
Sun Java System Web Server 6.1
SP7 Administrator's
Configuration File Reference

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–0253

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070201@16599

Contents

Preface ...15

1 Basics of Server Operation ...21
Configuration Files .. 21

server.xml .. 22
magnus.conf ... 22
obj.conf .. 22
mime.types .. 23
Other Configuration Files ... 23

Directory Structure ... 23
All Platforms ... 23
UNIX and Linux Platforms ... 25

Dynamic Reconfiguration .. 26

2 Server Configuration Elements in server.xml ... 27
sun-web-server_6_1.dtd File .. 27

Subelements .. 28
Data .. 28
Attributes .. 29

Elements in the server.xml File .. 29
Core Server Elements .. 30

SERVER .. 30
PROPERTY .. 31
DESCRIPTION .. 32
VARS ... 32

Listener Elements .. 33
LS .. 33

3

SSLPARAMS ... 35
MIME .. 36
ACLFILE ... 37
VSCLASS .. 38
VS ... 39
QOSPARAMS .. 41
USERDB .. 42

WebDAV Elements ... 43
DAV ... 43
DAVCOLLECTION .. 45

Search Elements ... 46
SEARCH ... 47
SEARCHCOLLECTION .. 47
DISPLAYNAME .. 48

Web Application Elements ... 49
WEBAPP ... 49

Java Configuration Elements ... 50
JAVA .. 50
JVMOPTIONS ... 52
PROFILER .. 53
SECURITY .. 54
AUTHREALM ... 55

Resource Elements .. 56
RESOURCES .. 56
CUSTOMRESOURCE .. 57
EXTERNALJNDIRESOURCE ... 58
JDBCRESOURCE .. 59
JDBCCONNECTIONPOOL .. 59
CONNECTIONPROPERTY .. 63
MAILRESOURCE ... 64

LOG ... 65
Subelements .. 65

User Database Selection .. 66
Sun Java System LDAP Schema ... 67

Convergence Tree .. 68
Domain Component (dc) Tree .. 68

Contents

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •4

Variables ... 69
Format of a Variable .. 69
The id Variable ... 69
Other Important Variables ... 70
Variable Evaluation ... 70

Sample server.xml File .. 71

3 Syntax and Use of magnus.conf .. 75
Init Functions ... 76
Server Information .. 76

ExtraPath ... 76
TempDir .. 76
TempDirSecurity ... 77
User .. 77

Language Issues ... 78
DefaultLanguage .. 78

DNS Lookup .. 78
AsyncDNS ... 78
DNS ... 79

Threads, Processes, and Connections ... 79
AcceptTimeout ... 80
ConnQueueSize ... 81
HeaderBufferSize ... 81
KeepAliveQueryMaxSleepTime .. 81
KeepAliveQueryMeanTime ... 81
KeepAliveThreads .. 82
KeepAliveTimeout ... 82
KernelThreads .. 82
ListenQ .. 83
MaxKeepAliveConnections .. 83
MaxProcs (UNIX Only) .. 83
PostThreadsEarly ... 83
RcvBufSize .. 84
RqThrottle .. 84
SndBufSize .. 84

Contents

5

StackSize .. 84
StrictHttpHeaders .. 85
TerminateTimeout .. 85
ThreadIncrement ... 85
UseNativePoll (UNIX only) .. 85

Native Thread Pools .. 86
NativePoolStackSize .. 86
NativePoolMaxThreads .. 86
NativePoolMinThreads ... 86
NativePoolQueueSize .. 87

CGI .. 87
CGIExpirationTimeout .. 87
CGIStubIdleTimeout ... 88
CGIWaitPid (UNIX Only) .. 88
MaxCGIStubs ... 88
MinCGIStubs ... 88
WincgiTimeout .. 89

Error Logging and Statistic Collection ... 89
ErrorLogDateFormat .. 89
LogFlushInterval .. 89
PidLog ... 90

ACL ... 90
ACLCacheLifetime .. 90
ACLUserCacheSize .. 91
ACLGroupCacheSize .. 91

Security ... 91
Security .. 91
ServerString .. 92
SSLCacheEntries .. 92
SSLClientAuthDataLimit .. 93
SSLClientAuthTimeout ... 93
SSLSessionTimeout ... 93
SSL3SessionTimeout ... 93

Chunked Encoding ... 94
UseOutputStreamSize ... 94
ChunkedRequestBufferSize .. 94

Contents

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •6

ChunkedRequestTimeout .. 95
Miscellaneous Directives .. 95

ChildRestartCallback .. 95
Favicon .. 96
MaxRqHeaders ... 96
Umask (UNIX only) .. 96

Deprecated Directives ... 96
Summary of Init Functions and Directives in magnus.conf ... 97

Purpose .. 97
Location .. 97
Syntax .. 97
See Also ... 97
Init Functions ... 97
Directives .. 104

4 Predefined SAFs in obj.conf ...113
List of SAFs ... 114
The bucket Parameter ... 115
AuthTrans .. 116

basic-auth .. 117
basic-ncsa .. 118
get-sslid ... 119
match-browser ... 120
qos-handler ... 121
set-variable .. 122

NameTrans ... 126
assign-name .. 126
document-root ... 128
home-page .. 129
match-browser ... 130
ntrans-dav ... 130
ntrans-j2ee .. 131
pfx2dir ... 131
redirect .. 133
set-variable .. 134

Contents

7

strip-params ... 134
unix-home .. 135

PathCheck .. 136
check-acl ... 136
find-compressed .. 137
deny-existence .. 139
find-index .. 139
find-links ... 140
find-pathinfo .. 141
get-client-cert ... 142
load-config .. 143
match-browser ... 145
nt-uri-clean ... 145
ntcgicheck ... 146
pcheck-dav .. 147
require-auth .. 147
set-variable .. 148
set-virtual-index ... 148
ssl-check .. 149
ssl-logout ... 150
unix-uri-clean ... 150
Parameters .. 150
Example ... 151
See Also ... 151

ObjectType ... 151
force-type .. 152
Parameters .. 152
Example ... 153
See Also ... 153
match-browser ... 153
set-default-type .. 153
Parameters .. 153
Example ... 154
set-variable .. 154
shtml-hacktype ... 154
Parameters .. 154

Contents

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •8

Example ... 155
type-by-exp ... 155
Parameters .. 155
Example ... 156
See Also ... 156
type-by-extension .. 156

Input .. 157
insert-filter .. 158
match-browser ... 159
remove-filter ... 159
set-variable .. 159

Output ... 160
insert-filter .. 160
match-browser ... 161
remove-filter ... 161
set-variable .. 162

Service ... 162
type .. 162
method ... 162
query ... 162
UseOutputStreamSize .. 163
flushTimer ... 163
ChunkedRequestBufferSize ... 163
ChunkedRequestTimeout .. 163
add-footer ... 165
add-header .. 166
append-trailer ... 167
imagemap .. 169
index-common ... 169
index-simple ... 171
key-toosmall ... 172
list-dir .. 173
make-dir .. 175
match-browser ... 175
query-handler ... 176
remove-dir .. 176

Contents

9

delete-file ... 177
remove-filter ... 178
rename-file .. 179
send-cgi ... 180
send-error ... 182
send-file ... 183
send-range .. 185
send-shellcgi ... 185
send-wincgi ... 186
service-dav .. 187
service-dump .. 188
service-j2ee ... 189
service-trace .. 190
set-variable .. 191
shtml_send .. 191
stats-xml .. 192
upload-file ... 194

AddLog ... 195
common-log ... 195
flex-log ... 196
match-browser ... 197
record-useragent .. 197
set-variable .. 198

Error .. 198
error-j2ee .. 199
match-browser ... 199
qos-error ... 200
query-handler ... 200
remove-filter ... 201
Returns .. 202
Parameters .. 202
Example ... 202
send-error ... 202
set-variable .. 203

Contents

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •10

5 MIME Types ...205
Introduction ... 205
Determining the MIME Type .. 206
How the Type Affects the Response .. 206
What Does the Client Do with the MIME Type? ... 207
Syntax of the MIME Types File .. 207
Sample MIME Types File ... 207

6 Other Server Configuration Files ..209
certmap.conf .. 209

Purpose .. 209
Location .. 209
Syntax .. 210
See Also ... 210

dbswitch.conf ... 211
Purpose .. 211
Location .. 211
Syntax .. 211
See Also ... 212

Deployment Descriptors .. 213
Purpose .. 213
Location .. 213
See Also ... 214

generated.instance.acl ... 214
Purpose .. 214
Location .. 214
See Also ... 214

login.conf .. 214
Purpose .. 214
Location .. 214

nsfc.conf .. 215
Purpose .. 215
Location .. 215
Syntax .. 215
See Also ... 215

Contents

11

password.conf .. 216
Purpose .. 216
Location .. 217
Syntax .. 217
See Also ... 217

server.policy ... 217
Purpose .. 217
Location .. 217
Syntax .. 218
See Also ... 218

*.clfilter ... 218
Purpose .. 218
Location .. 218

A Configuration Changes Between iPlanet Web Server 4.1 and Sun Java System Web Server
6.1 .. 219
magnus.conf ... 219
obj.conf ... 221
contexts.properties .. 222
rules.properties .. 223
servlets.properties ... 224

B Configuration Changes Between iPlanet Web Server 6.0 and Sun Java System Web Server
6.1 .. 225
magnus.conf ... 225

Init Functions ... 225
Directives .. 226

obj.conf ... 227
server.xml ... 227

Contents

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •12

C Time Formats ..231

D Alphabetical List of Server Configuration Elements ... 233

E Alphabetical List of Predefined SAFs ... 235

Index ... 239

Contents

13

14

Preface

This guide discusses the purpose and use of the configuration files for Sun Java System Web
Server 6.1, including server.xml, magnus.conf, and mime.types, and provides comprehensive
lists of the elements and directives in these configuration files.

This preface contains information about the following topics:

■ “Who Should Use This Guide” on page 15
■ “Using the Documentation” on page 15
■ “How This Guide Is Organized” on page 17
■ “Documentation Conventions” on page 18
■ “Product Support” on page 19

Who Should Use This Guide
The intended audience for this guide is one who administers and maintains the Sun Java System
Web Server.

This guide assumes you are familiar with the following topics:

■ J2SE specification
■ HTTP
■ HTML
■ XML
■ Java programming
■ Java APIs as defined in servlet, JSP, and JDBC specifications
■ Relational database concepts

Using the Documentation
The Sun Java System Web Server manuals are available as online files in PDF and HTML
formats at http://docs.sun.com/app/docs/coll/1308.4.

The following table lists the tasks and concepts described in the Sun Java System Web Server
manuals.

15

http://docs.sun.com/app/docs/coll/1308.4

TABLE P–1 Sun Java System Web Server Documentation Roadmap

For Information About See the Following

Late-breaking information about the software and
documentation

Release Notes

Getting started with Sun Java System Web Server,
including hands-on exercises that introduce server
basics and features (recommended for first-time
users)

Getting Started Guide

Performing installation and migration tasks:
■ Installing Sun Java System Web Server and its

various components, supported platforms, and
environments

■ Migrating from Sun Java System Web Server 4.1
or 6.0 to Sun Java System Web Server 6.1

Installation and Migration Guide

Performing the following administration tasks:
■ Using the Administration and command-line

interfaces

■ Configuring server preferences

■ Using server instances

■ Monitoring and logging server activity

■ Using certificates and public key cryptography to
secure the server

■ Configuring access control to secure the server

■ Using JavaTM 2 Platform, Standard Edition (J2SE
platform) security features

■ Deploying applications

■ Managing virtual servers

■ Defining server workload and sizing the system to
meet performance needs

■ Searching the contents and attributes of server
documents, and creating a text search interface

■ Configuring the server for content compression

■ Configuring the server for web publishing and
content authoring using WebDAV

Administrator’s Guide

Preface

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •16

TABLE P–1 Sun Java System Web Server Documentation Roadmap (Continued)
For Information About See the Following

Using programming technologies and APIs to do the
following:
■ Extend and modify Sun Java System Web Server
■ Dynamically generate content in response to

client requests
■ Modify the content of the server

Programmer’s Guide

Creating custom Netscape Server Application
Programmer’s Interface (NSAPI) plug-ins

NSAPI Programmer’s Guide

Implementing servlets and JavaServer PagesTM (JSP)
technology in Sun Java System Web Server

Programmer’s Guide to Web Applications

Editing configuration files Administrator’s Configuration File Reference Guide

Tuning Sun Java System Web Server to optimize
performance

Performance Tuning, Sizing, and Scaling Guide

How This Guide Is Organized
This guide has the following chapters:
■ Chapter 1, Basics of Server Operation

Introduces the major configuration files that control the Sun Java System Web Server and
describes how to activate and edit them.

■ Chapter 2, Server Configuration Elements in server.xml
Describes the server.xml file, which controls most aspects of server operation.

■ Chapter 3, Syntax and Use of magnus.conf
Describes the directives you can set in the magnus.conf file to configure the Sun Java System
Web Server during initialization.

■ Chapter 4, Predefined SAFs in obj.conf
describes the predefined SAFs used in the obj.conf file.

■ Chapter 5, MIME Types
Describes the MIME types file, which maps file extensions to file types.

■ Chapter 6, Other Server Configuration Files
Lists other important configuration files and provides a quick reference of their contents.

■ Appendix A, Configuration Changes Between iPlanet Web Server 4.1 and Sun Java System
Web Server 6.1
Describes the changes in configuration files between the 4.x and 6.1 versions of Sun Java
System Web Server.

Preface

17

■ Appendix B, Configuration Changes Between iPlanet Web Server 6.0 and Sun Java System
Web Server 6.1
Describes the changes in configuration files between the 6.0 and 6.1 versions of Sun Java
System Web Server.

■ Appendix C, Time Formats
Describes the format strings used for dates and times in the server log.

■ Appendix D, Alphabetical List of Server Configuration Elements
Provides an alphabetical list for easy lookup of elements in server.xml and directives in
magnus.conf.

■ Appendix E, Alphabetical List of Predefined SAFs
Provides an alphabetical list for easy lookup of directives in obj.conf.

Documentation Conventions
This section describes the types of conventions used throughout this guide:

■ File and directory paths are given in UNIX® format (with forward slashes separating
directory names). For Windows versions, the directory paths are the same, except that
backslashes are used to separate directories.

■ URLs are given in the format:
http://server.domain/path/file.html
In these URLs, server is the server name where applications are run; domain is your Internet
domain name; path is the server's directory structure; and file is an individual filename. Italic
items in URLs are placeholders.

■ Font conventions include:
■ The monospace font is used for sample code and code listings, API and language

elements (such as function names and class names), file names, pathnames, directory
names, and HTML tags.

■ Italic type is used for code variables.
■ Italic type is also used for book titles, emphasis, variables and placeholders, and words

used in the literal sense.
■ Bold type is used as either a paragraph lead-in or to indicate words used in the literal

sense.

Installation root directories are indicated by install_dir in this document.

By default, the location of install_dir on UNIX-based platforms is:

/opt/SUNWwbsvr/

Preface

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •18

On Windows, it is:

C:\Sun\WebServer6.1

Product Support
If you have problems with your system, contact customer support using one of the following
mechanisms:

■ The online support web site at:
http://www.sun.com/training/

■ The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This helps to
ensure that our support staff can best assist you in resolving problems:

■ Description of the problem, including the situation where the problem occurs and its
impact on your operation

■ Machine type, operating system version, and product version, including any patches and
other software that might be affecting the problem

■ Detailed steps on the methods you have used to reproduce the problem
■ Any error logs or core dumps

Preface

19

http://www.sun.com/training/

20

Basics of Server Operation

The configuration and behavior of Sun JavaTM System Web Server is determined by a set of
configuration files. When you use the Administration interface, you change the settings in these
configuration files. You can also manually edit these files.

This chapter has the following sections:

■ “Configuration Files” on page 21
■ “Directory Structure” on page 23
■ “Dynamic Reconfiguration” on page 26

Configuration Files
The configuration and operation of the Sun Java System Web Server is controlled by
configuration files. The configuration files reside in the directory instance_dir/config. This
directory contains various configuration files for controlling different components. The exact
number and names of configuration files depends on which components have been enabled or
loaded into the server.

However, this directory always contains four configuration files that are essential for the server
to operate. These files are:

■ “server.xml” on page 22 -- contains most of the server configuration.
■ “magnus.conf” on page 22 -- contains global server initialization information.
■ “obj.conf” on page 22 -- contains instructions for handling HTTP requests from clients.
■ “mime.types” on page 23 -- contains information for determining the content type of

requested resources.

1C H A P T E R 1

21

server.xml
server.xmlfile contains most of the server configuration. A schema file,
sun-web-server_6_1.dtd, defines its format and content.

For more information about how the server uses sun-web-server_6_1.dtd and server.xml,
see Chapter 2, Server Configuration Elements in server.xml.

magnus.conf
This file sets values of variables that configure the server during initialization. The server
executes the settings in this file on startup. The server does not check at this file again until it is
restarted.

See Chapter 3, Syntax and Use of magnus.conf for a list of all the variables and Init directives
that can be set in magnus.conf.

obj.conf
This file contains instructions for the Sun Java System Web Server about how to handle HTTP
requests from clients and service web server content such as native server plug-ins and CGI
programs. The server checks the configuration defined by this file every time it processes a
request from a client.

This file contains a series of instructions (directives) that tell the Sun Java System Web Server
what to do at each stage in the request-response process.You can modify and extend the request
handling process by adding or changing the instructions in obj.conf.

All obj.conf files are located in the server_root/config directory. There is one obj.conf file for
each virtual server class. Whenever this guide refers to "the obj.conf file," it refers to all
obj.conf files or to the obj.conf file for the virtual server class described.

By default, each active obj.conf file is named vs_class-obj.conf. Editing one of these files
directly or through the Administration interface changes the configuration of a virtual server
class.

The obj.conf file is essential to the operation of the Sun Java System Web Server. When you
make changes to the server through the Administration interface, the system automatically
updates obj.conf.

For information about how the server uses obj.conf, see Chapter 4, Predefined SAFs in
obj.conf.

Configuration Files

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •22

mime.types
This file maps file extensions to MIME types to enable the server to determine the content type
of a requested resource. For example, requests for resources with .html extensions indicate that
the client is requesting an HTML file, requests for resources with .gif extensions indicate that
the client is requesting an image file in GIF format.

For more information about how the server uses mime.types, see "MIME Types."

Other Configuration Files
For information about other important configuration files, see Chapter 6, Other Server
Configuration Files.

Directory Structure
The following section describes the directory structure created when you first install Sun Java
System Web Server 6.1. The information is organized in two parts:

■ “All Platforms” on page 23
■ “UNIX and Linux Platforms” on page 25

All Platforms
For all platforms, the following directories are created under the server root directory:

■ alias contains the key and certificate files for all Sun Java System servers (for example,
https-admserv-server_id-cert8.db and secmod.db).

■ bin contains the binary files for the server, such as the actual server, the Administration
Server forms, and so on. In addition, this directory includes the https/install folder that
contains files needed for migrating server settings and default configuration files needed for
backward compatibility.

■ docs is the server’s default primary document directory, where your server’s content files are
usually kept. If you are migrating settings from an existing server, this directory doesn’t
appear until you finish the migration process.

■ extras contains the log analyzer and log analysis tools.
■ The flexanlg directory contains a command-line log analyzer. This log analyzer

analyzes files in flexlog format.
■ The log_anly directory contains the log analysis tool that runs through the Server

Manager. This log analyzer analyzes files in common log format only.

Directory Structure

Chapter 1 • Basics of Server Operation 23

httpacl contains the files that store access control configuration information in the
generated.server-id.acl and genwork.server-id.acl files. The file
generated.server-id.acl contains changes you make using the Server Manager access
control forms after saving your changes; genwork.server-id.acl contains your changes
before you save your changes.

■ https-admserv contains the directories for the Administration Server. This directory has
the following subdirectories and files:
■ For UNIX/Linux platforms, this directory contains shell scripts to start, stop, and restart

the server and a script to rotate log files.
■ ClassCache contains classes and Java files, generated as a result of the compilation of

JavaServer pages.
■ conf_bk contains backup copies of the administration server’s configuration files.
■ config contains the server’s configuration files.
■ logs contains any error or access log files.
■ SessionData contains session database data from MMapSessionManager.
■ startsvr.bat is the script that starts the Server Manager on Windows machines. The

Server Manager lets you configure all servers installed in the server root directory.
■ stopsvr.bat is the script that stops the Server Manager on Windows machines.

https-server_id are the directories for each server you have installed on the machine. Each
server directory has the following subdirectories and files:
■ ClassCache contains classes and Java files, generated as result of the compilation of

JavaServer pages.
■ conf_bk contains backup copies of the server’s configuration files.
■ config contains the server instance configuration files.
■ logs contains the server instance log files.
■ reconfig is the script used to reconfigure the server dynamically. If you make

non-global changes to the server, you can use this script to reconfigure the server
without stopping and starting it. Note that changes to ACL files and magnus.conf

require you to stop and restart the server.
■ restart is the script that restarts the server.
■ rotate rotates server log files without affecting users who may be connected to the

server.
■ search contains the following directories: admin and collections

■ SessionData contains session database data from MMapSessionManager.
■ startsvr.bat is the script that starts the Server Manager. The Server Manager lets you

configure all servers installed in the server root directory.
■ stopsvr.bat is the script that stops the Server Manager.

Directory Structure

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •24

manual contains the online manuals for the product.
■ plug-ins contains directories for Java, search, and other plug-ins. This directory has the

following subdirectories:
■ htaccess contains server plug-in for .htaccess access control and htconvert, an

.nsconfig to .htaccess converter.
■ digest contains the Digest Authentication Plug-in for Sun Java System Directory Server

5.0, as well as information about the plug-in.
■ samples contains samples and example components, plug-ins and technologies

supported by the Sun Java System Web Server servlet engine. This includes binaries, all
code, and a build enviroment.

■ servlets contains information about and examples of web-apps applications.
■ include contains various include files.
■ lib contains shared libraries.
■ nsacl contains information for your server’s access control lists.
■ loadbal contains the required files for the Resonate load-balancer integration plug-in.
■ nsapi contains header files and example code for creating your own functions using

NSAPI. For more information, see the Sun Java System documentation web site at:
http://docs.sun.com/app/docs/coll/1308.4

■ search contains information for your server’s search plug-ins.
■ snmp contains information for your server’s SNMP plug-ins.

setup contains the various Sun Java System Web Server setup files, including setup.log and
uninstall.inf.

■ userdb contains user databases and related information.
■ LICENSE.txt is the license file.
■ README.txt is the readme file that contains a link to the Sun Java System Web Server

Release Notes.

UNIX and Linux Platforms
In addition to the files and directories described in “All Platforms” on page 23 the following files
are created at the server-root directory for UNIX and Linux platforms:

■ startconsole launches a browser to the Administration Server page.
The following files are created under the server-root/https-admserv directory for UNIX
and Linux platforms:
■ ClassCache contains classes and Java files, generated as result of the compilation of

JavaServer pages.

Directory Structure

Chapter 1 • Basics of Server Operation 25

http://docs.sun.com/app/docs/coll/1308.4

■ conf_bk contains backup copies of the server’s configuration files.
■ config contains the Administration Server configuration files.
■ logs contains the Administration Server log files.
■ SessionData contains session database data from MMapSessionManager.
■ restart is the script that restarts the Server Manager.
■ start is the script that starts the Server Manager. The Server Manager lets you configure

all servers installed in the server root directory.
■ stop is the script that stops the Server Manager.

Dynamic Reconfiguration
Dynamic reconfiguration enables you to make configuration changes to a live web server
without having to stop and restart the web server for the changes to take effect. You can
dynamically change all configuration settings and attributes in the server.xml file and its
associated files without restarting the server.

To access the dynamic reconfiguration screen and install a new configuration dynamically, click
the Apply link in the upper right corner of the Server Manager, Class Manager, and Virtual
Server Manager pages, click the Load Configuration Files button on the Apply Changes page. If
there are errors in installing the new configuration, the previous configuration is restored.

Dynamic Reconfiguration

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •26

Server Configuration Elements in server.xml

The server.xml file contains most of the server configuration. The encoding is UTF-8 to
maintain compatibility with regular UNIX text editors. The server.xml file is located in the
instance_dir/config directory. A schema file, sun-web-server_6_1.dtd, determines the
format and content of the server.xml file.

This chapter describes server.xml and sun-server_1_0.dtd in the following sections:
■ “sun-web-server_6_1.dtd File” on page 27
■ “Elements in the server.xml File” on page 29
■ “Core Server Elements” on page 30
■ “Listener Elements” on page 33
■ “WebDAV Elements” on page 43
■ “Search Elements” on page 46
■ “Web Application Elements” on page 49
■ “Java Configuration Elements” on page 50
■ “Resource Elements” on page 56
■ “LOG” on page 65
■ “User Database Selection” on page 66
■ “Sun Java System LDAP Schema” on page 67
■ “Variables” on page 69
■ “Sample server.xml File” on page 71

sun-web-server_6_1.dtd File
The sun-web-server_6_1.dtd file defines the structure of the server.xml file, including the
elements it can contain and the subelements and attributes these elements can have. The
sun-web-server_6_1.dtd file is located in the install_dir/bin/https/dtds directory.

Each element defined in a DTD file (which might be present in the corresponding XML file) can
contain the following:
■ “Subelements” on page 28

2C H A P T E R 2

27

■ “Data” on page 28
■ “Attributes” on page 29

Subelements
Elements can contain subelements. For example, the following file fragment defines the
VSCLASS element.

<!ELEMENT VSCLASS (VARS?, VS*, QOSPARAMS?)>

The ELEMENT tag specifies that a VSCLASS element can contain VARS, VS, and QOSPARAMS

elements in that order.

The following table shows how optional suffix characters of subelements determine the
requirement rules or number of allowed occurrences for the subelements.

TABLE 2–1 Requirement Rules and Subelement Suffixes

Subelement Suffix Requirement Rule

element* Can contain zero or more of this subelement

element? Can contain zero or one of this subelement

element+ Must contain one or more of this subelement

element (no suffix) Must contain only one of this subelement

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead of a list of
element names in parentheses.

Data
Some elements contain character data instead of subelements. These elements have definitions
of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT DESCRIPTION (#PCDATA)>

In the server.xml file, white space is treated as part of the data in a data element. Therefore,
there should be no extra white space before or after the data delimited by a data element. For
example:

sun-web-server_6_1.dtd File

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •28

<DESCRIPTION>myserver</DESCRIPTION>

Attributes
Elements that have ATTLIST tags contain attributes (name-value pairs). For example:

<!ATTLIST JDBCRESOURCE

jndiname CDATA #REQUIRED

poolname CDATA #REQUIRED

enabled %boolean; "true">

A JDBCRESOURCE element can contain jndiname, poolname, and enabled attributes.

The #REQUIRED label means that a value must be supplied. The #IMPLIED label means that the
attribute is optional, and that Sun Java System Web Server generates a default value. Wherever
possible, explicit defaults for optional attributes (such as "true") are listed.

Attribute declarations specify the type of the attribute. For example, CDATA means character
data, and %boolean is a predefined enumeration.

Elements in the server.xml File
This section describes the XML elements in the server.xml file. Elements are grouped as
follows:

■ “Core Server Elements” on page 30
■ “Listener Elements” on page 33
■ “WebDAV Elements” on page 43
■ “Search Elements” on page 46
■ “Web Application Elements” on page 49
■ “Java Configuration Elements” on page 50
■ “Resource Elements” on page 56

Note – Subelements must be defined in the order in which they are listed under each
Subelements heading unless otherwise noted.

For an alphabetical listing of elements in server.xml, see “Appendix D, Alphabetical List of
Server Configuration Elements.

Elements in the server.xml File

Chapter 2 • Server Configuration Elements in server.xml 29

Core Server Elements
General elements are as follows:

■ “SERVER” on page 30
■ “PROPERTY” on page 31
■ “DESCRIPTION” on page 32
■ “VARS” on page 32

SERVER
Defines a server. This is the root element. There can only be one server element in a server.xml
file.

Subelements
The following table describes subelements for the SERVER element.

TABLE 2–2 SERVER Subelements

Element Required Description

“VARS” on page 32 zero or one Defines variables that can be given values in
server.xml and referenced in obj.conf

“PROPERTY” on page 31 zero or more Specifies a property of the serve.

“LS” on page 33 one or more Defines one or more HTTP listen sockets

“MIME” on page 36 zero or more Defines the mime type

“ACLFILE” on page 37 zero or more References one or more ACL files

“VSCLASS” on page 38 one or more Defines a virtual server class

“QOSPARAMS” on page 41 zero or one Defines quality of service parameters

“JAVA” on page 50 zero or one Configures JavaTM Virtual Machine (JVM)
parameters

“LOG” on page 65 zero or one Configures the system logging service

Attributes
The following table describes attributes for the SERVER element.

Core Server Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •30

TABLE 2–3 SERVER Attributes

Attribute Default Description

qosactive no Enables quality of service features, which let you
set limits on server entities or view server
statistics for bandwidth and connections.
Allowed values are yes, no, on, off, true, false,
1 or 0.

qosmetricsinterval 30 (optional) The interval in seconds during which
the traffic is measured.

qosrecomputeinterval 100 (optional) The period in milliseconds in which
the bandwidth gets recomputed for all server
entities.

PROPERTY
Specifies a property, or a variable that is defined in server.xml and referenced in obj.conf. For
information about variables, see “Variables” on page 69.

For a list of variables commonly defined in server.xml, see "Variables Used in the Interface."

A property adds configuration information to its parent element that is one or both of the
following:

■ Optional with respect to Sun Java System Web Server
■ Needed by a system or object that Sun Java System Web Server does not have knowledge of,

such as an LDAP server or a Java class
For example, an AUTHREALM element can include PROPERTY subelements:
<AUTHREALM name="file"

classname="com.iplanet.ias.security.auth.realm.file.FileRealm">

<PROPERTY name="file" value="instance_dir/config/keyfile>
<PROPERTY name="jaas-context" value="fileRealm">

</AUTHREALM>

The properties that an AUTHREALM element uses depends on the value of the AUTHREALM
element's name attribute. The file realm uses file and jaas-context properties. Other
realms use different properties.

Subelements
The following table describes subelements for the PROPERTY element.

Core Server Elements

Chapter 2 • Server Configuration Elements in server.xml 31

TABLE 2–4 PROPERTY Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of the property.

Attributes
The following table describes attributes for the PROPERTY element.

TABLE 2–5 PROPERTY Attributes

Attribute Default Description

name none Specifies the name of the property or variable.

value none Specifies the value of the property or variable.

DESCRIPTION
Contains a text description of the parent element.

Subelements
None

Attributes
None

VARS
Defines variables that can be given values in server.xml and referenced in obj.conf. For more
information, see “Variables” on page 69.

Subelements
none

Attributes
none

Core Server Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •32

Listener Elements
The listener elements are as follows:

■ “LS” on page 33
■ “SSLPARAMS” on page 35
■ “MIME” on page 36
■ “ACLFILE” on page 37
■ “VSCLASS” on page 38
■ “VS” on page 39
■ “QOSPARAMS” on page 41
■ “USERDB” on page 42

LS
Defines an HTTP listen socket.

Note – When you create a secure listen socket through the Server Manager, security is
automatically turned on globally in magnus.conf. When you create a secure listen socket
manually in server.xml, security must be turned on by editing magnus.conf.

The CONNECTIONGROUP element from the schema file for server.xml in version 6.0 of Web
Server is no longer supported. Its attributes and the subelement SSLPARAMS are added to the LS
element in Sun Java System Web Server 6.1.

Subelements
The following table describes subelements for the LS element.

TABLE 2–6 LS Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of the listen socket.

“SSLPARAMS” on page 35 zero or one Defines Secure Socket Layer (SSL) parameters.

Attributes
The following table describes attributes for the LS element.

Listener Elements

Chapter 2 • Server Configuration Elements in server.xml 33

TABLE 2–7 LS Attributes

Attribute Default Description

id none (Optional) The socket family type. A socket
family type cannot begin with a number.

When you create a secure listen socket in the
server.xml file, security must be turned on in
magnus.conf. When you create a secure listen
socket in the Server Manager, security is
automatically turned on globally in
magnus.conf.

ip any Specifies the IP address of the listen socket. Can
be in dotted-pair or IPv6 notation. Can also be
any for INADDR_ANY.

port none Port number to create the listen socket on. Legal
values are 1 - 65535. On UNIX, creating sockets
that listen on ports 1 - 1024 requires superuser
privileges. Configuring an SSL listen socket to
listen on port 443 is recommended. Two
different IP addresses can’t use the same port.

security false (Optional) Determines whether the listen socket
runs SSL. Legal values are on, off, yes, no, 1, 0,
true, false. You can turn SSL2 or SSL3 on or
off and set ciphers using an SSLPARAMS

subelement for this listen socket.

The Security setting in the magnus.conf file
globally enables or disables SSL by making
certificates available to the server instance.
Therefore, Security in magnus.conf must be on
or security in server.xml does not work. For
more information, see Chapter 3, Syntax and
Use of magnus.conf

acceptorthreads 1 (Optional) Number of acceptor threads for the
listener. The recommended value is the number
of processors in the machine. Legal values are 1 -
1024.

family none (Optional) The socket family type. Legal values
are inet, inet6, and nca. Use the value inet6

for IPv6 listen sockets. When using the value of
inet6, IPv4 addresses are prefixed with
::ffff: in the log file. Specify nca to use the
Solaris Network Cache and Accelerator.

Listener Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •34

TABLE 2–7 LS Attributes (Continued)
Attribute Default Description

blocking false (Optional) Determines whether the listen socket
and the accepted socket are put in to blocking
mode. Use of blocking mode may improve
benchmark scores. Legal values are on, off, yes,
no, 1, 0, true, false.

defaultvs none The id attribute of the default virtual server for
this particular listen socket.

servername none Tells the server what to put in the host name
section of any URLs it sends to the client. This
affects URLs the server automatically generates.
it does not affect the URLs for directories and
files stored in the server. This name should be
the alias name if your server uses an alias.

If you append a colon and port number, that
port will be used in URLs the server sends to the
client.

SSLPARAMS
Defines SSL (Secure Socket Layer) parameters.

Subelements
None

Attributes
The following table describes attributes for the SSLPARAMS element.

TABLE 2–8 SSLPARAMS Attributes

Attribute Default Description

servercertnickname Server-Cert The nickname of the server certificate in the
certificate database or the PKCS#11 token. In the
certificate, the name format is
tokenname:nickname. Including the tokenname:
part of the name in this attribute is optional.

Listener Elements

Chapter 2 • Server Configuration Elements in server.xml 35

TABLE 2–8 SSLPARAMS Attributes (Continued)
Attribute Default Description

ssl2 false (Optional) Determines whether SSL2 is enabled.
Legal values are on, off, yes, no, 1, 0, true, and
false. If both SSL2 and SSL3 are enabled for a
virtual server, the server tries SSL3 encryption
first. If that fails, the server tries SSL2
encryption.

ssl2ciphers none (Optional) A space-separated list of the SSL2
ciphers used, with the prefix + to enable or - to
disable. For example +rc4. Allowed values are
rc4, rc4export, rc2, rc2export, idea, des,
desede3.

ssl3 true (optional) Determines whether SSL3 is enabled.
Legal values are on, off, yes, no, 1, 0, true and
false. If both SSL2 and SSL3 are enabled for a
virtual server, the server tries SSL3 encryption
first. If that fails, the server tries SSL2
encryption.

ssl3tlsciphers none (optional) A space-separated list of the SSL3
ciphers used, with the prefix + to enable or - to
disable, for example +rsa_des_sha. Allowed
SSL3 values are rsa_rc4_128_md5,
rsa_3des_sha, rsa_des_sha, rsa_rc4_40_md5,
rsa_rc2_40_md5, rsa_null_md5. Allowed TLS
values are rsa_des_56_sha, rsa_rc4_56_sha.

tls true (optional) Determines whether TLS is enabled.
Legal values are on, off, yes, no, 1, 0, true, and
false.

tlsrollback true (optional) Determines whether TLS rollback is
enabled. Legal values are on, off, yes, no, 1, 0,
true, and false. TLS rollback should be enabled
for Microsoft Internet Explorer 5.0 and 5.5.

clientauth false (optional) Determines whether SSL3 client
authentication is performed on every request,
independent of ACL-based access control. Legal
values are on, off, yes, no, 1, 0, true, and false.

MIME
Defines MIME types.

Listener Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •36

The most common way that the server determines the MIME type of a requested resource is by
invoking the type-by-extension directive in the ObjectType section of the obj.conf file. The
type-by-extension function does not work if no mime element has been defined in the
“SERVER” on page 30 element.

Attributes
The following table describes attributes for the MIME element.

TABLE 2–9 MIME Attributes

Attribute Default Description

id none Internal name for the MIME types listing. Used
in a “VS” on page 39 element to define the
MIME types used by the virtual server. The
MIME types name cannot begin with a number.

file none The name of a MIME types file. For more
information, see Chapter 5, MIME Types.

ACLFILE
References one or more ACL files

Subelements
The following table describes subelements for the ACLFILE element.

TABLE 2–10 ACLFILE Subelements

Element Required Description

“DESCRIPTION” on page 32 Zero or one Contains a text description of the ACLFILE element

Attributes
The following table describes attributes for the ACLFILE element.

Listener Elements

Chapter 2 • Server Configuration Elements in server.xml 37

TABLE 2–11 ACLFILE Attributes

Attribute Default Description

id none Internal name for the ACL file listing. Used in a
“VS” on page 39 element to define the ACL file
used by the virtual server. An ACL file listing
name cannot begin with a number.

file none A space-separated list of ACL files. Each ACL file
must have a unique name. For information
about the format of an ACL file, see the Sun Java
System Web Server 6.1 SP7 Administrator’s
Guide.

The name of the default ACL file is
generated.https-server_id.acl, and the file
resides in the server_root/server_id/httpacl
directory. To use this file, you must reference it
in server.xml.

VSCLASS
Defines a virtual server class.

Subelements
The following table describes subelements for the VSCLASS element.

TABLE 2–12 VSCLASS Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of the VSCLASS.

“VARS” on page 32 zero or one Specifies a property of the VSCLASS.

“PROPERTY” on page 31 zero or more Specifies a property of the VSCLASS.

“VS” on page 39 zero or more Defines a virtual server.

“QOSPARAMS” on page 41 zero or one Defines quality of service parameters.

Attributes
The following table describes attributes for the VSCLASS element.

Listener Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •38

TABLE 2–13 VSCLASS Attributes

Attribute Default Description

id none Virtual server class ID. This is a unique ID that
allows lookup of a specific virtual server class. A
virtual server class ID cannot begin with a
number.

objectfile obj.conf The obj.conf file for this class of virtual servers.
Cannot be overridden in a VS element.

rootobject default (Optional) Tells the server which object loaded
from an obj.conf file is the default. The default
object is expected to have all the name
translation (NameTrans) directives for the virtual
server, any server behavior that is configured in
the default object affects the entire server.

If you specify an object that doesn’t exist, the
server does not report an error until a client tries
to retrieve a document. The Server Manager
assumes the default to be the object named
default. Do not deviate from this convention if
you use (or plan to use) the Server Manager.

acceptlanguage false (Optional) If true, the server parses the
Accept-Language header and sends an
appropriate language version based on which
language the client can accept. You should set
this value to on only if the server supports
multiple languages. Can be overridden in a VS
element.

Legal values are on, off, yes, no, 1, 0, true, and
false.

VS
Defines a virtual server. A virtual server, also called a virtual host, is a virtual web server that
serves content targeted for a specific URL. Multiple virtual servers may serve content using the
same or different host names, port numbers, or IP addresses. The HTTP service can direct
incoming web requests to different virtual servers based on the URL.

Subelements
The following table describes subelements for the VS element.

Listener Elements

Chapter 2 • Server Configuration Elements in server.xml 39

TABLE 2–14 VS Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

“VARS” on page 32 zero or one Specifies a property or a variable of the VS.

“PROPERTY” on page 31 zero or more Specifies a property or a variable of the VS.

“QOSPARAMS” on page 41 zero or one Defines quality of service parameters.

“USERDB” on page 42 zero or more Defines the user database for the virtual server.

“DAV” on page 43 zero or one Defines the WebDAV configuration for the virtual
server.

“SEARCH” on page 47 zero or one Defines the search configuration for the virtual
server.

“WEBAPP” on page 49 zero or more Specifies a web application.

Attributes
The following table describes attributes for the VS element.

TABLE 2–15 VS Attributes

Attribute Default Description

id none Virtual server ID. This is a unique ID that allows
lookup of a specific virtual server. Can also be
referred to as the variable $id in an obj.conf

file. A virtual server ID cannot begin with a
number.

connections none (optional) A space-separated list of LS ids that
specify the connection(s) the virtual server uses.
Required only for a VS that is not the defaultvs
of a listen socket.

urlhosts none A space-separated list of values allowed in the
Host request header to select the current virtual
server. Each VS that is configured to the same
listen socket must have a unique urlhosts value
for that group.

objectfile objectfile of the enclosing
VSCLASS

(optional) The file name of the obj.conf file for
this virtual server.

Listener Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •40

TABLE 2–15 VS Attributes (Continued)
Attribute Default Description

rootobject default (optional) Tells the server which object loaded
from an obj.conf file is the default.

Tells the server which object loaded from an
obj.conf file is the default. The default object is
expected to have all the name translation
(NameTrans) directives for the virtual server;
any server behavior that is configured in the
default object affects the entire server.

If you specify an object that doesn't exist, the
server doesn't report an error until a client tries
to retrieve a document.

mime none The id of the “MIME” on page 36 element used
by the virtual server.

aclids none (optional) One or more id attributes of
“ACLFILE” on page 37 elements, separated by
commas. Specifies the ACL file(s) used by the
virtual server.

errorlog none (optional) Specifies a log file for
virtual-server-specific error messages. See the
“LOG” on page 65 description for details about
logs.

acceptlanguage off (optional) If true, the server parses the
Accept-Language header and sends an
appropriate language version based on which
language the client can accept. You should set
this value to on only if the server supports
multiple languages.

Legal values are on, off, yes, no, 1, 0, true,
false.

state on (optional) Determines whether a virtual-server
is active (on) or inactive (off, disabled). The
default is on (active). When inactive, a virtual
server does not service requests.

If a virtual server is disabled, only the global
server administrator can turn it on.

QOSPARAMS
Defines quality of service parameters of an “SERVER” on page 30, “VSCLASS” on page 38, or
“VS” on page 39 element.

Listener Elements

Chapter 2 • Server Configuration Elements in server.xml 41

Subelements
none

Attributes
The following table describes attributes for the QOSPARAMS element.

TABLE 2–16 QOSPARAMS Attributes

Attribute Default Description

maxbps none (required if enforcebandwidth is yes) The
maximum bandwidth limit for the server,
vsclass, or vs in bytes per second.

enforcebandwidth false (optional) Specifies whether the bandwidth limit
should be enforced or not. Allowed values are
yes, no, true, false, on, off, 1, 0.

maxconn none (required if enforceconnections is yes) The
maximum number of concurrent connections
for the “SERVER” on page 30, “VSCLASS”
on page 38, or “VS” on page 39.

enforceconnections false (optional) Specifies whether the connection
limit should be enforced or not. Allowed values
are yes, no, true, false, on, off, 1, 0.

USERDB
Defines the user database used by the “VS” on page 39 element.

Subelements
The following table describes subelements for the USERDB element.

TABLE 2–17 USERDB Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

Attributes
The following table describes attributes for the USERDB element.

Listener Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •42

TABLE 2–18 USERDB Attributes

Attribute Default Description

id none The user database name in the virtual server's
ACL file. A user database name cannot begin
with a number.

database none The user database name in the dbswitch.conf
file.

basedn none (optional) Overrides the base DN lookup in the
dbswitch.conf file. However, the basedn value
is still relative to the base DN value from the
dbswitch.conf entry.

certmaps none (optional) Specifies which certificate mapped to
LDAP entry mappings (defined in
certmap.conf) to use. If not present, all
mappings are used. All lookups based on
mappings in certmap.conf are relative to the
final base DN of the “VS” on page 39.

WebDAV Elements
The WebDAV elements are as follows:

■ “DAV” on page 43
■ “DAVCOLLECTION” on page 45

DAV
Defines the WebDAV (Web-based Distributed Authoring and Versioning) configuration for
the “VS” on page 39 element.

Subelements
The following table describes subelements for the DAV element.

TABLE 2–19 DAV Subelements

Element Required Description

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

WebDAV Elements

Chapter 2 • Server Configuration Elements in server.xml 43

TABLE 2–19 DAV Subelements (Continued)
Element Required Description

“DAVCOLLECTION” on page
45

zero or more Collections for which DAV is enabled.

Attributes
The following table describes attributes for the DAV element.

TABLE 2–20 DAV Attributes

Attribute Default Description

lockdb server-instance/lock-db/vs (optional) Specifies the directory where the
locking database will be maintained.

lockdbupdateinterval 0 (optional) specifies the frequency with which the
memory representation of the lock database
should be synced up to the disk copy of the lock
database. The interval is specified in seconds. A
value of zero disables the memory
representation of the lock database.

minlocktimeout none (optional) Minimum lifetime of a lock in
seconds, -1 implies never expires.

A value of 0 sets minlocktimeout to infinity.

propdbupdateinterval 0 (optional) specifies the frequency with which the
memory representation of the property database
should be synced up to the disk copy of the
database. The interval is specified in seconds. A
value of zero disables the memory
representation of the property database.

maxpropdbsize 8192 (optional) specifies an upper limit on the total
size of the memory representation of the
property databases in the collection. When this
size is reached, any additional databases
accessed in this collection will not have a
memory representation.

maxxmlrequestbodysize 8192 (optional) Maximum size of the XML request
body. Needed to prevent potential Denial of
Service (DOS) attacks.

WebDAV Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •44

TABLE 2–20 DAV Attributes (Continued)
Attribute Default Description

maxpropdepth 1 (optional) The depth of the PROPFIND request.
If the request is to a collection, then the depth of
the subdirectories included in the response is
specified by this attribute. Legal values are 0, 1,
and infinity.

enabled true (optional) Specifies if DAV functionality is
enabled for a virtual server. Legal values are yes,
no, true, false, on, off, 1, 0.

DAVCOLLECTION
Defines a DAV-enabled collection of documents rooted at a URI; the source of the documents
are accessed via a separate URI space.

The DAVCOLLECTION element defines WebDAV functionality for a URI space. The attributes
specified on a collection override any virtual server attribute values.

Subelements
The following table describes subelements for the DAVCOLLECTION element.

TABLE 2–21 DAVCOLLECTION Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

Attributes
The following table describes attributes for the DAVCOLLECTION element.

TABLE 2–22 DAVCOLLECTION Attributes

Attribute Default Description

uri none (required) Specifies the URI by which the output
content is accessed.

sourceuri none (optional) Specifies the URI by which the source
content of the documents are accessed.

lockdb lockdb value specified in the
“DAV” on page 43 element

(optional) Specifies the directory where the
locking database will be maintained.

WebDAV Elements

Chapter 2 • Server Configuration Elements in server.xml 45

TABLE 2–22 DAVCOLLECTION Attributes (Continued)
Attribute Default Description

lockdbupdateinterval The value specified in the
“DAV” on page 43 element.

(optional) specifies the frequency with which the
memory representation of the lock database
should be synced up to the disk copy of the lock
database. The interval is specified in seconds. A
value of zero disables the memory
representation of the lock database.

minlocktimeout minlocktimeout attribute
value specified in the “DAV”
on page 43 element

(optional) Minimum lifetime of a lock in
seconds, -1 implies never expires, 0 turns
locking off.

propdbupdateinterval The value specified in the
“DAV” on page 43 element.

(optional) specifies the frequency with which the
memory representation of the property database
should be synced up to the disk copy of the
database. The interval is specified in seconds. A
value of zero disables the memory
representation of the property database.

maxpropdbsize The value specified in the
“DAV” on page 43 element.

(optional) specifies an upper limit on the total
size of the memory representation of the
property databases in the collection. When this
size is reached, any additional databases
accessed in this collection will not have a
memory representation.

maxxmlrequestbodysize The value specified in the
“DAV” on page 43 element.

(optional) Maximum size of the XML request
body. Needed to prevent potential Denial of
Service (DOS) attacks.

maxpropdepth The value specified in the
“DAV” on page 43 element.

(optional) The maximum depth permitted for a
DAV PROPFIND request. Allowed values are 0,
1, and infinity.

enabled true (optional) Specifies if DAV functionality is
enabled for this collection.

Search Elements
Search elements are as follows:

■ “SEARCH” on page 47
■ “SEARCHCOLLECTION” on page 47
■ “DISPLAYNAME” on page 48

Search Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •46

SEARCH
Defines search related configuration parameters for a given “VS” on page 39.

Subelements
The following table describes subelements for the SEARCH element.

TABLE 2–23 SEARCH Subelements

Element Required Description

“WEBAPP” on page 49 zero or one The default search web application for this virtual
server

“SEARCHCOLLECTION”
on page 47

zero or more Specifies a searchable index of documents called a
collection.

“PROPERTY” on page 31 zero or more Specifies name-value pairs to pass extra
configuration information to the search engine.

Attributes
The following table describes attributes for the SEARCH element.

TABLE 2–24 SEARCH Attributes

Attribute Default Description

maxhits none The maximum number of results that will be
retrieved by the search engine in a single search.

SEARCHCOLLECTION
Specifies a searchable index of documents called a search collection.

Subelements
The following table describes subelements for the SEARCHCOLLECTION element.

TABLE 2–25 SEARCHCOLLECTION Subelements

Element Required Description

“DISPLAYNAME” on page 48 zero or one Optional display name that can be used while
displaying searchable collections to the end user.

Search Elements

Chapter 2 • Server Configuration Elements in server.xml 47

TABLE 2–25 SEARCHCOLLECTION Subelements (Continued)
Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of the collection.

“PROPERTY” on page 31 zero or more Contains name-value pairs to pass extra
configuration information to the search engine.

Attributes
The following table describes attributes for the SEARCHCOLLECTION element.

TABLE 2–26 SEARCHCOLLECTION Attributes

Attribute Default Description

name none Specifies unique identifier for this collection.
Should be a legal XML ID type.

path none Specifies a file system location for storing search
collection meta data.

uri none Specifies a URI for the indexable collection of
documents.

docroot none Specifies a file system path for the collection of
documents.

enabled true Specifies whether a collection can be searched.
Legal values are yes, no, true, false, on, off, 1,
and 0.

DISPLAYNAME
Specifies a human-readable name for the collection to be used while displaying the collection to
the end user. Example:

<DISPLAYNAME> Omega Manual </DISPLAYNAME>

Subelements
none

Attributes
none

Search Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •48

Web Application Elements
The Web application elements are as follows:

■ “WEBAPP” on page 49

WEBAPP
Defines a Java web application rooted at a given URI within a “VS” on page 39.

Subelements
The following table describes subelements for the WEBAPP element.

TABLE 2–27 webapp Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

Attributes
The following table describes attributes for the WEBAPP element.

TABLE 2–28 WEBAPP attributes

Attribute Default Description

uri empty string This is the context path at which the web
application is installed (Section 5.4 of the Servlet
2.3 specification). If this attribute is "/" then this
web application is designated to be the default
web application for the virtual server.

The default web application for a virtual server
responds to all requests that cannot be resolved
to other web applications deployed to the virtual
server.

Every virtual server has a default web
application.

path none A fully qualified or relative path to the directory
in which the contents of the .war file have been
extracted.

Web Application Elements

Chapter 2 • Server Configuration Elements in server.xml 49

TABLE 2–28 WEBAPP attributes (Continued)
Attribute Default Description

enabled true This attribute can be used to temporarily disable
the web application from servicing requests
without removing the contents of the web
application (on disk).Legal values are on, off,
yes, no, 1, 0, true, false.

Java Configuration Elements
The Java configuration elements are as follows:

■ “JAVA” on page 50
■ “JVMOPTIONS” on page 52
■ “PROFILER” on page 53
■ “SECURITY” on page 54
■ “AUTHREALM” on page 55

JAVA
Defines configurable properties for the integrated Java Virtual Machine (JVM), and for
Java-based security and resources.

Subelements
The following table describes subelements for the JAVA element.

TABLE 2–29 JAVA Subelements

Element Required Description

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

“JVMOPTIONS” on page 52 zero or more Contains JVM command line options.

“PROFILER” on page 53 zero or one Configures a profiler for use with the server.

“SECURITY” on page 54 zero or one Defines parameters and configuration information
needed by the security service.

“RESOURCES” on page 56 zero or one Specifies configured resources.

Attributes
The following table describes attributes for the JAVA element.

Java Configuration Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •50

TABLE 2–30 JAVA Attributes

Attribute Default Description

javahome <install-root
>/bin/https/jdk

For SVR 4
package-based
installation for Solaris:

/usr/java

The path to the directory where the JDK is installed.

debug false (optional) If true, the server starts up in debug
mode ready for attachment with a JPDA-based (Java
Platform Debugger Architecture-based) debugger.
Legal values are on, off, yes, no, true, false, 1, 0.

debugoptions -Xdebug

-Xrunjdwp:transpor

t=dt_socket,

server=y,suspend=n

(optional) Specifies JPDA options. A list of
debugging options that you can include is available
at:

http://java.sun.com/

products/jpda/doc/conninv.html#Invocation

classpathprefix none (optional) Specifies a prefix for the system classpath.
You should only prefix the system classpath if you
wish to override system classes, such as the XML
parser classes. Use this attribute with caution.

serverclasspath none (optional) Specifies the classpath for the
environment from which the server was started.
This classpath can be accessed using
System.getProperty("java.class.path").

classpathsuffix none (optional) Specifies a suffix for the system classpath.

nativelibrarypathprefix none (optional) Specifies a prefix for the native library
path. The native library path is the automatically
constructed concatenation of the path to the server's
native shared libraries, the standard JRE (Java
Runtime Environment) native library path, the shell
environment setting (LD_LIBRARY_PATH on
UNIX), and any path specified in the “PROFILER”
on page 53 element. Since this is synthesized, it does
not appear explicitly in the server configuration.

nativelibrarypathsuffix none (optional) Specifies a suffix for the native library
path.

Java Configuration Elements

Chapter 2 • Server Configuration Elements in server.xml 51

http://java.sun.com/products/jpda/doc/conninv.html#Invocation
http://java.sun.com/products/jpda/doc/conninv.html#Invocation

TABLE 2–30 JAVA Attributes (Continued)
Attribute Default Description

envclasspathignored true (optional) If false, the CLASSPATH environment
variable is read and appended to the server
classpath. The CLASSPATH environment variable is
added after the classpath-suffix, at the very end.

For a development environment, this value should
be set to false. For a production environment, this
value should be set to true to prevent environment
variable side effects.

Legal values are on, off, yes, no, 1, 0, true, false.

bytecodepreprocessors none (optional) A comma-separated list of class names,
each of which must implement the
com.sun.appserv.BytecodePreprocessor

interface. Each of the specified preprocessor classes
is called in the order specified.

dynamicreloadinterval 2 Specifies the interval, in seconds, after which a
deployed application is reloaded.

loglevel Value of level
attribute of “LOG”
on page 65 element

(optional) Controls the type of messages logged by
this element to the errors log. For details, see the
description of the level attribute of the “LOG”
on page 65 element.

JVMOPTIONS
Defines configurable system-wide Java VM properties., for example:

<JVMOPTIONS>-Xdebug -Xmx128m</JVMOPTIONS>

In addition, web server looks for a system property, -Dcom.sun.webserv.startupclasses,
whose value is a comma-separated list of fully qualified Java classes that server loads into the
Virtual Machine upon startup. Example:

<JVMOPTIONS>

-Dcom.sun.webserv.startupclasses=com.sample.MyInitializer,com.jdo

.PersistenceManagerFactory

</JVMOPTIONS>

For information about the available options, see
http://java.sun.com/docs/hotspot/VMOptions.html.

Java Configuration Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •52

http://java.sun.com/docs/hotspot/VMOptions.html

Note – (On Windows only). Logging out of the machine where the web server is installed might
abort the web server process. To avoid this problem, perform these steps:

1. Add the following line to the server.xml file of the web server instance.
<JVMOPTIONS>-Xrs</JVMOPTIONS>

2. Restart the instance.

Subelements
none

Attributes
none

PROFILER
Configures a profiler for use with the server.

Subelements
The following table describes subelements for the PROFILER element.

TABLE 2–31 PROFILER Subelements

Element Required Description

“PROPERTY” on page 31 zero or more Specifies a property.

“JVMOPTIONS” on page 52 zero or more Contains profiler-specific JVM command line
options.

Attributes
The following table describes attributes for the PROFILER element.

TABLE 2–32 PROFILER Attributes

Attribute Default Description

classpath none (optional) Specifies the classpath for the profiler.

nativelibrarypath none (optional) Specifies the native library path for
the profiler.

Java Configuration Elements

Chapter 2 • Server Configuration Elements in server.xml 53

TABLE 2–32 PROFILER Attributes (Continued)
Attribute Default Description

enabled true (optional) Determines whether the profiler is
enabled. Legal values are on, off, yes, no, 1, 0,
true, false.

SECURITY
Defines parameters and configuration information needed by the security service.

Subelements
The following table describes subelements for the SECURITY element.

TABLE 2–33 SECURITY Subelements

Element Required Description

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

“AUTHREALM” on page 55 one or more Defines a realm for authentication.

Attributes
The following table describes attributes for the SECURITY element.

TABLE 2–34 SECURITYAttributes

Attribute Default Description

defaultrealm file (optional) Specifies the default authentication
realm (an “AUTHREALM” on page 55 name
attribute) for this server instance. The default
realm will be used to process authentication
events for any web applications which do not
otherwise specify which realm to use.

anonymousrole ANYONE (optional) Used as the name for default, or
anonymous, role. The anonymous role is always
assigned to all principals.

Java Configuration Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •54

TABLE 2–34 SECURITYAttributes (Continued)
Attribute Default Description

audit false (optional) If true, additional access logging is
performed to provide audit information. Legal
values are on, off, yes, no, 1, 0, true, false.

Audit information consists of:
■ Authentication success and failure events
■ Servlet access grants and denials

loglevel Value of level attribute of
“LOG” on page 65 element

(optional) Controls the type of messages logged
by this element to the errors log. For details, see
the description of the level attribute of the
“LOG” on page 65 element.

AUTHREALM
Defines a realm for authentication.

Authentication realms require provider-specific properties, which vary depending on the needs
of a particular implementation.

Here is an example of the default file realm:

<authrealm name="file"

classname="com.iplanet.ias.security.auth.realm.file.FileRealm">

<property name="file" value="instance_dir/config/keyfile">

<property name="jaas-context" value="fileRealm">

</authrealm>

Which properties an AUTHREALM element uses depends on the value of the AUTHREALM element's
name attribute. The file realm uses file and jaas-context properties. Other realms use
different properties.

Subelements
The following table describes subelements for the AUTHREALM element.

Java Configuration Elements

Chapter 2 • Server Configuration Elements in server.xml 55

TABLE 2–35 AUTHREALM Subelements

Element Required Description

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

Attributes
The following table describes attributes for the AUTHREALM element.

TABLE 2–36 AUTHREALMAttributes

Attribute Default Description

name none Specifies the name of this realm.

classname none Specifies the Java class that implements this
realm.

Properties
The standard realms provided have both required and optional properties. A custom realm may
have different properties. For details about the properties and configuration characteristics of
the AUTHREALM realms, refer to the chapter “Securing Web Applications” in the Sun Java System
Web Server 6.1 Programmer's Guide to Web Applications.

Resource Elements
Resource elements are as follows:

■ “RESOURCES” on page 56
■ “CUSTOMRESOURCE” on page 57
■ “EXTERNALJNDIRESOURCE” on page 58
■ “JDBCRESOURCE” on page 59
■ “JDBCCONNECTIONPOOL” on page 59
■ “CONNECTIONPROPERTY” on page 63
■ “MAILRESOURCE” on page 64

RESOURCES
Contains configured resources, such as database connections.

Subelements
The following table describes subelements for the RESOURCES element.

Resource Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •56

TABLE 2–37 RESOURCES Subelements

Element Required Description

“CUSTOMRESOURCE”
on page 57

zero or more Defines a custom resource.

“EXTERNALJNDIRESOURCE”
on page 58

zero or more Defines a resource that resides in an external JNDI
(Java Naming and Directory Interface) repository.

“JDBCRESOURCE” on page 59 zero or more Defines a JDBC (Java Database Connectivity)
resource.

“JDBCCONNECTIONPOOL”
on page 59

zero or more Defines the properties that are required for creating
a JDBC connection pool.

“MAILRESOURCE” on page
64

zero or more Defines the properties that are required for creating
a mail resource.

Attributes
none

CUSTOMRESOURCE
Defines a custom resource, which specifies a custom server-wide resource object factory. Such
object factories implement the javax.naming.spi.ObjectFactory interface.

Subelements
The following table describes subelements for the CUSTOMRESOURCE element.

TABLE 2–38 CUSTOMRESOURCE Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

Attributes
The following table describes attributes for the CUSTOMRESOURCE element.

Resource Elements

Chapter 2 • Server Configuration Elements in server.xml 57

TABLE 2–39 CUSTOMRESOURCEAttributes

Attribute Default Description

jndiname none Specifies the JNDI name for the resource.

restype none Specifies the fully qualified type of the resource.

factoryclass none Specifies the fully qualified name of the
user-written factory class, which implements
javax.naming.spi.ObjectFactory.

enabled true (optional) Determines whether this resource is
enabled at runtime. Legal values are on, off, yes,
no, 1, 0, true, false.

EXTERNALJNDIRESOURCE
Defines a resource that resides in an external JNDI repository. For example, a generic Java
object could be stored in an LDAP server. An external JNDI factory must implement the
javax.naming.spi.InitialContextFactory interface.

Subelements
The following table describes subelements for the EXTERNALJNDIRESOURCE element.

TABLE 2–40 EXTERNALJNDIRESOURCE Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

Attributes
The following table describes attributes for the EXTERNALJNDIRESOURCE element.

TABLE 2–41 EXTERNALJNDIRESOURCEAttributes

Attribute Default Description

jndiname none Specifies the JNDI name for the resource.

jndilookupname none Specifies the JNDI lookup name for the
resource.

restype none Specifies the fully qualified type of the resource.

Resource Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •58

TABLE 2–41 EXTERNALJNDIRESOURCEAttributes (Continued)
Attribute Default Description

factoryclass none Specifies the fully qualified name of the factory
class, which implements
javax.naming.spi.InitialContextFactory.

enabled true (optional) Determines whether this resource is
enabled at runtime. Legal values are on, off, yes,
no, 1, 0, true, false.

JDBCRESOURCE
Defines a JDBC (javax.sql.DataSource) resource.

Subelements
The following table describes subelements for the JDBCRESOURCE element.

TABLE 2–42 JDBCRESOURCE Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

Attributes
The following table describes attributes for the JDBCRESOURCE element.

TABLE 2–43 JDBCRESOURCEAttributes

Attribute Default Description

jndiname none Specifies the JNDI name for the resource.

poolname none Specifies the name of the associated JDBC
connection pool, defined in a
“JDBCCONNECTIONPOOL” on page 59
element.

enabled true (optional) Determines whether this resource is
enabled at runtime. Legal values are on, off, yes,
no, 1, 0, true, false.

JDBCCONNECTIONPOOL
Defines the properties that are required for creating a JDBC connection pool.

Resource Elements

Chapter 2 • Server Configuration Elements in server.xml 59

Note – The restype attribute of the JDBCCONNECTIONPOOL element is reserved and ignored in
Sun Java System Web Server 6.1. Any value set for this attribute is ignored by the server.

Subelements
The following table describes subelements for the JDBCCONNECTIONPOOL element.

TABLE 2–44 JDBCCONNECTIONPOOL Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

“CONNECTIONPROPERTY”
on page 63

zero or more Specifies the connection properties for the
connection pool.

Attributes
The following table describes attributes for the JDBCCONNECTIONPOOL element.

TABLE 2–45 JDBCCONNECTIONPOOLAttributes

Attribute Default Description

name none Specifies the name of the connection pool. A
“JDBCRESOURCE” on page 59 element's
poolname attribute refers to this name.

datasourceclassname none Specifies the class name of the associated
vendor-supplied data source. This class must
implement java.sql.DataSource or
java.sql.XADataSource or both.

steadypoolsize 8 (optional) Specifies the initial and minimum
number of connections maintained in the
pool.

maxpoolsize 32 (optional) Specifies the maximum number of
connections that can be created to satisfy
client requests.

maxwaittime 60000 (optional) Specifies the amount of time, in
milliseconds, that the caller is willing to wait
for a connection. If 0, the caller is blocked
indefinitely until a resource is available or an
error occurs.

Resource Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •60

TABLE 2–45 JDBCCONNECTIONPOOLAttributes (Continued)
Attribute Default Description

poolresizequantity 2 (optional) Specifies the number of
connections to be destroyed if the existing
number of connections is above the
steady-pool-size (subject to the
max-pool-size limit). This is enforced
periodically at the
idle-time-out-in-seconds interval. An idle
connection is one that has not been used for a
period of idle-time-out-in-seconds.

idletimeout 300 (optional) Specifies the maximum time that a
connection can remain idle in the pool. After
this amount of time, the pool can close this
connection.

transactionisolationlevel default JDBC driver
isolation level

(optional) Specifies the transaction isolation
level on the pooled database connections.
Allowed values are read-uncommitted,
read-committed, repeatable-read, or
serializable.

Applications that change the isolation level
on a pooled connection programmatically
risk polluting the pool, which can lead to
errors. See isolationlevelguaranteed for
more details.

isolationlevelguaranteed true (optional) Applicable only when
transactionisolationlevel is explicitly
set. If true, every connection obtained from
the pool is guaranteed to have the desired
isolation level. This may impact performance
on some JDBC drivers. You can set this
attribute to false if you are certain that the
hosted applications do not return
connections with altered isolation levels.

connectionvalidationrequired false (optional) Specifies whether connections
must be validated before being given to the
application. If a resource's validation fails, it is
destroyed, and a new resource is created and
returned. Legal values are on, off, yes, no, 1,
0, true, false.

Resource Elements

Chapter 2 • Server Configuration Elements in server.xml 61

TABLE 2–45 JDBCCONNECTIONPOOLAttributes (Continued)
Attribute Default Description

connectionvalidationmethod auto-commit (optional) Legal values are as follows:
■ auto-commit (default), which uses

Connection.setAutoCommit(Connection

.getAutoCommit())

■ meta-data, which uses
Connection.getMetaData()

■ table, which performs a query on a table
specified in the validation-table-name
attribute

validationtablename none (optional) Specifies the table name to be used
to perform a query to validate a connection.
This parameter is mandatory if and only if
connectionvalidationtype is set to table.

failallconnections false (optional) If true, closes all connections in the
pool if a single validation check fails. This
parameter is mandatory if and only if
isconnectionvalidationrequired is set to
true. Legal values are on, off, yes, no, 1, 0,
true, false.

Properties
Most JDBC 2.0 drivers allow use of standard property lists to specify the user, password, and
other resource configuration information. Although properties are optional with respect to Sun
Java System Web Server, some properties may be necessary for most databases. For details, see
Section 5.3 of the JDBC 2.0 Standard Extension API.

When properties are specified, they are passed to the vendor's data source class (specified by the
datasourceclassname attribute) using setName(value) methods.

The following table describes some common properties for the JDBCCONNECTIONPOOL element.
The left column lists the property name, and the right column describes what the property does.

TABLE 2–46 JDBCCONNECTIONPOOL Properties

Property Description

user Specifies the user name for this connection pool.

password Specifies the password for this connection pool.

databaseName Specifies the database for this connection pool.

Resource Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •62

TABLE 2–46 JDBCCONNECTIONPOOL Properties (Continued)
Property Description

serverName Specifies the database server for this connection pool.

port Specifies the port on which the database server listens for requests.

networkProtocol Specifies the communication protocol.

roleName Specifies the initial SQL role name.

datasourceName Specifies an underlying XADataSource, or a ConnectionPoolDataSource if
connection pooling is done.

description Specifies a text description.

url Specifies the URL for this connection pool. Although this is not a standard
property, it is commonly used.

CONNECTIONPROPERTY
Specifies the connection properties for a JDBC connection pool.

Subelements
The following table describes subelements for the CONNECTIONPROPERTY element.

TABLE 2–47 CONNECTIONPROPERTY Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

Attributes
The following table describes attributes for the CONNECTIONPROPERTY element.

TABLE 2–48 CONNECTIONPROPERTYAttributes

Attribute Default Description

name none Specifies a name for the connection property.

value none Specifies a value for the connection property.

invocationfrequency at-creation (optional) Specifies the frequency with which
the connection property is invoked. Legal values
are at-creation and every-lease.

Resource Elements

Chapter 2 • Server Configuration Elements in server.xml 63

MAILRESOURCE
Defines a JavaMail (javax.mail.Session) resource.

Subelements
The following table describes subelements for the MAILRESOURCE element.

TABLE 2–49 MAILRESOURCE Subelements

Element Required Description

“DESCRIPTION” on page 32 zero or one Contains a text description of this element.

Attributes
The following table describes attributes for the MAILRESOURCE element.

TABLE 2–50 MAILRESOURCEAttributes

Attribute Default Description

jndiname none Specifies the JNDI name for the resource.

storeprotocol imap (optional) Specifies the storage protocol service,
which connects to a mail server, retrieves
messages, and saves messages in folder(s).
Example values are imap and pop3.

storeprotocolclass com.sun.mail.imap.IMAP

Store

(optional) Specifies the service provider
implementation class for storage.

You can find this class at:
■ http://java.sun.com/products/javamail/

■ http://java.sun.com/

products/javabeans/glasgow/

transportprotocol smtp (optional) Specifies the transport protocol
service, which sends messages.

transportprotocolclass com.sun.mail.smtp.SMTP

Transport

(optional) Specifies the service provider
implementation class for transport.

You can find this class at:
■ http://java.sun.com/products/javamail/

■ http://java.sun.com/

products/javabeans/glasgow/

host none The mail server host name

Resource Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •64

http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/
http://java.sun.com/products/javabeans/glasgow/
http://java.sun.com/products/javamail/
http://java.sun.com/products/javabeans/glasgow/
http://java.sun.com/products/javabeans/glasgow/

TABLE 2–50 MAILRESOURCEAttributes (Continued)
Attribute Default Description

user none The mail server user name

from none The e-mail address the mail server uses to
indicate the message sender.

enabled true (optional) Determines whether this resource is
enabled at runtime. Legal values are on, off, yes,
no, 1, 0, true, false.

LOG
Configures the system logging service, which includes the following log files:

■ The errors log file stores messages from the default virtual server. Messages from other
configured virtual servers also go here, unless the logfile attribute is explicitly specified in
the “VSCLASS” on page 38 or “VS” on page 39 element. The default name is errors.

■ The access log file stores HTTP access messages from the default virtual server. The default
name is access.log. To configure the access log, you use server application functions in the
magnus.conf and obj.conf files.

■ A virtual server log file stores messages from a “VSCLASS” on page 38 or “VS” on page 39
element that has an explicitly specified log-file attribute.

Subelements
The following table describes subelements for the LOG element.

TABLE 2–51 LOGSubelements

Element Required Description

“PROPERTY” on page 31 zero or more Specifies a property or a variable.

Attributes
The following table describes attributes for the LOG element.

LOG

Chapter 2 • Server Configuration Elements in server.xml 65

TABLE 2–52 LOGAttributes

Attribute Default Description

file errors Specifies the file that stores messages from the
default virtual server. Messages from other
configured virtual servers also go here, unless
the errorlog attribute is explicitly specified in
the “VS” on page 39 element.

loglevel info Controls the default type of messages logged by
other elements to the error log. Allowed values
are as follows, from highest to lowest:

finest, finer, fine, info, warning, failure,
config, security, and catastrophe.

logvsid false (optional) If true, virtual server IDs are
displayed in the virtual server logs. This is useful
if multiple “VS” on page 39 elements share the
same log file. Legal values are on, off, yes, no, 1,
0, true, false.

logstdout true (optional) If true, redirects stdout output to the
errors log. Legal values are on, off, yes, no, 1, 0,
true, false.

logstderr true (optional) If true, redirects stderr output to the
errors log. Legal values are on, off, yes, no, 1, 0,
true, false.

logtoconsole true (optional, UNIX only) If true, redirects log
messages to the console.

createconsole false (optional, Windows only) If true, creates a
Windows console. Legal values are on, off, yes,
no, 1, 0, true, false.

usesyslog false (optional) If true, uses the UNIX syslog service
or Windows Event Logging to produce and
manage logs. Legal values are on, off, yes, no, 1,
0, true, false.

User Database Selection
A “USERDB” on page 42 object selects a user database for the parent virtual server. This
selection occurs in the following manner:

■ The “USERDB” on page 42 element's id attribute maps to an ACL file's database attribute.
■ The “USERDB” on page 42 element's database attribute maps to a dbswitch.conf entry.

User Database Selection

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •66

This layer between the ACL file and the dbswitch.conf file gives the server administrator
full control over the databases to which virtual server administrators and users have access.
The dbswitch.conf file establishes the root of the search tree for LDAP databases as follows:

■ The base DN in the LDAP URL in dbswitch.conf defines a root object for all further DN
specifications. So, for most new installations, it can be empty, because the final base DN is
determined in other ways -- either through a dc tree lookup or an explicit basedn value in
the “USERDB” on page 42 tag.

■ A new dbswitch.conf attribute for LDAP databases, dcsuffix, defines the root of the dc
tree. This root is relative to the base DN in the LDAP URL. If the database is schema
compliant you can use dcsuffix . Requirements for schema compliance are listed in “Sun
Java System LDAP Schema” on page 67.
A user database is selected for a virtual server as follows:

■ If a “VS” on page 39 has no “USERDB” on page 42 subelement, user- or group-based ACLs
fail.

■ When no database attribute is present in a virtual server’s ACL definition, the “VS” on page
39 must have a “USERDB” on page 42 subelement with an id attribute of default. The
database attribute of the “USERDB” on page 42 then points to a database in
dbswitch.conf. If no database attribute is present, default is used.

■ If an LDAP database is schema compliant, the base DN of the access is computed using a dc
tree lookup of the VS element's hosts attribute that matches the client-supplied host header.
If no hosts attribute matches, the servername attribute of the parent “SERVER” on page 30
is used. The dc tree lookup is based at the dcsuffix DN. The result must contain an
inetDomainBaseDN attribute that contains the base DN. This base DN is taken as is and is
not relative to any of the base DN values.

■ If the basedn attribute of the “USERDB” on page 42 element is not present and the database
is not schema compliant, the access requests are relative to the base DN in the
dbswitch.conf entry, as in previous Sun Java System Web Server versions.

Sun Java System LDAP Schema
This section describes the Sun Java System LDAP Schema that defines a set of rules for directory
data.

You can use the dcsuffix attribute in the dbswitch.conf file if your LDAP database meets the
requirements outlined in this section. For more information about the dbswitch.conf file, see
“dbswitch.conf” on page 211.

The subtree rooted at an ISP entry (for example, o=isp) is called the convergence tree. It contains
all directory data related to organizations (customers) served by an ISP.

Sun Java System LDAP Schema

Chapter 2 • Server Configuration Elements in server.xml 67

The subtree rooted at o=internet is called the domain component tree, or dc tree. It contains a
sparse DNS tree with entries for the customer domains served. These entries are links to the
appropriate location in the convergence tree where the data for that domain is located.

The directory tree may be single rooted, which is recommended (for example, o=root may have
o=isp and o=internet under it), or have two separate roots, one for the convergence tree and
one for the dc tree.

Convergence Tree
The top level of the convergence tree must have one organization entry for each customer (or
organization), and one for the ISP itself.

Underneath each organization, there must be two organizationalUnit entries: ou=People and
ou=Groups. A third, ou=Devices, can be present if device data is to be stored for the
organization.

Each user entry must have a unique uid value within a given organization. The namespace
under this subtree can be partitioned into various ou entries that aggregate user entries in
convenient groups (for example, ou=eng, ou=corp). User uid values must still be unique within
the entire People subtree.

User entries in the convergence tree are of type inetOrgPerson. The cn, sn, and uid attributes
must be present. The uid attribute must be a valid email name (specifically, it must be a valid
local-part as defined in RFC822). The cn contains name initial sn. The RDN of the user entry
the uid value. User entries must contain the auxiliary class inetUser if they are to be considered
enabled for service or valid.

User entries can also contain the auxiliary class inetSubscriber, which is used for account
management purposes. If an inetUserStatus attribute is present in an entry and has a value of
inactive or deleted, the entry is ignored.

Groups are located under the Groups subtree and consist of LDAP entries of type
groupOfUniqueNames.

Domain Component (dc) Tree
The dc tree contains hierarchical domain entries, each of which is a DNS name component.

Entries that represent the domain name of a customer are overlaid with the LDAP auxiliary
class inetDomain. For example, the two LDAP entries
dc=customer1,dc=com,o=Internet,o=root and dc=customer2,dc=com,o=Internet,o=root

contain the inetDomain class, but dc=com,o=Internet,o=root does not. The latter is present
only to provide structure to the tree.

Sun Java System LDAP Schema

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •68

Entries with an inetDomain attribute are called virtual domains. These must have the attribute
inetDomainBaseDN filled with the DN of the top level organization entry where the data of this
domain is stored in the convergence tree. For example, the virtual domain entry in
dc=cust2,dc=com,o=Internet,o=root contains the attribute inetDomainBaseDN with value
o=Cust2,o=isp,o=root.

If an inetDomainStatus attribute has a value of inactive or deleted, the entry is ignored.

Variables
Some variables are defined in server.xml for use in the obj.conf file. The following file
fragment defines a docroot variable:

<PROPERTY name="docroot" value="/server/docs/class2/acme" >

A docroot variable allows different document root directories to be assigned for different
virtual servers. The variable is then used in the obj.conf file. For example:

NameTrans fn=document-root root="$docroot"

Using this docroot variable allows you to define different document roots for different virtual
servers within the same virtual server class.

Format of a Variable
A variable is found in obj.conf when the following regular expression matches:

\$[A-Za-z][A-Za-z0-9_]*

This expression represents a $ followed by one or more alphanumeric characters. A delimited
version ("${property}") is not supported. To get a regular $ character, use $$ to have variable
substitution.

The id Variable
A special variable, id, is always available within a “VS” on page 39 element and refers to the
value of the id attribute. It is predefined and cannot be overridden. The id attribute uniquely
identifies a virtual server. For example:

<PROPERTY name=docroot value="/export/$id" >

If the id attribute of the parent “VS” on page 39 element is myserver, the docroot variable is set
to the value /export/myserver.

Variables

Chapter 2 • Server Configuration Elements in server.xml 69

Other Important Variables
In a default installation, the following variables are used to configure various aspects of the
server's operation. Unlike the $id variable, they are not predefined in the server, and they can be
overridden.

General Variables
The following table lists general server.xml variables. The left column lists variables, and the
right column lists descriptions of those variables.

TABLE 2–53 General Variables

Property Description

docroot The document root of the virtual server. Typically evaluated as the
parameter to the document-root function in the obj.conf file.

accesslog The access log file for a virtual server.

send-cgi Variables
The following table lists server.xml variables used by the send-cgi function in the obj.conf
file. The left column lists variables, and the right column lists descriptions of those variables.

TABLE 2–54 send-cgi Variables

Property Description

user The value of the user CGI parameter.

group The value of the group CGI parameter.

chroot The value of the chroot CGI parameter.

dir The value of the dir CGI parameter.

nice The value of the nice CGI parameter.

For more information about the send-cgi function, see the Sun Java System Web Server 6.1 SP7
NSAPI Programmer’s Guide.

Variable Evaluation
Variables are evaluated when generating specific objectsets for individual virtual servers.
Evaluation is recursive: variable values can contain other variables. For example:

Variables

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •70

...

<VSCLASS>

...

<VS ...>

...

<PROPERTY name=docroot value="$docrootbase/nonjava/$id" >

</VS>

<VS...>

...

<PROPERTY name=docroot value="$docrootbase/java/$id" >

</VS>

...

<PROPERTY name=docrootbase value="/export" >

</VSCLASS>

...

Variables in subelements override variables in the parent elements. For example, it is possible to
set a variable for a class of virtual servers and override it with a definition of the same variable in
an individual virtual server.

Sample server.xml File
<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright (c) 2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

-->

<!DOCTYPE SERVER PUBLIC "-//Sun Microsystems Inc.//DTD Sun Java

System Web Server 6.1//EN"

"file:///home/nb136819/space/servers/s1ws61/bin/https/dtds/sun-web-

server_6_1.dtd">

<SERVER>

<PROPERTY name="docroot"

value="/home/nb136819/space/servers/s1ws61/docs">

<PROPERTY name="accesslog"

value="/home/nb136819/space/servers/s1ws61/https-admserv/logs/

access">

<PROPERTY name="user" value="">

<PROPERTY name="group" value="">

<PROPERTY name="chroot" value="">

<PROPERTY name="dir" value="">

<PROPERTY name="nice" value="">

<LS id="ls1" port="5555" servername="plaza.india.sun.com"

defaultvs="vs-admin">

<LS id="ls2" port="9999" servername="plaza.india.sun.com"

Sample server.xml File

Chapter 2 • Server Configuration Elements in server.xml 71

defaultvs="useradmin">

<MIME id="mime1" file="mime.types">

<ACLFILE id="acl1"

file="/home/nb136819/space/servers/s1ws61/httpacl/generated.https

-admserv.acl">

<VSCLASS id="vsclass-admin" objectfile="obj.conf">

<VS id="vs-admin" connections="ls1" mime="mime1"

aclids="acl1" urlhosts="plaza.india.sun.com">

<PROPERTY name="docroot"

value="/home/nb136819/space/servers/s1ws61/docs">

<USERDB id="default">

<WEBAPP uri="/admin-app"

path="/home/nb136819/space/servers/s1ws61/bin/https/webapps/admin-app">

</VS>

</VSCLASS>

<VSCLASS id="userclass" objectfile="userclass.obj.conf">

<VS id="useradmin" connections="ls2" mime="mime1"

aclids="acl1" urlhosts="plaza.india.sun.com">

<PROPERTY name="docroot"

value="/home/nb136819/space/servers/s1ws61/docs">

<USERDB id="default">

<WEBAPP uri="/user-app"

path="/home/nb136819/space/servers/s1ws61/bin/https/webapps/user-app">

</VS>

</VSCLASS>

<JAVA javahome="/home/nb136819/space/servers/s1ws61/bin/https/jdk"

serverclasspath="/home/nb136819/space/servers/s1ws61/bin/https/jar/

webserv-rt.jar:${java.home}/lib/tools.jar:/home/nb136819/space/serv

ers/s1ws61/bin/https/jar/webserv-ext.jar:/home/nb136819/space/serve

rs/s1ws61/bin/https/jar/webserv-jstl.jar:/home/nb136819/space/serve

rs/s1ws61/bin/https/jar/webserv-admin.jar:/home/nb136819/space/serv

ers/s1ws61/bin/https/jar/ktsearch.jar" classpathsuffix=""

envclasspathignored="true" nativelibrarypathprefix="" debug="false"

debugoptions="-Xdebug

-Xrunjdwp:transport=dt_socket,server=y,suspend=n"

dynamicreloadinterval="-1">

<JVMOPTIONS>-Dorg.xml.sax.parser=org.xml.sax.helpers.XMLReaderAdapter

</JVMOPTIONS>

<JVMOPTIONS>-Dorg.xml.sax.driver=org.apache.crimson.parser.XMLReaderImpl

</JVMOPTIONS>

<JVMOPTIONS>-Djava.security.manager

</JVMOPTIONS>

Sample server.xml File

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •72

<JVMOPTIONS>-Djava.security.policy=/home/nb136819/space/servers/s1ws61

/https-admserv/config/server.policy</JVMOPTIONS>

<JVMOPTIONS>-Djava.security.auth.login.config=/home/nb136819/space

/servers/s1ws61/https-admserv/config/login.conf

</JVMOPTIONS>

<JVMOPTIONS>-Djava.util.logging.manager=com.iplanet.ias.server.logging

.ServerLogManager

</JVMOPTIONS>

<JVMOPTIONS>-Xms128m -Xmx256m

</JVMOPTIONS>

<SECURITY defaultrealm="file" anonymousrole="ANYONE" audit="false">

<AUTHREALM name="file"

classname="com.iplanet.ias.security.auth.realm.file.FileRealm">

<PROPERTY name="file"

value="/home/nb136819/space/servers/s1ws61/https-admserv/config/keyfile">

<PROPERTY name="jaas-context" value="fileRealm">

</AUTHREALM>

</SECURITY>

<RESOURCES>

</RESOURCES>

</JAVA>

<LOG

file="/home/nb136819/space/servers/s1ws61/https-admserv/

logs/errors" loglevel="info">

</SERVER>

Sample server.xml File

Chapter 2 • Server Configuration Elements in server.xml 73

74

Syntax and Use of magnus.conf

When the Sun JavaTM System Web Server starts up, it looks in a file called magnus.conf in the
server-id/config directory to establish a set of global variable settings that affect the server’s
behavior and configuration. Sun Java System Web Server executes all the directives defined in
magnus.conf. The order of the directives is not important.

Note – When you edit the magnus.conf file, you must restart the server for the changes to take
effect.

This chapter lists the global settings that can be specified in magnus.conf in Sun Java System
Web Server 6.1.

The categories are:

■ “Init Functions” on page 76
■ “Server Information” on page 76
■ “Language Issues” on page 78
■ “DNS Lookup” on page 78
■ “Threads, Processes, and Connections” on page 79
■ “Native Thread Pools” on page 86
■ “CGI” on page 87
■ “Error Logging and Statistic Collection” on page 89
■ “ACL” on page 90
■ “Security” on page 91
■ “Chunked Encoding” on page 94
■ “Miscellaneous Directives” on page 95

3C H A P T E R 3

75

For an alphabetical list of directives, see Appendix D, Alphabetical List of Server
Configuration Elements
For a list of magnus.conf directives deprecated in Sun Java System Web Server 6.1, see
“Deprecated Directives” on page 96.

Note – Much of the functionality of the file cache is controlled by a configuration file called
nsfc.conf. For information about nsfc.conf, see “nsfc.conf” on page 215.

Init Functions
The Init functions load and initialize server modules and plug-ins, and initialize log files. For
more information about these functions, see the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

Server Information
This sub-section lists the directives in magnus.conf that specify information about the server.
They are:
■ “ExtraPath” on page 76
■ “TempDir” on page 76
■ “TempDirSecurity” on page 77
■ “User” on page 77

ExtraPath
Appends the specified directory name to the PATH environment variable. This is used for
configuring Java on Windows. There is no default value; you must specify a value.

Syntax
ExtraPath path

TempDir
Specifies the directory on the local volume that the server uses for its temporary files. On UNIX,
this directory must be owned by, and writable by, the user the server runs as. See also the
directives “User” on page 77 and “TempDirSecurity” on page 77.

Syntax
TempDir path

Init Functions

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •76

Default
/tmp (UNIX)

TEMP (environment variable for Windows)

TempDirSecurity
Determines whether the server checks if the TempDir directory is secure. On UNIX, specifying
TempDirSecurity off allows the server to use /tmp as a temporary directory.

Caution – Specifying TempDirSecurity off or using /tmp as a temporary directory on UNIX is
highly discouraged. Using /tmp as a temporary directory opens a number of potential security
risks.

Syntax
TempDirSecurity [on|off]

Default
on

User
Windows: The User directive specifies the user account the server runs with. By using a specific
user account (other than LocalSystem), you can restrict or enable system features for the server.
For example, you can use a user account that can mount files from another machine.

UNIX: The User directive specifies the UNIX user account for the server. If the server is started
by the superuser or root user, the server binds to the port you specify and then switches its user
ID to the user account specified with the User directive. This directive is ignored if the server
isn’t started as root. The user account you specify should have read permission to the server’s
root and subdirectories. The user account should have write access to the logs directory and
execute permissions to any CGI programs. The user account should not have write access to the
configuration files. This ensures that in the unlikely event that someone compromises the
server, they won’t be able to change configuration files and gain broader access to your machine.
Although you can use the nobody user, it isn’t recommended.

Syntax
User name

name is the 8-character (or less) login name for the Unix user account.

Server Information

Chapter 3 • Syntax and Use of magnus.conf 77

Default
If there is no User directive, the server runs with the user account it was started with.

Examples
User http

User server

User nobody

Language Issues
This section lists the directives in magnus.conf related to language issues. The following
directive is supported:

■ “DefaultLanguage” on page 78

DefaultLanguage
For an international version of the server, this directive specifies the default language for the
server. The default language is used for both the client responses and administration. Values are
en (English), fr (French), de (German) or ja (Japanese).

Default
The default is en.

DNS Lookup
This section lists the directives in magnus.conf that affect DNS (Domain Name System) lookup.
The directives are:

■ “AsyncDNS” on page 78
■ “DNS” on page 79

AsyncDNS
Specifies whether asynchronous DNS is allowed. This directive is ignored. Even if the value is
set to on, the server does not perform asynchronous DNS lookups.

Language Issues

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •78

DNS
The DNS directive specifies whether the server performs DNS lookups on clients that access the
server. When a client connects to your server, the server knows the client’s IP address but not its
host name (for example, it knows the client as 198.95.251.30, rather than its host name
www.a.com). The server will resolve the client’s IP address into a host name for operations like
access control, CGI, JSP, Servlet, error reporting, and access logging.

If your server responds to many requests per day, you might want (or need) to stop host name
resolution; doing so can reduce the load on the DNS or NIS (Network Information System)
server.

Threads, Processes, and Connections
In Sun Java System Web Server 6.1, acceptor threads on a listen socket accept connections and
put them onto a connection queue. Session threads then pick up connections from the queue
and service the requests. The session threads post more session threads if required at the end of
the request. The policy for adding new threads is based on the connection queue state:

■ Each time a new connection is returned, the number of connections waiting in the queue
(the backlog of connections) is compared to the number of session threads already created.
If it is greater than the number of threads, more threads are scheduled to be added the next
time a request completes.

■ The previous backlog is tracked, so that if it is seen to be increasing over time, and if the
increase is greater than the ThreadIncrement value, and the number of session threads
minus the backlog is less than the ThreadIncrement value, then another ThreadIncrement
number of threads are scheduled to be added.

■ The process of adding new session threads is strictly limited by the RqThrottle value.
■ To avoid creating too many threads when the backlog increases suddenly (such as the

startup of benchmark loads), the decision whether more threads are needed is made only
once every 16 or 32 times a connection is made based on how many session threads already
exist.
This subsection lists the directives in magnus.conf that affect the number and timeout of
threads, processes, and connections. They are:

■ “AcceptTimeout” on page 80
■ “ConnQueueSize” on page 81
■ “HeaderBufferSize” on page 81
■ “KeepAliveQueryMaxSleepTime” on page 81
■ “KeepAliveQueryMeanTime” on page 81
■ “KeepAliveThreads” on page 82

Threads, Processes, and Connections

Chapter 3 • Syntax and Use of magnus.conf 79

■ “KeepAliveTimeout” on page 82
■ “KernelThreads” on page 82
■ “ListenQ” on page 83
■ “MaxKeepAliveConnections” on page 83
■ “MaxProcs (UNIX Only)” on page 83
■ “PostThreadsEarly” on page 83
■ “RcvBufSize” on page 84
■ “RqThrottle” on page 84
■ “RqThrottleMin” on page 84
■ “SndBufSize” on page 84
■ “StackSize” on page 84
■ “StrictHttpHeaders” on page 85
■ “TerminateTimeout” on page 85
■ “ThreadIncrement” on page 85
■ “UseNativePoll (UNIX only)” on page 85

Also see the section “Native Thread Pools” on page 86 for directives for controlling the pool
of native kernel threads.

For more information about performance tuning, see the Sun Java System Web Server 6.1
SP7 Performance Tuning, Sizing, and Scaling Guide.

AcceptTimeout
Specifies the number of seconds the server waits for data to arrive from the client. If data does
not arrive before the timeout expires then the connection is closed. By setting it to less than the
default 30 seconds, you can free up threads sooner. However, you may also disconnect users
with slower connections.

Syntax
AcceptTimeout seconds

Default
30 seconds for servers that don't use hardware encryption devices and 300 seconds for those
that do.

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •80

ConnQueueSize
Specifies the number of outstanding (yet to be serviced) connections that the web server can
have. It is recommended that this value always be greater than the operating system limit for the
maximum number of open file descriptors per process.

This setting can have performance implications. For more information, see the Sun Java System
Web Server 6.1 SP7 Performance Tuning, Sizing, and Scaling Guide.

Default
The default value is 4096.

HeaderBufferSize
The size (in bytes) of the buffer used by each of the request processing threads for reading the
request data from the client. The maximum number of request processing threads is controlled
by the “RqThrottle” on page 84 setting.

Default
The default value is 8192 (8 KB).

KeepAliveQueryMaxSleepTime
This directive specifies an upper limit to the time slept (in milliseconds) after polling keep-alive
connections for further requests.

Default
The default is 100.

On lightly loaded systems that primarily service keep-alive connections, you can lower this
number to enhance performance. However doing so can increase CPU usage.

KeepAliveQueryMeanTime
This directive specifies the desired keep-alive latency in milliseconds.

Default
The default value of 100 is appropriate for almost all installations.

Note that CPU usage will increase with lower KeepAliveQueryMeanTime values.

Threads, Processes, and Connections

Chapter 3 • Syntax and Use of magnus.conf 81

KeepAliveThreads
This directive determines the number of threads in the keep-alive subsystem. It is
recommended that this number be a small multiple of the number of processors on the system
(for example, a 2 CPU system should have 2 or 4 keep alive threads). The maximum number of
keep-alive connections allowed (“MaxKeepAliveConnections” on page 83) should also be
taken into consideration when choosing a value for this setting.

Default
1

KeepAliveTimeout
This directive determines the maximum time that the server holds open an HTTP Keep-Alive
connection or a persistent connection between the client and the server. The Keep-Alive feature
for earlier versions of the server allows the client/server connection to stay open while the server
processes the client request. The default connection is a persistent connection that remains
open until the server closes it or the connection has been open for longer than the time allowed
by KeepAliveTimeout.

The timeout countdown starts when the connection is handed over to the keep-alive subsystem.
If there is no activity on the connection when the timeout expires, the connection is closed.

Default
The default value is 30 seconds. The maximum value is 300 seconds (5 minutes).

KernelThreads
Sun Java System Web Server can support both kernel-level and user-level threads whenever the
operating system supports kernel-level threads. Local threads are scheduled by NSPR (Netscape
Portable Runtime) within the process, whereas kernel threads are scheduled by the host
operating system. Usually, the standard debugger and compiler are intended for use with
kernel-level threads. By setting KernelThreads to 1 (on), you ensure that the server uses only
kernel-level threads, not user-level threads. By setting KernelThreads to 0 (off), you ensure that
the server uses only user-level threads, which may improve performance.

Default
The default is 0 (off).

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •82

ListenQ
Specifies the maximum number of pending connections on a listen socket. Connections that
time out on a listen socket whose backlog queue is full will fail.

Default
The default value is platform-specific: 4096 (AIX), 200 (Windows), 128 (all others).

MaxKeepAliveConnections
Specifies the maximum number of Keep-Alive and persistent connections that the server can
have open simultaneously. Values range from 0 to 1048576 for the 64–bit server.

MaxProcs (UNIX Only)
Specifies the maximum number of processes that the server can have running simultaneously. If
you don’t include MaxProcs in your magnus.conf file, the server defaults to running a single
process.

One process per processor is recommended if you are running in multi-process mode. In Sun
Java System Web Server 6.1, there is always a primordial process in addition to the number of
active processes specified by this setting.

Additional discussion of this and other server configuration and performance tuning issues can
be found in the Sun Java System Web Server 6.1 Performance Tuning, Sizing, and Scaling Guide.

Default
1

PostThreadsEarly
If this directive is set to 1 (on), the server checks the whether the minimum number of threads
are available at a listen socket after accepting a connection but before sending the response to
the request. Use this directive when the server will be handling requests that take a long time to
handle, such as those that do long database connections.

Default
0 (off)

Threads, Processes, and Connections

Chapter 3 • Syntax and Use of magnus.conf 83

RcvBufSize
Specifies the size (in bytes) of the receive buffer used by sockets. Allowed values are determined
by the operating system.

Default
The default value is determined by the operating system. Typical defaults are 4096 (4K), 8192
(8K).

RqThrottle
Specifies the maximum number of request processing threads that the server can handle
simultaneously. Each request runs in its own thread.

This setting can have performance implications. For more information, see the Sun Java System
Web Server 6.1 SP7 Performance Tuning, Sizing, and Scaling Guide.

RqThrottleMin
Specifies the number of request processing threads that are created when the server is started.
As the load on the server increases, more request processing threads are created (up to a
maximum of RqThrottle threads).

SndBufSize
Specifies the size (in bytes) of the send buffer used by sockets.

Default
The default value is determined by the operating system. Typical defaults are 4096 (4K), 8192
(8K).

StackSize
Determines the maximum stack size for each request handling thread.

Default
The most favorable machine-specific stack size.

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •84

StrictHttpHeaders
Controls strict HTTP header checking. If strict HTTP header checking is on, the server rejects
connections that include inappropriately duplicated headers.

Syntax
StrictHttpHeaders [on|off]

Default
off

TerminateTimeout
Specifies the time that the server waits for all existing connections to terminate before it shuts
down.

Default
30 seconds

ThreadIncrement
The number of additional or new request processing threads created to handle an increase in
the load on the server, for example when the number of pending connections (in the request
processing queue) exceeds the number of idle request processing threads.

When a server starts up, it creates RqThrottleMin number of request processing threads. As the
load increases, it creates ThreadIncrement additional request processing threads until
RqThrottle request processing threads have been created.

Default
The default value is 10.

UseNativePoll (UNIX only)
Uses a platform-specific poll interface when set to 1(on). Uses the NSPR poll interface in the
KeepAlive subsystem when set to 0 (off).

Default
1 (on)

Threads, Processes, and Connections

Chapter 3 • Syntax and Use of magnus.conf 85

Native Thread Pools
This section lists the directives for controlling the size of the native kernel thread pool. You can
also control the native thread pool by setting the system variables NSCP_POOL_STACKSIZE,
NSCP_POOL_THREADMAX, and NSCP_POOL_WORKQUEUEMAX. If you have set these values as
environment variables and also in magnus.conf, the environment variable values will take
precedence.

The native pool on UNIX is normally not engaged, as all threads are OS-level threads. Using
native pools on UNIX may introduce a small performance overhead as they’ll require an
additional context switch; however, they can be used to localize the jvm.stickyAttach effect or
for other purposes, such as resource control and management or to emulate single-threaded
behavior for plug-ins.

On Windows, the default native pool is always being used and Sun Java System Web Server uses
fibers (user-scheduled threads) for initial request processing. Using custom additional pools on
Windows introduces no additional overhead.

The directives are:

■ “NativePoolStackSize” on page 86
■ “NativePoolMaxThreads” on page 86
■ “NativePoolMinThreads” on page 86
■ “NativePoolQueueSize” on page 87

NativePoolStackSize
Determines the stack size of each thread in the native (kernel) thread pool.

Default
0

NativePoolMaxThreads
Determines the maximum number of threads in the native (kernel) thread pool.

NativePoolMinThreads
Determines the minimum number of threads in the native (kernel) thread pool.

Default
1

Native Thread Pools

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •86

NativePoolQueueSize
Determines the number of threads that can wait in the queue for the thread pool. If all threads
in the pool are busy, then the next request-handling thread that needs to use a thread in the
native pool must wait in the queue. If the queue is full, the next request-handling thread that
tries to get in the queue is rejected, with the result that it returns a busy response to the client. It
is then free to handle another incoming request instead of being tied up waiting in the queue.

Default
0

CGI
This section lists the directives in magnus.conf that affect requests for CGI programs. The
directives are:

■ “CGIExpirationTimeout” on page 87
■ “CGIStubIdleTimeout” on page 88
■ “CGIWaitPid (UNIX Only)” on page 88
■ “MaxCGIStubs” on page 88
■ “MinCGIStubs” on page 88

CGIExpirationTimeout
This directive specifies the maximum time in seconds that CGI processes are allowed to run
before being killed.

The value of CGIExpirationTimeout should not be set too low— 300 seconds (5 minutes)
would be a good value for most interactive CGIs; but if you have CGIs that are expected to take
longer without misbehaving, then you should set it to the maximum duration you expect a CGI
program to run normally. A value of 0 disables CGI expiration, which means that there is no
time limit for CGI processes.

Note that on Windows platforms init-cgi time-out does not work, so you must use
CGIExpirationTimeout.

Default
0

CGI

Chapter 3 • Syntax and Use of magnus.conf 87

CGIStubIdleTimeout
This directive causes the server to kill any CGIStub processes that have been idle for the number
of seconds set by this directive. Once the number of processes is at MinCGIStubs, the server does
not kill any more processes.

Default
30

CGIWaitPid (UNIX Only)
For UNIX platforms, when CGIWaitPid is set to on, the action for the SIGCHLD signal is the
system default action for the signal. If a NSAPI plug-in fork/execs a child process, it should call
waitpid with its child process pid when CGIWaitPid is enabled to avoid leaving “defunct”
processes when its child process terminates. When CGIWaitPid is enabled, the SHTML engine
waits explicitly on its exec cmd child processes. Note that this directive has no effect on CGI.

Default
on

MaxCGIStubs
Controls the maximum number of CGIStub processes the server can spawn. This is the
maximum concurrent CGIStub processes in execution, not the maximum number of pending
requests. The default value should be adequate for most systems. Setting this too high may
actually reduce throughput.

Default
10

MinCGIStubs
Controls the number of processes that are started by default. The first CGIStub process is not
started until a CGI program has been accessed. Note that if you have an init-cgi directive in
the magnus.conf file, the minimum number of CGIStub processes are spawned at startup. The
value must be less than the MaxCGIStubs value.

Default
2

CGI

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •88

WincgiTimeout
WinCGI processes that take longer than this value are terminated when this timeout (in
seconds) expires.

Default
60

Error Logging and Statistic Collection
This section lists the directives in magnus.conf that affect error logging and the collection of
server statistics. They are:

■ “ErrorLogDateFormat” on page 89
■ “LogFlushInterval” on page 89
■ “PidLog” on page 90

ErrorLogDateFormat
The ErrorLogDateFormat directive specifies the date format that the server logs use.

Syntax
ErrorLogDateFormat format

The format can be any format valid for the C library function strftime. See Appendix C

Default
%d/%b/%Y:%H:%M:%S

LogFlushInterval
This directive determines the log flush interval, in seconds, of the log flush thread for the access
log.

Default
2

Error Logging and Statistic Collection

Chapter 3 • Syntax and Use of magnus.conf 89

PidLog
PidLog specifies a file in which to record the process ID (pid) of the base server process. Some of
the server support programs assume that this log is in the server root, in logs/pid.

To shut down your server, kill the base server process listed in the pid log file by using a -TERM
signal. To tell your server to reread its configuration files and reopen its log files, use kill with
the -HUP signal.

If the PidLog file isn’t writable by the user account that the server uses, the server does not log its
process ID anywhere. The server won’t start if it can’t log the process ID.

Syntax
PidLog file

The file is the full path name and file name where the process ID is stored.

Default
There is no default.

Examples
PidLog /var/ns-server/logs/pid

PidLog /tmp/ns-server.pid

ACL
This section lists the directives in magnus.conf relevant to access control lists (ACLs). They are:
■ “ACLCacheLifetime” on page 90
■ “ACLUserCacheSize” on page 91
■ “ACLGroupCacheSize” on page 91

ACLCacheLifetime
ACLCacheLifetime determines the number of seconds before cache entries expire. Each time an
entry in the cache is referenced, its age is calculated and checked against ACLCacheLifetime.
The entry is not used if its age is greater than or equal to the ACLCacheLifetime. If this value is
set to 0, the cache is turned off.

If you use a large number for this value, you may need to restart the Sun Java System Web Server
when you make changes to the LDAP entries. For example, if this value is set to 120 seconds, the
Sun Java System Web Server might be out of sync with the LDAP server for as long as two
minutes. If your LDAP entries are not likely to change often, use a large number.

ACL

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •90

Default
120

ACLUserCacheSize
ACLUserCacheSize determines the number of users in the User Cache.

Default
200

ACLGroupCacheSize
ACLGroupCacheSize determines how many group IDs can be cached for a single UID/cache
entry.

Default
4

Security
This section lists the directives in magnus.conf that affect server access and security issues for
Sun Java System Web Server. They are:

■ “Security” on page 91
■ “ServerString” on page 92
■ “SSLCacheEntries” on page 92
■ “SSLClientAuthDataLimit” on page 93
■ “SSLClientAuthTimeout” on page 93
■ “SSLSessionTimeout” on page 93
■ “SSL3SessionTimeout” on page 93

Security
The Security directive globally enables or disables SSL by making certificates available to the
server instance. It must be on for virtual servers to use SSL. If enabled, the user is prompted for
the administrator password (in order to access certificates, and so on).

Security

Chapter 3 • Syntax and Use of magnus.conf 91

Note – When you create a secure listen socket through the Server Manager, security is
automatically turned on globally in magnus.conf. When you create a secure listen socket
manually in server.xml, security must be turned on by editing magnus.conf.

Syntax
Security [on|off]

Default
off

Example
Security off

ServerString
Allows the administrator to change the string sent with the Server HTTP header.

Syntax
ServerString string

string is the new string to send as the header. All characters, including quotes, will be sent. The
string none, will cause the header to not be sent at all.

Example
ServerString My Own Server/1.0

ServerString none

SSLCacheEntries
Specifies the number of SSL sessions that can be cached. There is no upper limit.

Syntax
SSLCacheEntries number

If the number is 0, the default value, which is 10000, is used.

Security

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •92

SSLClientAuthDataLimit
Specifies the maximum amount of application data, in bytes, that is buffered during the client
certificate handshake phase.

Default
The default value is 1048576 (1 MB).

SSLClientAuthTimeout
Specifies the number of seconds after which the client certificate handshake phase times out.

Default
60

SSLSessionTimeout
The SSLSessionTimeout directive controls SSL2 session caching.

Syntax
SSLSessionTimeout seconds

The seconds value is the number of seconds until a cached SSL2 session becomes invalid. If the
SSLSessionTimeout directive is specified, the value of seconds is silently constrained to be
between 5 and 100 seconds.

Default
The default value is 100.

SSL3SessionTimeout
The SSL3SessionTimeout directive controls SSL3 session caching.

Syntax
SSL3SessionTimeout seconds

The seconds value is the number of seconds until a cached SSL3 session becomes invalid. The
default value is 86400 (24 hours). If the SSL3SessionTimeout directive is specified, the value of
seconds is silently constrained to be between 5 and 86400 seconds.

Security

Chapter 3 • Syntax and Use of magnus.conf 93

Chunked Encoding
This section lists directives that control chunked encoding. For more information, see the Sun
Java System Web Server 6.1 SP7 NSAPI Programmer’s Guide.

■ “UseOutputStreamSize” on page 94
■ “ChunkedRequestBufferSize” on page 94
■ “ChunkedRequestTimeout” on page 95

These directives have equivalent Service SAF parameters in obj.conf. The obj.conf
parameters override these directives. For more information, see the Sun Java System Web
Server 6.1 SP7 NSAPI Programmer’s Guide.

UseOutputStreamSize
The UseOutputStreamSize directive determines the default output stream buffer size for the
net_read and netbuf_grab NSAPI functions.

Note – The UseOutputStreamSize parameter can be set to 0 in the obj.conf file to disable
output stream buffering. For the magnus.conf file, setting UseOutputStreamSize to 0 has no
effect.

Syntax
UseOutputStreamSize size

The size value is the number of bytes.

Default
The default value is 8192 (8 KB).

ChunkedRequestBufferSize
The ChunkedRequestBufferSize directive determines the default buffer size for
“un-chunking” request data.

Syntax
ChunkedRequestBufferSize size

The size value is the number of bytes.

Chunked Encoding

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •94

Default
The default value is 8192.

ChunkedRequestTimeout
The ChunkedRequestTimeout directive determines the default timeout for “un-chunking”
request data.

Syntax
ChunkedRequestTimeout seconds

The seconds value is the number of seconds.

Default
The default value is 60 (1 minute).

Miscellaneous Directives
This section lists the following miscellaneous directives in magnus.conf:

■ “ChildRestartCallback” on page 95
■ “Favicon” on page 96
■ “HTTPVersion” on page 96
■ “MaxRqHeaders” on page 96
■ “Umask (UNIX only)” on page 96

Note – Directives noted with boolean values have the following equivalent values: on/yes/true
and off/no/false.

ChildRestartCallback
This directive forces the callback of NSAPI functions that were registered using the
daemon_atrestart function when the server is restarting or shutting down. Values are on, off,
yes, no, true, or false.

Default
no directive

Miscellaneous Directives

Chapter 3 • Syntax and Use of magnus.conf 95

Favicon
To turn off the internal favicon.ico support, add the following line to magnus.conf:

Favicon off

HTTPVersion
The current HTTP version used by the server in the form m.n, where m is the major version
number and n the minor version number.

Default

The default value is 1.1.

MaxRqHeaders
Specifies the maximum number of header lines in a request. Values range from 1 to 512.

Default
64

Umask (UNIX only)
This directive specifies the umask value used by the NSAPI functions System_fopenWA() and
System_fopenRW() to open files in different modes. Valid values for this directive are standard
UNIX umask values.

For more information on these functions, see the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

Deprecated Directives
The following directives have been deprecated in Sun Java System Web Server 6.1:

■ AdminLanguage

■ ClientLanguage

■ NetsiteRoot

■ ServerID

■ ServerName

■ ServerRoot

Deprecated Directives

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •96

Summary of Init Functions and Directives in magnus.conf

Purpose
Contains global variable settings that affect server functioning. This file is read only at server
start-up.

Location
server_root/https-admserv/config
server_root/https-admserv/conf_bk
server_root/https-server_id/config
server_root/https-server_id/conf_bk

Syntax
Init functions have the following syntax:

Init fn=function param1="value1" ...paramN="valueN"

In the following table“Init Functions” on page 97, functions are in bold to distinguish them
from parameters.

Directives have the following syntax:

directive value

See Also
Sun Java System Web Server 6.1 SP7 NSAPI Programmer’s Guide

Init Functions
The following table lists the Init functions available in the magnus.conf file:

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 97

TABLE 3–1 magnus.conf Init Functions

Function/Parameter Allowed Values Default Value Description

cindex-init Changes the default
characteristics for fancy
indexing.

opts s (None) (optional) is a string of letters
specifying the options to
activate. Currently there is only
one possible option:
■ s tells the server to scan

each HTML file in the
directory being indexed for
the contents of the HTML
<TITLE> tag to display in
the description field. The
<TITLE> tag must be within
the first 255 characters of
the file.

widths Comma separated
numbers of
characters

Minimums
required to
display
column titles

(optional) Specifies the width
for each of the four columns in
the indexing display: name,
last-modified date, size, and
description respectively.

The final three values can each
be set to 0 to turn the display for
that column off. The name
column cannot be turned off.

timezone GMT or local local (optional, iPlanet Web Server
4.x only) Indicates whether the
last-modified time is shown in
local time or in Greenwich
Mean Time.

format Format for the
UNIX function
strftime()

%d-%b-%Y

%H:%M

(optional, iPlanet Web Server
4.x only) Determines the
format of the last modified date
display.

ignore Wildcard pattern .* (optional) Specifies a wildcard
pattern for file names the server
should ignore while indexing.
File names starting with a
period (.) are always ignored.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •98

TABLE 3–1 magnus.conf Init Functions (Continued)
Function/Parameter Allowed Values Default Value Description

icon-uri /mc-icons/ (optional) Specifies the URI
prefix the index-common
function uses when generating
URLs for file icons (.gif files).
If icon-uri is different from the
default, the pfx2dir function in
the NameTrans directive must
be changed so that the server
can find these icons.

define-perf-bucket Creates a performance bucket,
which you can use to measure
the performance of SAFs in
obj.conf (see the Sun Java
System Web Server 6.1 SP7
NSAPI Programmer’s Guide).
This function works only if the
perf-init function is enabled.

name A name for the bucket, for
example cgi-bucket.

description A description of what the
bucket measures, for example
CGI Stats.

dns-cache-init Configures DNS caching.

cache-size 32 to 32768 (32K) 1024 (optional) Specifies how many
entries are contained in the
cache.

expire 1 to 31536000

seconds (1 year)
1200 seconds
(20 minutes)

(optional) specifies how long
(in seconds) it takes for a cache
entry to expire.

flex-init Initializes the flexible logging
system.

logFileName A path or file name The full path to the log file or a
file name relative to the server’s
logs directory. In this example,
the log file name is access and
the path is /logdir/access:

access="/logdir/access"

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 99

TABLE 3–1 magnus.conf Init Functions (Continued)
Function/Parameter Allowed Values Default Value Description

format.logFileName Specifies the format of each log
entry in the log file. See the Sun
Java System Web Server 6.1 SP7
NSAPI Programmer’s Guide for
more information.

buffer-size Number of bytes 8192 Specifies the size of the global
log buffer.

buffers-per-file The lower bound is
1. There always
needs to be at least
one buffer per file.

The upper bound
is dictated by the
number of buffers
that exist. The
upper bound on
the number of
buffers that exist
can be defined by
the num-buffers
parameter.

Determined
by the server

Specifies the number of buffers
for a given log file

num-buffers 1000 Specifies the maximum number
of logging buffers to use.

flex-rotate-init Enables rotation for logs.

rotate-start A 4-digit string
indicating the time
in 24-hour format

Indicates the time to start
rotation. For example, 0900
indicates 9 am while 1800
indicates 9 pm.

rotate-interval Number of
minutes

Indicates the number of
minutes to elapse between each
log rotation.

rotate-access yes, no yes (optional) determines whether
common-log, flex-log, and
record-useragent logs are
rotated. For more information,
see the Sun Java System Web
Server 6.1 SP7 NSAPI
Programmer’s Guide.

rotate-error yes, no yes (optional) determines whether
error logs are rotated.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •100

TABLE 3–1 magnus.conf Init Functions (Continued)
Function/Parameter Allowed Values Default Value Description

rotate-callback A path (optional) specifies the file
name of a user-supplied
program to execute following
log file rotation. The program is
passed the post-rotation name
of the rotated log file as its
parameter.

init-cgi Changes the default settings for
CGI programs.

timeout Number of
seconds

300 (optional) specifies how many
seconds the server waits for
CGI output before terminating
the script.

cgistub-path (optional) specifies the path to
the CGI stub binary. If not
specified, iPlanet Web Server
looks in the following
directories, in the following
order, relative to the server
instance’s config directory:
../private/Cgistub, then
../../bin/https/bin/Cgistub.

For information about
installing an suid Cgistub, see
the Sun Java System Web
Server 6.1 SP7 NSAPI
Programmer’s Guide.

env-variable (optional) specifies the name
and value for an environment
variable that the server places
into the environment for the
CGI.

init-clf Initializes the Common Log
subsystem.

logFileName A path or file name Specifies either the full path to
the log file or a file name relative
to the server’s logs directory.

init-uhome Loads user home directory
information.

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 101

TABLE 3–1 magnus.conf Init Functions (Continued)
Function/Parameter Allowed Values Default Value Description

pwfile (optional) specifies the full file
system path to a file other than
/etc/passwd. If not provided,
the default UNIX path
(/etc/passwd) is used.

load-modules Loads shared libraries into the
server.

shlib Specifies either the full path to
the shared library or dynamic
link library or a file name
relative to the server
configuration directory.

funcs A comma
separated list with
no spaces

A list of the names of the
functions in the shared library
or dynamic link library to be
made available for use by other
Init or Service directives. The
dash (-) character may be used
in place of the underscore (_)
character in function names.

NativeThread yes, no yes (optional) specifies which
threading model to use. no
causes the routines in the
library to use user-level
threading. yes enables
kernel-level threading.

pool The name of a custom thread
pool, as specified in
thread-pool-init.

nt-console-init Enables the NT console, which
is the command-line shell that
displays standard output and
error streams.

stderr console Directs error messages to the
NT console.

stdout console Directs output to the NT
console.

perf-init Enables system performance
measurement via performance
buckets.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •102

TABLE 3–1 magnus.conf Init Functions (Continued)
Function/Parameter Allowed Values Default Value Description

disable true, false true Disables the function when
true.

pool-init Configures pooled memory
allocation.

block-size (optional) size (in bytes) of the
memory blocks allocated by the
internal pooled memory
allocator. Default value is
32768.

free-size 1048576 bytes or
less

(optional) maximum size in
bytes of free block list.

disable true, false false (optional) flag to disable the use
of pooled memory if true.

register-http-method Lets you extend the HTTP
protocol by registering new
HTTP methods.

methods A comma
separated list

Names of the methods you are
registering.

stats-init Enables reporting of
performance statistics in XML
format.

profiling yes, no no Enables NSAPI performance
profiling using buckets. This
can also be enabled through
perf-init.

update-interval 1 or greater 5 The period in seconds between
statistics updates within the
server.

virtual-servers 1 or greater 1000 The maximum number of
virtual servers for which
statistics are tracked. This
number should be set higher
than the number of virtual
servers configured.

thread-pool-init Configures an additional thread
pool.

name Name of the thread pool.

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 103

TABLE 3–1 magnus.conf Init Functions (Continued)
Function/Parameter Allowed Values Default Value Description

maxthreads Maximum number of threads
in the pool.You can use only
five threads at a time in the
FastTrack edition of iPlanet
Web Server.

minthreads Minimum number of threads in
the pool.

queueSize Number of bytes Size of the queue for the pool.

stackSize Number of bytes Stack size of each thread in the
native (kernel) thread pool.

Directives
The following table lists

TABLE 3–2 magnus.conf Directives

Directive Allowed Values Default Value Description

AcceptTimeout Any number of
seconds

30 for servers
that don't use
hardware
encryption
devices and 300
for those that
do

Specifies the number of seconds the
server waits for data to arrive from
the client. If data does not arrive
before the timeout expires then the
connection is closed.

ACLCacheLifetime Any number of
seconds

120 Determines the number of seconds
before cache entries expire. Each
time an entry in the cache is
referenced, its age is calculated and
checked against ACLCacheLifetime.
The entry is not used if its age is
greater than or equal to the
ACLCacheLifetime. If this value is set
to 0, the cache is turned off.

ACLUserCacheSize 200 Determines the number of users in
the User Cache.

ACLGroupCacheSize 4 Determines how many group IDs can
be cached for a single UID/cache
entry.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •104

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

AsyncDNS on, off off Specifies whether asynchronous DNS
is allowed.

CGIExpirationTimeout Any number of
seconds

300 (5 minutes)
recommended

Specifies the maximum time in
seconds that CGI processes are
allowed to run before being killed.

CGIStubIdleTimeout Any number of
seconds

30 Causes the server to kill any CGIStub
processes that have been idle for the
number of seconds set by this
directive. Once the number of
processes is at MinCGIStubs, the
server does not kill any more
processes.

CGIWaitPid on, off on (UNIX only) makes the action for the
SIGCHLD signal the system default
action for the signal. Makes the
SHTML engine wait explicitly on its
exec cmd child processes.

ChildRestartCallback on, off, yes, no,
true, false

no Forces the callback of NSAPI
functions that were registered using
the daemon_atrestart function
when the server is restarting or
shutting down.

ChunkedRequestBufferSize Any number of
bytes

8192 Determines the default buffer size for
“un-chunking” request data.

ChunkedRequestTimeout Any number of
seconds

60 (1 minute). Determines the default timeout for
“un-chunking” request data.

ConnQueueSize Any number of
connections
(including 0)

4096 Specifies the number of outstanding
(yet to be serviced) connections that
the web server can have.

This setting can have performance
implications. For more information,
see the Sun Java System Web
Server 6.1 SP7 Performance Tuning,
Sizing, and Scaling Guide.

DefaultLanguage en (English),fr
(French),de
(German),ja
(Japanese)

en Specifies the default language for the
server. The default language is used
for both the client responses and
administration.

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 105

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

DNS on, off on Specifies whether the server performs
DNS lookups on clients that access
the server.

ErrorLogDateFormat See the manual
page for the C
library function
strftime

%d/%b/%Y:%H:

%M:%S

The date format for the error log.

ExtraPath A path (none) Appends the specified directory
name to the PATH environment
variable. This is used for configuring
Java on Windows NT. There is no
default value; you must specify a
value.

Favicon On / Off on Provides the web server
administrator the ability to disable or
change the icon which appears in the
web address book or favorites list on
Internet Explorer browsers (so,
favicon translates as favorite
icon).

HeaderBufferSize Any number of
bytes

8192 (8 KB) The size (in bytes) of the buffer used
by each of the request processing
threads for reading the request data
from the client. The maximum
number of request processing
threads is controlled by the
RqThrottle setting.

HTTPVersion m.n; m is the
major version
number and n
the minor
version number

1.1 The current HTTP version used by
the server.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •106

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

KeepAliveQueryMaxSleepTime 100

On lightly
loaded systems
that primarily
service
keep-alive
connections,
you can lower
this number to
enhance
performance.
However doing
so can increase
CPU usage.

This directive specifies an upper limit
to the time slept (in milliseconds)
after polling keep-alive connections
for further requests.

KeepAliveQueryMeanTime 100 is
appropriate for
almost all
installations.

Note that CPU
usage will
increase with
lower
KeepAliveQueryMeanTime
values.

This directive specifies the desired
keep-alive latency in milliseconds.

KeepAliveThreads Any number of
threads

1 Specifies the number of threads in the
keep-alive subsystem. It is
recommended that this number be a
small multiple of the number of
processors on the system.

KeepAliveTimeout 300 seconds
maximum

30 Determines the maximum time that
the server holds open an HTTP
Keep-Alive connection or a
persistent connection between the
client and the server.

KernelThreads 0 (off), 1 (on) 0 (off) If on, ensures that the server uses
only kernel-level threads, not
user-level threads. If off, uses only
user-level threads.

ListenQ Ranges are
platform-specific

4096 (AIX), 200
(NT), 128 (all
others)

Defines the number of incoming
connections for a server socket.

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 107

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

LogFlushInterval Any number of
seconds

30 Determines the log flush interval, in
seconds, of the log flush thread.

MaxCGIStubs Any number of
CGI stubs

10 Controls the maximum number of
CGIStub processes the server can
spawn. This is the maximum
concurrent CGIStub processes in
execution, not the maximum number
of pending requests.

MaxKeepAliveConnections 0 - 1048576 (for
64–bit server)

25616 Specifies the maximum number of
Keep-Alive and persistent
connections that the server can have
open simultaneously.

MaxProcs Any number of
processes1

1 (UNIX only) Specifies the maximum
number of processes that the server
can have running simultaneously.

MaxRqHeaders 1 - 512 64 Specifies the maximum number of
header lines in a request.

MinCGIStubs Any number
less than
MaxCGIStubs

2 Controls the number of processes
that are started by default.

NativePoolMaxThreads Any number of
threads

1285 Determines the maximum number of
threads in the native (kernel) thread
pool.

NativePoolMinThreads Any number of
threads

1 Determines the minimum number of
threads in the native (kernel) thread
pool.

NativePoolQueueSize Any
nonnegative
number

0 Determines the number of threads
that can wait in the queue for the
thread pool.

NativePoolStackSize Any
nonnegative
number

0 Determines the stack size of each
thread in the native (kernel) thread
pool.

PidLog A valid path to
a file

(none) Specifies a file in which to record the
process ID (pid) of the base server
process.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •108

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

PostThreadsEarly 1 (on), 0 (off) 0 (off) If on, checks whether the minimum
number of threads are available at a
socket after accepting a connection
but before sending the response to
the request.

RcvBufSize Range is
platform-specific

0 (uses
platform-specific
default)

Controls the size of the receive buffer
at the server’s sockets.

RqThrottle Any number of
requests
(including 0)

51216 Specifies the maximum number of
simultaneous request processing
threads that the server can handle
simultaneously per socket.

This setting can have performance
implications. For more information,
see the Sun Java System Web
Server 6.1 SP7 Performance Tuning,
Sizing, and Scaling Guide.

RqThrottleMin Any number
less than
RqThrottle

484 Specifies the number of request
processing threads that are created
when the server is started. As the load
on the server increases, more request
processing threads are created (up to
a maximum of RqThrottle threads).

Security on, off off Globally enables or disables SSL by
making certificates available to the
server instance. Must be on for virtual
servers to use SSL.

SndBufSize Range is
platform-specific

0 (uses
platform-specific
default)

Controls the size of the send buffer at
the server’s sockets.

SSL3SessionTimeout 5 - 86400 86400 (24
hours).

The number of seconds until a
cached SSL3 session becomes invalid.

SSLCacheEntries A non-negative
integer

10000 (used if 0
is specified)

Specifies the number of SSL sessions
that can be cached. There is no upper
limit.

SSLClientAuthDataLimit Number of
Bytes

1048576 (1MB) Specifies the maximum amount of
application data that is buffered
during the client certificate
handshake phase.

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 109

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

SSLClientAuthTimeout Any number of
seconds

60 Specifies the number of seconds after
which the client certificate
handshake phase times out.

SSLSessionTimeout 5 - 100 100 Specifies the number of seconds until
a cached SSL2 session becomes
invalid.

StackSize Number of
Bytes

The most
favorable
machine-
specific stack
size.

Determines the maximum stack size
for each request handling thread.

StrictHttpHeaders on, off off If on, rejects connections that include
inappropriately duplicated headers.

TempDir A path /tmp (UNIX)

TEMP

(environment
variable for
Windows NT)

Specifies the directory the server uses
for its temporary files. On UNIX, this
directory should be owned by, and
writable by, the user the server runs
as.

TempDirSecurity on, off on Determines whether the server
checks if the TempDir directory is
secure. On UNIX, specifying
TempDirSecurity off allows the
server to use /tmp as a temporary
directory.

TerminateTimeout Any number of
seconds

30 Specifies the time in seconds that the
server waits for all existing
connections to terminate before it
shuts down.

ThreadIncrement Any number of
threads

10 The number of additional or new
request processing threads created to
handle an increase in the load on the
server.

Umask A standard
UNIX umask
value

(none) UNIX only: Specifies the umask value
used by the NSAPI functions
System_fopenWA() and
System_fopenRW() to open files in
different modes.

Summary of Init Functions and Directives in magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •110

TABLE 3–2 magnus.conf Directives (Continued)
Directive Allowed Values Default Value Description

UseNativePoll 1 (on), 0 (off) 1 (on) Uses a platform-specific poll
interface when set to 1 (on). Uses the
NSPR poll interface in the KeepAlive
subsystem when set to 0 (off).

UseOutputStreamSize Any number of
bytes

8192 (8 KB) Determines the default output
stream buffer size for the net_read
and netbuf_grab NSAPI functions.

User A login name, 8
characters or
less

(none) (Windows NT) specifies the user
account the server runs with,
allowing you to restrict or enable
system features for the server.

(UNIX) if the server is started by the
superuser or root user, the server
binds to the Port you specify and then
switches its user ID to the user
account specified with the User
directive. This directive is ignored if
the server isn’t started as root.

WincgiTimeout Any number of
seconds

60 WinCGI processes that take longer
than this value are terminated when
this timeout expires.

Summary of Init Functions and Directives in magnus.conf

Chapter 3 • Syntax and Use of magnus.conf 111

112

Predefined SAFs in obj.conf

The obj.conf configuration file contains directives that instruct the Sun Java System Web
Server how to handle HTTP and HTTPS requests from clients and service web server content
such as native server plug-ins and CGI programs. You can modify and extend the
request-handling process by adding or changing the instructions in obj.conf.

All obj.conf files are located in the instance_dir/config directory, where instance_dir is the path
to the installation directory of the server instance. There is one obj.conf file for each virtual
server class, unless several virtual server classes are configured to share an obj.conf file.
Whenever this guide refers to "the obj.conf file," it refers to all obj.conf files or to the
obj.conf file for the virtual server class being described.

By default, the obj.conf file for the initial virtual server class is named obj.conf, and the
obj.conf files for the administrator-defined virtual server classes are named
virtual_server_class_id.obj.conf. Editing one of these files directly or through the
Administration interface changes the configuration of a virtual server class.

This chapter describes the standard directives and predefined Server Application Functions
(SAFs) that are used in the obj.conf file to give instructions to the server. For details about the
syntax and use of the obj.conf file, refer to the Sun Java System Web Server 6.1 NSAPI
Programmer’s Guide.

Each SAF has its own arguments, which are passed to it by a directive in obj.conf. Every SAF is
also passed additional arguments that contain information about the request (such as what
resource was requested and what kind of client requested it), and any other server variables
created or modified by SAFs called by previously invoked directives. Each SAF may examine,
modify, or create server variables. Each SAF returns a result code that tells the server whether it
succeeded, did nothing, or failed.

This chapter includes functions that are part of the core functionality of Sun Java System Web
Server. It does not include functions that are available only if additional components, such as
server-parsed HTML, are enabled.

This chapter covers the following stages:

4C H A P T E R 4

113

■ “AuthTrans” on page 116
■ “NameTrans” on page 126
■ “PathCheck” on page 136
■ “ObjectType” on page 151
■ “Input” on page 157
■ “Output” on page 160
■ “Service” on page 162
■ “AddLog” on page 195
■ “Error” on page 198

For an alphabetical list of predefined SAFs, see Appendix E, Alphabetical List of Predefined
SAFs

List of SAFs
The following table lists the Server Application Functions (SAFs) that can be used with each
directive.

TABLE 4–1 AvailableSAFs per Directive

Directive Server Application Functions

“AuthTrans” on page 116 “basic-auth” on page 117 “basic-ncsa” on page 118“get-sslid” on page 119
“match-browser” on page 120“qos-handler” on page 121“set-variable”
on page 122

“NameTrans” on page 126 “assign-name” on page 126“document-root” on page 128 “home-page”
on page 129 “match-browser” on page 120“ntrans-dav” on page 130
“ntrans-j2ee” on page 131 “pfx2dir” on page 131 “redirect” on page 133
“set-variable” on page 122“strip-params” on page 134“unix-home” on page
135

“PathCheck” on page 136 “check-acl” on page 136 “deny-existence” on page 139 “find-index” on page
139 “find-links” on page 140 “find-pathinfo” on page 141 “get-client-cert”
on page 142 “load-config” on page 143 “match-browser” on page
120“nt-uri-clean” on page 145 “ntcgicheck” on page 146 “require-auth”
on page 147 “set-variable” on page 122“set-virtual-index” on page
148“ssl-check” on page 149“ssl-logout” on page 150“unix-uri-clean”
on page 150

“ObjectType” on page 151 “force-type” on page 152 “match-browser” on page 120“set-default-type”
on page 153 “set-variable” on page 122“shtml-hacktype” on page 154
“type-by-exp” on page 155 “type-by-extension” on page 156

List of SAFs

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •114

TABLE 4–1 AvailableSAFs per Directive (Continued)
Directive Server Application Functions

“Input” on page 157 “insert-filter” on page 158“match-browser” on page 120“remove-filter”
on page 159“set-variable” on page 122

“Output” on page 160 “insert-filter” on page 160“match-browser” on page 120“remove-filter”
on page 161“set-variable” on page 122

“Service” on page 162 “add-footer” on page 165“add-header” on page 166“append-trailer”
on page 167 “imagemap” on page 169 “index-common” on page 169
“index-simple” on page 171 “key-toosmall” on page 172 “list-dir” on page
173 “make-dir” on page 175“match-browser” on page 120“query-handler”
on page 176 “remove-dir” on page 176 “delete-file” on page 177
“remove-filter” on page 178“rename-file” on page 179 “send-cgi” on page
180 “send-error” on page 182 “send-file” on page 183 “send-range” on page
185 “send-shellcgi” on page 185 “send-wincgi” on page 186 “service-dump”
on page 188“service-j2ee” on page 189“service-trace” on page
190“set-variable” on page 122“shtml_send” on page 191“stats-xml”
on page 192“upload-file” on page 194

“AddLog” on page 195 “common-log” on page 195 “flex-log” on page 196“match-browser”
on page 120“record-useragent” on page 197 “set-variable” on page 122

“Error” on page 198 “error-j2ee” on page 199“match-browser” on page 120“qos-error” on page
200“query-handler” on page 200“remove-filter” on page 201“send-error”
on page 202“set-variable” on page 122

The bucket Parameter
The following performance buckets are predefined in Sun Java System Web Server:

■ The default-bucket records statistics for the functions not associated with any
user-defined or built-in bucket.

■ The all-requests bucket records.perf statistics for all NSAPI SAFs, including those in the
default-bucket.
You can define additional performance buckets in the magnus.conf file (see the perf-init
and define-perf-bucket functions).
You can measure the performance of any SAF in obj.conf by adding a
bucket=bucket-name parameter to the function, for example bucket=cache-bucket.
To list the performance statistics, use the “service-dump” on page 188 Service function.
As an alternative, you can use the “stats-xml” on page 192 Service function to generate
performance statistics; use of buckets is optional.
For more information about performance buckets, see the Sun Java System Web Server 6.1
SP7 Performance Tuning, Sizing, and Scaling Guide.

The bucket Parameter

Chapter 4 • Predefined SAFs in obj.conf 115

AuthTrans
AuthTrans stands for Authorization Translation. AuthTrans directives give the server
instructions for checking authorization before allowing a client to access resources. AuthTrans
directives work in conjunction with PathCheck directives. Generally, an AuthTrans function
checks if the user name and password associated with the request are acceptable, but it does not
allow or deny access to the request; that is left to a PathCheck function.

The server handles the authorization of client users in two steps:

■ “AuthTrans” on page 116 validates authorization information sent by the client in the
Authorization header.

■ “PathCheck” on page 136 checks that the authorized user is allowed access to the requested
resource.
The authorization process is split into two steps so that multiple authorization schemes can
be easily incorporated, and to provide the flexibility to have resources that record
authorization information, but do not require it.
AuthTrans functions get the user name and password from the headers associated with the
request. When a client initially makes a request, the user name and password are unknown
so the AuthTrans functions and PathCheck functions work together to reject the request,
since they can’t validate the user name and password. When the client receives the rejection,
its usual response is to present a dialog box asking for the user name and password to enter
the appropriate realm, and then the client submits the request again, this time including the
user name and password in the headers.
If there is more than one AuthTrans directive in obj.conf, each function is executed in
order until one succeeds in authorizing the user.
The following AuthTrans-class functions are described in detail in this section:

■ “basic-auth” on page 117 calls a custom function to verify user name and password.
Optionally determines the user’s group.

■ “basic-ncsa” on page 118 verifies user name and password against an NCSA-style or system
DBM database. Optionally determines the user’s group.

■ “get-sslid” on page 119 retrieves a string that is unique to the current SSL session and stores it
as the ssl-id variable in the Session->client parameter block.

■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by
the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “qos-handler” on page 121 handles the current quality of service statistics.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

AuthTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •116

basic-auth
Applicable in AuthTrans-class directives.

The basic-auth function calls a custom function to verify authorization information sent by
the client. The Authorization header is sent as part of the basic server authorization scheme.

This function is usually used in conjunction with the PathCheck-class function “require-auth”
on page 147.

Parameters
The following table describes parameters for the basic-auth function.

TABLE 4–2 basic-auth Parameters

Parameter Description

auth-type Specifies the type of authorization to be used. This should always be basic.

userdb (Optional) Specifies the full path and file name of the user database to be
used for user verification. This parameter will be passed to the user
function.

userfn Name of the user custom function to verify authorization. This function
must have been previously loaded with load-modules. It has the same
interface as all of the SAFs, but it is called with the user name (user),
password (pw), user database (userdb), and group database (groupdb) if
supplied, in the pb parameter. The user function should check the name and
password using the database and return REQ_NOACTION if they are not valid.
It should return REQ_PROCEED if the name and password are valid. The
basic-auth function will then add auth-type, auth-user (user), auth-db
(userdb), and auth-password (pw, Windows only) to the rq->vars pblock.

groupdb (Optional) Specifies the full path and file name of the user database. This
parameter will be passed to the group function.

groupfn (Optional) Name of the group custom function that must have been
previously loaded with load-modules. It has the same interface as all of the
SAFs, but it is called with the user name (user), password (pw), user
database (userdb), and group database (groupdb) in the pb parameter. It
also has access to the auth-type, auth-user (user), auth-db (userdb), and
auth-password (pw, Windows only) parameters in the rq->vars pblock.
The group function should determine the user’s group using the group
database, add it to rq->vars as auth-group, and return REQ_PROCEED if
found. It should return REQ_NOACTION if the user’s group is not found.

bucket (Optional) Common to all obj.conf functions.

AuthTrans

Chapter 4 • Predefined SAFs in obj.conf 117

Examples
In magnus.conf:

Init fn=load-modules shlib=/path/to/mycustomauth.so

funcs=hardcoded_auth

In obj.conf:

AuthTrans fn=basic-auth auth-type=basic

userfn=hardcoded_authPathCheck fn=require-auth

auth-type=basic realm="Marketing Plans"

See Also
“require-auth” on page 147

basic-ncsa
Applicable in AuthTrans-class directives.

The basic-ncsa function verifies authorization information sent by the client against a
database. The Authorization header is sent as part of the basic server authorization scheme.

This function is usually used in conjunction with the PathCheck-class function “require-auth”
on page 147.

Parameters
The following table describes parameters for the basic-ncsa function.

TABLE 4–3 basic-auth Parameters

Parameter Description

auth-type Specifies the type of authorization to be used. This should always be basic.

dbm (Optional) Specifies the full path and base file name of the user database in
the server's native format. The native format is a system DBM file, which is a
hashed file format allowing instantaneous access to billions of users. If you
use this parameter, don’t use the userfile parameter as well.

userfile (Optional) Specifies the full path name of the user database in the
NCSA-style HTTPD user file format. This format consists of lines using the
format name:password, where password is encrypted. If you use this
parameter, don’t use dbm.

AuthTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •118

TABLE 4–3 basic-auth Parameters (Continued)
Parameter Description

grpfile (Optional) Specifies the NCSA-style HTTPD group file to be used. Each line
of a group file consists of group:user1 user2 ... userN where each user is
separated by spaces.

bucket (Optional) Common to all obj.conf functions.

Examples
AuthTrans fn=basic-ncsa auth-type=basic

dbm=/sun/server61/userdb/rs

PathCheck fn=require-auth auth-type=basic realm="Marketing Plans"

AuthTrans fn=basic-ncsa auth-type=basic

userfile=/sun/server61/.htpasswd grpfile=/sun/server61/.grpfile

PathCheck fn=require-auth auth-type=basic realm="Marketing Plans"

See Also
“require-auth” on page 147

get-sslid
Applicable in AuthTrans-class directives.

Note – This function is provided for backward compatibility only. The functionality of
get-sslid has been incorporated into the standard processing of an SSL connection.

The get-sslid function retrieves a string that is unique to the current SSL session, and stores it
as the ssl-id variable in the Session->client parameter block.

If the variable ssl-id is present when a CGI is invoked, it is passed to the CGI as the
HTTPS_SESSIONID environment variable.

The get-sslid function has no parameters and always returns REQ_NOACTION. It has no effect if
SSL is not enabled.

Parameters
The following table describes parameters for the get-sslid function.

AuthTrans

Chapter 4 • Predefined SAFs in obj.conf 119

TABLE 4–4 get-sslid Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

match-browser
Applicable in all stage directives.

The match-browser SAF matches specific strings in the User-Agent string supplied by the
browser, and then modifies the behavior of Sun Java System Web Server based upon the results
by setting values for specified variables.

Syntax
stage fn="match-browser" browser="string" name="value" [name="value" ...]

Parameters
The following table describes parameter values for the match-browser function.

TABLE 4–5 match-browser Parameter Values

Value Description

stage Stage directive used in obj.conf processing (NameTrans, PathCheck, and so
on). The match-browser function is applicable in all stage directives.

string Wildcard pattern to compare against the User-Agent header (for example,
"*Mozilla*").

name Variable to be changed. The match-browser SAF indirectly invokes the
“set-variable” on page 122 SAF. For a list of valid variables, see “set-variable”
on page 122.

value New value for the specified variable.

Example
The following AuthTrans directive instructs Sun Java System Web Server to do as follows when
the browser's User-Agent header contains the string Broken or broken. The server will:

■ Not send the SSL3 and TLS close_notify packet (see “set-variable” on page 122).
■ Not honor requests for HTTP Keep-Alive (see “set-variable” on page 122
■ Use the HTTP/1.0 protocol rather than HTTP/1.1 (see “set-variable” on page 122).

AuthTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •120

AuthTrans fn="match-browser"

browser="*[Bb]roken*"

ssl-unclean-shutdown="true"

keep-alive="disabled"

http-downgrade="1.0"

See Also
“set-variable” on page 122

qos-handler
Applicable in AuthTrans-class directives.

The qos-handler function examines the current quality of service statistics for the virtual
server, virtual server class, and global server, logs the statistics, and enforces the QOS
parameters by returning an error. This must be the first AuthTrans function configured in the
default object in order to work properly.

The code for this SAF is one of the examples provided in the Sun Java System Web Server 6.1
NSAPI Programmer’s Guide.

For more information, see the Sun Java System Web Server 6.1 SP7 Performance Tuning, Sizing,
and Scaling Guide.

Parameters
The following table describes parameters for the qos-handler function.

TABLE 4–6 qos-handler Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

Example
AuthTrans fn=qos-handler

See Also
“qos-error” on page 200

AuthTrans

Chapter 4 • Predefined SAFs in obj.conf 121

set-variable
Applicable in all stage directives.

The set-variable function enables you to change server settings based upon conditional
information in a request. It can also be used to manipulate variables in parameter blocks with
the following commands:

■ insert-pblock="name=value"

Adds a new value to the specified pblock.
■ set-pblock="name=value"

Sets a new value in the specified pblock, replacing any existing value(s) with the same name.
■ remove-pblock="name"

Removes all values with the given name from the specified pblock.

Note – For more information about parameter blocks, see the Sun Java System Web Server 6.1
SP7 NSAPI Programmer’s Guide.

Syntax
stage fn="set-variable" [{insert|set|remove}-pblock="name=value"
...][name="value" ...]

Parameters
The following table describes parameter values for the set-variable function.

AuthTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •122

TABLE 4–7 set-variable Parameter Values

Value Description

pblock One of the following Session/Request parameter block names:
■ client: Contains the IP address of the client machine and the DNS

name of the remote machine. For more information, see the description
of the Session->client function in the “Data Structure Reference”
chapter of the Sun Java System Web Server 6.1 SP7 NSAPI Programmer’s
Guide.

■ vars: Contains the server's working variables, which includes anything
not specifically found in the reqpb, headers, or srvhdrs pblocks. The
contents of this pblock differ, depending upon the specific request and
the type of SAF.

■ reqpb: Contains elements of the HTTP request, which includes the
HTTP method (GET, POST, and so on), the URI, the protocol
(generally HTTP/1.0), and the query string. This pblock doesn’t usually
change during the request-response process.headers: Contains all the
request headers (such as User-Agent, If-Modified-Since, and so on)
received from the client in the HTTP request. This pblock doesn’t
usually change during the request-response process. For more
information about request headers, see the “Hypertext Transfer
Protocol” chapter of the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

■ srvhdrs: Contains the response headers (such as Server, Date,
Content-type, Content-length, and so on) that are to be sent to the
client in the HTTP response. For more information about response
headers, see the “Hypertext Transfer Protocol” chapter of the Sun Java
System Web Server 6.1 SP7 NSAPI Programmer’s Guide.

Note – For more information about parameter blocks, see the Sun Java
System Web Server 6.1 SP7 NSAPI Programmer’s Guide.

name The variable to set.

value The string assigned to the variable specified by name.

Variables
The following tables lists variables supported by the set-variable SAF.

AuthTrans

Chapter 4 • Predefined SAFs in obj.conf 123

TABLE 4–8 Supported Variables

Parameter Description

abort A value of true indicates the result code should be set to REQ_ABORTED.
Setting the result code to REQ_ABORTED will abort the current request and
send an error to the browser. For information about result codes, see the
“Creating Custom SAFs” chapter of the Sun Java System Web Server 6.1 SP7
NSAPI Programmer’s Guide.

error Sets the error code to be returned in the event of an aborted browser
request.

escape A boolean value signifying whether a URL should be escaped using
util_uri_escape. For information about util_uri_escape, see the
“NSAPI Function Reference” chapter of the Sun Java System Web Server 6.1
SP7 NSAPI Programmer’s Guide.

find-pathinfo-forward Path information after the file name in a URI. See “find-pathinfo” on page
141.

http-downgrade HTTP version number (for example, 1.0).

http-upgrade HTTP version number (for example, 1.0).

keep-alive A boolean value that establishes whether a keep-alive request from a
browser will be honored.

name Specifies an additional named object in the obj.conf file whose directives
will be applied to this request. See also “assign-name” on page 126.

noaction A value of true indicates the result code should be set to REQ_NOACTION. For
AuthTrans, NameTrans, Service, and Error stage SAFs, setting the result
code to REQ_NOACTION indicates that subsequent SAFs in that stage should
be allowed to execute. For information about result codes, see the “Creating
Custom SAFs” chapter of the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

nostat Causes the server not to perform the stat() function for a URL when
possible. See also “assign-name” on page 126.

senthdrs A boolean value that indicates whether HTTP response headers have been
sent to the client.

ssl-unclean-shutdown A boolean value that can be used to alter the way SSL3 connections are
closed. As this violates the SSL3 RFCs, you should only use this with great
caution if you know that you are experiencing problems with SSL3
shutdowns.

AuthTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •124

TABLE 4–8 Supported Variables (Continued)
Parameter Description

stop A value of true indicates the result code should be set to REQ_PROCEED. For
AuthTrans, NameTrans, Service, and Error stage SAFs, setting the result
code to REQ_PROCEED indicates that no further SAFs in that stage should be
allowed to execute. For information about result codes, see the “Creating
Custom SAFs” chapter of the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

url Redirect requests to a specified URL.

Examples
■ To deny HTTP keep-alive requests for a specific server class (while still honoring keep-alive

requests for the other classes), add this AuthTrans directive to the obj.conf for the server
class, and set the variable keep-alive to disabled:
AuthTrans fn="set-variable" keep-alive="disabled"

To cause that same server class to use HTTP/1.0 while the rest of the server classes use
HTTP/1.1, the AuthTrans directive would be:
AuthTrans fn="set-variable" keep-alive="disabled" http-downgrade="true"

■ To insert an HTTP header into each response, add a NameTrans directive to obj.conf, using
the insert-pblock command and specifying srvhdrs as your Session/Request parameter
block.
For example, to insert the HTTP header P3P, you would add the following line to each
request:
NameTrans fn="set-variable" insert-srvhdrs="P3P"

■ To terminate processing a request based upon certain URIs, use a <Client> tag to specify
the URIs and an AuthTrans directive that sets the variable abort to true when there is a
match. Your <Client> tag would be comparable to the following:
<Client uri="*(system32|root.exe)*">AuthTrans fn="set-variable"

abort="true"</Client>

See Also
“match-browser” on page 120

AuthTrans

Chapter 4 • Predefined SAFs in obj.conf 125

NameTrans
NameTrans stands for Name Translation. NameTrans directives translate virtual URLs to
physical directories on your server. For example, the URL

http://www.test.com/some/file.html

could be translated to the full file system path

/usr/Sun/WebServer61/server1/docs/some/file.html

NameTrans directives should appear in the default object. If there is more than one NameTrans
directive in an object, the server executes each one in order until one succeeds.

The following NameTrans-class functions are described in detail in this section:

■ “assign-name” on page 126 tells the server to process directives in a named object.
■ “document-root” on page 128 translates a URL into a file system path by replacing the

http://server-name/ part of the requested resource with the document root directory.
■ “home-page” on page 129 translates a request for the server’s root home page (/) to a specific

file.
■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by

the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “ntrans-dav” on page 130 determines whether a request should be handled by the WebDAV
subsystem and if so, creates a dav objectset.

■ “ntrans-j2ee” on page 131 determines whether a request maps to a JavaTM technology-based
web application context.

■ “pfx2dir” on page 131 translates any URL beginning with a given prefix to a file system
directory and optionally enables directives in an additional named object.

■ “redirect” on page 133 redirects the client to a different URL.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

■ “strip-params” on page 134 removes embedded semicolon-delimited parameters from the
path.

■ “unix-home” on page 135 translates a URL to a specified directory within a user’s home
directory.

assign-name
Applicable in NameTrans-class directives.

NameTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •126

The assign-name function specifies the name of an object in obj.conf that matches the current
request. The server then processes the directives in the named object in preference to the ones
in the default object.

For example, consider the following directive in the default object:

NameTrans fn=assign-name name=personnel from=/personnel

Let’s suppose the server receives a request for http://server-name/personnel. After
processing this NameTrans directive, the server looks for an object named personnel in
obj.conf, and continues by processing the directives in the personnel object.

The assign-name function always returns REQ_NOACTION.

Parameters
The following table describes parameters for the assign-name function.

TABLE 4–9 assign-name Parameters

Parameter Description

from Wildcard pattern that specifies the path to be affected.

name Specifies an additional named object in obj.conf whose directives will be
applied to this request.

find-pathinfo-forward (Optional) Makes the server look for the PATHINFO forward in the path right
after the ntrans-base instead of backward from the end of path as the
server function assign-name does by default.

The value you assign to this parameter is ignored. If you do not wish to use
this parameter, leave it out.

The find-pathinfo-forward parameter is ignored if the ntrans-base
parameter is not set in rq->vars. By default, ntrans-base is set.

This feature can improve performance for certain URLs by reducing the
number of stats performed.

NameTrans

Chapter 4 • Predefined SAFs in obj.conf 127

TABLE 4–9 assign-name Parameters (Continued)
Parameter Description

nostat (Optional) Prevents the server from performing a stat on a specified URL
whenever possible.

The effect of nostat="virtual-path" in the NameTrans function
assign-name is that the server assumes that a stat on the specified
virtual-path will fail. Therefore, use nostat only when the path of the
virtual-path does not exist on the system, for example, for NSAPI plug-in
URLs, to improve performance by avoiding unnecessary stats on those
URLs.

When the default PathCheck server functions are used, the server does not
stat for the paths /ntrans-base/virtual-path and /ntrans-base/virtual-path/*
if ntrans-base is set (the default condition); it does not stat for the URLs
/virtual-path and /virtual-path/* if ntrans-base is not set.

bucket (Optional) Common to all obj.conf functions.

Example
This NameTrans directive is in the default object.

NameTrans fn=assign-name name=personnel from=/a/b/c/pers

...

<Object name=personnel>

...additional directives..

</Object>

NameTrans fn="assign-name" from="/perf" find-pathinfo-forward=""

name="perf"

NameTrans fn="assign-name" from="/nsfc" nostat="/nsfc"

name="nsfc"

document-root
Applicable in NameTrans-class directives.

The document-root function specifies the root document directory for the server. If the
physical path has not been set by a previous NameTrans function, the http://server-name/ part
of the path is replaced by the physical path name for the document root.

When the server receives a request for http://server-name/somepath/somefile, the
document-root function replaces http://server-name/ with the value of its root parameter.
For example, if the document root directory is /usr/sun/webserver61/server1/docs, then
when the server receives a request for http://server-name/a/b/file.html, the
document-root function translates the path name for the requested resource to
/usr/sun/webserver61/server1/docs/a/b/file.html.

NameTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •128

This function always returns REQ_PROCEED. NameTrans directives listed after this will never be
called, so be sure that the directive that invokes document-root is the last NameTrans directive.

There can be only one root document directory. To specify additional document directories,
use the “pfx2dir” on page 131 function to set up additional path name translations.

Parameters
The following table describes parameters for the document-root function.

TABLE 4–10 document-root Parameters

Parameter Description

root File system path to the server’s root document directory.

bucket (Optional) Common to all obj.conf functions.

Examples
NameTrans fn=document-root root=/usr/sun/webserver61/server1/docs

NameTrans fn=document-root root=$docroot

See Also
“pfx2dir” on page 131

home-page
Applicable in NameTrans-class directives.

The home-page function specifies the home page for your server. Whenever a client requests the
server’s home page (/), they’ll get the document specified.

Parameters
The following table describes parameters for the home-page function.

NameTrans

Chapter 4 • Predefined SAFs in obj.conf 129

TABLE 4–11 home-page Parameters

Parameter Description

path Path and name of the home page file. If path starts with a slash (/), it is
assumed to be a full path to a file.

This function sets the server’s path variable and returns REQ_PROCEED. If
path is a relative path, it is appended to the URI and the function returns
REQ_NOACTION continuing on to the other NameTrans directives.

bucket (Optional) Common to all obj.conf functions.

Examples
NameTrans fn="home-page" path="/path/to/file.html"

NameTrans fn="home-page" path="/path/to/$id/file.html"

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

ntrans-dav
Applicable in NameTrans-class directives.

The ntrans-dav function determines whether a request should be handled by the WebDAV
subsystem and if so, adds a dav object to the pipeline.

Parameters
The following table describes parameters for the ntrans-dav function.

TABLE 4–12 ntrans-dav Parameters

Parameter Description

name Specifies an additional named object in obj.conf whose directives will be
applied to this request.

bucket (Optional) Common to all obj.conf functions.

NameTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •130

Example
NameTrans fn="ntrans-dav" name="dav"

See Also
“service-dav” on page 187

ntrans-j2ee
Applicable in NameTrans-class directives.

The ntrans-j2ee function determines whether a request maps to a Java web application
context.

Parameters
The following table describes parameters for the ntrans-j2ee function.

TABLE 4–13 ntrans-j2ee Parameters

Parameter Description

name Named object in obj.conf whose directives are applied to requests made to
Java web applications.

bucket (Optional) Common to all obj.conf functions.

Example
NameTrans fn="ntrans-j2ee" name="j2ee"

See Also
“service-j2ee” on page 189, “error-j2ee” on page 199

pfx2dir
Applicable in NameTrans-class directives.

The pfx2dir function replaces a directory prefix in the requested URL with a real directory
name. It also optionally allows you to specify the name of an object that matches the current
request. (See the discussion of “assign-name” on page 126 for details of using named objects.)

NameTrans

Chapter 4 • Predefined SAFs in obj.conf 131

Parameters
The following table describes parameters for the pfx2dir function.

TABLE 4–14 pfx2dir Parameters

Parameter Description

from URI prefix to convert. It should not have a trailing slash (/).

dir Local file system directory path that the prefix is converted to. It should not
have a trailing slash (/).

name (Optional) Specifies an additional named object in obj.conf whose
directives will be applied to this request.

find-pathinfo-forward (Optional) Makes the server look for the PATHINFO forward in the path right
after the ntrans-base instead of backward from the end of path as the
server function find-pathinfo does by default.

The value you assign to this parameter is ignored. If you do not wish to use
this parameter, leave it out.

The find-pathinfo-forward parameter is ignored if the ntrans-base
parameter is not set in rq->vars when the server function find-pathinfo

is called. By default, ntrans-base is set.

This feature can improve performance for certain URLs by reducing the
number of stats performed in the server function find-pathinfo.

On Windows, this feature can also be used to prevent the PATHINFO from
the server URL normalization process (changing '\' to '/') when the
PathCheck server function find-pathinfo is used. Some double-byte
characters have hexadecimal values that may be parsed as URL separator
characters such as \ or ~. Using the find-pathinfo-forward parameter can
sometimes prevent incorrect parsing of URLs containing double-byte
characters.

bucket (Optional) Common to all obj.conf functions.

Examples
In the first example, the URL http://server-name/cgi-bin/resource (such as
http://x.y.z/cgi-bin/test.cgi) is translated to the physical path name
/httpd/cgi-local/resource (such as /httpd/cgi-local/test.cgi), and the server also starts
processing the directives in the object named cgi.

NameTrans fn=pfx2dir from=/cgi-bin dir=/httpd/cgi-local name=cgi

NameTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •132

In the second example, the URL http://server-name/icons/resource (such as
http://x.y.z/icons/happy/smiley.gif) is translated to the physical path name
/users/nikki/images/resource (such as /users/nikki/images/smiley.gif).

NameTrans fn=pfx2dir from=/icons/happy dir=/users/nikki/images

The third example shows the use of the find-pathinfo-forward parameter. The URL
http://server-name/cgi-bin/resource is translated to the physical path name
/export/home/cgi-bin/resource.

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"

dir="/export/home/cgi-bin" name="cgi"

redirect
Applicable in NameTrans-class directives.

The redirect function lets you change URLs and send the updated URL to the client. When a
client accesses your server with an old path, the server treats the request as a request for the new
URL.

Parameters
The following table describes parameters for the redirect function.

TABLE 4–15 redirect Parameters

Parameter Description

from Specifies the prefix of the requested URI to match.

url (Maybe optional) Specifies a complete URL to return to the client. If you use
this parameter, don’t use url-prefix (and vice versa).

url-prefix (Maybe optional) The new URL prefix to return to the client. The from
prefix is simply replaced by this URL prefix. If you use this parameter, don’t
use url (and vice versa).

escape (Optional) Flag that tells the server to util_uri_escape the URL before
sending it. It should be yes or no. The default is yes.

For more information about util_uri_escape, see the Sun Java System
Web Server 6.1 SP7 NSAPI Programmer’s Guide.

bucket (Optional) Common to all obj.conf functions.

NameTrans

Chapter 4 • Predefined SAFs in obj.conf 133

Examples
In the first example, any request for http://server-name/whatever is translated to a request for
http://tmpserver/whatever.

NameTrans fn=redirect from=/ url-prefix=http://tmpserver

In the second example, any request for http://server-name/toopopular/whatever is
translated to a request for http://bigger/better/stronger/morepopular/whatever.

NameTrans fn=redirect from=/toopopular url=http://bigger/better/stronger/morepopular

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request, and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

strip-params
Applicable in NameTrans-class directives.

The strip-params function removes embedded semicolon-delimited parameters from the
path. For example, a URI of /dir1;param1/dir2 would become a path of /dir1/dir2. When
used, the strip-params function should be the first NameTrans directive listed.

Parameters
The following table describes parameters for the strip-params function.

TABLE 4–16 strip-params Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

Example
NameTrans fn=strip-params

NameTrans

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •134

unix-home
Applicable in NameTrans-class directives.

UNIX Only. The unix-home function translates user names (typically of the form ~username)
into the user’s home directory on the server’s UNIX machine. You specify a URL prefix that
signals user directories. Any request that begins with the prefix is translated to the user’s home
directory.

You specify the list of users with either the /etc/passwd file or a file with a similar structure.
Each line in the file should have this structure (elements in the passwd file that are not needed
are indicated with *):

username:*:*:groupid:*:homedir:*

If you want the server to scan the password file only once at startup, use the Init-class function
init-uhome in magnus.conf.

Parameters
The following table describes parameters for the unix-home function.

TABLE 4–17 unix-home Parameters

Parameter Description

subdir Subdirectory within the user’s home directory that contains their web
documents.

pwfile (Optional) Full path and file name of the password file if it is different from
/etc/passwd.

name (Optional) Specifies an additional named object whose directives will be
applied to this request.

bucket (Optional) Common to all obj.conf functions.

Examples
NameTrans fn=unix-home from=/~ subdir=public_html

NameTrans fn=unix-home from /~ pwfile=/mydir/passwd subdir=public_html

See Also
“find-links” on page 140

NameTrans

Chapter 4 • Predefined SAFs in obj.conf 135

PathCheck
PathCheck directives check the local file system path that is returned after the NameTrans step.
The path is checked for things such as CGI path information and for dangerous elements such
as /./and /../ and //, and then any access restriction is applied.

If there is more than one PathCheck directive, each of the functions is executed in order.

The following PathCheck-class functions are described in detail in this section:
■ “check-acl” on page 136 checks an access control list for authorization.
■ “deny-existence” on page 139 indicates that a resource was not found.
■ “find-index” on page 139 locates a default file when a directory is requested.
■ “find-links” on page 140 denies access to directories with certain file system links.
■ “find-pathinfo” on page 141 locates extra path info beyond the file name for the PATH_INFO

CGI environment variable.
■ “get-client-cert” on page 142 gets the authenticated client certificate from the SSL3 session.
■ “load-config” on page 143 finds and loads extra configuration information from a file in the

requested path.
■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by

the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “nt-uri-clean” on page 145 denies access to requests with unsafe path names by indicating not
found.

■ “ntcgicheck” on page 146 looks for a CGI file with a specified extension.
■ “pcheck-dav” on page 147 inserts a DAV-specific service function.
■ “require-auth” on page 147 denies access to unauthorized users or groups.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

■ “set-virtual-index” on page 148 specifies a virtual index for a directory.
■ “ssl-check” on page 149 checks the secret keysize.
■ “ssl-logout” on page 150 invalidates the current SSL session in the server's SSL session cache.
■ “unix-uri-clean” on page 150 denies access to requests with unsafe path names by indicating

not found.

check-acl
Applicable in PathCheck-class directives.

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •136

The check-acl function specifies an access control list (ACL) to use to check whether the client
is allowed to access the requested resource. An access control list contains information about
who is or is not allowed to access a resource, and under what conditions access is allowed.

Regardless of the order of PathCheck directives in the object, check-acl functions are executed
first. They cause user authentication to be performed, if required by the specified ACL, and will
also update the access control state.

Parameters
The following table describes parameters for the check-acl function.

TABLE 4–18 check-acl Parameters

Parameter Description

acl Name of an access control list.

path (Optional) Wildcard pattern that specifies the path for which to apply the
ACL.

bucket (Optional) Common to all obj.conf functions.

Example
PathCheck fn=check-acl acl="*HRonly*"

find-compressed
Applicable in PathCheck-class directives.

The find-compressed function checks if a compressed version of the requested file is available.
If the following conditions are met, find-compressed changes the path to point to the
compressed file:
■ A compressed version is available.
■ The compressed version is at least as recent as the noncompressed version.
■ The client supports compression.

Not all clients support compression. The find-compressed function allows you to use a
single URL for both the compressed and noncompressed versions of a file. The version of
the file that is selected is based on the individual clients' capabilities.
A compressed version of a file must have the same file name as the noncompressed version
but with a .gz suffix. For example, the compressed version of a file named
/httpd/docs/index.html would be named /httpd/docs/index.html.gz. To compress
files, you can use the freely available gzip program.

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 137

Because compressed files are sent as is to the client, you should not compress files such as
SHTML pages, CGI programs, or pages created with JavaServer PagesTM (JSPTM) technology
that need to be interpreted by the server. To compress the dynamic content generated by
these types of files, use the http-compression filter.

The find-compressed function does nothing if the HTTP method is not GET or HEAD.

Parameters
The following table describes parameters for the find-compressed function.

TABLE 4–19 find-compressed Parameters

Parameter Description

check-age Specifies whether to check if the compressed version is older than the
noncompressed version. Possible values are yes and no.
■ If set to yes, the compressed version will not be selected if it is older

than the noncompressed version.

■ If set to no, the compressed version will always be selected, even if it is
older than the noncompressed version.
By default, the value is set to yes.

vary Specifies whether to insert a Vary: Accept-Encoding header. Possible
values are yes or no.
■ If set to yes, a Vary: Accept-Encoding header is always inserted when

a compressed version of a file is selected.

■ If set to no, a Vary: Accept-Encoding header is never inserted.
By default, the value is set to yes.

bucket (Optional) Common to all obj.conf functions.

Example
<Object name="default">

NameTrans fn="assign-name" from="*.html" name="find-compressed"

...

</Object>

<Object name="find-compressed">

PathCheck fn="find-compressed"

</Object>

See Also
http-compression

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •138

deny-existence
Applicable in PathCheck-class directives.

The deny-existence function sends a “not found” message when a client tries to access a
specified path. The server sends “not found” instead of “forbidden,” so the user cannot tell if the
path exists.

Parameters
The following table describes parameters for the deny-existence function.

TABLE 4–20 deny-existence Parameters

Parameter Description

path (Optional) Wildcard pattern of the file system path to hide. If the path does
not match, the function does nothing and returns REQ_NOACTION. If the path
is not provided, it is assumed to match.

bong-file (Optional) Specifies a file to send rather than responding with the “not
found” message. It is a full file system path.

bucket (Optional) Common to all obj.conf functions.

Examples
PathCheck fn=deny-existence path=/usr/sun/server61/docs/private

PathCheck fn=deny-existence bong-file=/svr/msg/go-away.html

find-index
Applicable in PathCheck-class directives.

The find-index function investigates whether the requested path is a directory. If it is, the
function searches for an index file in the directory, and then changes the path to point to the
index file. If no index file is found, the server generates a directory listing.

Note that if the file obj.conf has a NameTrans directive that calls “home-page” on page 129, and
the requested directory is the root directory, then the home page rather than the index page is
returned to the client.

The find-index function does nothing if there is a query string, if the HTTP method is not GET,
or if the path is that of a valid file.

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 139

Parameters
The following table describes parameters for the find-index function.

TABLE 4–21 find-index Parameters

Parameter Description

index-names Comma-separated list of index file names to look for. Use spaces only if they
are part of a file name. Do not include spaces before or after the commas.
This list is case-sensitive if the file system is case-sensitive.

bucket (Optional) Common to all obj.conf functions.

Example
PathCheck fn=find-index index-names=index.html,home.html

find-links
Applicable in PathCheck-class directives.

UNIX Only. The find-links function searches the current path for symbolic or hard links to
other directories or file systems. If any are found, an error is returned. This function is normally
used for directories that are not trusted (such as user home directories). It prevents someone
from pointing to information that should not be made public.

Parameters
The following table describes parameters for the find-links function.

TABLE 4–22 find-links Parameters

Parameter Description

disable Character string of links to disable:
■ h is hard links

■ s is soft links

■ o allows symbolic links from user home directories only if the user owns
the target of the link

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •140

TABLE 4–22 find-links Parameters (Continued)
Parameter Description

dir Directory to begin checking. If you specify an absolute path, any request to
that path and its subdirectories is checked for symbolic links. If you specify a
partial path, any request containing that partial path is checked for symbolic
links. For example, if you use /user/ and a request comes in for
some/user/directory, then that directory is checked for symbolic links.

checkFileExistence Checks linked file for existence and aborts request with 403 (forbidden) if
this check fails.

bucket (Optional) Common to all obj.conf functions.

Examples
PathCheck fn=find-links disable=sh dir=/foreign-dir

PathCheck fn=find-links disable=so dir=public_html

See Also
“unix-home” on page 135

find-pathinfo
Applicable in PathCheck-class directives.

The find-pathinfo function finds any extra path information after the file name in the URL
and stores it for use in the CGI environment variable PATH_INFO.

Parameters
The following table describes parameters for the find-pathinfo function.

TABLE 4–23 find-pathinfo Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

Examples
PathCheck fn=find-pathinfo

PathCheck fn=find-pathinfo find-pathinfo-forward=""

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 141

get-client-cert
Applicable in PathCheck-class directives.

The get-client-cert function gets the authenticated client certificate from the SSL3 session. It
can apply to all HTTP methods, or only to those that match a specified pattern. It only works
when SSL is enabled on the server.

If the certificate is present or obtained from the SSL3 session, the function returns
REQ_NOACTION, allowing the request to proceed; otherwise, it returns REQ_ABORTED and sets the
protocol status to 403 FORBIDDEN, causing the request to fail and the client to be given the
FORBIDDEN status.

Parameters
The following table describes parameters for the get-client-cert function.

TABLE 4–24 get-client-cert Parameters

Parameter Description

dorequest Controls whether to actually try to get the certificate, or just test for its
presence. If dorequest is absent, the default value is 0.
■ 1 tells the function to redo the SSL3 handshake to get a client certificate,

if the server does not already have the client certificate. This typically
causes the client to present a dialog box to the user to select a client
certificate. The server may already have the client certificate if it was
requested on the initial handshake, or if a cached SSL session has been
resumed.

■ 0 tells the function not to redo the SSL3 handshake if the server does not
already have the client certificate.
If a certificate is obtained from the client and verified successfully by the
server, the ASCII base64 encoding of the DER-encoded X.509
certificate is placed in the parameter auth-cert in the Request->vars
pblock, and the function returns REQ_PROCEED, allowing the request to
proceed.

require Controls whether failure to get a client certificate will abort the HTTP
request. If require is absent, the default value is 1.
■ 1 tells the function to abort the HTTP request if the client certificate is

not present after dorequest is handled. In this case, the HTTP status is
set to PROTOCOL_FORBIDDEN, and the function returns REQ_ABORTED.

■ 0 tells the function to return REQ_NOACTION if the client certificate is not
present after dorequest is handled.

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •142

TABLE 4–24 get-client-cert Parameters (Continued)
Parameter Description

method (Optional) Specifies a wildcard pattern for the HTTP methods for which the
function will be applied. If method is absent, the function is applied to all
requests.

bucket (Optional) Common to all obj.conf functions.

Example
Get the client certificate from the session.

If a certificate is not already associated with the

session, request one.

The request fails if the client does not present a

valid certificate.PathCheck fn="get-client-cert" dorequest="1"

load-config
Applicable in PathCheck-class directives.

The load-config function searches for configuration files in document directories and adds
the file’s contents to the server’s existing configuration. These configuration files (also known as
dynamic configuration files) specify additional access control information for the requested
resource. Depending on the rules in the dynamic configuration files, the server may or may not
allow the client to access the requested resource.

Each directive that invokes load-config is associated with a base directory, which is either
stated explicitly through the basedir parameter or derived from the root directory for the
requested resource. The base directory determines two things:
■ The topmost directory for which requests will invoke this call to the load-config function.

For example, if the base directory is D:/sun/server61/docs/nikki/, then only requests for
resources in this directory or its subdirectories (and their subdirectories) trigger the search
for dynamic configuration files. A request for the resource
D:/sun/server61/docs/somefile.html does not trigger the search in this case, since the
requested resource is in a parent directory of the base directory.

■ The topmost directory in which the server looks for dynamic configuration files to apply to
the requested resource.
If the base directory is D:/sun/server61/docs/nikki/, the server starts its search for
dynamic configuration files in this directory. It may or may not also search subdirectories
(but never parent directories), depending on other factors.
When you enable dynamic configuration files through the Server Manager interface, the
system writes additional objects with ppath parameters into the obj.conf file. If you
manually add directives that invoke load-config to the default object (rather than putting
them in separate objects), the Server Manager interface might not reflect your changes.

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 143

If you manually add PathCheck directives that invoke load-config to the file obj.conf, put
them in additional objects (created with the <OBJECT> tag) rather than putting them in the
default object. Use the ppath attribute of the OBJECT tag to specify the partial path name for
the resources to be affected by the access rules in the dynamic configuration file. The partial
path name can be any path name that matches a pattern, which can include wildcard
characters.

For example, the following <OBJECT> tag specifies that requests for resources in the directory
D:/sun/server61/docs are subject to the access rules in the file my.nsconfig.

<Object ppath="D:/sun/server61/docs/*">

PathCheck fn="load-config" file="my.nsconfig" descend=1

basedir="D:/sun/server61/docs"

</Object>

Note – If the ppath resolves to a resource or directory that is higher in the directory tree (or is in a
different branch of the tree) than the base directory, the load-config function is not invoked.
This is because the base directory specifies the highest-level directory for which requests will
invoke the load-config function.

The load-config function returns REQ_PROCEED if configuration files were loaded,
REQ_ABORTED on error, or REQ_NOACTION when no files are loaded.

Parameters
The following table describes parameters for the load-config function.

TABLE 4–25 load-config Parameters

Parameter Description

file (Optional) Name of the dynamic configuration file containing the access
rules to be applied to the requested resource. If not provided, the file name is
assumed to be .nsconfig.

disable-types (Optional) Specifies a wildcard pattern of types to disable for the base
directory, such as magnus-internal/cgi. Requests for resources matching
these types are aborted.

descend (Optional) If present, specifies that the server should search in
subdirectories of this directory for dynamic configuration files. For
example, descend=1 specifies that the server should search subdirectories.
No descend parameter specifies that the function should search only the
base directory.

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •144

TABLE 4–25 load-config Parameters (Continued)
Parameter Description

basedir (Optional) Specifies base directory. This is the highest-level directory for
which requests will invoke the load-config function, and is also the
directory where the server starts searching for configuration files.

If basedir is not specified, the base directory is assumed to be the root
directory that results from translating the requested resource’s URL to a
physical path name. For example, if the request is for
http://server-name/a/b/file.html, the physical file name would be
/document-root/a/b/file.html.

bucket (Optional) Common to all obj.conf functions.

Examples
In this example, whenever the server receives a request for any resource containing the
substring secret that resides in D:/Sun/WebServer61/server1/docs/nikki/ or a
subdirectory thereof, it searches for a configuration file called checkaccess.nsconfig.

The server starts the search in the directory D:/Sun/WebServer61/server1/docs/nikki, and
searches subdirectories too. It loads each instance of checkaccess.nsconfig that it finds,
applying the access control rules contained therein to determine whether the client is allowed to
access the requested resource.

<Object ppath="*secret*">

PathCheck fn="load-config" file="checkaccess.nsconfig"

basedir="D:/Sun/WebServer61/server1/docs/nikki" descend="1"

</Object>

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

nt-uri-clean
Applicable in PathCheck-class directives.

Windows Only. The nt-uri-clean function denies access to any resource whose physical path
contains \.\, \..\ or \ (these are potential security problems).

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 145

Parameters
The following table describes parameters for the nt-uri-clean function.

TABLE 4–26 nt-uri-clean Parameters

Parameter Description

tildeok If present, allows tilde (~) characters in URIs. This is a potential security risk
on the Windows platform, where longfi~1.htm might reference
longfilename.htm but does not go through the proper ACL checking. If
present, “//” sequences are allowed.

dotdirok If present, “//” sequences are allowed.

bucket (Optional) Common to all obj.conf functions.

Example
PathCheck fn=nt-uri-clean

See Also
“unix-uri-clean” on page 150

ntcgicheck
Applicable in PathCheck-class directives.

Windows Only. The ntcgicheck function specifies the file name extension to be added to any
file name that does not have an extension, or to be substituted for any file name that has the
extension .cgi.

Parameters
The following table describes parameters for the ntcgicheck function.

TABLE 4–27 ntcgicheck Parameters

Parameter Description

extension The replacement file extension.

bucket (Optional) Common to all obj.conf functions.

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •146

Example
PathCheck fn=ntcgicheck extension=pl

See Also
“send-cgi” on page 180, “send-wincgi” on page 186, “send-shellcgi” on page 185

pcheck-dav
Applicable in PathCheck-class directives.

The pcheck-dav function inserts a DAV-specific service function as the first service function if
the Translate:f header is present, DAV is enabled for the request uri, and a corresponding
source uri for the request uri exists. During the Service stage, this inserted service function
restarts the request if necessary; otherwise, REQ_NOACTION is returned.

Parameters
The following table describes parameters for the pcheck-dav function.

TABLE 4–28 pcheck-dav Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

See Also
“ntrans-dav” on page 130, “service-dav” on page 187

require-auth
Applicable in PathCheck-class directives.

The require-auth function allows access to resources only if the user or group is authorized.
Before this function is called, an authorization function (such as basic-auth) must be called in
an AuthTrans directive.

If a user was authorized in an AuthTrans directive, and the auth-user parameter is provided,
then the user’s name must match the auth-user wildcard value. Also, if the auth-group
parameter is provided, the authorized user must belong to an authorized group, which must
match the auth-user wildcard value.

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 147

Parameters
The following table describes parameters for the require-auth function.

TABLE 4–29 require-auth Parameters

Parameter Description

path (Optional) Wildcard local file system path on which this function should
operate. If no path is provided, the function applies to all paths.

auth-type Type of HTTP authorization used, and must match the auth-type from the
previous authorization function in AuthTrans. Currently, basic is the only
authorization type defined.

realm String sent to the browser indicating the secure area (or realm) for which a
user name and password are requested.

auth-user (Optional) Specifies a wildcard list of users who are allowed access. If this
parameter is not provided, any user authorized by the authorization
function is allowed access.

auth-group (Optional) Specifies a wildcard list of groups that are allowed access.

bucket (Optional) Common to all obj.conf functions.

Example
PathCheck fn=require-auth auth-type=basic realm="Marketing Plans"

auth-group=mktg auth-user=(jdoe|johnd|janed)

See Also
“basic-auth” on page 117, “basic-ncsa” on page 118

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request, and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

set-virtual-index
Applicable in PathCheck-class directives.

The set-virtual-index function specifies a virtual index for a directory, which determines the
URL forwarding. The index can refer to a LiveWire application, a servlet in its own namespace,
a SunTM Java System Application Server applogic, and so on.

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •148

REQ_NOACTION is returned if none of the URIs listed in the from parameter match the current
URI. REQ_ABORTED is returned if the file specified by the virtual-index parameter is missing,
or if the current URI cannot be found. REQ_RESTART is returned if the current URI matches any
one of the URIs mentioned in the from parameter, or if there is no from parameter.

Parameters
The following table describes parameters for the set-virtual-index function.

TABLE 4–30 set-virtual-index Parameters

Parameter Description

virtual-index URI of the content generator that acts as an index for the URI the user
enters.

from (Optional) Comma-separated list of URIs for which this virtual-index is
applicable. If from is not specified, the virtual-index always applies.

bucket (Optional) Common to all obj.conf functions.

Example
MyLWApp is a LiveWire applicationPathCheck fn=set-virtual-index virtual-index=MyLWApp

ssl-check
Applicable in PathCheck-class directives.

If a restriction is selected that is not consistent with the current cipher settings under Security
Preferences, this function opens a popup dialog warning that ciphers with larger secret keysizes
need to be enabled. This function is designed to be used together with a Client tag to limit
access of certain directories to nonexportable browsers.

The function returns REQ_NOACTION if SSL is not enabled, or if the secret-keysize parameter
is not specified. If the secret keysize for the current session is less than the specified
secret-keysize and the bong-file parameter is not specified, the function returns
REQ_ABORTED with a status of PROTOCOL_FORBIDDEN. If the bong file is specified, the function
returns REQ_PROCEED, and the path variable is set to the bong file name. Also, when a keysize
restriction is not met, the SSL session cache entry for the current session is invalidated, so that a
full SSL handshake will occur the next time the same client connects to the server.

Requests that use ssl-check are not cacheable in the accelerator file cache if ssl-check returns
something other than REQ_NOACTION.

PathCheck

Chapter 4 • Predefined SAFs in obj.conf 149

Parameters
The following table describes parameters for the ssl-check function.

TABLE 4–31 ssl-check Parameters

Parameter Description

secret-keysize (Optional) Minimum number of bits required in the secret key.

bong-file (Optional) Name of a file (not a URI) to be served if the restriction is not
met.

bucket (Optional) Common to all obj.conf functions.

ssl-logout
Applicable in PathCheck-class directives.

The ssl-logout function invalidates the current SSL session in the server's SSL session cache.
This does not affect the current request, but the next time the client connects, a new SSL session
will be created. If SSL is enabled, this function returns REQ_PROCEED after invalidating the
session cache entry. If SSL is not enabled, it returns REQ_NOACTION.

Parameters
The following table describes parameters for the ssl-logout function.

TABLE 4–32 ssl-logout Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

unix-uri-clean
Applicable in PathCheck-class directives.

UNIX Only. The unix-uri-clean function denies access to any resource whose physical path
contains /./, /../ or // (these are potential security problems).

Parameters
The following table describes parameters for the unix-uri-clean function.

PathCheck

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •150

TABLE 4–33 unix-uri-clean Parameters

Parameter Description

dotdirok If present, “//” sequences are allowed.

bucket (Optional) Common to all obj.conf functions.

Example
PathCheck fn=unix-uri-clean

See Also
“nt-uri-clean” on page 145

ObjectType
ObjectType directives determine the MIME type of the file to send to the client in response to a
request. MIME attributes currently sent are type, encoding, and language. The MIME type is
sent to the client as the value of the Content-Type header.

ObjectType directives also set the type parameter, which is used by Service directives to
determine how to process the request according to what kind of content is being requested.

If there is more than one ObjectType directive in an object, all of the directives are applied in
the order they appear. If a directive sets an attribute and later directives try to set that attribute
to something else, the first setting is used and the subsequent ones are ignored.

The obj.conf file almost always has an ObjectType directive that calls the “type-by-extension”
on page 156 function. This function instructs the server to look in a particular file (the MIME
types file) to deduce the content type from the extension of the requested resource.

The following ObjectType-class functions are described in detail in this section:

■ “force-type” on page 152 sets the Content-Type header for the response to a specific type.
■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by

the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “set-default-type” on page 153 allows you to define a default charset, content-encoding,
and content-language for the response being sent back to the client.

ObjectType

Chapter 4 • Predefined SAFs in obj.conf 151

■ “set-variable” on page 122 enables you to change server settings based upon conditional
information in a request, and to manipulate variables in parameter blocks by using specific
commands.

■ “shtml-hacktype” on page 154 requests that .htm and .html files are parsed for server-parsed
HTML commands.

■ “type-by-exp” on page 155 sets the Content-Type header for the response based on the
requested path.

■ “type-by-extension” on page 156 sets the Content-Type header for the response based on the
file’s extension and the MIME types database.

force-type
Applicable in ObjectType-class directives.

The force-type function assigns a type to requests that do not already have a MIME type. This
is used to specify a default object type.

Make sure that the directive that calls this function comes last in the list of ObjectType
directives, so that all other ObjectType directives have a chance to set the MIME type first. If
there is more than one ObjectType directive in an object, all of the directives are applied in the
order they appear. If a directive sets an attribute and later directives try to set that attribute to
something else, the first setting is used and the subsequent ones are ignored.

Parameters
The following table describes parameters for the force-type function.

TABLE 4–34 force-type Parameters

Parameter Description

type (Optional) Type assigned to a matching request (the Content-Type
header).

enc (Optional) Encoding assigned to a matching request (the
Content-Encoding header).

lang (Optional) Language assigned to a matching request (the
Content-Language header).

ObjectType

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •152

TABLE 4–34 force-type Parameters (Continued)
Parameter Description

charset (Optional) Character set for the magnus-charset parameter in
rq->srvhdrs. If the browser sent the Accept-Charset header or its
User-Agent is MozillaTM/1.1 or newer, then append “; charset=charset” to
content-type, where charset is the value of the magnus-charset parameter
in rq->srvhdrs.

bucket (Optional) Common to all obj.conf functions.

Example
ObjectType fn=force-type type=text/plain

ObjectType fn=force-type lang=en_US

See Also
“type-by-extension” on page 156, “type-by-exp” on page 155

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

set-default-type
Applicable in ObjectType-class directives.

The set-default-type function allows you to define a default charset, content-encoding,
and content-language for the response being sent back to the client.

If the charset, content-encoding, and content-language have not been set for a response,
then just before the headers are sent the defaults defined by set-default-type are used. Note
that by placing this function in different objects in obj.conf, you can define different defaults
for different parts of the document tree.

Parameters
The following table describes parameters for the set-default-type function.

ObjectType

Chapter 4 • Predefined SAFs in obj.conf 153

TABLE 4–35 set-default-type Parameters

Parameter Description

enc (Optional) Encoding assigned to a matching request (the
Content-Encoding header).

lang (Optional) Language assigned to a matching request (the
Content-Language header).

charset (Optional) Character set for the magnus-charset parameter in
rq->srvhdrs. If the browser sent the Accept-Charset header or its
User-agent is Mozilla/1.1 or newer, then append “; charset=charset” to
content-type, where charset is the value of the magnus-charset parameter
in rq->srvhdrs.

bucket (Optional) Common to all obj.conf functions.

Example
ObjectType fn="set-default-type" charset="iso_8859-1"

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request, and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

shtml-hacktype
Applicable in ObjectType-class directives.

The shtml-hacktype function changes the Content-Type of any .htm or .html file to
magnus-internal/parsed-html and returns REQ_PROCEED. This provides backward
compatibility with server-side includes for files with .htm or .html extensions. The function
may also check the execute bit for the file on UNIX systems. The use of this function is not
recommended.

Parameters
The following table describes parameters for the shtml-hacktype function.

ObjectType

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •154

TABLE 4–36 shtml-hacktype Parameters

Parameter Description

exec-hack (UNIX only, optional) Tells the function to change the content-type only
if the execute bit is enabled. The value of the parameter is not important; it
need only be provided. You may use exec-hack=true.

bucket (Optional) Common to all obj.conf functions.

Example
ObjectType fn=shtml-hacktype exec-hack=true

type-by-exp
Applicable in ObjectType-class directives.

The type-by-exp function matches the current path with a wildcard expression. If the two
match, the type parameter information is applied to the file. This is the same as
“type-by-extension” on page 156, except you use wildcard patterns for the files or directories
specified in the URLs.

Parameters
The following table describes parameters for the type-by-exp function.

TABLE 4–37 type-by-exp Parameters

Parameter Description

exp Wildcard pattern of paths for which this function is applied.

type (Optional) Type assigned to a matching request (the Content-Type
header).

enc (Optional) Encoding assigned to a matching request (the
Content-Encoding header).

lang (Optional) Language assigned to a matching request (the
Content-Language header).

ObjectType

Chapter 4 • Predefined SAFs in obj.conf 155

TABLE 4–37 type-by-exp Parameters (Continued)
Parameter Description

charset (Optional) is the character set for the magnus-charset parameter in
rq->srvhdrs. If the browser sent the Accept-Charset header or its
User-Agent is Mozilla/1.1 or newer, then append “; charset=charset” to
content-type, where charset is the value of the magnus-charset parameter
in rq->srvhdrs.

bucket (Optional) Common to all obj.conf functions.

Example
ObjectType fn=type-by-exp exp=*.test type=application/html

See Also
“type-by-extension” on page 156, “force-type” on page 152

type-by-extension
Applicable in ObjectType-class directives.

The type-by-extension function instructs the server to look in a table of MIME type
mappings to find the MIME type of the requested resource according to the extension of the
requested resource. The MIME type is added to the Content-Type header sent back to the
client.

The table of MIME type mappings is created by a MIME element in the server.xml file, which
loads a MIME types file or list and creates the mappings. For more information about
server.xml and MIME types files, see the Sun Java System Web Server 6.1 SP7 Administrator’s
Configuration File Reference.

For example, the following two lines are part of a MIME types file:

type=text/html exts=htm,htmltype=text/plain exts=txt

If the extension of the requested resource is htm or html, the type-by-extension file sets the
type to text/html. If the extension is .txt, the function sets the type to text/plain.

ObjectType

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •156

Parameters
The following table describes parameters for the type-by-extension function.

TABLE 4–38 type-by-extension Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

Example
ObjectType fn=type-by-extension

See Also
“type-by-exp” on page 155, “force-type” on page 152

Input
All Input directives are executed when the server or a plug-in first attempts to read entity body
data from the client.

The Input stage allows you to select filters that will process incoming request data read by the
Service step.

NSAPI filters in Sun Java System Web Server 6.1 enable a function to intercept (and potentially
modify) the content presented to or generated by another function.

You can add NSAPI filters that process incoming data by invoking the insert-filter SAF in
the Input stage of the request-handling process. The Input directives are executed at most once
per request.

You can also define the appropriate position of a specific filter within the filter stack. For
example, filters that translate content from XML to HTML are placed higher in the filter stack
than filters that compress data for transmission. You can use the filter_create function to
define the filter's position in the filter stack, and the init-filter-order to override the defined
position.

When two or more filters are defined to occupy the same position in the filter stack, filters that
were inserted later will appear higher than filters that were inserted earlier. That is, the order of
Input fn="insert-filter" and Output fn="insert-filter" directives in obj.conf

becomes important.

The following Input-class functions are described in detail in this section:

Input

Chapter 4 • Predefined SAFs in obj.conf 157

■ “insert-filter” on page 158 adds a filter to the filter stack to process incoming data.
■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by

the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “remove-filter” on page 159 removes a filter from the filter stack.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

insert-filter
Applicable in Input-class directives.

The insert-filter SAF is used to add a filter to the filter stack to process incoming
(client-to-server) data.

The order of Input fn="insert-filter" and Output fn="insert-filter" directives are
important.

Returns
Returns REQ_PROCEED if the specified filter was inserted successfully or REQ_NOACTION if the
specified filter was not inserted because it was not required. Any other return value indicates an
error.

Parameters
The following table describes parameters for the insert-filter function.

TABLE 4–39 insert-filter Parameters

Parameter Description

filter Specifies the name of the filter to insert.

bucket (Optional) Common to all obj.conf functions.

Example
Input fn="insert-filter" filter="http-decompression"

Input

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •158

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

remove-filter
Applicable in Input-, Output-, Service-, and Error-class directives.

The remove-filter SAF is used to remove a filter from the filter stack. If the filter has been
inserted multiple times then only the topmost instance is removed. In general, it is not
necessary to remove filters with remove-filter, as they will be removed automatically at the
end of the request.

Returns
Returns REQ_PROCEED if the specified filter was removed successfully, or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
The following table describes parameters for the remove-filter function.

TABLE 4–40 remove-filter Parameters

Parameter Description

filter Specifies the name of the filter to remove.

bucket (Optional) Common to all obj.conf functions.

Example
Input fn="remove-filter" filter="http-compression"

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request, and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

Input

Chapter 4 • Predefined SAFs in obj.conf 159

Output
All Output directives are executed when the server or a plug-in first attempts to write entity
body data from the client.

The Output stage allows you to select filters that will process outgoing data.

You can add NSAPI filters that process outcoming data by invoking the insert-filter SAF in
the Output stage of the request-handling process. The Output directives are executed at most
once per request.

You can define the position of a filter within the filter stack. For example, filters that translate
content from XML to HTML are placed higher in the filter stack than filters that compress data
for transmission. You can use the filter_create function to define the filter's position in the
filter stack and the init-filter-order to override the defined position.

When two or more filters are defined to occupy the same position in the filter stack, filters that
were inserted later will appear higher than filters that were inserted earlier.

The following Output-class functions are described in detail in this section:

■ “insert-filter” on page 160 adds a filter to the filter stack to process outgoing data.
■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by

the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “remove-filter” on page 161 removes a filter from the filter stack.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

insert-filter
Applicable in Output-class directives.

The insert-filter SAF is used to add a filter to the filter stack to process outgoing
(server-to-client) data.

The order of Input fn="insert-filter" and Output fn="insert-filter" directives can be
important.

Returns
Returns REQ_PROCEED if the specified filter was inserted successfully, or REQ_NOACTION if the
specified filter was not inserted because it was not required. Any other return value indicates an
error.

Output

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •160

Parameters
The following table describes parameters for the insert-filter function.

TABLE 4–41 insert-filter Parameters

Parameter Description

filter Specifies the name of the filter to insert.

bucket (Optional) Common to all obj.conf functions.

Example
Output fn="insert-filter" filter="http-compression"

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

remove-filter
Applicable in Input-, Output-, Service-, and Error-class directives.

The remove-filter SAF is used to remove a filter from the filter stack. If the filter has been
inserted multiple times, only the topmost instance is removed. In general, it is not necessary to
remove filters with remove-filter, as they will be removed automatically at the end of the
request.

Returns
Returns REQ_PROCEED if the specified filter was removed successfully or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
The following table describes parameters for the remove-filter function.

Output

Chapter 4 • Predefined SAFs in obj.conf 161

TABLE 4–42 remove-filter Parameters

Parameter Description

filter Specifies the name of the filter to remove.

bucket (Optional) Common to all obj.conf functions.

Example
Output fn="remove-filter" filter="http-compression"

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

Service
The Service-class of functions sends the response data to the client.

Every Service directive has the following optional parameters to determine whether the
function is executed. All optional parameters must match the current request for the function to
be executed.

type

(Optional) Specifies a wildcard pattern of MIME types for which this function will be executed.
The magnus-internal/* MIME types are used only to select a Service function to execute.

method

(Optional) Specifies a wildcard pattern of HTTP methods for which this function will be
executed. Common HTTP methods are GET, HEAD, and POST.

query

(Optional) Specifies a wildcard pattern of query strings for which this function will be executed.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •162

UseOutputStreamSize

(Optional) Determines the default output stream buffer size, in bytes, for data sent to the client.
If this parameter is not specified, the default is 8192 bytes.

Note – The UseOutputStreamSize parameter can be set to zero (0) in the obj.conf file to disable
output stream buffering. For the magnus.conf file, setting UseOutputStreamSize to zero (0) has
no effect.

flushTimer

(Optional) Determines the maximum number of milliseconds between write operations in
which buffering is enabled. If the interval between subsequent write operations is greater than
the flushTimer value for an application, further buffering is disabled. This is necessary for
status-monitoring CGI applications that run continuously and generate periodic status update
reports. If this parameter is not specified, the default is 3000 milliseconds.

ChunkedRequestBufferSize

(Optional) Determines the default buffer size, in bytes, for “un-chunking” request data. If this
parameter is not specified, the default is 8192 bytes.

ChunkedRequestTimeout

(Optional) Determines the default timeout, in seconds, for “un-chunking” request data. If this
parameter is not specified, the default is 60 seconds.

If there is more than one Service-class function, the first one matching the optional wildcard
parameters (type, method, or query) is executed.

For more information about the UseOutputStreamSize, flushTimer,
ChunkedRequestBufferSize, and ChunkedRequestTimeout parameters, see Buffered Streams
in the Sun Java System Web Server 6.1 SP7 NSAPI Programmer’s Guide. The
UseOutputStreamSize, ChunkedRequestBufferSize, and ChunkedRequestTimeout

parameters also have equivalent magnus.conf directives. For more information, see “Chunked
Encoding” in the chapter “Syntax and Use of magnus.conf” in the Sun Java System Web
Server 6.1 SP7 Administrator’s Configuration File Reference. The obj.conf parameters override
the magnus.conf directives.

By default, the server sends the requested file to the client by calling the “send-file” on page 183
function. The directive that sets the default is:

Service

Chapter 4 • Predefined SAFs in obj.conf 163

Service method="(GET|HEAD)" type="*~magnus-internal/*" fn="send-file"

This directive usually comes last in the set of Service-class directives to give all other Service
directives a chance to be invoked. This directive is invoked if the method of the request is GET,
HEAD, or POST, and the type does not start with magnus-internal/. Note here that the pattern *~

means “does not match.” For a list of characters that can be used in patterns, see the Sun Java
System Web Server 6.1 SP7 NSAPI Programmer’s Guide.

The following Service-class functions are described in detail in this section:

■ “add-footer” on page 165 appends a footer specified by a file name or URL to an HTML file.
■ “add-header” on page 166 prepends a header specified by a file name or URL to an HTML file.
■ “append-trailer” on page 167 appends text to the end of an HTML file.
■ “imagemap” on page 169 handles server-side image maps.
■ “index-common” on page 169 generates a fancy list of the files and directories in a requested

directory.
■ “index-simple” on page 171 generates a simple list of files and directories in a requested

directory.
■ “key-toosmall” on page 172 indicates to the client that the provided certificate key size is too

small to accept.
■ “list-dir” on page 173 lists the contents of a directory.
■ “make-dir” on page 175 creates a directory.
■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by

the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “query-handler” on page 176 handles the HTML ISINDEX tag.
■ “remove-dir” on page 176 deletes an empty directory.
■ “delete-file” on page 177 deletes a file.
■ “remove-filter” on page 178 removes a refilter from the filter stack.
■ “rename-file” on page 179 renames a file.
■ “send-cgi” on page 180 sets up environment variables, launches a CGI program, and sends

the response to the client.
■ “send-error” on page 182 sends an HTML file to the client in place of a specific HTTP

response status.
■ “send-file” on page 183 sends a local file to the client.
■ “send-range” on page 185 sends a range of bytes of a file to the client.
■ “send-shellcgi” on page 185 sets up environment variables, launches a shell CGI program,

and sends the response to the client.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •164

■ “send-wincgi” on page 186 sets up environment variables, launches a WinCGI program, and
sends the response to the client.

■ “service-dav” on page 187 services static content and restarts the request with the sourceuri
for dynamic content.

■ “service-dump” on page 188 creates a performance report based on collected performance
bucket data.

■ “service-j2ee” on page 189 services requests made to Java web applications.
■ “service-trace” on page 190 services TRACE requests.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

■ “shtml_send” on page 191 parses an HTML file for server-parsed HTML commands.
■ “stats-xml” on page 192 creates a performance report in XML format.
■ “upload-file” on page 194 uploads and saves a file.

add-footer
Applicable in Service-class directives.

This function appends a footer to an HTML file that is sent to the client. The footer is specified
either as a file name or a URI, thus the footer can be dynamically generated. To specify static
text as a footer, use the “append-trailer” on page 167 function.

Parameters
The following table describes parameters for the add-footer function.

TABLE 4–43 add-footer Parameters

Parameter Description

file (Optional) Path name to the file containing the footer. Specify either file
or uri.

By default, the path name is relative. If the path name is absolute, pass the
NSIntAbsFilePath parameter as yes.

uri (Optional) URI pointing to the resource containing the footer. Specify
either file or uri.

NSIntAbsFilePath (Optional) If the file parameter is specified, the NSIntAbsFilePath
parameter determines whether the file name is absolute or relative. The
default is relative. Set the value to yes to indicate an absolute file path.

Service

Chapter 4 • Predefined SAFs in obj.conf 165

TABLE 4–43 add-footer Parameters (Continued)
Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
Service type=text/html method=GET fn=add-footer

file="footers/footer1.html"

Service type=text/html method=GET fn=add-footer

file="D:/Sun/WebServer61/server1/footers/footer1.html"

NSIntAbsFilePath="yes"

See Also
“append-trailer” on page 167, “add-header” on page 166

add-header
Applicable in Service-class directives.

This function prepends a header to an HTML file that is sent to the client. The header is
specified either as a file name or a URI, thus the header can be dynamically generated.

Parameters
The following table describes parameters for the add-header function.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •166

TABLE 4–44 add-header Parameters

Parameter Description

file (Optional) Path name to the file containing the header. Specify either file
or uri.

By default, the path name is relative. If the path name is absolute, pass the
NSIntAbsFilePath parameter as yes.

uri (Optional) URI pointing to the resource containing the header. Specify
either file or uri.

NSIntAbsFilePath (Optional) If the file parameter is specified, the NSIntAbsFilePath
parameter determines whether the file name is absolute or relative. The
default is relative. Set the value to yes to indicate an absolute file path.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
Service type=text/html method=GET fn=add-header

file="headers/header1.html"

Service type=text/html method=GET fn=add-footer

file="D:/Sun/WebServer61/server1/headers/header1.html"

NSIntAbsFilePath="yes"

See Also
“add-footer” on page 165, “append-trailer” on page 167

append-trailer
Applicable in Service-class directives.

Service

Chapter 4 • Predefined SAFs in obj.conf 167

The append-trailer function sends an HTML file and appends text to the end. It only appends
text to HTML files. This is typically used for author information and copyright text. The date
the file was last modified can be inserted.

Returns REQ_ABORTED if a required parameter is missing, if there is extra path information after
the file name in the URL, or if the file cannot be opened for read-only access.

Parameters
The following table describes parameters for the append-trailer function.

TABLE 4–45 append-trailer Parameters

Parameter Description

trailer Text to append to HTML documents. The string is unescaped with
util_uri_unescape before being sent. The text can contain HTML tags,
and can be up to 512 characters long after unescaping and inserting the
date.

If you use the string :LASTMOD:, which is replaced by the date the file was
last modified, you must also specify a time format with timefmt.

timefmt (Optional) Time format string for :LASTMOD:. If timefmt is not provided,
:LASTMOD: will not be replaced with the time.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
Service type=text/html method=GET fn=append-trailer

trailer="<hr> Copyright 1999"

Add a trailer with the date in the format: MM/DD/YY

Service type=text/html method=GET fn=append-trailer timefmt="%D"

trailer="<HR>File last updated on: :LASTMOD:"

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •168

See Also
“add-footer” on page 165, “add-header” on page 166

imagemap
Applicable in Service-class directives.

The imagemap function responds to requests for imagemaps. Imagemaps are images that are
divided into multiple areas that each have an associated URL. The information about which
URL is associated with which area is stored in a mapping file.

Parameters
The following table describes parameters for the imagemap function.

TABLE 4–46 imagemap Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service type=magnus-internal/imagemap method=(GET|HEAD) fn=imagemap

index-common
Applicable in Service-class directives.

Service

Chapter 4 • Predefined SAFs in obj.conf 169

The index-common function generates a fancy (or common) list of files in the requested
directory. The list is sorted alphabetically. Files beginning with a period (.) are not displayed.
Each item appears as an HTML link. This function displays more information than
“index-simple” on page 171, including the size, date last modified, and an icon for each file. It
may also include a header and/or readme file into the listing.

The Init-class function cindex-init in magnus.conf specifies the format for the index list,
including where to look for the images.

If obj.conf contains a call to index-common in the Service stage, magnus.conf must initialize
fancy (or common) indexing by invoking cindex-init during the Init stage.

Indexing occurs when the requested resource is a directory that does not contain an index file or
a home page, or no index file or home page has been specified by the functions “find-index”
on page 139 or “home-page” on page 129.

The icons displayed are .gif files dependent on the content-type of the file, as listed in the
following table:

TABLE 4–47 content-type Icons

Content-type Icon

"text/*" text.gif

"image/*" image.gif

"audio/*" sound.gif

"video/*" movie.gif

"application/octet-stream" binary.gif

directory menu.gif

all others unknown.gif

Parameters
The following table describes parameters for the index-common function.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •170

TABLE 4–48 index-common Parameters

Parameter Description

header (Optional) Path (relative to the directory being indexed) and name of a file
(HTML or plain text) that is included at the beginning of the directory
listing to introduce the contents of the directory. The file is first tried with
.html added to the end. If found, it is incorporated near the top of the
directory list as HTML. If the file is not found, it is tried without the .html
and incorporated as preformatted plain text (bracketed by <PRE> and).

readme (Optional) Path (relative to the directory being indexed) and name of a file
(HTML or plain text) to append to the directory listing. This file might give
more information about the contents of the directory, indicate copyrights,
authors, or other information. The file is first tried with .html added to the
end. If found, it is incorporated at the bottom of the directory list as HTML.
If the file is not found, it is tried without the .html and incorporated as
preformatted plain text (enclosed by <PRE> and </PRE>).

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn=index-common type=magnus-internal/directory

method=(GET|HEAD) header=hdr readme=rdme.txt

See Also
“index-simple” on page 171, “find-index” on page 139, “home-page” on page 129

index-simple
Applicable in Service-class directives.

Service

Chapter 4 • Predefined SAFs in obj.conf 171

The index-simple function generates a simple index of the files in the requested directory. This
function scans a directory and returns an HTML page to the browser displaying a bulleted list of
the files and directories in the directory. The list is sorted alphabetically. Files beginning with a
period (.) are not displayed. Each item appears as an HTML link.

Indexing occurs when the requested resource is a directory that does not contain either an index
file or a home page, or no index file or home page has been specified by the functions
“find-index” on page 139 or “home-page” on page 129.

Parameters
The following table describes parameters for the index-simple function.

TABLE 4–49 index-simple Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service type=magnus-internal/directory fn=index-simple

See Also
“index-common” on page 169

key-toosmall
Applicable in Service-class directives.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •172

Note – This function is provided for backward compatibility only and was deprecated in Sun
Java System Web Server 4.x. It is replaced by the PathCheck-class SAF “ssl-check” on page 149.

The key-toosmall function returns a message to the client specifying that the secret key size for
SSL communications is too small. This function is designed to be used together with a Client
tag to limit access of certain directories to nonexportable browsers.

Parameters
The following table describes parameters for the key-toosmall function.

TABLE 4–50 key-toosmall Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
<Object ppath=/mydocs/secret/*>Service fn=key-toosmall</Object>

list-dir
Applicable in Service-class directives.

The list-dir function returns a sequence of text lines to the client in response to a request
whose method is INDEX. The format of the returned lines is:

name type size mimetype

Service

Chapter 4 • Predefined SAFs in obj.conf 173

The name field is the name of the file or directory. It is relative to the directory being indexed. It
is URL-encoded, that is, any character might be represented by %xx, where xx is the
hexadecimal representation of the character's ASCII number.

The type field is a MIME type such as text/html. Directories will be of type directory. A file
for which the server doesn't have a type will be of type unknown.

The size field is the size of the file, in bytes.

The mtime field is the numerical representation of the date of last modification of the file. The
number is the number of seconds since the epoch (Jan 1, 1970 00:00 UTC) since the last
modification of the file.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that calls list-dir for requests whose method is INDEX.

Parameters
The following table describes parameters for the list-dir function.

TABLE 4–51 list-dir Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn=list-dir method="INDEX"

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •174

make-dir
Applicable in Service-class directives.

The make-dir function creates a directory when the client sends a request whose method is
MKDIR. The function can fail if the server can’t write to that directory.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes make-dir when the request method is MKDIR.

Parameters
The following table describes parameters for the make-dir function.

TABLE 4–52 make-dir Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn="make-dir" method="MKDIR"

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

Service

Chapter 4 • Predefined SAFs in obj.conf 175

query-handler
Applicable in Service- and Error-class directives.

Note – This function is provided for backward compatibility only and is used mainly to support
the obsolete ISINDEX tag. If possible, use an HTML form instead.

The query-handler function runs a CGI program instead of referencing the path requested.

Parameters
The following table describes parameters for the query-handler function.

TABLE 4–53 query-handler Parameters

Parameter Description

path Full path and file name of the CGI program to run.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
Service query=* fn=query-handler path=/http/cgi/do-grep

Service query=* fn=query-handler path=/http/cgi/proc-info

remove-dir
Applicable in Service-class directives.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •176

The remove-dir function removes a directory when the client sends a request whose method is
RMDIR. The directory must be empty (have no files in it). The function will fail if the directory is
not empty or if the server doesn’t have the privileges to remove the directory.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes remove-dir when the request method is RMDIR.

Parameters
The following table describes parameters for the remove-dir function.

TABLE 4–54 remove-dir Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn="remove-dir" method="RMDIR"

delete-file
Applicable in Service-class directives.

The delete-file function deletes a file when the client sends a request whose method is
DELETE. It deletes the file indicated by the URL if the user is authorized and the server has the
needed file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes delete-file when the request method is DELETE.

Service

Chapter 4 • Predefined SAFs in obj.conf 177

Parameters
The following table describes parameters for the delete-file function.

TABLE 4–55 delete-file Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn="delete-file" method="DELETE"

remove-filter
Applicable in Input-, Output-, Service-, and Error-class directives.

The remove-filter SAF is used to remove a filter from the filter stack. If the filter has been
inserted multiple times, only the topmost instance is removed. In general, it is not necessary to
remove filters with remove-filter, as they will be removed automatically at the end of the
request.

Returns
Returns REQ_PROCEED if the specified filter was removed successfully, or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
The following table describes parameters for the remove-filter function.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •178

TABLE 4–56 remove-filter Parameters

Parameter Description

filter Specifies the name of the filter to remove.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn="remove-filter" filter="http-compression"

rename-file
Applicable in Service-class directives.

The rename-file function renames a file when the client sends a request with a New-URL header
whose method is MOVE. This file renames the file indicated by the URL to New-URL within the
same directory if the user is authorized and the server has the needed file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes rename-file when the request method is MOVE.

Parameters
The following table describes parameters for the rename-file function.

Service

Chapter 4 • Predefined SAFs in obj.conf 179

TABLE 4–57 rename-file Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn="rename-file" method="MOVE"

send-cgi
Applicable in Service-class directives.

The send-cgi function sets up the CGI environment variables, runs a file as a CGI program in a
new process, and sends the results to the client.

For more information about the CGI environment variables and their NSAPI equivalents, see
the Sun Java System Web Server 6.1 SP7 NSAPI Programmer’s Guide.

For more information about CGI, see the Sun Java System Web Server 6.1 SP7 Administrator’s
Guide and the Sun Java System Web Server 6.1 SP7 Programmer’s Guide.

There are three ways to change the timing used to flush the CGI buffer:

■ Adjust the interval between flushes using the “Service” on page 162 parameter.
■ Adjust the buffer size using the “Service” on page 162 parameter.
■ Force Sun Java System Web Server to flush its buffer by forcing spaces into the buffer in the

CGI script.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •180

Parameters
The following table describes parameters for the send-cgi function.

TABLE 4–58 send-cgi Parameters

Parameter Description

user (UNIX only) Specifies the name of the user to execute CGI programs as.

group (UNIX only) Specifies the name of the group to execute CGI programs as.

chroot (UNIX only) Specifies the directory to chroot to before execution begins.

dir (UNIX only) Specifies the directory to chdir to after chroot, but before
execution begins.

rlimit_as (UNIX only) Specifies the maximum CGI program address space in bytes.
You can supply both current (soft) and maximum (hard) limits, separated
by a comma. The soft limit must be listed first. If only one limit is specified,
both limits are set to this value.

rlimit_core (UNIX only) Specifies the maximum CGI program core file size. A value of
0 disables writing cores. You can supply both current (soft) and maximum
(hard) limits, separated by a comma. The soft limit must be listed first. If
only one limit is specified, both limits are set to this value.

rlimit_nofile (UNIX only) Specifies the maximum number of file descriptors for the CGI
program. You can supply both current (soft) and maximum (hard) limits,
separated by a comma. The soft limit must be listed first. If only one limit is
specified, both limits are set to this value.

nice (UNIX only) Accepts an increment that determines the CGI program's
priority relative to the server. Typically, the server is running with a nice
value of 0 and the nice increment would be between 0 (the CGI program
runs at same priority as server) and 19 (the CGI program runs at much
lower priority than server). While it is possible to increase the priority of the
CGI program above that of the server by specifying a nice increment of -1,
this is not recommended.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

Service

Chapter 4 • Predefined SAFs in obj.conf 181

TABLE 4–58 send-cgi Parameters (Continued)
Parameter Description

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
The following example uses variables defined in the server.xml file for the send-cgi
parameters. For more information about defining variables, see the Sun Java System Web
Server 6.1 SP7 Administrator’s Configuration File Reference.

<Object name="default">

...

NameTrans fn="pfx2dir" from="/cgi-bin"

dir="/home/foo.com/public_html/cgi-bin" name="cgi"

...

</Object>

<Object name="cgi">

ObjectType fn="force-type" type="magnus-internal/cgi"

Service fn="send-cgi" user="$user" group="$group" dir="$dir"

chroot="$chroot" nice="$nice"

</Object>

send-error
Applicable in Service-class directives.

The send-error function sends an HTML file to the client in place of a specific HTTP response
status. This allows the server to present a message describing the problem. The HTML page may
contain images and links to the server’s home page or other pages.

Parameters
The following table describes parameters for the send-error function.

TABLE 4–59 send-error Parameters

Parameter Description

path Specifies the full file system path of an HTML file to send to the client. The
file is sent as text/html regardless of its name or actual type. If the file does
not exist, the server sends a simple default error page.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •182

TABLE 4–59 send-error Parameters (Continued)
Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Error fn=send-error code=401 path=/sun/server61/docs/errors/401.html

send-file
Applicable in Service-class directives.

The send-file function sends the contents of the requested file to the client. This function
provides the Content-Type, Content-Length, and Last-Modified headers.

Most requests are handled by this function using the following directive (which usually comes
last in the list of Service-class directives in the default object, so that it acts as a default):

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"

This directive is invoked if the method of the request is GET, HEAD, or POST, and the type does not
start with magnus-internal/. Note that the pattern *~ means “does not match.” For a list of
characters that can be used in patterns, see the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

Parameters
The following table describes parameters for the send-file function.

Service

Chapter 4 • Predefined SAFs in obj.conf 183

TABLE 4–60 send-file Parameters

Parameter Description

nocache (Optional) Prevents the server from caching responses to static file requests.
For example, you can specify that files in a particular directory are not to be
cached, which is useful for directories where the files change frequently.

The value you assign to this parameter is ignored. If you do not wish to use
this parameter, leave it out.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service type="*~magnus-internal/*" method="(GET|HEAD)" fn="send-file"

In the following example, the server does not cache static files from /export/somedir/ when
requested by the URL prefix /myurl.

<Object name=default>

...

NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir",

name="myname"

...

Service method=(GET|HEAD|POST) type=*~magnus-internal/*

fn=send-file

...

</Object>

<Object name="myname">

Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

nocache=""

</Object>

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •184

send-range
Applicable in Service-class directives.

When the client requests a portion of a document by specifying HTTP byte ranges, the
send-range function returns the specified portion.

Parameters
The following table describes parameters for the send-range function.

TABLE 4–61 send-range Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service fn=send-range

send-shellcgi
Applicable in Service-class directives.

Windows Only. The send-shellcgi function runs a file as a shell CGI program and sends the
results to the client. Shell CGI is a server configuration that lets you run CGI applications using
the file associations set in Windows. For information about shell CGI programs, see the Sun
Java System Web Server 6.1 SP7 Administrator’s Guide.

Service

Chapter 4 • Predefined SAFs in obj.conf 185

Parameters
The following table describes parameters for the send-shellcgi function.

TABLE 4–62 send-shellcgi Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions

Examples
Service fn=send-shellcgi

Service type=magnus-internal/cgi fn=send-shellcgi

send-wincgi
Applicable in Service-class directives.

Windows Only. The send-wincgi function runs a file as a Windows CGI program and sends
the results to the client. For information about Windows CGI programs, see Sun Java System
Web Server 6.1 SP7 Administrator’s Guide.

Parameters
The following table describes parameters for the send-wincgi function.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •186

TABLE 4–63 send-wincgi Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
Service fn=send-wincgi

Service type=magnus-internal/cgi fn=send-wincgi

service-dav
Applicable in Service-class directives.

The service-dav function services a request to a WebDAV-enabled URI. In response to a
request for a WebDAV resource, the service-dav function services the static content and
restarts the request with the sourceuri for dynamic content. The sourceuri is identified by the
magnus-internal setting. If no sourceuri is defined for dynamic content, an HTTP error
message is returned.

Requests to WebDAV resources are authenticated and authorized by the AuthTrans and
PathCheck NSAPI stages, respectively. By default, all access to sourceuri are restricted by the
PathCheck entry in the dav object.

OPTIONS on a WebDAV-enabled URI are always handled by the default object's service-dav
directive. Therefore, the OPTIONS method is not included in the service-dav directive of the
dav object.

Service

Chapter 4 • Predefined SAFs in obj.conf 187

In response to an OPTIONS request to a WebDAV-enabled URI (or sourceuri), the
service-dav function in the default object adds the necessary DAV headers and returns control
to the core server, which then services the request.

For more information on access control for WebDAV resources, see the Sun Java System Web
Server 6.1 SP7 Administrator’s Guide.

Parameters
The following table describes parameters for the service-dav function.

TABLE 4–64 service-dav Parameters

Parameter Description

“method” on page 162 (Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
<Object name="default">

....

Service method="(OPTIONS|PUT|DELETE|COPY|MOVE|PROPFIND|PROPPATCH|LOCK|UN

LOCK|MKCOL)" fn="service-dav"

</Object>

<Object name="dav">

PathCheck fn="check-acl" acl="dav-src"

Service fn="service-dav"

method="(PUT|DELETE|COPY|MOVE|PROPFIND|PROPPATCH|LOCK|UNLOCK|MKC

OL)"

</Object>

See Also
“stats-xml” on page 192

service-dump
Applicable in Service-class directives.

The service-dump function creates a performance report based on collected performance
bucket data (see “The bucket Parameter” on page 115

To read the report, point the browser here:

http://server_id:port/.perf

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •188

Parameters
The following table describes parameters for the service-dump function.

TABLE 4–65 service-dump Parameters

Parameter Description

“type” on page 162 Must be perf for this function.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
<Object name=default>

NameTrans fn="assign-name" from="/.perf" name="perf"

...

</Object>

<Object name=perf>

Service fn="service-dump"

</Object>

See Also
“stats-xml” on page 192

service-j2ee
Applicable in Service-class directives.

The service-j2ee function services requests made to Java web applications.

Parameters
The following table describes parameters for the service-j2ee function.

Service

Chapter 4 • Predefined SAFs in obj.conf 189

TABLE 4–66 service-j2ee Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
<Object name=default>

NameTrans fn="ntrans-j2ee" name="j2ee"

...

</Object>

<Object name=j2ee>

Service fn="service-j2ee"

</Object>

See Also
“ntrans-j2ee” on page 131, “error-j2ee” on page 199

service-trace
Applicable in Service-class directives.

The service-trace function services TRACE requests. TRACE requests are used to diagnose
problems with web proxy servers located between a web client and web server.

Parameters
The following table describes parameters for the service_trace function.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •190

TABLE 4–67 service-trace Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
<Object name="default">

...

Service method="TRACE" fn="service-trace"

...

</Object>

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request, and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

shtml_send
Applicable in Service-class directives.

The shtml_send function parses an HTML document and scans for embedded commands.
These commands may provide information from the server, include the contents of other files,
or execute a CGI program. The shtml_send function is only available when the Shtml plug-in
(libShtml.so on UNIX libShtml.dll on Windows) is loaded. See the Sun Java System Web
Server 6.1 SP7 Programmer’s Guide for server-parsed HTML commands.

Service

Chapter 4 • Predefined SAFs in obj.conf 191

Parameters
The following table describes parameters for the shtml_send function.

TABLE 4–68 shtml-send Parameters

Parameter Description

ShtmlMaxDepth Maximum depth of include nesting allowed. The default value is 10.

addCgiInitVars (UNIX only) If present and equal to yes (the default is no), adds the
environment variables defined in the init-cgi SAF to the environment of
any command executed through the SHTML exec tag.

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

(Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Example
Service type=magnus-internal/shtml_send method=(GET|HEAD) fn=shtml_send

stats-xml
Applicable in Service-class directives.

The stats-xml function creates a performance report in XML format. If performance buckets
have been defined, this performance report includes them.

However, you do need to initialize this function using the stats-init function in
magnus.conf, then use the NameTrans function to direct requests to the stats-xml function.
See the examples below.

The report is generated here:

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •192

http://server_id:port/stats-xml/iwsstats.xml

The associated DTD file is here:

http://server_id:port/stats-xml/iwsstats.dtd

For more information about the format of the iwsstats.xml file, see the Sun Java System Web
Server 6.1 SP7 Performance Tuning, Sizing, and Scaling Guide

Parameters
The following table describes parameters for the stats-xml function.

TABLE 4–69 stats-xml Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Examples
In magnus.conf:

Init fn="stats-init" update-interval="5" virtual-servers="2000" profiling="yes"

In obj.conf:

<Object name="default">

...

NameTrans fn="assign-name" from="/stats-xml/*" name="stats-xml"

...

</Object>

Service

Chapter 4 • Predefined SAFs in obj.conf 193

...

<Object name="stats-xml">

Service fn="stats-xml"

</Object>

See Also
“service-dump” on page 188

upload-file
Applicable in Service-class directives.

The upload-file function uploads and saves a new file when the client sends a request whose
method is PUT, if the user is authorized and the server has the needed file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file contains a
Service-class function that invokes upload-file when the request method is PUT.

Parameters
The following table describes parameters for the upload-file function.

TABLE 4–70 upload-file Parameters

Parameter Description

“type” on page 162 (Optional) Common to all Service-class functions.

“method” on page 162 (Optional) Common to all Service-class functions.

“query” on page 162 (Optional) Common to all Service-class functions.

“UseOutputStreamSize”
on page 163

(Optional) Common to all Service-class functions.

“flushTimer” on page 163 (Optional) Common to all Service-class functions.

“ChunkedRequestBufferSize”
on page 163

(Optional) Common to all Service-class functions.

“ChunkedRequestTimeout”
on page 163

(Optional) Common to all Service-class functions.

bucket (Optional) Common to all obj.conf functions.

Service

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •194

Example
Service fn=upload-file

AddLog
After the server has responded to the request, the AddLog directives are executed to record
information about the transaction.

If there is more than one AddLog directive, all are executed.

The following AddLog-class functions are described in detail in this section:

■ “common-log” on page 195 records information about the request in the common log
format.

■ “flex-log” on page 196 records information about the request in a flexible, configurable
format.

■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by
the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “record-useragent” on page 197 records the client’s IP address and User-Agent header.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

common-log
Applicable in AddLog-class directives.

The common-log function records request-specific data in the common log format (used by
most HTTP servers). There is a log analyzer in the /extras/log_anly directory for Sun Java
System Web Server.

The common log must have been initialized previously by using the init-clf function. For
information about rotating logs, see flex-rotate-init in the Sun Java System Web Server 6.1
SP7 NSAPI Programmer’s Guide.

There are also a number of free statistics generators for the common log format.

Parameters
The following table describes parameters for the common-log function.

AddLog

Chapter 4 • Predefined SAFs in obj.conf 195

TABLE 4–71 common-log Parameters

Parameter Description

name (Optional) Gives the name of a log file, which must have been given as a
parameter to the init-clf function in magnus.conf. If no name is given,
the entry is recorded in the global log file.

iponly (Optional) Instructs the server to log the IP address of the remote client
rather than looking up and logging the DNS name. This will improve
performance if DNS is off in the magnus.conf file. The value of iponly has
no significance, as long as it exists; you may use iponly=1.

bucket (Optional) Common to all obj.conf functions.

Examples
Log all accesses to the global log file

AddLog fn=common-log

Log accesses from outside our subnet (198.93.5.*) to

nonlocallog

<Client ip="*~198.93.5.*">

AddLog fn=common-log name=nonlocallog

</Client>

See Also
“record-useragent” on page 197, “flex-log” on page 196

flex-log
Applicable in AddLog-class directives.

The flex-log function records request-specific data in a flexible log format. It may also record
requests in the common log format. There is a log analyzer in the /extras/flexanlg directory
for Sun Java System Web Server.

There are also a number of free statistics generators for the common log format. The log format
is specified by using the flex-init function call. For information about rotating logs, see
flex-rotate-init in the Sun Java System Web Server 6.1 SP7 NSAPI Programmer’s Guide.

Parameters
The following table describes parameters for the flex-log function.

AddLog

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •196

TABLE 4–72 flex-log Parameters

Parameter Description

name (Optional) Gives the name of a log file, which must have been given as a
parameter to the flex-init function in magnus.conf. If no name is given,
the entry is recorded in the global log file.

iponly (Optional) Instructs the server to log the IP address of the remote client
rather than looking up and logging the DNS name. This will improve
performance if DNS is off in the magnus.conf file. The value of iponly has
no significance, as long as it exists; you may use iponly=1.

bucket (Optional) Common to all obj.conf functions.

buffers-per-file Specifies the number of buffers for a given log file. The default value is
determined by the server.

Access log entries can be logged in strict chronological order by using a
single buffer per log file. To accomplish this, add buffers-per-file="1" to the
Init fn="flex-init" line in magnus.conf. This ensures that requests are logged
in chronological order. Note that this approach will result in decreased
performance when the server is under heavy load.

Examples
Log all accesses to the global log file

AddLog fn=flex-log

Log accesses from outside our subnet (198.93.5.*) to

nonlocallog

<Client ip="*~198.93.5.*">

AddLog fn=flex-log name=nonlocallog

</Client>

See Also
“common-log” on page 195, “record-useragent” on page 197

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

record-useragent
Applicable in AddLog-class directives.

AddLog

Chapter 4 • Predefined SAFs in obj.conf 197

The record-useragent function records the IP address of the client, followed by its
User-Agent HTTP header. This indicates what version of the client was used for this
transaction.

Parameters
The following table describes parameters for the record-useragent function.

TABLE 4–73 record-useragent Parameters

Parameter Description

name (Optional) Gives the name of a log file, which must have been given as a
parameter to the init-clf function in magnus.conf. If no name is given,
the entry is recorded in the global log file.

bucket (Optional) Common to all obj.conf functions.

Example
Record the client ip address and user-agent to browserlog

AddLog fn=record-useragent name=browserlog

See Also
“common-log” on page 195, “flex-log” on page 196

set-variable
Applicable in all stage directives. The set-variable SAF enables you to change server settings
based upon conditional information in a request, and to manipulate variables in parameter
blocks by using specific commands. See “set-variable” on page 122.

Error
If a Server Application Function results in an error, it sets the HTTP response status code and
returns the value REQ_ABORTED. When this happens, the server stops processing the request.
Instead, it searches for an Error directive matching the HTTP response status code or its
associated reason phrase, and executes the directive’s function. If the server does not find a
matching Error directive, it returns the response status code to the client.

The following Error-class functions are described in detail in this section:

■ “error-j2ee” on page 199 handles errors that occur during execution of JavaTM 2 Platform,
Standard Edition (J2SE platform) applications and modules deployed to the Sun Java
System Web Server.

Error

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •198

■ “match-browser” on page 120 matches specific strings in the User-Agent string supplied by
the browser, and then modifies the behavior of Sun Java System Web Server based upon the
results by setting values for specified variables.

■ “qos-error” on page 200 returns an error page stating which quality of service limits caused
the error and what the value of the QOS statistic was.

■ “query-handler” on page 200 runs a CGI program instead of referencing the path requested.
■ “remove-filter” on page 201 removes a filter from the filter stack.
■ “send-error” on page 202 sends an HTML file to the client in place of a specific HTTP

response status.
■ “set-variable” on page 122 enables you to change server settings based upon conditional

information in a request, and to manipulate variables in parameter blocks by using specific
commands.

error-j2ee
Applicable in Error-class directives.

The error-j2ee function handles errors that occur during execution of web applications
deployed to the Sun Java System Web Server individually or as part of full J2SE applications.file
name.

Parameters
The following table describes parameters for the error-j2ee function.

TABLE 4–74 error-j2ee Parameters

Parameter Description

bucket (Optional) Common to all obj.conf functions.

See Also
“ntrans-j2ee” on page 131, “service-j2ee” on page 189

match-browser
Applicable in all stage directives. The match-browser SAF matches specific strings in the
User-Agent string supplied by the browser, and then modifies the behavior of Sun Java System
Web Server based upon the results by setting values for specified variables. See
“match-browser” on page 120.

Error

Chapter 4 • Predefined SAFs in obj.conf 199

qos-error
Applicable in Error-class directives.

The qos-error function returns an error page stating which quality of service limits caused the
error, and what the value of the QOS statistic was.

The code for this SAF is one of the examples in the Sun Java System Web Server 6.1 NSAPI
Programmer’s Guide.

For more information, see the Sun Java System Web Server 6.1 SP7 Performance Tuning, Sizing,
and Scaling Guide.

Parameters
The following table describes parameters for the qos-error function.

TABLE 4–75 qos-error Parameters

Parameter Description

code (Optional) Three-digit number representing the HTTP response status
code, such as 401 or 407. The recommended value is 503.

This can be any HTTP response status code or reason phrase according to
the HTTP specification.

The following is a list of common HTTP response status codes and reason
strings:
■ 401 Unauthorized

■ 403 Forbidden

■ 404 Not Found

■ 500 Server Error

bucket (Optional) Common to all obj.conf functions.

Example
Error fn=qos-error code=503

See Also
“qos-handler” on page 121

query-handler
Applicable in Service- and Error-class directives.

Error

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •200

Note – This function is provided for backward compatibility only and is used mainly to support
the obsolete ISINDEX tag. If possible, use an HTML form instead.

The query-handler function runs a CGI program instead of referencing the path requested.

Parameters
The following table describes parameters for the query-handler function.

TABLE 4–76 query-handler Parameters

Parameter Description

path Full path and file name of the CGI program to run.

reason (Optional) Text of one of the reason strings (such as “Unauthorized” or
“Forbidden”). The string is not case-sensitive.

code (Optional) Three-digit number representing the HTTP response status
code, such as 401 or 407.

This can be any HTTP response status code or reason phrase according to
the HTTP specification.

The following is a list of common HTTP response status codes and reason
strings:
■ 401 Unauthorized

■ 403 Forbidden

■ 404 Not Found

■ 500 Server Error

bucket (Optional) Common to all obj.conf functions.

Examples
Error query=* fn=query-handler path=/http/cgi/do-grep

Error query=* fn=query-handler path=/http/cgi/proc-info

remove-filter
Applicable in Input-, Output-, Service-, and Error-class directives.

The remove-filter SAF is used to remove a filter from the filter stack. If the filter has been
inserted multiple times, only the topmost instance is removed. In general, it is not necessary to
remove filters with remove-filter, as they will be removed automatically at the end of the
request.

Error

Chapter 4 • Predefined SAFs in obj.conf 201

Returns
Returns REQ_PROCEED if the specified filter was removed successfully, or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
The following table describes parameters for the remove-filter function.

TABLE 4–77 remove-filter Parameters

Parameter Description

filter Specifies the name of the filter to remove.

bucket (Optional) Common to all obj.conf functions.

Example
Error fn="remove-filter" filter="http-compression"

send-error
Applicable in Error-class directives.

The send-error function sends an HTML file to the client in place of a specific HTTP response
status. This allows the server to present a friendly message describing the problem. The HTML
page may contain images and links to the server’s home page or other pages.

Parameters
The following table describes parameters for the send-error function.

TABLE 4–78 send-error Parameters

Parameter Description

path Specifies the full file system path of an HTML file to send to the client. The
file is sent as text/html regardless of its name or actual type. If the file does
not exist, the server sends a simple default error page.

Error

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •202

TABLE 4–78 send-error Parameters (Continued)
Parameter Description

reason (Optional) Text of one of the reason strings (such as “Unauthorized” or
“Forbidden”). The string is not case-sensitive.

code (Optional) Three-digit number representing the HTTP response status
code, such as 401 or 407.

This can be any HTTP response status code or reason phrase according to
the HTTP specification.

The following is a list of common HTTP response status codes and reason
strings:
■ 401 Unauthorized

■ 403 Forbidden

■ 404 Not Found

■ 500 Server Error

bucket (Optional) Common to all obj.conf functions.

Example
Error fn=send-error code=401 path=/sun/server61/docs/errors/401.html

set-variable
Applicable in all stage directives. The set-variable SAF sets the HTTP status code and aborts
the request by returning REQ_ABORTED. To set the HTTP status code without aborting the
request, use the error parameter in conjunction with the noaction parameter.

To rewrite a HTTP status code, use a <Client> tag to match the original status code and an
Output directive to set the new status code. The following example would rewrite all 302 Moved
Temporarily responses to 301 Moved Permanently responses

Example
<Client code="302">

Output fn="set-variable" error="301 Moved Permanently" noaction="true"

</Client>

Error

Chapter 4 • Predefined SAFs in obj.conf 203

204

MIME Types

This chapter discusses the MIME types file.

The sections are:

■ “Introduction” on page 205
■ “Determining the MIME Type” on page 206
■ “How the Type Affects the Response” on page 206
■ “What Does the Client Do with the MIME Type?” on page 207
■ “Syntax of the MIME Types File” on page 207
■ “Sample MIME Types File” on page 207

Introduction
The MIME types file in the config directory contains mappings between MIME (Multipurpose
Internet Mail Extensions) types and file extensions. For example, the MIME types file maps the
extensions .html and .htm to the type text/html:

type=text/html exts=htm,html

When the Sun Java System Web Server receives a request for a resource from a client, it uses the
MIME type mappings to determine what kind of resource is being requested.

MIME types are defined by three attributes: language (lang), encoding (enc), and content-type
(type). At least one of these attributes must be present for each type. The most commonly used
attribute is type. The server frequently considers the type when deciding how to generate the
response to the client. The enc and lang attributes are rarely used.

The default MIME types file is called mime.types.

5C H A P T E R 5

205

Determining the MIME Type
During the ObjectType step in the request handling process, the server determines the MIME
type attributes of the resource requested by the client. Several different server application
functions (SAFs) can be used to determine the MIME type, but the most commonly used one is
type-by-extension. This function tells the server to look up the MIME type according to the
requested resource’s file extension in the MIME types table.

The directive in obj.conf that tells the server to look up the MIME type according to the
extension is:

ObjectType fn=type-by-extension

If the server uses a different SAF, such as force-type, to determine the type, then the MIME
types table is not used for that particular request.

For more details of the ObjectType step, see the Sun Java System Web Server 6.1 SP7 NSAPI
Programmer’s Guide.

How the Type Affects the Response
The server considers the value of the type attribute when deciding which Service directive in
obj.conf to use to generate the response to the client.

By default, if the type does not start with magnus-internal/, the server just sends the requested
file to the client. The directive in obj.conf that contains this instruction is:

Service method=(GET|HEAD|POST) type=*~magnus-internal/* fn=send-file

By convention, all values of type that require the server to do something other than just send
the requested resource to the client start with magnus-internal/.

For example, if the requested resource’s file extension is .map, the type is mapped to
magnus-internal/imagemap. If the extension is .cgi, .exe, or .bat, the type is set to
magnus-internal/cgi:

type=magnus-internal/imagemap exts=map

type=magnus-internal/cgi exts=cgi,exe,bat

If the type starts with magnus-internal/, the server executes the Service directive in
obj.conf matches the specified type. For example, if the type is magnus-internal/imagemap,
the server uses the imagemap function to generate the response to the client, as indicated by the
following directive:

Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap

Determining the MIME Type

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •206

What Does the Client Do with the MIME Type?
The Service function generates the data and sends it to the client that made the request. When
the server sends the data to the client, it also sends headers. These headers include the MIME
type attributes are known (which is usually type).

When the client receives the data, it uses the MIME type to decide what to do with the data. For
browser clients, display the data in the browser window.

If the requested resource cannot be displayed in a browser but needs to be handled by another
application, its type starts with application/, for example, application/octet-stream (for
.bin file extensions) or application/x-maker (for .fm file extensions). The client has its own
set of user-editable mappings that tells it which application to use to handle which types of data.

For example, if the type is application/x-maker, the client usually handles it by opening
Adobe® FrameMaker® to display the file.

Syntax of the MIME Types File
The first line in the MIME types file identifies the file format and must read:

#--Sun Microsystems MIME Information

Other non-comment lines have the following format:

type=type/subtype exts=[file extensions]

■ type/subtype is the type and subtype.
■ exts are the file extensions associated with this type.

Sample MIME Types File
Here is an example of a MIME types file:

#--Sun Microsystems MIME Information

Do not delete the above line. It is used to identify the file type.

type=application/octet-stream exts=bin,exe

type=application/oda exts=oda

type=application/pdf exts=pdf

type=application/postscript exts=ai,eps,ps

type=application/rtf exts=rtf

type=application/x-mif exts=mif,fm

type=application/x-gtar exts=gtar

type=application/x-shar exts=shar

Sample MIME Types File

Chapter 5 • MIME Types 207

type=application/x-tar exts=tar

type=application/mac-binhex40 exts=hqx

type=audio/basic exts=au,snd

type=audio/x-aiff exts=aif,aiff,aifc

type=audio/x-wav exts=wav

type=image/gif exts=gif

type=image/ief exts=ief

type=image/jpeg exts=jpeg,jpg,jpe

type=image/tiff exts=tiff,tif

type=image/x-rgb exts=rgb

type=image/x-xbitmap exts=xbm

type=image/x-xpixmap exts=xpm

type=image/x-xwindowdump exts=xwd

type=text/html exts=htm,html

type=text/plain exts=txt

type=text/richtext exts=rtx

type=text/tab-separated-values exts=tsv

type=text/x-setext exts=etx

type=video/mpeg exts=mpeg,mpg,mpe

type=video/quicktime exts=qt,mov

type=video/x-msvideo exts=avi

enc=x-gzip exts=gz

enc=x-compress exts=z

enc=x-uuencode exts=uu,uue

type=magnus-internal/imagemap exts=map

type=magnus-internal/parsed-html exts=shtml

type=magnus-internal/cgi exts=cgi,exe,bat

type=magnus-internal/jsp exts=jsp

Sample MIME Types File

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •208

Other Server Configuration Files

This chapter summarizes the important configuration files not discussed in other chapters.
Configuration files that should never be modified are not listed in this module.

The following configuration files are described in alphabetical order:

■ “certmap.conf” on page 209
■ “dbswitch.conf” on page 211
■ “Deployment Descriptors” on page 213
■ “generated.instance.acl” on page 214
■ “login.conf” on page 214
■ “nsfc.conf” on page 215
■ “password.conf” on page 216
■ “server.policy” on page 217
■ “*.clfilter” on page 218

certmap.conf

Purpose
Configures how a certificate, designated by name, is mapped to an LDAP entry, designated by
issuerDN.

Location
server_root/bin/https/install/misc
server_root/userdb

6C H A P T E R 6

209

Syntax
certmap name issuerDNname:property1 [value1]
name:property2 [value2]
...

The default certificate is named default, and the default issuerDN is also named default.
Therefore, the first certmap defined in the file must be as follows:

certmap default default

You can use # at the beginning of a line to indicate a comment.

See Also
Sun Java System Web Server 6.1 SP7 Administrator’s Guide

The following table describes properties in the certmap.conf file. The left column lists the
property names. The second column from the left lists allowed values. The third column from
the left lists default values. The right column lists property descriptions.

TABLE 6–1 certmap.conf Properties

Attribute Allowed Values Default Value Description

DNComps See Description Commented
out

Used to form the base DN for performing an
LDAP search while mapping the certificate to a
user entry. Values are as follows:
■ Commented out: takes the user's DN from

the certificate as is.
■ Empty: searches the entire LDAP tree (DN

== suffix).
■ Comma-separated attributes: forms the

DN.

FilterComps See Description Commented
out

Used to form the filter for performing an
LDAP search while mapping the certificate to a
user entry. Values are as follows:
■ Commented out or empty: sets the filter to

"objectclass=*".
■ Comma-separated attributes: forms the

filter.

verifycert on or off off

(commented
out)

Specifies whether certificates are verified.

certmap.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •210

TABLE 6–1 certmap.conf Properties (Continued)
Attribute Allowed Values Default Value Description

CmapLdapAttr LDAP attribute
name

certSubjectDN
(commented
out)

Specifies the name of the attribute in the LDAP
database that contains the DN of the certificate.

library Path to shared
lib or dll

None Specifies the library path for custom certificate
mapping code.

InitFn Name of
initialization
function

None Specifies the initialization function in the
certificate mapping code referenced by
library.

dbswitch.conf

Purpose
Specifies the LDAP directory that Sun Java System Web Server uses.

Location
server_root/userdb

Syntax
directory name LDAP_URLname:property1 [value1]
name:property2 [value2]
...

The default contents of this file are as follows:

directory default null:///none

Edit the file as follows for anonymous binding over SSL:

directory default ldaps://directory.sun.com:636:/dc%3Dcom

Edit the file as follows for anonymous binding not over SSL:

directory default ldap://directory.sun.com:389:/dc%3Dcom

dbswitch.conf

Chapter 6 • Other Server Configuration Files 211

See Also
“User Database Selection” on page 66

The following table describes properties in the dbswitch.conf file. The Property column lists
the property names. The Allowed Values column from the left lists allowed values. The Default
Value column from the left lists default values. The Description column lists property
descriptions.

TABLE 6–2 dbswitch.conf Properties

Property Allowed Values Default Value Description

nsessions A positive
integer

8 The number of LDAP connections for the
database.

dyngroups off, on,
recursive

on Determines how dynamic groups are handled.
If off, dynamic groups are not supported. If
on, dynamic groups are supported. If
recursive, dynamic groups can contain other
groups.

binddn A valid DN The DN used for connecting to the database. If
both binddn and bindpw are not present,
binding is anonymous.

bindpw The password used for connecting to the
database. If both binddn and bindpw are not
present, binding is anonymous.

dcsuffix A valid DN
(relative to the
LDAP URL)

none If present, the default value of the base DN for
the request’s virtual server is determined by a
dc tree search of the connection group’s
servername attribute, starting at the dcsuffix
DN.

If not present, the default value of the base DN
is the base DN value in the LDAP URL.

The basedn attribute of a USERDB element in
the server.xml file overrides this value.

digestauth off, on off Specifies whether the database can perform
digest authentication. If on, a special Directory
Server plug-in is required. For information
about how to install this plug-in, see the Sun
Java System Web Server 6.1 SP7 Administrator’s
Guide.

dbswitch.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •212

TABLE 6–2 dbswitch.conf Properties (Continued)
Property Allowed Values Default Value Description

syntax keyfile,
digest,
htaccess

keyfile Specifies what type of file auth-db will be used

keyfile Specifies the path to the keyfile. Required, if
syntax is set to keyfile.

digestfile Specifies the path to the digestfile. Required, if
syntax is set to digestfile.

groupfile Path to the AuthGroupFile. If the groupfile is
the same as the userfile, this file contains both
user and group data, otherwise it contains only
group data. Required if syntax is set to
htaccess. For more information about the
syntax of the AuthGroupFile, see the Sun Java
System Web Server 6.1 SP7 Administrator’s
Guide.

userfile Path to the AuthUserFile. If the userfile is the
same as the groupfile, this file contains both
user and group data, otherwise it contains only
user data. Required if syntax is set to
htaccess. For more information about the
syntax of the AuthUserFile, see the Sun Java
System Web Server 6.1 SP7 Administrator’s
Guide.

Deployment Descriptors

Purpose
Configures features specific to the Sun Java System Web Server for deployed web applications.

Location
The META-INF or WEB-INF directory of a module or application.

Deployment Descriptors

Chapter 6 • Other Server Configuration Files 213

See Also
The following table shows where to find more information about Sun Java System Web Server
deployment descriptors. The left column lists the deployment descriptors, and the right column
lists where to find more information about those descriptors.

TABLE 6–3 Sun Java System Web Server Deployment Descriptors

Deployment Descriptor Where to Find More Information

sun-web.xml Sun Java System Web Server 6.1 SP7 Programmer’s Guide to Web
Applications.

generated.instance.acl

Purpose
Sets permissions for access to the server instance. This is the default ACL file; you can create and
use others.

Location
server_root/config

See Also
Sun Java System Web Server 6.1 SP7 Administrator’s Guide

login.conf

Purpose
The login module definition configuration file used by the Java Authentication and
Authorization Service (JAAS) for client authentication.

Location
server_root/config

generated.instance.acl

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •214

nsfc.conf

Purpose
Sets file cache parameters. This file is present only if file cache parameters have been changed
from their defaults.

Location
server_root/https-admserv/config

Syntax
parameter=value

See Also
Sun Java System Web Server 6.1 SP7 Performance Tuning, Sizing, and Scaling Guide

The following table describes properties in the nsfc.conf file. The left column lists the property
names. The second column from the left lists allowed values. The third column from the left
lists default values. The right column lists property descriptions.

TABLE 6–4 nsfc.conf Properties

Attribute Allowed Values Default Value Description

FileCacheEnable on, off on Enables the file cache.

CacheFileContent on, off on Enables caching of file contents, as well as file
information for files smaller than
MediumFileSizeLimit (smaller than
SmallFileSizeLimit if TransmitFile is on).

MaxAge Number of
seconds

30 The maximum age of a valid cache entry. This
setting controls how long cached information
is used once a file has been cached. An entry
older than MaxAge is replaced by a new entry
for the same file.

nsfc.conf

Chapter 6 • Other Server Configuration Files 215

TABLE 6–4 nsfc.conf Properties (Continued)
Attribute Allowed Values Default Value Description

MediumFileSizeLimit Limited by
available
memory

537600

(525K)
(UNIX only) Maximum size of a file that can be
cached as a memory-mapped file (if
TransmitFile is off).

MediumFileSpace Limited by
available
memory

10485760(10
M)

Total size of all files that are cached as
memory-mapped files (if TransmitFile is
off).

SmallFileSizeLimit Limited by
available
memory

2048 (2K) (UNIX only) Maximum size of a file that can be
read into memory.

SmallFileSpace Limited by
available
memory

1048576

(UNIX, 1 M),
0 (Windows)

Total size of all files that are read into memory.

TransmitFile on, off on

(Windows),
off (UNIX)

Enables use of the TransmitFile system call.
Not supported on IRIX, Compaq, Solaris, or
Linux.

MaxFiles 1024 Maximum number of files in the file cache.

HashInitSize Limited by
available
memory

0 Initial number of hash buckets. If 0, the
number of hash buckets is dynamically
determined as 2 * MaxFiles + 1.

CopyFiles on, off on (Windows only) Prevents sharing violations by
copying files to a temporary directory.

TempDir path <TempDir>/<
server_id>-
file-cache

Specifies a temporary directory for the file
cache if CopyFiles is on.

<TempDir> is the value of TempDir in the
magnus.conf file. See “TempDir” on page 76

<server_id> is the server instance id.

password.conf

Purpose
By default, the Sun Java System Web Server prompts the administrator for the SSL key database
password before starting up. If you want the Web Server to be able to restart unattended, you
need to save the password in a password.conf file. Be sure that your system is adequately
protected so that this file and the key databases are not compromised.

password.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •216

Location
server_root/config

This file is not present by default. You must create it if you need it.

Syntax
PKCS#11_module_name:password

If you are using the internal PKCS#11 software encryption module that comes with the server,
type the following:

internal:password

If you are using a different PKCS#11 module, for example for hardware encryption or hardware
accelerators, you will need to specify the name of the PKCS#11 module, followed by the
password.

See Also
Sun Java System Web Server 6.1 SP7 Administrator’s Guide

server.policy

Purpose
Controls what access applications have to resources. This is the standard J2SE policy file. The
J2SE SecurityManager is not active by default in Sun Java System Web Server 6.1. The policies
granted in this policy file do not have any effect unless the SecurityManager is turned on in
server.xml.

If you wish to use the J2SE SecurityManager you can turn it on by adding the following JVM
options:

<JVMOPTIONS>-Djava.security.manager</JVMOPTIONS>

<JVMOPTIONS>-Djava.security.policy=server_root/config/server.policy</JVMOPTIONS>

Location
server_root/config

server.policy

Chapter 6 • Other Server Configuration Files 217

Syntax
grant [codeBase "path"] {

permission permission_class "package", "permission_type";

...

};

See Also
■ Sun Java System Web Server 6.1 SP7 Programmer’s Guide
■ http://java.sun.com/docs/books/tutorial/security/tour2/index.html

*.clfilter

Purpose
The files obj.conf.clfilter, magnus.conf.clfilter, and server.xml.clfilter contain
filter specifications for cluster management operations.

Location
server_root/config

*.clfilter

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •218

http://java.sun.com/docs/books/tutorial/security/tour2/index.html

Configuration Changes Between iPlanet Web
Server 4.1 and Sun Java System Web Server 6.1

This chapter summarizes major configuration file changes between the 4.1 and the 6.1 version
of Sun Java System Web Server. The following 4.1 files are described:

■ “magnus.conf” on page 219
■ “obj.conf” on page 221
■ “contexts.properties” on page 222
■ “rules.properties” on page 223
■ “servlets.properties” on page 224

magnus.conf
The following table summarizes the changes in magnus.conf:

TABLE A–1 magnus.conf Changes

4.x Directive 6.1 Directive Comments

AccelFileCache (none) Obsolete because an NSAPI
accelerator cache is no longer
necessary

AcceptLanguage (none) See the acceptlanguage attribute of
the “VSCLASS” on page 38 and “VS”
on page 39 elements in server.xml

ACLFile (none) Maps to the “ACLFILE” on page 37
element in server.xml

Address (none) Maps to the “LS” on page 33 element
in server.xml.

AdminLanguage (none) Deprecated.

AA P P E N D I X A

219

TABLE A–1 magnus.conf Changes (Continued)
4.x Directive 6.1 Directive Comments

AsyncDNS AsyncDNS Ignored. Even if the value is set to on,
the server does not perform
asynchronous DNS lookup.

BlockingListenSockets (none) See the blocking attribute of the “LS”
on page 33 element in server.xml.

CGIWaitPid (none) Deprecated.

Ciphers (none) See the ssl2ciphers attribute of the
“SSLPARAMS” on page 35 element
in server.xml

ClientLanguage (none) Deprecated.

DaemonStats (none) Obsolete due to new performance
statistics system. For more
information, see the Sun Java System
Web Server 6.1 SP7 Performance
Tuning, Sizing, and Scaling Guide for
further information.

DefaultCharSet (none) Deprecated

ErrorLog (none) See the file attribute of the “LOG”
on page 65 element in server.xml.

IOTimeout AcceptTimeout Use the AcceptTimeout directive to
specify the number of seconds the
server must wait for data from a
client before closing the connection.

LoadObjects (none) See the objectfile attribute in the
“VSCLASS” on page 38 element in
server.xml.

LogVerbose (none) See the “Attributes” on page 65
attribute in server.xml.

MaxThreads (none) Obsolete due to new thread handling
system.

MinProcs (none) Obsolete due to new thread handling
system.

MinThreads (none) Obsolete due to new thread handling
system.

MtaHost (none) Ignored.

NetsiteRoot (none) Deprecated.

magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •220

TABLE A–1 magnus.conf Changes (Continued)
4.x Directive 6.1 Directive Comments

Port (none) See the “LS” on page 33 element in
server.xml.

RootObject (none) See the rootobject attribute of the
“VSCLASS” on page 38 element in
server.xml.

RqThrottleMinPerSocket (none) See the the acceptorthreads

attribute of the “LS” on page 33
element in server.xml.

(none) RqThrottleMin New. Specifies the number of request
processing threads that are created
when the server is started.

ServerID (none) Deprecated.

ServerName (none) Deprecated. See the servername
attribute of the “LS” on page 33
element in the server.xml file.

#ServerRoot (none) Deprecated.

SSL2 (none) See the ssl2 attribute of the
“SSLPARAMS” on page 35 element
in server.xml

SSL3 (none) See the ssl3 attribute of the
“SSLPARAMS” on page 35 element
in server.xml

SSL3Ciphers (none) See the the ssl3tlsciphers

attribute of “SSLPARAMS” on page
35 element in server.xml

SSLClientAuth clientauth See the clientauth attribute of the
“SSLPARAMS” on page 35 element
in server.xml

VirtualServerFile (none) Obsolete due to virtual server
implementation

obj.conf
The obj.conf file has lost its Init directives to the magnus.conf file and acquired new directives
and parameters. The following table summarizes the changes in the obj.conf file. Only the
changed directives are listed.

obj.conf

Appendix A • Configuration Changes Between iPlanet Web Server 4.1 and Sun Java System Web Server 6.1 221

TABLE A–2 obj.conf Changes

4.x Directive 6.1 Directive Comments

Init functions (none) All functions have moved to
magnus.conf except for cache-init
and load-types, which are obsolete
(for load-types, see the MIME
element in the server.xml file).

Service fn=parse-html Service fn=shtml_send

contexts.properties
The contexts.properties file is no longer supported. Servlet contexts or web applications are
now defined in the server.xml file and configured using the sun-web.xml file.

A few contexts.properties functions are now in the server.xml file.

The following table lists the equivalent functions in the contexts.properties and
sun-web.xml files.

TABLE A–3 contexts.properties to sun-web.xml Correspondences

contexts.properties Property sun-web.xml Element or Attribute Comments

sessionmgr persistence-type attribute of the
session-manager element

sessionmgr.initArgs manager-properties and
store-properties attributes of
the session-manager element

initArgs (none) Specified using the context-param
element in web.xml. For more
information, see Servlet 2.3
specification.

To add context attributes,
implement the
javax.servlet.ServletContextListener

interface. For more information,
see to the Servlet 2.3 specification.

respondCookieVersion (none) Might be supported in a future
release.

tempDir tempdir property

contexts.properties

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •222

TABLE A–3 contexts.properties to sun-web.xml Correspondences (Continued)
contexts.properties Property sun-web.xml Element or Attribute Comments

reloadInterval dynamic-reload-interval

attribute of class-loader element

bufferSize (none) Specified using the
UseOutputStreamSize in
obj.conf. for more information,
see “service-j2ee” on page 189 for
more information.

docRoot (none) Specified in the server.xml file for
each virtual server.

inputStreamLengthCheck (none) Obsolete.

outputStreamFlushTimer (none) Obsolete.

uri uri attribute of WEBAPP element in
server.xml.

authdb authdb attribute of auth-native
element

Obsolete.

classpath extra-class-path attribute of
class-loader element

singleClassLoader (none) Obsolete because each web
application has a single class loader
as mandated by the Servlet 2.3
specification.

serverName (none) Specified in the server.xml file for
each virtual server.

contentTypeIgnoreFromSSI (none) Obsolete due to web application
support.

parameterEncoding parameter-encoding element

isModifiedCheckAggressive (none) Obsolete.

includeTransparency (none) Obsolete.

rules.properties
The rules.properties file is no longer supported in Sun Java System Web Server 6.1. The
function of the rules.properties file is now handled by the servlet-mapping element in the
web.xml file. For more information, see the Servlet 2.3 API specification at:

http://java.sun.com/products/servlet/index.jsp

rules.properties

Appendix A • Configuration Changes Between iPlanet Web Server 4.1 and Sun Java System Web Server 6.1 223

http://java.sun.com/products/servlet/index.jsp

servlets.properties
The servlets.properties file is no longer supported for the default virtual server and other
virtual servers. Most of the same functions are in the sun-web.xml file.

A few servlets.properties functions are in the server.xml file.

A few servlets.properties functions are in the web.xml file. For more information, see the
Servlet 2.3 API specification at:

http://java.sun.com/products/servlet/index.jsp

The following table lists the equivalent functions in the servlets.properties and
sun-web.xml files.

TABLE A–4 servlets.properties to sun-web.xml Correspondences for Individual Servlet Properties

servlets.properties
Property sun-web.xml Element or Attribute Comments

code (none) Specified in a servlet-class element in the web.xml
file.

context (none) Obsolete because servlets are hosted within a web
application which is deployed at the URI specified as the
value of the uri attribute of the “WEBAPP” on page 49
element in server.xml.

classpath (none) The Servlet 2.3 specification specifies that servlet classes
be packaged in the WEB-INF/classes directory or in .jar
archives in the WEB-INF/lib directory.

initArgs (none) Use the init-param element of the <servlet> tag in
web.xml to specify servlet-specific initialization
parameters.

startup (none) Specified in a load-on-startup element in the web.xml
file.

servlets.properties

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •224

http://java.sun.com/products/servlet/index.jsp

Configuration Changes Between iPlanet Web
Server 6.0 and Sun Java System Web Server 6.1

This chapter summarizes major configuration file changes between the 6.0 and the 6.1 version
of Sun Java System Web Server. The following files are described:

■ “magnus.conf” on page 225
■ “obj.conf” on page 227
■ “server.xml” on page 227

magnus.conf
This section lists the magnus.conf-related changes in the following areas:

■ “Init Functions” on page 225
■ “Directives” on page 226

Init Functions
The magnus.conf file in SUN Java System Web Server 6.1 has acquired new Init SAFs as listed in
the following table:

TABLE B–1 magnus.conf Init Functions

6.0 Function/Parameter 6.1 Function/Parameter Comments

NSServletEarlyInit (none) Removed.

NSServletLateInit (none) Removed.

BA P P E N D I X B

225

TABLE B–1 magnus.conf Init Functions (Continued)
6.0 Function/Parameter 6.1 Function/Parameter Comments

nt-console-init createconsole Removed. On Windows, you can
configure the createconsole
attribute of the “LOG” on page 65
element to redirect stderr output
to the console.

Directives
The magnus.conf file has lost directives to other configuration files and some directives
supported by the magnus.conf file in previous releases are now deprecated. The following table
summarizes the changes:

TABLE B–2 Changes in magnus.conf Directives

6.0 Directive 6.1 Value Comments

AdminLanguage (none) Deprecated.

AsyncDNS AsyncDNS Ignored. Even if the value is set to
on, the server does not perform
asynchronous DNS lookup.

CGIWaitPid (none) Deprecated.

ClientLanguage (none) Deprecated.

DefaultCharSet (none) Ignored.

ErrorLog (none) See the “Attributes” on page 65
attribute of the “LOG” on page 65
element in server.xml.

IOTimeout AcceptTimeout Use the AcceptTimeout directive to
specify the number of seconds the
server must wait for data from a
client before closing the
connection.

LogVerbose (none) See the “Attributes” on page 65
attribute of the “LOG” on page 65
element in server.xml.

LogVsId “Attributes” on page 65 See the “Attributes” on page 65
attribute of the “LOG” on page 65
element in server.xml.

NetsiteRoot (none) Deprecated.

magnus.conf

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •226

TABLE B–2 Changes in magnus.conf Directives (Continued)
6.0 Directive 6.1 Value Comments

ServerConfigurationFile (none) Ignored.

ServerID (none) Deprecated.

ServerName (none) Deprecated. See the servername
attribute of the “LS” on page 33
element in the server.xml file.

#ServerRoot (none) Deprecated.

obj.conf
The obj.conf file has acquired new SAFs and parameters as listed in Table 6-7. Only the new
and changed directives are listed.

TABLE B–3 obj.conf Changes

Supported in 6.0 Supported in 6.1 Comments

JSP092 object (none) Removed. Sun Java System Web
Server 6.1 supports the JSP 2.3
specification and so, the JSP092
object is not required.

server.xml
This section describes the following changes:

■ Table B–4
■ Table B–5
■ Table B–6

The following table lists the correspondences between the server.xml file in iPlanet Web
Server 6.0 and the server.xml file in Sun Java System Web Server 6.1:

TABLE B–4 server.xml to server.xml Correspondences

legacyls Not supported.

server.xml

Appendix B • Configuration Changes Between iPlanet Web Server 6.0 and Sun Java System Web Server 6.1 227

TABLE B–4 server.xml to server.xml Correspondences (Continued)
CONNECTIONGROUP The CONNECTIONGROUP element is not supported. The

defaultvs and servername attributes from the
CONNECTIONGROUP element are added to the “LS” on page 33
element in Sun Java System Web Server 6.1 during migration.

SSLPARAMS The SSLPARAMS element, in 6.0 parsed from the
CONNECTIONGROUP element, is a subelement of the “LS”
on page 33 element in Sun Java System Web Server 6.1.

VARS The functionality of the VARS element is handled by the
“PROPERTY” on page 31 element in Sun Java System Web
Server 6.1. However, the VARS element is still retained for
backward compatibility.

webapps_file

webapps_enable

Removed. The “WEBAPP” on page 49 element of the VS
element in server.xml handles web applications. Web
container-specific configuration is handled by the
sun-web.xml file.

The following table lists the correspondences between the start-jvm file in iPlanet Web Server
6.0 to the server.xml file in Sun Java System Web Server 6.1:

TABLE B–5 start-jvm and server.xml Correspondences

NSES_JDK “Attributes” on page 50

NSES_CLASSPATH “Attributes” on page 50

NSES_JRE_RUNTIME_LIBPATH “Attributes” on page 50

NSES_JRE_RUNTIME_CLASSPATH Use the -Xbootclasspath JVM option.

The following table lists the correspondences between the jvm12.conf file in iPlanet Web
Server 6.0 and the server.xml file in Sun Java System Web Server 6.1:

TABLE B–6 jvm12.conf and server.xml Correspondences

jvm.minHeapSize Use the -Xms<value> JVM option. Example:

<JVMOPTIONS>-Xms128m
-Xmx256m</JVMOPTIONS>

jvm.maxHeapSize Use the -Xmx<value> JVM option. Example:

<JVMOPTIONS>-Xms128m
-Xmx256m</JVMOPTIONS>

server.xml

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •228

TABLE B–6 jvm12.conf and server.xml Correspondences (Continued)
jvm.enableClassGC Use the -Xnoclassgc JVM option to disable

garbage collection.

jvm.option Use the “JVMOPTIONS” on page 52 element.

jvm.profiler Use the “PROFILER” on page 53 element.

jvm.verboseMode Use the -verbose JVM option.

jvm.printErrors Not supported.

jvm.disableThreadRecycling Not supported.

jvm.serializeAttach Not supported.

jvm.stickyAttach Not supported.

jvm.trace Configured in the LOGLEVEL element of the web
container.

jvm.allowExit Refer to information at the following URL for
more information about configuring this in the
server.policy file:

http://java.sun.com/

products/archive/j2se/1.4.1_07/index.html

jvm.include.CLASSPATH Use the “Attributes” on page 50 attribute of
the “JAVA” on page 50 element.

jvm.enableDebug Use the debug and debugoptions attributes

of the “JAVA” on page 50 element.

jvm.classpath Use the “Attributes” on page 50 and
“Attributes” on page 50 attributes of the JAVA
element.

The following table lists the correspondences between the web-apps.xml file in iPlanet Web
Server 6.0 and the sun-web.xml file in Sun Java System Web Server 6.1:

TABLE B–7 web-apps.xml and sun-web.xml Correspondences

<config-param<param-name>

redirect-to-absolute-url</param-name>

<param-value>false

</param-value></config-param>

Use the <property name="relativeRedirectAllowed"
value="true">

server.xml

Appendix B • Configuration Changes Between iPlanet Web Server 6.0 and Sun Java System Web Server 6.1 229

http://java.sun.com/products/archive/j2se/1.4.1_07/index.html
http://java.sun.com/products/archive/j2se/1.4.1_07/index.html

230

Time Formats

This module describes the format strings used for dates and times in the server log. These
formats are used by the NSAPI function util_strftime, by some built-in SAFs such as
append-trailer, and by server-parsed HTML (parse-html).

The formats are similar to those used by the strftime C library routine, but not identical.

The following table describes the format strings for dates and times.

TABLE C–1 Format Strings

Attribute Allowed Values

%a Abbreviated weekday name (3 chars)

%d Day of month as decimal number (01-31)

%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099

%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"

%A Full weekday name

%B Full month name

%C "%a %b %e %H:%M:%S %Y"

CA P P E N D I X C

231

TABLE C–1 Format Strings (Continued)
Attribute Allowed Values

%c Date & time "%m/%d/%y %H:%M:%S"

%D Date "%m/%d/%y"

%e Day of month as decimal number (1-31) without leading zeros

%I Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

%k Hour in 24-hour format (0-23) without leading zeros

%l Hour in 12-hour format (1-12) without leading zeros

%m Month as decimal number (01-12)

%n line feed

%p A.M./P.M. indicator for 12-hour clock

%R Time "%H:%M"

%r Time "%I:%M:%S %p"

%t tab

%U Week of year as decimal number, with Sunday as first day of week (00-51)

%w Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week (00-51)

%x Date "%m/%d/%y"

%y Year without century, as decimal number (00-99)

%% Percent sign

Time Formats

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •232

Alphabetical List of Server Configuration
Elements

A “AUTHREALM” on page 55

C “CONNECTIONPROPERTY” on page 63

“CUSTOMRESOURCE” on page 57

D “DAVCOLLECTION” on page 45

“DESCRIPTION” on page 32

“DISPLAYNAME” on page 48

E “EXTERNALJNDIRESOURCE” on page 58

J “JAVA” on page 50

“JDBCCONNECTIONPOOL” on page 59

“JDBCRESOURCE” on page 59

“JVMOPTIONS” on page 52

L “LS” on page 33

M “MAILRESOURCE” on page 64

“MIME” on page 36

P “PROFILER” on page 53

“PROPERTY” on page 31

Q “QOSPARAMS” on page 41

R “RESOURCES” on page 56

S “SEARCH” on page 47

DA P P E N D I X D

233

“SEARCHCOLLECTION” on page 47

“SECURITY” on page 54

“SERVER” on page 30

“SSLPARAMS” on page 35

U “USERDB” on page 42

V “VARS” on page 32

“VS” on page 39

“VSCLASS” on page 38

W “WEBAPP” on page 49

Alphabetical List of Server Configuration Elements

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •234

Alphabetical List of Predefined SAFs

This appendix provides an alphabetical list for the easy lookup of predefined SAFs.

A
“add-footer” on page 165

“add-header” on page 166

“append-trailer” on page 167

“assign-name” on page 126

B
“basic-auth” on page 117

“basic-ncsa” on page 118

C
“check-acl” on page 136

“common-log” on page 195

D
“deny-existence” on page 139

“document-root” on page 128

E
“error-j2ee” on page 199

F
“find-compressed” on page 137

“find-index” on page 139

“find-links” on page 140

“find-pathinfo” on page 141

EA P P E N D I X E

235

“flex-log” on page 196

“force-type” on page 152

G
“get-client-cert” on page 142

“get-sslid” on page 119

H
“home-page” on page 129

I
“imagemap” on page 169

“insert-filter” on page 158

“insert-filter” on page 160

K
“key-toosmall” on page 172

L
“list-dir” on page 173

“load-config” on page 143

M
“make-dir” on page 175

“match-browser” on page 120

N
“ntcgicheck” on page 146

“ntrans-dav” on page 130

“ntrans-j2ee” on page 131

“nt-uri-clean” on page 145

P
“pcheck-dav” on page 147

“pfx2dir” on page 131

Q
“qos-error” on page 200

“qos-handler” on page 121

“query-handler” on page 176

Alphabetical List of Predefined SAFs

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •236

“query-handler” on page 200

R
“record-useragent” on page 197

“redirect” on page 133

“remove-dir” on page 176

“delete-file” on page 177

“remove-filter” on page 159

“remove-filter” on page 161

“remove-filter” on page 178

“remove-filter” on page 201

“rename-file” on page 179

“require-auth” on page 147

S
“send-cgi” on page 180

“send-error” on page 182

“send-error” on page 202

“send-file” on page 183

“send-range” on page 185

“send-shellcgi” on page 185

“send-wincgi” on page 186

“service-dav” on page 187

“service-dump” on page 188

“service-j2ee” on page 189

“service-trace” on page 190

“set-default-type” on page 153

“set-variable” on page 122

“set-virtual-index” on page 148

Alphabetical List of Predefined SAFs

Appendix E • Alphabetical List of Predefined SAFs 237

“shtml_send” on page 191

“shtml-hacktype” on page 154

“ssl-check” on page 149

“ssl-logout” on page 150

“stats-xml” on page 192

“strip-params” on page 134

T
“type-by-exp” on page 155

“type-by-extension” on page 156

U
“unix-home” on page 135

“unix-uri-clean” on page 150

“upload-file” on page 194

Alphabetical List of Predefined SAFs

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •238

Index

A
AccelFileCache directive, 219
acceptlanguage, 39
AcceptLanguage directive, 219
AcceptTimeout, magnus.conf directive, 80
access log, 65
ACL, magnus.conf directives, 90-91
acl parameter, 137
ACLCacheLifetime, magnus.conf directive, 90-91
ACLCacheLifetime directive, 104
ACLFILE, 37
ACLFile directive, 219
ACLGroupCacheSize, magnus.conf directive, 91
ACLGroupCacheSize directive, 104
ACLUserCacheSize, magnus.conf directive, 91
ACLUserCacheSize directive, 104
add-footer function, 165-166
add-header function, 166-167
addCgiInitVars parameter, 192
AddLog, function descriptions, 195-198
Address directive, 219
Administration interface, more information about, 16
AdminLanguage directive, 219, 226
alias directory, 23
alphabetical reference, SAFs, 235-238
append-trailer function, 167-169
assign-name function, 126-128
AsyncDNS, magnus.conf directive, 78
AsyncDNS directive, 105, 220, 226
auth-group parameter, 148
auth-type parameter, 117, 118, 148
auth-user parameter, 148

authdb property, 223
AUTHREALM, 55-56
AuthTrans, function descriptions, 116-125

B
basedir parameter, 145
basic-auth function, 117-118
basic-ncsa function, 118-119
bin directory, 23
binddn property, 212
bindpw property, 212
BlockingListenSockets directive, 220
bong-file parameter, 139, 150
bucket parameter, 115
buffer-size parameter, 100
buffers-per-file parameter, 100, 197
bufferSize property, 223
built-in SAFs, 113-203

C
cache-size parameter, 99
CacheFileContent parameter, 215
certificates, settings in magnus.conf, 91-93
CGI, settings in magnus.conf, 87-89
CGIExpirationTimeout, magnus.conf directive, 87
CGIExpirationTimeout directive, 105
cgistub-path parameter, 101
CGIStubIdleTimeout, magnus.conf directive, 88
CGIStubIdleTimeout directive, 105

239

CGIWaitPid, magnus.conf directive, 88
CGIWaitPid directive, 105, 220
charset parameter, 153, 154, 156
check-acl function, 136-137
checkFileExistence parameter, 141
ChildRestartCallback, magnus.conf directive, 95
ChildRestartCallback directive, 105
chroot parameter, 181
chunked encoding, 94-95
ChunkedRequestBufferSize

magnus.conf directive, 94-95
obj.conf Service parameter, 163

ChunkedRequestBufferSize directive, 105
ChunkedRequestTimeout

magnus.conf directive, 95
obj.conf Service parameter, 163-165

ChunkedRequestTimeout directive, 105
cindex-init function, 98
Ciphers directive, 220
ClassCache directory, 24
ClassCache file, 25
classpath property, 223, 224
.clfilter files, 218
clientauth, 36
ClientLanguage directive, 220, 226
CmapLdapAttr property, 211
code parameter, 200, 201, 203
code property, 224
common-log function, 195-196
conf_bk directory, 24
conf_bk file, 26
config directory, 24
config file, 26
configuration, new, installing dynamically, 26
configuration files, stored in server root, 24
CONNECTIONPROPERTY, 63-64
connectons, settings in magnus.conf, 79-85
ConnQueueSize, magnus.conf directive, 81
ConnQueueSize directive, 105
content-type icons, 170
contentTypeIgnoreFromSSI property, 223
context property, 224
contexts.properties, changes to, 222-223

convergence tree
auxiliary class inetSubscriber, 68
in LDAP schema, 67
organization of, 68
user entries are called inetOrgPerson, 68

CopyFiles parameter, 216
core SAFs, 113-203
Core Server Elements, 30-32
createconsole, 66
CUSTOMRESOURCE, 57-58

D
DaemonStats directive, 220
DAV, 43-45
DAVCOLLECTION, 45-46
day of month, 231
dbm parameter, 118
dcsuffix property, 212
default virtual server, for a connection group, 35
DefaultCharSet directive, 220, 226
DefaultLanguage, magnus.conf directive, 78
DefaultLanguage directive, 105
define-perf-bucket function, 99
delete-file function, 177-178
deny-existence function, 139
descend parameter, 144
description parameter, 99
digest directory, 25
digestauth property, 212
digestfile, 213
dir parameter, 132, 141, 181
directives, obj.conf, 113-203
disable parameter, 103, 140
disable-types parameter, 144
DISPLAYNAME, 48
DNComps property, 210
DNS, magnus.conf directive, 79
dns-cache-init function, 99
DNS directive, 106
DNS lookup, directives in magnus.conf, 78-79
docRoot property, 223
docs directory, 23
document-root function, 128-129

Index

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •240

domain component tree, 68
domain component tree (dc), 68-69
dorequest parameter, 142
dotdirok parameter, 146, 151
DTD

Attributes, 29
Data, 28-29
Subelements, 28

dynamic reconfiguration, overview, 26
dyngroups property, 212

E
Elements in the server.xml File, 29
enc parameter, 152, 154, 155, 205
encoding, chunked, 94-95
Error directive, function descriptions, 198-203
error logging, settings in magnus.conf, 89-90
ErrorLog directive, 226
ErrorLogDateFormat, magnus.conf directive, 89
ErrorLogDateFormat directive, 106
errors

sending customized messages, 200, 201, 203
errors log, 65
escape parameter, 133
exec-hack parameter, 155
exp parameter, 155
expire parameter, 99
extension parameter, 146
EXTERNALJNDIRESOURCE, 58-59
ExtraPath, magnus.conf directive, 76
ExtraPath directive, 106
extras directory, 23

F
Favicon, magnus.conf directive, 96
file name extensions, MIME types, 205
file parameter, 144, 165, 167
FileCacheEnable parameter, 215
files, mapping types of, 205
filter parameter, 158, 159, 161, 162
FilterComps property, 210

find-index function, 139-140
find-links function, 140-141
find-pathinfo-forward parameter, 127, 132
find-pathinfo function, 141
flex-init function, 99
flex-log function, 196-197
flex-rotate-init function, 100
flexanlg directory, 23
flushTimer parameter, 163
force-type function, 152
format parameter, 98, 100
free-size parameter, 103
from parameter, 127, 132, 133, 149
funcs parameter, 102

G
get-client-cert function, 142-143
get-sslid function, 119-120
group parameter, 181
groupdb parameter, 117
groupfile, 213
groupfn parameter, 117
grpfile parameter, 119

H
hard links, finding, 140
HashInitSize parameter, 216
header parameter, 171
HeaderBufferSize, magnus.conf directive, 81
HeaderBufferSize directive, 106
home-page function, 129-130
http-compression filter, 138
httpacl directory, 24
https-admserv directory, 24
https-server_id.domain, 24
HTTPVersion, magnus.conf directive, 96
HTTPVersion directive, 106
HUP signal, PidLog and, 90

Index

241

I
icon-uri parameter, 99
ignore parameter, 98
imagemap function, 169
include directory, 25
index-names parameter, 140
index-simple function, 171-172
inetOrgPerson, in convergence tree, 68
Init, function descriptions, 76
init-cgi function, 101
init-clf function, 101
Init functions, 97-104, 222, 225-226
init-uhome function, 101
initArgs property, 222, 224
InitFn property, 211
Input, function descriptions, 157-159
inputStreamLengthCheck property, 223
insert-filter SAF, 158, 160-161
iponly function, 196, 197
isModifiedCheckAggressive property, 223

J
J2SE SecurityManager, 217
JAVA, 50-52
Java Configuration Elements, 50-56
JDBCCONNECTIONPOOL, 59-63
JDBCRESOURCE, 59
JVMOPTIONS, 52-53

K
KeepAliveQueryMaxSleepTime, magnus.conf

directive, 81
KeepAliveQueryMeanTime, magnus.conf directive, 81
KeepAliveThreads directive, 107
KeepAliveTimeout

magnus.conf directive, 82
KeepAliveTimeout directive, 107
KernelThreads, magnus.conf directive, 82
KernelThreads directive, 107
key-toosmall function, 172-173
keyfile, 213

L
lang parameter, 152, 154, 155, 205
language issues, directives in magnus.conf, 78
LDAP, iPlanet schema, 67-69
lib directory, 25
library property, 211
LICENSE.txt, 25
links, finding hard links, 140-141
list-dir function, 173-174
Listener Elements, 33-43
ListenQ, magnus.conf directive, 83
ListenQ directive, 107
load-config function, 143-145
load-modules function, 102
loadbal directory, 25
LoadObjects directive, 220
LOG, 65-66
log analyzer, 195, 196
log_anly directory, 23
log file

analyzer for, 195, 196
LogFlushInterval directive, 108
logging, settings in magnus.conf, 89-90
login.conf, 214
logs directory, 24
logs file, 26
logstderr, 66
logstdout, 66
logtoconsole, 66
LogVerbose directive, 220, 226
LS

id, 34
ip attribute, 34

M
magnus.conf

changes to, 219-221, 225-227
miscellaneous directives, 95-96

MAILRESOURCE, 64-65
make-dir function, 175
manual directory, 25
match-browser function, 120-121
MaxAge parameter, 215

Index

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •242

MaxCGIStubs, magnus.conf directive, 88
MaxCGIStubs directive, 108
MaxFiles parameter, 216
MaxKeepAliveConnections, magnus.conf directive, 83
MaxKeepAliveConnections directive, 108
MaxProcs, magnus.conf directive, 83
MaxProcs directive, 108
MaxRqHeaders, magnus.conf directive, 96
MaxRqHeaders directive, 108
MaxThreads directive, 220
maxthreads parameter, 104
MediumFileSizeLimit parameter, 216
MediumFileSpace parameter, 216
method parameter, 143, 162
methods function, 103
mime.types file, 205

sample of, 207-208
syntax, 207

MinCGIStubs, magnus.conf directive, 88
MinCGIStubs directive, 108
MinProcs directive, 220
MinThreads directive, 220
minthreads parameter, 104
MMapSessionManager, 24
month name, 231
MtaHost directive, 220

N
name parameter, 127, 132, 135, 196, 197

of define-perf-bucket function, 99
of thread-pool-init function, 103

NameTrans, function descriptions, 126-135
native thread pools, settings in magnus.conf, 86-87
NativePoolMaxThreads, magnus.conf directive, 86
NativePoolMaxThreads directive, 108
NativePoolMinThreads, magnus.conf directive, 86
NativePoolMinThreads directive, 108
NativePoolQueueSize, magnus.conf directive, 87
NativePoolQueueSize directive, 108
NativePoolStackSize, magnus.conf directive, 86
NativePoolStackSize directive, 108
NativeThread parameter, 102
NetSiteRoot directive, 220, 226

nice parameter, 181
nocache parameter, 184
nostat parameter, 128
nsacl directory, 25
nsapi directory, 25
NSCP_POOL_STACKSIZE, 86
NSCP_POOL_THREADMAX, 86
NSCP_POOL_WORKQUEUEMAX, 86
nsessions property, 212
nsfc.conf, 215-216
NSIntAbsFilePath parameter, 165, 167
nt-console-init function, 102, 226
nt-uri-clean function, 145-146
ntcgicheck function, 146-147
ntrans-base, 127, 128, 132
num-buffers parameter, 100

O
obj.conf

changes to, 221-222, 227
directives, 113-203

objectfile, 39
ObjectType, function descriptions, 151-157
opts parameter, 98
Output, function descriptions, 160-162
outputStreamFlushTimer property, 223

P
parameterEncoding property, 223
parse-html function, 222
path parameter, 130, 137, 139, 148, 176, 182, 201, 202
PathCheck, function descriptions, 136-151
pcheck-dav function, 147
perf-init function, 102
pfx2dir function, 131-133
PidLog, magnus.conf directive, 90
PidLog directive, 108
plug-ins directory, 25
pool-init function, 103
pool parameter, 102
Port directive, 221

Index

243

PostThreadsEarly, magnus.conf directive, 83
PostThreadsEarly directive, 109
predefined SAFs, 113-203
processes, settings in magnus.conf, 79-85
PROFILER, 53-54
profiling parameter, 103
pwfile parameter, 102, 135

Q
qos-error function, 200
qos-handler function, 121
qosactive, 31
qosmetricsinterval, 31
QOSPARAMS, 41-42
qosrecomputeinterval, 31
query-handler function, 176, 200-201
query parameter, 162
queueSize parameter, 104

R
RcvBufSize, magnus.conf directive, 84
RcvBufSize directive, 109
readme parameter, 171
realm parameter, 148
reason parameter, 201, 203
record-useragent function, 197-198
redirect function, 133-134
register-http-method function, 103
reloadInterval property, 223
remove-dir function, 176-177
remove-filter SAF, 159, 161-162
rename-file function, 179-180
require-auth function, 147-148
require parameter, 142
Resource Elements, 56-65
RESOURCES, 56-57
respondCookieVersion property, 222
restart file, 26
rlimit_as parameter, 181
rlimit_core parameter, 181
rlimit_nofile parameter, 181

root parameter, 129
rootobject, 39
RootObject directive, 221
rotate-access parameter, 100
rotate-callback parameter, 101
rotate-error parameter, 100
rotate-interval parameter, 100
rotate-start parameter, 100
RqThrottle, magnus.conf directive, 84
RqThrottle directive, 109
RqThrottleMin, magnus.conf directive, 84
RqThrottleMinPerSocket directive, 109
rules.properties, changes to, 223

S
SAFs

alphabetical reference, 235-238
Init, 76
predefined, 113-203

samples directory, 25
SEARCH, 47
search directory, 24, 25
Search Elements, 46-48
SEARCHCOLLECTION, 47-48
secret-keysize parameter, 150
Secuity, magnus.conf directive, 91-92
SECURITY, 54-55
security, settings in mangus.conf, 91-93
Security directive, 109
send-cgi function, 180-182
send-error function, 182-183, 202-203
send-file function, 183-184
send-range function, 185
send-shellcgi function, 185-186
send-wincgi function, 186-187
server

handling of authorization of client users, 116
HUP signal, 90
killing process of, 90
TERM signal, 90

server information, magnus.conf directives, 76-78
server.policy, 217-218
server.xml, 27

Index

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •244

server.xml (Continued)
more information, 156
variables defined in, 182

server.xml elements
ACLFILE, 37-38
AUTHREALM, 55-56
CONNECTIONPROPERTY, 63-64
CUSTOMRESOURCE, 57-58
DAV, 43-45
DAVCOLLECTION, 45-46
DESCRIPTION, 32
DISPLAYNAME, 48
EXTERNALJNDIRESOURCE, 58-59
JAVA, 50-52
JDBCCONNECTIONPOOL, 59-63
JDBCRESOURCE, 59
JVMOPTIONS, 52-53
LOG, 65-66
LS, 33-35
MAILRESOURCE, 64-65
MIME, 36-37
PROFILER, 53-54
PROPERTY, 31-32
QOSPARAMS, 41-42
RESOURCES, 56-57
SEARCH, 47
SEARCHCOLLECTION, 47-48
SECURITY, 54-55
SERVER, 30-31
SSLPARAMS, 35-36
USERDB, 42-43
VARS, 32
VS, 39-41
VSCLASS, 38-39
WEBAPP, 49-50

servercertnickname, 35
ServerName directive, 221
serverName property, 223
ServerRoot directive, 221
Service, function descriptions, 162-195
service-dav function, 187-188
service-dump function, 188-189
servlets directory, 25
servlets.properties, changes to, 224

SessionData, 24
SessionData directory, 24
SessionData file, 26
sessionmgr.initArgs property, 222
sessionmgr property, 222
set-default-type function, 153
set-variable function, 122-125
set-virtual-index function, 148-149
setup directory, 25
shlib parameter, 102
shtml-hacktype function, 154
shtml_send function, 191-192, 222
ShtmlMaxDepth parameter, 192
singleClassLoader property, 223
SmallFileSizeLimit parameter, 216
SmallFileSpace parameter, 216
SndBufSize, magnus.conf directive, 84
SndBufSize directive, 109
snmp directory, 25
SSL, settings in magnus.conf, 91-93
ssl-check function, 149-150
ssl-logout function, 150
ssl2, 36
SSL2 directive, 221
ssl2ciphers, 36
ssl3, 36
SSL3 directive, 221
SSL3Ciphers directive, 221
SSL3SessionTimeout, magnus.conf directive, 93
SSL3SessionTimeout directive, 109
ssl3tlsciphers, 36
SSLCacheEntries

magnus.conf directive, 92
SSLCacheEntries directive, 109
SSLClientAuth directive, 221
SSLClientAuthDataLimit, magnus.conf directive, 93
SSLClientAuthDataLimit directive, 109
SSLClientAuthTimeout, magnus.conf directive, 93
SSLClientAuthTimeout directive, 110
SSLSessionTimeout, magnus.conf directive, 93
SSLSessionTimeout directive, 110
StackSize, magnus.conf directive, 84
StackSize directive, 110
stackSize parameter, 104

Index

245

start file, 26
startconsole file, 25
startsvr.bat, 24
startup property, 224
statistic collection, settings in magnus.conf, 89-90
stats-init function, 103
stderr parameter, 102
stdout parameter, 102
stop file, 26
stopsvr.bat, 24
StrictHttpHeaders, magnus.conf directive, 85
StrictHttpHeaders directive, 110
strip-params function, 134
subdir parameter, 135
Sun Java System LDAP Schema, 67-69
sun-web-server_6_1.dtd, 27
symbolic links, finding, 140
syntax, 213

mime.types file, 207

T
TempDir, magnus.conf directive, 76-77
TempDir directive, 110
TempDir parameter, 216
tempDir property, 222
TempDirSecurity, magnus.conf directive, 77
TempDirSecurity directive, 110
TERM signal, 90
TerminateTimeout, magnus.conf directive, 85
TerminateTimeout directive, 110
thread-pool-init function, 103
thread pools, settings in magnus.conf, 86-87
ThreadIncrement, magnus.conf directive, 85
ThreadIncrement directive, 110
threads, settings in magnus.conf, 79-85
tildeok parameter, 146
timefmt parameter, 168
timeout parameter, 101
timezone parameter, 98
tls, 36
tlsrollback, 36
trailer parameter, 168
TransmitFiles parameter, 216

type-by-exp function, 155
type-by-extension, 206
type-by-extension function, 156-157
type parameter, 152, 155, 162, 205

U
Umask, magnus.conf directive, 96
Umask directive, 110
unix-home function, 135
unix-uri-clean function, 150
Unix user account, specifying, 77-78
update-interval parameter, 103
upload-file function, 194-195
uri parameter, 165, 167
uri property, 223
URL, mapping to other servers, 131-133
url parameter, 133
url-prefix parameter, 133
UseNativePoll, magnus.conf directive, 85
UseNativePoll directive, 111
UseOutputStreamSize

magnus.conf directive, 94
obj.conf Service parameter, 163

UseOutputStreamSize directive, 111
User, magnus.conf directive, 77-78
user account, specifying, 77-78
User Database Selection, 66-67
User directive, 111
user home directories, symbolic links and, 140
user parameter, 181
USERDB, 42-43, 66
userdb directory, 25
userdb parameter, 117
userfile, 213
userfile parameter, 118
userfn parameter, 117
usesyslog, 66
util_strftime, 231

V
Variable Evaluation, 70-71

Index

Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference •246

vARIABLES
General Variables, 70

Variables, send-cgi Variables, 70
vARIABLES

send-cgi Variables, 70
verifycert property, 210
virtual-index parameter, 149
virtual server log, 65
virtual-servers parameter, 103
VirtualServerFile directive, 221
VS, 39-41
VSCLASS, 38-39

id, 39

W
Web Application Elements, 49-50
WEBAPP, 49-50
WebDAV Elements, 43-46
weekday, 231
widths parameter, 98
WincgiTimeout, magnus.conf directive, 89
WincgiTimeout directive, 111

Index

247

248

	Sun Java System Web Server 6.1 SP7 Administrator's Configuration File Reference
	Preface
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	Product Support

	Basics of Server Operation
	Configuration Files
	server.xml
	magnus.conf
	obj.conf
	mime.types
	Other Configuration Files

	Directory Structure
	All Platforms
	UNIX and Linux Platforms

	Dynamic Reconfiguration

	Server Configuration Elements in server.xml
	sun-web-server_6_1.dtd File
	Subelements
	Data
	Attributes

	Elements in the server.xml File
	Core Server Elements
	SERVER
	Subelements
	Attributes

	PROPERTY
	Subelements
	Attributes

	DESCRIPTION
	Subelements
	Attributes

	VARS
	Subelements
	Attributes

	Listener Elements
	LS
	Subelements
	Attributes

	SSLPARAMS
	Subelements
	Attributes

	MIME
	Attributes

	ACLFILE
	Subelements
	Attributes

	VSCLASS
	Subelements
	Attributes

	VS
	Subelements
	Attributes

	QOSPARAMS
	Subelements
	Attributes

	USERDB
	Subelements
	Attributes

	WebDAV Elements
	DAV
	Subelements
	Attributes

	DAVCOLLECTION
	Subelements
	Attributes

	Search Elements
	SEARCH
	Subelements
	Attributes

	SEARCHCOLLECTION
	Subelements
	Attributes

	DISPLAYNAME
	Subelements
	Attributes

	Web Application Elements
	WEBAPP
	Subelements
	Attributes

	Java Configuration Elements
	JAVA
	Subelements
	Attributes

	JVMOPTIONS
	Subelements
	Attributes

	PROFILER
	Subelements
	Attributes

	SECURITY
	Subelements
	Attributes

	AUTHREALM
	Subelements
	Attributes
	Properties

	Resource Elements
	RESOURCES
	Subelements
	Attributes

	CUSTOMRESOURCE
	Subelements
	Attributes

	EXTERNALJNDIRESOURCE
	Subelements
	Attributes

	JDBCRESOURCE
	Subelements
	Attributes

	JDBCCONNECTIONPOOL
	Subelements
	Attributes
	Properties

	CONNECTIONPROPERTY
	Subelements
	Attributes

	MAILRESOURCE
	Subelements
	Attributes

	LOG
	Subelements
	Attributes

	User Database Selection
	Sun Java System LDAP Schema
	Convergence Tree
	Domain Component (dc) Tree

	Variables
	Format of a Variable
	The id Variable
	Other Important Variables
	General Variables
	send-cgi Variables

	Variable Evaluation

	Sample server.xml File

	Syntax and Use of magnus.conf
	Init Functions
	Server Information
	ExtraPath
	Syntax

	TempDir
	Syntax
	Default

	TempDirSecurity
	Syntax
	Default

	User
	Syntax
	Default
	Examples

	Language Issues
	DefaultLanguage
	Default

	DNS Lookup
	AsyncDNS
	DNS

	Threads, Processes, and Connections
	AcceptTimeout
	Syntax
	Default

	ConnQueueSize
	Default

	HeaderBufferSize
	Default

	KeepAliveQueryMaxSleepTime
	Default

	KeepAliveQueryMeanTime
	Default

	KeepAliveThreads
	Default

	KeepAliveTimeout
	Default

	KernelThreads
	Default

	ListenQ
	Default

	MaxKeepAliveConnections
	MaxProcs (UNIX Only)
	Default

	PostThreadsEarly
	Default

	RcvBufSize
	Default

	RqThrottle
	RqThrottleMin

	SndBufSize
	Default

	StackSize
	Default

	StrictHttpHeaders
	Syntax
	Default

	TerminateTimeout
	Default

	ThreadIncrement
	Default

	UseNativePoll (UNIX only)
	Default

	Native Thread Pools
	NativePoolStackSize
	Default

	NativePoolMaxThreads
	NativePoolMinThreads
	Default

	NativePoolQueueSize
	Default

	CGI
	CGIExpirationTimeout
	Default

	CGIStubIdleTimeout
	Default

	CGIWaitPid (UNIX Only)
	Default

	MaxCGIStubs
	Default

	MinCGIStubs
	Default

	WincgiTimeout
	Default

	Error Logging and Statistic Collection
	ErrorLogDateFormat
	Syntax
	Default

	LogFlushInterval
	Default

	PidLog
	Syntax
	Default
	Examples

	ACL
	ACLCacheLifetime
	Default

	ACLUserCacheSize
	Default

	ACLGroupCacheSize
	Default

	Security
	Security
	Syntax
	Default
	Example

	ServerString
	Syntax
	Example

	SSLCacheEntries
	Syntax

	SSLClientAuthDataLimit
	Default

	SSLClientAuthTimeout
	Default

	SSLSessionTimeout
	Syntax
	Default

	SSL3SessionTimeout
	Syntax

	Chunked Encoding
	UseOutputStreamSize
	Syntax
	Default

	ChunkedRequestBufferSize
	Syntax
	Default

	ChunkedRequestTimeout
	Syntax
	Default

	Miscellaneous Directives
	ChildRestartCallback
	Default

	Favicon
	HTTPVersion
	Default

	MaxRqHeaders
	Default

	Umask (UNIX only)

	Deprecated Directives
	Summary of Init Functions and Directives in magnus.conf
	Purpose
	Location
	Syntax
	See Also
	Init Functions
	Directives

	Predefined SAFs in obj.conf
	List of SAFs
	The bucket Parameter
	AuthTrans
	basic-auth
	Parameters
	Examples
	See Also

	basic-ncsa
	Parameters
	Examples
	See Also

	get-sslid
	Parameters

	match-browser
	Syntax
	Parameters
	Example
	See Also

	qos-handler
	Parameters
	Example
	See Also

	set-variable
	Syntax
	Parameters
	Variables
	Examples
	See Also

	NameTrans
	assign-name
	Parameters
	Example

	document-root
	Parameters
	Examples
	See Also

	home-page
	Parameters
	Examples

	match-browser
	ntrans-dav
	Parameters
	Example
	See Also

	ntrans-j2ee
	Parameters
	Example
	See Also

	pfx2dir
	Parameters
	Examples

	redirect
	Parameters
	Examples

	set-variable
	strip-params
	Parameters
	Example

	unix-home
	Parameters
	Examples
	See Also

	PathCheck
	check-acl
	Parameters
	Example

	find-compressed
	Parameters
	Example
	See Also

	deny-existence
	Parameters
	Examples

	find-index
	Parameters
	Example

	find-links
	Parameters
	Examples
	See Also

	find-pathinfo
	Parameters
	Examples

	get-client-cert
	Parameters
	Example

	load-config
	Parameters
	Examples

	match-browser
	nt-uri-clean
	Parameters
	Example
	See Also

	ntcgicheck
	Parameters
	Example
	See Also

	pcheck-dav
	Parameters
	See Also

	require-auth
	Parameters
	Example
	See Also

	set-variable
	set-virtual-index
	Parameters
	Example

	ssl-check
	Parameters

	ssl-logout
	Parameters

	unix-uri-clean
	Parameters
	Example
	See Also

	ObjectType
	force-type
	Parameters
	Example
	See Also
	match-browser
	set-default-type
	Parameters
	Example
	set-variable
	shtml-hacktype
	Parameters
	Example
	type-by-exp
	Parameters
	Example
	See Also
	type-by-extension
	Parameters
	Example
	See Also

	Input
	insert-filter
	Returns
	Parameters
	Example

	match-browser
	remove-filter
	Returns
	Parameters
	Example

	set-variable

	Output
	insert-filter
	Returns
	Parameters
	Example

	match-browser
	remove-filter
	Returns
	Parameters
	Example

	set-variable

	Service
	type
	method
	query
	UseOutputStreamSize
	flushTimer
	ChunkedRequestBufferSize
	ChunkedRequestTimeout
	add-footer
	Parameters
	Examples
	See Also

	add-header
	Parameters
	Examples
	See Also

	append-trailer
	Parameters
	Examples
	See Also

	imagemap
	Parameters
	Example

	index-common
	Parameters
	Example
	See Also

	index-simple
	Parameters
	Example
	See Also

	key-toosmall
	Parameters
	Example

	list-dir
	Parameters
	Example

	make-dir
	Parameters
	Example

	match-browser
	query-handler
	Parameters
	Examples

	remove-dir
	Parameters
	Example

	delete-file
	Parameters
	Example

	remove-filter
	Returns
	Parameters
	Example

	rename-file
	Parameters
	Example

	send-cgi
	Parameters
	Example

	send-error
	Parameters
	Example

	send-file
	Parameters
	Example

	send-range
	Parameters
	Example

	send-shellcgi
	Parameters
	Examples

	send-wincgi
	Parameters
	Examples

	service-dav
	Parameters
	Examples
	See Also

	service-dump
	Parameters
	Examples
	See Also

	service-j2ee
	Parameters
	Examples
	See Also

	service-trace
	Parameters
	Example

	set-variable
	shtml_send
	Parameters
	Example

	stats-xml
	Parameters
	Examples
	See Also

	upload-file
	Parameters
	Example

	AddLog
	common-log
	Parameters
	Examples
	See Also

	flex-log
	Parameters
	Examples
	See Also

	match-browser
	record-useragent
	Parameters
	Example
	See Also

	set-variable

	Error
	error-j2ee
	Parameters
	See Also

	match-browser
	qos-error
	Parameters
	Example
	See Also

	query-handler
	Parameters
	Examples

	remove-filter
	Returns
	Parameters
	Example
	send-error
	Parameters
	Example

	set-variable
	Example

	MIME Types
	Introduction
	Determining the MIME Type
	How the Type Affects the Response
	What Does the Client Do with the MIME Type?
	Syntax of the MIME Types File
	Sample MIME Types File

	Other Server Configuration Files
	certmap.conf
	Purpose
	Location
	Syntax
	See Also

	dbswitch.conf
	Purpose
	Location
	Syntax
	See Also

	Deployment Descriptors
	Purpose
	Location
	See Also

	generated.instance.acl
	Purpose
	Location
	See Also

	login.conf
	Purpose
	Location

	nsfc.conf
	Purpose
	Location
	Syntax
	See Also

	password.conf
	Purpose
	Location
	Syntax
	See Also

	server.policy
	Purpose
	Location
	Syntax
	See Also

	*.clfilter
	Purpose
	Location

	Configuration Changes Between iPlanet Web Server 4.1 and Sun Java System Web Server 6.1
	magnus.conf
	obj.conf
	contexts.properties
	rules.properties
	servlets.properties

	Configuration Changes Between iPlanet Web Server 6.0 and Sun Java System Web Server 6.1
	magnus.conf
	Init Functions
	Directives

	obj.conf
	server.xml

	Time Formats
	Alphabetical List of Server Configuration Elements
	Alphabetical List of Predefined SAFs
	Index

