans

Q
queue, 141

quick reference

to entity bean types, 71

to session bean types, 50 to 51

R
ready state, entity bean instances, 32

recommendations for enterprise bean design, 45

related objects

of an entity bean, 78

renaming all at once, 201

remote exceptions, 41

remote interface, 10, 11

entity bean, 84, 115

session bean, 55

See also local interface

remote object, 33

remotely referenced enterprise beans, 155

removing

a database entity, 34

a message-driven bean instance, 40

a session bean instance, 28

an entity bean instance, 32

renaming

an enterprise bean, 201

bean fields, 205

repeated messages, 146

resource environment references

to queues or topics, 142 to 145

resource references to connection factories, 142

resource-factory references, 156 to 158

resources

in a stateful session bean, 28

responsibilities of the bean provider

when coding entity beans, 31

when coding message-driven beans, 39

when coding session beans, 26
Index 221

reuse

through declarative runtime information, 42,

147

through wizard selections, 55

RI, 44

declaring properties, 159 to 170

properties for CMP entity beans, 163 to 170

finder methods, 168 to 169

CMP field order, 170

properties for session beans and BMP entity

beans, 159

roles

security, 42, 158

runtime information, 42, 147

S
sample applications, where to download, xxii

saving changes, 201

schema, See database schema or abstract schema

security, 18, 42

getCallerPrincipal method, 43

isCallerInRole method, 43

roles in deployment descriptor, 158

security checking

in a message-driven bean, 39, 158

in a session bean, 27

in an entity bean, 33

select methods, 9, 196

sequence of messages, 146

server crash, entity bean state survives, 29

server, See application server or database server

services

provided by EJB container

services provided by EJB container, 4, 30

servlets as clients, 2

session beans

introduction to, 22

bean class, 55

completing the code, 59 to 67

home interface, 55

life cycle, 26

methods, 8 to 9

pooling, 24

remote interface, 55

representing entities, 23

stateful, 24

stateless, 23

synchronizing state during a session, 29

type, 49

session-synchronization interface, 29, 65 to 67

classes, 58 to 59

set of related CMP entity beans, 17, 103

setAutoCommit method, 64

setEntityContext method, 32, 91, 127

setMessageDrivenContext method, 39, 139, 141

setRollBackOnly method, 65

setSessionContext method, 27, 58

small icon, 151

Source Editor, 197 to 199

specification supported

EJB 2.0, 1

specifying security, 43

SQL, 4, 30

generated from EJB QL statements, 196

setting properties in the RI tab, 168 to 169

SQL Insert statements, 130

state, maintaining across method calls, 24

stateful session beans, 24, 49

passivating and activating, 28

selecting in the wizard, 53

stateless session beans, 23, 49

selecting in the wizard, 53

subscribe model for message-driven beans

superclass, 54, 199

supported EJB specification, 1

synchronizing

an entity bean instance with the data store, 35

state during a session, 29, 58 to 59

system exception, 65

T
table mappings, 76 to 80, ?? to 81, ?? to 82, 108 to 114

techniques for working with enterprise beans, 195

to 205

testing on the RI, 44, 177 to 189

threading, approximating with message-driven

beans, 36

tiers in J2EE architecture, 2
Index 222 Building Enterprise JavaBeans Components • September 2002

topic, 141

transaction control

in a message-driven bean, 39

in a session bean, 27

in an entity bean, 33

transactions, 18

attributes, 25

on an EJB module, 170 to 172

on individual beans, 171

on individual methods, 171

bean-managed, 25, 51, 135

boundaries, 64

container-managed, 25, 51, 135

in entity beans, 30

in message-driven beans, 135

in session beans, 24, 51, 63 to 67

nested, not allowed in JTA, 26, 64

rollbacks, 64

using JTA, 26

using the JDBC API, 26

type of

entity bean, 71, 105

session bean, 49

U
unique identifiers in entity beans, 29

unsetEntityContext method, 32, 91, 128

updating enterprise beans, 195 to 205

user security roles, 42

user transaction (UT) methods, 64

V
validating beans, 199 to 201

verifying, See validating

W
wizard, See EJB Builder Wizard

workflow of an EJB application, 14

wrapping legacy code using the JDBC API, 26, 31

X
XML deployment-descriptor file, 42, 147
Index 223

Index 224 Building Enterprise JavaBeans Components • September 2002

	Building Enterprise JavaBeans™ Components
	Contents
	Figures
	Tables
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation

	Sun Welcomes Your Comments

	Enterprise JavaBeans Concepts
	The J2EE Architecture
	The Roles of EJB Components
	The Roles of Application Builders
	Inside an EJB Application
	The Elements of an Enterprise Bean
	Bean Methods
	Types of Interfaces
	The Bean Class
	EJB QL
	The Deployment Descriptor

	The Work Flow of an EJB Application at Runtime
	An Enterprise Bean’s Development Life Cycle

	The IDE’s Support for Enterprise Beans
	Developing Enterprise Beans in the IDE
	Creating Sets of Related CMP Entity Beans
	Providing Transactions
	Providing Persistence
	Providing Security
	Creating Application Clients

	Further Reading

	Design and Programming Issues
	Deciding Which Type of Bean You Need
	Understanding Session Beans
	Deciding When to Use a Stateless Session Bean
	Deciding When to Use a Stateful Session Bean
	Selecting a Transaction Mode
	Understanding the Life Cycle of a Session Bean

	Understanding Entity Beans
	Taking Advantage of the EJB Container’s Services
	Understanding the Life Cycle of an Entity Bean

	Understanding Sets of Related CMP Entity Beans and Container-managed Relationships
	Understanding Message-Driven Beans
	Using Message Sources (Destinations)
	Deciding When to Use a Message-Driven Bean
	Deciding When Another Bean Type Is Better
	Understanding the Life Cycle of a Message-Driven Bean

	Using Enterprise Beans in Applications
	Using Exceptions to Handle Problems
	Working With Deployment Descriptors
	Enforcing Security Policies
	Declaring Security in Enterprise Beans
	Programming Security Into Enterprise Beans

	Understanding the Application Servers and Databases
	Further Reading

	Developing Session Beans
	Using the EJB Builder With Session Beans
	Selecting a Session Bean Type
	Stateless or Stateful Session Beans
	Container-Managed or Bean-Managed Transactions

	Defining a Session Bean
	Creating a Package
	Starting the EJB Builder Wizard
	Generating the Default Session Bean

	Looking at a Session Bean’s Classes
	Expanding the Nodes
	Reviewing the Generated Classes
	Default Create Method
	Life-Cycle Methods

	Completing Your Session Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Completing Create Methods
	Completing a Stateless Bean’s Create Method
	Completing a Stateful Bean’s Create Methods
	Adding a Create Method to a Stateful Bean

	Completing Life-Cycle Methods
	Completing the ejbPassivate Method
	Completing the ejbActivate Method

	Adding Business Methods
	Coding Transactions
	Understanding Transaction Spans
	Specifying Transaction Boundaries and Rollbacks

	After Creating Your Session Bean
	Further Reading

	Developing CMP Entity Beans
	Using the EJB Builder With CMP Entity Beans
	Comparing CMP and BMP Entity Beans
	Creating Sets of Related CMP Entity Beans
	Defining a CMP Entity Bean
	Creating a Package
	Having a Data Source Ready
	Starting the EJB Builder Wizard
	Generating a CMP Entity Bean’s Infrastructure
	Specifying Persistent Fields From a Database Table
	Creating Your Bean’s Persistent Fields From Scratch

	Looking at a CMP Entity Bean’s Classes
	Expanding the Nodes
	Reviewing the Generated Classes
	Default Finder Method
	Persistent Fields and Accessor Methods
	Primary-Key Class and Required Methods
	A CMP Entity Bean’s Life-Cycle Methods

	Completing Your CMP Entity Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Defining Create Methods
	Adding or Replacing a Primary Key
	Creating a New Primary Key
	Handling Foreign Keys
	Defining Business Methods
	Adding Finder Methods
	Defining Home Methods
	Defining Select Methods
	Defining Additional Fields

	After Creating Your CMP Entity Bean
	Further Reading

	Developing Sets of Related CMP Entity Beans
	Using the EJB Builder With Sets of Related CMP Entity Beans
	Creating All Related CMP Entity Beans at Once
	Creating a Set of Related CMP Entity Beans One at a Time

	Defining a Set of Related CMP Entity Beans
	Creating a Package
	Preparing to Use a Database or Schema
	Starting the EJB Builder Wizard
	Generating the Bean Set’s Infrastructure
	Using a Database Connection
	Using a Database Schema Object

	Looking at the Components of a CMP Entity Bean Set
	Expanding the EJB Module’s Node
	Reviewing the Generated Classes

	Completing Your Set of Related CMP Entity Beans
	Using Recommended Approaches When Working With Enterprise Beans
	Adding a Bean to the Set

	After Creating Your Set of Related CMP Beans

	Developing BMP Entity Beans
	Deciding on an Approach
	Building a BMP Entity Bean
	Creating a Package
	Starting the EJB Builder Wizard
	Generating a BMP Entity Bean’s Infrastructure

	Looking at a BMP Entity Bean’s Classes
	Expanding the Nodes
	Reviewing the Generated Classes
	findByPrimaryKey Method
	A BMP Entity Bean’s Life-Cycle Methods

	Completing Your BMP Entity Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Adding Persistence Logic
	Adding a Primary-Key Class
	Adding Methods
	Defining Create Methods
	Adding Finder Methods
	Defining Business and Home Methods

	After Creating Your BMP Entity Bean
	Further Reading

	Developing Message-Driven Beans
	Using the EJB Builder With Message- Driven Beans
	Deciding on Transaction Management
	Defining a Message-Driven Bean
	Creating a Package
	Starting the EJB Builder Wizard
	Generating the Basic Message-Driven Bean

	Looking at Your Message-Driven Bean in the Explorer
	Expanding the Nodes
	Reviewing the Generated Class

	Completing Your Message-Driven Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Completing the onMessage Method
	Completing the setMessageDrivenContext Method

	After Creating Your Message-Driven Bean
	Specifying a Message-Driven Destination
	Specifying a Message Selector
	Specifying Resources for Client Message-Driven Beans
	Specifying Resource Factories
	Specifying Resources

	Specifying Resources for Listener Message-Driven Beans Deployed to the RI

	Avoiding Pitfalls of Message-Driven Beans
	Further Reading

	Preparing Enterprise Beans for Deployment
	Understanding Deployment Information
	Looking at a Generated Deployment Descriptor
	Editing an EJB Module’s Deployment Descriptor
	Editing an EJB Module’s Deployment Descriptor Directly
	Reverting to the EJB Module’s Last Generated Descriptor

	Using Properties to Edit a Deployment Descriptor

	Specifying Bean Properties
	Using the Properties Tabbed Pane
	Properties of Entity Beans
	Properties of Session Beans
	Properties of Message-Driven Beans

	Using the References Tabbed Pane
	Specifying EJB Local References
	Specifying EJB References
	Specifying Environment Entries
	Specifying Resource Environment References
	Specifying Resource References
	Specifying Security-Role References

	Using the J2EE RI Tabbed Pane
	Setting J2EE RI Properties for Individual Session and Entity�Beans
	Setting J2EE RI Properties for Message-Driven Beans

	Creating an EJB Module
	Deciding What Should Go Into an EJB Module
	Putting Enterprise Beans in an EJB Module
	Setting Database-related Properties for CMP Entity Beans
	Understanding the RI’s Generated SQL
	If Your CMP Beans Don’t Need to Use an Existing Database Table
	If Your CMP Beans Need To Use an Existing Database Table
	If Your EJB Module Contains an EJB 1.1 CMP Entity Bean
	Understanding the Order of CMP Field Values

	Adding Transaction Attributes to an EJB Module
	Changing EJB References Within the EJB Module or Application
	Overriding a Reference at the Module Level
	Overriding a Reference at the Application Level

	Creating an EJB JAR
	Adding a JAR File to an EJB Module

	Testing Enterprise Beans
	Fulfilling the Prerequisites for Testing
	Preparing to Deploy to the J2EE RI
	Preparing to Test Beans Against the PointBase Database
	Starting the Database Server and Web Browser

	Generating Test Objects
	Deploying the Test Application to a Server
	Deploying and Executing the Test Application in One Step

	Executing the Test Application
	Using the Test Client to Test Your Beans
	Understanding the Test Client Page
	Testing the Sample Bean’s Home Interface
	Testing the Sample Bean’s Business Method
	Creating New Testing Classes

	Making Changes After Deployment
	Preparing to Test: Some Variations
	If You Want to Test a CMP or BMP Bean
	If You Want to Test a Bean With EJB References
	Adding Remote Interfaces to a Bean

	Working With Enterprise Beans
	Using Recommended Approaches When Editing Beans
	Working Through the Logical Node
	Using the Customizer or Property Sheet
	Using the Source Editor to Edit Beans

	Understanding the IDE’s Error Information
	Compiling and Validating Enterprise Beans
	Saving Your Changes
	Renaming an Enterprise Bean
	Modifying a Bean Based on Another Bean
	Copying and Pasting an Enterprise Bean
	Exchanging Bean Classes or Interfaces
	Editing a Bean’s Methods
	Viewing a Method
	Changing an Entity Bean’s Fields
	Renaming a Field
	Changing the Type of a Field

	Deleting an Enterprise Bean

	Migrating and Upgrading EJB 1.1 Enterprise Beans
	Understanding Updates in the Current Release
	Making Specific Changes
	Converting a CMP�1.x Entity Bean
	Avoiding the Use of New Features in an Old Bean
	Don’t Add Local Interfaces to a CMP�1.x Entity Bean
	Don’t Add Local EJB References, Either

	Changing the PointBase User Name and Password
	Avoiding the transient Modifier
	Shifting a Bean’s RI Properties to the EJB Module Level
	Changing CMP Entity Bean Properties Before Testing the Bean

	Index

