
Sun Microsystems, Inc.
4150 Network Circle,
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Building Web Components

Sun™ ONE Studio 4 Programming Series

Part No. 816-7869-10
September 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.

In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

This product includes code licensed from RSA Data Security.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Ce produit comprend le logiciel licencié par RSA Data Security.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape et Netscape Navigator sont des marques de Netscape Communications Corporation aux Etats-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin ix

Who Should Use the Book x

Before You Read This Book x

What Is in This Book xii

What Is Not in This Book xii

Useful References xiii

Valuable Websites xiii

Typographic Conventions xiv

Related Documentation xiv

Documentation Available Online xiv

Javadoc Documentation xvi

Sun Welcomes Your Comments xvi

1. Addressing the Challenges of Web Application Development 1

What Is a Web Application? 1

Challenges in Developing Web Applications 2

How Web Application Development is Different 3

Implications of Server-Centered Execution 3

How the IDE Helps 4

Full Web Component Support 4
iii

Execution Support 5

Debugging and Monitoring Tools 5

Deployment Support 6

Open Runtime Environment Integration 7

Common Errors in Web Applications 7

Facing the Challenges of Web Application Debugging 8

Tracking Requests With the HTTP Monitor 8

Summary of IDE Features 9

2. The Structure of Web Applications 11

Web Servers 12

Servlet Containers and Web Components 13

Servlet Context 14

Web Modules 15

JSP Pages 15

JSP Page Life Cycle 15

Code Constructs in JSP Pages 16

HTTP Sessions 20

Scopes and Implicit Objects 21

Servlets 23

Servlet Life Cycle 23

Tag Libraries 25

JSP Standard Tag Library 26

Servlet Filters 26

Filter Life Cycle 28

Listeners 29

3. Design Patterns and Frameworks 31

Design Patterns 31
iv Building Web Components • September 2002

Front Controllers 32

Composite Views 36

View Creation Helpers 37

Model Objects 38

Frameworks 39

Struts 39

JATO 40

JavaServer Faces 40

4. Developing Your Own Web Application 41

Development Work Flow 41

Web Modules in the IDE 42

Creating a Web Module 43

Importing an Existing Web Module 44

Creating JSP Pages 45

Using page Directives 46

Creating and Invalidating Sessions 46

Modifying the JSP File 46

Working With JSP Includes 47

Creating a Composite View Template 49

Using Additional Classes or Beans 50

Creating Servlets 51

Declaring the Servlet in the Deployment Descriptor 51

Modifying the Servlet 53

Servlet-Generated HTTP Responses 53

Using the Servlet as a Front Controller 54

Using Additional Classes or Beans 55

Creating Filters 55

Declaring the Filter in the Deployment Descriptor 55
Contents v

Processing HTTP Requests and Responses 56

Using Tag Libraries 57

Using Existing Tag Libraries 57

Tag Library Descriptors 58

Inserting Custom Actions From a Tag Library Into a JSP Page 59

Developing Your Own Tag Libraries 60

Testing Tag Libraries 67

Working With Databases 68

5. Running, Debugging, and Deploying Your Web Application 71

Running and Debugging Tasks 71

Configuring the Web Module Deployment Descriptor 72

Using Property Sheets to Edit the web.xml File 73

Registering Servlets and Filters 74

Registering Tag Libraries 74

Specifying the Default URI Within the Taglib Element 75

Using the IDE to Edit the web.xml File in the Source Editor 76

Using Tomcat 4.0 76

Test Running Web Modules on the Internal Tomcat 4.0.1 Server 77

The Tomcat 4.0 Server Configuration File 77

Setting Up the Web Server Environment for Database Access 78

Executing a Single Web Module 79

Creating and Executing a Web Module Group 79

Executing on Tomcat Servers 80

Debugging Web Applications 81

Using the HTTP Monitor to Debug a Web Application 81

Source-Level Debugging 85

Packaging Your Web Applications 88

Building a WAR File From a Web Module 88
vi Building Web Components • September 2002

Specifying Options 88

Viewing Contents 89

Packaging and Deploying a Custom Tag Library 89

Packaging a Tag Library as a JAR File 90

Deploying a Tag Library Using the Tag Library Repository 90

Deploying a Tag Library by Adding a JAR File From the Filesystem 90

Deploying a Tag Library by Copying and Pasting a JAR File From Another

Module or Filesystem 91

Including a Web Module Within a J2EE Web Application 91

Glossary 93

Index 101
Contents vii

viii Building Web Components • September 2002

Before You Begin

Building Web Components provides essential information for anyone involved in the

creation of web applications with Java™ 2 Platform, Enterprise Edition (J2EE™) web

components. It is part of the Sun™ Open Network Environment (Sun ONE) Studio 4

programming series. This book focuses on web application development in the

context of the J2EE and its supporting technologies. These technologies include Java

servlets and JavaServer Pages™ (JSP™).

This book introduces web applications and provides suggestions for their structure.

It describes the work flow of developing a web application. The book proposes

design practices and provides pointers to suggested structures and frameworks for

scalable, maintainable web applications. It places these concepts within the context

of the Sun ONE Studio 4 IDE with discussions of the creation of JSP pages and

servlets, coding, testing, debugging, and deployment. The book discusses new

features such as the HTTP monitor tool and filter technology.

In particular, this book describes how web applications typically use JSP pages, Java

servlets, JSP tag libraries, and supporting classes and files. Web applications might

use persistent data, for example, a database. They could be independent applications

with features managed by a web container. Or, they might provide a user interface

while depending on components in a J2EE Enterprise JavaBeans (EJB™) container for

other services. Such services might include execution of business logic and access to

persistent data.

See the release notes for a list of environments in which you can create the examples

in this book. The release notes are available on this web page:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. You should have no trouble

translating the slight differences to your platform. Although almost all procedures

use the interface of the Sun™ ONE Studio 4 software, occasionally you might be
ix

http://forte.sun.com/ffj/documentation/index.html

instructed to enter a command at the command line. Here too, there are slight

differences from one platform to another. For example, a Microsoft Windows

command might look like this:

To translate for UNIX® or Linux environments, simply change the prompt and use

forward slashes:

Who Should Use the Book

The book assumes you are a web application developer or a web application

designer. A web application developer writes the application code. A web

application designer specifies how users interact with an application, chooses

interface components, and arranges them in a set of views. Unless otherwise stated,

this book uses the term web application to refer to a J2EE web application. The web

application developer might or might not be the same person as the web application

designer. In either case, it is assumed you have a general knowledge of Java

programming, JSP page programming, and HTML coding. Information in this book

might also prove useful for any professionals who participate in the creation of

applications based on web components. Such professionals might include technical

writers, graphic artists, production and marketing specialists, and testers. This book

presents the ways in which web application development work flow is facilitated by

the use of the IDE. It provides a context in which to use this productivity tool.

Before You Read This Book

The development of web applications differs markedly from that of traditional Java

applications. It requires an understanding of several different technologies. Before

starting, you should be familiar with the following subjects

■ HTML syntax

■ XML syntax

■ Java™ programming language

■ Java Servlet syntax

c:> cd MyWorkDir\MyPackage

% cd MyWorkDir/MyPackage
x Building Web Components September 2002

■ JavaServer Pages™ syntax

■ HTTP protocol

■ Web server concepts

■ Security issues

This book enables you to use your current skills. It also provides you with references

to help you become productive in the building of web applications with the IDE.

This book also requires a knowledge of J2EE concepts, as described in the following

resources:

■ Java 2 Platform, Enterprise Edition Blueprints, Version 1.3

http://java.sun.com/blueprints

■ Java 2 Platform, Enterprise Edition Specification, v. 1.4

http://java.sun.com/j2ee/download.html#platformspec

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

■ JavaServer Pages™ Standard Tag Library 1.0 Specification
http://www.jcp.org/aboutJava/communityprocess/review/jsr052/
index.html

Familiarity with the Java API for XML-Based RPC (JAX-RPC) is helpful. For more

information, see this web page:

http://java.sun.com/xml/jaxrpc

The Sun ONE Studio 4, Community Edition Tutorial can be downloaded from the

Developer Resources web site. To gain access to the tutorial, choose Help, then

Learning, then Examples, then Tutorials from the IDE’s main menu.

The J2EE Tutorial describes the process of developing web applications. Visit the web

site at:

http://java.sun.com/j2ee/tutorial

The Java Web Services Tutorial provides helpful background. It could prove useful as

a reference while reading this book. Available at:

http://java.sun.com/webservices/docs/1.0/tutorial/
Before You Begin xi

http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://www.jcp.org/aboutJava/communityprocess/review/jsr052 /index.html
http://www.jcp.org/aboutJava/communityprocess/review/jsr052 /index.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs
http://xml.apache.org/soap/index.html

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.

What Is in This Book

Building Web Components contains the following information:

Chapter 1 provides an introduction to web applications and the challenges they

present to developers. It describes the ways that the IDE helps the developer face

those challenges.

Chapter 2 discusses the structure of web applications. It includes an overview of the

core J2EE technologies used in building the components of web applications.

Chapter 3 gives an overview of useful design patterns and frameworks for web

applications.

Chapter 4 describes the process of developing your own web application using the

IDE.

Chapter 5 provides details on the process of executing, debugging, and deploying

your web application using the IDE.

The Glossary defines important words and phrases found in the book. Glossary

terms appear in italics throughout the book.

What Is Not in This Book

This book is intended to provide sufficient information to get you started using the

IDE as a productivity tool. However, it is not designed as a tutorial. The book is

neither a comprehensive reference, nor does it supply all possible designs for a web

application. It is not a visual design guide. Nor is the focus on developing the J2EE
xii Building Web Components September 2002

web tier. The book does not delve into how to develop EJB components. See “Useful

References” on page xiii for suggested readings. See “Before You Read This Book” on

page x for references to tutorials regarding the development of web applications.

Useful References

This section provides the names of references you might find helpful when reading

this book.

This volume covers topics related to web application design and implementation:

Alur, Deepak, Crupi, John, and Malks, Dan, Core J2EE Patterns, Sun Microsystems

Press, Prentice Hall, 2001. This excellent book on web application architecture and

models provides solutions, including J2EE-based answers, to problems in context.

It reflects the collective experience of Java architects and the Sun Java Center.

Valuable Websites

Here is a selection of websites dealing with web application technologies:

■ The Source for Java Technology provides a wealth of information on web

component technologies. Topics include products and APIs, access to the

Developer Connection, documentation and training, and online support. It also

supplies community discussion, industry news, marketplace solutions, and case

studies. Available at http://java.sun.com

■ JSP Insider is a JavaServer Page website offering design information, articles,

code, links to other websites, news stories, and book reviews. Available at

http://www.jspinsider.com

■ The JSP Resource Index is a place to find tutorials, scripts, and even job listings.

Available at http://www.JSPin.com

■ The Jakarta Project supplies commercial-quality server solutions based on the

Java platform that are developed in an open and cooperative fashion. Jakarta is

the overall project name for many subprojects, including the Jakarta tag libraries

and the Tomcat server. Available at http://jakarta.apache.org
Before You Begin xiii

http://java.sun.com
http://www.jspinsider.com
http://www.JSPin.com
http://jakarta.apache.org

Typographic Conventions

Related Documentation

Sun ONE Studio 4 documentation includes books delivered in Acrobat Reader

(PDF) format, release notes, online help, readme files of example applications, and

Javadoc™ documentation.

Documentation Available Online

The documents described in this section are available from the docs.sun.com SM

web site and from the documentation page of the Sun ONE Studio Developer

Resources portal (http://forte.sun.com/ffj/documentation).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

■ Release notes (HTML format)

Available for each Sun ONE Studio 4 edition. Describe last-minute release

changes and technical notes.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .cvspass file.

Use DIR to list all files.

Search is complete.

AaBbCc123 What you type, when contrasted

with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must save your changes.

AaBbCc123 Command-line variable; replace

with a real name or value

To delete a file, type DEL filename.
xiv Building Web Components September 2002

http://forte.sun.com/ffj/documentation/
http://docs.sun.com

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 4 integrated development

environment (IDE) on each supported platform and include other pertinent

information, such as system requirements, upgrade instructions, application

server configuration instructions, command-line switches, installed subdirectories,

database integration, and information on how to use the Update Center.

■ Sun ONE Studio 4, Community Edition Getting Started Guide - part no. 816-7871-10

■ Sun ONE Studio 4, Enterprise Edition Getting Started Guide - part no. 816-7859-10

■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 816-7872-10

■ Sun ONE Studio 4 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio

4 features to develop well-formed J2EE applications.

■ Building Web Components - part no. 816-7869-10

Describes how to build a web application as a J2EE web module using JSP

pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications With Sun ONE Studio 4 - part no. 816-7863-10

Describes how to assemble EJB modules and web modules into a J2EE

application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 816-7864-10

Describes how to build EJB components (session beans, message-driven beans,

and entity beans with container-managed or bean-managed persistence) using

the Sun ONE Studio 4 EJB Builder wizard and other components of the IDE.

■ Building Web Services - part no. 816-7862-10

Describes how to use the Sun ONE Studio 4 IDE to build web services, to

make web services available to others through a UDDI registry, and to generate

web service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 816-7870-10

Describes how to use the JDBC productivity enhancement tools of the Sun

ONE Studio 4 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 4 tutorials (PDF format)

These tutorials demonstrate how to use the major features of each Sun ONE

Studio 4 edition.

■ Sun ONE Studio 4, Community Edition Tutorial - part no. 816-7868-10

Provides step-by-step instructions for building a simple J2EE web application.

■ Sun ONE Studio 4, Enterprise Edition Tutorial - part no. 816-7860-10

Provides step-by-step instructions for building an application using EJB

components and Web Services technology.
Before You Begin xv

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10

Provides step-by-step instructions for building a simple application for a

wireless device, such as a cellular phone or personal digital assistant (PDA).

The application will be compliant with the Java 2 Platform, Micro Edition

(J2ME™ platform) and conform to the Mobile Information Device Profile

(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Javadoc Documentation

Javadoc documentation is available within the IDE for many Sun ONE Studio 4

modules. Refer to the release notes for instructions on installing this documentation.

When you start the IDE, you can access this Javadoc documentation within the

Javadoc pane of the Explorer.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (816-7869-10) of your document in the subject line of

your email.
xvi Building Web Components September 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

CHAPTER 1

Addressing the Challenges of Web
Application Development

This chapter introduces web applications and discusses how they differ from

standalone desktop applications you might have developed previously. It then

explores the ways the Sun ONE Studio 4 IDE helps you to build these applications.

What Is a Web Application?

A web application is a collection of web components. It provides features to end users

through an interface typically presented in a web browser. Examples of web

applications might include an electronic shopping mall or auction site. A web

application is based on a client-server model. In this model, the client is the web
browser, and the web server is the feature set that runs remotely.

In the simplest form of a web application, the browser is the client. The browser

sends requests to JSP pages and servlets. When the web server receives the request,

it generates a response that is eventually sent back to the browser. The web server

passes on the requests to a servlet container, which manages the web application.

FIGURE 1-1 shows the relationship of the requests and responses to filters, servlets,

and JSP pages and of session data to servlets and JSP pages in a web application.
1

FIGURE 1-1 Requests and Responses in a Web Application

Web applications consist of a varied set of interrelated web components. This set

includes JSP pages, servlets, and tag libraries that work together. Resources utilized

within the web application must be coordinated using a deployment descriptor file.

This file contains the meta-information that describes the web application. The

servlet container translates JSP files into servlets in order to run them in the web

server.

Challenges in Developing Web
Applications

Two key characteristics distinguish web applications from standalone applications:

■ Web components do not interact directly with one another. The servlet container

and the client browser mediate the links between components.
2 Building Web Components • September 2002

■ Data representation, data flow, and data processing are distributed among the

client browser, servlet container, and individual web components. The

mechanisms enabling web components to maintain links to one another and to

share data are described throughout this book

As shown in FIGURE 1-1, the web server is the center of the action. Information

storage and database access all take place in the server.

When you implement a project as a web application, it is easy to deploy and

maintain. Since the application resides on a server, users do not need to install any

software on their own computers. Moreover, upgrades are performed in one place

by the server administrator.

In addition, the architecture of a web application can make the creation of reusable

components easier. They are more loosely coupled than components in a standalone

desktop application.

How Web Application Development is Different

In a stand-alone application, the components can interact directly with one another.

For instance, data objects can each have a specific type and are passed from method

to method. In addition, data representation, data flow, and data processing are all

managed by the application itself. For example, in a wizard, each pane is part of the

application with direct access to application data. Developers focus on the data and

features within their applications. Hence, they do not need to understand the

runtime environment, that is, the virtual machine.

On the other hand, in a web application, web components are more encapsulated

than their standalone counterparts. Web components communicate with one another

through the servlet container. Data is passed as strings. Hence, information can

travel safely among the cooperative processes of the client browser, web server, and

servlet container. When creating a web application, developers need to understand

variations among execution environments. Testing must take place on multiple

browsers and, sometimes, on multiple web servers. Actual file locations and

structures vary, as do steps to deploy the web application. Deployment onto servers

and execution are typically time-consuming tasks.

Implications of Server-Centered Execution

Everything in a web application executes in the server rather than in the client

browser. Therefore, web applications face associated challenges and rely on the

HTTP protocol for support.
Chapter 1 Addressing the Challenges of Web Application Development 3

As shown in FIGURE 1-1, data representation, data flow, and data processing are

distributed among the browser, servlet container, and individual web components.

See “Common Errors in Web Applications” on page 7 for how this situation affects

compile time, runtime, and debugging tasks.

In distributed web server situations, the servlet container must be dispersed among

the web servers running on multiple machines. Furthermore, session information

must be shared to process requests from a single client browser encountering

different server instances.

How the IDE Helps

To improve productivity and deliver the benefits of web application implementation,

the IDE addresses the web application developer’s unique challenges. The full web

component support, execution support, debugging and monitoring tools,

deployment support, and open runtime environment integration provided by the

IDE are discussed in this section.

Full Web Component Support

The IDE provides the following features to support the full set of web components:

■ Editors for JSP pages, servlets, tag libraries, and tag library handlers. Support

includes source editors with syntax coloring and checking, code completion, and

compilation. See “Modifying the JSP File” on page 46, “Modifying the Servlet” on

page 53, and “Inserting Custom Actions From a Tag Library Into a JSP Page” on

page 59 for details.

■ Automated and manual editing of the deployment descriptor file. The

deployment descriptor is also referred to as the web.xml file. See “Using

Property Sheets to Edit the web.xml File” on page 73 and “Using the IDE to Edit

the web.xml File in the Source Editor” on page 76 for more information.

■ Development within a web module structure. Every task you perform is done

within a context delineated by the Servlet 2.3 Specification. See “Web Modules in

the IDE” on page 42 for details.

■ Views of generated servlet code for a JSP page. While debugging the servlet, you

can view the current location in the JSP page code and servlet code

simultaneously. See “Viewing Both JSP and Servlet Files During Debugging” on

page 87 for more information.

■ Easy creation of tag libraries. See “Creating a Tag Library and Tags” on page 61

for details.
4 Building Web Components • September 2002

■ Support for incorporating existing tag libraries in your web application. See

“Using Existing Tag Libraries” on page 57 for more information.

Execution Support

The IDE supports web application execution in the following ways:

■ One-click execution for running a web application

■ Execution directly from source code within the IDE

■ Test interaction using different client browsers

■ Test execution on different servers

For details, see “Test Running Web Modules on the Internal Tomcat 4.0.1 Server” on

page 77 and “Executing on Tomcat Servers” on page 80.

Debugging and Monitoring Tools

A web application’s data management is distributed among its components. Many

of the bugs captured at compile time in standalone applications must be tracked at

runtime in web applications. This situation leads to an increased focus on runtime

testing during the debugging of web applications. The IDE provides source-level

debugging for JSP pages, servlets, and helper classes. HTTP requests received and

generated by the web server are captured. These features aid in the debugging and

monitoring of data flow in your web application. For more information, see

“Debugging Web Applications” on page 81.

The way a web application shares data among its components differs from a

traditional application. Web applications use a message-based approach. They also

utilize resources that cannot communicate directly, but share access to objects by

setting them as attributes.

As shown in FIGURE 1-1, data moves as an HTTP request from the client browser to

the web application. Information then moves back through an HTTP response. When

the request enters the servlet container from the client, a response is created. Then

both the request and the response are available until the request processing is

complete.

An HTTP request is a message created in the client browser. Headers with user

settings, including locale information, and cookies from the client browser are

contained in the request. The web server routes the request to the servlet container.

The request passes through the Front Controller servlet, the JSP file, and the filter.

Additional information can be obtained and possibly modified in all these locations.

The HTTP request finishes when the JSP file and filter processing is complete. For

more information on Front Controllers, see “Front Controllers” on page 32.
Chapter 1 Addressing the Challenges of Web Application Development 5

An HTTP response is a message created in the servlet container. The message contains

attributes, including cookies, headers, and output, which eventually go to the client

browser. Response processing also occurs in a Front Controller servlet, in a JSP file,

and in a filter. Information from the request can be accessed and possibly modified,

and information can be added to the response. When the request is finished, the web

server routes the response from the servlet container through the web server. Its final

destination is the client browser. For details, see “Servlet-Generated HTTP

Responses” on page 53.

Requests from a particular client can be associated with one another. This connection

is achieved using an HTTP session. An HTTP session is a conversation spanning

multiple requests between a client browser and a web server. The JSP file and the

servlet have access to the session data as well as information in the request and

response. The session data resides in the session scope. For details, see “HTTP

Sessions” on page 20.

Servlet filters are web components that can be used to inspect or modify the

HTTPRequest and HTTPResponse objects before and after the requested servlet or

JSP file has been processed. For more on this use of filters, see “Processing HTTP

Requests and Responses” on page 56.

In traditional applications, source-level debugging can be used to follow interfaces

among objects. This technique is also helpful in web application development.

However, a need for a debugging tool that can operate at the component interface

level is indicated as well. Here HTTP messages are passed between the client and

the web server to isolate the component with an error. At this point, you can

typically find the error through code inspection. For details, see “Common Errors in

Web Applications” on page 7. For details on the IDE’s tool for tracking HTTP

requests, see “Starting the HTTP Monitor” on page 82.

Deployment Support

Because web applications consist of multiple resources, the various web components

must be associated and registered in a deployment descriptor. As described

previously, much of the process of coordinating web application resources is

automated in the IDE.

The IDE provides deployment support with the following features:

■ Deployment descriptor editing. Web application resources need to be associated

and registered using a property-based editor or through direct editing of the XML

file. For details, see “Configuring the Web Module Deployment Descriptor” on

page 72.

■ WAR file packaging creation. Resources can be packaged for deployment on any

J2EE-compliant server. For more information, see “Packaging Your Web

Applications” on page 88.
6 Building Web Components • September 2002

Open Runtime Environment Integration

The IDE provides support for executing your web application on multiple servers. It

offers deployment direct from the source within the IDE using an API-based

mechanism to integrate with third-party servers. For details, see “Test Running Web

Modules on the Internal Tomcat 4.0.1 Server” on page 77 and “Executing on Tomcat

Servers” on page 80.

Common Errors in Web Applications

All web application data is set and retrieved through String keys. Hence, errors are

frequently introduced during the flow of data from one component to another.

Source-level debugging is useful for following programming logic within a

component of a web application. However, it does not provide a way to view data

passing among components. You should not need to debug the servlet container

code within the web server.

Problems arise from web components not receiving the proper data. Difficulties also

occur when a request does not get the server into a particular state. Common sources

of bugs in web applications include coding errors and deployment errors.

Because of the nature of web applications, JSP pages and servlets rely on the client

browser and the servlet container. As users access different parts of the application,

the browser and servlet container handle data. Application resources are identified

through string names. User input comes in as string request parameters. Data is

maintained in attributes on the request or the session. These attributes are also

identified through string names. Identification of resources through string names

proves to be an error-prone mechanism. For instance, typing errors not caught at

compile time can cause behavior that is difficult to debug at runtime.

Coding errors usually include:

■ Misspelled names of links

■ Misspelled or missing parameter names or values

■ Incorrect cookie values or domains

■ Misspelling of session attributes that have not been initialized

■ Expected errors not sent by the client

■ Forgotten or misspelled initialization parameters

Deployment errors typically include:

■ Components that have not been deployed

■ Library that has not been deployed

■ Servlet URL mappings that have been misspelled or omitted from the deployment

descriptor
Chapter 1 Addressing the Challenges of Web Application Development 7

To determine error sources in web applications, debugging tools should:

■ Track data flow among components

■ Get the server or session into a particular state

■ Step through generated output of a web resource, line by line

Facing the Challenges of Web Application

Debugging

Debugging web applications involves identifying the components sharing the data,

debugging the code, and working with the deployment process. The IDE provides

the following features to facilitate your efforts:

■ The HTTP Monitor. Records information regarding requests to your web

application and the data flow among its components. For details, see “Starting the

HTTP Monitor” on page 82.

■ The Source-Code Debugger. Enables you to debug the components. If the

specified component is a JSP page, you can view the JSP file and its generated

servlet code side by side. This perspective provides improved visibility into the

processing that is taking place in the server. For more, see “Source-Level

Debugging” on page 85.

■ A Common Interface for Controlling and Deploying the Application to
Different Web Servers. Facilitates the identification of deployment issues from

within the IDE. See “Executing on Tomcat Servers” on page 80.

Tracking Requests With the HTTP Monitor

The built-in HTTP Monitor provides a way to track current requests and saved

requests. Current requests persist until the current IDE session ends. Saved requests

persist across sessions of the IDE until the user explicitly deletes them.

You can use the HTTP Monitor tool to identify where in the sequence of data flow an

error has recurred. Often the problem is not in processing of a JSP file but in

specifying an input parameter.

The Monitor displays all messages sent between the client browser and the web

server, along with relevant context information. This feature helps identify

inconsistencies. It also enables you to find information that has been incorrectly

passed from one component to another. For details, see “Viewing Monitor Data

Records” on page 82.

The Monitor records both incoming and outgoing cookies on a request making it

easier for you to view that information.
8 Building Web Components • September 2002

Summary of IDE Features

Table 1-1 summarizes the features that distinguish the IDE’s support for key web

development needs, as described earlier in this chapter.

TABLE 1-1 How Sun ONE Studio 4 IDE Addresses Developer Needs

Developer Need Feature and Description For more information, see

Quick start Creation Wizards.
Providing templates for

creation of JSP pages,

servlets, filters, listeners,

web modules, web

module groups, tag

libraries, and HTML files.

“Creating a Web Module” on page 43

“Creating JSP Pages” on page 45,

“Creating Servlets” on page 51,

“Creating Filters” on page 55

“Developing Your Own Tag Libraries” on

page 60

Full web

component

support

JSP Editor. Editing JSP

source code is similar to

editing HTML. The IDE

provides support for both

HTML and JSP tags.

“Modifying the JSP File” on page 46

Efficient web

application

development

Code Completion.
Accessing available

completion for JSP files,

servlets, and tag libraries.

“Modifying the JSP File” on page 46 and

“Modifying the Servlet” on page 53.

Code reuse

and separation

of developer

and page

designer

Tag Library Editing.
Providing tag library

descriptors and

customizers as efficient

ways to develop tags.

“Using Existing Tag Libraries” on page 57

“Developing Your Own Tag Libraries” on

page 60.

Mechanism for

viewing data

flow

HTTP Monitor.
Collecting information

about the execution of JSP

files and servlets in the

servlet engine.

Streamlining the work

involved in debugging

JSP files and servlets.

“Starting the HTTP Monitor” on page 82

Comparing a

JSP file to its

generated

servlet

JSP and Servlet
Debugging. Displaying

JSP files and their

generated servlets side by

side

“Viewing Both JSP and Servlet Files During

Debugging” on page 87
Chapter 1 Addressing the Challenges of Web Application Development 9

Support for

newest servers

and most

current

specifications

J2EE 1.3 Compliance.
Accessing the J2EE service

and communication APIs,

which provide for

security, concurrence,

transaction, and

deployment

“Servlet Containers and Web Components”

on page 13

Common

interface for

deploying to

and testing on

different

servers

Deployment Descriptor
Editing. Browsing and

configuring the elements

of the deployment

descriptor in property

sheets for the web.xml
file. Or, opening the

web.xml file in the Source

Editor and editing it

manually.

“Configuring the Web Module Deployment

Descriptor” on page 72

Extensibility Integration with
Enterprise Edition.
Creating a J2EE

application from an

existing EJB module or

web module. Or, creating

the application from an

Explorer filesystem or

package node

“Including a Web Module Within a J2EE

Web Application” on page 91

Easy access to

web servers
Web server plug-ins.
Configuring the Tomcat

4.0 plugin to integrate

with other Tomcat 4.0 web

servers installed on your

computer

“Using Tomcat 4.0” on page 76

TABLE 1-1 How Sun ONE Studio 4 IDE Addresses Developer Needs (Continued)

Developer Need Feature and Description For more information, see
10 Building Web Components • September 2002

CHAPTER 2

The Structure of Web Applications

The chapter describes the structure of web applications, including:

■ Servlet containers

■ Web modules

■ JSP pages

■ Servlets

■ Servlet filters

■ Tag libraries

■ Listeners

This chapter discusses concepts that are fundamental only to the servlet container

and its web components. It also describes supporting classes and files not directly

managed by the servlet container. These classes and files are logically part of the

web application and are deployed together with the web components.

As shown in FIGURE 2-1, a web application runs inside a servlet container. A servlet

container, in turn, is contained within a web server. Each web application consists of

one or more web modules. Each web module contains presentation, controller, and

model elements. The presentation element, sometimes called the view element, is the

physical page users see and interact with. It can consist of either a JSP page or an

HTML file. The controller element, for example, the servlet, controls what users see

and how they interact. The model element contains data used by the presentation

and controller elements. The data might be included in Java libraries or other

resources. These resources might include GIF images, HTML files, and so forth.
11

FIGURE 2-1 The Structure of a Web Application

Web Servers

A web server provides the mechanisms for clients on the Internet, intranet, or extranet

to access a repository of web resources. These resources might consist of HTML

pages, CGI (Common Gateway Interface) scripts, images, and so forth. The web

server mechanisms include:

■ Support for HTTP and other protocols

■ Execution of server-side programs, such as servlets or CGI scripts, which perform

certain functions
12 Building Web Components • September 2002

■ Support for servlet containers, which characteristically depend on web servers for

HTTP message handling

■ Hosting of one or more servlet containers from the same vendor

An HTTP request is a message created in the client browser that includes attributes

and cookies from the client browser. The web server routes the request to the servlet

container. Request processing can occur in a servlet, in a JSP file, and in a servlet

filter. The HTTP request ends when this processing is complete.

An HTTP response is a message that is generated in the servlet container and

includes cookies, headers, and output that eventually go to the client browser.

Response processing can also occur in a servlet, in a JSP file, and in a servlet filter.

The web server routes the response from the servlet container to the client browser.

Servlet Containers and Web
Components

Web servers can provide servlet containers. Servlet containers offer runtime services

to support the execution of the web components of a web application. These services

include:

■ Life-cycle management

■ Network service, by which requests and responses are sent

■ Decoding of requests and formatting of responses

■ Interpretation and processing of JSP pages into servlets

■ Deployment

■ Access to the J2EE service and communication APIs, which provide for security,

concurrence, transaction, and deployment

Servlet containers forward client requests from a web server to web components in

the application. They also forward the client-bound responses from the web

components back to the web server. Servlet containers typically run in a web server

process as a web server plug-in or in a J2EE application server process.

Servlet containers also provide the network services over which requests and

responses are sent, requests decoded, and responses formatted. All servlet containers

support HTTP (Hypertext Transfer Protocol) as a protocol for requests and responses.

They also might provide for additional request-response protocols such as HTTPS
(Hypertext Transfer Protocol Secure Sockets).
Chapter 2 The Structure of Web Applications 13

A distributed servlet container can run a web application that is tagged as

distributable. This kind of web application must execute across multiple Java virtual

machines running on the same host or on different hosts. In this situation, the scope

of the objects in the web application is extended. A certain amount of overhead is

involved in maintaining the synchronization of the common session information

among multiple servers. This overhead includes performance penalties and storage

considerations. For more information, see “HTTP Sessions” on page 20.

Web components are server-side J2EE components. They are managed by and

communicate directly with a servlet container. They are capable of receiving HTTP

requests through the servlet container, processing them, and returning HTTP

responses. The J2EE platform defines two web component types: servlets and JSP

pages.

Servlet Context

The servlet context for a web module is an object containing the servlet’s view of the

web application in which it is running. It defines a set of methods that a servlet uses

to communicate with its servlet container, for instance to:

■ Dispatch results

■ Log events

■ Obtain URL references to resources

■ Set and store attributes other servlets in the context can use

A web module is represented at runtime by an object implementing the

ServletContext interface. The servlet context provides web components with

access to resources available within the web module. There is one servlet context per

web module per Java virtual machine.

A ServletContext instance is unique within a nondistributed web module. The

instance is also shared by all web components within the web module. This object is

implicitly available in JSP pages as the application instance variable. This

variable is always available. It does not need to be declared.

A ServletContext instance (as well as the web module it represents) is rooted at a

specific path within a web server. It could, for example, be rooted at

http://www.myStore.com/productList . In this case, all requests starting with

the /productList context path would be routed to the ServletContext instance.
14 Building Web Components • September 2002

Web Modules

Web applications consist of one or more web modules. A web module is a J2EE web

component. A web module might be used to implement a web-based product

catalog application. Such a program might contain:

■ JSP pages for displaying products to the user

■ Servlets for controlling navigation through the catalog

■ Beans for getting information from a database

Web modules are self contained. Only the contents of a single root directory are

typically required to deploy a web module to a web server.

For more information, see “Web Modules in the IDE” on page 42.

JSP Pages

A JSP page describes the client presentation, for example, a page displayed in a web

browser, that enables your web application to interact with end users. A JSP page is

translated to a servlet class within the servlet container. The JSP page describes how

to process an HTTP request, and it generates an HTTP response. The JSP page’s

HTML-like syntax lets it focus on presentation and document issues rather than

features provided by Java code. For more information on servlets, see “Servlets” on

page 23. For details on support for JSP pages in the IDE, see “Creating JSP Pages” on

page 45.

JSP Page Life Cycle

A JSP page is processed by its runtime environment, that is, the servlet container.

The servlet container manages the creation, routing, and removal of requests and

responses. Furthermore, it orchestrates the processing of requests and responses by

activating the appropriate web components. The JSP page performs processing on an

HTTP request and generates an HTTP response. The processes involved in this

phase are JSP page translation, instantiation, request processing, and destruction.
Chapter 2 The Structure of Web Applications 15

Translation and Instantiation

JSP page translation refers to the process by which the servlet container converts a

JSP file into a servlet class. The details of this process are specific to the servlet

container. In the web server or servlet container, the JSP file is converted to a Java

servlet source file. It is then compiled to a class file.

The servlet container translates a JSP file the first time it receives a request for it. On

subsequent requests for the same JSP page, the servlet container typically bypasses

this phase. Translation could occur if the date on the JSP implementation class is

older than the date on the JSP file. Hence, JSP pages can be redeployed without

restarting the web server. The translation process is managed by the servlet

container.

After a JSP page has been translated to a servlet, it is instantiated by a call to its

jspInit method. The jspInit method is typically used to prepare resources

required by the JSP page.

Request Processing

In the simplest case, the JSP page receives a client request from the servlet container.

It then processes the request according to its programmed logic and sends a

response to the container. By default, each request executes in its own thread.

Request processing can involve other components such as servlets, filters, or other

JSP files that forward requests from the client.

Destruction

Servlet containers typically provide a way to limit how long a JSP instance can

persist without receiving a request. After the user-specified limit, the servlet

container can reclaim resources by destroying a JSP instance. Before doing so, it calls

the instance’s jspDestroy method, which corresponds to the jspDestroy method

of the JSP file. The jspDestroy method is used to close resources that are no longer

needed.

Code Constructs in JSP Pages

A JSP page can contain template data and elements. Template data consists of non-JSP

constructs, such as HTML and XML code, passed through to the HTTP response

word for word. Template data is generally used to provide static content and to

format dynamic data. Because HTML is passed through literally, coding presentation

content is very natural for a web page designer. Elements are constructs, recognized

by the servlet container, that provide dynamic capabilities.
16 Building Web Components • September 2002

JSP elements are grouped into three categories: directive elements, action elements,

and scripting elements.

Directive Elements

Directive elements provide global declarative information about a JSP page that is

unrelated to any particular request. Directives are processed at translation time.

Directives are placed between <%@and %>symbols. For example, the following page
directive imports the java.util package and associates the JSP page with the

current error page.

TABLE 2-1 describes the directives defined in the JSP specification:

Action Elements

Action elements are XML-style tags that provide a means of working with Java objects

without writing Java code. For example, you can use actions to locate and instantiate

objects, and to get and set an object’s properties. Actions are processed at request
time, that is, when the request is received by the servlet container. Some actions write

output to the HTTP response.

Standard actions are implemented by the servlet container.

<%@ page import="java.util.*" errorPage="showError.jsp" %>

TABLE 2-1 JSP Directives

JSP Directive Description

page Imports classes, sets session participation, and selects an error page

taglib Identifies a tag library so that its tags can be used within a JSP file

include Includes another file within a JSP file
Chapter 2 The Structure of Web Applications 17

TABLE 2-2 describes JSP standard actions defined by the JSP specification.

The JSP specification also supports the development of custom actions to provide

features not available through standard actions. Custom actions are implemented by

creating or importing tag libraries. See “Tag Libraries” on page 25 for more

information.

Because actions use XML syntax, they provide web page designers with a familiar

paradigm for working with dynamic data. Web page designers might not code

actions themselves. However, they need to understand enough to work in a file

containing actions. Web page designers might have to provide HTML template data

for actions that produce output to a web page.

Scripting Elements

Scripting elements enable you to embed Java code within a JSP file. These elements

can then be used for programming logic and for writing output to the HTTP

response. Scripting elements are executed on the web server. The response page sent

to the client displays only the result of the scripting element code. By contrast,

JavaScript is routed through the server and returned to the client for processing.

Three syntactically distinct types of scripting elements are described in this section:

declarations, expressions, and scriptlets.

TABLE 2-2 JSP Standard Actions

Standard Action Description

forward Immediately sends the processing of the request to another resource,

including JSP pages, servlets, HTML pages, and so forth

include Subsumes another file within this JSP file. The name of the included

file can be computed at request time.

useBean Identifies a bean that can be accessed from the JSP file

getProperty Gets the value of a property from a bean associated with the JSP file

through the useBean action

setProperty Sets the value of a property in a bean associated with the JSP file

through the useBean action

plugin Enables the Java plug-in to be loaded in the client browser. If

necessary, it executes an embedded applet or JavaBeans component.
18 Building Web Components • September 2002

Declarations help you declare and initialize variables, instantiate objects, and declare

methods. Declarations are processed at translation time and do not write output to

the HTTP response. Declarations are placed between <%! and %>symbols. The

following example declares and initializes two String variables:

Expression elements enable you to enter any valid and complete Java expression. The

servlet container converts an expression element to a String at request time. The

resulting String is then written to the HTTP response. Expressions are placed

between <%=and %>symbols.

The following example inserts a piece of dynamic data into an HTML string.

Scriptlets are useful to manipulate data for viewing purposes. They enable you to

enter any piece of valid Java code. However, they are not recommended for

performing business logic because they can be difficult to maintain. It is better to

encapsulate business logic within reusable Java classes like beans or tag handlers.

You might start out with scriptlets for prototyping or for the testing of new code.

After confirming that the feature set meets your requirements, move the code into a

bean or tag library. For complicated view logic, see “View Creation Helpers” on

page 37. For details about creating a tag library, see “Developing Your Own Tag

Libraries” on page 60.

You should not use scriptlets in production web applications. This recommendation

is especially important if a developer is maintaining the code and a web page

designer is in charge of the visual aspects of a web application.

Variables and methods declared in a declaration element are available to scriptlets in

the same JSP page. A Java statement can begin in one scriptlet and end in another,

interspersed, for example, with HTML code. Scriptlets are processed at request time

and write output to the HTTP response, if you code them to do so.

<%!
String name = null;
String title = null;

%>

<p>Hail the <%= title %>!
Chapter 2 The Structure of Web Applications 19

The following scriptlet example shows a Java if statement that spans two scriptlets.

The if statement is used to conditionalize a fragment of HTML code that lies

between them. The HTML code is included in the HTTP response only if the if
statement evaluates to true . Note that scriptlets are placed between <%and %>
symbols.

HTTP Sessions

An HTTP session is a Servlet API mechanism that associates the many requests

representing a conversation between a client browser and a server.

When a user requests a JSP page, a new session is automatically created if it does not

already exist. Subsequent requests to pages within the web application are usually

associated with the session. Requests are not associated with the session when the

page directive session attribute is set to false .

The session ends when a time-out occurs or when the web application explicitly

invalidates it. The session timeout value is set in the web module’s deployment

descriptor file. A JSP page or servlet class can invalidate a session using the

invalidate method. For details on setting the session time-out value, see

“Configuring the Web Module Deployment Descriptor” on page 72. For more

information on the using the invalidate method, see “Creating and Invalidating

Sessions” on page 46.

The typical JSP page is associated with a session. However, you might also include

dynamic pages that are not specific to a particular client. Such pages can be

generated once and shared among many sessions. The use of JSP pages not

associated with a session can reduce your web application’s requirements for system

resources.

<% if (name.equals("Elvis Presley")){
%>
<p>Let's hear it for Elvis!
<% title = "King";
}
%>

<%@page contentType="text/html" session="false" %>
20 Building Web Components • September 2002

In a distributed environment, information for a particular session might only exist in

the web server that initiated the session. If requests are routed to different web

servers depending on overall load, the session information must be replicated. In

this situation, the web servers need to access the shared session information and

must keep in sync. The web server can manage the shared session information.

However, this practice adds to the total load on the system, consuming time and

resources.

The HTTP Monitor indicates whether a page is associated with a session or not. It

also provides other useful information about HTTP requests. For details on the IDE’s

HTTP Monitor, see “Viewing Monitor Data Records” on page 82.

Scopes and Implicit Objects

When instantiating an object in a JSP file, you most likely want to make it available

to other objects in your application. You might want to ensure that all objects in your

application can access the object. On the other hand, you might want to restrict its

availability to some subset of these objects. For example, you might want to make

the object available only to other objects associated with the current user’s HTTP

session. The JSP specification defines a number of scopes in which you can place a

reference to an object.

Scopes enable you to control the availability of an object. You can place a reference to

the object in any of these scopes. You typically only put an object in a single scope.

The object is then available to all subsets of the chosen scope. In other words, page
scope objects are available to objects in the request , session , and application
scopes.

The concept of a scope in a web application is different from its use in traditional,

standalone applications. In a web application, scope refers to an object’s availability

to an application’s various components. These are the page , request , session ,

and application scopes. In standalone applications, scope refers to a variable or

object’s availability within blocks of code.
Chapter 2 The Structure of Web Applications 21

At runtime, these scopes are implemented as Java objects, as described in TABLE 2-3.

You can locate or make a bean available within one of these scopes with a useBean
action. In this action, you supply a scope attribute in order to specify the

availability of the bean instance, for example:

TABLE 2-3 Scopes in JSP Pages

Scope Description Object Type

page Represents the current JSP

page. This object is available

only to JSP elements in the

current page or in pages

included by an include
directive. This object is not

available to pages included

by an include action. The

directive is executed at page

translation time, and the

included pages are

concatenated into the same

JSP implementation class.

javax.servlet.jsp.PageContext

request Represents the current HTTP

request. This object is

available only to JSP pages

and servlets executing in the

current HTTP request. For

example, if one JSP forwards

to another using a forward
action, both pages access the

same ServletRequest
object.

javax.servlet.ServletRequest

session Represents the current user’s

HTTP session. This object is

available only to JSP pages

and servlets executing in

requests associated with the

current user’s HTTP session.

javax.servlet.http.HttpSession

application Represents the runtime web

module. This object is

available to all JSP pages and

servlets in the web module.

javax.servlet.ServletContext

<jsp:useBean id="myCart" scope="session" class="Cart">
22 Building Web Components • September 2002

Scopes and the objects they represent are implicitly available to the scripting

elements of a page. They use the scripting variables that the page automatically

instantiates. By default, JSP pages have access to the session scope. However, if a

page is not participating in a session, it cannot use the session scope. Furthermore, it

cannot reference the session implicit variable. When a page is not participating in

a session, the page directive session attribute is set to false . Some parts of an

application do not require session data. An example of such data is background

information about a site that does not require a user to log in. If the user remains

only in those sections, then the overhead of creating a user session can be avoided.

You can use the IDE’s code completion feature to show the methods available to

different scoped objects. For details, see “Modifying the JSP File” on page 46.

You can set and use scoped objects from within servlets, tag handlers, and scriptlets.

To set objects in scopes, use the addAttribute method on the relevant scope object.

To retrieve objects in scopes, use the getAttribute method on the relevant scope

object. See TABLE 2-3 regarding the available scopes.

Servlets

Servlets are Java classes that execute within a servlet container. They are used to:

■ Extend the capabilities of web servers and web-enabled application servers

■ Generate dynamic content

■ Interact with web clients using a request-response paradigm

For details on support for developing servlets in the IDE, see “Creating Servlets” on

page 51.

Servlets are typically used as Front Controllers and dispatchers to control navigation

through a web application. They are also used to control application flow. Servlets

enable and disable access to certain web resources, depending on the particular state

being tracked.

For more information on the use of the Front Controller design pattern, see “Front

Controllers” on page 32.

Servlet Life Cycle

The servlet life cycle defines how the servlet is loaded, instantiated, and initialized.

It also describes how it handles requests from clients, and how it is taken out of

service.
Chapter 2 The Structure of Web Applications 23

Loading and Instantiation

Servlets execute within containers that provide the network services. These services

include sending requests and responses, decoding requests, and formatting

responses. All servlet containers support HTTP as a protocol for requests and

responses. They might also provide for additional request-response protocols such

as HTTPS.

The servlet container loads and instantiates servlets. An option enables loading and

instantiation to occur once the servlet container is started. Servlets designated “load

on startup” are loaded when the servlet container starts up. For more information,

see “Load on Startup” on page 52. When the loading is complete, the container

instantiates the Servlet class for use.

Initialization

Before the servlet can handle requests from clients, the servlet container initializes it.

Initialization enables the servlet to:

■ Read persistent configuration data

■ Initialize two kinds of resources:

■ Those you only want one instance of

■ Those that are time-consuming to initialize, for instance, database connections

■ Perform any application-specific start-up activities

Request Handling

Once the servlet has been initialized, the servlet container can route requests to it.

The servlet processes the requests and builds appropriate responses. The servlet

passes these objects as parameters of the service method of the HTTPServlet
interface. The service method is called by the servlet container. It enables the

servlet to respond to a request only after the servlet’s init method has been

initialized.

Servlets typically run inside multi-threaded servlet containers that can handle

multiple requests concurrently. As a developer, make sure to synchronize access to

any shared resource such as files and network connections. Also make sure to

synchronize access to the servlet’s class and instance variables. If necessary, the

servlet container can also serialize requests to a servlet.

A new servlet instance is created for each concurrent request. Therefore, if many

requests arrive simultaneously, many new threads are created. To avoid overloading

the server, the servlet container can limit the maximum number of servlets. For the

Tomcat server, see the Configuration reference for information on setting these

values: http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config
24 Building Web Components • September 2002

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config

Destruction

When a servlet container decides to remove a servlet from service, it calls the

destroy method of the Servlet interface. This method enables the servlet to

release its resources and save any persistent states.

Once the destroy method is called, the container cannot route other requests to that

servlet instance. Furthermore, any currently running threads of the service
method are permitted to complete their execution. Upon the completion of the

destroy method, the container releases the servlet instance for garbage collection.

Unlike other Java classes, the servlet’s life span might be hours, days or even weeks.

Hence, you need to manage the use and creation of resources, such as database

connections, so that they are available only when needed.

Tag Libraries

A tag library is a collection of custom actions. As shown in FIGURE 2-2, a tag library

consists of a set of tag handlers and a tag library descriptor file. Each custom action,

or tag, is implemented as a tag handler bean that contains its features. The tag

library descriptor (TLD) is an XML document that maps each tag in the library to its

associated tag handler. The TLD describes parameters and scripting variables

associated with the tags in the tag library.

FIGURE 2-2 The Structure of a Tag Library
Chapter 2 The Structure of Web Applications 25

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config

A tag library is typically packaged as a JAR file. It is made available to a JSP file

through a taglib directive. The IDE supports the use of existing tag libraries such

as JSTL (Java Server Pages™ Standard Tag Library) and other third-party libraries. It

also provides for the creation of your own tag libraries. For details on tag library

support in the IDE, see “Using Tag Libraries” on page 57.

JSP Standard Tag Library

You can use tags from the JSP Standard Tag Library (JSTL) to extend the set of

actions available for use in your web application. The use of tags based on a

standard helps to increase the portability of components within a web application. It

also reduces the need for Java code in scriptlets, which can create maintenance

difficulties in JSP files.

For example, instead of iterating over lists using different iteration tags from

numerous vendors, you can use JSTL tags. They work the same way in all web

environments. This standardization means you learn a single tag and use it on

multiple JSP containers. Furthermore, the specification enables containers to

recognize standard tags and optimize their implementations.

The JSTL introduces the concept of an expression language to simplify page

development. It includes an experimental version of a language for testing purposes.

JSTL also provides a framework for integrating existing custom tags with JSTL tags.

For a tutorial and description of JSTL tags, see the JSTL reference pages included

with the Java Web Services Developer Pack at

http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL.html
(At the time of this book’s publication, the Java Web Services Developer Pack is still in

early access. This URL might change when the developer pack reaches its final

release.)

To download the JSTL and the associated specification, visit the following website:

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

You can use the tag library editing and management features of the IDE to facilitate

the usage of JSTL tags. For details, see “Using Existing Tag Libraries” on page 57.

Servlet Filters

Servlet filters, also called filters in this book, are Java classes that modify requests to

and responses from servlets. Filters can be used to perform many functions, such as:

■ Authentication. Assurance that a user can only access certain web resources
26 Building Web Components • September 2002

http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL.html
http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

■ Logging and auditing web application users. Keeping track of each time a user

accesses a web resource and recording the access in a log file

■ Localization. Choice of the appropriate resource for the user’s locale

■ Data compression. Compression or decompression of data on its way to or from

a servlet

■ Style translations of XML content. Translation of XML content before viewing a

web resource

Filters are defined by version 2.3 of the Java Servlet Specification. Hence, they are

called when the servlet context receives the request before it is passed on to the

processing resource. Filters are not called if the request is redispatched internally, for

example, because the request is forwarded. This behavior makes filters useful in

some gate-keeping roles. For instance, you could use a filter for:

■ Logging. If a property of incoming requests interests you, the filter can extract the

requests and write them to a file.

■ Changing or adding to data associated with the request. You can replace the

original request and response with wrappers. They enable you to change the

incoming request before it is processed by a JSP page or a servlet.

■ Handling preprocessing required by a group of resources. For example, you

could ensure that a user profile is loaded into a session.

By contrast, you might require logging or preprocessing in case a request is

forwarded from a servlet or JSP page using the RequestDispatcher API. In this

situation, you need to implement the action as a servlet instead.

When the servlet context receives a request, it determines whether any filters match

the path to the resource. If one or more filters are found, the servlet context

constructs a FilterChain object. The chain consists of all matching filters in the

order they are declared in the deployment descriptor. The servlet context calls the

doFilter() method on the first filter. Each filter must call the next filter in the

chain. Each filter gives control to the next filter and so forth. When the last filter in

the chain calls the doFilter method, the request is processed by a JSP page or a

servlet. The request could also be processed in a static content file such as an image

being served. Once this process is complete, control is returned to the last filter.

When the last filter’s doFilter method is completed, control is returned to the

next-to-the-last filter and so forth.

An example of a filter in action is the HTTP Monitor in the Sun ONE Studio 4 IDE.

It uses a filter to gather data about the request and the servlet context before and

after the other web application resources process the request. The filter is also

responsible for handling replay requests. The filter accomplishes this task by

replacing the incoming request with a wrapper. Then the filter populates the

wrapper with data from the original request. Hence, the HTTP Monitor filter needs

to be the first one in the chain, so that it is called before any application-defined

filters. Filters are usually declared in the deployment descriptor of individual web
Chapter 2 The Structure of Web Applications 27

modules. However, because the HTTP Monitor gathers data for all web applications

on the server, on the Tomcat servlet engine, filters are declared in the default

deployment descriptor (conf/web.xml).

For information on the support for servlet filters in the IDE, see “Creating Filters” on

page 55.

Filter Life Cycle

The filter life cycle delineates how the filter is loaded, instantiated, and initialized. It

also describes how the filter handles requests from clients and how it is taken out of

service.

Loading and Instantiation

Before a servlet container accesses a web resource, it locates the list of filters to be

applied to the web resource. The servlet container ensures that it has instantiated a

filter of the appropriate class for each filter on the list. It also calls the

FilterConfig method for each filter.

Initialization

When the container receives a request, it calls the doFilter method for the first

filter in the list of filters in the chain. The container then passes in the servlet’s

requests and responses and a reference to the filter chain it is to use. The filter chain

is defined in the deployment descriptor.

The doFilter method for a filter might examine the headers of the request. In

addition, the method could modify request or response headers or alter data by

wrapping the request or response object.

The filter then calls the next entity in the filter chain. The entity could be a filter. A

request works its way through the filter chain to the last filter. The last filter then

calls the associated web resource, for instance, a servlet or a JSP page.

Destruction

Before a filter can be removed from service by the container, the container calls the

destroy method on the filter. It also releases any other resources and performs

cleanup operations.
28 Building Web Components • September 2002

Listeners

Application event listeners are new with the Servlet 2.3 Specification. They are classes

that implement one or more of the servlet event listener interfaces. Application event

listeners are instantiated and registered in the web application at the time the web

application is deployed.

Listener classes provide a way to track sessions within a web application. It is often

useful to determine why a session has become invalid. Either the container timed

out the session or the application called the invalidate method. You can make this

distinction using listeners and HTTPSession API methods.

Servlet event listeners support event notifications for state changes in:

■ Servlet context objects. Useful for managing resources at the virtual machine

level for the application

■ HTTP session objects. Useful for managing state. Also helpful for handling

resources associated with a series of requests from the same client related to the

application.

Use multiple listeners to monitor changes occurring within the life cycle. They are

also useful to track attributes of servlet contexts and HTTP session objects.

■ Servlet context events include:

■ Life cycle. Servlet context has just been created and can service its first request,

or it is about to be shut down.

■ Changes to attributes. Servlet context attributes have been added, removed, or

replaced.

■ HTTP Session events include:

■ Life cycle. An HTTP session has been created or invalidated, or has timed out.

■ Changes to attributes. Attributes have been added, removed, or replaced on

an HTTP session.
Chapter 2 The Structure of Web Applications 29

30 Building Web Components • September 2002

CHAPTER 3

Design Patterns and Frameworks

This chapter presents some terminology and general concepts surrounding design

patterns that are useful in the architecture of web applications. It outlines several

commonly used patterns and introduces some frameworks that simplify the process

of developing web applications.

Design Patterns

Design patterns provide architectural solutions to common software design problems.

These patterns have emerged over time through the experience and insights of

developers. This section introduces some basic patterns that might prove helpful in

the context of developing web applications.

You can also find information on these patterns by visiting the following website,

which is part of the Java Developer Connection:

http://developer.java.sun.com/developer/restricted/patterns/
J2EEPatternsAtAGlance.html

The patterns listed below are of particular relevance to the building of web

applications. More details are provided in the sections that follow:

■ Front Controller. Coordinates handling of incoming requests. See “Front

Controllers” on page 32 for more information.

■ Dispatcher. A subpattern of the Front Controller, describing how to control

which view the user sees. See “Dispatchers” on page 33 for details.

■ View Helper. A subpattern, in this case, to the Front Controller, encapsulating

the processing functions, or business rules, such as data access or business

logic. See “Helpers” on page 35 for more.

■ Composite View. (also called a template) Creates an aggregate view from

subcomponents. See “Composite Views” on page 36 for additional information.
31

http://developer.java.sun.com/developer/restricted/patterns/ J2EEPatternsAtAGlance.html

A full treatment of the use of design patterns in web applications can be found in

Core J2EE Patterns by Deepak, Crupi, and Malks. See “Useful References” on

page xiii for more on this book.

Front Controllers

Front Controllers are responsible for routing incoming user requests. In addition,

they can enforce navigation in web applications. When users are in sections of a web

application where they can browse freely, the Front Controller simply relays the

request to the appropriate page. For example, in an e-commerce application, the

customer browses through a product catalog. In controlled sections in which users

must follow a specific path through the application, the Front Controller can validate

the incoming requests and route them accordingly. For example, a customer wants to

buy the items in a shopping cart. That customer is required to follow a particular

route to complete the purchase successfully.

A Front Controller provides a single entry point through which requests for several

resources in a web application pass. One Front Controller might handle all requests

to the application. Several Front Controllers might handle requests for portions of

the application. Typically implemented as servlets, Front Controllers are frequently

used for the following tasks:

■ Controlling page flow and navigation

■ Accessing and managing model data

■ Handling business processing

■ Accessing relevant data to GUI presentation, for example a user profile

Front Controllers can reduce duplication of code in JSP pages, especially in cases

where several resources require the same processing. Examples might include

ensuring that the user’s profile has been found, obtaining the data corresponding to

a product ID, and so forth.

You can maintain and control a web application more effectively if you funnel all

client requests through a Front Controller. Functions such as view selection, security,

and template creation can be centralized in this design pattern. The Front Controller

applies these functions consistently across all pages or views. Consequently, when

the behavior of these functions needs to change, only the Front Controller and its

helper classes need to be changed. They constitute a relatively small portion of the

application.

In the two-tier form of a web application, shown in FIGURE 3-1, the recommended

approach is for the Front Controller to deal with user requests. The Front Controller

also determines which presentation element is to be shown to users and which data

is to be used for the chosen presentation. This strategy contrasts to the traditional

approach in which each user request must be mapped to a separate view.
32 Building Web Components • September 2002

Note that Front Controllers do not have to route requests directly to Views. You can

chain them so that, for instance, one Front Controller accesses user profile

information. Then it could forward that profile to another Front Controller.

FIGURE 3-1 Determining the User View With a Front Controller

For information on creating a servlet as a Front Controller using the Sun ONE

Studio 4 IDE, see “Using the Servlet as a Front Controller” on page 54.

Dispatchers

Typically, the Front Controller coordinates user navigation, using the Dispatcher
subpattern for this purpose. As shown in FIGURE 3-2, the Front Controller processes a

request. Perhaps the user might want to check out items in a shopping cart of an e-

commerce application.
Chapter 3 Design Patterns and Frameworks 33

FIGURE 3-2 Dispatching as a Function of a Front Controller

Dispatcher code could be contained within the Front Controller servlet, or in a

separate class. In practice, the Dispatcher instructs the Front Controller where to

forward the request. In the Front Controller design pattern, the Dispatcher

encapsulates the behavior that controls which views the user sees.

View Mappers

When web resources differ based on the type of client, you can use a View Mapper to

assist the Dispatcher mechanism. Such clients could include a web browser, personal

desktop assistant, or cell phone. For instance, you might be developing a web

application that retrieves information about waves and tides. In this situation, your

users might want to view this data from desktop personal computers or cell phones.

Instead of dispatching to a single JSP page, your web application might use the View

Mapper to send a different JSP page, depending on the type of client.

1. For example, when your web application receives incoming requests, it routes

them to a Front Controller servlet.

2. The Front Controller retrieves the appropriate data using a Helper bean.

3. It then determines the appropriate view type based on the client within the View

Mapper.

4. Based on input from the View Mapper, the Dispatcher returns the view

information to the Front Controller.

5. The application subsequently forwards the request to the specific view intended

for the user’s client, as shown in FIGURE 3-3.
34 Building Web Components • September 2002

FIGURE 3-3 Using View Mappers

In your wave and tide application, you might not initially know whether you

wanted to display the information on a PDA or on a phone. In this case, the View

Mapper would enable you to create alternative objects or families of objects.

Use View Mappers not only to redirect information to different devices, but to

different locales or different views.

Helpers

The Front Controller servlet can easily become quite large and unwieldy. Therefore,

use Helper classes to break out specific features and make the application easier to

build and maintain. Here are some tasks that can be encapsulated as Helper classes:

■ Retrieval of content from a file, another website, or even a web service

■ Validation of user-entered information

■ If the Front Controller needs to delegate processing of business logic, it can use

Helpers for this purpose, as shown in FIGURE 3-4.

■ Data processing
Chapter 3 Design Patterns and Frameworks 35

FIGURE 3-4 Delegating Processing of Business Logic With Helpers

You can implement Helpers as regular Java classes. See “Using Additional Classes or

Beans” on page 50 for details.

Composite Views

A Composite View is a design pattern that creates an aggregate view from component

views. Component views might include dynamic, modular portions of the page. This

design pattern pertains to web application design when you are creating a view

from numerous subviews. Complex web pages frequently consist of content derived

from various resources.The layout of the page is managed independently of the

content of its subviews. For instance, a view might have subviews like Navigation,

Search, Feature Story, and Headline. An included view is a subview that is one

portion of a greater whole. The included view might, in turn, consist of subviews, as

shown in FIGURE 3-5.
36 Building Web Components • September 2002

FIGURE 3-5 Managing Content Independently From Layout With a Composite View

When creating a Composite View, you can include static content and dynamic

content. Static content might consist of an HTML file. Dynamic content might be

something like a JSP page. You can also include content at JSP translation time and

runtime.

For information on using the Sun ONE Studio 4 IDE to implement a Composite

View pattern, see “Creating a Composite View Template” on page 49.

View Creation Helpers

Typically, web pages need to be reused and maintained over time. Use View Creation
Helper beans when you need to display data as it is received. Examples of such

information might be tables or sets of links. A View Creation Helper can be any bean

or Java class. However, since they are specifically geared toward presentation in JSP

pages, View Creation Helpers are typically tag handler classes.

The View Creation Helper class provides a way to avoid placing Java code related to

specific presentation features directly in the JSP file or Front Controller servlet. For

instance, your web application might contain a catalog search that results in certain

display results. In this situation, encapsulate the behavior into JSP tags, as shown in

FIGURE 3-6:
Chapter 3 Design Patterns and Frameworks 37

FIGURE 3-6 Using View Creation Helpers

Similarly, your web application might require that logic to format data within its

views. View Creation Helper beans can be obtained and used in the same manner as

any other beans from within a JSP file. See “Using Additional Classes or Beans” on

page 50 for more information on using the IDE with beans.

Model Objects

Model objects are Java objects that encapsulate application data inside a web

application. For instance, in a shopcart e-commerce application, a model object

might be an abstraction for a plush toy. Examples of the data would include the toy’s

name, description, price, stock on hand, and so forth. This information is typically

retrieved from database data is inefficient. Hence, you must design session data

carefully. For additional information on accessing databases with JDBC, see Using
Java DataBase Connectivity, a volume in the Sun ONE Studio 4 Programming Series.

The model object can be passed to the JSP file from a Front Controller servlet two

ways:

■ Through a request attribute

■ By placement in the web application’s session data

If it makes sense for the application to store product data for a term longer than a

single request, then this information can be placed in the application’s session.

Typically, all requests from a single user go to a single server where the session

information is stored. In a load-balancing system, a single user’s requests might

be routed to different servers. Hence, session information for a particular user

must be shared among servers. This situation can result in slower performance if

the web application must synchronize access to the session data.

If the application is to be deployed on a load-balancing system, distributing

session data is inefficient. Hence, you must design session data carefully.
38 Building Web Components • September 2002

Frameworks

Frameworks are sets of design patterns, APIs, and runtime implementations intended

to simplify the design and coding process for building new applications. Examples

of frameworks are Struts, JATO, and JavaServer Faces, described in the subsequent

sections.

Framework designers factor out common functions from existing applications and

implement them using appropriate design patterns. A framework enables

application developers to concentrate on the unique feature set required by their

applications.

Web application frameworks typically provide support for functions such as:

■ Navigating among the application’s pages

■ Building forms that accept input from the end user

■ Creating views to display information to the end user

■ Providing access to processing and data with JavaBeans and Enterprise JavaBeans

■ Supplying database access to incorporate information directly from database

systems

■ Using directory services such as JNDI (Java Naming and Directory Interface) and

LDAP (Lightweight Directory Access Protocol)

■ Providing secure and non-secure access through authentication mechanisms

Struts

Struts is an open-source framework from the Jakarta Project. It is designed for

building web applications with the Java Servlet API and JSP technology. The Struts

package provides an integrated set of reusable components. The set includes a

controller servlet, JSP custom tag libraries, and utility classes. The components are

for creating user interfaces that can be applied to any web-based connection. Struts

facilitates the standardization of workflow and the achievement of simplicity and

reusability. For more on the Struts framework, see

http://jakarta.apache.org/struts/
Chapter 3 Design Patterns and Frameworks 39

http://jakarta.apache.org/struts

JATO

JATO, the iPlanet application framework, is a standards-based J2EE web application

framework geared toward enterprise web application development. JATO unites

familiar concepts with a often used design. Familiar concepts include display fields,

application events, component hierarchies, and a page-centric development

approach. For details on the JATO framework, see

http://developer.iplanet.com/tech/appserver/framework/

JavaServer Faces

JavaServer Faces proposes to define a standard set of JSP tags and Java classes. This

set aims to simplify the building of Java web application graphical user interfaces

(GUIs). JavaServer Faces defines complex HTML forms and other common GUI

elements. Furthermore, it enables tools and third-party component vendors to focus

on a single component framework for JSP pages and servlets. It intends to bridge the

gap between conventional GUI toolkit developers and web-based GUI developers. It

hopes to provide familiar APIs for GUI components, component states, and for

rendering and input processing. Comprehensive support for internationalization

and basic input validation is proposed. This support should ensure that developers

include internationalization and input validation in their first releases. For more

information on JavaServer Faces, see

http://www.jcp.org/jsr/detail/127.jsp
40 Building Web Components • September 2002

http://jakarta.apache.org/struts
http://developer.iplanet.com/tech/appserver/framework/
http://www.jcp.org/jsr/detail/127.jsp

CHAPTER 4

Developing Your Own Web
Application

This chapter provides an overview of how to program web modules using the IDE.

This high-level view ties together the tasks involved in creating your application. It

then provides some details on individual programming tasks.

See Chapter 5 for a description of the process of configuring, executing, debugging,

and deploying a web application.

It is recommended that you work through the Sun ONE Studio 4, Community Edition
Tutorial before building your own web application with the Sun ONE Studio 4 IDE.

Development Work Flow

This section provides an overview of the work flow typically involved in developing

a web module using the IDE. When developing a new web application, it often

makes sense to proceed in an iterative fashion. The list below describes the major

development tasks. Each task refers to a section later in the chapter that provides

more detailed information. The IDE’s online help for the JSP/Servlet module also

provides information on these tasks.

To develop a web module using the IDE:

1. Create a web module. For details, see “Creating a Web Module” on page 43.

2. Create the web components you plan to use. This process might include:

■ Creating JSP pages for forms and other dynamic web pages presented to end

users. For more information, see “Creating JSP Pages” on page 45.

■ Creating the servlets, beans, filters, and utility classes required for your web

module. You can use servlets to control the flow of your web module or to gain

access to external resources. You can use filters to authenticate users
41

attempting to access servlets or JSP pages within your web application. See

“Creating Servlets” on page 51 and “Creating Filters” on page 55 for more

information.

The servlets, filters, beans, and utility classes go in the /WEB-INF/classes
directory of the web module. However, if the classes are packaged as JAR files,

they go in the /WEB-INF/lib directory.

The IDE supplies templates for all these objects in the New wizard. Templates

are also provided for simple and advanced filters and four kinds of listeners.

Each other object has a single template. See “Creating a New File” in the Core

IDE online help for details.

■ Importing the servlets, beans, and other classes required for your web module.

See “Importing an Existing Web Module” on page 44 for details.

■ Importing existing tag libraries, such as JSTL. See “Using Existing Tag

Libraries” on page 57 for more information.

■ Developing your own custom tag libraries for any other encapsulated features

your JSP pages require

The recommended process is to develop your tag library in place within the

web module in which you want to use it. Then when you are finished

developing the tags, move the tag library source files to a separate filesystem

for maintenance. At this point, package the library as a JAR file and place it in

the lib directory of the web module containing the dependent JSP pages. See

“Developing Your Own Tag Libraries” on page 60 for details.

3. Configure the web module and its components by editing the deployment

descriptor file. See “Configuring the Web Module Deployment Descriptor” on

page 72 for details.

Web Modules in the IDE

A web module is a J2EE deployment construct. When you develop web applications

using the IDE, it creates the necessary web module structure for you. By enforcing

the web module structure, the IDE ensures that web modules can be packaged for

delivery. It also ensures that they contain the deployment descriptor information

(the web.xml file) required for deployment on servlet containers. Moreover, the Java
Servlet 2.3 Specification and JSP 1.2 Specification require that JSP pages be executed

inside a web module.
42 Building Web Components • September 2002

Note – To execute or debug JSP pages and servlets in the IDE, you need to put them

into a web module. Both JSP pages and servlets must be executed from within a web

module. This behavior differs from some earlier versions of the IDE.

A J2EE web module corresponds to a “web application” as defined in the Java Servlet
Specification version 2.3. In the IDE, a construct called a web module group can be used

to deploy several web modules together. See “Creating a Web Module Group” and

“Executing Web Modules” in the JSP/Servlet online help for more information.

A web module is the smallest deployable and usable unit of web resources in a J2EE

application. It corresponds to the servlet context, as defined in the J2EE specification.

Web modules are typically packaged and deployed as web archive (WAR) files.

However, depending on the web server you use, web modules might not have to be

packaged in order to be deployed. The format of a WAR file is identical to that of a

JAR file. However, the contents and use of WAR files differ from JAR files, so WAR

file names use a .war extension.

Web modules use a hierarchical structure for storing their resources. This structure is

represented at development time as a filesystem mounted at the web module root

directory with the following folders:

■ JSP pages, HTML files, image files, such as GIF, and so forth that are directly

accessible by end users

■ The WEB-INF folder and its contents as follows:

■ The Classes folder containing Java class files, including servlets, filters, and

listeners

■ The lib folder containing JAR files, including tag libraries, JDBC (Java

Database Connectivity) drivers, and other Java class libraries. These files

provide many of the features for the web application.

■ JSP pages not directly accessible by end users, but that can be displayed using

a servlet or filter class

■ The web.xml file, which is the web module’s deployment descriptor

Creating a Web Module

The first step in creating a web application is creating a new web module. Use the

New wizard to create a web module in the designated filesystem. Then the web

module’s root directory node appears in the Explorer. When you expand the node,

the web module structure is reflected in the node contents:
Chapter 4 Developing Your Own Web Application 43

■ The WEB-INF node, which contains:

■ The classes directory

■ The lib directory

■ The web.xml file, called the deployment descriptor file in this book

The web module directory structure is treated as an object within the IDE’s Explorer

window. It is displayed within a filesystem mounted at the web module’s root

directory. For instance, a web module object type has attributes you can set in its

Properties window and a set of pertinent commands available in its contextual

menu. The web module object is represented by the icon for the WEB-INF
directory: Furthermore, like any other object type in the Explorer, a web module

can be created from a template.

Note – You mount a web module in the Explorer exactly as you would mount any

other filesystem. See “Mounting a Filesystem” in the Core IDE Help Set for

information on mounting filesystems. However, you must mount the web module at

its root directory, which is the directory containing the WEB-INF directory. If you

mount a directory containing a web module, rather than the web module itself, the

web module is not properly recognized. In this situation, when the web module root

is a subdirectory of a mounted filesystem, you cannot perform some operations

usually associated with a web module. These operations might include the execution

or deployment of your web module or its components.

Importing an Existing Web Module

The IDE enables you to continue development on web modules that have been

created externally. To import an existing web module, you can use one of two

methods, depending on how the web module is delivered:

■ For a web module in a root directory, mount the root directory of the web module

in the Filesystem Explorer.

■ For a web module in a WAR file, mount the directory containing the WAR file.

Then use the Unpack as Web Module action on the desired WAR file node to

create a web module directory.

Indicate the location of the desired web module in the Mount Filesystem dialog box.

It is also possible for you to mount a CVS filesystem containing a web module.

For details, see “Mounting an Existing Web Module” in the JSP/Servlet online help.

To be mounted in the IDE, your web module must conform to the structured

directory format or the web archive format (WAR). The formats are described in the

Java Servlet 2.3 specification.
44 Building Web Components • September 2002

Before executing an imported WAR file, you must first unpack and mount it as a

web module. Unpack and mount a WAR file from the Filesystems tab of the

Explorer. Mount the directory containing the relevant WAR file, if you haven’t

already done so. Right-click the icon for the desired WAR file. Then choose Unpack

as Web Module from the contextual menu. In the Unpack WAR Folder dialog box,

specify the directory where you want the unpacked files to be stored. Click Unpack

Here. The WAR file is unpacked in the specified directory. The directory is mounted

and appears as a web module in the Filesystems tab of the Explorer. If the WAR file

contains no Java source files, then any servlets and JavaBeans components are not

editable once the WAR file is unpacked.

For details, see “Unpacking and Mounting a WAR File” in the JSP/Servlet online

help.

Creating JSP Pages

JSP pages are used in web applications to present information to end users and to

enable data from end users to flow back to the server. An example would be data

presentation and modification through the use of forms.

JSP files are created and managed in the IDE in a similar way to other file types. To

execute a JSP page, you must place it within a properly mounted web module.

You can create a JSP page in one of two ways:

■ Use the New wizard. For details, see “Creating a JSP or Servlet Source File” in the

JSP/Servlet online help.

■ Generate it based upon a Dreamweaver template. For more information on this

technique, see “Working With Dreamweaver Files” in the JSP/Servlet online help.

You can create JSP pages in the root directory of your web module or within a

subdirectory of this root directory

JSP pages placed in the WEB-INF directory or any of its subdirectories are not

directly accessible from a client browser. However, they are accessible as resources

from a servlet. This feature is often used in conjunction with a Front Controller

design pattern. It is used to control access to JSP pages that need to be displayed in

a specific order. It is also used to control access based on security constraints. An

example of JSP pages requiring controlled access might be pages in the middle of a

checkout procedure. For more on the Front Controller design pattern, see “Front

Controllers” on page 32 and “Using the Servlet as a Front Controller” on page 54.
Chapter 4 Developing Your Own Web Application 45

You can work with .dwt files, Dreamweaver version 3.0 and earlier. In addition to

generating a a JSP page from a .dwt template, the IDE enables you to open and edit

.dwt files in the Source Editor. You can also configure the IDE to open .dwt
templates in an editor of your choice

Using page Directives

You can use page directives to specify global declarative information about a JSP

page that is unrelated to any particular request. For example, use directives to:

■ Set participation of a page in a session

■ Import classes, for instance, packages, into a page

■ Select an error page

For details on page directive syntax, see “Directive Elements” on page 17.

Creating and Invalidating Sessions

If a session does not already exist, executing the JSP page creates one. Any

additional session-related pages continue to use that session until it is invalidated.

Invalidation can occur either through a time-out or an explicit call. You can use the

call below within a JSP scriptlet:

You can also invalidate the session from within a servlet using the following code:

For more information on HTTP sessions, see “HTTP Sessions” on page 20.

Modifying the JSP File

The IDE offers support for JSP syntax, including code completion for JSP tags. For

example, you can press Ctrl-Spacebar to show the code completion box. For details

on code completion, see “Completing an HTML Tag” in the Core IDE online help.

Editing JSP source code is similar to editing HTML. Hence, the IDE provides

support for both HTML and JSP tags. For details, see “Editing a JSP or Servlet

Source File” in the JSP/Servlet online help.

session.invalidate();

request.getSession().invalidate();
46 Building Web Components • September 2002

When executing a web module with modified JSP pages, the IDE saves and

recompiles the JSP files as they are accessed. See “Executing JSP and Servlet Source

Files” in the online help for additional information.

What Is a Scriptlet?

A scriptlet is a scripting element that enables you to enter valid Java code into a JSP

page. Variables and methods declared in a declaration element are available to other

scriptlets in the same JSP page. For more information on scripting elements, see

“Scripting Elements” on page 18.

When to Use Scriptlets

In the past, many JSP development guides have focused on using scriptlets. It is now

recommended that you avoid using scriptlets. They make JSP pages more difficult to

understand and maintain. Typically, the content developers who might be creating

and modifying the JSP pages are unaccustomed to Java code. Hence, they might use

tools that would ruin the scriptlet code. Sometimes Java code is necessary to perform

processing within the JSP file. An example would be the formatting of a table or the

presentation of a large amount of information in chunks. In these circumstances,

consider using custom tag library features. See “Using Existing Tag Libraries” on

page 57. You can also create View Creation Helper beans with properties accessible

with JSP tags. See “View Creation Helpers” on page 37 and “Using Additional

Classes or Beans” on page 50 for more information.

The use of scriptlets can be beneficial in limited circumstances and is fully supported

by the IDE. An example is creating early prototypes of new features you later plan to

encapsulate in a bean or tag handler.

Working With JSP Includes

To make it easier to create complex pages from modular components, JSP pages can

include other pages. These pages could include JSP pages and HTML or XML files.

You can use either the <jsp:include> action or the <%@include%> directive to

subsume these pages. For details on the JSP life cycle, including translation and

runtime, see “JSP Page Life Cycle” on page 15. For an example of how to include a

Composite View in your JSP page, see “Creating a Composite View Template” on

page 49.
Chapter 4 Developing Your Own Web Application 47

Using the <jsp:include> Action

When you use JSP include actions in your code, the complete page using the

included files is built at request time. A JSP page using included actions has its own

implementation class. It cannot affect the processing of the remainder of the page or

alter the HTTP headers of the response. Use the <jsp:include> action for pages

whose dynamic content is likely to change after the translation of the containing JSP

file. You should also use the <jsp:include> action when you do not know which

page to include until request time. This usage is recommended because the page
attribute can be set by an expression, for example:

Here is an example of including a file with the action:

Using the <%@include%> Directive

When you provide JSP includes using a directive, they are included at translation

time in the implementation class of the containing JSP file. They can affect the

remainder of the page and alter the HTTP headers of the response. Use the

<%@include%> directive to include pages that are static and unlikely to change.

Here is an example of including a file with the directive:

<jsp:include page="<%= dynamicPageName %>" flush="true">

<jsp:include page="/foo.jsp"/>

<%@include file="bar.html"%>
48 Building Web Components • September 2002

Creating a Composite View Template

The following code sample creates a template JSP page using the include action

within embedded HTML tables. The header, footer, and navigation bar cells always

include the same JSP files (that is, header.jsp , footer.jsp , and navbar.jsp).

The main cell includes the content JSP file, which is passed to the template using the

usePage attribute.

Typically, a template declares the start and the end of two items:

■ The HTML document

■ The table that defines the overall grid layout

It’s a good practice to design included files to describe a complete HTML element,

with both a start tag and an end tag (if an end tag is required).

<table width="100%" border="0" cellspacing="0" cellpadding="0">
<colgroup span="2">
<col width="140">
<col>
</colgroup>
 <tr>
 <td colspan="2">
 <jsp:include page="header.jsp" flush="true"/>
 </td>
 </tr>
 <tr>
 <td align="left" valign="top" bgcolor="#dddddd">
 <jsp:include page="navbar.jsp" flush="true"/>
 </td>
 <td align="left" valign="top">
 <table width="100%" cellpadding="10px" border="0">
 <tr><td>
 <jsp:include page="<%= usePage%>" flush="true"/>
 </td></tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <jsp:include page="footer.jsp" flush="true"/>
 </td>
 </tr>
</table>
Chapter 4 Developing Your Own Web Application 49

Another approach is to use specially designed template tags. You can find an

example of template tags in the Struts framework. For details, see the Template Tags

section of the Struts User Guide at:

http://jakarta.apache.org/struts/userGuide/struts-template.html

Using Additional Classes or Beans

Use beans in your web module to gain access to external resources such as a

database or flat files, that is, plain text files that might contain data. Additional

utility classes can perform Java functions through methods accessible from servlets,

beans, or JSP scriptlets.

The IDE provides a template for the creation of beans within your web application.

In the New wizard, click the Beans category and select the Java Bean item. See

“Creating a File” in the Core IDE online help for more information.

To specify beans used by your JSP page, you can use the <jsp:useBean> action. To

get and set properties, respectively, on your beans, you can use the

<jsp:getProperty> and <jsp:setProperty> actions.

To populate all the values of the bean from values in the JSP file, use the

setProperty action with an * in the property attribute and remove the value
attribute. The names of the properties in the bean must match the names of the

request parameters. Each of the request parameters typically corresponds to an

element of an HTML form.

Beware that if a property value is empty, the attribute is left unchanged in the bean.

An example is when the user left a field blank, or cleared out the value. If this

situation is a possibility, explicitly set each value by name, as shown in the example

below. Do not use the * .

Here is an example of using a bean in your JSP page:

Here is an example of using a bean and setting a property.

<jsp:useBean id="myFoo" scope="session" class="com.sun.FooBean"/>

<jsp:useBean id="myBar" scope="page" class="com.sun.BarBean">
<jsp:setProperty id="myBar" property="blah" value="0"/>
</jsp:useBean>
50 Building Web Components • September 2002

http://jakarta.apache.org/struts/userGuide/struts-template.html
http://jakarta.apache.org/struts/userGuide/struts-template.html

Here is an example of getting a property:

Creating Servlets

To add a servlet to your web application, create a package in the WEB-INF/Classes
directory within the web module. Then create a new servlet within this package. You

should always create servlets within the WEB-INF/classes directory of your web

module. This directory is included in the IDE’s internal classpath when the web

module is mounted in the Explorer.

When you create a servlet with the New wizard, the IDE enables you to configure

deployment entries for the new servlet. Use the Deployment Configuration panel of

the wizard to perform this task. A servlet created outside the IDE can be added to

your web application. However, the servlet does not just execute on its own. You

must add the servlet to the deployment descriptor file to coordinate it with other

web resources within the web module. For additional information, see “Creating a

JSP or Servlet Source File” in the JSP/Servlet online help.

As provided in the IDE for other Java classes and for JSP pages, code completion is

available for servlets. Use code completion to remind yourself of available methods

and values. See “Editing a JSP or Servlet Source File” in the online help for details.

You can compile the servlet from contextual menus in the Source Editor or from its

node in the Explorer. With the servlet open in the Source Editor, press the F9 button

to compile. If you create a servlet outside the IDE, it is treated as an ordinary Java

class. For servlet features to be available, you must instruct the IDE to treat this class

as a servlet. For details, see “Adding an Existing Servlet to a Web Module” in the

online help.

Declaring the Servlet in the Deployment

Descriptor

When you are creating reusable servlets, the deployment descriptor entry is helpful.

It contains data that can be changed at deployment time without recompiling the

servlet code. You can define initialization parameters to adapt the functioning of

your servlet to a particular deployment situation. For example, you could specify

currency, date, and time formats in init parameters for your servlet.

<jsp:getProperty id="myFoo" property="fooProp"/>
Chapter 4 Developing Your Own Web Application 51

Servlets are not available to the application unless you declare them. As described

above, this declaration is part of the process when you create servlets with the New

wizard. However, you must add declarations to the deployment descriptor for

servlets brought into your web module any other way.

Servlet Entries

A servlet entry contains either the name of the class that implements the servlet, or a

path to the JSP page. It also contains a unique name that identifies it within the web

application.

Servlet Mappings

For the servlet to be accessible and to receive requests, one or more servlet mappings

must accompany the servlet entry. You can also map JSP pages. However, unlike

servlets, JSP pages can process requests even if you do not map them. Servlet

mappings match a named servlet or a JSP page to a URL pattern. The servlet or JSP

page is activated if a specific condition is met. The portion of the request URI

following the server identifier and the context path must match the URL pattern

string. The context path is the path associated with the web module when it was

deployed to the server. The URL pattern can be a definite string, or it can contain

wildcard characters. A URL mapping of /catalog/* matches any request path

beginning with /catalog/ .

Load on Startup

The servlet container can initialize resources at any time unless a servlet or JSP page

is specified as “loaded on startup.”

When a servlet is loaded at startup, the servlet is instantiated and its init()
method is called when the container starts the web application. Similarly, when a JSP

page is loaded on startup, it is compiled and initialized during startup. The JSP page

is also compiled and initialized any time later, if it is changed.

When a servlet is loaded on startup, it can set up resources that are used by multiple

resources. For example, a servlet could add a parameter to the servlet context.

Configuring the servlet to be loaded on startup guarantees the parameter is available

when other resources try to access it. If the value of load on startup is negative or

not set, then the container is free to load the servlet at will. If the value is a positive

integer, then the container initializes the servlet on startup. The container also loads

servlets with lower values before servlets with higher values.
52 Building Web Components • September 2002

Adding a Servlet Entry

To add a servlet to your deployment descriptor, right-click your web.xml file, and

choose Properties. In the Deployment pane of the Properties window, select Servlets.

In the Servlet Property Editor, you can add, edit, or delete servlet entries. See

“Servlets Property Editor” in the JSP/Servlet online help for details.

Displaying and Changing Servlet Entries

To display or alter deployment descriptor entries for a selected servlet, choose

Properties from the servlet’s contextual menu. Then click the Deployment Entries

field to edit servlet properties.

Modifying the Servlet

Modify your servlet in the IDE the same way you would proceed with any other

Java class. Changes to servlets or deployment descriptors in web modules already

executed from the IDE require you to re-execute the web module. Choose Execute

(Force Reload) from the contextual menu of your servlet or the WEB-INF node. This

action restarts the server before executing the servlet. Your servlet is then saved and

recompiled when executing using the IDE.

Servlet-Generated HTTP Responses

A servlet can write to an HTTP response. This simple example of outputting HTML

from a servlet is taken from the processRequest method of the IDE’s servlet

template in the New wizard.

CODE EXAMPLE 4-1 Outputting HTML From a Servlet

response.serContentType("text/html");

java.io.PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Hello World Servlet</title>");

out.println("</head>");

out.println("<body>");

out.println("Hello, World!");

out.println("</body>");

out.println("</html>");

out.close();
Chapter 4 Developing Your Own Web Application 53

It is not required that a servlet output HTML. Instead, a servlet can be used to

modify the HTTPRequest and HTTPResponse objects. For example, the Front

Controller servlet forwards the request to another servlet or JSP file, which then

writes to the response object.

Using the Servlet as a Front Controller

To construct a Front Controller:

1. Create a new servlet using the IDE’s servlet template. From the main menu bar’s

File menu, choose New, then JSP & Servlets, then Servlet.

2. On the Deployment Configuration panel of the New Servlet wizard, specify a

URL pattern that matches the request URLs you want to capture. For example,

specify /ShowProducts/* .

The servlet container attempts to match request paths to servlets in two cases. The

match is attempted when the container first receives the request. It is attempted

again if the request is redispatched internally through a forward or an include .

You cannot map a servlet that forwards to another resource using the path /* .

This mapping would cause a recursive call to your servlet.

3. Once the servlet is created, insert processing code into the processRequest
method to forward the request to the appropriate page. For instance, the

following code sample shows how the request below might be handled:

http://my.company.com/ShowProducts?product=stuffedbear

In this case, the Front Controller servlet ShowProducts would use the query string

product=stuffedbear to select the appropriate view. The view might consist of a

product description page for the stuffed bear. The Front Controller servlet would

then forward the request to that JSP page.

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

 throws ServletException, java.io.IOException {
 String sendTo;

if (request.getQueryString().equals("product=stuffedbear"))
 sendTo = "/WEB-INF/showStuffedBearInfo.jsp";
 else sendTo = "/WEB-INF/noProductSpecified.jsp";

RequestDispatcher sendPage = getServletContext()
.getRequestDispatcher (sendTo);

sendPage.forward(request, response);}
54 Building Web Components • September 2002

Use the Front Controller servlet to direct page flow when the application, rather than

the user, controls the order in which pages are accessed. An example of this situation

would be a set of pages that implements the checkout process. While purchasing

products in a shopping cart, the user shouldn’t be able to bookmark or return to any

of the checkout pages without going through each step in the sequence. To

implement this scenario, you would place the checkout JSP pages inside the WEB-
INF directory of the web module. This location is not directly accessible by requests

from a browser. It is only accessible though another resource that uses the

RequestDispatcher API to serve those pages. This situation is shown in the

previous example code. In this example, you can control how the pages are obtained

and used by creating a Front Controller servlet. The Front Controller processes the

input during the checkout process, and then determines what page to show the user

next.

See “Front Controllers” on page 32 for more information on the Front Controller

design pattern.

Using Additional Classes or Beans

Servlets can obtain and use additional classes and beans in the same manner as any

other Java class. The IDE facilitates the creation of beans using the New wizard. For

more information, see “Creating a New File” in the Core IDE online help.

Creating Filters

You can create and add a filter to your web application using the New wizard. This

method is same one used to create a JSP file or a servlet. As with servlets, you use a

checkbox in the New wizard to generate deployment descriptor elements with

default settings. See “Creating a Filter” in the JSP/Servlet online help for more

information.

Declaring the Filter in the Deployment Descriptor

To declare your filter, use the Filters element in the deployment descriptor to define:

■ A filter name, used to map the filter to a servlet or URL

■ A filter class, used by the container to identify the filter type

■ Initialization parameters for the filter, which are called init-params

You can also define:
Chapter 4 Developing Your Own Web Application 55

■ Large and small icons

■ A textual description

■ A display name for tool manipulation

For details see, “Adding a Filter to the Deployment Descriptor” and “Filters

Property Editor” in the JSP/Servlet online help.

In order for filters to be available within a web application, you must declare them

within the deployment descriptor. A filter entry contains the name of the class

(filter-class) implementing the filter. In addition, the entry contains a unique

name identifying it inside the web application. You can also specify initialization

parameters for the filter. Similar to mapping a servlet, you must add one or more

mappings for a filter to receive requests.

When the servlet container receives a request for the web application, it constructs a

filter chain. The chain consists of all filters whose URL mappings match the request

URI and the context path in the order the filters appear in the deployment

descriptor. The context path is the path associated with the web module when it was

deployed to the server. The filters in the chain are activated when the request enters

the container. Unlike servlets, no filter chain is constructed for internal dispatches.

Hence, you can map a filter to /* to have it called for every request coming into the

container.

To configure a filter or a collection of filters for activation, specify deployment

descriptor Filter Mapping elements. Map filters to a particular servlet by the

servlet’s logical name by mapping a filter to the URL pattern. You use the same

technique to map filters to a group of servlets and static content resources.

The Filter Mappings element shows the number of filter mappings defined for the

web module. Filter mappings specify the URL patterns that should be processed by

a particular filter. To specify additional filter mappings, use the Filter Mappings

Property Editor. See “Editing Web Module Deployment Properties” and “Filter

Mappings Property Editor” in the JSP/Servlet online help for details.

Processing HTTP Requests and Responses

You can use filters to modify an HTTP request or an HTTP response. Filters can be

used for authentication. For instance, when a JSP file or servlet is requested, the filter

can determine whether an end user is permitted to view the desired web component.

The end user’s name can be located in the session information. If the name is blank,

the filter routes the request to a login page. If the name is not blank, but has no

authorization to view a page, a different outcome transpires. The filter routes the

request to a page explaining the required authorization. You can also use a filter to

create log entries each time a response is sent to a particular client. The entries are

based on information from the request and the session.
56 Building Web Components • September 2002

For an example, see the SignOnFilter class, which is part of the Java Pet Store, at:

http://java.sun.com/blueprints/code/jps13/src/

Using Tag Libraries

As previously described, a tag library consists of a set of tag handler classes that

implements the tag library’s feature set and a Tag Library Descriptor (TLD) file that

describes the tags in the library and maps each tag to a tag handler. You can extend

the standard set of actions by creating your own custom actions and tags. By doing

so, you can modularize and encapsulate functional units of code within your

application and make the code more reusable. With proper design, you can cleanly

separate logic from formatting. This separation should enable you to eliminate the

use of Java code embedded in your JSP pages.

The IDE supports:

■ The use of existing tag libraries in your web applications. The JSP Tag Library

Repository provides the JSTL (JavaServer Pages Standard Tag Library). See

“Using Existing Tag Libraries” on page 57 and “Inserting Custom Actions From a

Tag Library Into a JSP Page” on page 59 for details.

■ The development of new tag libraries. The Tag Library Editor facilitates the

creation and modification of your own tag libraries. See “Developing Your Own

Tag Libraries” on page 60 for more information.

■ The packaging and deployment of tag libraries. You can package your custom

tag library as a JAR and then add it your web module for deployment. For details,

see “Packaging and Deploying a Custom Tag Library” on page 89.

Using Existing Tag Libraries

The IDE provides the JSP Tag Library Repository to facilitate the management of

existing custom tag libraries. Initially, the JSP Tag Library Repository includes the

JSTL (JavaServer Pages Standard Tag Library) 1.0 from the Apache Jakarta group.

You can add tag libraries that you have created or downloaded from external

sources to the JSP Tag Library Repository. Choose the JSP Tag Library Repository

from the Tools menu. Use the JSP Tag Library dialog box that is displayed to add tag

libraries to the repository.
Chapter 4 Developing Your Own Web Application 57

http://java.sun.com/blueprints/code/jps13/src/

Adding a Tag Library to a Web Module

In order to use a tag library in your application, you must first add it to your web

module.

From the contextual menu of the WEB-INF node of your web module, choose Add

JSP Tag Library. You can find the tag library either in the Tag Library Repository or

in the filesystem. Some tag libraries are delivered as a single JAR file. Other tag

libraries might contain additional dependent JAR files.

If you choose standard from the JSP Tag Library Repository, then all tag libraries

that are part of the JSTL are added to the WEB-INF/lib directory. For more

information about the JSTL, see “Tag Libraries” on page 25.

Using Tag Libraries From External Sources

To add and use a tag library from external sources in a JSP file, add its associated

JAR file to the JSP Tag Library Repository. The repository enables you to store tag

libraries so you can add them to web modules. The placement of other custom tag

libraries in the repository makes them readily available for addition to web modules.

From the main menu bar’s Tools menu, choose Add Tag Library to Repository. In the

JSP Tag Library Repository dialog box, click Add to locate the desired library.

For more information, see “Adding a Custom Tag Library to the Repository” in the

online help.

Tag Library Descriptors

A TLD (tag library descriptor) is an XML document that defines a tag library. The

servlet container uses the TLD for a tag library to interpret custom actions on certain

JSP pages. The JSP pages reference that tag library through a taglib directive. At

the highest level, the TLD defines attributes of the tag library as a whole. These

properties might include its version number and the version number of its intended

servlet container. At a lower level, the TLD defines each tag in the library.

The IDE enables you to create and edit TLDs without writing XML code. You create

a TLD from the tag library template provided by the IDE. After you have created a

TLD, you can edit it from the Explorer through menu commands. You can also edit

the TLD through its customizer windows and its elements.
58 Building Web Components • September 2002

Inserting Custom Actions From a Tag Library Into

a JSP Page

Custom actions are also commonly referred to as custom tags. However, the term

custom action generally refers to the code construct used in a JSP page. The term

custom tag generally refers to the code that implements the functions of a custom

action.

Use the features of a tag library by coding custom actions in your JSP pages. For

custom actions to use the tag library, the JSP page must declare the tag library with

a taglib directive.

For example:

The uri attribute of a taglib directive references either the TLD or a packaged tag

library JAR file. The JAR file contains both the TLD and the tag handler beans. You

must place the taglib directive before any custom actions that use the tag library.

As an alternative, the uri attribute can be specified in the web module’s

deployment descriptor.

The previous example’s uri attribute specifies a path relative to the root of the web

module. The leading slash denotes the web module root.

Code completion works for the standard tag library in the <%@taglib> directive.

For instance, in the example above, you need only type in the " (quotes) after the

uri attribute name.

When you get to uri , then type =" and press Ctrl-Spacebar. The list of URIs

available in this web context is displayed.

New with the JSP 1.2 specification, some tag libraries can contain more than one

TLD in the JAR file. To obtain and use these tag libraries, place the JAR file in the

WEB-INF/lib directory, and use the URI for the desired TLD in the uri attribute of

the taglib directive.

To find the URIs for the TLD files in a JAR file, place the JAR in the WEB-INF/lib
directory. The JAR file is then mounted in the Filesystems tab below the web

module. Open the mounted JAR file in the Explorer, and select the META-INF
directory, which contains the TLD files. If you double-click any of the TLD files, a

customizer appears with the URI.

<%@taglib prefix="mt" uri="/WEB-INF/lib/myTagLib.jar" %>
Chapter 4 Developing Your Own Web Application 59

For example, the taglib directive for the core TLD from JSTL’s standard.jar file

would be:

You must place the taglib directive somewhere in the JSP page before the first

custom action that uses the tag library.

During tag library development, your taglib directive should reference a TLD file

rather than a tag library JAR file. The IDE inserts the class names of your tag

handlers into the TLD. The tag handlers must also be in your web module’s

classpath. Place the tag handlers in the WEB-INF/classes directory.

Use the prefix attribute of the taglib directive to specify an identifier. Then use

this identifier to refer to the tag library from custom actions coded in the JSP page.

In the example, the taglib directive and the custom action (defined in the specified

tag library) must be in the same JSP page. The action uses the prefix mt to refer to

the tag library. The string table is the name of the tag.

The mapping between the tag name (in this case, table) and the tag handler bean is

specified in the TLD. Edit this mapping in the Tag Customizer window, accessible in

the Explorer from the tag’s contextual menu.

Developing Your Own Tag Libraries

Many useful tag libraries, in addition to the JSTL and the tag libraries included in

the Struts framework, are available. For more information on the Struts framework,

see “Struts” on page 39. In addition, you might visit the following website, which is

devoted to custom tag libraries, as a source: http://jsptags.com/

In many cases, you might want to encapsulate your business logic in your own

custom tags. This way JSP pages in your web module can obtain and use the

business logic easily. The tag format is familiar to web designers. Hence, the creation

of custom tag libraries facilitates the insertion of these features into their JSP pages.

This section describes the support provided by the IDE for the process of developing

custom tag libraries, including:

■ Creation and specification of tag libraries

■ Creation and specification of tags

■ Creation and specification of tag attributes

■ Creation and specification of scripting variables

■ Generation of tag handlers

<%@taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<mt:table results="productDS"/>
60 Building Web Components • September 2002

http://jsptags.com/

Creating a Tag Library and Tags

As previously described, a tag library consists of a set of tag handler classes that

implement the tag library’s feature set and a TLD that describes the tags in the

library and maps each tag to a tag handler. When you create a new custom tag

library, you are actually generating a new TLD file.

You can create a tag library in either a new or an existing web module or filesystem.

Right-click the root directory of the web module or filesystem in which you want to

create a tag library. From the contextual menu, choose New, then choose JSP &

Servlet, then choose Tag Library. This operation creates a TLD file. Use the Tag

Library Customizer to define the properties of your custom tag library.

In the Tag Library Customizer, specify a short name, a display name, a Tag Library

version, and a URI for your tag library. Set the Tag Handler Generation Root to the

WEB-INF/Classes directory in your web module. The tag handler classes you

generate are placed in this directory. You can also set code generation options and

provide descriptive information about the tag library’s features. For more

information about the properties in the Tag Library Customizer, see the

“Customizing Tag Libraries” in the JSP/Servlet online help.

The contents of the Tag Library Customizer reflect the properties of the selected tag

library. The Tag Library Customizer shows the properties of any selected tag library.

Once the properties for your tag library are specified, you can add and customize

tags.

For more information about creating and using custom tag libraries, see JavaServer
Pages Specification, Version 1.2 available at http://java.sun.com/products/jsp

It is recommended that you add a tag library directly to the web module when you

create it using the IDE. Make sure to create the Tag Library TLD within the web

module’s WEB-INF directory. Moreover, the tag handlers should be generated into a

package within the Classes directory. When you are ready to deploy the web

module, package the tag library. Then replace the tag handler package in the

Classes directory with the JAR file. The JAR file is then placed in the lib directory.

See “Packaging and Deploying a Custom Tag Library” on page 89 for details on

packaging.

Adding and Customizing Tags

A custom tag consists of a tag signature plus a tag handler, which is a body of Java

code. The IDE generates skeleton code for tag handlers based on specifications you

supply in the Tag Customizer dialog box. You then edit the tag handler code directly

to insert the logic that implements the features of the tag.
Chapter 4 Developing Your Own Web Application 61

http://java.sun.com/products/jsp

You can create a tag in the Explorer. Right-click the node representing the TLD to

which you want to add a tag. From the contextual menu, choose Add New Tag. In

the Add New Tag dialog box, edit the tag. See the “Tag Customizer Fields” section in

“Customizing Tags” in the JSP/Servlet online help for more information.

You can also edit an existing tag in the Explorer. Right-click the tag you want to

customize. From the contextual menu, choose Customize. In the Tag Customizer

dialog box, edit the tag. See the “Tag Customizer Fields” section in “Customizing

Tags” in the JSP/Servlet online help for details.

The Tag Customizer dialog box has several tabs. The General tab contains values

that are to be inserted in the TLD. The Code Generation tab provides options

pertaining to the tag handler class generated for the tag.

You must choose the type of content that occurs in the body of the tag. See

“Specifying How the Body of a Custom Action Is Handled” on page 63 for

descriptions of possible options.

Additionally, you must specify the name of the Java package for the generated tag

handler classes. The default value is the tag library’s Short Name.

If the generated tag handler is to contain code to find the parent, that is, the

enclosing tag, click the Find Parent checkbox. The type is determined by the Of Type

property. The parent’s tag handler instance, if found, is placed in the variable

specified by the As Variable property. If checked, Find Parent enables the Of Type

and As Variable properties. The default value is unchecked. If Find Parent is

checked, Of Type and As Variable must have values entered. See the “Tag

Customizer Fields” section in “Customizing Tags” in the online help for more

information.

Custom Actions With Bodies

Custom actions, in principle, can contain bodies. They have begin and end tags that

enclose other actions, scripting elements, or plain text. For example, this sample

custom action contains a body composed of plain text:

<mt:convertToTable>
type distance / a 30,000 / g 5,500 / z 200
</mt:convertToTable>
62 Building Web Components • September 2002

Specifying How the Body of a Custom Action Is Handled

Use the Body Content field in the Tag Customizer dialog box to specify how the

body is handled. Display this window from the contextual menu of the custom

action’s tag handler. Then choose one of these values: JSP, empty , or

tagdependent .

TABLE 4-1 explains the meaning of each choice.

All tag handlers implement javax.servlet.jsp.tagext.Tag . Tag handlers that

do not accept or process a body need only implement this interface. If there is a

body, it is simply passed through to the output with the usual JSP processing. Tag

handlers that process a body must also implement

javax.servlet.jsp.tagext.BodyTag . This interface provides additional

methods for handling this processing.

Adding and Customizing Tag Attributes

Tag attributes are parameters associated with tags. These parameters denote or

provide values used during tag processing.

Use the Add New Tag Attribute dialog box to create tag attributes. The Tag Attribute

Customizer dialog box enables you to edit existing tag attributes.

In the Add New Tag Attribute dialog, specify various properties for your new tag

attribute. For details about the New Tag Attribute and the Tag Attribute customizers,

see “Customizing Tag Attributes” in the online help.

Once the new tag attribute is added to the tag, the Tag Attribute Customizer is

displayed. Then you can edit the attribute in the customizer.

Three fields are important to consider when creating an attribute:

TABLE 4-1 Meaning of Body Content Field in Tag Customizer Dialog Box

Body Content Field Meaning

JSP Body content is optional. The servlet container evaluates JSP elements
and then passes the body to the tag handler. The tag handler processes

the body and writes output to the out object according to your

programming logic.

empty Body content is not permitted.

tagdependent Body content is optional. The servlet container does not evaluate JSP
elements, but does pass the body to the tag handler. The tag handler

processes the body and writes output to the out object according to

your programming logic.
Chapter 4 Developing Your Own Web Application 63

■ Required Attribute checkbox. Select to indicate that the attribute must be given

an argument whenever the tag is called. By default, the box is set to False .

■ Value evaluated at request time radio button. Select to specify that the value of

the attribute can be dynamically calculated at request time. The button is set to

True by default. This value is mutually exclusive with the Value evaluated at JSP

translation time attribute, described below.

■ Value evaluated at JSP translation time radio button. Select to specify that the

value of the attribute is static and determined at translation time. The button is

set to False by default. This value is mutually exclusive with the Value

evaluated request time attribute, described above.

For details on the kinds of attribute properties you can provide, see the “Tag

Attribute Information” section in “Customizing Tag Attributes” in the online help.

Adding and Customizing Scripting Variables

A scripting variable is a value that a tag exports to a JSP page. This value can then be

used in an expression or scriptlet.

Use the Add New Tag Scripting Variable dialog box to create new scripting

variables. The Tag Scripting Variable Customizer enables you to edit the properties

of scripting variables.

In the Add New Tag Scripting Variable dialog box, specify various properties for

your new scripting variable. For more on the Add New Scripting Variable dialog

and the Tag Scripting Variable Customizer, see “Customizing Scripting Variables” in

the online help.

Once the new scripting variable is added, the Tag Scripting Variable Customizer

appears. You can then edit the scripting variable in the customizer.

When creating a scripting variable, the Variable Type field is particularly important.

You specify the variable type. Then you choose a standard type from the list in the

combo box, or enter a Java class name.

For details on scripting variable properties, see the “Tag Scripting Variable

Information” section of “Customizing Scripting Variables” in the online help.

Generating Tag Handlers

As you develop your tag library, you add code to the tag handler classes to

implement the features your custom actions require. The IDE generates the tag

handler classes for you. Generation includes any properties set in the Tag

Customizer and the tag attributes and scripting variables you have added to the tag.

You customize your tag library by adding tags as well as adding or modifying

attributes and scripting variables. During this process, you can regenerate the tag
64 Building Web Components • September 2002

handlers. This task accounts for the changes without losing your edits to the tag

handler code. For additional information, see “Generating Tag Handlers” in the

online help.

Generated Tag Handlers
Generated code appears in a package directory determined by the tag library’s Tag

Handler Generation Root. This attribute is a code generation property you set in the

Tag Customizer. If the value is blank, the Generation Root defaults to the root of the

filesystem containing the tag library.

As described previously, you generate tag handlers from a TLD. These generated tag

handlers implement the interfaces appropriate for their corresponding custom

actions. Additionally, all the tag handlers’ required class members, including fields,

methods, and properties, are generated. The exact list of class members depends on

your TLD. Nevertheless, it always includes the methods required by the interfaces

that your tag handler implements.

The specific class members generated depend on the attributes and scripting

variables you have declared in your TLD. For example, if you declare an attribute

called myAttribute , a property called myAttribute is generated in the tag

handler.

Methods Generated

TABLE 4-2 lists the methods the IDE creates when you generate tag handlers. Methods

used to get and set properties are not listed. The methods marked with an asterisk

(*) denote that they are part of the Tag and BodyTag interfaces. These methods call

the others, which are helper methods.

Not all methods in the Tag and BodyTag interfaces are generated. The tag handler

class can be generated as extending the TagSupport or BodyTagSupport helper

classes. These helper classes implement all the methods in their respective interfaces.
Chapter 4 Developing Your Own Web Application 65

Only the methods that need to be overridden are generated. If you need to override

any other methods for the Tag or BodyTag interfaces, include them in the

TagHandler file.

Regenerating Tag Handlers

To develop your tag library, add programming logic to the tag handler class files to

provide features required by your custom actions. During development, you might

need to add additional attributes or scripting variables to your TLD. If so, regenerate

your tag handlers so the corresponding class members are created. In this case, some

of the tag handler’s methods are regenerated, and some are left untouched.

The IDE regenerates the methods doStartTag , doEndTag , and doAfterBody . The

Source Editor does not permit you to edit these methods. This restriction is because

your changes would be overwritten when you regenerated tag handlers.

Instead of editing the methods that get regenerated, place your custom code in

methods that these regenerated methods call. For example, the doStartTag method

calls the otherDoStartTagOperations and theBodyShouldBeEvaluated
methods.

The doStartTag method also returns an int code value to indicate whether the

body should be evaluated. In the IDE, use the otherDoStartTagOperations
method for the processing that needs to be performed at the beginning of the tag.

Use the theBodyShouldBeEvaluated method to return a boolean value that is

translated into the correct code value. Code placed in these two methods is not

affected by regeneration.

TABLE 4-2 Generated Methods in Tag Handlers

Interface Method

Tag *doEndTag
*doStartTag
otherDoEndTagOperations
otherDoStartTagOperations
shouldEvaluateRestOfPageAfterEndTag
theBodyShouldBeEvaluated
theBodyShouldBeEvaluatedAgain

BodyTag All the methods generated for the Tag interface plus the following:

*doAfterBody
writeTagBodyContent
66 Building Web Components • September 2002

TABLE 4-3 indicates which methods are regenerated and which methods you can edit.

Testing Tag Libraries

You can create tag libraries in their own IDE filesystem, or within an existing web

module’s filesystem. Sometimes your tag library isn’t already in a web module. In

this case, convert the filesystem containing the tag library into a web module, as

follows:

1. From the contextual menu, right-click Tools. Then choose Convert Filesystem into

Web Module.

2. Leave the .tld file and the generated and compiled Java tag handler classes in

place.

3. Right-click the root of the filesystem, and select Convert Filesystem into Web

Module from the Tools menu.

4. Add the Tag Libraries element in the deployment descriptor for

/<yourTagLib>.tld .

5. Create a JSP page, and add references to your new tags.

6. Execute your JSP file.

After testing your tag library, you can include it in other web modules by packaging

it as a JAR file. For more information, see “Packaging and Deploying a Custom Tag

Libraries” in the JSP/Servlet online help.

To facilitate the use of this tag library in other web modules, you should add your

new tag library JAR file to the Tag Library Repository in the IDE. For details, see

“Adding a Custom Tag Library to the Repository” in the JSP/Servlet online help.

TABLE 4-3 Editable Methods in Tag Handlers

Do Not Edit These Methods Put Your Custom Code in These Methods Instead

doEndTag otherDoEndTagOperations
shouldEvaluateRestOfPageAfterEndTag

doStartTag otherDoStartTagOperations
theBodyShouldBeEvaluated

doAfterBody writeTagBodyContent
theBodyShouldBeEvaluatedAgain
Chapter 4 Developing Your Own Web Application 67

Working With Databases

Database interaction is a significant aspect of web application development. The

information contained within a database is used to drive the dynamic nature of JSP

files and servlets within a web module. Hence, access to this data can be crucial.

When you want to work with a database in your application, create beans to access

the database. Then use tag handlers to access the beans.

The IDE provides several tools that enable you to view and modify databases that

supply JDBC drivers. See Using Java Database Connectivity for more detailed

information.

When using JDBC to gain access a database from within your web application:

1. Create data access beans with methods to initialize connections to the database,

including the management of connection pools and caches

2. Gain access to specific information using queries

3. View and update the information in row sets

For an example of creating a data access bean, see: “Duke’s Bakery, Part II, A JDBC

Order Entry Prototype - Continued” by visiting the following website:

http://developer.java.sun.com/developer/technicalArticles/
Database/dukesbakery2/

These data access beans can then be used directly by servlet or filter classes. You can

also refer to them from within a JSP file using the jsp:useBean tag. For more

information, see “Using Additional Classes or Beans” on page 50.

The PointBase database and the internal Tomcat 4.0.1 web server are configured by

default to work together in the IDE. When using other databases or deploying to

other web servers, you have two options. Add the database driver files to one of two

locations:

■ The web module’s WEB-INF/lib directory

■ The web server’s common lib directory. For the internal Tomcat 4.0.1 web server,

this directory is <ide-install-dir>/tomcat401/common/lib

Use the IDE’s Database Explorer to confirm your connection to a database and your

access to an appropriate driver for it. The Pointbase database is installed by default.

For information on starting the PointBase database, see “Enabling a Database

Connection With the IDE” in the online help. Even though the IDE’s DB Explorer

can be configured to use a particular database, you are still required to place the

appropriate driver in the web module or the web server.
68 Building Web Components • September 2002

http://developer.java.sun.com/developer/technicalArticles/ Database/dukesbakery2/

To utilize tags that simplify query and presentation tasks, you can add custom tag

libraries to the web module. For details, see “Developing Your Own Tag Libraries”

on page 60.

It is recommended that you create custom tags to:

■ Display data to the user

■ Query data

■ Update data in the database

Adding these tags to your web module simplifies the addition of query and

presentation tasks within the JSP page. It also provides the clean separation of

business logic code from its presentation to the end user. See the J2EE Tutorial for an

example of an IDE-developed web application that accesses a database.

The tag handler classes for these tags can directly gain access to the methods in the

data access bean. In order to use a tag library, you import it into the JSP file. See

“Using Tag Libraries” on page 57 for details.

For information on the Database access tags within the JSTL, visit this website:

http://jakarta.apache.org/taglibs/doc/standard-doc/Overview.html
Chapter 4 Developing Your Own Web Application 69

http://jakarta.apache.org/taglibs/doc/standard-doc/Overview.html

70 Building Web Components • September 2002

CHAPTER 5

Running, Debugging, and
Deploying Your Web Application

This chapter assumes you have considered how to develop your application. It also

assumes you are ready to run, debug, and deploy your application using the IDE.

The chapter provides a high-level view that ties together the tasks you perform in

test running and modifying your application. Then it offers some details on

individual programming tasks.

See Chapter 4 for a description of developing your web application from standard

components. Such components might include JSP pages, servlets, filters, and beans.

It is recommended that you work through the Sun ONE Studio 4, Community Edition
Tutorial before building your own web application with Sun ONE Studio 4 IDE. The

tutorial contains more information on many aspects of the web module development

process.

Running and Debugging Tasks

This section provides an overview of the tasks involved in running a web module

using the IDE. When working on a web application, it often makes sense to proceed

in an iterative fashion. You redeploy and check that the application works each time

a component or set of components is modified. You repeat this process each time

you add a new component or set of components to your application. Each task refers

to a section later in the chapter that provides more details. The IDE’s online help for

the JSP/Servlet module also provides information on these tasks.

To run a web module using the IDE:

1. Make modifications to the component (JSP page, servlet, and so forth). This

process is covered for each component type in Chapter 4.
71

2. Configure the web module. The IDE takes care of much of the deployment

configuration with default settings. Then it provides editors, called property

sheets, for you to edit the deployment descriptor file. See “Configuring the Web

Module Deployment Descriptor” on page 72.

3. Test run your application in the IDE. See “Test Running Web Modules on the

Internal Tomcat 4.0.1 Server” on page 77.

4. Track data flow within HTTP transactions using the HTTP Monitor window. Use

the monitor to examine data sent by JSP pages and servlets, and the data within

the web application. The monitor can also be used during the debugging process

to replay previous requests. For additional information on using the HTTP

monitor, see “Using the HTTP Monitor to Debug a Web Application” on page 81.

5. If necessary, debug your JSP pages, servlets, and web modules using source-level

debugging. For more, see “Source-Level Debugging” on page 85.

6. Package the web module as a WAR file and deploy it. A web application archive

is a single file that contains all of the components of a web application. For

details, see “Packaging Your Web Applications” on page 88.

Configuring the Web Module
Deployment Descriptor

The deployment descriptor file is located in the web module’s WEB-INF directory. It

provides the necessary configuration information to the web module’s deployment

environment, that is, the servlet container. The deployment descriptor can contain

descriptions of servlets, filters, or tag libraries that are used by the web application.

It can also include requirements for external resources and security, environment

parameters, and other component-specific and application-specific parameters.

In the IDE, you can modify the deployment descriptor file in two ways:

■ Browse the elements of the deployment descriptor in the property sheets for the

web.xml file.

■ Open the web.xml file in the Source Editor, and edit it manually.

Some web modules are simple, containing only JSP files and servlets. To deploy

simple web modules on the internal Tomcat 4.0.1 server, you might not need to

change the deployment descriptor. Many changes are taken care of by the IDE,

sparing you the effort. In some cases, however, you need to modify the following

deployment descriptor elements:
72 Building Web Components • September 2002

■ Welcome file list. Resources the servlet container looks for if the web application

receives a request with a path name ending in a slash. The initial settings for the

Welcome files are: index.jsp , index.html and index.htm

■ Context parameters. Shared, usually immutable, resources used by many

resources in the application. These parameters enable you to change certain

values in your application without modifying any code. Context parameters often

provide database access information, which can vary among deployment

platforms.

■ MIME types. The application can associate file extensions with MIME types.

■ Session time-out. Defines the default session time-out interval for all sessions

created by the web context in a whole number of minutes. If session time-out is

set to less than zero, the container never times out a session. This setting is

usually not a good idea in a deployed application.

■ Error page. Creates an Error Page entry in response to something going amiss

within the application. The entry instructs the application to dispatch to a specific

resource (that is, a JSP page or servlet). The resource is mapped either to an

Exception type or to an HTTP error code. An example might be Error type
404, object not found .

■ Security and authentication properties. Enables you to set a login configuration

and view the number of security constraints or security roles defined for the web

module. For details, see “Editing Web Module Security Properties” in the

JSP/Servlet online help.

Many other web application properties can be specified in the deployment

descriptor. Refer to the Java Servlet Specification, v2.3 for details.

Note – In order for changes to the deployment descriptor to take effect, you must

redeploy the web module. Use the Execute (Force Reload) action to perform this

task.

Using Property Sheets to Edit the web.xml File

Use the web.xml property sheet to edit the various elements that make up the

web.xml file. This property sheet is also referred to as the deployment descriptor

editor. These properties appear on three tabbed panes:

■ Deployment. Specify context parameters, description information, a display

name, distributable values, error pages, filters, and JSP files. You also designate

large and small icons, listeners, servlets, session time-out, version information,

and welcome files for the web module.

■ Security. Specify login configuration, security constraints, and security role

properties for the web module.
Chapter 5 Running, Debugging, and Deploying Your Web Application 73

■ References. Specify EJB local references, EJB references, environment entries,

resource environment references, and resource references for the web module.

These values are utilized with web modules deployed as part of a larger J2EE

application on a J2EE application server.

You can modify the values in the deployment descriptor for each deployment

situation. You do not have to recompile or recode your application. This feature is

useful when you need to provide external server data. Examples might include the

name of an SMTP (Simple Mail Transfer Protocol) mail server or a database server,

user name and password information, or paths to locations for external resources

such as HTML templates.

Registering Servlets and Filters

When you create a servlet or filter, the New wizard immediately asks for the

important information. You might want to update the deployment descriptor entry

to specify special features, such as:

■ Additional mappings for the servlet or filter

■ Initialization parameters for the servlet or filter

■ Large and small icons for use by external deployment tools

For more information about declaring servlets and filters, see “Declaring the Servlet

in the Deployment Descriptor” on page 51 and “Declaring the Filter in the

Deployment Descriptor” on page 55. For details on updating deployment descriptor

entries for servlets and filters, see “Servlets Property Editor” and “Filters Property

Editor” in the JSP/Servlet online help.

Registering Tag Libraries

Whether you need to register your tag library in the deployment descriptor depends

on how it is packaged. You can use the Tag Libraries Property Editor for the

deployment descriptor to view any entries for the tag libraries in the web module

Automatic Registration

If your tag library JAR file has a default TLD (that is, META-INF/taglib/tld), an

entry for the tag library is made in the deployment descriptor file when the JAR file

is added to the WEB-INF/lib directory.
74 Building Web Components • September 2002

If a tag library JAR file contains multiple TLD files, then it does not require a default

TLD. The standard tag library (JSTL) is an example of this situation. In this case, an

explicit tag library entry is not required in the deployment descriptor. The JSP

translation extracts the URI fields from the TLD files in any JAR file in the WEB-
INF/lib directory to create an implicit tag library mapping.

Automatic registration occurs as long as there is a taglib directive within the JSP

page. For more information, see “Using Tag Libraries” on page 57,

Explicit Registration

Not all tag libraries have a default TLD specified. You can use the Tag Libraries

Property Editor to explicitly create a tag library entry in the deployment descriptor.

■ The tag library has subelements for URI and for location. The URI should be

relative to the web.xml file that points to the library.

■ The location of the TLD file should be relative to the library.

For example, the following taglib directive makes the TLD located at

/WEB-INF/tlds/myTagLib.tld accessible through the URI myTags:

For details, see “Packaging and Deploying a Custom Tag Library” on page 89

If you remove a tag library declaration, it does not automatically remove the

corresponding JAR file from the WEB-INF/lib directory.

Specifying the Default URI Within the Taglib
Element

The Tag Libraries Property Editor is primarily used to indicate which tag libraries

have been added. It also enables you to change the URI mappings of the tag

libraries. Each entry corresponds to a taglib element in the deployment descriptor.

Refer to the URI mapping at the top of your JSP file to use the specified tag library.

The URI reference also ensures that custom tag library code completion works. For

more information, see “Using Tag Libraries” on page 57.

<taglib>
<taglib-uri>/myTags</taglib-uri>
<taglib-location>/WEB-INF/tlds/myTagLib.tld</taglib-location>

</taglib>
Chapter 5 Running, Debugging, and Deploying Your Web Application 75

Use the Tag Libraries Property Editor to add, edit, or remove references to the tag

library JAR file from the selected web module. The addition or removal of items

using this property editor does not affect the tag library JAR file in the WEB-
INF/lib directory.

If you choose Add JSP Tag Library from the selected web module’s contextual menu,

an entry for each tag library is created in the deployment descriptor. In addition,

when you create a new tag library within a web module, the IDE adds the

deployment descriptor entry.

Using the IDE to Edit the web.xml File in the

Source Editor

Expert users can edit the web.xml file directly by double-clicking the web.xml icon.

You can also edit it using an external text editor. When you save your changes, the

IDE automatically parses the file. It then displays any errors in the Output window

on the XML Parser tab.

Using Tomcat 4.0

The Tomcat 4.0 Plugin enables you to use the Tomcat 4.0.1 web server within the

IDE. A server plugin is a module of the IDE sometimes provided by a web server

vendor. The plugin facilitates the use of the IDE in the configuration of applications

and their deployment to the server. The Tomcat 4.0 plugin is installed in the IDE by

default. Hence, the Tomcat 4.0 node appears under the Installed Servers node in the

Server Registry on the Explorer’s Runtime tab.

A Tomcat 4.0 web server comes pre-configured to work with the plugin in the IDE. It

appears as the Internal node under the Tomcat 4.0 node. By default, this web server

is used to compile and execute web components such as JSP pages and servlets. You

can configure the Tomcat 4.0 plugin to integrate with other Tomcat 4.0 web servers

installed on your computer. See “Adding a Tomcat 4.0 Installation” in the

JSP/Servlet online help for details.

You can use Tomcat to:

■ Deploy and delete web modules and web module groups

■ Set general properties for installations of the server

■ Start, restart, and stop the server

■ Edit the configuration file for the server
76 Building Web Components • September 2002

Test Running Web Modules on the Internal

Tomcat 4.0.1 Server

You can test run a web module within the IDE using the Execute action or Execute

(Force Reload) action. Either action deploys the web module on the default web

server, which is configured as Tomcat 4.0.1 in the IDE. It then executes the

application from a client web browser using your system’s default browser. The IDE

deploys the web module to the context designated by the Context Root property of

the web module’s WEB-INF node. The context value must have a leading back slash,

for example, /test . The IDE makes iterative testing quick and easy during

development by performing the setup for you. The Execute (Force Reload) action

restarts the server. Use Force Reload if you have modified servlets, filters, libraries,

or other Java code.

When the IDE is executing, files are saved. The IDE recompiles any servlets, but it

does not change JSP files until they are actually loaded.

To set a web module’s execution properties, right-click the web module’s WEB-INF
directory. It is located on the Filesystems tab of the Explorer. Then choose Properties

from the contextual menu.

If you want to execute several web modules as a group, you must first create a web
module group. For details, see “Creating and Executing a Web Module Group” on

page 79. A web module group is an IDE-specific construct. It enables you to specify

a set of web modules to deploy together on a web server with a single action. Each

module in the group must have a unique context root. The context root ensures that

requests are properly sent to the correct module by the web server.

As you execute web modules and web module groups, you can use the HTTP

Monitor. It enables you to examine the flow of record data. See “Using the HTTP

Monitor to Debug a Web Application” on page 81 for more information.

The Tomcat 4.0 Server Configuration File

The Tomcat 4.0. Server Configuration file, called server.xml , is automatically

modified by the IDE when web applications are deployed or executed. You can also

edit Tomcat 4.0. configuration information manually in the server configuration file.

For more information, see “Editing the Tomcat 4.0 Server Configuration File” in the

Tomcat 4.0 Plugin online help.
Chapter 5 Running, Debugging, and Deploying Your Web Application 77

Setting Up the Web Server Environment for

Database Access

You can configure a generic web module to use a database. Place the JDBC drivers

for your database systems where the servlet container can find them. An example

might be mm.mysql.jar for the open source MySQL database.

■ To copy the directory, mount the directory containing the JAR file for the driver.

Then copy and paste it into the web module. If the file for the driver has a .zip
extension, change the name to end in .jar before copying it to the web module’s

WEB-INF/lib directory. The Java Servlet Specification, v2.3 no longer recognizes

zip files as libraries.

■ To add the JAR file as a shared resource to the internal Tomcat 4.0.1 server, copy

it into the tomcat401_base/lib directory under the IDE root. Note that files in

this directory are shared among all users of this IDE installation.

■ To add the JAR file as a shared resource to an external Tomcat 4.0 installation,

copy the JAR file into the lib directory under the CATALINA_HOMEdirectory of

the installation. Typically, this directory is the same as the server installation’s

root directory. For other servers, follow the vendor’s instructions.

See the External Execution Process property description in the “Setting Tomcat

Installation Properties” section of the Tomcat 4.0 Plugin online help for details.

If you are using the bundled PointBase Network Server database, the JDBC driver is

already configured to work with the internal Tomcat 4.0.1 server.

Note – Adding the database driver to your system classpath does not necessarily

make it accessible to your web server.

You can test communications using your database driver with the Database Explorer

in the IDE. This practice ensures that the driver you are using works properly with

both the Java language and the IDE.
78 Building Web Components • September 2002

Executing a Single Web Module
To execute a single web module, select the WEB-INF node. Then choose the Execute

action from the contextual menu. This action saves all the modified files in your web

module and recompiles the class files. JSP pages are recompiled when they are

obtained and used by the web server.

The web module executes and is displayed in your selected default browser. The

execute action instructs the browser to request the root of the web module. This

action causes the server to attempt to serve a welcome file within the root directory.

This attempt has been specified in the web module’s deployment descriptor. If the

server cannot find one, it simply lists the contents of the directory.

When executing on the internal or external Tomcat server, utilize the HTTP Monitor.

It enables you to track the requests to the web module and the data flow inside the

web application. See “Using the HTTP Monitor to Debug a Web Application” on

page 81 for more information. If problems occur, check the Output window that

appears upon execution.

Classpath Construction

When a web module is executed in the Tomcat server, a classpath is constructed. The

classpath ensures that all necessary classes and libraries in the web module can be

located. By default, the order of web module elements in the classpath for servlet

execution is:

1. WEB-INF/classes

2. Any JAR files in WEB-INF/lib

3. Other classes or libraries, depending on your server’s implementation of class

loading

If necessary, you can modify the Tomcat execution classpath. See “Setting Tomcat 4.0

Installation Properties” in the Tomcat 4.0 Plugin module online help for details.

Creating and Executing a Web Module Group

The IDE provides a mechanism to deploy several web modules together so they can

be run at the same time. You create a web module group node in the IDE and add

web modules to it. Then you use the execute actions.

To create and execute a web module group, you perform three main tasks:

1. Create a web module group object
Chapter 5 Running, Debugging, and Deploying Your Web Application 79

2. Set a URL mapping for each of the web modules to be loaded as part of the web

module group

3. Specify a target server for the web module group. If no target server is specified,

the default web server is used.

See “Creating a Web Module Group” in the JSP/Servlet online help for details on

these tasks.

You can set a target server for an individual web module. You perform this task by

editing the Target Server property for that web module. However, a component of

that web module might be executed while the web module is running as part of a

web module group. In this case, the web module runs within the server specified by

the Target Server property for the web module group. For more information, see

“Setting WEB-INF Properties” in the JSP/Servlet online help.

Note – Note that specifying a target server is optional. If no target server is

specified, the default server from the server registry is used.

The web module group file should be placed outside a web module. This placement

ensures that it is not inadvertently included when being packaged for deployment.

Executing on Tomcat Servers

You might have your own installation of the Tomcat 4.0 web server on your system.

In this case, configure the IDE’s Tomcat 4.0 plugin module to use that instance rather

than the internal server. See “Adding a Tomcat 4.0 Installation” in the Tomcat 4.0

Plugin online help for details.

The integration with the Tomcat web server has two modes of operation:

■ Full mode. HTTP monitoring and JSP and servlet debugging features are enabled.

The IDE adds some elements to the server’s server.xml configuration file.

■ Minimum mode. HTTP monitoring and JSP and servlet debugging are not

available. The server’s configuration file is modified only to add the deployed

module’s context path.

You can set your own installation as the default web server. Alternatively, you can

specify your installed server be used for a designated web module. For more

information, see the section on setting the Target Server property in “Creating a Web

Module Group” in the JSP/Servlet online help.
80 Building Web Components • September 2002

Debugging Web Applications

The IDE provides two tools for debugging web applications:

■ The HTTP Monitor

■ Source-level debugging for both JSP files and servlets

Using the HTTP Monitor to Debug a Web

Application

The HTTP Monitor is a lightweight tool that can be used as an alternative or a

complement to source-level debugging. It is provided by the IDE for collecting data

related to the execution of JSP files and servlets in the servlet container. The data

records generated by the HTTP Monitor streamline the work involved in debugging

JSP files and servlets. The HTTP Monitor records information about each request

that comes into the server. This data includes incoming and outgoing cookies,

session information maintained on the server, the servlet environment information,

and HTTP headers.

The HTTP Monitor provides a view into the data flow among web application

components of the web application. You can use the monitor to examine the

properties of the HTTP requests. You can also use it to inspect any data maintained

on the server whenever a request is processed by a JSP page or a servlet. For

example, you can find out if:

■ The JSP page or servlet received any form data with the request. If so, you can

determine what the values were.

■ An HTTP session was associated with the request. If so, you can determine what

attributes were set before or after the JSP page or servlet was activated.

■ The JSP page or servlet received or created any cookies.

If you discover a bug while test running, use the HTTP Monitor to view data records

associated with requests leading up to it. You can quickly find out if the problem

was caused by a JSP page or servlet not receiving the data it expected. In this case,

you can determine which resource started the problem. By using the Edit and Replay

feature, you can tweak requests before resending them. This technique enables you

to determine if sending different data fixes the bug. Often this knowledge is enough

to identify the lines of code causing the problem. If not, you might narrow down an

individual JSP page or servlet to step through with the source-level debugger. For

details, see “Source-Level Debugging” on page 85.
Chapter 5 Running, Debugging, and Deploying Your Web Application 81

Once you have fixed the bug, use the HTTP Monitor again to replay the request or

requests that exposed the problem. This technique can save time if reproducing the

steps involves entering data through a browser, for example.

The HTTP Monitor enables you to save recorded request data. If you find a problem

you do not have time to fix immediately, save the relevant records and go through

the process described above later. You can also, for example, save a sequence of

requests representing an application sanity test. You can then run it every time you

change something.

In summary, use the monitor to:

■ View data, store information for future sessions, and replay and edit previous

requests

■ Determine which component is sending or receiving incorrect data before you

begin source-level debugging

For details on error sources in web applications, see “Common Errors in Web

Applications” on page 7. For details on source-level debugging, see “Source-Level

Debugging” on page 85.

Starting the HTTP Monitor

The HTTP Monitor consists of a top level window within the IDE, and a server-side

component that runs on the execution server. To open the HTTP Monitor, choose

HTTP Monitor from either the IDE’s View menu or Debug menu. For more

information, see “Monitoring Data Flow on the Web Server” in the HTTP Monitor

module online help.

Viewing Monitor Data Records

The HTTP Monitor consists of two panels. On the left, the HTTP Monitor records

panel contains a tree view of known records. On the right, the HTTP Monitor

records display panel presents the data associated with the selected monitor record.

In the tree view, the All Records category contains two subcategories: Current

Records and Saved Records. Individual monitor data records reside in either of these

subcategories. Entries in Current Records are available only during the current IDE

session. Current monitor data records persist across restarts of the web server. They

are only cleared on a restart of the IDE or when deleted. Entries in Saved Records

persist until deleted.
82 Building Web Components • September 2002

Sometimes, a data record is created as the result of one resource dispatching the

request to another resource. An example of this situation is a JSP forwarding to a

servlet. In this case, the record is shown as an expandable node in the tree. To see

how the request was processed by any other resources activated by the forward or

include actions, expand the node.

Monitor data records in all categories can be sorted according to various criteria

using the buttons above the tree view. For details on sorting criteria, see “Using the

HTTP Monitor Toolbar” in the HTTP Monitor online help.

For each selected monitor data record, corresponding information appears in the

HTTP Monitor records display panel. The records display panel consists of these

panes:

■ Request. Shows the request URI, method, query string, parameters or posted

data, protocol, client IP address, scheme, exit status, and list of request attributes

before and after the request.

■ Cookies. Shows a list of incoming and outgoing cookies. For incoming cookies,

information includes the cookie name and the cookie value. For outgoing cookies,

information includes the name, the value, the expiration time, which domain the

cookie should be sent to. Outgoing cookie information also includes which path

the cookie should be sent to and whether it requires a secure protocol.

■ Session. Shows status of any HTTP session associated with the request before and

after the request’s processing. The pane describes whether the session was created

as a result of the request’s processing. Session properties such as ID, creation

time, last accessed time, and the maximum inactive interval are displayed. It also

shows session attributes set before and after the request’s processing.

■ Servlet. Shows the name of the servlet as configured, class name, package name,

and optional servlet information. It also displays relative and translated paths.

■ Context. Shows the name of the servlet context created from the web module and

the absolute path to the context. This pane displays all the context attributes set

when the request started processing. It also shows any initialization parameters

given to the request.

■ Client and Server. Shows data about the application that generated the HTTP

request. The data includes which protocol it used, its IP address, and if the

information is provided, which application was used. The pane displays what

locales, encodings, character sets, and file formats the application supports. It also

shows data about the servlet engine that processed the request. This data includes

the Java version, platform, hostname, and port number of the HTTP service.

■ Headers. Shows the HTTP headers that came in with the request. The headers are

constructed by the HTTP client, for instance, a browser. The exact nature of

headers varies from client to client. They usually include information such as the

nature of the client, for instance, software and operating system. They also

contain language preferences and the file formats the browser accepts.
Chapter 5 Running, Debugging, and Deploying Your Web Application 83

Replaying Requests

You can replay HTTP requests associated with the Current Records and Saved

Records subcategories of the All records tree view. Replaying a request makes the

server process a request identical to the request that was recorded. The response is

shown in the IDE’s default web browser, just as it is when you execute a web

module.

This feature can simplify the process of testing the correction to a bug. For example,

you might have found a bug and modified some code in a resource that processes

form data. To verify the correction, you would usually load the form into the

browser, enter data, and submit it. Using the Replay action on the original request

record, you could bypass the need to reenter the data. Another example would be if

you needed to step through several requests before you could reproduce a bug. The

bug might be in a resource that is part of the implementation of a checkout.

Moreover, users cannot enter the checkout unless they have placed something in the

shopping cart. In that case, you could replay several recorded requests. This action

would place the web application in a state where the bug correction could be

confirmed.

See “Editing and Replaying Requests in the HTTP Monitor” in the HTTP Monitor

online help for details.

Editing and Replaying a Specified Request

The Edit and Replay dialog box enables you to edit a number of properties prior to

resending the request information. These properties include the request parameters

and/or the query string, the cookies, and the headers. An option is also provided to

send the request to a different server, if it fully supports the HTTP Monitor.

You can use the Edit and Replay dialog box to send requests to a different server.

Use the Edit and Replay feature to:

■ Check if a web component that is not functioning works with different input

■ Change items such as the locale setting of the client without having to modify

your browser’s settings

Specifying Session Cookies for Replay Requests

If you replay a request, the HTTP Monitor, by default, uses the session cookie the

browser is sending, if it sends a cookie. The monitor does not use the session cookie

recorded with the request. Using Tomcat 4.0, you can control this behavior so the

recorded cookie, or a cookie you specify, is used instead. See “Editing and Replaying

Requests in the HTTP Monitor” in HTTP Monitor online help for details.
84 Building Web Components • September 2002

Source-Level Debugging

When a JSP page is executed as part of a web application, a servlet is actually what

is executed. The JSP page is translated into a servlet, called the generated servlet. The

generated servlet is then compiled and run. When using the Tomcat server, the IDE

maintains a mapping between lines in the original JSP source and lines in the

generated servlet. This feature enables you to debug JSP pages from either:

■ The perspective of the JSP file itself

■ The source of the servlet into which the JSP file was translated

Source-level debugging consists of several enhancements to the standard IDE

debugging environment. These enhancements enable JSP and generated servlet files

to be viewed simultaneously. Breakpoints set in one are automatically reflected in

the other. However, breakpoints removed from the generated servlet are not

removed from the corresponding JSP source file.

A JSP file, with all its statically included files, maps to a single servlet file. (See

“Using the <%@include%> Directive” on page 48 for details.) Specifically, one line in

the JSP file maps to one or more lines in the servlet file. The servlet also contains

code generated for all JSP pages, with no explicit representation in the JSP source.

Using the Debugger

To debug your application using the IDE’s source-level debugging features, you set

breakpoints, view the generated servlet, and start the debugger, as described in the

following sections.

Setting Breakpoints

Setting breakpoints in a regular servlet or class file is no different from debugging

other Java classes. For JSP pages, you can set breakpoints in either the JSP source file

or in the generated servlet.

If you set a breakpoint in a JSP source file, it is automatically reflected in the

generated servlet. (Remember that no one-to-one-line correspondence exists between

the two files). If you set a breakpoint in a generated servlet, it is reflected in the JSP

page with one exception. If the breakpoint is in part of the servlet derived from a

statically included JSP page, it is not reflected. Removing a breakpoint from the JSP

file removes the corresponding breakpoint in the generated servlet. However, the

reverse is not the case.
Chapter 5 Running, Debugging, and Deploying Your Web Application 85

Viewing the Generated Servlet

From the Explorer, click the Filesystems tab. Select the JSP source file. Right-click to

display the contextual menu. If the JSP file has not yet been compiled, that is, the

View Servlet action is not enabled, choose Compile from the contextual menu. Once

the JSP file has been compiled, choose View Servlet from the contextual menu.

The Source Editor opens with a view of the generated servlet code. If the JSP file is

already opened in the editor, you can also view its generated servlet from the

editor’s contextual menu. Right-click inside the editor window, and select the Show

code in servlet action.

By default, the generated servlet file appears in a new tabbed pane of the Source

Editor.

Note that the generated servlet is not automatically updated if you make changes to

the JSP source. After you make changes, run the View Servlet or the Show code in

servlet action again to see the new version.

Note – Sometimes you encounter a compilation error while compiling a JSP page,

and the problem is not obvious when you are looking at the JSP source code. In this

situation, it often helps to look at the generated servlet. This practice can help in

finding mistakes such as missing quotes.

Starting the Debugger

Start the debugger by selecting the resource you would like to debug in the Explorer.

Then choose the Start item from the IDE’s Debug menu. It is not necessary to stop

and restart the debugger to debug a different resource. With the web module

running, either follow a link in the browser window, or type the URL directly into

the browser’s location field.

When debugging a helper class that cannot be run on its own, you must start the

debugger on a different resource, for example, on the web module’s WEB-INF node.

To debug a web module group, select the WEB-INF directory from any web module

within the web module group. Then choose Start from the Debug menu.

For more information about standard debugging in the Sun ONE Studio 4 IDE, see

“Debugging a Program” in the Core IDE online help.

When you start the debugger, the HTTP Monitor window appears. See “Using the

HTTP Monitor to Debug a Web Application” on page 81 for more information on

using the HTTP Monitor to aid in debugging.
86 Building Web Components • September 2002

Setting JSP Debugger Options

You can customize your JSP debugging sessions through the IDE’s global options as

follows:

■ Specify the class of files in which errors are to be shown with the JSP source file

and generated servlet file open. From the Options window, expand the Building

node. Select the JSP & Servlets node. Then in the Properties pane, choose Show in

Servlet Source or Show in JSP Source from the combo box for the JSP Compiler

Errors option.

■ Designate whether to skip static HTML lines between JSP tags in the JSP source,

as well as the corresponding lines in the generated servlet source when

debugging. Static HTML lines are lines that do not contain any JSP element or

scripting language. From the Tools menu in the IDE’s menu bar, choose Options.

Then expand the Debugging and Executing node. Then choose JSP & Servlets

Settings. In the Properties pane, set Skip Static Lines to True .

For details, see “JSP Debugger Options” in the JSP/Servlet online help.

Viewing Both JSP and Servlet Files During Debugging

You can view the JSP source file and its generated servlet file side by side during

debugging. This features helps you detect JSP errors during the debugging cycle.

You can set breakpoints and step through code with both files in sync.

Open the generated servlet in the Source Editor. (See “Viewing the Generated

Servlet” on page 86 for details.) With the JSP file still selected in the Explorer, choose

Open from the contextual menu. By default, the JSP source file code appears in a

new tabbed pane of the Source Editor. At this point, you can see the servlet code or

the JSP code, but not both at the same time. Right-click the current view in the

editor, and choose Clone View from the contextual menu. This action opens a new

Source Editor window with a view on the same JSP code.

Now two editor windows are displayed side by side. One window provides a view

of the JSP code. Another window offers a view of the servlet code. You must compile

the JSP file in order to show the changes in the generated servlet. For details, see

“Viewing JSP and Servlet Files During Debugging” in the JSP/Servlet online help.

Note – Debug commands apply to the view, that is, file, with focus at the time the

command is issued. To issue a command on the alternate view, click that window to

set focus. Then proceed with your command.
Chapter 5 Running, Debugging, and Deploying Your Web Application 87

Packaging Your Web Applications

During development, a web module is typically executed in its unpacked form. This

practice makes it easy to update frequently. However, when you are ready to deploy,

you can package the web module into a Web ARchive (WAR) file. This practice

facilitates the transfer process. Once you have created a WAR file, all files under the

web module filesystem are included by default. For directions on using the IDE to

package a web module directory into a WAR file, see “Packaging a Web Module” in

the JSP/Servlet online help.

In the IDE, you can:

■ Create a WAR file from a web module

■ Specify WAR packaging options

■ View the contents of WAR files generated from web modules

■ Mount WAR files as web modules

Building a WAR File From a Web Module

You can build a WAR file from a web module in one of two ways:

■ Select the root of the web module in the Filesystems Explorer. Then choose Export

WAR File from the Tools menu

■ Right-click the web module’s WEB-INF node. Then choose Export WAR File from

the contextual menu.

Then you must specify a name for the WAR file. All files under the web module

filesystem are included in your WAR file by default.

For additional information, see “Packaging a Web Module” in the JSP/Servlet online

help.

Specifying Options

Packaging options for web modules appear on Archive tab of the WEB-INF node

property sheet. You can add files that are external to the web module to the WAR

package. Files can be added from any filesystem mounted in the Explorer. Possible

choices include all files, all files except .java (the default option), and all files

except .java , .jar, and .form . Alternatively, you can specify a regular expression

such as *.txt or Pro* . You can choose either the predefined filter or a regular

expression, but not both the filter and the expression. For details, see “Editing Web

Module Archive Properties” in the JSP/Servlet online help.
88 Building Web Components • September 2002

Viewing Contents

You can view the contents of a WAR package using the WAR Contents window. Files

included in a WAR package are determined by properties set using the Archive tab

of the WEB-INF property sheet.

The WAR Contents window lists the files to be included when the web module is

exported as a WAR file. It also provides path and extension information for each file.

By default, the list is sorted alphabetically by path name. Sort the list alphabetically

for another column by clicking the header for that column. For more information,

see “Viewing the Contents of a WAR File” in the JSP/Servlet online help.

Packaging and Deploying a Custom Tag
Library

For a JSP page to reference a custom tag library, the tag library must exist within the

web module containing the JSP page. When you are using a tag library within a

production web module, it is a good idea to package it as a JAR file. This practice

makes it easier to use your tag library in other web modules. The tag library can be

added to a web module in any of four ways:

■ By putting the tag library into the Tag Library Repository, then adding it to the

desired web module. The JSTL already resides in the Tag Library Repository and

can be added to JSTL libraries. See “Using the JSP Standard Tag Library” in the

JSP/Servlet online help for more information.

■ By adding the JAR file from the filesystem to a web module

■ By cutting and pasting the JAR file into the appropriate WEB-INF/lib directory.

Then by modifying the Taglib element in the deployment descriptor. It must

map to the JAR file containing the desired tag library. See “Editing the Web

Module Deployment Properties” in the JSP/Servlet online help for more

information about editing the deployment descriptor.

■ By testing the tag library in place. This method is convenient for testing your tag

library as you develop it. For details, see “Testing Tag Libraries” on page 67.

Adding a tab library JAR file to a web module also mounts it in the Filesystems pane

of the Explorer.
Chapter 5 Running, Debugging, and Deploying Your Web Application 89

Packaging a Tag Library as a JAR File
You package a tag library into a JAR file to make it easier to deploy. To create the Tag

Library JAR, choose Create Tag Library JAR from the tag library’s contextual menu.

When you create a Tag Library JAR, the IDE creates a file with a .jar extension. It

also creates an associated jarContent file, which adds additional classes or

packages to the library. The jarContent file is also referred to as the recipe file.

For information on the properties of the newly created JAR file, see “JAR Recipe

Nodes in the Explorer” in the JSP/Servlet online help.

Note – Be sure that your tag handlers are generated and compiled before creating

the tag library JAR file.

Deploying a Tag Library Using the Tag Library

Repository

You can deploy a tag library using the Tag Library Repository.

To add a tag library from the Tag Library Repository to a web module, choose Add

JSP Tag Library from the WEB-INF directory’s contextual menu. Then choose the

Find in Tag Library Repository item, which displays the Tag Library Repository

Browser dialog box. Select one or more items from the list, and click the OK button.

The appropriate JAR files for the selected tag libraries are added to the WEB-
INF/lib directory along with any necessary entries in the deployment descriptor.

When the tag library JAR files are added to the web module, they are also mounted

in the Filesystems tab of the Explorer

Deploying a Tag Library by Adding a JAR File

From the Filesystem
If a tag library JAR is in another web module or mounted filesystem in the IDE, you

can use the Add JSP Tag Library > Find in Filesystem action. This action locates the

JAR and copies it into the WEB-INF/lib directory of your web module. You can add

a tag library JAR file from any mounted filesystem to a web module. Right-click the

WEB-INF node. Choose Add JSP Tag Library, then Find in Filesystem. If necessary,

the deployment descriptor is automatically updated to include an entry for the tag

library. This entry is used to map the tag library to a URI for your JSP pages to use

in accessing the tags
90 Building Web Components • September 2002

Deploying a Tag Library by Copying and Pasting

a JAR File From Another Module or Filesystem

If there is a tag library JAR in another web module or mounted filesystem in the

IDE, you can choose the Copy action from the contextual menu on the Explorer’s

WEB-INF node. Then paste the JAR file into the WEB-INF/lib directory of your

web module. When copying and pasting a tag library JAR file into a web module’s

WEB-INF/lib directory, a taglib element in the deployment descriptor might be

created. In most cases, the IDE adds the Ttaglib element automatically. You can

verify that the correct information is present. To perform this task, follow the

instructions in “Packaging and Deploying a Custom Tag Library” in the JSP/Servlet

online help.

Including a Web Module Within a J2EE
Web Application

When using the Enterprise Edition of the Sun ONE Studio 4 IDE, you can create a

J2EE application from an existing EJB module or web module. Alternatively, you can

create the application from an Explorer filesystem or package node. In both cases,

after instructing the IDE to create the new application, the new J2EE application’s

node appears in the Explorer. Then you can begin adding modules to the

application.

Note – You must assemble a web module with an EJB module in order to build an

enterprise (J2EE) application.

A J2EE application is composed of EJB modules, or web modules, or both. You create

J2EE applications in the IDE, either from an existing EJB module or from a filesystem

in the Explorer. After creating an J2EE application, you can add web modules to it.

For details on adding a web module to a J2EE application, see “Adding an EJB or

Web Module to a J2EE Application” in the J2EE Application Assembler online help.

For more information on assembling web modules into a web application, see

Building J2EE Applications With Sun ONE Studio 4.
Chapter 5 Running, Debugging, and Deploying Your Web Application 91

92 Building Web Components • September 2002

Glossary

Application event
listener A class that implements one or more of the servlet event listener interfaces. It is

instantiated and registered in the web application at deployment time. See also

servlet event listener.

bean A reusable software component written to the JavaBeans specification. See also

JavaBeans.

browser See web browser.

client In the client-server model of communications, a process that requests the

resources of a remote server. For instance, computation and storage space.

Composite View A design pattern that creates an aggregate view from component views.

Component views might include dynamic, modular portions of the page.

Sometimes called a template. See also design pattern.

cookie A mechanism used by servers to keep track of individual clients. It sends

small amounts of data in the headers of HTTP requests and responses. The

web resource sets an outgoing cookie in the header of the response. The

client receiving the response stores the cookie until it expires. The client

then sends it as part of any HTTP request to the server that the cookie

comes from. The client can also send the cookie to the server specified in

the cookie domain. The client also sends the cookie to requests to that

server that matches the cookie’s path, if a path was specified. Web sites

remember a user ID between browser sessions using this technique, for

example. See also HTTP session.

custom tag A tag created by a web application developer to provide additional Java

features within a JSP page. See also JSP tag.

deployment The process of installing software into an operational environment.

deployment
descriptor A file that describes deployment configuration information. In this book,

deployment descriptor refers to a file, named web.xml , located in the web

module’s WEB-INF directory. The deployment descriptor provides the
Glossary-93

necessary configuration information to the web module’s deployment

environment, that is, the servlet container. This information includes

requirements for external resources and security and environment parameters.

It also includes other component-specific and application-specific parameters.

design pattern An architectural solution to a recurring software design problem. Design

patterns also consist of considered best practices for attending to the context

and pressures surrounding the issue, and the outcomes and effects of the

solution.

Dispatcher A design subpattern describing the control over which view the user sees.

See also design pattern, Front Controller, View Mapper.

EJB (Enterprise JavaBeans) A component architecture for development and

deployment of object-oriented, distributed, enterprise-level applications.

Applications written using the Enterprise JavaBeans architecture are scalable,

transactional, multi-user, and secure. See also JavaBeans and bean.

filter See servlet filter.

framework APIs that are intended to simplify the design and coding process. See also

Struts, JATO, and JSF.

Front Controller A design pattern centralizing business logic for part of a web application

in a single object handling incoming client requests. The client requests are

for several different resources. The Front Controller might be responsible

for activating Helpers and Delegates that perform business logic. Front

Controllers can be used for managing model data, controlling page flow,

and dispatching the request to the appropriate view. See also Helper,
Dispatcher.

Helper A design subpattern that encapsulates processing functions (or business

rules) or data retrieval behavior. See also design pattern, Front Controller.

HTTP (Hypertext Transfer Protocol) An application protocol governing the exchange

of files, on the World Wide Web. Examples of files would include text, images,

sound, and video.

HTTP Monitor An IDE module for the collection of information concerning the execution of

JSP files and servlets in the servlet engine. For each request associated with a

JSP file or servlet, the monitor records data. The data includes the incoming

request, incoming and outgoing cookies, session information maintained by

the server, and more.

HTTP response A message generated in the servlet container that includes cookies,

headers, and output that eventually go to the client browser. It is a

response as specified by an HTTPmethod. Often referred to as response in

this book. The response is encapsulated in an HTTPResponse object in the

servlet container.
Glossary-94 Building Web Components • September 2002

HTTP request A message created in the client browser that includes attributes and

cookies from the client browser. It is a request as specified by a GETor a

POSTmethod. Often referred to as a request in this book. The request is

encapsulated in an HTTPRequest object in the servlet container.

HTTP session A Servlet API construct representing a conversation spanning multiple

requests between a client browser and a web server.

HTTPS (Hypertext Transfer Protocol Secure Sockets) A secure HTTP protocol used

widely in Internet and intranet environments. HTTPS is for exchanging secure

information between clients and servers. It provides a secure connection

through which applets or beans can be downloaded into the web browser. In

addition, HTTPS enables these applets or beans to make secure connections to

the server.

J2EE (Java 2 Platform, Enterprise Edition) The edition of the Java 2 platform that

combines a number of technologies in one architecture. Examples of

technologies are enterprise beans, JSP pages, and XML. J2EE provides a

comprehensive application programming model and compatibility test suite

for building enterprise-class server-side applications. See also EJB, JSP
technology, servlet.

J2EE application An application that consists of J2EE components that run on the J2EE platform.

Examples of J2EE components are application clients, applets, HTML pages,

servlets, and enterprise beans. J2EE applications are typically designed for

distribution across multiple computing tiers. For deployment, a J2EE

application is packaged in an .ear (Enterprise Archive) file. See also J2EE,
J2EE web tier.

J2EE web tier One of three tiers in the J2EE architecture. The web tier creates presentation

logic. It accepts responses from presentation clients such as HTML and web

clients. Then it provides the appropriate response. This tier is to be

differentiated from the client and business tiers.

JAR (Java Archive file) A platform-independent file format that bundles classes,

images, and other files into one compressed file, speeding up download time.

JATO A J2EE web application framework from iPlanet geared toward enterprise

web application development. JATO combines concepts such as display

fields, application events, component hierarchies, and a page-centric

development approach.

JavaBeans An architecture that defines a portable, platform-independent reusable

component model. Beans are the basic unit in this model. See also EJB.

JSF (JavaServer Faces) A proposal to define an architecture and APIs that

simplify the process of building J2EE web tier applications. See also J2EE
web tier.
Glossary-95

JSTL (JavaServer Pages™ Standard Tag Library). A standard tag library that

encapsulates core features common to many JSP pages as simple tags. JSTL
contains support for common, structural tasks. Support includes iteration
and conditionals, tags for manipulating XML documents,
internationalization tags, and SQL tags.

JDBC (Java Database Connectivity) An industry standard for database-independent

connectivity between the Java platform and a wide range of databases. The

JDBC interface provides a call-level API for SQL-based database access.

JSP action A JSP object that can act on implicit objects and other server-side objects. It also

can define new scripting variables. Actions follow the XML syntax for elements

with a start tag, a body, and an end tag. If the body is empty, it can also use the

empty tag syntax. The tag must use a prefix. An action is the abstract term that

is implemented by a tag.

A standard action is defined in the JSP specification. It is always available to a

JSP file without being imported.

A custom action is described in a portable manner by a TLD. It is a collection of

Java classes imported into a JSP page by a taglib directive.

JSP element A part of the JSP page recognized by the JSP translator. An element can be a

JSP action, a directive, or a JSP scripting element.

JSP expression A scripting element containing a valid scripting language expression. It is

evaluated, converted to a String , and placed into the implicit out object.

JSP page A text-based web component that is dynamically translated into a servlet by

the servlet container before execution. See also JSP file, servlet.

JSP file The physical representation of JSP page code. See JSP page.

JSP scripting element A JSP declaration, scriptlet, or expression whose tag syntax is defined by the

JSP specification. Its content is written according to the scripting language used

in the JSP page.

JSP tag A tag defined by the JSP Specification. It is a text element within a document.

The document represents format information or processing logic contained in

an external library. It is distinguishable as markup, instead of as data, because

it is delineated in XML format. By using tags, you can avoid including Java
code in the JSP page. See also JSP tag library.

JSP tag library A collection of tag handlers (Java classes) that encapsulates dynamic content or

processes. They can then called through a tag in a JSP page. JSP tag libraries

are part of the JSP specification and can be translated by any JSP engine. See

also JSP tag, custom tag.
Glossary-96 Building Web Components • September 2002

JSP technology (JavaServer Pages™) Extensible web technology that uses template data,

custom elements, scripting languages, and server-side Java objects to return

dynamic content to a client. Typically, the content consists of HTML or XML

elements. In many cases, the client is a web browser. JSP technology is an

extension of servlet technology. See also JSP pages, servlets.

listener See application event listener and servlet event listener.

model object Java objects that encapsulate application data inside a web application.

MIME (Multipurpose Internet Mail Extensions) An Internet standard for sending and

receiving non-ASCII email attachments, (including video, audio, and graphics.

Web browsers also use MIME types to determine how to display or interpret

files that are not formatted in HTML.

scope Definition of an object’s availability in relationship to other objects in the web

application. The Servlet and JSP specifications define four scopes:

ServletContext (application), Session , Page (JSP page only), and

Request .

scripting element See JSP scripting element.

scripting variable A value that a tag exports to a JSP page. This value can then be used in an

expression or scriptlet.

scriptlet A scripting element that enables you to enter any piece of valid Java code into

a JSP page. Variables and methods declared in a declaration element are

available to other scriptlets in the same JSP page. The use of scriptlets in JSP

pages is not recommended. Instead, encapsulate the code in a tag or a bean.

server A network device that manages resources and supplies services to a client. A

J2EE server provides a web or EJB container. See also client, web server.

server plugin A module of the IDE sometimes provided by a web server vendor. The

plugin facilitates the use of the IDE in the configuration of applications

and their deployment to the server.

servlet Any class that implements javax.servlet, typically subclasses of

javax.servlet.http.HttpServlet . Servlets extend the features of web

servers and web-enabled application servers. They execute within a servlet

container. Servlets are typically used as Front Controllers and to generate

simple HTTP responses that are not complex. See also Front Controller and

HTTP response.
Glossary-97

servlet container A container providing network services. Here requests and responses are sent,

requests decoded, and responses formatted. All servlet containers support

HTTP as a protocol for requests and responses. They might also support

additional request-response protocols such as HTTPS. In this case, requests are

handled by servlets.

A distributed servlet container can run a web application that is tagged as

distributable. It executes across multiple Java virtual machines running on the

same or on different hosts. In this situation, the scope of objects in the web

application is extended. Synchronization overhead occurs because the session

data must be shared among the different servers.

servlet context An object containing a servlet’s view of the web application within which the

servlet is running. The servlet context can be used to manage the resources of a

web module. Using the context, a servlet can perform a number of tasks. It can

log events and obtain URL references to resources, and set and store attributes

other servlets in the context can use.

servlet event listener A class that supports event notifications for state changes in the servlet context

and HTTP session objects. See also application event listener.

servlet filter Reusable code that inspects and modifies HTTPRequest and HTTPResponse
objects as the servlet receives the HTTP request. (Often called a filter in this

book)

servlet mapping The definition of an association between a URL pattern and a servlet. It is used

to map requests to servlets through examining the URI of the incoming

request. See servlet, URI, HTTP request.

session See HTTP session.

Struts An open-source framework from the Jakarta Project. Struts is designed for

building web applications with the Java Servlet API and JSP technology.

The Struts package supplies an integrated set of reusable components.

They include a controller servlet, JSP custom tag libraries, and utility

classes. These components for building user interfaces can be applied to

any web-based connection. See frameworks.

tag See JSP tag.

tag attribute A parameter associated with a tag that denotes or provides a value used

during tag processing.

TLD (tag library descriptor). An XML file that describes a tag library. A JSP

container uses the TLD file to interpret pages that include taglib directives

referring to that tag library. The TLD file contains documentation on the library

as a whole. It also contains documentation on its individual tags, version

information on the JSP container and on the tag library. The TLD has

information about each of the actions defined in the tag library. In the IDE, the

TLD file is generated when a custom tag library is created.
Glossary-98 Building Web Components • September 2002

URI (Uniform Resource Identifier) The property used when a servlet is executed (or

debugged) to build the URL to be displayed in browser. URIs to web

applications typically have the following syntax:

http://server:port/context path/
local resource identifier ? query string

value object An intermediate representation of the model used, for example by a a Helper.

See also model object, Helper.

View Creation Helper A tag handler class used to display data in JSP pages in different design

patterns.

View Mapper An object that can determine the processing of the request when resources

differ based on the type of client.

WAR (Web Application Archive) A JAR file format similar to the package used for

Java class libraries. A WAR file format is installed or deployed into a servlet

container. In addition to web components, a WAR usually contains other files,

called web resources. They include server-side utility classes (database beans,

shopping carts, and so forth). Web resources include static web content

(HTML, image, and sound files), and client-side classes (applets and utility

classes). A web application can run from a WAR file or from an unpacked

directory organized in the same format as a WAR. See also JAR.

web application A term sometimes used interchangeably in this book with web module.At other

times, it is used to denote everything on a set of servers. Web application

generally signifies a program combining all the features users need to perform

a specific group of tasks on a dynamic web page with a web browser.

Examples of web applications might include an electronic shopping mall or an

auction site. A web application is based on a client-server model. In this model,

the client is the web browser and the server is the feature set that runs

remotely. A web application’s set of components can include servlets, JSP

pages, and utility classes. In addition, it includes static documents, client-side

applets, Java classes, and some meta information tying all the elements

together. See also web module, web server.

web browser An application that enables users to view, navigate through, and interact with

HTML documents and applets. A web browser is also called a browser, which is

sometimes referred to as the client. See also client, web server.

web container See servlet container.

web component Components defined by the Servlet and JSP specifications. Web components

can only be executed if part of a web module directory or archive deployed

onto a web server. See also JSP page, servlet.

web context The identified path to a web application’s components. The path permits

access to multiple web modules on a single server. See also servlet context.
Glossary-99

web client Typically the web browser (for instance, Netscape). However, it could be a

specialized application that sends HTTP requests and interprets HTTP

responses. See also web browser.

web module The smallest deployable and usable unit of web resources in a J2EE

application. Web modules can be packaged and deployed as web archive

(WAR) files. See also web module group, WAR files, and web application.

web module group In the Sun ONE Studio 4 IDE, several web modules deployed together. See also

web module, web application, WAR files and web application.

web server Software that supplies services to access the Internet, an intranet, or an

extranet. A web server hosts web sites and provides support for HTTP and

other protocols. It executes server-side programs such as CGI scripts or servlets

that perform specified functions. In the J2EE architecture, a web server

provides services to a web container. For instance, a web container usually

depends on a web server for HTTP message handling. The J2EE architecture

assumes that a web container is hosted by a web server from the same vendor.

Hence, it does not specify the contract between these two entities. A web

server can host one or more web containers.

XML (Extensible Markup Language) A markup language that enables the definition

of the necessary tags to identify the data and text in XML documents. J2EE

deployment descriptors are expressed in XML.
Glossary-100 Building Web Components • September 2002

Index
A
action elements, 17 to 18

custom actions, 18

standard actions, 18

Add New Tag Attribute dialog box, 63

Add New Tag dialog box, 62

Add New Tag Scripting Variable dialog box, 64

addAttribute method, 23

application event listeners, 29

application instance variable, 14

application scope, 22

audience for this book, x

authentication properties, defining, 73

authentication, servlet filters and, 26

B
beans

accessing from servlets, 55

accessing with tag handlers, 68

data access, creation of, 68

implementing Helpers as, 36

setting properties for, 50

specifying in servlets, 55

specifying use in JSP pages, 50

using in web modules, 50 to 51

View Creation Helpers, 37

Body Content field, meaning in Tag Customizer

dialog box, 63

BodyTag interface, 63

breakpoints, setting, 85

browsers. See web browsers

C
classpaths

adding tag handlers to, 60

IDE’s internal, 51

order of web module elements in, 79

Client and Server pane of records display panel, 83

clients. See web browsers

code completion

for available servlet methods and values, 51

for JSP tags, 46

for standard tag library, 59

coding errors, 7

HTTP Monitor and, 81

JSP debugger options and, 87

compiling

JSP pages, 52

servlets, 51

Composite Views, 31, 36 to 38

creating a template JSP page for, 49

View Creation Helpers in, 37 to 38

Context pane of records display panel, 83

context parameters, in deployment descriptor

file, 73

controller element, in web modules, 11

cookies, 83

included in HTTP request headers, 5

included in HTTP response, 13

incorrect values in, 7
101

list of incoming and outgoing, 83

specifying for replay requests, 84

Cookies pane in records display panel, 83

custom actions, 18

and custom tags, 59

inserting using tags, 57 to 62

specifying how body is handled, 63

tag handlers and, 62

custom tags, adding and customizing, 61 to 62

D
data compression, servlet filters and, 27

Database Explorer, 78

databases

access to, 3

accessing with beans, 15, 50

accessing with Helpers, 36

drivers, 78

frameworks and, 39

initializing connections, 24

managing connections to, 25

model objects and, 38

setting up web server environment for access, 78

updating data with custom tags, 69

working with, 68 to 69

debugger, 85 to 87

options, setting for JSP, 87

setting breakpoints, 85

starting, 85

viewing generated servlets, 86

debugging web applications, 5 to 6, 81 to 87

displaying the HTTP Monitor, 81

monitoring data flow on the web server, 81 to 84

setting JSP debugger options, 87

source-level, 85 to 87

viewing both JSP and servlet files during, 87

viewing monitor data records, 82

declarations, 19

deploying custom tag libraries, 89 to 91

deployment descriptor files

adding servlet entries in, 53

configuring, 72 to 75

displaying and changing servlet entries in, 53

editing, 6, 10

editing in Source Editor, 76

editing with property editors, 73

errors in, 7

introduced, 2

load on startup specification, 52

registering servlets and filters in, 74

registering tag libraries in, 74

servlet entries in, 52

servlet mappings in, 52

deployment errors, 7

design patterns, 31 to 38

Composite Views, 36 to 38

Front Controllers, 32 to 36

destruction of

JSP pages, 16

servlet filters, 28

servlets, 25

directive elements

in JSP pages, 17

in tag libraries, 59

Dispatchers, 33 to 34

distributed servlet containers, 14

doFilter method, 27, 28

Dreamweaver templates, creating JSP pages

from, 45

E
Edit and Replay dialog box, 84

error page entries, creating, 73

error sources in web applications, determining, 8

executing

on Tomcat servers, 80

single web modules, 79

web applications in the server, 3

web module groups, 79 to 80

Explorer window

mounting root directory of web module in, 44

opening mounted JAR files in, 59

Server Registry on Runtime tab, 76

unpacking and mounting a WAR file from, 45

expressions, 19

F
filter chains, 28, 56
102 Building Web Components • September 2002

FilterChain object, 27

FilterConfig method, 28

filters. See servlet filters

forward action, 17, 18

frameworks, 39 to 40

JATO, 40

JavaServer Faces, 40

Struts, 39

Front Controllers, 31, 32 to 36

constructing, 54 to 55

directing page flow with, 55

Dispatchers in, 33

Helpers and, 35 to 36

response processing in, 5

servlets as, 23

View Creation Helpers in, 37 to 38

View Mappers and, 34

G
generated servlets, viewing, 86

getAttribute method, 23

getProperty action, 18, 51

H
headers

altering HTTP response, 48

displayed in HTTP Monitor, 83

in HTTP requests, 5

in HTTP responses, 6

Headers pane of records display panel, 83

Helpers, 35 to 36

HTTP Monitor, 81 to 84

enabling, 80

introduced, 8

records display panel, 83

replaying requests, 84

starting, 82

viewing data records, 82 to 84

HTTP requests

defined, 5, 13

monitoring, 5

Request pane in HTTP monitor records display

panel, 83

scope in JSP pages, 22

web components and, 14

HTTP responses

action elements and, 17

defined, 6, 13

expression elements and, 19

generating with servlets, 53

scripting elements and, 18

scriptlets and, 19

servlet filters and, 56

template data and, 16

web components and, 14

HTTP sessions, 20 to 21

creating, 46

data, 1, 4, 6

defined, 6

displaying properties of, 83

invalidating, 46

misspelled attributes as coding errors, 7

servlet filters and, 56

showing status of, 83

storing data for future, 82

HTTPRequest objects

modifying, 54

servlet filters and, 6

HTTPResponse objects

modifying, 54

servlet filters and, 6

HTTPServlet interface, 24

HTTPSession API methods, 29

I
implicit objects in JSP pages, 21

include directive, 17, 48

include action, 18

included views, in Composite View design

pattern, 36

initialization of

filters, 28

servlets, 24

instantiation of

filters, 28

JSP pages, 16

servlets, 24

interfaces
Index 103

BodyTag , 63

HTTPServlet , 24

Servlet , 25

ServletContext , 14

Tag , 63

invalidate method, 29

J
J2EE (Java 2 Platform, Enterprise Edition)

1.3 specification compliance, 10

architecture, 13 to 15

compliant servers, 6

web applications, x, 91

web modules and, 42

JAR (Java Archive) files, 43

in classpath construction, 79

JDBC drivers and, 78

servlets, classes, and beans packaged as, 42

Tag Libraries Property Editor and, 76

JATO framework, 40

Javadoc technology

using in the IDE, xvi

JavaServer Faces framework, 40

JDBC (Java Database Connectivity)

using Helpers to access information in a database

with, 36

using to access database from a web

application, 68

jServletContext instance, 14

JSP include actions, 48

JSP pages, 15 to 23, 45 to 51

action elements, 17

beans, using, 50

code constructs, 16

Composite View template, 49

creating, 45

destruction of, 16

directive elements, 17

element types, 16

importing packages, 17

includes, working with, 47

instantiation of, 16

joining a session, 17

life cycle of, 15 to 16

modifying, 46

page directive, 46

root directory for, 45

scripting elements in, 18 to 19

scriptlets and, 47

session scope and, 23

sessions, creating and invalidating, 46

setting debugger options, 87

specifying beans for, 50

template data, 16

translation of, 16

viewing with servlet files during debugging, 87

JSP source code

editing, 46

viewing next to servlet source code, 87

JSP Tag Library dialog box, 57

JSP Tag Library Repository

adding a tag library to a web module using, 89

adding existing tag libraries with, 58

adding tag libraries from external sources

with, 58

JSP Tag Library Repository dialog box, 58

jspDestroy method, 16

jspInit method, 16

JSTL (JSP Standard Tag Library), 26

adding using JSP Tag Library Repository, 58

multiple TLD files in JAR file, 75

L
life cycle

JSP pages, 15 to 16

servlet filters, 28

servlets, 23 to 25

listeners, 29

load-balancing systems, 38

loading of

filters, 28

servlets, 24

localization, servlet filters and, 27

logging and auditing web application users, servlet

filters and, 27

M
MIME type of file, deployment descriptor field

for, 73
104 Building Web Components • September 2002

model element, in web modules, 11

model objects, 38

monitoring data flow on the web server, 81 to 84

Mount Filesystem dialog box, 44

mounted filesystems, web modules and, 44

N
New wizard, 42, 43, 45, 51

P
packaging custom tag libraries, 89 to 91

packaging web applications, 88 to 89

page directive, 17, 46

page scope, 22

plugin action, 18

prefix attribute of taglib directive, 60

presentation element, in web modules, 11

processRequest method, 54

R
recommended reading, xiii

records display panel in HTTP Monitor, 83

request processing

filters and, 56

in JSP pages, 16

in servlets, 24

request scope, 22

request time, 17

RequestDispatcher API, 27

S
scopes in JSP pages, 21

scripting elements, 18 to 19

declarations, 19

expressions, 19

scriptlets, 19

scripting variables

adding new, 64

customizing existing, 64

scriptlets, 19, 47

disadvantages of, 47

security properties, defining, 73

server configuration file, Tomcat 4.0, 77

servers. See web servers

service method, 24

Servlet class, 24

servlet containers, 13 to 14

database systems and, 78

deploying web modules on, 42

distributed web servers and, 4

introduced, 1, 2

matching request paths to servlets, 54

mediating links between components, 2

Welcome file list and, 73

servlet context, 14

events, 29

methods defined by, 14

name on HTTP Monitor pane, 83

objects, 29

servlet filters and, 27

showing name created from web module, 83

web module and, 43

servlet event listeners, 29

servlet filters, 26 to 28, 55 to 57

data compression and, 27

declaring, 55 to 56

destroy method, 28

destruction of, 28

introduced, 6

life cycle, 28

processing requests and responses with, 56 to 57

registering in deployment descriptor files, 74

Servlet interface, 25

Servlet pane of records display panel, 83

ServletContext interface, 14

servlets, 23 to 25

creating, 51 to 55

declaring, 51 to 53

destroy method, 25

destruction of, 25

dispatchers and, 23

execution, 79

front controllers and, 23

generated, viewing, 86

init method, 24

initialization of, 24
Index 105

instantiation of, 24

life cycle, 23 to 25

loading of, 24

modifying, 53

outputting HTML from, 53

registering in deployment descriptor files, 74

service method, 25

showing name information for, 83

session scope, 22

sessions

creating and invalidating, 46

distributing data, 38

time-out interval, 73

tracking with listeners, 29

setProperty action, 18, 50

source-level debugging, 85 to 87

standard actions, 18

Struts framework, 39

style translations of XML content by servlet

filters, 27

Sun ONE Studio 4 IDE, 4 to 10

debugging tools, 5 to 6

deployment support, 6

execution support in, 5

full web component support, 4 to 5

monitoring tools, 5 to 6

open runtime environment integration, 7

summary of features, 9 to 10

T
Tag Attribute Customizer dialog box, 63

tag attributes

adding, 63

customizing, 63

Tag Customizer dialog box, 61, 62

body content field in, 63

generating tag handlers and, 65

tag handlers, 64 to 67

editable methods in, 67

generated methods in, 66

regenerating, 66

Tag interface, 63

tag libraries, 25 to 26

adding existing, 57

creating, 61

database access and, 69

defined, 25

deploying, 90

developing custom, 60 to 67

generating tag handler classes, 64 to 67

inserting custom actions into a JSP page, 59

JSP Tag Library Repository and, 58

packaging and deploying custom tag

libraries, 89 to 91

packaging as JAR files, 90

recommended development procedure, 42

registering in deployment descriptor, 74

scripting variables, 64

tag attributes, 63

testing in place, 67

TLD and, 58

URI mappings for, 75

using, 57 to 67

using from external sources, 58

Tag Libraries Property Editor, 75

Tag Library Customizer dialog box

defining properties of custom tag libraries, 61

Tag Handler Generation Root field in, 61

Tag Library Repository

adding new tag library JAR file to, 67

deploying a tag library with, 90

JSTL and, 89

using, 58

using tag libraries from external sources with, 58

Tag Library Repository Browser dialog box, 90

Tag Scripting Variable Customizer, 64

taglib directive, 17, 26, 59

TLD (tag library descriptor), 58

adding tag attributes and scripting variables

to, 66

creating, 61

declaring tag attributes and scripting variables

in, 65

defined, 25

generating tag handlers from, 65

placement of, 61

regenerating tag handlers for, 66

Tomcat 4.0 plugin, 76

Tomcat 4.0 web server, 76 to 80

creating and executing a web module group, 79

deploying simple web modules on, 72

executing a single web module, 79

executing on, 80
106 Building Web Components • September 2002

JDBC drivers and, 78

PointBase database and, 68

server configuration file for, 77

test running web modules on, 77

translation of JSP pages, 16

U
Unpack WAR Folder dialog box, 45

URL references to resources, obtaining, 14

useBean action, 18, 50

V
View Creation Helpers, 37 to 38

View Helpers, 31

View Mappers, 34 to 35

W
WAR (Web Archive) files

building from a web module, 88

format of, 43

packaging options for, 88

viewing contents of package, 89

web applications, x, 43

advantages of developing, 3

challenges in developing, 2 to 4

compared to standalone applications, 2 to 3

complexity of tasks, 3

data representation, flow, and processing in, 3

debugging, 81 to 87

design patterns for, 31 to 38

developing, 41 to 69

error sources in, 7 to 8

frameworks for, 39 to 40

introduced, 1 to 2

running and debugging tasks, 71 to 72

structure of, 11 to 29

test running, 77

web browsers

accessibility of JSP pages and, 45

creation of HTTP requests in, 5

destination for HTTP responses, 6

executing web applications from, 77

HTTP Monitor and, 8

introduced, 1

languages and file format accepted by, 83

replaying requests and, 84

requests and responses in, 2

test interaction using different, 5

web components and, 2

web components, 13 to 14

indirect action among, 2

introduced, 2, 14

JSP pages, 15 to 23

servlets, 23 to 25

types, 14

web containers. See servlet containers

web module groups, 43, 77

creating, 79 to 80

executing, 79 to 80

specifying target server for, 80

web modules, 11, 15, 42 to 45

classpath construction for servlet execution, 79

configuring, 72 to 78

creating, 42

debugging flow in, 71 to 72

deployment descriptors, 72

executing single, 79

execution properties, setting, 77

hierarchy, 43

importing existing, 44 to 45

introduced, 43

mounting, 44

programming flow in, 41 to 42

root of, 14

setting a target server, 80

test running, 77

WEB-INF/Classes directory of, 51

web servers, 12 to 13

environment for database access, 78

executing on external, 80

implications of server-centered execution, 3

introduced, 1

monitoring data flow on, 81 to 84

open runtime environment integration, 7

specifying use of Tomcat 4.0, 76

test running web modules on, 77

web.xml files See deployment descriptor files

welcome files

designating, 73

in deployment descriptor file, 73
Index 107

108 Building Web Components • September 2002

	Building Web Components
	Contents
	Before You Begin
	Who Should Use the Book
	Before You Read This Book
	What Is in This Book
	What Is Not in This Book
	Useful References
	Valuable Websites

	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Javadoc Documentation

	Sun Welcomes Your Comments

	Addressing the Challenges of Web Application Development
	What Is a Web Application?
	Challenges in Developing Web Applications
	How Web Application Development is Different
	Implications of Server-Centered Execution

	How the IDE Helps
	Full Web Component Support
	Execution Support
	Debugging and Monitoring Tools
	Deployment Support
	Open Runtime Environment Integration
	Common Errors in Web Applications
	Facing the Challenges of Web Application Debugging
	Tracking Requests With the HTTP Monitor
	Summary of IDE Features

	The Structure of Web Applications
	Web Servers
	Servlet Containers and Web Components
	Servlet Context

	Web Modules
	JSP Pages
	JSP Page Life Cycle
	Code Constructs in JSP Pages
	HTTP Sessions
	Scopes and Implicit Objects

	Servlets
	Servlet Life Cycle

	Tag Libraries
	JSP Standard Tag Library

	Servlet Filters
	Filter Life Cycle

	Listeners

	Design Patterns and Frameworks
	Design Patterns
	Front Controllers
	Composite Views
	View Creation Helpers
	Model Objects

	Frameworks
	Struts
	JATO
	JavaServer Faces

	Developing Your Own Web Application
	Development Work Flow
	Web Modules in the IDE
	Creating a Web Module
	Importing an Existing Web Module

	Creating JSP Pages
	Using page Directives
	Creating and Invalidating Sessions
	Modifying the JSP File
	Working With JSP Includes
	Creating a Composite View Template
	Using Additional Classes or Beans

	Creating Servlets
	Declaring the Servlet in the Deployment Descriptor
	Modifying the Servlet
	Servlet-Generated HTTP Responses
	Using the Servlet as a Front Controller
	Using Additional Classes or Beans

	Creating Filters
	Declaring the Filter in the Deployment Descriptor
	Processing HTTP Requests and Responses

	Using Tag Libraries
	Using Existing Tag Libraries
	Tag Library Descriptors
	Inserting Custom Actions From a Tag Library Into a JSP Page
	Developing Your Own Tag Libraries
	Testing Tag Libraries

	Working With Databases

	Running, Debugging, and Deploying Your Web Application
	Running and Debugging Tasks
	Configuring the Web Module Deployment Descriptor
	Using Property Sheets to Edit the web.xml File
	Registering Servlets and Filters
	Registering Tag Libraries
	Specifying the Default URI Within the Taglib Element
	Using the IDE to Edit the web.xml File in the Source Editor

	Using Tomcat 4.0
	Test Running Web Modules on the Internal Tomcat 4.0.1 Server
	The Tomcat 4.0 Server Configuration File
	Setting Up the Web Server Environment for Database Access
	Executing a Single Web Module
	Creating and Executing a Web Module Group
	Executing on Tomcat Servers

	Debugging Web Applications
	Using the HTTP Monitor to Debug a Web Application
	Source-Level Debugging

	Packaging Your Web Applications
	Building a WAR File From a Web Module
	Specifying Options
	Viewing Contents

	Packaging and Deploying a Custom Tag Library
	Packaging a Tag Library as a JAR File
	Deploying a Tag Library Using the Tag Library Repository
	Deploying a Tag Library by Adding a JAR File From the Filesystem
	Deploying a Tag Library by Copying and Pasting a JAR File From Another Module or Filesystem

	Including a Web Module Within a J2EE Web Application

	Glossary
	Index

