
Oracle® GlassFish Message Queue 4.4.2
Developer's Guide for C Clients

Part No: 821–1795
June 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

100617@24378

Contents

Preface ...9

1 Introduction ...19
Message Queue for the C Developer ... 19
Building and Running C Clients .. 21

Building C Clients .. 21
Providing Runtime Support ... 22

Working With the Sample C-Client Programs .. 23
Basic C-Client Programs ... 23
Distributed Transaction Sample Programs .. 25

Client Application Deployment Considerations ... 27

2 Using the C API ...29
Message Queue C Client Setup Operations .. 29

▼ To Set Up a Message Queue C Client to Produce Messages .. 30
▼ To Set Up a Message Queue C Client to Consume Messages Synchronously 31
▼ To Set Up a Message Queue C Client to Consume Messages Asynchronously 31

Working With Properties ... 32
Setting Connection and Message Properties .. 32
Getting Message Properties .. 34

Working With Connections .. 36
Defining Connection Properties .. 37
Working With Secure Connections .. 39
Shutting Down Connections .. 42

Working With Sessions and Destinations .. 42
Creating a Session .. 43
Managing a Session .. 44

3

Creating Destinations .. 45
Working With Messages .. 46

Composing Messages .. 47
Sending a Message ... 49
Receiving Messages .. 51
Processing a Message ... 53

Working With Distributed Transactions ... 54
Message Queue Resource Manager Information ... 55
Programming Examples ... 56

Error Handling .. 56
▼ To Handle Errors in Your Code ... 56

Memory Management .. 57
Logging ... 58

3 Client Design Issues ..59
Producers and Consumers ... 59
Using Selectors Efficiently .. 60
Determining Message Order and Priority .. 61
Managing Threads ... 61

Message Queue C Runtime Thread Model ... 61
Concurrent Use of Handles .. 62
Single-Threaded Session Control .. 62
Connection Exceptions ... 63

Managing Physical Destination Limits ... 63
Managing the Dead Message Queue ... 64
Factors Affecting Performance .. 67

Delivery Mode (Persistent/Non-persistent) ... 68
Use of Transactions ... 68
Acknowledgement Mode .. 69
Durable and Non-Durable Subscriptions ... 70
Use of Selectors (Message Filtering) .. 70
Message Size .. 71
Message Type .. 71

Contents

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 20104

4 Reference ..73
Data Types .. 73

Connection Properties .. 76
Acknowledge Modes .. 81
Callback Type for Asynchronous Message Consumption .. 81
Callback Type for Asynchronous Message Consumption in Distributed Transactions 83
Callback Type for Connection Exception Handling ... 83

Function Reference ... 84
MQAcknowledgeMessages ... 88
MQCloseConnection .. 90
MQCloseMessageConsumer .. 90
MQCloseMessageProducer .. 91
MQCloseSession .. 92
MQCommitSession ... 92
MQCreateAsyncDurableMessageConsumer ... 93
MQCreateAsyncMessageConsumer ... 95
MQCreateBytesMessage ... 97
MQCreateConnection .. 98
MQCreateDestination ... 100
MQCreateDurableMessageConsumer .. 101
MQCreateMessage ... 103
MQCreateMessageConsumer .. 104
MQCreateMessageProducer .. 105
MQCreateMessageProducerForDestination ... 106
MQCreateProperties ... 107
MQCreateSession .. 107
MQCreateTemporaryDestination ... 109
MQCreateTextMessage ... 110
MQCreateXASession .. 110
MQFreeConnection .. 113
MQFreeDestination ... 113
MQFreeMessage ... 114
MQFreeProperties ... 114
MQFreeString ... 115
MQGetAcknowledgeMode .. 115
MQGetBoolProperty ... 115

Contents

5

MQGetBytesMessageBytes ... 116
MQGetConnectionProperties ... 117
MQGetDestinationName ... 117
MQGetDestinationType ... 118
MQGetErrorTrace ... 118
MQGetFloat64Property .. 120
MQGetInt16Property .. 120
MQGetInt32Property .. 121
MQGetInt64Property .. 121
MQGetInt8Property .. 122
MQGetMessageHeaders ... 123
MQGetMessageProperties .. 124
MQGetMessageReplyTo ... 124
MQGetMessageType ... 125
MQGetMetaData ... 126
MQGetPropertyType .. 127
MQGetStatusCode .. 127
MQGetStatusString ... 128
MQGetStringProperty .. 128
MQGetTextMessageText .. 129
MQGetXAConnection .. 129
MQInitializeSSL ... 130
MQPropertiesKeyIterationGetNext .. 131
MQPropertiesKeyIterationHasNext .. 132
MQPropertiesKeyIterationStart ... 133
MQReceiveMessageNoWait ... 133
MQReceiveMessageWait .. 135
MQReceiveMessageWithTimeout .. 136
MQRecoverSession .. 137
MQRollBackSession .. 138
MQSendMessage ... 139
MQSendMessageExt .. 140
MQSendMessageToDestination .. 141
MQSendMessageToDestinationExt .. 142
MQSetBoolProperty .. 144
MQSetBytesMessageBytes .. 145

Contents

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 20106

MQSetFloat32Property ... 145
MQSetFloat64Property ... 146
MQSetInt16Property ... 147
MQSetInt32Property ... 147
MQSetInt64Property ... 148
MQSetInt8Property ... 149
MQSetMessageHeaders .. 149
MQSetMessageProperties ... 151
MQSetMessageReplyTo .. 151
MQSetStringProperty ... 152
MQSetTextMessageText ... 153
MQStartConnection .. 153
MQStatusIsError .. 154
MQStopConnection .. 154
MQUnsubscribeDurableMessageConsumer ... 155

Header Files .. 156

A Message Queue C API Error Codes .. 159
Error Codes .. 160

Index ... 169

Contents

7

8

Preface

This book provides programming and reference information for developers working with
Oracle GlassFish Message Queue 4.4.2, who want to use the C language binding to the Message
Queue Service to send, receive, and process Message Queue messages.

This preface consists of the following sections:

■ “Who Should Use This Book” on page 9
■ “Before You Read This Book” on page 9
■ “How This Book Is Organized” on page 10
■ “Documentation Conventions” on page 10
■ “Related Documentation” on page 13
■ “Documentation, Support, and Training” on page 16
■ “Searching Oracle Product Documentation” on page 16
■ “Third-Party Web Site References” on page 17

Who Should Use This Book
This guide is for developers who want to use the C-API in order to write C or C++ messaging
programs that can interact with the Message Queue broker to send and receive JMS messages.

This book assumes that readers are experienced C or C++ programmers and that they are
familiar with the Java Message Service specification.

Before You Read This Book
You must read the Oracle GlassFish Message Queue 4.4.2 Technical Overviewto become familiar
with Message Queue’s implementation of the Java Message Service specification, with the
components of the Message Queue service, and with the basic process of developing, deploying,
and administering a Message Queue application.

9

http://docs.sun.com/doc/821-1798

How This Book Is Organized
This guide is designed to be read from beginning to end. The following table briefly describes
the contents of each chapter.

TABLE P–1 Book Contents

Chapter Description

Chapter 1, “Introduction” Introduces the C-API, provides quick start instructions on compiling and
building Message Queue C clients. Introduces the Message Queue C-Client
sample applications that are shipped with Message Queue, and explains how
you set up your environment to run these examples. Provides a deployment
worksheet.

Chapter 2, “Using the C API” Explains how you use the C-API to construct, to send, to receive, and to
process messages. This chapter also covers error handling, memory
management, and logging.

Chapter 3, “Client Design
Issues”

Explains the major considerations that you need to keep in mind when
designing a Message Queue C client.

Chapter 4, “Reference” Provides complete reference information for the Message Queue C-API:
data structures and functions. It also lists and describes the contents of the
C-API header files.

Appendix A, “Message Queue C
API Error Codes”

Lists the code and descriptive string returned for errors that are returned by
C library functions.

Documentation Conventions
This section describes the following conventions used in Message Queue documentation:

■ “Typographic Conventions” on page 10
■ “Symbol Conventions” on page 11
■ “Shell Prompt Conventions” on page 12
■ “Directory Variable Conventions” on page 12

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Preface

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201010

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Note: Some emphasized items appear bold
online.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

11

Shell Prompt Conventions
The following table shows the conventions used in Message Queue documentation for the
default UNIX system prompt and superuser prompt for the C shell, Bourne shell, Korn shell,
and for the Windows operating system.

TABLE P–4 Shell Prompt Conventions

Shell Prompt

C shell on UNIX, Linux, or AIX machine-name%

C shell superuser on UNIX, Linux, or AIX machine-name#

Bourne shell and Korn shell on UNIX, Linux, or AIX $

Bourne shell and Korn shell superuser on UNIX, Linux, or AIX #

Windows command line C:\>

Directory Variable Conventions
Message Queue documentation makes use of three directory variables; two of which represent
environment variables needed by Message Queue. (How you set the environment variables
varies from platform to platform.)

The following table describes the directory variables that might be found in this book and how
they are used. When installed from the IPS (pkg(5)) image distribution, Message Queue is
installed in a directory referred to as mqInstallHome, and some of the directory variables in
Table P–5 reference this mqInstallHome directory.

Note – In this book, directory variables are shown without platform-specific environment
variable notation or syntax (such as $IMQ_HOME on UNIX). Non-platform-specific path names
use UNIX directory separator (/) notation.

TABLE P–5 Directory Variable Conventions

Variable Description

IMQ_HOME Message Queue home directory, if any:
■ For installations from the IPS image distribution on any platform, IMQ_HOME denotes the

directory mqInstallHome/mq, where mqInstallHome is specified when you install
Message Queue.

■ For installations from Solaris SVR4 packages, IMQ_HOME is unused.

■ For installations from Linux RPM packages, IMQ_HOME is unused.

Preface

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201012

TABLE P–5 Directory Variable Conventions (Continued)
Variable Description

IMQ_VARHOME Directory in which Message Queue temporary or dynamically created configuration and
data files are stored; IMQ_VARHOME can be explicitly set as an environment variable to point to
any directory or will default as described below:
■ For installations from the IPS image distribution on any platform, IMQ_VARHOME defaults

to mqInstallHome/var/mq.

■ For installations from Solaris SVR4 packages, IMQ_VARHOME defaults to /var/imq.

■ For installations from Linux RPM packages, IMQ_VARHOME defaults to /var/opt/sun/mq.

IMQ_JAVAHOME An environment variable that points to the location of the Java runtime environment (JRE)
required by Message Queue executable files:
■ On Solaris, Linux and Windows, Message Queue looks for the latest JDK, but you can

optionally set the value of IMQ_JAVAHOME to wherever the preferred JRE resides.

■ On AIX, IMQ_JAVAHOME is set to point to an existing Java runtime when you perform
Message Queue installation.

Related Documentation
The information resources listed in this section provide further information about Message
Queue in addition to that contained in this manual. The section covers the following resources:

■ “Message Queue Documentation Set” on page 13
■ “Java Message Service (JMS) Specification” on page 14
■ “JavaDoc” on page 14
■ “Example Client Applications” on page 15
■ “Online Help” on page 16

Message Queue Documentation Set
The documents that constitute the Message Queue documentation set are listed in the following
table in the order in which you might normally use them. These documents are available
through the Oracle GlassFish Server documentation web site at

http://docs.sun.com/coll/1343.13

TABLE P–6 Message Queue Documentation Set

Document Audience Description

Oracle GlassFish Message
Queue 4.4.2 Technical Overview

Developers and
administrators

Describes Message Queue concepts, features,
and components.

Preface

13

http://docs.sun.com/coll/1343.13
http://docs.sun.com/doc/821-1798
http://docs.sun.com/doc/821-1798

TABLE P–6 Message Queue Documentation Set (Continued)
Document Audience Description

Oracle GlassFish Message
Queue 4.4.2 Release Notes

Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well as
technical notes.

Oracle GlassFish Message
Queue 4.4.2 Administration Guide

Administrators, also
recommended for
developers

Provides background and information needed
to perform administration tasks using Message
Queue administration tools.

Oracle GlassFish Message
Queue 4.4.2 Developer’s Guide for
Java Clients

Developers Provides a quick-start tutorial and
programming information for developers of
Java client programs using the Message Queue
implementation of the JMS or SOAP/JAXM
APIs.

Oracle GlassFish Message
Queue 4.4.2 Developer’s Guide for C
Clients

Developers Provides programming and reference
documentation for developers of C client
programs using the Message Queue C
implementation of the JMS API (C-API).

Oracle GlassFish Message
Queue 4.4.2 Developer’s Guide for
JMX Clients

Administrators Provides programming and reference
documentation for developers of JMX client
programs using the Message Queue JMX API.

Java Message Service (JMS) Specification
The Message Queue message service conforms to the Java Message Service (JMS) application
programming interface, described in the Java Message Service Specification. This document can
be found at the URL

http://java.sun.com/products/jms/docs.html

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is included in your Message
Queue installation at the locations shown in Table P–7, depending on your installation method.
This documentation can be viewed in any HTML browser. It includes standard JMS API
documentation as well as Message Queue–specific APIs.

TABLE P–7 JavaDoc Locations

Installation Method Location

IPS image IMQ_HOME/javadoc/index.html
1

1
IMQ_HOME is the Message Queue home directory.

Preface

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201014

http://docs.sun.com/doc/821-1799
http://docs.sun.com/doc/821-1799
http://docs.sun.com/doc/821-1794
http://docs.sun.com/doc/821-1794
http://docs.sun.com/doc/821-1796
http://docs.sun.com/doc/821-1796
http://docs.sun.com/doc/821-1796
http://docs.sun.com/doc/821-1795
http://docs.sun.com/doc/821-1795
http://docs.sun.com/doc/821-1795
http://docs.sun.com/doc/821-1797
http://docs.sun.com/doc/821-1797
http://docs.sun.com/doc/821-1797
http://java.sun.com/products/jms/docs.html

TABLE P–7 JavaDoc Locations (Continued)
Installation Method Location

Solaris SVR4 packages /usr/share/javadoc/imq/index.html

Linux RPM packages /opt/sun/mq/javadoc/index.html

Example Client Applications
Message Queue provides a number of example client applications to assist developers.

Example Java Client Applications
Example Java client applications are located in the following directories, depending on
installation method. See the README files located in these directories and their subdirectories for
descriptive information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples
1

Solaris SVR4 packages /usr/demo/imq

Linux RPM packages /opt/sun/mq/examples

1
IMQ_HOME is the Message Queue home directory.

Example C Client Programs
Example C client applications are located in the following directories, depending on installation
method. See the README files located in these directories and their subdirectories for descriptive
information about the example applications.

Installation Method Location

IPS image IMQ_HOME/examples/C
1

Solaris SVR4 packages /opt/SUNWimq/demo/C

Linux RPM packages /opt/sun/mq/examples/C

1
IMQ_HOME is the Message Queue home directory.

Example JMX Client Programs
Example Java Management Extensions (JMX) client applications are located in the following
directories, depending on installation method. See the README files located in these directories
and their subdirectories for descriptive information about the example applications.

Preface

15

Installation Method Location

IPS image IMQ_HOME/examples/jmx
1

Solaris SVR4 packages /opt/SUNWimq/demo/imq/jmx

Linux RPM packages /opt/sun/mq/examples/jmx

1
IMQ_HOME is the Message Queue home directory.

Online Help
Online help is available for the Message Queue command line utilities; for details, see
Chapter 16, Command Line Reference for details. The Message Queue graphical user interface
(GUI) administration tool, the Administration Console, also includes a context-sensitive help
facility; see the section “Administration Console Online Help” in Chapter 2, Quick-Start
Tutorial.

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.sun.com/)
■ Support (http://www.sun.com/support/)
■ Training (http://education.oracle.com/pls/web_prod-plq-dad/

db_pages.getpage?page_id=315)

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the docs.sun.com web site, you can use
a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Oracle web sites in your search (for example, java.sun.com and
developers.sun.com), use “sun.com” in place of “docs.sun.com” in the search field.

Preface

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201016

http://docs.sun.com/doc/821-1794/aeonc?a=view
http://docs.sun.com/doc/821-1794/aeoay?a=view
http://docs.sun.com/doc/821-1794/aeoay?a=view
http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://docs.sun.com
http://java.sun.com
http://developers.sun.com

Third-Party Web Site References
Where relevant, this manual refers to third-party URLs that provide additional, related
information.

Note – Oracle is not responsible for the availability of third-party Web sites mentioned in this
manual. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials available on or through such sites or resources. Oracle will not be
responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by or
in connection with the use of or reliance on any such content, goods, or services available on or
through such sites or resources.

Preface

17

18

Introduction

This chapter summarizes the differences between the C API and the Java API to Message Queue
and provides a quick start to compiling and running Message Queue C clients. It covers the
following topics:
■ “Message Queue for the C Developer” on page 19
■ “Building and Running C Clients” on page 21
■ “Working With the Sample C-Client Programs” on page 23
■ “Client Application Deployment Considerations” on page 27

You should be familiar with the concepts presented in the Message Queue Technical Overview
before you read this chapter.

Depending on your needs, after you read this chapter, you can proceed either to Chapter 3,
“Client Design Issues,” which describes the major issues governing C client design, or to
Chapter 2, “Using the C API,” which explains how you use C data types and functions to obtain
the messaging behavior that interests you.

The term “C developer” is used generically throughout this book and includes the C++
developer as well.

Message Queue for the C Developer
The Message Queue product is an enterprise messaging system that implements the Java
Message Specification (JMS) standard as a JMS provider. Message Queue developers can use
two programming interfaces to establish a connection to the broker, and send or receive
messages:
■ C clients use the API described in this manual to send messages to and retrieve messages

from a Message Queue broker.
■ Java clients use the Java API, described in the Oracle GlassFish Message Queue 4.4.2

Technical Overview, to send messages to and receive messages from a Message Queue
broker.

1C H A P T E R 1

19

http://docs.sun.com/doc/821-1798
http://docs.sun.com/doc/821-1798

Message Queue provides a C API to its messaging services to enable legacy C applications and
C++ applications to participate in JMS-based messaging. It is important to understand however
that the Java Message Service specification is a standard for Java clients only; thus the C API
described in this book is specific to the Message Queue provider and cannot be used with other
JMS providers. A messaging application that includes a C client cannot be handled by another
JMS provider.

The C interface, compared to the Java interface, does not support the following features:

■ The use of administered objects
■ Map, stream, or object message types
■ Consumer-based flow control
■ Queue browsers
■ JMS application server facilities (ConnectionConsumer, distributed transactions)
■ Receiving or sending SOAP messages
■ Receiving or sending compressed JMS messages
■ Auto-reconnect or failover, which allows the client runtime to automatically reconnect to a

broker if a connection fails
■ The NO_ACKNOWLEDGE mode

Like the Java interface, the C interface does support the following:

■ Publish/subscribe and point-to-point connections
■ Synchronous and asynchronous receives
■ CLIENT, AUTO, and DUPS_OK acknowledgement modes
■ Local transactions
■ Session recover
■ Temporary topics and queues
■ Message selectors

The JMS programming model is the foundation for the design of a Message Queue C client.
Chapter 2, “Using the C API,” explains how this model is implemented by the C data types and
functions used by a Message Queue C client for delivery of messages.

The next section provides a quick introduction to building and running Message Queue clients.

Message Queue for the C Developer

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201020

Building and Running C Clients
Message Queue provides several sample Message Queue C-client applications that illustrate
how to send and receive messages. Before you run these applications, read through the next two
sections to make sure that you understand the general procedure and requirements for building
and running Message Queue C-Client programs.

Building C Clients
This section explains how you build Message Queue programs from C source files. You should
already be familiar with writing and compiling C applications.

Header Files and Shared Libraries
The Message Queue C client includes the header files (mqcrt.h), the C client runtime shared
library mqcrt, and its direct dependency libraries. When writing a Message Queue C client
application, you should include the header files and link to the runtime library mqcrt.

The installed locations of the header files and the supporting runtime library depends on the
installation method and platform, as listed in the next table.

TABLE 1–1 Locations of C-API Libraries and Header Files

Installation Method and Platform Library Header File

IPS image on Solaris 86 IMQ_HOME/lib (32–bit)

IMQ_HOME/lib/amd64 (64–bit)

IMQ_HOME/include

IPS image on Solaris SPARC IMQ_HOME/lib (32–bit)

IMQ_HOME/lib/sparcv9 (64–bit)

IMQ_HOME/include

IPS image on other platforms IMQ_HOME/lib IMQ_HOME/include

Solaris SVR4 packages on
Solaris x86

/opt/SUNWimq/lib (32–bit)

/opt/SUNWimq/lib/amd64 (64–bit)

/opt/SUNWimq/include

Solaris SVR4 packages on
Solaris SPARC

/opt/SUNWimq/lib (32–bit)

/opt/SUNWimq/lib/sparcv9 (64–bit)

/opt/SUNWimq/include

Linux rpm packages on Linux /opt/sun/mq/lib /opt/sun/mq/include

Pre-Processor Definitions
Use the appropriate compiler for your platform, as described in the Oracle GlassFish Message
Queue 4.4.2 Release Notes.

Building and Running C Clients

Chapter 1 • Introduction 21

http://docs.sun.com/doc/821-1799
http://docs.sun.com/doc/821-1799

When compiling a Message Queue C client application, you need to specify the pre-processor
definition shown for each platform in Table 1–2. This definition is used to support Message
Queue fixed-size integer types.

TABLE 1–2 Preprocessor Definitions for Supporting Fixed-Size Integer Types

Platform Definition

Solaris SOLARIS

Linux LINUX

AIX AIX

Windows WIN32

C++ Runtime Library Support
When building a Message Queue C client application, you should be aware that the Message
Queue C runtime library is a multi-threaded library and requires C++ runtime library support:
■ On Solaris, this support is provided by the Oracle Solaris Studio libCrun C++ runtime

library.
■ On Linux, this support is provided by the gcc/g++ libstdc++ runtime library.
■ On AIX, this support is provided by the C++ runtime library in the in the XLC/C++

Runtime Environment.
■ On Windows, this support is provided by Microsoft Windows Visual C++ runtime library

msvcrt.

Providing Runtime Support
To run a Message Queue C-client application, you need to make sure that the application can
find the mqcrt shared library. Please consult the documentation for your compiler to determine
the best way to do this.

You also need to make sure that the appropriate C++ runtime support library, as described in
“C++ Runtime Library Support” on page 22 is available.

On Windows you also need to make sure that your application can find the dependent libraries
NSPR and NSS that are shipped with Message Queue. These may be different from the NSPR
and NSS libraries that are installed on your system to support the Netscape browser and
GlassFish Server. The mqcrt shared library depends directly on the NSPR and NSS versions
installed with Message Queue. If a different version of the libraries is loaded at runtime, you
may get a runtime error specifying that the libraries being used are incompatible. If this
happens, look on your system to see if other versions of the NSPR or NSS libraries exist; for
example, libnspr4.dll or nss3.dll. If you find such versions, take appropriate action to
make sure that Message Queue can access the versions it needs.

Building and Running C Clients

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201022

Working With the Sample C-Client Programs
This section describes the sample C-Client programs that are installed with Message Queue and
explains how you should build them and run them.

Message Queue provides two sets of sample C-client programs: basic C-client programs and
distributed transaction programs.

Basic C-Client Programs
The sample C-client program files include the following:

TABLE 1–3 Basic C-Client Sample Program Files

Sample Program Description

Producer.c Illustrates how you send a message

Consumer.c Illustrates how you receive a message synchronously

ProducerAsyncConsumer.c Illustrates how you send a message and receive it asynchronously

RequestReply.c Illustrates how you send and respond to a message that specifies a
reply-to destination

Table 1–4 lists the location of the sample programs for each installation method.

TABLE 1–4 Location of Basic C-Client Sample Programs

Installation Method Directory

IPS image IMQ_HOME/examples/C

Solaris SVR4 packages /opt/SUNWimq/demo/C

Linux rpm packages /opt/sun/mq/examples/C

Building the Basic C-Client Sample Programs
The following commands illustrate the process of building and linking the sample application
Producer.c on the Solaris, Linux, AIX, and Windows platforms. The commands include the
pre-processor definitions needed to support Message Queue C-API fixed-size integer types. For
options used to support multithreading, please consult documentation for your compiler.

To Compile and Link on Solaris OS
CC -compat=5 -mt -DSOLARIS -Iheader_path -o Producer \\

-Lruntime_path -lmqcrt Producer.c

Working With the Sample C-Client Programs

Chapter 1 • Introduction 23

where header_path and runtime_path are the paths to the Message Queue header file and
runtime shared library appropriate to your installation method and processor architecture, as
listed in Table 1–1. For example, when using an installation from SVR4 packages on a Solaris
x86 64–bit platform, you would specify /opt/SUNWimq/include as header_path and
/opt/SUNWimq/lib/amd64 as runtime_path.

For 64-bit support on either the SPARC or x86 processor architecture, you must also specify the
-xarch compiler option:

■ SPARC: -xarch=v9
■ x86: -xarch=amd64

For example, to compile and link the example application in an installation from SVR4
packages on Solaris SPARC 64–bit, you would use the following command:

CC -compat=5 -mt -xarch=v9 -DSOLARIS -I/opt/SUNWimq/include -o Producer \\

L/opt/SUNWimq/lib/sparcv9 -lmqcrt Producer.c

To Compile and Link on Linux
g++ -DLINUX -D_REENTRANT -Iheader_path -o Producer \\

-Lruntime_path -lmqcrt Producer.c

where header_path and runtime_path are the paths to the Message Queue header file and
runtime shared library appropriate to your installation method, as listed in Table 1–1. For
example, when using an installation from rpm packages, you would specify
/opt/sun/mq/include as header_path and /opt/sun/mq/lib as runtime_path.

To Compile and Link on AIX
xlC_r -qthreaded -DAIX -I$IMQ_HOME/include -o Producer \\

-blibsuff:so -l$IMQ_HOME/lib -imqcrt Producer.c

To Compile and Link on Windows
cl /c /MD -DWIN32 -I%IMQ_HOME%\include Producer.c

link Producer.obj /NODEFAULTLIB msvcrt.lib \\

/LIBPATH:%IMQ_HOME%\lib mqcrt.lib

Running the Basic C-Client Sample Programs
Before you run any sample programs, you should start the broker. You can display output
describing the command-line options for each program by starting the program with the -help
option.

Working With the Sample C-Client Programs

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201024

For example, the following command, runs the program Producer. It specifies that the program
should connect to the broker running on the host MyHost and port 8585, and that it should send
a message to the destination My Topic :

Producer -h MyHost -p 8585 -d MyTopic

The directories that contain the sample programs also include a README file that explains how
you should run their respective samples.

Distributed Transaction Sample Programs
The distributed transaction sample programs show how to use the X/Open distributed
transaction (XA) support of the Message Queue C-API with an X/Open distributed transaction
processing system (in this case BEA Tuxedo: http://edocs.bea.com/tuxedo/tux100/
index.html.)

The distributed transaction sample programs include the following files:

TABLE 1–5 Distributed Transaction Sample Program Files

Sample Program Description

jmsserver.c Implements Tuxedo services that send and receive messages using the
Message Queue C-API

jmsclient_sender.c Tuxedo client that uses the message producing service in jmsserver.c

jmsclient_receiver.c Tuxedo client that uses the message receiving service in jmsserver.c

async_jmsserver.c Implements a Tuxedo service that asynchronously consumes messages
using the Message Queue C-API

jmsclient_async_receiver.c Tuxedo client that uses the asynchronous message consuming service in
async_jmsserver.c

Table 1–4 lists the location of the sample programs for each installation method.

TABLE 1–6 Location of Distributed Transaction Sample Programs

Installation Method Directory

IPS image IMQ_HOME/examples/C/tuxedo

Solaris SVR4 packages /opt/SUNWimq/demo/C/tuxedo

Linux rpm packages /opt/sun/mq/examples/C/tuxedo

Working With the Sample C-Client Programs

Chapter 1 • Introduction 25

http://edocs.bea.com/tuxedo/tux100/index.html
http://edocs.bea.com/tuxedo/tux100/index.html

The following procedures document how to set up Tuxedo as a distributed transaction
manager, how to build the sample distributed transaction programs, and how to run the sample
programs. The procedures are based on the synchronous message consumption samples and
assume a Solaris operating system platform.

▼ To Set Up Tuxedo as a Distributed Transaction Manager

Install Tuxedo.

See Tuxedo documentation for instructions.

Set up the following environment variables:

Environment Variable Description

LD_LIBRARY_PATH Modify to include Message Queue C-API runtime
library path and TUXDIR/lib path

TUXDIR Tuxedo install root

PATH modify to include $TUXDIR/bin and compiler path

TUXCONFIG TUXCONFIG filename path

TLOGDEVICE Tuxedo transaction log filename path

MQ_HOME Message Queue install root

MQ_LOG_FILE Message Queue C-API runtime log file name

MQ_LOG_FILE_APPEND_PID Set so that Message Queue C-API runtime log file
name will be auto-appended with the Tuxedo server
process id

Build the Tuxedo transaction monitor server (TMS).

a. Add the following entry to the $TUXDIR/udataobj/RM file:

SUN_MQ:sun_mq_xa_switch:-lmqcrt

b. Build the TMS executable using buildtms:

buildtms -o $TUXDIR/bin/<exe-name> -r SUN_MQ

Configure the Tuxedo servers.

tmloadcf config-file

where config-file is the Tuxedo UBBCONFIG file.

1

2

3

4

Working With the Sample C-Client Programs

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201026

▼ To Build the Distributed Transaction Sample Programs

Build the server side of the sample application (jmsserver.c).
cc -I$IMQ_HOME/include -I$TUXDIR/include -g -c jmsserver.c

buildserver -v -t -r SUN_MQ -s SENDMESSAGES,RECVMESSAGES -o jmsserver

-f jmsserver.o -f -lmqcrt

Build the client side of the sample application (jmsclient_sender.c and jmsclient_receiver.c).
cc -I$TUXDIR/include -c jmsclient_sender.c

buildclient -o jmsclient_sender -f jmsclient_sender.o

cc -I$TUXDIR/include -c jmsclient_receiver.c

buildclient -o jmsclient_receiver -f jmsclient_receiver.o

▼ To Run the Distributed Transaction Sample Programs

Start a Message Queue broker.
imqbrokerd -tty

Start the Tuxedo servers.
tmboot

Run the client-side applications.
jmsclient_sender

jmsclient_receiver

Confirm the messages are produced to and consumed from the applicable destination.
imqcmd list dst -u admin

imqcmd querry dst -t q -n xatestqueue -u admin

Client Application Deployment Considerations
When you are ready to deploy your client application, you should make sure the administrator
knows your application’s needs. The checklist in Table 1–7 shows the basic information
required. Consult with your administrator to determine the exact information needed. In some
cases, it might be useful to provide a range of values rather than a specific value. Refer to the
Chapter 18, “Physical Destination Property Reference,” in Oracle GlassFish Message Queue 4.4.2
Administration Guide about attribute names and default values.

1

2

1

2

3

4

Client Application Deployment Considerations

Chapter 1 • Introduction 27

http://docs.sun.com/doc/821-1794/aeooc?a=view
http://docs.sun.com/doc/821-1794/aeooc?a=view

TABLE 1–7 Checklist for the Message Queue Administrator

Configuring physical destinations:

Type:

Name:

Properties:

Maximum number of messages expected:

Maximum size of messages expected:

Maximum message bytes expected:

Configuring Dead Message Queue

Place dead messages on Dead Message Queue:

Log the placement of messages on the Dead Message Queue:

Discard the body of messages placed on the Dead Message Queue:

Client Application Deployment Considerations

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201028

Using the C API

This chapter describes how to use C functions to accomplish specific tasks and provides brief
code samples to illustrate some of these tasks. (For clarity, the code examples shown in the
following sections omit a function call status check.)

Following a brief discussion of overall design and a summary of client tasks, the topics covered
include the following:

■ “Message Queue C Client Setup Operations” on page 29
■ “Working With Properties” on page 32
■ “Working With Connections” on page 36
■ “Working With Sessions and Destinations” on page 42
■ “Working With Messages” on page 46
■ “Error Handling” on page 56
■ “Memory Management” on page 57
■ “Logging” on page 58

This chapter does not provide exhaustive information about each function. For detailed
function information, please see the description of that function in Chapter 4, “Reference.”

For information on building Message Queue C programs, see Chapter 3, “Client Design Issues.”

Message Queue C Client Setup Operations
The general procedures for producing and consuming messages are introduced below. The
procedures have a number of common steps which need not be duplicated if a client is both
producing and consuming messages.

2C H A P T E R 2

29

▼ To Set Up a Message Queue C Client to Produce
Messages

Call the MQCreateProperties function to get a handle to a properties object.

Use one or more of the MQSet...Property functions to set connection properties that specify
the name of the broker, its port number, and its behavior.

Use the MQCreateConnection function to create a connection.

Use the MQCreateSession function to create a session and to specify its acknowledge mode and
its receive mode. If the session will be used only for producing messages, use the receive mode
MQ_SESSION_SYNC_RECEIVE to avoid creating a thread for asynchronous message delivery.

Use the MQCreateDestination function to specify a physical destination on the broker. The
destination name you specify must be the same as the name of the physical destination.

Use the MQCreateMessageProducer function or the
MQCreateMessageProducerForDestination function to create a message producer. (If you
plan to send a lot of messages to the same destination, you should use the
MQCreateMessageProducerForDestination function.)

Use the MQCreateBytesMessage function or the MQCreateTextMessage function to get a newly
created message handle.

Call the MQCreateProperties function to get a handle to a properties object that will describe
the message header properties. This is only required if you want to set a message header
property.

Use one or more of the MQSet...Property functions to set properties that specify the value of
the message header properties you want to set.

Use the MQSetMessageHeaders function, passing a handle to the properties object you created
in Step 8 and Step 9.

Repeat Step 8 if you want to define custom message properties, and then use the
MQSetMessageProperties function to set these properties for your message.

Use the MQSetMessageReplyTo function if you want to specify a destination where replies to the
message are to be sent.

Use one of the MQSendMessage... functions to send the message.

1

2

3

4

5

6

7

8

9

10

11

12

13

Message Queue C Client Setup Operations

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201030

▼ To Set Up a Message Queue C Client to Consume
Messages Synchronously

Call the MQCreateProperties function to get a handle to a properties object.

Use one or more of the MQSet...Property functions to set connection properties that specify
the name of the broker, its port number, and its behavior.

Use the MQCreateConnection function to create a connection.

Use the MQCreateSession function to create a session and to specify its receive mode. Specify
MQ_SESSION_SYNC_RECEIVE for a synchronous session.

Use the MQCreateDestination function to specify a destination on the broker from which the
consumer is to receive messages. The destination name you specify must be the same as the
name of the physical destination.

Use the MQCreateMessageConsumer function or the MQCreateDurableMessageConsumer
function to create a consumer.

Use the MQStartConnection function to start the connection.

Use one of the MQReceiveMessage... functions to start message delivery.

▼ To Set Up a Message Queue C Client to Consume
Messages Asynchronously

Call the MQCreateProperties function to get a handle to a properties object.

Use one or more of the MQSet...Property functions to set connection properties that specify
the name of the broker, its port number, and its behavior.

Use the MQCreateConnection function to create a connection.

Use the MQCreateSession function to create a session and to specify its acknowledge mode and
its receive mode. Specify MQ_SESSION_ASYNC_RECEIVE for asynchronous message delivery.

Use the MQCreateDestination function to specify a destination on the broker from which the
consumer is to receive messages. The logical destination name you specify must be the same as
the name of the physical destination.

1

2

3

4

5

6

7

8

1

2

3

4

5

Message Queue C Client Setup Operations

Chapter 2 • Using the C API 31

Write a callback function of type MQMessageListenerFunc that will be called when the broker
starts message delivery. In the body of this callback function, use the functions described in
“Processing a Message”on page 53 , to process the contents of the incoming message.

Use the MQCreateAsyncMessageConsumer function or the
MQCreateAsyncDurableMessageConsumer function to create a consumer.

Use the MQStartConnection function to start the connection and message delivery.

Working With Properties
When you create a connection, set message header properties, or set user-defined message
properties, you must pass a handle to a properties object. You use the MQCreateProperties
function to create this object and to obtain a handle to it. When you receive a message, you can
use specific MQGet...Property functions to obtain the type and value of each message property.

This section describes the functions you use to set and get properties. A property is defined as a
key-value pair.

Setting Connection and Message Properties
You use the functions listed in Table 2–1 to create a handle to a properties object, and to set
properties. You can use these functions to create and define properties for connections or for
individual messages.

Set message properties and message header properties using the same procedure you use to set
connection properties. You can set the following message header properties for sending a
message:
■ MQ_CORRELATION_ID_HEADER_PROPERTY

■ MQ_MESSAGE_TYPE_HEADER_PROPERTY

For more information, see the description of the MQSetMessageProperties() function.

TABLE 2–1 Functions Used to Set Properties

Function Description

“MQCreateProperties” on page 107 Creates a properties object and passes back a handle
to it.

“MQSetBoolProperty” on page 144 Sets an MQBool property.

“MQSetStringProperty” on page 152 Sets an MQString property.

“MQSetInt8Property” on page 149 Sets an MQInt8 property.

6

7

8

Working With Properties

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201032

TABLE 2–1 Functions Used to Set Properties (Continued)
Function Description

“MQSetInt16Property” on page 147 Sets an MQInt16 property.

“MQSetInt32Property” on page 147 Sets an MQInt32 property.

“MQSetInt64Property” on page 148 Sets an MQInt64 property.

“MQSetFloat32Property” on page 145 Sets an MQFloat32 property.

“MQSetFloat64Property” on page 146 Sets an MQFloat64 property.

▼ To Set Properties for a Connection

Call the MQCreateProperties function to get a handle to a newly created properties object.

Call one of the MQSet...Property functions to set one of the connection properties described
in Table 4–2 . At a minimum, you must specify the name of the host of the broker to which you
want to connect and its port number.
Which function you call depends on the type of the property you want to set; for example, to set
an MQString property, you call the MQSetStringProperty function; to set an MQBool property,
you call the MQSetBoolProperty function; and so on. Each function that sets a property
requires that you pass a key name and value; these are listed and described in Table 4–2.

When you have set all the properties you want to define for the connection, you can then create
the connection, by calling the MQCreateConnection function.
Once the connection is created with the properties you specify, you cannot change its
properties. If you need to change connection properties after you have created a connection,
you will need to destroy the old connection and its associated objects and create a new one with
the desired properties. It is a good idea to think through the desired behavior before you create a
connection.

The code sample below illustrates how you create a properties handle and how you use it for
setting connection properties.
MQStatus status;

MQPropertiesHandle propertiesHandle = MQ_INVALID_HANDLE;

status = (MQCreateProperties(&propertiesHandle);

status = (MQSetStringProperty(propertiesHandle,

MQ_BROKER_HOST_PROPERTY, “localhost”));

status = (MQSetInt32Property(propertiesHandle,

MQ_BROKER_PORT_PROPERTY, 7676));

status = MQSetStringProperty(propertiesHandle,

1

2

3

Working With Properties

Chapter 2 • Using the C API 33

MQ_CONNECTION_TYPE_PROPERTY, “TCP”));

The Message Queue C client runtime sets the connection properties that specify the name and
version of the Message Queue product; you can retrieve these using the
functionMQGetMetaData(). These properties are described at the end of Table 4–2, starting with
MQ_NAME_PROPERTY.

Getting Message Properties
When you receive a message, if you are interested in the message properties, you need to obtain
a handle to the properties object associated with that message:

■ Use the MQGetMessageProperties function to obtain a handle to the properties object for
user-defined properties.

■ If you are interested in any message header properties, use the
MQGetMessageHeaderProperties function to obtain a handle to the header properties. See
“MQGetMessageHeaders” on page 123.

Having obtained the handle, you can iterate through the properties and then use the
appropriate MQGet...Property function to determine the type and value of each property.

Table 2–2 lists the functions you use to iterate through a properties handle and to obtain the
type and value of each property.

TABLE 2–2 Functions Used to Get Message Properties

Function Description

“MQPropertiesKeyIterationStart” on
page 133

Starts the iteration process through the specified properties
handle.

“MQPropertiesKeyIterationHasNext” on
page 132

Returns MQ_TRUE if there are additional property keys left in the
iteration.

“MQPropertiesKeyIterationGetNext” on
page 131

Passes back the address of the next property key in the referenced
property handle.

“MQGetPropertyType” on page 127 Gets the type of the specified property.

“MQGetBoolProperty” on page 115 Gets the value of the specified MQBool type property.

“MQGetStringProperty” on page 128 Gets the value of the specified MQString type property.

“MQGetInt8Property” on page 122 Gets the value of the specified MQInt8 type property.

“MQGetInt16Property” on page 120 Gets the value of the specified MQInt16 type property.

“MQGetInt32Property” on page 121 Gets the value of the specified MQInt32 type property.

Working With Properties

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201034

TABLE 2–2 Functions Used to Get Message Properties (Continued)
“MQGetInt64Property” on page Gets the value of the specified MQInt64 type property.

“MQGetFloat32Property” on page 119 Gets the value of the specified MQFloat32 type property.

“MQGetFloat64Property” on page 120 Gets the value of the specified MQFloat64 type property.

▼ To Iterate Through a Properties Handle

Start the process by calling the MQPropertiesKeyIterationStart() function.

Loop using the MQPropertiesKeyIterationHasNext() function.

Extract the name of each property key by calling the MQPropertiesKeyIterationGetNext()
function.

Determine the type of the property value for a given key by calling the MQGetPropertyType()
function.

Use the appropriate MQGet...Property function to find the value of the specified property key
and type.
If you know the property key, you can just use the appropriate MQGet...Property function to
get its value. The code sample below illustrates how you implement these steps.
MQStatus status;

MQPropertiesHandle headersHandle = MQ_INVALID_HANDLE;

MQBool redelivered;

ConstMQString my_msgtype;

status = (MQGetMessageHeaders(messageHandle, &headersHandle));

status = (MQGetBoolProperty(headersHandle,

MQ_REDELIVERED_HEADER_PROPERTY, &redelivered));

status = MQGetStringProperty(headersHandle,

MQ_MESSAGE_TYPE_HEADER_TYPE_PROPERTY, &my_msgtype);

1

2

3

4

5

Working With Properties

Chapter 2 • Using the C API 35

Working With Connections
All messaging occurs within the context of a connection: the behavior of the connection is
defined by the properties set for that connection. You use the functions listed in Table 2–3 to
create, start, stop, and close a connection.

TABLE 2–3 Functions Used to Work with Connections

Function Description

“MQInitializeSSL” on page 130 Initializes the SSL library. You must call this function before you create any
connection that uses SSL.

“MQCreateConnection” on
page 98

Creates a connection and passes back a handle to it.

“MQStartConnection” on
page 153

Starts the specified connection and starts or resumes delivery of messages.

“MQStopConnection” on
page 154

Stops the specified connection.

“MQGetMetaData” on page 126 Returns a handle to name and version information for the Message Queue
product.

“MQCloseConnection” on
page 90

Closes the specified connection.

Before you create a connection, you must do the following:

■ Define the connection properties. See “Setting Connection and Message Properties” on
page 32 for more information.

■ Specify a user name and password for the connection. See “User Authentication” in Oracle
GlassFish Message Queue 4.4.2 Administration Guidefor information on how to set up users.

■ Write a connection exception listener function. You will need to pass a reference to this
listener when you create the connection. This function will be called synchronously when a
connection exception occurs for this connection. For more information, see “Callback Type
for Connection Exception Handling” on page 83 .

■ If you want a secure connection, call the MQIntitializeSSL function to initialize the SSL
library. See “Working With Secure Connections” on page 39 for more information.

When you have completed these steps, you are ready to call MQCreateConnection to create a
connection. After you create the connection, you can create a session as described in “Working
With Sessions and Destinations” on page 42 .

When you send a message, you do not need to start the connection explicitly by calling
MQStartConnection. You do need to call “MQStartConnection” on page 153 before the broker
can deliver messages to a consumer.

Working With Connections

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201036

http://docs.sun.com/doc/821-1794/aeofg?a=view
http://docs.sun.com/doc/821-1794/aeofg?a=view

If you need to halt delivery in the course of processing messages, you can call the
MQStopConnection() function.

Defining Connection Properties
Connection properties specify the following information:

■ The host name and port of the broker to which you want to connect
■ The transport protocol of the connection service used by the client
■ How broker and client acknowledgements are handled to support messaging reliability
■ How message flow is to be managed
■ How secure messaging should be implemented

The following sections examine the effect of properties used to manage connection handling,
reliability, message flow, and security.

Table 4–2 lists and describes all properties of a connection. For information on how to set and
change connection properties, see “Working With Properties” on page 32.

Connection Handling
Connections to a message server are specified by a broker host name and port number.

■ Set MQ_BROKER_NAME_PROPERTY to specify the broker name.
■ Set MQ_BROKER_PORT_PROPERTY to specify the port of the broker's port mapper service. In

this case, the port mapper will dynamically assign the port to which the client connects.
■ Set MQ_BROKER_SERVICE_PORT_PROPERTY to specify the number of a port to which the client

connects. This is a static, fixed port assignment; it bypasses the broker's port mapper service.
If you do need to connect to a fixed port on the broker, make sure that the service needed is
enabled and available at the specified port by setting the
imq.serviceName.protocolType.port broker property.

■ Set the connection property MQ_CONNECTION_TYPE_PROPERTY to specify the underlying
transport protocol. Possible values are TCP or SSL.
Remember that you need to configure the JMS service port on the broker side as well. For
example, if you want to connect your client via ssljms to port 1756, you would do the
following.
■ On the client side: Set the MQ_SERVICE_PORT_PROPERTY to 1756 and set the

MQ_CONNECTION_TYPE_PROPERTY to SSL.
■ On the broker side: Set the imq.serviceNameType.protocol.port property to 1756 as

follows.

imq.ssljms.ssl.port=1756

Working With Connections

Chapter 2 • Using the C API 37

The MQ_PING_INTERVAL_PROPERTY also affects connection handling. This property is set to the
interval (in seconds) that the connection can be idle before the C client runtime pings the
broker to test whether the connection is still alive. This property is useful for either producers
who use the connection infrequently or for clients who are exclusive consumers, passively
waiting for messages to arrive. The default value is 30 seconds. Setting an interval that is too low
may result in some performance loss. The minimum permitted value is 1 second to prevent this
from happening.

Currently, the C-API does not support auto-reconnect or failover, which allows the client
runtime to automatically reconnect to a broker if a connection fails.

Reliability
Two connection properties enable the acknowledgement of messages sent to the broker and of
messages received from the broker. These are described in “Message Acknowledgement” on
page 43. In addition to setting these properties, you can also set MQ_ACK_TIMEOUT_PROPERTY,
which determines the maximum time that the client runtime will wait for any broker
acknowledgement before throwing an exception.

Flow Control
A number of connection properties determine the use of Message Queue control messages by
the client runtime. Messages sent and received by Message Queue clients and Message Queue
control messages pass over the same client-broker connection. Because of this, delays may
occur in the delivery of control messages, such as broker acknowledgements, if these are held up
by the delivery of JMS messages. To prevent this type of congestion, Message Queue meters the
flow of JMS messages across a connection.

■ Set MQ_CONNECTION_FLOW_COUNT_PROPERTY to specify the number of Message Queue
messages in a metered batch. When this number of messages is delivered to the client
runtime, delivery is temporarily suspended, allowing any control messages that had been
held up to be delivered. Message delivery is resumed upon notification by the client runtime,
and continues until the count is again reached.

■ MQ_CONNECTION_FLOW_LIMIT_PROPERTY specifies the maximum number of unconsumed
messages that can be delivered to a client runtime. When the number of messages reaches
this limit, delivery stops and resumes only when the number of unconsumed messages
drops below the specified limit. This helps a consuming client that is taking a long time to
process messages from being overwhelmed with pending messages that might cause it to
run out of memory.

■ MQ_CONNECTION_FLOW_LIMIT_ENABLED_PROPERTY specifies whether the value
MQ_CONNECTION_FLOW_LIMIT_PROPERTY is used to control message flow.

You should keep the value of MQ_CONNECTION_FLOW_COUNT_PROPERTY low if the client is doing
operations that require many responses from the broker; for example, the client is using the
CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE modes, persistent messages, transactions, or if

Working With Connections

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201038

the client is adding or removing consumers. You can increase the value of
MQ_CONNECTION_FLOW_COUNT_PROPERTY without compromising performance if the client has
only simple consumers on a connection using DUPS_OK mode.

The C API does not currently support consumer-based flow control.

Working With Secure Connections
Establishing a secure connection between the client and the broker requires both the
administrator and the developer to do some additional work. The administrator’s work is
described in the “Message Encryption” in Oracle GlassFish Message Queue 4.4.2 Administration
Guide. In brief, it requires that the administrator do the following:

■ Generate certificates (self-signed or signed by a certificate authority) and add those
certificates to the broker’s keystore

■ Enable the ssljms connection service in the broker
■ Provide the password to the certificate keystore when starting the broker

The developer must also do some work to configure the client for secure messaging. The work
required depends on whether the broker is trusted (the default setting) and on whether the
developer wants to provide an additional means of verification if the broker is not trusted and
the initial attempt to create a secure connection fails.

The MessageQueue C-API library uses NSS to support the SSL transport protocol between the
Message Queue C client and the Message Queue broker. The developer must take care if the
client application using secure Message Queue connections uses NSS (for other purposes)
directly as well and does NSS initialization. For additional information, see “Coordinating NSS
Initialization” on page 41.

Configuring the Client for Secure Communication
By default the MQ_SSL_BROKER_IS_TRUSTED property is set to true, and this means that the
Message Queue client runtime will accept any certificate that is presented to it. The following
procedure explains what you must do to establish a secure connection.

▼ To Establish a Secure Connection

Set the MQ_CONNECTION_TYPE_PROPERTY to SSL .

If you want the runtime to check the broker’s certificate, set the MQ_SSL_BROKER_IS_TRUSTED
property to false. Otherwise, you can leave it to its default (true) value.

1

2

Working With Connections

Chapter 2 • Using the C API 39

http://docs.sun.com/doc/821-1794/aeogb?a=view
http://docs.sun.com/doc/821-1794/aeogb?a=view

Generate the NSS files certN.db, keyN.db, and secmod.db using the certificate database tool
certutil.

You can find this tool at the following location, depending on the installation method:

■ IPS image: mqInstallHome/nss/bin
■ Solaris SVR4 packages: /usr/sfw/bin
■ Linux rpm packages: /opt/sun/private/bin

For directions and an example of using this tool, see

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

Note the path name of the directory that contains the NSS files you generated in “Configuring
the Client for Secure Communication”on page 39.

If you have set the MQ_SSL_BROKER_IS_TRUSTED property to false, use the certutil tool to
import the root certificate of the authority certifying the broker into the database files you
generated in “Configuring the Client for Secure Communication”on page 39 .

Make sure that the MQ_BROKER_HOST_PROPERTY value is set to the same value as the (CN)
common name in the broker’s certificate.

If you have set the MQ_SSL_BROKER_IS_TRUSTED property to false, you have the option of
enabling broker fingerprint-based verification in case authorization fails. For details, see
“Verification Using Fingerprints”on page 40.

Call the function MQInitializeSSL once (and only once) before creating the connection, and
pass the name of the directory that contains the NSS files you generated in “Configuring the
Client for Secure Communication”on page 39. If the broker is trusted, these files can be empty.

You must call this function before you create any connection to the broker, including
connections that do not use SSL.

Verification Using Fingerprints
If certificate authorization fails when the broker is using a certificate authority, it is possible to
give the client runtime another means of establishing a secure connection by comparing broker
certificate fingerprints. If the fingerprints match, the connection is granted; if they do not
match, the attempt to create the connection will fail.

▼ To Set Up Fingerprint Certification

Set the broker connection property MQ_SSL_CHECK_BROKER_FINGERPRINT to true.

3

4

5

6

7

1

Working With Connections

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201040

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

Retrieve the broker’s certificate fingerprint by using the java keytool -list option on the
broker’s keystore file:

You will use the output of this command as the value for the connection property
MQ_SSL_BROKER_CERT_FINGERPRINT in “Verification Using Fingerprints” on page 40. For
example, if the output contains a value like the following:
Certificate fingerprint (MD5): F6:A5:C1:F2:E6:63:40:73:97:64:39:6C:1B:35:0F:8E

You would specify this value for MQ_SSL_BROKER_CERT_FINGEPRINT.

Set the connection property MQ_SSL_BROKER_CERT_FINGEPRINT to the value obtained in
“Verification Using Fingerprints”on page 40.

Coordinating NSS Initialization
If your application uses NSS directly, other than to support Message Queue secure
communication, you need to coordinate NSS initialization with the Message Queue C-API
library. There are two cases to consider:

■ Your application does not use secure Message Queue connections.

In this case, you should do your application’s NSS initialization before calling
MQCreateConnection to create any connection to the Message Queue broker.

■ Your application does use secure Message Queue connections.

In this case, you should follow the procedure outlined below before calling
MQCreateConnection to create any Message Queue connection.

▼ To Coordinate NSS Initialization

Call the function MQInitializeSSL. (You must specify the path to the directory containing the
NSS files as the certdbpathparameter to this function.)

Your application’s use of NSS must specify the same certdbpath value for the location of its
NSS files. (That is, the certificates needed by your application must be located in the same
directory as the certificates needed by Message Queue.)

Internally, the function MQInitializeSSL does the following:

■ Calls the function NSS_Init(certdbpath).
■ Sets DOMESTIC cipher policy using the function NSS_SetDomesticPolicy().
■ Enables all cipher suites, including RSA_NULL_MD5 by calling the function

SSL_CipherPrefSetDefault(SSL_RSA_WITH_NULL_MD5, PR_TRUE) .
■ Calls the function SSL_ClearSessionCache().

2

3

1

Working With Connections

Chapter 2 • Using the C API 41

If your application needs different cipher suite settings, after you call the MQInitializeSSL()
function, you can modify the cipher suites by calling the function SSL_CipherPrefSetDefault.
However, note that these changes will affect your secure connection to the Message Queue
broker as well.

Shutting Down Connections
In order to do an orderly shutdown, you need to close the connection by calling
MQCloseConnection() and then to free the memory associated with the connection by calling
the MQFreeConnection() function.

■ Closing the connection closes all sessions, producers, and consumers created from this
connection. This also forces all threads associated with this connection that are blocking in
the library to return.

■ After all the application threads associated with this connection and its descendant sessions,
producers, and consumers have returned, the application can call the MQFreeConnection()
function to release all resources associated with the connection.

To get information about a connection, call the MQGetMetaData() function. This returns name
and version information for the Message Queue product.

Working With Sessions and Destinations
A session is a single-threaded context for producing and consuming messages. You can create
multiple producers and consumers for a session, but you are restricted to using them serially. In
effect, only a single logical thread of control can use them. A session supports reliable delivery
through acknowledgment options or by using transactions.

Table 2–4 describes the functions you use to create and manage sessions.

TABLE 2–4 Functions Used to Work with Sessions

Function Description

“MQCreateSession” on page 107 Creates the specified session and passes back a handle to it.

“MQGetAcknowledgeMode” on page 115 Passes back the acknowledgement mode of the specified
session.

“MQRecoverSession” on page 137 Stops message delivery and restarts message delivery with
the oldest unacknowledged message. (For non-transacted
sessions.)

“MQRollBackSession” on page 138 Rolls back a transaction associated with the specified
session.

2

Working With Sessions and Destinations

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201042

TABLE 2–4 Functions Used to Work with Sessions (Continued)
Function Description

“MQCommitSession” on page 92 Commits a transaction associated with the specified session.

“MQCloseSession” on page 92 Closes the specified session.

Creating a Session
The MQCreateSession function creates a new session and initializes a handle to it in the
sessionHandle parameter. The number of sessions you can create for a single connection is
limited only by system resources. You can create a session after you have created a connection.

When you create a session, you specify whether it is transacted, the acknowledge mode, and the
receive mode. After you create a session, you can create the producers, consumers, and
destinations that use the session context to do their work.

Transacted Sessions
If you specify that a session be transacted, the acknowledge mode is ignored. Within a
transacted session, the broker tracks sends and receives, completing these operations only when
the client issues a call to commit the transaction. If a send or receive operation fails, the
operation will return an error. Your application can handle the error by ignoring it, retrying it,
or rolling back the entire transaction. When a transaction is committed, all the successful
operations are completed. When a transaction is rolled back, all the successful operations are
cancelled. A transaction cannot encompass both the production and consumption of the same
message.

The scope of a local transaction is a single session. One or more producer or consumer
operations can be grouped into a single local transaction only if performed in the context of a
single session.

To extend the scope of a transaction beyond a single session, you can use a distributed
transaction. A distributed transaction is managed by an external distributed transaction
manager, as described in “Working With Distributed Transactions” on page 54.

Message Acknowledgement
Both messages that are sent and messages that are received can be acknowledged.

In the case of message producers, if you want the broker to acknowledge its having received a
non-persistent message (to its physical destination), you must set the connection’s
MQ_ACK_ON_PRODUCE_PROPERTY to MQ_TRUE. If you do so, the sending function will return only
after the broker has acknowledged receipt of the message. By default, the broker acknowledges
receipt of persistent messages.

Working With Sessions and Destinations

Chapter 2 • Using the C API 43

Acknowledgements on the consuming side means that the client runtime acknowledges
delivery and consumption of all messages from a physical destination before the message
service deletes the message from that destination. You can specify one of the following
acknowledge modes for the consuming session when you create that session.

■ MQ_AUTO_ACKNOWLEDGE specifies that the session automatically acknowledge each message
consumed by the client.

■ MQ_CLIENT_ACKNOWLEDGE specifies that the client must explicitly acknowledge messages by
calling MQAcknowledgeMessages. In this case, all messages are acknowledged that have been
consumed up to the point where the acknowledge function is called. (This could include
messages consumed asynchronously by many different message listeners in that session,
independent of the order in which they were consumed.)

■ MQ_DUPS_OK_ACKNOWLEDGE specifies that the session acknowledges receipt of messages after
each ten messages are consumed. It does not guarantee that messages are delivered and
consumed only once.

(The setting of the connection property MQ_ACK_ON_ACKNOWLEDGE_PROPERTY also determines
the effect of some of these acknowledge modes. For more information, see Table 4–2.)

Note – In the DUPS_OK_ACKNOWLEDGE mode, the session does not wait for broker
acknowledgements. This option can be used in Message Queue C clients for which duplicate
messages are not a problem. Also, you can call the MQRecoverSession() function to explicitly
request redelivery of messages that have been received but not yet acknowledged by the client.
When redelivering such messages, the broker will set the header field
MQ_REDLIEVERED_HEADER_PROPERTY .

Receive Mode
You can specify a session’s receive mode as either MQ_SESSION_SYNC_RECEIVE or
MQ_SESSION_ASYNC_RECEIVE. If the session you create will be used for sending messages only,
you should specify MQ_SESSION_SYNC_RECEIVE for its receive mode for optimization because
the asynchronous receive mode automatically allocates an additional thread for the delivery of
messages it expects to receive.

Managing a Session
Managing a session involves using threads appropriately for the type of session (synchronous or
asynchronous) and managing message delivery for both transacted and nontransacted sessions.
For more information about thread management, see “Managing Threads” on page 61.

■ For a session that is not transacted, use the MQRecoverSession() function to restart message
delivery with the last unacknowledged message.

Working With Sessions and Destinations

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201044

■ For a session that is transacted, use the MQRollBackSession() function to roll back any
messages that were delivered within this transaction. Use the MQCommitSession() function
to commit all messages associated with this transaction.

■ Use the MQCloseSession() function to close a session and all its associated producers and
consumers. This function also frees memory allocated for the session.

You can get information about a session’s acknowledgment mode by calling the
MQGetAcknowledgeMode() function.

Creating Destinations
After creating a session, you can create destinations or temporary destinations for the messages
you want to send. Table 2–5 lists the functions you use to create and to get information about
destinations.

TABLE 2–5 Functions Used to Work with Destinations

Functions Description

“MQCreateDestination” on page 100 Creates a destination and initializes a handle to it.

“MQCreateTemporaryDestination” on
page 109

Creates a temporary destination and initializes a handle to it.

“MQGetDestinationType” on page 118 Returns the type (queue or topic) of the specified
destination.

A destination refers to where a message is destined to go. A physical destination is a JMS
message service entity (a location on the broker) to which producers send messages and from
which consumers receive messages. The message service provides the routing and delivery for
messages sent to a physical destination.

When a Message Queue C client creates a destination programmatically using the
MQCreateDestination function, a destination name must be specified. The function initializes
a handle to a destination data type that holds the identity (name) of the destination. The
important thing to remember is that this function does not create the physical destination on
the broker; this must be done by the administrator. The destination that is created
programmatically however must have the exact same name and type as the physical destination
created on the broker. For example, if you use the MQCreateDestination function to create a
queue destination called myMailQDest, the administrator has to create a physical destination on
the broker named myMailQDest.

Destination names starting with “mq” are reserved and should not be used by client programs.

Working With Sessions and Destinations

Chapter 2 • Using the C API 45

Programming Domains
When you create a destination, you must also specify its type: MQ_QUEUE_DESTINATION or
MQ_TOPIC_DESTINATION. See “Messaging Domains” in Oracle GlassFish Message Queue 4.4.2
Technical Overviewfor a discussion of these two types of destinations and how to choose the
type that suits your needs.

Auto-Created Destinations
By default, the imq.autocreate.topic and imq.autocreate.queue broker properties are
turned on. In this case, which is more convenient in a development environment, the broker
automatically creates a physical destination whenever a message consumer or message
producer attempts to access a non-existent destination. The auto-created physical destination
will have the same name as that of the destination you created using the MQCreateDestination
function.

Temporary Destinations
You use the MQCreateTemporaryDestination function to create a temporary destination. You
can use such a destination to implement a simple request/reply mechanism. When you pass the
handle of a temporary destination to the MQSetMessageReplyTo function, the consumer of the
message can use that handle as the destination to which it sends a reply.

Temporary destinations are explicitly created by client applications and are automatically
deleted when the connection is closed. They are maintained (and named) by the broker only for
the duration of the connection for which they are created. Temporary destinations are
system-generated uniquely for their connection and only their own connection is allowed to
create message consumers for them.

Getting Information About Destinations
Use the MQGetDestinationType function to determine the type of a destination: queue or topic.
There may be times when you do not know the type of the destination to which you are
replying: for example, when you get a handle from the MQGetMessageReplyTo function. Because
the semantics of queue and topic destinations differ, you need to determine the type of a
destination in order to reply appropriately.

Working With Messages
This section describes how you use the C-API to complete the following tasks:

■ Compose a message
■ Send a message
■ Receive a message
■ Process a message

Working With Messages

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201046

http://docs.sun.com/doc/821-1798/aerbi?a=view
http://docs.sun.com/doc/821-1798/aerbi?a=view

Composing Messages
You can create either a text message or a bytes message. A message, whether text or bytes, is
composed of a header, properties, and a body. You can also create a message type which has no
body.

Table 2–6 lists the functions you use to construct messages.

TABLE 2–6 Functions Used to Construct Messages

Function Description

“MQCreateMessage” on page 103 Creates an MQ_MESSAGE type message.

“MQCreateBytesMessage” on page 97 Creates an MQ_BYTES_MESSAGE message.

“MQCreateTextMessage” on page 110 Creates an MQ_TEXT_MESSAGE message.

“MQSetMessageHeaders” on page 149 Sets message header properties. (Optional)

“MQSetMessageProperties” on
page 151

Sets user-defined message properties.

“MQSetStringProperty” on page 152 Sets the body of an MQ_TEXT_MESSAGE message.

“MQSetBytesMessageBytes” on
page 145

Sets the body of an MQ_BYTES_MESSAGE message.

“MQSetMessageReplyTo” on
page 151

Specifies the destination where replies to this message should be sent.

Message Header
A header is required of every message. Header fields contain values used for routing and
identifying messages.

Some header field values are set automatically by Message Queue during the process of
producing and delivering a message, some depend on settings specified when message
producers send a message, and others are set on a message-by-message basis by the client using
the MQSetMessageHeader function. Table 2–7 lists the header fields defined (and required) by
JMS and their corresponding names, as defined by the C-API.

TABLE 2–7 JMS-defined Message Header

JMS Message Header Field C-API Message Header Property Name

JMSDestination Defined implicitly when a producer sends a message to a destination, or
when a consumer receives a message from a destination.

JMSDeliveryMode MQ_PERSISTENT_HEADER_PROPERTY

Working With Messages

Chapter 2 • Using the C API 47

TABLE 2–7 JMS-defined Message Header (Continued)
JMS Message Header Field C-API Message Header Property Name

JMSExpiration MQ_EXPIRATION_HEADER_PROPERTY

JMSPriority MQ_PRIORITY_HEADER_PROPERTY

JMSMessageID MQ_MESSAGE_ID_HEADER_PROPERTY

JMSTimeStamp MQ_TIMESTAMP_HEADER_PROPERTY

JMSRedelivered MQ_REDELIVERED_HEADER_PROPERTY

JMSCorrelationID MQ_CORRELATION_ID_HEADER_PROPERTY

JMSReplyTo Set by the MQSetMessageReplyTo function, and obtained by the
MQGetMessageReplyTo function.

JMSPriority MQ_MESSAGE_TYPE_HEADER_PROPERTY

For additional information about each property type and who sets it, see
“MQSetMessageHeaders” on page 149.

Message Body Types
JMS specifies six classes (or types) of messages. The C-API supports only three of these types, as
described in Table 2–8. If a Message Queue C client expects to receive messages from a Message
Queue Java client, it will be unable to process messages whose body types are other than those
described in the table. It will also be unable to process messages that are compressed by the
Message Queue Java client runtime.

TABLE 2–8 C-API Message Body Types

Type Description

MQ_Text_Message A message whose body contains an MQString string, for example an XML
message.

MQ_Bytes_Message A message whose body contains a stream of uninterpreted bytes.

MQ_Message A message consisting of a header and (optional) properties, but no body.

Composing the Message
Create a message using either the MQCreateBytesMessage() function or the
MQCreateTextMessage() function. Either of these functions returns a message handle that you
can then pass to the functions you use to set the message body, header, and properties (listed in
Composing Messages()). You can also use the MQCreateMessage() function to create a
message that has a header and properties but no message body.

Working With Messages

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201048

■ Use the MQSetTextMessageText() function to define the body of a text message; use the
MQSetBytesMessageBytes() function to define the body of a bytes message.

■ Use the MQSetMessageHeaders() to set any message header properties.
The message header can specify up to eight properties; most of these are set by the client
runtime when sending the message or are set by the broker. The client can set
MQ_CORRELATION_ID_HEADER_PROPERTY and MQ_MESSAGE_TYPE_HEADER_PROPERTY for
sending a message.

■ Use the MQSetMessageProperties() function to set any user-defined properties for this
message.

When you set message header properties or when you set additional user-defined properties,
you must pass a handle to a properties object that you have created using the
MQCreateProperties() function. For more information, see “Working With Properties” on
page 32.

You can use the MQSetMessageReplyTo() function to associate a message with a destination
that recipients can use for replies. To do this, you must first create a destination that will serve as
your reply-to destination. Then, pass a handle to that destination when you call the
MQSetMessageReplyTo() function. The receiver of a message can use the
MQGetMessageReplyTo() function to determine whether a sender has set up a destination
where replies are to be sent.

Sending a Message
Messages are sent by a message producer within the context of a connection and a session. Once
you have obtained a connection, created a session, and composed your message, you can use the
functions listed in Table 2–9to create a message producer and to send the message.

Which function you choose to send a message depends on the following factors:

■ Whether you want the send function to override certain message header properties
Send functions whose names end in Ext allow you to override default values for priority,
time-to-live, and delivery mode header properties.

■ Whether you want to send the message to the destination associated with the message
producer
If you created a message producer with no specified destination, you must used one of the
...ToDestination send functions. If you created a message producer with a specified
destination, you must use one of the other send functions.

TABLE 2–9 Functions for Sending Messages

Function Action

Working With Messages

Chapter 2 • Using the C API 49

TABLE 2–9 Functions for Sending Messages (Continued)
“MQCreateMessageProducer” on page Creates a message producer with no specified destination.

“MQCreateMessageProducerForDestination” on
page 106

Creates a message producer with a specified destination.

“MQSendMessage” on page 139 Sends a message for the specified producer.

“MQSendMessageExt” on page 140 Sends a message for the specified producer and allows you
to set priority, time-to-live, and delivery mode.

“MQSendMessageToDestination” on page 141 Sends a message to the specified destination.

“MQSendMessageToDestinationExt” on
page 142

Sends a message to the specified destination and allows you
to set priority, time-to-live, and delivery mode.

If you send a message using one of the functions that does not allow you to override header
properties, the following message header fields are set to default values by the send function.

■ MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.
■ MQ_PRIORITY_HEADER_PROPERTY will be set to 4.
■ MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the message will never

expire.

To override these values, use one of the extended send functions. For a complete list of message
header properties, see “MQGetMessageHeaders” on page 123 .

Message headers also contain fields that can be set by the sending client; in addition, you can set
user-defined message properties as well. For more information, see “Composing Messages” on
page 47.

You can set the connection property MQ_ACK_ON_PRODUCE_PROPERTY when you create the
connection to make sure that the message has reached its destination on the broker:

■ By default, the broker acknowledges receiving persistent messages only.
■ If you set the property to MQ_TRUE, the broker acknowledges receipt of all messages

(persistent and non-persistent) from the producing client.
■ If you set the property to MQ_FALSE, the broker does not acknowledge receipt of any message

(persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally implemented.
That is, the client thread is blocked and does not return until the broker acknowledges messages
it receives.

An administrator can set a broker limit, REJECT_NEWEST, which allows the broker to avert
memory problems by rejecting the newest incoming message. If the incoming message is
persistent, then an error is returned which the sending client should handle, perhaps by retrying

Working With Messages

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201050

the send a bit later. If the incoming message is not persistent, the client has no way of knowing
that the broker rejected it. The broker might also reject a message if it exceeds a specified limit.

Receiving Messages
Messages are received by a message consumer in the context of a connection and a session. In
order to receive messages, you must explicitly start the connection by calling the
MQStartConnection function.

Table 2–10 lists the functions you use to create message consumers and to receive messages.

TABLE 2–10 Functions Used to Receive Messages

Function Description

“MQCreateMessageConsumer” on
page 104

Creates the specified synchronous consumer and passes back a
handle to it.

“MQCreateDurableMessageConsumer”
on page 101

Creates a durable synchronous message consumer for the specified
destination.

“MQCreateAsyncMessageConsumer”
on page 95

Creates an asynchronous message consumer for the specified
destination.

“MQCreateAsyncDurableMessageConsumer”
on page 93

Creates a durable asynchronous message consumer for the specified
destination.

“MQUnsubscribeDurableMessageConsumer”
on page 155

Unsubscribes the specified durable message consumer.

“MQReceiveMessageNoWait” on
page 133

Passes a handle back to a message delivered to the specified consumer
if a message is available; otherwise it returns an error.

“MQReceiveMessageWait” on
page 135

Passes a handle back to a message delivered to the specified consumer
if a message is available; otherwise it blocks until a message becomes
available.

“MQReceiveMessageWithTimeout” on
page 136

Passes a handle back to a message delivered to the specified consumer
if a message is available within the specified amount of time.

“MQAcknowledgeMessages” on
page 88

Acknowledges the specified message and all messages received before
it on the same session

“MQCloseMessageConsumer” on
page 90

Closes the specified consumer.

Working With Consumers
When you create a consumer, you need to make several decisions:

■ Do you want to receive messages synchronously or asynchronously?

Working With Messages

Chapter 2 • Using the C API 51

If you create a synchronous consumer, you can call one of three kinds of receive functions to
receive your messages. If you create an asynchronous consumer, you must specify the name
of a callback function that the client runtime can call when a message is delivered to the
destination for that consumer. For information about the callback function signature, see
“Callback Type for Asynchronous Message Consumption” on page 81 .

■ If you are consuming messages from a topic, do you want to use a durable or a nondurable
consumer?
A durable consumer receives all the messages published to a topic, including the ones
published while the subscriber is inactive. A nondurable consumer only receives messages
while the subscriber is active.
The broker retains a record of this durable subscription and makes sure that all messages
from the publishers to this topic are retained until they are either acknowledged by this
durable subscriber or until they have expired. Sessions with durable subscribers must always
provide the same client identifier. In addition, each consumer must specify a durable name
using the durableName parameter, which uniquely identifies (for each client identifier) each
durable subscription it creates.

A session’s consumers are automatically closed when you close the session or connection to
which they belong. However, messages will be routed to the durable subscriber while it is
inactive and delivered when a new durable consumer is recreated. To close a consumer without
closing the session or connection to which it belongs, use the MQCloseMessageConsumer()
function. If you want to close a durable consumer permanently, you should call the function
“MQUnsubscribeDurableMessageConsumer” on page 155 after closing it, to delete state
information maintained by the broker on behalf of the durable consumer.

Receiving a Message Synchronously
If you have created a synchronous consumer, you can use one of three receive functions:
MQReceiveMessageNoWait, MQReceiveMessageWait , or MQReceiveMessagewithTimeOut. In
order to use any of these functions, you must have specified MQ_SESSION_SYNC_RECEIVE for the
receive mode when you created the session.

When you create a session you must specify one of several acknowledge modes for that session.
If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the session, you must
explicitly call the MQAcknowledgeMessages function to acknowledge messages that you have
received. If the session is transacted, the acknowledge mode parameter is ignored.

When the receiving function returns, it gives you a handle to the delivered message. You can
pass that handle to the functions described in “Processing a Message” on page 53, in order to
read message properties and information stored in the header and body of the message.

It is possible that a message can be lost for synchronous consumers in a session using
AUTO_ACKNOWLEDGE mode if the provider fails. To prevent this possibility, you should either use
a transacted session or a session in CLIENT_ACKNOWLEDGE mode.

Working With Messages

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201052

Because distributed applications involve greater processing time, such an application might not
behave as expected if it were run locally. For example, calling the MQReceiveMessageNoWait
function might return MQ_NO_MESSAGE even when there is a message available to be retrieved on
the broker. See the usage notes provided in the section “MQReceiveMessageNoWait” on
page 133 for more information.

Receiving a Message Asynchronously
To receive a message asynchronously, you must create an asynchronous message consumer and
pass the name of an MQMessageListenerFunc type callback function. (Therefore, you must set
up the callback function before you create the asynchronous consumer that will use it.) You
should start the connection only after creating an asynchronous consumer. If the connection is
already started, you should stop the connection before creating an asynchronous consumer.

You are also responsible for writing the message listener function. Mainly, the function needs to
process the incoming message by examining its header, body, and properties, or it needs to pass
control to a function that can do this processing. The client is also responsible for freeing the
message handle (either from within the listener or from outside of the listener) by calling the
MQFreeMessage function.

When you create a session you must specify one of several acknowledge modes for that session.
If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the session, you must
explicitly call the MQAcknowledgeMessages function to acknowledge messages that you have
received.

For more information about the signature and content of a call back function, see “Callback
Type for Asynchronous Message Consumption” on page 81.

When the callback function is called by the session delivery of a message, it gives you a handle to
the delivered message. You can pass that handle to the functions described in “Processing a
Message” on page 53, in order to read message properties and information stored in the header
and body of the message.

Processing a Message
When a message is delivered to you, you can examine the message’s properties, type, headers,
and body. The functions used to process a message are described in “Processing a Message” on
page 53.

TABLE 2–11 Functions Used to Process Messages

Function Description

“MQGetMessageHeaders” on
page 123

Gets message header properties.

Working With Messages

Chapter 2 • Using the C API 53

TABLE 2–11 Functions Used to Process Messages (Continued)
“MQGetMessageProperties” on
page 124

Gets user-defined message properties.

“MQGetMessageType” on page 125 Gets the message type: MQ_TEXT_MESSAGE or MQ_BYTES_MESSAGE

“MQGetTextMessageText” on
page 129

Gets the body of an MQ_TEXT_MESSAGE message.

“MQGetBytesMessageBytes” on
page 116

Gets the body of an MQ_BYTES_MESSAGE message.

“MQGetMessageReplyTo” on
page 124

Gets the destination where replies to this message should be sent.

If you are interested in a message’s header information, you need to call the
MQGetMessageHeaders function. If you need to read or check any user-defined properties, you
need to call the MQGetMessageProperties function. Each of these functions passes back a
properties handle. For information on how you can read property values, see “Getting Message
Properties” on page 34.

Before you can examine the message body, you can call the MQGetMessageType function to
determine whether the message is a text or bytes message. You can then call the
MQGetTextMessageText, or the MQGetBytesMessageBytes function to get the contents of the
message.

Some message senders specify a reply destination for their message. Use the
MQGetMessageReplyTo function to determine that destination.

Working With Distributed Transactions
In accordance with the X/Open distributed transaction model, Message Queue C-API support
for distributed transactions relies upon a distributed transaction manager. The distributed
transaction manage tracks and manages distributed transactions, coordinating the decision to
commit them or roll them back, and coordinating failure recovery. The Message Queue C-API
supports the X/Open XA interface, qualifying it as an XA-compliant resource manager. This
support allows C-API clients running in a distributed transaction processing environment to
participate in distributed transactions.

In particular, two C-API functions support the participation of C-API clients in distributed
transactions:

MQGetXAConnection()

MQCreateXASession()

If a C-client application is to be used in the context of a distributed transaction, then it must
obtain a connection by using MQGetXAConnection() and create a session for producing and

Working With Distributed Transactions

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201054

consuming messages by using MQCreateXASession(). The start, commit, and rollback, of any
distributed transaction is managed by the distributed transaction manager.

For more information on XA resource managers, see the XA Specification
(http://www.opengroup.org/onlinepubs/009680699/toc.pdf).

Message Queue Resource Manager Information
In accordance with the X/Open XA interface specification, a distributed transaction manager
needs the following information regarding the Message Queue XA-compliant resource
manager:

■ Name of the xa_switch_t structure: sun_my_xa_switch
■ Name of the Resource Manager: SUN_RM
■ The MQ C-API library to be linked: mqcrt
■ The xa_close string and format: none
■ The xa_open string and format: semicolon (“;”)-separated name/value pairs

The following name/value pairs are supported:

TABLE 2–12 Message Queue Resource Manager Name/Value Pairs

Name Value Description Default

address host:port The host:port of the
broker's Portmapper
service.

localhost:7676

username string The username for
connecting to the broker

guest

password string The username's password guest

conntype TCP or SSL The protocol type of the
connection to the broker

TCP

trustedhost true/false Whether the broker host
is trusted (only applicable
for conntype=SSL)

true

certdbpath string The full path to the
directory that contains
NSS certificate and key
database files

not set

clientid string Required only for JMS
durable subscriptions

not set

Working With Distributed Transactions

Chapter 2 • Using the C API 55

http://www.opengroup.org/onlinepubs/009680699/toc.pdf
http://www.opengroup.org/onlinepubs/009680699/toc.pdf

TABLE 2–12 Message Queue Resource Manager Name/Value Pairs (Continued)
Name Value Description Default

reconnects integer The number of
re-connection attempts to
broker (0 means no
reconnect)

0

Programming Examples
To help you program an application that uses distributed transactions, Message Queue provides
programming examples based on the Tuxedo distributed transaction manager. A description of
the sample programs and their location is provided in Table 1–5.

Error Handling
Nearly all Message Queue C functions return an MQStatus result. You can use this return value
to determine whether the function returned successfully and, if not, to determine the cause of
the error.

Table 2–13 lists the functions you use to get error information.

TABLE 2–13 Functions Used in Handling Errors

Function Description

“MQStatusIsError” on page 154 Returns an MQ_TRUE if the specified MQStatus is an error.

“MQGetStatusCode” on
page 127

Returns the error code for the specified MQStatus.

“MQGetStatusString” on
page 128

Returns a descriptive string for the specified MQStatus.

“MQGetErrorTrace” on
page 118

Returns the calling thread’s current error trace or NULL if no error trace is
available.

▼ To Handle Errors in Your Code
Call MQStatusIsError, passing it an MQStatus result for the function whose result you want to
test.

If the MQStatusIsError function returns MQ_TRUE , call MQGetStatusCode or
MQGetStatusString to identify the error.

1

2

Error Handling

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201056

If the status code and string information is not sufficient to identify the cause of the error, you
can get additional diagnostic information by calling MQGetErrorTrace to obtain the calling
thread’s current error trace if this information is available.
Chapter 4, “Reference,” lists common errors returned for each function. In addition to these
errors, the following error codes may be returned by any Message Queue C function:

■ MQ_STATUS_INVALID_HANDLE

■ MQ_OUT_OF_MEMORY

■ MQ_NULL_PTR_ARG

In addition, the MQ_TIMEOUT_EXPIRED can return from any Message Queue C function that
communicates with the Message Queue broker if the connection MQ_ACK_TIMEOUT_PROPERTY is
set to a non-zero value.

Memory Management
Table 2–14 lists the functions you use to free or deallocate memory allocated by the Message
Queue-C client library on behalf of the user. Such deallocation is part of normal memory
management and will prevent memory leaks.

The functions MQCloseConnection, MQCloseSession , MQCloseMessageProducer, and
MQCloseMessageConsumer are used to free resources associated with connections, sessions,
producers, and consumers.

TABLE 2–14 Functions Used to Free Memory

Function Description

“MQFreeConnection” on
page 113

Frees memory allocated to the specified connection.

“MQFreeDestination” on
page 113

Frees memory allocated to the specified destination.

“MQFreeMessage” on page 114 Frees memory allocated to the specified message.

“MQFreeProperties” on
page 114

Frees memory allocated to the specified properties handle.

“MQFreeString” on page 115 Frees memory allocated to the specified MQString.

You should free a connection only after you have closed the connection with the
MQCloseConnection() function and after all of the application threads associated with this
connection and its dependent sessions, producers, and consumers have returned.

You should not free a connection while an application thread is active in a library function
associated with this connection or one of its dependent sessions, producers, consumers, and
destinations.

3

Memory Management

Chapter 2 • Using the C API 57

Freeing a connection does not release resources held by a message associated with this
connection. You must free memory allocated for this message by explicitly calling the
MQFreeMessage function.

You should not free a properties handle if the properties handle passed to a function becomes
invalid on its return. If you do, you will get an error.

Logging
The Message Queue C-API library uses two environment variables to control execution-time
logging:

■ MQ_LOG_FILE specifies the file to which log messages are directed. If you do not specify a file
name for this variable, stderr is used. If MQ_LOG_FILE is a directory name, it should include
a trailing directory separator.
By default, .n (where n is 0, 1, 2,...) is appended to the actual log file name. This is used as a
rotation index, and the indices are used sequentially when the maximum log file size is
reached. You can use %g to specify a rotation index replacement in MQ_LOG_FILE after the
last directory separator. Only the last %g is used if multiple %g’s are specified. the %g
replacement can be escaped with %. The maximum rotation index is 9, and the maximum
log file size is 1 MB. These limits are not configurable.

■ MQ_LOG_LEVEL specifies a numeric level that indicates the detail of logging information
needed. A value of -1 specifies that nothing be logged. By default the level is set to 3.

Logging

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201058

Client Design Issues

This chapter describes a number of messaging issues that impact Message Queue C client
design. It covers the following topics:

■ “Producers and Consumers” on page 59
■ “Using Selectors Efficiently” on page 60
■ “Determining Message Order and Priority” on page 61
■ “Managing Threads” on page 61
■ “Managing Physical Destination Limits” on page 63
■ “Managing the Dead Message Queue” on page 64
■ “Factors Affecting Performance” on page 67

This chapter does not discuss the particulars of the C-API and how to use the data types and
functions it defines to create messaging clients. For this information, see Chapter 2, “Using the
C API.”

Producers and Consumers
Aside from the reliability your client requires, the design decisions that relate to producers and
consumers include the following:

■ Do you want to use a point-to-point or a publish/subscribe domain?
There are some interesting permutations here. There are times when you would want to use
publish/subscribe even when you have only one subscriber. Performance considerations
might make the point-to-point model more efficient than the publish/subscribe model,
when the work of sorting messages between subscribers is too costly. Sometimes these
decisions cannot be made in the abstract, but different prototypes must be developed and
tested.

■ Are you using an asynchronous message consumer that does not get called often or a
producer that is seldom used?

3C H A P T E R 3

59

You might need to adjust the MQ_PING_INTERVAL_PROPERTY when you create your
connection, so that your client gets an exception if the connection should fail. For more
information see “Connection Handling” on page 37.

■ Are you using a synchronous consumer in a distributed application?
You might need to allow a small time interval between connecting and calling the
MQReceiveMessageNoWait function in order not to miss a pending message. For more
information, see usage information in the section “MQReceiveMessageNoWait” on
page 133.

Using Selectors Efficiently
The use of selectors can have a significant impact on the performance of your application. It’s
difficult to put an exact cost on the expense of using selectors since it varies with the complexity
of the selector expression, but the more you can do to eliminate or simplify selectors the better.

One way to eliminate (or simplify) selectors is to use multiple destinations to sort messages.
This has the additional benefit of spreading the message load over more than one producer,
which can improve the scalability of your application. For those cases when it is not possible to
do that, here are some techniques that you can use to improve the performance of your
application when using selectors:

■ Have consumers share selectors. As of version 3.5 of Message Queue, message consumers
with identical selectors “share” that selector in the broker, which can significantly improve
performance. So if there is a way to structure your application to have some selector sharing,
consider doing so.

■ Use IN instead of multiple string comparisons. For example, expression number 1 is much
more efficient than expression number 2, especially if expression 2 usually evaluates to false.

color IN (’red’, ’green’, ’white’) \\ Expression 1

color = ’red’ OR color = ’green’ OR color = ’white’ \\Expression 2

■ Use BETWEEN instead of multiple integer comparisons. For example, expression 1 is more
efficient than expression 2, especially if expression 2 usually evaluates to true.

size BETWEEN 6 AND 10 \\Expression 1

size >= 6 AND size <= 10 \\Expression 2

■ Order the selector expression so that MQ can short circuit the evaluation. The short
circuiting of selector evaluation was added in MQ 3.5 and can easily double or triple
performance when using selectors depending on the complexity of the expression.
■ If you have two expressions joined by an OR, put the expression that is most likely to

evaluate to TRUE first.
■ If you have two expressions joined by an AND, put the expression that is most likely to

evaluate to FALSE first.

Using Selectors Efficiently

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201060

For example, if size is usually greater than 6, but color is rarely red you would want the
order of an OR expression to be the following.

size > 6 OR color = ’red’

If you are using AND, use the following order.

color = ’red’ AND size > 6

Determining Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to be delivered to
a consumer in the order they were sent. However, if they are assigned different priorities, a
messaging system will attempt to deliver higher priority messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough relationship
to the order in which they were produced. This is because the delivery of messages to a number
of destinations and the delivery from those destinations can depend on a number of issues that
affect timing, such as the order in which the messages are sent, the sessions from which they are
sent, whether the messages are persistent, the lifetime of the messages, the priority of the
messages, the message delivery policy of queue destinations, and message service availability.

Managing Threads
This section addresses a number of thread management issues that you should be aware of in
designing and programming a Message Queue C client. It covers the following topics:’

■ “Message Queue C Runtime Thread Model” on page 61
■ “Concurrent Use of Handles” on page 62
■ “Single-Threaded Session Control” on page 62
■ “Connection Exceptions” on page 63

Message Queue C Runtime Thread Model
The Message Queue C-API library creates the threads needed to provide runtime support for a
Message Queue C client. It uses NSPR (Netscape Portable Runtime) GLOBAL threads. NSPR
GLOBAL threads are fully compatible with native threads on each supported platform. “Message
Queue C Runtime Thread Model” on page 61 shows the thread model that the NSPR GLOBAL

threads map to on each platform. For more information on NSPR, please see

http://www.mozilla.org/projects/nspr/

Managing Threads

Chapter 3 • Client Design Issues 61

http://www.mozilla.org/projects/nspr/

TABLE 3–1 Thread Model for NSPR GLOBAL Threads

Platform Thread Model

Solaris pthreads

Linux pthreads

AIX pthreads

Windows Win32 threads (from Microsoft Visual C++ runtime library msvcrt)

Concurrent Use of Handles
Table 3–2 lists the handles (objects) used in a C client program and specifies which of these may
be used concurrently and which can only be used by one logical thread at a time.

TABLE 3–2 Handles and Concurrency

Handle Supports Concurrent Use

MQDestinationHandle YES

MQConnectionHandle YES

MQSessionHandle NO

MQProducerHandle NO

MQConsumerHandle NO

MQMessageHandle NO

MQPropertiesHandle NO

Single-Threaded Session Control
A session is a single-threaded context for producing and consuming messages. Multiple threads
should not use the same session concurrently nor use the objects it creates concurrently. The
only exception to this occurs during the orderly shutdown of the session or its connection when
the client calls the MQCloseSession or the MQCloseConnection function. Follow these
guidelines in designing your client:
■ If a client wants to have one thread producing messages and other threads consuming

messages, the client should use a separate session for its producing thread.
■ Do not create an asynchronous message consumer while the connection is in started mode.
■ A session created with MQ_SESION_ASYNC_RECEIVE mode uses a single thread to run all its

consumers’ MQMessageListenerFunc callback functions. Clients that want concurrent
delivery should use multiple sessions.

Managing Threads

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201062

■ Do not call the MQStopConnection, MQCloseSession , or the MQCloseConnection functions
from a MQMessageListenerFunc callback function. (These calls will not return until delivery
of messages has stopped.)

■ Call the MQFreeConnection function after MQCloseConnection and all of the application
threads associated with a connection and its sessions, producers, and consumers have
returned.

The Message Queue C runtime library provides one thread to a session in
MQ_SESSION_ASYNC_RECEIVE mode for asynchronous message delivery to its consumers. When
the connection is started, all its sessions that have created asynchronous consumers are
dedicated to the thread of control that delivers messages. Client code should not use such a
session from another thread of control. The only exception to this is the use of MQCloseSession
and MQCloseConnection.

Connection Exceptions
When a connection exception occurs, the Message Queue C library thread that is provided to
the connection calls its MQConnectionExceptionListenerFunc callback if one exists. If an
MQConnectionExceptionListenerFunc callback is used for multiple connections, it can
potentially be called concurrently from different connection threads.

You should not call the MQCloseConnection function in an
MQConnectionExceptionListenerFunc callback. Instead the callback function should notify
another thread to call MQCloseConnection and return.

Managing Physical Destination Limits
When creating a topic or queue destination, the administrator can specify how the broker
should behave when certain memory limits are reached. Specifically, when the number of
messages reaching a physical destination exceeds the number specified with the maxNumMsgs
property or when the total amount of memory allowed for messages exceeds the number
specified with the maxTotalMsgBytes property, the broker takes one of the following actions,
depending on the setting of the limitBehavior property:

■ Slows message producers (FLOW_CONTROL)
■ Throws out the oldest message in memory (REMOVE_OLDEST)
■ Throws out the lowest priority message in memory (REMOVE_LOW_PRIORITY)
■ Rejects the newest messages (REJECT_NEWEST)

If the default value REJECT_NEWEST is specified for the limitBehavior property, the broker
throws out the newest messages received when memory limits are exceeded. If the message
discarded is a persistent message, the producing client gets an error which you should handle by
re-sending the message later.

Managing Physical Destination Limits

Chapter 3 • Client Design Issues 63

If any of the other values is selected for the limitBehavior property or if the message is not
persistent (or persistent and MQ_ACK_ON_PRODUCE_PROPERTY is false), the application client is
not notified if a message is discarded. Application clients should let the administrator know
how they prefer this property to be set for best performance and reliability.

Managing the Dead Message Queue
When a message is deemed undeliverable, it is automatically placed on a special queue called
the dead message queue. A message placed on this queue retains all of its original headers
(including its original destination) and information is added to the message’s properties to
explain why it became a dead message. For a description of the destination properties and of the
broker properties that control the system’s use of the dead message queue, see “Using the Dead
Message Queue” in Oracle GlassFish Message Queue 4.4.2 Administration Guide.

This section describes the message properties that you can set or examine programmatically to
determine the following:

■ Whether a dead message can be sent to the dead message queue.
■ Whether the broker should log information when a message is destroyed or moved to the

dead message queue.
■ Whether the body of the message should also be stored when the message is placed on the

dead message queue.
■ Why the message was placed on the dead message queue and any ancillary information.

(Message Queue 4.4.2 clients can set properties related to the dead message queue on messages
and send those messages to clients compiled against Message Queue 3.5x or earlier versions.
However clients receiving such messages cannot examine these properties without recompiling
against Message Queue 4.4.2 libraries.)

The dead message queue is automatically created by the system and called mq.sys.dmq. You
can write a Java program that uses the metrics monitoring API, described in Chapter 4, “Using
the Metrics Monitoring API,” in Oracle GlassFish Message Queue 4.4.2 Developer’s Guide for
Java Clients. or the JMX API, described in Oracle GlassFish Message Queue 4.4.2 Developer’s
Guide for JMX Clients, to determine whether that queue is growing, to examine messages on
that queue, and so on.

You can set the properties described in Table 3–3 for any message to control how the broker
should handle that message if it deems it to be undeliverable. Note that these message properties
are needed only to override default destination, or default broker-based behavior.

Managing the Dead Message Queue

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201064

http://docs.sun.com/doc/821-1794/aeoez?a=view
http://docs.sun.com/doc/821-1794/aeoez?a=view
http://docs.sun.com/doc/821-1796/aeqej?a=view
http://docs.sun.com/doc/821-1796/aeqej?a=view
http://docs.sun.com/doc/821-1796/aeqej?a=view
http://docs.sun.com/doc/821-1797
http://docs.sun.com/doc/821-1797

TABLE 3–3 Message Properties Relating to Dead Message Queue

Property Type Description

JMS_SUN_PRESERVE_UNDELIVERED Boolean For a dead message, the default value of unset,
specifies that the message should be handled as
specified by the useDMQ property of the destination
to which the message was sent.

A value of true overrides the setting of the useDMQ
property and sends the dead message to the dead
message queue,.

A value of false overrides the setting of the
useDMQ property and prevents the dead message
from being placed in the dead message queue.

JMS_SUN_LOG_DEAD_MESSAGES Boolean The default value of unset, will behave as specified
by the broker configuration property
imq.destination.logDeadMsgs.

A value of true overrides the setting of the
imq.destination.logDeadMsgs broker property
and specifies that the broker should log the action
of removing a message or moving it to the dead
message queue.

A value of false overrides the setting of the
imq.destination.logDeadMsgs broker property
and specifies that the broker should not log these
actions.

JMS_SUN_TRUNCATE_MSG_BODY Boolean The default value of unset, will behave as specified
by the broker property
imq.destination.DMQ.truncateBody.

A value of true overrides the setting of the
imq.destination.DMQ.truncateBody property
and specifies that the body of the message should
be discarded when the message is placed in the
dead message queue.

A value of false overrides the setting of the
imq.destination.DMQ.truncateBody property
and specifies that the body of the message should
be stored along with the message header and
properties when the message is placed in the dead
message queue.

The properties described in Table 3–4 are set by the client runtime for a message placed in the
dead message queue.

Managing the Dead Message Queue

Chapter 3 • Client Design Issues 65

TABLE 3–4 Dead Message Properties

Property Type Description

JMSXDeliveryCount

Integer Specifies the most number of times the
message was delivered to a given consumer.
This value is set only for ERROR or
UNDELIVERABLE messages.

JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP

Long Specifies the time (in milliseconds) when the
message was placed on the dead message
queue.

JMS_SUN_DMQ_UNDELIVERED_REASON

String Specifies one of the following values to
indicate the reason why the message was
placed on the dead message queue:
■ OLDEST

■ LOW_PRIORITY

■ EXPIRED

■ UNDELIVERABLE

■ ERROR

If the message was marked dead for multiple
reasons, for example it was undeliverable and
expired, only one reason will be specified by
this property.

The ERROR value is returned when a message
cannot be delivered due to an internal error;
this is an unusual condition. In this case, the
sender should just resend the message.

JMS_SUN_DMQ_PRODUCING_BROKER

String For message traffic in broker clusters: specifies
the name and port number of the broker that
sent the message. A null value indicates that it
was the local broker.

JMS_SUN_DMQ_DEAD_BROKER

String For message traffic in broker clusters: specifies
the name and port number of the broker that
placed the message on the dead message
queue. A null value indicates that it was the
local broker.

JMS_SUN_DMQ_UNDELIVERED_EXCEPTION

String Specifies the name of the exception (if the
message was dead because of an exception) on
either the client or the broker.

JMS_SUN_DMQ_UNDELIVERED_COMMENTS

String An optional comment provided when the
message is marked dead.

Managing the Dead Message Queue

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201066

TABLE 3–4 Dead Message Properties (Continued)
Property Type Description

JMS_SUN_DMQ_BODY_TRUNCATED

Boolean A value of true indicates that the message
body was not stored. A value of false
indicates that the message body was stored.

Factors Affecting Performance
Application design decisions can have a significant effect on overall messaging performance. In
general, the more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a significant design
consideration. You can maximize performance and throughput by choosing to produce and
consume non-persistent messages. On the other hand, you can maximize reliability by
producing and consuming persistent messages using a transacted session. Between these
extremes are a number of options, depending on the needs of your application. This section
describes how these options or factors affect performance. They include the following:

■ “Delivery Mode (Persistent/Non-persistent)” on page 68
■ “Use of Transactions” on page 68
■ “Acknowledgement Mode” on page 69
■ “Durable and Non-Durable Subscriptions” on page 70
■ “Use of Selectors (Message Filtering)” on page 70
■ “Message Size” on page 71
■ “Message Type” on page 71.

Table 3–5 summarizes how application design factors affect messaging performance. The table
shows two scenarios (a high reliability, low performance scenario and a high performance, low
reliability scenario) and the choice of application design factors that characterizes each.
Between these extremes, there are many choices and trade-offs that affect both reliability and
performance.

TABLE 3–5 Comparison of High Reliability and High Performance Scenarios

Application DesignFactor High ReliabilityLow Performance Scenario High PerformanceLow Reliability Scenario

Delivery mode Persistent messages Non-persistent messages

Use of transactions Transacted sessions No transactions

Acknowledgement mode AUTO_ACKNOWLEDGE or
CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

Durable/non-durable
subscriptions

Durable subscriptions Non-durable subscriptions

Use of selectors Message filtering No message filtering

Factors Affecting Performance

Chapter 3 • Client Design Issues 67

TABLE 3–5 Comparison of High Reliability and High Performance Scenarios (Continued)
Application DesignFactor High ReliabilityLow Performance Scenario High PerformanceLow Reliability Scenario

Message size Small messages Large messages

Message body type Complex body types Simple body types

Note – In the discussion that follows, performance data was generated on a two-CPU, 1002 Mhz,
Solaris 8 system, using file-based persistence. The performance test first warmed up the
Message Queue broker, allowing the Just-In-Time compiler to optimize the system and the
persistent database to be primed.

Once the broker was warmed up, a single producer and a single consumer were created, and
messages were produced for 30 seconds. The time required for the consumer to receive all
produced messages was recorded, and a throughput rate (messages per second) was calculated.
This scenario was repeated for different combinations of the application design factors shown
in “Factors Affecting Performance” on page 67.

Delivery Mode (Persistent/Non-persistent)
Persistent messages guarantee message delivery in case of message server failure. The broker
stores these message in a persistent store until all intended consumers acknowledge they have
consumed the message.

Broker processing of persistent messages is slower than for non-persistent messages for the
following reasons:
■ A broker must reliably store a persistent message so that it will not be lost should the broker

fail.
■ The broker must confirm receipt of each persistent message it receives. Delivery to the

broker is guaranteed once the method producing the message returns without an exception.
■ Depending on the client acknowledgment mode, the broker might need to confirm a

consuming client’s acknowledgement of a persistent message.

The differences in performance for persistent and non-persistent modes can be
significant--about 25% faster for non-persistent messages.

Use of Transactions
A transaction guarantees that all messages produced or consumed within the scope of the
transaction will be either processed (committed) or not processed (rolled back) as a unit. In
general, the overhead of both local and distributed transaction processing dwarfs all other
performance differentiators.

Factors Affecting Performance

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201068

A message produced or consumed within a transaction is slower than those produced or
consumed outside of a transaction for the following reasons:

■ Additional information must be stored with each produced message.
■ In some situations, messages in a transaction are stored when normally they would not be.

For example, a persistent message delivered to a topic destination with no subscriptions
would normally be deleted, however, at the time the transaction is begun, information about
subscriptions is not available.

■ Information on the consumption and acknowledgement of messages within a transaction
must be stored and processed when the transaction is committed.

Acknowledgement Mode
Other than using transactions, you can ensure reliable delivery by having the client
acknowledge receiving a message. If a session is closed without the client acknowledging the
message or if the message server fails before the acknowledgment is processed, the broker
redelivers that message, setting the MQ_REDELIVERED_HEADER_PROPERTY message header.

For a non-transacted session, the client can choose one of three acknowledgement modes, each
of which has its own performance characteristics:

■ AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once the consumer
has processed it. This mode guarantees at most one redelivered message after a provider
failure.

■ CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages that have been received in the same session up to the message
where the acknowledge function is called upon are acknowledged. If the message server fails
while processing a set of acknowledgments, one or more messages in that group might be
redelivered.
Note that this behavior models the JMS 1.0.2 specification rather than the JMS 1.1
specification
(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is no
guarantee that all acknowledgments will be processed together if a provider fails during
processing.)

■ DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge messages in a lazy
manner. Multiple messages can be redelivered after a provider failure.

Performance is impacted by acknowledgement mode for the following reasons:

■ Extra control messages between broker and client are required in AUTO_ACKNOWLEDGE and
CLIENT_ACKNOWLEDGE modes. The additional control messages add processing overhead and
can interfere with JMS payload messages, causing processing delays.

Factors Affecting Performance

Chapter 3 • Client Design Issues 69

■ In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait until the
broker confirms that it has processed the client’s acknowledgment before the client can
consume more messages. (This broker confirmation guarantees that the broker will not
inadvertently redeliver these messages.)

■ The Message Queue persistent store must be updated with the acknowledgement
information for all persistent messages received by consumers, thereby decreasing
performance.

In general, our tests show about a 7% difference in performance between pesistent and
nonpersistent messages, no matter which acknowledgment mode is used. That is, while
persistence is a significant factor affecting performance, acknowledgment mode is not.

Durable and Non-Durable Subscriptions
Subscribers to a topic destination have either durable or non-durable subscriptions. Durable
subscriptions provide increased reliability at the cost of slower throughput for the following
reasons:
■ The Message Queue message server must persistently store the list of messages assigned to

each durable subscription so that should a message server fail, the list is available after
recovery.

■ Persistent messages for durable subscriptions are stored persistently, so that should a
message server fail, the messages can still be delivered after recovery, when the
corresponding consumer becomes active. By contrast, persistent messages for non-durable
subscriptions are not stored persistently (should a message server fail, the corresponding
consumer connection is lost and the message would never be delivered).

For nonpersistent messages, performance is about the same for durable and non durable
subscriptions. For persistent messages, performance is about 20% lower for durable
subscriptions than for nondurable subscriptions.

Use of Selectors (Message Filtering)
Application developers can have the messaging provider sort messages according to criteria
specified in the message selector associated with a consumer and deliver to that consumer only
those messages whose property value matches the message selector. For example, if an
application creates a subscriber to the topic WidgetOrders and specifies the expression
NumberOfOrders >1000 for the message selector, messages with a NumberOfOrders property
value of 1001 or more are delivered to that subscriber.

Creating consumers with selectors lowers performance (as compared to using multiple
destinations) because additional processing is required to handle each message. When a
selector is used, it must be parsed so that it can be matched against future messages.

Factors Affecting Performance

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201070

Additionally, the message properties of each message must be retrieved and compared against
the selector as each message is routed. However, using selectors provides more flexibility in a
messaging application and may lower resource requirements at the expense of speed.

In our tests, performance results were affected by the use of selectors only in the case of
nondurable subscribers, which ran about 33% faster without selectors. For durable subscribers
and for queue consumers, performance was not affected by the use of selectors. For more
information on using selectors, see “Using Selectors Efficiently” on page 60

Message Size
Message size affects performance because more data must be passed from producing client to
broker and from broker to consuming client, and because for persistent messages a larger
message must be stored.

However, by batching smaller messages into a single message, the routing and processing of
individual messages can be minimized, providing an overall performance gain. In this case,
information about the state of individual messages is lost.

In our tests we compared performance for persistent and non-persistent 1k, 10k, and 100k
messages. We found that 100k messages were processed two to three times faster than 10k
messages, and 10k messages were processed five to six times faster than 1k messages. For both
persistent and non-persistent messages, the size of the message affected the processing rate
much more than its delivery mode. For 1k messages, non-persistent messages were almost twice
as fast; for 10k messages, non-persistent messages were about 33% faster; for 100k messages,
non persistent messages were about 5% faster. In our tests all messages were sent to a queue
destination and used the AUTO_ACKNOWLEDGE acknowledgement mode.

Message Type
The C API supports three message types:

■ MQ_BYTES_MESSAGE, which contains a set of bytes in a format determined by the application
■ MQ_TEXT_MESSAGE, which is a simple MQString
■ MQ_MESSAGE, which contains a header and properties but no body

Since performance varies with the complexity of the data, text messages are slightly more
expensive to send than byte messages, and messages that have no body are the fastest.

Factors Affecting Performance

Chapter 3 • Client Design Issues 71

72

Reference

This chapter provides reference documentation for the Message Queue C-API. It includes
information about the following:

■ “Data Types” on page 73 describes the C declarations for data types used by Message Queue
messaging

■ “Function Reference” on page 84 describes the C functions that implement Message Queue
messaging

■ “Header Files” on page 156 describes the contents of the C-API header files

For information on building C-Message Queue programs, see Chapter 3, “Client Design Issues.”

For information on how you use the C API to complete specific programming tasks, see
Chapter 2, “Using the C API.”

Data Types
“Data Types” on page 73 summarizes the data types defined by the Message Queue C API. The
table lists data types in alphabetical order and provides cross references for types that require
broader discussion.

Note that Message Queue data types designated as handles map to opaque structures (objects).
Please do not attempt to dereference these handles to get to the underlying objects. Instead, use
the functions provided to access the referenced objects.

TABLE 4–1 Message Queue C-API Data Type Summary

Message Queue Type Description

ConstMQString

A constant MQString.

4C H A P T E R 4

73

TABLE 4–1 Message Queue C-API Data Type Summary (Continued)
Message Queue Type Description

MQAckMode

An enum used to specify the acknowledgement mode of a
session. Possible values include the following:
■ MQ_AUTO_ACKNOWLEDGE

■ MQ_CLIENT_ACKNOWLEDGE

■ MQ_DUPS_OK_ACKNOWLEDGE

■ MQ_SESSION_TRANSACTED

See “Acknowledge Modes” on page 81 for more information.

MQBool

A boolean that can assume one of two values:

MQ_TRUE(=1)

MQ_FALSE(=0).

MQChar

char type.

MQConnectionHandle

A handle used to reference a Message Queue connection. You
get this handle when you call the MQCreateConnection()
function.

MQConsumerHandle

A handle used to reference a Message Queue consumer. A
consumer can be durable, nondurable and synchronous, or
asynchronous. You get this handle when you call one of the
functions used to create consumers. See “Receiving
Messages” on page 51 for more information.

MQDeliveryMode

An enum used to specify whether a message is sent
persistently:
■ MQ_NON_PERSISTENT_DELIVERY

■ MQ_PERSISTENT_DELIVERY

You specify this value with the MQSendMessageExt()
function or the MQSendMessageToDestinationExt()
function.

MQDestinationHandle

A handle used to reference a Message Queue destination. You
get this handle when you call the MQCreateDestination()
function or the MQCreateTemporaryDestination()
function.

MQDestinationType

An enum used to specify the type of a destination:
■ MQ_QUEUE_DESTINATION

■ MQ_TOPIC_DESTINATION

You set the destination type using the
“MQCreateDestination” on page 100 function or the
MQCreateTemporaryDestination() function.

Data Types

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201074

TABLE 4–1 Message Queue C-API Data Type Summary (Continued)
Message Queue Type Description

MQError

A 32-bit unsigned integer.

MQConnectionExceptionListenerFunc

The type of a callback function used for connection exception
handling. For more information, see “Callback Type for
Connection Exception Handling” on page 83.

MQFloat32

A 32-bit floating-point number.

MQFloat64

A 64-bit floating-point number.

MQInt16

A 16-bit signed integer.

MQInt32

A 32-bit signed integer.

MQInt64

A 64-bit signed integer.

MQInt8

An 8-bit signed integer.

MQMessageHandle

A handle used to reference a Message Queue message. You
get this handle when you call the MQCreateBytesMessage()
function, or the “MQCreateTextMessage” on page 110
function, or on receipt of a message.

MQMessageListenerFunc

The type of a callback function used for asynchronous
message receipt. For more information, see “Callback Type
for Asynchronous Message Consumption” on page 81.

MQMessageType

An enum passed back by the “MQGetMessageType” on
page 125 and used to specify the type of a message; possible
values include the following:
■ MQ_TEXT_MESSAGE

■ MQ_BYTES_MESSAGE

■ MQ_MESSAGE

■ MQ_UNSUPPORTED_MESSAGE

MQProducerHandle

A handle used to reference a Message Queue producer. You
get this handle when you call “MQCreateMessageProducer”
on page 105 or “MQCreateMessageProducerForDestination”
on page 106.

MQPropertiesHandle

A handle used to reference Message Queue properties. You
use this handle to define or read connection properties and
message headers or message properties. See “Working With
Properties” on page 32 for more information.

Data Types

Chapter 4 • Reference 75

TABLE 4–1 Message Queue C-API Data Type Summary (Continued)
Message Queue Type Description

MQReceiveMode

An enum used to specify whether consumers are synchronous
or asynchronous. It can be one of the following:
■ MQ_SESSION_SYNC_RECEIVE

■ MQ_SESSION_ASYNC_RECEIVE

See “MQCreateSession” on page 107 for more information.

MQSessionHandle

A handle used to reference a Message Queue session. You get
this handle when you call the MQCreateSession() function.

MQStatus

A data type returned by nearly all functions defined in
mqcrt.h. See “Error Handling” on page 56 for more
information on how you handle errors returned by Message
Queue functions.

MQString

A null terminated UTF-8 encoded character string

MQType

An enum used to return the type of a single property; possible
values include the following:
■ MQ_INT8_TYPE

■ MQ_INT16_TYPE

■ MQ_INT32_TYPE

■ MQ_INT64_TYPE

■ MQ_FLOAT32_TYPE

■ MQ_FLOAT64_TYPE

■ MQ_STRING_TYPE

■ MQ_INVALID_TYPE

Connection Properties
When you create a connection using the “MQCreateConnection” on page 98 function, you
must pass a handle to an object of type MQPropertiesHandle. The following table lists and
describes the key values that define each property. The procedure that follows the table explains
how you set the properties referenced by this handle.

TABLE 4–2 Connection Properties

Key Name Description

MQ_CONNECTION_TYPE_PROPERTY

An MQString specifying the transport protocol of the connection
service used by the client. Supported types are TCP or TLS (SSL).
The TCP protocol underlies the jms service; the TLS protocol
supports the ssljms service.

Default: TCP

Data Types

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201076

TABLE 4–2 Connection Properties (Continued)
Key Name Description

MQ_ACK_TIMEOUT_PROPERTY

A 32-bit integer specifying the maximum time in milliseconds
that the client runtime will wait for any broker acknowledgement
before returning an MQ_TIMEOUT_EXPIRED error. A value of 0
means there is no time-out.

Default: 0

MQ_BROKER_HOST_PROPERTY

An MQString specifying the broker host name to which to
connect.

If you set the property MQ_SSL_BROKER_IS_TRUSTED to
false, the value you specify for the property
MQ_BROKER_HOST_PROPERTY must match the CN
(common name) of the broker’s certificate.

No default.

MQ_PING_INTERVAL_PROPERTY

A 32-bit integer specifying the interval (in seconds) that the
connection can remain idle before the client runtime tests the
connection by pinging the broker. (The exact amount of time it
takes for the ping to detect connection failure varies with the
system’s TCP configuration.)

A ping interval that is <= 0 turns off the ping for the connection.
The minimum allowable interval is 1 second. This prevents an
application from setting the interval to a value that would affect
performance.

The ping interval is logged at the INFO level by the C client
runtime when a connection is created.

Default: 30 seconds

MQ_BROKER_PORT_PROPERTY

A 32-bit integer specifying the number of the port for the broker's
port mapper service.

No default.

MQ_BROKER_SERVICE_PORT_PROPERTY

A 32–bit integer that specifies the number of a port to which the
client connects. This is a static, fixed port assignment; it bypasses
the broker's port mapper service. If you do need to connect to a
fixed port on the broker, make sure that the service needed is
enabled and available at the specified port by setting the
imq.serviceName.protocolType.port broker property.

Data Types

Chapter 4 • Reference 77

TABLE 4–2 Connection Properties (Continued)
Key Name Description

MQ_ACK_ON_PRODUCE_PROPERTY

An MQBool specifying whether the producing client waits for
broker acknowledgement of receipt of message from the
producing client.

If set to MQ_TRUE, the broker acknowledges receipt of all messages
(persistent and non-persistent) from the producing client, and the
producing client thread will block waiting for those
acknowledgements.

If set to MQ_FALSE, broker does not acknowledge receipt of any
message (persistent or non-persistent) from the producing client,
and the producing client thread will not block waiting for broker
acknowledgements.

Default: the broker acknowledges receipt of persistent messages
only from the producing client, and the producing client thread
will block waiting for those acknowledgements.

MQ_ACK_ON_ACKNOWLEDGE_PROPERTY

An MQBool specifying whether the broker confirms
(acknowledges) consumer acknowledgements. A consumer
acknowledgement can be initiated either by the client’s session or
by the consuming client, depending on the session
acknowledgement mode (see “Acknowledge Modes” on page 81).
If the session’s acknowledgement mode is
MQ_DUPS_OK_ACKNOWLEDGE, this flag has no effect.

If set to MQ_TRUE, the broker acknowledges all consuming
acknowledgements, and the consuming client thread blocks
waiting for these broker acknowledgements.

If set to MQ_FALSE, the broker does not acknowledge any
consuming client acknowledgements, and the consuming client
thread will not block waiting for such broker acknowledgements.

Default: MQ_TRUE

For more information, see the discussion for the
“MQAcknowledgeMessages” on page 88 function and “Message
Acknowledgement” on page 43.

MQ_CONNECTION_FLOW_COUNT_PROPERTY

A 32-bit integer, greater than 0, specifying the number of Message
Queue messages in a metered batch. When this number of
messages is delivered from the broker to the client runtime,
delivery is temporarily suspended, allowing any control messages
that had been held up to be delivered. Payload message delivery is
resumed upon notification by the client runtime, and continues
until the count is again reached.

Default: 100

Data Types

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201078

TABLE 4–2 Connection Properties (Continued)
Key Name Description

MQ_CONNECTION_FLOW_LIMIT_ENBABLED_PROPERTY

An MQBool specifying whether the value
MQ_CONNECTION_FLOW_LIMIT_PROPERTY is used to control
message flow. Specify MQ_TRUE to use the value and MQ_FALSE

otherwise.

Default: MQ_FALSE

MQ_CONNECTION_FLOW_LIMIT_PROPERTY

A 32-bit integer, greater than 0, specifying the maximum number
of unconsumed messages the client runtime can hold for each
connection. Note however, that unless
MQ_CONNECTION_FLOW_LIMIT_ENBABLED_PROPERTY is MQ_TRUE,
this limit is not checked.

When the number of unconsumed messages held by the client
runtime for the connection exceeds the limit, message delivery
stops. It is resumed (in accordance with the flow metering
governed by MQ_CONNECTION_FLOW_COUNT_PROPERTY) only when
the number of unconsumed messages drops below the value set
with this property.

This limit prevents a consuming client that is taking a long time to
process messages from being overwhelmed with pending
messages that might cause it to run out of memory.

Default: 1000

MQ_SSL_BROKER_IS_TRUSTED

An MQ_Bool specifying whether the broker is trusted.

Default: MQ_TRUE

MQ_SSL_CHECK_BROKER_FINGERPRINT

An MQ_Bool. If it is set to MQ_TRUE and if
MQ_SSL_BROKER_IS_TRUSTED is MQ_FALSE, the broker’s certificate
fingerprint is compared with the
MQ_SSL_BROKER_CERT_FINGERPRINT property value in case of
certificate authorization failure. If they match, the broker’s
certificate is authorized for use in the SSL connection.

Default: MQ_FALSE

MQ_SSL_BROKER_CERT_FINGERPRIN

An MQString specifying the MD5 hash, in hex format, of the
broker’s certificate.

Default: NULL

MQ_NAME_PROPERTY

An MQString that specifies the name of the Message Queue
product. This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

MQ_VERSION_PROPERTY

An MQInt32 that specifies the version of the Message Queue
product. This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

Data Types

Chapter 4 • Reference 79

TABLE 4–2 Connection Properties (Continued)
Key Name Description

MQ_MAJOR_VERSION_PROPERTY

An MQInt32 that specifies the major version of the Message Queue
product. For example, if the version is 3.5.0.1, the major version
would be 3.

This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

MQ_MINOR_VERSION_PROPERTY

An MQInt32 that specifies the minor version of the Message
Queue product. For example, if the version is 3.5.0.1, the minor
version would be 5.

This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

MQ_MICRO_VERSION_PROPERTY

An MQInt32 that specifies the micro version of the Message Queue
product. For example, if the version is 3.5.0.1, the micro version
would be 0.

This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

MQ_SERVICE_PACK_PROPERTY

An MQInt32 that specifies the service pack version of the Message
Queue product. For example, if the version is 3.5.0.1, the service
pack version would be 1.

This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

MQ_UPDATE_RELEASE_PROPERTY

An MQInt32 that specifies the update release version of the
Message Queue product. For example, if the version is 3.7 UR1,
the update release value would be 1.

This property is set by the runtime library. See
“MQGetMetaData” on page 126 for more information.

▼ To Set Connection Properties

Call the MQCreateProperties function to get a handle to a newly created properties object

Call a function to set one of the connection properties listed in Table 4–2.

Which function you call depends on the type of the property you want to set; for example, to set
an MQString property, you call the MQSetStringProperty function; to set a MQBool property,
you call the MQSetBoolProperty function; and so on. Each function that sets a property
requires that you pass a key name (constant) and value; these are listed and described in
Table 4–2.

1

2

Data Types

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201080

When you have set all the properties you want to define for the connection, you can then create
the connection, by calling the MQCreateConnection function.
The runtime library sets the connection properties that specify the name and version of the
Message Queue product; you can retrieve these using the “MQGetMetaData” on page 126
function. These properties are described at the end of Table 4–2, starting with
MQ_NAME_PROPERTY.

Acknowledge Modes
The Message Queue runtime supports reliable delivery by using transacted sessions or through
acknowledgement options set at the session level. When you use the “MQCreateSession” on
page 107 function to create a session, you must specify an acknowledgement option for that
session using the acknowledgeMode parameter. The value of this parameter is ignored for
transacted sessions.

Table 4–3describes the effect of the options you can set using the acknowledgeMode parameter.

TABLE 4–3 acknowledgeModeValues

Enum Description

MQ_AUTO_ACKNOWLEDGE

The session automatically acknowledges each message consumed by the
client. This happens when one of the receive functions returns successfully,
or when the message listener processing the message returns successfully.

MQ_CLIENT_ACKNOWLEDGE

The client explicitly acknowledges all messages for the session that have
been consumed up to the point when the MQAcknowledgeMessages function
has been called. See the discussion of the function
“MQAcknowledgeMessages” on page 88 for additional information.

MQ_DUPS_OK_ACKNOWLEDGE

The session acknowledges after ten messages have been consumed and does
not guarantee that messages are delivered and consumed only once.

MQ_SESSION_TRANSACTED

This value is read only. It is set by the library if you have passed MQ_TRUE for
the isTransacted parameter to the MQCreateSession function. It is
returned to you by the MQGetAcknowledgeMode function if the session is
transacted.

Callback Type for Asynchronous Message
Consumption
When you call the MQCreateAsyncMessageConsumer() function or the
MQCreateAsyncDurableMessageConsumer() function, you must pass the name of an
MQMessageListenerFunc type callback function that is to be called when the consumer receives
a message to the specified destination.

3

Data Types

Chapter 4 • Reference 81

The MQMessageListenerFunc type has the following definition:

MQError (* MQMessageListenerFunc)(

const MQSessionHandle sessionHandle,

const MQConsumerHandle consumerHandle,

MQMessageHandle messageHandle

void * callbackData);

Parameters
sessionHandle The handle to the session to which this consumer belongs. The client

runtime specifies this handle when it calls your message listener.

consumerHandle A handle to the consumer receiving the message. The client runtime
specifies this handle when it calls your message listener.

messageHandle A handle to the incoming message. The client runtime specifies this
handle when it calls your message listener.

callbackData The void pointer that you passed to the function
“MQCreateAsyncMessageConsumer” on page 95 or the function
“MQCreateAsyncDurableMessageConsumer” on page 93.

The body of a message listener function is written by the receiving client. Mainly, the function
needs to process the incoming message by examining its header, body, and properties. The
client is also responsible for freeing the message handle (either from within the handler or from
outside the handler) by calling “MQFreeMessage” on page 114.

In addition, you should observe the following guidelines when writing the message listener
function:

■ If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the session, you must
explicitly call the MQAcknowledgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function
“MQAcknowledgeMessages” on page 88.

■ Do not try to close the session (or the connection to which it belongs) and consumer handle
in the message listener.

■ It is possible for a message listener to return an error; however, this is considered a client
programming error. If the listener discovers that the message is badly formatted or if it
cannot process it for some other reason, it should handle the problem itself by re-directing it
to an application-specific bad-message destination and process it later.
If the message listener does return an error, the client runtime will try to redeliver the
message once if the session’s acknowledge mode is either MQ_AUTO_ACKNOWLEDGE or
MQ_DUPS_OK_ACKNOWLEDGE .

Data Types

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201082

Callback Type for Asynchronous Message
Consumption in Distributed Transactions
MQMessageListenerBAFunc is the type of the callback functions of before/after
MQMessageListenerFunc for asynchronous message receiving from a distributed transaction
session.

The MQMessageListenerBAFunc type has the following definition:

MQError (* MQMessageListenerBAFunc)(

const MQSessionHandle sessionHandle,

const MQConsumerHandle consumerHandle,

MQMessageHandle messageHandle

MQError errorCode

void * callbackData);

Parameters
sessionHandle The handle to the session to which this consumer belongs. The client

runtime specifies this handle when it calls your message listener.

consumerHandle A handle to the consumer receiving the message. The client runtime
specifies this handle when it calls your message listener.

messageHandle A handle to the incoming message. The client runtime specifies this
handle when it calls your message listener.

errorCode Client runtime processing status that is passed to the before/after callback
functions.

callbackData The void pointer that is passed to the function
“MQCreateAsyncMessageConsumer” on page 95.

Note – What additional information is needed for his function type?

Callback Type for Connection Exception Handling
The client runtime will call this function when a connection exception occurs.

The MQConnectionExceptionListenerFunc type has the following definition:

Void (* MQConnectionExceptionListenerFunc)(

const MQConnectionHandle connectionHandle,

Data Types

Chapter 4 • Reference 83

MQStatus exception,

void * callbackData);

Parameters
connectionHandle The handle to the connection on which the connection exception

occurred. The client runtime sets this handle when it calls the
connection exception handler.

exception An MQStatus for the connection exception that occurred. The client
runtime specifies this value when it calls the exception handler.

You can pass this status result to any functions used to handle errors to
get an error code or error string. For more information, see “Error
Handling” on page 56.

callbackData Whatever void pointer was passed as the listenerCallbackData
parameter to the function“MQCreateConnection” on page 98 for
more information.

The body of a connection exception listener function is written by the client. This function will
only be called synchronously with respect to a single connection. If you install it as the
connection exception listener for multiple connections, then it must be reentrant.

Do not try to close the session (or the connection to which it belongs) in the exception listener.

Function Reference
This section describes the C-API functions in alphabetical order. “Function Reference” on
page 84 lists the C-API functions.

TABLE 4–4 Message Queue C-API Function Summary

Function Description

“MQAcknowledgeMessages” on page 88 Acknowledges the specified message and all messages received
before it on the same session.

“MQCloseConnection” on page 90 Closes the specified connection.

“MQCloseMessageConsumer” on page 90 Closes the specified consumer.

“MQCloseMessageProducer” on page 91 Closes the specified message producer without closing its
connection.

“MQCloseSession” on page 92 Closes the specified session.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201084

TABLE 4–4 Message Queue C-API Function Summary (Continued)
Function Description

“MQCommitSession” on page 92 Commits a transaction associated with the specified session.

“MQCreateAsyncDurableMessageConsumer”
on page 93

Creates a durable asynchronous message consumer for the
specified destination.

“MQCreateAsyncMessageConsumer” on
page 95

Creates an asynchronous message consumer for the specified
destination.

“MQCreateBytesMessage” on page 97 Creates an MQ_BYTES_MESSAGE message.

“MQCreateConnection” on page 98 Creates a connection to the broker.

“MQCreateDestination” on page 100 Creates a logical destination and passes a handle to it back to
you.

“MQCreateDurableMessageConsumer” on
page 101

Creates a durable synchronous message consumer for the
specified destination.

“MQCreateMessage” on page 103 Creates an MQ_MESSAGE message.

“MQCreateMessageConsumer” on page 104 Creates a synchronous message consumer for the specified
destination.

“MQCreateMessageProducer” on page 105 Creates a message producer with no default destination.

“MQCreateMessageProducerForDestination”
on page 106

Creates a message producer with a default destination.

“MQCreateProperties” on page 107 Creates a properties handle.

“MQCreateSession” on page 107 Creates a session and passes back a handle to the session.

“MQCreateTemporaryDestination” on
page 109

Creates a temporary destination and passes its handle back to
you.

“MQCreateTextMessage” on page 110 Creates a text message.

“MQCreateXASession” on page 110 Creates a distributed transaction (XA) session.

“MQFreeConnection” on page 113 Releases memory assigned to the specified connection and to
all resources associated with that connection.

“MQFreeDestination” on page 113 Releases memory assigned to the specified destination and to
all resources associated with that destination.

“MQFreeMessage” on page 114 Releases memory assigned to the specified message.

“MQFreeProperties” on page 114 Releases the memory allocated to the referenced properties
handle.

“MQFreeString” on page 115 Releases the memory allocated to the specified MQString.

Function Reference

Chapter 4 • Reference 85

TABLE 4–4 Message Queue C-API Function Summary (Continued)
Function Description

“MQGetAcknowledgeMode” on page 115 Passes back the acknowledgement mode of the specified
session.

“MQGetBoolProperty” on page 115 Passes back a property of type MQBool.

“MQGetBytesMessageBytes” on page 116 Passes back the address and size of a MQ_BYTES_MESSAGE
message body.

“MQGetConnectionProperties” on page 117 Passes back a handle to the properties used in creating the
connection associated with the specified connection handle.

“MQGetDestinationName” on page 117 Passes back the name of the physical destination to which the
specified message has been sent.

“MQGetDestinationType” on page 118 Passes back the type of the specified destination.

“MQGetErrorTrace” on page 118 Returns a string describing the stack at the time the specified
error occurred.

“MQGetFloat32Property” on page 119 Passes back the value of the MQFloat32 property for the
specified key.

“MQGetFloat64Property” on page 120 Passes back the value of the MQFloat64 property for the
specified key.

“MQGetInt16Property” on page 120 Passes back the value of the MQInt16 property for the specified
key.

“MQGetInt32Property” on page 121 Passes back the value of the MQInt32 property for the specified
key.

“MQGetInt64Property” on page 121 Passes back the value of the MQInt64 property for the specified
key.

“MQGetInt8Property” on page 122 Passes back the value of the MQInt8 property for the specified
key.

“MQGetMessageHeaders” on page 123 Passes back a handle to the header of the specified message.

“MQGetMessageProperties” on page 124 Passes back a handle to the properties for the specified
message.

“MQGetMessageReplyTo” on page 124 Passes back the destination where replies to this message
should be sent.

“MQGetMessageType” on page 125 Passes back the type of the specified message.

“MQGetMetaData” on page 126 Passes back Message Queue version information.

“MQGetPropertyType” on page 127 Passes back the type of the specified property key.

“MQGetStatusCode” on page 127 Returns the code for the specified MQStatus result.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201086

TABLE 4–4 Message Queue C-API Function Summary (Continued)
Function Description

“MQGetStatusString” on page 128 Returns a string description for the specified MQStatus result.

“MQGetStringProperty” on page 128 Passes back the value for the specified property. Type (in the
function name) can be String, Bool, Int8, Int16, Int32,
Int64 , Float32, Float64.

“MQGetTextMessageText” on page 129 Passes back the contents of an MQ_TEXT_MESSAGE message.

“MQGetXAConnection” on page 129 Passes back the distributed transaction (XA) connection.

“MQInitializeSSL” on page 130 Initializes the SSL library. You must call this function before
you create a connection that uses SSL.

“MQPropertiesKeyIterationGetNext” on
page 131

Passes back the next property key in the properties handle.

“MQPropertiesKeyIterationHasNext” on
page 132

Returns true if there is another property key in a properties
object.

“MQPropertiesKeyIterationStart” on
page 133

Starts iterating through a properties object.

“MQReceiveMessageNoWait” on page 133 Passes back a handle to a message delivered to the specified
consumer.

“MQReceiveMessageWait” on page 135 Passes back a handle to a message delivered to the specified
consumer when the message becomes available.

“MQReceiveMessageWithTimeout” on
page 136

Passes back a handle to a message delivered to the specified
consumer if a message is available within the specified amount
of time.

“MQRecoverSession” on page 137 Stops message delivery and restarts message delivery with the
oldest unacknowledged message.

“MQRollBackSession” on page 138 Rolls back a transaction associated with the specified session.

“MQSendMessage” on page 139 Sends a message for the specified producer.

“MQSendMessageExt” on page 140 Sends a message for the specified producer and allows you to
set priority, time-to-live, and delivery mode.

“MQSendMessageToDestination” on
page 141

Sends a message to the specified destination.

“MQSendMessageToDestinationExt” on
page 142

Sends a message to the specified destination and allows you to
set message header properties.

“MQSetBoolProperty” on page 144 Sets an MQBool property with the specified key to the specified
value.

“MQSetBytesMessageBytes” on page 145 Sets the message body for the specified MQ_BYTES_MESSAGE

message.

Function Reference

Chapter 4 • Reference 87

TABLE 4–4 Message Queue C-API Function Summary (Continued)
Function Description

“MQSetFloat32Property” on page 145 Sets an MQFloat 32 property with the specified key to the
specified value.

“MQSetFloat64Property” on page 146 Sets an MQFloat 64 property with the specified key to the
specified value.

“MQSetInt16Property” on page 147 Sets an MQInt16 property with the specified key to the specified
value.

“MQSetInt32Property” on page 147 Sets an MQInt 32 property with the specified key to the
specified value.

“MQSetInt64Property” on page 148 Sets an MQInt64 property with the specified key to the specified
value.

“MQSetInt8Property” on page 149 Sets an MQInt8 property with the specified key to the specified
value.

“MQSetMessageHeaders” on page 149 Sets the header part of the message.

“MQSetMessageProperties” on page 151 Sets the user-defined properties for the specified message.

“MQSetMessageReplyTo” on page 151 Specifies the destination where replies to this message should
be sent.

“MQSetStringProperty” on page 152 Sets an MQString property with the specified key to the
specified value.

“MQSetStringProperty” on page 152 Sets the message body for the specified MQ_TEXT_MESSAGE

message.

“MQSetTextMessageText” on page 153 Defines the body for a text message.

“MQStartConnection” on page 153 Starts the specified connection to the broker and starts or
resumes message delivery.

“MQStatusIsError” on page 154 Returns MQ_TRUE if the specified MQStatus result is an error.

“MQStopConnection” on page 154 Stops the specified connection to the broker. This stops the
broker from delivering messages.

“MQUnsubscribeDurableMessageConsumer”
on page 155

Unsubscribes the specified durable message consumer.

MQAcknowledgeMessages
The MQAcknowledgeMessages function acknowledges the specified message and all messages
received before it on the same session. This function is valid only if the session is created with
acknowledge mode set to MQ_CLIENT_ACKNOWLEDGE .

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201088

MQAcknowledgeMessages (const MQSessionHandle sessionHandle,

const MQMessageHandle messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session for the consumer that received the specified

message.

messageHandle A handle to the message that you want to acknowledge. This handle is
passed back to you when you receive the message (either by calling one of
the receive functions or when a message is delivered to your message
listener function.)

Whether you receive messages synchronously or asynchronously, you can call the
MQAcknowledgeMessages function to acknowledge receipt of the specified message and of all
messages that preceded it.

When you create a session you specify one of several acknowledge modes for that session; these
are described in Table 4–3. If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode
for the session, you must explicitly call the MQAcknowledgeMessages function to acknowledge
receipt of messages consumed in that session.

By default, the calling thread to the MQAcknowledgeMessages function will be blocked until the
broker acknowledges receipt of the acknowledgment for the broker consumed. If, when you
created the session’s connection, you specified the property
MQ_ACK_ON_ACKNOWLEDGE_PROPERTY to be MQ_FALSE, the calling thread will not wait for the
broker to acknowledge the acknowledgement.

Common Errors
MQ_SESSION_NOT_CLIENT_ACK_MODE

MQ_SESSION_NOT_CLIENT_ACK_MODE

MQ_MESSAGE_NOT_IN_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CLOSED

Function Reference

Chapter 4 • Reference 89

MQCloseConnection
The MQCloseConnection function closes the connection to the broker.

MQCloseConnection(MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle The handle to the connection that you want to close. This handle is

created and passed back to you by the function
“MQCreateConnection” on page 98.

Closing the connection closes all sessions, producers, and consumers created from this
connection. This also forces all threads associated with this connection that are blocking in the
library to return.

Closing the connection does not actually release all the memory associated with the connection.
After all the application threads associated with this connection (and its dependent sessions,
producers, and consumers) have returned, you should call the MQFreeConnection() function
to release these resources.

Common Errors
MQ_CONCURRENT_DEADLOCK (If the function is called from an exception listener or a consumer’s
message listener.)

MQ_ILLEGAL_CLOSE_XA_CONNECTION (If called to claose an XA connection.)

MQCloseMessageConsumer
The MQCloseMessageConsumer function closes the specified message consumer.

MQCloseMessageConsumer(MQConsumerHandle consumerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201090

Parameters
consumerHandle The handle to the consumer you want to close. This handle is created and

passed back to you by one of the functions used to create consumers.

This handle is invalid after the function returns successfully.

A session’s consumers are automatically closed when you close the session or connection to
which they belong. To close a consumer without closing the session or connection to which it
belongs, use the function“MQCloseMessageConsumer” on page 90.

If the consumer you want to close is a durable consumer and you want to close this consumer
permanently, you should call the function “MQUnsubscribeDurableMessageConsumer” on
page 155 after closing the consumer in order to delete any state information maintained by the
broker for this consumer.

Common Errors
MQ_CONSUMER_NOT_IN_SESSION

MQ_BROKER_CONNECTION_CLOSED

MQCloseMessageProducer
The MQCloseMessageProducer function closes a message producer.

MQCloseMessageProducer(MQProducerHandle producerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
producerHandle A handle for this producer that was passed to you by the

function“MQCreateMessageProducer” on page 105 or by the function
“MQCreateMessageProducerForDestination” on page 106.

This handle is invalid after the function returns successfully.

Use the MQCloseMessageProducer function to close a producer without closing its associated
session or connection.

Common Errors
MQ_PRODUCER_NOT_IN_SESSION

Function Reference

Chapter 4 • Reference 91

MQCloseSession
The MQCloseSession function closes the specified session.

MQCloseSession(MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session that you want to close. This handle is created and

passed back to you by the MQCreateSession() function.

This handle is invalid after the function returns successfully.

Closing a session closes the resources (producers and consumers) associated with that session
and frees up the memory allocated for that session.

There is no need to close the producers or consumers of a closed session.

Common Errors
MQ_CONCURRENT_DEADLOCK

(If called from a consumer’s message listener in the session.)

MQCommitSession
The MQCommitSession function commits a transaction associated with the specified session.

MQCommitSession(const MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsErro()r function for more information.

Parameters
sessionHandle The handle to the transacted session that you want to commit.

A transacted session supports a series of transactions. Transactions organize a session’s input
message stream and output message stream into a series of atomic units. A transaction’s input
and output units consist of those messages that have been produced and consumed within the

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201092

session’s current transaction. (Note that the receipt of a message cannot be part of the same
transaction that produces the message.) When you call the MQCommitSession function, its
atomic unit of input is acknowledged and its associated atomic unit of output is sent.

The completion of a session’s current transaction automatically begins the next transaction. The
result is that a transacted session always has a current transaction within which its work is done.
Use the MQRollBackSession() function to roll back a transaction.

Common Errors
MQ_NOT_TRANSACTED_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_NOT_TRANSACTED_SESSION

MQ_XA_SESSION_IN_PROGRESS

MQCreateAsyncDurableMessageConsumer
The MQCreateAsyncDurableMessageConsumer function creates an asynchronous durable
message consumer for the specified destination.

MQCreateAsyncDurableMessageConsumer (

const MQSessionHandle sessionHandle,

const MQDestinationHandle destinationHandle,

ConstMQString durableName,

ConstMQString messageSelector,

MQBool noLocal,

MQMessageListenerFunc messageListener,

void * listenerCallbackData,

MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session to which this consumer belongs. This

handle is passed back by the MQCreateSession() function. For
this asynchronous durable consumer, the session must have been
created with the MQ_SESSION_ASYNC_RECEIVE receive mode.

destinationHandle A handle to a topic destination on which the consumer receives
messages. This handle remains valid after the call.

Function Reference

Chapter 4 • Reference 93

durableName An MQString specifying a name for the durable subscriber. The
library makes a copy of the durableName string.

messageSelector An expression (based on SQL92 conditional syntax) that specifies
the criteria upon which incoming messages should be selected for
this consumer.

Specify a NULL or empty string to indicate that there is no message
selector for this consumer. In this case, all messages are delivered.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification
Data Management: Structured Query Language (SQL), Version 2,
ISBN 1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by this
consumer’s own connection.

messageListener The name of an MQMessageListenerFunc type callback function
that is to be called when this consumer receives a message on the
specified destination.

listenerCallbackData A pointer to data that you want passed to your message listener
function when it is called by the library.

consumerHandle Output parameter for the handle that references the consumer for
the specified destination.

In the case of an asynchronous consumer, you should not start a connection before calling the
MQCreateAsyncDurableMessageConsumer function. (You should create a connection, create a
session, set up your asynchronous consumer, create the consumer, and then start the
connection.) Attempting to create a consumer when the connection is not stopped, will result in
an MQ_CONCURRENT_ACCESS error.

The MQCreateAsyncDurableMessageConsumer function creates an asynchronous durable
message consumer for the specified destination. You can define parameters to filter messages
and to inhibit the delivery of messages you published to your own connection. Note that the
session’s receive mode (sync/async) must be appropriate for the kind of consumer you are
creating (sync/async). To create a synchronous durable message consumer for a destination,
call the function MQCreateDurableMessageConsumer.()

Durable consumers can only be used for topic destinations. If you are creating an asynchronous
consumer for a queue destination or if you are not interested in messages that arrive to a topic
while you are inactive, you might prefer to use the function
MQCreateAsyncMessageConsumer().

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201094

The broker retains a record of this durable subscription and makes sure that all messages from
the publishers to this topic are retained until they are either acknowledged by this durable
subscriber or until they have expired. Sessions with durable subscribers must always provide the
same client identifier. (See MQCreateConnection, clientID parameter.) In addition, each
durable consumer must specify a durable name using the durableName parameter, which
uniquely identifies (for each client identifier) the durable subscription when it is created.

A session’s consumers are automatically closed when you close the session or connection to
which they belong. However, messages will be routed to the durable subscriber while it is
inactive and delivered when the durable consumer is recreated. To close a consumer without
closing the session or connection to which it belongs, use the MQCloseMessageConsumer()
function. If you want to close a durable consumer permanently, you should call the
MQUnsubscribeDurableMessageConsumer() after closing it to delete state information
maintained by the Broker on behalf of the durable consumer.

Common Errors
MQ_NOT_ASYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONSUMER_NO_DURABLE_NAME

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateAsyncMessageConsumer
The MQCreateAsyncMessageConsumer function creates an asynchronous message consumer for
the specified destination.

MQCreateAsyncMessageConsumer

(const MQSessionHandle sessionHandle,

const MQDestinationHandle destinationHandle,

ConstMQString messageSelector,

MQBool noLocal,

MQMessageListenerFunc messageListener,

void * listenerCallBackData,

MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Chapter 4 • Reference 95

Parameters
sessionHandle The handle to the session to which this consumer belongs. This

handle is created and passed back to you by the
“MQCreateSession” on page 107 function. For this asynchronous
consumer, the session must have been created with the
MQ_SESSION_ASYNC_RECEIVE receive mode.

destinationHandle A handle to the destination on which the consumer receives
messages. This handle remains valid after the call returns.

messageSelector An expression (based on SQL92 conditional syntax) that specifies
the criteria upon which incoming messages should be selected for
this consumer.

Specify a NULL or empty string to indicate that there is no message
selector for this consumer. In this case, all messages will be
delivered.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification
Data Management: Structured Query Language (SQL), Version 2,
ISBN 1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by this
consumer’s own connection.

The setting of this parameter applies only to topic destinations. It
is ignored for queues.

messageListener The name of an MQMessageListenerFunc type callback function
that is to be called when this consumer receives a message for the
specified destination.

listenerCallbackData A pointer to data that you want passed to your message listener
function when it is called by the library.

consumerHandle Output parameter for the handle that references the consumer for
the specified destination.

In the case of an asynchronous consumer, you should not start a connection before calling the
MQCreateAsyncDurableMessageConsumer function. (You should create a connection, create a
session, set up your asynchronous consumers, create the consumer, and then start the
connection.) Attempting to create a consumer when the connection is not stopped will result in
an MQ_CONCURRENT_ACCESS error.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201096

The MQCreateAsyncMessageConsumer function creates an asynchronous message consumer for
the specified destination. You can define parameters to filter messages and to inhibit the
delivery of messages you published to your own connection. Note that the session’s receive
mode (sync/async) must be appropriate for the kind of consumer you are creating (sync/async).
To create a synchronous message consumer for a destination, use the
MQCreateMessageConsumer() function.

If this consumer is on a topic destination, it will only receive messages produced while the
consumer is active. If you are interested in receiving messages published while this consumer is
not active, you should create a consumer using the
“MQCreateAsyncDurableMessageConsumer” on page 93 function instead.

A session’s consumers are automatically closed when you close the session or connection to
which they belong. To close a consumer without closing the session or connection to which it
belongs, use the “MQCloseMessageConsumer” on page 90 function.

Common Errors
MQ_NOT_ASYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateBytesMessage
The MQCreatesBytesMessage function creates a bytes message and passes a handle to it back to
you.

MQCreateBytesMessage(MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle Output parameter for the handle to the new, empty message.

Function Reference

Chapter 4 • Reference 97

After you obtain the handle to a bytes message, you can use this handle to define its content with
the “MQSetBytesMessageBytes” on page 145“MQSetBytesMessageBytes” on page 145 function,
to set its headers with the MQSetMessageHeaders() function, and to set its properties with the
MQSetMessageProperties() function.

MQCreateConnection
The MQCreateConnection function creates a connection to the broker.

If you want to connect to the broker over SSL, you must call the MQInitializeSSL() function
to initialize the SSL library before you create the connection.

MQCreateConnection

(MQPropertiesHandle propertiesHandle

ConstMQString username,

ConstMQString password,

ConstMQString clientID,

MQConnectionExceptionListenerFunc exceptionListener,

void * listenerCallBackData,

MQConnectionHandle * connectionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle that specifies the properties that determine the behavior

of this connection. You must create this handle using the
MQCreateProperties function before you try to create a
connection. This handle will be invalid after the function returns
successfully.

See Table 4–2 for information about connection properties.

username An MQString specifying the user name to use when connecting to
the broker.

The library makes a copy of the username string.

password An MQString specifying the password to use when connecting to
the broker.

The library makes a copy of the password string.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 201098

clientID An MQString used to identify the connection. If you use the
connection for a durable consumer, you must specify a non-NULL
client identifier.

The library makes a copy of the clientID string.

exceptionListener A connection-exception callback function used to notify the user
that a connection exception has occurred.

listenerCallBackData A data pointer that can be passed to the connection
exceptionListener callback function whenever it is called. The
user can set this pointer to any data that may be useful to pass
along to the connection exception listener for this connection. Set
this to NULL if you do not need to pass data back to the connection
exception listener.

connectionHandle Output parameter for the handle to the connection that is created
by this function.

The MQCreateConnection function creates a connection to the broker. The behavior of the
connection is specified by key values defined in the properties referenced by the
propertiesHandle parameter. You must use the MQCreateProperties function to define these
properties.

You cannot change the properties of a connection you have already created. If you need
different connection properties, you must close and free the old connection and then create a
new connection with the desired properties.

■ Use the MQStartConnection() function to start or restart the connection. Use the
MQStopConnection() function to stop a connection.

■ Use the MQGetMetaData() function to get information about the name of the Message
Queue product and its version.

■ Use the MQCloseConnection() function to close a connection, and then use the
MQFreeConnection() function to free the memory allocated for that connection.

Setting a Client Identifier

To keep track of durable subscriptions, Message Queue uses a unique client identifier that
associates a client’s connection with state information maintained by the message service on
behalf of the client. By definition, a client identifier is unique, and applies to only one
connection at a time.

The messaging service uses a client identifier in combination with a durable subscription name
to uniquely identify each durable subscription. If a durable subscriber is inactive at the time that
messages are delivered to a topic destination, the broker retains messages for that subscriber
and delivers them when the subscriber once again becomes active.

Function Reference

Chapter 4 • Reference 99

Handling Connection Exceptions

Use the exceptionListener parameter to pass the name of a user-defined callback function
that can be called synchronously when a connection exception occurs for this connection. Use
the exceptionCallBackData parameter to specify any user data that you want to pass to the
callback function.

Common Errors
MQ_INCOMPATIBLE_LIBRARY

MQ_CONNECTION_UNSUPPORTED_TRANSPORT

MQ_COULD_NOT_CREATE_THREAD

MQ_INVALID_CLIENT_ID

MQ_CLIENT_ID_IN_USE

MQ_COULD_NOT_CONNECT_TO_BROKER

MQ_SSL_NOT_INITIALIZED

This error can be returned if MQ_CONNECTION_TYPE_PROPERTY is SSL and you have not called the
MQInitializeSSL function before creating this connection.

MQCreateDestination
The MQCreateDestination function creates a a logical destination and passes a handle to it
back to you.

MQCreateDestination(const MQSessionHandle sessionHandle

ConstMQString destinationName,

MQDestinationType destinationType,

MQDestinationHandle * destinationHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session with which you want to associate this

destination.

destinationName An MQString specifying the logical name of this destination. The
library makes a copy of the destinationName string. See discussion
below.

Destination names starting with “mq” are reserved and should not be
used by clients.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010100

destinationType An enum specifying the destination type, either
MQ_QUEUE_DESTINATION or MQ_TOPIC_DESTINATION.

destinationHandle Output parameter for the handle to the newly created destination. You
can pass this handle to functions sending messages or to message
producers or consumers.

The MQCreateDestination function creates a logical destination and passes a handle to it back
to you. Note that the Message Queue administrator has to also create a physical destination on
the broker, whose name and type is the same as the destination created here, in order for
messaging to happen. For example, if you use this function to create a queue destination called
myMailQDest, the administrator has to create a physical destination on the broker named
myMailQDest.

If you are doing development, you can simplify this process by turning on the
imq.autocreate.topic or imq.autocreate.queue properties for the broker. If you do this, the
broker automatically creates a physical destination whenever a message consumer or message
producer attempts to access a non-existent destination. The auto-created destination will have
the same name as the logical destination name you specified using the MQCreateDestination
function. By default, the broker has the properties imq.autocreate.topic and
imq.autocreate.queue turned on.

Common Errors
MQ_INVALID_DESTINATION_TYPE

MQ_SESSION_CLOSED

MQCreateDurableMessageConsumer
The MQCreateDurableMessageConsumer function creates a synchronous durable message
consumer for the specified topic destination.

MQCreateDurableMessageConsumer

(const MQSessionHandle sessionHandle,

const MQDestinationHandle destinationHandle,

ConstMQString durableName,

ConstMQString messageSelector,

MQBool noLocal

MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Chapter 4 • Reference 101

Parameters
sessionHandle The handle to the session to which this consumer belongs. This handle

is passed back to you by the MQCreateSession() function. For this
(synchronous) durable consumer, the session must have been created
with the MQ_SESSION_SYNC_RECEIVE receive mode.

destinationHandle A handle to a topic destination on which the consumer receives
messages. This handle remains valid after the call returns.

durableName An MQString specifying the name of the durable subscriber to the
topic destination. The library makes a copy of the durableName string.

messageSelector An expression (based on SQL92 conditional syntax) that specifies the
criteria upon which incoming messages should be selected for this
consumer.

Specify a NULL or empty string to indicate that there is no message
selector for this consumer. In this case, the consumer receives all
messages. The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification Data
Management: Structured Query Language (SQL), Version 2, ISBN
1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by this
consumer’s own connection.

consumerHandle Output parameter for the handle that references the consumer for the
specified destination.

The MQCreateDurableMessageConsumer function creates a synchronous message consumer for
the specified destination. A durable consumer receives all the messages published to a topic,
including the ones published while the subscriber is inactive.

You can define parameters to filter messages and to inhibit the delivery of messages you
published to your own connection. Note that the session’s receive mode (sync/async) must be
appropriate for the kind of consumer you are creating (sync/async). To create an asynchronous
durable message consumer for a destination, call the function
MQCreateAsyncDurableMessageConsumer().

Durable consumers are for topic destinations. If you are creating a consumer for a queue
destination or if you are not interested in messages that arrive to a topic while you are inactive,
you should use the function MQCreateMessageConsumer.()

The broker retains a record of this durable subscription and makes sure that all messages from
the publishers to this topic are retained until they are either acknowledged by this durable
subscriber or until they have expired. Sessions with durable subscribers must always provide the

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010102

same client identifier (see MQCreateConnection, clientID parameter). In addition, each
durable consumer must specify a durable name using the durableName parameter, which
uniquely identifies (for each client identifier) the durable subscription when it is created.

A session’s consumers are automatically closed when you close the session or connection to
which they belong. However, messages will be routed to the durable subscriber while it is
inactive and delivered when the durable consumer is recreated. To close a consumer without
closing the session or connection to which it belongs, use the MQCloseMessageConsumer()
function. If you want to close a durable consumer permanently, you should call the
MQUnsubscribeDurableMessageConsumer() function after closing it to delete state information
maintained by the broker on behalf of the durable consumer.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMITE_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONSUMER_NO_DURABLE_NAME

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateMessage
The MQCreateMessage function creates a new message of type MQ_MESSAGE.

MQCreateMessage

(MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle Output parameter for the handle that references the newly created

message.

Use the MQCreateMessage function to create a message that has a header and, optionally,
properties, but which does not have a body. Such messages might be used by applications to

Function Reference

Chapter 4 • Reference 103

signal events, which could be specified using header fields or message properties. This could
improve performance because the message does not have a body and therefore there is no body
to parse.

MQCreateMessageConsumer
The MQCreateMessageConsumer function creates a synchronous message consumer for the
specified destination.

MQCreateMessageConsumer

(const MQSessionHandle sessionHandle,

const MQDestinationHandle destinationHandle,

ConstMQString messageSelector,

MQBool noLocal

MQConsumerHandle * consumerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session to which this consumer belongs. This handle

is passed back to you by the MQCreateSession() function. For this
(synchronous) consumer, the session must have been created with the
MQ_SESSION_SYNC_RECEIVE receive mode.

destinationHandle A handle to the destination on which the consumer receives messages.
This handle remains valid after the call returns.

messageSelector An expression (based on SQL92 conditional syntax) that specifies the
criteria upon which incoming messages should be selected for this
consumer. Specify a NULL or empty string to indicate that there is no
message selector for this consumer and that all messages should be
returned.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE Specification Data
Management: Structured Query Language (SQL), Version 2, ISBN
1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by this
consumer’s own connection. This applies only to topic destinations; it
is ignored for queues.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010104

consumerHandle Output parameter for the handle that references the consumer for the
specified destination.

The MQCreateMessageConsumer() function creates a synchronous message consumer for the
specified destination. You can define parameters to filter messages and to inhibit the delivery of
messages you published to your own connection. Note that the session’s receive mode
(sync/async) must be appropriate for the kind of consumer you are creating (sync/async). To
create an asynchronous message consumer for a destination, use the
MQCreateAsyncMessageConsumer() function.

If the consumer is a topic destination, it can only receive messages that are published while it is
active. To receive messages published while this consumer is not active, you should create a
consumer using either the MQCreateDurableMessageConsumer() function or the
MQCreateAsyncDurableMessageConsumer() function, depending on the receive mode you
defined for the session.

A session’s consumers are automatically closed when you close the session or connection to
which they belong. To close a consumer without closing the session or connection to which it
belongs, use the MQCloseMessageConsumer() function.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateMessageProducer
The MQCreateMessageProducer function creates a message producer that does not have a
specified destination.

MQCreateMessageProducer(const MQSessionHandle sessionHandle,

MQProducerHandle * producerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Chapter 4 • Reference 105

Parameters
sessionHandle The handle to the session to which this producer should belong.

producerHandle Output parameter for the handle that references the producer.

The MQCreateMessageProducer function creates a message producer that does not have a
specified destination. In this case, you will specify the destination when sending the message
itself by using either the MQSendMessageToDestination() function or the
MQSendMessageToDestinationExt() function.

Using the MQCreateMessageProducer function is appropriate when you want to use the same
producer to send messages to a variety of destinations. If, on the other hand, you want to use
one producer to send many messages to the same destination, you should use the
MQCreateMessageProducerForDestination() function instead.

A session’s producers are automatically closed when you close the session or connection to
which they belong. To close a producer without closing the session or connection to which it
belongs, use the MQCloseMessageProducer() function.

Common Errors
MQ_SESSION_CLOSED

MQCreateMessageProducerForDestination
The MQCreateMessageProducerForDestination function creates a message producer with a
specified destination.

MQCreateMessageProducerForDestination

(const MQSessionHandle sessionHandle,

const MQDestinationHandle destinationHandle,

MQProducerHandle * producerHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session to which this producer belongs.

destinationHandle A handle to the destination where you want this producer to send all
messages. This handle remains valid after the call returns.

producerHandle Output parameter for the handle that references the producer.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010106

The MQCreateMessageProducerForDestination function creates a message producer with a
specified destination. All messages sent out by this producer will go to that destination. Use the
MQSendMessage() function or the MQSendMessageExt() function to send messages for a
producer with a specified destination.

Use the MQCreateMessageProducer() function when you want to use one producer to send
messages to a variety of destinations.

A session’s producers are automatically closed when you close the session or connection to
which they belong. To close a producer without closing the session or connection to which it
belongs, use the MQCloseMessageProducer() function.

Common Errors
MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateProperties
The MQCreateProperties function creates a properties handle and passes it back to the caller.

MQCreateProperties (MQPropertiesHandle * propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle Output parameter for the handle that references the newly created

properties object.

Use the MQCreateProperties function to get a properties handle. You can then use the
appropriate MQSet...Property function to set the desired properties.

MQCreateSession
The MQCreateSession function creates a session, defines its behavior, and passes back a handle
to the session.

MQCreateSession(const MQConnectionHandle connectionHandle,

MQBool isTransacted,

MQAckMode acknowledgeMode,

Function Reference

Chapter 4 • Reference 107

MQReceiveMode receiveMode

MQSessionHandle * sessionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle The handle to the connection to which this session belongs. This handle

is passed back to you by the MQCreateConnection() function. You can
create multiple sessions on a single connection.

isTransacted An MQBool specifying whether this session is transacted. Specify
MQ_TRUE if the session is transacted. In this case, the acknowledgeMode
parameter is ignored.

acknowledgeMode An enumeration of the possible kinds of acknowledgement modes for
the session. See “Acknowledge Modes” on page 81 for information on
these values.

After you have created a session, you can determine its
acknowledgement mode by calling the MQGetAcknowledgeMode()
function.

receiveMode An enumeration specifying whether this session will do synchronous or
asynchronous message receives. Specify MQ_SESSION_SYNC_RECEIVE or
MQ_SESSION_ASYNC_RECEIVE.

If the session is only for producing messages, the receiveMode has no
significance. In that case, specify MQ_SESSION_SYNC_RECEIVE to
optimize the session’s resource use.

sessionHandle A handle to this session. You will need to pass this handle to the
functions you use to manage the session and to create destinations,
consumers, and producers associated with this session.

The MQCreateSession function creates a new session and passes back a handle to it in the
sessionHandle parameter. The number of sessions you can create for a single connection is
limited only by system resources. A session is a single-thread context for producing and
consuming messages. You can create multiple producers and consumers for a session, but you
are restricted to use them serially. In effect, only a single logical thread of control can use them.

A session with a registered message listener is dedicated to the thread of control that delivers
messages to the listener. This means that if you want to send messages, for example, you must
create another session with which to do this. The only operations you can perform on a session
with a registered listener, is to close the session or the connection.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010108

After you create a session, you can create the producers, consumers, and destinations that use
the session context to do their work.

■ For a session that is not transacted, use the MQRecoverSession() function to restart message
delivery with the last unacknowledged message.

■ For a session that is transacted, use the MQRollBackSession() function to roll back any
messages that were delivered within this transaction. Use the MQCommitSession() function
to commit all messages associated with this transaction.

■ For a session that has acknowledgeMode set to MQ_CLIENT_ACKNOWLEDGE, use the function
“MQAcknowledgeMessages” on page 88 to acknowledge consumed messages.

■ Use the MQCloseSession() function to close a session and all its associated producers and
consumers. This function also frees memory allocated for the session.

MQCreateTemporaryDestination
The MQCreateTemporaryDestination function creates a temporary destination and passes its
handle back to you.

MQCreateTemporaryDestination(const MQSessionHandle sessionHandle

MQDestinationType destinationType,

MQDestinationHandle * destinationHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session with which you want to associate this

destination.

destinationType An enum specifying the destination type, either
MQ_QUEUE_DESTINATION or MQ_TOPIC_DESTINATION.

destinationHandle Output parameter for the handle to the newly created temporary
destination.

You can use a temporary destination to implement a simple request/reply mechanism. When
you pass the handle of a temporary destination to the MQSetMessageReplyTo function, the
consumer of the message can use that handle as the destination to which it sends a reply.

Temporary destinations are explicitly created by client applications; they are deleted when the
connection is closed. They are maintained (and named) by the broker only for the duration of

Function Reference

Chapter 4 • Reference 109

the connection for which they are created. Temporary destinations are system-generated
uniquely for their connection and only their own connection is allowed to create message
consumers for them.

For more information, see “The Request-Reply Pattern” in Oracle GlassFish Message
Queue 4.4.2 Technical OverviewChapter 5, “Managing a Broker ,” in Oracle GlassFish Message
Queue 4.4.2 Administration GuideChapter 5, “Managing a Broker ,” in Oracle GlassFish Message
Queue 4.4.2 Administration GuideChapter 6, “Configuring and Managing Connection
Services,” in Oracle GlassFish Message Queue 4.4.2 Administration GuideChapter 11, “Managing
Administered Objects,” in Oracle GlassFish Message Queue 4.4.2 Administration Guide.

Common Errors
MQ_INVALID_DESTINATION_TYPE

MQ_SESSION_CLOSED

MQCreateTextMessage
The MQCreatesTextMessage function creates a text message and passes a handle to it back to
you.

MQCreateTextMessage(MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle Output parameter for the handle to the new, empty message.

After you obtain the handle to a text message, you can use this handle to define its content with
the “MQSetBytesMessageBytes” on page 145“MQSetStringProperty” on page 152 function, to
set its headers with the “MQSetMessageHeaders” on page 149 function, and to set its properties
with the MQSetMessageProperties() function.

MQCreateXASession
The MQCreateXASession function creates a distributed transaction (XA) session on an XA
connection, defines its behavior, and passes back a handle to the session.

MQCreateXASession(const MQConnectionHandle connectionHandle,

MQReceiveMode receiveMode

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010110

http://docs.sun.com/doc/821-1798/aerby?a=view
http://docs.sun.com/doc/821-1798/aerby?a=view
http://docs.sun.com/doc/821-1794/aeodm?a=view
http://docs.sun.com/doc/821-1794/aeodm?a=view
http://docs.sun.com/doc/821-1794/aeodm?a=view
http://docs.sun.com/doc/821-1794/aeodm?a=view
http://docs.sun.com/doc/821-1794/gheau?a=view
http://docs.sun.com/doc/821-1794/gheau?a=view
http://docs.sun.com/doc/821-1794/aeogu?a=view
http://docs.sun.com/doc/821-1794/aeogu?a=view

MQMessageListenerBAFunc beforeMessageListener,

MQMessageListenerBAFunc afterMessageListener,

void * callbackData,

MQSessionHandle * sessionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle The handle to the connection to which this session belongs. This

handle is passed back to you by the “MQGetXAConnection” on
page 129 function. You can create multiple sessions on a single
connection.

receiveMode An enumeration specifying whether this session will do
synchronous or asynchronous message receives. Specify
MQ_SESSION_SYNC_RECEIVE or MQ_SESSION_ASYNC_RECEIVE.

If the session is only for producing messages, the receiveMode
has no significance. In that case, specify
MQ_SESSION_SYNC_RECEIVE to optimize the session’s resource
use.

beforeMessageListener A callback function before asynchronous message delivery.

afterMessageListener A callback function after asynchronous message delivery.

callbackData A data pointer to be passed to the beforeDelivery and
afterDelivery functions.

sessionHandle A handle to this session. You will need to pass this handle to the
functions you use to manage the session and to create
destinations, consumers, and producers associated with this
session.

If receiveMode is MQ_SESSION_SYNC_RECEIVE, pass NULL for beforeMessageListener,
afterMessageListener, and callbackData.

The MQCreateXASession function creates a new distributed transaction (XA) session. The
connectionHandle must be a XA connection handle.

An XA session is the same as a regular session created by MQCreateSession (see
“MQCreateSession” on page 107) except:

Function Reference

Chapter 4 • Reference 111

■ An XA session is always XA transacted and the distributed transaction is managed by a
X/Open distributed transaction manager. MQCommitSession and MQRollbackSession

should not be called on a XA session.
■ Sending/receiving messages with an XA session must be done in an XA transaction.
■ If receiveMode is MQ_SESSION_ASYNC_RECEIVE, callback functions beforeMessageListener

and afterMessageListener must be specified. beforeMessageListener will be called by
the C-API runtime before it calls the messageListener callback; afterMessageListener will
be called by the C-API runtime after it calls the messageListener callback.
The beforeMessageListener and afterMessageListener functions are provided to the
application to associate and disassociate the C-API runtime calling thread with an XA
transaction, to demarcate XA transactions, and to set appropriate application association
context to the calling thread if the application's distributed transaction processing
environment requires that.

During normal processing, the C-API runtime:
1. Calls the beforeMessageListener function.
2. Processes the message, calling the messageListener function.
3. Calls the afterMessageListener function.

However, errors can alter this processing sequence:
■ If the beforeMessageListener function returns an error (a value other than MQ_OK), the

C-API runtime logs a warning message containing the error code and then stops
processing the message. It does not call messageListener or afterMessageListener.

■ If the attempt to call messageListener fails, or if message acknowledgement fails, the
C-API runtime passes the appropriate error code to afterMessageListener.

■ If the messageListener function returns an error, the C-API runtime logs a warning
containing the error code and then passes the MQ_CALLBACK_RUNTIME_ERROR error to
afterMessageListener, regardless of the actual error code returned.

■ If the afterMessageListener function returns an error, the C-API runtime logs a
warning containing the error code.

Even if an error occurs, the callbackData parameter is passed to the
beforeMessageListener and afterMessageListener functions unchanged.

Common Errors
MQ_NOT_XA_CONNECTION

MQ_INVALID_RECEIVE_MODE

MQ_BROKER_CONNECTION_CLOSED

MQ_COULD_NOT_CREATE_THREAD

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010112

MQFreeConnection
The MQFreeConnection function deallocates memory assigned to the specified connection and
to all resources associated with that connection.

MQFreeConnection(MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle A handle to the connection you want to free.

You must call this function after you have closed the connection with the
MQCloseConnection() function and after all of the application threads associated with this
connection and its dependent sessions, producers, and consumers have returned.

You must not call this function while an application thread is active in a library function
associated with this connection or one of its dependent sessions, producers, consumers, and
destinations.

Calling this function does not release resources held by a message or a destination associated
with this connection. You must free memory allocated for a message or a destination by
explicitly calling the MQFreeMessage or the MQFreeDestination function.

Common Errors
MQ_STATUS_CONNECTION_NOT_CLOSED

MQFreeDestination
The MQFreeDestination function frees memory allocated for the destination referenced by the
specified handle.

MQFreeDestination(MQDestinationHandle destinationHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Chapter 4 • Reference 113

Parameters
destinationHandle A handle to the destination you want to free.

Calling the MQFreeConnection or the MQCloseSession function does not automatically free
destinations created for the connection or for the session.

MQFreeMessage
The MQFreeMessage function frees memory allocated for the message referenced by the
specified handle.

MQFreeMessage(MQMessageHandle messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to the message you want to free.

Calling the MQFreeConnection function does not automatically free messages associated with
that connection.

MQFreeProperties
The MQFreeProperties function frees the memory allocated to the referenced properties
object.

MQFreeProperties(MQPropertiesHandle propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object you want to free.

You should not free a properties handle if the properties handle passed to a function becomes
invalid on its return. If you do, you will get an error.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010114

MQFreeString
The MQFreeString function frees the memory allocated for the specified MQString.

MQFreeString(MQString statusString);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
statusString An MQString returned by the MQGetStatusString function or by the

MQGetErrorTrace function.

MQGetAcknowledgeMode
The MQGetAcknowledgeMode function passes back the acknowledgement mode of the specified
session.

MQGetAcknowledgemode(const MQSessionHandle sessionHandle

MQAckMode * ackMode);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session whose acknowledgement mode you want to

determine.

ackMode Output parameter for the ackMode. The ackMode returned can be one of
four enumeration values. See “Acknowledge Modes” on page 81 for
information about these values.

If you want to change the acknowledge mode, you need to create another session with the
desired mode.

MQGetBoolProperty
The MQGetBoolProperty function passes back the value of the MQBool property for the specified
key.

Function Reference

Chapter 4 • Reference 115

MQGetBoolProperty(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQBool * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the specified key you want to get.

key The name of a property key.

value Output parameter for the property value.

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetBytesMessageBytes
The MQGetBytesMessageBytes function passes back the address and size of a bytes message
body.

MQGetBytesMessageBytes(const MQMessageHandle messageHandle,

const MQInt8 * messageBytes

MQInt32 * messageBytesSize);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message that is passed to you when you receive a message.

messageBytes Output parameter that contains the start address of the bytes that
constitute the body of this bytes message.

messageBytesSize Output parameter that contains the size of the message body in bytes.

After you obtain the handle to a message, you can use the MQGetMessageType() function to
determine its type and, if the type is MQ_BYTES_MESSAGE, you can use the
MQGetBytesMessageBytes function to retrieve the message bytes (message body).

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010116

The bytes message passed to you by this function is not a copy. You should not modify the bytes
or attempt to free it.

MQGetConnectionProperties
The MQGetConnectionProperties function gets the connection properties used to create the
connection specified by s connectionHandle.

MQGetConnectionProperties (const MQConnectionHandle connectionHandle,

MQPropertiesHandle * propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle A handle to a connection.

propertiesHandle A handle to the properties of the connection.

The caller is responsible to free the returned connection properties by calling
MQFreeProperties.

MQGetDestinationName
The MQGetDestinatioName function passes back the name of the specified destination.

MQGetDestinationName (const MQDestinationHandle destinationHandle,

MQString * destinationName);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
destinationHandle A handle to the destination whose name you want to know.

destinationName Output parameter for the destination name. The returned
destinationName is a copy which the caller is responsible for freeing
by calling the MQFreeString() function

Function Reference

Chapter 4 • Reference 117

Use the MQGetDestinationName function to get the name of a destination. This might be useful
for applications that want to do some message processing based on the destination name.

This function is useful when using the Reply-To pattern. You can use the
MQGetMessageReplyTo function to obtain a handle to the destination where the message should
be sent. You can then use the MQGetDestinationName to get the name of that destination.

MQGetDestinationType
The MQGetDestinationType passes back the type of the specified destination.

MQGetDestinationType (const MQDestinationHandle destinationHandle,

MQDestinationType * destinationType);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
destinationHandle A handle to the destination whose type you want to know.

destinationType Output parameter for the destination type; either
MQ_QUEUE_DESTINATION or MQ_TOPIC_DESTINATION.

Use the MQGetDestinationType function to determine the type of a destination: queue or topic.
There may be times when you do not know the type of the destination to which you are
replying: for example, when you get a handle from the MQGetMessageReplyTo function. Because
the semantics of queue and topic destinations differ, you need to determine the type of a
destination in order to reply appropriately.

Once you have created a destination with a specified type, you cannot change the type
dynamically. If you want to change the type of a destination, you need to free the destination
using the MQFreeDestination() function and then to create a new destination, with the desired
type, using the MQCreateDestination() or the MQCreateTemporaryDestination() function.

MQGetErrorTrace
The MQGetErrorTrace function returns an MQString describing the error trace at the time when
a function call failed for the calling thread.

MQString MQGetErrorTrace ()

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010118

Having found that a Message Queue function has not returned successfully, you can get an error
trace when the error occurred by calling the MQGetErrorTrace function in the same thread that
called the unsuccessful Message Queue function.

The MQGetErrorTrace function returns an MQString describing the error trace if it can
determine this information. The function will return a NULL string if there is no error trace
available.

The following is an example of an error trace output.

connect:../../../../src/share/cclient/io/TCPSocket.cpp:195:mq:-5981

readBrokerPorts:../../../../src/share/cclient/client/PortMapper

Client.cpp:48:mq:-5981

connect:../../../../../src/share/cclient/client/protocol/

TCPProtocolHandler.cpp:111:mq:-5981

connectToBroker:../../../../src/share/cclient/client/Connection.

cpp:412:mq:-5981

openConnection:../../../../src/share/cclient/client/Connection.

cpp:227:mq:1900

MQCreateConnectionExt:../../../../src/share/cclient/cshim/

iMQConnectionShim.cpp:102:mq:1900

You must call the MQFreeString() function to free the MQString returned by the
MQGetErrorTrace function when you are done.

MQGetFloat32Property
The MQGetFloat32Property function passes back the value of the MQFloat32 property for the
specified key.

MQGetFloat32Property(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQFloat32 * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the key you want to get.

key The name of a property key.

value Output parameter for the property value.

Function Reference

Chapter 4 • Reference 119

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetFloat64Property
The MQGetFloat64Property function passes back the value of the MQFloat64 property for the
specified key.

MQGetFloat64Property(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQFloat64 * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the key you want to get.

key The name of a property key.

value Output parameter for the property value.

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt16Property
The MQGetInt16Property function passes back the value of the MQInt16 property for the
specified key.

MQGetInt16Property(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt16 * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010120

Parameters
propertiesHandle A properties handle for the specified key you want to get.

key The name of a property key.

value Output parameter for the property value.

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt32Property
The MQGetInt32Property function passes back the value of the MQInt32 property for the
specified key.

MQGetInt32Property(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt32 * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the key you want to get.

key The name of a property key.

value Output parameter for the property value.

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt64Property
The MQGetInt64Property function passes back the value of the MQInt64 property for the
specified key.

Function Reference

Chapter 4 • Reference 121

MQGetint64Property (const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt64 * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the key you want to get.

key The name of a property key.

value Output parameter for the property value.

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt8Property
The MQGetInt8Property function passes back the value of the MQInt8 property for the specified
key.

MQGetInt8Property (const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt8 * value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the key you want to get.

key The name of a property key.

value Output parameter for the property value.

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010122

MQGetMessageHeaders
The MQGetMessageHeaders function passes back a handle to the message headers.

MQGetMessageHeaders

(const MQMessageHandle messageHandle

MQPropertiesHandle * headersHandle) ;

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle The message handle.

headersHandle Output parameter for the handle to the message header properties.

The MQGetMessageHeaders function passes back a handle to the message headers. The message
header includes the fields described in Table 4–5. Note that most of the fields are set by the send
function; the client can optionally set only two of these fields for sending messages.

TABLE 4–5 Message Header Properties

Key Type Set By

MQ_CORRELATION_ID_HEADER_PROPERTY MQString Client (optional)

MQ_MESSAGE_TYPE_HEADER_PROPERTY MQString Client (optional)

MQ_PERSISTENT_HEADER_PROPERTY MQBool Send function

MQ_EXPIRATION_HEADER_PROPERTY MQInt64 Send function

MQ_PRIORITY_HEADER_PROPERTY MQInt8 Send function

MQ_TIMESTAMP_HEADER_PROPERTY MQInt64 Send function

MQ_MESSAGE_ID_HEADER_PROPERTY MQString Send function

MQ_REDELIVERED_HEADER_PROPERTY MQBool Message Broker

You are responsible for freeing the headersHandle after you are done with it. Use the
MQFreeProperties() function to free the handle.

Use the MQSetBytesMessageBytes() MQGetMessageProperties() function to determine
whether any application-defined properties were set for this message and to find out their value.

Function Reference

Chapter 4 • Reference 123

MQGetMessageProperties
The MQGetMessageProperties function passes back the user-defined properties for a message.

MQGetMessageProperties (const MQMessageHandle messageHandle,

MQPropertiesHandle * propsHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message whose properties you want to get.

propertiesHandle Output parameter for the handle to the message properties.

The MQGetMessageProperties function allows you to get application-defined properties for a
message. Properties allow an application, via message selectors, to select or filter messages on its
behalf using application-specific criteria. Having obtained the handle, you can either use one of
the MQGet...Property functions to get a value (if you know the key name) or you can iterate
through the properties using the MQPropertiesKeyIterationStart() function.

You will need to call the function MQFreeProperties() to free the resources associated with
this handle after you are done using it.

Common Errors
MQ_NO_MESSAGE_PROPERTIES

MQGetMessageReplyTo
The MQGetMessageReplyTo function passes back the destination where replies to this message
should be sent.

MQGetMessageReplyTo (const MQMessageHandle messageHandle,

MQDestinationHandle * destinationHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010124

Parameters
messageHandle A handle to a message expecting a reply. This is the handle that is

passed back to you when you receive the message.

destinationHandle Output parameter for the handle to the reply destination.

The sender uses the MQSetMessageReplyTo() function to specify a destination where replies to
the message can be sent. This can be a normal destination or a temporary destination. The
receiving client can pass the message handle to the MQGetMessageReplyTo() function and
determine whether a destination for replies has been set up for the message by the sender and
what that destination is. The consumer of the message can then use that handle as the
destination to which it sends a reply.

You might need to call the MQGetDestinationType function to determine the type of the
destination whose handle is returned to you: queue or topic so that you can set up your reply
appropriately.

The advantage of setting up a temporary destination for replies is that Message Queue
automatically creates a physical destination for you, rather than your having to have the
administrator create one, when the broker’s auto.create.destination property is turned off.

You are responsible for freeing the destination handle by calling the function
MQFreeDestination.()

Common Errors
MQ_NO_REPLY_TO_DESTINATION

MQGetMessageType
The MQGetMessageType function passes back information about the type of a message:
MQ_TEXT_MESSAGE, MQ_BYTES_MESSAGE , or MQ_MESSAGE.

MQGetMessageType(const MQMessageHandle messageHandle,

MQMessageType * messageType);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message whose type you want to determine.

Function Reference

Chapter 4 • Reference 125

messageType Output parameter that contains the message type: MQ_TEXT_MESSAGE or
MQ_BYTES_MESSAGE.

After you obtain the handle to a message, you can determine the type of the message using the
MQGetMessageType function. Having determined its type, you can use the
MQGetTextMessageText() function or the MQGetBytesMessageBytes() function to obtain the
message content.

Note that other message types might be added in the future. You should not design your code so
that it only expects two possible message types.

MQGetMetaData
The MQGetMetaData function returns name and version information for the current Message
Queue service to which a client is connected.

MQGetMetaData (const MQConnectionHandle connectionHandle,

MQPropertiesHandle * propertiesHandle)

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle The handle to the connection that you want the information about.

propertiesHandle Output parameter that contains the properties handle.

The Message Queue product you are using is identified by a name and a version number. For
example: “Sun Java(tm) System Message Queue 3.5.1.” The version number consists of a major,
minor, micro, and update release component. For example, the major part of version 3.5.1. is 3;
the minor is 5; and the micro is 1. For release 3.7 UR1, the major part is 3; the minor is 7; and the
update release is 1.

The name and version information of the Message Queue product are set by the library when
you call the MQCreateConnection() function to create the connection. You can retrieve this
information by calling the MQGetMetaData function and passing a properties handle. Once the
function returns and passes the handle back, you can use one of the MQGet...Properties
functions to determine the value of a property (key). These properties are described in
Table 4–2.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010126

MQGetPropertyType
The MQGetPropertyType function returns the type of the property value for a property key in
the specified properties handle.

MQGetPropertyType (const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQType * propertyType);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle that you want to access.

key The property key for which you want to get the type of the property
value.

propertyType Output parameter for the type of the property value.

Use the appropriate MQGet...Property function to find the value of the specified property key.

Common Errors
MQ_NOT_FOUND

MQGetStatusCode
The MQGetStatusCode function returns the error code associated with specified status.

MQError MQGetStatusCode(const MQStatus status);

Parameters
status The status returned by any Message Queue function that returns an MQStatus.

Having found that a Message Queue function has not returned successfully, you can determine
the reason by passing the return status. This function will return the error code associated with
the specified status. These codes are listed and described in Appendix A, “Message Queue C API
Error Codes.”

Some functions might return an MQStatus that contains an NSPR or NSS library error code
instead of a Message Queue error code when they fail. For NSPR and NSS library error codes,

Function Reference

Chapter 4 • Reference 127

the MQGetStatusString function will return the symbolic name of the NSPR or NSS library
error code. See NSPR and NSS public documentation for NSPR and NSS error code symbols
and their interpretation at the following locations:

■ For NSPR error codes, see the “NSPR Error Handling” chapter at the following location:
http://www.mozilla.org/projects/nspr/reference/html/index.html.

■ For SSL and SEC error codes, see the “NSS and SSL Error Codes” chapter at the following
location: http://www.mozilla.org/projects/security/pki/nss/ref/ssl/.

To obtain an MQString that describes the error, use the MQGetStatusString() function. To get
an error trace associated with the error, use the MQGetErrorTrace() function.

MQGetStatusString
The MQGetStatusString function returns an MQString describing the specified status.

MQString MQGetStatusString(const MQStatus status);

Parameters
status The status returned by any Message Queue function that returns an MQStatus.

Having found that a Message Queue function has not returned successfully, you can determine
the reason why by passing the return status. This function will return an MQString describing
the error associated with the specified status.

To obtain the error code for the specified status, use the MQGetStatusCode() function. To get
an error trace associated with the error, use the MQGetErrorTrace() function.

You must call the MQFreeString function to free the MQString returned by the
MQGetStatusString function when you are done.

MQGetStringProperty
The MQGetStringProperty function passes back the value of the specified key for the specified
MQString property.

MQGetStringProperty(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

ConstMQString * value);

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010128

http://www.mozilla.org/projects/nspr/reference/html/index.html
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle for the key you want to get.

key The name of a property key.

value Output parameter that points to the value of the specified key

You should not modify or attempt to free the value returned.

MQGetTextMessageText
The MQGetTextMessageText function passes back the contents of a text message.

MQGetTextMessageText(const MQMessageHandle messageHandle,

ConstMQString * messageText);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to an MQ_TEXT_MESSAGE message that is passed to you when you

receive a message.

messageText The output parameter that points to the message text.

After you obtain the handle to a message, you can use the MQGetMessageType() function to
determine its type and, if the type is text, you can use the MQGetTextMessageText() function to
retrieve the message text.

The MQString passed to you by this function is not a copy. You should not modify the bytes or
attempt to free it.

MQGetXAConnection
The MQGetXAConnection function passes back a handle to an XA connection. This should only
be called when the Message Queue C-API is used in a X/Open distributed transaction
processing environment with Message Queue as an XA-compliant resource manager.

Function Reference

Chapter 4 • Reference 129

MQGetXAConnection(MQConnectionHandle * connectionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle A handle to an XA connection.

MQCloseConnection should not be called on an XA connection handle.

Common Errors
MQ_STATUS_INVALID_HANDLE

MQInitializeSSL
The MQInitializeSSL function initializes the SSL library.

MQInitializeSSL (ConstMQString certificateDatabasePath);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
certificateDatabasePath An MQString specifying the path to the directory that contains

the certificate data base files.

The Message Queue C-API library uses NSS to support the SSL transport protocol between the
Message Queue C client and the Message Queue broker.

Before you connect to a broker over SSL, you must initialize the SSL library by calling the
MQInitializeSSL function. If your client uses secure connections, you must call this function
once and only once before you create any connection, even if that connection is not an SSL
connection.

The certificateDatabasePath parameter specifies the path to the NSS certificate database
where cert7.db or cert8.db , key3.db, and secmod.db files are located.

The work required to configure secure communication includes initializing the SSL library
using the MQInitializeSSL function. There may be additional work, depending on whether the
broker is trusted (the default setting) and on whether you want to provide an additional means

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010130

of verification if the broker is not trusted and the initial attempt to create a secure connection
fails. For complete information see “Working With Secure Connections” on page 39.

You must take care if the client application using secure Message Queue connections uses NSS
(for other purposes) directly as well and does NSS initialization. For additional information, see
“Coordinating NSS Initialization” on page 41.

Common Errors
MQ_INCOMPATIBLE_LIBRARY

MQ_SSL_ALREADY_INITIALIZED

MQ_SSL_INIT_ERROR

MQPropertiesKeyIterationGetNext
The MQPropertiesKeyIterationGetNext function passes back the address of the next property
key in the referenced properties handle.

MQPropertiesKeyIterationGetNext

(const MQPropertiesHandle propertiesHandle,

ConstMQString * key);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle whose contents you want to access.

key The output parameter for the next properties key in the iteration. You
should not attempt to modify or free it.

▼ To Get Message Properties

Start the process by calling the MQPropertiesKeyIterationStart() function.

Loop using the MQPropertiesKeyIterationHasNext() function.

Extract the name of each property key by calling the MQPropertiesKeyIterationGetNext()
function.

Determine the type of the property value for a given key by calling the MQGetPropertyType()
function.

1

2

3

4

Function Reference

Chapter 4 • Reference 131

Use the appropriate MQGet...Property function to find the property value for the specified
property key.
If you know the property key, you can just use the appropriate MQGet...Property function to
access its value.

You should not modify or free the property key that is passed back to you by this function. Note
that this function is not multi-thread-safe.

MQPropertiesKeyIterationHasNext
The MQPropertiesKeyIterationHasNext function returns MQ_TRUE if there are additional
property keys left in the iteration.

MQPropertiesKeyIterationHasNext

(const MQPropertiesHandle propertiesHandle);

Return Value
MQBool

Parameters
propertiesHandle A properties handle that you want to access.

▼ To Get Message Properties

Start the process by calling the MQPropertiesKeyIterationStart() function.

Loop using the MQPropertiesKeyIterationHasNext() function.

Extract the name of each property key by calling the MQPropertiesKeyIterationGetNext()
function.

Determine the type of the property value for a given key by calling the MQGetPropertyType()
function.

Use the appropriate MQGet...Property function to find the value for the specified property
key.
If you know the property key, you can just use the appropriate MQGet...Property function to
get its value. Note that this function is not multi-thread-safe.

5

1

2

3

4

5

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010132

MQPropertiesKeyIterationStart
The MQPropertiesKeyIterationStart function starts or resets the iteration process or the
specified properties handle.

MQPropertiesKeyIterationStart

(const PropertiesHandle propertiesHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A properties handle that you want to access.

▼ To Get Message Properties

Start the process by calling the MQPropertiesKeyIterationStart() function.

Loop using the MQPropertiesKeyIterationHasNext() function.

Extract the name of each property key by calling the MQPropertiesKeyIterationGetNext()
function.

Determine the type of the property value for a given key by calling the MQGetPropertyType()
function.

Use the appropriate MQGet...Property function to find the property value for the specified
property key.
If you know the property key, you can just use the appropriate MQGet...Property function to
get its value. Note that this function is not multi-thread-safe.

MQReceiveMessageNoWait
The MQReceiveMessageNoWait function passes a handle back to a message delivered to the
specified consumer if a message is available.

MQReceiveMessageNoWait(const MQConsumerHandle consumerHandle,

MQMessageHandle * messageHandle);

1

2

3

4

5

Function Reference

Chapter 4 • Reference 133

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
consumerHandle The handle to the message consumer. This handle is passed back to you

when you create a synchronous message consumer.

messageHandle Output parameter for the handle to the message to be received. You are
responsible for freeing the message handle when you are done by calling
the MQFreeMessage() function.

This function can only be called if the session is created with receive mode
MQ_SESSION_SYNC_RECEIVE. The MQReceiveMessageNoWait function passes a handle back to
you in the messageHandle parameter if there is a message arrived for the consumer specified by
the consumerHandle parameter. If there is no message for the consumer, the function returns
immediately with an error.

When you create a session, you specify one of several acknowledge modes for that session; these
are described in “Acknowledge Modes” on page 81. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the MQAcknowledgeMessages
function to acknowledge messages that you have received. For more information, see the
description of the function MQAcknowledgeMessage()s.

Because distributed applications involve greater processing time, such an application might not
behave as expected if it were run locally. For example, calling the MQReceiveMessageNoWait
function might return MQ_NO_MESSAGE even when there is a message available to be retrieved.

If a client connects to the broker and immediately calls the MQReceiveMessageNoWait , it is
possible that the message queued for the consuming client is in the process of being transmitted
from the broker to the client. The client runtime has no knowledge of what is on the broker, so
when it sees that there is no message available on the client’s internal queue, it returns with
MQ_NO_MESSAGE .

You can avoid this problem by having your client use one of the synchronous receive methods
that specifies a timeout interval.

You can use the MQReceiveMessageWait() function if you want the receive function to block
while waiting for a message to arrive. You can use the MQReceiveMessageWithTimeout()
function to wait for a specified time for a message to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_CONCURRENT_ACCESS

MQ_NO_MESSAGE

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010134

MQ_CONSUMER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

MQReceiveMessageWait
The MQReceiveMessageWait function passes a handle back to a message delivered to the
specified consumer when the message becomes available.

MQReceiveMessageWait (const MQConsumerHandle consumerHandle,

MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
consumerHandle The handle to the message consumer. This handle is passed back to you

when you create a synchronous message consumer.

messageHandle Output parameter for the handle to the message to be received. You are
responsible for freeing the message handle when you are done by calling
the MQFreeMessage() function.

This function can only be called if the session is created with receive mode
MQ_SESSION_SYNC_RECEIVE. The MQReceiveMessageWait function passes a handle back to you
in the messageHandle parameter if there is a message arrived for the consumer specified by the
consumerHandle parameter. If there is no message for the consumer, the function blocks until a
message is delivered.

When you create a session, you specify one of several acknowledge modes for that session; these
are described in “Acknowledge Modes” on page 81. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the MQAcknowledgeMessages
function to acknowledge messages that you have received. For more information, see the
description of the function MQAcknowledgeMessages().

You can use the MQReceiveMessageNoWait() function instead if you do not want to block while
waiting for a message to arrive. You can use the function MQReceiveMessageWithTimeout() to
wait for a specified time for a message to arrive.

Function Reference

Chapter 4 • Reference 135

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_CONCURRENT_ACCESS

MQ_CONSUMER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

MQReceiveMessageWithTimeout
The MQReceiveMessageWithTimeout function passes a handle back to a message delivered to
the specified consumer if a message is available within the specified amount of time.

MQReceiveMessageWithTimeout

(const MQConsumerHandle consumerHandle,

MQInt32 timeoutMilliseconds,

MQMessageHandle * messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
consumerHandle The handle to the message consumer. This handle is passed back to

you when you create a synchronous message consumer.

timeoutMilliseconds The number of milliseconds to wait for a message to arrive.

messageHandle Output parameter for the handle to the message to be received. You
are responsible for freeing the message handle when you are done
by calling the MQFreeMessage() function.

This function can only be called if the session is created with receive mode
MQ_SESSION_SYNC_RECEIVE. The MQReceiveMessageWithTimeout() function passes a handle
back to you in the messageHandle parameter if a message arrives for the consumer specified by
the consumerHandle parameter in the amount of time specified by the timoutMilliseconds
parameter. If no message arrives within the specified amount of time, the function returns an
error.

When you create a session, you specify one of several acknowledge modes for that session; these
are described in “Acknowledge Modes” on page 81. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the MQAcknowledgeMessages

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010136

function to acknowledge messages that you have received. For more information, see the
description of the function MQAcknowledgeMessages().

You can use the MQReceiveMessageWait() function to block while waiting for a message to
arrive. You can use the MQReceiveMessageNoWait() function if you do not want to wait for the
message to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_CONCURRENT_ACCESS

MQ_TIMEOUT_EXPIRED

MQ_CONSUMER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

MQRecoverSession
The MQCRecoverSession function stops message delivery and restarts message delivery with the
oldest unacknowledged message.

MQRecoverSession(const MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session that you want to recover.

You can only call this function for sessions that are not transacted. To rollback message delivery
for a transacted session, use the MQRollBackSession() function. This function may be most
useful if you use the MQ_CLIENT_ACKNOWELDGE mode.

All consumers deliver messages in a serial order. Acknowledging a received message
automatically acknowledges all messages that have been delivered to the client.

Restarting a session causes it to take the following actions:

■ Stop message delivery in this session.
■ Mark all messages that might have been delivered but not acknowledged as redelivered.

Function Reference

Chapter 4 • Reference 137

■ Restart the delivery sequence including all unacknowledged messages that had been
previously delivered. (Redelivered messages might not be delivered in their original delivery
order.)

Common Errors
MQ_TRANSACTED_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQRollBackSession
The MQRollBackSession function rolls back a transaction associated with the specified session.

MQRollBackSession(const MQSessionHandle sessionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the transacted session that you want to roll back.

A transacted session groups messages into an atomic unit known as a transaction. As messages
are produced or consumed within a transaction, the broker tracks the various sends and
receives, completing these operations only when you call the MQCommitSession() function.

If a send or receive operation fails, you must use the MQRollBackSession function to roll back
the entire transaction. This means that those messages that have been sent are destroyed and
those messages that have been consumed are automatically recovered.

Common Errors
MQ_NOT_TRANSACTED_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_XA_SESSION_IN_PROGRESS

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010138

MQSendMessage
The MQSendMessage function sends a message using the specified producer.

MQSendMessage(const MQProducerHandle producerHandle,

const MQMessageHandle messageHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
producerHandle The handle to the producer sending this message. This handle is passed

back to you by the MQCreateMessageProducerForDestination()
function.

messageHandle A handle to the message you want to send.

The MQSendMessage function sends the specified message on behalf of the specified producer to
the destination associated with the message producer. If you use this function to send a
message, the following message header fields are set to default values when the send completes.

■ MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.
This means that the calling thread will be blocked, waiting for the broker to acknowledge
receipt of your messages, unless you set the connection property
MQ_ACK_ON_PRODUCE_PROPERTY to MQ_FALSE.

■ MQ_PRIORITY_HEADER_PROPERTY will be set to 4.
■ MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the message will never

expire.

If you set those message properties, they will be ignored when a message is sent. To send a
message with these properties set to different values, you can use the MQSendMessageExt()
function to specify different values for these properties.

You cannot use this function with a producer that is created without a specified destination.

Common Errors
MQ_PRODUCER_NO_DESTINATION

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

Function Reference

Chapter 4 • Reference 139

MQSendMessageExt
The MQSendMessageExt function sends a message using the specified producer and allows you
to specify selected message header properties.

MQSendMessageExt

(const MQProducerHandle producerHandle,

const MQMessageHandle messageHandle

MQDeliveryMode msgDeliveryMode,

MQInt8 msgPriority,

MQInt64 msgTimeToLive);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
producerHandle The handle to the producer sending this message. This handle is passed

back to you by the MQCreateMessageProducerForDestination()
function.

messageHandle A handle to the message you want to send.

msgDeliveryMode An enum

MQ_PERSISTENT_DELIVERY

MQ_NONPERSISTENT_DELIVERY

msgPriority A integer value of 0 through 9; 0 being the lowest priority and 9 the
highest.

msgTimeToLive An integer value specifying in milliseconds how long the message will
live before it expires. When a message is sent, its expiration time is
calculated as the sum of its time-to-live value and current GMT. A value
of 0 indicates that he message will never expire.

The MQSendMessageExt function sends the specified message on behalf of the specified
producer to the destination associated with the message producer. Use this function if you want
to change the default values for the message header properties as shown in the next table.

Property Default value

msgDeliveryMode MQ_PERSISTENT_DELIVERY

msgPriority 4

msgTimeToLive 0, meaning no expiration limit

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010140

If you set these message headers using the MQSetMessageHeaders function before the send, they
will be ignored when the message is sent. When the send completes, these message headers hold
the values that are set by the send.

You cannot use this function with a producer that is created without a specified destination.

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that the message
has reached its destination on the broker:

■ By default, the broker acknowledges receiving persistent messages only.
■ If you set the property to MQ_TRUE, the broker acknowledges receipt of all messages

(persistent and non-persistent) from the producing client.
■ If you set the property to MQ_FALSE, the broker does not acknowledge receipt of any message

(persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally implemented.
That is, the client thread is blocked and does not return until the broker acknowledges messages
it receives from the producing client.

Common Errors
MQ_PRODUCER_NO_DESTINATION

MQ_INVALID_PRIORITY

MQ_INVALID_DELIVERY_MODE

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

MQSendMessageToDestination
The MQSendMessageToDestination function sends a message using the specified producer to
the specified destination.

MQSendMessageToDestination

(const MQProducerHandle producerHandle,

const MQMessageHandle messageHandle,

const MQDestinationHandle destinationHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Function Reference

Chapter 4 • Reference 141

Parameters
producerHandle The handle to the producer sending this message. This handle is

passed back to you by the MQCreateMessageProducer() function.

messageHandle A handle to the message you want to send.

destinationHandle A handle to the destination where you want to send the message.

The MQSendMessageToDestination function sends the specified message on behalf of the
specified producer to the specified destination. If you use this function to send a message, the
following message header fields are set as follows when the send completes.

■ MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.
This means that the caller will be blocked, waiting for broker acknowledgement for the
receipt of your messages unless you set the connection property
MQ_ACK_ON_PRODUCE_PROPERTY to MQ_FALSE.

■ MQ_PRIORITY_HEADER_PROPERTY will be set to 4.
■ MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the message will never

expire.

To send a message with these properties set to different values, you must use the
MQSendMessageToDestinationExt() function, which allows you to set these three header
properties.

If you set these message headers using the MQSetMessageHeaders function before the send, they
will be ignored when the message is sent. When the send completes, these message headers hold
the values that are set by the send.

You cannot use this function with a producer that is created with a specified destination.

Common Errors
MQ_PRODUCER_HAS_DEFAULT_DESTINATION

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

MQSendMessageToDestinationExt
The MQSendMessageToDestinationExt function sends a message to the specified destination
for the specified producer and allows you to set selected message header properties.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010142

MQSendMessageToDestinationExt

(const MQProducerHandle producerHandle,

const MQMessageHandle messageHandle,

const MQDestinationHandle destinationHandle,

MQDeliveryMode msgDeliveryMode,

MQInt8 msgPriority,

MQInt64 msgTimeToLive);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
producerHandle The handle to the producer sending this message. This handle is

passed back to you when you call the MQCreateMessageProducer()
function.

messageHandle A handle to the message you want to send.

destinationHandle A handle to the destination where you want to send the message.

msgDeliveryMode An enum of either MQ_PERSISTENT_DELIVERY or
MQ_NONPERSISTENT_DELIVERY.

msgPriority A integer value of 0 through 9; 0 being the lowest priority and 9 the
highest.

msgTimeToLive An integer value specifying in milliseconds how long the message will
live before it expires. When a message is sent, its expiration time is
calculated as the sum of its time-to-live value and current GMT. A
value of 0 indicates that the message will never expire.

The MQSendMessageToDestinationExt function sends the specified message on behalf of the
specified producer to the specified destination. Use this function if you want to change the
default values for the message header properties as shown below:

Property Default value

msgDeliveryMode MQ_PERSISTENT_DELIVERY

msgPriority 4

msgTimeToLive 0, meaning no expiration limit

If these default values suit you, you can use the MQSendMessageToDestination() function to
send the message.

You cannot use this function with a producer that is created with a specified destination.

Function Reference

Chapter 4 • Reference 143

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that the message
has reached its destination on the broker:

■ By default, the broker acknowledges receiving persistent messages only from the producing
client.

■ If you set the property to MQ_TRUE, the broker acknowledges receipt of all messages
(persistent and non-persistent) from the producing client.

■ If you set the property to MQ_FALSE, the broker does not acknowledge receipt of any message
(persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally implemented.
That is, the client thread is blocked and does not return until the broker acknowledges messages
it receives.

Common Errors
MQ_PRODUCER_HAS_DEFAULT_DESTINATION

MQ_INVALID_PRIORITY

MQ_INVALID_DELIVERY_MODE

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQ_THREAD_OUTSIDE_XA_TRANSACTION

MQ_XA_SESSION_NO_TRANSATION

MQSetBoolProperty
The MQSetBoolProperty function sets an MQBool property with the specified key to the
specified value.

MQSetBoolProperty

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQBool value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010144

key The name of the property key. The library makes a copy of the property
key.

value The MQBool property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetBytesMessageBytes
The MQSetBytesMessageBytes function defines the body for a bytes message.

MQSetBytesMessageBytes

(const MQMessageHandle messageHandle,

const MQInt8 * messageBytes,

MQInt32 messageSize);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to an MQ_BYTES_MESSAGE message whose body you want to set.

messageBytes A pointer to the bytes you want to set. The library makes a copy of the
message bytes.

messageSize An integer specifying the number of bytes in messageBytes .

After you obtain the handle to a bytes message from MQCreateBytesMessage , you can use this
handle to define its body with the MQSetBytesMessageBytes() function, to set its
application-defined properties with the MQSetMessageProperties() function, and to set
certain message headers with the MQSetMessageHeaders() function.

MQSetFloat32Property
The MQSetFloat32Property function sets an MQFloat32 property with the specified key to the
specified value.

MQSetFloat32Property

(const MQPropertiesHandle propertiesHandle,

Function Reference

Chapter 4 • Reference 145

ConstMQString key,

MQFloat32 value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set.

key The name of a property key. The library makes a copy of the property
key.

value The MQFloat32 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetFloat64Property
The MQSetFloat64Property function sets an MQFloat64 property with the specified key to the
specified value.

MQSetFloat64Property

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQFloat64 value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set.

key The name of a property key. The library makes a copy of the property
key.

value The MQFloat64 property value.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010146

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt16Property
The MQSetInt16Property function sets an MQInt16 property with the specified key to the
specified value.

MQSetInt16Property

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt16 value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set.

key The name of a property key. The library makes a copy of the property
key.

value The MQInt16 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt32Property
The MQSetInt32Property function sets an MQInt32 property with the specified key to the
specified value.

MQSetInt32Property

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt32 value);

Function Reference

Chapter 4 • Reference 147

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set.

key The name of a property key. The library makes a copy of the property
key.

value The MQInt32 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt64Property
The MQSetInt64Property function sets an MQInt64 property with the specified key to the
specified value.

MQSetInt64Property

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt64 value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set.

key The name of a property key. The library makes a copy of the property
key.

value The MQInt64 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010148

MQSetInt8Property
The MQSetInt8Property function sets an MQInt8 property with the specified key to the
specified value.

MQSetInt8Property

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

MQInt8 value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set

key The name of a property key. The library makes a copy of the property
key.

value The MQInt8 property value.

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetMessageHeaders
The MQSetMessageHeaders function creates the header part of the message.

MQSetMessageHeaders

(const MQMessageHandle messageHandle

MQPropertiesHandle headersHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message.

Function Reference

Chapter 4 • Reference 149

headersHandle A handle to the header properties object. This handle will be invalid after
the function returns successfully.

After you have created a properties handle and defined values for message header properties
using one of the MQSet...Property functions, you can pass the handle to the
MQSetMessageHeaders function to define the message header properties.

The message header properties are described in the table below. For sending messages, the
client can only set two of these: the correlation ID property and the message type property. The
client is not required to set these; they are provided for the client’s convenience. For example,
the client can use the key MQ_MESSAGE_TYPE_HEADER_PROPERTY to sort incoming messages
according to application-defined message types.

TABLE 4–6 Message Header Properties

Key Type Set By

MQ_CORRELATION_ID_HEADER_PROPERTY MQString Client (optional)

MQ_MESSAGE_TYPE_HEADER_PROPERTY MQString Client (optional)

MQ_PERSISTENT_HEADER_PROPERTY MQBool Send function

MQ_EXPIRATION_HEADER_PROPERTY MQInt64 Send function

MQ_PRIORITY_HEADER_PROPERTY MQInt8 Send function

MQ_TIMESTAMP_HEADER_PROPERTY MQInt64 Send function

MQ_MESSAGE_ID_HEADER_PROPERTY MQString Send function

MQ_REDELIVERED_HEADER_PROPERTY MQBool Message Broker

Header properties that are not specified in the headersHandle are not affected. You cannot use
this function to override header properties that are set by the broker or the send function. The
header properties for persistence, expiration, and priority (MQSetMessageHeaders)() are set to
default values if the user called the MQSendMessage() or MQSendMessageToDestination()
function, or they are set to values the user specifies (in parameters) if the user called the
MQSendMessageExt() or the MQSendMessageToDestinationExt() function.

Use the MQSetBytesMessageBytes() function or the MQSetTextMessageText() function to set
the body of a message. Use the MQSetMessageProperties() function to set the
application-defined properties of a message that are not part of the header.

Common Errors
MQ_PROPERTY_WRONG_VALUE_TYPE

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010150

MQSetMessageProperties
The MQSetMessageProperties function sets the specified properties for a message. You can
also use this function to change a message's properties.

MQSetMessageProperties

(const MQMessageHandle messageHandle,

MQPropertiesHandle propsHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message whose application-defined properties you want

to set.

propertiesHandle A handle to a properties object that you have created and set using one
of the set property functions. This handle is invalid after the function
returns successfully.

After you obtain the handle to a message, you can use this handle to define its body with the
MQSetBytesMessageBytes() or MQSetTextMessageText() function, and to set its header
properties with the MQSetMessageHeaders() function.

Property values are set prior to sending a message. The MQSetMessageProperties function
allows you to set application-defined properties for a message. For example,
application-defined properties allow an application, via message selectors, to select or filter,
messages on its behalf using application-specific criteria.

You define the message properties and their values using the MQCreateProperties() function
to create a properties object, then you use one of the set property functions to define each key
and value in it. See “Working With Properties” on page 32 for more information.

MQSetMessageReplyTo
The MQSetMessageReplyTo function specifies the destination where replies to this message
should be sent.

MQSetMessageReplyTo

(const MQMessageHandle messageHandle,

const MQDestinationHandle destinationHandle);

Function Reference

Chapter 4 • Reference 151

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message expecting a reply.

destinationHandle The destination to which the reply is sent. Usually this is a handle to a
destination that you created using the MQCreateDestination()
function or the function MQCreateTemporaryDestination(). The
handle is still valid when this function returns.

The sender uses the MQSetMessageReply function to specify a destination where replies to the
message can be sent. This can be a normal destination or a temporary destination. The receiver
of a message can use the MQGetMessageReplyTo() function to determine whether a sender has
set up a destination where replies are to be sent. The advantage of setting up a temporary
destination for replies is that Message Queue automatically creates a physical destination for
you, rather than your having to have the administrator create one if the broker’s
auto_create_destination property is turned off.

MQSetStringProperty
The MQSetStringProperty function sets an MQString property with the specified key to the
specified value.

MQSetStringProperty

(const MQPropertiesHandle propertiesHandle,

ConstMQString key,

ConstMQString value);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
propertiesHandle A handle to the properties object whose property value for the specified

key you want to set. You get this handle from the
MQCreateProperties() function.

key The name of a property key. The library makes a copy of the property
key

value The property value to set. The library makes a copy of the value.

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010152

The library makes a copy of the property key and also makes a copy of the value.

MQSetTextMessageText
The MQSetTextMessageText function defines the body for a text message.

MQSetTextMessageText

(const MQMessageHandle messageHandle,

ConstMQString messageText);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
messageHandle A handle to a message whose text body you want to set.

messageText An MQString specifying the message text. The library makes a copy of the
message text.

After you obtain the handle to a text message, you can use this handle to define its body with the
MQSetTextMessageText() function. You can set its application-defined properties with the
MQSetMessageProperties() function, and you can set certain message headers with the
MQSetMessageHeaders() function.

MQStartConnection
The MQStartConnection function starts the specified connection to the broker and starts or
resumes message delivery.

MQStartConnection

(const MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle The handle to the connection that you want to start. This handle is the

handle that is created and passed back to you by the
MQCreateConnection() function.

Function Reference

Chapter 4 • Reference 153

When a connection is created it is in stopped mode. Until you call this function, messages are
not delivered to any consumers. Call this function to start a connection or to restart a
connection that has been stopped with the MQStopConnection() function. To create an
asynchronous consumer, you could have the connection in stopped mode, and start or restart
the connection after you have set up the asynchronous message consumer.

Use the MQCloseConnection() function to close a connection, and then use the
MQFreeConnection() function to free the memory allocated to the connection.

Common Errors
MQ_BROKER_CONNECTION_CLOSED

MQStatusIsError
The MQStatusIsError function returns MQ_TRUE if the status parameter passed to it represents
an error.

MQBool MQStatusIsError(const MQStatus status);

Parameters
status The status returned by any Message Queue function that returns an MQStatus.

Nearly all Message Queue C library functions return an MQStatus. You can pass this status
result to the MQStatusIsError function to determine whether your call succeeded. If the
MQStatusIsError function returns MQ_TRUE(=1), the function failed; if it returns
MQ_FALSE(=0), the function returned successfully.

If the MQStatusIsError returns MQ_TRUE, you can get more information about the error that
occurred by passing the status returned to the MQGetStatusCode() function. This function
will return the error code associated with the specified status.

To obtain an MQString that describes the error, use the MQGetStatusString() function. To get
an error trace associated with the error, use the MQGetErrorTrace() function.

MQStopConnection
The MQStopConnection function stops the specified connection to the broker. This stops the
broker from delivering messages.

MQStopConnection

(const MQConnectionHandle connectionHandle);

Function Reference

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010154

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
connectionHandle The handle to the connection that you want to stop. This handle is

passed back to you by the MQCreateConnection() function.

You can restart message delivery by calling the MQStartConnection() function. When the
connection has stopped, delivery to all the connection’s message consumers is inhibited:
synchronous receives block, and messages are not delivered to message listeners. This call
blocks until receives and/or message listeners in progress have completed.

You should not call MQStopConnection in a message listener callback function.

Use the MQCloseConnection() function to close a connection, and then use the
MQFreeConnection() function to free the memory allocated to the connection.

Common Errors
MQ_BROKER_CONNECTION_CLOSED

MQ_CONCURRENT_DEADLOCK

MQUnsubscribeDurableMessageConsumer
The MQUnsubscribeDurableMessageConsumer function unsubscribes the specified durable
message consumer.

MQUnsubscribeDurableMessageConsumer

(const MQSessionHandle sessionHandle,

ConstMQString durableName);

Return Value
MQStatus. See the MQStatusIsError() function for more information.

Parameters
sessionHandle The handle to the session to which this consumer belongs. This handle is

created and passed back to you by the MQCreateSession() function.

durableName An MQString specifying the name of the durable subscriber.

Function Reference

Chapter 4 • Reference 155

When you call the MQUnsubscribeDurableMessageConsumer function, the client runtime
instructs the broker to delete the state information that the broker maintains for this consumer.
If you try to delete a durable consumer while it has an active topic subscriber or while a received
message has not been acknowledged in the session, you will get an error. You should only
unsubscribe a durable message consumer after closing it.

Common Errors
MQ_CANNOT_UNSUBSCRIBE_ACTIVE_CONSUMER

MQ_CONSUMER_NOT_FOUND

Header Files
The Message Queue C-API is defined in the header files listed in Table 4–7. The files are listed in
alphabetical order. The file mqcrt.h includes all the Message Queue C-API header files.

TABLE 4–7 Message Queue C-API Header Files

File Name Contents

mqbasictypes.h Defines the types MQBool, MQInt8, MQInt16, MQInt32, MQInt64,
MQFloat32, MQFloat64.

mqbytes-message.h Function prototypes for creating, getting, setting bytes message.

mqcallback-types.h Asynchronous receive and connection exception handling
callback types.

mqconnection.h Function prototypes for creating, managing, and closing
connections. Function prototype for creating session.

mqconnection-props.h Connection property constants

mqconsumer.h Function prototypes for synchronous receives and closing the
consumer.

mqcrt.h All Message Queue C-API public header files.

mqdestination.h Function prototypes to free destinations and get information
about destinations.

mqerrors.h Error codes

mqheader-props.h Message header property constants

mqmessage.h Function prototypes for getting and setting parts of message,
freeing message, and acknowledging message.

Header Files

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010156

TABLE 4–7 Message Queue C-API Header Files (Continued)
File Name Contents

mqproducer.h Function prototypes for sending messages and closing the
message producer.

mqproperties.h Function prototypes for creating, setting, and getting properties

mqsession.h Function prototypes for managing and closing sessions; for
creating destinations, message producers and message
consumers.

mqssl.h Function declaration for initializing the SSL library.

mqstatus.h Function prototypes for getting error information.

mqtext-message.h Function prototypes for creating, getting, setting text message.

mqtypes.h Enumeration of types that can be stored in a properties object, of
types of message that can be received, of acknowledgement
modes, of delivery modes, of destination types, of session
receiving modes, and of handle types.

mqversion.h Version information constant definitions.

Header Files

Chapter 4 • Reference 157

158

Message Queue C API Error Codes

Having found that a Message Queue function has not returned successfully, you can determine
the reason by passing the return status of that function to the MQGetStatusCode function, which
returns the error code associated with the specified status. This appendix lists the error codes
that can be returned and provides a description that is associated with that code. You can
retrieve the error string (description) by calling the MQGetStatusString function.

Some Message Queue functions, when they fail, might return an MQStatus result that contains
an NSPR or NSS library error code instead of a Message Queue error code. For NSPR and NSS
library error codes, the MQGetStatusString function returns the symbolic name of the NSPR or
NSS library error code. Please see NSPR and NSS public documentation for NSPR and NSS
error code symbols and their interpretation at the following locations:

■ For NSPR error codes, see the “NSPR Error Handling” chapter at the following
site:http://www.mozilla.org/projects/nspr/reference/html/index.html

■ For NSS error codes, see the “NSS and SSL Error Codes” chapter at the following site:
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

When checking a Message Queue function for return errors, you should only reference the
Message Queue common error code symbol names in order to maintain maximum
compatibility with future releases. For each function, Chapter 4, “Reference,” lists the common
error codes that can be returned by that function.

For information on error handling, see Table A–1.

AA P P E N D I X A

159

http://www.mozilla.org/projects/nspr/reference/html/index.html
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

Error Codes
Table A–1 lists the error codes in alphabetical order. For each code listed, it provides a
description for the error code and notes whether it is a common error (Common).

TABLE A–1 Message Queue C Client Error Codes

Code Common Description

MQ_ACK_STATUS_NOT_OK Acknowledgement status is not OK

MQ_ADMIN_KEY_AUTH_MISMATCH Admin key authorization mismatch

MQ_BAD_VECTOR_INDEX Bad vector index

MQ_BASE64_ENCODE_FAILURE Base 64 encode failure.

MQ_BASIC_TYPE_SIZE_MISMATCH Message Queue basic type size
mismatch

MQ_BROKER_BAD_REQUEST Broker: bad request

MQ_BROKER_BAD_VERSION Broker: bad version

MQ_BROKER_CONFLICT Broker: conflict

MQ_BROKER_CONNECTION_CLOSED X Broker connection is closed.

MQ_BROKER_ENTITY_TOO_LARGE Broker: entity too large

MQ_BROKER_ERROR Broker: error

MQ_BROKER_FORBIDDEN Broker: forbidden

MQ_BROKER_GONE Broker: gone

MQ_BROKER_INVALID_LOGIN Broker: invalid login

MQ_BROKER_NOT_ALLOWED Broker: not allowed

MQ_BROKER_NOT_FOUND Broker: not found

MQ_BROKER_NOT_IMPLEMENTED Broker: not implemented

MQ_BROKER_PRECONDITION_FAILED Broker: precondition failed

MQ_BROKER_RESOURCE_FULL Broker: resource full

MQ_BROKER_TIMEOUT Broker: timeout

MQ_BROKER_UNAUTHORIZED Broker: unauthorized

MQ_BROKER_UNAVAILABLE Broker: unavailable

Error Codes

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010160

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_CALLBACK_RUNTIME_ERROR X Callback runtime error occurred

MQ_CANNOT_UNSUBSCRIBE_ACTIVE_CONSUMER X Cannot unsubscribe an active
consumer.

MQ_CLIENTID_IN_USE X Client id already in use

MQ_CONCURRENT_ACCESS X Concurrent access

MQ_CONCURRENT_DEADLOCK X Operation may cause deadlock

MQ_CONCURRENT_NOT_OWNER Concurrent access not owner

MQ_CONNECTION_CREATE_SESSION_ERROR Connection failed to create a session.

MQ_CONNECTION_OPEN_ERROR Connection failed to open a
connection.

MQ_CONNECTION_START_ERROR Connection start failed.

MQ_CONNECTION_UNSUPPORTED_TRANSPORT X The transport specified is not
supported.

MQ_CONSUMER_CLOSED X The consumer was closed.

MQ_CONSUMER_EXCEPTION An exception occurred on the
consumer.

MQ_CONSUMER_NO_DURABLE_NAME X There is no durable name specified

MQ_CONSUMER_NO_SESSION The consumer has no session.

MQ_CONSUMER_NOT_FOUND X Message consumer not found

MQ_CONSUMER_NOT_IN_SESSION X The consumer is not part of this session.

MQ_CONSUMER_NOT_INITIALIZED The consumer has not been initialized.

MQ_COULD_NOT_CONNECT_TO_BROKER X Could not connect to Broker

MQ_COULD_NOT_CREATE_THREAD X Could not create thread

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDED X The number of consumers on the
destination exceeded limit.

MQ_DESTINATION_NO_CLASS The destination does not have a class.

MQ_DESTINATION_NO_NAME The destination does not have a name.

MQ_DESTINATION_NOT_TEMPORARY The destination is not temporary

MQ_END_OF_STREAM End of stream

Error Codes

Appendix A • Message Queue C API Error Codes 161

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_FILE_NOT_FOUND The property file could not be found

MQ_FILE_OUTPUT_ERROR File output error

MQ_HANDLED_OBJECT_IN_USE The object could not be deleted because
there is another reference to it.

MQ_HANDLED_OBJECT_INVALID_HANDLE_ERROR The object is invalid (i.e. it has not been
deleted).

MQ_HANDLED_OBJECT_NO_MORE_HANDLES A handle could not be allocated because
the supply of handles has been
exhausted.

MQ_HASH_TABLE_ALLOCATION_FAILED The hash table could not be allocated

MQ_HASH_VALUE_ALREADY_EXISTS X The hash value already exists in the
hash table.

MQ_ILLEGAL_CLOSE_XA_CONNECTION X Illegally closed an XA connection

MQ_INCOMPATIBLE_LIBRARY X The library is incompatible

MQ_INPUT_STREAM_ERROR Input stream error

MQ_INTERNAL_ERROR Generic internal error

MQ_INVALID_ACKNOWLEDGE_MODE X Invalid acknowledge mode

MQ_INVALID_AUTHENTICATE_REQUEST Invalid authenticate request

MQ_INVALID_CLIENTID X Invalid client id

MQ_INVALID_CONSUMER_ID Invalid consumer id

MQ_INVALID_DELIVERY_MODE X Invalid delivery mode.

MQ_INVALID_DESTINATION_TYPE X Invalid destination type.

MQ_INVALID_ITERATOR Invalid iterator

MQ_INVALID_MESSAGE_SELECTOR X Invalid message selector.

MQ_INVALID_PACKET Invalid packet

MQ_INVALID_PACKET_FIELD Invalid packet field

MQ_INVALID_PORT Invalid port

MQ_INVALID_PRIORITY X Invalid priority

MQ_INVALID_RECEIVE_MODE X Invalid receive mode.

Error Codes

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010162

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_INVALID_TRANSACTION_ID Invalid transaction id

MQ_INVALID_TYPE_CONVERSION X The object could not be converted
invalid input

MQ_MD5_HASH_FAILURE MD5 Hash failure

MQ_MESSAGE_NO_DESTINATION The message does not have a
destination

MQ_MESSAGE_NOT_IN_SESSION X The message was not delivered to the
session.

MQ_NEGATIVE_AMOUNT Negative amount

MQ_NO_AUTHENTICATION_HANDLER No authentication handler

MQ_NO_CONNECTION The session’s connection has been
closed

MQ_NO_MESSAGE X There was no message to receive.

MQ_NO_MESSAGE_PROPERTIES X There are no message properties

MQ_NO_REPLY_TO_DESTINATION X The message does not have a reply to
destination.

MQ_NOT_ASYNC_RECEIVE_MODE X The session is not in async receive
mode.

MQ_NOT_FOUND X Not found

MQ_NOT_IPV4_ADDRESS Not an IPv4 Address

MQ_NOT_SYNC_RECEIVE_MODE X The session is not in sync receive mode.

MQ_NOT_TRANSACTED_SESSION X The session is not transacted.

MQ_NOT_XA_CONNECTION X The connection is not an XA
connection.

MQ_NULL_PTR_ARG X NULL pointer passed to method

MQ_NULL_STRING The string is NULL

MQ_NUMBER_NOT_INT16 Number not a UINT16

MQ_OBJECT_NOT_CLONABLE The object cannot be cloned

MQ_OUT_OF_MEMORY X Out of memory

MQ_PACKET_OUTPUT_ERROR Packet output error

Error Codes

Appendix A • Message Queue C API Error Codes 163

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_POLL_ERROR Poll error

MQ_PORTMAPPER_ERROR Portmapper error

MQ_PORTMAPPER_INVALID_INPUT Portmapper returned invalid.

MQ_PORTMAPPER_WRONG_VERSION Portmapper is the wrong version

MQ_PRODUCER_CLOSED X Producer closed.

MQ_PRODUCER_HAS_DESTINATION X The producer has a specified
destination

MQ_PRODUCER_NO_DESTINATION X The producer does not have a specified
destination.

MQ_PRODUCER_NOT_IN_SESSION X The producer is not part of this session

MQ_PROPERTY_FILE_ERROR There was an error reading from the
property file

MQ_PROPERTY_NULL Property isNULL.

MQ_PROPERTY_WRONG_VALUE_TYPE X Property has the wrong value type

MQ_PROTOCOL_HANDLER_AUTHENTICATE_FAILED Authenticating to the broker failed.

MQ_PROTOCOL_HANDLER_DELETE_DESTINATION_FAILED Deleting destination failed

MQ_PROTOCOL_HANDLER_ERROR Protocol Handler error

MQ_PROTOCOL_HANDLER_GOODBYE_FAILED Error in saying goodbye to broker.

MQ_PROTOCOL_HANDLER_HELLO_FAILED Error saying hello to the broker.

MQ_PROTOCOL_HANDLER_READ_ERROR Reading a packet from the broker failed.

MQ_PROTOCOL_HANDLER_RESUME_FLOW_FAILED Error resume flow from broker.

MQ_PROTOCOL_HANDLER_SET_CLIENTID_FAILED Setting client id failed.

MQ_PROTOCOL_HANDLER_START_FAILED Starting broker connection failed.

MQ_PROTOCOL_HANDLER_STOP_FAILED Stopping broker connection failed.

MQ_PROTOCOL_HANDLER_UNEXPECTED_REPLY Received an unexpected reply from the
broker.

MQ_PROTOCOL_HANDLER_WRITE_ERROR Writing a packet to the broker failed.

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE X A queue consumer cannot be durable

MQ_READ_CHANNEL_DISPATCH_ERROR Read channel couldn’t dispatch packet.

Error Codes

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010164

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_READQTABLE_ERROR ReadQTable error

MQ_RECEIVE_QUEUE_CLOSED The receive queue is closed.

MQ_RECEIVE_QUEUE_ERROR The Session is not associated with a
connection.

MQ_REFERENCED_FREED_OBJECT_ERROR A freed object was referenced.

MQ_REUSED_CONSUMER_ID Reused consumer id

MQ_SEND_NOT_FOUND X The destination to which this message
was sent could not be found.

MQ_SEND_RESOURCE_FULL X The destination is full and is rejecting
new messages.

MQ_SEND_TOO_LARGE X The message exceeds the single message
size limit for the server or for the
destination.

MQ_SERIALIZE_BAD_CLASS_UID Serialize bad class UID

MQ_SERIALIZE_BAD_HANDLE Serialize bad handle

MQ_SERIALIZE_BAD_MAGIC_NUMBER Serialize bad magic number

MQ_SERIALIZE_BAD_SUPER_CLASS Serialize bad super class

MQ_SERIALIZE_BAD_VERSION Serialize bad version

MQ_SERIALIZE_CANNOT_CLONE Serialize cannot clone

MQ_SERIALIZE_CORRUPTED_HASHTABLE Serialize corrupted hashtable

MQ_SERIALIZE_NO_CLASS_DESC Serialize no class description

MQ_SERIALIZE_NOT_CLASS_DEF Serialize not class definition

MQ_SERIALIZE_NOT_CLASS_HANDLE Serialize not a class object

MQ_SERIALIZE_NOT_HASHTABLE Serialize not a hashtable

MQ_SERIALIZE_NOT_OBJECT_HANDLE Serialize not a handle object

MQ_SERIALIZE_STRING_CONTAINS_NULL Serialize string containsNULL

MQ_SERIALIZE_STRING_TOO_BIG Serialize string too big

MQ_SERIALIZE_TEST_ERROR Serialize testing error

MQ_SERIALIZE_UNEXPECTED_BYTES Serialize unexpected bytes

MQ_SERIALIZE_UNRECOGNIZED_CLASS Serialize unrecognized class

Error Codes

Appendix A • Message Queue C API Error Codes 165

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_SESSION_CLOSED X Session closed

MQ_SESSION_NOT_CLIENT_ACK_MODE X Session is not in client acknowledge
mode

MQ_SOCKET_CLOSE_FAILED Could not close the socket

MQ_SOCKET_CONNECT_FAILED Could not connect socket to the host

MQ_SOCKET_ERROR Socket error

MQ_SOCKET_READ_FAILED Could not read from the socket

MQ_SOCKET_SHUTDOWN_FAILED Could not shutdown socket

MQ_SOCKET_WRITE_FAILED Could not write to the socket

MQ_SSL_ALREADY_INITIALIZED X SSL has already been initialized

MQ_SSL_CERT_ERROR SSL certification error

MQ_SSL_ERROR SSL error

MQ_SSL_INIT_ERROR SSL initialization error

MQ_SSL_NOT_INITIALIZED X SSL not initialized

MQ_SSL_SOCKET_INIT_ERROR SSL socket initialization error

MQ_STATUS_CONNECTION_NOT_CLOSED X The connection cannot be deleted
because it was not closed.

MQ_STATUS_INVALID_HANDLE X The handle passed to a function is
invalid.

MQ_STRING_NOT_NUMBER String not a number

MQ_SUCCESS X Success

MQ_TCP_ALREADY_CONNECTED TCP already connected.

MQ_TCP_CONNECTION_CLOSED TCP connection is closed.

MQ_TCP_INVALID_PORT Invalid TCP port.

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION X The temporary destination is not in the
connection.

MQ_THREAD_OUTSIDE_XA_TRANSACTION X The calling thread is not associated with
an XA transaction

MQ_TIMEOUT_EXPIRED X Timeout expired

Error Codes

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010166

TABLE A–1 Message Queue C Client Error Codes (Continued)
Code Common Description

MQ_TRANSACTED_SESSION X Session is transacted.

MQ_TRANSACTION_ID_IN_USE Transaction id in use.

MQ_TYPE_CONVERSION_OUT_OF_BOUNDS The object conversion failed because
the value is out of bounds

MQ_UNEXPECTED_ACKNOWLEDGEMENT Received an unexpected
acknowledgement

MQ_UNEXPECTED_NULL Unexpected null

MQ_UNINITIALIZED_STREAM Uninitialized stream

MQ_UNRECOGNIZED_PACKET_TYPE The packet type was unrecognized

MQ_UNSUPPORTED_ARGUMENT_VALUE Unsupported argument value

MQ_UNSUPPORTED_AUTH_TYPE Unsupported authentication type

MQ_UNSUPPORTED_MESSAGE_TYPE The JMS message type is not supported

MQ_VECTOR_TOO_BIG Vector too big

MQ_WRONG_ARG_BUFFER_SIZE Buffer is the wrong size

MQ_XA_SESSION_IN_PROGRESS An XA session is in progress

MQ_XA_SESSION_NO_TRANSACTION The XA session has no active
transaction

Error Codes

Appendix A • Message Queue C API Error Codes 167

168

Index

A
acknowledgements

data type for, 74
periodic, 81

B
broker

acknowledging consumed messages, 78
acknowledging sent messages, 78
certificate for, 79
control messages, 78, 79
fixed port for, 77
host port for, 77
name for, 77
security, 77, 79

broker acknowledgements, automatic, 81

C
C API

header files, 21
runtime library, 21

checklist for client deployment, 27
client acknowledgements, explicit, 81
client identifier (ClientID), 98
connection properties

iterating through, 133
type of, 127

connections
closing, 90
creating, 36, 98
creating properties for, 33-34, 107
exceptions, 75, 83
freeing, 57, 113
freeing properties of, 58, 114
handle to, 74
orderly shutdown, 42
properties of, 75, 76
secure, initializing, 130
specifying, 37
starting, 153-154
stopping, 154-155
timed out limit, 77
transport protocol for, 76

ConstMQString type, 73
consumers

asynchronous, 53
closing, 90
creating asynchronous, 95
creating asynchronous durable, 93
creating durable, 101
creating synchronous, 104
handle to, 74
ping interval, 77
synchronous, 52, 53, 133, 135, 136
type of, 76
unsubscribing durable, 155-156
working with, 51

169

D
dead message queue, 64
delivery modes, 68

data type for, 74
deployment checklist for client applications, 27
destinations

creating, 45, 100
creating temporary, 109
freeing, 113
getting type of, 118
handle to, 74
type of, 74

distributed applications and synchronous
consumers, 53, 133

distributed transactions
building the sample programs, 27, 54
C-API as XA resource manager, 55
C-API functions, 54
description of sample programs, 25
setting up a Tuxedo environment, 26

durable subscriptions, performance impact of, 70

E
error handling

error trace, 118
error type, 75
getting status code, 127
MQStatus type, 76
status string, 128

exceptions, listener for, 75

F
fixed integer type support, 22
fixed ports, 77
FLOW_CONTROL property, 63

H
header files, 21, 156

J
JMS clients

deployment checklist, 27
factors impacting performance, 67
programming model, 20
requirements for deployment, 27
setup summary, 29

JMS_SUN_DMQ_BODY_TRUNCATED property, 67
JMS_SUN_DMQ_DEAD_BROKER property, 66
JMS_SUN_DMQ_PRODUCING_BROKER

property, 66
JMS_SUN_DMQ_UNDELIVERED_COMMENTS

property, 66
JMS_SUN_DMQ_UNDELIVERED_EXCEPTION

property, 66
JMS_SUN_DMQ_UNDELIVERED_REASON

property, 66
JMS_SUN_DMQ_UNDELIVERED_TIMESTAMP

property, 66
JMS_SUN_LOG_DEAD_MESSAGES property, 65
JMS_SUN_PRESERVE_UNDELIVERED property, 65
JMS_SUN_TRUNCATE_MSG_BODY property, 65
JMSCorrelationID message header field, 48
JMSDeliveryMode message header field, 47
JMSDestination message header field, 47
JMSExpiration message header field, 48
JMSMessageID message header field, 48
JMSPriority message header field, 48
JMSRedelivered message header field, 48
JMSReplyTo message header field, 48
JMSTimestamp message header field, 48
JMSType message header field, 48
JMSXDeliveryCount property, 66

L
listeners, message, data type for, 75
logging, 58

M
memory management, 57
message acknowledgements, 43-44

Index

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010170

message consumption
asynchronous, 81
asynchronous, in distributed transaction, 83

message headers
getting, 123
properties, 50
setting, 149-150

message properties
default values for, 50
getting, 34, 124
handle to, 75
iterating through, 35, 133
setting, 151
type of, 127

Message Queue
fixed integer type support, 22
header files, 156
meta data for, 126
name of, 79
version of, 79

Message Queue programs, building, 21
message selector, 60
messages

acknowledging, 88
body, 48
composing, 47
correlation id, 123
creating bytes type, 97
creating text type, 110
expiration of, 123
filtering, 54
freeing, 114
getting text of, 129
getting type of, 125
handle to, 75
limit of unconsumed, 79
mode of, 123
ordering of, 61
prioritizing, 61
priority of, 123
processing, 53
receiving, 51
redelivered status, 123
reply-to destination, 124, 151-152

messages (Continued)
selector for, 93, 95, 101
selectors, 60
sending, 49, 139, 140
set text of, 153
size, and performance, 71
type, and performance, 71
type of, 75, 123

messages properties
creating, 107
freeing, 114

MQ_ACK_ON_ACKNOWLEDGE_PROPERTY, 44,
78

MQ_ACK_ON_PRODUCE_PROPERTY, 78
MQ_ACK_TIMEOUT_PROPERTY, 38, 77
MQ_AUTO_ACKNOWLEDGE enum, 81
MQ_BOOL_TYPE property, 76
MQ_BROKER_NAME_PROPERTY, 37
MQ_BROKER_NAME_PROPERTY, 77
MQ_BROKER_PORT_PROPERTY, 37
MQ_BROKER_PORT_PROPERTY, 77
MQ_BROKER_SERVICE_PORT_PROPERTY, 37
MQ_BROKER_SERVICE_PORT_PROPERTY, 77
MQ_Bytes_Message body type, 48
MQ_BYTES_MESSAGE message type, 75
MQ_CLIENT_ACKNOWLEDGE enum, 81
MQ_CONNECTION_FLOW_COUNT_PROPERTY, 38,

78
MQ_CONNECTION_FLOW_LIMIT_ENABLED_PROPERTY, 38
MQ_CONNECTION_FLOW_LIMIT_ENBABLED

_PROPERTY, 79
MQ_CONNECTION_FLOW_LIMIT_PROPERTY, 38,

79
MQ_CONNECTION_TYPE_PROPERTY, 37
MQ_CONNECTION_TYPE_PROPERTY, 76
MQ_CORRELATION_ID_HEADER_PROPERTY, 123
MQ_DUPS_OK_ACKNOWLEDGE enum, 81
MQ_EXPIRATION_HEADER_PROPERTY, 50, 123
MQ_FLOAT32_TYPE property, 76
MQ_FLOAT64_TYPE property, 76
MQ_INT16_TYPE property, 76
MQ_INT32_TYPE property, 76
MQ_INT64_TYPE property, 76
MQ_INT8_TYPE property, 76

Index

171

MQ_INVALID_TYPE property, 76
MQ_LOG_FILE, 58
MQ_LOG_LEVEL, 58
MQ_MAJOR_VERSION_PROPERTY, 80
MQ_Message body type, 48
MQ_MESSAGE_ID_HEADER_PROPERTY, 123
MQ_MESSAGE message type, 75
MQ_MESSAGE_TYPE_HEADER_PROPERTY, 123
MQ_MICRO_VERSION_PROPERTY, 80
MQ_MINOR_VERSION_PROPERTY, 80
MQ_NAME_PROPERTY, 79
MQ_PERSISTENT_HEADER_PROPERTY, 50, 123
MQ_PING_INTERVAL_PROPERTY, 38, 77
MQ_PRIORITY_HEADER_PROPERTY, 50, 123
MQ_REDELIVERED_HEADER_PROPERTY, 123
MQ_SERVICE_PACK_PROPERTY, 80
MQ_SESSION_ASYNC_RECEIVE, 44
MQ_SESSION_ASYNC_RECEIVE consumer type, 76
MQ_SESSION_SYNC_RECEIVE, 44
MQ_SESSION_SYNC_RECEIVE consumer type, 76
MQ_SESSION_TRANSACTED enum, 81
MQ_SSL_BROKER_CERT_FINGERPRINT, 41, 79
MQ_SSL_BROKER_IS_TRUSTED, 77, 79
MQ_SSL_CHECK_BROKER_FINGERPRINT, 40, 79
MQ_STRING_TYPE property, 76
mq.sys.dmq queue, 64
MQ_Text_Message body type, 48
MQ_TEXT_MESSAGE message type, 75
MQ_TIMESTAMP_HEADER_PROPERTY, 123
MQ_UNSUPPORTED_MESSAGE message type, 75
MQ_UPDATE_RELEASE_PROPERTY, 80
MQ_VERSION_PROPERTY, 79
MQAckMode type, 74
MQAcknowledgeMessages function, 88
MQBool type, 74
MQChar type, 74
MQCloseConnection function, 90
MQCloseMessageConsumer function, 90
MQCloseMessageProducer function, 91
MQCloseSession function, 92
MQCommitSession function, 92
MQConnectionExceptionListenerFunc type, 75, 83
MQConnectionHandle type, 74
MQConsumerHandle type, 74

MQCreateAsyncDurableMessageConsumer
function, 93

MQCreateAsyncMessageConsumer function, 95
MQCreateBytesMessage function, 97
MQCreateConnection function, 98
MQCreateDestination function, 100
MQCreateDurableMessageConsumer function, 101
MQCreateMessage function, 103
MQCreateMessageConsumer function, 104
MQCreateMessageProducer function, 105
MQCreateMessageProducerForDestination

function, 106
MQCreateProperties function, 107
MQCreateSession function, 107
MQCreateTemporaryDestination function, 109
MQCreateTextMessage function, 110
MQCreateXASession function, 110
mqcrt library, 22
mqcrt runtime library, 64-bit support, 21
MQDeliveryMode type, 74
MQDestinationHandle type, 74
MQDestinationType type, 74
MQError type, 75
MQFloat16 type, 75
MQFloat32 type, 75
MQFloat64 type, 75
MQFreeConnection function, 113
MQFreeDestination function, 113
MQFreeMessage function, 114
MQFreeProperties function, 114
MQFreeString function, 115
MQGetAcknowledgeMode function, 115
MQGetBoolProperty function, 115
MQGetBytesMessageBytes function, 116
MQGetConnectionProperties function, 117
MQGetDestinationName function, 117
MQGetDestinationType function, 118
MQGetErrorTrace function, 118
MQGetFloat32Property function, 119
MQGetFloat64Property function, 120
MQGetInt16Property function, 120
MQGetInt32Property function, 121
MQGetint64Property function, 121
MQGetInt8Property function, 122

Index

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010172

MQGetMessageHeaders function, 123
MQGetMessageProperties function, 124
MQGetMessageReplyTo function, 124
MQGetMessageType function, 125
MQGetMetaData function, 126
MQGetPropertyType function, 127
MQGetStatusCode function, 127
MQGetStatusString function, 128
MQGetStringProperty function, 128
MQGetTextMessageText function, 129
MQGetXAConnection function, 129
MQInitializeSSL function, 130
MQInt32 type, 75
MQInt64 type, 75
MQInt8 type, 75
MQMessageHandle type, 75
MQMessageListenerFunc type, 75
MQMessageType type, 75
MQProducerHandle type, 75
MQPropertiesHandle type, 75
MQPropertiesKeyIterationGetNext function, 131
MQPropertiesKeyIterationHasNext function, 132
MQPropertiesKeyIterationStart function, 133
MQReceiveMessageNoWait function, 133
MQReceiveMessageWait function, 135
MQReceiveMessageWithTimeout function, 136
MQReceiveMode type, 76
MQRecoverSession function, 137
MQRollBackSession function, 138
MQSendMessage function, 139
MQSendMessageExt function, 140
MQSendMessageToDestination, 141
MQSendMessageToDestination function, 139
MQSendMessageToDestinationExt function, 140, 142
MQSessionHandle type, 76
MQSetBoolProperty function, 144-145
MQSetBytesMessageBytes function, 145
MQSetFloat32Property function, 145-146
MQSetFloat64Property function, 146-147
MQSetInt16Property function, 147
MQSetInt32Property function, 147-148
MQSetInt64Property function, 148
MQSetInt8Property function, 149
MQSetMessageHeaders function, 149-150

MQSetMessageProperties function, 151
MQSetMessageReplyTo function, 151-152
MQSetStringProperty function, 152-153
MQSetTextMessageText function, 153
MQStartConnection function, 153-154
MQStatus type, 76
MQStatusIsError function, 154
MQStopConnection function, 154-155
MQString type, 76
MQType type, 76
MQUnsubscribeDurableMessageConsumer

function, 155-156

N
NSPR library, 22
NSS library, 22

P
performance

factors impacting
See performance impact factors

performance and reliability, 67
performance impact factors

acknowledgement mode, 69
delivery mode, 68
durable subscriptions, 70
message size, 71
message type, 71
selectors, 70-71
transactions, 68-69

physical destination properties, 63
ping interval, 38, 77
producers

closing, 91
creating, 105
creating for destination, 106
handle to, 75
ping interval, 77

programming examples, build instructions, 23

Index

173

R
REJECT_NEWEST property, 63
reliability and performance, 67
REMOVE_LOW_PRIORITY property, 63
REMOVE_OLDESTproperty, 63
runtime library, 64-bit support, 21

S
sample programs

compiler options for, 22
running, 24-25

secure connections, 39
selectors, 60, 70-71
sessions

acknowledge mode of, 115
closing, 92
committing, 92
creating, 43, 107
handle to, 76
managing, 44
recovering, 137
rolling back, 138
transacted, 43, 81

sessions, XA, creating, 110

T
thread management, 61
transactions

committing, 92
performance impact of, 68-69
working with, 43

Tuxedo, See distributed transactions

Index

Oracle GlassFish Message Queue 4.4.2 Developer's Guide for C Clients • June 2010174

	Oracle® GlassFish Message Queue 4.4.2 Developer's Guide for C Clients
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompt Conventions
	Directory Variable Conventions

	Related Documentation
	Message Queue Documentation Set
	Java Message Service (JMS) Specification
	JavaDoc
	Example Client Applications
	Example Java Client Applications
	Example C Client Programs
	Example JMX Client Programs

	Online Help

	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Introduction
	Message Queue for the C Developer
	Building and Running C Clients
	Building C Clients
	Header Files and Shared Libraries
	Pre-Processor Definitions
	C++ Runtime Library Support

	Providing Runtime Support

	Working With the Sample C-Client Programs
	Basic C-Client Programs
	Building the Basic C-Client Sample Programs
	To Compile and Link on Solaris OS
	To Compile and Link on Linux
	To Compile and Link on AIX
	To Compile and Link on Windows

	Running the Basic C-Client Sample Programs

	Distributed Transaction Sample Programs
	To Set Up Tuxedo as a Distributed Transaction Manager
	To Build the Distributed Transaction Sample Programs
	To Run the Distributed Transaction Sample Programs

	Client Application Deployment Considerations

	Using the C API
	Message Queue C Client Setup Operations
	To Set Up a Message Queue C Client to Produce Messages
	To Set Up a Message Queue C Client to Consume Messages Synchronously
	To Set Up a Message Queue C Client to Consume Messages Asynchronously

	Working With Properties
	Setting Connection and Message Properties
	To Set Properties for a Connection

	Getting Message Properties
	To Iterate Through a Properties Handle

	Working With Connections
	Defining Connection Properties
	Connection Handling
	Reliability
	Flow Control

	Working With Secure Connections
	Configuring the Client for Secure Communication
	To Establish a Secure Connection

	Verification Using Fingerprints
	To Set Up Fingerprint Certification

	Coordinating NSS Initialization
	To Coordinate NSS Initialization

	Shutting Down Connections

	Working With Sessions and Destinations
	Creating a Session
	Transacted Sessions
	Message Acknowledgement
	Receive Mode

	Managing a Session
	Creating Destinations
	Programming Domains
	Auto-Created Destinations
	Temporary Destinations
	Getting Information About Destinations

	Working With Messages
	Composing Messages
	Message Header
	Message Body Types
	Composing the Message

	Sending a Message
	Receiving Messages
	Working With Consumers
	Receiving a Message Synchronously
	Receiving a Message Asynchronously

	Processing a Message

	Working With Distributed Transactions
	Message Queue Resource Manager Information
	Programming Examples

	Error Handling
	To Handle Errors in Your Code

	Memory Management
	Logging

	Client Design Issues
	Producers and Consumers
	Using Selectors Efficiently
	Determining Message Order and Priority
	Managing Threads
	Message Queue C Runtime Thread Model
	Concurrent Use of Handles
	Single-Threaded Session Control
	Connection Exceptions

	Managing Physical Destination Limits
	Managing the Dead Message Queue
	Factors Affecting Performance
	Delivery Mode (Persistent/Non-persistent)
	Use of Transactions
	Acknowledgement Mode
	Durable and Non-Durable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Type

	Reference
	Data Types
	Connection Properties
	To Set Connection Properties

	Acknowledge Modes
	Callback Type for Asynchronous Message Consumption
	Parameters

	Callback Type for Asynchronous Message Consumption in Distributed Transactions
	Parameters

	Callback Type for Connection Exception Handling
	Parameters

	Function Reference
	MQAcknowledgeMessages
	Return Value
	Parameters
	Common Errors

	MQCloseConnection
	Return Value
	Parameters
	Common Errors

	MQCloseMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCloseMessageProducer
	Return Value
	Parameters
	Common Errors

	MQCloseSession
	Return Value
	Parameters
	Common Errors

	MQCommitSession
	Return Value
	Parameters
	Common Errors

	MQCreateAsyncDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateAsyncMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateBytesMessage
	Return Value
	Parameters

	MQCreateConnection
	Return Value
	Parameters
	Setting a Client Identifier
	Handling Connection Exceptions

	Common Errors

	MQCreateDestination
	Return Value
	Parameters
	Common Errors

	MQCreateDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateMessage
	Return Value
	Parameters

	MQCreateMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageProducer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageProducerForDestination
	Return Value
	Parameters
	Common Errors

	MQCreateProperties
	Return Value
	Parameters

	MQCreateSession
	Return Value
	Parameters

	MQCreateTemporaryDestination
	Return Value
	Parameters
	Common Errors

	MQCreateTextMessage
	Return Value
	Parameters

	MQCreateXASession
	Return Value
	Parameters
	Common Errors

	MQFreeConnection
	Return Value
	Parameters
	Common Errors

	MQFreeDestination
	Return Value
	Parameters

	MQFreeMessage
	Return Value
	Parameters

	MQFreeProperties
	Return Value
	Parameters

	MQFreeString
	Return Value
	Parameters

	MQGetAcknowledgeMode
	Return Value
	Parameters

	MQGetBoolProperty
	Return Value
	Parameters
	Common Errors

	MQGetBytesMessageBytes
	Return Value
	Parameters

	MQGetConnectionProperties
	Return Value
	Parameters

	MQGetDestinationName
	Return Value
	Parameters

	MQGetDestinationType
	Return Value
	Parameters

	MQGetErrorTrace
	MQGetFloat32Property
	Return Value
	Parameters
	Common Errors

	MQGetFloat64Property
	Return Value
	Parameters
	Common Errors

	MQGetInt16Property
	Return Value
	Parameters
	Common Errors

	MQGetInt32Property
	Return Value
	Parameters
	Common Errors

	MQGetInt64Property
	Return Value
	Parameters
	Common Errors

	MQGetInt8Property
	Return Value
	Parameters
	Common Errors

	MQGetMessageHeaders
	Return Value
	Parameters

	MQGetMessageProperties
	Return Value
	Parameters
	Common Errors

	MQGetMessageReplyTo
	Return Value
	Parameters
	Common Errors

	MQGetMessageType
	Return Value
	Parameters

	MQGetMetaData
	Return Value
	Parameters

	MQGetPropertyType
	Return Value
	Parameters
	Common Errors

	MQGetStatusCode
	Parameters

	MQGetStatusString
	Parameters

	MQGetStringProperty
	Return Value
	Parameters

	MQGetTextMessageText
	Return Value
	Parameters

	MQGetXAConnection
	Return Value
	Parameters
	Common Errors

	MQInitializeSSL
	Return Value
	Parameters
	Common Errors

	MQPropertiesKeyIterationGetNext
	Return Value
	Parameters
	To Get Message Properties

	MQPropertiesKeyIterationHasNext
	Return Value
	Parameters
	To Get Message Properties

	MQPropertiesKeyIterationStart
	Return Value
	Parameters
	To Get Message Properties

	MQReceiveMessageNoWait
	Return Value
	Parameters
	Common Errors

	MQReceiveMessageWait
	Return Value
	Parameters
	Common Errors

	MQReceiveMessageWithTimeout
	Return Value
	Parameters
	Common Errors

	MQRecoverSession
	Return Value
	Parameters
	Common Errors

	MQRollBackSession
	Return Value
	Parameters
	Common Errors

	MQSendMessage
	Return Value
	Parameters
	Common Errors

	MQSendMessageExt
	Return Value
	Parameters
	Common Errors

	MQSendMessageToDestination
	Return Value
	Parameters
	Common Errors

	MQSendMessageToDestinationExt
	Return Value
	Parameters
	Common Errors

	MQSetBoolProperty
	Return Value
	Parameters
	Common Errors

	MQSetBytesMessageBytes
	Return Value
	Parameters

	MQSetFloat32Property
	Return Value
	Parameters
	Common Errors

	MQSetFloat64Property
	Return Value
	Parameters
	Common Errors

	MQSetInt16Property
	Return Value
	Parameters
	Common Errors

	MQSetInt32Property
	Return Value
	Parameters
	Common Errors

	MQSetInt64Property
	Return Value
	Parameters
	Common Errors

	MQSetInt8Property
	Return Value
	Parameters
	Common Errors

	MQSetMessageHeaders
	Return Value
	Parameters
	Common Errors

	MQSetMessageProperties
	Return Value
	Parameters

	MQSetMessageReplyTo
	Return Value
	Parameters

	MQSetStringProperty
	Return Value
	Parameters

	MQSetTextMessageText
	Return Value
	Parameters

	MQStartConnection
	Return Value
	Parameters
	Common Errors

	MQStatusIsError
	Parameters

	MQStopConnection
	Return Value
	Parameters
	Common Errors

	MQUnsubscribeDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	Header Files

	Message Queue C API Error Codes
	Error Codes

	Index

