Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller

User’s Guide
for the AMC.1-HDD SAS Disk
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Copyright © 2009, 2010, Oracle and/or ses affiliés. Tous droits réservés.
Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour le compte du Gouvernement des États-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de sécurité, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. UNIX est une marque déposée concédée sous licence par X/Open Company, Ltd.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Contents

Preface vii

1. Getting Started 1–1
 1.1 System Requirements 1–2
 1.1.1 Operating Systems Compatibility 1–2
 1.1.2 Chassis Compatibility 1–2
 1.1.3 Blade Server Compatibility 1–2
 1.1.4 Electrical and Environmental 1–3
 1.2 Unpacking 1–3
 1.3 Handling AMCs 1–4
 1.4 AMC Faceplate 1–5
 1.5 AMC LEDs 1–6
 1.6 Removing and Installing AMCs 1–8
 1.6.1 Removing an AMC 1–8
 1.6.2 Removing a Blade Server and AMC 1–12
 1.6.3 Installing an AMC 1–13
 1.7 Enabling and Disabling SAS Ports 1–18
 ▼ To Enable AMC Port 2 (Driven by Port 1 of SAS Controller) 1–18
 ▼ To Enable AMC Port 3 (Driven by Port 2 of SAS Controller) 1–18
 ▼ To Disable AMC Port 2 (Driven by Port 1 of SAS Controller) 1–19
2. Overview 2–1
 2.1 Features 2–2
 2.2 Key Components 2–3
 2.2.1 Hard Drive Disk 2–3
 2.2.2 Power Regulator 2–3
 2.2.3 SAS Controller 2–4
 2.2.4 Flash 2–4
 2.2.5 Module Management Controller (MMC) 2–4
 2.2.6 Port Connectors 2–5
 2.2.7 LEDs 2–5
 2.3 Faceplate and LEDs 2–5
 2.4 Functional Diagram 2–7
 2.5 Technical Support and Warranty 2–7
 2.6 Part Number, Serial Number, and Revision Number Identification 2–8
 2.7 Disposal 2–10

3. Managing the AMC 3–1
 3.1 Monitoring and Control Functions 3–2
 3.2 IPMI Controller 3–2
 3.3 FRU Information 3–4
 3.4 Sensors 3–5
 3.5 Firmware and Software Upgrades 3–6

4. Configuring the AMC 4–1
 4.1 Configuration Tools 4–2
 4.2 Boot BIOS Utility 4–2
 4.2.1 Features and Configurations 4–3
 4.2.2 Launching the Boot BIOS Utility 4–3
4.3 OpenBoot BIOS 4–5
4.4 Extensible Firmware Interface (EFI) BIOS 4–6
4.5 Enabling and Disabling Channel Ports 4–6

A. Connectors and Ports A–1
A.1 Connector Locations and Assignments A–2
A.2 Connector Pinouts A–2
A.3 SAS Controller Ports A–4
A.4 e-Keying Ports A–5

B. Environment Specifications B–1
B.1 Electrical and Environmental B–2
B.1.1 Electrical B–2
B.1.2 Environmental B–2
B.1.3 Absolute Maximum Ratings B–4
B.1.4 Normal Operating Ranges B–4
B.2 Reliability B–4
B.3 Mechanical B–5
B.3.1 Board Dimensions and Weight B–5

C. Agency Certifications C–1
C.1 CE Certification C–2
C.2 NEBS/ETSI C–2
C.3 Safety C–3
C.4 Emissions Test Regulations C–4
C.4.1 EN 55022 Emissions C–4
C.4.2 EN 55024 Immunity C–4
C.5 Regulatory Information C–5
C.5.1 FCC (USA) C–5
C.5.2 Industry Canada (Canada) C–5
Preface

This guide describes the installation and configuration of Oracle’s Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller. This guide also includes information about software, environment specifications, connectors, and certifications.

Related Documentation

The following table lists the documentation for the Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller (AMC.1-HDD SAS disk). The online documentation is available at:

http://docs.sun.com/app/docs/prod/cp3000.pcie#hic

<table>
<thead>
<tr>
<th>Application</th>
<th>Title</th>
<th>Part Number</th>
<th>Format</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latest information</td>
<td>Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller Product Notes</td>
<td>820-7174-xx</td>
<td>PDF</td>
<td>Online</td>
</tr>
<tr>
<td>Pointer doc</td>
<td>Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller Start Here</td>
<td>820-7177-xx</td>
<td>Printed</td>
<td>Shipping Kit and Online</td>
</tr>
<tr>
<td>Installation (this document)</td>
<td>Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller User’s Guide</td>
<td>820-7175-xx</td>
<td>PDF</td>
<td>Online</td>
</tr>
<tr>
<td>Safety</td>
<td>Important Safety Information for Sun Hardware Systems</td>
<td>821-1590-xx</td>
<td>Printed</td>
<td>Shipping Kit</td>
</tr>
</tbody>
</table>
Documentation, Support, and Training

These web sites provide additional resources:

- Documentation http://docs.sun.com/
- Support http://www.sun.com/support/
- Training http://www.sun.com/training/

Documentation Feedback

Submit comments about this document by clicking the Feedback[+] link at http://docs.sun.com. Include the title and part number of your document with your feedback:

CHAPTER 1

Getting Started

This chapter provides information and procedures needed to install and make the Sun Netra CP3000 AMC.1-HDD SAS disk operational. This chapter should be read before unpacking and installing the AMC.

In addition to this chapter, refer to the following safety document:

Important Safety Information for Sun Hardware Systems (816-7190)

Caution – When the system is plugged in, energy hazards are present on the midplane. Do not reach into the enclosure while the power is on.

Caution – Static electricity can damage electronic components. Wear a wrist strap grounded through one of the system’s ESD ground jacks when removing and replacing hot-swappable components.

This chapter contains the following topics:

- **Section 1.1, “System Requirements” on page 1-2**
- **Section 1.2, “Unpacking” on page 1-3**
- **Section 1.3, “Handling AMCs” on page 1-4**
- **Section 1.4, “AMC Faceplate” on page 1-5**
- **Section 1.5, “AMC LEDs” on page 1-6**
- **Section 1.6, “Removing and Installing AMCs” on page 1-8**
- **Section 1.7, “Enabling and Disabling SAS Ports” on page 1-18**
1.1 System Requirements

The following sections briefly describe the minimum system requirements and the configurable features. Links are provided to other chapters and appendixes containing more detailed information.

1.1.1 Operating Systems Compatibility

The following operating systems are compatible with the AMC.1-HDD SAS disk.

- Solaris™ 10
- Solaris x86 10
- Windows Server 2003
- Red Hat Enterprise Linux (RHEL) 5

1.1.2 Chassis Compatibility

Before using this AMC.1-HDD SAS disk, review the specifications of the chassis and backplane that will house the module to determine the presence of, and any limitations of, chassis, IPMI bus, and user-defined pin-outs. For example, some chassis backplanes route certain I/O pins to internal resources such as alarm cards and drive resources. The AMC.1-HDD SAS disk is intended for an AdvancedTCA AMC carrier card site that is AMC.1 compliant. It is your responsibility to verify system compatibility. Failure to do so could result in improper operation or equipment damage.

1.1.3 Blade Server Compatibility

The AMC.1-HDD SAS disk modules plug into ATCA carrier boards that support a combination of AMC.1 (PCI Express) and AMC.3 (SAS) storage signaling.

At the time of publication of this document, the AMC.1-HDD SAS disk is qualified and supported on the following Sun blade servers:

- Sun Netra CP3060 blade server
- Sun Netra CP3220 blade server
- Sun Netra CP3250 blade server
1.1.4 Electrical and Environmental

See Appendix B for electrical and environmental requirements.

Caution – None of the integrated chips junction temperature should exceed 125°C. The AMC requires air flow to meet this requirement. Testing should be done in the shelf to find the quantity of air flow needed. The recommended minimum air flow is 50 LFM.

1.2 Unpacking

Check the shipping carton for damage. If the shipping carton or contents are damaged, notify the carrier and Sun. Retain the shipping carton and packing material for inspection by the carrier. Obtain authorization before returning any product to Sun. Refer to the *Netra CP3000 Advanced Mezzanine Card PCIe SAS Controller and Hard Drive Getting Started Guide* (820-7177) for return instructions.

Caution – This board must be protected from static discharge and physical shock. Never remove any of the socketed parts except at a static-free workstation. Use the antistatic bag shipped with the product to handle the board. Wear a wrist strap grounded through one of the system’s ESD ground jacks when installing or servicing system components.
1.3 Handling AMCs

Caution – The system is sensitive to static electricity. To prevent damage to the assembly, always connect an antistatic wrist strap between you and the system.

Avoid touching areas of integrated circuitry. Static discharge can damage these circuits.

An antistatic wrist strap and a conductive foam pad is strongly recommend for handling AMCs when installing or upgrading a system. Electronic components, such as disk drives, computer boards, and memory modules can be extremely sensitive to electrostatic discharge (ESD). After removing the component from its protective wrapper or from the system, place the component flat on a grounded, static-free surface (and, in the case of a board, component side up). Do not slide the component over any surface.

If an ESD station is not available, you can avoid damage resulting from ESD by wearing an antistatic wrist strap (available in the shipkit and at electronics stores) that is attached to an active electrical ground. Note that a system chassis might not be grounded if it is unplugged.

Caution – Dangerous voltages, capable of causing injury or death, are present in this equipment. Use extreme caution when handling, testing, and adjusting within a system.

Caution – Do not flex the AMCs; the surface-mounted components can break if the AMC is bent.

Our suppliers take significant steps to ensure that there are no bent pins on the backplane or connector damage to the AMCs prior to leaving the factory. Bent pins caused by improper installation or by AMCs with damaged connectors could void the warranty for the backplane or boards.

To minimize the amount of AMC flexing, observe the following precautions:

- When removing an AMC from an electrostatic discharge bag, keep the AMC vertical until you place it on the electrostatic discharge mat.
- Do not place an AMC on a hard surface. Use a cushioned antistatic mat. The AMC connectors and components have very thin pins that bend easily.
- Be careful of small parts located on the component side of an AMC.
Do not use an oscilloscope probe on the components. The soldered pins are easily damaged or shorted by the probe point.

Transport an AMC in an antistatic bag.

1.4 AMC Faceplate

The following shows the faceplate of the Sun Netra CP3000 AMC.1-HDD SAS disk.

Note – The AMC is available in different capacities (in gigabytes). The illustration shows a generic faceplate. For your product’s faceplate, the xxx denotes the capacity.
1.5 AMC LEDs

The following tables give status information for all of the LEDs on the AMC.

TABLE 1-1 describes the LEDs defined by ATCA to monitor board status.

TABLE 1-1 AMC Status LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-swap</td>
<td>Blue</td>
<td>On</td>
<td>Management power is available to the AMC, and the AMC can safely be extracted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>The AMC is operational and is unsafe for extraction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long blink</td>
<td>Delay before AMC is activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short blink</td>
<td>Delay before AMC is deactivated.</td>
</tr>
<tr>
<td>OOS</td>
<td>Red</td>
<td>Off</td>
<td>AMC is in service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>Light is on when AMC is Out Of Service.</td>
</tr>
<tr>
<td>OK</td>
<td>Green</td>
<td>On</td>
<td>The AMC is booted and switching.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>12V payload power is not detected.</td>
</tr>
</tbody>
</table>

TABLE 1-2 describes in detail the different hot-swap BLUE LED states.
TABLE 1-2 Hot-Swap BLUE LED States

<table>
<thead>
<tr>
<th>Order</th>
<th>Visible State</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solid</td>
<td>M1 FRU Inactive</td>
<td>The Intelligent Platform Management Interface (IPMI) microcontroller is booted, but the payload is not. The bottom latch is not fully closed or the activation lock bit set is keeping AMC from activating.</td>
</tr>
<tr>
<td>2</td>
<td>Blinking (from solid)</td>
<td>M2 Activation Request</td>
<td>The bottom latch is closed or activation lock bit has been cleared. The IPMI microcontroller has requested permission to boot the payload from the shelf management controller.</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
<td>M3-M4 Active</td>
<td>The IPMI microcontroller has received permission to activate the payload, and has done so. This should be the state under normal operation.</td>
</tr>
<tr>
<td>4</td>
<td>Blinking (from off)</td>
<td>M5-M6 Deactivation Request</td>
<td>The IPMI microcontroller has requested permission to deactivate. Opening the bottom latch or resetting the deactivation lock bit activates this state.</td>
</tr>
</tbody>
</table>

Note – An AMC should be hot-swapped only when the LED is solid blue.
1.6 Removing and Installing AMCs

This section describes how to remove and install AMCs.

The AMC.1-HDD SAS disk can be installed into an ATCA shelf (chassis) with sites that support AMC.1 PCI Express signaling. The site height must properly match the panel height fitted to the AMC.

At the time of publication of this document, the AMC.1-HDD SAS disk is qualified and supported on the following Sun blade servers:
- Sun Netra CP3060 blade server
- Sun Netra CP3220 blade server
- Sun Netra CP3250 blade server

1.6.1 Removing an AMC

If you want to remove only an AMC from a blade server, use the following instructions.

If you want to remove the blade server with the AMC installed, see the next section Section 1.6.2, “Removing a Blade Server and AMC” on page 1-12.

Caution – Before removing an AMC, read all cautions, warnings, and instructions presented earlier in this chapter.

1. Shut down the payload OS.
 Removing a board before powering down the operating system might cause an OS panic, which could corrupt data or file systems.

2. At the front of the blade server, locate the AMC you want to remove.
 Depending on the blade server’s AMC site location, you might have to remove the blade server from the chassis. Some blade servers have compartments for AMCs that can only be accessed when the blade server is removed from the chassis.

3. If the blade server must be removed to access the AMC, go to Section 1.6.2, “Removing a Blade Server and AMC” on page 1-12.
Note — Depending on how the Shelf controls deactivation, the Shelf might not initiate deactivation when you disengage the ejector latch. If so, either configure the Shelf to allow deactivation via latch opening or deactivate by other methods.

4. For the AMC, initiate the hot-swap deactivation sequence by pulling the injector/ejector latch out half way (FIGURE 1-2).
 The Hot-Swap LED starts blinking.

5. Wait until the Hot-Swap LED is solid blue.

6. When the Hot-Swap LED is solid blue, pull the injector/ejector latch out completely (FIGURE 1-2).
FIGURE 1-2 Deactivating the AMC

Figure Legend

1 Fully In (IN) When IN, the module communicates to the shelf manager that the module is not in the hot-swap state, and the shelf manager communicates with the MMC. This position is for normal operation.

2 Half Way (HW) When in the HW position, the hot-swap sequence is initiated. The MMC sends a hot-swap event to the shelf manager.

 Out (OUT) When OUT, the latching mechanism is released and the module can be extracted. Wait for the Hot-Swap LED to stop blinking before pulling the latch all the way out.
7. Remove the AMC.

FIGURE 1-3 Removing the AMC

8. Replace the AMC with another AMC (**FIGURE 1-7**) or install a filler panel.

Note – Be sure to follow handling instructions. See Section 1.3, “Handling AMCs” on page 1-4.
Caution – Failure to fill all slots with AMCs or cover with filler panels can negatively impact the cooling of the system.

1.6.2 Removing a Blade Server and AMC

Following are the instructions for removing a blade server and installed AMC. For additional information, refer to your blade server documentation.

Caution – Before removing a blade server and AMC, read all cautions, warnings, and instructions presented earlier in this chapter.

1. Move the front cable management bracket to the lower position (FIGURE 1-4).

FIGURE 1-4 Front Cable Management Bracket in Lower Position

2. Disengage the injector/ejector mechanisms at the top and bottom of the blade server to notify software that the board is about to be removed. Wait for the Hot-Swap LED to light.
Note — Depending on how the Shelf controls deactivation, the Shelf might not initiate deactivation when you disengage the ejector latch. If so, either configure the Shelf to allow deactivation via latch opening or deactivate by other methods.

3. Disconnect all cables connected to the switch.

4. Loosen the two board retention screws that fasten the board to the enclosure.

5. Open the ejectors fully, rotating the handles outward until the board disengages from the midplane.

6. Slide the board evenly out of the enclosure.

7. Determine if you are going to replace the blade server.
 ■ If you are going to replace the blade server, refer to your blade server documentation for procedures.
 ■ If you are not going to replace the blade server, install a filler panel to maintain the enclosures shielding and cooling performance.

Caution — Failure to cover all open slots with filler panels can negatively impact the cooling of the system.

1.6.3 Installing an AMC

Following are the instructions for installing an AMC.

Caution — Before installing an AMC, read all cautions, warnings, and instructions presented earlier in this chapter.

1. At the blade server, locate the AMC site where you want to install the AMC.
 Depending on the blade server’s AMC site location, you might have to remove the blade server from the chassis. Some blade servers have compartments for AMCs that can only be accessed when the blade server is removed from the chassis.
 Prevent possible damage to module components by verifying the proper site usage for your configuration. In most cases, electronic keying (e-Keying) prevents power on of a board into an incompatible site. However, as an extra precaution, know the site purpose.

2. Remove the filler panel, if necessary.

3. Obtain the AMC card from the ship kit.
Note – Be sure to follow unpacking and handling instructions. See Section 1.2, “Unpacking” on page 1-3 and Section 1.3, “Handling AMCs” on page 1-4.

FIGURE 1-5 Sample Top View

Note – The illustration shows a sample of the top view for a 146GB AMC. If your AMC has a different capacity, the label shows it.

4. Perform any card-specific hardware procedures, if necessary.

5. Prepare the AMC by fully opening its injector/ejector latches to the OUT position.
Figure Legend

1. Fully In (IN) When IN, the module communicates to the shelf manager that the module is not in the hot-swap state, and the shelf manager communicates with the MMC. This position is for normal operation.

2. Half Way (HW) When in the HW position, the hot-swap sequence is initiated. The MMC sends a hot-swap event to the shelf manager.

3. Out (OUT) When OUT, the latching mechanism is released and the module can be extracted. Wait for the Hot-Swap LED to stop blinking before pulling the latch all the way out.
6. Carefully align the edges of the AMC with the guides in the appropriate site. It might be helpful to look into the enclosure to verify correct alignment of the rails in the guides.

Caution – Do not force the AMC into the site. If it does not fit properly, check to ensure that you have the correct matching AMC for the switch.

7. Keeping the AMC aligned in the guides, slide it in by pressing on the AMC faceplate until the AMC faceplate is flush with the blade server faceplate.
8. Push the ejector latch in fully.

If system power is on and AMC is installed properly, the AMC board Hot-Swap LED lights up. The Hot-Swap LED blinks for several seconds, then goes off.

If the Hot-Swap LED does not go off after several seconds, push firmly on the injector/ejector handles to ensure that they are pushed in all the way.
Caution – Failure to fill all slots with AMCs or cover with filler panels can negatively impact the cooling of the system.

9. Power on the system, if necessary.
 Refer to your system manual for instructions on correctly powering on the system. After power is applied to the chassis, the internal MMC controller runs a self-test that runs for approximately 10 seconds. Upon a successful power up self-test, the blue Hot-Swap LED will blink and then turn off, indicating that the module has been placed in operation.

1.7 Enabling and Disabling SAS Ports

As shipped from the factory, the AMC.1-HDD SAS disk will not drive AMC channel ports, unless specifically enabled. You can individually enable or disable the ports using lsiutil, a command-line utility supplied by LSI Corporation, and distributed as part of the software driver distribution. Changes are stored in 32K x 8-bit NVSRAM, located on the module.

▼ To Enable AMC Port 2 (Driven by Port 1 of SAS Controller)

lsiutil –p 1 –a 13,,,,1,1,1,1,1,1,1,1,0,0

▼ To Enable AMC Port 3 (Driven by Port 2 of SAS Controller)

lsiutil –p 1 –a 13,,,,2,1,1,1,1,1,1,0,0

The “-p 1” selects the controller chip. If the AMC.1-HDD SAS disk is the only LSI controller chip present in the system then the default is controller 1. If there are other LSI controller chips present in the system, then the user has to determine the proper controller number.
Note – This utility has many other uses and adjustable values. Parameter adjustments are permanently committed to flash memory, and affect future behavior of the AMC. Only advanced users who fully understand the technical implications should modify parameters. A full description of parameters and functions is in *LSIUtil Configuration Utility User’s Guide*, published by LSI.

▼ To Disable AMC Port 2 (Driven by Port 1 of SAS Controller)

```
lsiutil -p 1 -a 13,,1,0,,0,0,0,0
```

▼ To Disable AMC Port 3 (Driven by Port 2 of SAS Controller)

```
lsiutil -p 1 -a 13,,2,0,,0,0,0,0
```
Overview

This chapter introduces the key features of the AMC. This chapter includes a product definition, a list of product features, and functional block diagrams with brief descriptions. This chapter can be used to compare the features of the AMC against the needs of a specific application.

This chapter contains the following topics:

- Section 2.1, “Features” on page 2-2
- Section 2.2, “Key Components” on page 2-3
- Section 2.3, “Faceplate and LEDs” on page 2-5
- Section 2.4, “Functional Diagram” on page 2-7
- Section 2.5, “Technical Support and Warranty” on page 2-7
- Section 2.6, “Part Number, Serial Number, and Revision Number Identification” on page 2-8
- Section 2.7, “Disposal” on page 2-10
2.1 Features

Part of Sun’s ATCA platform, the Sun Netra CP3000 AMC.1-HDD SAS disk complies with PICMG 3.0 AdvancedTCA Specification R2.0 ECN002 and the following specifications:

- PICMG AMC.0 Rev. 2.0
- AMC.1 Revision 1, PCI Express option
- AMC.3 Revision 1, storage signaling option

The AMC.1-HDD SAS disk is an Advanced Mezzanine Card (AMC) that integrates both an SAS hard drive disk and a x4 PCIe SAS controller. Occupying only one AMC site, the highly integrated combination provides embedded systems designers the ability to add an Enterprise SAS Hard Disk Drive (HDD) to a system that does not have native SAS connectivity. The AMC.1-HDD SAS disk is offered as a single-width AMC, with options for mid- or full-height panels. The hard drive is Form-Factor 2.5” to provide the greatest spindle density for ATCA applications.

The AMC.1-HDD SAS disk plugs into ATCA carrier blades that support a combination of AMC.1 (PCI Express) and AMC.3 (SAS) storage signaling.

The AMC.1-HDD SAS disk includes a modular management controller (MMC).

This AMC is designed for use in a wide variety of next-generation and wireless-networking equipment. Designed for high performance and reliability, the AMC.1-HDD SAS disk is ideal for telecommunications equipment manufacturers (TEMs) and OEMs. TEMs can add SAS connectivity to networking equipment that uses the ATCA platform specification. OEMs can design to the MicroTCA specification for high-performance embedded systems.

The following briefly outlines the features of the AMC.1-HDD SAS disk:

- Advanced Mezzanine Card (single-width, mid- or full-height); PICMG AMC.0 compliant
- Hot-swappable
- PCI Express interface (auto configure x1 or x4 lanes at 2.5 Gigabits per second
- One Integrated 2.5” SAS hard drive (primary port)
- Additional disk via AMC.3 storage signaling (drives adjacent site AMC port 2)
- Additional disk via AMC.3 storage signaling (drives adjacent site AMC port 3)
- All SAS links at 3 Gigabits per second maximum
- Support for SSP, STP, and SMP, as defined in the Serial Attached SCSI (SAS) Specification, version 1.0
- Drive over-current protection
Support for SATA, as defined in the Serial ATA Specification, version 1.0a.

2.2 Key Components

The following figure and sections describe key components of the Sun Netra CP3000 AMC.1-HDD SAS disk.

FIGURE 2-1 Top-Level AMC Layout

2.2.1 Hard Drive Disk

The Sun Netra CP3000 AMC.1-HDD SAS disk provides a single SAS hard drive, with various capacity options available. When you order the product, choose the part number corresponding to the capacity (in gigabytes) that you want.

2.2.2 Power Regulator

The power regulator is the part of the module that generates the required power from the payload power (+12V) that is delivered to the module through the AMC connector. This power is current-limited by the onboard regulator.
2.2.3 SAS Controller

The AMC.1-HDD SAS disk incorporates a PCIe-to-SAS host controller manufactured by LSI Corporation, device model LSI-SAS1064E. The controller provides host access to SAS and SATA disks. The controller features four lanes of PCI Express (2.5 gigabits per second each), and four lanes of SAS (3.0 gigabits per second each).

The SAS firmware for the LSI SAS supports the following:

- 3 gigabits per second SAS and SATA transfers
- Device discovery
- Both 3.0 gigabit and 1.5 gigabit SATA devices
- x1 or x4 PCI Express bus
- Mixed SAS and SATA disk operation
- SATA tape drive
- SAS expander compatibility

2.2.4 Flash

A flash device is preloaded with firmware that manages the protocols necessary to communicate with SAS and SATA target devices. The flash device contains BIOS and F-code to support boot from disk operations.

2.2.5 Module Management Controller (MMC)

The IPMI subsystem provides management control for the board, based on an Atmel microcontroller. The MMC is the first system component to be brought up and must negotiate with the carrier board over IPMI before the card payload is enabled.

The MMC monitors board voltages and temperature, controls the hot-swap and failures status LEDs, controls e-Keying, and stores FRU information. For more information about the MMC and management functions, see Chapter 3.

The MMC provides an Intelligent Platform Management Interface (IPMI) that communicates with AdvancedTCA shelf managers. This MMC controls and monitors the following:

- Hot-swap communication with the shelf manager
- Inlet air temperature
- Voltage monitoring
Chapter 2 Overview

- e-Keying as described in the AMC.0 specification
- FRU information
- LED indicators for hot-swap and OOS (out of service)

2.2.6 Port Connectors

The AMC includes connectors to communicate with the host board and take its interfaces outside the ATCA chassis. Refer to Appendix A for complete connector descriptions and pin-outs.

2.2.7 LEDs

The AMC.1-HDD SAS disk has three LEDs. See the next section for a detailed description of the LEDs.

2.3 Faceplate and LEDs

The faceplate of the AMC.1-HDD SAS disk has three LED indicators, which are described in the table following the faceplate illustration.

Note – The AMC is available in different capacities (in gigabytes). The illustration shows a generic faceplate. For your product’s faceplate, the xxx denotes the capacity.

![FIGURE 2-2 Faceplate](image-url)
Figure Legend

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Color</th>
<th>State</th>
<th>Description and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOS</td>
<td>Red</td>
<td>On</td>
<td>Out of Service: fault set by shelf manager, or 12V payload power not detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No module fault. 12V payload power is being supplied to board.</td>
</tr>
<tr>
<td>OK</td>
<td>Green</td>
<td>On</td>
<td>Module in service. 12V payload power is being supplied to board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>12V payload power is not detected.</td>
</tr>
<tr>
<td>Hot Swap</td>
<td>Blue</td>
<td>On</td>
<td>Management power available to the module; AMC can be safely extracted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>The module is operational and is unsafe for extraction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long blink</td>
<td>Delay before module is activated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short blink</td>
<td>Delay before module is deactivated.</td>
</tr>
</tbody>
</table>
2.4 Functional Diagram

FIGURE 2-3 AMC SAS-HDD Functional Block Diagram

2.5 Technical Support and Warranty

If you have any technical questions or support issues that are not addressed in the Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller documentation set or on the web site, contact your local Sun Services representative. This hardware carries a one-year return-to-depot warranty.

For customers in the US or Canada, call 1-800-USA-4SUN (1-800-872-4786).

For customers in the rest of the world, find the World Wide Solution Center nearest you by visiting our web site:

http://www.sun.com/service/contacting/solution.html
When you call Sun Services, indicate if the Sun Netra CP3000 AMC.1-HDD SAS disk was purchased separately and is not associated with a system. Have the proper AMC identification information ready. Be prepared to give the representative the AMC part number, serial number, and date code (FIGURE 2-4).

2.6 Part Number, Serial Number, and Revision Number Identification

The Sun Netra CP3000 AMC.1-HDD SAS disk part number, serial number, and revision can be found on labels located on the card (FIGURE 2-4). The Sun barcode labels provide the following information:

- **SunSN** – Sun serial number (for example, 1005LCB-0626WM001M)
- **SunPN** – Sun part number and dash number (for example, 501-7658-01), -01 is the dash number
- **Rev** – Revision number of the part (for example, Rev 06)

The Media Access Control (MAC) address label contains the MAC address for the blade server in printed and barcode form.
Figure Legend

1. **Final Assembly Number:**
 - Assembly process label, where xxx denotes disk drive capacity
 - Rzz = Assembly Revision (Refer to Bill Of Material) where zz is a numeric revision

2. **Sub-Assembly Number:**
 - P/N = sub assembly Part Number 600-05101x

3. **Serial Number:**
 - S/N Format:AAA = Assembly Number (051)
 - L = Location of manufacturer (S)
 - Y = Calendar year of manufacturer (2008 = 8)
 - MM = Calendar month of manufacturer (March = 03)
 - SSSS = Sequence number (reset each month) (1234)
2.7 Disposal

The AMC might contain materials that require regulation upon disposal. Please dispose of this product in accordance with local rules and regulations. For disposal or recycling information, please contact your local authorities or the Electronic Industries Alliance at http://www.eiae.org/.
Managing the AMC

This chapter describes the AMC management software.

The Sun Netra CP3000 AMC.1-HDD SAS disk includes an IPMI-based Module Management Controller (MMC) that meets all requirements set out in the PICMG AMC.0 specification. The MMC allows detection of the module by the carrier board and manages communication between the AMC.1-HDD SAS disk and management controllers on the carrier board and system level. Board voltages, temperature, and hot-swap handle status are all monitored by the MMC.

This chapter contains the following topics:

- Section 3.1, “Monitoring and Control Functions” on page 3-2
- Section 3.2, “IPMI Controller” on page 3-2
- Section 3.3, “FRU Information” on page 3-4
- Section 3.4, “Sensors” on page 3-5
- Section 3.5, “Firmware and Software Upgrades” on page 3-6
3.1 Monitoring and Control Functions

The MMC is responsible for communicating module status information to the carrier board, and also has some control at the module level. The 10GbE local PHY is held in reset until the AMC Carrier IPMI uses e-Keying to turn on the interface (to ensure that the interface is compatible). The MMC has the ability to reset the PHY through the IPMI FRU Control command.

3.2 IPMI Controller

The IPMI controller consists of a 16-bit microcontroller, flash, and SRAM. The microcontroller uses I2C interface (IPMB-L) to collect data from various sensors located on the AMC. The host ATCA blade server might read data collected by the IPMI controller, and transmit it to the shelf management controller (ShMC) through the IPMB-0.

The IPMB is routed through the AMC connector to the host carrier blade and backplane. The IPMB allows the AMC MMC to be discovered by and communicate with the carrier blade and system-level management. It is always active.

The MMC communicates with the carrier controller through the local IPMB-L bus of the carrier and responds to all mandatory commands for AMC MMC (as defined in the AMC Specification), as well as some optional commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>IPMI/PICMG/AMC Specification</th>
<th>NetFn</th>
<th>CMD</th>
<th>MMC Req</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPM Device Global Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get Device ID</td>
<td>17.1</td>
<td>App</td>
<td>01h</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Broadcast Get Device ID</td>
<td>17.9</td>
<td>App</td>
<td>01h</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Messaging Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send Message</td>
<td>18.7</td>
<td>App</td>
<td>34h</td>
<td>Optional</td>
</tr>
<tr>
<td>Event Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platform Event</td>
<td>23.3</td>
<td>S/E</td>
<td>02h</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Sensor Device Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get Device SDR Info</td>
<td>29.2</td>
<td>S/E</td>
<td>20h</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Command</td>
<td>Section</td>
<td>Type</td>
<td>Code</td>
<td>Status</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Get Device SDR</td>
<td>29.3</td>
<td>S/E</td>
<td>21h</td>
<td></td>
</tr>
<tr>
<td>Reserve Device SDR Repository</td>
<td>29.4</td>
<td>S/E</td>
<td>22h</td>
<td></td>
</tr>
<tr>
<td>Get Sensor Reading Factors</td>
<td>29.5</td>
<td>S/E</td>
<td>23h</td>
<td></td>
</tr>
<tr>
<td>Set Sensor Hysteresis</td>
<td>29.6</td>
<td>S/E</td>
<td>24h</td>
<td></td>
</tr>
<tr>
<td>Get Sensor Hysteresis</td>
<td>29.7</td>
<td>S/E</td>
<td>25h</td>
<td></td>
</tr>
<tr>
<td>Set Sensor Threshold</td>
<td>29.8</td>
<td>S/E</td>
<td>26h</td>
<td></td>
</tr>
<tr>
<td>Get Sensor Threshold</td>
<td>29.9</td>
<td>S/E</td>
<td>27h</td>
<td></td>
</tr>
<tr>
<td>Set Sensor Event Enable</td>
<td>29.10</td>
<td>S/E</td>
<td>28h</td>
<td></td>
</tr>
<tr>
<td>Get Sensor Event Enable</td>
<td>29.11</td>
<td>S/E</td>
<td>29h</td>
<td></td>
</tr>
<tr>
<td>Rearm Sensor Events</td>
<td>29.12</td>
<td>S/E</td>
<td>2Ah</td>
<td></td>
</tr>
<tr>
<td>Get Sensor Event Status</td>
<td>29.13</td>
<td>S/E</td>
<td>2Bh</td>
<td></td>
</tr>
<tr>
<td>Get Sensor Reading</td>
<td>29.14</td>
<td>S/E</td>
<td>2Dh</td>
<td></td>
</tr>
<tr>
<td>FRU Device Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get FRU Inventory Area Info</td>
<td>28.1</td>
<td>Storage</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>Read FRU Data</td>
<td>28.2</td>
<td>Storage</td>
<td>11h</td>
<td></td>
</tr>
<tr>
<td>Write FRU Data</td>
<td>28.3</td>
<td>Storage</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>AdvancedTCA™ Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get PICMG Properties</td>
<td>3-9</td>
<td>PICMG</td>
<td>00h</td>
<td></td>
</tr>
<tr>
<td>FRU Control</td>
<td>3-22</td>
<td>PICMG</td>
<td>04h</td>
<td></td>
</tr>
<tr>
<td>Get FRU LED Properties</td>
<td>3-24</td>
<td>PICMG</td>
<td>05h</td>
<td></td>
</tr>
<tr>
<td>Get LED Color Capabilities</td>
<td>3-25</td>
<td>PICMG</td>
<td>06h</td>
<td></td>
</tr>
<tr>
<td>Set FRU LED State</td>
<td>3-26</td>
<td>PICMG</td>
<td>07h</td>
<td></td>
</tr>
<tr>
<td>Get FRU LED State</td>
<td>3-27</td>
<td>PICMG</td>
<td>08h</td>
<td></td>
</tr>
<tr>
<td>Get Device Locator Record ID</td>
<td>3-29</td>
<td>PICMG</td>
<td>0Dh</td>
<td></td>
</tr>
<tr>
<td>AMC® Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set AMC Port State</td>
<td>3-27</td>
<td>PICMG</td>
<td>19h</td>
<td></td>
</tr>
<tr>
<td>Get AMC Port State</td>
<td>3-28</td>
<td>PICMG</td>
<td>1Ah</td>
<td></td>
</tr>
</tbody>
</table>
3.3 FRU Information

Board information such as serial number, date of manufacture, OEM name, part number, and so on is retrievable from the FRU EEPROM integrated into the MMC. FRU information stored onboard the AMC.1-HDD SAS disk complies with the PICMG 2.9 specification.

The AMC.1-HDD SAS disk includes the standard FRU data records per the IPMI Platform Management FRU Information Storage Definition, Board Info Area. The AMC.1-HDD SAS disk includes additional FRU records as defined in the PICMG 2.9 specification.

TABLE 3-2 Standard FRU Data Records

<table>
<thead>
<tr>
<th>Product Information</th>
<th>AMC.1-HDD SAS Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1</td>
</tr>
<tr>
<td>Language Code</td>
<td>0 (EN-English)</td>
</tr>
<tr>
<td>MFG date.time</td>
<td>See note 1</td>
</tr>
<tr>
<td>Manufacturer Name</td>
<td>Sun Microsystems, Inc.</td>
</tr>
<tr>
<td>Product Name</td>
<td>SAS AMC.1 xxxGB disk, where xxx denotes disk capacity</td>
</tr>
<tr>
<td>Product Serial Number</td>
<td>2009NAT-YYWWNTSSSS (See note 2)</td>
</tr>
<tr>
<td>Product Part / Model#</td>
<td>375-mmmmm-01 or 376-mmmmm-01, where mmmmm denotes product model based on disk capacity</td>
</tr>
<tr>
<td>Product Version</td>
<td>50</td>
</tr>
</tbody>
</table>

1 Manufacturing time is defined as ‘minutes since January 1, 1996 in the IPMI FRU specification.

2 Serial Number format:

- `2009NAT` = vendor and factory code
- `YY` = year (4 = 2004, 0 = 2010)
- `NT` = multiuse code
- `WW` = work week
- `SSSS` = sequence number (0-9999)
3.4 Sensors

The AMC.1-HDD SAS disk module management is connected to sensors monitoring key board voltages and temperatures. Data records from the following sensors are accessible using IPMI commands:

■ Hot-swap
■ +12V payload power
■ +3.3V management power
■ Board and inlet temperature
■ +1.2V onboard voltage (generated from payload)
■ +3.3V onboard voltage (generated from payload)

Note – The sensor index number is dynamically created by the shelf manager and might not always start at index zero (0).

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Units</th>
<th>Lower Thresholds</th>
<th>Critical</th>
<th>Non-recoverable</th>
<th>Upper Thresholds</th>
<th>Critical</th>
<th>Non-recoverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hot-swap</td>
<td>Hot-swap</td>
<td>Hot-swap sensor</td>
<td>M states</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V STBY</td>
<td>Voltage</td>
<td>Voltage</td>
<td>Volts</td>
<td>3.162</td>
<td>3.105</td>
<td>3.005</td>
<td>3.462</td>
<td>3.505</td>
<td>3.605</td>
</tr>
<tr>
<td>2</td>
<td>+1.2V</td>
<td>Voltage</td>
<td>Voltage</td>
<td>Volts</td>
<td>1.118</td>
<td>1.088</td>
<td>1.059</td>
<td>1.294</td>
<td>1.324</td>
<td>1.353</td>
</tr>
<tr>
<td>4</td>
<td>Board temp</td>
<td>Temp</td>
<td>Temp</td>
<td>Celsius</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>65.450</td>
<td>76.440</td>
<td>85.860</td>
</tr>
<tr>
<td>5</td>
<td>Inlet temp</td>
<td>Temp</td>
<td>Temp</td>
<td>Celsius</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>65</td>
<td>75</td>
<td>85</td>
</tr>
</tbody>
</table>
3.5 Firmware and Software Upgrades

For up-to-date instructions on upgrading the firmware and software, refer to the following documentation:

- *Sun Netra CP3000 Advanced Mezzanine Card PCIe Hard Drive and SAS Controller Product Notes* (820-7174)
- README files within the download package
This chapter describes how to configure the AMC using the SAS Boot BIOS Configuration Utility, the OpenBoot™ BIOS, and the Extensible Firmware Interface (EFI) Boot Services Driver.

This chapter contains the following topics:

- Section 4.1, “Configuration Tools” on page 4-2
- Section 4.2, “Boot BIOS Utility” on page 4-2
- Section 4.3, “OpenBoot BIOS” on page 4-5
- Section 4.4, “Extensible Firmware Interface (EFI) BIOS” on page 4-6
- Section 4.5, “Enabling and Disabling Channel Ports” on page 4-6
4.1 Configuration Tools

The configuration tools are preloaded on a flash ROM device embedded on the AMC. A MicroTCA or host carrier CPU can read the code to facilitate booting from SAS drives. The BIOS contains an embedded configuration manager, which you use to configure RAID or other adapter options prior to OS boot. The BIOS integrates with a standard system BIOS, extending the standard disk-service routine provided through INT13h.

Three types of BIOS are available for the AMC.1-HDD SAS disk:
- Boot BIOS for Intel- and AMD-based platforms
- OpenBoot BIOS for Solaris SPARC® platforms.
- Extensible Firmware Interface (EFI) BIOS for EFI-compliant systems

All of these BIOS images are stored on the flash device located on the AMC.

4.2 Boot BIOS Utility

The Boot BIOS utility allows you to change the default (factory) configuration of the AMC. The utility is stored in a flash device located on the AMC module. The sections that follow provide a summary of the BIOS configuration capabilities. A full description of capabilities is published in User’s Guide, Integrated RAID for SAS, available from LSI Corporation, which writes the BIOS used on the AMC.

Note – The Boot BIOS utility is disabled by default on all AMCs. To use it, enable the utility per the instructions in this chapter.

When Boot is enabled, the Boot BIOS scans for SAS hard drive disks (HDDs) connected to the AMC. It sorts which HDDs might be participating in RAID volume definitions. All discovered disks and RAID volumes are enumerated with drive letters and appended to a master list of devices discovered on the host. Upon scan completion, the host serially inspects the master list of devices beginning with drive letter A, and attempts to boot from the first device it finds with a boot record.
4.2.1 Features and Configurations

The Boot BIOS supports the following:

- Using multiple AMC.1 SAS modules
- Applying global properties stored in flash
- Selecting and configure up to 256 adapters
- Automatic INT13 drive mapping for SAS drives
- SAS topology discovery, including expander traversal
- Applying PHY transceiver properties

4.2.2 Launching the Boot BIOS Utility

Note – Not all devices detected by the utility can be controlled by the BIOS. Devices such as tape drives and scanners require loading a device driver specific to that peripheral device.

1. Initiate loading of the BIOS, and watch for the following message.

 Press Ctrl-C to start LSI Configuration Utility...

 This message remains on your screen for about five seconds, giving you time to start the utility.

2. Press CTRL C.

 Please wait, invoking LSI Configuration Utility...

 After a brief pause, the Boot BIOS Main menu is displayed, as shown in the following figure.
3. Use the arrow keys to highlight the AMC module you want to configure.

4. Press ENTER to display the next screen.

The Adaptor Properties menu is displayed, where you can view and modify AMC parameters.

This menu provides the top-level view of AMC status and configurable parameters.
5. Using the arrow keys, select the item of interest.
6. Press ENTER to display the next screen.

4.3 OpenBoot BIOS

For information about the OpenBoot BIOS, refer to the Sun Solaris OS and SPARC documentation. The documentation is available at the following site:

http://www.sun.com/documentation/
4.4 Extensible Firmware Interface (EFI) BIOS

The AMC.1-HDD SAS disk includes an EFI boot services driver for use with ATCA blades that feature Intel® IA64 processors. Additional information is available at http://wwwlsi.com.

4.5 Enabling and Disabling Channel Ports

As shipped from the factory, the AMC.1-HDD SAS disk will not drive AMC channel ports, due to the default “disable” setting. You can enable these ports using lsiutil, a command line utility. For instructions, see Section 1.7, “Enabling and Disabling SAS Ports” on page 1-18.
Connectors and Ports

This appendix describes the connectors and ports you can use to communicate with the host board and application-specific devices. A brief description of each connector and port is given, and a detailed description and pinout given for each connector.

This appendix contains the following topics:
- Section A.1, “Connector Locations and Assignments” on page A-2
- Section A.2, “Connector Pinouts” on page A-2
- Section A.3, “SAS Controller Ports” on page A-4
A.1 Connector Locations and Assignments

This module is AMC.1 and AMC.3 compliant and can use ports 2 and 3, as defined in the AMC.3 specification.

<table>
<thead>
<tr>
<th>Callout</th>
<th>Port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>AMC.3 Serial Storage Port 2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>AMC.3 Serial Storage Port 3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>AMC.1 PCI Express lane 0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>AMC.1 PCI Express lane 1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>AMC.1 PCI Express lane 2</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>AMC.1 PCI Express lane 3</td>
</tr>
</tbody>
</table>

A.2 Connector Pinouts

The AMC.1-HDD SAS disk includes an AMC connector, which conforms to the single-slot B+ extended connector, with 170 signal contacts.

The AMC.1-HDD SAS disk communicates with the carrier board through the AMC connectors. Connector usage for the AMC.1-HDD SAS disk is listed in the following table.

TABLE A-1 Pin Assignments

<table>
<thead>
<tr>
<th>Pin#</th>
<th>Signal Name</th>
<th>Pin#</th>
<th>Signal Name</th>
<th>Pin#</th>
<th>Signal Name</th>
<th>Pin#</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>46</td>
<td>GND</td>
<td>91</td>
<td>No Connect</td>
<td>136</td>
<td>No Connect</td>
</tr>
<tr>
<td>2</td>
<td>12V</td>
<td>47</td>
<td>'PORT4_PCIE_RX0_P'</td>
<td>92</td>
<td>GND</td>
<td>137</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>'PRSNT1_L'</td>
<td>48</td>
<td>'PORT4_PCIE_RX0_N'</td>
<td>93</td>
<td>No Connect</td>
<td>138</td>
<td>No Connect</td>
</tr>
<tr>
<td>4</td>
<td>'AMC_VCC3'</td>
<td>49</td>
<td>GND</td>
<td>94</td>
<td>No Connect</td>
<td>139</td>
<td>No Connect</td>
</tr>
<tr>
<td>5</td>
<td>GA0</td>
<td>50</td>
<td>'_PCIE_TX1_P'</td>
<td>95</td>
<td>GND</td>
<td>140</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>No Connect</td>
<td>51</td>
<td>'_PCIE_TX1_N'</td>
<td>96</td>
<td>No Connect</td>
<td>141</td>
<td>No Connect</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>52</td>
<td>GND</td>
<td>97</td>
<td>No Connect</td>
<td>142</td>
<td>No Connect</td>
</tr>
<tr>
<td>8</td>
<td>No Connect</td>
<td>53</td>
<td>'_PCIE_RX1_P'</td>
<td>98</td>
<td>GND</td>
<td>143</td>
<td>GND</td>
</tr>
<tr>
<td>Pin Assignment</td>
<td>Description</td>
<td>Pin</td>
<td>Description</td>
<td>Pin</td>
<td>Description</td>
<td>Pin</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>9</td>
<td>12V</td>
<td>54</td>
<td>'PCIe_RX1_N'</td>
<td>99</td>
<td>No Connect</td>
<td>144</td>
<td>No Connect</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>99</td>
<td>No Connect</td>
<td>100</td>
<td>No Connect</td>
<td>145</td>
<td>No Connect</td>
</tr>
<tr>
<td>11</td>
<td>No Connect</td>
<td>101</td>
<td>GND</td>
<td>146</td>
<td>GND</td>
<td>104</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>100</td>
<td>No Connect</td>
<td>145</td>
<td>No Connect</td>
<td>107</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>No Connect</td>
<td>101</td>
<td>GND</td>
<td>146</td>
<td>GND</td>
<td>108</td>
<td>No Connect</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>102</td>
<td>No Connect</td>
<td>147</td>
<td>No Connect</td>
<td>107</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>No Connect</td>
<td>103</td>
<td>GND</td>
<td>148</td>
<td>GND</td>
<td>108</td>
<td>No Connect</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>104</td>
<td>GND</td>
<td>150</td>
<td>No Connect</td>
<td>111</td>
<td>No Connect</td>
</tr>
<tr>
<td>17</td>
<td>GA1</td>
<td>105</td>
<td>No Connect</td>
<td>152</td>
<td>GND</td>
<td>113</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>12V</td>
<td>107</td>
<td>GND</td>
<td>153</td>
<td>No Connect</td>
<td>115</td>
<td>No Connect</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>109</td>
<td>No Connect</td>
<td>154</td>
<td>No Connect</td>
<td>117</td>
<td>No Connect</td>
</tr>
<tr>
<td>20</td>
<td>'PORT1_PTX0_P'</td>
<td>110</td>
<td>GND</td>
<td>155</td>
<td>GND</td>
<td>119</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>'PORT1_PTX0_N'</td>
<td>111</td>
<td>No Connect</td>
<td>156</td>
<td>No Connect</td>
<td>121</td>
<td>No Connect</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>110</td>
<td>GND</td>
<td>157</td>
<td>No Connect</td>
<td>123</td>
<td>No Connect</td>
</tr>
<tr>
<td>23</td>
<td>'PORT1_PRX0_P'</td>
<td>112</td>
<td>No Connect</td>
<td>159</td>
<td>No Connect</td>
<td>125</td>
<td>No Connect</td>
</tr>
<tr>
<td>24</td>
<td>'PORT1_PRX0_N'</td>
<td>113</td>
<td>GND</td>
<td>161</td>
<td>GND</td>
<td>114</td>
<td>No Connect</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>114</td>
<td>No Connect</td>
<td>163</td>
<td>No Connect</td>
<td>116</td>
<td>No Connect</td>
</tr>
<tr>
<td>26</td>
<td>GA2</td>
<td>115</td>
<td>No Connect</td>
<td>165</td>
<td>No Connect</td>
<td>118</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>12V</td>
<td>116</td>
<td>GND</td>
<td>167</td>
<td>No Connect</td>
<td>120</td>
<td>No Connect</td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>117</td>
<td>GND</td>
<td>169</td>
<td>No Connect</td>
<td>122</td>
<td>No Connect</td>
</tr>
<tr>
<td>29</td>
<td>'TX_SAS_2+'</td>
<td>118</td>
<td>No Connect</td>
<td>171</td>
<td>GND</td>
<td>124</td>
<td>No Connect</td>
</tr>
<tr>
<td>30</td>
<td>'TX_SAS_2-'</td>
<td>119</td>
<td>GND</td>
<td>173</td>
<td>GND</td>
<td>126</td>
<td>No Connect</td>
</tr>
<tr>
<td>31</td>
<td>GND</td>
<td>120</td>
<td>No Connect</td>
<td>175</td>
<td>No Connect</td>
<td>128</td>
<td>No Connect</td>
</tr>
<tr>
<td>32</td>
<td>'RX_SAS_2+'</td>
<td>121</td>
<td>No Connect</td>
<td>177</td>
<td>No Connect</td>
<td>130</td>
<td>No Connect</td>
</tr>
<tr>
<td>33</td>
<td>'RX_SAS_2-'</td>
<td>122</td>
<td>No Connect</td>
<td>179</td>
<td>No Connect</td>
<td>132</td>
<td>No Connect</td>
</tr>
<tr>
<td>34</td>
<td>GND</td>
<td>123</td>
<td>No Connect</td>
<td>181</td>
<td>No Connect</td>
<td>134</td>
<td>No Connect</td>
</tr>
<tr>
<td>35</td>
<td>'TX_SAS_3+'</td>
<td>124</td>
<td>No Connect</td>
<td>183</td>
<td>GND</td>
<td>136</td>
<td>No Connect</td>
</tr>
<tr>
<td>36</td>
<td>'TX_SAS_3-'</td>
<td>125</td>
<td>GND</td>
<td>185</td>
<td>GND</td>
<td>138</td>
<td>No Connect</td>
</tr>
<tr>
<td>37</td>
<td>GND</td>
<td>126</td>
<td>No Connect</td>
<td>187</td>
<td>No Connect</td>
<td>140</td>
<td>No Connect</td>
</tr>
<tr>
<td>38</td>
<td>'RX_SAS_3+'</td>
<td>127</td>
<td>No Connect</td>
<td>189</td>
<td>GND</td>
<td>142</td>
<td>No Connect</td>
</tr>
<tr>
<td>39</td>
<td>'RX_SAS_3-'</td>
<td>128</td>
<td>No Connect</td>
<td>191</td>
<td>GND</td>
<td>144</td>
<td>No Connect</td>
</tr>
</tbody>
</table>
A.3 SAS Controller Ports

The AMC.1-HDD SAS disk incorporates four dedicated SAS controller ports as follows.

<table>
<thead>
<tr>
<th>SAS Controller Port</th>
<th>Dedicated Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Routes to the onboard SAS disk drive, primary port A</td>
</tr>
<tr>
<td>1 (See Note)</td>
<td>Routes to AMC channel 2 (connects to SAS or SATA disk)</td>
</tr>
<tr>
<td>2(See Note)</td>
<td>Routes to AMC channel 3 (connects to SAS or SATA disk)</td>
</tr>
<tr>
<td>3</td>
<td>No Connect</td>
</tr>
</tbody>
</table>

These SAS ports are shipped with PHY’s disabled and are not driving AMC ports 2 and 3. This default configuration avoids incompatibilities with systems that have other initiators driving these AMC ports.
A.4 e-Keying Ports

The AMC.1-HDD SAS disk connects up to two SAS ports on the AMC connector. These ports are defined by the AMC.3 specification for serial storage. The module designates four PCI Express ports, per AMC.1 specification. The link type and link type extension are defined in the following table.

<table>
<thead>
<tr>
<th>Port #</th>
<th>Port Name</th>
<th>Link Type</th>
<th>AMC Port Map Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Channel 0</td>
<td>Link type 7 = AMC.3 storage, Link type extension = 2 (SAS and SATA) AMC asymmetric match = 00b (SAS)</td>
<td>Common options</td>
</tr>
<tr>
<td>3</td>
<td>Channel 1</td>
<td>Link type 7 = AMC.3 storage, Link type extension = 2 (SAS and SATA) AMC asymmetric match = 00b (SAS)</td>
<td>Common options</td>
</tr>
<tr>
<td>4-7</td>
<td>Channel 2</td>
<td>Link type 2 = AMC.1 PCI Express type e = 4</td>
<td>Common options</td>
</tr>
<tr>
<td>4</td>
<td>Channel 3</td>
<td>Link type 2 = AMC.1 PCI Express type 1</td>
<td></td>
</tr>
<tr>
<td>8-20</td>
<td>Unused</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environment Specifications

This appendix describes the electrical, environmental, and mechanical specifications. It includes illustrations of the board dimensions.

This appendix contains the following topics:

■ Section B.1, “Electrical and Environmental” on page B-2
■ Section B.2, “Reliability” on page B-4
■ Section B.3, “Mechanical” on page B-5
B.1 Electrical and Environmental

The following sections provide tables and illustrations showing the electrical and environmental specifications.

B.1.1 Electrical

The AMC.1-HDD SAS disk shall consume no more than the following from the system supplies under normal operating conditions.

<table>
<thead>
<tr>
<th>SUPPLY</th>
<th>SAS (Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management power</td>
<td>Less than 100 mA</td>
</tr>
<tr>
<td>+12V (spin up less than 8 secs)</td>
<td>1.5A (18W)</td>
</tr>
<tr>
<td>+12V normal operating</td>
<td>1.0A (12W)</td>
</tr>
<tr>
<td>+12V (idle)</td>
<td>0.75A (9W)</td>
</tr>
<tr>
<td>Off State</td>
<td>Less than 0.4W</td>
</tr>
<tr>
<td>Max current draw</td>
<td>1.5A during spin-up</td>
</tr>
</tbody>
</table>

TABLE B-2 Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Enterprise SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating (ambient) 5°C to 55°C</td>
</tr>
<tr>
<td></td>
<td>Disk enclosure surface 5°C to 60°C (operating)</td>
</tr>
<tr>
<td></td>
<td>Nonoperating -40°C to 70°C</td>
</tr>
<tr>
<td></td>
<td>Gradient 3 °C/min – (20°C/hour)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Operating 5% to 95%</td>
</tr>
<tr>
<td></td>
<td>Nonoperating 5% to 95%</td>
</tr>
<tr>
<td></td>
<td>Maximum wet bulb 29°C (operating)</td>
</tr>
</tbody>
</table>
TABLE B-2 Environmental Specifications (Continued)

<table>
<thead>
<tr>
<th>Vibration</th>
<th>Operating</th>
<th>1 G (20 to 300 Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonoperating</td>
<td>5 G (20 to 300 Hz)</td>
</tr>
<tr>
<td>Shock</td>
<td>Operating</td>
<td>100 G/1ms duration</td>
</tr>
<tr>
<td></td>
<td>Nonoperating</td>
<td>400 G/1ms duration</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating</td>
<td>−1,000 to +10,000 feet</td>
</tr>
<tr>
<td></td>
<td>Nonoperating</td>
<td>−1,000 to +40,000 feet</td>
</tr>
<tr>
<td>Performance RPM</td>
<td>10,025 rpm</td>
<td></td>
</tr>
<tr>
<td>Seek time avg</td>
<td>Read/write 4.5 m/s (typical)</td>
<td></td>
</tr>
<tr>
<td>Seek time max</td>
<td>Read/write 9.0 m/s (typical)</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>SAS 3.0 Gb</td>
<td></td>
</tr>
<tr>
<td>MTBF</td>
<td>See the following table.</td>
<td></td>
</tr>
</tbody>
</table>

TABLE B-3 MTBF Values by Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C</td>
<td>1234247.92</td>
</tr>
<tr>
<td>5°C</td>
<td>1104059.81</td>
</tr>
<tr>
<td>10°C</td>
<td>977994.82</td>
</tr>
<tr>
<td>15°C</td>
<td>858417.32</td>
</tr>
<tr>
<td>20°C</td>
<td>747143.26</td>
</tr>
<tr>
<td>25°C</td>
<td>645377.07</td>
</tr>
<tr>
<td>30°C</td>
<td>553731.31</td>
</tr>
<tr>
<td>35°C</td>
<td>472305.36</td>
</tr>
<tr>
<td>40°C</td>
<td>400796</td>
</tr>
<tr>
<td>45°C</td>
<td>338615.02</td>
</tr>
<tr>
<td>50°C</td>
<td>284997.04</td>
</tr>
<tr>
<td>55°C</td>
<td>239088.16</td>
</tr>
<tr>
<td>60°C</td>
<td>200012.91</td>
</tr>
<tr>
<td>65°C</td>
<td>166920.57</td>
</tr>
<tr>
<td>70°C</td>
<td>139014.35</td>
</tr>
</tbody>
</table>
B.1.3 Absolute Maximum Ratings

The following values are stress ratings only. Do not operate at these maximums. See Section B.1.4, “Normal Operating Ranges” on page B-4 for normal operating conditions.

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload voltage, +12V</td>
<td>0 VDC to +13.2 VDC</td>
</tr>
<tr>
<td>Management voltage, +3.3V</td>
<td>3.135 VDC to +3.465 VDC</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−40 to +70˚ Celsius</td>
</tr>
<tr>
<td>Noncondensing relative humidity</td>
<td>5% to 95% at 29˚ Celsius</td>
</tr>
</tbody>
</table>

B.1.4 Normal Operating Ranges

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal operating voltage</td>
<td>+10.8 to +13.2 VDC payload power</td>
</tr>
<tr>
<td>Operating temperatures*:</td>
<td></td>
</tr>
<tr>
<td>• 60m below sea level up to 1800m above sea</td>
<td>−5˚ to +55˚C</td>
</tr>
<tr>
<td>level</td>
<td></td>
</tr>
<tr>
<td>• from 1800m up to 4000m above sea level</td>
<td>−5˚ to +40˚C</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>Less than 85% at 29˚C</td>
</tr>
<tr>
<td>Idle power consumption (without links)</td>
<td>9W</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>12W</td>
</tr>
</tbody>
</table>

*The MTBF will be significantly reduced if operated above 30˚C for more than 96 consecutive hours.

B.2 Reliability

Reliability prediction was done using Telcordia document SR-332, Issue 1. The prediction assumed 25˚ Celsius operating temperature with 100 percent duty cycle, in a ground-benign, controlled environment.

• MTBF: 630,000 hours
• One year limited warranty
B.3 Mechanical

This section includes the mechanical specifications for dimensions and weight. The AMC.1-HDD SAS disk meets the PICMG 3.0 AdvancedTCA Specification R2.0 ECN002 and AMC.0 R2.0 for all mechanical parameters.

B.3.1 Board Dimensions and Weight

The AMC.1-HDD SAS disk is 181.5 mm by 73.5 mm and conforms to the component height requirements of a mid-size module and can be configured as a full-size module. PCI Express x4 connections are made through the AMC edge fingers.

The AMC.1-HDD SAS disk conforms to the PICMG AMC.0 single-width, mid-height AMC Form Factor for all mechanical parameters. Mechanical dimensions are shown in the illustration and are outlined in the following table.

<table>
<thead>
<tr>
<th>Item</th>
<th>Dimensions or Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td>181.5 mm x 73.5 mm x 1.6 mm</td>
</tr>
<tr>
<td>Board</td>
<td>AMC.0 R2.0 single-width, full-height form factor</td>
</tr>
<tr>
<td>Weight</td>
<td>181.4g</td>
</tr>
</tbody>
</table>

FIGURE B-1 AMC.1-HDD SAS disk PCB Dimensions
Agency Certifications

This appendix lists standards agencies and the certifications related to the Sun Netra CP3000 AMC.1-HDD SAS disk.

This product was tested in an EMC-compliant chassis and meets the requirements for EN55022 Class A equipment. Compliance was achieved under the following conditions:

- Conductive chassis rails connected to earth ground, providing the path for connecting shields to earth ground
- Front panel screws properly tightened

For minimum RF emissions, it is essential that these conditions be implemented. Failure to do so could compromise the EMC compliance of the equipment containing the module.

This appendix contains the following topics:

- Section C.1, “CE Certification” on page C-2
- Section C.2, “NEBS/ETSI” on page C-2
- Section C.3, “Safety” on page C-3
- Section C.4, “Emissions Test Regulations” on page C-4
- Section C.5, “Regulatory Information” on page C-5
C.1 **CE Certification**

C.2 **NEBS/ETSI**

The Sun Netra CP3000 AMC.1-HDD SAS disk has been designed to meet or exceed:

- Telcordia specification SR-3580 Issue 3, June 2007
- ETSI EN 300 019-2-1 V2.1.2 (2000-09), -2-2 V2.1.1 (1999-09), -2-3 V2.2.2 (2003-04), Environmental conditions and environmental tests for telecommunication equipment; Part 2
- ETSI EN 300 119-5, V1.2.2 (2004-12), Part 4: Engineering requirements for subracks in miscellaneous racks and cabinets
- ETSI EN 300 132-2, September 1996, Equipment Engineering Power Supply Interface At The Input To Telecommunications Equipment; Part 2: Operated by direct current (DC)
- ETSI EN 300 753, October 1997, Acoustic Noise Emitted By Telecommunications Equipment

Certification is dependent on your configuration.
C.3 Safety

- UL/cUL 60950-1 Safety for Information Technology Equipment (UL File #E138926)
- EN/IEC 60950-1:2001, 1ST ED CB/CCA –scheme, Safety for Information Technology Equipment (TUV CB certificate and report)

The following group and/or national deviations were considered:
- CENELEC Common Modifications, Annex ZA
- AU (Australia and New Zealand)
- CH (Switzerland)
- DE (Germany)
- DK (Denmark)
- ES (Spain)
- FI (Finland)
- GB (United Kingdom)
- IE (Ireland)
- KR (Korea)
- NO (Norway)
- SE (Sweden)
- China (deviations to IEC 60950 3rd Ed. considered):
 - Telcordia GR-63-CORE Network Equipment-Building System (NEBS) Requirements Issue 3 Mar 2006—Physical Protection (Designed to meet section 4)
 - Telcordia GR-1089-CORE Safety for Network Telecommunication Equipment Issue 4 Jun 2006 (meets Section 7)
C.4 Emissions Test Regulations

- FCC Part 15, Subpart B Class A Commercial Equipment
- Industry Canada ICES-003:2004 Class A Commercial Equipment
- CISPR 22/EN 55022:2006 Class A Radiated, Power line Conducted
- VCCI, Japanese V-3/2007.04 Class A
- Telcordia GR-1089-CORE EMC For Network Telecommunication Equipment Issue 4 Jun 2006 (Designed to meet Sections 2 and 3)

C.4.1 EN 55022 Emissions

- Telcordia GR-1089-CORE EMC For Network Telecommunication Equipment Issue 4 Jun 2006 (designed to meet 3.2)

C.4.2 EN 55024 Immunity

- Telcordia GR-1089-CORE EMC For Network Telecommunication Equipment Issue 4 Jun 2006 (Sections 2.1 (ESD), designed to meet 2.2 (EFT), 3.3)
- IEC 61000-4-2:2001 EMC - Part 4: Testing and measurement techniques - Section 4.2 Electrostatic discharge immunity test - Basic EMC Publication. (+/- 4KV contact and +/-8KV air discharge)
- IEC 61000-4-3:2003 EMC - Part 4: Testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test
- IEC 61000-4-4:2004 EMC - Part 4: Testing and measurement techniques - Section 4: Electrical fast transient/burst immunity test - Basic EMC Publication
- IEC 61000-4-5:2001 EMC - Part 4: Testing and measurement techniques - Section 5: Surge immunity test
- IEC 61000-4-6:1996 EMC - Part 4: Testing and measurement techniques - Section 6: +A1:2001 Immunity to conducted disturbances induced by radio frequency fields
C.5 Regulatory Information

Caution – If you make any modification to the AMC not expressly approved by Sun, you could void your warranty and/or regulatory authority to operate the component.

C.5.1 FCC (USA)

This product has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This product generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at the user’s own expense.

This AMC complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.

C.5.2 Industry Canada (Canada)

This Class A digital apparatus meets all requirements of the Canadian Interference Causing Equipment Regulations. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.
2. This device must accept any interference received, including interference that may cause undesired operation.

Cet appareillage numérique de la classe A répond à toutes les exigences de l'interférence canadienne causant des règlements d'équipement. L'opération est sujette aux deux conditions suivantes:
1. Ce dispositif peut ne pas causer l'interférence nocive.

2. Ce dispositif doit accepter n'importe quelle interférence reçue, y compris l'interférence qui peut causer l'opération peu désirée.
Index

Numerics

10GbE local PHY, 3-2

A
absolute maximum ratings, B-4
AMC flexing, preventing, 1-4
antistatic bag, 1-3

B
board status, 1-6
board voltages, monitoring, 2-4

C
cable management bracket
 lowering, 1-12
 cable management bracket, lowering, 1-12
certification, C-2
connector locations, A-2

D
deactivating the AMC, 1-10
dimensions and weight, B-5
disposal, 2-10
documentation URL, vii

E
EEC for Electromagnetic Compatibility, C-2
electrical and environmental, 1-3
electrical, environmental, and mechanical specifications, B-1
Electronic Industries Alliance, 2-10

F
time hazards, 1-1
faceplate, 1-5
failure status LEDs, controlling, 2-4
features, 2-2
firmware, upgrading, 3-6
FRU information, 3-4
FRU information, storing, 2-4
functional block diagram, 2-7

H
handling boards, cautions, 1-4
handling cards, cautions, 1-4
Hot-Swap LED, 1-6

I
idle power consumption, B-4
injector/ejector latch, 1-9, 1-12
installing an AMC, 1-13
IPMI commands, 3-2

L
labels, 2-8
 MAC address, 2-8
 part number, 2-8
 serial number, 2-8
LEDs, 1-6
M
MAC address
 label, 2-8
management voltage, B-4
maximum power consumption, B-4
Module Management Controller (MMC), 2-4, 3-1
module status, 3-2

N
NEBS/ETSI, C-2
nominal operating voltage, B-4
noncondensing relative humidity, B-4
normal operating ranges, B-4

O
OK LED, 1-6
OOS LED, 1-6
open slots, 1-13
operating humidity, B-4
operating temperatures, B-4

P
part number, 2-8
payload voltage, B-4
PHY, resetting, 3-2
physical shock, 1-3
pinouts, A-2

R
related documentation, vii
reliability, B-4
removing a switch and installed AMC, 1-12
removing an AMC, 1-8
removing and installing AMCs, 1-8
reset the PHY, 3-2
revision number, 2-8

S
sensors, 3-5
serial number, 2-8
software, upgrading, 3-6
static electricity, 1-1
storage temperature, B-4
Sun Services, 2-7

support, 2-7
switches, LEDs, 1-6
system requirements, 1-2

T
Telcordia Industrial Reliability program, B-4
temperature, max for integrated chips, 1-3
temperature, monitoring, 2-4

U
unpacking, 1-3
upgrading firmware and software, 3-6

W
warranty, 2-7
wrist strap, 1-3