
Sun StorageTek 5800 System
Client API Reference Manual

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–4796
June 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080616@20490

Contents

Preface ...11

1 Sun StorageTek 5800 System Client API .. 15
Changes in Version 1.1 ... 15
5800 System Overview .. 16

5800 System Summary .. 16
The 5800 System and Honeycomb ... 17
The 5800 System Data Model ... 17
The 5800 System Metadata Model ... 19
The 5800 System Query Model ... 20
The 5800 System Query Integrity Model .. 21
Deleting Objects from the 5800 System .. 22

2 Sun StorageTek 5800 System Java Client API ... 25
Overview of the 5800 System Java Client API .. 25

Client Library ... 25
Interfaces ... 26
Retrying Operations .. 26
Performance and Scalability ... 26
Updating Client View of the Schema ... 27

Java Client Application Deployment .. 27
Java API .. 27

Java API Packages .. 27
Java API Documentation .. 27
Basic Concepts ... 28
Key Classes .. 28
NameValueObjectArchive Application Access .. 30

3

3 Sun StorageTek 5800 System C Client API ... 39
Overview of the 5800 System C Client API .. 39

Architecture .. 40
Interfaces ... 40
Retrying Operations .. 40
Multithreaded Access .. 40
Performance and Scalability ... 40
Memory Usage ... 41
Updating Schema Definitions .. 41
Session Management ... 41

C Client Application Deployment ... 43
Nonblocking C API ... 43
Synchronous C API ... 44

Changes for the 1.1 Release ... 44
Limitations .. 45

Synchronous C Data Types .. 46
hc_string_t ... 46
hc_long_t ... 46
hc_double_t ... 46
hc_type_t ... 47
hc_value_t ... 47
hc_schema_t ... 48
hc_nvr_t ... 48
hc_session_t ... 48
hc_pstmt_t ... 49
hc_query_result_set_t .. 49
read_from_data_source .. 49
write_to_data_destination ... 50
hcerr_t ... 51

Synchronous C API Functions .. 53
Managing 5800 System Sessions .. 53
hc_session_create_ez .. 53
hc_session_free .. 55
hc_session_get_status .. 55
hc_session_get_schema .. 56
hc_session_get_host .. 57

Contents

Sun StorageTek 5800 System Client API Reference Manual • June 20084

hc_session_get_platform_result ... 58
hc_session_get_archive .. 59
Managing a Schema ... 59
hc_schema_get_type .. 60
hc_schema_get_length .. 61
hc_schema_get_count .. 61
hc_schema_get_type_at_index ... 62
Manipulating Name-Value Records .. 63
Using the API for Storing Name-Value Records .. 63
Using Returned Name-Value Records .. 64
Creating and Freeing Name-Value Records ... 65
hc_nvr_create ... 65
hc_nvr_free ... 66
Building Name-Value Records ... 66
hc_nvr_add_value .. 67
hc_nvr_add_long .. 68
hc_nvr_add_double .. 69
hc_nvr_add_string .. 70
hc_nvr_add_binary .. 71
hc_nvr_add_date .. 72
hc_nvr_add_time .. 73
hc_nvr_add_timestamp .. 74
hc_nvr_add_from_string .. 75
Retrieving Name-Value Records .. 76
hc_nvr_get_count .. 76
hc_nvr_get_value_at_index ... 77
hc_nvr_get_long .. 78
hc_nvr_get_double .. 79
hc_nvr_get_string .. 80
hc_nvr_get_binary .. 81
hc_nvr_get_date .. 82
hc_nvr_get_time .. 82
hc_nvr_get_timestamp .. 83
Creating and Converting Name-Value Records From and To String Arrays 84
hc_nvr_create_from_string_arrays .. 84
hc_nvr_convert_to_string_arrays ... 86

Contents

5

Storing Data and Metadata ... 87
hc_store_both_ez .. 87
hc_store_metadata_ez .. 88
hc_check_indexed_ez .. 89
Retrieving Data and Metadata .. 91
hc_retrieve_ez .. 91
hc_retrieve_metadata_ez ... 92
hc_range_retrieve_ez .. 93
Querying Metadata .. 94
hc_query_ez ... 94
hc_qrs_next_ez .. 96
hc_qrs_is_query_complete ... 97
hc_qrs_get_query_integrity_time ... 98
hc_qrs_free ... 99
hc_pstmt_create .. 100
hc_pstmt_free ... 101
hc_pstmt_set_string .. 101
hc_pstmt_set_char .. 102
hc_pstmt_set_double .. 103
hc_pstmt_set_long .. 104
hc_pstmt_set_date .. 105
hc_pstmt_set_time .. 106
hc_pstmt_set_timestamp .. 107
hc_pstmt_set_binary .. 108
hc_pstmt_query_ez .. 109

Querying With a Prepared Statement ... 110
Deleting Records .. 111
hc_delete_ez ... 111
Translating Error and Type Codes .. 112
hc_decode_hcerr .. 112
hc_decode_hc_type .. 113

4 Sun StorageTek 5800 System Query Language .. 115
Interfaces .. 115
Operation ... 116

Contents

Sun StorageTek 5800 System Client API Reference Manual • June 20086

Supported Data Types ... 116
Queries .. 117

Translating a Query to the Underlying Database ... 117
Attribute Format in Queries ... 117
SQL Syntax in 5800 System Queries .. 118

Literals In Queries ... 118
Dynamic Parameters ... 118
String Literals ... 118
Numeric Literals ... 118
Literals for 5800 System Data Types .. 119

Canonical String Format .. 119
The Canonical String Decode Operation .. 120

JDBC and HADB Date and Time Operations .. 120
Reserved Words ... 121
Supported Expression Types .. 121
Examples of Supported Query Expressions ... 123
Queries Not Supported in Version 1.1 .. 123
SQL Words That Are Allowed in Queries .. 124
SQL Words That Are Not Allowed in Queries ... 124

5 Programming Considerations and Best Practices ... 127
Retries and Timeouts .. 127
Query Size Limit .. 127
Limit the Size of Schema Query Parameters and Literals ... 128
Limit Results Per Fetch ... 128

Index ... 129

Contents

7

8

Tables

TABLE 4–1 Canonical String Representation of Data Types .. 119

9

10

Preface

The Sun StorageTek 5800 System Client API Reference Manual is written for programmers and
application developers who develop custom applications for the Sun StorageTekTM 5800 System.
This document, along with the Sun StorageTek 5800 SystemSDK Reference Manual, provides the
information that you need to develop custom applications for the 5800 system.

How This Book Is Organized
■ Chapter 1, “Sun StorageTek 5800 System Client API,” provides a summary of the changes

for the Sun StorageTek 5800 System 1.1 release, and overviews of the client APIs and query
language.

■ Chapter 2, “Sun StorageTek 5800 System Java Client API,” provides detailed information on
the Sun StorageTek 5800 System Java client API.

■ Chapter 3, “Sun StorageTek 5800 System C Client API,” provides detailed information on
the Sun StorageTek 5800 System C client API.

■ Chapter 4, “Sun StorageTek 5800 System Query Language,” provides detailed information
on the Sun StorageTek 5800 System query language.

■ Chapter 5, “Programming Considerations and Best Practices,” provides programming
considerations and best practices that can help you create efficient 5800 system applications.

Related Books
■ Sun StorageTek 5800 System Regulatory and Safety Compliance Manual, part number

819–3809
■ Sun StorageTek 5800 System Site Preparation Guide, part number 820–1635
■ Sun StorageTek 5800 System Administration Guide, part number 820–4118
■ Sun StorageTek 5800 System SDK Reference Manual, part number 820–4797
■ Sun StorageTek 5800 System 1.1.1 Release Notes, part number 820–4120

11

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

Preface

Sun StorageTek 5800 System Client API Reference Manual • June 200812

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–1 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by clicking the Feedback link on the
http://docs.sun.com web site.

Please include the title and part number of your document with your feedback:

Sun StorageTek 5800 System Client API Reference Manual, part number 820-4796

Preface

13

14

Sun StorageTek 5800 System Client API

The SunTM StorageTekTM 5800 system client API provides programmatic access to a 5800 system
server to store, retrieve, query, and delete object data and metadata. Synchronous versions are
provided in C and JavaTM languages. A future release will implement a non-blocking C API for
use with POSIX operations.

This chapter provides a summary of the changes for the Sun StorageTek 5800 System 1.1
release, and overviews of the client APIs and query language.

The following topics are discussed:

■ “Changes in Version 1.1” on page 15
■ “5800 System Overview” on page 16

Changes in Version 1.1
The following general changes have been made in Version 1.1.

■ Handling is added for storing, retrieving, and querying the following metadata types:
– char — for Latin 1 character set
– string — for Unicode character set
– binary
– date
– time
– timestamp

■ Query and queryplus are merged.
■ Prepared statements (pstmts) are introduced to handle the values of queries that cannot be

placed inline, and a new query is introduced to handle them.
■ The handling of strings that are longer than the string length of the associated field has

changed.

1C H A P T E R 1

15

In 5800 system version 1.1, an attempt to store a value that is longer than the associated field
generates an immediate error.

5800 System Overview
This section provides an overviews of the 5800 system, the 5800 system history, and a
summaries of the key points of the 5800 system usage model.

The following topics are discussed:
■ “5800 System Summary” on page 16
■ “The 5800 System and Honeycomb” on page 17
■ “The 5800 System Data Model” on page 17
■ “The 5800 System Metadata Model” on page 19
■ “The 5800 System Query Model” on page 20
■ “The 5800 System Query Integrity Model” on page 21
■ “Deleting Objects from the 5800 System” on page 22

5800 System Summary
The 5800 system is an object-based storage archive appliance for fixed-content data and
metadata. The 5800 system is designed from the ground up to be reliable, affordable, and
scalable, and to integrate data storage with intelligent data retrieval. It is designed to store huge
amounts of data for decades at a time. At that scale, issues of how and where the data is stored —
and how that changes over time — can be quite cumbersome. The 5800 system usage model is
designed to manage those issues for you, so that your application can deal with just the data.

A custom Application Programming Interface (the 5800 Client API) is provided so that your
applications can take advantage of all the features in the 5800 system usage model. The API
provides the following capabilities:
■ Store a new object into the archive (storeObject)
■ Associate a new metadata record with stored object data (storeMetadata)
■ Retrieve the data from an object that was previously stored (retrieveData)
■ Retrieve the metadata from an object that was previously stored (retrieveMetadata)
■ Delete an object (delete)
■ Query for matching objects given a query expression of specific object characteristics

(query)

The 5800 system API Release 1.1 provides two APIs:
■ The Java API is described in Chapter 2, “Sun StorageTek 5800 System Java Client API”
■ The C API is described in Chapter 3, “Sun StorageTek 5800 System C Client API”

5800 System Overview

Sun StorageTek 5800 System Client API Reference Manual • June 200816

This chapter provides a summary of key points of the 5800 system usage model that are useful
for understanding either API.

In the following sections, the terms from the Java API are used as an aid to exposition. In all
cases, a simple equivalent using the C API is available.
■ Chapter 4, “Sun StorageTek 5800 System Query Language,” provides a detailed description

of query capabilties and query syntax.
■ Chapter 5, “Programming Considerations and Best Practices,” provides programming

considerations and best practices that can help you create efficient 5800 system applications.

The 5800 System and Honeycomb
The original code name for the project that grew into the 5800 system was Project Honeycomb.
The Honeycomb name lives on as the name of an Open Solaris community that is bringing the
Honeycomb software stack into the world of Open Source. The first realization of the
Honeycomb storage model as a real product is the 5800 system as described in this guide and
related guides.

As a model for programmable storage systems, however, the Honeycomb API has a much
broader reach than just the 5800 system. The programming model is designed to scale both up
and down to any storage archive system that needs to abstract and separate the issues of how
data is stored from how it is used. In recognition of both the past and the future, the string
“honeycomb” and the initials “hc“ still live on in certain aspects of the API described in this
guide. When the 5800 system API is used in contexts outside of the 5800 system, the API is
referred to as the Project Honeycomb API.

The 5800 System Data Model
The 5800 system stores two types of data: arbitrary object data and structured metadata records.
Every metadata record is associated with exactly one data object. Every data object has at least
one metadata record. A unique object identifier (OID) is returned when a metadata record is
stored. This OID can later be used to retrieve the metadata record or its data object. In addition,
metadata records can be retrieved by a query:

OID ↔ Metadata Record → Underlying Object Data

There are two types of metadata, system metadata and user metadata. You cannot override the
names and types of system metadata.

Each object in the 5800 system archive consists of some arbitrary bytes of data together with
associated metadata that describes the data. Once an object is stored, it is immutable. The 5800
system programming model does not allow the data or the metadata associated with an object
to be changed once the object has been stored, in other words the system is a Write-Once

5800 System Overview

Chapter 1 • Sun StorageTek 5800 System Client API 17

Read-Multiple (WORM) archive. Each object corresponds to a single stream of data and a
single set of metadata; there are no “grouped objects” or “compound objects” other than by
application convention.

Each object corresponds to a single stream of data and a single set of metadata. There are no
“grouped objects” or “compound objects” other than by application convention. Similarly,
there are no “links” or “associations“ from one object to another. The customer application is
shielded from all details of how or where the object is stored. Internally, the actual location of an
object might change over time, or several objects might even share the same underlying storage.
The customer application can retrieve the object without knowing these details.

A stream of data is stored in the object archive using storeObject. Once stored, each such
object is associated with an object identifier or objectid (OID). The storeObject operation takes
both a stream of data and an optional set of user metadata information and returns an OID. The
OID can be remembered outside of the 5800 system and may later be used to retrieve the data
associated with that object using the retrieveObject operation.

Every object has metadata whether or not user metadata was supplied at the time of the store.
For example each object has system metadata that is system assigned and can never be modified
by the user. The OID is associated with the metadata record that represents this object as a
whole; the metadata record is then associated with the underlying data:

OID ↔ Metadata Record → Underlying Object Data

The retrieveObject operation takes an OID as input and returns a stream of bytes as output
that are identical to the bytes stored during the storeObject operation. Both the storeObject
and retrieveObject operations handle the data in a streaming manner. Not all of the data need
be present in client memory or in server memory at the same time, which is a crucial point for
working with large objects.

For the 5800 system Release 1.1, data sizes up to 400 GBytes are tested and supported. Using
sizes even smaller than this may be appropriate as a best practice. For more information, see
Chapter 5, “Programming Considerations and Best Practices.”

From within a customer application, the storing of an object into the archive is an
all-or-nothing event. Either the object is stored or it is not; there are no partial stores. If a store
operation is interrupted, the entire storeObject call fails. Once an OID is returned to the
customer application, the object is known to be durable. In the event of an outage that causes
some data loss, the system should be no more likely to lose a newly stored object than any other
object. There is no way to tie together two different store operations so that both either succeed
together or fail together.

Note – A stored object may or may not immediately be queryable. For more information, see
“The 5800 System Query Integrity Model” on page 21.

5800 System Overview

Sun StorageTek 5800 System Client API Reference Manual • June 200818

The 5800 System Metadata Model
Metadata means “data about the data”; it describes the data and helps to determine how the data
should be interpreted. In addition, metadata can be used to facilitate querying the 5800 system
for objects that match a particular set of search criteria.

For the 5800 system, the supported metadata option is in the form of name-value fields stored
with each object. The set of possible fields is defined in the metadata schema. Setting up a
metadata schema is an important system administration task that is described in the 5800
System Administration Guide, and is analogous to the process of database design that goes into
creating a data management application. The metadata schema determines what field names,
types, and lengths may be used with the metadata stored with each object. In addition, the
layout of fields into tables within the schema, together with the definition of views that speed
certain searches, determine which kinds of queries about that metadata will be both possible
and effective. As such, the metadata schema should match the characteristics of the expected
range of applications that will deal with the stored data. The underlying software is designed to
support multiple different kinds of metadata to aid in searching. For example, eventually there
might be a specialized index to facilitate full-text search within the data objects. This document
describes only the API for dealing with the name-value metadata type.

Fields in the schema can be either queryable or non-queryable. The values for non-queryable
fields may be retrieved later but may not be used in queries. The 5800 system supports only
single-valued fields. Each object can have only a single name-value pair of a given name. There
is no built-in support for multiple-valued fields, such as a list of authors of a book in the form of
multiple fields named 'author'.

Each data object is associated with a set of name-value pairs at the time the object is stored.
Some metadata (system metadata) is assigned by the5800 system as each object is stored. For
example, each object contains an “object creation time” (system.object_ctime) and an OID
(system.object_id), both of which are assigned by the system at the time an object is created.
Some metadata (the computed metadata) is implicit in the stored data, and is made explicit at
the time of the object store. For example, the system exposes the object data length as a
metadata field (system.object_size). In addition, the 5800 system computes a Secure Hash
Algorithm (SHA1) hash of the stored data as the data is stored and stores the hash as a metadata
field (system.object_hash). There is also an associated field (system.object_hash_alg) to
specify which hash algorithm was used in computing the system.object_hash. It is currently
always set to “sha1.”

Finally, some metadata (the user metadata) is supplied by the customer application in the API
call at the time an object is stored. Each store operation is allowed to include a
NameValueRecord that indicates a set of name-value pairs to be associated with the data object
as metadata. Each name in the name-value record must match a field name from the metadata
schema; in addition, the data value supplied for each field must match the type and length for
the field as specified in the schema. If the names or values supplied for the user metadata do not
match the active schema, then an exception is generated and the object is not stored.

5800 System Overview

Chapter 1 • Sun StorageTek 5800 System Client API 19

The metadata associated with an object is immutable. There is no operation to modify the
metadata associated with an object after the object has been stored. Instead, the storeMetadata
operation can be used to create a completely new object by associating new user metadata with
the underlying data and system-metadata of an existing object. The storeMetadata operation
does not merge the new metadata in with the metadata from the original OID; instead, the
storeMetadata operation creates a new metadata record pointing to the same data object. To
accomplish a merge of new field values into existing metadata, the customer application must
manually retrieve the existing metadata from the original object, perform the merge into a
single NameValueRecord on the client side, and then call storeMetadata to create a new object
with the merged metadata.

When creating a new object using storeMetadata, a new system.object_id and new
system.object_ctime are generated, to indicate that a new object has been created. The
metadata computed from the object data itself (system.object_length,
system.object_hash_alg, and system.object_hash) does not change. Both the storeObject
and the storeMetadata operations return a SystemRecord value that includes all of the
system-assigned fields.

While retrieving the OID is the most common use of the SystemRecord, the other system fields
can also be helpful. For example, the customer application might use the
system.object_length, the system.object_hash_alg and the system.object_hash fields to
verify that the data as stored matches the data as present in the customer application. If a hash
independently computed on the client matches the hash stored on the 5800 system, then the
data store has been validated.

The metadata values associated with an object can be retrieved using the retrieveMetadata
operation. The retrieveMetadata operation takes an OID as input, and returns the entire set
of user, system, and system-computed metadata. The retrieved metadata is in the form of a
NameValueRecord that contains the value of each field as originally stored. The system fields
occur using their field names, for example. the field system.object_ctime contains the object
creation time. There is no operation to retrieve just a single field or a subset of fields by
supplying a list of field names. The retrieveMetadata operation retrieves the values of both
queryable and non-queryable fields.

The 5800 System Query Model
One of the primary methods for retrieving data is to specify the characteristics of the desired
data and then let the system find it for you. In the 5800 system, a query expression specifies a set
of conditions on metadata field values. The system then returns a list of all the objects whose
metadata values match the query conditions. Each object is considered individually without
reference to any other objects. There are no queries that compare fields in one object with fields
in a different object.

5800 System Overview

Sun StorageTek 5800 System Client API Reference Manual • June 200820

Query expressions can use much of the power of Structured Query Language (SQL). Each query
expression combines SQL functions and operators, field names from the metadata schema, and
literal values. There are no query expressions that select objects based on the data stored in the
object itself; all queries apply only to the metadata fields associated with the object. Only
queryable fields can be used in query expressions. For an object to show up in a query result set,
the object must have a value for each of the fields mentioned in the query; in other words, there
is an implicit INNER JOIN between the fields in the query.

A query may optionally specify that the result set should include not just the OID of each
matching object, but also the values from a set of selected fields of each matched object . The
value retrieved by Query With Select for some field may be a canonical equivalent of the value
originally stored in that field. For example, values in numeric fields may have been converted to
standard numeric format. Trailing spaces at the end of string fields will have been truncated
(The value that is returned will be some value that would match the original data as stored, in
the SQL sense.) To be included in the result set, an object must include values for all queried
fields and all selected fields. In other words, there is an implicit INNER JOIN between all the
fields in the query and in the select list.

There are significant limitations on which queries may be executed efficiently, or at all. See
Chapter 4, “Sun StorageTek 5800 System Query Language,” and Chapter 5, “Programming
Considerations and Best Practices”s for details of these limitations.

There are no ordering guarantees between queries and store operations that are proceeding at
the same time. If an object is added to the 5800 system while a query is being performed, and the
object matches the query, then the object may or may not show up in the query result set.

For a detailed description of query syntax and query semantics, including a description of
exactly what it means for an object to match a query, see Chapter 4, “Sun StorageTek 5800
System Query Language.”

The 5800 System Query Integrity Model
The result set of any query will only return results that match the query. But will it return ALL
the matching results? That is the concept of query completeness, referred to here as query
integrity. 100% query integrity for a result set is defined as a state in which the result set contains
all the objects in the 5800 system that match that particular query. The 5800 system is not
always in a state of 100% query integrity. Various system events can induce a state in which the
set of objects that are available for query is smaller than the total set of objects stored in the
archive. Each query result set supports an operation (isQueryComplete) whereby the customer
application can ask, once all the results from the query result set have been processed, whether
that set of results constitutes a complete set.

5800 System Overview

Chapter 1 • Sun StorageTek 5800 System Client API 21

Note – The format of records as stored in the reliable and scalable object archive is not suitable
for fast query. To enable searching, the queryable fields from the metadata are indexed in a
query engine that can provide fast and flexible query services. The query engine is basically an
SQL database. This is why the 5800 system's query language can borrow so heavily from SQL. At
various times, the data as indexed in the query engine can get out of date compared to what is
stored in the archive. When this happens, query result sets are not known to be complete until
the contents of the query engine can be brought back up to date with the actual contents of the
archive again.

The 5800 system concept of query integrity as actually implemented is somewhat looser than
that of 100% query integrity. Even if a query result set indicates the result set is complete, the
5800 system allows certain objects, known as store index exceptions, to be missing from the
query result set, as long as those exceptions were communicated to the customer application at
the time the object was stored.

A store index exception is an object for which the original store of the object into the archive
succeeded, but at least some part of the insert into the query engine (database) did not succeed.
The object may or may not show up in all of the queries that it matches. A store index exception
is communicated to the customer application at the time of store by means of a method
SystemRecord.isIndexed. A value of false from isIndexed means that the object is not
immediately available for query.

A store index exception is said to be resolved when the object becomes available for query. The
checkIndexed method can be used to attempt to resolve a store index exception under program
control. The checkIndexed operation checks if the object has been added to the query engine,
and attempts to insert it if the object has not been added. If the insert into the query engine
succeeds, the object is thereby restored to full queryability.

All store index exceptions will also eventually be resolved automatically by ongoing system
healing. Each query result set also exports a method getQueryIntegrityTime that can be used
to get detailed status on which store index exceptions might still be unresolved. The query
integrity time is a time such that all store index exceptions from before that time have been
resolved. There is an “ideal” query integrity time, which is the time of the oldest still-unresolved
store index exception: an ideal implementation when asked for the query integrity time would
always report this ideal value. In actual implementation, the reported query integrity time
might be hours or even days earlier than the ideal query integrity time, depending on how far
the ongoing system healing has progressed.

Deleting Objects from the 5800 System
The 5800 system client API exports an operation to delete a specific object as specified by its
OID. Once a delete operation completes normally, subsequent attempts to retrieve that object
will fail with an exception. In addition, the object will stop showing up in query result sets that

5800 System Overview

Sun StorageTek 5800 System Client API Reference Manual • June 200822

match the original object metadata. There are no transactional guarantees regarding ordering
of queries and delete operations that are occurring at the same time. If an object is being deleted
at the same time that a query that matches that object is being performed, then that object may
or may not show up in the query result set, with no guarantee either way.

Note – When all objects that share an underlying block of data storage been deleted, the
underlying block of data storage will itself be scavenged and returned to the supply of free disk
space. But all details of how objects are stored, and how and whether they ever share data — or
ever are scavenged — are outside of the scope of this API.

Delete operations are all-or-nothing,with some caveats. Specifically, if a delete operation fails
with an error, it is possible that the object is not fully deleted but is temporarily not queryable.
Such an object is in an analogous state to a store index exception (see “The 5800 System Query
Integrity Model” on page 21). The queryability of such an object will eventually be resolved by
automatic system healing. In addition, the queryability of such an object can be resolved under
program control by using the checkIndexed method. Alternatively, the customer application
may choose to re-execute the delete operation until it succeeds, or until it fails with an error that
indicates the object is already deleted.

5800 System Overview

Chapter 1 • Sun StorageTek 5800 System Client API 23

24

Sun StorageTek 5800 System Java Client API

This chapter provides information on the 5800 system Java client API.

The following topics are discussed:

■ “Overview of the 5800 System Java Client API” on page 25
■ “Java Client Application Deployment” on page 27
■ “Java API” on page 27

Note – You can find detailed information on the 5800 system Java client API in the Javadocs,
which are located in the java/doc/htdocs directory.

Overview of the 5800 System Java Client API
This section provides an overview of the 5800 system Java client API. The following topics are
discussed:

■ “Client Library” on page 25
■ “Interfaces” on page 26
■ “Retrying Operations” on page 26
■ “Performance and Scalability” on page 26
■ “Updating Client View of the Schema” on page 27

Client Library
The 5800 system Java client library provides a simple way to communicate with 5800 system
clusters. It provides programmatic access to the 5800 system network protocol, which operates
over HTTP, enabling you to store, retrieve, query, and delete object data and metadata.

2C H A P T E R 2

25

The 5800 system Java client library provides a platform-independent mechanism to upload data
and metadata to a 5800 system, and to retrieve and query the data and metadata. The Java client
library works with any implementation of J2SETM platform 4.0 or later with HTTP connectivity
to the 5800 system cluster. Access is designed to be high-level and easy to use. Most operations
are accomplished in a single (synchronous) function call.

Interfaces
The Java client API interacts with the 5800 system server entirely through an HTTP protocol.
The HTTP communication layer uses the Apache Commons HTTP client.

Object data is streamed through the Java client library opaquely and a well-defined data hash is
returned for verification purposes. Metadata is added or retrieved with typed accessors. The
stored representation of metadata on the 5800 system server is not exposed to the user, and no
hash is returned when metadata is stored.

The 5800 system Java client library provides the NameValueObjectArchive class as an
application access layer, which should be appropriate for most applications. In addition, an
advanced interface provides a mechanism to customize the 5800 system and to serve as a toolkit
to build new applications.

Note – The advanced toolkit is not described in this document. If you are interested in pursuing
advanced applications, contact your 5800 system Sales Representative.

Retrying Operations
Calls to the Java API should be wrapped with retry logic so that their applications are resilient to
transient failures that may be experienced when a node or switch fails while servicing an
operation.

Requests that fail on recoverable HTTP errors are automatically retried once. A typical
recoverable error occurs when the 5800 system HTTP server times out a connection that the
client then tries to reuse (the client maintains a collection pool). This results in a connection
failure at request time. Because this is a recoverable error, it is retried and the retry typically
succeeds.

Performance and Scalability
Starting the Java Virtual Machine (JVM) incurs a performance penalty, but once the JVM is
running, you can use the client object archive repeatedly and from multiple threads. I/O is
synchronous (blocking). HTTP connections are pooled for performance. You should
instantiate one instance of the NameValueObjectArchive per 5800 system server and use it for
all access to that server until exit.

Overview of the 5800 System Java Client API

Sun StorageTek 5800 System Client API Reference Manual • June 200826

Updating Client View of the Schema
In the Java client API, the schema is fetched when the NameValueObjectArchive class is
instantiated. If the schema has changed, the client application needs to create a new
NameValueArchive. A local copy of the schema is used for some metadata operations.

Java Client Application Deployment
Java applications using the 5800 system Java API reference the honeycomb-client.jar library.
You must include this library in your classpath when running your application. The 5800
system Java API was designed to run on Java v1.4, so you need to run your client applications
with a Java environment of v1.4 or greater.

Java API
The 5800 system Java client library provides a simple way of communicating with 5800 system
clusters. It provides programatic access to the 5800 system network protocol, which operates
over HTTP. You can implement most applications using a handful of these classes, but access to
“expert” features is also included.

This section discusses the following topics:

■ “Java API Packages” on page 27
■ “Java API Documentation” on page 27
■ “Basic Concepts” on page 28
■ “Key Classes” on page 28
■ “NameValueObjectArchive Application Access” on page 30

Java API Packages
The Java API is implemented in two packages:

■ com.sun.honeycomb.client

Provides the base classes required to interact with a 5800 system cluster.
■ com.sun.honeycomb.common

Contains classes for server-side exceptions.

Java API Documentation
The Java API documentation (Javadoc) is located in the SDK java/doc/htdocs directory, and
can be accessed using a browser.

Java API

Chapter 2 • Sun StorageTek 5800 System Java Client API 27

Basic Concepts
The root of the 5800 system Java client API is the NameValueObjectArchive class, which
represents a connection to a single 5800 system server. All operations are initiated by invoking
methods on a NameValueObjectArchive instance after initializing it with the address of a
cluster. The fact that a cluster of machines, rather than a single server, is handling the requests is
transparent to the application programmer.

A NameValueObjectArchive uses instances of the ObjectIdentifier class to uniquely identify
stored data objects. That is, there is a one-to-one correspondence between instances of
ObjectIdentifer and 5800 system metadata objects.

Note – There is potentially a many-to-one relationship between metadata and data objects.

When using NameValueObjectArchive, all metadata queries are executed against a 5800 system
server’s user-configurable index of name-value pair lists. This class also ensures that a metadata
entry is created for every data object stored, even if no metadata is provided at store time.

An instance of the NameValueObjectArchive class functions as a proxy for the 5800 system
server. Instantiation incurs some overhead in establishing communication, so reusing a single
instance is the recommended practice. Multithreading is supported with the same instance.

NameValueObjectArchive also allows all metadata operations to be performed in terms of two
classes that represent metadata records: SystemRecord and NameValueRecord. These classes
represent 5800 system metadata entries. When using NameValueObjectArchive, every stored
data object has a corresponding NameValueRecord that contains the extended attributes stored
with that data object, and each NameValueRecord has a reference to its SystemRecord, which
contains built-in system attributes such as data object size and creation time. In this model, all
instances of ObjectIdentifer returned from store operations and metadata queries
correspond directly to instances of NameValueRecord.

The results of a 5800 system metadata query are returned using instances of the
QueryResultSet class, which the application can step through to retrieve metadata or
identifiers. This class manages the details of fetching one batch of results after another.

Key Classes
This section provides an overview of the following key classes in the 5800 system Java client
API. For more information on using the following classes, see “Basic Concepts” on page 28.
Also see the Javadoc provided with the 5800 system SDK.

■ “NameValueObjectArchive” on page 29
■ “NameValueSchema” on page 29

Java API

Sun StorageTek 5800 System Client API Reference Manual • June 200828

■ “ObjectIdentifier” on page 29
■ “QueryResultSet” on page 30
■ “SystemRecord” on page 30
■ “NameValueRecord” on page 30

For more information on using these classes, see “Basic Concepts” on page 28.

NameValueObjectArchive

The NameValueObjectArchive class is the main entry point into the 5800 system. Each instance
of NameValueObjectArchive provides access to a specific 5800 system server, functioning as a
proxy object on which operations can be performed. Multiple simultaneous operations can be
accomplished in separate threads on the same NameValueObjectArchive instance.
Communication with the 5800 system server is entirely by means of HTTP requests. A pool of
HTTP connections is maintained for efficiency.

A NameValueObjectArchive instance enables you to store, retrieve, query and delete object
data and associated metadata records. Metadata is associated with an object in a set of
name-value pairs (see “NameValueRecord” on page 30). Metadata records can be used to
associate application-specific information with the raw data, such as name, mime type, or purge
date. Metadata records consist of structured data that can be queried. Object data is opaque to
the 5800 system.

A NameValueObjectArchive instance always ensures that a metadata record is created on the
5800 system server for each newly stored object, even if no metadata is provided with the store.
This enables a model of programming where every stored data object is accessed by name-value
metadata records (for example, for examining results from queries or performing delete
operations). Object data is never deleted directly; it is deleted when its last referencing metadata
record is deleted.

For additional information, see “NameValueObjectArchive Application Access” on page 30.

NameValueSchema

An instance of NameValueSchema represents information about the name-value metadata that
the 5800 system system uses to index data. This instance can be used to enumerate the fields
available in the schema as attributes. Each attribute has a name and a type.

See the Sun StorageTek 5800 System Administrator’s Guide for information on how to define
attributes.

ObjectIdentifier

Instances of ObjectIdentifier uniquely represent objects in a 5800 system store. The 5800
system creates these instances when objects are stored and are returned to the client as part of
the store result.ObjectIdentifier instances can be stored outside of the 5800 system and used

Java API

Chapter 2 • Sun StorageTek 5800 System Java Client API 29

later for retrieving objects. External storage can be accomplished using an identifier's string
representation by invoking the toString method. An instance of ObjectIdentifier can be
reconstituted using the constructor that takes String as an argument.

QueryResultSet

Instances of QueryResultSet provide access to the objects and metadata matching a query. The
query results can be stepped through using the next method. The individual results are
identifiers representing objects that match the query.

If selectKeys was specified in the original query, these metadata fields can be accessed using
the typed getter methods with each field’s name.

SystemRecord

Instances of SystemRecord represent the system metadata for an object, including OID, object
size, SHA1 hash, and creation time. They are returned by storeObject and storeMetadata.

NameValueRecord

Instances of NameValueRecord represent metadata used by the 5800 system to store and index
user-extensible lists of name-value pairs. For convenience, instances of NameValueRecord also
contain references to the SystemRecord instances of the objects they represent.

NameValueObjectArchiveApplication Access
Most applications make use of the NameValueObjectArchive class. This class ensures that a
default metadata entry is created for every data object stored, even if no metadata is explicitly
provided at store time.

The NameValueObjectArchive object functions as a proxy for the 5800 system server. All access
is enabled by invoking methods on this object.

The following key methods and classes are used with the NameValueObjectArchive class:
■ “NameValueObjectArchive” on page 31
■ “delete” on page 31
■ “storeObject” on page 31
■ “storeMetadata” on page 32
■ “checkIndexed” on page 32
■ “retrieveObject” on page 33
■ “retrieveMetadata” on page 33
■ “getSchema” on page 33
■ “query” on page 34
■ “query (with selectKeys)” on page 34

Java API

Sun StorageTek 5800 System Client API Reference Manual • June 200830

■ “query (with PreparedStatement)” on page 35
■ “query (with PreparedStatement and selectKeys)” on page 35
■ “PreparedStatement” on page 36
■ “QueryResultSet” on page 37
■ “getObjectIdentifier” on page 37
■ “isQueryComplete” on page 37
■ “getQueryIntegrityTime” on page 38
■ “QueryIntegrityTime” on page 38

NameValueObjectArchive

Initializes a new NameValueObjectArchive with the address or host name of a 5800 system
server, using the provided port.

Synopsis
public NameValueObjectArchive(java.lang.String address)

throws ArchiveException, java.io.IOException

public NameValueObjectArchive(String address, int port)

throws ArchiveException, IOException

Description

The NameValueObjectArchive is instantiated by supplying the address of the 5800 system
cluster in the constructor. The resulting data object can then be used to interact with that
cluster.

delete

Deletes the metadata record.

Synopsis
public void

delete(ObjectIdentifier identifier)

throws ArchiveException, java.io.IOException

Description

Takes a NameValueRecord OID.

Deletes the metadata record. If it is the last metadata record referencing the underlying object
data, the underlying object data will also be deleted.

storeObject

Uploads a new data object with an associated name-value metadata record.

Java API

Chapter 2 • Sun StorageTek 5800 System Java Client API 31

Synopsis
public SystemRecord storeObject(java.nio.channels.ReadableByteChannel dataChannel)

public SystemRecord

storeObject(ReadableByteChannel dataChannel,NameValueRecord record)

throws ArchiveException,IOException

Description

Takes a ReadableByteChannel (and an optional NameValueRecord) and returns a
SystemRecord instance containing the system metadata for the new object.

storeMetadata

Creates a new metadata record in the name-value object archive linked to the data object
identified by the OID.

Synopsis
public SystemRecord storeMetadata(ObjectIdentifier linkOID,

NameValueRecord record);

throws ArchiveException, java.io.IOException

Description

Takes a NameValueRecord and OID and returns a SystemRecord instance containing the system
metadata for the new metadata record.

checkIndexed

Checks if the metadata for an object is present in the query engine, and inserts the metadata if it
is not present.

Synopsis

public int checkIndexed(ObjectIdentifier identifier)

throws ArchiveException, IOException

Description

checkIndexed is intended as way to resolve a store index exception under program control (see
“The 5800 System Query Integrity Model” on page 21 for more information).

Once a store index exception occurs (as indicated by a SystemRecord.isIndexed value of false
after a store operation) then archive.checkIndexed(oid) can be called repeatedly until it
returns any non-zero value. This will ensure that the metadata for the object has been inserted
into the query engine; the object should then start to show up in matching queries.

Java API

Sun StorageTek 5800 System Client API Reference Manual • June 200832

checkIndexed returns an int value that indicates if the metadata for this object has been
inserted into the query engine. The value is -1 if the metadata was already inserted before this
operation was called, 0 if the metadata has still not been inserted, or 1 if the metadata was just
now inserted.

retrieveObject

Writes all of the data for the specified object into the provided channel, returning the amount of
data actually retrieved.

Synopsis
public long retrieveObject(ObjectIdentifier oid,

WritableByteChannel dataChannel)

throws ArchiveException, java.io.IOException

public long retrieveObject(ObjectIdentifier oid,

java.nio.channels.WritableByteChannel

dataChannel,long firstByte,

long lastByte)

throws ArchiveException, java.io.IOException

Description

Takes an OID and downloads the data object into a supplied WritableByteChannel.

retrieveMetadata

Returns a NameValueRecord instance containing the system and name-value metadata for the
metadata record identified by the OID.

Synopsis
public NameValueRecord

retrieveMetadata(ObjectIdentifier oid)

throws ArchiveException, java.io.IOException

Description

Returns a NameValueRecord instance containing the system and name-value metadata for the
metadata record identified by the OID.

getSchema

Returns the runtime configuration of the name-value object archive as a NameValueSchema
instance.

Java API

Chapter 2 • Sun StorageTek 5800 System Java Client API 33

Synopsis
public NameValueSchema getSchema()

throws ArchiveException, java.io.IOException

Description

Returns the runtime configuration of the name-value object archive as a NameValueSchema
instance.

query

Returns a ResultSet of SystemRecord instances containing MetadataRecord OIDs.

Synopsis
public QueryResultSet

query(java.lang.String query,int resultsPerFetch)

throws ArchiveException, java.io.IOException

Description

Takes a where clause and returns a QueryResultSet of SystemRecord instances containing
MetadataRecord OIDs.

The query parameter is a where clause in the 5800 system query syntax, which is a subset of SQL.

Returns a QueryResultSet. The results are stepped through by calling the next method and
using the typed getXXX accessor methods.

Note – For more information on the 5800 system query language, refer to Chapter 4, “Sun
StorageTek 5800 System Query Language.”

query (with selectKeys)
Returns a ResultSet of NameValueRecord instances containing the selected values.

Synopsis
public QueryResultSet

query(java.lang.String query, java.lang.String[] selectKeys,int maxResults)

throws ArchiveException, java.io.IOException

Java API

Sun StorageTek 5800 System Client API Reference Manual • June 200834

Description

Takes a where clause and a select clause and returns a QueryResultSet of NameValueRecord
instances containing the selected values.

selectKeys identifies the values to be returned, functioning as an SQL select clause.

The query parameter is a where clause in the 5800 system query syntax, which is a subset of SQL.

Returns a QueryResultSet. The results are stepped through by calling the next method and
using the getObjectIdentifier accessor.

Note – For more information on the 5800 system query language, refer to Chapter 4, “Sun
StorageTek 5800 System Query Language.”

query (with PreparedStatement)
Returns the OIDs of metadata records matching the query as a QueryResultSet instance.

Synopsis
public QueryResultSet query(PreparedStatement query,

int resultsPerFetch)

Description

Takes a PreparedStatement and returns a QueryResultSet of SystemRecord instances
containing MetadataRecord OIDs.

The PreparedStatement parameter enables queries with dynamic parameters to pass typed
data items to the query.

Returns a QueryResultSet. The results are stepped through by calling the next method and
using the typed getXXX accessor methods.

Note – For more information on the 5800 system query language, refer to Chapter 4, “Sun
StorageTek 5800 System Query Language.”

query (with PreparedStatement and selectKeys)
Returns specified fields from metadata records matching the query as a QueryResultSet
instance.

Java API

Chapter 2 • Sun StorageTek 5800 System Java Client API 35

Synopsis
public QueryResultSet

query(PreparedStatement query,

java.lang.String[] selectKeys,

int resultsPerFetch)

Description

Takes a where clause and a select clause and returns a QueryResultSet of NameValueRecord
instances containing the selected values.

selectKeys identifies the values to be returned, functioning as an SQL select clause.

The PreparedStatement parameter enables queries with dynamic parameters to pass typed data
items to the query.

Returns a QueryResultSet. The results are stepped through by calling the next method and
using the getObjectIdentifier accessor.

Note – For more information on the 5800 system query language, refer to Chapter 4, “Sun
StorageTek 5800 System Query Language.”

PreparedStatement

Extends com.sun.honeycomb.common.Encoding

Synopsis
public PreparedStatement(java.lang.String sql);

Description

Used to implement queries with Dynamic Parameters, which is the preferred way to pass typed
data items to a StorageTek 5800 query.

The number of bindParameter calls should match the number of question marks (?) in the
query string in the prepared statement. Parameters are specified positionally. For example, a
bindParameter call with index = 1 supplies a value for the first ? in the supplied query string.
Once a value has been supplied for each of the dynamic parameters, then the
PreparedStatement may be passed to the NameValueObjectArchive.query method to be
executed, for example:

NameValueObjectArchive archive = new NameValueObjectArchive(hostname);

Date date_value= new java.sql.Date();

PreparedStatement stmt = new PreparedStatement("date_field<?”);

Java API

Sun StorageTek 5800 System Client API Reference Manual • June 200836

stmt.bindParameter(date_value,1);

QueryResultSet qrs = archive.query(stmt);

QueryResultSet

The QueryResultSet class is used to page through OIDs and associated metadata returned by
NameValueObjectArchive.query. See the javadoc for the getXXX methods for getting typed
metadata.

next

Sets the QueryResultSet to point at the next record.

Synopsis
boolean next()

Description

Sets the QueryResultSet to point at the next record. Returns true if there is a next record, false
if not.

getObjectIdentifier

Gets the ObjectIdentifier of the current metadata record.

Synopsis
ObjectIdentifier getObjectIdentifier()

Description

Gets the ObjectIdentifier of the current metadata record.

isQueryComplete

Returns whether the set of results constitutes a complete set

Synopsis
boolean isQueryComplete()

Description

Returns whether the set of results constitutes a complete set. See “The 5800 System Query
Integrity Model” on page 21.

Java API

Chapter 2 • Sun StorageTek 5800 System Java Client API 37

getQueryIntegrityTime

Returns the most recent time at which all store index exceptions are known to have been
resolved.

Synopsis
long getQueryIntegrityTime()

Description

The query integrity time is a time such that all store index exceptions from before that time have
been resolved. There is an ideal query integrity time, which is the time of the oldest
still-unresolved store index exception: an ideal implementation when asked for the query
integrity time would always report this ideal value. In actual implementation, the reported
query integrity time might be hours or even days earlier than the ideal query integrity time,
depending on how far the ongoing system healing has progressed.

QueryIntegrityTime

Get detailed status on which store index exceptions might still be unresolved

Synopsis
QueryResultSet.isQueryComplete(), QueryResultSet.getQueryIntegrityTime();

Java API

Sun StorageTek 5800 System Client API Reference Manual • June 200838

Sun StorageTek 5800 System C Client API

This chapter provides detailed information on the 5800 system C client API.

The following topics are discussed:

■ “Overview of the 5800 System C Client API” on page 39
■ “C Client Application Deployment” on page 43
■ “Nonblocking C API” on page 43
■ “Synchronous C API” on page 44
■ “Synchronous C Data Types” on page 46
■ “Synchronous C API Functions” on page 53
■ “Querying With a Prepared Statement” on page 110

Overview of the 5800 System C Client API
This section provides an overview of the 5800 system C client API. The following topics are
discussed:

■ “Architecture” on page 40
■ “Interfaces” on page 40
■ “Retrying Operations” on page 40
■ “Multithreaded Access” on page 40
■ “Performance and Scalability” on page 40
■ “Memory Usage” on page 41
■ “Updating Schema Definitions” on page 41
■ “Session Management” on page 41

3C H A P T E R 3

39

Architecture
The 5800 system C API client supports two different access patterns: a synchronous “EZ” access
very similar to the current Java implementation, and a more flexible, nonblocking access based
on the POSIX model.

Note – For this release, the nonblocking C API client is not implemented.

Interfaces
The C client library interacts with the 5800 system server entirely through an HTTP protocol.

Retrying Operations
Calls to the C API should be wrapped with retry logic so that their applications are resilient to
transient failures that may be experienced when a node or switch fails while servicing an
operation.

Multithreaded Access
Both the synchronous and the nonsynchronous C APIs are fully thread-safe and can be used
simultaneously in multiple threads from the same process. Each thread must call
“hc_session_create_ez” on page 53 to create its own session. Sessions must not be shared
between threads.

Caution – Name resolution must be done in a single thread with the subsequent IP address
passed to hc_session_create_ez, otherwise core dumps will occur if multiple name resolution
threads call getaddrinfo at the same time.

Performance and Scalability
The 5800 system C client library provides high performance and is highly scalable.

The synchronous C API performs its own calls to select() internally.

For the nonblocking C API (not yet implemented), access is provided to the underlying fd_set
so that all pending I/O operations can be serviced by a single thread on the basis of status
returned by the POSIX select() function, possibly after merging the 5800 system fd_set with
some external, application-specific fd_set.

Overview of the 5800 System C Client API

Sun StorageTek 5800 System Client API Reference Manual • June 200840

Memory Usage
The 5800 system C client library generally follows the model of populating externally allocated
data structures such as handles, buffers, and result arrays.

Some internal data structures are generated during XML document construction. These data
structures are allocated and freed using the function pointers supplied to hc_init when
initializing the library (see “Initializing a Global Session” on page 41).

Other data structures are allocated and returned to the user; these have corresponding
functions to free them. For example, hc_session_create_ez and hc_session_free.

Updating Schema Definitions
The C client library does not automatically refresh its in-memory schema definitions. If the
schema is changed through the command-line interface (CLI), a new session must be created
with a new call to “hc_session_create_ez” on page 53 to access the schema changes.

Session Management
A global session must be explicitly initialized with a call to hc_init and released with a call to
hc_cleanup. Memory allocators and deallocators are supplied in the initialization function to
control how memory allocation occurs. You will normally supply the standard malloc, free,
and realloc functions for this functionality.

Heap Memory Allocator
The heap memory allocator is defined as follows:

typedef void* (*allocator_t) (size_t size);

Heap Memory Deallocator
The heap memory deallocator is defined as follows:

typedef void (*deallocator_t) (void *p);

Heap Memory Reallocator
The heap memory reallocator is defined as follows:

typedef void (*reallocator_t) (void *p,size_t size);

Initializing a Global Session
The following function initializes a global session:

Overview of the 5800 System C Client API

Chapter 3 • Sun StorageTek 5800 System C Client API 41

hcerr_t hc_init(allocator_t,

deallocator_t,

reallocator_t);

This function must be called once per process to initialize the memory functions used in the
5800 system C API. It also initializes global session properties.

A global session is initialized once per process, regardless of how many threads in that process
are using the C API.

Note – hc_init should be called once per process before any thread calls
“hc_session_create_ez” on page 53. If “hc_session_create_ez” on page 53 is called before
hc_init, an implicit call is made to hc_init from that thread. But that call to hc_init is not
interlocked with other threads, and it uses the C API shared library’s version of malloc and
free, which might be different than the application’s version of malloc and free. It is strongly
recommended that all applications call hc_init once per process with their own allocator and
deallocator.

Note – For more information on “hc_session_create_ez” on page 53 , see
“hc_session_create_ez” on page 53.

Terminating a Global Session
The following function terminates a global session:

void hc_cleanup();

System Record
All 5800 system store operations return a system record, which encapsulates information
about the stored object. In particular, the system record contains the OID, which can be used to
retrieve the stored object data or metadata.

typedef struct hc_system_record_ {

char is_indexed;

hc_oid oid;

hc_digest_algo digest_algo;

hc_digest data_digest;

hc_long_t size;

hc_long_t creation_time;

hc_long_t deleted_time;

char shredMode;

} hc_system_record_t;

About the fields:

Overview of the 5800 System C Client API

Sun StorageTek 5800 System Client API Reference Manual • June 200842

■ oid — The objectid for this object, equivalent to the system.object_id field.
■ digest_algo — Always set to "sha1" for this release. Equivalent to the

system.object_hash_alg field.
■ data_digest — An array of bytes that represent the content digest of this object's data.

Equivalent to the system.object_hash field.
■ size — The size of the data in this object, in bytes. Equivalent to the system.object_size

field.
■ creation_time — The object creation time, expressed as number of milliseconds since the

epoch. Equivalent to the system.object_ctime field.
■ deleted_time — The deletion time of this record, if any, as the number of milliseconds since

the epoch.
■ shredMode — Not used in this release.
■ is_indexed — indicates, after a store_data or store_metadata operation, whether the

metadata for the object was successfully inserted into the query engine, and the object is
hence available for query. 0 if false, 1 if true.

Failure and Recovery
Every function in the 5800 system C client library returns a result code of type hcerr_t. Any
value other than HCERR_OK indicates a nonrecoverable error. See the hc.h file for specific error
codes.

C Client Application Deployment
C applications using the 5800 system C API use both the 5800 system libraries and the curl
libraries. These libraries are different for each supported platform (Windows, Linux, Solaris
(x86), Solaris (SPARC)) and are located in the c/<OS>/lib directory in the SDK.

Note – The environment variable http_proxy should not be set for processes using the C API,
since the HTTP client library (curl) makes use of it.

Nonblocking C API
The nonblocking C API is not implemented for this release of the 5800 system. If you are
interested in working with the nonblocking C API, contact your 5800 system Sales
Representative.

Nonblocking C API

Chapter 3 • Sun StorageTek 5800 System C Client API 43

Synchronous C API
A multiplatform synchronous C API in which operations are accomplished in a few simple
function calls is provided for the 5800 system. The API calls include operations for storing,
retrieving, deleting, and querying of data and metadata records. Multiple threads are supported,
and operations block until they complete.

You must call hc_init (once per process) and “hc_session_create_ez” on page 53 (once per
thread) prior to making any other API calls.

All functions in the 5800 system C API return an hc_err. Any value other than HCERR_OK

indicates failure.

This section discusses the following topics for the 5800 system synchronous C API.
■ “Changes for the 1.1 Release” on page 44
■ “Limitations” on page 45

Changes for the 1.1 Release
This release of the synchronous C API contains the following changes:
■ Handling is added for storing, retrieving and querying the following new metadata types:

– char — for Latin 1 character set
– unicode
– binary
– date
– time
– timestamp

Query and queryplus are merged
■ Prepared statements (pstmts) are introduced to handle values of queries that cannot be

placed inline, and a new query is introduced to handle them.
■ The following new functions have been added to the API:

– “hc_check_indexed_ez” on page 89
– “hc_decode_hcerr” on page 112
– “hc_decode_hc_type” on page 113
– “hc_schema_get_length” on page 61
– “hc_nvr_add_binary” on page 71
– “hc_nvr_add_date” on page 72
– “hc_nvr_add_time” on page 73
– “hc_nvr_add_timestamp” on page 74
– “hc_nvr_get_binary” on page 81
– “hc_nvr_get_date” on page 82

Synchronous C API

Sun StorageTek 5800 System Client API Reference Manual • June 200844

– “hc_nvr_get_time” on page 82
– “hc_nvr_get_timestamp” on page 83
– “hc_pstmt_create” on page 100
– “hc_pstmt_free” on page 101
– “hc_pstmt_set_string” on page 101
– “hc_pstmt_set_char” on page 102
– “hc_pstmt_set_double” on page 103
– “hc_pstmt_set_long” on page 104
– “hc_pstmt_set_date” on page 105
– “hc_pstmt_set_time” on page 106
– “hc_pstmt_set_timestamp” on page 107
– “hc_pstmt_set_binary” on page 108
– “hc_pstmt_query_ez” on page 109
– “hc_qrs_is_query_complete” on page 97
– “hc_qrs_get_query_integrity_time” on page 98

The following functions have changed in the API:
■ “hc_query_ez” on page 94
■ “hc_qrs_next_ez” on page 96

The following functions and types have been removed from the API:
■ hc_query_plus_result_set_t

■ hc_query_plus_ez

■ hc_qprs_next_ez

■ hc_qprs_free

Limitations
This release of the synchronous C API is subject to the following limitations:

■ Changes to the metadata schema at the server are only detected at the client at the next call
to “hc_session_create_ez” on page 53.

■ The values returned by “hc_session_get_platform_result” on page 58 will not be
updated properly after calls to the functions “hc_retrieve_ez” on page 91 and
“hc_delete_ez” on page 111.

■ When using the C API, the maximum metadata size of a data item stored using either
“hc_store_both_ez” on page 87 or “hc_store_metadata_ez” on page 88 is limited to
approximately 76300 bytes. The exact maximum metadata size depends on many factors
and should not be relied on. This limitation does not apply to metadata stored using the Java
API.

Synchronous C API

Chapter 3 • Sun StorageTek 5800 System C Client API 45

Synchronous C Data Types
The following data types are defined for the C API:
■ “hc_string_t” on page 46
■ “hc_long_t” on page 46
■ “hc_double_t” on page 46
■ “hc_type_t” on page 47
■ “hc_value_t” on page 47
■ “hc_schema_t” on page 48
■ “hc_nvr_t” on page 48
■ “hc_session_t” on page 48
■ “hc_pstmt_t” on page 49
■ “read_from_data_source” on page 49
■ “write_to_data_destination” on page 50
■ “hcerr_t” on page 51

hc_string_t

Type for holding Unicode (UTF-8) and Latin-1 null-terminated strings.

Synopsis
typedef char *hc_string_t;

Description
This type is used interchangeably for holding Unicode (UTF-8) and Latin-1 null-terminated
metadata strings. The context determines whether the contents are UTF-8 or Latin-1.

hc_long_t

Type for holding integer values.

Synopsis
typedef int64_t hc_long_t;

Description
Type for holding integer values.

hc_double_t

Type for holding floating-point values.

Synchronous C Data Types

Sun StorageTek 5800 System Client API Reference Manual • June 200846

Synopsis
typedef double hc_double_t;

Description
Type for holding floating-point values.

hc_type_t

5800 system name-value metadata type specifier.

Synopsis
typedef enum hc_types_{

HC_UNKNOWN_TYPE = -1,

HC_BOGUS_TYPE = 0,

HC_STRING_TYPE = 1,

HC_LONG_TYPE = 2,

HC_DOUBLE_TYPE = 3,

HC_BYTE_TYPE = 4,

HC_CHAR_TYPE = 5,

HC_BINARY_TYPE = 6,

HC_DATE_TYPE = 7,

HC_TIME_TYPE = 8,

HC_TIMESTAMP_TYPE = 9,

HC_OBJECTID_TYPE = 10,

} hc_type_t;

Description
Specifies one of the 5800 system metadata types that can go in the archive.

hc_value_t

5800 system name-value metadata data value.

Synopsis
typedef struct hc_value_ {

hc_type_t hcv_type;

union {

hc_string_t hcv_string;

hc_long_t hcv_long;

hc_double_t hcv_double;

Synchronous C Data Types

Chapter 3 • Sun StorageTek 5800 System C Client API 47

hc_bytearray_t hcv_bytearray;

struct tm hcv_tm;

struct timespec hcv_timespec;

} hcv;

} hc_value_t;

Description
This tagged union type can be used to hold a reference to any of the 5800 system data types.

hc_schema_t

5800 system name-value metadata schema.

Synopsis
typedef void hc_schema_t;

Description
An opaque structure that holds the names and data types of each element in the archive’s
metadata schema.

hc_nvr_t

5800 system name-value record.

Synopsis
typedef void hc_nvr_t;

Description
An opaque structure to represent one metadata record. There is a count of metadata tuples, and
parallel sets of names and of typed values for the tuples in this metadata record.

hc_session_t

Structure describing the connection from one thread to one 5800 system server.

Synopsis
typedef void hc_session_t;

Synchronous C Data Types

Sun StorageTek 5800 System Client API Reference Manual • June 200848

Description
An opaque structure to represent the session from one thread to one 5800 system server. It
contains the schema used to interpret metadata store and retrieve operations to this 5800
system server.

hc_pstmt_t

Structure for holding a prepared statement.

Synopsis
typedef void hc_pstmt_t;

Description
An opaque structure representing a query, including the query text and bound fields.

hc_query_result_set_t

Structure used to hold the results of a query.

Synopsis
typedef void hc_query_result_set_t;

Description
This opaque structure is used to hold the results of a query. For more information on the
functions that use this structure, see “Querying Metadata” on page 94.

read_from_data_source

Data source template used to upload object data to the cluster.

Synopsis
typedef long (*read_from_data_source)

(void *cookie, char *buf, long buf_size);

Synchronous C Data Types

Chapter 3 • Sun StorageTek 5800 System C Client API 49

Description
Function pointers of read_from_data_source type are used to upload object data. The function
pointer and opaque cookie reference are supplied as arguments to “hc_store_both_ez” on
page 87 and other functions that store object data. The data source reader function will be
called repeatedly, with the supplied cookie as an argument, to gather the object data to upload
into storage.

A read_from_data_source function should read up to buf_size bytes from the data source
indicated by cookie into the buffer at location buff and return the actual number of bytes read
as the return value from the function.

There are two special return codes:

■ A return value of 0 indicates the end-of-file condition. The data should be committed to the
data store.

■ A return value of -1 indicates a request to cancel the store. The store operation should be
aborted with an error code of HCERR_ABORTED_BY_CALLBACK.

Parameters
cookie

An opaque data structure to identify this data cookie. The cookie is likely to be an open file
descriptor.

buf

Where to store the data.

buf_size

The number of available bytes of space in buf.

See Also
“hc_store_both_ez” on page 87

write_to_data_destination

Data destination template used to download object data to the cluster.

Synopsis
typedef long (*write_to_data_destination)

(void *cookie, char *buff, long buff_len);

Synchronous C Data Types

Sun StorageTek 5800 System Client API Reference Manual • June 200850

Description
Function pointers of write_to_data_destination type are used to download object data to a
network or other destination from the 5800 system server using “hc_retrieve_ez” on page 91.
The function pointer and opaque cookie reference are supplied as arguments to
“hc_retrieve_ez” on page 91, and the function will be called with the supplied cookie

argument to deliver the downloaded data to a local data storage function.

A write_to_data_destination function should write exactly buff_len bytes to the data
destination indicated by cookie, reading the bytes from the buffer at location buff. It should
return a long value indicating the number of bytes actually processed. A return code that differs
from buff_len indicates that the transfer should be terminated.

Parameters
cookie An opaque data structure to identify this data cookie. The cookie is likely to be

an open file descriptor.

buff Where to copy the data from.

buff_len The number of bytes of space in buff.

See Also
“hc_retrieve_ez” on page 91

hcerr_t

5800 system C client API error codes.

To decode hcerr_t values into strings, see “hc_decode_hcerr” on page 112

Synopsis
typedef enum hcerr {

HCERR_OK = 0,

HCERR_NOT_INITED,

HCERR_ALREADY_INITED,

HCERR_INIT_FAILED,

HCERR_OOM,

HCERR_NOT_YET_IMPLEMENTED,

HCERR_SESSION_CREATE_FAILED,

HCERR_ADD_HEADER_FAILED,HCERR_IO_ERR,

HCERR_FAILOVER_OCCURRED,

HCERR_CAN_CALL_AGAIN,

HCERR_GET_RESPONSE_CODE_FAILED,

HCERR_CONNECTION_FAILED,

Synchronous C Data Types

Chapter 3 • Sun StorageTek 5800 System C Client API 51

HCERR_BAD_REQUEST,

HCERR_NO_SUCH_OBJECT,

HCERR_INTERNAL_SERVER_ERROR,

HCERR_FAILED_GETTING_FDSET,

HCERR_FAILED_CHECKING_FDSET,

HCERR_MISSING_SELECT_CLAUSE,

HCERR_URL_TOO_LONG,

HCERR_COULD_NOT_OPEN_FILE,

HCERR_FAILED_TO_WRITE_TO_FILE,

HCERR_NULL_SESSION,

HCERR_INVALID_SESSION,

HCERR_INVALID_OID,

HCERR_NULL_HANDLE,

HCERR_INVALID_HANDLE,

HCERR_INVALID_SCHEMA,

HCERR_INVALID_RESULT_SET,

HCERR_INVALID_NVR,

HCERR_WRONG_HANDLE_FOR_OPERATION,

HCERR_HANDLE_IN_WRONG_STATE_FOR_OPERATION,

HCERR_READ_PAST_LAST_RESULT,

HCERR_XML_PARSE_ERROR,

HCERR_XML_MALFORMED_XML,

HCERR_XML_EXPECTED_LT,

HCERR_XML_INVALID_ELEMENT_TAG,

HCERR_XML_MALFORMED_START_ELEMENT,

HCERR_XML_MALFORMED_END_ELEMENT,

HCERR_XML_BAD_ATTRIBUTE_NAME,

HCERR_XML_BUFFER_OVERFLOW,

HCERR_BUFFER_OVERFLOW,

HCERR_NO_SUCH_TYPE,

HCERR_ILLEGAL_VALUE_FOR_METADATA,

HCERR_NO_SUCH_ATTRIBUTE,

HCERR_NO_MORE_ATTRIBUTES,

HCERR_EOF,HCERR_FAILED_GETTING_SILO_DATA,

HCERR_PLATFORM_NOT_INITED,

HCERR_PLATFORM_ALREADY_INITED,

HCERR_PLATFORM_INIT_FAILED,

HCERR_PLATFORM_HEADER_TOO_LONG,

HCERR_PLATFORM_TOO_LATE_FOR_HEADERS,

HCERR_PLATFORM_NOT_ALLOWED_FOR_GET,

HCERR_FAILED_TO_GET_SYSTEM_RECORD,

HCERR_PARTIAL_FILE,

HCERR_ABORTED_BY_CALLBACK,

HCERR_PLATFORM_GENERAL_ERROR,

HCERR_ILLEGAL_ARGUMENT

} hcerr_t;

Synchronous C Data Types

Sun StorageTek 5800 System Client API Reference Manual • June 200852

Description
This structure defines the 5800 system C client API error codes.

Synchronous C API Functions
The 5800 system synchronous C API functions are defined to perform the following tasks:

■ “Managing 5800 System Sessions” on page 53
■ “Managing a Schema” on page 59
■ “Manipulating Name-Value Records” on page 63
■ “Storing Data and Metadata” on page 87
■ “Retrieving Data and Metadata” on page 91
■ “Querying Metadata” on page 94
■ “Deleting Records” on page 111
■ “Translating Error and Type Codes” on page 112

Managing 5800 System Sessions
The following functions are used to manage 5800 system sessions:

■ “hc_session_create_ez” on page 53
■ “hc_session_free” on page 55
■ “hc_session_get_status” on page 55
■ “hc_session_get_schema” on page 56
■ “hc_session_get_host” on page 57
■ “hc_session_get_platform_result” on page 58
■ “hc_session_get_archive” on page 59

hc_session_create_ez

Creates a session.

Synopsis
hcerr_t hc_session_create_ez(char *host,

int port,

hc_session_t **sessionp);

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 53

Description
This function initializes the 5800 system API and must be called before calling any of the other
functions in this API. It downloads a copy of the schema for a particular host or port. The
schema is used to validate the name-value-type tuples that are added to metadata records.

Both the synchronous and the nonsynchronous C APIs are fully thread-safe and can be used
simultaneously in multiple threads from the same process. Each thread must call
“hc_session_create_ez” on page 53 to create its own session. Sessions must not be shared
between threads.

Note – hc_init should be called once per process before any thread calls
hc_session_create_ez. If hc_session_create_ez is called before hc_init, an implicit call is
made to hc_init from that thread. But that call to hc_init is not interlocked with other
threads, and it uses the C API shared library’s version of malloc and free, which might be
different than the application’s version of malloc and free. It is strongly recommended that all
applications call hc_init once per process with their own allocator and deallocator.

For more information on hc_init, see “Initializing a Global Session” on page 41

Parameters
host

IN: The name or IP address of a 5800 system server.

port

IN: The port number of the 5800 system server (normally 8080).

sessionp

OUT: Updated to point to a session object.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200854

hc_session_free

Releases the session object.

Synopsis
hcerr_t hc_session_free (hc_session_t *session);

Description
This function releases the session object and recovers handles and memory for one connection.

Parameters
session

IN: The session object to free.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

hc_session_get_status

Gets the session status.

Synopsis
hcerr_t hc_session_get_status(hc_session_t *session,

int32_t *response_codep,char **errstrp);

Description
This function returns the HTTP response code and the error message string associated with the
last request on this session.

Parameters
session

IN: The session object.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 55

response_codep

OUT: Updated to be the HTTP response code.

errstr

IN: Updated to be the error returned in the response body if the response code is not 200 (OK).
errstr should not be written to by the application (that is, it is read only), and will persist until
the next request to the 5800 system server or until “hc_session_free” on page 55 is called,
whichever comes first.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

hc_session_get_schema

Gets schema object associated with this session.

Synopsis
hcerr_t hc_session_get_schema (hc_session_t *session,

hc_schema_t **schemap);

Description
This function returns the current schema object associated with this session.

Parameters
session

IN: The session object.

schemap

OUT: Updated to be the schema associated with the current session. schemap should not be
modified by the application and will persist until the next call to “hc_session_free” on
page 55, at which time it will be implicitly released.

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200856

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

hc_session_get_host

Returns the host name and port number associated with the session.

Synopsis
hc_session_get_host(hc_session_t *session,

char **hostp,int *portp);

Description
This function returns the host name and port number associated with the session.

Parameters
session

IN: The session object.

hostp

OUT: Updated to point to host name (read-only string). hostp should not be modified by the
application and will persist until the next call to “hc_session_free” on page 55.

portp

OUT: Updated to be the port number.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 57

hc_session_get_platform_result

Returns low-level error codes associated with the current session.

Synopsis
hcerr_t hc_session_get_platform_result(hc_session_t *session,

int32_t *connect_errnop,

int32_t *platform_resultp);

Description
This function returns low-level error codes associated with the current session.

Note – The values returned by hc_session_get_platform_result will not be updated properly
after calls to the functions hc_retrieve_ez and hc_delete_ez.

Parameters
session

IN: The session object.

connect_errnop

OUT: Updated to be the operating system’s errno value associated with the last connect
operation on the current session.

platform_resultp

OUT: Updated to be the error code reported by the underlying HTTP library (for example, the
Curl library).

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200858

hc_session_get_archive

Returns the current archive object associated with this session.

Synopsis
hcerr_t hc_session_get_archive(hc_session_t *session,

hc_archive_t **archivep);

Description
This function returns the current archive object associated with this session.

Note – The archive object is not needed for the synchronous C API, but is made available for
interfacing with the lower-level (nondocumented) API.

Parameters
session

IN: The session object.

archivep

OUT: Updated to be the archive object associated with the current session.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

Managing a Schema
When a session commences, the C client API downloads information about the metadata
schema that is in use on the 5800 system server.

The following functions are used to manage a schema:

■ “hc_schema_get_type” on page 60
■ “hc_schema_get_length” on page 61
■ “hc_schema_get_count” on page 61

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 59

■ “hc_schema_get_type_at_index” on page 62

hc_schema_get_type

Looks up type in schema.

Synopsis
hcerr_t hc_schema_get_type(hc_schema_t *schema,

char *name, hc_type_t *typep);

Description
This function looks up the type associated with a given name in the current metadata schema,
or returns an error if the name is not known.

Parameters
schema

IN: The schema to interrogate.

name

IN: The attribute name to look up in the schema.

typep

OUT: Updated to be the type associated with that name in the schema.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_SCHEMA

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200860

hc_schema_get_length

Looks up length of char and string attribute fields.

Synopsis
hcerr_t hc_schema_get_length(hc_schema_t *schema,

char *name, int *length);

Description
This function looks up the length of a char or string field associated with a given attribute
name in the current metadata schema, or returns an error if the name is not known.

Parameters
schema

IN: The schema to interrogate.

name

IN: The attribute name to look up in the schema.

length

OUT: Updated to be the length of the field associated with that name in the schema.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_INVALID_SCHEMA

HCERR_ILLEGAL_ARGUMENT

hc_schema_get_count

Returns the number of name-value pairs in the metadata schema.

Synopsis
hcerr_t hc_schema_get_count(hc_schema_t *hsp,

hc_long_t *countp);

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 61

Description
This function returns the number of name-value pairs in the metadata schema.

Parameters
hsp

IN: The schema to interrogate.

countp

OUT: Updated with the number of name-value pairs in the schema.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_SCHEMA

See Also
“hc_schema_get_type_at_index” on page 62

hc_schema_get_type_at_index

Iterates through the name-value pairs in a schema.

Synopsis
hcerr_t hc_schema_get_type_at_index (hc_schema_t *hsp,

hc_long_t index,char **namep,

hc_type_t *typep);

Description
This function provides a simple way to iterate through the name-value pairs in a schema.

Parameters
hsp

IN: The schema to query.

index

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200862

IN: Should range from 0 up to the count-1 returned in “hc_schema_get_count” on page 61.

namep

OUT: Updated to point to a string that is an attribute name of one attribute in the schema.

typep

OUT: Updated to be the type associated with that name in the schema. If the server schema
references a type that the client library does not support, then the type is returned as
HC_UNKNOWN_TYPE.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_SCHEMA

HCERR_ILLEGAL_ARGUMENT

See Also
“hc_schema_get_count” on page 61

Manipulating Name-Value Records
5800 system synchronous C API functions are defined to perform the following name-value
record manipulation tasks:

■ “Using the API for Storing Name-Value Records” on page 63
■ “Using Returned Name-Value Records” on page 64
■ “Creating and Freeing Name-Value Records” on page 65
■ “Building Name-Value Records” on page 66
■ “Retrieving Name-Value Records” on page 76
■ “Creating and Converting Name-Value Records From and To String Arrays” on page 84

Using the API for Storing Name-Value Records
A common way of storing metadata in the synchronous C API for the 5800 system is to use the
name-value record API.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 63

▼ To Use the API for Storing Name-Value Records

Call hc_init once per process.

Call “hc_session_create_ez”on page 53 to initialize the session and download the schema.

Create the metadata record with “hc_nvr_create”on page 65.

Fill the new metadata piece by piece with hc_nvr_add_metadata_* functions (see “Building
Name-Value Records”on page 66) for each 5800 system type.

Call either “hc_store_metadata_ez”on page 88 or “hc_store_both_ez”on page 87 to store
the new metadata record.

When you are done, free the metadata record by calling “hc_nvr_free”on page 66.

When the session is finished, call “hc_session_free”on page 55 to free the session data
structures.

When all threads are completed, call hc_cleanup to release the global session.

Using Returned Name-Value Records
Name-value records are also returned as the result of queries that return metadata information,
such as “hc_retrieve_metadata_ez” on page 92.

▼ To Use Returned Name-Value Records

Run the query to create an “hc_nvr_t”on page 48 record or a table of “hc_nvr_t”on page 48
structures.
Use either name-based access (for example, hc_nvr_get_*) or index-based access (for example,
“hc_nvr_get_count” on page 76 and “hc_nvr_get_value_at_index” on page 77).

To free the “hc_nvr_t”on page 48 structure, call “hc_nvr_free”on page 66.

Note – Structures created by hc_nvr_create can also be freed by calling hc_nvr_free.

1

2

3

4

5

6

7

8

1

2

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200864

Creating and Freeing Name-Value Records
The following functions are defined to create and free name-value records:

■ “hc_nvr_create” on page 65
■ “hc_nvr_free” on page 66

hc_nvr_create

Creates a name-value record.

Synopsis
hcerr_t hc_nvr_create(hc_session_t *session,

hc_long_t nslots,

hc_nvr_t **nvrp);

Description
This function creates a name-value record with a designated initial size that is associated with a
particular session. Metadata that is added to this name-value record must match the schema
associated with the session.

Parameters
session

IN: The session with which this name-value record is associated.

nslots

IN: The number of slots for name-value-type tuples.

nvrp

OUT: Updated with a pointer to a new name-value record of the designated size.

Return Codes
HCERR_OK

HCERR_ILLEGAL_ARGUMENT

HCERR_OOM

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 65

See Also
“hc_nvr_free” on page 66

hc_nvr_free

Frees a name-value record.

Synopsis
hcerr_t hc_nvr_free(hc_nvr_t *nvr);

Description
This function frees a name-value record that was created by “hc_nvr_create” on page 65.

Parameter
nvr

IN: Points to the name-value-record to be freed.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

See Also
“hc_nvr_create” on page 65

Building Name-Value Records
The following functions are defined to build name-value records:

■ “hc_nvr_add_value” on page 67
■ “hc_nvr_add_long” on page 68
■ “hc_nvr_add_double” on page 69
■ “hc_nvr_add_string” on page 70
■ “hc_nvr_add_binary” on page 71
■ “hc_nvr_add_date” on page 72
■ “hc_nvr_add_time” on page 73

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200866

■ “hc_nvr_add_timestamp” on page 74
■ “hc_nvr_add_from_string” on page 75

hc_nvr_add_value

Adds a new metadata value.

Synopsis
hcerr_t hc_nvr_add_value(hc_nvr_t *nvr,

char *name, hc_value_t value);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record.
The name-value record will automatically expand as needed.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: Value for the tuple, in the type-tagged “hc_value_t” on page 47 format.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 67

hc_nvr_add_long

Adds a new metadata value of type hc_long_t.

Synopsis
hcerr_t hc_nvr_add_long(hc_nvr_t *nvr,

char *name, hc_long_t value)

Description
This function adds a new metadata name-value-type tuple to a designated name-value record,
where type is known to be hc_long_t (see “hc_type_t” on page 47). The name-value record
will automatically expand as needed.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The hc_long_t value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200868

hc_nvr_add_double

Adds a new metadata value of type hc_double_t.

Synopsis
hcerr_t hc_nvr_add_double(hc_nvr_t *nvr,

char *name,

hc_double_t value);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record,
where type is known to be hc_double_t (see “hc_type_t” on page 47). The name-value record
will automatically expand as needed.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The hc_double_t value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 69

hc_nvr_add_string

Adds a new metadata value of type Unicode UTF-8 string.

Synopsis
hcerr_t hc_nvr_add_string(hc_nvr_t *nvr,

char *name,

hc_string_t value);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record,
where type is a Unicode UTF-8 string. The name-value record automatically expands as
needed. The string is copied into the structure.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The hc_string_t value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200870

hc_nvr_add_binary

Adds new metadata value of type binary.

Synopsis
hcerr_t hc_nvr_add_binary(hc_nvr_t *nvr,

hc_string_t name,

int size,

unsigned char *bytes);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record,
where type is binary data. The name-value record automatically expands as needed. The name
and data are copied into the structure.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

size

IN: The size of the data.

bytes

IN: The binary data.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 71

hc_nvr_add_date

Adds new metadata value of type date.

Synopsis
#include <time.h>

hcerr_t hc_nvr_add_date(hc_nvr_t *nvr,

hc_string_t name,struct tm *value);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record.

The struct tm fields are as defined in the POSIX standard and interpreted by mktime(3C). All
fields are ignored except:

int tm_mday; /* day of the month - [1, 31] */

int tm_mon; /* months since January - [0, 11] */

int tm_year; /* years since 1900 */

The name-value record automatically expands as needed. The name and value are copied into
the structure.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The struct tm (time.h) value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200872

hc_nvr_add_time

Adds new metadata value of type time.

Synopsis
#include <time.h>

hcerr_t hc_nvr_add_time(hc_nvr_t *nvr,

hc_string_t name,

time_t *value);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record.
The value represents seconds since midnight.

The name-value record automatically expands as needed. The name and value are copied into
the structure.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The time_t (time.h) value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 73

hc_nvr_add_timestamp

Adds new metadata value of type timestamp.

Synopsis
#include <time.h>

hcerr_t hc_nvr_add_timestamp(hc_nvr_t *nvr,

hc_string_t name,

struct timespec *value);

Description
This function adds a new metadata name-value-type tuple to a designated name-value record,
where type is hc_timestamp_t. The struct timespec is defined in the POSIX standard:

time_t tv_sec; /* seconds */

long tv_nsec; /* and nanoseconds */

where tv_sec is measured since the UNIX epoch (00:00:00 UTC on January 1, 1970). The
maximum value of tv_sec is truncated by three decimal digits owing to database limitations
and tv_nsec is truncated to milliseconds. The name-value record automatically expands as
needed. The name and value are copied into the structure.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The ’struct timespec’ (time.h) value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200874

hc_nvr_add_from_string

Adds a new metadata value where the value always starts out as a string.

Synopsis
hcerr_t hc_nvr_add_from_string(hc_nvr_t *nvr,

char *name,

char *value);

Description
This is a convenient function for adding a new metadata name-value-type tuple to a designated
name-value, where the value always starts out as a string. The correct metadata type for name
must be looked up from the schema. The name-value record will automatically expand as
needed. The string is copied into the structure.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

IN: The string value to be added.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 75

Retrieving Name-Value Records
The following functions are defined to retrieve name-value records:

■ “hc_nvr_get_count” on page 76
■ “hc_nvr_get_value_at_index” on page 77
■ “hc_nvr_get_long” on page 78
■ “hc_nvr_get_double” on page 79
■ “hc_nvr_get_string” on page 80
■ “hc_nvr_get_binary” on page 81
■ “hc_nvr_get_date” on page 82
■ “hc_nvr_get_time” on page 82
■ “hc_nvr_get_timestamp” on page 83

hc_nvr_get_count

Retrieves the number of metadata name and value tuples in this name-value record.

Synopsis
hcerr_t hc_nvr_get_count(hc_nvr_t *nvr,

hc_long_t *retcount);

Description
This function retrieves the number of metadata name and value tuples in the specified
name-value record.

Parameters
nvr

IN: Points to a name-value-record.

retcount

OUT: Updated to contain the count of name-value pairs.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200876

hc_nvr_get_value_at_index

Iterates through the names and values in a name-value record.

Synopsis
hc_nvr_get_value_at_index(hc_nvr_t *nvr,

hc_long_t index,

char **namep,

hc_value_t *valuep);

Description
This function iterates through the names and values in a name-value record. The returned
names are read-only. Unpredictable results will occur if either the name or the value is
referenced after either “hc_nvr_free” on page 66 or “hc_nvr_create_from_string_arrays”
on page 84 is called on this name-value record.

Parameters
nvr

Points to a name-value-record.

index

IN: The index to examine.

namep

OUT: Updated to point to the attribute name at the specified index.

valuep

OUT: Updated with the “hc_value_t” on page 47 type-tagged value at the specified index.

Return Codes
HCERR_OK

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_NO_MORE_ARGUMENTS

HCERR_OOM

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 77

hc_nvr_get_long

Retrieves a value of type hc_long_t.

Synopsis
hcerr_t hc_nvr_get_long(hc_nvr_t *nvr,

char *name,

hc_long_t *retlong);

Description
This function retrieves the value of type hc_long_t (see “hc_type_t” on page 47) associated
with an indicated attribute name in a name-value record.

Parameters
nvr

Points to a name-value-record.

name

IN: Attribute name to look for.

retlong

OUT: Updated to contain the hc_long_t value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200878

hc_nvr_get_double

Retrieves a value of type hc_double_t.

Synopsis
hcerr_t hc_nvr_get_double(hc_nvr_t *nvr,

char *name,

hc_double_t *retdouble);

Description
This function retrieves the value of type hc_double_t (see “hc_type_t” on page 47) associated
with an indicated attribute name in a name-value record.

Parameters
nvr

Points to a name-value-record.

name

IN: Attribute name to look for.

retdouble

OUT: Updated to contain the hc_double_t value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 79

hc_nvr_get_string

Retrieves a value of a Unicode UTF-8 string.

Synopsis
hcerr_t hc_nvr_get_string(hc_nvr_t *nvr,

char *name,

hc_string_t *retstring);

Description
This function retrieves the value of a Unicode UTF-8 string associated with an indicated
attribute name in a name-value record. Note that the memory pointed to will be freed when the
record is freed.

Parameters
nvr

Points to a name-value-record.

name

IN: Attribute name to look for.

retstring

OUT: Updated to contain the hc_string_t value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200880

hc_nvr_get_binary

Retrieves a metadata value of type binary.

Synopsis
hcerr_t hc_nvr_get_binary(hc_nvr_t *nvr,

hc_string_t name,

int *size,

unsigned char **bytes);

This function retrieves the value of type binary associated with an indicated attribute name in a
name-value record. The binary data is not copied and is freed when the name-value record is
freed.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

size

OUT: Updated with the size of the data.

bytes

OUT: Updated to point to the binary data.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 81

hc_nvr_get_date

Retrieves metadata value of type date.

Synopsis
#include <time.h>

hcerr_t hc_nvr_get_date(hc_nvr_t *nvr,

hc_string_t name,

struct tm *value);

Description
This function retrieves the value of type struct tm associated with an indicated attribute name
in a name-value record.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

OUT: Updated with the struct tm (time.h) value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

hc_nvr_get_time

Retrieves metadata value of type time.

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200882

Synopsis
#include <time.h>

hcerr_t hc_nvr_get_time(hc_nvr_t *nvr,

hc_string_t name,

time_t *value);

This function retrieves the value of type time_t (seconds since midnight) associated with an
indicated attribute name in a name-value record.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

OUT: Updated with the time_t (time.h) value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

hc_nvr_get_timestamp

Retrieves metadata value of type timestamp.

Synopsis
#include <time.h>

hcerr_t hc_nvr_get_timestamp(hc_nvr_t *nvr,

hc_string_t name,

struct timespec *value);

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 83

This function retrieves the value of type struct timespec associated with an indicated
attribute name in a name-value record.

Parameters
nvr

Points to a name-value-record.

name

IN: Name for the tuple.

value

OUT: Updated with the struct timespec (time.h) value.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_ILLEGAL_VALUE_FOR_METADATA

HCERR_NO_SUCH_ATTRIBUTE

Creating and Converting Name-Value Records From
and To String Arrays
The following functions are defined to create name-value records from string arrays and
convert name-value records to string arrays:

■ “hc_nvr_create_from_string_arrays” on page 84
■ “hc_nvr_convert_to_string_arrays” on page 86

hc_nvr_create_from_string_arrays

Creates name-value-record from string names and string values.

Synopsis
hcerr_t hc_nvr_create_from_string_arrays(hc_session_t *session,

hc_nvr_t **nvrp,

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200884

char **names,

char **values,

hc_long_t nitems);

Description
This function creates a name-value-record from parallel tables of string names and string
values. The correct metadata type for each name must be looked up from the schema associated
with this session. The name-value record will automatically expand as needed. The names and
data values are copied into the “hc_nvr_t” on page 48 structure, so the original names table and
values table are left unchanged.

Note – Any time there is a conversion from a double type to or from a string type, there might
be a loss of precision.

Parameters
session

IN: The session with which this name-value record is associated.

nvrp

OUT: Updated to point to a name-value-record.

names

IN: Points to an array of string names.

values

IN: Points to an array of string values.

nitems

IN: Number of active elements in the paired arrays.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_ILLEGAL_ARGUMENT

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 85

hc_nvr_convert_to_string_arrays

Converts name-value-record to string names and string values.

Synopsis
hcerr_t hc_nvr_convert_to_string_arrays(hc_nvr_t *nvr,

char ***namesp,

char ***valuesp,

int *nitemsp);

Description
This function converts a name-value-record into parallel tables of string names and string
values. This destructively modifies the name-value record and frees it, so do not call
“hc_nvr_free” on page 66 after calling this function.

When the conversion is finished, each string in the names and values tables should be freed with
the designated deallocator (for example, free), as well as the names and values tables
themselves.

Note – Any time there is a conversion from a double type to or from a string type, there might
be a loss of precision.

Parameters
nvr

IN: The name-value-record.

namesp

OUT: Updated to point to an array of string names.

valuesp

OUT: Updated to point to an array of string values.

nitemsp

OUT: Updated to the number of active elements in the paired arrays.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200886

HCERR_OOM

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

Storing Data and Metadata
The following functions are defined to store data and metadata and to enforce indexing of
metadata where necessary:

■ “hc_store_both_ez” on page 87
■ “hc_store_metadata_ez” on page 88
■ “hc_check_indexed_ez” on page 89

Note – The is_indexed value in the returned system record (hc_system_record_t) indicates
whether this record was successfully inserted in the query engine at the time of store, and is
hence available for query. Objects that were not inserted into the query engine at time of store
are called store index exceptions. Until they are resolved, store index exceptions may or may not
show up in the result sets of queries that match the store. A store index exception is resolved
once the metadata for that object has been successfully inserted into the query engine, after
which the object will definitely show up in the result sets of queries that match the store. The
“hc_check_indexed_ez” on page 89 method may be used to attempt to resolve a store index
exception under program control. Store index exceptions will also be resolved automatically
(eventually) by ongoing system healing.

hc_store_both_ez

Stores a metadata record and associated data.

Synopsis
hcerr_t hc_store_both_ez (hc_session_t *session,

*data_source_reader,

void *cookie,

hc_nvr_t *nvr,

hc_system_record_t *system_record);

Description
This function stores both object data and metadata and returns a system_record descriptor.
The status from this operation can be reclaimed using “hc_session_get_status” on page 55.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 87

Parameters
session

IN: The session for the host and port to talk to.

data_source_reader

IN: The source of data to be stored. See “read_from_data_source” on page 49.

cookie

IN: An opaque data structure (cookie) to be provided to data_source_reader. For example,
this could be a file descriptor.

nvr

IN: Pointer to a name-value record with the metadata.

system_record

OUT: Returned descriptor of a stored metadata record.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_NVR

HCERR_ILLEGAL_ARGUMENT

HCERR_NO_SUCH_TYPE

HCERR_XML_BUFFER_OVERFLOW

hc_store_metadata_ez

Adds a metadata record for the specified OID.

Synopsis
hcerr_t hc_store_metadata_ez(hc_session_t *session,

hc_oid *oid,

hc_nvr_t *nvr,

hc_system_record_t *system_record);

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200888

Description
This function adds a metadata record for the specified OID and returns a system_record
descriptor.

Parameters
session

IN: The session for the host and port to talk to.

oid

IN: An identifier of object data to which the metadata record is attached.

nvr

IN: Pointer to a name-value record with the metadata.

system_record

OUT: Returned descriptor of a stored metadata record.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_NVR

HCERR_INVALID_OID

HCERR_ILLEGAL_ARGUMENT

HCERR_XML_BUFFER_OVERFLOW

hc_check_indexed_ez

Checks if the metadata for an object is present in the query engine, and inserts it if not.

Synopsis
hcerr_t hc_check_indexed_ez(hc_session_t *session,

hc_oid *oid,

int *resultp);

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 89

Description
checkIndexed is intended as way to resolve a store index exception under program control (see
“The 5800 System Query Integrity Model” on page 21). Once a store index exception occurs (as
indicated by a non-zero value of the is_indexed field in the hc_system_record_t returned
from a store operation) then hc_check_indexed_ez can be called repeatedly until it returns
with *resultp set to any non-zero value. This will ensure that the metadata for the object has
been inserted into the query engine; the object should then start to show up in matching
queries.

Parameters
session

IN: The session for the host and port to talk to.

oid

IN: An identifier of object data to which the metadata record is attached.

resultp

OUT: Points to an int that is updated to a value that indicates if the metadata for this object has
been inserted into the query engine. The returned value of *resultp is set to -1 if the object was
already present in the query engine, and is set to 0 if the object was not already in the query
engine and could not be added, and to 1 if the object was just now added to the query engine. In
other words, a non-zero value of resultp indicates that the store index exception has been
resolved.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_OID

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200890

Retrieving Data and Metadata
The following functions are defined to retrieve data and metadata:

■ “hc_retrieve_ez” on page 91
■ “hc_retrieve_metadata_ez” on page 92
■ “hc_range_retrieve_ez” on page 93

hc_retrieve_ez

Retrieves data for the specified OID.

Synopsis
hcerr_t hc_retrieve_ez(hc_session_t *session,

*data_writer,

void *cookie,

hc_oid *oid);

Description
This function retrieves data for the specified OID.

Parameters
session

IN: The session for the host and port to talk to.

data_writer

IN: A function callback to store the retrieved data locally. See “write_to_data_destination”
on page 50.

cookie

IN: The opaque data delivered to the data_writer callback to identify this data stream.

oid

IN: Identifier for the metadata record to retrieve.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 91

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_OID

hc_retrieve_metadata_ez

Retrieves a metadata record for the specified OID.

Synopsis
hcerr_t hc_retrieve_metadata_ez (hc_session_t *session,

hc_oid *oid,

hv_nvr_t **nvrp);

Description
This function retrieves a metadata record for the specified OID. When it has finished, you
should call “hc_nvr_free” on page 66 to free the name-value-record.

Parameters
session

IN: The session for the host and port to talk to.

oid

IN: An identifier of the metadata record to retrieve.

nvrp

OUT: Updated with a pointer to a dynamically allocated name-value record with the metadata.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_OID

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200892

hc_range_retrieve_ez

Retrieves a specified range of data for a specified OID.

Synopsis
hc_range_retrieve_ez(hc_session_t *session,

write_to_data_destination data_writer,

void *cookie,

hc_oid *oid,

hc_long_t; firstbyte,

hc_long_t lastbyte);

Description
This function retrieves a specified range of data for a specified OID.

Parameters
session

IN: The session for the host and port to talk to.

data_writer

IN: Function callback to store the retrieved data locally.

cookie

IN: Opaque data delivered to the data_writer callback to identify this data cookie.

oid

IN: An identifier of the data record to retrieve.

firstbyte

IN: First byte of data range to retrieve.

lastbyte

IN: Last byte of data range to retrieve, or -1 for the end of the record.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 93

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_OID

HCERR_ILLEGAL_ARGUMENT

Querying Metadata
The following functions are defined for simple queries:

■ “hc_query_ez” on page 94
■ “hc_qrs_next_ez” on page 96
■ “hc_qrs_is_query_complete” on page 97
■ “hc_qrs_get_query_integrity_time” on page 98
■ “hc_qrs_free” on page 99

The following functions are defined for prepared statement queries:

■ “hc_pstmt_create” on page 100
■ “hc_pstmt_free” on page 101
■ “hc_pstmt_set_string” on page 101
■ “hc_pstmt_set_char” on page 102
■ “hc_pstmt_set_double” on page 103
■ “hc_pstmt_set_long” on page 104
■ “hc_pstmt_set_date” on page 105
■ “hc_pstmt_set_time” on page 106
■ “hc_pstmt_set_timestamp” on page 107
■ “hc_pstmt_set_binary” on page 108
■ “hc_pstmt_query_ez” on page 109

Prepared statement example:

“Querying With a Prepared Statement” on page 110

hc_query_ez

Retrieves OIDs and optionally name-value records matching a query.

Synopsis
hcerr_t hc_query_ez(hc_session_t *session,

hc_string_t query,

hc_string_t selects[],

int n_selects,

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200894

int results_per_fetch,

hc_query_result_set_t **rsetp);

Description
This function retrieves OIDs and optionally name-value records matching a query. If the
selects list is NULL, only OIDs are retrieved. If selects is not NULL, name-value records are
also retrieved and should each be freed using “hc_nvr_free” on page 66. In both cases the result
set should be freed using “hc_qrs_free” on page 99.

Note – When a query is incorrect and elicits an error from the server, the error is often reported
after “hc_qrs_free” on page 99and not from hc_query_ez. Your application should be
prepared to receive and report an error from either place.

Parameters
session

IN: The session for the host and port to talk to.

query

IN: Query (where clause with names in single quotes).

selects

IN: Points to an array of “hc_string_t” on page 46, each member of which is the name of a field
to retrieve from the metadata (select clause). Set to NULL to only retrieve OIDs matching the
query.

n_selects

IN: The number of items in the select clause.

results_per_fetch

IN: The number of results to return on each fetch from the server. results_per_fetch must be
greater than 0.

rsetp

OUT: Updated to point to the new result set. See “hc_query_result_set_t” on page 49.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 95

Return Codes
HCERR_OK

HCERR_OOM

HCERR_BAD_REQUEST

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_ILLEGAL_ARGUMENT

See Also
“hc_qrs_free” on page 99

hc_qrs_next_ez

Fetches the next OID and optionally name-value record from the QueryResultSet.

Synopsis
hcerr_t hc_qrs_next_ez(**rset,

hc_oid *oid,

hc_nvr_t **nvrp,

int *finishedp);

Description
This function fetches an OID and optionally name-value record from the query result set. Once
the last result is fetched, in subsequent calls the int pointed to by finishedp is set to 1.

Parameters
rset

IN: Current query result set. See “hc_query_result_set_t” on page 49.

oid

OUT: Points to an OID that is updated to the OID of a record matching the query, assuming
finishedp is 0.

nvrp

OUT: Updated to point to a name-value record with the metadata from the OID matching the
query, assuming the query specified selects and assuming finishedp is 0. Note that you must
free the name-value record using “hc_nvr_free” on page 66.

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200896

finishedp

OUT: Points to an int that is updated to 0 if query data has been returned and to 1 if the result
set is empty.

Return Codes
HCERR_OK

HCERR_OOM

HCERR_BAD_REQUEST

HCERR_INVALID_RESULT_SET

HCERR_ILLEGAL_ARGUMENT

hc_qrs_is_query_complete

Indicates whether results of this query are complete in the sense that all objects that match the
query, aside from possible store index exceptions, are included in the result set,

Synopsis
hcerr_t hc_qrs_is_query_complete(hc_query_result_set_t *rset,

int *completep);

Description
Indicates whether results of this query are complete in the sense that all objects that match the
query, aside from possible store index exceptions, are included in the result set. Applications
that depend on completeness of query results can interrogate hc_qrs_is_query_complete after
retrieving all the query results that match a particular query. When completep is set to 1, the
only items that should be missing from the result set are store index exceptions that were
indicated to the application by a value of 0 in the is_indexed field of the hc_system_record_t
structure returned from the store.

Parameters
rset

IN: Current query result set. See “hc_query_result_set_t” on page 49.

completep

OUT: Points to an int that is updated to 1 if all objects that match the query (other than
potential store index exceptions) should be present in the result set

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 97

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_RESULT_SET

hc_qrs_get_query_integrity_time

Returns a time that helps get more detail on which store index exceptions might still be
unresolved.

Synopsis
hcerr_t hc_qrs_get_query_integrity_time(hc_query_result_set_t *rset,

hc_long_t *query_timep);

Description
If the query integrity time is non-zero, then all store index exceptions whose object creation
time falls before the query integrity time have been resolved. Stored objects from before that
time should show up in all matching query result sets. Store index exceptions that occurred
after that time may not yet have been resolved, and hence might still be missing from a
matching query result set. If the Query Integrity Time is zero, then the set of results in this
ResultSet is not known to be complete. Note that hc_is_query_complete will return a
non-zero completep value if and only if hc_get_query_integrity_time would set
query_timep to non-zero query integrity time.

Time values from getQueryIntegrityTime can be compared to object creation time values
returned in the creation_time field of the hc_system_record_t structure to determine if a
particular store operation has been resolved. Note: the query integrity time as reported may well
be earlier than the actual oldest time of a still-unresolved store index exception. The query
integrity time can even go backwards, in other words, a later query can report an earlier query
integrity time.

Parameter
rset

Updated to point to the new query result set. See “hc_query_result_set_t” on page 49.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 200898

HCERR_OOM

HCERR_INVALID_RESULT_SET

hc_qrs_free

Releases the resources associated with this QueryResultSet.

Synopsis
hcerr_t hc_qrs_free (**rsetp);

Description
This function releases the resources associated with this QueryResultSet.

Note – When a query is incorrect and elicits an error from the server, the error is often reported
after hc_qrs_free and not from “hc_query_ez” on page 94. Your application should be
prepared to receive and report an error from either place.

Parameter
rset

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_INVALID_RESULT_SET

See Also
“hc_query_ez” on page 94

“hc_pstmt_query_ez” on page 109

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 99

hc_pstmt_create

Creates an “hc_pstmt_t” on page 49 for use with the “hc_pstmt_query_ez” on page 109
function.

Synopsis
hcerr_t hc_pstmt_create(hc_session_t *session,

hc_string_t query,

hc_pstmt_t **ptr);

Description
This function creates a prepared statement for use with the “hc_pstmt_query_ez” on page 109
function.

Parameters
session

IN: session that this query will be used with.

query

IN: Query (where clause with ”?’ for values).

ptr

OUT: Updated to point to opaque “hc_pstmt_t” on page 49.

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_query_ez” on page 109

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 2008100

hc_pstmt_free

Frees a “hc_pstmt_t” on page 49 with all its bindings.

Synopsis
hcerr_t hc_pstmt_free(hc_pstmt_t *pstmt);

Description
This function frees a prepared statement.

Parameters
pstmt

Prepared statement to be freed.

Return Codes
HCERR_OK

See Also
“hc_pstmt_create” on page 100

hc_pstmt_set_string

Adds a string binding to a “hc_pstmt_t” on page 49.

Synopsis
hcerr_t hc_pstmt_set_string(hc_pstmt_t *pstmt,

int which,

hc_string_t value);

Description
This function binds an “hc_string_t” on page 46 to one of the variables in a prepared
statement. The variable must be of the appropriate type in the database, that is, string (UTF-8).
Errors in binding and type are returned when the “hc_pstmt_t” on page 49 is used to query the
server.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 101

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: String to bind.

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_create” on page 100

hc_pstmt_set_char

Adds a char binding to a “hc_pstmt_t” on page 49.

Synopsis
hcerr_t hc_pstmt_set_char(hc_pstmt_t *pstmt,

int which,char *value);

Description
This function binds a char * Latin-1 string to one of the variables in a prepared statement. The
variable must be of the appropriate type in the database. Errors in binding and type are returned
when the “hc_pstmt_t” on page 49 is used to query the server.

Parameters
pstmt

Prepared statement to add the binding to.

which

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 2008102

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: char * string to bind.

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_create” on page 100

hc_pstmt_set_double

Adds a double precision binding to a “hc_pstmt_t” on page 49.

Synopsis
hcerr_t hc_pstmt_set_double(hc_pstmt_t *pstmt,

int which,

hc_double_t value)

Description
This function binds an “hc_double_t” on page 46 to one of the variables in a prepared
statement. The variable must be of the appropriate type in the database. Errors in binding and
type are returned when the “hc_pstmt_t” on page 49 is used to query the server.

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: Double precision value to bind.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 103

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_create” on page 100

hc_pstmt_set_long

Adds a “hc_long_t” on page 46 binding to a “hc_pstmt_t” on page 49.

Synopsis
hcerr_t hc_pstmt_set_long(hc_pstmt_t *pstmt,

int which,

hc_long_t value);

Description
This function binds an “hc_long_t” on page 46 to one of the variables in a prepared statement.
The variable must be of the appropriate type in the database. Errors in binding and type are
returned when the “hc_pstmt_t” on page 49 is used to query the server.

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: “hc_long_t” on page 46 value to bind to.

Return Codes
HCERR_OK

HCERR_OOM

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 2008104

See Also
“hc_pstmt_create” on page 100

hc_pstmt_set_date

Adds a date binding to a “hc_pstmt_t” on page 49.

Synopsis
#include <time.h>

hcerr_t hc_pstmt_set_date(hc_pstmt_t *pstmt,

int which,

struct tm *value);

Description
This function binds a date in the form of the POSIX struct to one of the variables in a prepared
statement. The variable must be of the appropriate type in the database. Errors in binding and
type are returned when the “hc_pstmt_t” on page 49 is used to query the server.

The struct tm fields are as defined in the POSIX standard and interpreted by mktime(3C). All
fields are ignored except:

int tm_mday; /* day of the month - [1, 31] */

int tm_mon; /* months since January - [0, 11] */

int tm_year; /* years since 1900 */

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: struct tm (time.h) value to bind.

Return Codes
HCERR_OK

HCERR_OOM

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 105

See Also
“hc_pstmt_create” on page 100

hc_pstmt_set_time

Adds a time-of-day binding to a “hc_pstmt_t” on page 49.

Synopsis
#include <time.h>

hcerr_t hc_pstmt_set_time(hc_pstmt_t *pstmt,

int which,

time_t *value);

Description
This function binds a time of day in seconds to one of the variables in a prepared statement. The
variable must be of the appropriate type in the database. Errors in binding and type are returned
when the “hc_pstmt_t” on page 49 is used to query the server.

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: time_t (time.h) value to bind.

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_create” on page 100

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 2008106

hc_pstmt_set_timestamp

Adds a timestamp binding to a “hc_pstmt_t” on page 49.

Synopsis
#include <time.h>

hcerr_t hc_pstmt_set_timestamp(hc_pstmt_t *pstmt,

int which,

struct timespec *value);

Description
This function binds a timestamp in the form of the POSIX struct timespec to one of the
variables in a prepared statement. The variable must be of the appropriate type in the database.
Errors in binding and type are returned when the “hc_pstmt_t” on page 49 is used to query the
server.

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

value

IN: struct timespec (time.h) value to bind.

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_create” on page 100

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 107

hc_pstmt_set_binary

Adds a binary binding to a “hc_pstmt_t” on page 49.

Synopsis
hcerr_t hc_pstmt_set_binary(hc_pstmt_t *pstmt,

int which,

unsigned char *data,int size);

Description
This function binds a binary array to one of the variables in a prepared statement. The variable
must be of the appropriate type in the database. Errors in binding and type are returned when
the “hc_pstmt_t” on page 49 is used to query the server.

Parameters
pstmt

Prepared statement to add the binding to.

which

IN: Variable (”?’) in the prepared statement, numbered from 1.

data

IN: Pointer to binary data to bind.

size

IN: Number of bytes in array of binary data.

Return Codes
HCERR_OK

HCERR_OOM

See Also
“hc_pstmt_create” on page 100

Synchronous C API Functions

Sun StorageTek 5800 System Client API Reference Manual • June 2008108

hc_pstmt_query_ez

Retrieves OIDs and optionally name-value records matching a prepared statement.

Synopsis
hcerr_t hc_pstmt_query_ez(*pstmt,hc_string_t selects[],

int n_selects,

int results_per_fetch,

hc_query_result_set_t **rsetp);

Description
This function retrieves OIDs and optionally name-value records matching a prepared
statement. “hc_qrs_next_ez” on page 96 is used to access the results in the result set. If the
selects list is NULL, only OIDs are retrieved. If selects is not NULL, name-value records are
also retrieved and should each be freed using “hc_nvr_free” on page 66. In both cases the result
set should be freed using “hc_qrs_free” on page 99.

Note – When a query is incorrect and elicits an error from the server, the error is often reported
after “hc_qrs_free” on page 99 and not from “hc_pstmt_query_ez” on page 109. Your
application should be prepared to receive and report an error from either place.

Parameters
pstmt

IN: Prepared statement generated by “hc_pstmt_create” on page 100.

selects

IN: Points to an array of “hc_string_t” on page 46, each of which is the name of a field to
retrieve from the metadata (select clause). Set to NULL to only retrieve OIDs matching the
query.

n_selects

IN: The number of items in the select clause.

results_per_fetch

IN: The number of results per internal fetch.

rsetp

OUT: Updated to point to the new result set. See “hc_query_result_set_t” on page 49.

Synchronous C API Functions

Chapter 3 • Sun StorageTek 5800 System C Client API 109

Return Codes
HCERR_OK

HCERR_OOM

HCERR_BAD_REQUEST

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_ILLEGAL_ARGUMENT

See Also
“hc_pstmt_create” on page 100

Querying With a Prepared Statement
The following code is an example of querying with a prepared statement. Error handling is
omitted. Two metadata fields are used with the definitions from the schema:

<field name="test_date" type="date">
<field name="test_status" type="string">

hcerr_t res;

time_t t;

struct tm *date;

hc_pstmt_t *pstmt;

hc_query_result_set_t *rset;

hc_string_t selects[] = { "test_status" };

// get today’s date

time(&t);

date = gmtime(&t);

// list all OIDs with today’s date

res = hc_pstmt_create(session, "test_date = ?", &pstmt);

res = hc_pstmt_set_date(pstmt, 1, date);

res = hc_pstmt_query_ez(pstmt, NULL, 0, 2000, &rset);

while (1) {

hc_oid oid;

int finished;

res = hc_qrs_next_ez(rset, &oid, NULL, &finished);

if (finished)

break;

printf("today’s oid: %s\n", oid);

}

res = hc_qrs_free(rset);

Querying With a Prepared Statement

Sun StorageTek 5800 System Client API Reference Manual • June 2008110

// list all OIDs from yesterday with test_status

t = 86400; // 86400 sec/day

date = gmtime(&t);

res = hc_pstmt_set_date(pstmt, 1, date);

res = hc_pstmt_query_ez(pstmt, selects, 1, 2000, &rset);

while (1) {

hc_oid oid;

hc_nvr_t *nvr int finished;

hc_string_t test_status;

res = hc_qrs_next_ez(rset, &oid, &nvr, &finished);

if (finished)

break;

res = hc_nvr_get_string(nvr, "test_status", &test_status);

printf("yesterday’s oid & test_status: %s %s\n", oid, test_status);

hc_nvr_free(nvr);

}

res = hc_qrs_free(rset);

Deleting Records
The following function is defined to delete records: “hc_delete_ez” on page 111.

hc_delete_ez

Deletes the metadata record for specified OID.

Synopsis
hcerr_t hc_delete_ez(hc_session_t *session,

hc_oid *oid);

Description
This function deletes the metadata record for the specified OID. When the last metadata record
associated with a data object is deleted, the underlying data object is also deleted.

Querying With a Prepared Statement

Chapter 3 • Sun StorageTek 5800 System C Client API 111

Parameters
session

IN: Pointer to the session.

oid

IN: The specified OID.

Return Codes
HCERR_OK

HCERR_BAD_REQUEST

HCERR_OOM

HCERR_NULL_SESSION

HCERR_INVALID_SESSION

HCERR_INVALID_OID

Translating Error and Type Codes
The following functions are defined for translating error codes and type codes into strings:

■ “hc_decode_hcerr” on page 112
■ “hc_decode_hc_type” on page 113

hc_decode_hcerr

Translates an error code into a string.

Synopsis
char *hc_decode_hcerr(hcerr_t res);

Description
Translates an error code into a string.

Parameter
res

IN: The error code returned by a function.

Querying With a Prepared Statement

Sun StorageTek 5800 System Client API Reference Manual • June 2008112

hc_decode_hc_type

Translates a type code into a string.

Synopsis
char *hc_decode_hc_type(hc_type_t type);

Description
Translates a type code into a string.

Parameters
type

IN: The type code to translate.

Querying With a Prepared Statement

Chapter 3 • Sun StorageTek 5800 System C Client API 113

114

Sun StorageTek 5800 System Query Language

This chapter provides information on the 5800 system query language.

Note – For details of the metadata system and how it is configured, see Chapter 8, “Configuring
Metadata and Virtual File System Views” in Sun StorageTek 5800 Storage System
Administration Guide.

The following topics are discussed:

■ “Interfaces” on page 115
■ “Operation” on page 116
■ “Supported Data Types” on page 116
■ “Queries” on page 117
■ “Literals In Queries” on page 118
■ “Canonical String Format” on page 119
■ “JDBC and HADB Date and Time Operations” on page 120
■ “Reserved Words” on page 121
■ “Supported Expression Types” on page 121
■ “Examples of Supported Query Expressions” on page 123
■ “Queries Not Supported in Version 1.1” on page 123
■ “SQL Words That Are Allowed in Queries” on page 124
■ “SQL Words That Are Not Allowed in Queries” on page 124

Interfaces
The 5800 system Java and C APIs both have a query function that passes a query string to the
5800 system. Queries in the 5800 system are presented to the name-value metadata cache.

4C H A P T E R 4

115

Operation
The query format is similar to the where clause of an SQL query. The two main differences are
that 5800 system queries do not contain embedded subqueries, and that the only “columns” that
are available are the attributes defined in the 5800 system schema.

Many features of the underlying metadata database’s own query language can be used in
queries. There is a recommended subset of queries, however, that is most likely to be portable
from the 5800 system emulator to a live 5800 system cluster. That subset is described in the
sections “Supported Expression Types” on page 121 and “Queries Not Supported in Version
1.1” on page 123. These are the query expression types that should work identically on the 5800
system emulator and a live 5800 system cluster.

Supported Data Types
■ Long— 8-byte integer value.
■ Double— 8-byte IEEE 754 double-precision floating point value.
■ String— now allows all Unicode values from the Basic Multilingual Plane (BMP). The

encoding used is UTF-8. the schema definition of each String attribute must specify a length.
String(N) is used as the convention to refer to the type of a String attribute whose length is
set to N.

■ char— similar to String, except that it is limited to 8-bit characters in the ISO-8859-1
(Latin-1) character set.

■ Date— corresponds to the JDBC SQL DATE type. Year/Month/Day.
■ Time— corresponds to the JDBC SQL TIME type. The Java java.sql.Time type only allows

specification of whole seconds.
■ Timestamp— corresponds to the JDBC SQL TIMESTAMP type with precision 3 (absolute

Year/Month/Day/Hour/Minute/Second/Millisecond).
■ Binary— string of binary bytes.
■ Objectid— similar to binary, with internal support for sub-fields. Reserved for use by the

system.object_id field. Other fields that must store an OID should use the string or binary
type for that field.

Operation

Sun StorageTek 5800 System Client API Reference Manual • June 2008116

Queries
A query in the 5800 system query language is translated into an equivalent query for the
underlying database that implements the query engine. The database used in a live 5800 system
is Sun's High Availability Database (HADB). The database used by the 5800 system emulator is
ApacheTM Derby. Since the SQL query language used by HADB and Derby differ in substantial
ways, a subset of the query language is provided for portability between the cluster and the 5800
system emulator to enable application development in the emulator environment and
subsequent deployment of the applications to a live 5800 system.

Translating a Query to the Underlying Database
The following provides a summary of the translation of the 5800 system queries to SQL queries
that are presented to the underlying database.

The metadata schema specifies the layout of fields into tables and columns. When the schema is
committed, a particular set of actual tables and columns is created in the underlying database
that matches the format of the table layout in the schema.

When translating a 5800 system query to SQL, each field name in the query is translated into a
reference to the particular column and particular table that represents that field. Typed literal
values are translated into a form that the extended metadata cache knows how to deal with.
Specifically, most literal values are replaced with an equivalent dynamic parameter. Thus, the
list of dynamic parameters that the underlying database uses combines both the dynamic
parameters and also many of the literal values from the 5800 system query. Finally, an implicit
INNER JOIN is introduced between all the tables containing the translated query fields.
Everything else (usually database expression syntax) is left unchanged, allowing almost all the
database engine's powerful query syntax to be used with 5800 system queries.

The presence of the INNER JOIN has important consequences when queries are evaluated. An
object is only returned by a query when all of the fields referenced by the query itself and all of
the fields referenced in the select list of the query all have non-null values. Queries with OR
clauses, in particular, can produce non-intuitive results. As an extreme example, consider a
query: "fieldA is not null OR fieldB is not null." This query will not select an object unless both
fieldA and fieldB are non-null, because of this implicit inner join.

Attribute Format in Queries
Any string in double quotes (for example, "filename") and any dotted string in Java Identifier
format (for example, mp3.title) will automatically be treated as an attribute name. The double
quotes can optionally be omitted even on a non-dotted name as long as the attribute does not
match an SQL reserved word in any of the Sun StorageTek 5800 underlying metadata databases.

Attribute names must appear in the current 5800 system schema to be used in a query. This is
because the proper type information about each attribute must be derived to build the query.

Queries

Chapter 4 • Sun StorageTek 5800 System Query Language 117

SQL Syntax in 5800 System Queries
General Unicode characters outside of the ASCII range in queries are allowed in only two places
to the 5800 system. Specifically, both attribute names and literal values may contain general
Unicode characters. All text that is not either an attribute name nor a literal value is passed
unchanged to the underlying query engine, and must consist of ASCII characters only. An
attempt to pass non-ASCII characters in a query will result in an error.

Literals In Queries
This section details the kinds of literals that can occur in 5800 system queries.

Dynamic Parameters
5800 system queries allow dynamic parameters. A dynamic parameter is indicated by the
presence of a question mark in the query string (for example, the query name=? AND
address=?). The bindParameter call is used in Java to bind typed values for use in place of the
question marks.

For the Java API, the syntax is:

import com.sun.honeycomb.client.PreparedStatement;

import com.sun.honeycomb.client.QueryResultSet;

Date date_value= new Date();

PreparedStatement stmt = new PreparedStatement(

"system.test.type_date=?");
stmt.bindParameter(date_value,1);

QueryResultSet qrs = query(stmt);

For further information, see “query (with PreparedStatement)” on page 35, “query (with
PreparedStatement and selectKeys)” on page 35 and “PreparedStatement” on page 36.

String Literals
String literals are surrounded by single quotes (for example, 'The Lighter Side’). You can embed
single quote characters in a query by doubling them (for example, ’Susan’’s House’). Any
UTF-8 string can be included in a string literal (except the null character, which is treated as a
string terminator by the C API).

Numeric Literals
Only ASCII digits are recognized as numeric literals. For example, 45, -1, 3.14, 5.2E10. Digits
from other parts of the Unicode code space will cause a parse error.

Literals In Queries

Sun StorageTek 5800 System Client API Reference Manual • June 2008118

Literals for 5800 System Data Types
For each 5800 system data type, there is a syntax to include literals of that type in a query string.
The syntax is {type_name ’stringliteral’}. For example, consider the query:

timestamp_field<{timestamp ’2006-10-26T12:00:00Z’}

In particular, this syntax can be used to query for a particular object ID:

system.object_id = {objectid

’0200011e61c159bdfa654e11db8a45cafecafecafe000000000200000000’}

For comparing against binary values, either of the following forms may be used:

binary_field = x’beeffeed’

binary_field = {binary ’beeffeed’}

For more information, see “Canonical String Format” on page 119.

Canonical String Format
Each type in a 5800 system has a canonical representation as a string value. The canonical
string representation of each type is shown in Table 4–1.

TABLE 4–1 Canonical String Representation of Data Types

Data Type Canonical String Representation

STRING The string itself.

CHAR The string itself.

BINARY Hexadecimal dump of the value with two hex digits per byte.

LONG Result of Long.toString. For example, 88991 or -7975432785.

DOUBLE Result of Double.toString. For example, 1.45 or NaN or -Infinity or -1.56E200.

DATE YYYY-mm-dd. For example, 2001-01-01.

TIME HH:mm:sss. For example, 12:02:01.

TIMESTAMP YYYY-mm-ddThh:mm:ss.fffZ (time relative to UTC). For example,
1969-12-31T23:59:59.999Z.

OBJECTID 60-digit hexadecimal dump of the objectid.

This canonical string encoding is used in the following places:

■ When exposing the field as a directory component or a filename component in a virtual view

Canonical String Format

Chapter 4 • Sun StorageTek 5800 System Query Language 119

■ When converting a typed value to a string as the result of the getAsString operation on a
NameValueRecord or a QueryResultSet operation

■ When parsing a literal value as described in “Literals for 5800 System Data Types” on
page 119 to create a typed query value from a string representation of that value.

The Canonical String Decode Operation
The inverse of the canonical string encoding is used in the following places:
■ It is always allowed to store a string value into any metadata field, no matter what the type

of the field is. The actual data stored is the result of applying the canonical string decode
operation to the incoming string value.

■ On a virtual view lookup operation, the canonical string decode operation is used on the
supplied filename to derive the actual metadata values to look up, given their string
representations in the filename.
The decode operation is allowed to accept incoming string values that would never be a
legal output for an encode operation. Some examples of this include:
– decodeBinary of an odd number of hex digits. The convention is to left-justify the

supplied digits in the binary value. For example, the string "b0a" corresponds to the
binary literal [b0a0].

– decodeDate of a non-standard date format.
– A double value encoded with a non-canonical number of digits. For example,

.00145E20 instead of 1.45E17.

EXAMPLE 4–1 Virtual View Lookup Operation

If you take a value V and encode it into a string S, and then perform the canonical decode
operation on S to get a new value V’. Does V always equal V’? The answer is yes in most cases, but
not always.

What is actually guaranteed is the weaker statement that if encode(V) = S and if decode(S)=V’,
then encode(V’) is also equal to S.

JDBC and HADB Date and Time Operations
■ Use the 5800 system literal format for all the Date and Time operations, for example, {date

’12-31-2007’}.
■ The JDBC standard escape sequences for date ({d ’YYYY-mm-dd’}) and time ({t

’hh:mm:ss’}) literals are available. However, usage of JDBC format date and time literals
may produce inconsistent results. In particular, when JDBC format is used, the literal
format is interpreted as being relative to the local time zone, and the time zone usually
differs between a 5800 system cluster and client machine.

JDBC and HADB Date and Time Operations

Sun StorageTek 5800 System Client API Reference Manual • June 2008120

■ The following JDBC function escapes supported:
TIMESTAMPDIFF, TIMESTAMPADD, CURRENT_TIMESTAMP, CURRENT_TIME, CURRENT_DATE,

HOUR, MINUTE, SECOND.

Reserved Words
Some SQL reserved words (such as BETWEEN or LIKE) are allowed in queries and are expected to
occur. An SQL reserved word cannot be used as an attribute name unless it is enclosed in double
quotes (for example, "FIRST"). Some other SQL reserved words (such as SELECT or CREATE) are
forbidden from occurring unquoted in queries. Any query containing these words unquoted
will immediately return an error. These forbidden words can be used as attribute names by
enclosing them in double quotes.

Supported Expression Types
The following expression types are explicitly supported in this release of the 5800 system:

■ Make use of JDBC escape syntax wherever possible. The escape syntax makes the query
syntax more portable without losing functionality.

■ Comparison operations: expr1 OP expr2, where OP is one of =, !=, <>, <=, >=, <, or >.
The comparison operations can compare any two expressions (for example, two attribute
values or one attribute value and one literal value). The two values must be of compatible
types. For example, a < comparison cannot be used between a numeric literal value and a
string-valued attribute. Note that <> and != are synonyms.

■ The concatenation operator, expr1 || expr2.
The concatenation operator || is an SQL standard way of concatenating two expressions to
produce a combined output string.

■ Use of parentheses to indicate precedence of evaluation.
■ Boolean operators AND, OR, and NOT.
■ expr1 [NOT] LIKE expr2.

– Attempts to match a character expression to a character pattern, which is a character
string that includes one or more wildcards.

– % matches any number (zero or more) of characters in the corresponding position in
expr1.

– _ matches one character in the corresponding position in expr1.
– Any other character matches only that character in the corresponding position in the

character expression.
■ expr1 BETWEEN expr2 AND expr3

Supported Expression Types

Chapter 4 • Sun StorageTek 5800 System Query Language 121

■ expr [NOT] IN (valueslist).

Note – The 5800 system emulator supports (but the cluster database does not) a JDBC
“escape” clause that allows you to treat either % or _ as constant characters. There is
currently no way to accomplish this in a LIKE clause in a query on a live cluster.

■ The following JDBC function escapes have been tested and are supported:

– {fn UCASE(string)} to convert a string to uppercase.

– {fn LCASE(string)} to convert a string to lowercase.

– {fn ABS(value)} to take the absolute value of a numeric expression.

– {fn LENGTH(string)} to get the length of a string.

– {fn SUBSTRING(string, start, length)} to get a character string formed by
extracting length characters from string beginning at start.

– {fn LOCATE(string1, string2[, start])} to locate the position in string2 of the
first occurrence of string1, searching from the beginning of string2. If start is
specified, the search begins from position start. 0 is returned if string2 does not
contain string1.

– {fn LTRIM(string)} to remove the leading blank spaces in a character string

– {fn RTRIM(string)} to remove the trailing blank spaces of a character string

– {fn CONCAT(string1, string2)} to get the concatanated character string by
appending string2 to string1. If a string is NULL, the result is DBMS-dependent.

– {fn TIMESTAMPDIFF(interval, timestamp1, timestamp2)}. An integer representing
the number of interval by which timestamp2 is greater than timestamp1. interval
may be one of the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE,
SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR.

– {fn TIMESTAMPADD(interval, count, timestamp)}. A timestamp calculated by
adding count number of intervals to timestamp. interval may be one of the
following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND, SQL_TSI_MINUTE, SQL_TSI_HOUR,
SQL_TSI_DAY, SQL_TSI_WEEK, SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR.

■ field_name IS NOT NULL to return all objects that have a value for a specific field. In
particular, the query "system.object_id IS NOT NULL" can be used to query all the objects
in the system.

Note – The form "field_name IS NULL" to identify all the objects that lack a value for a
specific field is not supported and will not work properly in all cases.

Supported Expression Types

Sun StorageTek 5800 System Client API Reference Manual • June 2008122

Examples of Supported Query Expressions
■ {fn LCASE(mp3.artist)} LIKE ’%floyd%’ AND system.object_size > 2000000

■ (object_size < 200) OR "Collation" = ’en-US’

■ {fn TIMESTAMPDIFF(SQL_TSI_YEAR, system.test.type_timestamp, ’2007-04-02
01:50:50.999’)} < 3

■ {fn TIMESTAMPADD(SQL_TSI_YEAR, 2, system.test.type_timestamp)} > ’2007-04-03
01:50:50.999’

Queries Not Supported in Version 1.1
The following JDBC escapes are not supported:

■ CHAR(code)

■ INSERT(string1, start, length, string2)

■ LEFT(string, count)

■ REPEAT(string, count)

■ REPLACE(string1, string2, string3)

■ RIGHT(string, count)

■ SPACE(count)

■ ROUND(value, number)

■ TRUNCATE(value, number)

■ POWER(value, power)

■ ACOS(float)

■ ASIN(float)

■ ATAN(float)

■ ATAN2(float1, float2)

■ CEILING(number)

■ COS(float)

■ COT(float)

■ DEGREES(number)

■ EXP(float)

■ FLOOR(number)

■ LOG(float)

■ LOG10(float)

■ ASCII(string)

■ MOD(float1, float2)

■ PI()

■ POWER(number, power)

■ RADIANS(number)

■ RAND(integer)

■ SIGN(number)

Queries Not Supported in Version 1.1

Chapter 4 • Sun StorageTek 5800 System Query Language 123

■ SIN(float)

■ SQRT(float)

■ TAN(float)

SQL Words That Are Allowed in Queries
Some SQL reserved words (such as BETWEEN or LIKE) are allowed in queries and are expected to
occur. An SQL reserved word cannot be used as an attribute name unless it is enclosed in double
quotes (for example, "FIRST").

The following reserved words are allowed:

ABS, ABSOLUTE, AFTER, AND, AS, ASCII, AT, BEFORE, BETWEEN, BINARY, BIT,

BIT_LENGTH, BOOLEAN, BOTH, CASE, CAST, CHAR, CHARACTER, CHARACTER_LENGTH,

CHAR_LENGTH, COALESCE, COLLATE, COLLATION, CONTAINS,COUNT, CURRENT_DATE,

CURRENT_TIME, CURRENT_TIMESTAMP, DATE, DAY, DEC,DECIMAL, DOUBLE, ELSE, ELSEIF,

END, ESCAPE, EXISTS, EXIT, EXPAND,EXTRACT, FALSE, FIRST, FOR, FROM, HOUR, IF,

IN, INT, INTEGER, INTERVAL,IS, LCASE, LEADING, LEFT, LIKE, LOWER, MATCH, MAX,

MIN, MINUTE, MONTH,NCHAR, NO, NOT, NULL, NUMERIC, OCTET_LENGTH, OF, R, PAD,

PI,POSITION, REAL, RIGHT, RTRIM, SECOND, SIZE, SMALLINT, SUBSTRING, THEN,TIME,

TIMESTAMP, TIMESTAMPDIFF, TIMESTAMPADD, TIMEZONE_HOUR, TIMEZONE_MINUTE, TO,

TRAILING, TRIM,TRUE, UCASE, UNKNOWN, UPPER, VARBINARY, VARCHAR, VARYING,

WHEN,WHENEVER, YEAR, ZONE.

Note – Even if an SQL term is on the list of allowed query terms, it is not guaranteed that the term
can actually be used in a working query. The function of this list is to determine words that will
not be treated as an identifier unless enclosed in double quotes.

SQL Words That Are Not Allowed in Queries
Some SQL reserved words (such as SELECT or CREATE) are forbidden from occurring unquoted
in queries. The 5800 system server will immediately raise an exception when one of the
forbidden reserved words is used in a query. These forbidden words can be used as attribute
names by enclosing them in double quotes.

The following reserved words are forbidden:

ACTION, ADD, ALL, ALLOCATE, ALTER, ANY, APPLICATION, ARE, AREA, ASC, ASSERTION,

ATOMIC, AUTHORIZATION, AVG, BEGIN, BY, CALL, CASCADE, CASCADED, CATALOG, CHECK,

CLOSE, COLUMN, COMMIT, COMPRESS, CONNECT, CONNECTION, CONSTRAINT, CONSTRAINTS,

CONTINUE, CONVERT, CORRESPONDING, CREATE, CROSS, CURRENT, CURRENT_PATH,

CURRENT_SCHEMA, CURRENT_SCHEMAID, CURRENT_USER, CURRENT_USERID, CURSOR, DATA,

SQL Words That Are Allowed in Queries

Sun StorageTek 5800 System Client API Reference Manual • June 2008124

DEALLOCATE, DECLARE, DEFAULT, DEFERRABLE, DEFERRED, DELETE, DESC, DESCRIBE,

DESCRIPTOR, DETERMINISTIC, DIAGNOSTICS, DIRECTORY, DISCONNECT, DISTINCT, DO,

DOMAIN, DOUBLEATTRIBUTE, DROP, EACH, EXCEPT, EXCEPTION, EXEC, EXECUTE, EXTERNAL,

FETCH, FLOAT, FOREIGN, FOUND, FULL, FUNCTION, GET, GLOBAL, GO, GOTO, GRANT,

GROUP, HANDLER, HAVING, IDENTITY, IMMEDIATE, INDEX, INDEXED, INDICATOR,

INITIALLY, INNER, INOUT, INPUT, INSENSITIVE, INSERT, INTERSECT, INTO, ISOLATION,

JOIN, KEY, LANGUAGE, LAST, LEAVE, LEVEL, LOCAL, LONGATTRIBUTE, LOOP, MODIFIES,

MODULE, NAMES, NATIONAL, NATURAL, NEXT, NULLIF, ON, ONLY, OPEN, OPTION, ORDER,

OUT, OUTER, OUTPUT, OVERLAPS, OWNER, PARTIAL, PATH, PRECISION, PREPARE,

PRESERVE, PRIMARY, PRIOR, PRIVILEGES, PROCEDURE, PUBLIC, READ, READS,

REFERENCES, RELATIVE, REPEAT, RESIGNAL, RESTRICT, RETURN, RETURNS, REVOKE,

ROLLBACK, ROUTINE, ROW, ROWS, SCHEMA, SCROLL, SECTION, SELECT, SEQ, SEQUENCE,

SESSION, SESSION_USER, SESSION_USERID, SET, SIGNAL, SOME, SPACE, SPECIFIC, SQL,

SQLCODE, SQLERROR, SQLEXCEPTION, SQLSTATE, SQLWARNING, STATEMENT,

STRINGATTRIBUTE, SUM, SYSACC, SYSHGH, SYSLNK, SYSNIX, SYSTBLDEF, SYSTBLDSC,

SYSTBT, SYSTBTATT, SYSTBTDEF, SYSUSR, SYSTEM_USER, SYSVIW, SYSVIWCOL, TABLE,

TABLETYPE, TEMPORARY, TRANSACTION, TRANSLATE, TRANSLATION, TRIGGER, UNDO, UNION,

UNIQUE, UNTIL, UPDATE, USAGE, USER, USING, VALUE, VALUES, VIEW, WHERE, WHILE,

WITH, WORK, WRITE, ALLSCHEMAS, ALLTABLES, ALLVIEWS, ALLVIEWTEXTS, ALLCOLUMNS,

ALLINDEXES, ALLINDEXCOLS, ALLUSERS, ALLTBTS, TABLEPRIVILEGES, TBTPRIVILEGES,

MYSCHEMAS, MYTABLES, MYTBTS, MYVIEWS, SCHEMAVIEWS, DUAL, SCHEMAPRIVILEGES,

SCHEMATABLES, STATISTICS, USRTBL, STRINGTABLE, LONGTABLE, DOUBLETABLE.

SQL Words That Are Not Allowed in Queries

Chapter 4 • Sun StorageTek 5800 System Query Language 125

126

Programming Considerations and Best
Practices

This chapter provides considerations and practices that can help you create efficient 5800
system applications.

The following topics are discussed:
■ “Retries and Timeouts” on page 127
■ “Query Size Limit” on page 127
■ “Limit the Size of Schema Query Parameters and Literals” on page 128
■ “Limit Results Per Fetch” on page 128

Retries and Timeouts
Client applications should place API calls within retry loops to handle cases such as storage
node failover. One immediate retry should be sufficient in the great majority of cases. In some
cases of node failover, retries should be pursued for up to 30 seconds.

When the 5800 system server is sufficiently loaded, client timeouts may occur. To avoid this,
maximum client threads should no greater than 25 times the number of nodes. For example, on
a full-cell with 16 storage nodes, the maximum client threads should be less than or equal to 25
times 16, or 400 client threads.

Query Size Limit
There is a hard limit when querying a live 5800 system or hive on the combined size of query
parameters and literal values that can be processed in one query. The limit is slightly over 8000
bytes. The query string itself does not count against this limit, just the parameter and literal
values in the query.

Each additional parameter or literal in the query contributes 2 bytes of overhead plus the
number of bytes to represent the query value. For this calculation, each date or time value
consumes 4 bytes. Each long, double, or timestamp value consumes 8 bytes. A binary or char

5C H A P T E R 5

127

field consumes the same number of bytes as the length of the value. A string value consumes
twice as many bytes as the length of the value. These sizes are similar to what is described in the
Sun StorageTek 5800 System Administration Guide, Table 7-6, Number of Bytes Used by Each
Element Type in a Schema Table.

For example, assume dynamic parameter 1 is bound to string "Hello" in the query
system.test.type_string=?. The parameter length would then be 12 bytes: 2 bytes overhead
plus 10 bytes for a 5-character string parameter.

Conversely, note that in the query system.test.type_string like ’%Hello%’ that the
parameter is 16 bytes: 2 bytes overhead plus 14 bytes for a 7 character string regardless of the
declared size of the system.test.type_string field in the schema.

For the query system.test.type_date = {date ’2007-01-1’} AND

system.test.type_char=’Hello’, the parameter length is 13 bytes: 2 bytes overhead for each
of two query values plus 4 bytes for a date literal plus 5 bytes for a 5-character char parameter.

Limit the Size of Schema Query Parameters and Literals
When designing a schema, limit the sizes of fields so that planned queries will fit within the size
limits. Most simple queries on a single table will fit within the 8000-byte limit. This is because
the table row definition itself must fit within the similar 8080-bytes for overall table row size.
Also note that complex queries on even a single table (such as queries involving many OR
clauses) may overflow the limit. Schema design and query design must work together carefully
if complex queries are an important part of the application.

For further information, see “Query Size Limit” on page 127.

Limit Results Per Fetch
Queries should use a reasonable value of “results per fetch” when a large total result set size is
expected. The maximum result size should not exceed the memory allocated for the query
engine on the server side. If it does, then the query will fail. Dropping the query result size will
allow the query to succeed.

If you incorrectly estimate how much memory will be used by the result set, the server will not
fail gracefully with an appropriate error message, but will instead run out of memory.

Suggested values are in the 2000-5000 range. Set maxFetchSize = 4098 as an argument to the
query method.

Limit the Size of Schema Query Parameters and Literals

Sun StorageTek 5800 System Client API Reference Manual • June 2008128

Index

Numbers and Symbols
5800 system

Honeycomb project, 17
summary, 16-17

B
best practices

max results per fetch, 128
retries and timeouts, 127
schema query size, 128

C
C client API

application deployment, 43
architecture, 40
failure and recovery, 43
hc_cleanup, 42
hc_init, 41-42
hc_system_record_t, 42-43
heap memory

allocator, 41
deallocator, 41
rellocator, 41

interfaces, 40
memory usage, 41
multithreaded access, 40
nonblocking, 43
performance and scalability, 40

C client API (Continued)
session management, 41-43, 53
synchronous, 44-45
system record, 42-43
updating schema definitions, 41

C client library, 40
canonical string

decode operation, 120
format, 119-120

changes for this release, 44-45
checkIndexed method, 32-33
creating, prepared statement, 100

D
data

retrieve for OID
hc_retrieve_ez, 91-92

retrieve range of data for OID
hc_range_retrieve_ez, 93-94

retrieving, 91
storing, 87

hc_store_both_ez, 87-88
data model, overview, 17-19
data type

synchronous C API, 46-53
hc_long_t, 46
hc_nvr_t, 48
hc_pstmt_t, 49
hc_query_result_set_t, 49
hc_session_t, 48-49

129

data type, synchronous C API (Continued)
hc_string_t, 46
hc_value_t, 47-48
hcerr_t, 51-53
read_from_data_source, 49-50
write_to_data_destination, 50-51

deleting, objects, overview, 22-23

E
error codes

list of, 51-53
translating into a string

hc_decode_hcerr, 112

F
fetches, limiting max results, 128

G
getObjectIdentifier method, 37
getQueryIntegrityTime method, 38
getSchema method, 33-34

H
HADB Date and Time operations, 120-121
hc_cleanup, 42
hc_init, 41-42
hc_system_record_t, 42-43
heap memory

allocator, 41
deallocator, 41
reallocator, 41

Honeycomb project, overview, 17

I
isQueryComplete method, 37

J
Java client API

application deployment, 27
basic concepts, 28
classes, 28

NameValueObjectArchive, 29, 30-38
NameValueRecord, 30
NameValueSchema, 29-30
ObjectIdentifier, 29-30
QueryResultSet, 30
SystemRecord, 30

interfaces, 26
Javadoc tool, 27
packages, 27
performance and scalability, 26

Java client library, 25-26
Javadoc tool, 27
JDBC Date and Time operations, 120-121

L
limitations, synchronous C API, 45
literals

numeric, 118
string, 118

M
metadata, 17-19

add metadata record for OID
hc_store_both_ez, 88-89

check if present for OID
hc_check_indexed_ez, 89-90

deleting, 111
querying, 94

hc_pstmt_create, 100
hc_pstmt_free, 101
hc_pstmt_query_ez, 109-110
hc_pstmt_set_date, 105
hc_qrs_free, 99
hc_qrs_next_ez, 96-97

retrieve for OID
hc_retrieve_metadata_ez, 92

Index

Sun StorageTek 5800 System Client API Reference Manual • June 2008130

metadata (Continued)
retrieving, 91
storing, 87

hc_store_both_ez, 87-88
metadata model, overview, 19-20
models

data, 17-19
deleting objects, 22-23
metadata, 19-20
query, 20-21
query integrity, 21-22

multithreaded access, 40

N
name-value records, 63

building, 66-67
hc_nvr_add_binary, 71
hc_nvr_add_date, 72
hc_nvr_add_double, 69
hc_nvr_add_from_string, 75
hc_nvr_add_long, 68
hc_nvr_add_string, 70
hc_nvr_add_time, 73
hc_nvr_add_timestamp, 74
hc_nvr_add_value, 67

converting to string arrays, 84
creating

hc_nvr_create, 65-66
creating and freeing, 65
creating from string arrays, 84

hc_nvr_convert_to_string_arrays, 86-87
hc_nvr_create_from_string_arrays, 84-85

manipulating, 63
retrieve OID and record

hc_pstmt_query_ez, 109-110
retrieving, 76

hc_nvr_get_binary, 81
hc_nvr_get_count, 76
hc_nvr_get_date, 82
hc_nvr_get_double, 79
hc_nvr_get_long, 78
hc_nvr_get_string, 80
hc_nvr_get_time, 82-83

name-value records, retrieving (Continued)
hc_nvr_get_timestamp, 83-84
hc_nvr_get_value_at_index, 77

storing, 63-64
using returned, 64-65

NameValueObjectArchive class, 29, 30-38
checkIndexed method, 32-33
getObjectIdentifier method, 37
getQueryIntegrityTime method, 38
getSchema method, 33-34
isQueryComplete method, 37
NameValueObjectArchive constructor, 31
query method, 34, 35
QueryResultSet method, 37
retrieveMetadata method, 33
retrieveObject method, 33
storeMetadata method, 32
storeObject method, 31-32

NameValueObjectArchive constructor, 31
NameValueRecord class, 30
NameValueSchema class, 29-30
nonblocking C API, 43

O
Object Identifier, See OID
ObjectIdentifier class, 29-30
objects, deleting, overview, 22-23
OID

add metadata record
hc_store_metadata_ez, 88-89

check if metadata is present
hc_check_indexed_ez, 89-90

deleting metadata, 111
fetch next

hc_qrs_next_ez, 96-97
overview, 18
retrieve, optionally retrieve name-value record

hc_pstmt_query_ez, 109-110
retrieve and optionally name

hc_query_ez, 94-96
retrieve data for OID

hc_retrieve_ez, 91-92

Index

131

OID (Continued)
retrieve metadata for

hc_retrieve_metadata_ez, 92
retrieve range of data for

hc_range_retrieve_ez, 93-94
operations

retrying, 26, 40
overview, 16-23

5800 system, 16-17
data model, 17-19
Honeycomb project, 17
metadata model, 19-20
query integrity model, 21-22
query model, 20-21

P
prepared statement

add binary binding to
hc_pstmt_set_binary, 108

add char binding to
hc_pstmt_set_char, 102-103

add date binding to
hc_pstmt_set_date, 105-106

add double precision binding to
hc_pstmt_set_double, 103-104

add hc_long_t binding to
hc_pstmt_set_long, 104-105

add string binding to
hc_pstmt_set_string, 101-102

add time-of-day binding to
hc_pstmt_set_time, 106

add timestamp binding to
hc_pstmt_set_timestamp, 107

creating, 100
freeing

hc_pstmt_free, 101
querying example, 110-113
retrieve OIDs, optionally retrieve name-value record

hc_pstmt_query_ez, 109-110

Q
queries, 117-118

best practices, 128
determine if complete

hc_qrs_is_query_complete, 97-98
determine query integrity time

hc_qrs_get_query_integrity_time, 98-99
dynamic parameters, 118
fetch next OID

hc_qrs_next_ez, 96-97
integrity model overview, 21-22
literal format, 119
literals, 118-119
literals size, 128
max results per fetch, 128
model overview, 20-21
numeric literals, 118
parameters size, 128
prepared statement query example, 110-113
query with prepared statement

hc_query_ez, 94-96
release query set results

hc_qrs_free, 99
string literals, 118
syntax, 118

query language
allowed words in queries, 124
attribute format, 117
dynamic parameters, 118
examples, 123
expression types, 121-123
features not supported, 123-124
forbidden words in queries, 124-125
interfaces, 115
literal format, 119
literals in queries, 118-119
operation, 116
queries, 117-118
reserved words, 121
syntax in queries, 118

query method, 34, 35
query size limit, 127-128
QueryResultSet class, 30
QueryResultSet method, 37

Index

Sun StorageTek 5800 System Client API Reference Manual • June 2008132

R
retries, 127
retrieveMetadata method, 33
retrieveObject method, 33
retrying operations, 26, 40

S
schema

managing, 59-60
hc_schema_get_count, 61-62
hc_schema_get_length, 61
hc_schema_get_type, 60
hc_schema_get_type_at_index, 62-63

schema definitions, updating, 41
session management

allocator_t, 41
deallocator_t, 41
failure and recovery, 43
hc_cleanup, 42
hc_init, 41-42
hc_system_record_t, 42-43
reallocator_t, 41

sessions
C client API

hc_session_create_ez, 53-54
hc_session_free, 55
hc_session_get_archive, 59
hc_session_get_host, 57
hc_session_get_platform_result, 58
hc_session_get_schema, 56-57
hc_session_get_status, 55-56
initializing, 41-42
managing, 53
terminating, 42

StorageTek 5800, Query Language, 115-125
storeMetadata method, 32
storeObject method, 31-32
string decode operation, canonical, 120
string format, canonical, 119-120
Sun StorageTek 5800, Query Language, 115-125
Sun StorageTek 5800 system

semantics
data and metadata, 17-19

Sun StorageTek 5800 system, semantics (Continued)
query size limit, 127-128

synchronous C API, 44-45
add binary binding to prepared statement

hc_pstmt_set_binary, 108
add char binding to prepared statement

hc_pstmt_set_char, 102-103
add date binding to prepared statement

hc_pstmt_set_date, 105-106
add double precision binding to prepared statement

hc_pstmt_set_double, 103-104
add hc_long_t binding to prepared statement

hc_pstmt_set_long, 104-105
add metadata record for OID

hc_store_metadata_ez, 88-89
add string binding to prepared statement

hc_pstmt_set_string, 101-102
add time-of-day binding to prepared statement

hc_pstmt_set_time, 106
add timestamp binding to prepared statement

hc_pstmt_set_timestamp, 107
check if OID metadata is present

hc_check_indexed_ez, 89-90
create prepared statement

hc_pstmt_create, 100
data types, 46-53

hc_double_t, 46-47
hc_long_t, 46
hc_nvr_t, 48
hc_pstmt_t, 49
hc_query_result_set_t, 49
hc_schema_t, 48
hc_session_t, 48-49
hc_string_t, 46
hc_type_t, 47
hc_value_t, 47-48
hcerr_t, 51-53
read_from_data_source, 49-50
write_to_data_destination, 50-51

determine if query complete
hc_qrs_is_query_complete, 97-98

determine query integrity time
hc_qrs_get_query_integrity_time, 98-99

error code list, 51-53

Index

133

synchronous C API (Continued)
error codes

translating into a string, 112
fetch next OID

hc_qrs_next_ez, 96-97
free prepared statement

hc_pstmt_free, 101
functions, 53-110

hc_nvr_get_count, 76
hc_pstmt_create, 100
hc_pstmt_free, 101
hc_pstmt_query_ez, 109-110
hc_pstmt_set_binary, 108
hc_pstmt_set_char, 102-103
hc_pstmt_set_date, 105-106
hc_pstmt_set_double, 103-104
hc_pstmt_set_long, 104-105
hc_pstmt_set_string, 101-102
hc_pstmt_set_time, 106
hc_pstmt_set_timestamp, 107
hc_qrs_free, 99
hc_qrs_get_query_integrity_time, 98-99
hc_qrs_is_query_complete, 97-98
hc_qrs_next_ez, 96-97
hc_query_ez, 94-96
hc_session_create_ez, 53-54
hc_session_free, 55
hc_session_get_archive, 59
hc_session_get_host, 57
hc_session_get_platform_result, 58
hc_session_get_schema, 56-57
hc_session_get_status, 55-56
hc_store_both_ez, 87

limitations, 45
managing schema

hc_schema_get_count, 61-62
hc_schema_get_length, 61
hc_schema_get_type, 60
hc_schema_get_type_at_index, 62-63

name-value records, 63
building, 66-67
creating and converting, 84
creating and freeing, 65
hc_nvr_add_binary, 71

synchronous C API, name-value records (Continued)
hc_nvr_add_date, 72
hc_nvr_add_double, 69
hc_nvr_add_from_string, 75
hc_nvr_add_long, 68
hc_nvr_add_string, 70
hc_nvr_add_time, 73
hc_nvr_add_timestamp, 74
hc_nvr_add_value, 67
hc_nvr_convert_to_string_arrays, 86-87
hc_nvr_create, 65-66
hc_nvr_create_from_string_arrays, 84-85
hc_nvr_get_binary, 81
hc_nvr_get_count, 76
hc_nvr_get_date, 82
hc_nvr_get_double, 79
hc_nvr_get_long, 78
hc_nvr_get_string, 80
hc_nvr_get_time, 82-83
hc_nvr_get_timestamp, 83-84
hc_nvr_get_value_at_index, 77
storing, 63-64
storing data and metadata, 87
using returned, 64-65

OID
deleting, 111

prepared statement
querying example, 110-113

query with prepared statement
hc_query_ez, 94-96

release query set results
hc_qrs_free, 99

retrieve data for OID
hc_retrieve_ez, 91-92

retrieve metadata for OID
hc_retrieve_metadata_ez, 92

retrieve OIDs, optionally retrieve name-value record
hc_pstmt_query_ez, 109-110

retrieve range of data for OID
hc_range_retrieve_ez, 93-94

storing data and metadata
hc_store_both_ez, 87-88

SystemRecord class, 30

Index

Sun StorageTek 5800 System Client API Reference Manual • June 2008134

T
timeouts, 127

Index

135

136

	Sun StorageTek 5800 System Client API Reference Manual
	Preface
	How This Book Is Organized
	Related Books
	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples
	Sun Welcomes Your Comments

	Sun StorageTek 5800 System Client API
	Changes in Version 1.1
	5800 System Overview
	5800 System Summary
	The 5800 System and Honeycomb
	The 5800 System Data Model
	The 5800 System Metadata Model
	The 5800 System Query Model
	The 5800 System Query Integrity Model
	Deleting Objects from the 5800 System

	Sun StorageTek 5800 System Java Client API
	Overview of the 5800 System Java Client API
	Client Library
	Interfaces
	Retrying Operations
	Performance and Scalability
	Updating Client View of the Schema

	Java Client Application Deployment
	Java API
	Java API Packages
	Java API Documentation
	Basic Concepts
	Key Classes
	NameValueObjectArchive
	NameValueSchema
	ObjectIdentifier

	QueryResultSet
	SystemRecord
	NameValueRecord

	NameValueObjectArchive Application Access
	NameValueObjectArchive
	Synopsis
	Description

	delete
	Synopsis
	Description

	storeObject
	Synopsis
	Description

	storeMetadata
	Synopsis
	Description

	checkIndexed
	Description

	retrieveObject
	Synopsis
	Description

	retrieveMetadata
	Synopsis
	Description

	getSchema
	Synopsis
	Description

	query
	Synopsis
	Description

	query (with selectKeys)
	Synopsis
	Description

	query (with PreparedStatement)
	Synopsis
	Description

	query (with PreparedStatement and selectKeys)
	Synopsis
	Description

	PreparedStatement
	Synopsis
	Description

	QueryResultSet
	next
	Synopsis
	Description

	getObjectIdentifier
	Synopsis
	Description

	isQueryComplete
	Synopsis
	Description

	getQueryIntegrityTime
	Synopsis
	Description

	QueryIntegrityTime
	Synopsis

	Sun StorageTek 5800 System C Client API
	Overview of the 5800 System C Client API
	Architecture
	Interfaces
	Retrying Operations
	Multithreaded Access
	Performance and Scalability
	Memory Usage
	Updating Schema Definitions
	Session Management
	Heap Memory Allocator
	Heap Memory Deallocator
	Heap Memory Reallocator
	Initializing a Global Session
	Terminating a Global Session
	System Record
	Failure and Recovery

	C Client Application Deployment
	Nonblocking C API
	Synchronous C API
	Changes for the 1.1 Release
	Limitations

	Synchronous C Data Types
	hc_string_t
	Synopsis
	Description

	hc_long_t
	Synopsis
	Description

	hc_double_t
	Synopsis
	Description

	hc_type_t
	Synopsis
	Description

	hc_value_t
	Synopsis
	Description

	hc_schema_t
	Synopsis
	Description

	hc_nvr_t
	Synopsis
	Description

	hc_session_t
	Synopsis
	Description

	hc_pstmt_t
	Synopsis
	Description

	hc_query_result_set_t
	Synopsis
	Description

	read_from_data_source
	Synopsis
	Description
	Parameters
	See Also

	write_to_data_destination
	Synopsis
	Description
	Parameters
	See Also

	hcerr_t
	Synopsis
	Description

	Synchronous C API Functions
	Managing 5800 System Sessions
	hc_session_create_ez
	Synopsis
	Description
	Parameters
	Return Codes

	hc_session_free
	Synopsis
	Description
	Parameters
	Return Codes

	hc_session_get_status
	Synopsis
	Description
	Parameters
	Return Codes

	hc_session_get_schema
	Synopsis
	Description
	Parameters
	Return Codes

	hc_session_get_host
	Synopsis
	Description
	Parameters
	Return Codes

	hc_session_get_platform_result
	Synopsis
	Description
	Parameters
	Return Codes

	hc_session_get_archive
	Synopsis
	Description
	Parameters
	Return Codes

	Managing a Schema
	hc_schema_get_type
	Synopsis
	Description
	Parameters
	Return Codes

	hc_schema_get_length
	Synopsis
	Description
	Parameters
	Return Codes

	hc_schema_get_count
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_schema_get_type_at_index
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	Manipulating Name-Value Records
	Using the API for Storing Name-Value Records
	To Use the API for Storing Name-Value Records

	Using Returned Name-Value Records
	To Use Returned Name-Value Records

	Creating and Freeing Name-Value Records
	hc_nvr_create
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_nvr_free
	Synopsis
	Description
	Parameter
	Return Codes
	See Also

	Building Name-Value Records
	hc_nvr_add_value
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_long
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_double
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_string
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_binary
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_date
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_time
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_timestamp
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_add_from_string
	Synopsis
	Description
	Parameters
	Return Codes

	Retrieving Name-Value Records
	hc_nvr_get_count
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_get_value_at_index
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_get_long
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_get_double
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_get_string
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_get_binary
	Synopsis
	Parameters
	Return Codes

	hc_nvr_get_date
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_get_time
	Synopsis
	Parameters
	Return Codes

	hc_nvr_get_timestamp
	Synopsis
	Parameters
	Return Codes

	Creating and Converting Name-Value Records From and To String Arrays
	hc_nvr_create_from_string_arrays
	Synopsis
	Description
	Parameters
	Return Codes

	hc_nvr_convert_to_string_arrays
	Synopsis
	Description
	Parameters
	Return Codes

	Storing Data and Metadata
	hc_store_both_ez
	Synopsis
	Description
	Parameters
	Return Codes

	hc_store_metadata_ez
	Synopsis
	Description
	Parameters
	Return Codes

	hc_check_indexed_ez
	Synopsis
	Description
	Parameters
	Return Codes

	Retrieving Data and Metadata
	hc_retrieve_ez
	Synopsis
	Description
	Parameters
	Return Codes

	hc_retrieve_metadata_ez
	Synopsis
	Description
	Parameters
	Return Codes

	hc_range_retrieve_ez
	Synopsis
	Description
	Parameters
	Return Codes

	Querying Metadata
	hc_query_ez
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_qrs_next_ez
	Synopsis
	Description
	Parameters
	Return Codes

	hc_qrs_is_query_complete
	Synopsis
	Description
	Parameters
	Return Codes

	hc_qrs_get_query_integrity_time
	Synopsis
	Description
	Parameter
	Return Codes

	hc_qrs_free
	Synopsis
	Description
	Parameter
	Return Codes
	See Also

	hc_pstmt_create
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_free
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_string
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_char
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_double
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_long
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_date
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_time
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_timestamp
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_set_binary
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	hc_pstmt_query_ez
	Synopsis
	Description
	Parameters
	Return Codes
	See Also

	Querying With a Prepared Statement
	Deleting Records
	hc_delete_ez
	Synopsis
	Description
	Parameters
	Return Codes

	Translating Error and Type Codes
	hc_decode_hcerr
	Synopsis
	Description
	Parameter

	hc_decode_hc_type
	Synopsis
	Description
	Parameters

	Sun StorageTek 5800 System Query Language
	Interfaces
	Operation
	Supported Data Types
	Queries
	Translating a Query to the Underlying Database
	Attribute Format in Queries
	SQL Syntax in 5800 System Queries

	Literals In Queries
	Dynamic Parameters
	String Literals
	Numeric Literals
	Literals for 5800 System Data Types

	Canonical String Format
	The Canonical String Decode Operation

	JDBC and HADB Date and Time Operations
	Reserved Words
	Supported Expression Types
	Examples of Supported Query Expressions
	Queries Not Supported in Version 1.1
	SQL Words That Are Allowed in Queries
	SQL Words That Are Not Allowed in Queries

	Programming Considerations and Best Practices
	Retries and Timeouts
	Query Size Limit
	Limit the Size of Schema Query Parameters and Literals
	Limit Results Per Fetch

	Index

