
Sun Java System Application
Server Platform Edition 8.2
Developer's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–4721–13
June 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080619@20490

Contents

Preface ...31

Part I Developing and Deploying Applications .. 39

1 Setting Up a Development Environment .. 41
Installing and Preparing the Server for Development .. 41
Tools .. 42

The asadmin Command ... 42
The Administration Console .. 43
NetBeans IDE ... 43
The asant Utility ... 43
deploytool ... 43
Verifier .. 43
Migration Tool ... 44
Debugging Tools .. 44
Profiling Tools .. 44

Sample Applications .. 44

2 Securing Applications ...47
Security Goals .. 47
Application Server Specific Security Features .. 48
Container Security .. 48

Programmatic Security .. 48
Declarative Security ... 49

Realm Configuration .. 50
Supported Realms .. 50
How to Configure a Realm .. 50

3

How to Set a Realm for an Application or Module ... 50
Creating a Custom Realm ... 51

JACC Support .. 52
Pluggable Audit Module Support .. 53

Configuring an Audit Module .. 53
The AuditModule Class ... 53

The server.policy File .. 54
Default Permissions ... 54
Changing Permissions for an Application .. 55

Configuring Message Security ... 56
Message Security Responsibilities .. 57
Application-Specific Message Protection ... 58
Understanding and Running the Example Application .. 61

Programmatic Login ... 63
Precautions ... 64
Granting Programmatic Login Permission .. 64
The ProgrammaticLogin Class ... 65

User Authentication for Single Sign-on .. 66
Defining Roles .. 67

3 Assembling and Deploying Applications ..69
Overview of Assembly and Deployment .. 69

Modules ... 70
Applications .. 71
J2EE Standard Descriptors ... 73
Sun Java System Application Server Descriptors ... 73
Naming Standards ... 74
Directory Structure .. 75
Runtime Environments ... 76
Classloaders .. 78

Assembling Modules and Applications .. 83
deploytool ... 84
Apache Ant ... 84
NetBeans IDE ... 84
The Deployment Descriptor Verifier .. 84

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 20084

Deploying Modules and Applications .. 89
Deployment Errors .. 90
The Deployment Life Cycle .. 90
Tools for Deployment ... 93
Deployment by Module or Application .. 94
Deploying a WAR Module .. 95
Deploying an EJB JAR Module ... 95
Deploying a Lifecycle Module .. 95
Deploying an Application Client ... 96
Deploying a J2EE CA Resource Adapter ... 97
Access to Shared Frameworks .. 97

asant Assembly and Deployment Tool ... 98
asant Tasks for Sun Java System Application Server .. 98
sun-appserv-deploy ... 99
sun-appserv-undeploy .. 104
sun-appserv-component ... 107
sun-appserv-admin ... 109
sun-appserv-jspc .. 111
sun-appserv-update ... 113
Reusable Subelements ... 114
component .. 114
fileset .. 116

4 Debugging Applications ..117
Enabling Debugging ... 117

▼ To set the server to automatically start up in debug mode .. 118
JPDA Options .. 118
Generating a Stack Trace for Debugging .. 119
The Java Debugger .. 119
Using an IDE .. 120

▼ To use the NetBeans IDE for Debugging .. 120
Sun Java System Message Queue Debugging ... 121
Enabling Verbose Mode ... 121
Logging ... 121
Profiling .. 122

Contents

5

The HPROF Profiler .. 122
The Optimizeit Profiler ... 123

Part II Developing Applications and Application Components .. 125

5 Developing Web Applications ...127
Introducing Web Applications .. 127

Internationalization Issues .. 127
Virtual Servers .. 128
Default Web Modules .. 129
Classloader Delegation .. 130
Using the default-web.xml File ... 130
Configuring Logging in the Web Container ... 130
Configuring HTML Error Pages .. 131
Header Management ... 131
Redirecting URLs ... 132

Using Servlets ... 132
Invoking a Servlet with a URL .. 133
Servlet Output .. 134
Caching Servlet Results ... 134
About the Servlet Engine ... 137

Using JavaServer Pages ... 138
JSP Tag Libraries and Standard Portable Tags ... 139
JSP Caching ... 139

Creating and Managing HTTP Sessions ... 142
Configuring Sessions ... 143
Session Managers ... 143

6 Using Enterprise JavaBeans Technology ...147
Summary of EJB 2.1 Changes ... 147
Value Added Features ... 148

Read-Only Beans .. 148
pass-by-reference ... 149
Pooling and Caching .. 149

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 20086

Bean-Level Container-Managed Transaction Timeouts .. 150
Priority Based Scheduling of Remote Bean Invocations ... 150
Immediate Flushing ... 151

EJB Timer Service .. 151
Using Session Beans .. 152

About the Session Bean Containers ... 152
Restrictions and Optimizations ... 154

Using Read-Only Beans .. 154
Read-Only Bean Characteristics and Life Cycle ... 155
Read-Only Bean Good Practices .. 155
Refreshing Read-Only Beans .. 156
Deploying Read Only Beans ... 157

Using Message-Driven Beans .. 157
Message-Driven Bean Configuration .. 157
Restrictions and Optimizations ... 159
Sample Message-Driven Bean XML Files ... 160

Handling Transactions with Enterprise Beans .. 162
Flat Transactions .. 162
Global and Local Transactions ... 162
Commit Options .. 163
Administration and Monitoring .. 163

7 Using Container-Managed Persistence for Entity Beans .. 165
Sun Java System Application Server Support ... 165
Container-Managed Persistence Mapping .. 166

Mapping Capabilities .. 166
The Mapping Deployment Descriptor File ... 166
Mapping Considerations .. 167

Automatic Schema Generation .. 170
Supported Data Types ... 171
Generation Options ... 173

Schema Capture ... 176
Automatic Database Schema Capture ... 176
Using the capture-schema Utility .. 176

Configuring the CMP Resource ... 177

Contents

7

Configuring Queries for 1.1 Finders ... 178
About JDOQL Queries .. 178
Query Filter Expression ... 179
Query Parameters .. 180
Query Variables .. 180
JDOQL Examples ... 180

Performance-Related Features ... 182
Version Column Consistency Checking ... 182
Relationship Prefetching ... 183
Read-Only Beans .. 183

Restrictions and Optimizations ... 184
Eager Loading of Field State ... 184
Restrictions on Remote Interfaces ... 184
Sybase Finder Limitation .. 184
Date and Time Fields as CMP Field Types .. 185
No Support for lock-when-loaded on Sybase and DB2 ... 185
Set RECURSIVE_TRIGGERS to false on MSSQL ... 186
MySQL Database Restrictions .. 186

8 Developing Java Clients ...189
Introducing the Application Client Container .. 189

Security .. 189
Naming .. 190

Developing Clients Using the ACC ... 190
▼ To access an EJB component from an application client .. 190
▼ To access a JMS resource from an application client ... 192

Running an Application Client Using the ACC ... 193
Packaging an Application Client Using the ACC ... 193
client.policy ... 196

Developing Clients Without the ACC .. 196
▼ To access an EJB component from a stand-alone client .. 196
▼ To access an EJB component from a server-side module .. 197
▼ To access a JMS resource from a stand-alone client .. 198

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 20088

9 Developing Connectors ..201
Connector 1.5 Support in the Application Server ... 202

Connector Architecture for JMS and JDBC ... 202
Connector Configuration ... 202

Deploying and Configuring a Stand-Alone Connector Module ... 203
▼ To deploy and configure a stand-alone connector module .. 203

Redeploying a Stand-Alone Connector Module ... 204
Deploying and Configuring an Embedded Resource Adapter .. 204
Advanced Connector Configuration Options ... 205

Thread Pools ... 205
Security Maps ... 205
Overriding Configuration Properties .. 206
Testing a Connection Pool .. 206
Handling Invalid Connections ... 206
Setting the Shutdown Timeout ... 207
Using Last Agent Optimization of Transactions ... 207

Inbound Communication Support ... 208
Configuring a Message Driven Bean to Use a Resource Adapter .. 209

Example Resource Adapter for Inbound Communication .. 211

10 Developing Lifecycle Listeners ..213
Server Life Cycle Events .. 213
The LifecycleListener Interface .. 214
The LifecycleEvent Class .. 214
The Server Lifecycle Event Context ... 215
Deploying a Lifecycle Module .. 215
Considerations for Lifecycle Modules .. 216

Part III Using Services and APIs ... 217

11 Using the JDBC API for Database Access ... 219
General Steps for Creating a JDBC Resource ... 220

Integrating the JDBC Driver ... 220
Creating a Connection Pool .. 220

Contents

9

Testing a Connection Pool .. 221
Creating a JDBC Resource .. 221

Creating Applications That Use the JDBC API ... 221
Sharing Connections ... 222
Obtaining a Physical Connection from a Wrapped Connection ... 222
Using Non-Transactional Connections .. 222
Using JDBC Transaction Isolation Levels ... 223

Configurations for Specific JDBC Drivers .. 224
Derby Type 4 Driver .. 225
Sun Java System JDBC Driver for DB2 Databases ... 226
Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g Databases 226
Sun Java System JDBC Driver for Microsoft SQL Server Databases 227
Sun Java System JDBC Driver for Sybase Databases .. 227
IBM DB2 8.1 Type 2 Driver .. 228
JConnect Type 4 Driver for Sybase ASE 12.5 Databases ... 228
MM MySQL Type 4 Driver (Non-XA) .. 229
MM MySQL Type 4 Driver (XA Only) .. 229
Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g Databases .. 230
Inet Merlia JDBC Driver for Microsoft SQL Server Databases .. 231
Inet Sybelux JDBC Driver for Sybase Databases .. 231
Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g Databases .. 232
OCI Oracle Type 2 Driver for Oracle 8i, 9i, and 10g Databases ... 233
IBM Informix Type 4 Driver .. 234

12 Using the Transaction Service ...235
Transaction Resource Managers ... 235
Transaction Scope ... 236
Configuring the Transaction Service .. 237
Transaction Logging ... 238

13 Using the Java Naming and Directory Interface .. 239
Accessing the Naming Context .. 239

Naming Environment for J2EE Application Components ... 240
Accessing EJB Components Using the CosNaming Naming Context 240
Accessing EJB Components in a Remote Application Server ... 241

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200810

Naming Environment for Lifecycle Modules ... 242
Configuring Resources ... 242

External JNDI Resources .. 242
Custom Resources .. 242

Mapping References .. 243

14 Using the Java Message Service .. 245
The JMS Provider .. 245
Message Queue Resource Adapter .. 246
Administration of the JMS Service .. 246

Configuring the JMS Service ... 247
The Default JMS Host .. 248
Creating JMS Hosts .. 248
Checking Whether the JMS Provider Is Running .. 248
Creating Physical Destinations .. 248
Creating JMS Resources: Destinations and Connection Factories 249

Restarting the JMS Client After JMS Configuration ... 250
JMS Connection Features ... 250

Connection Pooling ... 250
Connection Failover .. 251

Transactions and Non-Persistent Messages ... 251
ConnectionFactory Authentication .. 251
Message Queue varhome Directory .. 251
Delivering SOAP Messages Using the JMS API ... 252

▼ To send SOAP messages using the JMS API ... 252
▼ To receive SOAP messages using the JMS API ... 253

15 Using the JavaMail API ...255
Introducing JavaMail .. 255
Creating a JavaMail Session .. 256
JavaMail Session Properties .. 256
Looking Up a JavaMail Session .. 256
Sending and Reading Messages Using JavaMail .. 257

▼ To send a message using JavaMail .. 257
▼ To read a message using JavaMail .. 258

Contents

11

16 Using the Java Management Extensions (JMX) API ... 259
About AMX .. 260
AMX MBeans .. 260

Configuration MBeans .. 261
Monitoring MBeans .. 261
Utility MBeans ... 262
J2EE Management MBeans .. 262
Other MBeans .. 262
MBean Notifications .. 262
Access to MBean Attributes .. 262

Proxies .. 263
Connecting to the Domain Administration Server ... 263
Examining AMX Code Samples .. 264

Connecting to the DAS .. 264
Starting an Application Server .. 265
Deploying an Archive .. 266
Displaying the AMX MBean Hierarchy .. 269
Setting Monitoring States .. 271
Accessing AMX MBeans ... 272
Accessing and Displaying the Attributes of an AMX MBean ... 274
Listing AMX MBean Properties ... 275
Querying ... 277
Monitoring Attribute Changes ... 278
Undeploying Modules ... 281
Stopping an Application Server .. 281

Running the AMX Samples .. 282

A Deployment Descriptor Files ...283
Sun Java System Application Server Descriptors ... 283
The sun-application.xml File ... 285
The sun-web.xml File .. 285
The sun-ejb-jar.xml File ... 288
The sun-cmp-mappings.xml File .. 293
The sun-application-client.xml file ... 297
The sun-acc.xml File ... 298

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200812

Alphabetical Listing of All Elements ... 298
A .. 299

activation-config .. 299
activation-config-property ... 299
activation-config-property-name .. 300
activation-config-property-value .. 300
as-context .. 300
auth-method ... 301
auth-realm .. 301

B ... 302
bean-cache .. 302
bean-pool .. 303

C ... 304
cache .. 304
cache-helper ... 306
cache-helper-ref ... 307
cache-idle-timeout-in-seconds .. 307
cache-mapping ... 308
call-property ... 309
caller-propagation ... 309
cert-db ... 310
check-all-at-commit .. 310
check-modified-at-commit .. 310
check-version-of-accessed-instances .. 311
checkpoint-at-end-of-method ... 311
checkpointed-methods ... 311
class-loader ... 311
client-container .. 313
client-credential ... 314
cmp .. 315
cmp-field-mapping .. 315
cmp-resource .. 316
cmr-field-mapping .. 317
cmr-field-name .. 317
cmt-timeout-in-seconds ... 318
column-name ... 318

Contents

13

column-pair .. 318
commit-option ... 319
confidentiality ... 319
consistency .. 320
constraint-field ... 320
constraint-field-value .. 321
context-root .. 322
cookie-properties ... 322
create-tables-at-deploy .. 323

D .. 324
database-vendor-name ... 324
default .. 324
default-helper ... 324
default-resource-principal .. 325
description .. 326
dispatcher .. 326
drop-tables-at-undeploy ... 326

E ... 327
ejb ... 327
ejb-name ... 330
ejb-ref .. 331
ejb-ref-name ... 331
endpoint-address-uri .. 331
enterprise-beans ... 332
entity-mapping ... 334
establish-trust-in-client ... 334
establish-trust-in-target .. 335

F ... 335
fetched-with .. 335
field-name ... 336
finder ... 336
flush-at-end-of-method .. 337

G .. 337
gen-classes ... 337
group-name .. 338

H .. 339

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200814

http-method ... 339
I .. 339

idempotent-url-pattern ... 339
integrity ... 339
ior-security-config ... 339
is-cache-overflow-allowed .. 340
is-one-one-cmp .. 340
is-read-only-bean ... 340

J .. 341
java-method .. 341
jms-durable-subscription-name .. 341
jms-max-messages-load .. 341
jndi-name .. 342
jsp-config ... 342

K ... 345
key-field ... 345

L ... 346
level .. 346
local-home-impl .. 346
local-impl .. 347
locale-charset-info ... 347
locale-charset-map .. 348
localpart ... 349
lock-when-loaded .. 349
lock-when-modified .. 350
log-service ... 350
login-config ... 351

M .. 351
manager-properties ... 351
mapping-properties ... 353
max-cache-size ... 353
max-pool-size ... 353
max-wait-time-in-millis ... 354
mdb-connection-factory ... 354
mdb-resource-adapter .. 354
message ... 355

Contents

15

message-destination .. 355
message-destination-name ... 356
message-security .. 356
message-security-config .. 358
method .. 359
method-intf ... 359
method-name ... 360
method-param ... 360
method-params .. 360

N .. 361
name .. 361
named-group .. 361
namespaceURI ... 361
none ... 362

O .. 362
one-one-finders .. 362
operation-name .. 362

P ... 363
parameter-encoding .. 363
pass-by-reference ... 364
password ... 365
pm-descriptors ... 365
pool-idle-timeout-in-seconds .. 365
port-component-name ... 365
port-info .. 366
prefetch-disabled ... 367
principal .. 367
principal-name ... 368
property (with attributes) ... 368
property (with subelements) .. 369
provider-config .. 370

Q .. 371
query-filter .. 371
query-method ... 371
query-ordering ... 372
query-params ... 372

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200816

query-variables ... 372
R ... 373

read-only ... 373
realm .. 373
refresh-field ... 373
refresh-period-in-seconds .. 374
removal-timeout-in-seconds .. 374
remote-home-impl .. 375
remote-impl .. 375
request-policy ... 375
request-protection ... 376
required ... 377
res-ref-name ... 377
resize-quantity .. 377
resource-adapter-mid ... 378
resource-env-ref ... 378
resource-env-ref-name ... 379
resource-ref ... 379
response-policy .. 380
response-protection ... 381
role-name .. 382

S ... 382
sas-context .. 382
schema ... 383
schema-generator-properties ... 383
secondary-table .. 385
security .. 385
security-role-mapping .. 386
service-endpoint-interface ... 387
service-impl-class ... 387
service-qname .. 387
service-ref .. 388
service-ref-name .. 389
servlet ... 389
servlet-impl-class ... 389
servlet-name ... 390

Contents

17

session-config ... 390
session-manager ... 390
session-properties .. 391
ssl .. 392
steady-pool-size ... 393
store-properties .. 393
stub-property .. 394
sun-application .. 395
sun-application-client ... 396
sun-cmp-mapping ... 397
sun-cmp-mappings ... 397
sun-ejb-jar ... 398
sun-web-app ... 398

T ... 401
table-name .. 401
target-server .. 401
tie-class .. 402
timeout .. 402
transport-config ... 403
transport-guarantee ... 404

U .. 404
unique-id ... 404
url-pattern ... 405
use-thread-pool-id ... 405

V .. 405
value ... 405
victim-selection-policy .. 406

W ... 407
web ... 407
web-uri .. 407
webservice-description ... 407
webservice-description-name .. 408
webservice-endpoint ... 408
wsdl-override .. 409
wsdl-port ... 409
wsdl-publish-location ... 410

Contents

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200818

Index ... 411

Contents

19

20

Figures

FIGURE 3–1 Module assembly and deployment .. 71
FIGURE 3–2 Application assembly and deployment ... 72
FIGURE 3–3 Module runtime environment ... 76
FIGURE 3–4 Application runtime environment .. 78
FIGURE 3–5 Classloader runtime hierarchy .. 79

21

22

Tables

TABLE 3–1 J2EE Standard Descriptors ... 73
TABLE 3–2 Sun Java System Application Server Descriptors ... 74
TABLE 3–3 Sun Java System Application Server Classloaders ... 80
TABLE 3–4 Verifier Options ... 85
TABLE 3–5 sun-appserv-deploy Subelements .. 99
TABLE 3–6 sun-appserv-deployAttributes ... 100
TABLE 3–7 sun-appserv-undeploy Subelements .. 105
TABLE 3–8 sun-appserv-undeployAttributes ... 105
TABLE 3–9 sun-appserv-component Subelements .. 107
TABLE 3–10 sun-appserv-componentAttributes ... 108
TABLE 3–11 sun-appserv-adminAttributes ... 110
TABLE 3–12 sun-appserv-jspcAttributes ... 112
TABLE 3–13 sun-appserv-updateAttributes ... 113
TABLE 3–14 componentAttributes .. 115
TABLE 5–1 URL Fields for Servlets Within an Application .. 133
TABLE 5–2 cacheAttributes .. 140
TABLE 5–3 flushAttributes .. 142
TABLE 7–1 Java Type to JDBC Type Mappings ... 171
TABLE 7–2 Mappings of JDBC Types to Database Vendor Specific Types 172
TABLE 7–3 sun-ejb-jar.xmlGeneration Elements .. 174
TABLE 7–4 asadmin deploy and asadmin deploydir Generation Options 174
TABLE 7–5 asadmin undeploy Generation Options .. 176
TABLE 11–1 Transaction Isolation Levels .. 223
TABLE 13–1 Standard JNDI Subcontexts for Connection Factories 240
TABLE A–1 Sun Java System Application Server Descriptors ... 284
TABLE A–2 activation-config subelements ... 299
TABLE A–3 activation-config-property subelements .. 300
TABLE A–4 as-context Subelements ... 301

23

TABLE A–5 auth-realm subelement ... 302
TABLE A–6 auth-realm attributes ... 302
TABLE A–7 bean-cache Subelements ... 303
TABLE A–8 bean-pool Subelements ... 304
TABLE A–9 cache Subelements .. 305
TABLE A–10 cacheAttributes .. 305
TABLE A–11 cacheProperties .. 306
TABLE A–12 cacheClassNameValues ... 306
TABLE A–13 cache-helper Subelements ... 307
TABLE A–14 cache-helperAttributes .. 307
TABLE A–15 cache-mapping Subelements ... 308
TABLE A–16 call-property subelements ... 309
TABLE A–17 cert-db attributes ... 310
TABLE A–18 check-version-of-accessed-instances Subelements 311
TABLE A–19 class-loader Subelements ... 312
TABLE A–20 class-loaderAttributes .. 312
TABLE A–21 client-container Subelements ... 313
TABLE A–22 client-containerAttributes ... 314
TABLE A–23 client-credential subelement ... 314
TABLE A–24 client-credential attributes .. 314
TABLE A–25 cmp Subelements .. 315
TABLE A–26 cmp-field-mapping Subelements ... 316
TABLE A–27 cmp-resource Subelements ... 316
TABLE A–28 cmr-field-mapping Subelements ... 317
TABLE A–29 column-pair Subelements ... 319
TABLE A–30 consistency Subelements ... 320
TABLE A–31 constraint-field Subelements ... 321
TABLE A–32 constraint-fieldAttributes ... 321
TABLE A–33 constraint-field-valueAttributes ... 322
TABLE A–34 cookie-properties Subelements ... 323
TABLE A–35 cookie-propertiesProperties ... 323
TABLE A–36 default-helper Subelements ... 325
TABLE A–37 default-helperProperties ... 325
TABLE A–38 default-resource-principal Subelements .. 326
TABLE A–39 ejb Subelements .. 327
TABLE A–40 ejbAttributes ... 329

Tables

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200824

TABLE A–41 ejb-ref Subelements .. 331
TABLE A–42 enterprise-beans Subelements ... 333
TABLE A–43 entity-mapping Subelements ... 334
TABLE A–44 fetched-with Subelements ... 336
TABLE A–45 finder Subelements .. 337
TABLE A–46 flush-at-end-of-method Subelements .. 337
TABLE A–47 gen-classes Subelements ... 338
TABLE A–48 ior-security-config Subelements .. 340
TABLE A–49 java-method Subelements ... 341
TABLE A–50 jsp-config Subelements ... 343
TABLE A–51 jsp-configProperties .. 343
TABLE A–52 key-fieldAttributes .. 346
TABLE A–53 locale-charset-info Subelements .. 348
TABLE A–54 locale-charset-infoAttributes ... 348
TABLE A–55 locale-charset-map Subelements .. 348
TABLE A–56 locale-charset-mapAttributes ... 349
TABLE A–57 Example agentAttribute Values ... 349
TABLE A–58 log-service subelement ... 350
TABLE A–59 log-service attributes ... 351
TABLE A–60 login-config subelements .. 351
TABLE A–61 manager-properties Subelements .. 352
TABLE A–62 manager-propertiesProperties ... 352
TABLE A–63 mdb-connection-factory Subelements .. 354
TABLE A–64 mdb-resource-adapter subelements ... 355
TABLE A–65 message Subelements .. 355
TABLE A–66 message-destination subelements ... 356
TABLE A–67 message-security Subelements ... 357
TABLE A–68 message-security-binding Subelements .. 357
TABLE A–69 message-security-bindingAttributes .. 357
TABLE A–70 message-security-config Subelements .. 358
TABLE A–71 message-security-configAttributes .. 358
TABLE A–72 method Subelements .. 359
TABLE A–73 method-params Subelements ... 361
TABLE A–74 one-one-finders Subelements ... 362
TABLE A–75 parameter-encodingAttributes ... 363
TABLE A–76 port-info subelements .. 366

Tables

25

TABLE A–77 prefetch-disabled Subelements ... 367
TABLE A–78 principal Subelements ... 367
TABLE A–79 property Subelements .. 368
TABLE A–80 propertyAttributes .. 369
TABLE A–81 property subelements .. 369
TABLE A–82 provider-config Subelements ... 370
TABLE A–83 provider-configAttributes ... 370
TABLE A–84 query-method Subelements ... 372
TABLE A–85 refresh-fieldAttributes .. 374
TABLE A–86 request-policyAttributes ... 376
TABLE A–87 request-protectionAttributes ... 376
TABLE A–88 resource-env-ref Subelements ... 379
TABLE A–89 resource-ref Subelements ... 380
TABLE A–90 response-policyAttributes ... 381
TABLE A–91 response-protectionAttributes ... 381
TABLE A–92 sas-context Subelements ... 382
TABLE A–93 schema-generator-properties Subelements ... 383
TABLE A–94 schema-generator-propertiesProperties .. 384
TABLE A–95 schema-generator-propertiesColumn Attributes ... 384
TABLE A–96 secondary table Subelements ... 385
TABLE A–97 security Subelements .. 386
TABLE A–98 security-role-mapping Subelements .. 386
TABLE A–99 service-qname subelements ... 387
TABLE A–100 service-ref subelements .. 388
TABLE A–101 servlet Subelements .. 389
TABLE A–102 session-config Subelements ... 390
TABLE A–103 session-manager Subelements ... 391
TABLE A–104 session-managerAttributes ... 391
TABLE A–105 session-properties Subelements .. 391
TABLE A–106 session-propertiesProperties ... 392
TABLE A–107 ssl attributes .. 393
TABLE A–108 store-properties Subelements ... 394
TABLE A–109 store-propertiesProperties ... 394
TABLE A–110 stub-property subelements ... 395
TABLE A–111 sun-application Subelements ... 395
TABLE A–112 sun-application-client subelements .. 396

Tables

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200826

TABLE A–113 sun-cmp-mapping Subelements ... 397
TABLE A–114 sun-cmp-mappings Subelements ... 397
TABLE A–115 sun-ejb-jar Subelements ... 398
TABLE A–116 sun-web-app Subelements ... 398
TABLE A–117 sun-web-appAttributes .. 400
TABLE A–118 sun-web-appProperties ... 400
TABLE A–119 target-server subelements ... 402
TABLE A–120 target-server attributes .. 402
TABLE A–121 timeoutAttributes .. 403
TABLE A–122 transport-config Subelements ... 403
TABLE A–123 web Subelements .. 407
TABLE A–124 webservice-description subelements .. 408
TABLE A–125 webservice-endpoint subelements ... 408
TABLE A–126 wsdl-port subelements .. 410

Tables

27

28

Examples

EXAMPLE 16–1 Connecting to the DAS ... 264
EXAMPLE 16–2 Starting an Application Server ... 265
EXAMPLE 16–3 Obtaining a Named J2EE server instance ... 266
EXAMPLE 16–4 Uploading an archive .. 266
EXAMPLE 16–5 Deploying an archive .. 267
EXAMPLE 16–6 Displaying the AMX MBean Hierarchy ... 269
EXAMPLE 16–7 Setting Monitoring States ... 271
EXAMPLE 16–8 Accessing AMX MBeans .. 272
EXAMPLE 16–9 Accessing and Displaying the Attributes of an AMX MBean 274
EXAMPLE 16–10 Listing AMX MBean Properties .. 276
EXAMPLE 16–11 Querying and displaying wild cards .. 277
EXAMPLE 16–12 Querying ... 278
EXAMPLE 16–13 Monitoring Attribute Changes .. 278
EXAMPLE 16–14 Undeploying Modules .. 281

29

30

Preface

This Developer's Guide describes how to create and run JavaTM 2 Platform, Enterprise Edition
(J2EETM platform) applications that follow the open Java standards model for J2EE components
and APIs in the Sun Java System Application Server environment. Topics include developer
tools, security, assembly, deployment, debugging, and creating lifecycle modules.

Who Should Use This Book
This Developer's Guide is intended for use by software developers who create, assemble, and
deploy J2EE applications using Sun Java System servers and software. Application Server
software developers should already understand the following technologies:

■ Java technology
■ The Java 2 Platform, Enterprise Edition (J2EE platform), version 1.4
■ Hypertext Transfer Protocol (HTTP)
■ Hypertext Markup Language (HTML)
■ Extensible Markup Language (XML)

How This Book Is Organized
The Developer's Guide has three parts and an Appendix:

■ Part I includes general development topics relevant to the Application Server, such as
security and debugging.

■ Part II describes J2EE application components, such as servlets and message-driven beans,
that can run on the Application Server.

■ Part III describes services and APIs that provide Application Server resources, such as JDBC
and JNDI.

■ Appendix A, “Deployment Descriptor Files,” describes deployment descriptor files specific
to the Application Server.

The following table summarizes the chapters in this book.

31

TABLE P–1 How This Book Is Organized

Chapter Description

Chapter 1, “Setting Up a Development
Environment”

Describes setting up an application development environment in the
Application Server.

Chapter 2, “Securing Applications” Explains how to write secure J2EE applications, which contain components
that perform user authentication and access authorization.

Chapter 3, “Assembling and Deploying
Applications”

Describes Application Server modules and how these modules are assembled
separately or together in an application. Also describes class loaders and tools
for assembly and deployment.

Chapter 4, “Debugging Applications” Provides guidelines for debugging applications in the Application Server.

Chapter 5, “Developing Web Applications” Describes how web applications are supported in the Application Server.

Chapter 6, “Using Enterprise JavaBeans Technology” Describes how Enterprise JavaBeansTM (EJBTM) technology is supported in the
Application Server.

Chapter 7, “Using Container-Managed Persistence
for Entity Beans”

Provides information on how container-managed persistence (CMP) works in
the Application Server.

Chapter 8, “Developing Java Clients” Describes how to develop, assemble, and deploy J2EE Application Clients.

Chapter 9, “Developing Connectors” Describes Application Server support for the J2EE Connector 1.5 architecture.

Chapter 10, “Developing Lifecycle Listeners” Describes how to create and use a lifecycle listener module.

Chapter 11, “Using the JDBC API for Database
Access”

Explains how to use the Java Database Connectivity (JDBCTM) API for
database access with the Application Server.

Chapter 12, “Using the Transaction Service” Describes J2EE transactions and transaction support in the Application
Server.

Chapter 13, “Using the Java Naming and Directory
Interface”

Explains how to use the Java Naming and Directory InterfaceTM (JNDI) API
for naming and references.

Chapter 14, “Using the Java Message Service” Explains how to use the Java Message Service (JMS) API, and describes the
Application Server’s fully integrated JMS provider: the Sun Java System
Message Queue software.

Chapter 15, “Using the JavaMail API” Explains how to use the JavaMailTM API.

Chapter 16, “Using the Java Management Extensions
(JMX) API”

Explains how to use the Java Management Extensions (JMXTM) API.

Appendix A, “Deployment Descriptor Files” Describes deployment descriptor files specific to the Application Server.

Preface

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200832

Application Server Documentation Set
The Application Server documentation set describes deployment planning and system
installation. The URL for stand-alone Application Server documentation is
http://docs.sun.com/app/docs/coll/1343.2. For an introduction to Application Server,
refer to the books in the order in which they are listed in the following table.

TABLE P–2 Books in the Application Server Documentation Set

Book Title Description

Release Notes Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of the supported hardware, operating system, JDK,
and JDBC/RDBMS.

Quick Start Guide How to get started with the Application Server product.

Installation Guide Installing the software and its components.

Developer’s Guide Creating and implementing Java 2 Platform, Enterprise Edition (J2EE platform) applications
intended to run on the Application Server that follow the open Java standards model for J2EE
components and APIs. Includes information about developer tools, security, debugging,
deployment, and creating lifecycle modules.

J2EE 1.4 Tutorial Using J2EE 1.4 platform technologies and APIs to develop J2EE applications.

Administration Guide Configuring, managing, and deploying Application Server subsystems and components from
the Administration Console.

Administration Reference Editing the Application Server configuration file, domain.xml.

Upgrade and Migration Guide Migrating your applications to the new Application Server programming model, specifically
from Application Server 6.x and 7. This guide also describes differences between adjacent
product releases and configuration options that can result in incompatibility with the
product specifications.

Troubleshooting Guide Solving Application Server problems.

Error Message Reference Solving Application Server error messages.

Reference Manual Utility commands available with the Application Server; written in man page style. Includes
the asadmin command line interface.

Related Books
For other Sun Java System server documentation, go to the following:

■ Message Queue documentation
■ Directory Server documentation
■ Web Server documentation

Preface

33

http://docs.sun.com/app/docs/coll/1343.2

The URL for all documentation about Java ES and its components is
http://docs.sun.com/prod/entsys.5.

You can find a directory of URLs for the official specifications at install-dir/docs/index.htm.
Additionally, the following resources might be useful.

General J2EE Information:

The J2EE 1.4 Tutorial: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

The J2EE Blueprints: http://java.sun.com/reference/blueprints/index.html

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi, & Dan
Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with Servlets and JSP files:

Java Servlet Programming, by Jason Hunter, O’Reilly Publishing

Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Programming with JDBC:

Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by Graham
Hamilton, Rick Cattell, & Maydene Fisher

Javadocs:

Javadocs for packages provided with the Application Server are located in install-dir/docs/api.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Preface

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200834

http://docs.sun.com/prod/entsys.5
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/reference/blueprints/index.html

TABLE P–3 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation directory for
Application Server.

Sun Java Enterprise System (Java ES) installations on the
SolarisTM platform:

/opt/SUNWappserver/appserver

Java ES installations on the Linux platform:

/opt/sun/appserver/

Other Solaris and Linux installations, non-root user:

user’s home directory/SUNWappserver

Other Solaris and Linux installations, root user:

/opt/SUNWappserver

Windows, all installations:

SystemDrive:\Sun\AppServer

domain-root-dir Represents the directory containing all domains. Java ES installations on the Solaris platform:

/var/opt/SUNWappserver/domains/

Java ES installations on the Linux platform:

/var/opt/sun/appserver/domains/

All other installations:

install-dir/domains/

domain-dir Represents the directory for a domain.

In configuration files, you might see domain-dir
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-dir

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Preface

35

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–5 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200836

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 819-4721.

Preface

37

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

38

Developing and Deploying Applications

P A R T I

39

40

Setting Up a Development Environment

This chapter gives guidelines for setting up an application development environment in the Sun
JavaTM System Application Server. Setting up an environment for creating, assembling,
deploying, and debugging your code involves installing the mainstream version of the
Application Server and making use of development tools. In addition, sample applications are
available. These topics are covered in the following sections:

■ “Installing and Preparing the Server for Development” on page 41
■ “Tools” on page 42
■ “Sample Applications” on page 44

Installing and Preparing the Server for Development
For the Sun Java Enterprise System, Application Server installation is part of the system
installation process. For more information, see
http://www.sun.com/software/javaenterprisesystem/index.html.

For all other installations, the following components are included in the full installation. For
more information, see the Sun Java System Application Server Platform Edition 8.2 Installation
Guide.

■ Application Server core, including:
■ J2EE 1.4 compliant application server
■ Administration Console
■ asadmin utility
■ deploytool
■ Other development and deployment tools
■ Sun Java System Message Queue software
■ J2SE 1.4.2
■ Derby database

■ JDK

1C H A P T E R 1

41

http://www.sun.com/software/javaenterprisesystem/index.html

■ Sample Applications

The NetBeans IDE bundles the Platform Edition of the Application Server, so information
about this IDE is provided as well.

After you have installed Application Server, you can further optimize the server for
development in these ways:

■ Locate utility classes and libraries so they can be accessed by the proper classloaders. For
more information, see “Using the System Classloader” on page 82 or “Using the Common
Classloader” on page 82.

■ Set up debugging. For more information, see Chapter 4, “Debugging Applications.”
■ Configure the Java Virtual Machine (JVMTM) software. For more information, see the Sun

Java System Application Server Platform Edition 8.2 Administration Guide.

Tools
The following general tools are provided with the Application Server:

■ “The asadmin Command” on page 42
■ “The Administration Console” on page 43

The following development tools are provided with the Application Server or downloadable
from Sun:

■ “NetBeans IDE” on page 43
■ “The asant Utility” on page 43
■ “deploytool” on page 43
■ “Verifier” on page 43
■ “Migration Tool” on page 44

The following third-party tools might also be useful:

■ “Debugging Tools” on page 44
■ “Profiling Tools” on page 44

The asadmin Command
The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about
asadmin, see the Sun Java System Application Server Platform Edition 8.2 Reference Manual.

The asadmin command is located in the install-dir/bin directory. Type asadmin help for a list
of subcommands.

Tools

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200842

The Administration Console
The Administration Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Administration
Console, see the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

To access the Administration Console, type http://host:4848 in your browser. The host is the
name of the machine on which the Application Server is running.

NetBeans IDE
The NetBeansTM IDE (integrated development environment) allows you to create, assemble, and
debug code from a single, easy-to-use interface. The Platform Edition of the Application Server
is bundled with the NetBeans 5 IDE. For more information about using the NetBeans IDE, see
http://www.netbeans.org.

The asant Utility
Apache Ant 1.6.5 is provided with the Application Server and can be launched from the bin
directory using the command asant. The Application Server also provides server-specific tasks
for deployment; see “asant Assembly and Deployment Tool” on page 98. The sample
applications provided with the Application Server use Ant build.xml files; see “Sample
Applications” on page 44.

For more information about Ant, see the Apache Software Foundation web site at
http://ant.apache.org/.

deploytool
You can use the deploytool, provided with Application Server, to assemble J2EE applications
and modules, configure deployment parameters, perform simple static checks, and deploy the
final result. For more information about using the deploytool, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Verifier
The verifier tool checks a J2EE application file (EAR, JAR, WAR, RAR), including Java classes
and deployment descriptors, for compliance with J2EE specifications. Use it to check whether
an application has obvious bugs and to make applications portable across application servers.
The verifier can be launched from the deploytool or from the command line. For more
information, see “The Deployment Descriptor Verifier” on page 84.

Tools

Chapter 1 • Setting Up a Development Environment 43

http://www.netbeans.org
http://ant.apache.org/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Migration Tool
The Migration Tool reassembles J2EE applications and modules developed on other
application servers. For more information and to download the Migration Tool, see
http://java.sun.com/j2ee/tools/migration/index.html.

For additional information on migration, see the Sun Java System Application Server Platform
Edition 8.2 Upgrade and Migration Guide.

Debugging Tools
You can use several debuggers with the Application Server. For more information, see
Chapter 4, “Debugging Applications.”

Profiling Tools
You can use several profilers with the Application Server. For more information, see “Profiling”
on page 122.

Sample Applications
Sample applications that you can examine and deploy are included with the full installation of
the Application Server. You can also download these samples separately if you installed the
Application Server without them initially.

If installed with the Application Server, the samples are in the install-dir/samples directory.
The samples are organized in categories such as ejb, jdbc, connectors, i18n, and so on. Each
sample category is further divided into subcategories. For example, under the ejb category are
stateless, stateful, security, mdb, bmp, and cmp subcategories.

Most Application Server samples have the following directory structure:

■ The docs directory contains instructions for how to use the sample.
■ The build.xml file defines asant targets for the sample (see “asant Assembly and

Deployment Tool” on page 98.
■ The build and javadocs directories are generated as a result of targets specified in the

build.xml file.
■ The src/java directory under each component contains source code for the sample.
■ The src/conf directory under each component contains the deployment descriptors.

With a few exceptions, sample applications follow the standard directory structure described
here: http://java.sun.com/blueprints/code/projectconventions.html.

Sample Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200844

http://java.sun.com/j2ee/tools/migration/index.html
http://java.sun.com/blueprints/code/projectconventions.html

The install-dir/samples/common-ant.xml file defines properties common to all sample
applications and implements targets needed to compile, assemble, deploy and undeploy sample
applications. In most sample applications, the build.xml file includes common-ant.xml.

For a detailed description of the helloworld sample and how to deploy and run it, see the
associated documentation at:

install-dir/samples/ejb/stateless/apps/simple/docs/index.html

After you deploy the helloworld sample in Application Server, you can invoke it using the
following URL:

http://server:port/helloworld

Sample Applications

Chapter 1 • Setting Up a Development Environment 45

46

Securing Applications

This chapter describes how to write secure J2EE applications, which contain components that
perform user authentication and access authorization for servlets and EJB business logic. For
information about administrative security for the server, see the Sun Java System Application
Server Platform Edition 8.2 Administration Guide.

This chapter contains the following sections:

■ “Security Goals” on page 47
■ “Application Server Specific Security Features” on page 48
■ “Container Security” on page 48
■ “Realm Configuration” on page 50
■ “JACC Support” on page 52
■ “Pluggable Audit Module Support” on page 53
■ “The server.policy File” on page 54
■ “Configuring Message Security” on page 56
■ “Programmatic Login” on page 63
■ “User Authentication for Single Sign-on” on page 66
■ “Defining Roles” on page 67

Security Goals
In an enterprise computing environment, there are many security risks. The goal of the Sun Java
System Application Server is to provide highly secure, interoperable, and distributed
component computing based on the J2EE security model. Security goals include:

■ Full compliance with the J2EE security model (for more information, see the J2EE
specification, v1.4 Chapter 3 Security).

■ Full compliance with the EJB v2.1 security model (for more information, see the Enterprise
JavaBean specification v2.1 Chapter 15 Security Management). This includes EJB role-based
authorization.

2C H A P T E R 2

47

■ Full compliance with the Java Servlet v2.4 security model (for more information, see the Java
Servlet specification, v2.4 Chapter 11 Security). This includes servlet role-based
authorization.

■ Support for single sign-on across all Application Server applications within a single security
domain.

■ Support for message security.
■ Security support for application clients.
■ Support for several underlying authentication realms, such as simple file and LDAP.

Certificate authentication is also supported for SSL client authentication. For Solaris, OS
platform authentication is supported in addition to these.

■ Support for declarative security through Application Server specific XML-based role
mapping.

■ Support for JACC (Java Authorization Contract for Containers) pluggable authorization as
included in the J2EE 1.4 specification and defined by JSR-115.

Application Server Specific Security Features
The Application Server supports the J2EE v1.4 security model, as well as the following features
which are specific to the Application Server:

■ Message security; see “Configuring Message Security” on page 56
■ Single sign-on across all Application Server applications within a single security domain; see

“User Authentication for Single Sign-on” on page 66
■ Programmatic login; see “Programmatic Login” on page 63
■ A GUI-based deploytool for building XML files containing the security information; see

“deploytool” on page 43

Container Security
The component containers are responsible for providing J2EE application security. There are
two security forms provided by the container:

■ “Programmatic Security” on page 48
■ “Declarative Security” on page 49

Programmatic Security
Programmatic security is when an EJB component or servlet uses method calls to the security
API, as specified by the J2EE security model, to make business logic decisions based on the

Application Server Specific Security Features

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200848

caller or remote user’s security role. Programmatic security should only be used when
declarative security alone is insufficient to meet the application’s security model.

The J2EE specification, v1.4 defines programmatic security as consisting of two methods of the
EJB EJBContext interface and two methods of the servlet HttpServletRequest interface. The
Application Server supports these interfaces as specified in the specification.

For more information on programmatic security, see the following:

■ Section 3.3.6, Programmatic Security, in the J2EE Specification, v1.4
■ “Programmatic Login” on page 63

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled externally to the application. Deployment descriptors describe the J2EE application’s
security structure, including security roles, access control, and authentication requirements.

The Application Server supports the deployment descriptors specified by J2EE v1.4 and has
additional security elements included in its own deployment descriptors. Declarative security is
the application deployer’s responsibility.

There are two levels of declarative security, as follows:

■ “Application Level Security” on page 49
■ “Component Level Security” on page 49

Application Level Security
The application XML deployment descriptor (application.xml) contains descriptors for all
user roles for accessing the application’s servlets and EJB components. On the application level,
all roles used by any application container must be listed in a role-name element in this file. The
role names are scoped to the EJB XML deployment descriptors (ejb-jar.xml and
sun-ejb-jar.xml files) and to the servlet XML deployment descriptors (web.xml and
sun-web.xml files). The sun-application.xml file must also contain matching
security-role-mapping elements for each role-name used by the application.

Component Level Security
Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the
security policy laid out in the servlet XML deployment descriptors (web.xml and sun-web.xml

files).

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml

files).

Container Security

Chapter 2 • Securing Applications 49

Realm Configuration
This section covers the following topics:
■ “Supported Realms” on page 50
■ “How to Configure a Realm” on page 50
■ “How to Set a Realm for an Application or Module” on page 50
■ “Creating a Custom Realm” on page 51

Supported Realms
The following realms are supported in the Application Server:
■ file - Stores user information in a file. This is the default realm when you first install the

Application Server.
■ ldap - Stores user information in an LDAP database.
■ certificate - Sets up the user identity in the Application Server security context, and

populates it with user data obtained from cryptographically verified client certificates.
■ solaris - Allows authentication using Solaris username+password data. This realm is only

supported on Solaris 9 and above.

For detailed information about configuring each of these realms, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

How to Configure a Realm
You can configure a realm in one of these ways:
■ In the Administration Console, open the Security component under the relevant

configuration and go to the Realms page. For details, see the Sun Java System Application
Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin create-auth-realm command to configure realms on local servers. For
details, see the Sun Java System Application Server Platform Edition 8.2 Reference Manual.

How to Set a Realm for an Application or Module
The following deployment descriptor elements have optional realm or realm-name data
subelements or attributes that override the domain’s default realm:
■ sun-application element in sun-application.xml

■ web-app element in web.xml

■ as-context element in sun-ejb-jar.xml

Realm Configuration

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200850

■ client-container element in sun-acc.xml

■ client-credential element in sun-acc.xml

If modules within an application specify realms, these are ignored. If present, the realm defined
in sun-application.xml is used, otherwise the domain’s default realm is used.

For example, a realm is specified in sun-application.xml as follows:

<sun-application>

...

<realm>ldap</realm>

</sun-application>

For more information about the deployment descriptor files and elements, see Appendix A,
“Deployment Descriptor Files.”

Creating a Custom Realm
You can create a custom realm by providing a custom Java Authentication and Authorization
Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login
modules are not suitable for use with the Application Server.

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
JAAS provides a pluggable and extensible framework for programmatic user authentication
and authorization. JAAS is a core API and is an underlying technology for Java EE security
mechanisms. For more information about JAAS, refer to the JAAS specification for Java SDK,
available at http://java.sun.com/products/jaas/.

For general information about realms and login modules, see the Security chapter of the J2EE
1.4 Tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html).

Custom login modules must extend the
com.sun.appserv.security.AppservPasswordLoginModule class. This class implements
javax.security.auth.spi.LoginModule. Custom login modules must not implement
LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not
implement any of the other methods, such as login(), logout(), abort(), commit(), or
initialize(). Default implementations are provided in AppservPasswordLoginModule which
hook into the Application Server infrastructure.

Realm Configuration

Chapter 2 • Securing Applications 51

http://java.sun.com/products/jaas/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

The custom login module can access the following protected object fields, which it inherits from
AppservPasswordLoginModule. These contain the user name and password of the user to be
authenticated:

protected String _username;

protected String _password;

The authenticateUser() method must end with the following sequence:

String[] grpList;

// populate grpList with the set of groups to which

// _username belongs in this realm, if any

return commitUserAuthentication(_username, _password,

_currentRealm, grpList);

Custom realms must extend the com.sun.appserv.security.AppservRealm class and
implement the following methods:

public void init(Properties props) throws BadRealmException,

NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm in domain.xml. The realm can do any
initialization it needs in this method. If the method returns without throwing an exception, the
Application Server assumes the realm is ready to service authentication requests. If an exception
is thrown, the realm is disabled.

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this
realm.

public abstract Enumeration getGroupNames(String username) throws

InvalidOperationException, NoSuchUserException

This method returns an Enumeration (of String objects) enumerating the groups (if any) to
which the given username belongs in this realm.

JACC Support
JACC (Java Authorization Contract for Containers) is part of the J2EE 1.4 specification and
defined by JSR-115. JACC defines an interface for pluggable authorization providers. This
provides third parties with a mechanism to develop and plug in modules that are responsible for
answering authorization decisions during J2EE application execution. The interfaces and rules
used for developing JACC providers are defined in the JACC 1.0 specification.

JACC Support

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200852

The Application Server provides a simple file-based JACC-compliant authorization engine as a
default JACC provider. To configure an alternate provider using the Administration Console,
open the Security component under the relevant configuration, and select the JACC Providers
component. For details, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

Pluggable Audit Module Support
You can create a custom audit module. This section covers the following topics:

■ “Configuring an Audit Module” on page 53
■ “The AuditModule Class” on page 53

Configuring an Audit Module
To configure an audit module, you can perform one of the following tasks:

■ To specify an audit module using the Administration Console, open the Security
component under the relevant configuration, and select the Audit Modules component. For
details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

■ You can use the asadmin create-audit-module command to configure an audit module.
For details, see the Sun Java System Application Server Platform Edition 8.2 Reference
Manual.

The AuditModule Class
You can create a custom audit module by implementing a class that extends
com.sun.appserv.security.AuditModule. The AuditModule class provides default “no-op”
implementations for each of the following methods, which your custom class can override.

public void init(Properties props)

This method is invoked during server startup when the audit module is initially loaded. The
props argument contains the properties defined for this module in domain.xml. The module
can do any initialization it needs in this method. If the method returns without throwing an
exception, the Application Server assumes the module realm is ready to service audit requests. If
an exception is thrown the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for the
given user. The success flag indicates whether the authorization was granted or denied.

Pluggable Audit Module Support

Chapter 2 • Securing Applications 53

public void webInvocation(String user, HttpServletRequest req, String type,

boolean success)

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is the
standard HttpServletRequest object for this request. The type string is one of
hasUserDataPermission or hasResourcePermission (see JSR-115).

public void ejbInvocation(String user, String ejb, String method, boolean

success)

This method is invoked when an EJB container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The ejb and method

strings describe the EJB component and its method that is being invoked.

The server.policy File
Each Application Server domain has its own standard J2SE policy file, located in
domain-dir/config. The file is named server.policy.

The Application Server is a J2EE 1.4 compliant application server. As such, it follows the
requirements of the J2EE specification, including the presence of the security manager (the Java
component that enforces the policy) and a limited permission set for J2EE application code.

This section covers the following topics:

■ “Default Permissions” on page 54
■ “Changing Permissions for an Application” on page 55

Default Permissions
Internal server code is granted all permissions. These are covered by the AllPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously. The Application Server does not
distinguish between EJB and web module permissions. All code is granted the minimal set of
web component permissions (which is a superset of the EJB minimal set).

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. J2EE
application developers must not rely on these additional permissions.

One additional permission is granted specifically for using connectors. If connectors are not
used in a particular domain, you should remove this permission, because it is not otherwise
necessary.

The server.policy File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200854

Changing Permissions for an Application
The default policy for each domain limits the permissions of J2EE deployed applications to the
minimal set of permissions required for these applications to operate correctly. Do not add
extra permissions to the default set (the grant block with no codebase, which applies to all code).
Instead, add a new grant block with a codebase specific to the applications requiring the extra
permissions, and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you
can add the custom permissions that your applications need. The com.sun.aas.instanceRoot
variable refers to the domain-dir. For example:

grant "file:${com.sun.aas.instanceRoot}/applications/j2ee-apps/-" { ... }

You can add permissions to stub code with the following grant block:

grant "file:${com.sun.aas.instanceRoot}/generated/-" { ... }

In general, you should add extra permissions only to the applications or modules that require
them, not to all applications deployed to a domain. For example:

grant "file:${com.sun.aas.instanceRoot}/applications/j2ee-apps/MyApp/-" { ... }

For a module:

grant "file:${com.sun.aas.instanceRoot}/applications/j2ee-modules/MyModule/-" {

... }

Do not add extra permissions to the default set (the grant block with no codebase, which applies
to all code). Instead, add a new grant block with a codebase specific to the application requiring
the extra permissions, and only add the minimally necessary permissions in that block.

Note – Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still get the
performance overhead associated with it.

As noted in the J2EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log. If this is not sufficient, you
can add the -Djava.security.debug=fail JVM option to the domain. For details, see the Sun
Java System Application Server Platform Edition 8.2 Administration Guide or the Sun Java
System Application Server Platform Edition 8.2 Administration Reference.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For
more information, see:

The server.policy File

Chapter 2 • Securing Applications 55

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

For detailed information about the permissions you can set in the server.policy file, see:

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

The Javadoc for the Permission class is at:

http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html

Configuring Message Security
In message security, security information travels along with the web services message. WSS in
the SOAP layer is the use of XML Encryption and XML Digital Signatures to secure SOAP
messages. WSS profiles the use of various security tokens including X.509 certificates, SAML
assertions, and username/password tokens to achieve this.

Message layer security differs from transport layer security (which is discussed in the Security
chapter of the J2EE 1.4 Tutorial
(http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html)) in that message layer
security can be used to decouple message protection from message transport so that messages
remain protected after transmission, regardless of how many hops they travel on.

WSS is a security mechanism that is applied at the message-layer in order to secure web
services. For the purposes of this document, when we discuss WSS, we are talking about security
for web services as described by the Oasis Web Services Security (WSS) specification. Message
security for the Application Server follows this specification, which can be viewed at the
following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

For more information about message security, see the following:

■ The J2EE 1.4 Tutorial chapter titled Security, which can be viewed
from:http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

■ The Sun Java System Application Server Platform Edition 8.2 Administration Guide chapter
titled Configuring Message Security.

The following web services security topics are discussed in this section:

■ “Message Security Responsibilities” on page 57
■ “Application-Specific Message Protection” on page 58
■ “Understanding and Running the Example Application” on page 61

Configuring Message Security

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200856

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.4/docs/api/java/security/Permission.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Message Security Responsibilities
Message security responsibilities are assigned to the following:
■ “Application Developer” on page 57
■ “Application Deployer” on page 57
■ “System Administrator” on page 57

Application Developer
The application developer can implement message security, but is not responsible for doing so.
Message security can be set up by the System Administrator so that all web services are secured,
or set up by the Application Deployer when the Application Server provider configuration is
insufficient.

The application developer is responsible for the following:
■ Determining if an application-specific policy is necessary for an application. If so, ensure

that policy is satisfied at application assembly, or communicate the requirement for
application-specific message security to the Application Deployer, or take care of
implementing the application-specific policy.

■ Determining if message security is necessary at the Application Server level. If so, ensure
that need is communicated to the System Administrator, or take care of implementing
message security at the Application-Server level.

Application Deployer
The application deployer is responsible for:
■ Securing the application if it has not been appropriately secured by upstream roles (the

developer or assembler) and only if an application-specific policy is appropriate for the
application.

■ Implementing application-specific security by adding the message security binding to the
web service endpoint.

■ Modifying Sun-specific deployment descriptors to add message binding information.

These security tasks are discussed in “Application-Specific Message Protection” on page 58. An
example application using message security is discussed in “Understanding and Running the
Example Application” on page 61.

System Administrator
The system administrator is responsible for:
■ Configuring message security providers on the Application Server.
■ Managing user databases.

Configuring Message Security

Chapter 2 • Securing Applications 57

■ Managing keystore and truststore files.
■ Configuring a Java Cryptography Extension (JCE) provider if using Encryption and

running a version of the Java SDK prior to version 1.5.0.
■ Installing the samples server in order to work with the example message security

applications.

A system administrator uses the Admin Console or the asadmin tool to manage server security
settings and keytool to manage certificates. System administrator tasks are discussed in the
Configuring Message Security chapter of the Sun Java System Application Server Platform
Edition 8.2 Administration Guide.

Application-Specific Message Protection
When the Application Server provided configuration is insufficient for your security needs, and
you want to override the default protection, you can apply application-specific message security
to a web service.

Application-specific security is implemented by adding the message security binding to the web
service endpoint, whether it is an EJB or servlet web service endpoint. Modify Sun-specific XML
files to add the message binding information.

For more details on message security binding for EJB web services, servlet web services, and
clients, see the XML file descriptions in Appendix A, “Deployment Descriptor Files.”
■ For sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 288.
■ For sun-web.xml, see “The sun-web.xml File” on page 285.
■ For sun-application-client.xml, see “The sun-application-client.xml file” on page 297.

This section contains the following topics:
■ “Using a Signature to Enable Message Protection for All Methods” on page 58
■ “Configuring Message Protection For a Specific Method Based on Digital Signatures” on

page 59

Using a Signature to Enable Message Protection for All Methods
To enable message protection for all methods using digital signature, update the
message-security-binding element for the EJB web service endpoint in the application’s
sun-ejb-jar.xml file. In this file, add request-protection and response-protection

elements, which are analogous to the request-policy and response-policy elements
discussed in the Configuring Message Security chapter of the Sun Java System Application Server
Platform Edition 8.2 Administration Guide. In order to apply the same protection mechanisms
for all methods, leave the method-name element blank. “Configuring Message Protection For a
Specific Method Based on Digital Signatures” on page 59 discusses listing specific methods or
using wildcard characters.

Configuring Message Security

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200858

This section uses the sample application discussed in “Understanding and Running the
Example Application” on page 61 to apply application-level message security in order to show
only the differences necessary for protecting web services using various mechanisms.

▼ To enable message protection for all methods using digital signature

In a text editor, open the application’s sun-ejb-jar.xml file.
For the xms example, this file is located in the directory install-dir
/samples/webservices/security/ejb/apps/xms/xms-ejb/src/conf.

Modify the sun-ejb-jar.xml file by adding the message-security-binding element as
shown:
<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>

<message-security-binding auth-layer="SOAP">
<message-security>

<request-protection auth-source="content" />

<response-protection auth-source="content"/>
</message-security>

</message-security-binding>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 62.

Configuring Message Protection For a Specific Method Based on Digital
Signatures
To enable message protection for a specific method, or for a set of methods that can be
identified using a wildcard value, follow these steps. As in the example discussed in “Using a
Signature to Enable Message Protection for All Methods” on page 58, to enable message
protection for a specific method, update the message-security-binding element for the EJB
web service endpoint in the application’s sun-ejb-jar.xml file. To this file, add
request-protection and response-protection elements, which are analogous to the
request-policy and response-policy elements discussed in the Configuring Message Security

1

2

3

Configuring Message Security

Chapter 2 • Securing Applications 59

chapter of the Sun Java System Application Server Platform Edition 8.2 Administration Guide.
The Administration Guide includes a table listing the set and order of security operations for
different request and response policy configurations.

This section uses the sample application discussed in “Understanding and Running the
Example Application” on page 61 to apply application-level message security in order to show
only the differences necessary for protecting web services using various mechanisms.

▼ To enable message protection for a particular method or set of
methods using digital signature

In a text editor, open the application’s sun-ejb-jar.xml file.
For the xms example, this file is located in the directory
install-dir/samples/webservices/security/ejb/apps/xms/xms-ejb/src/conf.

Modify the sun-ejb-jar.xml file by adding the message-security-binding element as
shown:
<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>HelloWorld</ejb-name>

<jndi-name>HelloWorld</jndi-name>

<webservice-endpoint>

<port-component-name>HelloIF</port-component-name>

<endpoint-address-uri>service/HelloWorld</endpoint-address-uri>

<message-security-binding auth-layer="SOAP">
<message-security>

<message>

<java-method>

<method-name>ejbCreate</method-name>

</java-method>

</message>

<message>

<java-method>

<method-name>sayHello</method-name>

</java-method>

</message>

<request-protection auth-source="content" />

<response-protection auth-source="content"/>
</message-security>

</message-security-binding>

</webservice-endpoint>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

1

2

Configuring Message Security

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200860

Compile, deploy, and run the application as described in “To Run the Sample Application”on
page 62.

Understanding and Running the Example Application
This section discusses the WSS sample application, xms, which is located in the directory
install-dir/samples/webservices/security/ejb/apps/xms/. This directory and this sample
application is installed on your system only if you have selected to install the samples server
when you installed the Application Server. If you have not installed the samples, see “To Set Up
the Sample Application” on page 61.

The objective of this sample application is to demonstrate how a web service can be secured
with WSS. The web service in the xms example is a simple web service implemented using a
J2EE EJB endpoint and a web service endpoint implemented using a servlet. In this example, a
service endpoint interface is defined with one operation, sayHello, which takes a string then
sends a response with Hello prefixed to the given string. You can view the WSDL file for the
service endpoint interface at
install-dir/samples/webservices/security/ejb/apps/xms/xms-ejb/src/
conf/HelloWorld.wsdl.

In this application, the client lookups the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to
invoke the operation using a given name. For the name Duke, the client gets the response Hello
Duke!

This example shows how to use message security for web services at the Application Server level
and at the application level. The WSS message security mechanisms implement message-level
authentication (for example, XML digital signature and encryption) of SOAP web services
invocations using the X.509 and username/password profiles of the OASIS WS-Security
standard, which can be viewed from the following URL:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

This section includes the following topics:
■ “To Set Up the Sample Application” on page 61
■ “To Run the Sample Application” on page 62

▼ To Set Up the Sample Application
The example application is located in the directory
install-dir/samples/webservices/security/ejb/apps/xms/. For ease of reference
throughout the rest of this section, this directory is referred to as simply app-dir/xms/.

In order to have access to this sample application, you must have installed the samples server
during installation of the Application Server. To check to see if the samples are installed, browse

3

Before You Begin

Configuring Message Security

Chapter 2 • Securing Applications 61

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

to the directory install-dir/samples/webservices/security/ejb/apps/xms/. If this directory
exists, you do not need to follow the steps in the following section. If this directory does not
exist, the samples server is not installed, and must be installed for access to the sample
application discussed here.

Start the installation for the Application Server.

Click Next on the Welcome page.

Click Yes on the Software License Agreement page. Click Next.

Click Next to accept the installation directory, or change it to match the location where the
Application Server is currently installed.

Select Continue to install to the same directory.
You want to do this because you want the samples/ directory to be a subdirectory of the
Application Server directory, install-dir/samples/.

Reenter the Admin User Name and Password. Click Next.
You are on the page where you select to install just the samples.

Deselect everything except Create Samples Server. Click Next.

Click Install Now to install the samples.

Click Finish to complete the installation.

▼ To Run the Sample Application

Make sure that the Application Server is running.
Message security providers are set up when the asant targets are run, so you don’t need to
configure these on the Application Server prior to running this example.

If you are not running HTTP on the default port of 8080, change the WSDL file for the example to
reflect the change, and change the common.properties file to reflect the change as well.
The WSDL file for this example is located at
install-dir/samples/webservices/security/ejb/apps/xms/xms-ejb/
src/conf/HelloWorld.wsdl. The port number is in the following section:
<service name="HelloWorld">
<port name="HelloIFPort" binding="tns:HelloIFBinding">
<soap:address location="http://localhost:8080/service/HelloWorld"/>

</port>

</service>

1

2

3

4

5

6

7

8

9

1

2

Configuring Message Security

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200862

Verify that the properties in the install-dir/samples/common.properties file are set properly
for your installation and environment. If you need more description of this file, refer to the
Configuration section for the web services security applications at
install-dir/samples/webservices/security/docs/common.html#Logging.

Change to the install-dir/samples/webservices/security/ejb/apps/xms/ directory.

Run the following asant targets to compile, deploy, and run the example application:

a. To compile samples:

asant

b. To deploy samples:

asant deploy

c. To run samples:

asant run

If the sample has compiled and deployed properly, you see the following response on your
screen after the application has run:

run:[echo] Running the xms program:[exec] Established message level security :

Hello Duke!

To undeploy the sample, run the following asant target:
asant undeploy

All of the web services security examples use the same web service name (HelloWorld) and web
service ports in order to show only the differences necessary for protecting web services using
various mechanisms. Make sure to undeploy an application when you have completed running
it, or you receive an Already in Use error and deployment failures when you try to deploy
another web services example application.

Programmatic Login
Programmatic login allows a deployed J2EE application to invoke a login method. If the login is
successful, a SecurityContext is established as if the client had authenticated using any of the
conventional J2EE mechanisms.

Programmatic login is useful for an application having special needs that cannot be
accommodated by any of the J2EE standard authentication mechanisms.

3

4

5

Programmatic Login

Chapter 2 • Securing Applications 63

Note – Programmatic login is specific to the Application Server and not portable to other
application servers.

This section contains the following topics:

■ “Precautions” on page 64
■ “Granting Programmatic Login Permission” on page 64
■ “The ProgrammaticLogin Class” on page 65

Precautions
The Application Server is not involved in how the login information (user, password) is
obtained by the deployed application. Programmatic login places the burden on the application
developer with respect to assuring that the resulting system meets their security requirements.
If the application code reads the authentication information across the network, it is up to the
application to determine whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly to the
security service. While flexible, this capability should not be used without some understanding
of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. It is also the application developer’s
responsibility to verify the status of the login attempt and to alter the behavior of the application
accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated via the programmatic login method,
access is denied immediately and the application might fail if not properly coded to account for
this occurrence.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application. This permission is not granted by default to deployed
applications because this is not a standard J2EE mechanism.

To grant the required permission to the application, add the following to the
domain-dir/config/server.policy file:

Programmatic Login

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200864

grant codeBase "file:jar-file-path" {

permission com.sun.appserv.security.ProgrammaticLoginPermission

"login";
};

The jar-file-path is the path to the application’s JAR file.

For more information about the server.policy file, see “The server.policy File” on page 54

The ProgrammaticLogin Class
The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically. This class has four login methods, two for servlets or JSP files and two for
EJB components.

The login methods for servlets or JSP files have the following signatures:

public java.lang.Boolean login(String user, String password,

javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

public java.lang.Boolean login(String user, String password,

String realm, javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response, boolean errors)

throws java.lang.Exception

The login methods for EJB components have the following signatures:

public java.lang.Boolean login(String user, String password)

public java.lang.Boolean login(String user, String password,

String realm, boolean errors) throws java.lang.Exception

All of these login methods:
■ Perform the authentication
■ Return true if login succeeded, false if login failed

The login occurs on the realm specified unless it is null, in which case the domain’s default
realm is used. The methods with no realm parameter use the domain’s default realm.

If the errors flag is set to true, any exceptions encountered during the login are propagated to
the caller. If set to false, exceptions are thrown.

On the client side, realm and errors parameters are ignored and the actual login does not occur
until a resource requiring a login is accessed. A java.rmi.AccessException with COBRA

NO_PERMISSION occurs if the actual login fails.

Programmatic Login

Chapter 2 • Securing Applications 65

The logout methods for servlets or JSP files have the following signatures:

public java.lang.Boolean logout(HttpServletRequest request,

HttpServletResponse response)

public java.lang.Boolean logout(HttpServletRequest request,

HttpServletResponse response, boolean errors)

throws java.lang.Exception

The logout methods for EJB components have the following signatures:

public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)

throws java.lang.Exception

All of these logout methods return true if logout succeeded, false if logout failed.

If the errors flag is set to true, any exceptions encountered during the logout are propagated to
the caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on
The single sign-on feature of the Application Server allows multiple web applications deployed
to the same virtual server to share the user authentication state. With single sign-on enabled,
users who log in to one web application become implicitly logged into other web applications
on the same virtual server that require the same authentication information. Otherwise, users
would have to log in separately to each web application whose protected resources they tried to
access.

An example application using the single sign-on scenario could be a consolidated airline
booking service that searches all airlines and provides links to different airline web sites. Once
the user signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

■ Single sign-on applies to web applications configured for the same realm and virtual server.
The realm is defined by the realm-name element in the web.xml file. For information about
virtual servers, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

■ As long as users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

■ As soon as a user accesses a protected resource in any web application associated with a
virtual server, the user is challenged to authenticate himself or herself, using the login
method defined for the web application currently being accessed.

User Authentication for Single Sign-on

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200866

■ Once authenticated, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

■ When the user logs out of one web application (for example, by invalidating the
corresponding session), the user’s sessions in all web applications are invalidated. Any
subsequent attempt to access a protected resource in any application requires the user to
authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that support
cookies.

To configure single sign-on, set the following properties in the virtual-server element of the
domain.xml file:

■ sso-enabled - If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is true.

■ sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on record
becomes eligible for purging if no client activity is received. Since single sign-on applies
across several applications on the same virtual server, access to any of the applications keeps
the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values
provide longer single sign-on persistence for the users at the expense of more memory use
on the server.

■ sso-reap-interval-seconds - Specifies the interval between purges of expired single
sign-on records. The default value is 60.

Here is an example configuration with all default values:

<virtual-server id="server" ... >

...

<property name="sso-enabled" value="true"/>
<property name="sso-max-inactive-seconds" value="450"/>
<property name="sso-reap-interval-seconds" value="80"/>

</virtual-server>

Defining Roles
You define roles in the J2EE deployment descriptor file, web.xml, and the corresponding role
mappings in the Application Server deployment descriptor file, sun-application.xml (or
sun-web.xml for individually deployed web modules).

For more information regarding web.xml elements, see Chapter 13, “Deployment Descriptor,”
of the Java Servlet Specification, v2.4. For more information regarding sun-web.xml and
sun-application.xml elements, see Appendix A, “Deployment Descriptor Files.”

Defining Roles

Chapter 2 • Securing Applications 67

Each security-role-mapping element in the sun-application.xml or sun-web.xml file maps
a role name permitted by the web application to principals and groups. For example, a
sun-web.xml file for an individually deployed web module might contain the following:

<sun-web-app>

<security-role-mapping>

<role-name>manager</role-name>

<principal-name>jgarcia</principal-name>

<principal-name>mwebster</principal-name>

<group-name>team-leads</group-name>

</security-role-mapping>

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name>dsmith</principal-name>

</security-role-mapping>

</sun-web-app>

Note that the role-name in this example must match the role-name in the security-role
element of the corresponding web.xml file.

Note that for J2EE applications (EAR files), all security role mappings for the application
modules must be specified in the sun-application.xml file. For individually deployed web
modules, the roles are always specified in the sun-web.xml file. A role can be mapped to either
specific principals or to groups (or both). The principal or group names used must be valid
principals or groups in the current default realm.

Defining Roles

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200868

Assembling and Deploying Applications

This chapter describes Sun Java System Application Server modules and how these modules are
assembled separately or together in an application. This chapter also describes classloaders and
tools for assembly and deployment.

The Application Server modules and applications include J2EE standard features and
Application Server specific features. Only Application Server specific features are described in
detail in this chapter.

The following topics are presented in this chapter:

■ “Overview of Assembly and Deployment” on page 69
■ “Assembling Modules and Applications” on page 83
■ “Deploying Modules and Applications” on page 89
■ “asant Assembly and Deployment Tool” on page 98

Overview of Assembly and Deployment
Application assembly (also known as packaging) is the process of combining discrete
components of an application into a single unit that can be deployed to a J2EE-compliant
application server. A package can be classified either as a module or as a full-fledged
application. This section covers the following topics:

■ “Modules” on page 70
■ “Applications” on page 71
■ “J2EE Standard Descriptors” on page 73
■ “Sun Java System Application Server Descriptors” on page 73
■ “Naming Standards” on page 74
■ “Directory Structure” on page 75
■ “Runtime Environments” on page 76
■ “Classloaders” on page 78

3C H A P T E R 3

69

Modules
A J2EE module is a collection of one or more J2EE components of the same container type (for
example, web or EJB) with deployment descriptors of that type. One descriptor is J2EE
standard, the other is Application Server specific. Types of J2EE modules are as follows:

■ Web Application Archive (WAR): A web application is a collection of servlets, HTML
pages, classes, and other resources that can be bundled and deployed to several J2EE
application servers. A WAR file can consist of the following items: servlets, JSP files, JSP tag
libraries, utility classes, static pages, client-side applets, beans, bean classes, and deployment
descriptors (web.xml and optionally sun-web.xml).

■ EJB JAR File: The EJB JAR file is the standard format for assembling enterprise beans. This
file contains the bean classes (home, remote, local, and implementation), all of the utility
classes, and the deployment descriptors (ejb-jar.xml and sun-ejb-jar.xml). If the EJB
component is an entity bean with container managed persistence, a .dbschema file and a
CMP mapping descriptor, sun-cmp-mapping.xml, must be included as well.

■ Application Client Container JAR File: An ACC client is an Application Server specific
type of J2EE client. An ACC client supports the standard J2EE Application Client
specifications, and in addition, supports direct access to the Application Server. Its
deployment descriptors are application-client.xml and sun-application-client.xml.

■ Resource RAR File: RAR files apply to J2EE CA connectors. A connector module is like a
device driver. It is a portable way of allowing EJB components to access a foreign enterprise
system. Each Application Server connector has a J2EE XML file, ra.xml.

Package definitions must be used in the source code of all modules so the class loader can
properly locate the classes after the modules have been deployed.

Because the information in a deployment descriptor is declarative, it can be changed without
requiring modifications to source code. At run time, the J2EE server reads this information and
acts accordingly.

The Application Server also supports lifecycle modules. See Chapter 10, “Developing Lifecycle
Listeners,” for more information.

EJB JAR and Web modules can also be deployed separately, outside of any application, as in the
following figure. EJB components are assembled in a JAR file with ejb-jar.xml and
sun-ejb-jar.xml deployment descriptors. Web components are assembled in a WAR file with
web.xml and sun-web.xml deployment descriptors. Both module types are deployed to the
Application Server.

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200870

Applications
A J2EE application is a logical collection of one or more J2EE modules tied together by
application deployment descriptors. Components can be assembled at either the module or the
application level. Components can also be deployed at either the module or the application
level.

The following diagram illustrates how components are assembled into modules and then
assembled into an Application Server application and deployed. EJB components are assembled
in a JAR file with ejb-jar.xml and sun-ejb-jar.xml deployment descriptors. Web components are
assembled in a WAR file with web.xml and sun-web.xml deployment descriptors. An
application client is assembled in a JAR file with application-client.xml and
sun-application-client.xml deployment descriptors. A resource adapter is assembled in a RAR
file with a ra.xml deployment descriptor. All modules are assembled in an EAR file and
deployed to the Application Server.

Web
JSP

EJB

EJB

EJB

Web
Servlet

Deployment
to the

Application
Server

J2EE
ejb-jar.xml

Sun
sun-ejb-jar.xml

EJB
module
(.jar file)

J2EE
web.xml

Sun
sun-web.xml

Web
module
(.war file)

J2EE
Components

J2EE Modules
(.jar, .war files)

FIGURE 3–1 Module assembly and deployment

Overview of Assembly and Deployment

Chapter 3 • Assembling and Deploying Applications 71

J2EE Application
(.ear file)

Web
JSP

EJB

EJB

EJB

Web
Servlet

Application
Client

Resource
Adapter

Deployment
to the

Application
Server

J2EE
ejb-jar.xml

Sun
sun-ejb-jar.xml

EJB
module
(.jar file)

J2EE
web.xml

Sun
sun-web.xml

Web
module
(.war file)

J2EE
ra.xml

Connector
module
(.rar file)

Application Client
module
(.jar file)

J2EE
application-client.xml

Sun
sun-application-client.xml

J2EE
application.xml

Sun
sun-application.xml

J2EE
Components

J2EE Modules
(.jar, .war, .rar files)

FIGURE 3–2 Application assembly and deployment

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200872

Each module has an Application Server deployment descriptor and a J2EE deployment
descriptor. The Application Server uses the deployment descriptors to deploy the application
components and to register the resources with the Application Server.

An application consists of one or more modules, an optional Application Server deployment
descriptor, and a required J2EE application deployment descriptor. All items are assembled,
using the Java ARchive (.jar) file format, into one file with an extension of .ear.

J2EE Standard Descriptors
The J2EE platform provides assembly and deployment facilities. These facilities use WAR, JAR,
and EAR files as standard packages for components and applications, and XML-based
deployment descriptors for customizing parameters.

J2EE standard deployment descriptors are described in the J2EE specification, v1.4. You can
find the specification at http://java.sun.com/products/.

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 84.

The following table shows where to find more information about J2EE standard deployment
descriptors.

TABLE 3–1 J2EE Standard Descriptors

Deployment Descriptor Where to Find More Information

application.xml Java 2 Platform Enterprise Edition Specification, v1.4, Chapter 8, “Application Assembly and Deployment
- J2EE:application XML DTD”

web.xml Java Servlet Specification, v2.4 Chapter 13, “Deployment Descriptor,” and JavaServer Pages Specification,
v2.0, Chapter 7, “JSP Pages as XML Documents,” and Chapter 5, “Tag Extensions”

ejb-jar.xml Enterprise JavaBeans Specification, v2.1, Chapter 16, “Deployment Descriptor”

application-

client.xml

Java 2 Platform Enterprise Edition Specification, v1.4, Chapter 9, “Application Clients -
J2EE:application-client XML DTD”

ra.xml Java 2 Enterprise Edition, J2EE Connector Architecture Specification, v1.0, Chapter 10, “Packaging and
Deployment.”

Sun Java System Application Server Descriptors
The Application Server uses additional deployment descriptors for configuring features specific
to the Application Server. The sun-application.xml, sun-web.xml, and
sun-cmp-mappings.xml files are optional; all the others are required.

Overview of Assembly and Deployment

Chapter 3 • Assembling and Deploying Applications 73

http://java.sun.com/products/

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 84.

The following table lists the Application Server deployment descriptors and their DTD files. For
complete descriptions of these files, see Appendix A, “Deployment Descriptor Files.”

TABLE 3–2 Sun Java System Application Server Descriptors

Deployment Descriptor DTD File Description

sun-application.xml sun-application_1_4-0.dtd Configures an entire J2EE application
(EAR file).

sun-web.xml sun-web-app_2_4-1.dtd Configures a web application (WAR
file).

sun-ejb-jar.xml sun-ejb-jar_2_1-1.dtd Configures an enterprise bean (EJB JAR
file).

sun-cmp-mappings.xml sun-cmp-mapping_1_2.dtd Configures container-managed
persistence for an enterprise bean.

sun-application-client.xml sun-application-client_1_4-1.dtd Configures an Application Client
Container (ACC) client (JAR file).

sun-acc.xml sun-application-client-container_1_0.dtd Configures the Application Client
Container.

Naming Standards
Names of applications and individually deployed EJB JAR, WAR, and connector RAR modules
must be unique within an Application Server domain. Modules of the same type within an
application must have unique names. In addition, for entity beans that use CMP,.dbschema file
names must be unique within an application.

If you do not explicitly specify a name, the default name is the first portion of the file name
(without the .war or .jar extension). Modules of different types can have the same name
within an application, because the directories holding the individual modules are named with
_jar, _war and _rar suffixes. This is the case when you use the Administration Console, the
asadmin command, or the deploytool to deploy an application or module. See “Tools for
Deployment” on page 93.

Make sure your package and file names do not contain spaces or characters that are illegal for
your operating system.

If you are writing your own JSR 88 client to deploy applications to the Application Server using
the following API, the name of the application is taken from the display-name entry in the

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200874

J2EE standard deployment descriptor, because there is no file name in this case. If the
display-name entry is not present, the Application Server creates a temporary file name and
uses that name to deploy the application.

javax.enterprise.deploy.spi.DeploymentManager.distribute(Target[],

InputStream, InputStream)

Neither the Administration Console, the asadmin command, nor the deploytool uses this API.

For more information about JSR 88, see the JSR 88 page at
http://jcp.org/en/jsr/detail?id=88.

Directory Structure
When you deploy an application, the application is expanded to an open directory structure,
and the directories holding the individual modules are named with _jar, _war and _rar

suffixes. If you use the asadmin deploydir command to deploy a directory instead of an EAR
file, your directory structure must follow this same convention.

Module and application directory structures follow the structure outlined in the J2EE
specification. Here is an example directory structure of a simple application containing a web
module, an EJB module, and a client module.

+ converter_1/

|--- converterClient.jar

|--+ META-INF/

| |--- MANIFEST.MF

| |--- application.xml

| |--- sun-application.xml

|--+ war-ic_war/

| |--- index.jsp

| |--+ META-INF/

| | |--- MANIFEST.MF

| |--+ WEB-INF/

| |--- web.xml

| |--- sun-web.xml

|--+ ejb-jar-ic_jar/

| |--- Converter.class

| |--- ConverterBean.class

| |--- ConverterHome.class

| |--+ META-INF/

| |--- MANIFEST.MF

| |--- ejb-jar.xml

| |--- sun-ejb-jar.xml

|--+ app-client-ic_jar/

|--- ConverterClient.class

Overview of Assembly and Deployment

Chapter 3 • Assembling and Deploying Applications 75

http://jcp.org/en/jsr/detail?id=88

|--+ META-INF/

|--- MANIFEST.MF

|--- application-client.xml

|--- sun-application-client.xml

Here is an example directory structure of an individually deployed connector module.

+ MyConnector/

|--- readme.html

|--- ra.jar

|--- client.jar

|--- win.dll

|--- solaris.so

|--+ META-INF/

|--- MANIFEST.MF

|--- ra.xml

Runtime Environments
Whether you deploy an individual module or an application, deployment affects both the file
system and the server configuration.

Module Runtime Environment
The following figure illustrates the environment for individually deployed module-based
deployment.

File System:
domain-dir/applications/j2ee-modules/packagingEJB/*

Configuration:
<ejb-module> element in domain.xml

packagingEJB.jar

FIGURE 3–3 Module runtime environment

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200876

For file system entries, modules are extracted as follows:

domain-dir/applications/j2ee-modules/module-name
domain-dir/generated/ejb/j2ee-modules/module-name
domain-dir/generated/jsp/j2ee-modules/module-name

The applications directory contains the directory structures described in “Directory
Structure” on page 75. The generated/ejb directory contains the stubs and ties that an ACC
client needs to access the module; the generated/jsp directory contains compiled JSP files.

Lifecycle modules (see Chapter 10, “Developing Lifecycle Listeners”) are extracted as follows:

domain-dir/applications/lifecycle-modules/module-name

Configuration entries are added in the domain.xml file as follows:

<server>

<applications>

<type-module>
...module configuration...

</type-module>
</applications>

</server>

The type of the module in domain.xml can be lifecycle, ejb, web, or connector. For details
about domain.xml, see the Sun Java System Application Server Platform Edition 8.2
Administration Reference.

Application Runtime Environment
The following figure illustrates the environment for application-based deployment.

Overview of Assembly and Deployment

Chapter 3 • Assembling and Deploying Applications 77

For file system entries, applications are extracted as follows:

domain-dir/applications/j2ee-apps/app-name
domain-dir/generated/ejb/j2ee-apps/app-name
domain-dir/generated/jsp/j2ee-apps/app-name

The applications directory contains the directory structures described in “Directory
Structure” on page 75. The generated/ejb directory contains the stubs and ties that an ACC
client needs to access the module; the generated/jsp directory contains compiled JSP files.

Configuration entries are added in the domain.xml file as follows:

<server>

<applications>

<j2ee-application>

...application configuration...
</j2ee-application>

</applications>

</server>

For details about domain.xml, see the Sun Java System Application Server Platform Edition 8.2
Administration Reference.

Classloaders
Understanding Application Server classloaders can help you determine where and how you can
position supporting JAR and resource files for your modules and applications.

In a Java Virtual Machine (JVM), the classloaders dynamically load a specific Java class file
needed for resolving a dependency. For example, when an instance of java.util.Enumeration
needs to be created, one of the classloaders loads the relevant class into the environment. This
section includes the following topics:

File System:
domain-dir/applications/j2ee-apps/packagingApp/packagingEJB/*

Configuration:
<j2ee-application> element in domain.xml

packagingApp.ear

packagingEJB.jar

FIGURE 3–4 Application runtime environment

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200878

■ “The Classloader Hierarchy” on page 79
■ “Classloader Universes” on page 81
■ “Circumventing Classloader Isolation” on page 81

The Classloader Hierarchy
Classloaders in the Application Server runtime follow a hierarchy that is illustrated in the
following figure and fully described in Table 3–3.

Bootstrap
Classloader

System
Classloader

Common
Classloader

Connector
Classloader

EJB
Classloader

LifeCycleModule
Classloader

Web
Classloader

JSP Engine
Classloader

One classloader instance for each application or stand-alone module

FIGURE 3–5 Classloader runtime hierarchy

Overview of Assembly and Deployment

Chapter 3 • Assembling and Deploying Applications 79

TABLE 3–3 Sun Java System Application Server Classloaders

Classloader Description

Bootstrap The Bootstrap Classloader loads all the JDK classes. It is parent to the System
Classloader.

System The System Classloader loads most of the core Application Server classes. It is parent to
the Common Classloader. It is created based on the classpath-prefix,
server-classpath, and classpath-suffix attributes of the java-config element in
the domain.xml file. The environment classpath is included if
env-classpath-ignored="false" is set in the java-config element.

Common The Common Classloader loads into the system classpath classes in the
domain-dir/lib/classes directory, followed by JAR and ZIP files in the
domain-dir/lib directory. It is parent to the Connector Classloader. No special
classpath settings are required. The existence of these directories is optional; if they
don’t exist, the Common Classloader is not created.

Connector The Connector Classloader is a single class loader instance that loads individually
deployed connector modules, which are shared across all applications. It is parent to the
LifeCycleModule Classloader and the EJB Classloader.

LifeCycleModule The LifeCycleModule Classloader is the parent class loader for lifecycle modules. Each
lifecycle module’s classpath is used to construct its own class loader.

EJB The EJB Classloader loads the enabled EJB classes in a specific enabled EJB module or
J2EE application. One instance of this class loader is present in each class loader
universe. The EJB Classloader is created with a list of URLs that point to the locations of
the classes it needs to load. It is parent to the Web Classloader.

Web The Web Classloader loads the servlets and other classes in a specific enabled web
module or J2EE application. One instance of this class loader is present in each class
loader universe. The Web Classloader is created with a list of URLs that point to the
locations of the classes it needs to load. It is parent to the JSP Engine Classloader.

JSP Engine The JSP Engine Classloader loads compiled JSP classes of enabled JSP files. One instance
of this class loader is present in each class loader universe. The JSP Engine Classloader is
created with a list of URLs that point to the locations of the classes it needs to load.

Note that this is not a Java inheritance hierarchy, but a delegation hierarchy. In the delegation
design, a class loader delegates classloading to its parent before attempting to load a class itself.
A class loader parent can be either the System Classloader or another custom class loader. If the
parent class loader can’t load a class, the findClass() method is called on the class loader
subclass. In effect, a class loader is responsible for loading only the classes not available to the
parent.

The Servlet specification recommends that the Web Classloader look in the local class loader
before delegating to its parent. You can make the Web Classloader follow the delegation model

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200880

in the Servlet specification by setting delegate="false" in the “class-loader” on page 311
element of the sun-web.xml file. It’s safe to do this only for a web module that does not interact
with any other modules.

The default value is delegate="true", which causes the Web Classloader to delegate in the
same manner as the other classloaders. You must use delegate="true" for a web application
that accesses EJB components or that acts as a web service client or endpoint. For details about
sun-web.xml, see “The sun-web.xml File” on page 285.

Classloader Universes
Access to components within applications and modules installed on the server occurs within
the context of isolated class loader universes, each of which has its own EJB, Web, and JSP
Engine classloaders.

■ Application Universe: Each J2EE application has its own class loader universe, which loads
the classes in all the modules in the application.

■ Individually Deployed Module Universe: Each individually deployed EJB JAR, web WAR,
or lifecycle module has its own class loader universe, which loads the classes in the module.

Note – A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in a
directory pointed to by the class loader’s classpath. For example, the web class loader’s classpath
includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/lib

If a servlet accesses a resource, it must be in one of these directories or it is not loaded.

Note – In iPlanet Application Server 6.x, individually deployed modules shared the same class
loader. In subsequent Application Server versions, each individually deployed module has its
own class loader universe.

Circumventing Classloader Isolation
Since each application or individually deployed module class loader universe is isolated, an
application or module cannot load classes from another application or module. This prevents
two similarly named classes in different applications from interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules
accessed by more than one application, you can include the relevant path to the required classes
in one of these ways:

■ “Using the System Classloader” on page 82

Overview of Assembly and Deployment

Chapter 3 • Assembling and Deploying Applications 81

■ “Using the Common Classloader” on page 82
■ “Using the Java Optional Package Mechanism” on page 82
■ “Packaging the Client JAR for One Application in Another Application” on page 82

Using the System Classloader

To use the System Classloader, do one of the following, then restart the server:

■ Use the Administration Console. Select the JVM Settings component under the relevant
configuration, select the Path Settings tab, and edit the Classpath Suffix field. For details, see
the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

■ Edit the classpath-suffix attribute of the java-config element in the domain.xml file.
For details about domain.xml, see the Sun Java System Application Server Platform
Edition 8.2 Administration Reference.

Using the System Classloader makes an application or module accessible to any other
application or module across the domain.

Using the Common Classloader

To use the Common Classloader, copy the JAR and ZIP files into the domain-dir/lib directory
or copy the .class files into the domain-dir/lib/classes directory, then restart the server.

Using the Common Classloader makes an application or module accessible to any other
application or module across the domain.

Using the Java Optional Package Mechanism

To use the Java optional package mechanism, copy the JAR and ZIP files into the
domain-dir/lib/ext directory, then restart the server.

Using the Java optional package mechanism makes an application or module accessible to any
other application or module across the domain.

For example, this is the recommended way of adding JDBC drivers to the Application Server.
For a list of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Platform Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 224.

Packaging the Client JAR for One Application in Another Application

By packaging the client JAR for one application in a second application, you allow an EJB or
web component in the second application to call an EJB component in the first (dependent)
application, without making either of them accessible to any other application or module.

Overview of Assembly and Deployment

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200882

As an alternative for a production environment, you can have the Common Classloader load
client JAR of the dependent application as described in “Using the Common Classloader” on
page 82 restart the server to make the dependent application accessible, and it is accessible
across the domain.

▼ To package the client JAR for one application in another application

Deploy the dependent application.

Add the dependent application’s client JAR file to the calling application.

■ For a calling EJB component, add the client JAR file at the same level as the EJB component.
Then add a Class-Path entry to the MANIFEST.MF file of the calling EJB component. The
Class-Path entry has this syntax:

Class-Path: filepath1.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the MANIFEST.MF file. For
details, see the J2EE specification, section 8.1.1.2, “Dependencies.”

■ For a calling web component, add the client JAR file under the WEB-INF/lib directory.

If you need to package the client JAR with both the EJB and web components, set
delegate="true" in the class-loader element of the sun-web.xml file.
This changes the Web Classloader so it follows the standard class loader delegation model and
delegates to its parent before attempting to load a class itself.

For most applications, packaging the client JAR file with the calling EJB component is sufficient.
You do not need to package the client JAR file with both the EJB and web components unless
the web component is directly calling the EJB component in the dependent application.

Deploy the calling application.
The calling EJB or web component must specify in its sun-ejb-jar.xml or sun-web.xml file the
JNDI name of the EJB component in the dependent application. Using an ejb-link mapping
does not work when the EJB component being called resides in another application.

Assembling Modules and Applications
Assembling (or packaging) modules and applications in Application Server conforms to all of
the customary J2EE-defined specifications. The only difference is that when you assemble in
Application Server, you include Application Server specific deployment descriptors that
enhance the functionality of the Application Server.

For example, when you assemble an EJB JAR module, you must create two deployment
descriptor files with these names: ejb-jar.xml and sun-ejb-jar.xml (both required). If the

1

2

3

4

Assembling Modules and Applications

Chapter 3 • Assembling and Deploying Applications 83

EJB component is an entity bean with container-managed persistence, you can also create a
.dbschema file and a sun-cmp-mapping.xml file, but these are not required. For more
information about sun-ejb-jar.xml and sun-cmp-mapping.xml, see Appendix A,
“Deployment Descriptor Files.”

Note – According to the J2EE specification, section 8.1.1.2, “Dependencies,” you cannot package
utility classes within an individually deployed EJB module. Instead, package the EJB module
and utility JAR within an application using the JAR Extension Mechanism Architecture. For
other alternatives, see “Circumventing Classloader Isolation” on page 81.

The Application Server provides these tools for assembling and verifying a module or an
application:
■ “deploytool” on page 43
■ “Apache Ant” on page 84
■ “NetBeans IDE” on page 84
■ “The Deployment Descriptor Verifier” on page 84

deploytool
You can use the deploytool, provided with the Application Server, to assemble J2EE
applications and modules, configure deployment parameters, perform simple static checks, and
deploy the final result. For more information about using the deploytool, see the J2EE 1.4
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Apache Ant
Ant can help you assemble and deploy modules and applications. For details, see “asant
Assembly and Deployment Tool” on page 98.

NetBeans IDE
You can use the NetBeans IDE to assemble J2EE applications and modules. For more
information about using the NetBeans IDE, see http://www.netbeans.org.

The Deployment Descriptor Verifier
The verifier tool validates both J2EE and Application Server specific deployment descriptors
against their corresponding DTD files and gives errors and warnings if a module or application
is not J2EE and Application Server compliant. You can verify deployment descriptors in EAR,
WAR, RAR, and JAR files.

Assembling Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200884

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www.netbeans.org

The verifier tool is not simply an XML syntax verifier. Rules and interdependencies between
various elements in the deployment descriptors are verified. Where needed, user application
classes are introspected to apply validation rules.

The verifier is integrated into Application Server deployment, the deploytool, and the
“sun-appserv-deploy” on page 99 Ant task. You can also run it as a stand-alone utility from the
command line. The verifier is located in the install-dir/bin directory.

When you run the verifier during Application Server deployment, the output of the verifier is
written to the tempdir/verifier-results/ directory, where tempdir is the temporary
directory defined in the operating system. Deployment fails if any failures are reported during
the verification process. The verifier also logs information about verification progress to the
standard output.

For details on all the assertions tested by the verifier, see the assertions documentation provided
at http://java.sun.com/j2ee/avk/index.html.

Tip – Using the verifier tool can help you avoid runtime errors that are difficult to debug.

This section covers the following topics:

■ “Command Line Syntax” on page 85
■ “Ant Integration” on page 86
■ “Sample Results Files” on page 87

Command Line Syntax
The verifier tool’s syntax is as follows:

verifier [options] file

The file can be an EAR, WAR, RAR, or JAR file.

The following table shows the options for the verifier tool.

TABLE 3–4 Verifier Options

Short Form Long Form Description

-v --verbose Turns on verbose mode.

-d output-dir --destdir Writes test results to the output-dir, which must already exist. By default,
the results files are created in the current directory.

Assembling Modules and Applications

Chapter 3 • Assembling and Deploying Applications 85

http://java.sun.com/j2ee/avk/index.html

TABLE 3–4 Verifier Options (Continued)
Short Form Long Form Description

-r level --reportlevel

level
Sets the output report level to one of the following values:
■ a or all - Reports all results. This is the default in both verbose and

non verbose modes.

■ w or warnings - Reports only warning and failure results.

■ f or failures - Reports only failure results.

-n --notimestamp Does not append the timestamp to the output file name.

-? --help Displays help for the verifier command. If you use this option, you do
not need to specify an EAR, WAR, RAR, or JAR file.

-V --version Displays the verifier tool version. If you use this option, you do not need
to specify an EAR, WAR, RAR, or JAR file.

-u --gui Opens a graphical interface for performing verification. If you use this
option, you do not need to specify an EAR, WAR, RAR, or JAR file. For
more information, see the verifier online help.

For example, the following command runs the verifier in verbose mode and writes all the results
of static verification of the ejb.jar file to the output directory ResultsDir:

verifier -v -r a -d ResultsDir ejb.jar

The results files are ejb.jar_verifier.timestamp.txt and
ejb.jar_verifier.timestamp.xml. The format of the timestamp is yyyyMMddhhmmss.

If the verifier runs successfully, a result code of 0 is returned. This does not mean that no
verification errors occurred. A nonzero error code is returned if the verifier fails to run.

Ant Integration

You can integrate the verifier into an Ant build file as a target and use the Ant call feature to call
the target each time an application or module is assembled. This is because the main method in
com.sun.enterprise.tools.verifier.Verifier is callable from user Ant scripts. The main
method accepts the arguments described in Table 3–4.

Example code for an Ant verify target is as follows:

<target name="verify">
<echo message="Verification Process for ${testfile}"/>
<java classname="com.sun.enterprise.tools.verifier.Verifier"

fork="yes">
<sysproperty key="com.sun.enterprise.home"

value="${appserv.home}"/>
<sysproperty key="verifier.xsl"

Assembling Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200886

value="${appserv.home}/verifier/config" />

<!-- uncomment the following for verbose output -->

<!--<arg value="-v"/>-->
<arg value="${assemble}/${ejbjar}" />

<classpath path="${appserv.cpath}:${java.class.path}"/>
</java>

</target>

Sample Results Files

Here is a sample results XML file:

<static-verification>

<ejb>

<failed>

<test>

<test-name>

tests.ejb.session.TransactionTypeNullForContainerTX

</test-name>

<test-assertion>

Session bean with bean managed transaction demarcation test

</test-assertion>

<test-description>

For [TheGreeter] Error: Session Beans [TheGreeter] with

[Bean] managed transaction demarcation should not have

container transactions defined.

</test-description>

</test>

</failed>

</ejb>

...

</static-verification>

Here is a sample results TXT file:

STATIC VERIFICATION RESULTS

NUMBER OF FAILURES/WARNINGS/ERRORS

of Failures : 3

of Warnings : 6

of Errors : 0

RESULTS FOR EJB-RELATED TESTS

Assembling Modules and Applications

Chapter 3 • Assembling and Deploying Applications 87

FAILED TESTS :

Test Name : tests.ejb.session.TransactionTypeNullForContainerTX

Test Assertion : Session bean with bean managed transaction demarcation test

Test Description : For [TheGreeter]

Error: Session Beans [TheGreeter] with [Bean] managed transaction

demarcation should not have container transactions defined.

...

PASSED TESTS :

Test Name : tests.ejb.session.ejbcreatemethod.EjbCreateMethodStatic

Test Assertion : Each session Bean must have at least one non-static

ejbCreate method test

Test Description : For [TheGreeter] For EJB Class

[samples.helloworld.ejb.GreeterEJB] method [ejbCreate]

[samples.helloworld.ejb.GreeterEJB] properly declares non-static

ejbCreate(...) method.

...

WARNINGS :

Test Name : tests.ejb.businessmethod.BusinessMethodException

Test Assertion : Enterprise bean business method throws RemoteException test

Test Description :

Test Name : tests.ejb.ias.beanpool.IASEjbBeanPool

Test Assertion :

Test Description : WARNING [IAS-EJB ejb] : bean-pool should be defined for

Stateless Session and Message Driven Beans

...

NOTAPPLICABLE TESTS :

Test Name : tests.ejb.entity.pkmultiplefield.PrimaryKeyClassFieldsCmp

Test Assertion : Ejb primary key class properly declares all class fields

within subset of the names of the container-managed fields test.

Test Description : For [TheGreeter] class com.sun.enterprise.tools.

verifier.tests.ejb.entity.pkmultiplefield.PrimaryKeyClassFieldsCmp

expected Entity bean, but called with Session.

Assembling Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200888

Test Name : tests.ejb.entity.ejbcreatemethod.EjbCreateMethodReturn

Test Assertion : Each entity Bean can have zero or more ejbCreate

methods which return primary key type test

Test Description : For [TheGreeter] class com.sun.enterprise.tools.

verifier.tests.ejb.entity.ejbcreatemethod.EjbCreateMethodReturn

expected Entity bean, but called with Session bean.

...

RESULTS FOR OTHER XML-RELATED TESTS

PASSED TESTS :

Test Name : tests.dd.ParseDD

Test Assertion : Test parses the deployment descriptor using a SAX

parser to avoid the dependency on the DOL

Test Description : PASSED [EJB] : [remote] and [home] tags present.

PASSED [EJB]: session-type is Stateless.

PASSED [EJB]: trans-attribute is NotSupported.

PASSED [EJB]: transaction-type is Bean.

...

Deploying Modules and Applications
This section describes the different ways to deploy J2EE applications and modules to the
Application Server. It covers the following topics:

■ “Deployment Errors” on page 90
■ “The Deployment Life Cycle” on page 90
■ “Tools for Deployment” on page 93
■ “Deployment by Module or Application” on page 94
■ “Deploying a WAR Module” on page 95
■ “Deploying an EJB JAR Module” on page 95
■ “Deploying a Lifecycle Module” on page 95
■ “Deploying an Application Client” on page 96
■ “Deploying a J2EE CA Resource Adapter” on page 97
■ “Access to Shared Frameworks” on page 97

Deploying Modules and Applications

Chapter 3 • Assembling and Deploying Applications 89

Deployment Errors
If an error occurs during deployment, the application or module is not deployed. If a module
within an application contains an error, the entire application is not deployed. This prevents a
partial deployment that could leave the server in an inconsistent state.

The Deployment Life Cycle
After an application is initially deployed, it can be modified and reloaded, redeployed, disabled,
re-enabled, and finally undeployed (removed from the server). This section covers the following
topics related to the deployment life cycle:

■ “Dynamic Deployment” on page 90
■ “Disabling a Deployed Application or Module” on page 90
■ “Dynamic Reloading” on page 91
■ “Automatic Deployment” on page 92

Note – You can overwrite a previously deployed application by using the --force option of
asadmin deploy or by checking the appropriate box in the Administration Console during
deployment. However, you must remove a preconfigured resource before you can update it.

Dynamic Deployment
You can deploy, redeploy, and undeploy an application or module without restarting the server.
This is called dynamic deployment. Although primarily for developers, dynamic deployment
can be used in operational environments to bring new applications and modules online without
requiring a server restart.

Whenever a redeployment is done, the sessions at that transit time become invalid. The client
must restart the session.

Disabling a Deployed Application or Module
You can disable a deployed application or module without removing it from the server.
Disabling an application makes it inaccessible to clients.

To disable an application or module using the asadmin disable command, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

Deploying Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200890

▼ To disable an application or module in the Administration Console

Open the Applications component.

Go to the page for the type of application or module.

For example, for a web application, go to the Web Applications page.

Click on the name of the application or module you wish to disable.

Uncheck the Status Enabled box.

For details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

Dynamic Reloading
If dynamic reloading is enabled (it is by default), you do not have to redeploy an application or
module when you change its code or deployment descriptors. All you have to do is copy the
changed JSP or class files into the deployment directory for the application or module. The
server checks for changes periodically and redeploys the application, automatically and
dynamically, with the changes.

This is useful in a development environment, because it allows code changes to be tested
quickly. In a production environment, however, dynamic reloading might degrade
performance. In addition, whenever a reload is done, the sessions at that transit time become
invalid. The client must restart the session.

▼ To enable dynamic reloading in the Administration Console

Select the Application Settings component under the relevant configuration.

Check the Reload Enabled box to enable dynamic reloading.

Enter a number of seconds in the Reload Poll Interval field.

This sets the interval at which applications and modules are checked for code changes and
dynamically reloaded. The default is 2.

For details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

1

2

3

4

See Also

1

2

3

See Also

Deploying Modules and Applications

Chapter 3 • Assembling and Deploying Applications 91

▼ To reload code or deployment descriptor changes

Create an empty file named .reload at the root of the deployed application or module.
For an application:
domain-dir/applications/j2ee-apps/app-name/.reload

For an individually deployed module:

domain-dir/applications/j2ee-modules/module-name/.reload

Explicitly update the .reload file’s timestamp (touch .reload in UNIX) each time you make
changes.

Automatic Deployment
Automatic deployment, also called autodeployment, involves copying an application or module
file (JAR, WAR, RAR, or EAR) into a special directory, where it is automatically deployed by the
Application Server. To undeploy an automatically deployed application or module, simply
remove its file from the special autodeployment directory. This is useful in a development
environment, because it allows new code to be tested quickly.

Autodeployment is enabled by default.

▼ To enable and configure or to disable autodeployment

Select the Application Settings component under the relevant configuration.

Check the Auto Deploy Enabled box to enable autodeployment, or uncheck this box to disable
autodeployment.

Enter a number of seconds in the Auto Deploy Poll Interval field.
This sets the interval at which applications and modules are checked for code changes and
dynamically reloaded. The default is 2.

You can change the Auto Deploy Directory if you like.
You can enter an absolute or relative path. A relative path is relative to domain-dir. The default
is domain-dir/autodeploy.

You can check the Verifier Enabled box to verify your deployment descriptor files. This is
optional.
For details about the verifier, see “The Deployment Descriptor Verifier” on page 84.

Check the Precompile Enabled box to precompile any JSP files.

1

2

1

2

3

4

5

6

Deploying Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200892

For details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

Tools for Deployment
This section discusses the various tools that can be used to deploy modules and applications.
The deployment tools include:

■ “Apache Ant” on page 93
■ “The deploytool” on page 93
■ “JSR 88” on page 93
■ “The asadmin Command” on page 42
■ “The Administration Console” on page 43

Apache Ant
Ant can help you assemble and deploy modules and applications. For details, see “asant
Assembly and Deployment Tool” on page 98.

The deploytool
You can use the deploytool, provided with Application Server, to assemble J2EE applications
and modules, configure deployment parameters, perform simple static checks, and deploy the
final result. For more information about using the deploytool, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

JSR 88
You can write your own JSR 88 client to deploy applications to the Application Server. For more
information, see the JSR 88 page at http://jcp.org/en/jsr/detail?id=88.

See “Naming Standards” on page 74 for application and module naming considerations.

The asadmin Command
You can use the asadmin deploy or asadmin deploydir command to deploy or undeploy
applications and individually deployed modules on local servers. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 95.

See Also

Deploying Modules and Applications

Chapter 3 • Assembling and Deploying Applications 93

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://jcp.org/en/jsr/detail?id=88

Note – On Windows, if you are deploying a directory on a mapped drive, you must be running
the Application Server as the same user to which the mapped drive is assigned, or the
Application Server won’t see the directory.

The Administration Console
You can use the Administration Console to deploy modules and applications to both local and
remote Application Server sites.

▼ To use the Administration Console for deployment

Open the Applications component.

Go to the page for the type of application or module.
For example, for a web application, go to the Web Applications page.

Click on the Deploy button.
You can also undeploy, enable, or disable an application or module from this page.

For details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

To deploy a lifecycle module, see “Deploying a Lifecycle Module” on page 95.

Deployment by Module or Application
You can deploy applications or individual modules that are independent of applications. The
runtime and file system implications of application-based or individual module-based
deployment are described in “Runtime Environments” on page 76.

Individual module-based deployment is preferable when components need to be accessed by:

■ Other modules
■ J2EE Applications
■ ACC clients (Module-based deployment allows shared access to a bean from an ACC client,

a servlet, or an EJB component.)

Modules can be combined into an EAR file and then deployed as a single module. This is similar
to deploying the modules of the EAR independently.

1

2

3

See Also

Deploying Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200894

Deploying a WAR Module
You deploy a WAR module as described in “Tools for Deployment” on page 93.

You can precompile JSP files during deployment by checking the appropriate box in the
Administration Console or by using the --precompilejsp option of the asadmin deploy or
asadmin deploydir command. The “sun-appserv-deploy” on page 99 and “sun-appserv-jspc”
on page 111 Ant tasks also allow you to precompile JSP files.

You can keep the generated source for JSP files by adding the -keepgenerated flag to the
jsp-config element in sun-web.xml. If you include this property when you deploy the WAR
module, the generated source is kept in
domain-dir/generated/jsp/j2ee-apps/app-name/module-name if it is in an application or
domain-dir/generated/jsp/j2ee-modules/module-name if it is in an individually deployed
web module.

For more information about JSP precompilation, see “Options for Compiling JSP Files” on
page 142 “jsp-config” on page 342.

Deploying an EJB JAR Module
You deploy an EJB JAR module as described in “Tools for Deployment” on page 93.

You can keep the generated source for stubs and ties by adding the -keepgenerated flag to the
rmic-options attribute of the java-config element in domain.xml. If you include this flag
when you deploy the EJB JAR module, the generated source is kept in
domain-dir/generated/ejb/j2ee-apps/app-name/module-name if it is in an application or
domain-dir/generated/ejb/j2ee-modules/module-name if it is in an individually deployed
EJB JAR module. For more information about the -keepgenerated flag, see the Sun Java System
Application Server Platform Edition 8.2 Administration Reference.

Generation of stubs and ties is performed asynchronously, so unless you request their
generation during deployment (for example, using the --retrieve option of the asadmin
deploy command), stubs and ties are not guaranteed to be available immediately after
deployment. You can use the asadmin get-client-stubs command to retrieve the stubs and
ties whether or not you requested their generation during deployment. For details, see the Sun
Java System Application Server Platform Edition 8.2 Reference Manual.

Deploying a Lifecycle Module
For general information about lifecycle modules, see Chapter 10, “Developing Lifecycle
Listeners.”

You can deploy a lifecycle module using the following tools:

Deploying Modules and Applications

Chapter 3 • Assembling and Deploying Applications 95

■ In the Administration Console, open the Applications component and go to the Lifecycle
Modules page. For details, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

■ Use the asadmin create-lifecycle-module command. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

Note – If the is-failure-fatal setting is set to true (the default is false), lifecycle module
failure prevents server initialization or startup, but not shutdown or termination.

Deploying an Application Client
Deployment is only necessary for application clients that communicate with EJB components.

▼ To deploy an application client

Assemble the necessary client files.

Assemble the EJB components to be accessed by the client.

Package the client and EJB components together in an application.

Deploy the application as described in “Tools for Deployment”on page 93.

Retrieve the client JAR file.
The client JAR file contains the ties and necessary classes for the ACC client.

You can use the --retrieve option to get the client JAR file.

You can also use the asadmin get-client-stubs command to retrieve the stubs and ties
whether or not you requested their generation during deployment. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

Copy the client JAR file to the client machine, and set the APPCPATH environment variable on
the client to point to this JAR.

To execute the client on the Application Server machine to test it, use the appclient script in
the install-dir/bin directory.The only required option is -client. For example:

appclient -client converterClient.jar

The -xml parameter specifies the location of the sun-acc.xml file.

1

2

3

4

5

6

Next Steps

Deploying Modules and Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200896

For more detailed information about the appclient script, see Chapter 8, “Developing Java
Clients.”

▼ To prepare another machine for executing an application client

You can use the package-appclient script in the install-dir/bindirectory to create the ACC
package JAR file. This is optional.
This JAR file is created in the install-dir /lib/appclient directory.

Copy the ACC package JAR file to the client machine and unjar it.

Configure the sun-acc.xml file.
This file is located in the appclient/appserv/lib/appclient directory by default if you used
the package-appclient script.

Configure the asenv.conf (asenv.bat on Windows) file.
This file is located in appclient/appserv/bin by default if you used the package-appclient
script.

Copy the client JAR file to the client machine.
You are now ready to execute the client.

For more detailed information about the package-appclient script, see Chapter 8,
“Developing Java Clients.”

Deploying a J2EE CA Resource Adapter
You deploy a connector module as described in “Tools for Deployment” on page 93. After
deploying the module, you must configure it as described in Chapter 9, “Developing
Connectors.”

Access to Shared Frameworks
When J2EE applications and modules use shared framework classes (such as utility classes and
libraries) the classes can be put in the path for the System Classloader or the Common
Classloader rather than in an application or module. If you assemble a large, shared library into
every module that uses it, the result is a huge file that takes too long to register with the server. In
addition, several versions of the same class could exist in different classloaders, which is a waste
of resources. For more information, see “Circumventing Classloader Isolation” on page 81.

See Also

1

2

3

4

5

See Also

Deploying Modules and Applications

Chapter 3 • Assembling and Deploying Applications 97

asant Assembly and Deployment Tool
Apache Ant 1.6.5 is provided with Application Server and can be launched from the bin
directory using the command asant. The Application Server also provides server-specific tasks
for deployment, which are described in this section.

Make sure you have done these things before using asant:
■ Include install-dir/bin in the PATH environment variable (/usr/sfw/bin for Sun Java

Enterprise System on Solaris). The Ant script provided with the Application Server, asant,
is located in this directory. For details on how to use asant, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual and the sample applications
documentation in the install-dir/samples/docs/ant.html file.

■ If you are executing platform-specific applications, such as the exec or cvs task, the
ANT_HOME environment variable must be set to the Ant installation directory.
■ The ANT_HOME environment variable for Sun Java Enterprise System must include

the following:
■ /usr/sfw/bin - the Ant binaries (shell scripts)
■ /usr/sfw/doc/ant - HTML documentation
■ /usr/sfw/lib/ant - Java classes that implement Ant

■ The ANT_HOME environment variable for all other platforms is install-dir/lib.
■ Set up your password file. The argument for the passworfile option of each Ant task is a

file. This file contains the password attribute name and its value, in the following format:

AS_ADMIN_PASSWORD=password

For more information about password files, see the Sun Java System Application Server
Platform Edition 8.2 Reference Manual.

This section covers the following asant-related topics:
■ “asant Tasks for Sun Java System Application Server” on page 98
■ “Reusable Subelements” on page 114

For more information about Ant, see the Apache Software Foundation web site at
http://ant.apache.org/.

For information about standard Ant tasks, see the Ant documentation at
http://ant.apache.org/manual/.

asant Tasks for Sun Java System Application Server
Use the asant tasks provided by the Application Server for assembling, deploying, and
undeploying modules and applications, and for configuring the server. The tasks are as follows:

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 200898

http://ant.apache.org/
http://ant.apache.org/manual/

■ “sun-appserv-deploy” on page 99
■ “sun-appserv-undeploy” on page 104
■ “sun-appserv-component” on page 107
■ “sun-appserv-admin” on page 109
■ “sun-appserv-jspc” on page 111
■ “sun-appserv-update” on page 113

sun-appserv-deploy
Deploys any of the following.

■ Enterprise application (EAR file)
■ Web application (WAR file)
■ Enterprise Java Bean (EJB-JAR file)
■ Enterprise connector (RAR file)
■ Application client

Subelements
The following table describes subelements for the sun-appserv-deploy task. These are objects
upon which this task acts.

TABLE 3–5 sun-appserv-deploy Subelements

Element Description

“component” on
page 114

A component to be deployed.

“fileset” on
page 116

A set of component files that match specified parameters.

Attributes
The following table describes attributes for the sun-appserv-deploy task.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 99

TABLE 3–6 sun-appserv-deployAttributes

Attribute Default Description

file none (optional if a component or fileset
subelement is present, otherwise required)
The component to deploy. If this attribute
refers to a file, it must be a valid archive. If
this attribute refers to a directory, it must
contain a valid archive in which all
components have been exploded. If upload
is set to false, this must be an absolute path
on the server machine.

name file name without extension (optional) The display name for the
component being deployed.

type determined by extension (optional) Deprecated.

force true (optional) If true, the component is
overwritten if it already exists on the server.
If false, sun-appserv-deploy fails if the
component exists.

retrievestubs client stubs not saved (optional) The directory where client stubs
are saved. This attribute is inherited by
nested component elements.

precompilejsp false (optional) If true, all JSP files found in an
enterprise application (.ear) or web
application (.war) are precompiled. This
attribute is ignored for other component
types. This attribute is inherited by nested
component elements.

verify false (optional) If true, syntax and semantics for
all deployment descriptors are automatically
verified for correctness. This attribute is
inherited by nested component elements.

contextroot file name without extension (optional) The context root for a web
module (WAR file). This attribute is ignored
if the component is not a WAR file.

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008100

TABLE 3–6 sun-appserv-deployAttributes (Continued)
Attribute Default Description

dbvendorname sun-ejb-jar.xml entry (optional) The name of the database vendor
for which tables can be created. Allowed
values are db2, mssql, oracle, derby, and
sybase, case-insensitive.

If not specified, the value of the
database-vendor-name attribute in
sun-ejb-jar.xml is used.

If no value is specified, a connection is made
to the resource specified by the jndi-name
subelement of the cmp-resource element in
the sun-ejb-jar.xml file, and the database
vendor name is read. If the connection
cannot be established, or if the value is not
recognized, SQL-92 compliance is
presumed.

For details, see “Generation Options” on
page 173.

createtables sun-ejb-jar.xml entry (optional) If true, causes database tables to
be created for beans that need them. If
false, does not create tables. If not
specified, the value of the
create-tables-at-deploy attribute in
sun-ejb-jar.xml is used.

For details, see “Generation Options” on
page 173.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 101

TABLE 3–6 sun-appserv-deployAttributes (Continued)
Attribute Default Description

dropandcreatetables sun-ejb-jar.xml entry (optional) If true, and if tables were
automatically created when this application
was last deployed, tables from the earlier
deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically
created when this application was last
deployed, no attempt is made to drop any
tables. If tables with the same names as those
that would have been automatically created
are found, the deployment proceeds, but a
warning indicates that tables could not be
created.

If false, settings of
create-tables-at-deploy or
drop-tables-at-undeploy in the
sun-ejb-jar.xml file are overridden.

For details, see “Generation Options” on
page 173.

uniquetablenames sun-ejb-jar.xml entry (optional) If true, specifies that table names
are unique within each application server
domain. If not specified, the value of the
use-unique-table-names property in
sun-ejb-jar.xml is used.

For details, see “Generation Options” on
page 173.

enabled true (optional) If true, enables the component.

deploymentplan none (optional) A deployment plan is a JAR file
containing Sun-specific descriptors. Use this
attribute when deploying an EAR file that
lacks Sun-specific descriptors.

upload true (optional) If true, the component is
transferred to the server for deployment. If
the component is being deployed on the
local machine, set upload to false to reduce
deployment time. If a directory is specified
for deployment, upload must be false.

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008102

TABLE 3–6 sun-appserv-deployAttributes (Continued)
Attribute Default Description

virtualservers default virtual server only (optional) A comma-separated list of virtual
servers to be deployment targets. This
attribute applies only to application (.ear)
or web (.war) components and is ignored
for other component types.

user admin (optional) The user name used when logging
into the application server.

password none (optional) Deprecated, use passwordfile
instead. The password used when logging
into the application server.

passwordfile none (optional) File containing passwords. The
password from this file is retrieved for
communication with the application server.
If both password and passwordfile are
specified, passwordfile takes precedence.

host localhost (optional) Target server. When deploying to
a remote server, use the fully qualified host
name.

port 4848 (optional) The administration port on the
target server.

asinstalldir see description (optional) The installation directory for the
local Application Server installation, which
is used to find the administrative classes. If
not specified, the command checks to see if
the asinstalldir parameter has been set.
Otherwise, administrative classes must be in
the system classpath.

sunonehome see description (optional) Deprecated. Use asinstalldir
instead.

Examples
Here is a simple application deployment script with many implied attributes:

<sun-appserv-deploy

file="${assemble}/simpleapp.ear"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 103

<sun-appserv-deploy

file="${assemble}/simpleapp.ear"
name="simpleapp"
force="true"
precompilejsp="false"
verify="false"
upload="true"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
asinstalldir="${asinstalldir}" />

This example deploys multiple components to the same Application Server running on a
remote server:

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>
<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

This example deploys the same components as the previous example because the three
components match the fileset criteria, but note that it’s not possible to set some
component-specific attributes. All component-specific attributes (name and contextroot) use
their default values.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/sun" >

<fileset dir="${assemble}" includes="**/*.?ar" />

</sun-appserv-deploy>

sun-appserv-undeploy
Undeploys any of the following.

■ Enterprise application (EAR file)
■ Web application (WAR file)
■ Enterprise Java Bean (EJB-JAR file)
■ Enterprise connector (RAR file)
■ Application client

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008104

Subelements
The following table describes subelements for the sun-appserv-undeploy task. These are
objects upon which this task acts.

TABLE 3–7 sun-appserv-undeploy Subelements

Element Description

“component” on
page 114

A component to be deployed.

“fileset” on
page 116

A set of component files that match specified parameters.

Attributes
The following table describes attributes for the sun-appserv-undeploy task.

TABLE 3–8 sun-appserv-undeployAttributes

Attribute Default Description

name file name without extension (optional if a component or fileset subelement is
present or the file attribute is specified, otherwise
required) The display name for the component being
undeployed.

file none (optional) The component to undeploy. If this attribute
refers to a file, it must be a valid archive. If this attribute
refers to a directory, it must contain a valid archive in
which all components have been exploded.

type determined by extension (optional) Deprecated.

droptables sun-ejb-jar.xml entry (optional) If true, causes database tables that were
automatically created when the bean(s) were last
deployed to be dropped when the bean(s) are
undeployed. If false, does not drop tables.

If not specified, the value of the
drop-tables-at-undeploy attribute in
sun-ejb-jar.xml is used.

For details, see “Generation Options” on page 173.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 105

TABLE 3–8 sun-appserv-undeployAttributes (Continued)
Attribute Default Description

cascade false (optional) If true, deletes all connection pools and
connector resources associated with the resource
adapter being undeployed.

If false, undeployment fails if any pools or resources
are still associated with the resource adapter.

This attribute is applicable to connectors (resource
adapters) and applications with connector modules.

user admin (optional) The user name used when logging into the
application server.

password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server.

passwordfile none (optional) File containing passwords. The password
from this file is retrieved for communication with the
application server. If both password and passwordfile

are specified, passwordfile takes precedence.

host localhost (optional) Target server. When deploying to a remote
server, use the fully qualified host name.

port 4848 (optional) The administration port on the target server.

asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find the
administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been
set. Otherwise, administrative classes must be in the
system classpath.

sunonehome see description (optional) Deprecated. Use asinstalldir instead.

Examples
Here is a simple application undeployment script with many implied attributes:

<sun-appserv-undeploy name="simpleapp" passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-undeploy

name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
asinstalldir="${asinstalldir}" />

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008106

This example demonstrates using the archive files (EAR and WAR, in this case) for the
undeployment, using the component name (for undeploying the EJB component in this
example), and undeploying multiple components.

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

sun-appserv-component
Enables or disables the following J2EE component types that have been deployed to the
Application Server.

■ Enterprise application (EAR file)
■ Web application (WAR file)
■ Enterprise Java Bean (EJB-JAR file)
■ Enterprise connector (RAR file)
■ Application client

You don’t need to specify the archive to enable or disable a component: only the component
name is required. You can use the component archive, however, because it implies the
component name.

Subelements
The following table describes subelements for the sun-appserv-component task. These are
objects upon which this task acts.

TABLE 3–9 sun-appserv-component Subelements

Element Description

“component” on
page 114

A component to be deployed.

“fileset” on
page 116

A set of component files that match specified parameters.

Attributes
The following table describes attributes for the sun-appserv-component task.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 107

TABLE 3–10 sun-appserv-componentAttributes

Attribute Default Description

action none The control command for the target application server.
Valid values are enable and disable.

name file name without extension (optional if a component or fileset subelement is
present or the file attribute is specified, otherwise
required) The display name for the component being
enabled or disabled.

file none (optional) The component to enable or disable. If this
attribute refers to a file, it must be a valid archive. If this
attribute refers to a directory, it must contain a valid
archive in which all components have been exploded.

type determined by extension (optional) Deprecated.

user admin (optional) The user name used when logging into the
application server.

password none (optional) Deprecated, use passwordfile instead. The
password used when logging into the application server.

passwordfile none (optional) File containing passwords. The password
from this file is retrieved for communication with the
application server. If both password and passwordfile

are specified, passwordfile takes precedence.

host localhost (optional) Target server. When enabling or disabling a
remote server, use the fully qualified host name.

port 4848 (optional) The administration port on the target server.

asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find the
administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been
set. Otherwise, administrative classes must be in the
system classpath.

sunonehome see description (optional) Deprecated. Use asinstalldir instead.

Examples
Here is a simple example of disabling a component:

<sun-appserv-component

action="disable"
name="simpleapp"
passwordfile="${passwordfile}" />

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008108

Here is a simple example of enabling a component:

<sun-appserv-component

action="enable"
name="simpleapp"
passwordfile="${passwordfile}" />

Here is an equivalent script showing all the implied attributes:

<sun-appserv-component

action="enable"
name="simpleapp"
user="admin"
passwordfile="${passwordfile}"
host="localhost"
port="4848"
asinstalldir="${asinstalldir}" />

This example demonstrates disabling multiple components using the archive files (EAR and
WAR, in this case) and using the component name (for an EJB component in this example).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

sun-appserv-admin
Enables arbitrary administrative commands and scripts to be executed on the Application
Server. This is useful for cases where a specific Ant task hasn’t been developed or a set of related
commands are in a single script.

Subelements
none

Attributes
The following table describes attributes for the sun-appserv-admin task.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 109

TABLE 3–11 sun-appserv-adminAttributes

Attribute Default Description

command none (exactly one of these is required: command,
commandfile, or explicitcommand) The command
to execute. If the user, passwordfile, host, or port
attributes are also specified, they are automatically
inserted into the command before execution. If any
of these options are specified in the command string,
the corresponding attribute values are ignored.

commandfile none (exactly one of these is required: command,
commandfile, or explicitcommand) Deprecated.
The command script to execute. If commandfile is
used, the values of all other attributes are ignored. Be
sure to end the script referenced by commandfile
with the exit command; if you omit exit, the Ant
task might appear to hang after the command script
is called.

explicitcommand none (exactly one of these is required: command,
commandfile, or explicitcommand) The exact
command to execute. No command processing is
done, and all other attributes are ignored.

user admin (optional) The user name used when logging into
the application server.

password none (optional) Deprecated, use passwordfile instead.
The password used when logging into the
application server.

passwordfile none (optional) File containing passwords. The password
from this file is retrieved for communication with
the application server. If both password and
passwordfile are specified, passwordfile takes
precedence.

host localhost (optional) Target server. If it is a remote server, use
the fully qualified host name.

port 4848 (optional) The administration port on the target
server.

asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find
the administrative classes. If not specified, the
command checks to see if the asinstalldir
parameter has been set. Otherwise, administrative
classes must be in the system classpath.

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008110

TABLE 3–11 sun-appserv-adminAttributes (Continued)
Attribute Default Description

sunonehome see description (optional) Deprecated. Use asinstalldir instead.

Examples
Here is an example of executing the create-jms-dest command:

<sun-appserv-admin command="create-jms-dest --desttype topic">

Here is an example of using commandfile to execute the create-jms-dest command:

<sun-appserv-admin commandfile="create_jms_dest.txt" instance="development">

The create_jms_dest.txt file contains the following:

create-jms-dest --user admin --passwordfile "${passwordfile}" --host

localhost --port 4848 --desttype topic --target server1 simpleJmsDest

Here is an example of using explicitcommand to execute the create-jms-dest command:

<sun-appserv-admin command="create-jms-dest --user admin --passwordfile

"${passwordfile}" --host localhost --port 4848 --desttype topic

--target server1 simpleJmsDest">

sun-appserv-jspc
Precompiles JSP source code into Application Server compatible Java code for initial invocation
by Application Server. Use this task to speed up access to JSP files or to check the syntax of JSP
source code. You can feed the resulting Java code to the javac task to generate class files for the
JSP files.

Subelements
none

Attributes
The following table describes attributes for the sun-appserv-jspc task.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 111

TABLE 3–12 sun-appserv-jspcAttributes

Attribute Default Description

destdir The destination directory for the generated Java source
files.

srcdir (exactly one of these is required: srcdir or webapp) The
source directory where the JSP files are located.

webapp (exactly one of these is required: srcdir or webapp) The
directory containing the web application. All JSP files
within the directory are recursively parsed. The base
directory must have a WEB-INF subdirectory beneath it.
When webapp is used, sun-appserv-jspc hands off all
dependency checking to the compiler.

verbose 2 (optional) The verbosity integer to be passed to the
compiler.

classpath (optional) The classpath for running the JSP compiler.

classpathref (optional) A reference to the JSP compiler classpath.

uribase / (optional) The URI context of relative URI references in
the JSP files. If this context does not exist, it is derived
from the location of the JSP file relative to the declared or
derived value of uriroot. Only pages translated from an
explicitly declared JSP file are affected.

uriroot see description (optional) The root directory of the web application,
against which URI files are resolved. If this directory is
not specified, the first JSP file is used to derive it: each
parent directory of the first JSP file is searched for a
WEB-INF directory, and the directory closest to the JSP
file that has one is used. If no WEB-INF directory is found,
the directory sun-appserv-jspc was called from is used.
Only pages translated from an explicitly declared JSP file
(including tag libraries) are affected.

package (optional) The destination package for the generated
Java classes.

asinstalldir see description (optional) The installation directory for the local
Application Server installation, which is used to find the
administrative classes. If not specified, the command
checks to see if the asinstalldir parameter has been
set. Otherwise, administrative classes must be in the
system classpath.

sunonehome see description (optional) Deprecated. Use asinstalldir instead.

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008112

Example
The following example uses the webapp attribute to generate Java source files from JSP files. The
sun-appserv-jspc task is immediately followed by a javac task, which compiles the generated
Java files into class files. The classpath value in the javac task must be all on one line with no
spaces.

<sun-appserv-jspc

destdir="${assemble.war}/generated"
webapp="${assemble.war}"
classpath="${assemble.war}/WEB-INF/classes"
asinstalldir="${asinstalldir}" />

<javac

srcdir="${assemble.war}/WEB-INF/generated"
destdir="${assemble.war}/WEB-INF/generated"
debug="on"
classpath="${assemble.war}/WEB-INF/classes:${asinstalldir}/lib/
appserv-rt.jar:${asinstalldir}/lib/appserv-ext.jar">

<include name="**/*.java"/>
</javac>

sun-appserv-update
Enables deployed applications (EAR files) and modules (EJB JAR, RAR, and WAR files) to be
updated and reloaded for fast iterative development. This task copies modified class files, XML
files, and other contents of the archive files to the appropriate subdirectory of the
domain-dir/applications directory, then touches the .reload file to cause dynamic reloading
to occur.

This is a local task and must be executed on the same machine as the application server.

Subelements
none

Attributes
The following table describes attributes for the sun-appserv-update task.

TABLE 3–13 sun-appserv-updateAttributes

Attribute Default Description

file none The component to update, which must be a valid archive.

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 113

TABLE 3–13 sun-appserv-updateAttributes (Continued)
Attribute Default Description

domain domain1 (optional) The domain in which the application has been previously
deployed.

Example
The following example updates the J2EE application foo.ear, which is deployed to the default
domain, domain1.

<sun-appserv-update file="foo.ear"/>

Reusable Subelements
Reusable subelements of the Ant tasks for the Application Server are as follows. These are
objects upon which the Ant tasks act.

■ “component” on page 114
■ “fileset” on page 116

component
Specifies a J2EE component. Allows a single task to act on multiple components. The
component attributes override corresponding attributes in the parent task; therefore, the parent
task attributes function as default values.

Subelements
none

Attributes
The following table describes attributes for the component element.

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008114

TABLE 3–14 componentAttributes

Attribute Default Description

file none (optional if the parent task is “sun-appserv-undeploy”
on page 104 or “sun-appserv-component” on
page 107) The target component. If this attribute refers
to a file, it must be a valid archive. If this attribute refers
to a directory, it must contain a valid archive in which
all components have been exploded. If upload is set to
false, this must be an absolute path on the server
machine.

name file name without extension (optional) The display name for the component.

type determined by extension (optional) Deprecated.

force true (applies to “sun-appserv-deploy” on page 99 only,
optional) If true, the component is overwritten if it
already exists on the server. If false, the containing
element’s operation fails if the component exists.

precompilejsp false (applies to “sun-appserv-deploy” on page 99 only,
optional) If true, all JSP files found in an enterprise
application (.ear) or web application (.war) are
precompiled. This attribute is ignored for other
component types.

retrievestubs client stubs not saved (applies to “sun-appserv-deploy” on page 99 only,
optional) The directory where client stubs are saved.

contextroot file name without extension (applies to “sun-appserv-deploy” on page 99 only,
optional) The context root for a web module (WAR
file). This attribute is ignored if the component is not a
WAR file.

verify false (applies to “sun-appserv-deploy” on page 99 only,
optional) If true, syntax and semantics for all
deployment descriptors is automatically verified for
correctness.

Examples
You can deploy multiple components using a single task. This example deploys each
component to the same Application Server running on a remote server.

<sun-appserv-deploy passwordfile="${passwordfile}" host="greg.sun.com"
asinstalldir="/opt/s1as8" >

<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"

contextroot="test"/>

asant Assembly and Deployment Tool

Chapter 3 • Assembling and Deploying Applications 115

<component file="${assemble}/simplebean.jar"/>
</sun-appserv-deploy>

You can also undeploy multiple components using a single task. This example demonstrates
using the archive files (EAR and WAR, in this case) and the component name (for the EJB
component).

<sun-appserv-undeploy passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-undeploy>

You can enable or disable multiple components. This example demonstrates disabling multiple
components using the archive files (EAR and WAR, in this case) and the component name (for
the EJB component).

<sun-appserv-component action="disable" passwordfile="${passwordfile}">
<component file="${assemble}/simpleapp.ear"/>
<component file="${assemble}/simpleservlet.war"/>
<component name="simplebean" />

</sun-appserv-component>

fileset
Selects component files that match specified parameters. When fileset is included as a
subelement, the name and contextroot attributes of the containing element must use their
default values for each file in the fileset. For more information, see
http://ant.apache.org/manual/CoreTypes/fileset.html.

asant Assembly and Deployment Tool

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008116

http://ant.apache.org/manual/CoreTypes/fileset.html

Debugging Applications

This chapter gives guidelines for debugging applications in the Sun Java System Application
Server. It includes the following sections:

■ “Enabling Debugging” on page 117
■ “JPDA Options” on page 118
■ “Generating a Stack Trace for Debugging” on page 119
■ “The Java Debugger” on page 119
■ “Using an IDE” on page 120
■ “Sun Java System Message Queue Debugging” on page 121
■ “Enabling Verbose Mode” on page 121
■ “Logging” on page 121
■ “Profiling” on page 122

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the --debug option as follows:

asadmin start-domain --debug [domain-name]

You can then attach to the server from the debugger at its default JPDA port, which is 9009. For
example, for UNIX systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

Application Server debugging is based on the JPDA (Java Platform Debugger Architecture). For
more information, see “JPDA Options” on page 118.

4C H A P T E R 4

117

You can enable debugging even when the application server is started without the --debug
option. This is useful if you start the application server from the Windows Start Menu or if you
want to make sure that debugging is always turned on.

▼ To set the server to automatically start up in debug
mode

Select the JVM Settings component under the relevant configuration in the Administration
Console.

Check the Debug Enabled box.

To specify a different port (from 9009, the default) to use when attaching the JVM to a debugger,
specify address= port-number in the Debug Options field.

If you wish to add JPDA options, add any desired JPDA debugging options in Debug Options.
See “JPDA Options”on page 118 .

For details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

JPDA Options
The default JPDA options in Application Server are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM starts.

To specify a different port (from 9009, the default) to use when attaching the JVM to a
debugger, specify address=port-number.

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/products/jpda/doc/conninv.html#Invocation.

1

2

3

4

See Also

JPDA Options

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008118

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Generating a Stack Trace for Debugging
You can generate a Java stack trace for debugging as described here if the Application Server is
in verbose mode (see “Enabling Verbose Mode” on page 121):

http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/

The stack trace goes to the domain-dir/logs/server.log file and also appears on the command
prompt screen.

If the -Xrs flag is set (for reduced signal usage) in the domain.xml file (under jvm-options),
comment it out before generating the stack trace. If the -Xrs flag is used, the server might
simply dump core and restart when you send the signal to generate the trace. For more about
the domain.xml file, see the Sun Java System Application Server Platform Edition 8.2
Administration Reference.

The Java Debugger
The Java Debugger (jdb) helps you find and fix bugs in Java language programs. When using
the jdb debugger with the Application Server, you must attach to the server from the debugger
at its default JPDA port, which is 9009. For example, for UNIX systems:

jdb -attach 9009

For Windows:

jdb -connect com.sun.jdi.SocketAttach:port=9009

For more information about the jdb debugger, see the following links:

Java Platform Debugger Architecture - The Java Debugger:
http://java.sun.com/products/jpda/doc/soljdb.html

Java Platform Debugger Architecture - Connecting with JDB:
http://java.sun.com/products/jpda/doc/conninv.html#JDB

You can attach to the Application Server using any JPDA compliant debugger, including that of
NetBeans (http://www.netbeans.org), Sun Java Studio, JBuilder, Eclipse, and so on.

The Java Debugger

Chapter 4 • Debugging Applications 119

http://developer.java.sun.com/developer/technicalArticles/Programming/Stacktrace/
http://java.sun.com/products/jpda/doc/soljdb.html
http://java.sun.com/products/jpda/doc/conninv.html#JDB
http://www.netbeans.org

Using an IDE
You can use an IDE (integrated development environment) with the Application Server to take
advantage of the IDE's debugging features.

▼ To use the NetBeans IDE for Debugging
The following steps are applicable to the NetBeans 5 IDE and the Sun Java Studio 8 software,
which is built on the NetBeans IDE.

Download the latest version of NetBeans from http://www.netbeans.org.
This site also provides documentation for the NetBeans IDE.

Start the NetBeans IDE.

If an Application Server is not already configured in the NetBeans IDE, perform the following
steps:

a. Select the Runtime tab to display the Runtime window.

b. Right-click on Servers in the Runtime window.

c. Select the Add Server command from the menu.

d. On the first screen, select Sun Java System Application Server in the Server field, and type a
name in the Name field. Select Next.

e. On the second screen, fill in the requested configuration information. In the Domains folder
field, use the Browse button to go to the Application Server domain-root-dir directory.

f. Click Finish.

Create a project (an application or module) in the NetBeans IDE.

Right-click on the project in the component tree and select Debug Project from the menu.
This stops the Application Server and restarts it in debug mode.

Set break points in your source file in the NetBeans IDE as usual, and run the application.

1

2

3

4

5

6

Using an IDE

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008120

http://www.netbeans.org

Sun Java System Message Queue Debugging
Sun Java System Message Queue has a broker logger, which can be useful for debugging JMS,
including message-driven bean, applications. You can adjust the logger’s verbosity, and you can
send the logger output to the broker’s console using the broker’s -tty option. For more
information, see the Sun Java System Message Queue 3.7 UR1 Administration Guide.

Enabling Verbose Mode
If you want to see the server logs and messages printed to System.out on your command
prompt screen, you can start the server in verbose mode. This makes it easy to do simple
debugging using print statements, without having to view the server.log file every time.

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on
UNIX platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX
platforms, you can also print a thread dump using the jstack command (see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html) or the command
kill -QUIT process_id.

To start the server in verbose mode, use the --verbose option as follows:

asadmin start-domain --verbose [domain-name]

You can enable verbose mode even when the application server is started without the
--verbose option. This is useful if you start the application server from the Windows Start
Menu or if you want to make sure that verbose mode is always turned on.

You can set the server to automatically start up in verbose mode using the Administration
Console. For details, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

Logging
You can use the Application Server’s log files to help debug your applications. In the
Administration Console, select the Application Server component, then click on the Open Log
Viewer button in the General Information page. For details about logging, see the Sun Java
System Application Server Platform Edition 8.2 Administration Guide.

Logging

Chapter 4 • Debugging Applications 121

http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html

Profiling
You can use a profiler to perform remote profiling on the Application Server to discover
bottlenecks in server-side performance. This section describes how to configure these profilers
for use with the Application Server:

■ “The HPROF Profiler” on page 122
■ “The Optimizeit Profiler” on page 123

Information about comprehensive monitoring and management support in the JavaTM 2
Platform, Standard Edition (J2SETM platform) version 5.0 is available at
http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html.

The HPROF Profiler
HPROF is a simple profiler agent shipped with the Java 2 SDK. It is a dynamically linked library
that interacts with the JVMPI and writes out profiling information either to a file or to a socket
in ASCII or binary format.

HPROF can present CPU usage, heap allocation statistics, and monitor contention profiles. In
addition, it can also report complete heap dumps and states of all the monitors and threads in
the Java virtual machine. For more details on the HPROF profiler, see the JDK documentation
at http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof.

Once HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

▼ To use HPROF profiling on UNIX

Configure the Application Server using the Administration Console:

a. Select the JVM Settings component under the relevant configuration, then select the
Profiler tab.

b. Edit the following fields:

■ Profiler Name: hprof
■ Profiler Enabled: true
■ Classpath: (leave blank)
■ Native Library Path: (leave blank)
■ JVM Option: For each of these options, select Add, type the option in the Value field,

then check its box:
-Xrunhprof:file=log.txt,options

1

Profiling

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008122

http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof

Here is an example of options you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file option determines where the stack dump is written in Step 2.

The syntax of HPROF options is as follows:

-Xrunhprof[:help]|[:option=value,option2=value2, ...]

Using help lists options that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|old CPU usage off

format=a|b ascii or binary output a

file=<file> write data to file java.hprof

(.txt for ascii)

net=<host>:<port> send data over a socket write to file

depth=<size> stack trace depth 4

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

Restart the Application Server. This writes an HPROF stack dump to the file you specified using
the fileHPROF option in Step 1.

The Optimizeit Profiler
You can purchase OptimizeitTM from Borland at http://www.borland.com/optimizeit.

Once Optimizeit is enabled using the following instructions, its libraries are loaded into the
server process.

▼ To enable remote profiling with Optimizeit

Configure your operating system:

■ On Solaris, add Optimizeit-dir/lib to the LD_LIBRARY_PATH environment variable.
■ On Windows, add Optimizeit-dir/lib to the PATH environment variable.

2

1

Profiling

Chapter 4 • Debugging Applications 123

http://www.borland.com/optimizeit

Configure the Application Server using the Administration Console:

a. Select the JVM Settings component under the relevant configuration, then select the
Profiler tab.

b. Edit the following fields:

■ Profiler Name: optimizeit
■ Profiler Enabled: true
■ Classpath: Optimizeit-dir/lib/optit.jar
■ Native Library Path: Optimizeit-dir/lib
■ JVM Option: For each of these options, select Add, type the option in the Value field,

then check its box:

-DOPTITHOME=Optimizeit-dir -Xrunpri:startAudit=t

-Xbootclasspath/p:/Optimizeit-dir/lib/oibcp.jar

In addition, you might have to set the following in your server.policy file.
For more information about the server.policy file, see “The server.policy File” on page 54
grant codeBase "file:Optimizeit-dir/lib/optit.jar" {

permission java.security.AllPermission;

};

Restart the Application Server.
When the server starts up with this configuration, you can attach the profiler.

For further details, see the Optimizeit documentation.

If any of the configuration options are missing or incorrect, the profiler might experience
problems that affect the performance of the Application Server.

2

3

4

See Also

Troubleshooting

Profiling

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008124

Developing Applications and Application
Components

P A R T I I

125

126

Developing Web Applications

This chapter describes how web applications are supported in the Sun Java System Application
Server and includes the following sections:
■ “Introducing Web Applications” on page 127
■ “Using Servlets” on page 132
■ “Using JavaServer Pages” on page 138
■ “Creating and Managing HTTP Sessions” on page 142

For general information about web applications, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/WebApp.html#wp76431.

Introducing Web Applications
This section includes summaries of the following topics:
■ “Internationalization Issues” on page 127
■ “Virtual Servers” on page 128
■ “Default Web Modules” on page 129
■ “Classloader Delegation” on page 130
■ “Using the default-web.xml File” on page 130
■ “Configuring Logging in the Web Container” on page 130
■ “Configuring HTML Error Pages” on page 131
■ “Header Management” on page 131
■ “Redirecting URLs” on page 132

Internationalization Issues
This section covers internationalization as it applies to the following:
■ “The Server” on page 128
■ “Servlets” on page 128

5C H A P T E R 5

127

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/WebApp.html#wp76431

The Server
To set the default locale of the entire Application Server, which determines the locale of the
Administration Console, the logs, and so on, use the Administration Console. Select the
Domain component, and type a value in the Locale field. For details, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

Servlets
This section explains how the Application Server determines the character encoding for the
servlet request and the servlet response. For encodings you can use, see
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html.

Servlet Request
When processing a servlet request, the server uses the following order of precedence, first to
last, to determine the request character encoding:

■ The getCharacterEncoding() method.
■ A hidden field in the form, specified by the form-hint-field attribute of the

parameter-encoding element in the sun-web.xml file.
■ The character encoding set in the default-charset attribute of the parameter-encoding

element in the sun-web.xml file.
■ The default, which is ISO-8859-1.

For details about the parameter-encoding element, see “parameter-encoding” on page 363.

Servlet Response
When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

■ The setCharacterEncoding() or setContentType() method.
■ The setLocale() method.
■ The default, which is ISO-8859-1.

Virtual Servers
A virtual server, also called a virtual host, is a virtual web server that serves content targeted for
a specific URL. Multiple virtual servers can serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service directs incoming web requests to
different virtual servers based on the URL.

When you first install the Application Server, a default virtual server is created. (You can also
assign a default virtual server to each new HTTP listener you create. For details, see the Sun Java
System Application Server Platform Edition 8.2 Administration Guide.)

Introducing Web Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008128

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

Web applications and J2EE applications containing web components can be assigned to virtual
servers.

▼ To assign virtual servers

Deploy the application or web module and assign the desired virtual server to it.

For more information, see “Tools for Deployment” on page 93.

In the Administration Console, open the HTTP Service component under the relevant
configuration.

Open the Virtual Servers component under the HTTP Service component.

Select the virtual server to which you want to assign a default web module.

Select the application or web module from the Default Web Module drop-down list.

For more information, see “Default Web Modules” on page 129.

For details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

Default Web Modules
A default web module can be assigned to the default virtual server and to each new virtual
server. For details, see “Virtual Servers” on page 128. To access the default web module for a
virtual server, point the browser to the URL for the virtual server, but do not supply a context
root. For example:

http://myvserver:3184/

A virtual server with no default web module assigned serves HTML or JSP content from its
document root, which is usually domain-dir/docroot. To access this HTML or JSP content,
point your browser to the URL for the virtual server, do not supply a context root, but specify
the target file.

For example:

http://myvserver:3184/hellothere.jsp

1

2

3

4

5

See Also

Introducing Web Applications

Chapter 5 • Developing Web Applications 129

Classloader Delegation
The Servlet specification recommends that the Web Classloader look in the local class loader
before delegating to its parent. To make the Web Classloader follow the delegation model in the
Servlet specification, set delegate="false" in the class-loader element of the sun-web.xml
file. It’s safe to do this only for a web module that does not interact with any other modules.

The default value is delegate="true", which causes the Web Classloader to delegate in the
same manner as the other classloaders. Use delegate="true" for a web application that accesses
EJB components or that acts as a web service client or endpoint. For details about sun-web.xml,
see “The sun-web.xml File” on page 285.

For general information about classloaders, see “Classloaders” on page 78.

Using the default-web.xml File
You can use the default-web.xml file to define features such as filters and security constraints
that apply to all web applications.

▼ To use the default-web.xml file

Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib
directory.

Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

Restart the server.

The InvokerServlet

The InvokerServlet allows use of the servlet-name instead of the servlet-mapping for
invoking a servlet with a URL, as described in “Invoking a Servlet with a URL” on page 133. The
InvokerServlet is commented out in the default-web.xml file. To re-enable the
InvokerServlet, remove the comment indicators (<!-- and -->), then restart the server.

Configuring Logging in the Web Container
For information about configuring logging and monitoring in the web container using the
Administration Console, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

1

2

3

More Information

Introducing Web Applications

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008130

Configuring HTML Error Pages
To specify an error page (or URL to an error page) to be displayed to the end user, use the
error-url attribute of the “sun-web-app” on page 398 element in the sun-web.xml file. For
example:

<sun-web-app error-url="webserver-install-dir/error/error1.html">
... subelements ...

</sun-web-app>

For details, see “sun-web-app” on page 398.

If the error-url attribute is specified, it overrides all other mechanisms configured for error
reporting.

Note – This attribute should not point to a URL on the Application Server instance, because the
error-url cannot be loaded if the server is down. Instead, specify a URL that points to a
location on the web server.

The Application Server provides the following options for specifying the error page.

■ You can specify the error-url to be an HTTP URL. The Application Server forwards the
client request to the specified error URL.

■ If you do not specify the error-url attribute in the sun-web.xml file, a default error page is
displayed.

The error page is displayed according to the following rules:

■ When an error is encountered for an application, the Application Server first checks if the
error-url attribute is defined. If it is defined, the Application Server reads the URL
attribute and loads the error page.

■ If the error-url attribute is missing or invalid, the Application Server displays the default
error page.

■ If the error-url has been defined but the page is missing, the Application Server loads the
default error page.

■ If the default error page is missing, the error is forwarded to the web server.

Header Management
In the Platform Edition of the Application Server, the Enumeration from
request.getHeaders() contains multiple elements instead of a single, aggregated value.

Introducing Web Applications

Chapter 5 • Developing Web Applications 131

Redirecting URLs
You can specify that a request for an old URL is treated as a request for a new URL. This is called
redirecting a URL.

To specify a redirected URL for a virtual server, use the redirect_n property, where n is a
positive integer that allows specification of more than one. This property is a subelement of a
virtual-server element in the domain.xml file. For more information about this element, see
virtual-server in Sun Java System Application Server Platform Edition 8.2 Administration
Reference. Each of these redirect_n properties is inherited by all web applications deployed on
the virtual server.

The value of each redirect_n property has two components, which may be specified in any
order:

The first component, from, specifies the prefix of the requested URI to match.

The second component, url-prefix, specifies the new URL prefix to return to the client. The
from prefix is simply replaced by this URL prefix.

For example:

<property name="redirect_1" value="from=/dummy url-prefix=http://etude"/>

Using Servlets
Application Server supports the Java Servlet Specification version 2.4.

Note – Servlet API version 2.4 is fully backward compatible with version 2.3, so all existing
servlets should work without modification or recompilation.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information about using the
Java Servlet API, see the documentation provided by Sun Microsystems at
http://java.sun.com/products/servlet/index.html.

The Application Server provides the wscompile and wsdeploy tools to help you implement a
web service endpoint as a servlet. For more information about these tools, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

This section describes how to create effective servlets to control application interactions
running on an Application Server, including standard-based servlets. In addition, this section
describes the Application Server features to use to augment the standards.

This section contains the following topics:

Using Servlets

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008132

http://java.sun.com/products/servlet/index.html

■ “Invoking a Servlet with a URL” on page 133
■ “Servlet Output” on page 134
■ “Caching Servlet Results” on page 134
■ “About the Servlet Engine” on page 137

Invoking a Servlet with a URL
You can call a servlet deployed to the Application Server by using a URL in a browser or
embedded as a link in an HTML or JSP file. The format of a servlet invocation URL is as follows:

http://server:port/context-root/servlet-mapping?name=value

The following table describes each URL section.

TABLE 5–1 URL Fields for Servlets Within an Application

URL element Description

server:port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this URL section.
You do not need to specify the context-root or servlet-name unless you also wish to
specify name-value parameters.

context-root For an application, the context root is defined in the context-root element of the
application.xml or sun-application.xml file. For an individually deployed web
module, the context root is specified during deployment.

For both applications and individually deployed web modules, the default context root
is the name of the WAR file minus the .war suffix.

servlet-mapping The servlet-mapping as configured in the web.xml file.

You can use the servlet-name instead if you enable the InvokerServlet; see “Using
the default-web.xml File” on page 130.

?name=value... Optional request parameters.

In this example, localhost is the host name, MortPages is the context root, and calcMortgage

is the servlet mapping:

http://localhost:8080/MortPages/calcMortgage?rate=8.0&per=360&bal=180000

When invoking a servlet from within a JSP file, you can use a relative path. For example:

<jsp:forward page="TestServlet"/>
<jsp:include page="TestServlet"/>

Using Servlets

Chapter 5 • Developing Web Applications 133

Servlet Output
ServletContext.log messages are sent to the server log.

By default, the System.out and System.err output of servlets are sent to the server log, and
during startup server log messages are echoed to the System.err output. Also by default, there
is no Windows-only console for the System.err output.

To change these defaults using the Administration Console, select the Logger Settings
component under the relevant configuration, then check or uncheck these boxes:

■ Log Messages to Standard Error - If checked, System.err output is sent to the server log. If
unchecked, System.err output is sent to the system default location only.

■ Write to System Log - If checked, System.out output is sent to the server log. If unchecked,
System.out output is sent to the system default location only.

For more information, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

Caching Servlet Results
The Application Server can cache the results of invoking a servlet, a JSP, or any URL pattern to
make subsequent invocations of the same servlet, JSP, or URL pattern faster. The Application
Server caches the request results for a specific amount of time. In this way, if another data call
occurs, the Application Server can return the cached data instead of performing the operation
again. For example, if your servlet returns a stock quote that updates every 5 minutes, you set
the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how an Application Server web application handles response caching, you edit
specific fields in the sun-web.xml file.

Note – A servlet that uses caching is not portable.

A sample caching application is in install-dir/samples/webapps/apps/caching.

For more information about JSP caching, see “JSP Caching” on page 139.

The rest of this section covers the following topics:

■ “Caching Features” on page 135

Using Servlets

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008134

■ “Default Cache Configuration” on page 135
■ “Caching Example” on page 136
■ “CacheKeyGenerator Interface” on page 137

Caching Features
The Application Server has the following web application response caching capabilities:
■ Caching is configurable based on the servlet name or the URI.
■ When caching is based on the URI, this includes user specified parameters in the query

string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

■ Cache size, entry timeout, and other caching behaviors are configurable.
■ Entry timeout is measured from the time an entry is created or refreshed. To override this

timeout for an individual cache mapping, specify the cache-mapping subelement timeout.
■ To determine caching criteria programmatically, write a class that implements the

com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows
when a back end data source was last modified, you can write a helper class to retrieve the
last modified timestamp from the data source and decide whether to cache the response
based on that timestamp.

■ To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See “CacheKeyGenerator
Interface” on page 137.

■ All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

■ Since newly updated classes impact what gets cached, the web container clears the cache
during dynamic deployment or reloading of classes.

■ The following HttpServletRequest request attributes are exposed:
■ com.sun.appserv.web.cachedServletName, the cached servlet target
■ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

■ Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those
resources. For details, see the descriptions of the “cache-mapping” on page 308 and
“dispatcher” on page 326 elements in the sun-web.xml file.

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:
■ The default cache timeout is 30 seconds.

Using Servlets

Chapter 5 • Developing Web Applications 135

■ Only the HTTP GET method is eligible for caching.
■ HTTP requests with cookies or sessions automatically disable caching.
■ No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
■ The default key consists of the Servlet Path (minus pathInfo and the query string).
■ A “least recently used” list is maintained to evict cache entries if the maximum cache size is

exceeded.
■ Key generation concatenates the servlet path with key field values, if any are specified.
■ Results produced by resources that are the target of a RequestDispatcher.include() or

RequestDispatcher.forward() call are never cached.

Caching Example
Here is an example cache element in the sun-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet-name>

<timeout name="timefield">120</timeout>
<http-method>GET</http-method>

<http-method>POST</http-method>

</cache-mapping>

<cache-mapping>

<url-pattern> /catalog/* </url-pattern>

<!-- cache the best selling category; cache the responses to

-- this resource only when the given parameters exist. Cache

-- only when the catalog parameter has ’lilies’ or ’roses’

-- but no other catalog varieties:

-- /orchard/catalog?best&category=’lilies’

-- /orchard/catalog?best&category=’roses’

-- but not the result of

-- /orchard/catalog?best&category=’wild’

-->

<constraint-field name=’best’ scope=’request.parameter’/>

<constraint-field name=’category’ scope=’request.parameter’>

<value> roses </value>

<value> lilies </value>

</constraint-field>

<!-- Specify that a particular field is of given range but the

-- field doesn’t need to be present in all the requests -->

<constraint-field name=’SKUnum’ scope=’request.parameter’>

<value match-expr=’in-range’> 1000 - 2000 </value>

</constraint-field>

<!-- cache when the category matches with any value other than

-- a specific value -->

Using Servlets

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008136

<constraint-field name="category" scope="request.parameter>
<value match-expr="equals" cache-on-match-failure="true">
bogus

</value>

</constraint-field>

</cache-mapping>

<cache-mapping>

<servlet-name> InfoServlet </servlet-name>

<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>

</cache>

For more information about the sun-web.xml caching settings, see “cache” on page 304.

CacheKeyGenerator Interface
The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” on page 324.

About the Servlet Engine
Servlets exist in and are managed by the servlet engine in the Application Server. The servlet
engine is an internal object that handles all servlet meta functions. These functions include
instantiation, initialization, destruction, access from other components, and configuration
management. This section covers the following topics:

■ “Instantiating and Removing Servlets” on page 137
■ “Request Handling” on page 138

Instantiating and Removing Servlets
After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init()
method to perform any necessary initialization. You can override this method to perform an
initialization function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy() method in the
servlet so that the servlet can perform any final tasks and deallocate resources. You can override
this method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Using Servlets

Chapter 5 • Developing Web Applications 137

Request Handling
When a request is made, the Application Server hands the incoming data to the servlet engine.
The servlet engine processes the request’s input data, such as form data, cookies, session
information, and URL name-value pairs, into an HttpServletRequest request object type.

The servlet engine also creates an HttpServletResponse response object type. The engine then
passes both as parameters to the servlet’s service() method.

In an HTTP servlet, the default service() method routes requests to another method based on
the HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example,
HTTP POST requests are sent to the doPost() method, HTTP GET requests are sent to the
doGet() method, and so on. This enables the servlet to process request data differently,
depending on which transfer method is used. Since the routing takes place in the service
method, you generally do not override service() in an HTTP servlet. Instead, override
doGet(), doPost(), and so on, depending on the request type you expect.

To perform the tasks to answer a request, override the service() method for generic servlets,
and the doGet() or doPost() methods for HTTP servlets. Very often, this means accessing EJB
components to perform business transactions, then collating the information in the request
object or in a JDBC ResultSet object.

Using JavaServer Pages
The Application Server supports the following JSP features:

■ JavaServer Pages (JSP) Specification version 2.0
■ Precompilation of JSP files, which is especially useful for production servers
■ JSP tag libraries and standard portable tags

For information about creating JSP files, see Sun Microsystem’s JavaServer Pages web site at
http://java.sun.com/products/jsp/index.html.

For information about Java Beans, see Sun Microsystem’s JavaBeans web page at
http://java.sun.com/beans/index.html.

This section describes how to use JavaServer Pages (JSP files) as page templates in an
Application Server web application. This section contains the following topics:

■ “JSP Tag Libraries and Standard Portable Tags” on page 139
■ “JSP Caching” on page 139
■ “Options for Compiling JSP Files” on page 142

Using JavaServer Pages

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008138

http://java.sun.com/products/jsp/index.html
http://java.sun.com/beans/index.html

JSP Tag Libraries and Standard Portable Tags
Application Server supports tag libraries and standard portable tags. For more information, see
the JavaServer Pages Standard Tag Library (JSTL) page at
http://java.sun.com/products/jsp/jstl/index.jsp.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP
tag libraries (in install-dir/lib) to use JavaServerTM Faces technology or JSTL, respectively.
These tag libraries are automatically available to all web applications.

However, the install-dir/lib/appserv-tags.jar tag library for JSP caching is not
automatically available to web applications. See “JSP Caching” on page 139, next.

JSP Caching
JSP caching lets you cache tag invocation results within the Java engine. Each can be cached
using different cache criteria. For example, suppose you have invocations to view stock quotes,
weather information, and so on. The stock quote result can be cached for 10 minutes, the
weather report result for 30 minutes, and so on.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 134.

JSP caching is implemented by a tag library packaged into the
install-dir/lib/appserv-tags.jar file, which you can copy into the WEB-INF/lib directory of
your web application. The appserv-tags.tld tag library descriptor file is in the META-INF
directory of this JAR file.

Note – Web applications that use this tag library are not portable.

To allow all web applications to share this tag library, change the following elements in the
domain.xml file. Change this:

<jvm-options>

-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar

</jvm-options>

to this:

<jvm-options>

-Dcom.sun.enterprise.taglibs=appserv-jstl.jar,jsf-impl.jar,appserv-tags.jar

</jvm-options>

and this:

Using JavaServer Pages

Chapter 5 • Developing Web Applications 139

http://java.sun.com/products/jsp/jstl/index.jsp

<jvm-options>

-Dcom.sun.enterprise.taglisteners=jsf-impl.jar

</jvm-options>

to this:

<jvm-options>

-Dcom.sun.enterprise.taglisteners=jsf-impl.jar,appserv-tags.jar

</jvm-options>

For more information about the domain.xml file, see the Sun Java System Application Server
Platform Edition 8.2 Administration Reference.

Refer to these tags in JSP files as follows:

<%@ taglib prefix="prefix" uri="Sun ONE Application Server Tags" %>

Subsequently, the cache tags are available as <prefix:cache> and <prefix:flush>. For example,
if your prefix is mypfx, the cache tags are available as <mypfx:cache> and <mypfx:flush>.

The tags are as follows:

■ “cache” on page 140
■ “flush” on page 141

cache
The cache tag caches the body between the beginning and ending tags according to the
attributes specified. The first time the tag is encountered, the body content is executed and
cached. Each subsequent time it is run, the cached content is checked to see if it needs to be
refreshed and if so, it is executed again, and the cached data is refreshed. Otherwise, the cached
data is served.

Attributes

The following table describes attributes for the cache tag.

TABLE 5–2 cacheAttributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry.
The cache key is suffixed to the servlet path to generate a key to access
the cached entry. If no key is specified, a number is generated
according to the position of the tag in the page.

Using JavaServer Pages

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008140

TABLE 5–2 cacheAttributes (Continued)
Attribute Default Description

timeout 60s (optional) The time in seconds after which the body of the tag is
executed and the cache is refreshed. By default, this value is
interpreted in seconds. To specify a different unit of time, add a suffix
to the timeout value as follows: s for seconds, m for minutes, h for
hours, d for days. For example, 2h specifies two hours.

nocache false (optional) If set to true, the body content is executed and served as if
there were no cache tag. This offers a way to programmatically decide
whether the cached response is sent or whether the body has to be
executed, though the response is not cached.

refresh false (optional) If set to true, the body content is executed and the
response is cached again. This lets you programmatically refresh the
cache immediately regardless of the timeout setting.

Example

The following example represents a cached JSP file:

<%@ taglib prefix="mypfx" uri="Sun ONE Application Server Tags" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<mypfx:cache key="${sessionScope.loginId}"
nocache="${param.nocache}"
refresh="${param.refresh}"
timeout="10m">

<c:choose>

<c:when test="${param.page == ’frontPage’}">
<%-- get headlines from database --%>

</c:when>

<c:otherwise>

...

</c:otherwise>

</c:choose>

</mypfx:cache>

<mypfx:cache timeout="1h">
<h2> Local News </h2>

<%-- get the headline news and cache them --%>

</mypfx:cache>

flush
Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no
key is specified, the entire cache is flushed.

Using JavaServer Pages

Chapter 5 • Developing Web Applications 141

Attributes

The following table describes attributes for the flush tag.

TABLE 5–3 flushAttributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached entry.
The cache key is suffixed to the servlet path to generate a key to access
the cached entry. If no key is specified, a number is generated
according to the position of the tag in the page.

Examples

To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<c:if test="${empty sessionScope.clearCache}">
<mypfx:flush />

</c:if>

Options for Compiling JSP Files

Application Server provides the following ways of compiling JSP 2.0 compliant source files into
servlets:

■ JSP files are automatically compiled at runtime.
■ The asadmin deploy command has a precompilejsp option. For details, see the Sun Java

System Application Server Platform Edition 8.2 Reference Manual.
■ The sun-appserv-jspc Ant task allows you to precompile JSP files; see “sun-appserv-jspc”

on page 111.
■ The jspc command line tool allows you to precompile JSP files at the command line. For

details, see the Sun Java System Application Server Platform Edition 8.2 Reference Manual.

Creating and Managing HTTP Sessions
This chapter describes how to create and manage a session that allows users and transaction
information to persist between interactions.

This chapter contains the following sections:

■ “Configuring Sessions” on page 143

Creating and Managing HTTP Sessions

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008142

■ “Session Managers” on page 143

Configuring Sessions
This section covers the following topics:

■ “Sessions, Cookies, and URL Rewriting” on page 143
■ “Coordinating Session Access” on page 143

Sessions, Cookies, and URL Rewriting
To configure whether and how sessions use cookies and URL rewriting, edit the
session-properties and cookie-properties elements in the sun-web.xml file for an
individual web application. See “session-properties” on page 391 and “cookie-properties” on
page 322 for more about the properties you can configure.

For information about configuring default session properties for the entire web container, see
the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

Coordinating Session Access
Make sure that multiple threads don’t simultaneously modify the same session object in
conflicting ways.

This is especially likely to occur in web applications that use HTML frames where multiple
servlets are executing simultaneously on behalf of the same client. A good solution is to ensure
that one of the servlets modifies the session and the others have read-only access.

Session Managers
A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

Application Server offers these session management options, determined by the
“session-manager” on page 390 element’s persistence-type attribute in the sun-web.xml file:

■ “The memory Persistence Type” on page 144, the default
■ “The file Persistence Type” on page 144, which uses a file to store session data

Note – If the session manager configuration contains an error, the error is written to the server
log and the default (memory) configuration is used.

Creating and Managing HTTP Sessions

Chapter 5 • Developing Web Applications 143

The memory Persistence Type
This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the session
state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Sun Java System Application Server
Platform Edition 8.2 Reference Manual.

To specify the memory persistence type for a specific web application, edit the sun-web.xml file
as in the following example. The persistence-type property is optional, but must be set to
memory if included. This overrides the web container availability settings for the web
application.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=memory />

<manager-properties>

<property name="sessionFilename" value="sessionstate" />

</manager-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

The only manager property that the memory persistence type supports is sessionFilename, which
is listed under “manager-properties” on page 351.

For more information about the sun-web.xml file, see “The sun-web.xml File” on page 285.

The file Persistence Type
This persistence type provides session persistence to the local file system, and allows a single
server domain to recover the session state after a failure and restart. The session state is
persisted in the background, and the rate at which this occurs is configurable. The store also
provides passivation and activation of the session state to help control the amount of memory
used. This option is not supported in a production environment. However, it is useful for a
development system with a single server instance.

Note – Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 54.

Creating and Managing HTTP Sessions

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008144

To specify the file persistence type for the entire web container, use the
configure-ha-persistence command. For details, see the Sun Java System Application Server
Platform Edition 8.2 Reference Manual.

To specify the file persistence type for a specific web application, edit the sun-web.xml file as
in the following example. Note that persistence-type must be set to file. This overrides the
web container availability settings for the web application.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=file>

<store-properties>

<property name=directory value=sessiondir />

</store-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

The file persistence type supports all the manager properties listed under
“manager-properties” on page 351 except sessionFilename, and supports the directory store
property listed under “store-properties” on page 393.

For more information about the sun-web.xml file, see “The sun-web.xml File” on page 285.

Creating and Managing HTTP Sessions

Chapter 5 • Developing Web Applications 145

146

Using Enterprise JavaBeans Technology

This chapter describes how Enterprise JavaBeansTM (EJBTM) technology is supported in the Sun
Java System Application Server. This chapter addresses the following topics:

■ “Summary of EJB 2.1 Changes” on page 147
■ “Value Added Features” on page 148
■ “EJB Timer Service” on page 151
■ “Using Session Beans” on page 152
■ “Using Read-Only Beans” on page 154
■ “Using Message-Driven Beans” on page 157
■ “Handling Transactions with Enterprise Beans” on page 162

Summary of EJB 2.1 Changes
The Application Server supports the Sun Microsystems Enterprise JavaBeans (EJB) architecture
as defined by the Enterprise JavaBeans Specification, v2.1 and is compliant with the Enterprise
JavaBeans Specification, v2.0.

Note – The Application Server is backward compatible with 1.1 and 2.0 enterprise beans.
However, to take advantage of version 2.1 features, you should develop new beans as 2.1
enterprise beans.

The changes in the Enterprise JavaBeans Specification, v2.1 that impact enterprise beans in the
Application Server environment are as follows:

■ EJB Timer Service: This is a container-managed, reliable, and transactional notification
service that provides methods to allow callbacks to be scheduled for time-based events. See
“EJB Timer Service” on page 151.

6C H A P T E R 6

147

■ Message-driven beans: This type of enterprise bean can consume any inbound messages
from a Connector 1.5 inbound resource adapter, primarily but not exclusively JMS
messages. See “Using Message-Driven Beans” on page 157.

■ EJB Web Services: A stateless session bean can serve as a web service endpoint. In addition,
all EJB component types can act as web service clients. For details, see the web service
elements in the sun-ejb-jar.xml file, described in “The sun-ejb-jar.xml File” on page 288.

Value Added Features
The Application Server provides a number of value additions that relate to EJB development.
These capabilities are discussed in the following sections (references to more in-depth material
are included):

■ “Read-Only Beans” on page 148
■ “pass-by-reference” on page 149
■ “Pooling and Caching” on page 149
■ “Bean-Level Container-Managed Transaction Timeouts” on page 150
■ “Priority Based Scheduling of Remote Bean Invocations” on page 150
■ “Immediate Flushing” on page 151

Read-Only Beans
Another feature that the Application Server provides is the read-only bean, an entity bean that is
never modified by an EJB client. Read-only beans avoid database updates completely. A
read-only bean is not portable.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Application Server provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds element in the sun-ejb-jar.xml file
and the trans-attribute element in the ejb-jar.xml file, it is easy to configure a read-only
bean that is (a) always refreshed, (b) periodically refreshed, (c) never refreshed, or (d)
programmatically refreshed.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 154.

Value Added Features

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008148

pass-by-reference
The pass-by-reference element in the sun-ejb-jar.xml file allows you to specify the
parameter passing semantics for colocated remote EJB invocations. This is an opportunity to
improve performance. However, use of this feature results in non-portable applications. See
“pass-by-reference” on page 364.

Pooling and Caching
The EJB container of the Application Server pools anonymous instances (message-driven
beans, stateless session beans, and entity beans) to reduce the overhead of creating and
destroying objects. The EJB container maintains the free pool for each bean that is deployed.
Bean instances in the free pool have no identity (that is, no primary key associated) and are used
to serve the method calls of the home interface. The free beans are also used to serve all methods
for stateless session beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after ejbCreate
and the business methods run. The size and behavior of each pool is controlled using
pool-related properties in the EJB container or the sun-ejb-jar.xml file.

In addition, the Application Server supports a number of tunable parameters that can control
the number of “stateful” instances (stateful session beans and entity beans) cached as well as the
duration they are cached. Multiple bean instances that refer to the same database row in a table
can be cached. The EJB container maintains a cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache,
usually when cache overflows. These evicted bean instances return to the free bean pool. The
size and behavior of each cache can be controlled using the cache-related properties in the EJB
container or the sun-ejb-jar.xml file.

Pooling and caching parameters for the sun-ejb-jar.xml file are described in “bean-cache” on
page 302.

Pooling Parameters
One of the most important parameters of Application Server pooling is steady-pool-size.
When steady-pool-size is set to greater than 0, the container not only pre-populates the bean
pool with the specified number of beans, but also attempts to ensure that there is always this
many beans in the free pool. This ensures that there are enough beans in the ready to serve state
to process user requests.

This parameter does not necessarily guarantee that no more than steady-pool-size instances
exist at a given time. It only governs the number of instances that are pooled over a long period
of time. For example, suppose an idle stateless session container has a fully-populated pool with
a steady-pool-size of 10. If 20 concurrent requests arrive for the EJB component, the

Value Added Features

Chapter 6 • Using Enterprise JavaBeans Technology 149

container creates 10 additional instances to satisfy the burst of requests. The advantage of this is
that it prevents the container from blocking any of the incoming requests. However, if the
activity dies down to 10 or fewer concurrent requests, the additional 10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify,
through the amount of time a bean instance can be idle in the pool. When
pool-idle-timeout-in-seconds is set to greater than 0, the container removes or destroys any
bean instance that is idle for this specified duration.

Caching Parameters
Application Server provides a way that completely avoids caching of entity beans, using commit
option C. Commit option C is particularly useful if beans are accessed in large number but very
rarely reused. For additional information, refer to “Commit Options” on page 163.

The Application Server caches can be either bounded or unbounded. Bounded caches have
limits on the number of beans that they can hold beyond which beans are passivated. For
stateful session beans, there are three ways (LRU, NRU and FIFO) of picking victim beans when
cache overflow occurs. Caches can also passivate beans that are idle (not accessed for a specified
duration).

Bean-Level Container-Managed Transaction Timeouts
The default transaction timeout for the domain is specified using the Transaction Timeout
setting of the Transaction Service. A transaction started by the container must commit (or
rollback) within this time, regardless of whether the transaction is suspended (and resumed), or
the transaction is marked for rollback.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds
element in sun-ejb-jar.xml. The default value, 0, specifies that the default Transaction Service
timeout is used. The value of cmt-timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

Priority Based Scheduling of Remote Bean Invocations
You can create multiple thread pools, each having its own work queues. An optional element in
the sun-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool that processes the
requests for the bean. The bean must have a remote interface, or use-thread-pool-id is
ignored. You can create different thread pools and specify the appropriate thread pool ID for a
bean that requires a quick response time. If there is no such thread pool configured or if the
element is absent, the default thread pool is used.

Value Added Features

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008150

Immediate Flushing
Normally, all entity bean updates within a transaction are batched and executed at the end of
the transaction. The only exception is the database flush that precedes execution of a finder or
select query.

Since a transaction often spans many method calls, you might want to find out if the updates
made by a method succeeded or failed immediately after method execution. To force a flush at
the end of a method’s execution, use the “flush-at-end-of-method” on page 337 element in the
sun-ejb-jar.xml file. Only non-finder methods in the Local, Local Home, Remote, and
Remote Home interfaces of an entity bean can be flush-enabled.

Upon completion of the method, the EJB container updates the database. Any exception
thrown by the underlying data store is wrapped as follows:

■ If the method that triggered the flush is a create method, the exception is wrapped with
CreateException.

■ If the method that triggered the flush is a remove method, the exception is wrapped with
RemoveException.

■ For all other methods, the exception is wrapped with EJBException.

All normal end-of-transaction database synchronization steps occur regardless of whether the
database has been flushed during the transaction.

EJB Timer Service
The EJB Timer Service uses a database to store persistent information about EJB timers. By
default, the EJB Timer Service in Application Server is preconfigured to use an embedded
version of Derby. The EJB Timer Service configuration can store persistent timer information
in any database supported by the Application Server CMP container.

For a list of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Platform Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 224.

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. You must also create the timer database table.
DDL files are located in install-dir/lib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager.
If an EJB component or application accesses a database either directly through JDBC or
indirectly (for example, through an entity bean’s persistence mechanism), and also interacts
with the EJB Timer Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

EJB Timer Service

Chapter 6 • Using Enterprise JavaBeans Technology 151

■ Minimum Delivery Interval - Specifies the minimum time in milliseconds before an
expiration for a particular timer can occur. This guards against extremely small timer
increments that can overload the server. The default is 7000.

■ Maximum Redeliveries - Specifies the maximum number of times the EJB timer service
attempts to redeliver a timer expiration due for exception or rollback. The default is 1.

■ Redelivery Interval - Specifies how long in milliseconds the EJB timer service waits after a
failed ejbTimeout delivery before attempting a redelivery. The default is 5000.

■ Timer DataSource - Specifies the database used by the EJB Timer Service. The default is
jdbc/__TimerPool.

For information about configuring EJB Timer Service settings, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide. For information about the
asadmin list-timers command, see the Sun Java System Application Server Platform
Edition 8.2 Reference Manual.

Using Session Beans
This section provides guidelines for creating session beans in the Application Server
environment. This section addresses the following topics:

■ “About the Session Bean Containers” on page 152
■ “Restrictions and Optimizations” on page 154

Extensive information on session beans is contained in the chapters 6, 7, and 8 of the Enterprise
JavaBeans Specification, v2.1.

About the Session Bean Containers
Like an entity bean, a session bean can access a database through JavaTM Database Connectivity
(JDBCTM) calls. A session bean can also provide transaction settings. These transaction settings
and JDBC calls are referenced by the session bean’s container, allowing it to participate in
transactions managed by the container.

A container managing stateless session beans has a different charter from a container managing
stateful session beans.

Stateless Container
The stateless container manages stateless session beans, which, by definition, do not carry
client-specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Application Server
specific deployment descriptor file, sun-ejb-jar.xml, contains the properties that define the
pool:

Using Session Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008152

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 288.

The Application Server provides the wscompile and wsdeploy tools to help you implement a
web service endpoint as a stateless session bean. For more information about these tools, see the
Sun Java System Application Server Platform Edition 8.2 Reference Manual.

Stateful Container
The stateful container manages the stateful session beans, which, by definition, carry the
client-specific state. There is a one-to-one relationship between the client and the stateful
session beans. At creation, each stateful session bean (SFSB) is given a unique session ID that is
used to access the session bean so that an instance of a stateful session bean is accessed by a
single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session beans
cache are controlled by specifying the following sun-ejb-jar.xml parameters:

■ max-cache-size

■ resize-quantity

■ cache-idle-timeout-in-seconds

■ removal-timeout-in-seconds

■ victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held in
cache. If the cache overflows (when the number of beans exceeds max-cache-size), the
container then passivates some beans or writes out the serialized state of the bean into a file. The
directory in which the file is created is obtained from the EJB container using the configuration
APIs.

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 288.

The passivated beans are stored on the file system. The Session Store Location setting in the EJB
container allows the administrator to specify the directory where passivated beans are stored.
By default, passivated stateful session beans are stored in application-specific subdirectories
created under domain-dir/session-store.

Note – Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy, see “The
server.policy File” on page 54.

Using Session Beans

Chapter 6 • Using Enterprise JavaBeans Technology 153

Restrictions and Optimizations
This section discusses restrictions on developing session beans and provides some optimization
guidelines:

■ “Optimizing Session Bean Performance” on page 154
■ “Restricting Transactions” on page 154

Optimizing Session Bean Performance
For stateful session beans, colocating the stateful beans with their clients so that the client and
bean are executing in the same process address space improves performance.

Restricting Transactions
The following restrictions on transactions are enforced by the container and must be observed
as session beans are developed:

■ A session bean can participate in, at most, a single transaction at a time.
■ If a session bean is participating in a transaction, a client cannot invoke a method on the

bean such that the trans-attribute element in the ejb-jar.xml file would cause the
container to execute the method in a different or unspecified transaction context or an
exception is thrown.

■ If a session bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or component interface object or an exception is
thrown.

Using Read-Only Beans
A read-only bean is an entity bean that is never modified by an EJB client. The data that a
read-only bean represents can be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Note – Read-only beans are specific to Application Server and are not part of the Enterprise
JavaBeans Specification, v2.1. Use of this feature results in a non-portable application.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. The following topics are addressed in this section:

■ “Read-Only Bean Characteristics and Life Cycle” on page 155
■ “Read-Only Bean Good Practices” on page 155
■ “Refreshing Read-Only Beans” on page 156
■ “Deploying Read Only Beans” on page 157

Using Read-Only Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008154

Read-Only Bean Characteristics and Life Cycle
Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For example, a read-only bean can be used to represent a stock quote for a
particular company, which is updated externally. In such a case, using a regular entity bean
might incur the burden of calling ejbStore, which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:

■ Only entity beans can be read-only beans.
■ Either bean-managed persistence (BMP) or container-managed persistence (CMP) is

allowed. If CMP is used, do not create the database schema during deployment. Instead,
work with your database administrator to populate the data into the tables. See Chapter 7,
“Using Container-Managed Persistence for Entity Beans.”

■ Only container-managed transactions are allowed; read-only beans cannot start their own
transactions.

■ Read-only beans don’t update any bean state.
■ ejbStore is never called by the container.
■ ejbLoad is called only when a transactional method is called or when the bean is initially

created (in the cache), or at regular intervals controlled by the bean’s
refresh-period-in-seconds element in the sun-ejb-jar.xml file.

■ The home interface can have any number of find methods. The return type of the find
methods must be the primary key for the same bean type (or a collection of primary keys).

■ If the data that the bean represents can change, then refresh-period-in-seconds must be
set to refresh the beans at regular intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a
read-only bean is selected as a victim to make room in the cache, ejbPassivate is called and the
bean is returned to the free pool. When in the free pool, the bean has no identity and is used
only to serve any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and
clients can look up read-only beans the same way read-write entity beans are looked up.

Read-Only Bean Good Practices
For best results, follow these guidelines when developing read-only beans:

■ Avoid having any create or remove methods in the home interface.
■ Use any of the valid EJB 2.1 transaction attributes for the trans-attribute element.

Using Read-Only Beans

Chapter 6 • Using Enterprise JavaBeans Technology 155

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same
transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans
There are several ways of refreshing read-only beans as addressed in the following sections:
■ “Invoking a Transactional Method” on page 156
■ “Refreshing Periodically” on page 156
■ “Refreshing Programmatically” on page 156

Invoking a Transactional Method
Invoking any transactional method invokes ejbLoad.

Refreshing Periodically
Use the refresh-period-in-seconds element in the sun-ejb-jar.xml file to refresh a
read-only bean periodically.
■ If the value specified in refresh-period-in-seconds is zero or not specified, which is the

default, the bean is never refreshed (unless a transactional method is accessed).
■ If the value is greater than zero, the bean is refreshed at the rate specified.

Note – This is the only way to refresh the bean state if the data can be modified external to the
Application Server.

Refreshing Programmatically
Typically, beans that update any data that is cached by read-only beans need to notify the
read-only beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of
read-only beans.

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier extends java.rmi.Remote {

refresh(Object PrimaryKey) throws RemoteException;

}

The implementation of the ReadOnlyBeanNotifier interface is provided by the container. The
bean looks up ReadOnlyBeanNotifier using a fragment of code such as the following example:

com.sun.appserv.ejb.ReadOnlyBeanHelper helper =

new com.sun.appserv.ejb.ReadOnlyBeanHelper();

com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =

Using Read-Only Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008156

helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer");
notifier.refresh(PrimaryKey);

For a local read-only bean notifier, the lookup has this modification:

helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer");

Beans that update any data that is cached by read-only beans need to call the refresh methods.
The next (non-transactional) call to the read-only bean invokes ejbLoad.

Note – Programmatic refresh of read-only beans is not supported in a clustered environment.

Deploying Read Only Beans
Read-only beans are deployed in the same manner as other entity beans. However, in the entry
for the bean in the sun-ejb-jar.xml file, the is-read-only-bean element must be set to true.
That is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element in the sun-ejb-jar.xml file can be set to some
value that specifies the rate at which the bean is refreshed. If this element is missing, no refresh
occurs.

All requests in the same transaction context are routed to the same read-only bean instance. Set
the allow-concurrent-access element to either true (to allow concurrent accesses) or false
(to serialize concurrent access to the same read-only bean). The default is false.

For further information on these elements, refer to “The sun-ejb-jar.xml File” on page 288.

Using Message-Driven Beans
This section describes message-driven beans and explains the requirements for creating them in
the Application Server environment. This section contains the following topics:

■ “Message-Driven Bean Configuration” on page 157
■ “Restrictions and Optimizations” on page 159
■ “Sample Message-Driven Bean XML Files” on page 160

Message-Driven Bean Configuration
This section addresses the following configuration topics:

■ “Using Session Beans” on page 152
■ “Message-Driven Bean Pool” on page 158

Using Message-Driven Beans

Chapter 6 • Using Enterprise JavaBeans Technology 157

■ “Domain-Level Settings” on page 158

Connection Factory and Destination
A message-driven bean is a client to a Connector 1.5 inbound resource adapter. The
message-driven bean container uses the JMS service integrated into the Application Server for
message-driven beans that are JMS clients. JMS clients use JMS Connection Factory- and
Destination-administered objects. A JMS Connection Factory administered object is a resource
manager Connection Factory object that is used to create connections to the JMS provider.

The mdb-connection-factory element in the sun-ejb-jar.xmlfile for a message-driven bean
specifies the connection factory that creates the container connection to the JMS provider.

The jndi-name element of the ejb element in the sun-ejb-jar.xml file specifies the JNDI
name of the administered object for the JMS Queue or Topic destination that is associated with
the message-driven bean.

Message-Driven Bean Pool
The container manages a pool of message-driven beans for the concurrent processing of a
stream of messages. The sun-ejb-jar.xml file contains the elements that define the pool (that
is, the bean-pool element):

■ steady-pool-size

■ resize-quantity

■ max-pool-size

■ pool-idle-timeout-in-seconds

For more information about sun-ejb-jar.xml, see “The sun-ejb-jar.xml File” on page 288.

Domain-Level Settings
You can control the following domain-level message-driven bean settings in the EJB container:

■ Initial and Minimum Pool Size - Specifies the initial and minimum number of beans
maintained in the pool. The default is 0.

■ Maximum Pool Size - Specifies the maximum number of beans that can be created to satisfy
client requests. The default is 32.

■ Pool Resize Quantity - Specifies the number of beans to be created if a request arrives when
the pool is empty (subject to the Initial and Minimum Pool Size), or the number of beans to
remove if idle for more than the Idle Timeout. The default is 8.

■ Idle Timeout - Specifies the maximum time in seconds that a bean can remain idle in the
pool. After this amount of time, the bean is destroyed. The default is 600 (10 minutes). A
value of 0 means a bean can remain idle indefinitely.

Using Message-Driven Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008158

For information on monitoring message-driven beans, see the Application Server
Administration Console online help and the Sun Java System Application Server Platform
Edition 8.2 Administration Guide.

Note – Running monitoring when it is not needed might impact performance, so you might
choose to turn monitoring off when it is not in use. For details, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

Restrictions and Optimizations
This section discusses the following restrictions and performance optimizations that pertain to
developing message-driven beans:

■ “Pool Tuning and Monitoring” on page 159
■ “onMessage Runtime Exception” on page 159

Pool Tuning and Monitoring
The message-driven bean pool is also a pool of threads, with each message-driven bean instance
in the pool associating with a server session, and each server session associating with a thread.
Therefore, a large pool size also means a high number of threads, which impacts performance
and server resources.

When configuring message-driven bean pool properties, make sure to consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server resources
(threads, memory, and so on), and any concurrency requirements and limitations from other
resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS provider
properties for the connection factory used by the container (the mdb-connection-factory
element in the sun-ejb-jar.xml file). For example, you can tune the Sun Java System Message
Queue flow control related properties for connection factory in situations where the message
incoming rate is much higher than max-pool-size can handle.

Refer to the Sun Java System Application Server Platform Edition 8.2 Administration Guide for
information on how to get message-driven bean pool statistics.

onMessage Runtime Exception
Message-driven beans, like other well-behaved MessageListeners, should not, in general, throw
runtime exceptions. If a message-driven bean’s onMessage method encounters a system-level
exception or error that does not allow the method to successfully complete, the Enterprise
JavaBeans Specification, v2.1 provides the following guidelines:

■ If the bean method encounters a runtime exception or error, it should simply propagate the
error from the bean method to the container.

Using Message-Driven Beans

Chapter 6 • Using Enterprise JavaBeans Technology 159

■ If the bean method performs an operation that results in a checked exception that the bean
method cannot recover, the bean method should throw the javax.ejb.EJBException that
wraps the original exception.

■ Any other unexpected error conditions should be reported using javax.ejb.EJBException
(javax.ejb.EJBException is a subclass of java.lang.RuntimeException).

Under container-managed transaction demarcation, upon receiving a runtime exception from
a message-driven bean’s onMessage method, the container rolls back the container-started
transaction and the message is redelivered. This is because the message delivery itself is part of
the container-started transaction. By default, the Application Server container closes the
container’s connection to the JMS provider when the first runtime exception is received from a
message-driven bean instance’s onMessage method. This avoids potential message redelivery
looping and protects server resources if the message-driven bean’s onMessage method
continues misbehaving. To change this default container behavior, use the
cmt-max-runtime-exceptions property of the mdb-container element in the domain.xml file.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime
exceptions allowed from a message-driven bean’s onMessage method before the container starts
to close the container’s connection to the message source. By default this value is 1; -1 disables
this container protection.

A message-driven bean’s onMessage method can use the javax.jms.Message
getJMSRedelivered method to check whether a received message is a redelivered message.

Note – The cmt-max-runtime-exceptions property might be deprecated in the future.

Sample Message-Driven Bean XML Files
This section includes the following sample files:

■ “Sample ejb-jar.xml File” on page 160
■ “Sample sun-ejb-jar.xml File” on page 161

For general information on the sun-ejb-jar.xml file, see “The sun-ejb-jar.xml File” on
page 288.

Sample ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans

2.0//EN’ ’http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>

<enterprise-beans>

<message-driven>

Using Message-Driven Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008160

<ejb-name>MessageBean</ejb-name>

<ejb-class>samples.mdb.ejb.MessageBean</ejb-class>

<transaction-type>Container</transaction-type>

<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>

</message-driven-destination>

<resource-ref>

<res-ref-name>jms/QueueConnectionFactory</res-ref-name>

<res-type>javax.jms.QueueConnectionFactory</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</message-driven>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>MessageBean</ejb-name>

<method-intf>Bean</method-intf>

<method-name>onMessage</method-name>

<method-params>

<method-param>javax.jms.Message</method-param>

</method-params>

</method>

<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

</assembly-descriptor

</ejb-jar>

Sample sun-ejb-jar.xml File
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Application

Server 8.1 EJB 2.1//EN’

’http://www.sun.com/software/appserver/dtds/sun-ejb-jar_2_1-1.dtd’>

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>MessageBean</ejb-name>

<jndi-name>jms/sample/Queue</jndi-name>

<resource-ref>

<res-ref-name>jms/QueueConnectionFactory</res-ref-name>

<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>

<default-resource-principal>

<name>guest</name>

<password>guest</password>

</default-resource-principal>

</resource-ref>

<mdb-connection-factory>

Using Message-Driven Beans

Chapter 6 • Using Enterprise JavaBeans Technology 161

<jndi-name>jms/sample/QueueConnectionFactory</jndi-name>

<default-resource-principal>

<name>guest</name>

<password>guest</password>

</default-resource-principal>

</mdb-connection-factory>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Handling Transactions with Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans programming
model for the Application Server.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors. This section
provides overview information on the following topics:

■ “Flat Transactions” on page 162
■ “Global and Local Transactions” on page 162
■ “Commit Options” on page 163
■ “Administration and Monitoring” on page 163

Flat Transactions
The Enterprise JavaBeans Specification, v2.1 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions
Understanding the distinction between global and local transactions is crucial in understanding
the Application Server support for transactions. See “Transaction Scope” on page 236.

Both local and global transactions are demarcated using the
javax.transaction.UserTransaction interface, which the client must use. Local transactions
bypass the transaction manager and are faster. For more information, see “Naming
Environment for J2EE Application Components” on page 240.

Handling Transactions with Enterprise Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008162

Commit Options
The EJB protocol is designed to give the container the flexibility to select the disposition of the
instance state at the time a transaction is committed. This allows the container to best manage
caching an entity object’s state and associating an entity object identity with the EJB instances.

There are three commit-time options:

■ Option A: The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent storage.
In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

Note – Commit option A is not supported for this Application Server release.

■ Option B: The container caches a ready instance between transactions, but the container
does not ensure that the instance has exclusive access to the state of the object in persistent
storage. This is the default.
In this case, the container must synchronize the instance’s state by invoking ejbLoad from
persistent storage at the beginning of the next transaction.

■ Option C: The container does not cache a ready instance between transactions, but instead
returns the instance to the pool of available instances after a transaction has completed.
The life cycle for every business method invocation under commit option C looks like this:

ejbActivate → ejbLoad → business method → ejbStore → ejbPassivate

If there is more than one transactional client concurrently accessing the same entity
EJBObject, the first client gets the ready instance and subsequent concurrent clients get new
instances from the pool.

The Application Server deployment descriptor has an element, commit-option, that specifies
the commit option to be used. Based on the specified commit option, the appropriate handler is
instantiated.

Administration and Monitoring
An administrator can control a number of domain-level Transaction Service settings. For
details, see “Configuring the Transaction Service” on page 237.

The Transaction Timeout setting can be overridden by a bean. See “Bean-Level
Container-Managed Transaction Timeouts” on page 150.

Handling Transactions with Enterprise Beans

Chapter 6 • Using Enterprise JavaBeans Technology 163

In addition, the administrator can monitor transactions using statistics from the transaction
manager that provide information on such activities as the number of transactions completed,
rolled back, or recovered since server startup, and transactions presently being processed.

For information on administering and monitoring transactions, see the Application Server
Administration Console online help and the Sun Java System Application Server Platform
Edition 8.2 Administration Guide.

Handling Transactions with Enterprise Beans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008164

Using Container-Managed Persistence for
Entity Beans

This section contains information on how container-managed persistence (CMP) works in the
Sun Java System Application Server in the following topics:

■ “Sun Java System Application Server Support” on page 165
■ “Container-Managed Persistence Mapping” on page 166
■ “Automatic Schema Generation” on page 170
■ “Schema Capture” on page 176
■ “Configuring the CMP Resource” on page 177
■ “Configuring Queries for 1.1 Finders” on page 178
■ “Performance-Related Features” on page 182
■ “Restrictions and Optimizations” on page 184

Extensive information on CMP is contained in chapters 10, 11, and 14 of the Enterprise
JavaBeans Specification, v2.1.

Sun Java System Application Server Support
Application Server support for CMP includes:

■ Full support for the J2EE v 1.4 specification’s CMP model.
■ Support for commit options B and C for transactions, as defined in the Enterprise

JavaBeans Specification, v2.1. See “Commit Options” on page 163.
■ The primary key class must be a subclass of java.lang.Object. This ensures portability,

and is noted because some vendors allow primitive types (such as int) to be used as the
primary key class.

■ The Application Server CMP implementation, which provides:
■ An Object/Relational (O/R) mapping tool that creates XML deployment descriptors for

EJB JAR files that contain beans that use CMP
■ Support for compound (multi-column) primary keys

7C H A P T E R 7

165

■ Support for sophisticated custom finder methods
■ Standards-based query language (EJB QL)
■ CMP runtime support. See “Configuring the CMP Resource” on page 177.

■ Application Server performance-related features, including:
■ Version column consistency checking
■ Relationship prefetching
■ Read-Only Beans

For details, see “Performance-Related Features” on page 182.

Container-Managed Persistence Mapping
Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields and
CMR fields (relationships) to the database. This section addresses the following topics:

■ “Mapping Capabilities” on page 166
■ “The Mapping Deployment Descriptor File” on page 166
■ “Mapping Considerations” on page 167

Mapping Capabilities
Mapping refers to the ability to tie an object-based model to a relational model of data, usually
the schema of a relational database. The CMP implementation provides the ability to tie a set of
interrelated beans containing data and associated behaviors to the schema. This object
representation of the database becomes part of the Java application. You can also customize this
mapping to optimize these beans for the particular needs of an application. The result is a single
data model through which both persistent database information and regular transient program
data are accessed.

The mapping capabilities provided by the Application Server include:

■ Mapping a CMP bean to one or more tables
■ Mapping CMP fields to one or more columns
■ Mapping CMP fields to different column types
■ Mapping tables with compound primary keys
■ Mapping tables with unknown primary keys
■ Mapping CMP relationships to foreign keys
■ Mapping tables with overlapping primary and foreign keys

The Mapping Deployment Descriptor File
Each module with CMP beans must have the following files:

Container-Managed Persistence Mapping

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008166

■ ejb-jar.xml: The J2EE standard file for assembling enterprise beans. For a detailed
description, see the Enterprise JavaBeans Specification, v2.1.

■ sun-ejb-jar.xml: The Application Server standard file for assembling enterprise beans. For
a detailed description, see “The sun-ejb-jar.xml File” on page 288.

■ sun-cmp-mappings.xml: The mapping deployment descriptor file, which describes the
mapping of CMP beans to tables in a database. For a detailed description, see “The
sun-cmp-mappings.xml File” on page 293.

The sun-cmp-mappings.xml file can be automatically generated and does not have to exist prior
to deployment. For details, see “Generation Options” on page 173.

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the
database. A primary table must be selected for each CMP bean, and optionally, multiple
secondary tables. CMP fields are mapped to columns in either the primary or secondary
table(s). CMR fields are mapped to pairs of column lists (normally, column lists are the lists of
columns associated with primary and foreign keys).

Note – Table names in databases can be case-sensitive. Make sure that the table names in the
sun-cmp-mappings.xml file match the names in the database.

Relationships should always be mapped to the primary key field(s) of the related table.

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping_1_2.dtd file and is
packaged with the user-defined bean classes in the EJB JAR file under the META-INF directory.

The Application Server or the deploytool creates the mappings in the sun-cmp-mappings.xml
file automatically during deployment if the file is not present. For information on how to use the
deploytool for mapping, see the “Create Database Mapping” topic in the deploytool’s online
help.

To map the fields and relationships of your entity beans manually, edit the
sun-cmp-mappings.xml deployment descriptor. Only do this if you are proficient in editing
XML.

The mapping information is developed in conjunction with the database schema (.dbschema)
file, which can be automatically captured when you deploy the bean (see “Automatic Database
Schema Capture” on page 176). You can manually generate the schema using the
capture-schema utility (“Using the capture-schema Utility” on page 176.

Mapping Considerations
This section addresses the following topics:
■ “Join Tables and Relationships” on page 168
■ “Automatic Primary Key Generation” on page 168

Container-Managed Persistence Mapping

Chapter 7 • Using Container-Managed Persistence for Entity Beans 167

■ “Fixed Length CHAR Primary Keys” on page 168
■ “Managed Fields” on page 168
■ “BLOB Support” on page 169
■ “CLOB Support” on page 169

The data types used in automatic schema generation are also suggested for manual mapping.
These data types are described in “Supported Data Types” on page 171.

Join Tables and Relationships
Use of join tables in the database schema is supported for all types of relationships, not just
many-to-many relationships. For general information about relationships, see section 10.3.7 of
the Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation
The Application Server supports automatic primary key generation for EJB 1.1, 2.0, and 2.1
CMP beans. To specify automatic primary key generation, give the prim-key-class element in
the ejb-jar-xml file the value java.lang.Object. CMP beans with automatically generated
primary keys can participate in relationships with other CMP beans. The Application Server
does not support database-generated primary key values.

If the database schema is created during deployment, the Application Server creates the schema
with the primary key column, then generates unique values for the primary key column at
runtime.

If the database schema is not created during deployment, the primary key column in the
mapped table must be of type NUMERIC with a precision of 19 or more, and must not be mapped
to any CMP field. The Application Server generates unique values for the primary key column
at runtime.

Fixed Length CHAR Primary Keys
If an existing database table has a primary key column in which the values vary in length, but the
type is CHAR instead of VARCHAR, the Application Server automatically trims any extra spaces
when retrieving primary key values. It is not a good practice to use a fixed length CHAR column
as a primary key. Use this feature with schemas that cannot be changed, such as a schema
inherited from a legacy application.

Managed Fields
A managed field is a CMP or CMR field that is mapped to the same database column as another
CMP or CMR field. CMP fields mapped to the same column and CMR fields mapped to exactly
the same column lists always have the same value in memory. For CMR fields that share only a
subset of their mapped columns, changes to the columns affect the relationship fields in
memory differently. Basically, the Application Server always tries to keep the state of the objects
in memory synchronized with the database.

Container-Managed Persistence Mapping

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008168

A managed field can have any “fetched-with” on page 335 subelement except <default/>.

BLOB Support
Binary Large Object (BLOB) is a data type used to store values that do not correspond to other
types such as numbers, strings, or dates. Java fields whose types implement
java.io.Serializable or are represented as byte[] can be stored as BLOBs.

If a CMP field is defined as Serializable, it is serialized into a byte[] before being stored in
the database. Similarly, the value fetched from the database is deserialized. However, if a CMP
field is defined as byte[], it is stored directly instead of being serialized and deserialized when
stored and fetched, respectively.

To enable BLOB support in the Application Server environment, define a CMP field of type
byte[] or a user-defined type that implements the java.io.Serializable interface. If you
map the CMP bean to an existing database schema, map the field to a column of type BLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle 8.1.7 and 9.x Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Platform Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 224.

For automatic mapping, you might need to change the default BLOB column length for the
generated schema using the schema-generator-properties element in sun-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>

<property>

<name>Employee.voiceGreeting.jdbc-type</name>

<value>BLOB</value>

</property>

<property>

<name>Employee.voiceGreeting.jdbc-maximum-length</name>

<value>10240</value>

</property>

...

</schema-generator-properties>

CLOB Support
Character Large Object (CLOB) is a data type used to store and retrieve very long text fields.
CLOBs translate into long strings.

Container-Managed Persistence Mapping

Chapter 7 • Using Container-Managed Persistence for Entity Beans 169

To enable CLOB support in the Application Server environment, define a CMP field of type
java.lang.String. If you map the CMP bean to an existing database schema, map the field to a
column of type CLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver
for Oracle 8.1.7 and 9.x Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Platform Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 224.

For automatic mapping, you might need to change the default CLOB column length for the
generated schema using the schema-generator-properties element in sun-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>

<property>

<name>Employee.resume.jdbc-type</name>

<value>CLOB</value>

</property>

<property>

<name>Employee.resume.jdbc-maximum-length</name>

<value>10240</value>

</property>

...

</schema-generator-properties>

Automatic Schema Generation
The automatic schema generation feature provided in the Application Server defines database
tables based on the fields in entity beans and the relationships between the fields. This insulates
developers from many of the database related aspects of development, allowing them to focus
on entity bean development. The resulting schema is usable as-is or can be given to a database
administrator for tuning with respect to performance, security, and so on.

This section addresses the following topics:

■ “Supported Data Types” on page 171
■ “Generation Options” on page 173

Automatic Schema Generation

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008170

Supported Data Types
CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL types.
Supported JDBC data types are as follows: BIGINT, BIT, BLOB, CHAR, CLOB, DATE,
DECIMAL, DOUBLE, FLOAT, INTEGER, NUMERIC, REAL, SMALLINT, TIME,
TIMESTAMP, TINYINT, VARCHAR.

The following table contains the mappings of Java types to JDBC types when automatic
mapping is used.

TABLE 7–1 Java Type to JDBC Type Mappings

Java Type JDBC Type Nullability

boolean BIT No

java.lang.Boolean BIT Yes

byte TINYINT No

java.lang.Byte TINYINT Yes

double DOUBLE No

java.lang.Double DOUBLE Yes

float REAL No

java.lang.Float REAL Yes

int INTEGER No

java.lang.Integer INTEGER Yes

long BIGINT No

java.lang.Long BIGINT Yes

short SMALLINT No

java.lang.Short SMALLINT Yes

java.math.BigDecimal DECIMAL Yes

java.math.BigInteger DECIMAL Yes

char CHAR No

java.lang.Character CHAR Yes

java.lang.String VARCHAR or CLOB Yes

Serializable BLOB Yes

Automatic Schema Generation

Chapter 7 • Using Container-Managed Persistence for Entity Beans 171

TABLE 7–1 Java Type to JDBC Type Mappings (Continued)
Java Type JDBC Type Nullability

byte[] BLOB Yes

java.util.Date DATE (Oracle only)

TIMESTAMP (all other databases)

Yes

java.sql.Date DATE Yes

java.sql.Time TIME Yes

java.sql.Timestamp TIMESTAMP Yes

Note – Java types assigned to CMP fields must be restricted to Java primitive types, Java
Serializable types, java.util.Date, java.sql.Date, java.sql.Time, or
java.sql.Timestamp. An entity bean local interface type (or a collection of such) can be the
type of a CMR field.

The following table contains the mappings of JDBC types to database vendor-specific types
when automatic mapping is used. For a list of the JDBC drivers currently supported by the
Application Server, see the Sun Java System Application Server Platform Edition 8.2 Release
Notes. For configurations of supported and other drivers, see “Configurations for Specific JDBC
Drivers” on page 224.

TABLE 7–2 Mappings of JDBC Types to Database Vendor Specific Types

JDBC Type Derby Oracle DB2 Sybase ASE 12.5 MS-SQL Server

BIT SMALLINT SMALLINT SMALLINT TINYINT BIT

TINYINT SMALLINT SMALLINT SMALLINT TINYINT TINYINT

SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER

BIGINT BIGINT NUMBER BIGINT NUMERIC NUMERIC

REAL REAL REAL FLOAT FLOAT REAL

DOUBLE DOUBLE PRECISION DOUBLE PRECISION DOUBLE DOUBLE PRECISION FLOAT

DECIMAL(p,s) DECIMAL(p,s) NUMBER(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

VARCHAR VARCHAR VARCHAR2 VARCHAR VARCHAR VARCHAR

DATE DATE DATE DATE DATETIME DATETIME

Automatic Schema Generation

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008172

TABLE 7–2 Mappings of JDBC Types to Database Vendor Specific Types (Continued)
JDBC Type Derby Oracle DB2 Sybase ASE 12.5 MS-SQL Server

TIME TIME DATE TIME DATETIME DATETIME

TIMESTAMP TIMESTAMP TIMESTAMP(9) TIMESTAMP DATETIME DATETIME

BLOB BLOB BLOB BLOB IMAGE IMAGE

CLOB CLOB CLOB CLOB TEXT NTEXT

Generation Options
Deployment descriptor elements or asadmin command line options can control automatic
schema generation by:

■ Creating tables during deployment
■ Dropping tables during undeployment
■ Dropping and creating tables during redeployment
■ Specifying the database vendor
■ Specifying that table names are unique
■ Specifying type mappings for individual CMP fields

Note – Before using these options, make sure you have a properly configured CMP resource. See
“Configuring the CMP Resource” on page 177.

You can also use the deploytool to perform automatic mapping. For more information about
using the deploytool, see the “Create Database Mapping” topic in the deploytool’s online help.

For a read-only bean, do not create the database schema during deployment. Instead, work with
your database administrator to populate the data into the tables. See “Using Read-Only Beans”
on page 154.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers. See “Version Column Consistency Checking” on page 182.

The following optional data subelements of the cmp-resource element in the sun-ejb-jar.xml
file control the automatic creation of database tables at deployment. For more information
about the cmp-resource element, see “cmp-resource” on page 316 and “Configuring the CMP
Resource” on page 177.

Automatic Schema Generation

Chapter 7 • Using Container-Managed Persistence for Entity Beans 173

TABLE 7–3 sun-ejb-jar.xmlGeneration Elements

Element Default Description

“create-tables-at-deploy” on page 323 false If true, causes database tables to be created for beans that are
automatically mapped by the EJB container. If false, does not create
tables.

“drop-tables-at-undeploy” on page 326 false If true, causes database tables that were automatically created when the
bean(s) were last deployed to be dropped when the bean(s) are
undeployed. If false, does not drop tables.

“database-vendor-name” on page 324 none Specifies the name of the database vendor for which tables are created.
Allowed values are db2, mssql, oracle, derby, and sybase,
case-insensitive.

If no value is specified, a connection is made to the resource specified by
the jndi-name subelement of the cmp-resource element in the
sun-ejb-jar.xml file, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized,
SQL-92 compliance is presumed.

“schema-generator-properties” on page 383 none Specifies field-specific column attributes in property subelements. Each
property name is of the following format:

bean-name.field-name.attribute

For example:

Employee.firstName.jdbc-type

Column attributes are described in Table A–95.

Also allows you to set the use-unique-table-names property. If true,
this property specifies that generated table names are unique within each
application server domain. The default is false.

For further information and an example, see
“schema-generator-properties” on page 383.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment:

TABLE 7–4 asadmin deploy and asadmin deploydir Generation Options

Option Default Description

--createtables none If true, causes database tables to be created for beans that need them. If
false, does not create tables. If not specified, the value of the
create-tables-at-deploy attribute in sun-ejb-jar.xml is used.

Automatic Schema Generation

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008174

TABLE 7–4 asadmin deploy and asadmin deploydir Generation Options (Continued)
Option Default Description

--dropandcreatetables none If true, and if tables were automatically created when this application was
last deployed, tables from the earlier deployment are dropped and fresh ones
are created.

If true, and if tables were not automatically created when this application
was last deployed, no attempt is made to drop any tables. If tables with the
same names as those that would have been automatically created are found,
the deployment proceeds, but a warning indicates that tables could not be
created.

If false, settings of create-tables-at-deploy or
drop-tables-at-undeploy in the sun-ejb-jar.xml file are overridden.

--uniquetablenames none If true, specifies that table names are unique within each application server
domain. If not specified, the value of the use-unique-table-names property
in sun-ejb-jar.xml is used.

--dbvendorname none Specifies the name of the database vendor for which tables are created.
Allowed values are db2, mssql, oracle, derby, and sybase, case-insensitive.

If not specified, the value of the database-vendor-name attribute in
sun-ejb-jar.xml is used.

If no value is specified, a connection is made to the resource specified by the
jndi-name subelement of the cmp-resource element in the
sun-ejb-jar.xml file, and the database vendor name is read. If the
connection cannot be established, or if the value is not recognized, SQL-92
compliance is presumed.

If one or more of the beans in the module are manually mapped and you use any of the asadmin
deploy or asadmin deploydir options, the deployment is not harmed in any way, but the
options have no effect, and a warning is written to the server log.

If the deploytool mapped one or more of the beans, the --uniquetablenames option of asadmin
deploy or asadmin deploydir has no effect. The uniqueness of the table names was established
when deploytool created the mapping.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment:

Automatic Schema Generation

Chapter 7 • Using Container-Managed Persistence for Entity Beans 175

TABLE 7–5 asadmin undeploy Generation Options

Option Default Description

--droptables none If true, causes database tables that were automatically created when the
bean(s) were last deployed to be dropped when the bean(s) are undeployed.
If false, does not drop tables.

If not specified, the value of the drop-tables-at-undeploy attribute in
sun-ejb-jar.xml is used.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy

commands, see the Sun Java System Application Server Platform Edition 8.2 Reference Manual.

When command line and sun-ejb-jar.xml options are both specified, the asadmin options
take precedence.

Schema Capture
This section addresses the following topics:

■ “Automatic Database Schema Capture” on page 176
■ “Using the capture-schema Utility” on page 176

Automatic Database Schema Capture
You can configure a CMP bean in Application Server to automatically capture the database
metadata and save it in a .dbschema file during deployment. If the sun-cmp-mappings.xml file
contains an empty <schema/> entry, the cmp-resource entry in the sun-ejb-jar.xml file is
used to get a connection to the database, and automatic generation of the schema is performed.

Note – Before capturing the database schema automatically, make sure you have a properly
configured CMP resource. See “Configuring the CMP Resource” on page 177.

Using the capture-schema Utility
You can use the capture-schema command to manually generate the database metadata
(.dbschema) file. For details, see the Sun Java System Application Server Platform Edition 8.2
Reference Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to
provide the persistence engine with information about the structure of the database (the
schema).

Schema Capture

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008176

Keep the following in mind when using the capture-schema command:

■ The name of a .dbschema file must be unique across all deployed modules in a domain.
■ If more than one schema is accessible for the schema user, more than one table with the

same name might be captured if the -schemaname parameter of capture-schema is not set.
■ The schema name must be upper case.
■ Table names in databases are case-sensitive. Make sure that the table name matches the

name in the database.
■ An Oracle database user running the capture-schema command needs ANALYZE ANY

TABLE privileges if that user does not own the schema. These privileges are granted to the
user by the database administrator.

Configuring the CMP Resource
An EJB module that contains CMP beans requires the JNDI name of a JDBC resource or
Persistence Manager resource in the jndi-name subelement of the “cmp-resource” on page 316
element in the sun-ejb-jar.xml file. If the JNDI name refers to a JDBC Resource, set
PersistenceManagerFactory properties as properties of the cmp-resource element in the
sun-ejb-jar.xml file.

In the Administration Console, open the Resources component, then select JDBC or
Persistence Managers. Refer to the Sun Java System Application Server Platform Edition 8.2
Administration Guide for information on creating a new CMP resource.

For a list of the JDBC drivers currently supported by the Application Server, see the Sun Java
System Application Server Platform Edition 8.2 Release Notes. For configurations of supported
and other drivers, see “Configurations for Specific JDBC Drivers” on page 224.

For example, if the JDBC resource has the JNDI name jdbc/MyDatabase, set the CMP resource
in the sun-ejb-jar.xml file as follows:

<cmp-resource>

<jndi-name>jdbc/MyDatabase</jndi-name>

</cmp-resource>

For another example, if the Persistence Manager has the JNDI name jdo/MyDatabase, set the
CMP resource in the sun-ejb-jar.xml file as follows:

<cmp-resource>

<jndi-name>jdo/MyDatabase</jndi-name>

</cmp-resource>

Configuring the CMP Resource

Chapter 7 • Using Container-Managed Persistence for Entity Beans 177

Configuring Queries for 1.1 Finders
This section contains the following topics:

■ “About JDOQL Queries” on page 178
■ “Query Filter Expression” on page 179
■ “Query Parameters” on page 180
■ “Query Variables” on page 180
■ “JDOQL Examples” on page 180

About JDOQL Queries
The Enterprise JavaBeans Specification, v1.1 spec does not specify the format of the finder
method description. The Application Server uses an extension of Java Data Objects Query
Language (JDOQL) queries to implement finder and selector methods. (For EJB 2.0 and later,
the container automatically maps an EJB QL query to JDOQL.) You can specify the following
elements of the underlying JDOQL query:

■ Filter expression - A Java-like expression that specifies a condition that each object
returned by the query must satisfy. Corresponds to the WHERE clause in EJB QL.

■ Query parameter declaration - Specifies the name and the type of one or more query input
parameters. Follows the syntax for formal parameters in the Java language.

■ Query variable declaration - Specifies the name and type of one or more query variables.
Follows the syntax for local variables in the Java language. A query filter might use query
variables to implement joins.

■ Query ordering declaration - Specifies the ordering expression of the query. Corresponds
to the ORDER BY clause of EJB QL.

The Application Server specific deployment descriptor (sun-ejb-jar.xml) provides the
following elements to store the EJB 1.1 finder method settings:

query-filterquery-paramsquery-variablesquery-ordering

The bean developer uses these elements to construct a query. When the finder method that uses
these elements executes, the values of these elements are used to execute a query in the database.
The objects from the JDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ejbFind method.

The JDO specification (see JSR 12) provides a comprehensive description of JDOQL. The
following information summarizes the elements used to define EJB 1.1 finders.

Configuring Queries for 1.1 Finders

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008178

Query Filter Expression
The filter expression is a String containing a boolean expression evaluated for each instance of
the candidate class. If the filter is not specified, it defaults to true. Rules for constructing valid
expressions follow the Java language, with the following differences:
■ Equality and ordering comparisons between primitives and instances of wrapper classes are

valid.
■ Equality and ordering comparisons of Date fields and Date parameters are valid.
■ Equality and ordering comparisons of String fields and String parameters are valid.
■ White space (non-printing characters space, tab, carriage return, and line feed) is a

separator and is otherwise ignored.
■ The following assignment operators are not supported:

■ =, +=, etc.
■ pre- and post-increment
■ pre- and post-decrement

■ Methods, including object construction, are not supported, except for:

Collection.contains(Object o)

Collection.isEmpty()

String.startsWith(String s)

String.endsWith(String e)

In addition, the Application Server supports the following nonstandard JDOQL methods:

String.like(String pattern)

String.like(String pattern, char escape)

String.substring(int start, int length)

String.indexOf(String str)

String.indexOf(String str, int start)

String.length()

Math.abs(numeric n)

Math.sqrt(double d)

■ Navigation through a null-valued field, which throws a NullPointerException, is treated as
if the sub-expression returned false.

Note – Comparisons between floating point values are by nature inexact. Therefore, equality
comparisons (== and !=) with floating point values should be used with caution. Identifiers in
the expression are considered to be in the name space of the candidate class, with the addition of
declared parameters and variables. As in the Java language, this is a reserved word, and refers
to the current instance being evaluated.

The following expressions are supported:

Configuring Queries for 1.1 Finders

Chapter 7 • Using Container-Managed Persistence for Entity Beans 179

■ Operators applied to all types where they are defined in the Java language:
■ relational operators (==, !=, >, <, >=, <=)
■ boolean operators (&, &&, |, ||, ~, !)
■ arithmetic operators (+, -, *, /)

String concatenation is supported only for String + String.
■ Parentheses to explicitly mark operator precedence
■ Cast operator
■ Promotion of numeric operands for comparisons and arithmetic operations. The rules for

promotion follow the Java rules (see the numeric promotions of the Java language
specification) extended by BigDecimal, BigInteger, and numeric wrapper classes.

Query Parameters
The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Query Variables
The type declarations follow the Java syntax for local variable declarations.

JDOQL Examples
This section provides a few query examples.

Example 1
The following query returns all players called Michael. It defines a filter that compares the name
field with a string literal:

name == "Michael"

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>

<method-name>findPlayerByName</method-name>

<query-filter>name == "Michael"</query-filter>
</finder>

Configuring Queries for 1.1 Finders

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008180

Example 2
This query returns all products in a specified price range. It defines two query parameters which
are the lower and upper bound for the price: double low, double high. The filter compares the
query parameters with the price field:

low < price && price < high

Query ordering is set to price ascending.

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>

<method-name>findInRange</method-name>

<query-params>double low, double high</query-params>

<query-filter>low < price && price < high</query-filter>

<query-ordering>price ascending</query-ordering>

</finder>

Example 3
This query returns all players having a higher salary than the player with the specified name. It
defines a query parameter for the name java.lang.String name. Furthermore, it defines a
variable to which the player’s salary is compared. It has the type of the persistence capable class
that corresponds to the bean:

mypackage.PlayerEJB_170160966_JDOState player

The filter compares the salary of the current player denoted by the this keyword with the salary
of the player with the specified name:

(this.salary > player.salary) && (player.name == name)

The finder element of the sun-ejb-jar.xml file looks like this:

<finder>

<method-name>findByHigherSalary</method-name>

<query-params>java.lang.String name</query-params>

<query-filter>

(this.salary > player.salary) && (player.name == name)

</query-filter>

<query-variables>

mypackage.PlayerEJB_170160966_JDOState player

</query-variables>

</finder>

Configuring Queries for 1.1 Finders

Chapter 7 • Using Container-Managed Persistence for Entity Beans 181

Performance-Related Features
The Application Server provides the following features to enhance performance or allow more
fine-grained data checking. These features are supported only for entity beans with container
managed persistence.

■ “Version Column Consistency Checking” on page 182
■ “Relationship Prefetching” on page 183
■ “Read-Only Beans” on page 183

Note – Use of any of these features results in a non-portable application.

Version Column Consistency Checking
The version consistency feature saves the bean state at first transactional access and caches it
between transactions. The state is copied from the cache instead of being read from the
database. The bean state is verified by primary key and version column values at flush for
custom queries (for dirty instances only) and at commit (for clean and dirty instances).

▼ To use version consistency

Create the version column in the primary table.

Give the version column a numeric data type.

Provide appropriate update triggers on the version column.

These triggers must increment the version column on each update of the specified row.

Specify the version column.

This is specified in the “check-version-of-accessed-instances” on page 311 subelement of the
“consistency” on page 320 element in the sun-cmp-mappings.xml file.

Map the CMP bean to an existing schema.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers.

1

2

3

4

5

Performance-Related Features

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008182

Relationship Prefetching
In many cases when an entity bean’s state is fetched from the database, its relationship fields are
always accessed in the same transaction. Relationship prefetching saves database round trips by
fetching data for an entity bean and those beans referenced by its CMR fields in a single
database round trip.

To enable relationship prefetching for a CMR field, use the “default” on page 324 subelement of
the “fetched-with” on page 335 element in the sun-cmp-mappings.xml file. By default, these
CMR fields are prefetched whenever findByPrimaryKey or a custom finder is executed for the
entity, or when the entity is navigated to from a relationship. (Recursive prefetching is not
supported, because it does not usually enhance performance.) To disable prefetching for
specific custom finders, use the “prefetch-disabled” on page 367 element in the
sun-ejb-jar.xml file.

Read-Only Beans
Another feature that the Application Server provides is the read-only bean, an entity bean that is
never modified by an EJB client. Read-only beans avoid database updates completely.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is
updated by another bean, the read-only bean can be notified to refresh its cached data.

The Application Server provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds element in the sun-ejb-jar.xml file
and the trans-attribute element in the ejb-jar.xml file, it is easy to configure a read-only
bean that is (a) always refreshed, (b) periodically refreshed, (c) never refreshed, or (d)
programmatically refreshed.

Access to CMR fields of read-only beans is not supported. Deployment will succeed, but an
exception will be thrown at runtime if a get or set method is invoked.

Read-only beans are best suited for situations where the underlying data never changes, or
changes infrequently. For further information and usage guidelines, see “Using Read-Only
Beans” on page 154.

Performance-Related Features

Chapter 7 • Using Container-Managed Persistence for Entity Beans 183

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that pertain to using CMP
entity beans.

■ “Eager Loading of Field State” on page 184
■ “Restrictions on Remote Interfaces” on page 184
■ “Sybase Finder Limitation” on page 184
■ “Date and Time Fields as CMP Field Types” on page 185
■ “No Support for lock-when-loaded on Sybase and DB2” on page 185
■ “Set RECURSIVE_TRIGGERS to false on MSSQL” on page 186
■ “MySQL Database Restrictions” on page 186

Eager Loading of Field State
By default, the EJB container loads the state for all CMP fields (excluding relationship, BLOB,
and CLOB fields) before invoking the ejbLoad method of the abstract bean. This approach
might not be optimal for entity objects with large state if most business methods require access
to only parts of the state. If this is an issue, use the “fetched-with” on page 335 element in
sun-cmp-mappings.xml for fields that are used infrequently.

Restrictions on Remote Interfaces
The following restrictions apply to the remote interface of an entity bean that uses CMP:

■ Do not expose the get and set methods for CMR fields or the persistence collection classes
that are used in container-managed relationships through the remote interface of the bean.
However, you are free to expose the get and set methods that correspond to the CMP fields
of the entity bean through the bean’s remote interface.

■ Do not expose the container-managed collection classes that are used for relationships
through the remote interface of the bean.

■ Do not expose local interface types or local home interface types through the remote
interface or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface, and
can be included in the client EJB JAR file.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

Restrictions and Optimizations

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008184

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

To avoid this error, make sure the finder method input is less than 255 characters.

Date and Time Fields as CMP Field Types
If a CMP field type is a Java date or time type (java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp), make sure that the field value exactly matches the value
in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())

beanHome.create(myDate, ...);

For some databases, this code results in only the year, month, and date portion of the field value
being stored in the database. Later on if the client tries to find this bean by primary key as
follows:

myBean = beanHome.findByPrimaryKey(myDate);

the bean is not found in the database because the value does not match the one that is stored in
the database.

Similar problems can happen if the database truncates the timestamp value while storing it, or if
a custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date, java.sql.Date,
and java.sql.Time are mapped to Oracle’s DATE data type. Fields of type
java.sql.Timestamp are mapped to Oracle’s TIMESTAMP(9) data type.

No Support for lock-when-loaded on Sybase and DB2
The “lock-when-loaded” on page 349 consistency level is implemented by placing update locks
on the data corresponding to a bean when the data is loaded from the database. There is no
suitable mechanism available on Sybase and DB2 databases to implement this feature.
Therefore, the lock-when-loaded “consistency” on page 320 level is not supported on Sybase
and DB2 databases.

Restrictions and Optimizations

Chapter 7 • Using Container-Managed Persistence for Entity Beans 185

Set RECURSIVE_TRIGGERS to false on MSSQL
For version consistency triggers on MSSQL, the property RECURSIVE_TRIGGERS must be set to
false, which is the default. If set to true, triggers throw a java.sql.SQLException.

Set this property as follows:

EXEC sp_dboption ’database-name’, ’recursive triggers’, ’FALSE’

go

You can test this property as follows:

SELECT DATABASEPROPERTYEX(’database-name’, ’IsRecursiveTriggersEnabled’)

go

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the Application Server
for CMP.

■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields
in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.

■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an
error message, start the MySQL database in strict SQL mode.

■ The order of fields in a foreign key index must match the order in the explicitly created
index on the primary table.

■ The CREATE TABLE syntax in the SQL file must end with the following line:

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

Restrictions and Optimizations

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008186

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message:

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ Change the trigger create format from the following:

CREATE TRIGGER T_UNKNOWNPKVC1

BEFORE UPDATE ON UNKNOWNPKVC1

FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)

BEGIN

:NEW.VERSION := :OLD.VERSION + 1;

END;

/

to the following:

DELIMITER |

CREATE TRIGGER T_UNKNOWNPKVC1

BEFORE UPDATE ON UNKNOWNPKVC1

FOR EACH ROW

WHEN (NEW.VERSION = OLD.VERSION)

BEGIN

:NEW.VERSION := :OLD.VERSION + 1;

END

|

DELIMITER ;

For more information, see http://dev.mysql.com/doc/mysql/en/create-trigger.html.
■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an

example that illustrates the issue:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

Restrictions and Optimizations

Chapter 7 • Using Container-Managed Persistence for Entity Beans 187

http://forums.mysql.com/read.php?39,31326,31404
http://dev.mysql.com/doc/mysql/en/create-trigger.html

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message:

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

■ When an SQL script has foreign key constraints defined, capture-schema fails to capture
the table information correctly. To work around the problem, remove the constraints and
then run capture-schema. Here is an example that illustrates the issue:

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,

OWNER VARCHAR(256),

FK_FOR_ACCESSPRIVILEGES VARCHAR(256),

CONSTRAINT FK_ACCESSPRIVILEGE FOREIGN KEY (FK_FOR_ACCESSPRIVILEGES)

REFERENCES ACCESSPRIVILEGESBEANTABLE (ROOT)

) ENGINE=InnoDB;

To resolve this issue, change the table creation script to the following:

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

NOT NULL PRIMARY KEY,

CONNECTEDUSERS BLOB NULL,

OWNER VARCHAR(256),

FK_FOR_ACCESSPRIVILEGES VARCHAR(256)

) ENGINE=InnoDB;

Restrictions and Optimizations

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008188

http://bugs.mysql.com/bug.php?id=12449
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

Developing Java Clients

This chapter describes how to develop, assemble, and deploy J2EE Application Clients in the
following sections:

■ “Introducing the Application Client Container” on page 189
■ “Developing Clients Using the ACC” on page 190
■ “Developing Clients Without the ACC” on page 196

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and other files
that are required for and distributed with Java client programs that execute in their own Java
Virtual Machine (JVM). The ACC manages the execution of J2EE application client
components, which are used to access a variety of J2EE services (such as JMS resources, EJB
components, web services, security, and so on.) from a JVM outside the Sun Java System
Application Server.

The ACC communicates with the Application Server using RMI-IIOP protocol and manages
the details of RMI-IIOP communication using the client ORB that is bundled with it.
Compared to other J2EE containers, the ACC is lightweight.

Security
The ACC is responsible for collecting authentication data such as the username and password
and sending the collected data to the Application Server. The Application Server then processes
the authentication data using the configured JavaTM Authentication and Authorization Service
(JAAS) module.

Authentication techniques are provided by the client container, and are not under the control of
the application client component. The container integrates with the platform’s authentication

8C H A P T E R 8

189

system. When you execute a client application, it displays a login window and collects
authentication data from the user. It also supports SSL (Secure Socket Layer)/IIOP if configured
and when necessary.

Naming
The client container enables the application clients to use the Java Naming and Directory
Interface (JNDI) to look up J2EE services (such as JMS resources, EJB components, web
services, security, and so on.) and to reference configurable parameters set at the time of
deployment.

Developing Clients Using the ACC
This section describes the procedure to develop, assemble, and deploy client applications using
the ACC. This section describes the following topics:

■ “To access an EJB component from an application client” on page 190
■ “To access a JMS resource from an application client” on page 192
■ “Running an Application Client Using the ACC” on page 193
■ “Packaging an Application Client Using the ACC” on page 193

For information about Java-based clients that are not packaged using the ACC, see “Developing
Clients Without the ACC” on page 196.

▼ To access an EJB component from an application client
In your client code, instantiate the InitialContext using the default (no argument)
constructor:
InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

In your client code, look up the home object by specifying the JNDI name of the home object as
specified in the ejb-jar.xml file.
For example:
Object ref = ctx.lookup("java:comp/env/ejb-ref-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

For more information about naming and lookups, see “Accessing the Naming Context” on
page 239.

1

2

Developing Clients Using the ACC

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008190

Define the ejb-ref elements in the application-client.xml file and the corresponding
sun-application-client.xml file.
For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 297. For a general explanation of how to map JNDI
names using reference elements, see “Mapping References” on page 243.

Deploy the application client and EJB component together in an application.
For more information on deployment, see “Tools for Deployment” on page 93. To get the client
JAR file, use the --retrieve option.

To retrieve the stubs and ties whether or not you requested their generation during deployment,
use the asadmin get-client-stubs command. For details, see the Sun Java System Application
Server Platform Edition 8.2 Reference Manual.

Ensure that the client JAR file includes the following files:

■ a Java class to access the bean
■ application-client.xml - J2EE 1.4 application client deployment descriptor.
■ sun-application-client.xml - Application Server specific client deployment descriptor.

For information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 297.

■ The MANIFEST.MF file. This file contains the main class, which states the complete package
prefix and class name of the Java client.

You can package the application client using the package-appclient script. This is optional.
See “Packaging an Application Client Using the ACC” on page 193.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

■ appserv-rt.jar - available at install-dir/lib
■ j2ee.jar - available at install-dir/lib
■ The client JAR file

To access EJB components that are residing in a remote system, make the following changes to
the sun-acc.xml file:

■ Define the “target-server” on page 401 element’s address attribute to reference the remote
server machine.

■ Define the “target-server” on page 401 element’s port attribute to reference the ORB port on
the remote server.

This information can be obtained from the domain.xml file on the remote system. For more
information on domain.xml file, see the Sun Java System Application Server Platform Edition 8.2
Administration Reference.

3

4

5

6

7

Developing Clients Using the ACC

Chapter 8 • Developing Java Clients 191

For more information about the sun-acc.xml file, see “The sun-acc.xml File” on page 298.

Run the application client. See “Running an Application Client Using the ACC”on page 193.

▼ To access a JMS resource from an application client
Create a JMS client.

For detailed instructions on developing a JMS client, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181.

Next, configure a JMS resource on the Application Server.

For information on configuring JMS resources, see “Creating JMS Resources: Destinations and
Connection Factories” on page 249.

Define the resource-ref elements in the application-client.xml file and the corresponding
sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 297. For a general explanation of how to map JNDI
names using reference elements, see “Mapping References” on page 243.

Ensure that the client JAR file includes the following files:

■ A Java class to access the resource.
■ application-client.xml - J2EE 1.4 application client deployment descriptor.
■ sun-application-client.xml - Application Server specific client deployment descriptor.

For information on the sun-application-client.xml file, see “The
sun-application-client.xml file” on page 297.

■ The MANIFEST.MF file. This file contains the main class, which states the complete package
prefix and class name of the Java client.

You can package the application client using the package-appclient script. This is optional.
See “Packaging an Application Client Using the ACC” on page 193.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

■ appserv-rt.jar - available at install-dir/lib
■ j2ee.jar - available at install-dir/lib
■ imqjmsra.jar - available at install-dir/lib/install/aplications/jmsra
■ The client JAR file

8

1

2

3

4

5

Developing Clients Using the ACC

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008192

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

Run the application client.

See “Running an Application Client Using the ACC” on page 193.

Running an Application Client Using the ACC
To run an application client, launch the ACC using the appclient script. For details, see the
Sun Java System Application Server Platform Edition 8.2 Reference Manual.

Packaging an Application Client Using the ACC
The package-appclient script, located in the install-dir/bin directory, is used to package a
client application into a single appclient.jar file. Packaging an application client involves the
following main steps:

■ “Editing the Configuration File” on page 193
■ “Editing the appclient Script” on page 194
■ “Editing the sun-acc.xml File” on page 194
■ “Setting Security Options” on page 194
■ “To use the package-appclient script bundled with the Application Server” on page 195

Editing the Configuration File
Modify the environment variables in asenv.conf file located in the install-dir/config directory
as shown below:

■ $AS_INSTALL to reference the location where the package was un-jared plus /appclient.
For example: $AS_INSTALL=/install-dir/appclient.

■ $AS_NSS to reference the location of the NSS libraries. For example:

UNIX:

$AS_NSS=/install-dir/appclient/lib

WINDOWS:

%AS_NSS%=\install-dir\appclient\bin
■ $AS_JAVA to reference the location where the JDK is installed.
■ $AS_ACC_CONFIG to reference the configuration XML file (sun-acc.xml). The sun-acc.xml

is located at install-dir/config.
■ $AS_IMQ_LIB to reference the imq home. Use domain-dir/imq/lib.

6

Developing Clients Using the ACC

Chapter 8 • Developing Java Clients 193

Editing the appclient Script
Modify the appclient script file as follows:

UNIX:

Change $CONFIG_HOME/asenv.conf to your-ACC-dir/config/asenv.conf.

Windows:

Change %CONFIG_HOME%\config\asenv.bat to your-ACC-dir\config\asenv.bat

Editing the sun-acc.xml File
Modify sun-acc.xml file to set the following attributes:

■ Ensure that the DOCTYPE references install-dir/lib/dtds to your-ACC-dir/lib/dtds.
■ Ensure that the <target-server> address attribute references the remote server machine.
■ Ensure that the <target-server> port attribute references the ORB port on the remote

server.
■ To log the messages in a file, specify a file name for the log-service element’s file

attribute. You can also set the log level. For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE client-container SYSTEM

"file:install-dir/lib/dtds/sun-application-client-container_1_0.dtd">
<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">
<log-service level="WARNING"/>

</client-container>

For more information on the sun-acc.xml file, see “The sun-acc.xml File” on page 298.

Setting Security Options
You can run the application client using SSL with certificate authentication. To set the security
options, modify the sun-acc.xml file as shown in the code illustration below. For more
information on the sun-acc.xml file, see “The sun-acc.xml File” on page 298.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE client-container SYSTEM

"file:install-dir/lib/dtds/sun-application-client-container_1_0.dtd">
<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">
<security>

<ssl cert-nickname="cts"
ssl2-enabled="false"

Developing Clients Using the ACC

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008194

ssl2-ciphers="-rc4,-rc4export,-rc2,-rc2export,-des,-desede3"
ssl3-enabled="true"
ssl3-tls-ciphers="+rsa_rc4_128_md5,-rsa_rc4_40_md5,+rsa3_des_sha,

+rsa_des_sha,-rsa_rc2_40_md5,-rsa_null_md5,-rsa_des_56_sha,

-rsa_rc4_56_sha"
tls-enabled="true"
tls-rollback-enabled="true"/>

<cert-db path="ignored" password="ignored"/> <!-- not used -->

</security>

</target-server>

<client-credential user-name="j2ee" password="j2ee"/>
<log-service level="WARNING"/>

</client-container>

▼ To use the package-appclient script bundled with the Application
Server

Under install-dir /bindirectory, run the package-appclient script.

For details, see the Sun Java System Application Server Platform Edition 8.2 Reference Manual.

This creates an appclient.jar file and stores it under install-dir/lib/appclient/ directory.

Note – The appclient.jar file provides an application client container package targeted at
remote hosts and does not contain a server installation. You can run this file from a remote
machine with the same operating system as where it is created. That is, appclient.jar created
on a Solaris platform does not function on Windows.

Copy the install-dir /lib/appclient/appclient.jar file to the desired location.

The appclient.jar file contains the following files:

■ appclient/bin - contains the appclient script used to launch the ACC.
■ appclient/lib - contains the JAR and runtime shared library files.
■ appclient/lib/appclient - contains the following files:

■ sun-acc.xml - the ACC configuration file.
■ “client.policy” on page 196 file- the security manager policy file for the ACC.
■ appclientlogin.conf file - the login configuration file.
■ client.jar file - created during the deployment of the client application.

■ appclient/lib/dtds - contains sun-application_client-container_1_0.dtd, which is
the DTD corresponding to sun-acc.xml.

1

2

Developing Clients Using the ACC

Chapter 8 • Developing Java Clients 195

client.policy
The client.policy file is the J2SE policy file used by the application client. Each application
client has a client.policy file. The default policy file limits the permissions of J2EE deployed
application clients to the minimal set of permissions required for these applications to operate
correctly. If an application client requires more than this default set of permissions, edit the
client.policy file to add the custom permissions that your application client needs. Use the
J2SE standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, see
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html.

For more information about the permissions you can set in the client.policy file, see
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html.

Developing Clients Without the ACC
This section describes the procedure to create, assemble, and deploy a Java-based client that is
not packaged using the Application Client Container (ACC). This section describes the
following topics:

■ “To access an EJB component from a stand-alone client” on page 196
■ “To access an EJB component from a server-side module” on page 197
■ “To access a JMS resource from a stand-alone client” on page 198

For information about using the ACC, see “Developing Clients Using the ACC” on page 190.

▼ To access an EJB component from a stand-alone client
In your client code, instantiate the InitialContext:
InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

In the client code, look up the home object by specifying the JNDI name of the home object.
For example:
Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

For more information about naming and lookups, see “Accessing the Naming Context” on
page 239.

1

2

Developing Clients Without the ACC

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008196

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Deploy the EJB component to be accessed.
For more information on deployment, see “Tools for Deployment” on page 93.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

■ appserv-rt.jar - available at install-dir/lib
■ j2ee.jar - available at install-dir/lib

To access EJB components that are residing in a remote system, set the values for the Java
Virtual Machine startup options:
jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700).

This information can be obtained from the domain.xml file on the remote system. For more
information on domain.xml file, see the Sun Java System Application Server Platform Edition 8.2
Administration Reference.

Run the stand-alone client.
As long as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

▼ To access an EJB component from a server-side
module
A server-side module can be a servlet, another EJB component, or another type of module.

In your module code, instantiate the InitialContext:
InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

In the module code, look up the home object by specifying the JNDI name of the home object.
For example:
Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

For more information about naming and lookups, see “Accessing the Naming Context” on
page 239.

3

4

5

6

1

2

Developing Clients Without the ACC

Chapter 8 • Developing Java Clients 197

Deploy the EJB component to be accessed.

For more information on deployment, see “Tools for Deployment” on page 93.

To access EJB components that are residing in a remote system, set the values for the Java
Virtual Machine startup options:

jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"jvmarg value =

"-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700).

This information can be obtained from the domain.xml file on the remote system. For more
information on domain.xml file, see the Sun Java System Application Server Platform Edition 8.2
Administration Reference.

Deploy the module.

For more information on deployment, see “Tools for Deployment” on page 93.

▼ To access a JMS resource from a stand-alone client
Create a JMS client.

For detailed instructions on developing a JMS client, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181.

Next, configure a JMS resource on the Application Server.

For information on configuring JMS resources, see “Creating JMS Resources: Destinations and
Connection Factories” on page 249.

Copy the following JAR files to the client machine and include them in the classpath on the
client side:

■ appserv-rt.jar - available at install-dir/lib
■ j2ee.jar - available at install-dir/lib
■ imqjmsra.jar - available at install-dir/lib/install/aplications/jmsra

Set the values for the Java Virtual Machine startup options:
jvmarg value = "-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}"
jvmarg value = "-Dorg.omg.CORBA.ORBInitialPort=${ORBport}"

Here ORBhost is the Application Server hostname and ORBport is the ORB port number
(default is 3700).

3

4

5

1

2

3

4

Developing Clients Without the ACC

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008198

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

This information can be obtained from the domain.xml file. For more information on
domain.xml file, see the Sun Java System Application Server Platform Edition 8.2 Administration
Reference.

Run the stand-alone client.
As long as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

5

Developing Clients Without the ACC

Chapter 8 • Developing Java Clients 199

200

Developing Connectors

This chapter describes Sun Java System Application Server support for the J2EE Connector 1.5
architecture.

The J2EE Connector architecture provides a Java solution to the problem of connectivity
between multiple application servers and existing enterprise information systems (EISs). By
using the J2EE Connector architecture, EIS vendors no longer need to customize their product
for each application server. Application server vendors who conform to the J2EE Connector
architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms refer to
a resource adapter module that is developed in conformance with the J2EE Connector
Specification 1.5.

For more information about connectors, see the J2EE Connector architecture home page, at
http://java.sun.com/j2ee/connector/.

For connector examples, see
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors.

This chapter includes the following topics:

■ “Connector 1.5 Support in the Application Server” on page 202
■ “Deploying and Configuring a Stand-Alone Connector Module” on page 203
■ “Redeploying a Stand-Alone Connector Module” on page 204
■ “Deploying and Configuring an Embedded Resource Adapter” on page 204
■ “Advanced Connector Configuration Options” on page 205
■ “Inbound Communication Support” on page 208
■ “Configuring a Message Driven Bean to Use a Resource Adapter” on page 209

9C H A P T E R 9

201

http://java.sun.com/j2ee/connector/
http://developers.sun.com/prodtech/appserver/reference/techart/as8_connectors

Connector 1.5 Support in the Application Server
The Application Server supports the development and deployment of resource adapters that are
compatible with Connector 1.5 specification (and, for backward compatibility, the Connector
1.0 specification).

The Connector 1.0 specification defines the outbound connectivity system contracts between
the resource adapter and the Application Server. The Connector 1.5 specification introduces
major additions in defining system level contracts between the Application Server and the
resource adapter with respect to the following:
■ Inbound connectivity from an EIS - The Connector 1.5 defines the transaction and message

inflow system contracts for achieving inbound connectivity from an EIS. The message
inflow contract also serves as a standard message provider pluggability contract, thereby
allowing various providers of messaging systems to seamlessly plug in their products with
any application server that supports the message inflow contract.

■ Resource adapter life cycle management and thread management - These features are
available through the lifecycle and work management contracts.

Connector Architecture for JMS and JDBC
In the Administration Console, connector, JMS, and JDBC resources are handled differently,
but they use the same underlying Connector architecture. In the Application Server, all
communication to an EIS, whether to a message provider or an RDBMS, happens through the
Connector architecture. To provide JMS infrastructure to clients, the Application Server uses
the Sun Java System Message Queue software. To provide JDBC infrastructure to clients, the
Application Server uses its own JDBC system resource adapters. The application server
automatically makes these system resource adapters available to any client that requires them.

For more information about JMS in the Application Server, see Chapter 14, “Using the Java
Message Service.” For more information about JDBC in the Application Server, see Chapter 11,
“Using the JDBC API for Database Access.”

Connector Configuration
The Application Server does not need to use sun-ra.xml, which previous Application Server
versions used, to store server-specific deployment information inside a Resource Adapter
Archive (RAR) file. (However, the sun-ra.xml file is still supported for backward
compatibility.) Instead, the information is stored in the server configuration. As a result, you
can create multiple connector connection pools for a connection definition in a functional
resource adapter instance, and you can create multiple user-accessible connector resources
(that is, registering a resource with a JNDI name) for a connector connection pool. In addition,
dynamic changes can be made to connector connection pools and the connector resource
properties without restarting the Application Server.

Connector 1.5 Support in the Application Server

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008202

Deploying and Configuring a Stand-Alone Connector Module
You can deploy a stand-alone connector module using the Administration Console or the
asadmin command. For information about using the Administration Console, see the Sun Java
System Application Server Platform Edition 8.2 Administration Guide. For information about
using the asadmin command, see the Sun Java System Application Server Platform Edition 8.2
Reference Manual.

Deploying a stand-alone connector module allows multiple deployed J2EE applications to share
the connector module. A resource adapter configuration is automatically created for the
connector module.

▼ To deploy and configure a stand-alone connector
module
Deploy the connector module in one of the following ways.

■ In the Administration Console, open the Applications component and select Connector
Modules. When you deploy the connector module, a resource adapter configuration is
automatically created for the connector module.

■ Use the asadmin deploy or asadmin deploydir command. To override the default
configuration properties of a resource adapter, if necessary, use the asadmin
create-resource-adapter-config command.

Configure connector connection pools for the deployed connector module in one of the
following ways:

■ In the Administration Console, open the Resources component, select Connectors, and
select Connector Connection Pools.

■ Use the asadmin create-connector-connection-pool command.

Configure connector resources for the connector connection pools in one of the following ways.

■ In the Administration Console, open the Resources component, select Connectors, and
select Connector Resources.

■ Use the asadmin create-connector-resource command.

This associates a connector resource with a JNDI name.

Create an administered object for an inbound resource adapter, if necessary, in one of the
following ways:

■ In the Administration Console, open the Resources component, select Connectors, and
select Admin Object Resources.

1

2

3

4

Deploying and Configuring a Stand-Alone Connector Module

Chapter 9 • Developing Connectors 203

■ Use the asadmin create-admin-object command.

Redeploying a Stand-Alone Connector Module
Redeployment of a connector module maintains all connector connection pools, connector
resources, and administered objects defined for the previously deployed connector module.
You need not reconfigure any of these resources.

However, you should redeploy any dependent modules. A dependent module uses or refers to a
connector resource of the redeployed connector module. Redeployment of a connector module
results in the shared class loader reloading the new classes. Other modules that refer to the old
resource adapter classes must be redeployed to gain access to the new classes. For more
information about classloaders, see “Classloaders” on page 78.

During connector module redeployment, the server log provides a warning indicating that all
dependent applications should be redeployed. Client applications or application components
using the connector module’s resources may throw class cast exceptions if dependent
applications are not redeployed after connector module redeployment.

To disable automatic redeployment, set the --force option to false. In this case, if the
connector module has already been deployed, the Application Server provides an error
message.

Deploying and Configuring an Embedded Resource Adapter
A connector module can be deployed as a J2EE component in a J2EE application. Such
connectors are only visible to components residing in the same J2EE application. Simply deploy
this J2EE application as you would any other J2EE application.

You can create new connector connection pools and connector resources for a connector
module embedded within a J2EE application by prefixing the connector name with app-name#.
For example, if an application appX.ear has jdbcra.rar embedded within it, the connector
connection pools and connector resources refer to the connector module as appX#jdbcra.

However, an embedded connector module cannot be undeployed using the name
app-name#connector-name. To undeploy the connector module, you must undeploy the
application in which it is embedded.

The association between the physical JNDI name for the connector module in the Application
Server and the logical JNDI name used in the application component is specified in the
Application Server specific XML descriptor sun-ejb-jar.xml. You can either hand code this
association or use the deploytool to make this association. (For more information about using
the deploytool, see “deploytool” on page 43.)

Redeploying a Stand-Alone Connector Module

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008204

Advanced Connector Configuration Options
You can use these advanced connector configuration options:
■ “Thread Pools” on page 205
■ “Security Maps” on page 205
■ “Overriding Configuration Properties” on page 206
■ “Testing a Connection Pool” on page 206
■ “Handling Invalid Connections” on page 206
■ “Setting the Shutdown Timeout” on page 207
■ “Using Last Agent Optimization of Transactions” on page 207

Thread Pools
Connectors can submit work instances to the Application Server for execution. By default, the
Application Server services work requests for all connectors from its default thread pool.
However, you can associate a specific user-created thread pool to service work requests from a
connector. A thread pool can service work requests from multiple resource adapters. To create
a thread pool:
■ In the Administration Console, select Thread Pools under the relevant configuration. For

details, see the Sun Java System Application Server Platform Edition 8.2 Administration
Guide.

■ Use the asadmin create-threadpool command. For details, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual.

To associate a connector with a thread pool:
■ In the Administration Console, open the Applications component and select Connector

Modules. Deploy the module, or select the previously deployed module. Specify the name of
the thread pool in the Thread Pool ID field. For details, see the Sun Java System Application
Server Platform Edition 8.2 Administration Guide.

■ Use the --threadpoolid option of the asadmin create-resource-adapter-config
command. For details, see the Sun Java System Application Server Platform Edition 8.2
Reference Manual.

If you create a resource adapter configuration for a connector module that is already deployed,
the connector module deployment is restarted with the new configuration properties.

Security Maps
Create a security map for a connector connection pool to map an application principal or a user
group to a back end EIS principal. The security map is usually used in situations where one or
more EIS back end principals are used to execute operations (on the EIS) initiated by various
principals or user groups in the application.

Advanced Connector Configuration Options

Chapter 9 • Developing Connectors 205

To create or update security maps for a connector connection pool:
■ In the Administration Console, open the Resources component, select Connectors, select

Connector Connection Pools, and select the Security Maps tab. For details, see the Sun Java
System Application Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin create-connector-security-map command. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

If a security map already exists for a connector connection pool, the new security map is
appended to the previous one. The connector security map configuration supports the use of
the wildcard asterisk (*) to indicate all users or all user groups.

When an application principal initiates a request to an EIS, the Application Server first checks
for an exact match to a mapped back end EIS principal using the security map defined for the
connector connection pool. If there is no exact match, the Application Server uses the wild card
character specification, if any, to determined the mapped back end EIS principal.

Overriding Configuration Properties
You can override the properties specified in the ra.xml file of a resource adapter. Use the
asadmin create-resource-adapter-config command to create a configuration for a
resource adapter. Use this command’s --property option to specify a name-value pair for a
resource adapter property.

You can use the asadmin create-resource-adapter-config command either before or after
resource adapter deployment. If it is executed after deploying the resource adapter, the existing
resource adapter is restarted with the new properties. For details, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual.

Testing a Connection Pool
After configuring a connector connection pool, use the asadmin ping-connection-pool
command to test the health of the underlying connections. For details, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual.

Handling Invalid Connections
If a resource adapter generates a ConnectionErrorOccured event, the Application Server
considers the connection invalid and removes the connection from the connection pool.
Typically, a resource adapter generates a ConnectionErrorOccured event when it finds a
ManagedConnection object unusable. Reasons can be network failure with the EIS, EIS failure,
fatal problems with resource adapter, and so on. If the fail-all-connections property in the
connection pool configuration is set to true, all connections are destroyed and the pool is
recreated.

Advanced Connector Configuration Options

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008206

You can set the fail-all-connections configuration property during creation of a connector
connection pool. Or, you can use the asadmin set command to dynamically reconfigure a
previously set property. For details, see the Sun Java System Application Server Platform
Edition 8.2 Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method
getInvalidConnections to allow retrieval of the invalid connections. The Application Server
checks if the resource adapter implements this interface, and if it does, invalid connections are
removed when the connection pool is resized.

Setting the Shutdown Timeout
According to the Connector 1.5 specification, while an application server shuts down, all
resource adapters should be stopped. A resource adapter might hang during shutdown, since
shutdown is typically a resource intensive operation. To avoid such a situation, you can set a
timeout that aborts resource adapter shutdown if exceeded. The default timeout is 30 seconds
per resource adapter module. To configure this timeout:

■ In the Administration Console, select JMS/Connector Service under the relevant
configuration. For details, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

■ Use the following command:

asadmin set server-instance.connector-service.shutdown-timeout-in-seconds="num-secs"

For details, see the Sun Java System Application Server Platform Edition 8.2 Reference
Manual.

The Application Server deactivates all message-driven bean deployments before stopping a
resource adapter.

Using Last Agent Optimization of Transactions
Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resources must be XA. For more information about
transactions in the Application Server, see Chapter 12, “Using the Transaction Service.”

The Connector 1.5 specification requires that if a resource adapter supports XATransaction,
the ManagedConnection created from that resource adapter must support both distributed and
local transactions. Therefore, even if a resource adapter supports XATransaction, you can
configure its connector connection pools as non-XA or without transaction support for better
performance. A non-XA resource adapter becomes the last agent in the transactions in which it
participates.

Advanced Connector Configuration Options

Chapter 9 • Developing Connectors 207

The value of the connection pool configuration property transaction-support defaults to the
value of the transaction-support property in the ra.xml file. The connection pool
configuration property can override the ra.xml file property if the transaction level in the
connection pool configuration property is lower. If the value in the connection pool
configuration property is higher, it is ignored.

Inbound Communication Support
The Connector 1.5 specification defines the transaction and message inflow system contracts
for achieving inbound connectivity from an EIS. The message inflow contract also serves as a
standard message provider pluggability contract, thereby allowing various message providers to
seamlessly plug in their products with any application server that supports the message inflow
contract. In the inbound communication model, the EIS initiates all communication to an
application. An application can be composed of enterprise beans (session, entity, or
message-driven beans), which reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven bean.
This message-driven bean asynchronously consumes messages from a message provider. An
application can also synchronously send and receive messages directly using messaging style
APIs.

A resource adapter supporting inbound communication provides an instance of an
ActivationSpec JavaBean class for each supported message listener type. Each class contains a
set of configurable properties that specify endpoint activation configuration information
during message-driven bean deployment. The required-config-property element in the
ra.xml file provides a list of configuration property names required for each activation
specification. An endpoint activation fails if the required property values are not specified.
Values for the properties that are overridden in the message-driven bean’s deployment
descriptor are applied to the ActivationSpec JavaBean when the message-driven bean is
deployed.

Administered objects can also be specified for a resource adapter, and these JavaBeans are
specific to a messaging style or message provider. For example, some messaging styles may need
applications to use special administered objects (such as Queue and Topic objects in JMS).
Applications use these objects to send and synchronously receive messages using connection
objects using messaging style APIs. For more information about administered objects, see
Chapter 14, “Using the Java Message Service.”

Inbound Communication Support

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008208

Configuring a Message Driven Bean to Use a Resource Adapter
The Connectors 1.5 specification’s message inflow contract provides a generic mechanism to
plug in a wide-range of message providers, including JMS, into a J2EE-compatible application
server. Message providers use a resource adapter and dispatch messages to message endpoints,
which are implemented as message-driven beans.

The message-driven bean developer provides activation configuration information in the
message-driven bean’s ejb-jar.xml file. Configuration information includes
messaging-style-specific configuration details, and possibly message-provider-specific details as
well. The message-driven bean deployer uses this configuration information to set up the
activation specification JavaBean. The activation configuration properties specified in
ejb-jar.xml override configuration properties in the activation specification definition in the
ra.xml file.

According to the EJB specification, the messaging-style-specific descriptor elements contained
within the activation configuration element are not specified because they are specific to a
messaging provider. In the following sample message-driven bean ejb-jar.xml, a
message-driven bean has the following activation configuration property names:
destinationType, SubscriptionDurability, and MessageSelector.

<!-- A sample MDB that listens to a JMS Topic -->

<!-- message-driven bean deployment descriptor -->

...

<activation-config>

<activation-config-property>

<activation-config-property-name>

destinationType

</activation-config-property-name>

<activation-config-property-value>

javax.jms.Topic

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

SubscriptionDurability

</activation-config-property-name>

<activation-config-property-value>

Durable

</activation-config-property-value>

</activation-config-property>

<activation-config-property>

<activation-config-property-name>

MessageSelector

</activation-config-property-name>

<activation-config-property-value>

JMSType = ’car’ AND color = ’blue’

Configuring a Message Driven Bean to Use a Resource Adapter

Chapter 9 • Developing Connectors 209

</activation-config-property-value>

</activation-config-property>

...

</activation-config>

...

When the message-driven bean is deployed, the value for the resource-adapter-mid element
in the sun-ejb-jar.xml file is set to the resource adapter module name that delivers messages
to the message endpoint (to the message-driven bean). In the following example, the jmsra JMS
resource adapter, which is the bundled resource adapter for the Sun Java System Message
Queue message provider, is specified as the resource adapter module identifier for the
SampleMDB bean.

<sun-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

<ejb>

<ejb-name>SampleMDB</ejb-name>

<jndi-name>SampleQueue</jndi-name>

<!-- JNDI name of the destination from which messages would be

delivered from MDB needs to listen to -->

...

</ejb>

<mdb-resource-adapter>

<resource-adapter-mid>jmsra</resource-adapter-mid>

<!-- Resource Adapter Module Id that would deliver messages to

this message endpoint -->

</mdb-resource-adapter>

...

</sun-ejb-jar>

When the message-driven bean is deployed, the Application Server uses the
resourceadapter-mid setting to associate the resource adapter with a message endpoint
through the message inflow contract. This message inflow contract with the application server
gives the resource adapter a handle to the MessageEndpointFactory and the ActivationSpec
JavaBean, and the adapter uses this handle to deliver messages to the message endpoint
instances (which are created by the MessageEndpointFactory).

When a message-driven bean first created for use on the Application Server 7 is deployed, the
Connector runtime transparently transforms the previous deployment style to the current
connector-based deployment style. If the deployer specifies neither a resource-adapter-mid
property nor the Message Queue resource adapter’s activation configuration properties, the
Connector runtime maps the message-driven bean to the jmsra system resource adapter and
converts the JMS-specific configuration to the Message Queue resource adapter’s activation
configuration properties.

Configuring a Message Driven Bean to Use a Resource Adapter

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008210

Example Resource Adapter for Inbound
Communication
The inbound sample connector bundled with the Application Server is a good example of an
application utilizing the inbound connectivity contract of the J2EE Connector Architecture 1.5
specification. This sample connector is available at
install-dir/samples/connectors/apps/mailconnector.

This example connector shows how to create an inbound J2EE Connector Architecture
1.5-compliant resource adapter and deploy its components. It shows how these resource
adapters interact with other application components. The inbound sample resource adapter
allows message endpoints (that is, message-driven beans) to receive email messages delivered to
a specific mailbox folder on a given mail server.

The application that is bundled along with this inbound sample connector provides a simple
Remote Method Invocation (RMI) back end service that allows the user to monitor the mailbox
folders specified by the message-driven beans. The sample application also contains a sample
message-driven bean that illustrates how the activation configuration specification properties
of the message-driven bean provide the configuration parameters that the back end and
resource adapter require to monitor a specific mailbox folder.

The onMessage method of the message-driven bean uses the JavaMail API to send a reply
acknowledging the receipt of the message. This reply is sufficient to verify that the full process is
working.

Configuring a Message Driven Bean to Use a Resource Adapter

Chapter 9 • Developing Connectors 211

212

Developing Lifecycle Listeners

Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the application server environment, such as instantiation of singletons or RMI servers.
These modules are automatically initiated at server startup and are notified at various phases of
the server life cycle.

All lifecycle module classes and interfaces are in the install-dir/lib/appserv-rt.jar file.

The following sections describe how to create and use a lifecycle listener module:

■ “Server Life Cycle Events” on page 213
■ “The LifecycleListener Interface” on page 214
■ “The LifecycleEvent Class” on page 214
■ “The Server Lifecycle Event Context” on page 215
■ “Deploying a Lifecycle Module” on page 215
■ “Considerations for Lifecycle Modules” on page 216

Server Life Cycle Events
A lifecycle module listens for and performs its tasks in response to the following events in the
server life cycle:

■ After the INIT_EVENT, the server reads the configuration, initializes built-in subsystems
(such as security and logging services), and creates the containers.

■ After the STARTUP_EVENT, the server loads and initializes deployed applications.
■ After the READY_EVENT, the server is ready to service requests.
■ After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.
■ After the TERMINATION_EVENT, the server closes the containers, the built-in subsystems, and

the server runtime environment.

These events are defined in the LifecycleEvent class.

10C H A P T E R 1 0

213

The lifecycle modules that listen for these events implement the LifecycleListener interface.

The LifecycleListener Interface
To create a lifecycle module is to configure a customized class that implements the
com.sun.appserv.server.LifecycleListener interface. You can create and simultaneously
execute multiple lifecycle modules.

The LifecycleListener interface defines this method:

public void handleEvent(com.sun.appserv.server.LifecycleEvent event)

throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the
LifecycleListenerImpl.java file, which you can use for testing lifecycle events.

The LifecycleEvent Class
The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event. The
following methods are associated with the event:

■ public java.lang.Object getData()

This method returns the data associated with the event.
■ public int getEventType()

This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT,
READY_EVENT, SHUTDOWN_EVENT, or TERMINATION_EVENT.

■ public com.sun.appserv.server.LifecycleEventContext

getLifecycleEventContext()

This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

The LifecycleListener Interface

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008214

The Server Lifecycle Event Context
The com.sun.appserv.server.LifecycleEventContext interface exposes runtime
information about the server. The lifecycle event context is created when the LifecycleEvent
class is instantiated at server initialization. The LifecycleEventContext interface defines these
methods:

■ public java.lang.String[] getCmdLineArgs()

This method returns the server startup command-line arguments.
■ public java.lang.String getInstallRoot()

This method returns the server installation root directory.
■ public java.lang.String getInstanceName()

This method returns the server instance name.
■ public javax.naming.InitialContext getInitialContext()

This method returns the initial JNDI naming context. The naming environment for lifecycle
modules is installed after the STARTUP_EVENT. A lifecycle module can look up any resource
by its jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It can use
the getInitialContext() method to get the initial context to which all the resources are
bound.

Deploying a Lifecycle Module
You can deploy a lifecycle module using the following tools:

■ In the Administration Console, open the Applications component and go to the Lifecycle
Modules page. For details, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

■ Use the asadmin create-lifecycle-module command. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

You do not need to specify a classpath for the lifecycle module if you place it in the
domain-dir/lib or domain-dir/lib/classes directory.

After you deploy a lifecycle module, you must restart the server to activate it. The server
instantiates it and registers it as a lifecycle event listener at server initialization.

Note – If the is-failure-fatal setting is set to true (the default is false), lifecycle module
failure prevents server initialization or startup, but not shutdown or termination.

Deploying a Lifecycle Module

Chapter 10 • Developing Lifecycle Listeners 215

Considerations for Lifecycle Modules
The resources allocated at initialization or startup should be freed at shutdown or termination.
The lifecycle module classes are called synchronously from the main server thread, therefore it
is important to ensure that these classes don’t block the server. Lifecycle modules can create
threads if appropriate, but these threads must be stopped in the shutdown and termination
phases.

The LifeCycleModule Classloader is the parent class loader for lifecycle modules. Each lifecycle
module’s classpath in domain.xml is used to construct its class loader. All the support classes
needed by a lifecycle module must be available to the LifeCycleModule Classloader or its parent,
the Connector Classloader.

You must ensure that the server.policy file is appropriately set up, or a lifecycle module
trying to perform a System.exec() might cause a security access violation. For details, see “The
server.policy File” on page 54.

The configured properties for a lifecycle module are passed as properties after the INIT_EVENT.
The JNDI naming context is not available before the STARTUP_EVENT. If a lifecycle module
requires the naming context, it can get this after the STARTUP_EVENT, READY_EVENT, or
SHUTDOWN_EVENT.

Considerations for Lifecycle Modules

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008216

Using Services and APIs

P A R T I I I

217

218

Using the JDBC API for Database Access

This chapter describes how to use the JavaTM Database Connectivity (JDBCTM) API for database
access with the Sun Java System Application Server. This chapter also provides high level JDBC
implementation instructions for servlets and EJBTM components using the Application Server.
The Application Server supports the JDBC 3.0 API, which encompasses the JDBC 2.0 Optional
Package API.

The JDBC specifications are available at
http://java.sun.com/products/jdbc/download.html.

A useful JDBC tutorial is located at
http://java.sun.com/docs/books/tutorial/jdbc/index.html.

For explanations of two-tier and three-tier database access models, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

Note – The Application Server does not support connection pooling or transactions for an
application’s database access if it does not use standard J2EETM

DataSource objects.

This chapter discusses the following topics:

■ “General Steps for Creating a JDBC Resource” on page 220
■ “Creating Applications That Use the JDBC API” on page 221
■ “Configurations for Specific JDBC Drivers” on page 224

11C H A P T E R 1 1

219

http://java.sun.com/products/jdbc/download.html
http://java.sun.com/docs/books/tutorial/jdbc/index.html

General Steps for Creating a JDBC Resource
To prepare a JDBC resource for use in J2EE applications deployed to the Application Server,
perform the following tasks:
■ “Integrating the JDBC Driver” on page 220
■ “Creating a Connection Pool” on page 220
■ “Testing a Connection Pool” on page 221
■ “Creating a JDBC Resource” on page 221

For information about how to configure some specific JDBC drivers, see the “Configurations
for Specific JDBC Drivers” on page 224.

Integrating the JDBC Driver
To use JDBC features, you must choose a JDBC driver to work with the Application Server, then
you must set up the driver. This section covers these topics:
■ “Supported Database Drivers” on page 220
■ “Making the JDBC Driver JAR Files Accessible” on page 220

Supported Database Drivers
Supported JDBC drivers are those that have been fully tested by Sun. For a list of the JDBC
drivers currently supported by the Application Server, see the Sun Java System Application
Server Platform Edition 8.2 Release Notes. For configurations of supported and other drivers, see
“Configurations for Specific JDBC Drivers” on page 224.

Note – Because the drivers and databases supported by the Application Server are constantly
being updated, and because database vendors continue to upgrade their products, always check
with Sun technical support for the latest database support information.

Making the JDBC Driver JAR Files Accessible
To integrate the JDBC driver into a Application Server domain, copy the JAR files into the
domain-dir/lib/ext directory, then restart the server. This makes classes accessible to any
application or module across the domain. For more information about Application Server
classloaders, see “Classloaders” on page 78.

Creating a Connection Pool
When you create a connection pool that uses JDBC technology (a JDBC connection pool) in the
Application Server, you can define many of the characteristics of your database connections.

You can create a JDBC connection pool in one of these ways:

General Steps for Creating a JDBC Resource

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008220

■ In the Administration Console, open the Resources component, open the JDBC
component, and select Connection Pools. For details, see the Sun Java System Application
Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin create-jdbc-connection-pool command. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

Testing a Connection Pool
You can test a JDBC connection pool for usability in one of these ways:

■ In the Administration Console, open the Resources component, open the JDBC
component, select Connection Pools, and select the connection pool you want to test. Then
select the Ping button in the top right corner of the page. For details, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin ping-connection-pool command. For details, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

Creating a JDBC Resource
A JDBC resource, also called a data source, lets you make connections to a database using
getConnection(). Create a JDBC resource in one of these ways:

■ In the Administration Console, open the Resources component, open the JDBC
component, and select JDBC Resources. For details, see the Sun Java System Application
Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin create-jdbc-resource command. For details, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual.

Creating Applications That Use the JDBC API
An application that uses the JDBC API is an application that looks up and connects to one or
more databases. This section covers these topics:

■ “Sharing Connections” on page 222
■ “Obtaining a Physical Connection from a Wrapped Connection” on page 222
■ “Using Non-Transactional Connections” on page 222
■ “Using JDBC Transaction Isolation Levels” on page 223

Creating Applications That Use the JDBC API

Chapter 11 • Using the JDBC API for Database Access 221

Sharing Connections
When multiple connections acquired by an application use the same JDBC resource, the
connection pool provides connection sharing within the same transaction scope. For example,
suppose Bean A starts a transaction and obtains a connection, then calls a method in Bean B. If
Bean B acquires a connection to the same JDBC resource with the same sign-on information,
and if Bean A completes the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by
the J2EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLs, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

Obtaining a Physical Connection from a Wrapped
Connection
The DataSource implementation in the Application Server provides a getConnection method
that retrieves the JDBC driver’s SQLConnection from the Application Server’s Connection
wrapper. The method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)

throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();

com.sun.appserv.DataSource ds = (com.sun.appserv.DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

Connection drivercon = ds.getConnection(con);

// Do db operations.

con.close();

Using Non-Transactional Connections
The DataSource implementation in the Application Server provides a getNonTxConnection
method, which retrieves a JDBC connection that is not in the scope of any transaction. There
are two variants, as follows:

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

Creating Applications That Use the JDBC API

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008222

public java.sql.Connection getNonTxConnection(String user, String password)

throws java.sql.SQLException

Another way to get a non-transactional connection is to create a resource with the JNDI name
ending in __nontx. This forces all connections looked up using this resource to be non
transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Using JDBC Transaction Isolation Levels
For general information about transactions, see Chapter 12, “Using the Transaction
Service”and the Sun Java System Application Server Platform Edition 8.2 Administration Guide.
For information about last agent optimization, which can improve performance, see
“Transaction Scope” on page 236.

Not all database vendors support all transaction isolation levels available in the JDBC API. The
Application Server permits specifying any isolation level your database supports. The following
table defines transaction isolation levels.

TABLE 11–1 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITTED Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are prevented.

Note that you cannot call setTransactionIsolation() during a transaction.

Creating Applications That Use the JDBC API

Chapter 11 • Using the JDBC API for Database Access 223

You can set the default transaction isolation level for a JDBC connection pool. For details, see
“Creating a Connection Pool” on page 220.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel() method in
java.sql.DatabaseMetaData, as shown in the following example:

java.sql.DatabaseMetaData db;

if (db.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC 3.0 API
specification.

Note – Applications that change the isolation level on a pooled connection programmatically
risk polluting the pool, which can lead to errors.

Configurations for Specific JDBC Drivers
Application Server 8.2 is designed to support connectivity to any database management system
with a corresponding JDBC driver. The following JDBC driver and database combinations are
supported. These combinations have been tested with Application Server 8.2 and are found to
be J2EE compatible. They are also supported for CMP.
■ “Derby Type 4 Driver” on page 225
■ “Sun Java System JDBC Driver for DB2 Databases” on page 226
■ “Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g Databases” on page 226
■ “Sun Java System JDBC Driver for Microsoft SQL Server Databases” on page 227
■ “Sun Java System JDBC Driver for Sybase Databases” on page 227
■ “IBM DB2 8.1 Type 2 Driver” on page 228
■ “JConnect Type 4 Driver for Sybase ASE 12.5 Databases” on page 228
■ “MM MySQL Type 4 Driver (Non-XA)” on page 229

For an up to date list of currently supported JDBC drivers, see the Sun Java System Application
Server Platform Edition 8.2 Release Notes.

Other JDBC drivers can be used with Application Server 8.2, but J2EE compliance tests have not
been completed with these drivers. Although Sun offers no product support for these drivers,
Sun offers limited support of the use of these drivers with Application Server 8.2.
■ “MM MySQL Type 4 Driver (XA Only)” on page 229
■ “Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g Databases” on page 230
■ “Inet Merlia JDBC Driver for Microsoft SQL Server Databases” on page 231
■ “Inet Sybelux JDBC Driver for Sybase Databases” on page 231
■ “Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g Databases” on page 232

Configurations for Specific JDBC Drivers

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008224

■ “OCI Oracle Type 2 Driver for Oracle 8i, 9i, and 10g Databases” on page 233
■ “IBM Informix Type 4 Driver” on page 234

For details about how to integrate a JDBC driver and how to use the Administration Console or
the command line interface to implement the configuration, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

Note – An Oracle database user running the capture-schema command needs ANALYZE ANY
TABLE privileges if that user does not own the schema. These privileges are granted to the user
by the database administrator. For information about capture-schema, see “Using the
capture-schema Utility” on page 176.

Derby Type 4 Driver
The Derby JDBC driver is included with the Application Server by default, except for the Solaris
bundled installation, which does not include Derby. Therefore, unless you have the Solaris
bundled installation, you do not need to integrate this JDBC driver with the Application Server.

The JAR file for the Derby driver is derbyclient.jar.

Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Derby
■ DataSource Classname: Specify one of the following:

org.apache.derby.jdbc.ClientDataSource

org.apache.derby.jdbc.ClientXADataSource

■ Properties:
■ user - Specify the database user.

This is only necessary if Derby is configured to use authentication. Derby does not use
authentication by default. When the user is provided, it is the name of the schema where
the tables reside.

■ password - Specify the database password.
This is only necessary if Derby is configured to use authentication.

■ databaseName - Specify the name of the database.
■ serverName - Specify the host name or IP address of the database server.
■ portNumber - Specify the port number of the database server if it is different from the

default.

Configurations for Specific JDBC Drivers

Chapter 11 • Using the JDBC API for Database Access 225

■ URL: jdbc:derby://serverName:portNumber/databaseName;create=true
Include the ;create=true part only if you want the database to be created if it does not exist.

Sun Java System JDBC Driver for DB2 Databases
The JAR files for this driver are smbase.jar, smdb2.jar, and smutil.jar. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: DB2
■ DataSource Classname: com.sun.sql.jdbcx.db2.DB2DataSource
■ Properties:

■ serverName - Specify the host name or IP address of the database server.
■ portNumber - Specify the port number of the database server.
■ databaseName - Set as appropriate.
■ user - Set as appropriate.
■ password - Set as appropriate.

■ URL: jdbc:sun:db2://serverName:portNumber;databaseName=databaseName

Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g
Databases
The JAR files for this driver are smbase.jar, smoracle.jar, and smutil.jar. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: com.sun.sql.jdbcx.oracle.OracleDataSource
■ Properties:

■ serverName - Specify the host name or IP address of the database server.
■ portNumber - Specify the port number of the database server.
■ SID - Set as appropriate.
■ user - Set as appropriate.
■ password - Set as appropriate.

■ URL: jdbc:sun:oracle://serverName[:portNumber][;SID=databaseName]

Configurations for Specific JDBC Drivers

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008226

Sun Java System JDBC Driver for Microsoft SQL Server
Databases
The JAR files for this driver are smbase.jar, smsqlserver.jar, and smutil.jar. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: mssql
■ DataSource Classname: com.sun.sql.jdbcx.sqlserver.SQLServerDataSource
■ Properties:

■ serverName - Specify the host name or IP address and the port of the database server.
■ portNumber - Specify the port number of the database server.
■ user - Set as appropriate.
■ password - Set as appropriate.
■ selectMethod - Set to cursor.

■ URL: jdbc:sun:sqlserver://serverName[:portNumber]

Sun Java System JDBC Driver for Sybase Databases
The JAR files for this driver are smbase.jar, smsybase.jar, and smutil.jar. Configure the
connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Sybase
■ DataSource Classname: com.sun.sql.jdbcx.sybase.SybaseDataSource
■ Properties:

■ serverName - Specify the host name or IP address of the database server.
■ portNumber - Specify the port number of the database server.
■ databaseName - Set as appropriate. This is optional.
■ user - Set as appropriate.
■ password - Set as appropriate.

■ URL: jdbc:sun:sybase://serverName[:portNumber]

Configurations for Specific JDBC Drivers

Chapter 11 • Using the JDBC API for Database Access 227

IBM DB2 8.1 Type 2 Driver
The JAR files for the DB2 driver are db2jcc.jar, db2jcc_license_cu.jar, and db2java.zip.
Set environment variables as follows:

LD_LIBRARY_PATH=/usr/db2user/sqllib/lib:${j2ee.home}/lib

DB2DIR=/opt/IBM/db2/V8.1

DB2INSTANCE=db2user

INSTHOME=/usr/db2user

VWSPATH=/usr/db2user/sqllib

THREADS_FLAG=native

Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: DB2
■ DataSource Classname: com.ibm.db2.jcc.DB2SimpleDataSource
■ Properties:

■ user - Set as appropriate.
■ password - Set as appropriate.
■ databaseName - Set as appropriate.
■ driverType - Set to 2.
■ deferPrepares - Set to false.

JConnect Type 4 Driver for Sybase ASE 12.5 Databases
The JAR file for the Sybase driver is jconn2.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Sybase
■ DataSource Classname: Specify one of the following:

com.sybase.jdbc2.jdbc.SybDataSource

com.sybase.jdbc2.jdbc.SybXADataSource

■ Properties:
■ serverName - Specify the host name or IP address of the database server.
■ portNumber - Specify the port number of the database server.
■ user - Set as appropriate.

Configurations for Specific JDBC Drivers

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008228

■ password - Set as appropriate.
■ databaseName - Set as appropriate. Do not specify the complete URL, only the database

name.
■ BE_AS_JDBC_COMPLIANT_AS_POSSIBLE - Set to true.
■ FAKE_METADATA - Set to true.

MM MySQL Type 4 Driver (Non-XA)
The JAR file for the MySQL driver is mysql-connector-java-version-bin-g.jar, for example,
mysql-connector-java-3.1.12-bin-g.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: mysql
■ DataSource Classname: Specify one of the following:

com.mysql.jdbc.jdbc2.optional.MysqlDataSource

■ Properties:
■ serverName - Specify the host name or IP address of the database server.
■ port - Specify the port number of the database server.
■ user - Set as appropriate.
■ password - Set as appropriate.
■ databaseName - Set as appropriate.
■ URL - If you are using global transactions, you can set this property instead of

serverName, port, and databaseName.
The MM MySQL Type 4 driver doesn’t provide a method to set the required
relaxAutoCommit property, so you must set it indirectly by setting the URL property:

jdbc:mysql://host:port/database?relaxAutoCommit="true"

MM MySQL Type 4 Driver (XA Only)
The JAR file for the MySQL driver is mysql-connector-java-version-bin-g.jar, for example,
mysql-connector-java-3.1.12-bin-g.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.

Configurations for Specific JDBC Drivers

Chapter 11 • Using the JDBC API for Database Access 229

■ Database Vendor: mysql
■ DataSource Classname: Specify one of the following:

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource

■ Properties:
■ serverName - Specify the host name or IP address of the database server.
■ port - Specify the port number of the database server.
■ user - Set as appropriate.
■ password - Set as appropriate.
■ databaseName - Set as appropriate.
■ URL - If you are using global transactions, you can set this property instead of

serverName, port, and databaseName.
The MM MySQL Type 4 driver doesn’t provide a method to set the required
relaxAutoCommit property, so you must set it indirectly by setting the URL property:

jdbc:mysql://host:port/database?relaxAutoCommit="true"

Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g
Databases
The JAR file for the Inet Oracle driver is Oranxo.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: com.inet.ora.OraDataSource
■ Properties:

■ user - Specify the database user.
■ password - Specify the database password.
■ serviceName - Specify the URL of the database. The syntax is as follows:

jdbc:inetora:server:port:dbname

For example:

jdbc:inetora:localhost:1521:payrolldb

Configurations for Specific JDBC Drivers

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008230

In this example,localhost is the host name of the machine running the Oracle server,
1521 is the Oracle server’s port number, and payrolldb is the SID of the database. For
more information about the syntax of the database URL, see the Oracle documentation.

■ serverName - Specify the host name or IP address of the database server.
■ port - Specify the port number of the database server.
■ streamstolob - If the size of BLOB or CLOB data types exceeds 4 KB and this driver is

used for CMP, this property must be set to true.
■ xa-driver-does-not-support-non-tx-operations - Set to the value true. Optional:

only needed if both non-XA and XA connections are retrieved from the same
connection pool. Might degrade performance.
As an alternative to setting this property, you can create two connection pools, one for
non-XA connections and one for XA connections.

Inet Merlia JDBC Driver for Microsoft SQL Server
Databases
The JAR file for the Inet Microsoft SQL Server driver is Merlia.jar. Configure the connection
pool using the following settings:
■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: mssql
■ DataSource Classname: com.inet.tds.TdsDataSource
■ Properties:

■ serverName - Specify the host name or IP address and the port of the database server.
■ port - Specify the port number of the database server.
■ user - Set as appropriate.
■ password - Set as appropriate.

Inet Sybelux JDBC Driver for Sybase Databases
The JAR file for the Inet Sybase driver is Sybelux.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Sybase
■ DataSource Classname: com.inet.syb.SybDataSource

Configurations for Specific JDBC Drivers

Chapter 11 • Using the JDBC API for Database Access 231

■ Properties:
■ serverName - Specify the host name or IP address of the database server.
■ portNumber - Specify the port number of the database server.
■ user - Set as appropriate.
■ password - Set as appropriate.
■ databaseName - Set as appropriate. Do not specify the complete URL, only the database

name.

Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g
Databases
The JAR file for the Oracle driver is ojdbc14.jar. Configure the connection pool using the
following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource

oracle.jdbc.xa.client.OracleXADataSource

■ Properties:
■ user - Set as appropriate.
■ password - Set as appropriate.
■ URL - Specify the complete database URL using the following syntax:

jdbc:oracle:thin:[user/password]@host[:port]/service

For example:

jdbc:oracle:thin:@localhost:1521:customer_db

■ xa-driver-does-not-support-non-tx-operations - Set to the value true. Optional:
only needed if both non-XA and XA connections are retrieved from the same
connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one for
non-XA connections and one for XA connections.

Configurations for Specific JDBC Drivers

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008232

Note – You must set the oracle-xa-recovery-workaround property in the Transaction
Service for recovery of global transactions to work correctly. For details, see “Transaction
Scope” on page 236.

When using this driver, it is not possible to insert more than 2000 bytes of data into a
column. To circumvent this problem, use the OCI driver (JDBC type 2).

OCI Oracle Type 2 Driver for Oracle 8i, 9i, and 10g
Databases
The JAR file for the OCI Oracle driver is ojdbc14.jar. Make sure that the shared library is
available through LD_LIBRARY_PATH and that the ORACLE_HOME property is set.
Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Oracle
■ DataSource Classname: Specify one of the following:

oracle.jdbc.pool.OracleDataSource

oracle.jdbc.xa.client.OracleXADataSource

■ Properties:
■ user - Set as appropriate.
■ password - Set as appropriate.
■ URL - Specify the complete database URL using the following syntax:

jdbc:oracle:oci:[user/password]@host[:port]/service

For example:

jdbc:oracle:oci:@localhost:1521:customer_db

■ xa-driver-does-not-support-non-tx-operations - Set to the value true. Optional:
only needed if both non-XA and XA connections are retrieved from the same
connection pool. Might degrade performance.

As an alternative to setting this property, you can create two connection pools, one for
non-XA connections and one for XA connections.

Configurations for Specific JDBC Drivers

Chapter 11 • Using the JDBC API for Database Access 233

IBM Informix Type 4 Driver
Configure the connection pool using the following settings:

■ Name: Use this name when you configure the JDBC resource later.
■ Resource Type: Specify the appropriate value.
■ Database Vendor: Informix
■ DataSource Classname: Specify one of the following:

com.informix.jdbcx.IfxDataSource

com.informix.jdbcx.IfxXADataSource

■ Properties:
■ serverName - Specify the Informix database server name.
■ portNumber - Specify the port number of the database server.
■ user - Set as appropriate.
■ password - Set as appropriate.
■ databaseName - Set as appropriate. This is optional.
■ IfxIFXHost - Specify the host name or IP address of the database server.

Configurations for Specific JDBC Drivers

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008234

Using the Transaction Service

The J2EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses J2EE transactions and
transaction support in the Sun Java System Application Server.

This chapter contains the following sections:

■ “Transaction Resource Managers” on page 235
■ “Transaction Scope” on page 236
■ “Configuring the Transaction Service” on page 237
■ “Transaction Logging” on page 238

For more information about the JavaTM Transaction API (JTA) and Java Transaction Service
(JTS), see the Sun Java System Application Server Platform Edition 8.2 Administration Guide
and the following sites: http://java.sun.com/products/jta/ and
http://java.sun.com/products/jts/.

You might also want to read the chapter on transactions in the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html.

Transaction Resource Managers
There are three types of transaction resource managers:

■ Databases - Use of transactions prevents databases from being left in inconsistent states due
to incomplete updates. For information about JDBC transaction isolation levels, see “Using
JDBC Transaction Isolation Levels” on page 223.
The Application Server supports a variety of JDBCTM XA drivers. For a list of the JDBC
drivers currently supported by the Application Server, see the Sun Java System Application
Server Platform Edition 8.2 Release Notes. For configurations of supported and other drivers,
see “Configurations for Specific JDBC Drivers” on page 224.

12C H A P T E R 1 2

235

http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

■ Java Message Service (JMS) Providers - Use of transactions ensures that messages are
reliably delivered. The Application Server is integrated with Sun Java System Message
Queue, a fully capable JMS provider. For more information about transactions and the JMS
API, see Chapter 14, “Using the Java Message Service.”

■ J2EETM Connector Architecture (CA) components - Use of transactions prevents legacy EIS
systems from being left in inconsistent states due to incomplete updates. For more
information about connectors, see Chapter 9, “Developing Connectors.”

For details about how transaction resource managers, the transaction service, and applications
interact, see the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

Note – In the Application Server, the transaction manager is a privileged interface. However,
applications can access UserTransaction. For more information, see “Naming Environment
for J2EE Application Components” on page 240.

Transaction Scope
A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific
to the resource manager and is transparent to the J2EE application.

In the Application Server, a JDBC resource is non-XA if it meets any of the following criteria:
■ In the JDBC connection pool configuration, the DataSource class does not implement the

javax.sql.XADataSource interface.
■ The Global Transaction Support box is not checked, or the Resource Type setting does not

exist or is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:
■ One and only one non-XA resource is used. If any additional non-XA resource is used, the

transaction is aborted.
■ No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resourced must be XA. The
use-last-agent-optimization property is set to true by default. For details about how to set
this property, see “Configuring the Transaction Service” on page 237.

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the resources enlisted
for a transaction ensures that either all the resource managers commit the transaction or they all

Transaction Scope

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008236

abort. When the application requests the commitment of a transaction, the transaction
manager issues a PREPARE_TO_COMMIT request to all the resource managers involved. Each of
these resources can in turn send a reply indicating whether it is ready for commit (PREPARED) or
not (NO). Only when all the resource managers are ready for a commit does the transaction
manager issue a commit request (COMMIT) to all the resource managers. Otherwise, the
transaction manager issues a rollback request (ABORT) and the transaction is rolled back.

The Application Server provides workarounds for some known issues with the recovery
implementations of the following JDBC drivers. These workarounds are used unless explicitly
disabled.

■ Oracle thin driver - The XAResource.recover method repeatedly returns the same set of
in-doubt Xids regardless of the input flag. According to the XA specifications, the
Transaction Manager initially calls this method with TMSTARTSCAN and then with
TMNOFLAGS repeatedly until no Xids are returned. The XAResource.commit method also
has some issues.
To disable the Application Server workaround, set the oracle-xa-recovery-workaround
property value to false. For details about how to set this property, see “Configuring the
Transaction Service” on page 237.

Note – These workarounds do not imply support for any particular JDBC driver.

Configuring the Transaction Service
You can configure the transaction service in the Application Server in the following ways:

■ To configure the transaction service using the Administration Console, open the
Transaction Service component under the relevant configuration. For details, see the Sun
Java System Application Server Platform Edition 8.2 Administration Guide.

■ To configure the transaction service, use the asadmin set command to set the following
attributes:

server.transaction-service.automatic-recovery = false

server.transaction-service.heuristic-decision = rollback

server.transaction-service.keypoint-interval = 2048

server.transaction-service.retry-timeout-in-seconds = 600

server.transaction-service.timeout-in-seconds = 0

server.transaction-service.tx-log-dir = domain-dir/logs

You can also set these properties:

server.transaction-service.property.oracle-xa-recovery-workaround = false

server.transaction-service.property.disable-distributed-transaction-logging = false

server.transaction-service.property.xaresource-txn-timeout = 600

Configuring the Transaction Service

Chapter 12 • Using the Transaction Service 237

server.transaction-service.property.pending-txn-cleanup-interval = 60

server.transaction-service.property.use-last-agent-optimization = true

You can use the asadmin get command to list all the transaction service attributes and
properties. For details, see the Sun Java System Application Server Platform Edition 8.2
Reference Manual.

Transaction Logging
The transaction service writes transactional activity into transaction logs so that transactions
can be recovered. You can control transaction logging in these ways:

■ Set the location of the transaction log files using the Transaction Log Location setting in the
Administration Console, or set the tx-log-dir attribute using the asadmin set command.

■ Turn off transaction logging by setting the disable-distributed-transaction-logging
property to true. Do this only if performance is more important than transaction recovery.

Transaction Logging

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008238

Using the Java Naming and Directory Interface

A naming service maintains a set of bindings, which relate names to objects. The J2EETM naming
service is based on the Java Naming and Directory InterfaceTM (JNDI) API. The JNDI API allows
application components and clients to look up distributed resources, services, and EJBTM

components. For general information about the JNDI API, see
http://java.sun.com/products/jndi/.

You can also see the JNDI tutorial at http://java.sun.com/products/jndi/tutorial/.

This chapter contains the following sections:
■ “Accessing the Naming Context” on page 239
■ “Configuring Resources” on page 242
■ “Mapping References” on page 243

Accessing the Naming Context
The Application Server provides a naming environment, or context, which is compliant with
standard J2EE 1.4 requirements. A Context object provides the methods for binding names to
objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the J2EE naming service that application components and
clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization
of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

The rest of this section covers these topics:
■ “Naming Environment for J2EE Application Components” on page 240
■ “Accessing EJB Components Using the CosNaming Naming Context” on page 240
■ “Accessing EJB Components in a Remote Application Server” on page 241

13C H A P T E R 1 3

239

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

■ “Naming Environment for Lifecycle Modules” on page 242

Note – Each resource within a server instance must have a unique name. However, two resources
in different server instances or different domains can have the same name.

Naming Environment for J2EE Application
Components
The namespace for objects looked up in a J2EE environment is organized into different
subcontexts, with the standard prefix java:comp/env.

The following table describes standard JNDI subcontexts for connection factories in the
Application Server.

TABLE 13–1 Standard JNDI Subcontexts for Connection Factories

Resource Manager Connection Factory Type JNDI Subcontext

JDBCTM
javax.sql.DataSource java:comp/env/jdbc

Transaction Service javax.transaction.UserTransaction java:comp/UserTransaction

JMS javax.jms.TopicConnectionFactory

javax.jms.QueueConnectionFactory

java:comp/env/jms

JavaMailTM
javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFactory java:comp/env/eis

Accessing EJB Components Using the CosNaming
Naming Context
The preferred way of accessing the naming service, even in code that runs outside of a J2EE
container, is to use the no-argument InitialContext constructor. However, if EJB client code
explicitly instantiates an InitialContext that points to the CosNaming naming service, it is
necessary to set these properties in the client JVM when accessing EJB components:

-Djavax.rmi.CORBA.UtilClass=com.sun.corba.ee.impl.javax.rmi.CORBA.Util

-Dorg.omg.CORBA.ORBClass=com.sun.corba.ee.impl.orb.ORBImpl

-Dorg.omg.CORBA.ORBSingletonClass=com.sun.corba.ee.impl.orb.ORBSingleton

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

Accessing the Naming Context

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008240

Accessing EJB Components in a Remote Application
Server
The recommended approach for looking up an EJB component in a remote Application Server
from a client that is a servlet or EJB component is to use the Interoperable Naming Service
syntax. Host and port information is prepended to any global JNDI names and is automatically
resolved during the lookup. The syntax for an interoperable global name is as follows:

corbaname:iiop:host:port#a/b/name

This makes the programming model for accessing EJB components in another Application
Server exactly the same as accessing them in the same server. The deployer can change the way
the EJB components are physically distributed without having to change the code.

For J2EE components, the code still performs a java:comp/env lookup on an EJB reference.
The only difference is that the deployer maps the ejb-reference element to an interoperable
name in an Application Server deployment descriptor file instead of a simple global JNDI name.

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo, and
the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in sun-web.xml looks like this:

<ejb-ref>

<ejb-ref-name>ejb/Foo</ejb-ref-name>

<jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
<ejb-ref>

The code looks like this:

Context ic = new InitialContext();

Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a J2EE container, the code just uses the interoperable global
name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();

Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-specific (java:comp/env)
naming contexts are transient. On each server startup or application reloading, all relevant
objects are re-bound to the namespace.

Accessing the Naming Context

Chapter 13 • Using the Java Naming and Directory Interface 241

Naming Environment for Lifecycle Modules
Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the application server environment, such as instantiation of singletons or RMI servers.
These modules are automatically initiated at server startup and are notified at various phases of
the server life cycle. For details about lifecycle modules, see Chapter 10, “Developing Lifecycle
Listeners.”

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial JNDI naming context is not available until server
initialization is complete. A lifecycle module can get the InitialContext for lookups using the
method LifecycleEventContext.getInitialContext() during, and only during, the
STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Configuring Resources
The Application Server exposes the following special resources in the naming environment. Full
administration details are provided in the following sections:

■ “External JNDI Resources” on page 242
■ “Custom Resources” on page 242

External JNDI Resources
An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI parent
context for external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:

■ To create an external JNDI resource using the Administration Console, open the Resources
component, open the JNDI component, and select External Resources. For details, see the
Sun Java System Application Server Platform Edition 8.2 Administration Guide.

■ To create an external JNDI resource, use the asadmin create-jndi-resource command.
For details, see the Sun Java System Application Server Platform Edition 8.2 Reference
Manual.

Custom Resources
A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent context for
external JNDI resources, except for the standard java:comp/env/.

Configuring Resources

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008242

Create a custom resource in one of these ways:

■ To create a custom resource using the Administration Console, open the Resources
component, open the JNDI component, and select Custom Resources. For details, see the
Sun Java System Application Server Platform Edition 8.2 Administration Guide.

■ To create a custom resource, use the asadmin create-custom-resource command. For
details, see the Sun Java System Application Server Platform Edition 8.2 Reference Manual.

Mapping References
The following XML elements map JNDI names configured in the Application Server to resource
references in application client, EJB, and web application components:

■ resource-env-ref - Maps the resource-env-ref element in the corresponding J2EE XML
file to the absolute JNDI name configured in the Application Server.

■ resource-ref - Maps the resource-ref element in the corresponding J2EE XML file to the
absolute JNDI name configured in the Application Server.

■ ejb-ref - Maps the ejb-ref element in the corresponding J2EE XML file to the absolute
JNDI name configured in the Application Server.

JNDI names for EJB components must be unique. For example, appending the application
name and the module name to the EJB name is one way to guarantee unique names. In this case,
mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the module
pkgingEJB.jar, which is packaged in the pkging.ear application.

These elements are part of the sun-web-app.xml, sun-ejb-ref.xml, and
sun-application-client.xml deployment descriptor files. For more information about how
these elements behave in each of the deployment descriptor files, see Appendix A, “Deployment
Descriptor Files.”

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories. The same principle is applicable to all resources (such as JMS destinations,
JavaMail sessions, and so on).

The resource-ref element in the sun-web-app.xml deployment descriptor file maps the JNDI
name of a resource reference to the resource-ref element in the web-app.xml J2EE
deployment descriptor file.

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();

String dsName = "java:comp/env/jdbc/HelloDbDs";
DataSource ds = (javax.sql.DataSource)ic.lookup(dsName);

Connection connection = ds.getConnection();

The resource being queried is listed in the res-ref-name element of the web.xml file as follows:

Mapping References

Chapter 13 • Using the Java Naming and Directory Interface 243

<resource-ref>

<description>DataSource Reference</description>

<res-ref-name>jdbc/HelloDbDs</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

The resource-ref section in a Application Server specific deployment descriptor, for example
sun-web.xml, maps the res-ref-name (the name being queried in the application code) to the
JNDI name of the JDBC resource. The JNDI name is the same as the name of the JDBC resource
as defined in the resource file when the resource is created.

<resource-ref>

<res-ref-name>jdbc/HelloDbDs</res-ref-name>

<jndi-name>jdbc/HelloDbDataSource</jndi-name>

</resource-ref>

The JNDI name in the Application Server specific deployment descriptor must match the JNDI
name you assigned to the resource when you created and configured it.

Mapping References

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008244

Using the Java Message Service

This chapter describes how to use the JavaTM Message Service (JMS) API. The Sun Java System
Application Server has a fully integrated JMS provider: the Sun Java System Message Queue
software.

For general information about the JMS API, see the J2EE 1.4 Tutorial at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181.

For detailed information about JMS concepts and JMS support in the Application Server, see
the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

This chapter contains the following sections:

■ “The JMS Provider” on page 245
■ “Message Queue Resource Adapter” on page 246
■ “Administration of the JMS Service” on page 246
■ “Restarting the JMS Client After JMS Configuration” on page 250
■ “JMS Connection Features” on page 250
■ “Transactions and Non-Persistent Messages” on page 251
■ “ConnectionFactory Authentication” on page 251
■ “Message Queue varhome Directory” on page 251
■ “Delivering SOAP Messages Using the JMS API” on page 252

The JMS Provider
The Application Server support for JMS messaging, in general, and for message-driven beans,
in particular, requires messaging middleware that implements the JMS specification: a JMS
provider. The Application Server uses the Sun Java System Message Queue software as its native
JMS provider. The Message Queue software is tightly integrated into theApplication Server,
providing transparent JMS messaging support. This support is known within Application
Server as the JMS Service. The JMS Service requires only minimal administration.

14C H A P T E R 1 4

245

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS.html#wp84181

The relationship of the Message Queue software to the Application Server can be one of these
types: LOCAL or REMOTE. The results of these choices are as follows:

■ If the type is LOCAL, the Message Queue broker starts when the Application Server starts.
This is the default.

■ If the type is REMOTE, the Message Queue broker must be started separately. For information
about starting the broker, see the Sun Java System Message Queue 3.7 UR1 Administration
Guide.

For more information about setting the type and the default JMS host, see “Configuring the JMS
Service” on page 247.

For more information about the Message Queue software, refer to the documentation at
http://docs.sun.com/app/docs/coll/1307.2.

For general information about the JMS API, see the JMS web page at
http://java.sun.com/products/jms/index.html.

Message Queue Resource Adapter
The Sun Java System Message Queue software is integrated into the Application Server using a
resource adapter that is compliant with the Connector 1.5 specification. The module name of
this system resource adapter is jmsra. Every JMS resource is converted to a corresponding
connector resource of this resource adapter as follows:

■ Connection Factory: A connector connection pool with a max-pool-size of 250 and a
corresponding connector resource.

■ Destination (Topic or Queue): A connector administered object.

You use connector configuration tools to manage JMS resources. For more information, see
Chapter 9, “Developing Connectors.”

Administration of the JMS Service
To configure the JMS Service and prepare JMS resources for use in applications deployed to the
Application Server, you must perform these tasks:

■ “Configuring the JMS Service” on page 247
■ “The Default JMS Host” on page 248
■ “Creating JMS Hosts” on page 248
■ “Checking Whether the JMS Provider Is Running” on page 248
■ “Creating Physical Destinations” on page 248
■ “Creating JMS Resources: Destinations and Connection Factories” on page 249

Message Queue Resource Adapter

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008246

http://docs.sun.com/app/docs/coll/1307.2
http://java.sun.com/products/jms/index.html

For more information about JMS administration tasks, see the Sun Java System Application
Server Platform Edition 8.2 Administration Guide and the Sun Java System Message Queue 3.7
UR1 Administration Guide.

Configuring the JMS Service
The JMS Service configuration is available to all inbound and outbound connections pertaining
to the Application Server. You can edit the JMS Service configuration in the following ways:

■ To edit the JMS Service configuration using the Administration Console, open the Java
Message Service component under the relevant configuration. For details, see the Sun Java
System Application Server Platform Edition 8.2 Administration Guide.

■ To configure the JMS service, use the asadmin set command to set the following attributes:

server.jms-service.init-timeout-in-seconds = 60

server.jms-service.type = LOCAL

server.jms-service.start-args =

server.jms-service.default-jms-host = default_JMS_host

server.jms-service.reconnect-interval-in-seconds = 60

server.jms-service.reconnect-attempts = 3

server.jms-service.reconnect-enabled = true

server.jms-service.addresslist-behavior = random

server.jms-service.addresslist-iterations = 3

server.jms-service.mq-scheme = mq

server.jms-service.mq-service = jms

You can also set these properties:

server.jms-service.property.instance-name = imqbroker

server.jms-service.property.instance-name-suffix =

server.jms-service.property.append-version = false

You can use the asadmin get command to list all the JMS service attributes and properties.
For details, see the Sun Java System Application Server Platform Edition 8.2 Reference
Manual.

You can override the JMS Service configuration using JMS connection factory settings. For
details, see the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

Note – The Application Server must be restarted after configuration of the JMS Service.

Administration of the JMS Service

Chapter 14 • Using the Java Message Service 247

The Default JMS Host
A JMS host refers to a Sun Java System Message Queue broker. A default JMS host for the JMS
service is provided, named default_JMS_host. This is the JMS host that the Application Server
instance starts when the JMS Service type is configured as LOCAL.

If you have created a multi-broker cluster in the Message Queue software, delete the default JMS
host, then add the Message Queue cluster’s brokers as JMS hosts. In this case, the default JMS
host becomes the first JMS host in the AddressList. (For more information about the
AddressList, see “JMS Connection Features” on page 250. You can also explicitly set the default
JMS host; see “Configuring the JMS Service” on page 247.

When the Application Server uses a Message Queue cluster, it executes Message Queue specific
commands on the default JMS host. For example, when a physical destination is created for a
Message Queue cluster of three brokers, the command to create the physical destination is
executed on the default JMS host, but the physical destination is used by all three brokers in the
cluster.

Creating JMS Hosts
You can create additional JMS hosts in the following ways:

■ Use the Administration Console. Open the Java Message Service component under the
relevant configuration, then select the JMS Hosts component. For details, see the Sun Java
System Application Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin create-jms-host command. For details, see the Sun Java System
Application Server Platform Edition 8.2 Reference Manual.

Checking Whether the JMS Provider Is Running
You can use the asadmin jms-ping command to check whether a Sun Java System Message
Queue instance is running. For details, see the Sun Java System Application Server Platform
Edition 8.2 Reference Manual.

Creating Physical Destinations
Produced messages are delivered for routing and subsequent delivery to consumers using
physical destinations in the JMS provider. A physical destination is identified and encapsulated
by an administered object (a Topic or Queue destination resource) that an application
component uses to specify the destination of messages it is producing and the source of
messages it is consuming.

Administration of the JMS Service

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008248

If a message-driven bean is deployed and the physical destination it listens to doesn’t exist, the
Application Server automatically creates the physical destination. However, it is good practice
to create the physical destination beforehand.

You can create a JMS physical destination in the following ways:

■ Use the Administration Console. Open the Resources component, open the JMS Resources
component, then select Physical Destinations. For details, see the Sun Java System
Application Server Platform Edition 8.2 Administration Guide.

■ Use the asadmin create-jmsdest command. This command acts on the default JMS host.
For details, see the Sun Java System Application Server Platform Edition 8.2 Reference
Manual.

To create a destination resource, see “Creating JMS Resources: Destinations and Connection
Factories” on page 249.

Creating JMS Resources: Destinations and Connection
Factories
You can create two kinds of JMS resources in the Application Server:

■ Connection Factories: administered objects that implement the ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory interfaces.

■ Destination Resources: administered objects that implement the Queue or Topic interfaces.

In either case, the steps for creating a JMS resource are the same. You can create a JMS resource
in the following ways:

■ To create a JMS resource using the Administration Console, open the Resources
component, then open the JMS Resources component. Click Connection Factories to create
a connection factory, or click Destination Resources to create a queue or topic. For details,
see the Sun Java System Application Server Platform Edition 8.2 Administration Guide.

■ A JMS resource is a type of connector. To create a JMS resource using the command line, see
“Deploying and Configuring a Stand-Alone Connector Module” on page 203.

Note – All JMS resource properties that used to work with version 7 of the Application Server are
supported for backward compatibility.

Administration of the JMS Service

Chapter 14 • Using the Java Message Service 249

Restarting the JMS Client After JMS Configuration
When a JMS client accesses a JMS administered object for the first time, the client JVM retrieves
the JMS service configuration from the Application Server. Further changes to the
configuration are not available to the client JVM until the client is restarted.

JMS Connection Features
The Sun Java System Message Queue software supports the following JMS connection features:

■ “Connection Pooling” on page 250
■ “Connection Failover” on page 251

Both these features use the AddressList configuration, which is populated with the hosts and
ports of the JMS hosts defined in the Application Server. The AddressList is updated whenever
a JMS host configuration changes. The AddressList is inherited by any JMS resource when it is
created and by any MDB when it is deployed.

Note – In the Sun Java System Message Queue software, the AddressList property is called
imqAddressList.

Connection Pooling
The Application Server pools JMS connections automatically.

To dynamically modify connection pool properties using the Administration Console, go to
either the Connection Factories page (see “Creating JMS Resources: Destinations and
Connection Factories” on page 249) or the Connector Connection Pools page (see “Deploying
and Configuring a Stand-Alone Connector Module” on page 203).

To use the command line, use the asadmin create-connector-connection-pool command to
manage the pool (see “Deploying and Configuring a Stand-Alone Connector Module” on
page 203.

The addresslist-behavior JMS service attribute is set to random by default. This means that
each ManagedConnection (physical connection) created from the ManagedConnectionFactory
selects its primary broker in a random way from the AddressList.

When a JMS connection pool is created, there is one ManagedConnectionFactory instance
associated with it. If you configure the AddressList as a ManagedConnectionFactory property,
the AddressList configuration in the ManagedConnectionFactory takes precedence over the
one defined in the Application Server.

Restarting the JMS Client After JMS Configuration

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008250

Connection Failover
To specify whether the Application Server tries to reconnect to the primary broker if the
connection is lost, set the reconnect-enabled attribute in the JMS service. To specify the
number of retries and the time between retries, set the reconnect-attempts and
reconnect-interval-in-seconds attributes, respectively.

If reconnection is enabled and the primary broker goes down, the Application Server tries to
reconnect to another broker in the AddressList. The AddressList is updated whenever a JMS
host configuration changes. The logic for scanning is decided by two JMS service attributes,
addresslist-behavior and addresslist-iterations.

You can override these settings using JMS connection factory settings. For details, see the Sun
Java System Application Server Platform Edition 8.2 Administration Guide.

The Sun Java System Message Queue software transparently transfers the load to another
broker when the failover occurs. JMS semantics are maintained during failover.

Transactions and Non-Persistent Messages
During transaction recovery, non-persistent messages might be lost. If the broker fails between
the transaction manager’s prepare and commit operations, any non-persistent message in the
transaction is lost and cannot be delivered. A message that is not saved to a persistent store is
not available for transaction recovery.

ConnectionFactory Authentication
If your web, EJB, or client module has res-auth set to Container, but you use the
ConnectionFactory.createConnection("user","password") method to get a connection, the
Application Server searches the container for authentication information before using the
supplied user and password. Version 7 of the Application Server threw an exception in this
situation.

Message Queue varhome Directory
The Sun Java System Message Queue software uses a default directory for storing data such as
persistent messages and its log file. This directory is called varhome. The Application Server uses
domain-dir/imq as the varhome directory. Thus, for the default Application Server domain,
Message Queue data is stored in the following location:

install-dir/domains/domain1/imq/var/instances/imqbroker

Message Queue varhome Directory

Chapter 14 • Using the Java Message Service 251

Version 7 of the Application Server stored this data in the following location:

install-dir/imq/var/instances/domain1_server

When executing Message Queue scripts such as install-dir/imq/bin/imqusermgr, use the
-varhome option. For example:

imqusermgr -varhome $AS_INSTALL/domains/domain1/imq add -u testuser

-p testpassword

Delivering SOAP Messages Using the JMS API
Web service clients use the Simple Object Access Protocol (SOAP) to communicate with web
services. SOAP uses a combination of XML-based data structuring and Hyper Text Transfer
Protocol (HTTP) to define a standardized way of invoking methods in objects distributed in
diverse operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site at
http://xml.apache.org/soap/index.html.

You can take advantage of the JMS provider’s reliable messaging when delivering SOAP
messages. You can convert a SOAP message into a JMS message, send the JMS message, then
convert the JMS message back into a SOAP message. The following sections explain how to do
these conversions:

■ “To send SOAP messages using the JMS API” on page 252
■ “To receive SOAP messages using the JMS API” on page 253

▼ To send SOAP messages using the JMS API
Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. You can then send a JMS message containing a SOAP payload as if it were a normal
JMS message.

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and publisher.
tcf = new TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

publisher = session.createPublisher(topic);

1

2

Delivering SOAP Messages Using the JMS API

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008252

http://xml.apache.org/soap/index.html

Construct a SOAP message using the SOAP with Attachments API for Java (SAAJ).
*construct a default soap MessageFactory */

MessageFactory mf = MessageFactory.newInstance();

* Create a SOAP message object.*/

SOAPMessage soapMessage = mf.createMessage();

/** Get SOAP part.*/

SOAPPart soapPart = soapMessage.getSOAPPart();

/* Get SOAP envelope. */

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

/* Get SOAP body.*/

SOAPBody soapBody = soapEnvelope.getBody();

/* Create a name object. with name space */

/* http://www.sun.com/imq. */

Name name = soapEnvelope.createName("HelloWorld", "hw",
"http://www.sun.com/imq");
* Add child element with the above name. */

SOAPElement element = soapBody.addChildElement(name)

/* Add another child element.*/

element.addTextNode("Welcome to Sun Java System Web Services.");

/* Create an atachment with activation API.*/

URL url = new URL ("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler (url);

AttachmentPart ap = soapMessage.createAttachmentPart(dh);

/*set content type/ID. */

ap.setContentType("text/html");
ap.setContentId("cid-001");
/** add the attachment to the SOAP message.*/

soapMessage.addAttachmentPart(ap);

soapMessage.saveChanges();

Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage() method.
Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage,

session);

Publish the JMS message.
publisher.publish(m);

Close the JMS connection.
tc.close();

▼ To receive SOAP messages using the JMS API
Import the MessageTransformer library.
import com.sun.messaging.xml.MessageTransformer;

3

4

5

6

1

Delivering SOAP Messages Using the JMS API

Chapter 14 • Using the Java Message Service 253

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. The JMS message containing the SOAP payload is received as if it were a normal JMS
message.

Initialize the TopicConnectionFactory, TopicConnection, TopicSession, TopicSubscriber,
and Topic.
messageFactory = MessageFactory.newInstance();

tcf = new com.sun.messaging.TopicConnectionFactory();

tc = tcf.createTopicConnection();

session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);

subscriber = session.createSubscriber(topic);

subscriber.setMessageListener(this);

tc.start();

Use the OnMessagemethod to receive the message. Use the SOAPMessageFromJMSMessage
method to convert the JMS message to a SOAP message.
public void onMessage (Message message) {

SOAPMessage soapMessage =

MessageTransformer.SOAPMessageFromJMSMessage(message,

messageFactory); }

Retrieve the content of the SOAP message.

2

3

4

Delivering SOAP Messages Using the JMS API

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008254

Using the JavaMail API

This chapter describes how to use the JavaMailTM API, which provides a set of abstract classes
defining objects that comprise a mail system.

This chapter contains the following sections:

■ “Introducing JavaMail” on page 255
■ “Creating a JavaMail Session” on page 256
■ “JavaMail Session Properties” on page 256
■ “Looking Up a JavaMail Session” on page 256
■ “Sending and Reading Messages Using JavaMail” on page 257

Introducing JavaMail
The JavaMail API defines classes such as Message, Store, and Transport. The API can be
extended and can be subclassed to provide new protocols and to add functionality when
necessary. In addition, the API provides concrete subclasses of the abstract classes. These
subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet mail
protocols and conform to the RFC822 and RFC2045 specifications. The JavaMail API includes
support for the IMAP4, POP3, and SMTP protocols.

The JavaMail architectural components are as follows:

■ The abstract layer declares classes, interfaces, and abstract methods intended to support
mail handling functions that all mail systems support.

■ The internet implementation layer implements part of the abstract layer using the RFC822
and MIME internet standards.

■ JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message data and to
handle commands intended to interact with that data.

15C H A P T E R 1 5

255

For more information, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide and the JavaMail specification at
http://java.sun.com/products/javamail/.

Creating a JavaMail Session
You can create a JavaMail session in the following ways:

■ In the Administration Console, open the Resources component and select JavaMail
Sessions. For details, see the Sun Java System Application Server Platform Edition 8.2
Administration Guide.

■ Use the asadmin create-javamail-resource command. For details, see the Sun Java
System Application Server Platform Edition 8.2 Reference Manual.

JavaMail Session Properties
You can set properties for a JavaMail Session object. Every property name must start with a
mail- prefix. The Application Server changes the dash (-) character to a period (.) in the name
of the property and saves the property to the MailConfiguration and JavaMail Session
objects. If the name of the property doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail.from in a JavaMail Session object, first
define the property as follows:

■ Name - mail-from
■ Value - john.doe@sun.com

After you get the JavaMail Session object, you can get the mail.from property to retrieve the
value as follows:

String password = session.getProperty("mail.from");

Looking Up a JavaMail Session
The standard Java Naming and Directory InterfaceTM (JNDI) subcontext for JavaMail sessions is
java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace, or in one of
its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file system’s
directory structure, so it is easy to find and nest references. A JavaMail session is bound to a
logical JNDI name. The name identifies a subcontext, mail, of the root context, and a logical
name. To change the JavaMail session, you can change its entry in the JNDI namespace without
having to modify the application.

Creating a JavaMail Session

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008256

http://java.sun.com/products/javamail/

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information about the JNDI API, see Chapter 13, “Using the Java Naming and
Directory Interface.”

Sending and Reading Messages Using JavaMail

▼ To send a message using JavaMail
Import the packages that you need.
import java.util.*;

import javax.activation.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.naming.*;

Look up the JavaMail session.
InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 256.

Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();

props.put("mail.from", "user2@mailserver.com");

Create a MimeMessage.
The msgRecipient, msgSubject, and msgTxt variables in the following example contain input
from the user:
Message msg = new MimeMessage(session);

msg.setSubject(msgSubject);

msg.setSentDate(new Date());

msg.setFrom();

msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(msgRecipient, false));

msg.setText(msgTxt);

1

2

3

4

Sending and Reading Messages Using JavaMail

Chapter 15 • Using the JavaMail API 257

Send the message.
Transport.send(msg);

▼ To read a message using JavaMail
Import the packages that you need.
import java.util.*;

import javax.activation.*;

import javax.mail.*;

import javax.mail.internet.*;

import javax.naming.*;

Look up the JavaMail session.
InitialContext ic = new InitialContext();

String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

For more information, see “Looking Up a JavaMail Session” on page 256.

Override the JavaMail session properties if necessary.
For example:
Properties props = session.getProperties();

props.put("mail.from", "user2@mailserver.com");

Get a Store object from the Session, then connect to the mail server using the Store object’s
connect()method.
You must supply a mail server name, a mail user name, and a password.
Store store = session.getStore();

store.connect("MailServer", "MailUser", "secret");

Get the INBOX folder.
Folder folder = store.getFolder("INBOX");

It is efficient to read the Message objects (which represent messages on the server) into an array.
Message[] messages = folder.getMessages();

5

1

2

3

4

5

6

Sending and Reading Messages Using JavaMail

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008258

Using the Java Management Extensions (JMX)
API

The Sun JavaTM System Application Server uses Java Management Extensions (JMXTM)
technology for monitoring, management and notification purposes. Management and
monitoring of the Application Server is performed by the Application Server Management
Extensions (AMX), which exposes managed resources for remote management via the JMX
Application Programming Interface (API).

The Application Server incorporates the JMX 1.2 Reference Implementation, that was
developed by the Java Community Process as Java Specification Request (JSR) 3, and the JMX
Remote API 1.0 Reference Implementation (JSR 160).

This chapter assumes some familiarity with the JMX technology, but the AMX interfaces can be
used for the most part without understanding JMX.

The JMX specifications and Reference Implementations are available for download at
http://java.sun.com/products/JavaManagement/download.html.

This chapter contains the following topics:

■ “About AMX” on page 260
■ “AMX MBeans” on page 260
■ “Proxies” on page 263
■ “Connecting to the Domain Administration Server” on page 263
■ “Examining AMX Code Samples” on page 264
■ “Running the AMX Samples” on page 282

16C H A P T E R 1 6

259

http://java.sun.com/products/JavaManagement/download.html

About AMX
This section describes the Application Server Management eXtensions (AMX). AMX is an API
that exposes all of the Application Server configuration and monitoring MBeans as easy-to-use
client-side dynamic proxies implementing the AMX interfaces.

Full API documentation for the AMX API is provided in the following Application Server
package:

com.sun.appserv.management

The Application Server is based around the concept of administration domains, which consist
of one or more managed resources. A managed resource can be an Application Server or a
manageable entity within a server. A managed resource is of a particular type, and each resource
type exposes a set of attributes and administrative operations that change the resource’s state.

Managed resources are exposed as JMX management beans, or MBeans. While the MBeans can
be accessed via standard JMX APIs (for example, MBeanServerConnection), most users find the
use of the AMX client-side dynamic proxies much more convenient.

All the vital components of the Application Server are visible for monitoring and management
via AMX. You can use third-party tools to perform all common administrative tasks
programmatically, based on the JMX and JMX Remote API standards.

The AMX API consists of a set of proxy interfaces. MBeans are registered in the JMX runtime
contained in the Domain Administration Server (DAS). AMX provides routines to obtain
proxies for MBeans, starting with a root-level domain MBean.

You can navigate generically through the MBean hierarchy using the
com.sun.appserv.management.base.Container interface. When using AMX, the interfaces
defined are implemented by client-side dynamic proxies, but they also implicitly define the
MBeanInfo that is made available by the MBean or MBeans corresponding to it. Certain
operations defined in the interface might have a different return type or a slightly different
name when accessed through the MBean directly. This results from the fact that direct access to
JMX requires the use of ObjectName, whereas use of the AMX interfaces is via strongly typed
proxies implementing the interface(s).

AMX MBeans
All AMX MBeans are represented as interfaces in a subpackage of
com.sun.appserv.management and are implemented by dynamic proxies on the client-side.
While you can access AMX MBeans directly through standard JMX APIs, most users find the
use of AMX interface (proxy) classes to be most convenient.

An AMX MBean belongs to an application server domain. There is exactly one domain per
DAS. Thus all MBeans accessible through the DAS belong to a single Application Server

About AMX

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008260

administrative domain. All MBeans in an Application Server administrative domain, and hence
within the DAS, belong to the JMX domain amx. Any MBeans that do not have the JMX domain
amx are not part of AMX, and are neither documented nor supported for use by clients. All
AMX MBeans can be reached navigationally through the DomainRoot.

AMX defines different types of MBean, namely, configuration MBeans, monitoring MBeans,
utility MBeans and J2EE management (JSR 77) MBeans. These MBeans are logically related in
the following ways:

■ They all implement the com.sun.appserv.management.base.AMX interface.
■ They all have a j2eeType and name property within their ObjectName (see

com.sun.appserv.management.base.XTypes and
com.sun.appserv.management.j2ee.J2EETypes for the available values of the j2eeType
property).

■ All MBeans that logically contain other MBeans implement the
com.sun.appserv.management.base.Container interface.

■ JSR 77 MBeans that have a corresponding configuration or monitoring peer expose it via
getConfigPeer() or getMonitoringPeer(). However, there are many configuration and
monitoring MBeans that do not correspond to JSR 77 MBeans.

Configuration MBeans
Configuration information for a given Application Server domain is stored in a central
repository that is shared by all instances in that domain. The central repository can only be
written to by the DAS. However, configuration information in the central repository is made
available to administration clients via AMX MBeans.

The configuration MBeans are those that modify the underlying domain.xml or related files.
Collectively, they form a model representing the configuration and deployment repository and
the operations that can be performed on them.

The Group Attribute of configuration MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_CONFIGURATION.

Monitoring MBeans
Monitoring MBeans provide transient monitoring information about all the vital components
of the Application Server.

The Group Attribute of monitoring MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_MONITORING.

AMX MBeans

Chapter 16 • Using the Java Management Extensions (JMX) API 261

Utility MBeans
Utility MBeans provide commonly used services to the Application Server.

The Group Attribute of utility MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_UTILITY.

J2EE Management MBeans
The J2EE management MBeans implement, and in some cases extend, the management
hierarchy as defined by JSR 77, which specifies the management model for the whole J2EE
platform. One of the management APIs implemented in JSR 77 is the JMX API.

The implementation of JSR 77 in AMX offers access to and monitoring of MBeans via J2EE
management MBeans, by using the getMonitoringPeer() and getConfigPeer() methods.

The J2EE management MBeans can be thought of as the central hub from which other MBeans
are obtained.

The Group Attribute of J2EE management MBeans, obtained from getGroup(), has a value of
com.sun.appserv.management.base.AMX.GROUP_JSR77.

Other MBeans
MBeans that do not fit into one of the above four categories have the value
com.sun.appserv.management.base.AMX.GROUP_OTHER. One such example is
com.sun.appserv.management.deploy.DeploymentMgr.

MBean Notifications
All AMX MBeans that emit Notifications place a java.util.Map within the userData field of a
standard Notification, which can be obtained via Notification.getUserData(). Within the
map are zero or more items, which vary according to the Notification type. Each Notification
type, and the data available within the Notification, is defined in its respective MBean or in an
appropriate place.

Note that certain standard Notifications, such as
javax.management.AttributeChangeNotification do not and cannot follow this behavior.

Access to MBean Attributes
An AMX MBean Attribute is accessible in three ways:

■ Dotted names via MonitoringDottedNames and ConfigDottedNames

AMX MBeans

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008262

■ Attributes on MBeans via getAttribute(s) and setAttributes(s) (from the standard
JMX API)

■ Getters/setters within the MBean’s interface class, for example, getPort(), setPort(), and
so on.

All dotted names that are accessible via the command line interface are available as Attributes
within a single MBean. This includes properties, which are Attributes beginning with the prefix
property., for example, server.property.myproperty.

Note – Certain attributes that may be of a specific type, such as int, are declared as
java.lang.String. This is because the value of the attribute may be a template of a form such
as ${HTTP_LISTENER_PORT}.

Proxies
Proxies are an important part of the AMX API, and enhance ease-of-use for the programmer.

While JMX MBeans can be used directly, client-side proxies are offered to facilitate navigation
through the MBean hierarchy. In some cases, proxies also function as support or helper objects
to simplify the use of the MBeans.

See the API documentation for the com.sun.appserv.management package and its
sub-packages for more information about using proxies. The API documentation explains the
use of AMX with proxies. If you are using JMX directly (for example, via
MBeanServerConnection), the return type, argument types and method names might vary as
needed for the difference between a strongly-typed proxy interface and generic
MBeanServerConnection/ObjectName interface.

Connecting to the Domain Administration Server
As stated in “Configuration MBeans” on page 261, the AMX API allows client applications to
connect to Application Server instances via the DAS. All AMX connections are established to
the DAS only: AMX does not support direct connections to individual server instances. This
makes it simple to interact with all servers, clusters, and so on, with a single connection.

Sample code for connecting to the DAS is shown in “Connecting to the DAS” on page 264.

Connecting to the Domain Administration Server

Chapter 16 • Using the Java Management Extensions (JMX) API 263

Examining AMX Code Samples
The following example uses of AMX are discussed in this document:
■ “Starting an Application Server” on page 265
■ “Deploying an Archive” on page 266
■ “Displaying the AMX MBean Hierarchy” on page 269
■ “Setting Monitoring States” on page 271
■ “Accessing AMX MBeans” on page 272
■ “Accessing and Displaying the Attributes of an AMX MBean” on page 274
■ “Listing AMX MBean Properties” on page 275
■ “Querying” on page 277
■ “Monitoring Attribute Changes” on page 278
■ “Undeploying Modules” on page 281
■ “Stopping an Application Server” on page 281

Connecting to the DAS
The connection to the DAS is shown in the following code.

EXAMPLE 16–1 Connecting to the DAS

[...]

public static AppserverConnectionSource

connect(

final String host,

final int port,

final String user,

final String password,

final TLSParams tlsParams)

throws IOException

{

final String info = "host=" + host + ", port=" + port +

", user=" + user + ", password=" + password +

", tls=" + (tlsParams != null);

SampleUtil.println("Connecting...:" + info);

final AppserverConnectionSource conn =

new AppserverConnectionSource(

AppserverConnectionSource.PROTOCOL_RMI,

host, port, user, password, tlsParams, null);

conn.getJMXConnector(false);

SampleUtil.println("Connected: " + info);

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008264

EXAMPLE 16–1 Connecting to the DAS (Continued)

return(conn);

}

[...]

A connection to the DAS is obtained via an instance of the
com.sun.appserv.management.client.AppserverConnectionSource class. For the
connection to be established, you must know the name of the host and port number on which
the DAS is running, and have the correct user name, password and TLS parameters.

Once the connection to the DAS is established, DomainRoot is obtained as follows:

DomainRoot domainRoot = appserverConnectionSource.getDomainRoot();

This DomainRoot instance is a client-side dynamic proxy to the MBean
amx:j2eeType=X-DomainRoot,name=amx.

See the API documentation for
com.sun.appserv.management.client.AppserverConnectionSource for further details
about connecting to the DAS using the AppserverConnectionSource class.

However, if you prefer to work with standard JMX, instead of getting DomainRoot, you can get
the MBeanServerConnection or JMXConnector, as shown:

MBeanServerConnection conn =

appserverConnectionSource.getMBeanServerConnection(false);

JMXConnector jmxConn =

appserverConnectionSource.getJMXConnector(false);

Starting an Application Server
The startServer() method demonstrates how to start an Application Server.

EXAMPLE 16–2 Starting an Application Server

[...]

startServer(final String serverName)

{

final J2EEServer server = getJ2EEServer(serverName);

server.start();

}

[...]

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 265

This method retrieves and starts an application server instance named server. The server is an
instance of the com.sun.appserv.management.j2see.J2EEServer interface, and is obtained
by calling another method, getJ2EEServer(), shown in the following code.

EXAMPLE 16–3 Obtaining a Named J2EE server instance

[...]

getJ2EEServer(final String serverName)

{

final J2EEDomain j2eeDomain = getDomainRoot().getJ2EEDomain();

final Map servers = j2eeDomain.getServerMap();

final J2EEServer server = (J2EEServer)servers.get(serverName);

if (server == null)

{

throw new IllegalArgumentException(serverName);

}

return(server);

}

[...]

To obtain a J2EE server instance, the getJ2EEServer() method first of all obtains an instance of
the J2EEDomain interface by calling the
com.sun.appserv.management.base.AMX.getDomainRoot() and
com.sun.appserv.management.DomainRoot.getJ2EEDomain() methods. The two methods
called establish the following:
■ AMX.getDomainRoot() obtains the Application Server domain to which j2eeDomain

belongs.
■ DomainRoot.getJ2EEDomain() obtains the J2EE domain for j2eeDomain.

The J2EEServer instance is then started by a call to the start() method. The
com.sun.appserv.management.j2ee.StateManageable.start() method can be used to start
any state manageable object.

Deploying an Archive
The uploadArchive() and deploy() methods demonstrate how to upload and deploy a J2EE
archive file.

EXAMPLE 16–4 Uploading an archive

[...]

uploadArchive (final File archive) throws IOException

{

final FileInputStream input = new FileInputStream(archive);

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008266

EXAMPLE 16–4 Uploading an archive (Continued)

final long length = input.available();

final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();

final Object uploadID = mgr.initiateFileUpload(length);

try

{

[...]

}

finally

{

input.close();

}

return(uploadID);

}

[...]

The uploadArchive() method creates a standard Java FileInputStream instance called input,
to upload the archive archive. It then obtains the AMX deployment manager running in the
application server domain, by calling the DomainRoot.getDeploymentMgr() method.

A call to com.sun.appserv.management.deploy.initiateFileUpload starts the upload of
archive. The initiateFileUpload() method automatically issues an upload ID, that
uploadArchive() returns when it is called by deploy().

EXAMPLE 16–5 Deploying an archive

[...]

deploy (final File archive) throws IOException

{

final Object uploadID = uploadArchive(archive);

final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();

final Object deployID = mgr.initDeploy();

final DeployNotificationListener myListener =

new DeployNotificationListener(deployID);

mgr.addNotificationListener(myListener, null, null);

try

{

final Map options = new HashMap();

options.put(DeploymentMgr.DEPLOY_OPTION_VERIFY_KEY,

Boolean.TRUE.toString());

options.put(DeploymentMgr.DEPLOY_OPTION_DESCRIPTION_KEY,

"description");

mgr.startDeploy(deployID, uploadID, null, null);

while (! myListener.isCompleted())

{

try

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 267

EXAMPLE 16–5 Deploying an archive (Continued)

{

println("deploy: waiting for deploy of " + archive);

Thread.sleep(1000);

}

catch(InterruptedException e)

{

}

}

final DeploymentStatus status = myListener.getDeploymentStatus();

println("Deployment result: " + getStageStatusString(

status.getStageStatus()));

if (status.getStageThrowable() != null)

{

status.getStageThrowable().printStackTrace();

}

}

finally

{

try

{

mgr.removeNotificationListener(myListener);

}

catch(Exception e)

{

}

}

}

[...]

The deploy() method calls uploadArchive to get the upload ID for archive. It then identifies
the deployment manager by calling DomainRoot.getDeploymentMgr(). A call to
DeploymentMgr.initDeploy() initializes the deployment and obtains a deployment ID, which
is used to track the progress of the deployment.

A JMX notification listener, myListener, is created and activated to listen for notifications
regarding the deployment of deployID.

Deployment is started by calling the DeploymentMgr.startDeploy() method and providing it
with the deployID and uploadID.

While the deployment is continuing, myListener listens for the completion notification and
DeploymentStatus keeps you informed of the status of the deployment by regularly calling its
getStageStatus() method. Once the deployment is complete, the listener is closed down.

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008268

Caution – Some of the behavior of the com.sun.appserv.management.deploy API is
unpredictable, and it should be used with caution.

Displaying the AMX MBean Hierarchy
The displayAMX() method demonstrates how to display the AMX MBean hierarchy.

EXAMPLE 16–6 Displaying the AMX MBean Hierarchy

[...]

displayAMX(

final AMX amx,

final int indentCount)

{

final String indent = getIndent(indentCount);

final String j2eeType = amx.getJ2EEType();

final String name = amx.getName();

if (name.equals(AMX.NO_NAME))

{

println(indent + j2eeType);

}

else

{

println(indent + j2eeType + "=" + name);

}

}

private void

displayHierarchy(

final Collection amxSet,

final int indentCount)

{

final Iterator iter = amxSet.iterator();

while (iter.hasNext())

{

final AMX amx = (AMX)iter.next();

displayHierarchy(amx, indentCount);

}

}

public void

displayHierarchy(

final AMX amx,

final int indentCount)

{

displayAMX(amx, indentCount);

if (amx instanceof Container)

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 269

EXAMPLE 16–6 Displaying the AMX MBean Hierarchy (Continued)

{

final Map m = ((Container)amx).getMultiContaineeMap(null);

final Set deferred = new HashSet();

final Iterator mapsIter = m.values().iterator();

while (mapsIter.hasNext())

{

final Map instancesMap = (Map)mapsIter.next();

final AMX first = (AMX)instancesMap.values().iterator().next();

if (first instanceof Container)

{

deferred.add(instancesMap);

}

else

{

displayHierarchy(instancesMap.values(), indentCount + 2);

}

}

// display deferred items

final Iterator iter = deferred.iterator();

while (iter.hasNext())

{

final Map instancesMap = (Map)iter.next();

displayHierarchy(instancesMap.values(), indentCount + 2);

}

}

}

public void displayHierarchy()

{

displayHierarchy(getDomainRoot(), 0);

}

public void

displayHierarchy(final String j2eeType)

{

final Set items = getQueryMgr().queryJ2EETypeSet(j2eeType);

if (items.size() == 0)

{

println("No {@link AMX} of j2eeType "
+ SampleUtil.quote(j2eeType) + " found");

}

else

{

displayHierarchy(items, 0);

}

}

[...]

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008270

The displayAMX() method obtains the J2EE type and the name of an AMX MBean by calling
AMX.getJ2EEType and AMX.getName respectively.

The displayHierarchy() method defines a standard Java Collection instance, amxSet, which
collects instances of AMX MBeans.

To display the hierarchy of MBeans within a particular MBean in the collection,
displayHierarchy() checks whether the MBean is an instance of Container. If so, it creates a
set of the MBeans it contains by calling the
com.sun.appserv.management.base.Container.getMultiContaineeMap() method.

The MBean hierarchy for a particular J2EE type is displayed by calling the
com.sun.appserv.management.base.QueryMgr.queryJ2EETypeSet(), and passing the result
to displayHierarchy().

To display the entire AMX MBean hierarchy in a domain, displayHierarchy() calls
getDomainRoot() to obtain the root AMX MBean in the domain.

Setting Monitoring States
The setMonitoring() method demonstrates how to set monitoring states.

EXAMPLE 16–7 Setting Monitoring States

[...]

private static final Set LEGAL_MON =

Collections.unmodifiableSet(SampleUtil.newSet(new String[]

{

ModuleMonitoringLevelValues.HIGH,

ModuleMonitoringLevelValues.LOW,

ModuleMonitoringLevelValues.OFF,

}));

public void setMonitoring(

final String configName,

final String state)

{

if (! LEGAL_MON.contains(state))

{

throw new IllegalArgumentException(state);

}

final ConfigConfig config =

(ConfigConfig)getDomainConfig().

getConfigConfigMap().get(configName);

final ModuleMonitoringLevelsConfig mon =

config.getMonitoringServiceConfig().

getModuleMonitoringLevelsConfig();

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 271

EXAMPLE 16–7 Setting Monitoring States (Continued)

mon.setConnectorConnectionPool(state);

mon.setThreadPool(state);

mon.setHTTPService(state);

mon.setJDBCConnectionPool(state);

mon.setORB(state);

mon.setTransactionService(state);

mon.setWebContainer(state);

mon.setEJBContainer(state);

}

[...]

The AMX API defines three levels of monitoring in
com.sun.appserv.management.config.ModuleMonitoringLevelValues, namely, HIGH, LOW,
and OFF.

In this example, the configuration element being monitored is named configName. The
com.sun.appserv.management.config.ConfigConfig interface is used to configure the
config element for configName in the domain.xml file.

An instance of com.sun.appserv.management.config.ModuleMonitoringLevelsConfig is
created to configure the module-monitoring-levels element for configName in the
domain.xml file.

The ModuleMonitoringLevelsConfig instance created then calls each of its set methods to
change their states to state.

The above is performed by running the set-monitoring command when you run SimpleMain,
stating the name of the configuration element to be monitored and the monitoring state to one
of HIGH, LOW or OFF.

Accessing AMX MBeans
The handleList() method demonstrates how to access many (but not all) configuration
elements.

EXAMPLE 16–8 Accessing AMX MBeans

[...]

handleList()

{

final DomainConfig dcp = getDomainConfig();

println("\n--- Top-level --- \n");

displayMap("ConfigConfig", dcp.getConfigConfigMap());

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008272

EXAMPLE 16–8 Accessing AMX MBeans (Continued)

displayMap("ServerConfig", dcp.getServerConfigMap());

displayMap("StandaloneServerConfig",
dcp.getStandaloneServerConfigMap());

displayMap("ClusteredServerConfig",
dcp.getClusteredServerConfigMap());

displayMap("ClusterConfig", dcp.getClusterConfigMap());

println("\n--- DeployedItems --- \n");

displayMap("J2EEApplicationConfig",
dcp.getJ2EEApplicationConfigMap());

displayMap("EJBModuleConfig",
dcp.getEJBModuleConfigMap());

displayMap("WebModuleConfig",
dcp.getWebModuleConfigMap());

displayMap("RARModuleConfig",
dcp.getRARModuleConfigMap());

displayMap("AppClientModuleConfig",
dcp.getAppClientModuleConfigMap());

displayMap("LifecycleModuleConfig",
dcp.getLifecycleModuleConfigMap());

println("\n--- Resources --- \n");

displayMap("CustomResourceConfig",
dcp.getCustomResourceConfigMap());

displayMap("PersistenceManagerFactoryResourceConfig",
dcp.getPersistenceManagerFactoryResourceConfigMap());

displayMap("JNDIResourceConfig",
dcp.getJNDIResourceConfigMap());

displayMap("JMSResourceConfig",
dcp.getJMSResourceConfigMap());

displayMap("JDBCResourceConfig",
dcp.getJDBCResourceConfigMap());

displayMap("ConnectorResourceConfig",
dcp.getConnectorResourceConfigMap());

displayMap("JDBCConnectionPoolConfig",
dcp.getJDBCConnectionPoolConfigMap());

displayMap("PersistenceManagerFactoryResourceConfig",
dcp.getPersistenceManagerFactoryResourceConfigMap());

displayMap("ConnectorConnectionPoolConfig",
dcp.getConnectorConnectionPoolConfigMap());

displayMap("AdminObjectResourceConfig",
dcp.getAdminObjectResourceConfigMap());

displayMap("ResourceAdapterConfig",
dcp.getResourceAdapterConfigMap());

displayMap("MailResourceConfig",
dcp.getMailResourceConfigMap());

final ConfigConfig config =

(ConfigConfig)dcp.getConfigConfigMap().get("server-config");

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 273

EXAMPLE 16–8 Accessing AMX MBeans (Continued)

println("\n--- HTTPService --- \n");

final HTTPServiceConfig httpService = config.getHTTPServiceConfig();

displayMap("HTTPListeners",
httpService.getHTTPListenerConfigMap());

displayMap("VirtualServers",
httpService.getVirtualServerConfigMap());

}

[...]

The handleList() method makes use of the displayMap() method, which simply prints out
the key value pairs.

The handleList() method identifies the configuration for a domain by calling the
DomainRoot.getDomainConfig() method. This DomainConfig instance then calls each of its
getXXXMap() methods in turn, to obtain a Map for each type of AMX MBean. The Map returned
by each getter is displayed by displayMap().

Similarly, the AMX MBeans representing the http-service element are displayed as Maps by
calling the getXXXMap() methods of the
com.sun.appserv.management.config.HTTPServiceConfig interface, and passing them to
displayMap().

Accessing and Displaying the Attributes of an AMX
MBean
The displayAllAttributes() method demonstrates how to access and display the attributes
of an AMX MBean.

EXAMPLE 16–9 Accessing and Displaying the Attributes of an AMX MBean

[...]

displayAllAttributes(final AMX item)

{

println("\n--- Attributes for " + item.getJ2EEType() +

"=" + item.getName() + " ---");

final Extra extra = Util.getExtra(item);

final Map attrs = extra.getAllAttributes();

final Iterator iter = attrs.keySet().iterator();

while (iter.hasNext())

{

final String name = (String)iter.next();

final Object value = attrs.get(name);

println(name + "=" + toString(value));

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008274

EXAMPLE 16–9 Accessing and Displaying the Attributes of an AMX MBean (Continued)

}

}

public void

displayAllAttributes(final String j2eeType)

{

final Set items = queryForJ2EEType(j2eeType);

if (items.size() == 0)

{

println("No {@link AMX} of j2eeType "
+ SampleUtil.quote(j2eeType) + " found");

}

else

{

final Iterator iter= items.iterator();

while (iter.hasNext())

{

final AMX amx = (AMX)iter.next();

displayAllAttributes(amx);

println("");

}

}

}

[...]

The displayAllAttributes() method calls the AMX.getName() and AMX.getJ2EEType()

methods for an AMX MBean and prints the results onscreen. It then gets all the attributes for
that MBean by calling com.sun.appserv.management.base.Extra.getAllAttributes() on
the Extra instance returned by com.sun.appserv.management.base.Util.getExtra(). This
is repeated for every MBean.

The attributes of AMX MBeans of a certain J2EE type can be displayed by specifying the J2EE
type when the command is run. In this case, displayAllAttributes() calls
queryForJ2EEType(). The queryForJ2EEType() method calls the
com.sun.appserv.management.base.QueryManager.queryPropSet() method on the
specified J2EE type to identify all elements of that type in the domain.

Listing AMX MBean Properties
The displayAllProperties() demonstrates how to list AMX MBean properties.

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 275

EXAMPLE 16–10 Listing AMX MBean Properties

[...]

getProperties(final PropertiesAccess pa)

{

final HashMap m = new HashMap();

final String[] names = pa.getPropertyNames();

for(int i = 0; i < names.length; ++i)

{

m.put(names[i], pa.getPropertyValue(names[i]));

}

return(m);

}

public void

displayAllProperties()

{

final Iterator iter = getQueryMgr().queryAllSet().iterator();

while (iter.hasNext())

{

final AMX amx = (AMX)iter.next();

if (amx instanceof PropertiesAccess)

{

final PropertiesAccess pa = (PropertiesAccess)amx;

final Map props = getProperties(pa);

if (props.keySet().size() != 0)

{

println("\nProperties for:

" + Util.getObjectName(AMX)pa));

println(SampleUtil.mapToString(getProperties(pa), "\n"));

}

}

}

}

[...]

The displayAllProperties() method uses another Samples method, getProperties(). This
method creates an instance of the com.sun.appserv.management.config.PropertiesAccess
interface, and calls its getPropertyNames() method to obtain the names of all the properties for
a given AMX MBean. For each property name obtained, its corresponding value is obtained by
calling PropertiesAccess.getPropertyValue().

The displayAllProperties() method calls the
com.sun.appserv.management.base.QueryMgr.queryAllSet() method to obtain a set of all
the AMX MBeans present in the domain. All AMX MBeans that have properties obligatorily
extend the PropertiesAccess interface. Any MBean found to extend PropertiesAccess is
passed to the getProperties() method, and the list of property values returned is printed
onscreen.

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008276

Querying
The demoQuery() method demonstrates how to issue queries.

The demoQuery() method uses other methods that are defined by Samples, namely
displayWild(), and displayJ2EEType(). The displayWild() method is shown in the
following code.

EXAMPLE 16–11 Querying and displaying wild cards

[...]

queryWild(

final String propertyName,

final String propertyValue)

{

final String[] propNames = new String[] { propertyName };

final String[] propValues = new String[]{ propertyValue };

final Set amxs = getQueryMgr().queryWildSet(propNames, propValues);

return(amxs);

}

public Set

displayWild(

final String propertyName,

final String propertyValue)

{

final Set items = queryWild(propertyName, propertyValue);

println("\n--- Queried for " + propertyName + "="
+ propertyValue + " ---");

final Iterator iter = items.iterator();

while (iter.hasNext())

{

final AMX item = (AMX)iter.next();

println("j2eeType=" + item.getJ2EEType() + ",
" + "name=" + item.getName());

}

}

[...]

The displayWild() method calls queryWild(), to obtain all the AMX MBeans that have object
names matching propertyName and propertyValue. To do so, queryWild() calls the
com.sun.appserv.management.base.QueryMgr.queryWildSet() method. The
queryWildSet() method returns the list of AMX MBeans with object names matching the wild
card strings.

For each MBean returned, the displayWild() calls AMX.getJ2EEType() to identify its J2EE
type, and prints the result onscreen.

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 277

In code that is not shown here, the displayJ2EEType() method calls the queryForJ2EEType()
method, which was seen in “Accessing and Displaying the Attributes of an AMX MBean” on
page 274, to identify MBeans of a certain J2EE type and print their object names onscreen.

EXAMPLE 16–12 Querying

[...]

demoQuery()

{

displayWild(AMX.J2EE_TYPE_KEY, "X-*ResourceConfig");

displayWild(AMX.J2EE_TYPE_KEY, "X-*ServerConfig");

displayJ2EEType(XTypes.SSL_CONFIG);

displayJ2EEType(XTypes.CLUSTER_CONFIG);

}

[...]

In the demoQuery() method, the displayWild() and displayJ2EEType() methods are called
to find the following MBeans:
■ J2EE_TYPE_KEY MBeans called ResourceConfig

■ J2EE_TYPE_KEY MBeans called ServerConfig

■ All SSL_CONFIG MBeans
■ All CLUSTER_CONFIG MBeans

Monitoring Attribute Changes
The demoJMXMonitor() demonstrates how to monitor attribute changes.

EXAMPLE 16–13 Monitoring Attribute Changes

[...]

demoJMXMonitor() throws InstanceNotFoundException, IOException

{

final JMXMonitorMgr mgr = getDomainRoot().getJMXMonitorMgr();

final String attrName = "SampleString";
final String attrValue = "hello";
final SampleListener sampleListener = new SampleListener();

final MBeanServerConnection conn =

Util.getExtra(mgr).getConnectionSource()

.getExistingMBeanServerConnection();

conn.addNotificationListener(

getMBeanServerDelegateObjectName(),

sampleListener, null, null);

final Sample sample = (Sample)getDomainRoot()

.getContainee(XTypes.SAMPLE);

final String monitorName = "SampleStringMonitor";

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008278

EXAMPLE 16–13 Monitoring Attribute Changes (Continued)

AMXStringMonitor mon = null;

try

{

try { mgr.remove(monitorName); }

catch(Exception e) {}

mon = mgr.createStringMonitor(monitorName);

waitMBeanServerNotification(sampleListener,

MBeanServerNotification.REGISTRATION_NOTIFICATION,

Util.getObjectName(mon));

sample.addAttribute(attrName, attrValue);

mon.addNotificationListener(sampleListener, null, null);

mon.setObservedAttribute(attrName);

mon.setStringToCompare(attrValue);

mon.setNotifyDiffer(true);

mon.setNotifyMatch(true);

mon.addObservedObject(Util.getObjectName(sample));

final StdAttributesAccess attrs = Util.getExtra(sample);

attrs.setAttribute(new Attribute(attrName, "goodbye"));

attrs.setAttribute(new Attribute(attrName, attrValue));

sample.removeAttribute(attrName);

final Map notifs = sampleListener.getNotifsReceived();

waitNumNotifs(notifs,

AttributeChangeNotification.ATTRIBUTE_CHANGE, 4);

}

catch(Throwable t)

{

t.printStackTrace();

}

finally

{

try

{

mon.removeNotificationListener(sampleListener);

if (mon != null)

{

mgr.remove(mon.getName());

waitMBeanServerNotification(sampleListener,

MBeanServerNotification

.UNREGISTRATION_NOTIFICATION,

Util.getObjectName(mon));

}

conn.removeNotificationListener(

getMBeanServerDelegateObjectName(),

sampleListener);

}

catch(ListenerNotFoundException e)

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 279

EXAMPLE 16–13 Monitoring Attribute Changes (Continued)

{

}

}

}

[...]

The demoJmx() method demonstrates the implementation of a JMX monitor MBean, that
listens for changes in a certain attribute. This is achieved in the following stages:

1. A com.sun.appserv.management.monitor.JMXMonitorMgr instance is obtained using the
DomainRoot.getJMXMonitorMgr() method.

2. A SampleListener JMX notification listener that is provided in the sample package is
instantiated.

3. A connection to the domain’s MBean server is obtained by calling
com.sun.appserv.management.client.ConnectionSource.
getExistingMBeanServerConnection() on the JMXMonitorMgr instance’s Extra
information.

4. The SampleListener notification listener is added to the MBean server connection, with an
MBean server delegate obtained from getMBeanServerDelegateObject(). The notification
listener is now in place on the MBean server connection.

5. An AMX MBean, sample, of the type SAMPLE is obtained by calling the
com.sun.appserv.management.base.Container.getContainee() method on an instance
of the Sample interface. The Sample interface defines a basic AMX MBean.

6. An AMXStringMonitor, an AMX-compatible JMX StringMonitorMBean, is instantiated by
calling createStringMonitor on the JMXMonitorMgr instance created above. The
AMXStringMonitor instance then calls waitMBeanServerNotification(). The
waitMBeanServerNotification() method waits for MBean server notifications of the type
REGISTRATION_NOTIFICATION from the SampleListener instance that is listening on the
MBean server connection.

7. An attribute of name attrName and value attrValue is added to the AMX MBean sample.

8. Various methods of the AMXStringMonitor instance are called, to add a listener, and to set
the value to be observed, the object to be observed, and so on.

9. Access to the sample MBean’s attributes is obtained by passing the sample MBean’s Extra
information to an instance of
com.sun.appserv.management.base.StdAttributesAccess. The
StdAttributesAccess.setAttribute() method is then called to change the values of these
attributes.

Examining AMX Code Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008280

10. The AMXStringMonitor then calls the sample notification listener’s getNotifsReceived()
method to retrieve the notifications that resulted from the calls to setAttribute() above.
The waitNumNotifs() method waits until four ATTRIBUTE_CHANGE notifications have been
received before exiting.

11. The notification listener is then removed and the monitor is closed down.

Undeploying Modules
The undeploy() method demonstrates how to undeploy a module.

EXAMPLE 16–14 Undeploying Modules

[...]

undeploy (final String moduleName) throws IOException

{

final DeploymentMgr mgr = getDomainRoot().getDeploymentMgr();

final Map statusData = mgr.undeploy(moduleName, null);

final DeploymentStatus status =

DeploymentSupport.mapToDeploymentStatus(statusData);

println("Undeployment result: "
+ getStageStatusString(status.getStageStatus()));

if (status.getStageThrowable() != null)

{

status.getStageThrowable().printStackTrace();

}

}

[...]

The undeploy() method obtains the DeploymentMgr instance for the domain in the same way
that deploy() does so. It then calls the DeploymentMgr.undeploy() method for a named
module.

Stopping an Application Server
The stopServer() method demonstrates how to stop an application server. The stopServer()
method simply calls the getJ2EEServer() method on a given server instance, and then calls
J2EEServer.stop().

Examining AMX Code Samples

Chapter 16 • Using the Java Management Extensions (JMX) API 281

Running the AMX Samples
To set up your development environment for using AMX, you must ensure that your Java
classpath contains the following Java archive (JAR) files:

■ appserv-admin.jar - The JAR file containing the AMX interfaces needed for your client.
This file is found in install-dir/lib/. No other classes from this JAR file should be used by
your program.

■ jmxri.jar - The runtime libraries for the JMX Reference Implementation. If you are using
JDK 1.5, these are already in the JDK.

■ jmxremote.jar - The runtime libraries for the JMX Remote API. If you are using JDK 1.5,
these are already in the JDK.

■ j2ee.jar - The runtime libraries for the J2EE Platform. This file is found in
install-dir/lib/. This JAR file is needed only if you intend to use any of the J2EE
Management Statistic classes (javax.management.j2ee.*).

Start your Java application in a manner similar to this:

export JAR_PATH=install-dir/lib/
export CP="$JAR_PATH/j2ee.jar:$JAR_PATH/appserv-admin.jar"
java -cp $CP com.mycompany.MyClientMain

Running the AMX Samples

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008282

Deployment Descriptor Files

This chapter describes deployment descriptor files specific to the Sun Java System Application
Server in the following sections:
■ “Sun Java System Application Server Descriptors” on page 73
■ “The sun-application.xml File” on page 285
■ “The sun-web.xml File” on page 285
■ “The sun-ejb-jar.xml File” on page 288
■ “The sun-cmp-mappings.xml File” on page 293
■ “The sun-application-client.xml file” on page 297
■ “The sun-acc.xml File” on page 298
■ “Alphabetical Listing of All Elements” on page 298

Sun Java System Application Server Descriptors
Sun Java System Application Server uses deployment descriptors in addition to the J2EE
standard descriptors for configuring features specific to the Application Server. The
sun-application.xml, sun-web.xml, and sun-cmp-mappings.xml files are optional; all the
others are required.

Note – Settings in the Application Server deployment descriptors override corresponding
settings in the Java EE deployment descriptors and in the Application Server's domain.xml file
unless otherwise stated. For more information about the domain.xml file, see the Sun Java
System Application Server Platform Edition 8.2 Administration Reference.

Each deployment descriptor (or XML) file has a corresponding DTD file, which defines the
elements, data, and attributes that the deployment descriptor file can contain. For example, the
sun-application_1_4-0.dtd file defines the structure of the sun-application.xml file. The
DTD files for the Application Server deployment descriptors are located in the
install-dir/lib/dtds directory.

AA P P E N D I X A

283

Note – Do not edit the DTD files; their contents change only with new versions of the
Application Server.

To check the correctness of these deployment descriptors prior to deployment, see “The
Deployment Descriptor Verifier” on page 84.

For general information about DTD files and XML, see the XML specification at
http://www.w3.org/TR/REC-xml.

The following table lists the Application Server deployment descriptors and their DTD files.

TABLE A–1 Sun Java System Application Server Descriptors

Deployment Descriptor DTD File Description

sun-application.xml sun-application_1_4-0.dtd Configures an entire J2EE application
(EAR file).

sun-web.xml sun-web-app_2_4-1.dtd Configures a web application (WAR
file).

sun-ejb-jar.xml sun-ejb-jar_2_1-1.dtd Configures an enterprise bean (EJB JAR
file).

sun-cmp-mappings.xml sun-cmp-mapping_1_2.dtd Configures container-managed
persistence for an enterprise bean.

sun-application-client.xml sun-application-client_1_4-1.dtd Configures an Application Client
Container (ACC) client (JAR file).

sun-acc.xml sun-application-client-container_1_0.dtd Configures the Application Client
Container.

Note – The Application Server deployment descriptors must be readable and writable by the file
owners.

In each deployment descriptor file, subelements must be defined in the order in which they are
listed under each Subelements heading, unless otherwise noted.

Sun Java System Application Server Descriptors

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008284

http://www.w3.org/TR/REC-xml

The sun-application.xml File
The element hierarchy in the sun-application.xml file is as follows:

sun-application

. web

. . web-uri

. . context-root

. pass-by-reference

. unique-id

. security-role-mapping

. . role-name

. . principal-name

. . group-name

. realm

Here is a sample sun-application.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-application PUBLIC ’-//Sun Microsystems, Inc.//DTD Application

Server 8.1 J2EE Application 1.4//EN’

’http://www.sun.com/software/appserver/dtds/sun-application_1_4-0.dtd’>

<sun-application>

<unique-id>67488732739338240</unique-id>

</sun-application>

The sun-web.xml File
The element hierarchy in the sun-web.xml file is as follows:

sun-web-app

. context-root

. security-role-mapping

. . role-name

. . principal-name

. . group-name

. servlet

. . servlet-name

. . principal-name

. . webservice-endpoint

. . . port-component-name

. . . endpoint-address-uri

. . . login-config

. . . . auth-method

. . . message-security-binding

. . . . message-security

The sun-web.xml File

Appendix A • Deployment Descriptor Files 285

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . . transport-guarantee

. . . service-qname

. . . tie-class

. . . servlet-impl-class

. idempotent-url-pattern

. session-config

. . session-manager

. . . manager-properties

. . . . property (with attributes)

. description

. . . store-properties

. . . . property (with attributes)

. description

. . session-properties

. . . property (with attributes)

. . . . description

. . cookie-properties

. . . property (with attributes)

. . . . description

. ejb-ref

. . ejb-ref-name

. . jndi-name

. resource-ref

. . res-ref-name

. . jndi-name

. . default-resource-principal

. . . name

. . . password

. resource-env-ref

. . resource-env-ref-name

. . jndi-name

. service-ref

. . service-ref-name

. . port-info

. . . service-endpoint-interface

. . . wsdl-port

. . . . namespaceURI

. . . . localpart

. . . stub-property

. . . . name

The sun-web.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008286

. . . . value

. . . call-property

. . . . name

. . . . value

. . . message-security-binding

. . . . message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . call-property

. . . name

. . . value

. . wsdl-override

. . service-impl-class

. . service-qname

. . . namespaceURI

. . . localpart

. cache

. . cache-helper

. . . property (with attributes)

. . . . description

. . default-helper

. . . property (with attributes)

. . . . description

. . property (with attributes)

. . . description

. . cache-mapping

. . . servlet-name

. . . url-pattern

. . . cache-helper-ref

. . . dispatcher

. . . timeout

. . . refresh-field

. . . http-method

. . . key-field

. . . constraint-field

. . . . constraint-field-value

. class-loader

. . property (with attributes)

. . . description

. jsp-config

. locale-charset-info

. . locale-charset-map

The sun-web.xml File

Appendix A • Deployment Descriptor Files 287

. . parameter-encoding

. property (with attributes)

. . description

. parameter-encoding

. message-destination

. . message-destination-name

. . jndi-name

. webservice-description

. . webservice-description-name

. . wsdl-publish-location

Here is a sample sun-web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC ’-//Sun Microsystems, Inc.//DTD Application

Server 8.1 Servlet 2.4//EN’

’http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd’>

<sun-web-app>

<session-config>

<session-manager/>

</session-config>

<resource-ref>

<res-ref-name>mail/Session</res-ref-name>

<jndi-name>mail/Session</jndi-name>

</resource-ref>

<jsp-config/>

</sun-web-app>

The sun-ejb-jar.xml File
The element hierarchy in the sun-ejb-jar.xml file is as follows:

sun-ejb-jar

. security-role-mapping

. . role-name

. . principal-name

. . group-name

. enterprise-beans

. . name

. . unique-id

. . ejb

. . . ejb-name

. . . jndi-name

. . . ejb-ref

. . . . ejb-ref-name

. . . . jndi-name

The sun-ejb-jar.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008288

. . . resource-ref

. . . . res-ref-name

. . . . jndi-name

. . . . default-resource-principal

. name

. password

. . . resource-env-ref

. . . . resource-env-ref-name

. . . . jndi-name

. . . service-ref

. . . . service-ref-name

. . . . port-info

. service-endpoint-interface

. wsdl-port

. namespaceURI

. localpart

. stub-property

. name

. value

. call-property

. name

. value

. message-security-binding

. message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . . . call-property

. name

. value

. . . . wsdl-override

. . . . service-impl-class

. . . . service-qname

. namespaceURI

. localpart

. . . pass-by-reference

. . . cmp

. . . . mapping-properties

. . . . is-one-one-cmp

. . . . one-one-finders

. finder

. method-name

. query-params

The sun-ejb-jar.xml File

Appendix A • Deployment Descriptor Files 289

. query-filter

. query-variables

. query-ordering

. . . . prefetch-disabled

. query-method

. method-name

. method-params

. method-param

. . . principal

. . . . name

. . . mdb-connection-factory

. . . . jndi-name

. . . . default-resource-principal

. name

. password

. . . jms-durable-subscription-name

. . . jms-max-messages-load

. . . ior-security-config

. . . . transport-config

. integrity

. confidentiality

. establish-trust-in-target

. establish-trust-in-client

. . . . as-context

. auth-method

. realm

. required

. . . . sas-context

. caller-propagation

. . . is-read-only-bean

. . . refresh-period-in-seconds

. . . commit-option

. . . cmt-timeout-in-seconds

. . . use-thread-pool-id

. . . gen-classes

. . . . remote-impl

. . . . local-impl

. . . . remote-home-impl

. . . . local-home-impl

. . . bean-pool

. . . . steady-pool-size

. . . . resize-quantity

. . . . max-pool-size

. . . . pool-idle-timeout-in-seconds

. . . . max-wait-time-in-millis

. . . bean-cache

. . . . max-cache-size

. . . . resize-quantity

The sun-ejb-jar.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008290

. . . . is-cache-overflow-allowed

. . . . cache-idle-timeout-in-seconds

. . . . removal-timeout-in-seconds

. . . . victim-selection-policy

. . . mdb-resource-adapter

. . . . resource-adapter-mid

. . . . activation-config

. description

. activation-config-property

. activation-config-property-name

. activation-config-property-value

. . . webservice-endpoint

. . . . port-component-name

. . . . endpoint-address-uri

. . . . login-config

. auth-method

. . . . message-security-binding

. message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

. request-protection

. response-protection

. . . . transport-guarantee

. . . . service-qname

. . . . tie-class

. . . . servlet-impl-class

. . . flush-at-end-of-method

. . . . method

. description

. ejb-name

. method-name

. method-intf

. method-params

. method-param

. . . checkpointed-methods

. . . checkpoint-at-end-of-method

. . . . method

. description

. ejb-name

. method-name

. method-intf

. method-params

. method-param

. . pm-descriptors

The sun-ejb-jar.xml File

Appendix A • Deployment Descriptor Files 291

. . cmp-resource

. . . jndi-name

. . . default-resource-principal

. . . . name

. . . . password

. . . property (with subelements)

. . . . name

. . . . value

. . . create-tables-at-deploy

. . . drop-tables-at-undeploy

. . . database-vendor-name

. . . schema-generator-properties

. . . . property (with subelements)

. name

. value

. . message-destination

. . . message-destination-name

. . . jndi-name

. . webservice-description

. . . webservice-description-name

. . . wsdl-publish-location

Note – If any configuration information for an enterprise bean is not specified in the
sun-ejb-jar.xml file, it defaults to a corresponding setting in the EJB container if an
equivalency exists.

Here is a sample sun-ejb-jar.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Application

Server 8.1 EJB 2.1//EN’

’http://www.sun.com/software/appserver/dtds/sun-ejb-jar_2_1-1.dtd’>

<sun-ejb-jar>

<display-name>First Module</display-name>

<enterprise-beans>

<ejb>

<ejb-name>CustomerEJB</ejb-name>

<jndi-name>customer</jndi-name>

<bean-pool>

<steady-pool-size>10</steady-pool-size>

<resize-quantity>10</resize-quantity>

<max-pool-size>100</max-pool-size>

<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

<bean-cache>

<max-cache-size>100</max-cache-size>

The sun-ejb-jar.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008292

<resize-quantity>10</resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>

</ejb>

<cmp-resource>

<jndi-name>jdbc/__default</jndi-name>

<create-tables-at-deploy>true</create-tables-at-deploy>

<drop-tables-at-undeploy>true</drop-tables-at-undeploy>

</cmp-resource>

</enterprise-beans>

</sun-ejb-jar>

The sun-cmp-mappings.xml File
The element hierarchy in the sun-cmp-mappings.xml file is as follows:

sun-cmp-mappings

. sun-cmp-mapping

. . schema

. . entity-mapping

. . . ejb-name

. . . table-name

. . . cmp-field-mapping

. . . . field-name

. . . . column-name

. . . . read-only

. . . . fetched-with

. default

. level

. named-group

. none

. . . cmr-field-mapping

. . . . cmr-field-name

. . . . column-pair

. column-name

. . . . fetched-with

. default

. level

. named-group

. none

. . . secondary-table

. . . . table-name

. . . . column-pair

. column-name

. . . consistency

The sun-cmp-mappings.xml File

Appendix A • Deployment Descriptor Files 293

. . . . none

. . . . check-modified-at-commit

. . . . lock-when-loaded

. . . . check-all-at-commit

. . . . lock-when-modified

. . . . check-version-of-accessed-instances

. column-name

Here is a sample database schema definition:

create table TEAMEJB (

TEAMID varchar2(256) not null,

NAME varchar2(120) null,

CITY char(30) not null,

LEAGUEEJB_LEAGUEID varchar2(256) null,

constraint PK_TEAMEJB primary key (TEAMID)

)

create table PLAYEREJB (

POSITION varchar2(15) null,

PLAYERID varchar2(256) not null,

NAME char(64) null,

SALARY number(10, 2) not null,

constraint PK_PLAYEREJB primary key (PLAYERID)

)

create table LEAGUEEJB (

LEAGUEID varchar2(256) not null,

NAME varchar2(256) null,

SPORT varchar2(256) null,

constraint PK_LEAGUEEJB primary key (LEAGUEID)

)

create table PLAYEREJBTEAMEJB (

PLAYEREJB_PLAYERID varchar2(256) null,

TEAMEJB_TEAMID varchar2(256) null

)

alter table TEAMEJB

add constraint FK_LEAGUE foreign key (LEAGUEEJB_LEAGUEID)

references LEAGUEEJB (LEAGUEID)

alter table PLAYEREJBTEAMEJB

add constraint FK_TEAMS foreign key (PLAYEREJB_PLAYERID)

references PLAYEREJB (PLAYERID)

alter table PLAYEREJBTEAMEJB

add constraint FK_PLAYERS foreign key (TEAMEJB_TEAMID)

references TEAMEJB (TEAMID)

Here is a corresponding sample sun-cmp-mappings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<sun-cmp-mappings>

<sun-cmp-mapping>

The sun-cmp-mappings.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008294

<schema>Roster</schema>

<entity-mapping>

<ejb-name>TeamEJB</ejb-name>

<table-name>TEAMEJB</table-name>

<cmp-field-mapping>

<field-name>teamId</field-name>

<column-name>TEAMEJB.TEAMID</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>name</field-name>

<column-name>TEAMEJB.NAME</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>city</field-name>

<column-name>TEAMEJB.CITY</column-name>

</cmp-field-mapping>

<cmr-field-mapping>

<cmr-field-name>league</cmr-field-name>

<column-pair>

<column-name>TEAMEJB.LEAGUEEJB_LEAGUEID</column-name>

<column-name>LEAGUEEJB.LEAGUEID</column-name>

</column-pair>

<fetched-with>

<none/>

</fetched-with>

</cmr-field-mapping>

<cmr-field-mapping>

<cmr-field-name>players</cmr-field-name>

<column-pair>

<column-name>TEAMEJB.TEAMID</column-name>

<column-name>PLAYEREJBTEAMEJB.TEAMEJB_TEAMID</column-name>

</column-pair>

<column-pair>

<column-name>PLAYEREJBTEAMEJB.PLAYEREJB_PLAYERID</column-name>

<column-name>PLAYEREJB.PLAYERID</column-name>

</column-pair>

<fetched-with>

<none/>

</fetched-with>

</cmr-field-mapping>

</entity-mapping>

<entity-mapping>

<ejb-name>PlayerEJB</ejb-name>

<table-name>PLAYEREJB</table-name>

<cmp-field-mapping>

<field-name>position</field-name>

<column-name>PLAYEREJB.POSITION</column-name>

</cmp-field-mapping>

The sun-cmp-mappings.xml File

Appendix A • Deployment Descriptor Files 295

<cmp-field-mapping>

<field-name>playerId</field-name>

<column-name>PLAYEREJB.PLAYERID</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>name</field-name>

<column-name>PLAYEREJB.NAME</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>salary</field-name>

<column-name>PLAYEREJB.SALARY</column-name>

</cmp-field-mapping>

<cmr-field-mapping>

<cmr-field-name>teams</cmr-field-name>

<column-pair>

<column-name>PLAYEREJB.PLAYERID</column-name>

<column-name>PLAYEREJBTEAMEJB.PLAYEREJB_PLAYERID</column-name>

</column-pair>

<column-pair>

<column-name>PLAYEREJBTEAMEJB.TEAMEJB_TEAMID</column-name>

<column-name>TEAMEJB.TEAMID</column-name>

</column-pair>

<fetched-with>

<none/>

</fetched-with>

</cmr-field-mapping>

</entity-mapping>

<entity-mapping>

<ejb-name>LeagueEJB</ejb-name>

<table-name>LEAGUEEJB</table-name>

<cmp-field-mapping>

<field-name>leagueId</field-name>

<column-name>LEAGUEEJB.LEAGUEID</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>name</field-name>

<column-name>LEAGUEEJB.NAME</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>sport</field-name>

<column-name>LEAGUEEJB.SPORT</column-name>

</cmp-field-mapping>

<cmr-field-mapping>

<cmr-field-name>teams</cmr-field-name>

<column-pair>

<column-name>LEAGUEEJB.LEAGUEID</column-name>

<column-name>TEAMEJB.LEAGUEEJB_LEAGUEID</column-name>

</column-pair>

The sun-cmp-mappings.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008296

<fetched-with>

<none/>

</fetched-with>

</cmr-field-mapping>

</entity-mapping>

</sun-cmp-mapping>

</sun-cmp-mappings>

The sun-application-client.xml file
The element hierarchy in the sun-application-client.xml file is as follows:

sun-application-client

. ejb-ref

. . ejb-ref-name

. . jndi-name

. resource-ref

. . res-ref-name

. . jndi-name

. . default-resource-principal

. . . name

. . . password

. resource-env-ref

. . resource-env-ref-name

. . jndi-name

. service-ref

. . service-ref-name

. . port-info

. . . service-endpoint-interface

. . . wsdl-port

. . . . namespaceURI

. . . . localpart

. . . stub-property

. . . . name

. . . . value

. . . call-property

. . . . name

. . . . value

. . . message-security-binding

. . . . message-security

. message

. java-method

. method-name

. method-params

. method-param

. operation-name

The sun-application-client.xml file

Appendix A • Deployment Descriptor Files 297

. request-protection

. response-protection

. . call-property

. . . name

. . . value

. . wsdl-override

. . service-impl-class

. . service-qname

. . . namespaceURI

. . . localpart

. message-destination

. . message-destination-name

. . jndi-name

The sun-acc.xml File
The element hierarchy in the sun-acc.xml file is as follows:

client-container

. target-server

. . description

. . security

. . . ssl

. . . cert-db

. auth-realm

. . property (with attributes)

. client-credential

. . property (with attributes)

. log-service

. . property (with attributes)

. message-security-config

. . provider-config

. . . request-policy

. . . response-policy

. . . property (with attributes)

. property (with attributes)

Alphabetical Listing of All Elements
“A” on page 299 “B” on page 302 “C” on page 304 “D” on page 324 “E” on page 327 “F” on page 335
“G” on page 337 “H” on page 339 “I” on page 339 “J” on page 341 “K” on page 345 “L” on page 346
“M” on page 351 “N” on page 361 “O” on page 362 “P” on page 363 “Q” on page 371 “R” on
page 373 “S” on page 382 “T” on page 401 “U” on page 404 “V” on page 405 “W” on page 407

The sun-acc.xml File

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008298

A

activation-config
Specifies an activation configuration, which includes the runtime configuration properties of
the message-driven bean in its operational environment. For example, this can include
information about the name of a physical JMS destination. Matches and overrides the
activation-config element in the ejb-jar.xml file.

Superelements
“mdb-resource-adapter” on page 354 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the activation-config element.

TABLE A–2 activation-config subelements

Element Required Description

“description” on page 326 zero or one Specifies a text description of the activation
configuration.

“activation-config-property” on page 299 one or more Specifies an activation configuration
property.

activation-config-property
Specifies the name and value of an activation configuration property.

Superelements
“activation-config” on page 299 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the activation-config-property element.

A

Appendix A • Deployment Descriptor Files 299

TABLE A–3 activation-config-property subelements

Element Required Description

“activation-config-property-name” on page 300 only one Specifies the name of an activation
configuration property.

“activation-config-property-value” on page 300 only one Specifies the value of an activation
configuration property.

activation-config-property-name
Specifies the name of an activation configuration property.

Superelements
“activation-config-property” on page 299 (sun-ejb-jar.xml)

Subelements
none - contains data

activation-config-property-value
Specifies the value of an activation configuration property.

Superelements
“activation-config-property” on page 299 (sun-ejb-jar.xml)

Subelements
none - contains data

as-context
Specifies the authentication mechanism used to authenticate the client.

Superelements
“ior-security-config” on page 339 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the as-context element.

A

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008300

TABLE A–4 as-context Subelements

Element Required Description

“auth-method” on page 301 only one Specifies the authentication method. The only supported value
is USERNAME_PASSWORD.

“realm” on page 373 only one Specifies the realm in which the user is authenticated.

“required” on page 377 only one Specifies whether the authentication method specified must be
used for client authentication.

auth-method
Specifies the authentication method.

If the parent element is “as-context” on page 300, the only supported value is
USERNAME_PASSWORD.

If the parent element is “login-config” on page 351, specifies the authentication mechanism for
the web service endpoint. As a prerequisite to gaining access to any web resources protected by
an authorization constraint, a user must be authenticated using the configured mechanism.

Superelements
“login-config” on page 351 (sun-web.xml), “as-context” on page 300 (sun-ejb-jar.xml)

Subelements
none - contains data

auth-realm
JAAS is available on the ACC. Defines the optional configuration for a JAAS authentication
realm. Authentication realms require provider-specific properties, which vary depending on
what a particular implementation needs. For more information about how to define realms, see
“Realm Configuration” on page 50.

Superelements
“client-container” on page 313 (sun-acc.xml)

Subelements
The following table describes subelements for the auth-realm element.

A

Appendix A • Deployment Descriptor Files 301

TABLE A–5 auth-realm subelement

Element Required Description

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a
value.

Attributes
The following table describes attributes for the auth-realm element.

TABLE A–6 auth-realm attributes

Attribute Default Description

name none Defines the name of this realm.

classname none Defines the Java class which implements this realm.

Example
Here is an example of the default file realm:

<auth-realm name="file"
classname="com.sun.enterprise.security.auth.realm.file.FileRealm">
<property name="file" value="domain-dir/config/keyfile"/>
<property name="jaas-context" value="fileRealm"/>

</auth-realm>

Which properties an auth-realm element uses depends on the value of the auth-realm
element’s name attribute. The file realm uses file and jaas-context properties. Other realms
use different properties. See “Realm Configuration” on page 50.

B

bean-cache
Specifies the entity bean cache properties. Used for entity beans and stateful session beans.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the bean-cache element.

B

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008302

TABLE A–7 bean-cache Subelements

Element Required Description

“max-cache-size” on page 353 zero or one Specifies the maximum number of beans
allowable in cache.

“is-cache-overflow-allowed” on page 340 zero or one Deprecated.

“cache-idle-timeout-in-seconds” on page 307 zero or one Specifies the maximum time that a stateful
session bean or entity bean is allowed to be
idle in cache before being passivated.
Default value is 10 minutes (600 seconds).

“removal-timeout-in-seconds” on page 374 zero or one Specifies the amount of time a bean
remains before being removed. If
removal-timeout-in-seconds is less
than idle-timeout, the bean is removed
without being passivated.

“resize-quantity” on page 377 zero or one Specifies the number of beans to be
created if the pool is empty (subject to the
max-pool-size limit). Values are from 0
to MAX_INTEGER.

“victim-selection-policy” on page 406 zero or one Specifies the algorithm that must be used
by the container to pick victims. Applies
only to stateful session beans.

Example
<bean-cache>

<max-cache-size>100</max-cache-size>

<cache-resize-quantity>10</cache-resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

<victim-selection-policy>LRU</victim-selection-policy>

<cache-idle-timeout-in-seconds>600</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>5400</removal-timeout-in-seconds>

</bean-cache>

bean-pool
Specifies the pool properties of stateless session beans, entity beans, and message-driven bean.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

B

Appendix A • Deployment Descriptor Files 303

Subelements
The following table describes subelements for the bean-pool element.

TABLE A–8 bean-pool Subelements

Element Required Description

“steady-pool-size” on page 393 zero or one Specifies the initial and minimum number
of beans maintained in the pool. Default is
32.

“resize-quantity” on page 377 zero or one Specifies the number of beans to be created
if the pool is empty (subject to the
max-pool-size limit). Values are from 0 to
MAX_INTEGER.

“max-pool-size” on page 353 zero or one Specifies the maximum number of beans in
the pool. Values are from 0 to
MAX_INTEGER. Default is to the EJB
container value or 60.

“max-wait-time-in-millis” on page 354 zero or one Deprecated.

“pool-idle-timeout-in-seconds” on page 365 zero or one Specifies the maximum time that a bean is
allowed to be idle in the pool. After this
time, the bean is removed. This is a hint to
the server. Default time is 600 seconds (10
minutes).

Example
<bean-pool>

<steady-pool-size>10</steady-pool-size>

<resize-quantity>10</resize-quantity>

<max-pool-size>100</max-pool-size>

<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

C

cache
Configures caching for web application components.

Superelements
“sun-web-app” on page 398 (sun-web.xml)

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008304

Subelements
The following table describes subelements for the cache element.

TABLE A–9 cache Subelements

Element Required Description

“cache-helper” on page 306 zero or more Specifies a custom class that implements the
CacheHelper interface.

“default-helper” on page 324 zero or one Allows you to change the properties of the default,
built-in “cache-helper” on page 306 class.

“property (with attributes)” on page 368 zero or more Specifies a cache property, which has a name and a
value.

“cache-mapping” on page 308 zero or more Maps a URL pattern or a servlet name to its
cacheability constraints.

Attributes
The following table describes attributes for the cache element.

TABLE A–10 cacheAttributes

Attribute Default Description

max-entries 4096 (optional) Specifies the maximum number of
entries the cache can contain. Must be a positive
integer.

timeout-in-seconds 30 (optional) Specifies the maximum amount of
time in seconds that an entry can remain in the
cache after it is created or refreshed. Can be
overridden by a “timeout” on page 402 element.

enabled true (optional) Determines whether servlet and JSP
caching is enabled.

Properties
The following table describes properties for the cache element.

C

Appendix A • Deployment Descriptor Files 305

TABLE A–11 cacheProperties

Property Default Description

cacheClassName com.sun.appserv.web.cache.LruCache Specifies the fully qualified name of the class
that implements the cache functionality. See
“Cache Class Names” on page 306 for
possible values.

MultiLRUSegmentSize 4096 Specifies the number of entries in a segment
of the cache table that should have its own
LRU (least recently used) list. Applicable
only if cacheClassName is set to
com.sun.appserv.web.cache.

MultiLruCache.

MaxSize unlimited; Long.MAX_VALUE Specifies an upper bound on the cache
memory size in bytes (KB or MB units).
Example values are 32 KB or 2 MB.
Applicable only if cacheClassName is set to
com.sun.appserv.web.cache.

BoundedMultiLruCache.

Cache Class Names
The following table lists possible values of the cacheClassName property.

TABLE A–12 cacheClassNameValues

Value Description

com.sun.appserv.web.cache.

LruCache

A bounded cache with an LRU (least recently used) cache replacement policy.

com.sun.appserv.web.cache.

BaseCache

An unbounded cache suitable if the maximum number of entries is known.

com.sun.appserv.web.cache.

MultiLruCache

A cache suitable for a large number of entries (>4096). Uses the MultiLRUSegmentSize
property.

com.sun.appserv.web.cache.

BoundedMultiLruCache

A cache suitable for limiting the cache size by memory rather than number of entries. Uses
the MaxSize property.

cache-helper
Specifies a class that implements the com.sun.appserv.web.cache.CacheHelper interface.

Superelements
“cache” on page 304 (sun-web.xml)

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008306

Subelements
The following table describes subelements for the cache-helper element.

TABLE A–13 cache-helper Subelements

Element Required Description

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a value.

Attributes
The following table describes attributes for the cache-helper element.

TABLE A–14 cache-helperAttributes

Attribute Default Description

name default Specifies a unique name for the helper class, which is
referenced in the “cache-mapping” on page 308 element.

class-name none Specifies the fully qualified class name of the cache helper,
which must implement the
com.sun.appserv.web.CacheHelper interface.

cache-helper-ref
Specifies the name of the “cache-helper” on page 306 used by the parent “cache-mapping” on
page 308 element.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
none - contains data

cache-idle-timeout-in-seconds
Specifies the maximum time that a bean can remain idle in the cache. After this amount of time,
the container can passivate this bean. A value of 0 specifies that beans never become candidates
for passivation. Default is 600.

Applies to stateful session beans and entity beans.

C

Appendix A • Deployment Descriptor Files 307

Superelements
“bean-cache” on page 302 (sun-ejb-jar.xml)

Subelements
none - contains data

cache-mapping
Maps a URL pattern or a servlet name to its cacheability constraints.

Superelements
“cache” on page 304 (sun-web.xml)

Subelements
The following table describes subelements for the cache-mapping element.

TABLE A–15 cache-mapping Subelements

Element Required Description

“servlet-name” on page 390 requires one servlet-name or
url-pattern

Contains the name of a servlet.

“url-pattern” on page 405 requires one servlet-name or
url-pattern

Contains a servlet URL pattern for which
caching is enabled.

“cache-helper-ref” on page 307 required if dispatcher, timeout,
refresh-field, http-method,
key-field, and constraint-field are
not used

Contains the name of the “cache-helper” on
page 306 used by the parent cache-mapping
element.

“dispatcher” on page 326 zero or one if cache-helper-ref is not
used

Contains a comma-separated list of
RequestDispatcher methods for which
caching is enabled.

“timeout” on page 402 zero or one if cache-helper-ref is not
used

Contains the “cache-mapping” on page 308
specific maximum amount of time in
seconds that an entry can remain in the
cache after it is created or refreshed.

“refresh-field” on page 373 zero or one if cache-helper-ref is not
used

Specifies a field that gives the application
component a programmatic way to refresh a
cached entry.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008308

TABLE A–15 cache-mapping Subelements (Continued)
Element Required Description

“http-method” on page 339 zero or more if cache-helper-ref is not
used

Contains an HTTP method that is eligible for
caching.

“key-field” on page 345 zero or more if cache-helper-ref is not
used

Specifies a component of the key used to look
up and extract cache entries.

“constraint-field” on page 320 zero or more if cache-helper-ref is not
used

Specifies a cacheability constraint for the
given url-pattern or servlet-name.

call-property
Specifies JAX-RPC property values that can be set on a javax.xml.rpc.Call object before it is
returned to the web service client. The property names can be any properties supported by the
JAX-RPC Call implementation.

Superelements
“port-info” on page 366, “service-ref” on page 388 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the call-property element.

TABLE A–16 call-property subelements

Element Required Description

“name” on page 361 only one Specifies the name of the entity.

“value” on page 405 only one Specifies the value of the entity.

caller-propagation
Specifies whether the target accepts propagated caller identities. The values are NONE,
SUPPORTED, or REQUIRED.

Superelements
“sas-context” on page 382 (sun-ejb-jar.xml)

Subelements
none - contains data

C

Appendix A • Deployment Descriptor Files 309

cert-db
Not implemented. Included for backward compatibility only. Attribute values are ignored.

Superelements
“security” on page 385 (sun-acc.xml)

Subelements
none

Attributes
The following table describes attributes for the cert-db element.

TABLE A–17 cert-db attributes

Attribute Default Description

path none Specifies the absolute path of the certificate database.

password none Specifies the password to access the certificate database.

check-all-at-commit
This element is not implemented. Do not use.

Superelements
“consistency” on page 320 (sun-cmp-mappings.xml)

check-modified-at-commit
Checks concurrent modification of fields in modified beans at commit time.

Superelements
“consistency” on page 320 (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008310

check-version-of-accessed-instances
Checks the version column of the modified beans.

Version consistency allows the bean state to be cached between transactions instead of read
from a database. The bean state is verified by primary key and version column values. This
occurs during a custom query (for dirty instances only) or commit (for both clean and dirty
instances).

The version column must be a numeric type, and must be in the primary table. You must
provide appropriate update triggers for this column.

Superelements
“consistency” on page 320 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the check-version-of-accessed-instances
element.

TABLE A–18 check-version-of-accessed-instances Subelements

Element Required Description

“column-name” on page 318 only one Specifies the name of the version column.

checkpoint-at-end-of-method
Enterprise Edition only. Do not use.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

checkpointed-methods
Enterprise Edition only. Do not use.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

class-loader
Configures the class loader for the web module.

C

Appendix A • Deployment Descriptor Files 311

Superelements
“sun-web-app” on page 398 (sun-web.xml)

Subelements
The following table describes subelements for the class-loader element.

TABLE A–19 class-loader Subelements

Element Required Description

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a
value.

Attributes
The following table describes attributes for the class-loader element.

TABLE A–20 class-loaderAttributes

Attribute Default Description

extra-class-path null (optional) Specifies additional classpath settings for this
web module.

delegate true (optional) If true, the web module follows the standard
class loader delegation model and delegates to its parent
class loader first before looking in the local class loader.
You must set this to true for a web application that
accesses EJB components or that acts as a web service
client or endpoint.

If false, the web module follows the delegation model
specified in the Servlet specification and looks in its class
loader before looking in the parent class loader. It’s safe to
set this to false only for a web module that does not
interact with any other modules.

dynamic-reload-interval (optional) Not implemented. Included for backward
compatibility with previous Sun Java System Web Server
versions.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008312

Note – If the delegate element is set to false, the class loader delegation behavior complies
with the Servlet 2.4 specification, section 9.7.2. If set to its default value of true, classes and
resources residing in container-wide library JAR files are loaded in preference to classes and
resources packaged within the WAR file.

Portable programs that use this element should not be packaged with any classes or interfaces
that are a part of the J2EE specification. The behavior of a program that includes such classes or
interfaces in its WAR file is undefined.

client-container
Defines the Application Server specific configuration for the application client container. This is
the root element; there can only be one client-container element in a sun-acc.xml file. See
“The sun-acc.xml File” on page 298.

Superelements
none

Subelements
The following table describes subelements for the client-container element.

TABLE A–21 client-container Subelements

Element Required Description

“target-server” on page 401 only one Specifies the IIOP listener configuration of the
target server.

“auth-realm” on page 301 zero or one Specifies the optional configuration for JAAS
authentication realm.

“client-credential” on page 314 zero or one Specifies the default client credential that is sent
to the server.

“log-service” on page 350 zero or one Specifies the default log file and the severity level
of the message.

“message-security-config” on page 358 zero or more Specifies configurations for message security
providers.

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a
value.

Attributes
The following table describes attributes for the client-container element.

C

Appendix A • Deployment Descriptor Files 313

TABLE A–22 client-containerAttributes

Attribute Default Description

send-password true If true, specifies that client authentication
credentials must be sent to the server. Without
authentication credentials, all access to protected
EJB components results in exceptions.

client-credential
Default client credentials that are sent to the server. If this element is present, the credentials are
automatically sent to the server, without prompting the user for the user name and password on
the client side.

Superelements
“client-container” on page 313 (sun-acc.xml)

Subelements
The following table describes subelements for the client-credential element.

TABLE A–23 client-credential subelement

Element Required Description

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a
value.

Attributes
The following table describes attributes for the client-credential element.

TABLE A–24 client-credential attributes

Attribute Default Description

user-name none The user name used to authenticate the
Application client container.

password none The password used to authenticate the Application
client container.

realm the default realm for the
domain

(optional) The realm (specified by name) where
credentials are to be resolved.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008314

cmp
Describes runtime information for a CMP entity bean object for EJB 1.1 and EJB 2.1 beans.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the cmp element.

TABLE A–25 cmpSubelements

Element Required Description

“mapping-properties” on page 353 zero or one This element is not implemented.

“is-one-one-cmp” on page 340 zero or one This element is not implemented.

“one-one-finders” on page 362 zero or one Describes the finders for CMP 1.1 beans.

“prefetch-disabled” on page 367 zero or one Disables prefetching of entity bean states for
the specified query methods.

cmp-field-mapping
The cmp-field-mapping element associates a field with one or more columns to which it maps.
The column can be from a bean’s primary table or any defined secondary table. If a field is
mapped to multiple columns, the column listed first in this element is used as a source for
getting the value from the database. The columns are updated in the order they appear. There is
one cmp-field-mapping element for each cmp-field element defined in the ejb-jar.xml file.

Superelements
“entity-mapping” on page 334 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the cmp-field-mapping element.

C

Appendix A • Deployment Descriptor Files 315

TABLE A–26 cmp-field-mapping Subelements

Element Required Description

“field-name” on page 336 only one Specifies the Java identifier of a field. This identifier must
match the value of the field-name subelement of the
cmp-field that is being mapped.

“column-name” on page 318 one or more Specifies the name of a column from the primary table, or
the qualified table name (TABLE.COLUMN) of a column
from a secondary or related table.

“read-only” on page 373 zero or one Specifies that a field is read-only.

“fetched-with” on page 335 zero or one Specifies the fetch group for this CMP field’s mapping.

cmp-resource
Specifies the database to be used for storing CMP beans. For more information about this
element, see “Configuring the CMP Resource” on page 177.

Superelements
“enterprise-beans” on page 332 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the cmp-resource element.

TABLE A–27 cmp-resource Subelements

Element Required Description

“jndi-name” on page 342 only one Specifies the absolute jndi-name of a JDBC
resource or Persistence Manager resource.

“default-resource-principal” on page 325 zero or one Specifies the default runtime bindings of a
resource reference.

“property (with subelements)” on page 369 zero or more Specifies a property name and value. Used
to configure PersistenceManagerFactory
properties if the jndi-name subelement
refers to a JDBC resource.

“create-tables-at-deploy” on page 323 zero or one If true, specifies that database tables are
created for beans that are automatically
mapped by the EJB container.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008316

TABLE A–27 cmp-resource Subelements (Continued)
Element Required Description

“drop-tables-at-undeploy” on page 326 zero or one If true, specifies that database tables that
were automatically created when the
bean(s) were last deployed are dropped
when the bean(s) are undeployed.

“database-vendor-name” on page 324 zero or one Specifies the name of the database vendor
for which tables can be created.

“schema-generator-properties” on page 383 zero or one Specifies field-specific type mappings and
allows you to set the
use-unique-table-names property.

cmr-field-mapping
A container-managed relationship field has a name and one or more column pairs that define
the relationship. There is one cmr-field-mapping element for each cmr-field element in the
ejb-jar.xml file. A relationship can also participate in a fetch group.

Superelements
“entity-mapping” on page 334 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the cmr-field-mapping element.

TABLE A–28 cmr-field-mapping Subelements

Element Required Description

“cmr-field-name” on page 317 only one Specifies the Java identifier of a field. Must match the
value of the cmr-field-name subelement of the
cmr-field that is being mapped.

“column-pair” on page 318 one or more Specifies the pair of columns that determine the
relationship between two database tables.

“fetched-with” on page 335 zero or one Specifies the fetch group for this CMR field’s
relationship.

cmr-field-name
Specifies the Java identifier of a field. Must match the value of the cmr-field-name subelement
of the cmr-field element in the ejb-jar.xml file.

C

Appendix A • Deployment Descriptor Files 317

Superelements
“cmr-field-mapping” on page 317 (sun-cmp-mappings.xml)

Subelements
none - contains data

cmt-timeout-in-seconds
Overrides the Transaction Timeout setting of the Transaction Service for an individual bean.
The default value, 0, specifies that the default Transaction Service timeout is used. If positive,
this value is used for all methods in the bean that start a new container-managed transaction.
This value is not used if the bean joins a client transaction.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

column-name
Specifies the name of a column from the primary table, or the qualified table name
(TABLE.COLUMN) of a column from a secondary or related table.

Superelements
“check-version-of-accessed-instances” on page 311, “cmp-field-mapping” on page 315,
“column-pair” on page 318 (sun-cmp-mappings.xml)

Subelements
none - contains data

column-pair
Specifies the pair of columns that determine the relationship between two database tables. Each
column-pair must contain exactly two column-name subelements, which specify the column’s
names. The first column-name element names the table that this bean is mapped to, and the
second column-name names the column in the related table.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008318

Superelements
“cmr-field-mapping” on page 317, “secondary-table” on page 385 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the column-pair element.

TABLE A–29 column-pair Subelements

Element Required Description

“column-name” on page 318 two Specifies the name of a column from the primary table, or the
qualified table name (TABLE.COLUMN) of a column from a
secondary or related table.

commit-option
Specifies the commit option used on transaction completion. Valid values for the Application
Server are B or C. Default value is B. Applies to entity beans.

Note – Commit option A is not supported for this Application Server release.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

confidentiality
Specifies if the target supports privacy-protected messages. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements
“transport-config” on page 403 (sun-ejb-jar.xml)

Subelements
none - contains data

C

Appendix A • Deployment Descriptor Files 319

consistency
Specifies container behavior in guaranteeing transactional consistency of the data in the bean.

Superelements
“entity-mapping” on page 334 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the consistency element.

TABLE A–30 consistency Subelements

Element Required Description

“none” on page 362 exactly one subelement
is required

No consistency checking occurs.

“check-modified-at-commit” on page 310 exactly one subelement
is required

Checks concurrent modification of fields in
modified beans at commit time.

“lock-when-loaded” on page 349 exactly one subelement
is required

Obtains an exclusive lock when the data is
loaded.

“check-all-at-commit” on page 310 This element is not implemented. Do not use.

“lock-when-modified” on page 350 This element is not implemented. Do not use.

“check-version-of-accessed-instances” on page 311 exactly one subelement
is required

Checks the version column of the modified
beans.

constraint-field
Specifies a cacheability constraint for the given “url-pattern” on page 405 or “servlet-name” on
page 390.

All constraint-field constraints must pass for a response to be cached. If there are value
constraints, at least one of them must pass.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
The following table describes subelements for the constraint-field element.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008320

TABLE A–31 constraint-field Subelements

Element Required Description

“constraint-field-value” on page 321 zero or more Contains a value to be matched to the input
parameter value.

Attributes
The following table describes attributes for the constraint-field element.

TABLE A–32 constraint-fieldAttributes

Attribute Default Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope from which the
input parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
request.attribute, and session.attribute.

cache-on-match true (optional) If true, caches the response if
matching succeeds. Overrides the same attribute
in a “constraint-field-value” on page 321
subelement.

cache-on-match-failure false (optional) If true, caches the response if
matching fails. Overrides the same attribute in a
“constraint-field-value” on page 321 subelement.

constraint-field-value
Specifies a value to be matched to the input parameter value. The matching is case sensitive. For
example:

<value match-expr="in-range">1-60</value>

Superelements
“constraint-field” on page 320 (sun-web.xml)

Subelements
none - contains data

Attributes
The following table describes attributes for the constraint-field-value element.

C

Appendix A • Deployment Descriptor Files 321

TABLE A–33 constraint-field-valueAttributes

Attribute Default Description

match-expr equals (optional) Specifies the type of comparison performed with
the value. Allowed values are equals, not-equals, greater,
lesser, and in-range.

If match-expr is greater or lesser, the value must be a
number. If match-expr is in-range, the value must be of the
form n1-n2, where n1 and n2 are numbers.

cache-on-match true (optional) If true, caches the response if matching succeeds.

cache-on-match-failure false (optional) If true, caches the response if matching fails.

context-root
Contains the web context root for the application or web application. Overrides the
corresponding element in the application.xml or web.xml file.

Superelements
“web” on page 407 (sun-application.xml), “sun-web-app” on page 398 (sun-web.xml)

Subelements
none - contains data

cookie-properties
Specifies session cookie properties.

Superelements
“session-config” on page 390 (sun-web.xml)

Subelements
The following table describes subelements for the cookie-properties element.

C

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008322

TABLE A–34 cookie-properties Subelements

Element Required Description

“property (with attributes)” on
page 368

zero or more Specifies a property, which has a name and a value.

Properties
The following table describes properties for the cookie-properties element.

TABLE A–35 cookie-propertiesProperties

Property Default Description

cookiePath Context path at which the web module is
installed.

Specifies the pathname that is set when
the cookie is created. The browser sends
the cookie if the pathname for the
request contains this pathname. If set to
/ (slash), the browser sends cookies to all
URLs served by the Application Server.
You can set the path to a narrower
mapping to limit the request URLs to
which the browser sends cookies.

cookieMaxAgeSeconds -1 Specifies the expiration time (in seconds)
after which the browser expires the
cookie.

cookieDomain (unset) Specifies the domain for which the
cookie is valid.

cookieComment Sun Java System Application Server

Session Tracking Cookie

Specifies the comment that identifies the
session tracking cookie in the cookie file.
Applications can provide a more specific
comment for the cookie.

create-tables-at-deploy
Specifies whether database tables are created for beans that are automatically mapped by the
EJB container. If true, creates tables in the database. If false (the default if this element is not
present), does not create tables.

This element can be overridden during deployment. See Table 7–4.

Superelements
“cmp-resource” on page 316 (sun-ejb-jar.xml)

C

Appendix A • Deployment Descriptor Files 323

Subelements
none - contains data

D

database-vendor-name
Specifies the name of the database vendor for which tables can be created. Allowed values are
db2, mssql, oracle, derby, and sybase, case-insensitive.

If no value is specified, a connection is made to the resource specified by the “jndi-name” on
page 342 subelement of the “cmp-resource” on page 316 element, and the database vendor name
is read. If the connection cannot be established, or if the value is not recognized, SQL-92
compliance is presumed.

This element can be overridden during deployment. See Table 7–4.

Superelements
“cmp-resource” on page 316 (sun-ejb-jar.xml)

Subelements
none - contains data

default
Specifies that a field belongs to the default hierarchical fetch group, and enables prefetching for
a CMR field. To disable prefetching for specific query methods, use a “prefetch-disabled” on
page 367 element in the sun-ejb-jar.xml file.

Superelements
“fetched-with” on page 335 (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

default-helper
Passes property values to the built-in default “cache-helper” on page 306 class.

D

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008324

Superelements
“cache” on page 304 (sun-web.xml)

Subelements
The following table describes subelements for the default-helper element.

TABLE A–36 default-helper Subelements

Element Required Description

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a value.

Properties
The following table describes properties for the default-helper element.

TABLE A–37 default-helperProperties

Property Default Description

cacheKeyGeneratorAttrName Uses the built-in default “cache-helper”
on page 306 key generation, which
concatenates the servlet path with
“key-field” on page 345 values, if any.

The caching engine looks in the
ServletContext for an attribute
with a name equal to the value
specified for this property to
determine whether a customized
CacheKeyGenerator

implementation is used. An
application can provide a
customized key generator rather
than using the default helper. See
“CacheKeyGenerator Interface” on
page 137.

default-resource-principal
Specifies the default principal (user) for the resource.

If this element is used in conjunction with a JMS Connection Factory resource, the name and
password subelements must be valid entries in the Sun JavaTM System Message Queue broker
user repository. See the Security Management chapter in the Sun Java System Message Queue 3.7
UR1 Administration Guide for details.

Superelements
“resource-ref” on page 379 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“cmp-resource” on page 316, “mdb-connection-factory” on page 354 (sun-ejb-jar.xml)

D

Appendix A • Deployment Descriptor Files 325

Subelements
The following table describes subelements for the default-resource-principal element.

TABLE A–38 default-resource-principal Subelements

Element Required Description

“name” on page 361 only one Specifies the default resource principal name used to sign on to a
resource manager.

“password” on page 365 only one Specifies password of the default resource principal.

description
Specifies a text description of the containing element.

Superelements
“property (with attributes)” on page 368 (sun-web.xml); “activation-config” on page 299,
“method” on page 359 (sun-ejb-jar.xml); “target-server” on page 401 (sun-acc.xml)

Subelements
none - contains data

dispatcher
Specifies a comma-separated list of RequestDispatcher methods for which caching is enabled
on the target resource. Valid values are REQUEST, FORWARD, INCLUDE, and ERROR . If this element
is not specified, the default is REQUEST. See SRV.6.2.5 of the Servlet 2.4 specification for more
information.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
none - contains data

drop-tables-at-undeploy
Specifies whether database tables that were automatically created when the bean(s) were last
deployed are dropped when the bean(s) are undeployed. If true, drops tables from the database.
If false (the default if this element is not present), does not drop tables.

D

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008326

This element can be overridden during deployment. See Table 7–4.

Superelements
“cmp-resource” on page 316 (sun-ejb-jar.xml)

Subelements
none - contains data

E

ejb
Defines runtime properties for a single enterprise bean within the application. The subelements
listed below apply to particular enterprise beans as follows:

■ All types of beans: ejb-name, ejb-ref, resource-ref, resource-env-ref, cmp,
ior-security-config, gen-classes, jndi-name, use-thread-pool-id

■ Stateless session beans and message-driven beans: bean-pool
■ Stateful session beans and entity beans: bean-cache
■ Entity beans: commit-option, bean-cache, bean-pool, is-read-only-bean,

refresh-period-in-seconds, flush-at-end-of-method
■ Message-driven beans: mdb-connection-factory, jms-durable-subscription-name,

jms-max-messages-load, bean-pool

Superelements
“enterprise-beans” on page 332 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the ejb element.

TABLE A–39 ejbSubelements

Element Required Description

“ejb-name” on page 330 only one Matches the ejb-name in the
corresponding ejb-jar.xml file.

E

Appendix A • Deployment Descriptor Files 327

TABLE A–39 ejb Subelements (Continued)
Element Required Description

“jndi-name” on page 342 zero or more Specifies the absolute jndi-name.

“ejb-ref” on page 331 zero or more Maps the absolute JNDI name to the
ejb-ref element in the corresponding
J2EE XML file.

“resource-ref” on page 379 zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE
XML file.

“resource-env-ref” on page 378 zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding
J2EE XML file.

“service-ref” on page 388 zero or more Specifies runtime settings for a web service
reference.

“pass-by-reference” on page 364 zero or one Specifies the passing method used by an
enterprise bean calling a remote interface
method in another bean that is colocated
within the same process.

“cmp” on page 315 zero or one Specifies runtime information for a
container-managed persistence (CMP)
entity bean for EJB 1.1 and EJB 2.1 beans.

“principal” on page 367 zero or one Specifies the principal (user) name in an
enterprise bean that has the run-as role
specified.

“mdb-connection-factory” on page 354 zero or one Specifies the connection factory associated
with a message-driven bean.

“jms-durable-subscription-name” on page 341 zero or one Specifies the durable subscription
associated with a message-driven bean.

“jms-max-messages-load” on page 341 zero or one Specifies the maximum number of
messages to load into a Java Message
Service session at one time for a
message-driven bean to serve. The default
is 1.

“ior-security-config” on page 339 zero or one Specifies the security information for the
IOR.

“is-read-only-bean” on page 340 zero or one Specifies that this entity bean is read-only.

“refresh-period-in-seconds” on page 374 zero or one Specifies the rate at which a
read-only-bean must be refreshed from
the data source.

E

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008328

TABLE A–39 ejb Subelements (Continued)
Element Required Description

“commit-option” on page 319 zero or one Has valid values of B or C. Default value is
B.

“cmt-timeout-in-seconds” on page 318 zero or one Overrides the Transaction Timeout
setting of the Transaction Service for an
individual bean.

“use-thread-pool-id” on page 405 zero or one Specifies the thread pool from which
threads are selected for remote
invocations of this bean.

“gen-classes” on page 337 zero or one Specifies all the generated class names for
a bean.

“bean-pool” on page 303 zero or one bean-pool Specifies the bean pool properties. Used
for stateless session beans, entity beans,
and message-driven bean pools.

“bean-cache” on page 302 zero or one bean-pool Specifies the bean cache properties. Used
only for stateful session beans and entity
beans.

“mdb-resource-adapter” on page 354 zero or one Specifies runtime configuration
information for a message-driven bean.

“webservice-endpoint” on page 408 zero or more Specifies information about a web service
endpoint.

“flush-at-end-of-method” on page 337 zero or one Specifies the methods that force a database
flush after execution. Used for entity
beans.

“checkpointed-methods” on page 311 zero or one Enterprise Edition only. Do not use.

“checkpoint-at-end-of-method” on page 311 zero or one Enterprise Edition only. Do not use.

Attributes
The following table describes attributes for the ejb element.

TABLE A–40 ejbAttributes

Attribute Default Description

availability-enabled false (optional)Enterprise Edition only. Do not use.

E

Appendix A • Deployment Descriptor Files 329

Example
<ejb>

<ejb-name>CustomerEJB</ejb-name>

<jndi-name>customer</jndi-name>

<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>

<jndi-name>jdbc/__default</jndi-name>

</resource-ref>

<is-read-only-bean>false</is-read-only-bean>

<commit-option>B</commit-option>

<bean-pool>

<steady-pool-size>10</steady-pool-size>

<resize-quantity>10</resize-quantity>

<max-pool-size>100</max-pool-size>

<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

<bean-cache>

<max-cache-size>100</max-cache-size>

<resize-quantity>10</resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>

</ejb>

ejb-name
In the sun-ejb-jar.xml file, matches the ejb-name in the corresponding ejb-jar.xml file. The
name must be unique among the names of the enterprise beans in the same EJB JAR file.

There is no architected relationship between the ejb-name in the deployment descriptor and
the JNDI name that the deployer assigns to the EJB component’s home.

In the sun-cmp-mappings.xml file, specifies the ejb-name of the entity bean in the ejb-jar.xml
file to which the container-managed persistence (CMP) bean corresponds.

Superelements
“ejb” on page 327, “method” on page 359 (sun-ejb-jar.xml); “entity-mapping” on page 334
(sun-cmp-mappings.xml)

Subelements
none - contains data

E

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008330

ejb-ref
Maps the ejb-ref-name in the corresponding J2EE deployment descriptor file ejb-ref entry to
the absolute jndi-name of a resource.

The ejb-ref element is used for the declaration of a reference to an EJB’s home. Applies to
session beans or entity beans.

Superelements
“sun-web-app” on page 398 (sun-web.xml), “ejb” on page 327 (sun-ejb-jar.xml),
“sun-application-client” on page 396 (sun-application-client.xml)

Subelements
The following table describes subelements for the ejb-ref element.

TABLE A–41 ejb-ref Subelements

Element Required Description

“ejb-ref-name” on page 331 only one Specifies the ejb-ref-name in the corresponding J2EE
deployment descriptor file ejb-ref entry.

“jndi-name” on page 342 only one Specifies the absolute jndi-name of a resource.

ejb-ref-name
Specifies the ejb-ref-name in the corresponding J2EE deployment descriptor file ejb-ref
entry.

Superelements
“ejb-ref” on page 331 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

endpoint-address-uri
Specifies the relative path combined with the web server root to form the fully qualified
endpoint address for a web service endpoint. This is a required element for EJB endpoints and
an optional element for servlet endpoints.

E

Appendix A • Deployment Descriptor Files 331

For servlet endpoints, this value is relative to the web application context root. For EJB
endpoints, the URI is relative to root of the web server (the first portion of the URI is a context
root). The context root portion must not conflict with the context root of any web application
deployed to the same web server.

In all cases, this value must be a fixed pattern (no ”*’ allowed).

If the web service endpoint is a servlet that implements only a single endpoint and has only one
url-pattern, it is not necessary to set this value, because the web container derives it from the
web.xml file.

Superelements
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

Example
If the web server is listening at http://localhost:8080, the following endpoint-address-uri:

<endpoint-address-uri>StockQuoteService/StockQuotePort</endpoint-address-uri>

results in the following target endpoint address:

http://localhost:8080/StockQuoteService/StockQuotePort

enterprise-beans
Specifies all the runtime properties for an EJB JAR file in the application.

Superelements
“sun-ejb-jar” on page 398 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the enterprise-beans element.

E

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008332

TABLE A–42 enterprise-beans Subelements

Element Required Description

“name” on page 361 zero or one Specifies the name string.

“unique-id” on page 404 zero or one Specifies a unique system identifier. This data
is automatically generated and updated at
deployment/redeployment. Do not specify or
edit this value.

“ejb” on page 327 zero or more Defines runtime properties for a single
enterprise bean within the application.

“pm-descriptors” on page 365 zero or one Deprecated.

“cmp-resource” on page 316 zero or one Specifies the database to be used for storing
container-managed persistence (CMP) beans
in an EJB JAR file.

“message-destination” on page 355 zero or more Specifies the name of a logical message
destination.

“webservice-description” on page 407 zero or more Specifies a name and optional publish
location for a web service.

Example
<enterprise-beans>

<ejb>

<ejb-name>CustomerEJB</ejb-name>

<jndi-name>customer</jndi-name>

<resource-ref>

<res-ref-name>jdbc/SimpleBank</res-ref-name>

<jndi-name>jdbc/__default</jndi-name>

</resource-ref>

<is-read-only-bean>false</is-read-only-bean>

<commit-option>B</commit-option>

<bean-pool>

<steady-pool-size>10</steady-pool-size>

<resize-quantity>10</resize-quantity>

<max-pool-size>100</max-pool-size>

<pool-idle-timeout-in-seconds>600</pool-idle-timeout-in-seconds>

</bean-pool>

<bean-cache>

<max-cache-size>100</max-cache-size>

<resize-quantity>10</resize-quantity>

<removal-timeout-in-seconds>3600</removal-timeout-in-seconds>

<victim-selection-policy>LRU</victim-selection-policy>

</bean-cache>

E

Appendix A • Deployment Descriptor Files 333

</ejb>

</enterprise-beans>

entity-mapping
Specifies the mapping a bean to database columns.

Superelements
“sun-cmp-mapping” on page 397 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the entity-mapping element.

TABLE A–43 entity-mapping Subelements

Element Required Description

“ejb-name” on page 330 only one Specifies the name of the entity bean in the
ejb-jar.xml file to which the CMP bean
corresponds.

“table-name” on page 401 only one Specifies the name of a database table. The
table must be present in the database schema
file.

“cmp-field-mapping” on page 315 one or more Associates a field with one or more columns
to which it maps.

“cmr-field-mapping” on page 317 zero or more A container-managed relationship field has a
name and one or more column pairs that
define the relationship.

“secondary-table” on page 385 zero or more Describes the relationship between a bean’s
primary and secondary table.

“consistency” on page 320 zero or one Specifies container behavior in guaranteeing
transactional consistency of the data in the
bean.

establish-trust-in-client
Specifies if the target is capable of authenticating a client. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements
“transport-config” on page 403 (sun-ejb-jar.xml)

E

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008334

Subelements
none - contains data

establish-trust-in-target
Specifies if the target is capable of authenticating to a client. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements
“transport-config” on page 403 (sun-ejb-jar.xml)

Subelements
none - contains data

F

fetched-with
Specifies the fetch group configuration for fields and relationships. The fetched-with element
has different allowed and default subelements based on its parent element and the data types of
the fields.

■ If there is no fetched-with subelement of a “cmp-field-mapping” on page 315, and the data
type is not BLOB, CLOB, VARBINARY, LONGVARBINARY, or OTHER, fetched-with
can have any valid subelement. The default subelement is as follows:

<fetched-with><default/></fetched-with>

■ If there is no fetched-with subelement of a “cmp-field-mapping” on page 315, and the data
type is BLOB, CLOB, VARBINARY, LONGVARBINARY, or OTHER, fetched-with can
have any valid subelement except <default/>. The default subelement is as follows:

<fetched-with><none/></fetched-with>

■ If there is no fetched-with subelement of a “cmr-field-mapping” on page 317,
fetched-with can have any valid subelement. The default subelement is as follows:

<fetched-with><none/></fetched-with>

Managed fields are multiple CMP or CMR fields that are mapped to the same column. A
managed field can have any fetched-with subelement except <default/>. For additional
information, see “Managed Fields” on page 168.

F

Appendix A • Deployment Descriptor Files 335

Superelements
“cmp-field-mapping” on page 315, “cmr-field-mapping” on page 317 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the fetched-with element.

TABLE A–44 fetched-with Subelements

Element Required Description

“default” on page 324 exactly one subelement is
required

Specifies that a CMP field belongs to the default hierarchical
fetch group, which means it is fetched any time the bean is
loaded from a database. Enables prefetching of a CMR field.

“level” on page 346 exactly one subelement is
required

Specifies the level number of a hierarchical fetch group.

“named-group” on page 361 exactly one subelement is
required

Specifies the name of an independent fetch group.

“none” on page 362 exactly one subelement is
required

Specifies that this field or relationship is placed into its own
individual fetch group, which means it is loaded from a
database the first time it is accessed in this transaction.

field-name
Specifies the Java identifier of a field. This identifier must match the value of the field-name
subelement of the cmp-field element in the ejb-jar.xml file.

Superelements
“cmp-field-mapping” on page 315 (sun-cmp-mappings.xml)

Subelements
none - contains data

finder
Describes the finders for CMP 1.1 with a method name and query.

Superelements
“one-one-finders” on page 362 (sun-ejb-jar.xml)

F

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008336

Subelements
The following table describes subelements for the finder element.

TABLE A–45 finder Subelements

Element Required Description

“method-name” on page 360 only one Specifies the method name for the finder.

“query-params” on page 372 zero or one Specifies the query parameters for the CMP 1.1
finder.

“query-filter” on page 371 zero or one Specifies the query filter for the CMP 1.1 finder.

“query-variables” on page 372 zero or one Specifies variables in query expression for the
CMP 1.1 finder.

“query-ordering” on page 372 zero or one Specifies the query ordering for the CMP 1.1
finder.

flush-at-end-of-method
Specifies the methods that force a database flush after execution. Applicable to entity beans.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the flush-at-end-of-method element.

TABLE A–46 flush-at-end-of-method Subelements

Element Required Description

“method” on page 359 one or more Specifies a bean method.

G

gen-classes
Specifies all the generated class names for a bean.

G

Appendix A • Deployment Descriptor Files 337

Note – This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the gen-class element.

TABLE A–47 gen-classes Subelements

Element Required Description

“remote-impl” on page 375 zero or one Specifies the fully-qualified class name of the
generated EJBObject impl class.

“local-impl” on page 347 zero or one Specifies the fully-qualified class name of the
generated EJBLocalObject impl class.

“remote-home-impl” on page 375 zero or one Specifies the fully-qualified class name of the
generated EJBHome impl class.

“local-home-impl” on page 346 zero or one Specifies the fully-qualified class name of the
generated EJBLocalHome impl class.

group-name
Specifies a group name in the current realm.

Superelements
“security-role-mapping” on page 386 (sun-application.xml, sun-web.xml,
sun-ejb-jar.xml)

Subelements
none - contains data

G

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008338

H

http-method
Specifies an HTTP method that is eligible for caching. The default is GET.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
none - contains data

I

idempotent-url-pattern
Enterprise Edition only. Do not use.

Superelements
“sun-web-app” on page 398 (sun-web.xml)

integrity
Specifies if the target supports integrity-protected messages. The values are NONE, SUPPORTED, or
REQUIRED.

Superelements
“transport-config” on page 403 (sun-ejb-jar.xml)

Subelements
none - contains data

ior-security-config
Specifies the security information for the input-output redirection (IOR).

I

Appendix A • Deployment Descriptor Files 339

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the ior-security-config element.

TABLE A–48 ior-security-config Subelements

Element Required Description

“transport-config” on page 403 zero or one Specifies the security information for
transport.

“as-context” on page 300 zero or one Specifies the authentication mechanism used
to authenticate the client. If specified, it is
USERNAME_PASSWORD.

“sas-context” on page 382 zero or one Describes the sas-context fields.

is-cache-overflow-allowed
This element is deprecated. Do not use.

Superelements
“bean-cache” on page 302 (sun-ejb-jar.xml)

is-one-one-cmp
This element is not used.

Superelements
“cmp” on page 315 (sun-ejb-jar.xml)

is-read-only-bean
Specifies that this entity bean is a read-only bean if true. If this element is absent, the default
value of false is used.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

I

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008340

Subelements
none - contains data

J

java-method
Specifies a method.

Superelements
“message” on page 355 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the java-method element.

TABLE A–49 java-method Subelements

Element Required Description

“method-name” on page 360 only one Specifies a method name.

“method-params” on page 360 zero or one Specifies fully qualified Java type names of
method parameters.

jms-durable-subscription-name
Specifies the durable subscription associated with a message-driven bean class. Only applies to
the Java Message Service Topic Destination type, and only when the message-driven bean
deployment descriptor subscription durability is Durable.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

jms-max-messages-load
Specifies the maximum number of messages to load into a Java Message Service session at one
time for a message-driven bean to serve. The default is 1.

J

Appendix A • Deployment Descriptor Files 341

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

jndi-name
Specifies the absolute jndi-name of a URL resource or a resource.

For entity beans and session beans, this value specifies the global JNDI name of the EJBHome
object. It is only needed if the entity or session bean exposes a remote view.

For JMS message-driven beans, this is the JNDI name of the JMS resource from which the
message-driven bean consumes JMS messages. This information is alternatively specified
within the “activation-config” on page 299 subelement of the “mdb-resource-adapter” on
page 354 element. For more information about JMS resources, see Chapter 14, “Using the Java
Message Service.”

Superelements
“ejb-ref” on page 331, “message-destination” on page 355, “resource-env-ref” on page 378,
“resource-ref” on page 379 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“cmp-resource” on page 316, “ejb” on page 327, “mdb-connection-factory” on page 354
(sun-ejb-jar.xml)

Subelements
none - contains data

jsp-config
Specifies JSP configuration information.

Superelements
“sun-web-app” on page 398 (sun-web.xml)

Subelements
The following table describes subelements for the jsp-config element.

J

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008342

TABLE A–50 jsp-config Subelements

Element Required Description

“property (with attributes)” on
page 368

zero or more Specifies a property.

Properties
The default property values are tuned for development of JSP files at the cost of performance.
To maximize performance, set jsp-config properties to these non-default values:

■ development - false (as an alternative, set to true and give modificationTestInterval a
large value)

■ mappedfile - false
■ trimSpaces - true
■ suppressSmap - true
■ fork - false (on Solaris)
■ classdebuginfo - false

The following table describes properties for the jsp-config element.

TABLE A–51 jsp-configProperties

Property Default Description

checkInterval 0 If development is set to false and
checkInterval is greater than zero,
background compilations are enabled. The
checkInterval is the time in seconds
between checks to see if a JSP file needs to be
recompiled.

classdebuginfo true Specifies whether the generated Java servlets
are compiled with the debug option set (-g
for javac).

classpath created dynamically based on the current
web application

Specifies the classpath to use when compiling
generated servlets.

compiler javac Specifies the compiler Ant uses to compile
JSP files. See the Ant documentation for
more information:

http://antinstaller.sourceforge.net/
manual/manual/

J

Appendix A • Deployment Descriptor Files 343

http://antinstaller.sourceforge.net/manual/manual/
http://antinstaller.sourceforge.net/manual/manual/

TABLE A–51 jsp-configProperties (Continued)
Property Default Description

development true If set to true, enables development mode,
which allows JSP files to be checked for
modification. Specify the frequency at which
JSPs are checked using the
modificationTestInterval property.

dumpSmap false If set to true, dumps SMAP information for
JSR 45 debugging to a file. Set to false if
suppressSmap is true.

enablePooling true If set to true, tag handler pooling is enabled.

errorOnUseBeanInvalid

ClassAttribute

false If set to true, issues an error when the value
of the class attribute in a useBean action is
not a valid bean class.

fork true Specifies that Ant forks the compiling of JSP
files, using a JVM separate from the one in
which Tomcat is running.

genStrAsCharArray false If set to true, generates text strings as char
arrays, which improves performance in some
cases.

ieClassId clsid:8AD9C840-044E

-11D1-B3E9-00805F499D93

Specifies the Java plug-in COM class ID for
Internet Explorer. Used by the
<jsp:plugin> tags.

javaEncoding UTF8 Specifies the encoding for the generated Java
servlet. This encoding is passed to the Java
compiler that is used to compile the servlet as
well. By default, the web container tries to
use UTF8. If that fails, it tries to use the
javaEncoding value.

For encodings, see:

http://java.sun.com/j2se/1.4/docs/
guide/intl/encoding.doc.html

keepgenerated true If set to true, keeps the generated Java files. If
false, deletes the Java files.

mappedfile true If set to true, generates static content with
one print statement per input line, to ease
debugging.

J

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008344

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

TABLE A–51 jsp-configProperties (Continued)
Property Default Description

modificationTestInterval 0 Specifies the frequency in seconds at which
JSPs are checked for modification. A value of
0 causes the JSP to be checked on every
access. Used only if development is set to
true.

scratchdir The default work directory for the web
application

Specifies the working directory created for
storing all the generated code.

suppressSmap false If set to true, generation of SMAP
information for JSR 45 debugging is
suppressed.

trimSpaces false If set to true, trims white spaces in template
text between actions or directives.

usePrecompiled false If set to true, an accessed JSP file is not
compiled. Its precompiled servlet class is
used instead.

It is assumed that JSP files have been
precompiled, and their corresponding
servlet classes have been bundled in the web
application’s WEB-INF/lib or
WEB-INF/classes directory.

xpoweredBy true If set to true, the X-Powered-By response
header is added by the generated servlet.

K

key-field
Specifies a component of the key used to look up and extract cache entries. The web container
looks for the named parameter, or field, in the specified scope.

If this element is not present, the web container uses the Servlet Path (the path section that
corresponds to the servlet mapping that activated the current request). See the Servlet 2.4
specification, section SRV 4.4, for details on the Servlet Path.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

K

Appendix A • Deployment Descriptor Files 345

Subelements
none

Attributes
The following table describes attributes for the key-field element.

TABLE A–52 key-fieldAttributes

Attribute Default Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie, session.id,
and session.attribute.

L

level
Specifies the name of a hierarchical fetch group. The name must be an integer. Fields and
relationships that belong to a hierarchical fetch group of equal (or lesser) value are fetched at the
same time. The value of level must be greater than zero. Only one is allowed.

Superelements
“fetched-with” on page 335 (sun-cmp-mappings.xml)

Subelements
none - contains data

local-home-impl
Specifies the fully-qualified class name of the generated EJBLocalHome impl class.

L

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008346

Note – This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements
“gen-classes” on page 337 (sun-ejb-jar.xml)

Subelements
none - contains data

local-impl
Specifies the fully-qualified class name of the generated EJBLocalObject impl class.

Note – This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements
“gen-classes” on page 337 (sun-ejb-jar.xml)

Subelements
none - contains data

locale-charset-info
Deprecated. For backward compatibility only. Use the “parameter-encoding” on page 363
subelement of “sun-web-app” on page 398 instead. Specifies information about the application’s
internationalization settings.

Superelements
“sun-web-app” on page 398 (sun-web.xml)

Subelements
The following table describes subelements for the locale-charset-info element.

L

Appendix A • Deployment Descriptor Files 347

TABLE A–53 locale-charset-info Subelements

Element Required Description

“locale-charset-map” on page 348 one or more Maps a locale and an agent to a character encoding.
Provided for backward compatibility. Used only for
request processing, and only if no
parameter-encoding is defined.

“parameter-encoding” on page 363 zero or one Determines the default request character encoding
and how the web container decodes parameters
from forms according to a hidden field value.

Attributes
The following table describes attributes for the locale-charset-info element.

TABLE A–54 locale-charset-infoAttributes

Attribute Default Description

default-locale none Although a value is required, the value is ignored. Use the
default-charset attribute of the “parameter-encoding” on
page 363 element.

locale-charset-map
Maps locales and agents to character encodings. Provided for backward compatibility. Used
only for request processing. Used only if the character encoding is not specified in the request
and cannot be derived from the optional “parameter-encoding” on page 363 element. For
encodings, see http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html.

Superelements
“locale-charset-info” on page 347 (sun-web.xml)

Subelements
The following table describes subelements for the locale-charset-map element.

TABLE A–55 locale-charset-map Subelements

Element Required Description

“description” on page 326 zero or one Specifies an optional text description of a mapping.

Attributes
The following table describes attributes for the locale-charset-map element.

L

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008348

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

TABLE A–56 locale-charset-mapAttributes

Attribute Default Description

locale none Specifies the locale name.

agent none (optional) Specifies the type of client that interacts with the application
server. For a given locale, different agents can have different preferred
character encodings. The value of this attribute must exactly match the
value of the user-agent HTTP request header sent by the client. See
Table A–57 for more information.

charset none Specifies the character encoding to which the locale maps.

Example Agents
The following table specifies example agent attribute values.

TABLE A–57 Example agentAttribute Values

Agent user-agentHeader and agentAttribute Value

Internet Explorer 5.00 for Windows 2000 Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Netscape 4.7.7 for Windows 2000 Mozilla/4.77 [en] (Windows NT 5.0; U)

Netscape 4.7 for Solaris Mozilla/4.7 [en] (X11; u; Sun OS 5.6 sun4u)

localpart
Specifies the local part of a QNAME.

Superelements
“service-qname” on page 387, “wsdl-port” on page 409 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

lock-when-loaded
Places a database update lock on the rows corresponding to the bean whenever the bean is
loaded. How the lock is placed is database-dependent. The lock is released when the transaction
finishes (commit or rollback). While the lock is in place, other database users have read access
to the bean.

L

Appendix A • Deployment Descriptor Files 349

Superelements
“consistency” on page 320 (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

lock-when-modified
This element is not implemented. Do not use.

Superelements
“consistency” on page 320 (sun-cmp-mappings.xml)

log-service
Specifies configuration settings for the log file.

Superelements
“client-container” on page 313 (sun-acc.xml)

Subelements
The following table describes subelements for the log-service element.

TABLE A–58 log-service subelement

Element Required Description

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a
value.

Attributes
The following table describes attributes for the log-service element.

L

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008350

TABLE A–59 log-service attributes

Attribute Default Description

log-file your-ACC-dir/logs/client.log (optional) Specifies the file where the
application client container logging
information is stored.

level SEVERE (optional) Sets the base level of severity.
Messages at or above this setting get logged to
the log file.

login-config
Specifies the authentication configuration for an EJB web service endpoint. Not needed for
servlet web service endpoints. A servlet’s security configuration is contained in the web.xml file.

Superelements
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
The following table describes subelements for the login-config element.

TABLE A–60 login-config subelements

Element Required Description

“auth-method” on page 301 only one Specifies the authentication method.

M

manager-properties
Specifies session manager properties.

Superelements
“session-manager” on page 390 (sun-web.xml)

Subelements
The following table describes subelements for the manager-properties element.

M

Appendix A • Deployment Descriptor Files 351

TABLE A–61 manager-properties Subelements

Element Required Description

“property (with attributes)” on
page 368

zero or more Specifies a property, which has a name and a value.

Properties
The following table describes properties for the manager-properties element.

TABLE A–62 manager-propertiesProperties

Property Default Description

reapIntervalSeconds 60 Specifies the number of seconds between
checks for expired sessions. This is also the
interval at which sessions are passivated if
maxSessions is exceeded.

To prevent data inconsistency, set this value
lower than the frequency at which session
data changes. For example, this value should
be as low as possible (1 second) for a hit
counter servlet on a frequently accessed web
site, or the last few hits might be lost each
time the server is restarted.

Applicable only if the persistence-type
attribute of the parent “session-manager” on
page 390 element is file.

maxSessions -1 Specifies the maximum number of sessions
that are permitted in the cache, or -1 for no
limit. After this, an attempt to create a new
session causes an IllegalStateException

to be thrown.

The session manager passivates sessions to
the persistent store when this maximum is
reached.

Applicable only if the persistence-type
attribute of the parent “session-manager” on
page 390 element is file.

M

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008352

TABLE A–62 manager-propertiesProperties (Continued)
Property Default Description

sessionFilename none; state is not preserved
across restarts

Specifies the absolute or relative path to the
directory in which the session state is
preserved between application restarts, if
preserving the state is possible. A relative
path is relative to the temporary directory
for this web application.

Applicable only if the persistence-type
attribute of the parent “session-manager” on
page 390 element is memory.

mapping-properties
This element is not implemented.

Superelements
“cmp” on page 315 (sun-ejb-jar.xml)

max-cache-size
Specifies the maximum number of beans allowable in cache. A value of zero indicates an
unbounded cache. In reality, there is no hard limit. The max-cache-size limit is just a hint to the
cache implementation. Default is 512.

Applies to stateful session beans and entity beans.

Superelements
“bean-cache” on page 302 (sun-ejb-jar.xml)

Subelements
none - contains data

max-pool-size
Specifies the maximum number of bean instances in the pool. Values are from 0 (1 for
message-driven bean) to MAX_INTEGER. A value of 0 means the pool is unbounded. Default
is 64.

Applies to all beans.

M

Appendix A • Deployment Descriptor Files 353

Superelements
“bean-pool” on page 303 (sun-ejb-jar.xml)

Subelements
none - contains data

max-wait-time-in-millis
This element is deprecated. Do not use.

Superelements
“bean-pool” on page 303 (sun-ejb-jar.xml)

mdb-connection-factory
Specifies the connection factory associated with a message-driven bean. Queue or Topic type
must be consistent with the Java Message Service Destination type associated with the
message-driven bean class.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the mdb-connection-factory element.

TABLE A–63 mdb-connection-factory Subelements

Element Required Description

“jndi-name” on page 342 only one Specifies the absolute jndi-name.

“default-resource-principal” on page 325 zero or one Specifies the default sign-on
(name/password) to the resource manager.

mdb-resource-adapter
Specifies runtime configuration information for a message-driven bean.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

M

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008354

Subelements
The following table describes subelements for the mdb-resource-adapter element.

TABLE A–64 mdb-resource-adapter subelements

Element Required Description

“resource-adapter-mid” on page 378 zero or one Specifies a resource adapter module ID.

“activation-config” on page 299 one or more Specifies an activation configuration.

message
Specifies the methods or operations to which message security requirements apply.

Superelements
“message-security” on page 356 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the message element.

TABLE A–65 message Subelements

Element Required Description

“java-method” on page 341 zero or one Specifies the methods or operations to which
message security requirements apply.

“operation-name” on page 362 zero or one Specifies the WSDL name of an operation of a
web service.

message-destination
Specifies the name of a logical message-destination defined within an application. The
message-destination-name matches the corresponding message-destination-name in the
corresponding J2EE deployment descriptor file.

Superelements
“sun-web-app” on page 398 (sun-web.xml), “enterprise-beans” on page 332
(sun-ejb-jar.xml), “sun-application-client” on page 396 (sun-application-client.xml)

M

Appendix A • Deployment Descriptor Files 355

Subelements
The following table describes subelements for the message-destination element.

TABLE A–66 message-destination subelements

Element Required Description

“message-destination-name” on page 356 only one Specifies the name of a logical message
destination defined within the
corresponding J2EE deployment
descriptor file.

“jndi-name” on page 342 only one Specifies the jndi-name of the associated
entity.

message-destination-name
Specifies the name of a logical message destination defined within the corresponding J2EE
deployment descriptor file.

Superelements
“message-destination” on page 355 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

message-security
Specifies message security requirements.

■ If the grandparent element is “webservice-endpoint” on page 408, these requirements
pertain to request and response messages of the endpoint.

■ If the grandparent element is “port-info” on page 366, these requirements pertain to the port
of the referenced service.

Superelements
“message-security-binding” on page 357 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the message-security element.

M

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008356

TABLE A–67 message-security Subelements

Element Required Description

“message” on page 355 one or more Specifies the methods or operations to which
message security requirements apply.

“request-protection” on page 376 zero or one Defines the authentication policy requirements of
the application’s request processing.

“response-protection” on page 381 zero or one Defines the authentication policy requirements of
the application’s response processing.

message-security-binding
Specifies a custom authentication provider binding for a parent “webservice-endpoint” on
page 408 or “port-info” on page 366 element in one or both of these ways:

■ By binding to a specific provider
■ By specifying the message security requirements enforced by the provider

Superelements
“webservice-endpoint” on page 408, “port-info” on page 366 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
The following table describes subelements for the message-security-binding element.

TABLE A–68 message-security-binding Subelements

Element Required Description

“message-security” on page 356 zero or more Specifies message security requirements.

Attributes
The following table describes attributes for the message-security-binding element.

TABLE A–69 message-security-bindingAttributes

Attribute Default Description

auth-layer none Specifies the message layer at which authentication is
performed. The value must be SOAP.

M

Appendix A • Deployment Descriptor Files 357

TABLE A–69 message-security-bindingAttributes (Continued)
Attribute Default Description

provider-id none (optional) Specifies the authentication provider used
to satisfy application-specific message security
requirements.

If this attribute is not specified, a default provider is
used, if it is defined for the message layer.

if no default provider is defined, authentication
requirements defined in the
message-security-binding are not enforced.

message-security-config
Specifies configurations for message security providers.

Superelements
“client-container” on page 313 (sun-acc.xml)

Subelements
The following table describes subelements for the message-security-config element.

TABLE A–70 message-security-config Subelements

Element Required Description

“provider-config” on page 370 one or more Specifies a configuration for one message security
provider.

Attributes
The following table describes attributes for the message-security-config element.

TABLE A–71 message-security-configAttributes

Attribute Default Description

auth-layer none Specifies the message layer at which authentication is
performed. The value must be SOAP.

default-provider none (optional) Specifies the server provider that is
invoked for any application not bound to a specific
server provider.

M

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008358

TABLE A–71 message-security-configAttributes (Continued)
Attribute Default Description

default-client-provider none (optional) Specifies the client provider that is
invoked for any application not bound to a specific
client provider.

method
Specifies a bean method.

Superelements
“flush-at-end-of-method” on page 337 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the method element.

TABLE A–72 method Subelements

Element Required Description

“description” on page 326 zero or one Specifies an optional text description.

“ejb-name” on page 330 zero or one Matches the ejb-name in the corresponding
ejb-jar.xml file.

“method-name” on page 360 only one Specifies a method name.

“method-intf” on page 359 zero or one Specifies the method interface to distinguish
between methods with the same name in different
interfaces.

“method-params” on page 360 zero or one Specifies fully qualified Java type names of
method parameters.

method-intf
Specifies the method interface to distinguish between methods with the same name in different
interfaces. Allowed values are Home, Remote, LocalHome, and Local.

Superelements
“method” on page 359 (sun-ejb-jar.xml)

Subelements
none - contains data

M

Appendix A • Deployment Descriptor Files 359

method-name
Specifies a method name or * (an asterisk) for all methods. If a method is overloaded, specifies
all methods with the same name.

Superelements
“java-method” on page 341 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“finder” on page 336, “query-method” on page 371 , “method” on page 359 (sun-ejb-jar.xml)

Subelements
none - contains data

Examples
<method-name>findTeammates</method-name>

<method-name>*</method-name>

method-param
Specifies the fully qualified Java type name of a method parameter.

Superelements
“method-params” on page 360 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

method-params
Specifies fully qualified Java type names of method parameters.

Superelements
“java-method” on page 341 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“query-method” on page 371, “method” on page 359 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the method-params element.

M

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008360

TABLE A–73 method-params Subelements

Element Required Description

“method-param” on page 360 zero or more Specifies the fully qualified Java type name of a
method parameter.

N

name
Specifies the name of the entity.

Superelements
“call-property” on page 309, “default-resource-principal” on page 325, “stub-property” on
page 394 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“enterprise-beans” on page 332, “principal” on page 367, “property (with subelements)” on
page 369 (sun-ejb-jar.xml)

Subelements
none - contains data

named-group
Specifies the name of one independent fetch group. All the fields and relationships that are part
of a named group are fetched at the same time. A field belongs to only one fetch group,
regardless of what type of fetch group is used.

Superelements
“fetched-with” on page 335 (sun-cmp-mappings.xml)

Subelements
none - contains data

namespaceURI
Specifies the namespace URI.

N

Appendix A • Deployment Descriptor Files 361

Superelements
“service-qname” on page 387, “wsdl-port” on page 409 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

none
Specifies that this field or relationship is fetched by itself, with no other fields or relationships.

Superelements
“consistency” on page 320, “fetched-with” on page 335 (sun-cmp-mappings.xml)

Subelements
none - element is present or absent

O

one-one-finders
Describes the finders for CMP 1.1 beans.

Superelements
“cmp” on page 315 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the one-one-finders element.

TABLE A–74 one-one-finders Subelements

Element Required Description

“finder” on page 336 one or more Describes the finders for CMP 1.1 with a method name and
query.

operation-name
Specifies the WSDL name of an operation of a web service.

O

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008362

Superelements
“message” on page 355 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

P

parameter-encoding
Specifies the default request character encoding and how the web container decodes parameters
from forms according to a hidden field value.

If both the “sun-web-app” on page 398 and “locale-charset-info” on page 347 elements have
parameter-encoding subelements, the subelement of sun-web-app takes precedence. For
encodings, see http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html.

Superelements
“locale-charset-info” on page 347, “sun-web-app” on page 398 (sun-web.xml)

Subelements
none

Attributes
The following table describes attributes for the parameter-encoding element.

TABLE A–75 parameter-encodingAttributes

Attribute Default Description

form-hint-field none (optional) The name of the hidden field in the form.
This field specifies the character encoding the web
container uses for request.getParameter and
request.getReader calls when the charset is not set in
the request’s content-type header.

default-charset ISO-8859-1 (optional) The default request character encoding.

P

Appendix A • Deployment Descriptor Files 363

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

pass-by-reference
Specifies the passing method used by a servlet or enterprise bean calling a remote interface
method in another bean that is colocated within the same process.

■ If false (the default if this element is not present), this application uses pass-by-value
semantics.

■ If true, this application uses pass-by-reference semantics.

Note – The pass-by-reference element only applies to remote calls. As defined in the EJB 2.1
specification, section 5.4, calls to local interfaces use pass-by-reference semantics.

If the pass-by-reference element is set to its default value of false, the passing semantics for
calls to remote interfaces comply with the EJB 2.1 specification, section 5.4. If set to true,
remote calls involve pass-by-reference semantics instead of pass-by-value semantics, contrary
to this specification.

Portable programs cannot assume that a copy of the object is made during such a call, and thus
that it’s safe to modify the original. Nor can they assume that a copy is not made, and thus that
changes to the object are visible to both caller and callee. When this element is set to true,
parameters and return values should be considered read-only. The behavior of a program that
modifies such parameters or return values is undefined.

When a servlet or enterprise bean calls a remote interface method in another bean that is
colocated within the same process, by default the Application Server makes copies of all the call
parameters in order to preserve the pass-by-value semantics. This increases the call overhead
and decreases performance.

However, if the calling method does not change the object being passed as a parameter, it is safe
to pass the object itself without making a copy of it. To do this, set the pass-by-reference value to
true.

The setting of this element in the sun-application.xml file applies to all EJB modules in the
application. For an individually deployed EJB module, you can set the same element in the
sun-ejb-jar.xml file. If pass-by-reference is used at both the bean and application level, the
bean level takes precedence.

Superelements
“sun-application” on page 395 (sun-application.xml), “ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

P

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008364

password
Specifies the password for the principal.

Superelements
“default-resource-principal” on page 325 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

pm-descriptors
This element and its subelements are deprecated. Do not use.

Superelements
“enterprise-beans” on page 332 (sun-ejb-jar.xml)

pool-idle-timeout-in-seconds
Specifies the maximum time, in seconds, that a bean instance is allowed to remain idle in the
pool. When this timeout expires, the bean instance in a pool becomes a candidate for
passivation or deletion. This is a hint to the server. A value of 0 specifies that idle beans remain
in the pool indefinitely. Default value is 600.

Applies to stateless session beans, entity beans, and message-driven beans.

Note – For a stateless session bean or a message-driven bean, the bean is removed (garbage
collected) when the timeout expires.

Superelements
“bean-pool” on page 303 (sun-ejb-jar.xml)

Subelements
none - contains data

port-component-name
Specifies a unique name for a port component within a web or EJB module.

P

Appendix A • Deployment Descriptor Files 365

Superelements
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

port-info
Specifies information for a port within a web service reference.

Either a service-endpoint-interface or a wsdl-port or both must be specified. If both are
specified, wsdl-port specifies the port that the container chooses for container-managed port
selection.

The same wsdl-port value must not appear in more than one port-info element within the
same service-ref.

If a service-endpoint-interface is using container-managed port selection, its value must
not appear in more than one port-info element within the same service-ref.

Superelements
“service-ref” on page 388 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the port-info element.

TABLE A–76 port-info subelements

Element Required Description

“service-endpoint-interface” on page 387 zero or one Specifies the web service reference name
relative to java:comp/env.

“wsdl-port” on page 409 zero or one Specifies the WSDL port.

“stub-property” on page 394 zero or more Specifies JAX-RPC property values that are
set on a javax.xml.rpc.Stub object before
it is returned to the web service client.

“call-property” on page 309 zero or more Specifies JAX-RPC property values that are
set on a javax.xml.rpc.Call object before
it is returned to the web service client.

P

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008366

TABLE A–76 port-info subelements (Continued)
Element Required Description

“message-security-binding” on page 357 zero or one Specifies a custom authentication provider
binding.

prefetch-disabled
Disables prefetching of entity bean states for the specified query methods. Container-managed
relationship fields are prefetched if their “fetched-with” on page 335 element is set to “default”
on page 324.

Superelements
“cmp” on page 315 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the prefetch-disabled element.

TABLE A–77 prefetch-disabled Subelements

Element Required Description

“query-method” on page 371 one or more Specifies a query method.

principal
Defines a node that specifies a user name on the platform.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the principal element.

TABLE A–78 principal Subelements

Element Required Description

“name” on page 361 only one Specifies the name of the user.

P

Appendix A • Deployment Descriptor Files 367

principal-name
Contains the principal (user) name.

In an enterprise bean, specifies the principal (user) name that has the run-as role specified.

Superelements
“security-role-mapping” on page 386 (sun-application.xml, sun-web.xml,
sun-ejb-jar.xml), “servlet” on page 389 (sun-web.xml)

Subelements
none - contains data

property (with attributes)
Specifies the name and value of a property. A property adds configuration information to its
parent element that is one or both of the following:

■ Optional with respect to Application Server
■ Needed by a system or object that Application Server doesn’t have knowledge of, such as an

LDAP server or a Java class

Superelements
“cache” on page 304, “cache-helper” on page 306, “class-loader” on page 311,
“cookie-properties” on page 322, “default-helper” on page 324, “manager-properties” on
page 351, “session-properties” on page 391, “store-properties” on page 393, “sun-web-app” on
page 398 (sun-web.xml); “auth-realm” on page 301, “client-container” on page 313,
“client-credential” on page 314, “log-service” on page 350, “provider-config” on page 370
(sun-acc.xml)

Subelements
The following table describes subelements for the property element.

TABLE A–79 property Subelements

Element Required Description

“description” on page 326 zero or one Specifies an optional text description of a property.

P

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008368

Note – The property element in the sun-acc.xml file has no subelements.

Attributes
The following table describes attributes for the property element.

TABLE A–80 propertyAttributes

Attribute Default Description

name none Specifies the name of the property.

value none Specifies the value of the property.

Example
<property name="reapIntervalSeconds" value="20" />

property (with subelements)
Specifies the name and value of a property. A property adds configuration information to its
parent element that is one or both of the following:

■ Optional with respect to Application Server
■ Needed by a system or object that Application Server doesn’t have knowledge of, such as an

LDAP server or a Java class

Superelements
“cmp-resource” on page 316, “schema-generator-properties” on page 383 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the property element.

TABLE A–81 property subelements

Element Required Description

“name” on page 361 only one Specifies the name of the property.

“value” on page 405 only one Specifies the value of the property.

P

Appendix A • Deployment Descriptor Files 369

Example
<property>

<name>use-unique-table-names</name>

<value>true</value>

</property>

provider-config
Specifies a configuration for one message security provider.

Although the request-policy and response-policy subelements are optional, the
provider-config element does nothing if they are not specified.

Use property subelements to configure provider-specific properties. Property values are passed
to the provider when its initialize method is called.

Superelements
“message-security-config” on page 358 (sun-acc.xml)

Subelements
The following table describes subelements for the provider-config element.

TABLE A–82 provider-config Subelements

Element Required Description

“request-policy” on page 375 zero or one Defines the authentication policy requirements of
the authentication provider’s request processing.

“response-policy” on page 380 zero or one Defines the authentication policy requirements of
the authentication provider’s response
processing.

“property (with attributes)” on page 368 zero or more Specifies a property or a variable.

Attributes
The following table describes attributes for the provider-config element.

TABLE A–83 provider-configAttributes

Attribute Default Description

provider-id none Specifies the provider ID.

P

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008370

TABLE A–83 provider-configAttributes (Continued)
Attribute Default Description

provider-type none Specifies whether the provider is a client, server, or
client-server authentication provider.

class-name none Specifies the Java implementation class of the provider. Client
authentication providers must implement the
com.sun.enterprise.security.jauth.ClientAuthModule

interface. Server authentication providers must implement the
com.sun.enterprise.security.jauth.ServerAuthModule

interface. Client-server providers must implement both
interfaces.

Q

query-filter
Specifies the query filter for the CMP 1.1 finder.

Superelements
“finder” on page 336 (sun-ejb-jar.xml)

Subelements
none - contains data

query-method
Specifies a query method.

Superelements
“prefetch-disabled” on page 367 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the query-method element.

Q

Appendix A • Deployment Descriptor Files 371

TABLE A–84 query-method Subelements

Element Required Description

“method-name” on page 360 only one Specifies a method name.

“method-params” on page 360 only one Specifies the fully qualified Java type names of
method parameters.

query-ordering
Specifies the query ordering for the CMP 1.1 finder.

Superelements
“finder” on page 336 (sun-ejb-jar.xml)

Subelements
none - contains data

query-params
Specifies the query parameters for the CMP 1.1 finder.

Superelements
“finder” on page 336 (sun-ejb-jar.xml)

Subelements
none - contains data

query-variables
Specifies variables in the query expression for the CMP 1.1 finder.

Superelements
“finder” on page 336 (sun-ejb-jar.xml)

Subelements
none - contains data

Q

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008372

R

read-only
Specifies that a field is read-only if true. If this element is absent, the default value is false .

Superelements
“cmp-field-mapping” on page 315 (sun-cmp-mappings.xml)

Subelements
none - contains data

realm
Specifies the name of the realm used to process all authentication requests associated with this
application. If this element is not specified or does not match the name of a configured realm,
the default realm is used. For more information about realms, see “Realm Configuration” on
page 50.

Superelements
“sun-application” on page 395 (sun-application.xml), “as-context” on page 300
(sun-ejb-jar.xml)

Subelements
none - contains data

refresh-field
Specifies a field that gives the application component a programmatic way to refresh a cached
entry.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
none

R

Appendix A • Deployment Descriptor Files 373

Attributes
The following table describes attributes for the refresh-field element.

TABLE A–85 refresh-fieldAttributes

Attribute Default Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie, session.id,
and session.attribute.

refresh-period-in-seconds
Specifies the rate at which a read-only-bean must be refreshed from the data source. If the value
is less than or equal to zero, the bean is never refreshed; if the value is greater than zero, the bean
instances are refreshed at the specified interval. This rate is just a hint to the container. Default
is 0 (no refresh).

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

removal-timeout-in-seconds
Specifies the amount of time a bean instance can remain idle in the container before it is
removed (timeout). A value of 0 specifies that the container does not remove inactive beans
automatically. The default value is 5400.

If removal-timeout-in-seconds is less than or equal to cache-idle-timeout-in-seconds,
beans are removed immediately without being passivated.

Applies to stateful session beans.

For related information, see “cache-idle-timeout-in-seconds” on page 307.

Superelements
“bean-cache” on page 302 (sun-ejb-jar.xml)

R

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008374

Subelements
none - contains data

remote-home-impl
Specifies the fully-qualified class name of the generated EJBHome impl class.

Note – This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements
“gen-classes” on page 337 (sun-ejb-jar.xml)

Subelements
none - contains data

remote-impl
Specifies the fully-qualified class name of the generated EJBObject impl class.

Note – This value is automatically generated by the server at deployment or redeployment time.
Do not specify it or change it after deployment.

Superelements
“gen-classes” on page 337 (sun-ejb-jar.xml)

Subelements
none - contains data

request-policy
Defines the authentication policy requirements of the authentication provider’s request
processing.

Superelements
“provider-config” on page 370 (sun-acc.xml)

R

Appendix A • Deployment Descriptor Files 375

Subelements
none

Attributes
The following table describes attributes for the request-policy element.

TABLE A–86 request-policyAttributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

request-protection
Defines the authentication policy requirements of the application’s request processing.

Superelements
“message-security” on page 356 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none

Attributes
The following table describes attributes for the request-protection element.

TABLE A–87 request-protectionAttributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

R

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008376

TABLE A–87 request-protectionAttributes (Continued)
Attribute Default Description

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

required
Specifies whether the authentication method specified must be used for client authentication.
The value is true or false.

Superelements
“as-context” on page 300 (sun-ejb-jar.xml)

Subelements
none - contains data

res-ref-name
Specifies the res-ref-name in the corresponding J2EE deployment descriptor file
resource-ref entry. The res-ref-name element specifies the name of a resource manager
connection factory reference. The name must be unique within an enterprise bean.

Superelements
“resource-ref” on page 379 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

resize-quantity
Specifies the number of bean instances to be:

■ Created, if a request arrives when the pool has less than “steady-pool-size” on page 393
quantity of beans (applies to pools only for creation). If the pool has more than
steady-pool-size minus “resize-quantity” on page 377 of beans, then resize-quantity is
still created.

■ Removed, when the “pool-idle-timeout-in-seconds” on page 365 timer expires and a cleaner
thread removes any unused instances.

R

Appendix A • Deployment Descriptor Files 377

■ For caches, when “max-cache-size” on page 353 is reached, resize-quantity beans are
selected for passivation using the “victim-selection-policy” on page 406. In addition, the
“cache-idle-timeout-in-seconds” on page 307 or “removal-timeout-in-seconds” on
page 374 timers passivate beans from the cache.

■ For pools, when the “max-pool-size” on page 353 is reached, resize-quantity beans
are selected for removal. In addition, the “pool-idle-timeout-in-seconds” on page 365
timer removes beans until steady-pool-size is reached.

Values are from 0 to MAX_INTEGER. The pool is not resized below the steady-pool-size.
Default is 16.

Applies to stateless session beans, entity beans, and message-driven beans.

For EJB pools, the value can be defined in the EJB container. Default is 16.

For EJB caches, the value can be defined in the EJB container. Default is 32.

For message-driven beans, the value can be defined in the EJB container. Default is 2.

Superelements
“bean-cache” on page 302, “bean-pool” on page 303 (sun-ejb-jar.xml)

Subelements
none - contains data

resource-adapter-mid
Specifies the module ID of the resource adapter that is responsible for delivering messages to
the message-driven bean.

Superelements
“mdb-resource-adapter” on page 354 (sun-ejb-jar.xml)

Subelements
none - contains data

resource-env-ref
Maps the res-ref-name in the corresponding J2EE deployment descriptor file
resource-env-ref entry to the absolute jndi-name of a resource.

R

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008378

Superelements
“sun-web-app” on page 398 (sun-web.xml), “ejb” on page 327 (sun-ejb-jar.xml),
“sun-application-client” on page 396 (sun-application-client.xml)

Subelements
The following table describes subelements for the resource-env-ref element.

TABLE A–88 resource-env-ref Subelements

Element Required Description

“resource-env-ref-name” on page 379 only one Specifies the res-ref-name in the
corresponding J2EE deployment descriptor
file resource-env-ref entry.

“jndi-name” on page 342 only one Specifies the absolute jndi-name of a
resource.

Example
<resource-env-ref>

<resource-env-ref-name>jms/StockQueueName</resource-env-ref-name>

<jndi-name>jms/StockQueue</jndi-name>

</resource-env-ref>

resource-env-ref-name
Specifies the res-ref-name in the corresponding J2EE deployment descriptor file
resource-env-ref entry.

Superelements
“resource-env-ref” on page 378 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none - contains data

resource-ref
Maps the res-ref-name in the corresponding J2EE deployment descriptor file resource-ref
entry to the absolute jndi-name of a resource.

R

Appendix A • Deployment Descriptor Files 379

Note – Connections acquired from JMS connection factories are not shareable in the current
release of the Application Server. The res-sharing-scope element in the ejb-jar.xml file
resource-ref element is ignored for JMS connection factories.

When resource-ref specifies a JMS connection factory for the Sun Java System Message
Queue, the default-resource-principal (name/password) must exist in the Message Queue
user repository. Refer to the Security Management chapter in the Sun Java System Message
Queue 3.7 UR1 Administration Guide for information on how to manage the Message Queue
user repository.

Superelements
“sun-web-app” on page 398 (sun-web.xml), “ejb” on page 327 (sun-ejb-jar.xml),
“sun-application-client” on page 396 (sun-application-client.xml)

Subelements
The following table describes subelements for the resource-ref element.

TABLE A–89 resource-ref Subelements

Element Required Description

“res-ref-name” on page 377 only one Specifies the res-ref-name in the corresponding
J2EE deployment descriptor file resource-ref
entry.

“jndi-name” on page 342 only one Specifies the absolute jndi-name of a resource.

“default-resource-principal” on page 325 zero or one Specifies the default principal (user) for the
resource.

Example
<resource-ref>

<res-ref-name>jdbc/EmployeeDBName</res-ref-name>

<jndi-name>jdbc/EmployeeDB</jndi-name>

</resource-ref>

response-policy
Defines the authentication policy requirements of the authentication provider’s response
processing.

Superelements
“provider-config” on page 370 (sun-acc.xml)

R

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008380

Subelements
none

Attributes
The following table describes attributes for the response-policy element.

TABLE A–90 response-policyAttributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

response-protection
Defines the authentication policy requirements of the application’s response processing.

Superelements
“message-security” on page 356 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml)

Subelements
none

Attributes
The following table describes attributes for the response-protection element.

TABLE A–91 response-protectionAttributes

Attribute Default Description

auth-source none Specifies the type of required authentication, either
sender (user name and password) or content
(digital signature).

R

Appendix A • Deployment Descriptor Files 381

TABLE A–91 response-protectionAttributes (Continued)
Attribute Default Description

auth-recipient none Specifies whether recipient authentication occurs
before or after content authentication. Allowed
values are before-content and after-content.

role-name
Contains the role-name in the security-role element of the corresponding J2EE deployment
descriptor file.

Superelements
“security-role-mapping” on page 386 (sun-application.xml, sun-web.xml,
sun-ejb-jar.xml)

Subelements
none - contains data

S

sas-context
Describes the sas-context fields.

Superelements
“ior-security-config” on page 339 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the sas-context element.

TABLE A–92 sas-context Subelements

Element Required Description

“caller-propagation” on page 309 only one Specifies whether the target accepts
propagated caller identities. The values are
NONE, SUPPORTED, or REQUIRED.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008382

schema
Specifies the file that contains a description of the database schema to which the beans in this
sun-cmp-mappings.xml file are mapped. If this element is empty, the database schema file is
automatically generated at deployment time. Otherwise, the schema element names a
.dbschema file with a pathname relative to the directory containing the sun-cmp-mappings.xml
file, but without the .dbschema extension. See “Automatic Database Schema Capture” on
page 176.

Superelements
“sun-cmp-mapping” on page 397 (sun-cmp-mappings.xml)

Subelements
none - contains data

Examples
<schema/> <!-- use automatic schema generation -->

<schema>CompanySchema</schema> <!-- use "CompanySchema.dbschema" -->

schema-generator-properties
Specifies field-specific column attributes in property subelements.

Superelements
“cmp-resource” on page 316 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the schema-generator-properties element.

TABLE A–93 schema-generator-properties Subelements

Element Required Description

“property (with subelements)” on page 369 zero or more Specifies a property name and value.

Properties
The following table describes properties for the schema-generator-properties element.

S

Appendix A • Deployment Descriptor Files 383

TABLE A–94 schema-generator-propertiesProperties

Property Default Description

use-unique-table-names false Specifies that generated table names are unique
within each application server domain. This
property can be overridden during deployment.
See Table 7–4.

bean-name.field-name.attribute none Defines a column attribute. For attribute
descriptions, see Table A–95.

The following table lists the column attributes for properties defined in the
schema-generator-properties element.

TABLE A–95 schema-generator-propertiesColumn Attributes

Attribute Description

jdbc-type Specifies the JDBC type of the column created for the CMP
field. The actual SQL type generated is based on this JDBC type
but is database vendor specific.

jdbc-maximum-length Specifies the maximum number of characters stored in the
column corresponding to the CMP field. Applies only when
the actual SQL that is generated for the column requires a
length.

For example, a jdbc-maximum-length of 32 on a CMP String

field such as firstName normally results in a column
definition such as VARCHAR(32). But if the jdbc-type is
CLOB and you are deploying on Oracle, the resulting column
definition is CLOB. No length is given, because in an Oracle
database, a CLOB has no length.

jdbc-precision Specifies the maximum number of digits stored in a column
which represents a numeric type.

jdbc-scale Specifies the number of digits stored to the right of the decimal
point in a column that represents a floating point number.

jdbc-nullable Specifies whether the column generated for the CMP field
allows null values.

Example
<schema-generator-properties>

<property>

<name>Employee.firstName.jdbc-type</name>

<value>char</value>

</property>

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008384

<property>

<name>Employee.firstName.jdbc-maximum-length</name>

<value>25</value>

</property>

<property>

<name>use-unique-table-names</name>

<value>true</value>

</property>

</schema-generator-properties>

secondary-table
Specifies a bean’s secondary table(s).

Superelements
“entity-mapping” on page 334 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the secondary-table element.

TABLE A–96 secondary table Subelements

Element Required Description

“table-name” on page 401 only one Specifies the name of a database table.

“column-pair” on page 318 one or more Specifies the pair of columns that determine the
relationship between two database tables.

security
Defines the SSL security configuration for IIOP/SSL communication with the target server.

Superelements
“target-server” on page 401 (sun-acc.xml)

Subelements
The following table describes subelements for the security element.

S

Appendix A • Deployment Descriptor Files 385

TABLE A–97 security Subelements

Element Required Description

“ssl” on page 392 only one Specifies the SSL processing parameters.

“cert-db” on page 310 only one Not implemented. Included for backward compatibility only.

security-role-mapping
Maps roles to users or groups in the currently active realm. See “Realm Configuration” on
page 50.

The role mapping element maps a role, as specified in the EJB JAR role-name entries, to a
environment-specific user or group. If it maps to a user, it must be a concrete user which exists
in the current realm, who can log into the server using the current authentication method. If it
maps to a group, the realm must support groups and the group must be a concrete group which
exists in the current realm. To be useful, there must be at least one user in that realm who
belongs to that group.

Superelements
“sun-application” on page 395 (sun-application.xml), “sun-web-app” on page 398
(sun-web.xml), “sun-ejb-jar” on page 398 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the security-role-mapping element.

TABLE A–98 security-role-mapping Subelements

Element Required Description

“role-name” on page 382 only one Contains the role-name in the
security-role element of the
corresponding J2EE deployment
descriptor file.

“principal-name” on page 368 one or more if no group-name, otherwise zero or more Contains a principal (user) name in
the current realm. In an enterprise
bean, the principal must have the
run-as role specified.

“group-name” on page 338 one or more if no principal-name, otherwise zero or more Contains a group name in the
current realm.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008386

service-endpoint-interface
Specifies the web service reference name relative to java:comp/env.

Superelements
“port-info” on page 366 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

service-impl-class
Specifies the name of the generated service implementation class.

Superelements
“service-ref” on page 388 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

service-qname
Specifies the WSDL service element that is being referred to.

Superelements
“service-ref” on page 388 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml);
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
The following table describes subelements for the service-qname element.

TABLE A–99 service-qname subelements

Element Required Description

“namespaceURI” on page 361 only one Specifies the namespace URI.

S

Appendix A • Deployment Descriptor Files 387

TABLE A–99 service-qname subelements (Continued)
Element Required Description

“localpart” on page 349 only one Specifies the local part of a QNAME.

service-ref
Specifies runtime settings for a web service reference. Runtime information is only needed in
the following cases:

■ To define the port used to resolve a container-managed port
■ To define the default Stub/Call property settings for Stub objects
■ To define the URL of a final WSDL document to be used instead of the one associated with

the service-ref in the standard J2EE deployment descriptor

Superelements
“sun-web-app” on page 398 (sun-web.xml), “ejb” on page 327 (sun-ejb-jar.xml),
“sun-application-client” on page 396 (sun-application-client.xml)

Subelements
The following table describes subelements for the service-ref element.

TABLE A–100 service-ref subelements

Element Required Description

“service-ref-name” on page 389 only one Specifies the web service reference name relative to
java:comp/env.

“port-info” on page 366 zero or more Specifies information for a port within a web service
reference.

“call-property” on page 309 zero or more Specifies JAX-RPC property values that can be set
on a javax.xml.rpc.Call object before it is
returned to the web service client.

“wsdl-override” on page 409 zero or one Specifies a valid URL pointing to a final WSDL
document.

“service-impl-class” on page 387 zero or one Specifies the name of the generated service
implementation class.

“service-qname” on page 387 zero or one Specifies the WSDL service element that is being
referenced.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008388

service-ref-name
Specifies the web service reference name relative to java:comp/env.

Superelements
“service-ref” on page 388 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

servlet
Specifies a principal name for a servlet. Used for the run-as role defined in web-xml.

Superelements
“sun-web-app” on page 398 (sun-web.xml)

Subelements
The following table describes subelements for the servlet element.

TABLE A–101 servlet Subelements

Element Required Description

“servlet-name” on page 390 only one Contains the name of a servlet, which is matched
to a servlet-name in web.xml.

“principal-name” on page 368 zero or one Contains a principal (user) name in the current
realm.

“webservice-endpoint” on page 408 zero or more Specifies information about a web service
endpoint.

servlet-impl-class
Specifies the automatically generated name of the servlet implementation class.

Superelements
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

S

Appendix A • Deployment Descriptor Files 389

servlet-name
Specifies the name of a servlet, which is matched to a servlet-name in web.xml. This name
must be present in web.xml.

Superelements
“cache-mapping” on page 308, “servlet” on page 389 (sun-web.xml)

Subelements
none - contains data

session-config
Specifies session configuration information. Overrides the web container settings for an
individual web application.

Superelements
“sun-web-app” on page 398 (sun-web.xml)

Subelements
The following table describes subelements for the session-config element.

TABLE A–102 session-config Subelements

Element Required Description

“session-manager” on page 390 zero or one Specifies session manager configuration
information.

“session-properties” on page 391 zero or one Specifies session properties.

“cookie-properties” on page 322 zero or one Specifies session cookie properties.

session-manager
Specifies session manager information.

Superelements
“session-config” on page 390 (sun-web.xml)

Subelements
The following table describes subelements for the session-manager element.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008390

TABLE A–103 session-manager Subelements

Element Required Description

“manager-properties” on page 351 zero or one Specifies session manager properties.

“store-properties” on page 393 zero or one Specifies session persistence (storage) properties.

Attributes
The following table describes attributes for the session-manager element.

TABLE A–104 session-managerAttributes

Attribute Default Description

persistence-type memory (optional) Specifies the session persistence
mechanism. Allowed values are memory and file .

session-properties
Specifies session properties.

Superelements
“session-config” on page 390 (sun-web.xml)

Subelements
The following table describes subelements for the session-properties element.

TABLE A–105 session-properties Subelements

Element Required Description

“property (with attributes)” on
page 368

zero or more Specifies a property, which has a name and a value.

Properties
The following table describes properties for the session-properties element.

S

Appendix A • Deployment Descriptor Files 391

TABLE A–106 session-propertiesProperties

Property Default Description

timeoutSeconds 1800 Specifies the default maximum inactive interval
(in seconds) for all sessions created in this web
module. If set to 0 or less, sessions in this web
module never expire.

If a session-timeout element is specified in the
web.xml file, the session-timeout value
overrides any timeoutSeconds value. If neither
session-timeout nor timeoutSeconds is
specified, the timeoutSeconds default is used.

Note that the session-timeout element in
web.xml is specified in minutes, not seconds.

enableCookies true Uses cookies for session tracking if set to true.

enableURLRewriting true Enables URL rewriting. This provides session
tracking via URL rewriting when the browser
does not accept cookies. You must also use an
encodeURL or encodeRedirectURL call in the
servlet or JSP.

ssl
Defines SSL processing parameters.

Superelements
“security” on page 385 (sun-acc.xml)

Subelements
none

Attributes
The following table describes attributes for the SSL element.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008392

TABLE A–107 ssl attributes

Attribute Default Description

cert-nickname none (optional) The nickname of the server certificate in
the certificate database or the PKCS#11 token. In the
certificate, the name format is tokenname:nickname.
Including the tokenname: part of the name in this
attribute is optional.

ssl2-enabled false (optional) Determines whether SSL2 is enabled.

ssl2-ciphers none (optional) A space-separated list of the SSL2 ciphers
used with the prefix + to enable or - to disable. For
example, +rc4. Allowed values are rc4, rc4export,
rc2, rc2export, idea, des, desede3.

ssl3-enabled true (optional) Determines whether SSL3 is enabled.

ssl3-tls-ciphers none (optional) A space-separated list of the SSL3 ciphers
used, with the prefix + to enable or - to disable, for
example +rsa_des_sha. Allowed SSL3 values are
rsa_rc4_128_md5, , rsa_des_sha,

rsa_rc4_40_md5, rsa_rc2_40_md5,

rsa_null_md5. Allowed TLS values are

rsa_des_56_sha, rsa_rc4_56_sha.

tls-enabled true (optional) Determines whether TLS is enabled.

steady-pool-size
Specifies the initial and minimum number of bean instances that are maintained in the pool.
Default is 32. Applies to stateless session beans and message-driven beans.

Superelements
“bean-pool” on page 303 (sun-ejb-jar.xml)

Subelements
none - contains data

store-properties
Specifies session persistence (storage) properties.

Superelements
“session-manager” on page 390 (sun-web.xml)

S

Appendix A • Deployment Descriptor Files 393

Subelements
The following table describes subelements for the store-properties element.

TABLE A–108 store-properties Subelements

Element Required Description

“property (with attributes)” on
page 368

zero or more Specifies a property, which has a name and a value.

Properties
The following table describes properties for the store-properties element.

TABLE A–109 store-propertiesProperties

Property Default Description

directory domain-dir/generated/jsp/
j2ee-apps/app-name/app-name_war

Specifies the absolute or relative pathname
of the directory into which individual
session files are written. A relative path is
relative to the temporary work directory
for this web application.

Applicable only if the persistence-type
attribute of the parent “session-manager”
on page 390 element is file.

stub-property
Specifies JAX-RPC property values that are set on a javax.xml.rpc.Stub object before it is
returned to the web service client. The property names can be any properties supported by the
JAX-RPC Stub implementation.

Superelements
“port-info” on page 366 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the stub-property element.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008394

TABLE A–110 stub-property subelements

Element Required Description

“name” on page 361 only one Specifies the name of the entity.

“value” on page 405 only one Specifies the value of the entity.

Example
<service-ref>

<service-ref-name>service/FooProxy</service-ref-name>

<port-info>

<service-endpoint-interface>a.FooPort</service-endpoint-interface>

<wsdl-port>

<namespaceURI>urn:Foo</namespaceURI>

<localpart>FooPort</localpart>

</wsdl-port>

<stub-property>

<name>javax.xml.rpc.service.endpoint.address</name>

<value>http://localhost:8080/a/Foo</value>

</stub-property>

</port-info>

</service-ref>

sun-application
Defines the Application Server specific configuration for an application. This is the root
element; there can only be one sun-application element in a sun-application.xml file. See
“The sun-application.xml File” on page 285.

Superelements
none

Subelements
The following table describes subelements for the sun-application element.

TABLE A–111 sun-application Subelements

Element Required Description

“web” on page 407 zero or more Specifies the application’s web tier
configuration.

S

Appendix A • Deployment Descriptor Files 395

TABLE A–111 sun-application Subelements (Continued)
Element Required Description

“pass-by-reference” on page 364 zero or one Determines whether EJB modules use
pass-by-value or pass-by-reference semantics.

“unique-id” on page 404 zero or one Contains the unique ID for the application.

“security-role-mapping” on page 386 zero or more Maps a role in the corresponding J2EE XML
file to a user or group.

“realm” on page 373 zero or one Specifies an authentication realm.

sun-application-client
Defines the Application Server specific configuration for an application client. This is the root
element; there can only be one sun-application-client element in a
sun-application-client.xml file. See “The sun-application-client.xml file” on page 297.

Superelements
none

Subelements
The following table describes subelements for the sun-application-client element.

TABLE A–112 sun-application-client subelements

Element Required Description

“ejb-ref” on page 331 zero or more Maps the absolute JNDI name to the ejb-ref in
the corresponding J2EE XML file.

“resource-ref” on page 379 zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE XML
file.

“resource-env-ref” on page 378 zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding J2EE
XML file.

“service-ref” on page 388 zero or more Specifies runtime settings for a web service
reference.

“message-destination” on page 355 zero or more Specifies the name of a logical message
destination.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008396

sun-cmp-mapping
Specifies beans mapped to a particular database schema.

Note – A bean cannot be related to a bean that maps to a different database schema, even if the
beans are deployed in the same EJB JAR file.

Superelements
“sun-cmp-mappings” on page 397 (sun-cmp-mappings.xml)

Subelements
The following table describes subelements for the sun-cmp-mapping element.

TABLE A–113 sun-cmp-mapping Subelements

Element Required Description

“schema” on page 383 only one Specifies the file that contains a description of the
database schema.

“entity-mapping” on page 334 one or more Specifies the mapping of a bean to database columns.

sun-cmp-mappings
Defines the Application Server specific CMP mapping configuration for an EJB JAR file. This is
the root element; there can only be one sun-cmp-mappings element in a
sun-cmp-mappings.xml file. See “The sun-cmp-mappings.xml File” on page 293.

Superelements
none

Subelements
The following table describes subelements for the sun-cmp-mappings element.

TABLE A–114 sun-cmp-mappings Subelements

Element Required Description

“sun-cmp-mapping” on page 397 one or more Specifies beans mapped to a particular
database schema.

S

Appendix A • Deployment Descriptor Files 397

sun-ejb-jar
Defines the Application Server specific configuration for an EJB JAR file. This is the root
element; there can only be one sun-ejb-jar element in a sun-ejb-jar.xml file. See “The
sun-ejb-jar.xml File” on page 288.

Superelements
none

Subelements
The following table describes subelements for the sun-ejb-jar element.

TABLE A–115 sun-ejb-jar Subelements

Element Required Description

“security-role-mapping” on page 386 zero or more Maps a role in the corresponding J2EE XML
file to a user or group.

“enterprise-beans” on page 332 only one Describes all the runtime properties for an
EJB JAR file in the application.

sun-web-app
Defines Application Server specific configuration for a web module. This is the root element;
there can only be one sun-web-app element in a sun-web.xml file. See “The sun-web.xml File”
on page 285.

Superelements
none

Subelements
The following table describes subelements for the sun-web-app element.

TABLE A–116 sun-web-app Subelements

Element Required Description

“context-root” on page 322 zero or one Contains the web context root for the web
application.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008398

TABLE A–116 sun-web-app Subelements (Continued)
Element Required Description

“security-role-mapping” on page 386 zero or more Maps roles to users or groups in the currently
active realm.

“servlet” on page 389 zero or more Specifies a principal name for a servlet, which
is used for the run-as role defined in web.xml.

“idempotent-url-pattern” on page 339 zero or more Enterprise Edition only. Do not use.

“session-config” on page 390 zero or one Specifies session manager, session cookie, and
other session-related information.

“ejb-ref” on page 331 zero or more Maps the absolute JNDI name to the ejb-ref
in the corresponding J2EE XML file.

“resource-ref” on page 379 zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE
XML file.

“resource-env-ref” on page 378 zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding
J2EE XML file.

“service-ref” on page 388 zero or more Specifies runtime settings for a web service
reference.

“cache” on page 304 zero or one Configures caching for web application
components.

“class-loader” on page 311 zero or one Specifies class loader configuration
information.

“jsp-config” on page 342 zero or one Specifies JSP configuration information.

“locale-charset-info” on page 347 zero or one Deprecated. Use the parameter-encoding
subelement of sun-web-app instead.

“property (with attributes)” on page 368 zero or more Specifies a property, which has a name and a
value.

“parameter-encoding” on page 363 zero or one Determines the default request character
encoding and how the web container decodes
parameters from forms according to a hidden
field value.

“message-destination” on page 355 zero or more Specifies the name of a logical message
destination.

“webservice-description” on page 407 zero or more Specifies a name and optional publish
location for a web service.

S

Appendix A • Deployment Descriptor Files 399

Attributes
The following table describes attributes for the sun-web-app element.

TABLE A–117 sun-web-appAttributes

Attribute Default Description

error-url (blank) (optional) Specifies a redirect URL in
case of an error.

Properties
The following table describes properties for the sun-web-app element.

TABLE A–118 sun-web-appProperties

Property Default Description

allowLinking true If true, resources in this web
application that are symbolic links
are served.

crossContextAllowed true If true, allows this web application
to access the contexts of other web
applications using the
ServletContext.

getContext()method.

relativeRedirectAllowed false If true, allows this web application
to send a relative URL to the client
using HttpServletResponse.
sendRedirect(), and instructs the
web container not to translate any
relative URLs to fully qualified
ones.

reuseSessionID false If true, sessions generated for this
web application use the session ID
specified in the request.

singleThreadedServletPoolSize 5 Specifies the maximum number of
servlet instances allocated for each
SingleThreadModel servlet in the
web application.

S

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008400

TABLE A–118 sun-web-appProperties (Continued)
Property Default Description

tempdir domain-dir/generated/
j2ee-apps/app-name

or

domain-dir/generated/
j2ee-modules/module-name

Specifies a temporary directory for
use by this web module. This value
is used to construct the value of the
javax.servlet.context.tempdir

context attribute. Compiled JSP
files are also placed in this
directory.

useResponseCTForHeaders false If true, response headers are
encoded using the response’s
charset instead of the default
(UTF-8).

T

table-name
Specifies the name of a database table. The table must be present in the database schema file. See
“Automatic Database Schema Capture” on page 176.

Superelements
“entity-mapping” on page 334, “secondary-table” on page 385 (sun-cmp-mappings.xml)

Subelements
none - contains data

target-server
Defines the IIOP listener configuration of the target server.

Superelements
“client-container” on page 313 (sun-acc.xml)

Subelements
The following table describes subelements for the target-server element.

T

Appendix A • Deployment Descriptor Files 401

TABLE A–119 target-server subelements

Element Required Description

“description” on page 326 zero or one Specifies the description of the target server.

“security” on page 385 zero or one Specifies the security configuration for the
IIOP/SSL communication with the target server.

Attributes
The following table describes attributes for the target-server element.

TABLE A–120 target-server attributes

Attribute Default Description

name none Specifies the name of the application server instance accessed by the
client container.

address none Specifies the host name or IP address (resolvable by DNS) of the server
to which this client attaches.

port none Specifies the naming service port number of the server to which this
client attaches.

For a new server instance, assign a port number other than 3700. You
can change the port number in the Administration Console. See the Sun
Java System Application Server Platform Edition 8.2 Administration
Guide for more information.

tie-class
Specifies the automatically generated name of a tie implementation class for a port component.

Superelements
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

timeout
Specifies the “cache-mapping” on page 308 specific maximum amount of time in seconds that
an entry can remain in the cache after it is created or refreshed. If not specified, the default is the
value of the timeout attribute of the “cache” on page 304 element.

T

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008402

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
none - contains data

Attributes
The following table describes attributes for the timeout element.

TABLE A–121 timeoutAttributes

Attribute Default Description

name none Specifies the timeout input parameter, whose value
is interpreted in seconds. The field’s type must be
java.lang.Long or java.lang.Integer.

scope request.attribute (optional) Specifies the scope from which the input
parameter is retrieved. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
request.attribute, and session.attribute.

transport-config
Specifies the security transport information.

Superelements
“ior-security-config” on page 339 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the transport-config element.

TABLE A–122 transport-config Subelements

Element Required Description

“integrity” on page 339 only one Specifies if the target supports
integrity-protected messages. The values are
NONE, SUPPORTED, or REQUIRED.

T

Appendix A • Deployment Descriptor Files 403

TABLE A–122 transport-config Subelements (Continued)
Element Required Description

“confidentiality” on page 319 only one Specifies if the target supports
privacy-protected messages. The values are
NONE, SUPPORTED, or REQUIRED.

“establish-trust-in-target” on page 335 only one Specifies if the target is capable of
authenticating to a client. The values are
NONE, SUPPORTED, or REQUIRED.

“establish-trust-in-client” on page 334 only one Specifies if the target is capable of
authenticating a client. The values are NONE,
SUPPORTED, or REQUIRED.

transport-guarantee
Specifies that the communication between client and server is NONE, INTEGRAL, or
CONFIDENTIAL.

■ NONE means the application does not require any transport guarantees.
■ INTEGRAL means the application requires that the data sent between client and server be sent

in such a way that it can’t be changed in transit.
■ CONFIDENTIAL means the application requires that the data be transmitted in a fashion that

prevents other entities from observing the contents of the transmission.

In most cases, a value of INTEGRAL or CONFIDENTIAL indicates that the use of SSL is required.

Superelements
“webservice-endpoint” on page 408 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

U

unique-id
Contains the unique ID for the application. This value is automatically updated each time the
application is deployed or redeployed. Do not edit this value.

U

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008404

Superelements
“sun-application” on page 395 (sun-application.xml), “enterprise-beans” on page 332
(sun-ejb-jar.xml)

Subelements
none - contains data

url-pattern
Specifies a servlet URL pattern for which caching is enabled. See the Servlet 2.4 specification
section SRV. 11.2 for applicable patterns.

Superelements
“cache-mapping” on page 308 (sun-web.xml)

Subelements
none - contains data

use-thread-pool-id
Specifies the thread pool from which threads are selected for remote invocations of this bean.

Superelements
“ejb” on page 327 (sun-ejb-jar.xml)

Subelements
none - contains data

V

value
Specifies the value of the entity.

V

Appendix A • Deployment Descriptor Files 405

Superelements
“call-property” on page 309, “stub-property” on page 394 (sun-web.xml, sun-ejb-jar.xml,
sun-application-client.xml); “property (with subelements)” on page 369
(sun-ejb-jar.xml)

Subelements
none - contains data

victim-selection-policy
Specifies how stateful session beans are selected for passivation. Possible values are First In, First
Out (FIFO), Least Recently Used (LRU), Not Recently Used (NRU). The default value is NRU, which
is actually pseudo-LRU.

Note – You cannot plug in your own victim selection algorithm.

The victims are generally passivated into a backup store (typically a file system or database).
This store is cleaned during startup, and also by a periodic background process that removes
idle entries as specified by removal-timeout-in-seconds. The backup store is monitored by a
background thread (or sweeper thread) to remove unwanted entries.

Applies to stateful session beans.

Superelements
“bean-cache” on page 302 (sun-ejb-jar.xml)

Subelements
none - contains data

Example
<victim-selection-policy>LRU</victim-selection-policy>

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that fails, the server
tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a virtual server, the server tries
SSL3 encryption first. If that fails, the server tries SSL2 encryption.

V

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008406

W

web
Specifies the application’s web tier configuration.

Superelements
“sun-application” on page 395 (sun-application.xml)

Subelements
The following table describes subelements for the web element.

TABLE A–123 webSubelements

Element Required Description

“web-uri” on page 407 only one Contains the web URI for the application.

“context-root” on page 322 only one Contains the web context root for the application.

web-uri
Contains the web URI for the application. Must match the corresponding element in the
application.xml file.

Superelements
“web” on page 407 (sun-application.xml)

Subelements
none - contains data

webservice-description
Specifies a name and optional publish location for a web service.

Superelements
“sun-web-app” on page 398 (sun-web.xml), “enterprise-beans” on page 332
(sun-ejb-jar.xml)

W

Appendix A • Deployment Descriptor Files 407

Subelements
The following table describes subelements for the webservice-description element.

TABLE A–124 webservice-description subelements

Element Required Description

“webservice-description-name” on page 408 only one Specifies a unique name for the web service
within a web or EJB module.

“wsdl-publish-location” on page 410 zero or one Specifies the URL of a directory to which a
web service’s WSDL is published during
deployment.

webservice-description-name
Specifies a unique name for the web service within a web or EJB module.

Superelements
“webservice-description” on page 407 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

webservice-endpoint
Specifies information about a web service endpoint.

Superelements
“servlet” on page 389 (sun-web.xml), “ejb” on page 327 (sun-ejb-jar.xml)

Subelements
The following table describes subelements for the webservice-endpoint element.

TABLE A–125 webservice-endpoint subelements

Element Required Description

“port-component-name” on page 365 only one Specifies a unique name for a port component
within a web or EJB module.

W

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008408

TABLE A–125 webservice-endpoint subelements (Continued)
Element Required Description

“endpoint-address-uri” on page 331 zero or one Specifies the automatically generated endpoint
address.

“login-config” on page 351 zero or one Specifies the authentication configuration for an
EJB web service endpoint.

“message-security-binding” on page 357 zero or one Specifies a custom authentication provider
binding.

“transport-guarantee” on page 404 zero or one Specifies that the communication between client
and server is NONE, INTEGRAL, or CONFIDENTIAL.

“service-qname” on page 387 zero or one Specifies the WSDL service element that is being
referenced.

“tie-class” on page 402 zero or one Specifies the automatically generated name of a
tie implementation class for a port component.

“servlet-impl-class” on page 389 zero or one Specifies the automatically generated name of
the generated servlet implementation class.

wsdl-override
Specifies a valid URL pointing to a final WSDL document. If not specified, the WSDL document
associated with the service-ref in the standard J2EE deployment descriptor is used.

Superelements
“service-ref” on page 388 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
none - contains data

Example
// available via HTTP

<wsdl-override>http://localhost:8000/myservice/myport?WSDL</wsdl-override>

// in a file

<wsdl-override>file:/home/user1/myfinalwsdl.wsdl</wsdl-override>

wsdl-port
Specifies the WSDL port.

W

Appendix A • Deployment Descriptor Files 409

Superelements
“port-info” on page 366 (sun-web.xml, sun-ejb-jar.xml, sun-application-client.xml)

Subelements
The following table describes subelements for the wsdl-port element.

TABLE A–126 wsdl-port subelements

Element Required Description

“namespaceURI” on page 361 only one Specifies the namespace URI.

“localpart” on page 349 only one Specifies the local part of a QNAME.

wsdl-publish-location
Specifies the URL of a directory to which a web service’s WSDL is published during deployment.
Any required files are published to this directory, preserving their location relative to the
module-specific WSDL directory (META-INF/wsdl or WEB-INF/wsdl).

Superelements
“webservice-description” on page 407 (sun-web.xml, sun-ejb-jar.xml)

Subelements
none - contains data

Example
Suppose you have an ejb.jar file whose webservices.xml file’s wsdl-file element contains
the following reference:

META-INF/wsdl/a/Foo.wsdl

Suppose your sun-ejb-jar file contains the following element:

<wsdl-publish-location>file:/home/user1/publish</wsdl-publish-location>

The final WSDL is stored in /home/user1/publish/a/Foo.wsdl.

W

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008410

Index

A
ACC, 189

asenv configuration settings, 193
naming, 190
security, 189

ACC clients
appclient script, 193
deploying, 96-97
invoking a JMS resource, 192-193
invoking an EJB component, 190-192
making a remote call, 191
module definition, 70
package-appclient script, 193-195
preparing the client machine, 97
running, 193
SSL, 190
using SSL with CA, 194

action attribute, 108
activation-config element, 299
activation-config-property element, 299-300
activation-config-property-name element, 300
activation-config-property-value element, 300
address attribute, 402
AddressList

and connections, 250
and default JMS host, 248

administered objects, 249
and connectors, 203

Administration Console
about, 43
changing servlet output, 134
configuring the web container, 130

Administration Console (Continued)
setting the connector shutdown timeout, 207
setting the default locale, 128
setting verbose mode, 121
using for deployment, 94
using for dynamic reloading, 91
using for HPROF configuration, 122
using for lifecycle module deployment, 96, 215
using for Optimizeit configuration, 124
using to add to the server classpath, 82
using to associate a connector with a thread

pool, 205
using to configure audit modules, 53
using to configure JACC providers, 53
using to configure realms, 50
using to configure the JMS Service, 247
using to configure the transaction service, 237
using to create a custom resource, 243
using to create a JavaMail session, 256
using to create a JDBC connection pool, 221
using to create a JDBC resource, 221
using to create an external JNDI resource, 242
using to create JMS hosts, 248
using to create JMS resources, 249
using to create physical destinations, 249
using to create security maps, 206
using to create thread pools, 205
using to deploy and configure a connector, 203
using to disable modules and applications, 91
using to enable debugging, 118
using to ping a JDBC connection pool, 221

agent attribute, 349

411

allow-concurrent-access element, 157
allowLinking property, 400
AMX

about, 260
MBeans, 260
proxies, 263

Ant, 43, 98
ANT_HOME environment variable, 98
Apache Ant, 43, 98

and deployment descriptor verification, 85, 86
Sun Java System Application Server specific

tasks, 98
using for deployment, 99-104
using for JSP precompilation, 111
using for server administration, 109

API reference
JavaBeans, 138
JSP 2.0 specification, 138
servlets, 132

appclient.jar file, 195
contents, 195

appclient script, 96, 193
modifying, 194

Application Client Container, See ACC
application-client.xml file, 73
Application Server Management eXtensions, See AMX
application.xml file, 73
applications

See also modules
definition, 71
directories deployed to, 78
directory structure, 75
disabling, 90-91, 107
examples, 44
naming, 74
runtime environment, 77
security, 47, 49

appserv-rt.jar file, 213
appserv-tags.jar file, 139
appserv-tags.tld file, 139
AppservPasswordLoginModule class, 51
AppservRealm class, 52
as-context element, 300
asadmin command, 42

asadmin create-admin-object command, 204
asadmin create-audit-module command, 53
asadmin create-auth-realm command, 50
asadmin create-connector-connection-pool

command, 203, 250
asadmin create-connector-resource command, 203
asadmin create-connector-security-map

command, 206
asadmin create-custom-resource command, 243
asadmin create-javamail-resource command, 256
asadmin create-jdbc-connection-pool command, 221
asadmin create-jdbc-resource command, 221
asadmin create-jms-host command, 248
asadmin create-jmsdest command, 249
asadmin create-jndi-resource command, 242
asadmin create-lifecycle-module command, 96, 215
asadmin create-resource-adapter-config

command, 203, 205, 206
asadmin create-threadpool command, 205
asadmin deploy command, 93, 203

--force option, 90
--precompilejsp option, 95

asadmin deploydir command, 93, 203
asadmin get-client-stubs command, 95, 96, 191
asadmin get command, 238, 247
asadmin ping-connection-pool command, 221
asadmin set command, 237, 238, 247
asant script, 43, 98
asenv.conf file, 97
asenv configuration settings, 193
asinstalldir attribute

sun-appserv-admin task, 110
sun-appserv-component task, 108
sun-appserv-deploy task, 103
sun-appserv-jspc task, 112
sun-appserv-undeploy task, 106

assembly
of EJB components, 83
overview, 69-83

audit modules, 53
AuditModule class, 53
auth-layer attribute, 357, 358
auth-method element, 301
auth-realm element, 301-302

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008412

auth-recipient attribute, 376, 377, 381, 382
auth-source attribute, 376, 381
authentication

JMS, 251
realm, 301
single sign-on, 66-67

authorization roles, 67
autodeployment, 92
automatic schema generation, 170-176

options, 173-176
availability-enabled attribute, 329

B
BaseCache cacheClassName value, 306
bean-cache element, 302
bean-pool element, 303
bin directory, 98
BLOB support, 169
Bootstrap Classloader, 80
Borland web site, 123
BoundedMultiLruCache cacheClassName value, 306
build.xml file, 43, 44

C
cache element, 304-306
cache for JSP files, 139
cache for servlets, 134

default configuration, 135
example configuration, 136
helper class, 135, 137

cache-helper element, 306-307
cache-helper-ref element, 307
cache-idle-timeout-in-seconds element, 307-308
cache management for EJB components, 149
cache-mapping element, 308-309
cache-on-match attribute, 321, 322
cache-on-match-failure attribute, 321, 322
cache tag, 140-141
cacheClassName property, 306
CacheHelper interface, 137, 306
cacheKeyGeneratorAttrName property, 137, 325

call-property element, 309
caller-propagation element, 309
capture-schema command, 176
cascade attribute, 106
cert-db element, 310
cert-nickname attribute, 393
certificate realm, 50
charset attribute, 349
check-all-at-commit element, 310
check-modified-at-commit element, 310
check-version-of-accessed-instances element, 311
checkInterval property, 343
checkpoint-at-end-of-method element, 311
checkpointed-methods element, 311
class loader delegation model, 312
class-loader element, 81, 130, 311-313
class-name attribute, 307, 371
classdebuginfo property, 343
classloaders, 78

circumventing isolation, 81
delegation hierarchy, 79
isolation, 81

classname attribute, 302
classpath, changing, 80
classpath attribute, 112
classpath property, 343
classpath-suffix attribute, 80
classpathref attribute, 112
client-container element, 313
client-credential element, 314-315
client JAR file, 82, 96
client.policy file, 196
clients, stand-alone, 196-199

invoking a JMS resource, 198-199
invoking an EJB component, 196-197
making a remote call, 197, 198
running, 197, 199

CLOB support, 169-170
cmp element, 315
cmp-field-mapping element, 315
cmp-resource element, 177, 316-317
cmr-field-mapping element, 317
cmr-field-name element, 317
cmt-max-runtime-exceptions property, 160

Index

413

cmt-timeout-in-seconds element, 318
column-name element, 318
column-pair element, 318
command attribute, 110
command-line server configuration, See asadmin

command
commandfile attribute, 110
commit-option element, 319
commit options, 163
common-ant.xml file, 45
Common Classloader, 80

using to circumvent isolation, 82
compiler property, 343
compiling JSP files, 142
component subelement, 114-116
confidentiality element, 319
connection factories, JNDI subcontexts for, 240
connection factory, 158
ConnectionFactory interface, 249
Connector Classloader, 80, 216
connectors, 201

administered objects, 203
and JDBC, 202
and JMS, 202
and message-driven beans, 209
and transactions, 236
configuration options, 205
configuring, 202
connection pools, 203
deploying, 97
deployment, 203-204
embedded, 204
inbound connectivity, 208
invalid connections, 206
JNDI subcontext for, 240
last agent optimization, 207
module definition, 70
redeployment, 204
resources, 203
shutdown timeout, 207
Sun Java System Application Server support, 202
testing connection pools, 206
thread pools, 205

consistency element, 320

constraint-field element, 320-321
constraint-field-value element, 321-322
container-managed persistence, 165

configuring 1.1 finders, 178
data type for mapping, 171-173
deployment descriptor, 166
mapping, 166
performance features, 182-183
prefetching, 183
resource manager, 177
restrictions, 184
support, 165
version consistency, 182

context, for JNDI naming, 239
context root, 133
context-root element, 322
contextroot attribute, 100, 115
cookie-properties element, 322-323
cookieComment property, 323
cookieDomain property, 323
cookieMaxAgeSeconds property, 323
cookiePath property, 323
CosNaming naming service, 240
create-tables-at-deploy element, 323-324
createtables attribute, 101
crossContextAllowed property, 400
custom resource, 242

D
DAS, connecting to, 263
data types for mapping, 171-173
database schema, capturing, 176
database-vendor-name element, 324
databases

as transaction resource managers, 235
supported, 220, 224

DB2 lock-when-loaded limitation, 185
.dbschema file, 84
dbvendorname attribute, 101
debugging, 117, 121

enabling, 117
generating a stack trace, 119
JPDA options, 118

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008414

default-charset attribute, 363
default-client-provider attribute, 359
default element, 324
default-helper element, 324-325
default-locale attribute, 348
default-provider attribute, 358
default-resource-principal element, 325-326
default virtual server, 128
default web module, 129, 133
default-web.xml file, 130
delegate attribute, 312
delegation, class loader, 80
delegation model for classloaders, 312
demoJmx method, 280
demoQuery method, 277
deployment

directory deployment, 93
disabling deployed applications and

modules, 90-91, 107
dynamic, 90
errors during, 90
forcing, 90
JSR 88, 74, 93
module or application based, 94
of ACC clients, 96-97
of connectors, 97
of EJB components, 95
of lifecycle modules, 95
of web applications, 95
overview, 69-83
read-only beans, 157
redeployment, 90
standard J2EE descriptors, 73
Sun Java System Application Server descriptors, 73,

283-284
tools for, 93-94
undeploying an application or module, 94, 104
using Apache Ant, 99-104
using the Administration Console, 94
verifying descriptor correctness, 84

deployment descriptor files, 243
deploymentplan attribute, 102
deploytool, 43, 84, 93
Derby JDBC driver, 225-226

description element, 326
destdir attribute, 112
destinations

destination resources, 249
physical, 248

destroy method, 137
development environment

creating, 41
tools for developers, 42

development property, 344
directory deployment, 93
directory property, 394
dispatcher element, 326
displayAllAttributes method, 275
displayAllProperties method, 276
displayAMX method, 269, 271
displayWild method, 277
documentation, overview, 33-34
doGet method, 138
Domain Administration Server, See DAS
domain attribute, 114
domain.xml file

application configuration, 78
configuring single sign-on, 67
keeping stubs, 95
module configuration, 77
stack trace generation, 119
System Classloader, 80, 82

doPost method, 138
drop-tables-at-undeploy element, 326-327
dropandcreatetables attribute, 102
droptables attribute, 105
DTD files, 283

location of, 283
dumpSmap property, 344
dynamic

deployment, 90
reloading, 91-92

dynamic-reload-interval attribute, 312

E
EJB 2.1 changes, summary, 147
EJB Classloader, 80

Index

415

EJB components
assembling, 83
calling from a different application, 82
deploying, 95
elements, 332-334
flushing, 151
generated source code, 95
module definition, 70
pooling, 149, 152
remote bean invocations, 150
security, 49
thread pools, 150

ejb element, 327-330
ejb-jar.xml file, 73, 160-161
ejb-name element, 330
EJB-QL, 166
EJB QL queries, 178
ejb-ref element, 243, 331
ejb-ref mapping, using JNDI name instead, 83
ejb-ref-name element, 331
EJB Timer Service, 151
ejbPassivate, 155
elements in XML files, 332-334
enableCookies property, 392
enabled attribute, 102, 305
enablePooling property, 344
enableURLRewriting property, 392
encoding

of JSP files, 344
of servlets, 128

endpoint-address-uri element, 331-332
enterprise-beans element, 332
entity-mapping element, 334
env-classpath-ignored attribute, 80
error pages, 131
error-url attribute, 131, 400
errorOnUseBeanInvalidClassAttribute property, 344
errors during deployment, 90
establish-trust-in-client element, 334
establish-trust-in-target element, 335
events, server life cycle, 213
example applications, 44
explicitcommand attribute, 110
external JNDI resource, 242

extra-class-path attribute, 312

F
fail-all-connections property, 207
failover, JMS connection, 251
fetched-with element, 335
field-name element, 336
file attribute

component element, 115
sun-appserv-component task, 108
sun-appserv-deploy task, 100
sun-appserv-undeploy task, 105
sun-appserv-update task, 113

file realm, 50
fileset subelement, 116
finder element, 336
finder limitation for Sybase, 184-185
finder methods, 178
flat transactions, 162
flush-at-end-of-method element, 337
flush tag, 141-142
flushing of EJB components, 151
force attribute, 100, 115
forcing deployment, 90
fork property, 344
form-hint-field attribute, 363

G
genStrAsCharArray property, 344
getCharacterEncoding method, 128
getCmdLineArgs method, 215
getData method, 214
getEventType method, 214
getHeaders method, 131
getInitialContext method, 215, 242
getInstallRoot method, 215
getInstanceName method, 215
getLifecycleEventContext method, 214
getParameter method, 363
getReader method, 363
group-name element, 338

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008416

groups in realms, 386

H
handleList method, 274
handling requests, 138
header management, 131
host attribute

sun-appserv-component task, 108
sun-appserv-deploy task, 103
sun-appserv-undeploy task, 106

HPROF profiler, 122-123
http-method element, 339
HTTP sessions, 142

cookies, 143
session managers, 143
URL rewriting, 143

HttpServletRequest, 135

I
IBM DB2 JDBC driver, 226, 228
idempotent-url-pattern element, 339
ieClassId property, 344
IIOP/SSL configuration, 385-386
IMAP4 protocol, 255
inbound connectivity, 208
Inet MSSQL JDBC driver, 231
Inet Oracle JDBC driver, 169, 170, 230-231
Inet Sybase JDBC driver, 231-232
Informix Type 4 JDBC driver, 234
INIT_EVENT, 213
init method, 137
InitialContext naming service handle, 239
installation, 41
instantiating servlets, 137
integrity element, 339
internationalization, 127
Interoperable Naming Service, 241
InvokerServlet, 133
ior-security-config element, 339
is-cache-overflow-allowed element, 340
is-failure-fatal attribute, 96, 215

is-one-one-cmp element, 340
is-read-only-bean element, 157, 340
isolation of classloaders, 81

J
J2EE

security model, 48
standard deployment descriptors, 73

J2EE Connector 1.5 architecture, 201
J2EE tutorial, 127
J2SE policy file, 196
JACC, 52
JAR Extension Mechanism Architecture, 84
JAR file

client for a deployed application, 82, 96
Java Authentication and Authorization Service

(JAAS), 51-52
Java Authorization Contract for Containers, See JACC
java-config element, 80, 95
Java Database Connectivity, See JDBC
Java Management Extensions, See JMX
Java Message Service

See JMS
java-method element, 341
Java Naming and Directory Interface, See JNDI
Java optional package mechanism, 82
Java Platform Debugger Architecture, See JPDA
Java Servlet API, 132
Java Transaction API (JTA), 235
Java Transaction Service (JTS), 235
JavaBeans, 138
Javadocs, 34
javaEncoding property, 344
JavaMail

and JNDI lookups, 256
architecture, 255
creating sessions, 256
defined, 255
JNDI subcontext for, 240
session properties, 256
specification, 256

JavaMail messages
reading, 258

Index

417

JavaMail messages (Continued)
sending, 257-258

JDBC
connection pool creation, 220-221
Connection wrapper, 222
creating resources, 221
integrating driver JAR files, 220
JNDI subcontext for, 240
non-transactional connections, 222
sharing connections, 222
specification, 219
supported drivers, 220, 224
transaction isolation levels, 223
tutorial, 219

JDOQL, 178
JMS, 158, 245, 325

and transactions, 236
authentication, 251
checking if provider is running, 248
configuring, 247
connection failover, 251
connection pooling, 250
creating hosts, 248
creating resources, 249
debugging, 121
default host, 248
JMS Service administration, 246
JNDI subcontext for, 240
provider, 245
restarting the client, 250
SOAP messages, 252-254
system connector for, 246
transactions and non-persistent messages, 251

jms-durable-subscription-name element, 341
jms-max-messages-load, 341
jmsra system JMS connector, 246
JMX, 259-282
JNDI

and EJB components, 243
and JavaMail, 256
and lifecycle modules, 215, 216, 242
custom resource, 242
defined, 239
external JNDI resources, 242

JNDI (Continued)
for message-driven beans, 158
mapping references, 243
name for container-managed persistence, 177
subcontexts for connection factories, 240
tutorial, 239
using instead of ejb-ref mapping, 83

jndi-name element, 342
join tables, 168
JPDA debugging options, 118
JSP 2.0 specification, 138
jsp-config element, 95, 342-345
JSP Engine Classloader, 80
JSP files

API reference, 138
caching, 139
command-line compiler, 142
configuring, 342-345
encoding of, 344
generated source code, 95
precompiling, 95, 100, 111, 142
tag libraries, 139

jspc command, 142
JSR 88 deployment, 74, 93

K
-keepgenerated flag, 95
keepgenerated property, 344
key attribute

of cache tag, 140
of flush tag, 142

key-field element, 345-346

L
last agent optimization, 207, 236
ldap realm, 50
level attribute, 351
level element, 346
lib directory

and ACC clients, 97
and the Common Classloader, 80

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008418

lib directory (Continued)
DTD file location, 283
for a web application, 83

libraries, 81, 97
lifecycle modules, 213

allocating and freeing resources, 216
and classloaders, 216
and the server.policy file, 216
deploying, 95
deployment, 215
naming environment, 242

LifecycleEvent class, 214
LifecycleEventContext interface, 215
LifecycleListener interface, 214
LifecycleListenerImpl.java file, 214
LifeCycleModule Classloader, 80, 216
locale, setting default, 128
locale attribute, 349
locale-charset-info element, 347-348
locale-charset-map element, 348-349
localpart element, 349
lock-when-loaded consistency level, 185
lock-when-loaded element, 349
lock-when-modified element, 350
log-file attribute, 351
log-service element, 350-351
logging, 121

ACC clients messages, 194
in the web container, 130

login, programmatic, 63
login-config element, 351
login method, 65-66
LoginModule, 51
LruCache cacheClassName value, 306

M
managed fields, 168-169
manager-properties element, 351-353
mappedfile property, 344
mapping for container-managed persistence

considerations, 167-170
data types, 171-173
features, 166

mapping-properties element, 353
mapping resource references, 243
match-expr attribute, 322
max-cache-size element, 353
max-entries attribute, 305
max-pool-size element, 353
max-wait-time-in-millis element, 354
maxSessions property, 352
MaxSize property, 306
MBeans, 260

accessing, 272-274
attributes, 262
configuration, 261
displaying attributes, 274
displaying hierarchy, 269
displaying name and type, 271
J2EE management, 262
listing properties, 275
monitoring, 261
notifications, 262
other types, 262
proxies, 263
querying, 277
undeploying, 281
using to stop a server instance, 281
utility, 262

mdb-connection-factory element, 158, 159, 354
MDB file samples, 160
mdb-resource-adapter element, 354-355
message-destination element, 355-356
message-destination-name element, 356
message-driven beans, 121, 157

administering, 158
connection factory, 158
monitoring, 159
onMessage runtime exception, 159
pool monitoring, 159
pooling, 158
restrictions, 159
sample XML files, 160
using with connectors, 209

message element, 355
message security, 56

application-specific, 58

Index

419

message security (Continued)
responsibilities, 57
sample application, 61

message-security-binding element, 357
message-security-config element, 358-359
message-security element, 356-358
method element, 359
method-intf element, 359
method-name element, 360
method-param element, 360
method-params element, 360-361
Migration Tool, 44
MM MySQL Type 4 JDBC driver

non-XA, 229
XA only, 229-230

modificationTestInterval property, 345
modules

See also applications
definition, 70
directories deployed to, 77
directory structure, 75
disabling, 90-91, 107
individual deployment of, 94
invoking an EJB component, 197-198
lifecycle, 213
naming, 74
runtime environment, 76

monitoring in the web container, 130
MSSQL Inet JDBC driver, 231
MSSQL/SQL Server2000 Data Direct JDBC driver, 227
MSSQL version consistency triggers, 186
MultiLruCache cacheClassName value, 306
MultiLRUSegmentSize property, 306
MySQL database restrictions, 186-188

N
name element, 361
named-group element, 361
namespaceURI element, 361-362
naming service, 239
native library path

configuring for hprof, 122
configuring for OptimizeIt, 124

nested transactions, 162
NetBeans

about, 43
debugging, 120
using for assembly, 84

nocache attribute of cache tag, 141
none element, 362

O
Oasis Web Services Security, See message security
one-one-finders element, 362
onMessage, 159
operation-name element, 362-363
Optimizeit profiler, 123
Oracle automatic mapping of date and time fields, 185
Oracle Data Direct JDBC driver, 226
Oracle Inet JDBC driver, 169, 170, 230-231
Oracle OCI JDBC driver, 233
Oracle Thin Type 4 Driver, workaround for, 237
Oracle Thin Type 4 JDBC driver, 232-233
oracle-xa-recovery-workaround property, 237
output from servlets, 134

P
package-appclient script, 97, 193-195
package attribute, 112
packaging, See assembly
parameter-encoding element, 363-364
pass-by-reference element, 149, 364
pass-by-value semantics, 364
password element, 365
path attribute, 310
permissions

changing in server.policy, 55
default in server.policy, 54

persistence-type attribute, 391
physical destinations, 248
plugin tag, 344
pm-descriptors element, 365
pool-idle-timeout-in-seconds element, 365
pool monitoring for MDBs, 159

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008420

pooling, 155
POP3 protocol, 255
port attribute

sun-appserv-component task, 108
sun-appserv-deploy task, 103
sun-appserv-undeploy task, 106
target-server element, 402

port-component-name element, 365-366
port-info element, 366-367
precompilejsp attribute, 100, 115
--precompilejsp option, 95
precompiling JSP files, 142
prefetch-disabled element, 367
prefetching, 183
primary key, 165, 168
principal element, 367
principal-name element, 368
profilers, 122
programmatic login, 63
ProgrammaticLogin class, 65-66
ProgrammaticLoginPermission permission, 64
properties

about, 368-369, 369-370
property element, 368-369, 369-370
provider-config element, 370-371
provider-id attribute, 358, 370
provider-type attribute, 371
proxies, AMX, 263

Q
query-filter element, 371
query-method element, 371-372
query-ordering element, 372
query-params element, 372
query-variables element, 372
Queue interface, 249
QueueConnectionFactory interface, 249

R
ra.xml file, 73
read-only beans, 148, 154, 183

read-only beans (Continued)
deploying, 157
refreshing, 156

read-only element, 373
ReadOnlyBeanNotifier, 156
READY_EVENT, 213
realm attribute, 314
realm element, 373
realms, 301

application-specific, 50
configuring, 50
custom, 51-52
mapping groups and users to, 386
supported, 50

reapIntervalSeconds property, 352
redeployment, 90
redirecting URLs, 132
refresh attribute of cache tag, 141
refresh-field element, 373-374
refresh-period-in-seconds element, 155, 374
relativeRedirectAllowed property, 400
.reload file, 92
reloading, dynamic, 91-92
removal-timeout-in-seconds element, 374
removing servlets, 137
request object, 138
request-policy element, 375-376
request-protection element, 376-377
required element, 377
res-ref-name element, 377
res-sharing-scope deployment descriptor setting, 222
resize-quantity element, 377
resource-adapter-mid element, 210, 378
resource adapters, See connectors
resource-env-ref element, 243, 378-379
resource-env-ref-name element, 379
resource managers, 235
resource-ref element, 243, 379-380
resource references, mapping, 243
response-policy element, 380-381
response-protection element, 381-382
retrievestubs attribute, 100, 115
reuseSessionID property, 400
rmic-options attribute, 95

Index

421

role-name element, 382
roles, 67

S
sample applications, 44
sample XML files, 160
sas-context element, 382
schema capture, 176
schema element, 383
schema example, 294
schema generation

automatic, 170-176
options for automatic, 173-176

schema-generator-properties element, 383-385
scope attribute, 321, 346, 374, 403
scratchdir property, 345
secondary table, 167, 315
secondary-table element, 385
security, 47

ACC, 189
applications, 49
audit modules, 53
declarative, 49
EJB components, 49
goals, 47-48
J2EE model, 48
JACC, 52
JMS, 251
message security, 56
of containers, 48-49
programmatic, 48
programmatic login, 63
roles, 67
server.policy file, 54
Sun Java System Application Server features, 48
using SSL with CA, 194
web applications, 49

security element, 385-386
security map, 205
security-role-mapping element, 386-387
send-password attribute, 314
server

changing the classpath of, 80

server (Continued)
installation, 41
lib directory of, 80, 97, 98, 283
life cycle events, 213
optimizing for development, 42
stopping an instance using an MBean, 281
Sun Java System Application Server deployment

descriptors, 73, 283-284
using Ant scripts to control, 109
value-added features, 148

server-classpath attribute, 80
server.policy file, 54

and lifecycle modules, 216
changing permissions, 55
default permissions, 54
Optimizeit profiler options, 124
ProgrammaticLoginPermission, 64

ServerLifecycleException, 214
service-endpoint-interface element, 387
service-impl-class element, 387
service method, 138
service-qname element, 387-388
service-ref element, 388-389
service-ref-name element, 389
Servlet 2.4 specification, 132
servlet element, 389
servlet-impl-class element, 389
servlet-name element, 390
ServletContext.log messages, 134
servlets, 132-138

API reference, 132
caching, 134
character encoding, 128
destroying, 137
engine, 137
instantiating, 137
invoking using a URL, 133
output, 134
removing, 137
request handling, 138
specification, 132

session beans, 152
container for, 152
optimizing performance, 154

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008422

session beans (Continued)
restrictions, 154

session-config element, 390
session-manager element, 390-391
session managers, 143
session-properties element, 391-392
session-timeout element, 392
sessionFilename property, 353
sessions

and dynamic redeployment, 90
and dynamic reloading, 91

setCharacterEncoding method, 128
setContentType method, 128
setLocale method, 128
setMonitoring method, 271
setting the ORB port, 194
setTransactionIsolation method, 223
SHUTDOWN_EVENT, 213
Simple Object Access Protocol, See SOAP messages
single sign-on, 66-67
singleThreadedServletPoolSize property, 400
SMTP protocol, 255
SOAP messages, 252-254
SOAP with Attachments API for Java (SAAJ), 253
solaris realm, 50
srcdir attribute, 112
ssl element, 392-393
ssl2-ciphers attribute, 393
ssl2-enabled attribute, 393
ssl3-enabled attribute, 393
ssl3-tls-ciphers attribute, 393
stack trace, generating, 119
STARTUP_EVENT, 213, 215
stateful session beans, 153
stateless session beans, 152
steady-pool-size element, 393
store-properties element, 393-394
stub-property element, 394-395
stubs

directory for, 77, 78
keeping, 95, 100, 115
retrieving after deployment, 95

sun-acc.xml file, 74, 97, 284
editing, 194

sun-acc.xml file (Continued)
elements in, 298

sun-application_1_4-0.dtd file, 74, 284
sun-application-client_1_4-1.dtd file, 74, 284
sun-application-client-container_1_0.dtd file, 74, 284
sun-application-client element, 396-397
sun-application-client.xml file, 74, 284

elements in, 297
sun-application element, 395-396
sun-application.xml file, 74, 284

elements in, 285
example of, 285

sun-appserv-admin task, 109-111
sun-appserv-component task, 107-109
sun-appserv-deploy task, 99-104
sun-appserv-jspc task, 111-113
sun-appserv-undeploy task, 104-107
sun-appserv-update task, 113-114
sun-cmp-mapping_1_2.dtd file, 74, 284
sun-cmp-mapping element, 397
sun-cmp-mappings element, 397
sun-cmp-mappings.xml file, 74, 167, 284

elements in, 293
example of, 294

sun-ejb-jar_2_1-1.dtd file, 74, 284
sun-ejb-jar element, 398
sun-ejb-jar.xml file, 74, 284

elements in, 288
example of, 292
sample, 161-162

Sun Java Studio, debugging, 120
Sun Java System Message Queue, 121, 245, 325

checking to see if running, 248
connector for, 246
varhome directory, 251

sun-ra.xml file, 202
sun-web-app_2_4-1.dtd file, 74, 284
sun-web-app element, 398-401
sun-web.xml file, 74, 95, 284

and classloaders, 81, 130
elements in, 285
example of, 288

sunhome attribute
sun-appserv-admin task, 111

Index

423

sunhome attribute (Continued)
sun-appserv-component task, 108
sun-appserv-deploy task, 103
sun-appserv-jspc task, 112
sun-appserv-undeploy task, 106

supportsTransactionIsolationLevel method, 224
suppressSmap property, 345
Sybase

finder limitation, 184-185
lock-when-loaded limitation, 185

Sybase Data Direct JDBC driver, 227
Sybase Inet JDBC driver, 231-232
Sybase JConnect Type 4 JDBC driver, 228-229
System Classloader, 80

using to circumvent isolation, 82

T
table-name element, 401
tag libraries, 139
tags for JSP caching, 139
target-server element, 401
tasks, Apache Ant, 98
tempdir property, 401
TERMINATION_EVENT, 213
thread pools

and connectors, 205
for bean invocation scheduling, 150

tie-class element, 402
timeout attribute of cache tag, 141
timeout element, 402-403
timeout-in-seconds attribute, 305
timeoutSeconds property, 392
tls-enabled attribute, 393
tools

for deployment, 93-94
for developers, 42

Topic interface, 249
TopicConnectionFactory interface, 249
transaction-support property, 208
transactions, 235

administering, 163
administration and monitoring, 163
and EJB components, 162

transactions (Continued)
and non-persistent JMS messages, 251
commit options, 163
configuring, 237
flat, 162
global, 162
in the J2EE tutorial, 235
JDBC isolation levels, 223
JNDI subcontext for, 240
local, 162
local or global scope of, 236
logging for recovery, 238
monitoring, 164
nested, 162
resource managers, 235
timeouts, 150

transport-config element, 403
transport-guarantee element, 404
trimSpaces property, 345
type attribute, 100, 105, 108, 115

U
unique-id element, 404-405
uniquetablenames attribute, 102
upload attribute, 102
URI, configuring for an application, 407
uribase attribute, 112
uriroot attribute, 112
URL, JNDI subcontext for, 240
url-pattern element, 405
URL rewriting, 143
URLs, redirecting, 132
use-thread-pool-id element, 150, 405
use-unique-table-names property, 174, 384
usePrecompiled property, 345
user attribute

sun-appserv-component task, 108
sun-appserv-deploy task, 103
sun-appserv-undeploy task, 106

user-name attribute, 314
useResponseCTForHeaders property, 401
users in realms, 386
utility classes, 81, 84, 97

Index

Sun Java System Application Server Platform Edition 8.2 Developer's Guide • June 2008424

V
value attribute, 369
value element, 405-406
varhome directory, 251
verbose attribute, 112
verbose mode, 121
verifier tool, 84
verify attribute, 100, 115
version consistency, 182
version consistency triggers, 186
victim-selection-policy element, 406
virtual servers, 128

default, 128
virtualservers attribute, 103

W
web applications, 127

deploying, 95
module definition, 70
security, 49

Web Classloader, 80
changing delegation in, 80, 130

web container, configuring, 130
web element, 407
web module

default, 129, 133
Web Services Security, See message security
web-uri element, 407
web.xml file, 73
webapp attribute, 112
webservice-description element, 407-408
webservice-description-name element, 408
webservice-endpoint element, 408-409
wsdl-override element, 409
wsdl-port element, 409-410
wsdl-publish-location element, 410
WSS, See message security

X
XA resource, 236
XML files, sample, 160

XML specification, 284
XML syntax verifier, 85
xpoweredBy property, 345
-Xrs option and debugging, 119

Index

425

426

	Sun Java System Application Server Platform Edition 8.2 Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Application Server Documentation Set
	Related Books
	Default Paths and File Names
	Typographic Conventions
	Symbol Conventions
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Developing and Deploying Applications
	Setting Up a Development Environment
	Installing and Preparing the Server for Development
	Tools
	The asadmin Command
	The Administration Console
	NetBeans IDE
	The asant Utility
	deploytool
	Verifier
	Migration Tool
	Debugging Tools
	Profiling Tools

	Sample Applications

	Securing Applications
	Security Goals
	Application Server Specific Security Features
	Container Security
	Programmatic Security
	Declarative Security
	Application Level Security
	Component Level Security

	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for an Application or Module
	Creating a Custom Realm

	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	Changing Permissions for an Application

	Configuring Message Security
	Message Security Responsibilities
	Application Developer
	Application Deployer
	System Administrator

	Application-Specific Message Protection
	Using a Signature to Enable Message Protection for All Methods
	To enable message protection for all methods using digital signature

	Configuring Message Protection For a Specific Method Based on Digital Signatures
	To enable message protection for a particular method or set of methods using digital signature

	Understanding and Running the Example Application
	To Set Up the Sample Application
	To Run the Sample Application

	Programmatic Login
	Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on
	Defining Roles

	Assembling and Deploying Applications
	Overview of Assembly and Deployment
	Modules
	Applications
	J2EE Standard Descriptors
	Sun Java System Application Server Descriptors
	Naming Standards
	Directory Structure
	Runtime Environments
	Module Runtime Environment
	Application Runtime Environment

	Classloaders
	The Classloader Hierarchy
	Classloader Universes
	Circumventing Classloader Isolation
	Using the System Classloader
	Using the Common Classloader
	Using the Java Optional Package Mechanism
	Packaging the Client JAR for One Application in Another Application
	To package the client JAR for one application in another application

	Assembling Modules and Applications
	deploytool
	Apache Ant
	NetBeans IDE
	The Deployment Descriptor Verifier
	Command Line Syntax
	Ant Integration
	Sample Results Files

	Deploying Modules and Applications
	Deployment Errors
	The Deployment Life Cycle
	Dynamic Deployment
	Disabling a Deployed Application or Module
	To disable an application or module in the Administration Console

	Dynamic Reloading
	To enable dynamic reloading in the Administration Console
	To reload code or deployment descriptor changes

	Automatic Deployment
	To enable and configure or to disable autodeployment

	Tools for Deployment
	Apache Ant
	The deploytool
	JSR 88
	The asadmin Command
	The Administration Console
	To use the Administration Console for deployment

	Deployment by Module or Application
	Deploying a WAR Module
	Deploying an EJB JAR Module
	Deploying a Lifecycle Module
	Deploying an Application Client
	To deploy an application client
	To prepare another machine for executing an application client

	Deploying a J2EE CA Resource Adapter
	Access to Shared Frameworks

	asant Assembly and Deployment Tool
	asant Tasks for Sun Java System Application Server
	sun-appserv-deploy
	Subelements
	Attributes
	Examples

	sun-appserv-undeploy
	Subelements
	Attributes
	Examples

	sun-appserv-component
	Subelements
	Attributes
	Examples

	sun-appserv-admin
	Subelements
	Attributes
	Examples

	sun-appserv-jspc
	Subelements
	Attributes
	Example

	sun-appserv-update
	Subelements
	Attributes
	Example

	Reusable Subelements
	component
	Subelements
	Attributes
	Examples

	fileset

	Debugging Applications
	Enabling Debugging
	To set the server to automatically start up in debug mode

	JPDA Options
	Generating a Stack Trace for Debugging
	The Java Debugger
	Using an IDE
	To use the NetBeans IDE for Debugging

	Sun Java System Message Queue Debugging
	Enabling Verbose Mode
	Logging
	Profiling
	The HPROF Profiler
	To use HPROF profiling on UNIX

	The Optimizeit Profiler
	To enable remote profiling with Optimizeit

	Developing Applications and Application Components
	Developing Web Applications
	Introducing Web Applications
	Internationalization Issues
	The Server
	Servlets
	Servlet Request
	Servlet Response

	Virtual Servers
	To assign virtual servers

	Default Web Modules
	Classloader Delegation
	Using the default-web.xml File
	To use the default-web.xml file

	Configuring Logging in the Web Container
	Configuring HTML Error Pages
	Header Management
	Redirecting URLs

	Using Servlets
	Invoking a Servlet with a URL
	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	cache
	Attributes
	Example

	flush
	Attributes
	Examples
	Options for Compiling JSP Files

	Creating and Managing HTTP Sessions
	Configuring Sessions
	Sessions, Cookies, and URL Rewriting
	Coordinating Session Access

	Session Managers
	The memory Persistence Type
	The file Persistence Type

	Using Enterprise JavaBeans Technology
	Summary of EJB 2.1 Changes
	Value Added Features
	Read-Only Beans
	pass-by-reference
	Pooling and Caching
	Pooling Parameters
	Caching Parameters

	Bean-Level Container-Managed Transaction Timeouts
	Priority Based Scheduling of Remote Bean Invocations
	Immediate Flushing

	EJB Timer Service
	Using Session Beans
	About the Session Bean Containers
	Stateless Container
	Stateful Container

	Restrictions and Optimizations
	Optimizing Session Bean Performance
	Restricting Transactions

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Invoking a Transactional Method
	Refreshing Periodically
	Refreshing Programmatically

	Deploying Read Only Beans

	Using Message-Driven Beans
	Message-Driven Bean Configuration
	Connection Factory and Destination
	Message-Driven Bean Pool
	Domain-Level Settings

	Restrictions and Optimizations
	Pool Tuning and Monitoring
	onMessage Runtime Exception

	Sample Message-Driven Bean XML Files
	Sample ejb-jar.xml File
	Sample sun-ejb-jar.xml File

	Handling Transactions with Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Commit Options
	Administration and Monitoring

	Using Container-Managed Persistence for Entity Beans
	Sun Java System Application Server Support
	Container-Managed Persistence Mapping
	Mapping Capabilities
	The Mapping Deployment Descriptor File
	Mapping Considerations
	Join Tables and Relationships
	Automatic Primary Key Generation
	Fixed Length CHAR Primary Keys
	Managed Fields
	BLOB Support
	CLOB Support

	Automatic Schema Generation
	Supported Data Types
	Generation Options

	Schema Capture
	Automatic Database Schema Capture
	Using the capture-schema Utility

	Configuring the CMP Resource
	Configuring Queries for 1.1 Finders
	About JDOQL Queries
	Query Filter Expression
	Query Parameters
	Query Variables
	JDOQL Examples
	Example 1
	Example 2
	Example 3

	Performance-Related Features
	Version Column Consistency Checking
	To use version consistency

	Relationship Prefetching
	Read-Only Beans

	Restrictions and Optimizations
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	Sybase Finder Limitation
	Date and Time Fields as CMP Field Types
	No Support for lock-when-loaded on Sybase and DB2
	Set RECURSIVE_TRIGGERS to false on MSSQL
	MySQL Database Restrictions

	Developing Java Clients
	Introducing the Application Client Container
	Security
	Naming

	Developing Clients Using the ACC
	To access an EJB component from an application client
	To access a JMS resource from an application client
	Running an Application Client Using the ACC
	Packaging an Application Client Using the ACC
	Editing the Configuration File
	Editing the appclient Script
	Editing the sun-acc.xml File
	Setting Security Options
	To use the package-appclient script bundled with the Application Server

	client.policy

	Developing Clients Without the ACC
	To access an EJB component from a stand-alone client
	To access an EJB component from a server-side module
	To access a JMS resource from a stand-alone client

	Developing Connectors
	Connector 1.5 Support in the Application Server
	Connector Architecture for JMS and JDBC
	Connector Configuration

	Deploying and Configuring a Stand-Alone Connector Module
	To deploy and configure a stand-alone connector module

	Redeploying a Stand-Alone Connector Module
	Deploying and Configuring an Embedded Resource Adapter
	Advanced Connector Configuration Options
	Thread Pools
	Security Maps
	Overriding Configuration Properties
	Testing a Connection Pool
	Handling Invalid Connections
	Setting the Shutdown Timeout
	Using Last Agent Optimization of Transactions

	Inbound Communication Support
	Configuring a Message Driven Bean to Use a Resource Adapter
	Example Resource Adapter for Inbound Communication

	Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Using Services and APIs
	Using the JDBC API for Database Access
	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Supported Database Drivers
	Making the JDBC Driver JAR Files Accessible

	Creating a Connection Pool
	Testing a Connection Pool
	Creating a JDBC Resource

	Creating Applications That Use the JDBC API
	Sharing Connections
	Obtaining a Physical Connection from a Wrapped Connection
	Using Non-Transactional Connections
	Using JDBC Transaction Isolation Levels

	Configurations for Specific JDBC Drivers
	Derby Type 4 Driver
	Sun Java System JDBC Driver for DB2 Databases
	Sun Java System JDBC Driver for Oracle 8i, 9i, and 10g Databases
	Sun Java System JDBC Driver for Microsoft SQL Server Databases
	Sun Java System JDBC Driver for Sybase Databases
	IBM DB2 8.1 Type 2 Driver
	JConnect Type 4 Driver for Sybase ASE 12.5 Databases
	MM MySQL Type 4 Driver (Non-XA)
	MM MySQL Type 4 Driver (XA Only)
	Inet Oraxo JDBC Driver for Oracle 8i, 9i, and 10g Databases
	Inet Merlia JDBC Driver for Microsoft SQL Server Databases
	Inet Sybelux JDBC Driver for Sybase Databases
	Oracle Thin Type 4 Driver for Oracle 8i, 9i, and 10g Databases
	OCI Oracle Type 2 Driver for Oracle 8i, 9i, and 10g Databases
	IBM Informix Type 4 Driver

	Using the Transaction Service
	Transaction Resource Managers
	Transaction Scope
	Configuring the Transaction Service
	Transaction Logging

	Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Naming Environment for J2EE Application Components
	Accessing EJB Components Using the CosNaming Naming Context
	Accessing EJB Components in a Remote Application Server
	Naming Environment for Lifecycle Modules

	Configuring Resources
	External JNDI Resources
	Custom Resources

	Mapping References

	Using the Java Message Service
	The JMS Provider
	Message Queue Resource Adapter
	Administration of the JMS Service
	Configuring the JMS Service
	The Default JMS Host
	Creating JMS Hosts
	Checking Whether the JMS Provider Is Running
	Creating Physical Destinations
	Creating JMS Resources: Destinations and Connection Factories

	Restarting the JMS Client After JMS Configuration
	JMS Connection Features
	Connection Pooling
	Connection Failover

	Transactions and Non-Persistent Messages
	ConnectionFactory Authentication
	Message Queue varhome Directory
	Delivering SOAP Messages Using the JMS API
	To send SOAP messages using the JMS API
	To receive SOAP messages using the JMS API

	Using the JavaMail API
	Introducing JavaMail
	Creating a JavaMail Session
	JavaMail Session Properties
	Looking Up a JavaMail Session
	Sending and Reading Messages Using JavaMail
	To send a message using JavaMail
	To read a message using JavaMail

	Using the Java Management Extensions (JMX) API
	About AMX
	AMX MBeans
	Configuration MBeans
	Monitoring MBeans
	Utility MBeans
	J2EE Management MBeans
	Other MBeans
	MBean Notifications
	Access to MBean Attributes

	Proxies
	Connecting to the Domain Administration Server
	Examining AMX Code Samples
	Connecting to the DAS
	Starting an Application Server
	Deploying an Archive
	Displaying the AMX MBean Hierarchy
	Setting Monitoring States
	Accessing AMX MBeans
	Accessing and Displaying the Attributes of an AMX MBean
	Listing AMX MBean Properties
	Querying
	Monitoring Attribute Changes
	Undeploying Modules
	Stopping an Application Server

	Running the AMX Samples

	Deployment Descriptor Files
	Sun Java System Application Server Descriptors
	The sun-application.xml File
	The sun-web.xml File
	The sun-ejb-jar.xml File
	The sun-cmp-mappings.xml File
	The sun-application-client.xml file
	The sun-acc.xml File
	Alphabetical Listing of All Elements
	A
	activation-config
	Superelements
	Subelements

	activation-config-property
	Superelements
	Subelements

	activation-config-property-name
	Superelements
	Subelements

	activation-config-property-value
	Superelements
	Subelements

	as-context
	Superelements
	Subelements

	auth-method
	Superelements
	Subelements

	auth-realm
	Superelements
	Subelements
	Attributes
	Example

	B
	bean-cache
	Superelements
	Subelements
	Example

	bean-pool
	Superelements
	Subelements
	Example

	C
	cache
	Superelements
	Subelements
	Attributes
	Properties
	Cache Class Names

	cache-helper
	Superelements
	Subelements
	Attributes

	cache-helper-ref
	Superelements
	Subelements

	cache-idle-timeout-in-seconds
	Superelements
	Subelements

	cache-mapping
	Superelements
	Subelements

	call-property
	Superelements
	Subelements

	caller-propagation
	Superelements
	Subelements

	cert-db
	Superelements
	Subelements
	Attributes

	check-all-at-commit
	Superelements

	check-modified-at-commit
	Superelements
	Subelements

	check-version-of-accessed-instances
	Superelements
	Subelements

	checkpoint-at-end-of-method
	Superelements

	checkpointed-methods
	Superelements

	class-loader
	Superelements
	Subelements
	Attributes

	client-container
	Superelements
	Subelements
	Attributes

	client-credential
	Superelements
	Subelements
	Attributes

	cmp
	Superelements
	Subelements

	cmp-field-mapping
	Superelements
	Subelements

	cmp-resource
	Superelements
	Subelements

	cmr-field-mapping
	Superelements
	Subelements

	cmr-field-name
	Superelements
	Subelements

	cmt-timeout-in-seconds
	Superelements
	Subelements

	column-name
	Superelements
	Subelements

	column-pair
	Superelements
	Subelements

	commit-option
	Superelements
	Subelements

	confidentiality
	Superelements
	Subelements

	consistency
	Superelements
	Subelements

	constraint-field
	Superelements
	Subelements
	Attributes

	constraint-field-value
	Superelements
	Subelements
	Attributes

	context-root
	Superelements
	Subelements

	cookie-properties
	Superelements
	Subelements
	Properties

	create-tables-at-deploy
	Superelements
	Subelements

	D
	database-vendor-name
	Superelements
	Subelements

	default
	Superelements
	Subelements

	default-helper
	Superelements
	Subelements
	Properties

	default-resource-principal
	Superelements
	Subelements

	description
	Superelements
	Subelements

	dispatcher
	Superelements
	Subelements

	drop-tables-at-undeploy
	Superelements
	Subelements

	E
	ejb
	Superelements
	Subelements
	Attributes
	Example

	ejb-name
	Superelements
	Subelements

	ejb-ref
	Superelements
	Subelements

	ejb-ref-name
	Superelements
	Subelements

	endpoint-address-uri
	Superelements
	Subelements
	Example

	enterprise-beans
	Superelements
	Subelements
	Example

	entity-mapping
	Superelements
	Subelements

	establish-trust-in-client
	Superelements
	Subelements

	establish-trust-in-target
	Superelements
	Subelements

	F
	fetched-with
	Superelements
	Subelements

	field-name
	Superelements
	Subelements

	finder
	Superelements
	Subelements

	flush-at-end-of-method
	Superelements
	Subelements

	G
	gen-classes
	Superelements
	Subelements

	group-name
	Superelements
	Subelements

	H
	http-method
	Superelements
	Subelements

	I
	idempotent-url-pattern
	Superelements

	integrity
	Superelements
	Subelements

	ior-security-config
	Superelements
	Subelements

	is-cache-overflow-allowed
	Superelements

	is-one-one-cmp
	Superelements

	is-read-only-bean
	Superelements
	Subelements

	J
	java-method
	Superelements
	Subelements

	jms-durable-subscription-name
	Superelements
	Subelements

	jms-max-messages-load
	Superelements
	Subelements

	jndi-name
	Superelements
	Subelements

	jsp-config
	Superelements
	Subelements
	Properties

	K
	key-field
	Superelements
	Subelements
	Attributes

	L
	level
	Superelements
	Subelements

	local-home-impl
	Superelements
	Subelements

	local-impl
	Superelements
	Subelements

	locale-charset-info
	Superelements
	Subelements
	Attributes

	locale-charset-map
	Superelements
	Subelements
	Attributes
	Example Agents

	localpart
	Superelements
	Subelements

	lock-when-loaded
	Superelements
	Subelements

	lock-when-modified
	Superelements

	log-service
	Superelements
	Subelements
	Attributes

	login-config
	Superelements
	Subelements

	M
	manager-properties
	Superelements
	Subelements
	Properties

	mapping-properties
	Superelements

	max-cache-size
	Superelements
	Subelements

	max-pool-size
	Superelements
	Subelements

	max-wait-time-in-millis
	Superelements

	mdb-connection-factory
	Superelements
	Subelements

	mdb-resource-adapter
	Superelements
	Subelements

	message
	Superelements
	Subelements

	message-destination
	Superelements
	Subelements

	message-destination-name
	Superelements
	Subelements

	message-security
	Superelements
	Subelements
	message-security-binding
	Superelements
	Subelements
	Attributes

	message-security-config
	Superelements
	Subelements
	Attributes

	method
	Superelements
	Subelements

	method-intf
	Superelements
	Subelements

	method-name
	Superelements
	Subelements
	Examples

	method-param
	Superelements
	Subelements

	method-params
	Superelements
	Subelements

	N
	name
	Superelements
	Subelements

	named-group
	Superelements
	Subelements

	namespaceURI
	Superelements
	Subelements

	none
	Superelements
	Subelements

	O
	one-one-finders
	Superelements
	Subelements

	operation-name
	Superelements
	Subelements

	P
	parameter-encoding
	Superelements
	Subelements
	Attributes

	pass-by-reference
	Superelements
	Subelements

	password
	Superelements
	Subelements

	pm-descriptors
	Superelements

	pool-idle-timeout-in-seconds
	Superelements
	Subelements

	port-component-name
	Superelements
	Subelements

	port-info
	Superelements
	Subelements

	prefetch-disabled
	Superelements
	Subelements

	principal
	Superelements
	Subelements

	principal-name
	Superelements
	Subelements

	property (with attributes)
	Superelements
	Subelements
	Attributes
	Example

	property (with subelements)
	Superelements
	Subelements
	Example

	provider-config
	Superelements
	Subelements
	Attributes

	Q
	query-filter
	Superelements
	Subelements

	query-method
	Superelements
	Subelements

	query-ordering
	Superelements
	Subelements

	query-params
	Superelements
	Subelements

	query-variables
	Superelements
	Subelements

	R
	read-only
	Superelements
	Subelements

	realm
	Superelements
	Subelements

	refresh-field
	Superelements
	Subelements
	Attributes

	refresh-period-in-seconds
	Superelements
	Subelements

	removal-timeout-in-seconds
	Superelements
	Subelements

	remote-home-impl
	Superelements
	Subelements

	remote-impl
	Superelements
	Subelements

	request-policy
	Superelements
	Subelements
	Attributes

	request-protection
	Superelements
	Subelements
	Attributes

	required
	Superelements
	Subelements

	res-ref-name
	Superelements
	Subelements

	resize-quantity
	Superelements
	Subelements

	resource-adapter-mid
	Superelements
	Subelements

	resource-env-ref
	Superelements
	Subelements
	Example

	resource-env-ref-name
	Superelements
	Subelements

	resource-ref
	Superelements
	Subelements
	Example

	response-policy
	Superelements
	Subelements
	Attributes

	response-protection
	Superelements
	Subelements
	Attributes

	role-name
	Superelements
	Subelements

	S
	sas-context
	Superelements
	Subelements

	schema
	Superelements
	Subelements
	Examples

	schema-generator-properties
	Superelements
	Subelements
	Properties
	Example

	secondary-table
	Superelements
	Subelements

	security
	Superelements
	Subelements

	security-role-mapping
	Superelements
	Subelements

	service-endpoint-interface
	Superelements
	Subelements

	service-impl-class
	Superelements
	Subelements

	service-qname
	Superelements
	Subelements

	service-ref
	Superelements
	Subelements

	service-ref-name
	Superelements
	Subelements

	servlet
	Superelements
	Subelements

	servlet-impl-class
	Superelements
	Subelements

	servlet-name
	Superelements
	Subelements

	session-config
	Superelements
	Subelements

	session-manager
	Superelements
	Subelements
	Attributes

	session-properties
	Superelements
	Subelements
	Properties

	ssl
	Superelements
	Subelements
	Attributes

	steady-pool-size
	Superelements
	Subelements

	store-properties
	Superelements
	Subelements
	Properties

	stub-property
	Superelements
	Subelements
	Example

	sun-application
	Superelements
	Subelements

	sun-application-client
	Superelements
	Subelements

	sun-cmp-mapping
	Superelements
	Subelements

	sun-cmp-mappings
	Superelements
	Subelements

	sun-ejb-jar
	Superelements
	Subelements

	sun-web-app
	Superelements
	Subelements
	Attributes
	Properties

	T
	table-name
	Superelements
	Subelements

	target-server
	Superelements
	Subelements
	Attributes

	tie-class
	Superelements
	Subelements

	timeout
	Superelements
	Subelements
	Attributes

	transport-config
	Superelements
	Subelements

	transport-guarantee
	Superelements
	Subelements

	U
	unique-id
	Superelements
	Subelements

	url-pattern
	Superelements
	Subelements

	use-thread-pool-id
	Superelements
	Subelements

	V
	value
	Superelements
	Subelements

	victim-selection-policy
	Superelements
	Subelements
	Example

	W
	web
	Superelements
	Subelements

	web-uri
	Superelements
	Subelements

	webservice-description
	Superelements
	Subelements

	webservice-description-name
	Superelements
	Subelements

	webservice-endpoint
	Superelements
	Subelements

	wsdl-override
	Superelements
	Subelements
	Example

	wsdl-port
	Superelements
	Subelements

	wsdl-publish-location
	Superelements
	Subelements
	Example

	Index

