Sun Java System Web Server 6.1
SP10 NSAPI Programmer's Guide

»
2 Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 820-5718
September 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. AIl SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de contréle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de contrdle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN LETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080918@20795

Contents

PrOFACE ... bbbttt 17

Syntaxand Use 0f 0BJ.CONTc.oooviiiii e es 23

How the Server Handles Requests from CLHENLSccevvreerieiniririiireinesesisesiesssssesesssssssssssssses 24
HTTP Basics

NSAPI Filters
Request-handling Process
Directives for Handling REQUESEScccveururirieiriiierieieieenisieseeseseeseseesssssssssssssesssssssssssesns 26

Dynamic RECONTIGUIATIONuvuuuiuririrrieiirieieieieisieisesteesee ettt essse s ass s sasss s ssesesassessans

Server Instructions in obj.conf

SUMMATY Of the DIFECHIVESvueuviiieiricieirecirteiereet ettt 28
Configuring HTTP COMPIESSION ...ecvrrrerrierieiieririssiessssesesssesssssssessssssessssssssssessssssessssessssssessssssesssss 31
The ODbject and CHENT TGS ...cuevururerieieiierieireieireeieiseete ettt sse st s et sasseeasaessnans 32

THE ODJECE TAG ettt bttt 32

THE CLHENE TAG ..ttt sss st e s s s s ssesasssssesssssssensssnnsnsesesns 34
Variables Defined in SErVEr. XMoovueuiririieinieieiieie ettt nsssees 36
Flow Of CONrol in ODJ.CONT ..ottt 37

AULNTTAIS oottt ettt sttt bbbttt ebebeeaebees 37

NAMETTANS .ottt ettt a ettt nesessenen 37

PAtRCRECK ...ttt nsesnaes 39

Changes in Function Flow

J Ny o o Y e b T £

Contents

RESTATES .ttt ettt ettt b ettt e b ettt ettt enen 45
URI TTANSIATION <.evieivivcveieieiieccieiete ettt s s s s sssssssssasse bbb s sansnansesas 45
Syntax Rules for Editing 0Dj.CONTc.ociririiiriieirreireie sttt 45
Order Of DIFECHIVES ...uovcvivveeieieiieeeiete ettt se bbb b bbb sanananaeses 45

Parameters

SAFsinthe magnuS.CONFFIlEooviiiiiece et 49
INIE SATFS ottt ettt et ettt ettt b et et e ne b e s et e ae s et s e e ese st sese it et eneeaenn 49

PAT@IMELETS ...veuiiteiiieiiieie ettt ettt ettt ettt sttt ettt bttt betebeneas 53
EXAIMIPLE ..ottt sttt s et e s e st s saesenas 54
FLEXTIEE 1ovvvviieeeeeeeetet ettt ettt ettt s et e s e s s e b s s e sesesese s e s e s s s s esesesese s s e st e e e aesesesesesnnnns 54
Parameters ...c.oo ottt ettt 55
More 0n Log FOIMALc.cucuiiiiiiiiiicciiiic e 55

Examples

See Also

FlEX-TOtALE-IIIL 1.eeeeeeieee ettt s st s et sse e s sesesesesesnnnens
PATQIMETEIS .ottt ettt et ettt b bbbt ettt enen 59
EXAIMPLE ..ottt ettt ettt nne s s 59

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Contents

TN Yo T 59
INIE-CEI ettt 60
PATQIMIELETS .uvieiieeieeeee ettt ettt ettt e e e te e e teeeaae e ba e et eebeeesseeabeeeaaeeaseebeeerbeereeeaneenraans 60

Parameters
EXAMIPLES ..ottt ettt ettt netes
SEE ALSO ettt sttt et s e ae st et sennneneaesetes
IV 1ttt sttt s s s ettt s e e s s s s s et et et e s s sreseseseseseses s ennaens
Parameters
EXAIPLE .ttt bbbttt
EXAINPLE ottt ettt bttt 62
INIE-TIIEET-OTAET eviviiiieiecceee ettt ettt st b bbb s s s bbb b s s ansnaes 62
Parameters ..ottt ettt e s 63

Example

INHE-J2EE vttt ettt sttt b ettt ee

Parameters

Parameters
EXAIMPLES ..ottt e ettt

LG e B 5 s o Te 111 =X OO

Parameters
EXAIMIPLES .oovviiiieeicieicieieie ettt s st s et s st n e nnnnnnsenenes

nt-console-init

Example
See Also

POOL-IIIIE 1ottt ettt bttt b bbb

PATQIMIELETS .ottt ettt et et e et e e te e et e e bt e eaeeebeeeaeeeate e breeateereeeaaeeareans 67

register-http-method

PATQIMIELETS .eveieiecteeeee ettt ettt et et e te e e b e e ba e et eebeeeaeeebeeeabeeraeebeeeaaeereeeaaeenreens

Contents

EXAIMPLE .ttt sttt ettt 68
STALSTIUIT 1.ttt ettt b bttt a bttt e h e b bt et ae e a e b e e et et beeaens 69
PATQMELEIS ...eeiiiiiteee ettt sttt ettt 69
EXAIMIPLE ..ottt 69
thread-POOL-INIL ..ecveveiriiiicce ettt s e e st s s eeaens 69
Parameters .70
EXAIMPLE ..ttt bbbttt ettt 70
SEE ALSO ottt b et b b s s r ettt b s s s a s et et et s s aens 71
Creating Custom SAFs
Future CompatiDility ISSUESccvuerrrririririrerieieieisisiiessieseseeseeessssss s s ssessssssssssssssssssssesssssssssssssnes 74
THE SAF INEEITACE .vvveiieieeeeieieieieis ettt s s s s st st s s s sesesssnsesesesnssnnanns 74
SAF PATQIMETETS ...veuiieiiieieiieict ettt ettt ettt ettt st e b ettt e st eb et ebe b ebenesenen 74
PD (PArameter BIOCK)cueuriueiriiieiieieiceiee ettt ettt 74
sn (session)
rq (request)
RESUIL COAES ...ttt sttt s s s s s s s s esesssesesessssssesnsnsnsesesnes
Creating and Using CuStOm SAFS ..ottt 77
W To create @ CUSLOM SATF ..ttt 77
WTite the SOUICE COAE ...oviirieiiiieieieieiriieceeteie sttt s s s s s s ssnsnsasanes 77
COMPile AN LINK .ottt ettt 78
Load and Initialize the SAF ... 81
Instruct the Server to Call the SAFSoovieeeeieieiceee et ssssssssenes 82
RESTATT the SEIVET ...evvivieiiiececeietete ettt bbbt bbb as bbb s nanasaneeees 83
TESEHRE SAF ettt 84
OVerview Of NSAPI C FUNCHIONScevevieieieieeieieieieiiessesieesesssssesssss e s ssssssssssssssesesessssssssssssesesesens 84
Parameter Block Manipulation ROULINEScccvrueiririeiieininieinieieiee et ssssssenenns 84
Protocol Utilities for Service SAFs .85
Memory Managementccceeeriniieniiininieinieit ettt sttt 85
FILE T/O ottt b s et s st e s st s ssansenas 86
INEEWOTK I/O ottt ae s s st s st sa s ssssssesesesessssnsnsasasas 86
TRICAAS ...ttt ettt b e a bbb bbb n e e bbb besenanananentas 86
TUHLEIES oottt ettt sttt ettt neacs

Virtual Server
Required Behavior of SAFs for Each Directive

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Contents

TEE SATES ettt ettt ettt b ettt eben 89
AULNTTANS SAFS ..ottt sttt b s s b b s s s sananaeteses 89
NAMETTANS SAFS ettt ettt ettt a et b et se e seneees 89
PathCRECK SAFS ..evvvteieeete ettt bbb s et a s bbb s s s s aesenes 90
ODJECETYPE SATFS ...ttt ettt s et s e ens s sesssesssseessanansnsesns 90
Input SAFs
OUEPUL SATFS ettt ettt bbbt 90
SEIVICE SAFS ..ttt ettt b ettt b et ettt b ettt se e eten 90
EITOT SAFS oottt ettt ettt ettt ettt et enan 91
AAALOZ SAFS ettt st s bbb 91
CGI t0 NSAPT CONVETSION ...cutuiuiriiiiiiieieirtrisieieieieeestse sttt ettt et s bbbt sesesebesenenen 91
Creating CuSTOM FIlRErS ..ot 95
Future COmMPatiDIlItY ISSUEScucueviueiriiieirieieicieie ettt ettt 95
The NSAPI FIlter INTEITACE .vcveveviiieeececieieie ettt bbbt bbbt s s 96

Filter Methods
C Prototypes for Filter Methodscocueureueuriiciricieiceiseecinecieieesecieseseeeesesseesesseseseeeaes 96

insert

Position of Filters in the FIlter STACKccovvvriiieeeririeiri ettt esnses 99
Filters that Alter Content-Lengthccoieiniiiriieinieieicsirceiset ettt 101
Creating and Using CUStOM FIIEETScceviurieiriiriirieiriiniereiseieeetseseieesesseeessetsesesetsesessessessesennes 102
V¥V To create a custom filter
WTite the SOUICE COAEuiviviviiiieeciciete ettt bbb a s b s esseaes
Compile and LINK ..c.c.ovieiicieiiceecccrccteeeesecieeseact e seseseasese et sseasseeneaes
Load and Initialize the FILETcccoveiriiieeeieisccceeee ettt sssssssenes 103
Instruct the Server to InSert the FIlLerc.coviviiiiieeecieeeee et 103

Restart the Server
TeSt the FIlter ...ooovvvivveeiieieceeieeeceeee s

Overview of NSAPI Functions for Filter Development

Contents

5

Examples of Custom SAFsand Filtersccccooiicccce e 107
Examples in the BUildc.ooieeieiiieee ettt
AUhTTans EXAMPLEovieeiieiririiicceieiee ettt sttt s s ssss e sesesesnsssnens
Installing the Example
Source Code
NameTrans Example
Installing the Example
SOULCE COME ..ot s
PathCheck EXAMPIEcueuiuiieiiieiricieiceieir ettt sttt eeans
Installing the Example
SOULCE COME ..ottt sttt
ODbJECtTYPE EXAMPLE «..cuceieiiiciicieireciscietsee ettt sttt et
Installing the Example
SOULCE COME .ttt e
OULPUL EXAMPLE ..ottt ettt s ettt asseessassenans
Installing the Example
SOULCE COME ..ttt st
SEIVICE EXAIMPIE ...oouivvieiiiacieicietri ettt bbb bbbttt

Installing the Example

SOUICE COMER ettt e e
More Complex Service Example
AdALOZ EXAMPIE ..ottt ettt sttt ettt
Installing the EXAMPLE ...c.ovvueuierieiieirieieieeisieieee ettt ass s naas

SOUICE COME ..ottt e e
Quality Of SErvice EXAMPLEcceuiveieiriirieieiriicirctseieieiseie ettt seb ettt sese s
Installing the Example

SOUICE COAE ettt ettt et st et et e s sae s et estesseseetessessenteneesssesessensesessennan

Creating Custom Server-parsed HTMLTAgSc.coooouimiririinieieeeeeees et
Define the Functions that Implement the Tag

Write an InitialiZation FUNCHO ..c.coviuieiiviieeeecceceeee ettt ettt sa e sa s

Load the New Tag into the SEIVETcceciriieiniciriccireieirescie ettt

NSAPI Function Reference
NSAPI Functions (in Alphabetical Order)cocorerinierieeceieeeseeeeee e 143

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Contents

CALLOCQ ottt sttt s s st s bbb s s s bbb s s sassesesesesessssanasansetas
CINTO_ TINIA ettt ettt e e et e et et et e e se e et et et eseesesaeaseneentesessesentenessnesesaenen
CONAVAT_INIIE 1ottt ettt e e et et et e eeae et e st e e et eseseeesentesesseesesseaseneeseeseesensenteneessesensenen
condvar_notify

CONAVAL_TEITIIINIATE vttt et et et e e e et e eue et eseeeseeeseeseestesseesseesesneessesseensessestesseeneeesenne 146
COMAVAT_WAIE 1.veveieieeieteteieieieisceeeeetesetete ettt et ses e eseseses et et easasassessssesesessnssssesessssssensnsssseses 147
CIIT _EIIERT ittt ettt sttt s ae et b e ettt b e nnen 147
CIITEXAT tateeeiieieeterte ettt ettt et ettt e e b ettt b et a b e nnen 148

crit_init

[0 5 L A 138 0 055 F= 1 (<IN RSO RTN 149

A1EDUL_DUL2SA .ottt s bbb sss s naes 151
filebuf close

ULEDUE GOLC ettt ettt
filebuf_open

fI1eDUL_OPEN_NOSLAL ...uvueiieiicecieciec ettt 154
FIIEET CTOALE ettt ettt ettt et eeae et e st et et esesae s et esesasesesseasenteneesessensetensensesessensen 155
FILEET SINIA ettt et e e e et e et et et e e ee e et et et eaeesesaean et eseeneeseesenteneeneenenaeanen 156
FIEET_IMISETT 1.vvvieieceeecieieieie ittt ee st se s st et s e asesssesssesesessasennsnsnsese 156
filter_layer

FIEET TYAIIIE .ottt ettt et e eae et e et et et esese e s et esesaeeseseeaseneeseeseesesenteneeaneseneenen 158
IIEET_TEIMIOVE vuvereeieiecieiieeisieieisee ettt b s s st s st ss s s ssssessssessssssessnsesensssnssnsns 158
FTUSIL ottt ettt s bt s s rnansetes
FREE ottt sttt et ettt ettt e et e besaeeae et e et e aeenaenbeeraebaes
func_exec

func_find

FUTIC INISEIT 1ottt ettt ettt et e et et et et eese et este s eatesesseesentesesaeesessesenteneesessensentensessasessensen 161

Contents

10

.. 164
MALLQOC .ttt ettt ae st sa e b e st e b et e saessebe st e aesseseeseesessensesseseesessenean 164
.. 164
TICE TLUSIY ettt ettt et ee et e st et e et es et et eaeeseeseese et et e e eseeseneeetennenesaeenen 164
NEE_IP2ROST 1oeiiieieiieir ettt nas 165
TIEE TEAM ettt ettt et e et e e e e ae et e e e et eeue et e st eesee e ease st eeeeeneeeseenteatesae et eesenntennesnteeneeneans 166
NEE_SENATILE .ottt s st n s enas 166
TIET_WTIER ottt ettt ettt n et n e nenen 168
NEDUL_DULZSA oottt snnsenes 168
TIEEDUL CLOSE vttt ettt e s ettt saesae st et e s e saessessessentonessesesensenseressensen 169
NEDUL_GEIDYLES oottt 170
NEIDUL OTC oneiei ettt 171
NEDUL_GIAD oottt 171
NEIDUL_OPEI ettt ettt 172
NSAPI_TMOAUIE_INIT ettt ettt 172
NSAPI_RUNTIME_VERSIONoootitieeeeeeeeeteeete ettt ettt et saea et ne e 173
NSAPI_VERSIONooviirieiiriniriinisieiessessssssesssssssessssssssssssssssssssssssssssesssssssssssssessssesesssssssssssesss 174
... 174
PALAIML_CTEALE ..euvvieiieniieiet ittt ettt ettt ettt bbbttt bbbt sa et n s 174
PALAIN_LTEE ..vriviietreeeircer ettt ettt bttt 175
PDLOCK _COPY ottt ettt 175
PDIOCK_CTEALE ..t ettt 176
PDLOCK _QUD ettt 177
PDLOCK_fINA oottt nnenes 177
PDIOCK _fINAVAL ..ot 178
PDLOCK_fT@E ettt 178
PDLOCK _NINIINISETT 1eoeeeiiieiiiceceeieiete sttt ettt se st sasessansnsas 179
PDLOCK NIVINSETT .eueiieiineiciicie sttt ettt 179
PDIOCK _PD2ENV .ttt 180
PDIOCK _PDIOCKZSLE ..ottt et 181
PDLOCK _PINSEIT .ttt ettt 181
PDIOCK _TEIMOVE ..ottt ettt 182
PDIOCK_SEI2PDLOCK .ottt 182
PERM_CALLOC ...oietiteieieeieistieiste st ss st sesssssssssssessssessssssessssesessssssssssssssssesssssessssesesas 183
PERM_FREE ..ottt sttt ss s bbbttt ssss st st b sesesssnsnsasa 184
PERM_IMALLOCQC ..ottt sttt ettt a e e esa et esse s enneseenesnan 184

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Contents

PERM_REALLOCQC ..ttt sttt ettt sttt 185
PERM_STRDIUP ...ttt s s s et e s bbb sa et ssesesesasasanen 186
prepare_NSAPi_tRIEAdococueuieeuriieireieeeir ettt 187
PIOtOCOL_AUMPB22 ..ottt sttt 187
protocol_set_finfo

PIOLOCOL_STATT_TESPOIISE .veveeevietieeriacaeeeieieteteesesenesesesesesesee et easassesesseseeseasassesessssseseasasssseses 188
PTOLOCOL_STATUS w.ueeeviteieiccaeicie ettt sttt s st as s st s e essnsseseses s esensasnssesas 189
PLOTOCOL_UTI2ZULL ...ttt s e st s es 190
Protocol_uri2url_dynNamiccoeeeeeeeniriieecee et eees 191

L3 00 L0 S S ON

request_get_vs

request_header
request_stat_path
rEQUESE_TANSIALE_UTT vovevveieceierieieieieeicciceieie ettt st sss s s esesssssnsesns 196

session_dns
SESSION_ IMAKXAIIS 1uveuviereeieeieritecteieeeeeesest et et et esessessestessestesessessestesesssssessessossesessessessensosssssssessensen 198
SHEXP_CASECITIP ettt ettt 199
SHEXP_CINIP ettt ettt 199
SHEXP_INALCK 11ttt aesenes 200
shexp_valid
STRDURP ettt ettt ettt e b eseeseebeebe st esaesseseebassensensessessesensanean

SYSTEIML_EITINISE wucevvreurrraiuerercteteeetesesetseaeseasesessesesetsesebeeaeaeaseaetessesesetaebesstaebeeaebeseactessesesseassesnnacs

SYSTEIM_FCLOSE w.uvuvvrieticici ettt ettt
SYSTEIM_TLOCK .ttt ettt
system_fopenRO
SYStEM_FOPENRW ..ttt sttt
SYSTEM_TOPENW A ..ttt bbbttt
SYSTEIM_TTEAM ..ottt se s naes
R 141 4 T A OO U RPN

system_fwrite_atomic

SYSTEIM__ZMUEIITIE .eviuiiiiiiiieirieiteiete ettt et a ettt b e e enes

Contents

12

SYSTEM_LOCAITIIMEceeiieiicii ettt 208
SYSTEIM_ISEEK ..ovuietieiieiicte ettt ettt 209
SYSTEIM_TENAIMIE c..veirniieietiteitereente ettt et b ettt st b et b et a e e s et b e e b e sae st s nes 209
SYSTEIM_ULOCK ettt 210
SYSEM_UNITX2I0CAL ettt ettt enaas 210
systhread_attach
systhread_current
SYStRread_Zetdataccueueeeicicceeee et 212
SYStRIEAA_TNEWKEY ...eveiii ettt nnnse s 212
SYStNTEAd_SEtAALA ..eueiceiiceie et 213
SYSTNTEAA_SIEEP ettt 213
systhread_start .214
SYSTNTEAA_TIMEISEL ettt bbbt 214
.. 215
USE_NSAPI_VERSION ..ottt sttt se e ve st st a e esa et ae s enneseesannan 215

UL CAIL EXOC cutveeeeeeeeeeeeeeee ettt et e et et e e et et e st et et e e sseesese et eneeseesenset et enesseeseneesentesesaeasen
UL CRAII2PAtN oottt

util_cookie_find

util_env_find
UL ENV_LTEE vttt ettt sttt s s s s s sansenaas
util_env_replace
UELL BTV STE ettt ettt ettt et et et e et et e st et et e e sseesessenteseeneesessensentenesseesensensensenessensen
UL GELHIE vttt
UL NOSTIAIMIE <.ttt ess et se st es s nssnnsnsa
UL IS TTIOZIILA ettt ettt st ettt sa e s et et et eaeesesaes et enesseesensensensesessensen
util_is_url
LR (o = OSSOSO SRRRRRRPOTN
UEL JAEET AN 1ottt ettt ettt et s e s et et st esestesse s estenessessesessensesessensen
UL SN_ESCAPE ottt
UL STIPTINEE 1ottt ettt s s nsssesssansenans
UL SPIINTE 1ottt sttt
util_strcasecmp
util_strftime
ULEL_STITICASECIIIP oeeeeiieiiiceceeieie ettt ettt ae sttt s e esesssssssssessssannsssnsesa 227
UL UTT_BSCAPE vttt ettt ettt 227

UELL UTT IS VAL ettt ettt et e eee et et e e e et e s e st et eseeseeseeses et eneeseeseneesensesesaeanen 228

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Contents

UHIL_UTT_PATSE ittt bbbttt 228
U] UTT_UNESCAPE ettt ettt ettt 229
UL VSTIPIINEE oottt ettt 229
util_vsprintf

vs_alloc_slot
vs_get_data

vs_get_default_ httpd_ODJECT c..viueueiieiicircie et en 232
VS_GEL_AOC_TOOL ettt ettt ettt eensaen 232
VS_Et_NEEPA_ODJSEL uvvieeiieeieicieireee ettt et nnen 233

vs_get_mime_type
vs_lookup_config_var
VS_TEZISTET_CD ettt ettt
VS SEE AT ettt ettt ettt ettt eae et et et et et e st et et et s et e s e et e et et et eneeae et ente e et enesaeenenes

VS_TTANSIATE UTT vttt ettt ettt ettt s et sae st s et ese et enesese s saensasenen

Data StrUCTUF@ REfEIGNCE ...ttt et sttt nenens
Privatization of Some Data Structures

PD_DATAIIL <ottt bbbttt

Session->client

FILEET ottt ettt ettt ettt et es et e s s s et eseeseae s et enseseae e s eaenseaene et eae s etensereneenerennene
FilterContext
FIIEEILAYET ..vvuvieieeirirciete sttt sttt sttt ettt bttt sasseeasaes

Contents

14

10

11

ST = g\ (1 s Vo Ye KO R 246

Using Wildcard Patternsooooieieiiiiecccee ettt 249
WiLACATA PALLEITIS ..ttt ettt st s s s st s s s s sesssesesesesesssnanns
Wildcard Examples

TIME@FOIMALS ...ttt 253
Time and Date STINES ...cvoveeurireriririeeieieieiresisiee ettt et s esesesssssesesesessesssssssesesesessssnsns 253

Dynamic Results Caching FUNCLIONS ..o 255
Ar_CACKE_AESIIOY ettt ettt ettt es 256

Returns

EXAMIPLE ..ottt ettt ettt a et ennnenes

A CACKE INTT ettt et e et e e e e ee e et et et eeeeseseeaeeneeseeneeseesenteneestesesseeseneeneensesessen

PaATQIMELEIS ..ocuvevicieiecececectee ettt ettt e e e st e e e b e e e e b e e b e e b e beennesbeeraesasseensenreenaenranns
EXAIMIPLE ..ttt bbbttt

dr_cache_refresh

PATQIMELETS ..vveiteeeteeeee ettt ettt et et e ebe e e aeeeaseesseeebeeeabeebeeeaeeebeeebeeenbeentaeeareenne
EXAIMPLE oottt ettt

AE_IEE_WIIEE .ttt ettt ettt ettt et e s et ese e et essesese et et ensesessesesensesensesensnsesenseseaen

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Contents

12

Hypertext Transfer ProtoCol ...t
COMPIATICE .eovriuiiriiteicieireee ettt ettt seb ettt a et etae st neae
REQUESTS vttt b e
Request Method, URI, and Protocol VErSionc.ccccecerecuerneecinenceeinecrnieeeenecsessesesneeans
REQUEST HEAAETS ..ottt bbbt
ReQUESE DAta ...t
Responses
HTTP Protocol Version, Status Code, and Reason Phrase
RESPONSE HEAETS ...ttt sttt eens s nans

RESPONSE DALA .ottt ettt

BUITEIEed STIEAIMS ...ttt ettt n st es et sssaes et s et st enssseneessensans

16

Preface

This guide discusses how to use Netscape Server Application Programmer's Interface (NSAPI)
to build plug-ins that define Server Application Functions (SAFs) to extend and modify Sun
Java™ System Web Server 6.1. The guide also provides a reference of the NSAPI functions you
can use to define new plug-ins.

This preface contains the following topics:

= “Who Should Use This Guide” on page 17
= “Using the Documentation” on page 17

= “How This Guide Is Organized” on page 19
= “Documentation Conventions” on page 20
= “Product Support” on page 21

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and deploys
NSAPI plug-ins in a corporate enterprise. This guide assumes you are familiar with the

following topics:
= HTTP

= HTML

= NSAPI

= Cprogramming
= Software development processes, including debugging and source code control

Using the Documentation

The Sun Java System Web Server 6.1 SP10 manuals are available as online files in PDF and
HTML at: http://docs.sun.com/app/docs/coll/1308.7

The following table lists the tasks and concepts described in the Sun Java System Web Server
manuals.

Preface

18

TABLE P-1

Sun Java System Web Server Documentation Roadmap

For Information About

See the Following

Late-breaking information about the software and
documentation

Getting started with Sun Java System Web Server,
including hands-on exercises that introduce server
basics and features (recommended for first-time
users)

Performing installation and migration tasks:

Installing Sun Java System Web Server and its
various components, supported platforms, and
environments

Migrating from Sun ONE Web Server 4.1 or 6.0 to
Sun Java System Web Server 6.1

Performing the following administration tasks:

Using the Administration and command-line
interfaces

Configuring server preferences
Using server instances
Monitoring and logging server activity

Using certificates and public key cryptography to
secure the server

Configuring access control to secure the server

Using Java™ 2 Platform, Standard Edition (J2SE
platform) security features

Deploying applications
Managing virtual servers

Defining server workload and sizing the system to

meet performance needs

Searching the contents and attributes of server
documents, and creating a text search interface

Configuring the server for content compression

Configuring the server for web publishing and
content authoring using WebDAV

Release Notes

Getting Started Guide

Installation and Migration Guide

Administrator’s Guide

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Preface

TABLEP-1 Sun Java System Web Server Documentation Roadmap (Continued)

For Information About See the Following

Using programming technologies and APIs to do the | Programmer’s Guide

following:

® Extend and modify Sun Java System Web Server

® Dynamically generate content in response to
client requests

= Modify the content of the server

Creating custom Netscape Server Application NSAPI Programmer’s Guide
Programmer’s Interface (NSAPI) plug-ins

Implementing servlets and JavaServer Pages™ (JSP™) | Programmer’s Guide to Web Applications
technology in Sun Java System Web Server

Editing configuration files Administrator’s Configuration File Reference
Tuning Sun Java System Web Server to optimize Performance Tuning, Sizing, and Scaling Guide
performance

How This Guide Is Organized

This guide has the following chapters:
= Chapter 1, Syntax and Use of obj.conf

This chapter describes the configuration file obj . conf. The chapter discusses the syntax and
use of directives in this file, which instruct the server how to process HTTP requests.

= Chapter 2, SAFs in the magnus.conf File

This chapter discusses the SAFs you can set in the configuration file magnus . conf to
configure the Sun Java System Web Server during initialization.

= Chapter 3, Creating Custom SAFs

This chapter discusses how to create your own plug-ins that define new SAFs to modify or
extend the way the server handles requests.

= Chapter 4, Creating Custom Filters

This chapter discusses how to create your own custom filters that you can use to intercept,
and potentially modify, incoming content presented to or generated by another function.

= Chapter 5, Examples of Custom SAFs and Filters

This chapter describes examples of custom SAFs to use at each stage in the request-handling
process.

= Chapter 6, Creating Custom Server-parsed HTML Tags
This chapter explains how to create custom server-parsed HTML tags.

= Chapter 7, NSAPI Function Reference

Preface

This chapter presents a reference of the NSAPI functions. You use NSAPI functions to
define SAFs.

Chapter 8, Data Structure Reference
This chapter discusses some of the commonly used NSAPI data structures.
Chapter 9, Using Wildcard Patterns

This chapter lists the wildcard patterns you can use when specifying values in obj . conf and
various predefined SAFs.

Chapter 10, Time Formats

This chapter lists time formats.

Chapter 11, Dynamic Results Caching Functions

This chapter explains how to create a results caching plug-in.

Chapter 12, Hypertext Transfer Protocol

This chapter gives an overview of HTTP.

Appendix A, Alphabetical List of NSAPI Functions and Macros

This appendix provides an alphabetical list of NSAPI functions and macros.

Documentation Conventions

This section describes the types of conventions used throughout this guide.

20

File and directory paths

These are given in UNIX® format (with forward slashes separating directory names). For
Windows versions, the directory paths are the same, except that backslashes are used to
separate directories.

URLs are given in the format:

http://server.domain/path/file.html

In these URLSs, server is the server name where applications are run; domain is your Internet
domain name; path is the server's directory structure; and file is an individual file name.
Italic items in URLs are placeholders.

Font conventions include:

= Themonospace font is used for sample code and code listings, APT and language
elements (such as function names and class names), file names, path names, directory
names, and HTML tags.

= Ttalic monospace type is used for code variables.

= [Ttalic type is also used for book titles, emphasis, variables and placeholders, and words
used in the literal sense.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Preface

= Bold type is used as either a paragraph lead-in or to indicate words used in the literal
sense.

Installation root directories are indicated by install_dir in this guide.

By default, the location of install_dir is as follows:

= On UNIX-based platforms: /opt/SUNWwbsvr/
= On Windows: C:\Sun\WebServer6.1

Product Support

If you have problems with your system, contact customer support using one of the following
mechanisms:

= The online support web site at:
http://www.sun.com/training/
= The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This helps to
ensure that our support staff can best assist you in resolving problems.

= Description of the problem, including the situation where the problem occurs and its
impact on your operation.

= Machine type, operating system version, and product version, including any patches and
other software that might be affecting the problem.

= Detailed steps on the methods you have used to reproduce the problem.

= Anyerror logs or core dumps.

21

http://www.sun.com/training/

22

CHAPTER 1

Syntax and Use of obj.conf

The obj . conf configuration file contains directives that instruct the Sun Java System Web
Server how to handle HTTP and HTTPS requests from clients and service web server content
such as native server plug-ins and CGI programs. You can modify and extend the
request-handling process by adding or changing the instructions in obj . conf.

All obj . conf files are located in the instance_dir/config directory, where instance_dir is the
path to the installation directory of the server instance. There is one obj . conf file for each
virtual server class, unless several virtual server classes are configured to share an obj . conf file.
Whenever this guide refers to "the obj . conf file," it refers to all obj . conf files or to the

obj . conf file for the virtual server class being described.

By default, the obj . conf file for the initial virtual server class is named obj . conf, and the
obj . conf files for the administrator-defined virtual server classes are named
virtual_server_class_id.obj . conf. Editing one of these files directly or through the
Administration interface changes the configuration of a virtual server class.

This chapter discusses server instructions in obj . conf, the use of OBJECT tags, the use of
variables, the flow of control in obj . conf, the syntax rules for editing obj . conf, and a note
about example directives.

Note - For detailed information about the standard directives and predefined Server Application
Functions (SAFs) that are used in the obj . conf file, see the Sun Java System Web Server 6.1
SP10 Administrator’s Configuration File Reference.

This chapter has the following sections:

“How the Server Handles Requests from Clients” on page 24
“Dynamic Reconfiguration” on page 27

“Server Instructions in obj.conf” on page 27

“Configuring HTTP Compression” on page 31

“The Object and Client Tags” on page 32

23

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

How the Server Handles Requests from Clients

= “Variables Defined in server.xml” on page 36

= “Flow of Control in obj.conf” on page 37

= “Changes in Function Flow” on page 44

= “Syntax Rules for Editing obj.conf” on page 45

= “About obj.conf Directive Examples” on page 47

How the Server Handles Requests from Clients

Sun Java System Web Server is a web server that accepts and responds to Hypertext Transfer
Protocol (HTTP) requests. Browsers such as Netscape™ Communicator communicate using
several protocols including HTTP and FTP. The Sun Java System Web Server handles HTTP
specifically.

For more information about the HTTP protocol, refer to Chapter 12, Hypertext Transfer
Protocol specification.

HTTP Basics

As a quick summary, the HTTP/1.1 protocol works as follows:

= The client (usually a browser) opens a connection to the server and sends a request.

= The server processes the request, generates a response, and closes the connection if it finds a
Connection: Close header.

The request consists of a line indicating a method such as GET or POST, a Uniform Resource
Identifier (URI) indicating which resource is being requested, and an HT'TP protocol
version separated by spaces.

This is normally followed by a number of headers, a blank line indicating the end of the
headers, and sometimes body data. Headers may provide various information about the
request or the client body data. Headers are typically only sent for POST and PUT methods.

The example request shown below would be sent by a Netscape browser to request the server
foo.comto send back the resource in /index.html. In this example, no body data is sent
because the method is GET (the point of the request is to get some data, not to send it).

GET /index.html HTTP/1.0

User-agent: Mozilla

Accept: text/html, text/plain, image/jpeg, image/gif, */*
Host: foo.com

The server receives the request and processes it. It handles each request individually, although it
may process many requests simultaneously. Each request is broken down into a series of steps
that together make up the request-handling process.

24 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

How the Server Handles Requests from Clients

The server generates a response that includes the HT'TP protocol version, HTTP status code,
and a reason phrase separated by spaces. This is normally followed by a number of headers. The
end of the headers is indicated by a blank line. The body data of the response follows. A typical
HTTP response might look like this:

HTTP/1.0 200 OK

Server: Sun-Java System-Web-Server/6.1
content-type: text/html
Content-length: 83

<HTML>

<HEAD><TITLE>Hello World</Title></HEAD>
<BODY>Hello World</BODY>

</HTML>

The status code and reason phrase tell the client how the server handled the request. Normally
the status code 200 is returned, indicating that the request was handled successfully and the
body data contains the requested item. Other result codes indicate redirection to another server
or the browser’s cache, or various types of HTTP errors such as 404 Not Found.

NSAPI Filters

In previous versions of the Web Server, the NSAPI API allowed multiple SAFs to interact in
request processing. For example, one SAF could be used to authenticate the client after which a
second SAF would generate the content.

In addition to the existing NSAPI interfaces, Sun Java System Web Server introduces NSAPI
filters that enable a function to intercept (and potentially modify) the content presented to or
generated by another function.

For more information on NSAPI filters in Sun Java System Web Server 6.1, see Chapter 4,
Creating Custom Filters.

Two new NSAPI stages, Input and Output, can be used to insert filters in obj . conf. The Input
and Output stages are described later in this chapter.

Request-handling Process

When the server first starts up it performs some initialization and then waits for an HTTP
request from a client (such as a browser). When it receives a request, it first selects a virtual
server. For details about how the virtual server is determined, see the Sun Java System Web
Server 6.1 SP10 Administrator’s Configuration File Reference.

After the virtual server is selected, the obj . conf file for the virtual server class specifies how the
request is handled in the following steps:

Chapter 1 « Syntaxand Use of obj.conf 25

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

How the Server Handles Requests from Clients

26

To handle request

AuthTrans (authorization translation)

Verify any authorization information (such as name and password) sent in the request.

NameTrans (name translation)

Translate the logical URI into a local file system path.

PathCheck (path checking)

Check the local file system path for validity and check that the requestor has access privileges to
the requested resource on the file system.

ObjectType (object typing)

Determine the MIME-type (Multi-purpose Internet Mail Encoding) of the requested resource
(for example, text/html, image/gif, and so on).

Input (prepare to read input)

Select filters that will process incoming request data read by the Service step.

Output (prepare to send output)

Select filters that will process outgoing response data generated by the Service step.

Service (generate the response)

Generate and return the response to the client.

AddLog (adding log entries)
Add entries to log file(s).

Error (service)

This step is executed only if an error occurs in the previous steps. If an error occurs, the server
logs an error message and aborts the process.

Directives for Handling Requests

The file obj . conf contains a series of instructions, known as directives, that tell the Sun Java
System Web Server what to do at each stage in the request-handling process. Each directive
invokes a SAF with one or more arguments. Each directive applies to a specific stage in the
request-handling process. The stages are AuthTrans, NameTrans, PathCheck, ObjectType,
Input, Output, Service, and AddLog.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Server Instructions in obj.conf

For example, the following directive applies during the NameTrans stage. It calls the

document- root function with the root argument set toD: //Sun/WebServer61l/serverl/docs.
(The document - root function translates the http: //server_name/ part of the URL to the
document root, which in this example is D: //Sun/WebServer61/serverl/docs.)

NameTrans fn="document-root" root="D:/Sun/WebServer6l/serverl/docs"

The functions invoked by the directives in obj . conf are known as SAFs.

Dynamic Reconfiguration

You do not need to restart the server for changes to certain configuration files to take effect (for
example, obj.conf, mime.types, server.xml, and virtual server-specific ACL files). All you
need to do is apply the changes by clicking the Apply link and then clicking the Load
Configuration Files button on the Apply Changes screen. If there are errors in installing the new
configuration, the previous configuration is restored.

When you edit obj . conf and apply the changes, a new configuration is loaded into memory
that contains all of the information from the dynamically configurable files.

Every new connection references the newest configuration. Once the last session referencing a
configuration ends, the now unused old configuration is deleted.

Server Instructions in obj.conf

The obj . conf file contains directives that instruct the server how to handle requests received
from clients such as browsers. These directives appear inside OBJECT tags.

Each directive calls a function, indicating when to call it and specifying arguments for it.
The syntax of each directive is:
Directive fn=func-name namel="valuel"...nameN="valueN"

For example:

NameTrans fn="document-root" root="D:/Sun/WebServer6l/serverl/docs"

Directive indicates when this instruction is executed during the request-handling process.
The value is one of AuthTrans, NameTrans, PathCheck, ObjectType, Service, AddLog, and
Error.

The value of the fn argument is the name of the SAF to execute. All directives must supply a
value for the fn parameter; if there’s no function, the instruction won’t do anything.

Chapter 1 « Syntaxand Use of obj.conf 27

Server Instructions in obj.conf

28

The remaining parameters are the arguments needed by the function, and they vary from
function to function.

Sun Java System Web Server is shipped with a set of built-in SAFs that you can use to create and
modify directives in obj . conf. For more information about these predefined SAFs, see the Sun
Java System Web Server 6.1 SP10 Administrator’s Configuration File Reference. You can also
define new SAFs, as discussed in Chapter 3, Creating Custom SAFs

The magnus. conf file contains Init directive SAFs that initialize the server. For more
information, see Chapter 2, SAFs in the magnus.conf File

Summary of the Directives

Following are the categories of server directives and a description of what each does. Each
category corresponds to a stage in the request-handling process. The section “Flow of Control
in obj.conf” on page 37 explains exactly how the server decides which directive or directives to
execute in each stage.

Note - For detailed information about the standard directives and predefined SAFs that are used
in the obj . conf file, see Sun Java System Web Server 6.1 SP10 Administrator’s Configuration File
Reference.

= “AuthTrans” on page 37

Verifies any authorization information (normally sent in the Authorization header)
provided in the HTTP request and translates it into a user and/or a group. Server access
control occurs in two stages. AuthTrans verifies the authenticity of the user. Later,
PathCheck tests the user’s access privileges for the requested resource.

AuthTrans fn=basic-auth userfn=ntauth auth-type=basic userdb=none

This example calls the basic-auth function, which calls a custom function (in this case
ntauth, to verify authorization information sent by the client. The Authorization header is
sent as part of the basic server authorization scheme.

= “NameTrans” on page 37

Translates the URL specified in the request from a logical URL to a physical file system path
for the requested resource. This may also result in redirection to another site. For example:

NameTrans fn="document-root" root="D:/Sun/WebServer6l/serverl/docs"

This example calls the document - root function with a root argument of
D:/Sun/WebServer6l/serverl/docs. The function document- root function translates the
http://server_name/ part of the requested URL to the document root, which in this case is
D:/Sun/WebServer6l/serverl/docs. Thusarequest for http://server-name/docl.html
is translated to D: /Sun/WebServer61/serverl/docs/docl.html.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Server Instructions in obj.conf

= “PathCheck” on page 39

Performs tests on the physical path determined by the NameTrans step. In general, these tests
determine whether the path is valid and whether the client is allowed to access the requested
resource. For example:

PathCheck fn="find-index" index-names="index.html,home.html"

This example calls the find-index function with an index-names argument of

index.htmtl, home.html. If the requested URL is a directory, this function instructs the

server to look for a file called either index.html or home. html in the requested directory.
= “ObjectType” on page 39

Determines the MIME (Multi-purpose Internet Mail Encoding) type of the requested
resource. The MIME type has attributes type (which indicates content type), encoding, and
language. The MIME type is sent in the headers of the response to the client. The MIME
type also helps determine which Service directive the server should execute.

The resulting type may be:

= A common document type such as text/html or image/gif (for example, the file name
extension .gif translates to the MIME type image/gif).

= Aninternal server type. Internal types always begin with magnus-internatl.

For example:
ObjectType fn="type-by-extension"

This example calls the type-by-extension function, which causes the server to
determine the MIME type according to the requested resource’s file extension.

“Input” on page 41

Selects filters that will process incoming request data read by the Service step. The Input
directive allows you to invoke the insert-filter SAF in order to install filters that process
incoming data. All Input directives are executed when the server or a plug-in first attempts
to read entity body data from the client. The Input directives are executed at most once per
request. For example:

Input fn="insert-filter" filter="http-decompression"This directive instructs the
insert-filter function to add a filter named http-decompression to the filter stack,
which would decompress incoming HTTP request data before passing it to the Service
step.

= “Output” on page 41

Chapter 1 « Syntaxand Use of obj.conf 29

Server Instructions in obj.conf

Selects filters that will process outgoing response data generated by the Service step. The
Output directive allows you to invoke the insert-filter SAF to install filters that process
outgoing data. All Output directives are executed when the server or a plug-in first attempts
to write entity body data from the client. The Output directives are executed at most once
per request. For example:

Output fn="insert-filter" filter="http-compression"

This directive instructs the insert-filter function to add a filter named
http-compression to the filter stack, which would compress outgoing HTTP response data
generated by the Service step.

= “Service” on page 42

Generates and sends the response to the client. This involves setting the HTTP result status,
setting up response headers (such as content - type and Content-Length), and generating
and sending the response data. The default response is to invoke the send- file function to
send the contents of the requested file along with the appropriate header files to the client.

The default Service directive is:

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"

This directive instructs the server to call the send- file function in response to any request
whose method is GET, HEAD, or POST, and whose type does not begin with
magnus-internal/. (Note the use of the special characters *~ to mean “does not match?”)

Another example is:

Service method="(GET|HEAD)" type="magnus-internal/imagemap" fn="imagemap"
In this case, if the method of the request is either GET or HEAD, and the type of the requested
resource is "magnus -internal/imagemap," the function imagemap is called.

= “AddLog” on page 44

Adds an entry to alog file to record information about the transaction. For example:

AddLog fn="flex-log" name="access"
This example calls the flex-log function to log information about the current request in
the log file named access.

= “Error” on page 44

Handles an HTTP error. This directive is invoked if a previous directive results in an error.
Typically the server handles an error by sending a custom HTML document to the user
describing the problem and possible solutions.

For example:

30 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Configuring HTTP Compression

Error fn="send-error" reason="Unauthorized"
path="D:/Sun/WebServer6l/serverl/errors/unauthorized.html”

In this example, the server sends the file in
D:/Sun/WebServer6l/serverl/errors/unauthorized.html whenever a client requests a
resource that it is not authorized to access.

Configuring HTTP Compression

When compression is enabled in the server, an entry gets added to the obj . conf file. A sample
entry is shown below:

Output fn="insert-filter" filter="http-compression" type="text/*"

Depending on the options specified, this line might also contain these options:

wow . g
vary=on compression-level="9

To restrict compression to documents of only a particular type, or to exclude browsers that
don’t work well with compressed content, you would need to edit the obj . conf file, as discussed
below.

The option that appears as:

type="text/*"

restricts compression to documents that have a MIME type of text/* (for example,
text/ascii, text/css, text/html, and so on). This can be modified to compress only certain
types of documents. If you want to compress only HTML documents, for example, you would
change the option to:

type="text/html"

Alternatively, you can specifically exclude browsers that are known to misbehave when they
receive compressed content (but still request it anyway) by using the <Client> tag as follows:

<Client match="none"\

browser="*MSIE [1-3]*"\

browser="*MSIE [1-5]*Mac*"\

browser="Mozilla/[1-4]1*Nav*">

Output fn="insert-filter" filter="http-compression" type="text/*"
</Client>

This restricts compression to browsers that are not any of the following:

= Internet Explorer for Windows earlier than version 4

Chapter 1 « Syntaxand Use of obj.conf 31

The Object and Client Tags

= Internet Explorer for Macintosh earlier than version 6
= Netscape Navigator/Communicator earlier than version 6

Internet Explorer on Windows earlier than version 4 may request compressed data at times,
but does not correctly support it. Internet Explorer on Macintosh earlier than version 6 does
the same. Netscape Communicator version 4.x requests compression, but only correctly
handles compressed HTML. It will not correctly handle linked CSS or JavaScript from the
compressed HTML, so administrators often simply prevent their servers from sending any
compressed content to that browser (or earlier).

For more information about the <Client> tag, see the “The Client Tag” on page 34.

The Object and Client Tags

This section discusses the use of <Object>and <Client> tags in the file obj . conf.

<0Object>tags group directives that apply to requests for particular resources, while <Client>
tags group directives that apply to requests received from specific clients.

These tags are described in the following topics:

= “The Object Tag” on page 32
= “The Client Tag” on page 34

The Object Tag

Directives in the obj . conf file are grouped into objects that begin with an <Object> tag and end
with an </0bject> tag. The default object provides instructions to the server about how to
process requests by default. Each new object modifies the default object’s behavior.

An Object tag may have a name attribute or a ppath attribute. Either parameter may be a
wildcard pattern. For example:

<Object name="cgi">
-Or-
<Object ppath="/usr/sun/webserver6l/serverl/docs/private/*">

The server always starts handling a request by processing the directives in the default object.
However, the server switches to processing directives in another object after the NameTrans
stage of the default object if either of the following conditions is true:

= The successful NameTrans directive specifies a name argument.

= The physical path name that results from the NameTrans stage matches the ppath attribute
of another object.

32 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

The Object and Client Tags

When the server has been alerted to use an object other than the default object, it processes
the directives in the other object before processing the directives in the default object. For
some steps in the process, the server stops processing directives in that particular stage (such
as the Service stage) as soon as one is successfully executed, whereas for other stages the
server processes all directives in that stage, including the ones in the default object as well as
those in the additional object. For more details, see “Flow of Control in obj.conf” on

page 37.

Objects that Use the name Attribute

If aNameTrans directive in the default object specifies a name argument, the server switches to
processing the directives in the object of that name before processing the remaining directives
in the default object.

For example, the following NameTrans directive in the default object assigns the name cgi to
any request whose URL starts with http://server_name/cgi/:

<Object name="default">

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/sun/webserver6l/serverl/docs/mycgi"
name="cgi"..

</0Object>

When that NameTrans directive is executed, the server starts processing directives in the object
named cgi:

<Object name="cgi">
more directives...
</0bject>

Objects that Use the ppath Attribute

When the server finishes processing the NameTrans directives in the default object, the logical
URL of the request will have been converted to a physical path name. If this physical path name
matches the ppath attribute of another object in obj . conf, the server switches to processing the
directives in that object before processing the remaining ones in the default object.

For example, the following NameTrans directive translates the http: //server_name/ part of the
requested URL toD: /Sun/WebServer61/serverl/docs/ (which is the document root
directory):

<Object name="default">
NameTrans fn="document-root"
root="D:/Sun/WebServer6l/serverl/docs"

</0Object>

Chapter 1 « Syntaxand Use of obj.conf 33

The Object and Client Tags

The URL http://server_name/internalplanl.html would be translated to
D:/Sun/WebServer6l/serverl/docs/internalplanl.html. However, suppose that obj.conf
contains the following additional object:

<Object ppath="*internal*">
more directives...
</0Object>

In this case, the partial path *internal* matches the path
D:/Sun/WebServer6l/serverl/docs/internalplanl.html. So now the server starts
processing the directives in this object before processing the remaining directives in the default
object.

The Client Tag

The <Client> tagis used to limit execution of a set of directives to requests received from
specific clients. Directives listed between the <Client>and </Client> tags are executed only
when information in the client request matches the parameter values specified.

Client Tag Parameters

The following table lists the <Client> tag parameters.

TABLE1-1 Client Tag Parameters

Parameter Description

browser User-agent string sent by a browser to the Web Server

chunked Boolean value set by a client requesting chunked encoding

code HTTP response code

dns DNS name of the client

internal Boolean value indicating internally generated request

ip IP address of the client

keep-alive Boolean value indicating the client has requested a keep-alive connection
keysize Key size used in an SSL transaction

match Match mode for the <Client> tag; valid values are all, any, and none
method HTTP method used by the browser

name Name of an object as specified in a previous NameTrans statement

34 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

The Object and Client Tags

TABLE 1-1 Client Tag Parameters (Continued)
Parameter Description
odds Sets a random value for evaluating the enclosed directive; specified as either
a percentage or a ratio (for example, 20% or 1/5)
path Physical path to the requested resource
ppath Physical path of the requested resource
query Query string sent in the request
reason Text version of the HTTP response code
restarted Boolean value indicating a request has been restarted

secret-keysize
security

type

uri

urlhost

variable-headers

Secret key size used in an SSL transaction

Indicates an encrypted request

Type of document requested (such as text/html or image/gif)
URI section of the request from the browser

DNS name of the virtual server requested by the client (the value is provided
in the Host header of the client request)

Prevents access to a specific site, based on the request by the client. For
example,

Client variable-headers="Weferer:SKVFVWRKIVZCMHVIBGDA
Service type="image/*"fn="deny-existence"
</Client>

The <Client> tag parameters provide greater control over when and if directives are executed.
In the following example, use of the odds parameter gives a request a 25% chance of being

redirected:

<Client odds="25%">

NameTrans fn="redirect" from="/Pogues"
url-prefix="http://pogues.example.com"

</Client>

One or more wildcard patterns can be used to specify Client tag parameter values.

Wildcards can also be used to exclude clients that match the parameter value specified in the
<Client tag>. In the following example, the <Client> tag and the AddLog directive are
combined to direct the Web Server to log access requests from all clients except those from the

specified subnet:

Chapter 1 « Syntaxand Use of obj.conf

35

Variables Defined in server.xml

<Client ip="%~192.85.250.*">
AddLog fn="flex-log" name="access"
</Client>

Using the ~ wildcard negates the expression, so the Web Server excludes clients from the
specified subnet.

You can also create a negative match by setting the match parameter of the Client tag to none.
In the following example, access requests from the specified subnet are excluded, as are all
requests to the virtual server www. sunone. com:

<Client match="none" ip="192.85.250.*" urlhost="www.sunone.com">AddLog
fn="flex-log" name="access"</Client>

For more information about wildcard patterns, see Chapter 9, Using Wildcard Patterns.

Variables Defined in server.xml

36

You can define variables in the server.xml file and reference them in an obj . conf file. For
example, the following server.xml code defines and uses a variable called docroot:

<!DOCTYPE SERVER SYSTEM "server.dtd" [
<!ATTLIST VARS
docroot CDATA #IMPLIED

<VS id="a.com" connections="1s1" urlhosts="a.com"
mime="mimel" aclids="std">
<property name="docroot” value="/opt/SUNWwbsvr/docs”/>
</VS>

You can reference the variable in obj . conf as follows:

NameTrans fn=document-root root="$docroot"

Using this docroot variable saves you from having to define document roots for virtual server
classes in the obj . conf files. It also allows you to define different document roots for different
virtual servers within the same virtual server class.

Note - Variable substitution is allowed only in an obj . conf file. It is not allowed in any other
Sun Java System Web Server configuration files. Any variable referenced in an obj . conf file
must be defined in the server. xml file.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Flow of Control in obj.conf

For more information about defining variables, see the Sun Java System Web Server 6.1 SP10
Administrator’s Configuration File Reference.

Flow of Control in obj.conf

Before the server can process a request, it must direct the request to the correct virtual server.
For details about how the virtual server is determined, see the Sun Java System Web Server 6.1
SP10 Administrator’s Configuration File Reference.

After the virtual server is determined, the server executes the obj . conf file for the virtual server
class to which the virtual server belongs. This section discusses how the server decides which
directives to execute in obj . conf.

AuthTrans

When the server receives a request, it executes the AuthTrans directives in the default object to
check that the client is authorized to access the server.

If there is more than one AuthTrans directive, the server executes them all (unless one of them
results in an error). If an error occurs, the server skips all other directives except for Error
directives.

NameTrans

Next, the server executes a NameTrans directive in the default object to map the logical URL of
the requested resource to a physical path name on the server’s file system. The server looks at
each NameTrans directive in the default object in turn, until it finds one that can be applied.

If there is more than one NameTrans directive in the default object, the server considers each
directive until one succeeds.

The NameTrans section in the default object must contain exactly one directive that invokes the
document- root function. This function translates the http://server_name/part of the
requested URL to a physical directory that has been designated as the server’s document root.
For example:

NameTrans fn="document-root" root="D:/Sun/WebServer6l/serverl/docs"

The directive that invokes document - root must be the last directive in the NameTrans section so
that it is executed if no other NameTrans directive is applicable.

The pfx2dir (prefix to directory) function is used to set up additional mappings between URLs
and directories. For example, the following directive translates the URL
http://server_name/cgi/ into the directory path name
D:/Sun/WebServer6l/serverl/docs/mycgi/:

Chapter 1 « Syntaxand Use of obj.conf 37

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Flow of Control in obj.conf

38

NameTrans fn="pfx2dir" from="/cgi" dir="D:/Sun/WebServer61/serverl/docs/mycgi”

Notice that if this directive appeared after the one that calls document - root, it would never be
executed, with the result that the resultant directory path name would be
D:/Sun/WebServer6l/serverl/docs/cgi/ (notmycgi). This illustrates why the directive that
invokes document - root must be the last one in the NameTrans section.

How and When the Server Processes Other Objects

As aresult of executing a NameTrans directive, the server might start processing directives in
another object. This happens if the NameTrans directive that was successfully executed specifies
aname or generates a partial path that matches the name or ppath attribute of another object.

If the successful NameT rans directive assigns a name by specifying a name argument, the server
starts processing directives in the named object (defined with the OBJECT tag) before processing
directives in the default object for the rest of the request-handling process.

For example, the following NameTrans directive in the default object assigns the name cgi to
any request whose URL starts with http://server_name/cgi/.

<Object name="default">

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/Sun/WebServer6l/serverl/docs/mycgi" name="cgi"

</0bject>
When that NameTrans directive is executed, the server starts processing directives in the object
named cgi:

<Object name="cgi">
more directives...
</Object>

When a NameTrans directive has been successfully executed, there will be a physical path name
associated with the requested resource. If the resultant path name matches the ppath (partial
path) attribute of another object, the server starts processing directives in the other object
before processing directives in the default object for the rest of the request-handling process.

For example, suppose obj . conf contains an object as follows:

<Object ppath="*internal*">
more directives...
</0Object>

Now suppose the successful NameTrans directive translates the requested URL to the path name
D:/Sun/WebServer6l/serverl/docs/internalplanl.html. In this case, the partial path

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide - September 2008

Flow of Control in obj.conf

internal matches the path D:/Sun/WebServer61/serverl/docs/internalplanl.html. So
now the server would start processing the directives in this object before processing the
remaining directives in the default object.

PathCheck

After converting the logical URL of the requested resource to a physical path name in the
NameTrans step, the server executes PathCheck directives to verify that the client is allowed to
access the requested resource.

If there is more than one PathCheck directive, the server executes all of the directives in the
order in which they appear, unless one of the directives denies access. If access is denied, the
server switches to executing directives in the Error section.

If the NameTrans directive assigned a name or generated a physical path name that matches the
name or ppath attribute of another object, the server first applies the PathCheck directives in the
matching object before applying the directives in the default object.

ObjectType

Assuming that the PathCheck directives all approve access, the server next executes the
ObjectType directives to determine the MIME type of the request. The MIME type has three
attributes: type, encoding, and language. When the server sends the response to the client, the
type, language, and encoding values are transmitted in the headers of the response. The type
also frequently helps the server to determine which Service directive to execute to generate the
response to the client.

If there is more than one ObjectType directive, the server applies all of the directives in the
order in which they appear. However, once a directive sets an attribute of the MIME type,
further attempts to set the same attribute are ignored. The reason that all ObjectType directives
are applied is that one directive may set one attribute, for example type, while another directive
sets a different attribute, such as language.

As with the PathCheck directives, if another object has been matched to the request as a result of
the NameTrans step, the server executes the ObjectType directives in the matching object before
executing the ObjectType directives in the default object.

Setting the Type By File Extension

Usually the default way the server figures out the MIME type is by calling the
type-by-extension function. This function instructs the server to look up the MIME type
according to the requested resource’s file extension in the MIME types table. This table was
created during virtual server initialization by the MIME types file (which is usually called
mime.types).

Chapter 1 « Syntaxand Use of obj.conf 39

Flow of Control in obj.conf

40

For example, the entry in the MIME types table for the extensions . html and. htmis usually:

type=text/html exts=htm,html

which says that all files with the extension . htm or .htm1l are text files formatted as HTML, and
the typeis text/html.

Note that if you make changes to the MIME types file, you must reconfigure the server before
those changes can take effect.

For more information about MIME types, see Sun Java System Web Server 6.1 SP10
Administrator’s Configuration File Reference.

Forcing the Type

If no previous ObjectType directive has set the type, and the server does not find a matching file
extension in the MIME types table, the type still has no value even after type-by-expression has
been executed. Usually if the server does not recognize the file extension, it is a good idea to
force the type to be text/plain, so that the content of the resource is treated as plain text. There
are also other situations where you might want to set the type regardless of the file extension,
such as forcing all resources in the designated CGI directory to have the MIME type
magnus-internal/cgi.

The function that forces the type is force- type.

For example, the following directives first instruct the server to look in the MIME types table for
the MIME type, then if the type attribute has not been set (that is, the file extension was not
found in the MIME types table), set the type attribute to text/plain.

ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"

If the server receives a request for a file abc. dogs, it looks in the MIME types table, does not find
a mapping for the extension .dogs, and consequently does not set the type attribute. Since the
type attribute has not already been set, the second directive is successful, forcing the type
attribute to text/plain.

The following example illustrates another use of force- type. In this example, the type is forced
tomagnus-internal/cgi before the server gets a chance to look in the MIME types table. In this
case, all requests for resources in http://server_name/cgi/ are translated into requests for
resources in the directory D: /Sun/WebServer61/serverl/docs/mycgi/. Since a name is
assigned to the request, the server processes ObjectType directives in the object named cgi
before processing the ones in the default object. This object has one ObjectType directive,
which forces the type to be magnus-internal/cgi.

NameTrans fn="pfx2dir"

from="/cgi" dir="D:/Sun/WebServer61/serverl/docs/mycgi”
name="cgi"

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide - September 2008

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Flow of Control in obj.conf

<Object name="cgi">

ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"

</0Object>

The server continues processing all ObjectType directives including those in the default object,
but since the type attribute has already been set, no other directive can set it to another value.

Input

The Input directive selects filters that will process incoming request data read by the Service
step. It allows you to invoke the insert-filter SAF in order to install filters that process
incoming data.

The Input directives are executed at most once per request.

You can define the appropriate position of a specific filter within the filter stack. For example,
filters that translate content from XML to HTML are placed higher in the filter stack than filters
that compress data for transmission. You can use the filter_create function to define the
filter's position in the filter stack, and init-filter-order to override the defined position.

When two or more filters are defined to occupy the same position in the filter stack, filters that
were inserted later will appear higher than filters that were inserted earlier. That is, the order of
Input fn="insert-filter" and Output fn="insert-filter" directives in obj.conf becomes
important.

For more information, see Chapter 4, Creating Custom Filters.

Output

The Output directive selects filters that will process outgoing response data generated by the
Service step. The Output directive allows you to invoke the insert-filter SAF to install
filters that process outgoing data. All Output directives are executed when the server or a
plug-in first attempts to write entity body data from the client.

The Output directives are executed at most once per request.

You can define the appropriate position of a specific filter within the filter stack. For example,
filters that translate content from XML to HTML are placed higher in the filter stack than filters
that compress data for transmission. You can use the filter_create function to define the
filter's position in the filter stack, init- filter-order to override the defined position.

When two or more filters are defined to occupy the same position in the filter stack, filters that
were inserted later will appear higher than filters that were inserted earlier. That is, the order of
Input fn="insert-filter" and Output fn="insert-filter" directives in obj.conf becomes
important.

Chapter 1 « Syntaxand Use of obj.conf 41

Flow of Control in obj.conf

For more information, see Chapter 4, Creating Custom Filters.

Service

Next, the server needs to execute a Service directive to generate the response to send to the
client. The server looks at each Service directive in turn, to find the first one that matches the
type, method and query string. Ifa Service directive does not specify type, method, or query
string, then the unspecified attribute matches anything.

If there is more than one Service directive, the server applies the first one that matches the
conditions of the request, and ignores all remaining Service directives.

As with the PathCheck and ObjectType directives, if another object has been matched to the
request as a result of the NameTrans step, the server considers the Service directives in the
matching object before considering the ones in the default object. If the server successfully
executes a Service directive in the matching object, it will not get around to executing the
Service directives in the default object, since it only executes one Service directive.

Service Examples

For an example of how Service directives work, consider what happens when the server
receives a request for the URL D: /server_name/jos .html. In this case, all directives executed by
the server are in the default object.

= The following NameTrans directive translates the requested URL to
D:/Sun/WebServer6l/serverl/docs/jos.html:

NameTrans fn="document-root" root="D:/Sun/WebServer6l/serverl/docs"
= Assume that the PathCheck directives all succeed.

= The following ObjectType directive tells the server to look up the resource’s MIME type in
the MIME types table:

ObjectType fn="type-by-extension"

= The server finds the following entry in the MIME types table, which sets the type attribute
to text/html:

type=text/html exts=htm,html

= The server invokes the following Service directive. The value of the type parameter
matches anything that does not begin with magnus - internal/. (For alist of all wildcard
patterns, see Chapter 9, Using Wildcard Patterns client.)

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file

42 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide - September 2008

Flow of Control in obj.conf

Here is an example that involves using another object:

= The following NameTrans directive assigns the name personnel to the request.

NameTrans fn=assign-name name=personnel from=/personnel

= Asaresult of the name assignment, the server switches to processing the directives in the
object named personnel. This object is defined as:

<Object name="personnel">
Service fn="index-simple"
</0Object>

= The personnel object has no PathCheck or ObjectType directives, so the server processes
the PathCheck and ObjectType directives in the default object. Let's assume that all
PathCheck and ObjectType directives succeed.

= When processing Service directives, the server starts by considering the Service directive
in the personnel object, which is:

Service fn="index-simple"
m The server executes this Service directive, which calls the index-simple function.
Since a Service directive has now been executed, the server does not process any other

Service directives. (However, if the matching object had not had a Service directive that
was executed, the server would continue looking at Service directives in the default object.)

Default Service Directive

There is usually a Service directive that does the default task (sends a file) if no other Service
directive matches a request sent by a browser. This default directive should come last in the list
of Service directives in the default object, to ensure it only gets called if no other Service
directives have succeeded. The default Service directive is usually:

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"

This directive matches requests whose method is GET, HEAD, or POST, which covers nearly
virtually all requests sent by browsers. The value of the type argument uses special
pattern-matching characters. For complete information about the special pattern-matching
characters, seeChapter 9, Using Wildcard Patterns

The characters “*~” mean “anything that doesn’t match the following characters,” so the
expression *~magnus - internal/ means “anything that doesn’t match magnus-internal/” An

Chapter 1 « Syntaxand Use of obj.conf 43

Changesin Function Flow

asterisk by itself matches anything, so the whole expression *~magnus - internal/* matches
anything that does not begin with magnus -internal/.

Soifthe server has not already executed a Service directive when it reaches this directive, it
executes the directive so long as the request method is GET, HEAD or POST, and the value of the
type attribute does not begin with magnus-internal/. The invoked function is send- file,
which simply sends the contents of the requested file to the client.

AddLog

After the server generates the response and sends it to the client, it executes AddLog directives to
add entries to the log files.

All AddLog directives are executed. The server can add entries to multiple log files.

Depending on which log files are used and which format they use, the Init section in
magnus . conf may need to have directives that initialize the logs. For example, if one of the
AddLog directives calls flex-log, which uses the extended log format, the Init section must
contain a directive that invokes flex-init to initialize the flexible logging system.

For more information about initializing logs, see the discussion of the functions “flex-init” on
page 54 and “init-clf” on page 61 in Chapter 2, SAFs in the magnus.conf File

For more information about flex-1log, see information about predefined SAFs in the obj . conf
file in the Sun Java System Web Server 6.1 SP10 Administrator’s Configuration File Reference.

Error

If an error occurs during the request-handling process, such as ifa PathCheck or AuthTrans
directive denies access to the requested resource, or the requested resource does not exist, the
server immediately stops executing all other directives and immediately starts executing the
Error directives.

Changes in Function Flow

44

There are times when the function flow changes from the normal request-handling process.
This happens during internal redirects, restarts, and URI translation functions.

Internal Redirects

An example of an internal redirect is a servlet include or forward. In this case, because there is
no exposed NSAPI function to handle an internal redirect, when an internal redirect occurs, the
request structure is copied into rq->orig_rq. For more information on the request data
structure, see“Request” on page 244

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5713

Syntax Rules for Editing obj.conf

Restarts

A restart occurs when a REQ_RESTART is returned from a PathCheck or Service function. For
example, when a CGI is redirected using a relative path.

On arestart, much of the request is cleared. Some elements of the HTTP request (rq->reqpb),
the server’s “working” variables (rq->vars), and response headers (rq->srvhdrs) are cleared.
The method, protocol, and c1f - request variables from rq->reqpb are saved. The saved
variables are put back into the data structure. The new URI is inserted (and if there is a query
string in the new URI, that too is inserted) into rq->reqpb. The parameter

rq->rq_attr.req restarted isset to 1. For more information on the request data structure,
see“Request” on page 244.

URI Translation

At times it is necessary to find the physical path for a URI without actually running a request.
The function “request_translate_uri” on page 196 does this. A new request structure is created
and run through the AuthTrans and NameTrans stages to get the physical path. Thereafter, the
new request is freed.

Syntax Rules for Editing obj.conf

A\

Several rules are important in the obj . conf file. Be very careful when editing this file. Simple
mistakes can make the server fail to start or operate correctly.

Caution - Do not remove any directives from any obj . conf file that are present in the obj . conf
file that exists when you first install Sun Java System Web Server. The server may not function

properly.

Order of Directives

The order of directives is important, since the server executes them in the order they appear in
obj.conf. The outcome of some directives affect the execution of other directives.

For PathCheck directives, the order within the PathCheck section is not so important, since the
server executes all PathCheck directives. However, the order within the ObjectType section is
very important, because if an ObjectType directive sets an attribute value, no other ObjectType
directive can change that value. For example, if the default ObjectType directives were listed in
the following order (which is the wrong way around), every request would have its type value
set to text/plain, and the server would never have a chance to set the type according to the
extension of the requested resource.

Chapter 1 « Syntaxand Use of obj.conf 45

Syntax Rules for Editing obj.conf

46

ObjectType fn="force-type" type="text/plain”
ObjectType fn="type-by-extension"

Similarly, the order of directives in the Service section is very important. The server executes
the first Service directive that matches the current request and does not execute any others.

Parameters

The number and names of parameters depends on the function. The order of parameters on the
line is not important.

Case Sensitivity

Items in the obj . conf file are case-sensitive including function names, parameter names, many
parameter values, and path names.

Separators

The Clanguage allows function names to be composed only of letters, digits, and underscores.
You may use the hyphen (-) character in the configuration file in place of underscore (_) for
your C code function names. This is only true for function names.

Quotes

Quotes (") are only required around value strings when there is a space in the string. Otherwise
they are optional. Each open-quote must be matched by a close-quote.

Spaces

= Spaces are not allowed at the beginning of a line except when continuing the previous line.
= Spaces are not allowed before or after the equal (=) sign that separates the name and value.

= Spaces are not allowed at the end of a line or on a blank line.

Line Continuation

A long line may be continued on the next line by beginning the next line with a space or tab.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

About obj.conf Directive Examples

Path Names

Always use forward slashes (/) rather than backslashes (\) in path names under Windows.
Backslash escapes the next character.

Comments

Comments begin with a pound (#) sign. If you manually add comments to obj . conf, then use
the Server Manager interface to make changes to your server, the Server Manager will wipe out
your comments when it updates obj . conf.

About obj.conf Directive Examples

Every line in the obj . conf file begins with one of the following keywords:

AuthTrans
NameTrans
PathCheck
ObjectType
Input
Output
Service
AddLog
Error
<Object
</0bject>

If any line of any example begins with a different word in the manual, the line is wrapping in a
way that it does not in the actual file. In some cases this is due to line length limitations imposed
by the PDF and HTML formats of the manuals.

For example, the following directive is all on one line in the actual obj . conf file:

NameTrans fn="pfx2dir" from="/cgi"
dir="D:/Sun/WebServer6l/serverl/docs/mycgi"
name="cgi"

Chapter 1 « Syntaxand Use of obj.conf 47

48

Init SAFs

CHAPTER 2

SAFs in the magnus.conf File

When the Sun Java System Web Server starts up, it looks in a file called magnus . conf in the
server-id/config directory to establish a set of global variable settings that affect the server’s
behavior and configuration. Sun Java System Web Server executes all of the directives defined in
magnus . conf. The order of the directives is not important.

Note - When you edit the magnus . conf file, you must restart the server for the changes to take
effect.

This section the Init SAFs that can be specified in magnus. conf in Sun Java System Web Server
6.1. For information about the other, non-SAF directives in magnus . conf, see the Sun Java
System Web Server 6.1 SP10 Administrator’s Configuration File Reference.

The Init directives initialize the server (for example they load and initialize additional modules
and plug-ins, and initialize log files).

The Init directives are SAFs, like obj . conf directives, and have SAF syntax rather than the
simpler variable value syntax of other magnus. conf directives.

They are located in magnus . conf because, like other magnus . conf directives, they are executed
only once at server startup.

Each Init directive has an optional LateInit parameter. For the UNIX platform, if LateInit is
set to yes, the function is executed by the child process after it is forked from the parent. If
LateInit issetto no or is not provided, the function is executed by the parent process before
the fork. When the server is started up by user root but runs as another user, any activities that
must be performed as the user root (such as writing to a root-owned file) must be done before
the fork. Functions that create threads, with the exception of thread-pool-init, should
execute after the fork (that is, the relevant Init directive should have LateInit=yes set).

49

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Init SAFs

50

For all platforms, any function that requires access to a fully parsed configuration should have
LateInit=yes setonits Init directive.

Upon failure, Init-class functions return REQ_ABORTED. The server logs the error according to
the instructions in the Error directives in obj . conf, and terminates. Any other result code is
considered a success.

Syntax

Init functions have the following syntax:

Init fn=function paraml="valuel" ...paramN="valueN"

Directives have the following syntax:

directive value

The following Init-class functions and their parameters are described in detail in this chapter:

= “cindex-init” on page 51 changes the default characteristics for fancy indexing.
= “define-perf-bucket” on page 52 creates a performance bucket.

m “dns-cache-init” on page 53 configures DNS caching.

= “flex-init” on page 54 initializes the flexible logging system.

= “flex-rotate-init” on page 58 enables rotation for flexible logs.

= “init-cgi” on page 60 changes the default settings for CGI programs.

= “init-clf” on page 61 initializes the Common Log subsystem.

= “init-dav” on page 62 initializes the WebDAYV subsystem.

= “init-filter-order” on page 62 controls the position of specific filters within filter stacks.
= “init-j2ee” on page 64 initializes the Java subsystem.

= “init-uhome” on page 64 loads user home directory information.

= “load-modules” on page 65 loads shared libraries into the server.

= “nt-console-init” on page 66 enables the Windows console, which is the command-line shell
that displays standard output and error streams.

= “perf-init” on page 66 enables system performance measurement via performance buckets.
= “pool-init” on page 67 configures pooled memory allocation.

= “register-http-method” on page 68 lets you extend the HTTP protocol by registering new
HTTP methods.

= “stats-init” on page 69 enables reporting of performance statistics in XML format.

= “thread-pool-init” on page 69 configures an additional thread pool.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

cindex-init

cache-init] function, if present, is ignored.

cindex-init
Applicable in Init-class directives.

The function cindex-init sets the default settings for common indexing. Common indexing
(also known as fancy indexing) is performed by the Service function index- common. Indexing
occurs when the requested URL translates to a directory that does not contain an index file or
home page, or no index file or home page has been specified.

In common (fancy) indexing, the directory list shows the name, last modified date, size, and
description for each indexed file or directory.

Parameters

The following table describes parameters for the cindex-1init function.

TABLE2-1 cindex-init parameters

Parameter Description

opts (Optional) String of letters specifying the options to activate. Currently
there is only one possible option:

s tells the server to scan each HTML file in the directory being indexed for
the contents of the HTML <TITLE> tag to display in the description field.
The <TITLE> tag must be within the first 255 characters of the file. This
option is off by default.

The search for <TITLE> is not case-sensitive.

widths (Optional) Specifies the width for each column in the indexing display. The
string is a comma-separated list of numbers that specify the column widths
in characters for name, last-modified date, size, and description,
respectively.

The default values for the widths parameter are 22, 18, 8, 33.

The final three values (corresponding to last-modified date, size, and
description, respectively) can each be set to @ to turn the display for that
column off. The name column cannot be turned off. The minimum size of a
column (if the value is nonzero) is specified by the length of its title. For
example, the minimum size of the date column is 5 (the length of “Date”
plus one space). If you set a nonzero value for a column that is less than the
length of its title, the width defaults to the minimum required to display the
title.

Chapter2 - SAFsin the magnus.confFile 51

define-perf-bucket

TABLE2-1 cindex-init parameters (Continued)
Parameter Description
timezone (Optional) Indicates whether the last-modified time is shown in local time
or in Greenwich Mean Time. The values are GMT or local. The default is
local.
format (Optional) Parameter determines the format of the last modified date
display. It uses the format specification for the UNIX function strftime().
The default is %d-%b-%Y %H:%M.
ignore (Optional) Specifies a wildcard pattern for file names the server should
ignore while indexing. File names starting with a period (.) are always
ignored. The default is to only ignore file names starting with a period (.).
icon-uri (Optional) Specifies the URI prefix the index - common function uses when
generating URLs for file icons (. gif files). By default, it is /mc-icons/. If
icon-uri is different from the default, the pfx2dir function in the
NameTrans directive must be changed so that the server can find these icons.
Example

Init fn=cindex-init widths=50,1,1,0
Init fn=cindex-init ignore=*private*
Init fn=cindex-init widths=22,0,0,50

define-perf-bucket

Applicable in Init-class directives.

52

The define-perf-bucket function creates a performance bucket, which you can use to
measure the performance of SAFs in obj . conf (for more information about predefined SAFs
thatare used in obj . conf, see Sun Java System Web Server 6.1 SP10 Administrator’s

Configuration File Reference).

For more information about performance buckets, see the Sun Java System Web Server 6.1 SP10
Performance Tuning, Sizing, and Scaling Guide.

Parameters

The following table describes parameters for the define-perf-bucket function.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5719
http://docs.sun.com/doc/820-5719

dns-cache-init

TABLE2-2 define-perf-bucket parameters

Parameter Description

name Name for the bucket (for example, cgi-bucket) .

description Description of what the bucket measures (for example, CGI Stats) .
Example

Init fn="define-perf-bucket" name="cgi-bucket" description="CGI Stats"

SeeAlso

“perf-init” on page 66

dns-cache-init
Applicable in Init-class directives.

The dns-cache-init function specifies that DNS lookups should be cached when DNS lookups
are enabled. If DNS lookups are cached, then when the server gets a client’s host name
information, it stores that information in the DNS cache. If the server needs information about
the client in the future, the information is available in the DNS cache.

You may specify the size of the DNS cache and the time it takes before a cache entry becomes
invalid. The DNS cache can contain 32 to 32768 entries; the default value is 1024 entries. Values
for the time it takes for a cache entry to expire (specified in seconds) can range from 1 second to
1 year; the default value is 1200 seconds (20 minutes).

Parameters

The following table describes parameters for the dns-cache-1init function.

TABLE2-3 dns-cache-init parameters

Parameter Description

cache-size (Optional) Specifies how many entries are contained in the cache.
Acceptable values are 32 to 32768; the default value is 1024.

Chapter2 - SAFsin the magnus.confFile 53

flex-init

flex-init

54

TABLE2-3 dns-cache-init parameters (Continued)
Parameter Description
expire (Optional) Specifies how long (in seconds) it takes for a cache entry to

expire. Acceptable values are 1 to 31536000 (1 year); the default is 1200
seconds (20 minutes).

Example

Init fn="dns-cache-init" cache-size="2140" expire="600"

Applicable in Init-class directives.

The flex-1init function opens the named log file to be used for flexible logging and establishes
arecord format for it. The log format is recorded in the first line of the log file. You cannot
change the log format while the log file is in use by the server.

The flex-log function (applicable in AddLog-class directives) writes entries into the log file
during the AddLog stage of the request-handling process.

The log file stays open until the server is shut down or restarted (at which time all logs are closed
and reopened).

Note - If the server has AddLog - stage directives that call flex-log, the flexible log file must be
initialized by flex-init during server initialization.

For more information about flex-1log, see information about predefined SAFs in the obj . conf
file in the Sun Java System Web Server 6.1 SP10 Administrator’s Configuration File Reference.

You may specify multiple log file names in the same flex-1init function call. Then use multiple
AddLog directives with the flex-log function to log transactions to each log file.

The flex-init function may be called more than once. Each new log file name and format will
be added to the list of log files.

If you move, remove, or change the currently active log file without shutting down or restarting
the server, client accesses might not be recorded. To save or backup the currently active log file,
you need to rename the file and then restart the server. The server first looks for the log file by
name, and if it doesn’t find it, creates a new one (the renamed original log file is left for you to
use).

For information on rotating log files, see “flex-rotate-init” on page 58.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5713

flex-init

The flex-init function has three parameters: one that names the log file, one that specifies the
format of each record in that file, and one that specifies the logging mode.

Parameters

The following table describes parameters for the flex-1init function.

TABLE2-4 flex-init parameters

Parameter Description

logFileName Name of the parameter is the name of the log file. The value of the
parameter specifies either the full path to the log file or a file name relative to
the server’s logs directory. For example:

access="/usr/netscape/server4/https-servername/logs/access"mylogfile
= "Logl"

You will use the log file name later, as a parameter to the flex-1log function
(applicable in AddLog-class directives).

buffer-size Specifies the size of the global log buffer. The default is 8192. See the third
flex-init example below.

buffers-per-file Specifies the number of buffers for a given log file. The default value is
determined by the server.

Access log entries can be logged in strict chronological order by using a
single buffer per log file. To accomplish this, add buffers-per-file="1"to
the Init fn="flex-log-init" line in magnus.conf. This ensures that
requests are logged in chronological order. Note that this approach will
result in decreased performance when the server is under heavy load.

format. logFileName Specifies the format of each log entry in the log file.
For information about the format, see the “flex-init” on page 54

%sduration% This flex-log format variable, records the time in microseconds, spent by the
server in processing requests. Statistics must be enabled for the server
instance before %sduration% is used. See Sun Java System Web Server 6.1
SP10 Administrator’s Guide for information on enabling statistics. For more
information on log file formats, see Sun Java System Web Server 6.1 SP10
Administrator’s Guide.

More on Log Format

The flex-1init function recognizes anything contained between percent signs (%) as the name
portion of a name-value pair stored in a parameter block in the server. (The one exception to
this rule is the %$SYSDATE% component, which delivers the current system date.) %SYSDATES is
formatted using the time format %d/%b/%Y : %H: %M: %S plus the offset from GMT.

Chapter2 - SAFsin the magnus.confFile 55

http://docs.sun.com/doc/820-5714
http://docs.sun.com/doc/820-5714
http://docs.sun.com/doc/820-5714
http://docs.sun.com/doc/820-5714

flex-init

56

(See Chapter 3, Creating Custom SAFs for more information about parameter blocks, and
Chapter 7, NSAPI Function Reference.)

Any additional text is treated as literal text, so you can add to the line to make it more readable.
Typical components of the formatting parameter are listed in the following table “flex-init” on
page 54. Certain components might contain spaces, so they should be bounded by escaped
quotes (\").

If no format parameter is specified for a log file, the common log format is used:
"%sSes->client.ip% - %Req->vars.auth-user% [%SYSDATES]
\"%Req->reqpb.clf-request%s\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"

You can now log cookies by logging the Req->headers. cookie.name component.

In the following table, the components that are enclosed in escaped double quotes (\") are the
ones that could potentially resolve to values that have white spaces.

TABLE2-5 Typical Components of flex-init Formatting

Flex-log Option Component

Client host name (unless iponly |%Ses->client.ip%

is specified in flex-log or DNS

name is not available) or IP

address

Client DNS name %Ses->client.dns%

System date %SYSDATES

Full HTTP request line \"%Req->reqpb.clf-request%s\"
Status %Req->srvhdrs.clf-statuss
Response content length %Req->srvhdrs.content-length%
Response content type %Req->srvhdrs.content-type%
Referer header \"%Req->headers.referer%\"
User-agent header \"%Req->headers.user-agent%\"
HTTP method %Req->reqpb.method%

HTTP URI %Req->reqpb.uri%

HTTP query string %Req->reqpb.query%

HTTP protocol version %Req->reqpb.protocol%

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

flex-init

TABLE2-5 Typical Components of flex-init Formatting

(Continued)

Flex-log Option

Component

Accept header

Date header
If-Modified-Since header
Authorization header
Any header value

Name of authorized user
Value of a cookie

Value of any variablein
Req->vars

%Req->headers.accept%
%Req->headers.date%
%Req->headers.if-modified-since%
%Req->headers.authorization%
%Req->headers.headernames%
%Req->vars.auth-user%
%Req->headers.cookie.name%

%Req->vars.varnames

Virtual server ID %vsids%s

Duration sduration%
Records the time in microseconds the server spent handling the request.
Statistics must be enabled for the server instance before %sduration% can be
used. For information about enabling statistics, see Sun Java System Web
Server 6.1 SP10 Administrator’s Guide.

Examples

The first example below initializes flexible logging into the file
/usr/sun/webserver6l/serverl/https-servername/logs/access.

Init fn=flex-init access="/usr/sun/webserver6l/serverl/https-servername
/logs/access" format.access="%Ses->client.ip% - %Req->vars.auth-users
[%SYSDATE%] \"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-statuss
%Req->srvhdrs.content-length%"

This will record the following items:

= P or host name, followed by the three characters “ - ”

= User name, followed by the two characters “ [”

= System date, followed by the two characters “] ”

= Full HTTP request in quotes, followed by a single space

= HTTP result status in quotes, followed by a single space

= Contentlength

This is the default format, which corresponds to the Common Log Format (CLF).

Chapter2 « SAFsin the magnus.conf File

57

http://docs.sun.com/doc/820-5714
http://docs.sun.com/doc/820-5714

flex-rotate-init

It is advisable that the first six elements of any log always be in exactly this format, because a
number of log analyzers expect that as output.

The second example initializes flexible logging into the file
/usr/sun/webserver6l/serverl/https-servername/logs/extended.

Init fn=flex-init extended="/usr/sun/webserver6l/serverl/https-servername
/logs/extended" format.extended="%Ses->client.ip% - %Req->vars.auth-users
[%SYSDATE%] \"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length% %Req->headers.referers \"%Req->
headers.user-agent%\" %Req->reqpb.method% %Req->reqpb.uri% %Req->
reqpb.query% %Req->reqpb.protocol%"

The third example shows how logging can be tuned to prevent request handling threads from
making blocking calls when writing to log files, instead delegating these calls to the log flush
thread.

Doubling the size of the buffer-size and num-buffers parameters from their defaults and
lowering the value of the LogFlushInterval magnus.conf directive to 4 seconds (see Chapter 2,
SAFs in the magnus.conf File

Init fn=flex-init buffer-size=16384 num-buffers=2000
access="/usr/sun/webserver6l/serverl/https-servername/logs/access"
format.access="%Ses->client.ip% - %Req->vars.auth-user%

%SYSDATES] \"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"

See Also

“flex-rotate-init” on page 58

flex-rotate-init

58

Applicable in Init-class directives.

The flex-rotate-init function configures log rotation for all log files on the server, including
error logs and the common-log, flex-log, and record-useragent AddLog SAFs. Call this
function in the Init section of magnus. conf before calling “flex-init” on page 54. The
flex-rotate-init function allows you to specify a time interval for rotating log files. At the
specified time interval, the server moves the log file to a file whose name indicates the time of
moving. The log functions in the AddLog stage in obj . conf then start logging entries in a new
log file. The server does not need to be shut down while the log files are being rotated.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

flex-rotate-init

Note - The server keeps all rotated log files forever, so you will need to clean them up as

necessary to free disk space.

By default, log rotation is disabled.

Parameters

The following table describes parameters for the flex-rotate-init function.

TABLE2-6 flex-rotate-init parameters

Parameter

Description

rotate-start

rotate-interval

rotate-access

rotate-error

rotate-callback

Indicates the time to start rotation. This value is a four-digit string
indicating the time in 24-hour format. For example, 0900 indicates 9 a.m.,
while 1800 indicates 9 p.m.

Indicates the number of minutes to elapse between each log rotation.

(Optional) Determines whether common-log, flex-log, and
record-useragent logs are rotated (AddLog SAFs). Values are yes (the
default), and no.

(Optional) Determines whether error logs are rotated. Values are yes (the
default), and no.

(Optional) Specifies the file name of a user-supplied program to execute
following log file rotation. The program is passed the post-rotation name of
the rotated log file as its parameter.

Example

This example enables log rotation, starting at midnight and occurring every hour.

Init fn=flex-rotate-init rotate-start=2400 rotate-interval=60

SeeAlso

“flex-init” on page 54

Chapter2 - SAFsin the magnus.confFile 59

init-cgi

Init-cgi
Applicable in Init-class directives.
The init-cgi function performs certain initialization tasks for CGI execution. Two options are

provided: timeout of the execution of the CGI script, and establishment of environment
variables.

Parameters

The following table describes parameters for the init-cgi function.

TABLE2-7 init-cgiparameters

Parameter Description

timeout (Optional) Specifies how many seconds the server waits for CGI output. If
the CGI script has not delivered any output in that many seconds, the server
terminates the script. The default is 300 seconds.

cgistub-path (Optional) Specifies the path to the CGI stub binary. If not specified, Sun
Java System Web Server looks in the following directories in the following
order, relative to the server instance’s config directory:
../private/Cgistub, then ../../bin/https/bin/Cgistub.

Use the first directory to house an suid Cgistub (that is, a Cgistub owned by
root that has the set-user-ID-on-exec bit set). Use the second directory to
house a non-suid Cgistub. The second directory is the location used by Sun
Java System Web Server 4.x servers.

If present, the . . /private directory must be owned by the server user and
have permissions d??x-- - - - - . This prevents other users (for example, users
with shell accounts or CGI access) from using Cgistub to set their uid.

For information about installing a suid Cgistub, see the Sun Java System
Web Server 6.1 SP10 Programmer’s Guide.

env-variable (Optional) Specifies the name and value for an environment variable that
the server places into the environment for the CGI. You can set any number
of environment variables in a single init-cgi function.

Example

Init fn=init-cgi LD LIBRARY_PATH=/usr/lib;/usr/local/lib

60 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5720
http://docs.sun.com/doc/820-5720

init-clIf

init-clf
Applicable in Init-class directives.

The init-clf function opens the named log files to be used for common logging. The

common - log function writes entries into the log files during the AddLog stage of the
request-handling process. The log files stay open until the server is shut down (at which time the
log files are closed) or restarted (at which time the log files are closed and reopened).

Note - If the server has an AddLog-stage directive that calls common - log, common log files must
be initialized by init-clf during initialization.

Note - This function should only be called once. If it is called again, the new call will replace log
file names from all previous calls.

If you move, remove, or change the log file without shutting down or restarting the server, client
accesses might not be recorded. To save or backup a log file, you need to rename the file (and for
UNIX, send the -HUP signal), and then restart the server. The server first looks for the log file by
name, and if it doesn’t find it, creates a new one (the renamed original log file is left for you to
use).

For information on rotating log files, see “flex-rotate-init” on page 58.

Parameters

The following table describes parameters for the init-clf function.

TABLE2-8 init-clf parameters

Parameter Description

logFileName Name of the parameter is the name of the log file. The value of the
parameter specifies either the full path to the log file or a file name relative to
the server’s logs directory. For example:

access="/usr/netscape/serverd/https-servername/logs/access"mylogfile
= "logl"

You will use the log file name later, as a parameter to the common-log
function (applicable in AddLog-class directives).

Chapter2 - SAFsin the magnus.confFile 61

init-dav

62

t-dav

Examples

Init fn=init-clf access=/usr/netscape/serverd/https-boots/logs/access
Init fn=init-clf templog=/tmp/mytemplog templog2=/tmp/mytemplog2

See Also

“flex-rotate-init” on page 58

Applicable in Init-class directives.

The init-dav function performs initialization tasks to load the WebDAV plug-in.

Parameters

This function requires a LateInit=yes parameter.

Example

Init fn="load-modules" shlib="/slws6.1/1ib/libdavplug-in.so"
funcs="init-dav,ntrans-dav, service-dav"

shlib flags="(global|now)"

Init fn="init-dav" LateInit=yes

Example

Init fn=init-cgi LD LIBRARY PATH=/usr/lib;/usr/local/lib

t-filter-order

Applicable in Init-class directives.

The init-filter-order Init SAF can be used to control the position of specific filters within
filter stacks. For example, init-filter-order can be used to ensure that a filter that converts
outgoing XML to XHTML is inserted above a filter that converts outgoing XHTML to HTML.

Filters that appear higher in the filter stack are given an earlier opportunity to process outgoing
data, and filters that appear lower in the filter stack are given an earlier opportunity to process
incoming data.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

init-filter-order

The appropriate position of a specific filter within the filter stack is defined by the filter
developer. For example, filters that translate content from XML to HTML are placed higher in
the filter stack than filters that compress data for transmission. Filter developers use the
“filter_create” on page 155 function to define the filter's position in the filter stack.
init-filter-order canbe used to override the position defined by the filter developer.

When two or more filters are defined to occupy the same position in the filter stack, filters that
were inserted later will appear higher than filters that were inserted earlier. That is, the order of
Input fn="insert-filter" and Output fn="insert-filter" directives in obj.conf becomes
important. For example, consider two filters, xhtml-to-html and xml-to-xhtml, which convert
XHTML to HTML and XML to XHTML, respectively. Since both filters transform data from
one format to another, they may be defined to occupy the same position in the filter stack. To
transform XML documents to XHTML and then to HTML before sending the data to the client,
Output fn="insert-filter" directives in obj.conf would appear in the following order:

Output fn="insert-filter" filter="xhtml-to-html"
Output fn="insert-filter" filter="xml-to-xhtml"

In general, administrators should use the order of Input fn="insert-filter" and Output
fn="insert-filter" directivesin obj.conf to control the position of filters in the filter stack.
init-filter-order should only be used to address specific filter interoperability problems.

Note - The load-module SAFs that create the filters should be called before init-filter-order
attempts to order them.

Parameters

The following table describes parameters for the init-filter-order function.

TABLE2-9 init-filter-order parameters

Parameter Description

filters Comma-separated list of filters in the order they should appear within a
filter stack, listed from highest to lowest.

Example

Init fn="init-filter-order" filters="xml-to-xhtml,xhtml-to-html,http-compression"

Chapter2 - SAFsin the magnus.confFile 63

init-j2ee

L] L] L]
init-j2ee
Applicable in Init-class directives.
The init- j2ee function initializes the Java subsystem.
Parameters
This function requires a LateInit=yes parameter.
Example
Init fn="load-modules" shlib="install dir/lib/libj2eeplug-in.so"
funcs="init-j2ee,ntrans-j2ee,service-j2ee,error-j2ee" shlib flags="(global|now)"
Init fn="init-j2ee" LateInit=yes
L] L]
init-uhome
Applicable in Init-class directives.
UNIX Only. The init-uhome function loads information about the system’s user home
directories into internal hash tables. This increases memory usage slightly, but improves
performance for servers that have a lot of traffic to home directories.
Parameters
The following table describes parameters for the init-uhome function.
TABLE2-10 init-uhome parameters
Parameter Description
pwfile (Optional) Specifies the full file system path to a file other than
/etc/passwd. If not provided, the default UNIX path (/etc/passwd) is
used.
Examples
Init fn=init-uhome
Init fn=init-uhome pwfile=/etc/passwd-http
64 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

load-modules

load-modules

Applicable in Init-class directives.

The load-modules function loads a shared library or dynamic-link library (DLL) into the server
code. Specified functions from the library can then be executed from any subsequent directives.
Use this function to load new plug-ins or SAFs.

If you define your own SAFs, you get the server to load them by using the load-modules
function and specifying the shared library or DLL to load.

Parameters

The following table describes parameters for the load-modules function.

TABLE2-11 load-modules parameters

Parameter Description

shlib Specifies either the full path to the shared library or DLL, or a file name
relative to the server configuration directory.

funcs Comma-separated list of the names of the functions in the shared library or
DLL to be made available for use by other Init directives or by Service
directives in obj . conf. The list should not contain any spaces. The dash (-)
character may be used in place of the underscore (_) character in function
names.

NativeThread (Optional) Specifies which threading model to use.
no causes the routines in the library to use user-level threading.
yes enables kernel-level threading. The default is yes.

pool Name of a custom thread pool, as specified in “thread-pool-init” on page 69.

Examples

Init fn=load-modules shlib="C:/mysrvfns/corpfns.dll"

funcs="moveit"

Init fn=1load-modules shlib="/mysrvfns/corpfns.so"

funcs="myinit,myservice"
Init fn=myinit

Chapter2 - SAFsin the magnus.confFile 65

nt-console-init

nt-console-init

perf-init

66

Applicable in Init-class directives.

The nt-console-init function enables the Windows console, which is the command-line shell
that displays standard output and error streams.

Parameters

The following table describes parameters for the nt-console-init function.

TABLE2-12 nt-console-init parameters

Parameter Description

stderr Directs error messages to the Windows console. The required and only
value is console.

stdout Directs output to the Windows console. The required and only value is
console.

Example

Init fn="nt-console-init" stdout=console stderr=console

Applicable in Init-class directives.
The perf-init function enables system performance measurement via performance buckets.

For more information about performance buckets, see the Sun Java System Web Server 6.1 SP10
Performance Tuning, Sizing, and Scaling Guide.

Parameters

The following table describes parameters for the perf-init function.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5719
http://docs.sun.com/doc/820-5719

pool-init

pool-init

TABLE2-13 perf-init parameters

Parameter Description

disable Flag to disable the use of system performance measurement via
performance buckets. Should have a value of t rue or false. Default value is
true.

Example

Init fn=perf-init disable=false

SeeAlso

“define-perf-bucket” on page 52

Applicable in Init-class directives.

The pool-init function changes the default values of pooled memory settings. The size of the
free block list may be changed or pooled memory may be entirely disabled.

Memory allocation pools allow the server to run significantly faster. If you are programming
with the NSAPI, note that MALLOC, REALLOC, CALLOC, STRDUP, and FREE work slightly differently
if pooled memory is disabled. If pooling is enabled, the server automatically cleans up all
memory allocated by these routines when each request completes. In most cases, this will
improve performance and prevent memory leaks. If pooling is disabled, all memory is global
and there is no clean-up.

If you want persistent memory allocation, add the prefix PERM_ to the name of each routine
(PERM_MALLOC, PERM REALLOC, PERM CALLOC, PERM STRDUP, and PERM FREE).

Note - Any memory you allocate from Init-class functions will be allocated as persistent
memory, even if you use MALLOC. The server cleans up only the memory that is allocated while
processing a request, and because Init-class functions are run before processing any requests,
their memory is allocated globally.

Parameters

The following table describes parameters for the pool-init function.

Chapter2 - SAFsin the magnus.confFile 67

register-http-method

TABLE2-14 pool-init parameters

Parameter Description

free-size (Optional) Maximum size in bytes of free block list. May not be greater than
1048576.

disable (Optional) Flag to disable the use of pooled memory. Should have a value of
true or false. Default value is false.

Example

Init fn=pool-init disable=true

register-http-method

68

Applicable in Init-class directives.

This function lets you extend the HT'TP protocol by registering new HTTP methods. (You do
not need to register the default HTTP methods.)

Upon accepting a connection, the server checks if the method it received is known to it. If the
server does not recognize the method, it returns a “501 Method Not Implemented” error
message.

Parameters

The following table describes parameters for the register-http-method function.

TABLE2-15 register-http-method parameters

Parameter Description
methods Comma-separated list of the names of the methods you are registering.
Example

The following example shows the use of register-http-method and a Service function for
one of the methods.

Init fn="register-http-method" methods="MY METHOD1,MY METHOD2"
Service fn="MyHandler" method="MY METHOD1"

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

thread-pool-init

L] L]
stats-init

Applicable in Init-class directives.

The stats-init function enables reporting of performance statistics in XML format. The

actual report is generated by the stats-xml function in obj . conf.

Parameters

The following table describes parameters for the stats-init function.

TABLE2-16 stats-init parameters

Parameter Description

update-interval Period in seconds between statistics updates within the server. Set higher for
better performance, lower for more frequent updates. The minimum value
is 1; the default is 5.

virtual-servers Maximum number of virtual servers for which statistics are tracked. This
number should be set higher than the number of virtual servers configured.
Smaller numbers result in lower memory usage. The minimum value is 1;
the default is 1000.

profiling Enables NSAPI performance profiling using buckets if set to yes. This can
also be enabled through the “perf-init” on page 66 Init SAF. The default is
no, which results in slightly better server performance.

Example

Init fn="stats-init" update-interval="5" virtual-servers="2000" profiling="yes"

L] o
thread-pool-init

Applicable in Init-class directives.

The thread-pool-init function creates a new pool of user threads. A pool must be declared
before it is used. To tell a plug-in to use the new pool, specify the pool parameter when loading
the plug-in with the Init-class function “load-modules” on page 65.

One reason to create a custom thread pool would be if a plug-in is not thread-aware, in which
case you can set the maximum number of threads in the pool to 1.

The older parameter NativeThread=yes always engages one default native pool, called
NativePool.

Chapter2 - SAFsin the magnus.confFile 69

thread-pool-init

70

The native pool on UNIX is normally not engaged, as all threads are OS-level threads. Using
native pools on UNIX may introduce a small performance overhead, as they’ll require an
additional context switch; however, they can be used to localize the jvm.stickyAttach effect or
for other purposes, such as resource control and management, or to emulate single-threaded
behavior for plug-ins.

On Windows, the default native pool is always being used and Sun Java System Web Server uses
fibers (user-scheduled threads) for initial request processing. Using custom additional pools on
Windows introduces no additional overhead.

In addition, native thread pool parameters can be added to the magnus. conf file for
convenience. For more information, see “Native Thread Pools” in the chapter “Syntax and Use
of magnus.conf” in the Sun Java System Web Server 6.1 SP10 Administrators Configuration File
Reference.

Parameters

The following table describes parameters for the thread-pool-init function.

TABLE2-17 thread-pool-init parameters

Parameter Description

name Name of the thread pool.

maxthreads Maximum number of threads in the pool.

minthreads Minimum number of threads in the pool.

queueSize Size of the queue for the pool. If all threads in the pool are busy, further

request-handling threads that want to get a thread from the pool will wait in
the pool queue. The number of request-handling threads that can wait in
the queue is limited by the queue size. If the queue is full, the next
request-handling thread that comes to the queue is turned away, with the
result that the request is turned down, but the request-handling thread
remains free to handle another request instead of becoming locked up in the
queue.

stackSize Stack size of each thread in the native (kernel) thread pool.

Example

Init fn=thread-pool-init name="my-custom-pool"
maxthreads=5 minthreads=1 queuesize=200

Init fn=load-modules shlib="C:/mydir/myplugin.d1l"
funcs="tracker" pool="my-custom-pool"

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

thread-pool-init

SeeAlso

“load-modules” on page 65

Chapter2 - SAFsin the magnus.confFile 71

72

CHAPTER 3

Creating Custom SAFs

This chapter describes how to write your own NSAPI plug-ins that define custom Server
Application Functions (SAFs). Creating plug-ins allows you to modify or extend the Sun Java
System Web Server’s built-in functionality. For example, you can modify the server to handle
user authorization in a special way or generate dynamic HTML pages based on information in a
database.

This chapter has the following sections:

= “Future Compatibility Issues” on page 74

= “The SAF Interface” on page 74

= “SAF Parameters” on page 74

= “Result Codes” on page 76

= “Creating and Using Custom SAFs” on page 77

= “Overview of NSAPI C Functions” on page 84

= “Required Behavior of SAFs for Each Directive” on page 88
= “CGIto NSAPI Conversion” on page 91

Before writing custom SAFs, you should familiarize yourself with the request-handling
process, as described in general in “Request-handling Process” on page 25 and in greater
detail in the Sun Java System Web Server 6.1 Administrator’s Configuration File Reference.
Also, before writing a custom SAF, check to see if a built-in SAF already accomplishes the
tasks you have in mind.

See Chapter 2, SAFs in the magnus.conf File for a list of the predefined Init SAFs. For
information about predefined SAFs used in the obj . conf file, see the Sun Java System Web
Server 6.1 SP10 Administrator’s Configuration File Reference.

For a complete list of the NSAPI routines for implementing custom SAFs, see Chapter 7,
NSAPI Function Reference

73

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Future Compatibility Issues

Future Compatibility Issues

The NSAPI interface may change in a future version of Sun Java System Web Server. To keep
your custom plug-ns upgradable, do the following:

= Make sure plug-in users know how to edit the configuration files (such as magnus . conf and
obj.conf) manually. The plug-in installation software should not be used to edit these
configuration files.

= Keep the source code so you can recompile the plug-in.

The SAF Interface

All SAFs (custom and built-in) have the same C interface regardless of the request-handling
step for which they are written. They are small functions designed for a specific purpose within
a specific request-response step. They receive parameters from the directive that invokes them
in the obj . conf file, from the server, and from previous SAFs.

Here is the C interface for a SAF:

int function(pblock *pb, Session *sn, Request *rq);
The next section discusses the parameters in detail.

The SAF returns a result code that indicates whether and how it succeeded. The server uses the
result code from each function to determine how to proceed with processing the request. See
“Result Codes” on page 76 for details of the result codes.

SAF Parameters

74

This section discusses the SAF parameters in detail. The parameters are:

= “pb (parameter block)” on page 74 -- contains the parameters from the directive that invokes
the SAF in the obj . conf file.

= “sn (session)” on page 75 -- contains information relating to a single TCP/IP session.

= “rq(request)” on page 75 -- contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pblock data structure that contains values specified by the
directive that invokes the SAF. A pblock data structure contains a series of name-value pairs.

For example, a directive that invokes the basic-nsca function might look like:

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

SAF Parameters

AuthTrans fn=basic-ncsa auth-type=basic dbm=/sun/server6l/userdb/rs

In this case, the pb parameter passed to basic-ncsa contains name-value pairs that correspond
to auth-type=basic and dbm=/Sun/WebServer61/serverl/userdb/rs.

NSAPI provides a set of functions for working with pblock data structures. For example,
pblock_findval() returns the value for a given name in a pblock. See “Parameter Block
Manipulation Routines” on page 84 working with parameter blocks.

sn (session)

The sn parameter is a pointer to a session data structure. This parameter contains variables
related to an entire session (that is, the time between the opening and closing of the TCP/IP
connection between the client and the server). The same sn pointer is passed to each SAF called
within each request for an entire session. The following list describes the most important fields
in this data structure (seeChapter 7, NSAPI Function Reference NSAPI routines for
manipulating the session data structure).

® sn->client

Pointer to a pblock containing information about the client such as its IP address, DNS
name, or certificate. If the client does not have a DNS name or if it cannot be found, it will be
setto -none.

® sn->csd

Platform-independent client socket descriptor. You will pass this to the routines for reading
from and writing to the client.

rq (request)

The rq parameter is a pointer to a request data structure. This parameter contains variables
related to the current request, such as the request headers, URI, and local file system path. The
same request pointer is passed to each SAF called in the request-response process for an HTTP
request.

The following list describes the most important fields in this data structure (see Chapter 7,
NSAPI Function Reference for information about NSAPI routines for manipulating the
request data structure).

= rg->vars

Chapter3 - Creating Custom SAFs 75

Result Codes

Pointer to a pblock containing the server’s “working” variables. This includes anything not
specifically found in the following three pblocks. The contents of this pblock vary
depending on the specific request and the type of SAF. For example, an AuthTrans SAF may
insertan auth-user parameter into rq->vars which can be used subsequently by a
PathCheck SAE.

rq->reqpb

Pointer to a pblock containing elements of the HTTP request. This includes the HTTP
method (GET, POST, and so on), the URI, the protocol (normally HTTP/1.0), and the query
string. This pblock does not normally change throughout the request-response process.

rq->headers

Pointer to a pblock containing all of the request headers (such as User-Agent,
If-Modified-Since, and so on) received from the client in the HT'TP request. See

Chapter 12, Hypertext Transfer Protocol for more information about request headers. This
pblock does not normally change throughout the request-response process.

rg->srvhdrs

Pointer to a pblock containing the response headers (such as Server, Date, content-type,
Content-Length, and so on) to be sent to the client in the HTTP response. See Chapter 12,
Hypertext Transfer Protocol

The rq parameter is the primary mechanism for passing along information throughout the
request-response process. On input to a SAE, rq contains whatever values were inserted or
modified by previously executed SAFs. On output, rq contains any modifications or
additional information inserted by the SAE. Some SAFs depend on the existence of specific
information provided at an earlier step in the process. For example, a PathCheck SAF
retrieves values in rq->vars that were previously inserted by an AuthTrans SAF.

Result Codes

Upon completion, a SAF returns a result code. The result code indicates what the server should
do next. The result codes are:

76

REQ_PROCEED

Indicates that the SAF achieved its objective. For some request-response steps (AuthTrans,
NameTrans, Service, and Error), this tells the server to proceed to the next
request-response step, skipping any other SAFs in the current step. For the other
request-response steps (PathCheck, ObjectType, and AddLog), the server proceeds to the
next SAF in the current step.

REQ_NOACTION

Indicates that the SAF took no action. The server continues with the next SAF in the current
server step.

REQ_ABORTED

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Creating and Using Custom SAFs

Indicates that an error occurred and an HTTP response should be sent to the client to
indicate the cause of the error. A SAF returning REQ_ABORTED should also set the HTTP
response status code. If the server finds an Error directive matching the status code or
reason phrase, it executes the SAF specified. If not, the server sends a default HTTP response
with the status code and reason phrase plus a short HTML page reflecting the status code
and reason phrase for the user. The server then goes to the first AddLog directive.

= REQ EXIT

Indicates the connection to the client was lost. This should be returned when the SAF fails in
reading or writing to the client. The server then goes to the first AddLog directive.

Creating and Using Custom SAFs

Custom SAFs are functions in shared libraries that are loaded and called by the server.

v To create a custom SAF

1 “Write the Source Code” on page 77 using the NSAPI functions. Each SAF is written for a specific
directive.

2 “Compile and Link” on page 78 the source code to create a shared library (.so, .s1, or .dl1)
file.

3 “Loadand Initialize the SAF” on page 81 by editing the magnus . conf file to:

= Load the shared library file containing your custom SAF(s)
= Initialize the SAF if necessary

4 “Instruct the Server to Call the SAFs” on page 82 by editing obj . conf to call your custom SAF(s)
at the appropriate time.

5 “Restart the Server”on page 83.

6 “Testthe SAF”on page 84 by accessing your server from a browser with a URL that triggers
your function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the most
commonly used NSAPI functions, see “Overview of NSAPI C Functions” on page 84 available
routines, see Chapter 7, NSAPI Function Reference

Chapter3 - Creating Custom SAFs 77

Creating and Using Custom SAFs

78

For examples of custom SAFs, see nsapi/examples/ in the server root directory, and also
seeChapter 5, Examples of Custom SAFs and Filters

The signature for all SAFs is:

int function(pblock *pb, Session *sn, Request *rq);
For more details on the parameters, see“SAF Parameters” on page 74

The Sun Java System Web Server runs as a multi-threaded single process. On UNIX platforms
there are actually two processes (a parent and a child), for historical reasons. The parent process
performs some initialization and forks the child process. The child process performs further
initialization and handles all of the HTTP requests.

Keep the following in mind when writing your SAF:

= Write thread-safe code
= Blocking may affect performance
= Write small functions with parameters and configure them in obj . conf

= Carefully check and handle all errors (and log them so you can determine the source of
problems and fix them)

If necessary, write an initialization function that performs initialization tasks required by
your new SAFs. The initialization function has the same signature as other SAFs:

int function(pblock *pb, Session *sm, Request *rg);

SAFs expect to be able to obtain certain types of information from their parameters. In most
cases, parameter block (pblock) data structures provide the fundamental storage
mechanism for these parameters A pblock maintains its data as a collection of name-value
pairs. For a summary of the most commonly used functions for working with pblock
structures, see “Parameter Block Manipulation Routines” on page 84

When defining a SAFE you do not specifically state which directive it is written for. However,
each SAF must be written for a specific directive (such as AuthTrans, Service, and so on).
Each directive expects its SAFs to behave in particular ways, and your SAF must conform to
the expectations of the directive for which it was written. For details of what each directive
expects of its SAFs, see “Required Behavior of SAFs for Each Directive” on page 88.

Compile and Link

Compile and link your code with the native compiler for the target platform. For UNIX, use the
gmake command. For Windows, use the nmake command. For Windows, use Microsoft Visual
C++ 6.0 or newer. You must have an import list that specifies all global variables and functions
to access from the server binary. Use the correct compiler and linker flags for your platform.
Refer to the example Makefile in the server_root/plugins/nsapi/examples directory.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Creating and Using Custom SAFs

Adhere to the following guidelines for compiling and linking.

Include Directory and nsapi.h File

Add the server_root/plugins/include (UNIX) or server_root\plugins\include (Windows)
directory to your makefile to include the nsapi.h file.

Libraries

Add the server_root/bin/https/1lib (UNIX) or server_root\bin\https\bin (Windows)
library directory to your linker command.

The following table lists the library that you need to link to.

TABLE3-1 Libraries

Platform Library

Windows ns-httpd40.d11 (in addition to the standard Windows libraries)
HP-UX libns-httpd40.sl

All other UNIX platforms libns-httpd40.so

Linker Commands and Options for Generating a Shared Object

To generate a shared library, use the commands and options listed in the following table.

TABLE3-2 Linker Commands and Options

Platform Options

Solaris™ Operating System 1d -G or cc -G

(SPARC?® Platform Edition)

Windows link -LD

HP-UX cc +Z -b -Wl,+s -Wl,-B,symbolic

AIX cc -p @0 -berok -blibpath:$(LD_RPATH)
Compaq cc -shared

Linux gcc -shared

IRIX cc -shared

Additional Linker Flags

Use the linker flags in the following table to specify which directories should be searched for
shared objects during runtime to resolve symbols.

Chapter3 - Creating Custom SAFs

79

Creating and Using Custom SAFs

TABLE3-3 Linker Flags

Platform Flags

Solaris SPARC -Rdir:dir

Windows (no flags, but the ns-httpd40.d11 file must be in the system PATH variable)
HP-UX -WL,+b, dir, dir

AIX -blibpath:dir:dir

Compaq -rpath dir: dir

Linux -W1, -rpath, dir:dir

IRIX -W1, -rpath, dir:dir

On UNIX, you can also set the library search path using the LD_LIBRARY_PATH environment
variable, which must be set when you start the server.

Compiler Flags

The following table lists the flags and defines you need to use for compilation of your source

code.

TABLE3-4 Compiler Flags and Defines

Parameter Description

Solaris SPARC -DXP_UNIX -D REENTRANT -KPIC -DSOLARIS
Windows -DXP_WIN32 -DWIN32 /MD

HP-UX -DXP_UNIX -D_REENTRANT -DHPUX

AIX -DXP_UNIX -D_REENTRANT -DAIX $(DEBUG)
Compaq -DXP_UNIX -KPIC

Linux -DLINUX -D REENTRANT -fPIC

IRIX -032 -exceptions -DXP_UNIX -KPIC

All platforms -MCC_HTTPD -NET SSL

The following table lists the optional flags and defines you can use.

80 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Creating and Using Custom SAFs

TABLE3-5 Optional Flags and Defines

Flag/Define Platforms Description

-DSPAPI20 All Needed for the proxy utilities function
include file putil.h

Compiling 3.x Plugins on AIX

For AIX only, plug-ins built for 3.x versions of the server must be relinked to work with 4.x and
6.x versions. The files you need, which are in the server_root/plugins/nsapi/examples/
directory, are as follows:

= The Makefile file has the -G option instead of the old -bM:SRE -berok- brtl -bnoentry
options.

= A script, relink_36plugin, modifies a plug-in built for 3.x versions of the server to work
with 4.x and 6.x versions. The script’s comments explain its use.

Sun Java System Web Server 4.x and 6.x versions are built on AIX 4.2, which natively
supports runtime-linking. Because of this, NSAPI plug-ins, which reference symbols in the
ns-httpd main executable, must be built with the -G option, which specifies that symbols
must be resolved at runtime.

Previous versions of Sun Java System Web Server, however, were built on AIX 4.1, which did
not support native runtime-linking. Sun Java System Web Server had specific additional
software to enable plug-ins. No special runtime-linking directives were required to build
plug-ins. Because of this, plug-ins that have been built for previous server versions on AIX
will not work with Sun Java System Web Server 4.x and 6.x versions as they are.

However, they can easily be relinked to work with Sun Java System Web Server 4.x and 6.x
versions. The relink_36plugin script relinks existing plug-ins. Only the existing plug-in
itself is required for the script; original source and . o files are not needed. More specific
comments are in the script itself. Since all AIX versions from 4.2 onward natively support
runtime-linking, no plug-ins for Sun Java System Web Server versions 4.x and later will
need to be relinked.

Load and Initialize the SAF

For each shared library (plug-in) containing custom SAFs to be loaded into the Sun Java System
Web Server, add an Init directive that invokes the load-modules SAF to magnus . conf.

The syntax for a directive that calls load-modules is:

Init fn=load-modules shlib=[pathlsharedlibname funcs="SAFI, ...,SAFn"

= shlibisthelocal file system path to the shared library (plug-in).

Chapter3 - Creating Custom SAFs 81

Creating and Using Custom SAFs

82

= funcs is a comma-separated list of function names to be loaded from the shared library.
Function names are case-sensitive. You may use dash a (-) in place of an underscore (_) in
function names. There should be no spaces in the function name list.

If the new SAFs require initialization, be sure that the initialization function is included in
the funcs list.

For example, if you created a shared library animations. so that defines two SAFs
do_small _anim() anddo_big anim() and also defines the initialization function
init_my_animations, you would add the following directive to load the plug-in:

Init fn=load-modules shlib=animations.so
funcs="do small anim,do big anim,init my animations"

If necessary, also add an Init directive that calls the initialization function for the newly loaded
plug-in. For example, if you defined the function init_my_new_SAF() to perform an operation
on the maxAnimLoop parameter, you would add a directive such as the following to
magnus.conf:

Init fn=init my animations maxAnimLoop=5

Instruct the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF at the
appropriate time. The syntax for directives is:

Directive fn=function-name [namel="valuel"]...[nameN="valueN"]

= Directive is one of the server directives, such as AuthTrans, Service, and so on.
= function-name is the name of the SAF to execute.
= nameN="valueN" are the names and values of parameters which are passed to the SAE.

Depending on what your new SAF does, you might need to add just one directive to
obj.conf, or you might need to add more than one directive to provide complete
instructions for invoking the new SAF.

For example, if you define a new AuthTrans or PathCheck SAF, you could just add an
appropriate directive in the default object. However, if you define a new Service SAF to be
invoked only when the requested resource is in a particular directory or has a new kind of
file extension, you would need to take extra steps.

If your new Service SAF is to be invoked only when the requested resource has a new kind
of file extension, you might need to add an entry to the MIME types file so that the type
value gets set properly during the ObjectType stage. Then you could add a Service
directive to the default object that specifies the desired type value.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Creating and Using Custom SAFs

If your new Service SAF is to be invoked only when the requested resource is in a particular
directory, you might need to define a NameTrans directive that generates a name or ppath
value that matches another object, and then in the new object you could invoke the new
Service function.

For example, suppose your plug-in defines two new SAFs, do_small_anim() and

do_big anim(), which both take speed parameters. These functions run animations. All
files to be treated as small animations reside in the directory
D:/Sun/WebServer6l/serverl/docs/animations/small, while all files to be treated as
full-screen animations reside in the directory
D:/Sun/WebServer6l/serverl/docs/animations/fullscreen.

To ensure that the new animation functions are invoked whenever a client sends a request
for either a small or full-screen animation, you would add NameTrans directives to the
default object to translate the appropriate URLs to the corresponding path names and also
assign a name to the request.

NameTrans fn=pfx2dir from="/animations/small"
dir="D:/Sun/WebServer6l/serverl/docs/animations/small” name="small anim"
NameTrans fn=pfx2dir from="/animations/fullscreen"
dir="D:/Sun/WebServer6l/serverldocs/animations/fullscreen"
name="fullscreen anim"

You also need to define objects that contain the Service directives that run the animations and
specify the speed parameter.

<Object name="small anim">
Service fn=do small anim speed=40
</0Object>

<Object name="fullscreen anim">
Service fn=do big anim speed=20
</0Object>

Restart the Server

After modifying obj . conf, you need to restart the server. A restart is required for all plug-ins
that implement SAFs and/or filters.

Chapter3 - Creating Custom SAFs 83

Overview of NSAPI C Functions

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers your function.
For example, if your new SAF is triggered by requests to resources in
http://server-name/animations/small, try requesting a valid resource that starts with that
URL

You should disable caching in your browser so that the server is sure to be accessed. In Netscape
Navigator you may hold the shift key while clicking the Reload button to ensure that the cache is
not used. (Note that the shift-reload trick does not always force the client to fetch images from
source if the images are already in the cache.)

You may also wish to disable the server cache using the cache-init SAE

Examine the access log and error log to help with debugging.

Overview of NSAPI C Functions

84

NSAPI provides a set of C functions that are used to implement SAFs. They serve several
purposes. They provide platform independence across Sun Java System Web Server operating
system and hardware platforms. They provide improved performance. They are thread-safe
which is a requirement for SAFs. They prevent memory leaks. And they provide functionality
necessary for implementing SAFs. You should always use these NSAPI routines when defining
new SAFs.

This section provides an overview of the function categories available and some of the more
commonly used routines. All of the public routines are detailed in Chapter 7, NSAPI Function
Reference.

The main categories of NSAPI functions are:

“Parameter Block Manipulation Routines” on page 84
“Protocol Utilities for Service SAFs” on page 85
“Memory Management” on page 85

“File I/O” on page 86

“Network I/O” on page 86

“Threads” on page 86

“Utilities” on page 87

“Virtual Server” on page 87

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding, and
removing entries in a pblock data structure:

= “pblock_findval” on page 178 returns the value for a given name in a pblock.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Overview of NSAPI C Functions

= “pblock_nvinsert” on page 179 adds a new name-value entry to a pblock.

= “pblock_remove” on page 182 removes a pblock entry by name from a pblock. The entry is
not disposed. Use “param_free” on page 175 to free the memory used by the entry.

= “param_free” on page 175 frees the memory for the given pblock entry.

= “pblock_pblock2str” on page 181 creates a new string containing all of the name-value pairs
from a pblock in the form “name=value name=value” This can be a useful function for
debugging.

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

= “request_header” on page 194 returns the value for a given request header name, reading the
headers if necessary. This function must be used when requesting entries from the browser
header pblock (rq->headers).

= “protocol_status” on page 189 sets the HT'TP response status code and reason phrase.

= “protocol_start_response” on page 188 sends the HTTP response and all HT'TP headers to
the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the standard
memory management routines. They also prevent memory leaks by allocating from a
temporary memory (called “pooled” memory) for each request, and then disposing the entire
pool after each request. There are wrappers for standard memory routines for using permanent
memory. To disable pooled memory for debugging, see the built-in SAF “pool-init” on page 67
in Chapter 2, SAFs in the magnus.conf File

= “MALLOC” on page 164

= “FREE” on page 159

= “PERM_STRDUP” on page 186
“REALLOC” on page 193
“CALLOC” on page 144
“PERM_MALLOC” on page 184
“PERM_FREE” on page 184

= “PERM_STRDUP” on page 186
= “PERM_REALLOC?” on page 185
= “PERM_CALLOC” on page 183

Chapter3 - Creating Custom SAFs 85

Overview of NSAPI C Functions

86

Filel/O

The file I/O functions provide platform-independent, thread-safe file I/O routines.

= “system_fopenRO” on page 204 opens a file for read-only access.

= “system_fopenRW” on page 204 opens a file for read-write access, creating the file if
necessary.

= “system_fopenWA” on page 205 opens a file for write-append access, creating the file if
necessary.

= “system_fclose” on page 203 closes a file.
= “system_fread” on page 205 reads from a file.
= “system_fwrite” on page 206 writes to a file.

= “system_fwrite_atomic” on page 207 locks the given file before writing to it. This avoids
interference between simultaneous writes by multiple processes or threads.

Network /0

Network I/O functions provide platform-independent, thread-safe network I/O routines. These
routines work with SSL when it’s enabled.

“netbuf_grab” on page 171 reads from a network buffer’s socket into the network buffer.
“netbuf_getc” on page 171 gets a character from a network buffer.

“net_flush” on page 164 flushes buffered data.

“net_read” on page 166 reads bytes from a specified socket into a specified buffer.
“net_sendfile” on page 166 sends the contents of a specified file to a specified a socket.
“net_write” on page 168 writes to the network socket.

Threads

Thread functions include functions for creating your own threads that are compatible with the
server’s threads. There are also routines for critical sections and condition variables.

= “systhread_start” on page 214 creates a new thread.

= “systhread_sleep” on page 213 puts a thread to sleep for a given time.
= “crit_init” on page 148 creates a new critical section variable.

= “crit_enter” on page 147 gains ownership of a critical section.

= “crit_exit” on page 148 surrenders ownership of a critical section.

= “crit_terminate” on page 149 disposes of a critical section variable.

= “condvar_init” on page 145 creates a new condition variable.

= “condvar_notify” on page 146 awakens any threads blocked on a condition variable.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Overview of NSAPI C Functions

= “condvar_wait” on page 147 blocks on a condition variable.
= “condvar_terminate” on page 146 disposes of a condition variable.

= “prepare_nsapi_thread” on page 187 allows threads that are not created by the server to act
like server-created threads.

Utilities
Utility functions include platform-independent, thread-safe versions of many standard library
functions (such as string manipulation), as well as new utilities useful for NSAPI.

= “daemon_atrestart” on page 149 (UNIX only) registers a user function to be called when the
server is sent a restart signal (HUP) or at shutdown.

= “condvar_init” on page 145 gets the next line (up to a LF or CRLF) from a buffer.

= “util_hostname” on page 221 gets the local host name as a fully qualified domain name.
= “util_later_than” on page 223 compares two dates.

= “util_sprintf” on page 225 is the same as the standard library routine sprintf().

= “util_strftime” on page 226 is the same as the standard library routine strftime().

= “util_uri_escape” on page 227 converts the special characters in a string into URI-escaped
format.

m “util_uri_unescape” on page 229 converts the URI-escaped characters in a string back into
special characters.

Note - You cannot use an embedded null in a string, because NSAPI functions assume that a null
is the end of the string. Therefore, passing unicode-encoded content through an NSAPI plug-in
doesn’t work.

Virtual Server

The virtual server functions provide routines for retrieving information about virtual servers.

= “request_get_vs” on page 194 finds the virtual server to which a request is directed.

= “ys_alloc_slot” on page 231 allocates a new slot for storing a pointer to data specificto a
certain virtual server.

= “ys_get data” on page 231 finds the value of a pointer to data for a given virtual server and
slot.

= “ys_get_default_httpd_object” on page 232 obtains a pointer to the default (or root) object
from the virtual server's virtual server class configuration.

= “ys_get doc_root” on page 232 finds the document root for a virtual server.

Chapter3 - Creating Custom SAFs 87

Required Behavior of SAFs for Each Directive

= “vs_get_httpd_objset” on page 233 obtains a pointer to the virtual server class configuration
for a given virtual server.

= “vs_get_id” on page 233 finds the ID of a virtual server.

= “vs_get_mime_type” on page 234 determines the MIME type that would be returned in the
content-type: header for the given URL

= “vs_lookup_config var” on page 235 finds the value of a configuration variable for a given
virtual server.

= “vs_register_cb” on page 235 allows a plug-in to register functions that will receive
notifications of virtual server initialization and destruction events.

= “vs_set_data” on page 236 sets the value of a pointer to data for a given virtual server and slot.

= “vs_translate_uri” on page 237 translates a URI as though it were part of a request for a
specific virtual server.

Required Behavior of SAFs for Each Directive

88

When writing a new SAE, you should define it to do certain things, depending on which stage of
the request-handling process will invoke it. For example, SAFs to be invoked during the Init
stage must conform to different requirements than SAFs to be invoked during the Service
stage.

The rq parameter is the primary mechanism for passing along information throughout the
request-response process. On input to a SAFE, rq contains whatever values were inserted or
modified by previously executed SAFs. On output, rq contains any modifications or additional
information inserted by the SAF. Some SAFs depend on the existence of specific information
provided at an earlier step in the process. For example, a PathCheck SAF retrieves values in
rq->vars that were previously inserted by an AuthTrans SAE

This section outlines the expected behavior of SAFs used at each stage in the request-handling
process.

= “Init SAFs” on page 89

= “AuthTrans SAFs” on page 89
= “NameTrans SAFs” on page 89
= “PathCheck SAFs” on page 90
= “ObjectType SAFs” on page 90
= “Input SAFs” on page 90

= “Output SAFs” on page 90

= “Service SAFs” on page 90

= “Error SAFs” on page 91

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Required Behavior of SAFs for Each Directive

= “AddLog SAFs” on page 91

For more detailed information about these SAFs, see the Sun Java System Web Server 6.1
SP10 Administrator’s Configuration File Reference.

Init SAFs

= Purpose: Initialize at startup.

= Called at server startup and restart.

®m rgand snare NULL.

= Initialize any shared resources such as files and global variables.

= Can register callback function with daemon_atrestart () to clean up.

= Onerror, insert error parameter into pb describing the error and return REQ_ABORTED.

m [Ifsuccessful, return REQ PROCEED.

AuthTrans SAFs

= Purpose: Verify any authorization information. Only basic authorization is currently
defined in the HTTP/1.0 specification.

= Checkfor Authorization headerin rq->headers that contains the authorization type and
uu-encoded user and password information. If header was not sent, return REQ_NOACTION.

= Ifheader exists, check authenticity of user and password.

= Ifauthentic, create auth-type, plus auth-userand/or auth-group parameter in rq->vars
to be used later by PathCheck SAFs.

= Return REQ_PROCEED if the user was successfully authenticated, REQ_NOACTION otherwise.

NameTrans SAFs

= Purpose: Convert logical URI to physical path.

= Perform operations on logical path (ppath in rq->vars) to convert it into a full local file
system path.

= Return REQ_PROCEED if ppath in rq->vars contains the full local file system path, or
REQ NOACTION if not.

= To redirect the client to another site, change ppath in rq->vars to /URL. Add url to
rq->vars with full URL (for example, http://home.netscape.com/). Return REQ_PROCEED.

Chapter3 - Creating Custom SAFs 89

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Required Behavior of SAFs for Each Directive

90

PathCheck SAFs

= Purpose: Check path validity and user’s access rights.
m Check auth-type, auth-user,and/or auth-groupin rq->vars.
= Return REQ_PROCEED if user (and group) is authorized for this area (ppath in rq->vars).

® Ifnotauthorized, insert WWW-Authenticate to rq->srvhdrs with a value such as: Basic;
Realm=\"Our private area\". Call protocol_status() to set HT'TP response status to
PROTOCOL UNAUTHORIZED. Return REQ ABORTED.

ObjectType SAFs

Purpose: Determine content - type of data.

If content-type in rq->srvhdrs already exists, return REQ_NOACTION.
Determine the MIME type and create content-type in rq->srvhdrs
Return REQ_PROCEED if content-type is created, REQ_NOACTION otherwise.

Input SAFs

= Purpose: Insert filters that process incoming (client-to-server) data.

= Input SAFsare executed when a plug-in or the server first attempts to read entity body data

from the client.
® Input SAFsare executed at most once per request.

= Return REQ PROCEED to indicate success, or REQ_NOACTION to indicate it performed no
action.

Output SAFs

= Purpose: Insert filters that process outgoing (server-to-client) data.

= Output SAFsare executed when a plug-in or the server first attempts to write entity body
data from the client.

® Qutput SAFs are executed at most once per request.

= Return REQ PROCEED to indicate success, or REQ_NOACTION to indicate it performed no
action.

Service SAFs

= Purpose: Generate and send the response to the client.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

CGl to NSAPI Conversion

= AService SAFisonly called if each of the optional parameters type, method, and query
specified in the directive in obj . conf match the request.

= Remove existing content-type from rq->srvhdrs. Insert correct content - type in
rq->srvhdrs.

= Create any other headers in rq->srvhdrs.

= Call “protocol_status” on page 189 to set HT'TP response status.

= Call “protocol_start_response” on page 188 to send HTTP response and headers.
= Generate and send data to the client using “net_write” on page 168.

® Return REQ PROCEED if successful, REQ EXIT on write error, REQ ABORTED on other failures.

Error SAFs

= Purpose: Respond to an HTTP status error condition.

= TheError SAF is only called if each of the optional parameters code and reason specified in
the directive in obj . conf match the current error.

= Error SAFs do the same as Service SAFs, but only in response to an HT'TP status error
condition.

AddLog SAFs

= Purpose: Log the transaction to a log file.
= AddLog SAFs can use any data available in pb, sn, or rq to log this transaction.

= Return REQ PROCEED.

CGl to NSAPI Conversion

You may have a need to convert a CGI variable into an SAF using NSAPI. Since the CGI
environment variables are not available to NSAPI, you’ll retrieve them from the NSAPI
parameter blocks. The table below indicates how each CGI environment variable can be
obtained in NSAPL

Keep in mind that your code must be thread-safe under NSAPI. You should use NSAPI
functions that are thread-safe. Also, you should use the NSAPI memory management and other
routines for speed and platform independence.

Chapter3 - Creating Custom SAFs 91

CGl to NSAPI Conversion

92

TABLE3-6 Parameter Blocks for CGI Variables

CGl getenv()

NSAPI

AUTH_TYPE
AUTH_USER
CONTENT_LENGTH
CONTENT_TYPE
GATEWAY_INTERFACE
HTTP_*

PATH_INFO
PATH_TRANSLATED

QUERY_STRING

REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_USER
REQUEST_METHOD
SCRIPT_NAME
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL

SERVER_SOFTWARE

Sun Java System-specific:

CLIENT_CERT
HOST
HTTPS

HTTPS_KEYSIZE

HTTPS_SECRETKEYSIZE

QUERY

pblock findval("auth-type", rq->vars);

pblock findval("auth-user", rq->vars);

pblock findval("content-length", rgq->headers);

pblock findval("content-type", rg->headers);

"c6I/1.1"

pblock_findval("*", rq->headers); (* is lowercase; dash replaces underscore)
pblock findval("path-info", rq->vars);

pblock findval("path-translated", rq->vars);

pblock_findval("query", rq->regpb); (GET only; POST puts query string in
body data)

pblock findval("ip", sn->client);
session dns(sn) ? session dns(sn) : pblock findval("ip", sn->client);
pblock findval("from", rq->headers);(not usually available)

pblock findval("auth-user", rq->vars);

pblock findval("method", req->reqpb);

pblock findval("uri", rq->reqpb);

char *util hostname();

conf_getglobals()->Vport; (asa string)

pblock findval("protocol", rq->regpb);

system version()

pblock findval("auth-cert", rq->vars) ;
char *session_maxdns(sn);(may be null)
security active ? "ON" : "OFF";

pblock findval("keysize", sn->client);

pblock findval("secret-keysize", sn->client);

pblock findval(que ry", rq->reqpb); (GET only, POST puts query string in
entity-body data)

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

CGl to NSAPI Conversion

TABLE3-6 Parameter Blocks for CGI Variables (Continued)
CGl getenv() NSAPI
SERVER URL http uri2url dynamic("",", sn, rq);

Chapter 3 « Creating Custom SAFs 93

94

L R 2 4 CHAPTER 4

Creating Custom Filters

This chapter describes how to create custom filters that can be used to intercept and possibly
modify the content presented to or generated by another function.

This chapter has the following sections:

“Future Compatibility Issues” on page 95

“The NSAPI Filter Interface” on page 96

“Filter Methods” on page 96

“Position of Filters in the Filter Stack” on page 99

“Filters that Alter Content-Length” on page 101

“Creating and Using Custom Filters” on page 102

“Overview of NSAPI Functions for Filter Development” on page 104

Future Compatibility Issues
The NSAPI interface may change in a future version of Sun Java System Web Server. To keep
your custom plug-ins upgradable, do the following:

= Make sure plug-in users know how to edit the configuration files (such as magnus . conf and
obj.conf) manually. The plug-in installation software should not be used to edit these
configuration files.

= Keep the source code so you can recompile the plug-in.

95

The NSAPIFilter Interface

The NSAPI

Filter Interface

Sun Java System Web Server 6.1 extends NSAPI by introducing a new filter interface that
complements the existing Server Application Function (SAF) interface. Filters make it possible
to intercept and possibly modify data sent to and from the server. The server communicates
with a filter by calling the filter's filter methods. Each filter implements one or more filter
methods. A filter method is a C function that performs a specific operation, such as processing
data sent by the server.

Filter Methods

96

This section describes the filter methods that a filter can implement. To create a filter, a filter
developer implements one or more of these methods. This section describes the following filter
methods:

= “insert” on page 97

= “remove” on page 97
= “flush” on page 98

= “read” on page 98

= “write” on page 98

= “writev” on page 99
= “sendfile” on page 99

For more information about these methods, seeChapter 7, NSAPI Function Reference

C Prototypes for Filter Methods

Following is a list of C prototypes for the filter methods:

int insert(FilterLayer *layer, pblock *pb);

void remove(FilterLayer *layer);

int flush(FilterLayer *layer);

int read(FilterLayer *layer, void *buf, int amount, int timeout);

int write(FilterLayer *layer, const void *buf, int amount);

int writev(FilterLayer *layer, const struct iovec *iov, int iov size);
int sendfile(FilterLayer *layer, sendfiledata *sfd);

The layer parameter is a pointer to a FilterLayer data structure, which contains variables
related to a particular instance of a filter. Following is a list of the most important fields in the
FilterLayer data structure:

= context->sn: Contains information relating to a single TCP/IP session (the same sn pointer
that’s passed to SAFs).

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Filter Methods

= context->rg: Contains information relating to the current request (the same rq pointer
that’s passed to SAFs).

= context->data: Pointer to filter-specific data.

= lower: A platform-independent socket descriptor used to communicate with the next filter
in the stack.

The meaning of the context->data field is defined by the filter developer. Filters that must
maintain state information across filter method calls can use context ->data to store that
information.

For more information about FilterLayer, see “FilterLayer” on page 246

insert

The insert filter method is called when an SAF such as insert-filter calls the
filter_insert function to request that a specific filter be inserted into the filter stack. Each
filter must implement the insert filter method.

When insert is called, the filter can determine whether it should be inserted into the filter
stack. For example, the filter could inspect the content - type header in the rq->srvhdrs pblock
to determine whether it is interested in the type of data that will be transmitted. If the filter
should not be inserted, the insert filter method should indicate this by returning
REQ_NOACTION.

If the filter should be inserted, the insert filter method provides an opportunity to initialize
this particular instance of the filter. For example, the insert method could allocate a buffer with
MALLOC and store a pointer to that buffer in layer->context->data.

The filter is not part of the filter stack until after insert returns. As a result, the insert method

should not attempt to read from, write to, or otherwise interact with the filter stack.

SeeAlso
“insert” on page 162 in Chapter 7, NSAPI Function Reference

remove

The remove filter method is called when a filter stack is destroyed (that is, when the
corresponding socket descriptor is closed), when the server finishes processing the request the
filter was associated with, or when an SAF such as remove-filter calls the filter_ remove
function. The remove filter method is optional.

The remove method can be used to clean up any data the filter allocated in insert and to pass
any buffered data to the next filter by calling net_write(layer->lower, ...).

Chapter4 - Creating Custom Filters 97

Filter Methods

98

SeeAlso
“remove” on page 193 in Chapter 7, NSAPI Function Reference

flush

The flush filter method is called when a filter or SAF calls the net flush function. The flush
method should pass any buffered data to the next filter by calling net_write(layer->lower,
.. .). The flush method is optional, but it should be implemented by any filter that bufters
outgoing data.

SeeAlso
“flush” on page 158 in Chapter 7, NSAPI Function Reference

read

The read filter method is called when a filter or SAF calls the net_read function. Filters that are
interested in incoming data (data sent from a client to the server) implement the read filter
method.

Typically, the read method will attempt to obtain data from the next filter by calling
net_read(layer->lower, ...).The read method may then modify the received data before
returning it to its caller.

SeeAlso
“read” on page 192 in Chapter 7, NSAPI Function Reference

write

The write filter method is called when a filter or SAF calls the net write function. Filters that
are interested in outgoing data (data sent from the server to a client) implement the write filter
method.

Typically, the write method will pass data to the next filter by calling
net_write(layer->lower, ...).Thewrite method may modify the data before calling
net_write. For example, the http-compression filter compresses data before passing it on to
the next filter.

If a filter implements the write filter method but does not pass the data to the next layer before
returning to its caller (that is, if the filter buffers outgoing data), the filter should also implement
the flush method.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Position of Filters in the Filter Stack

SeeAlso
“write” on page 237 in Chapter 7, NSAPI Function Reference

writev

Thewritev filter method performs the same function as the write filter method, but the format
of its parameters is different. It is not necessary to implement the writev filter method; if a filter
implements the write filter method but not the writev filter method, the server uses thewrite
method instead of the writev method. A filter should not implement the writev method unless
italso implements the write method.

Under some circumstances, the server may run slightly faster when filters that implement the
write filter method also implement the writev filter method.

SeeAlso
“writev” on page 238 in Chapter 7, NSAPI Function Reference

sendfile

The sendfile filter method performs a function similar to the writev filter method, but it
sends a file directly instead of first copying the contents of the file into a buffer. It is not
necessary to implement the sendfile filter method; if a filter implements the write filter
method but not the sendfile filter method, the server will use the write method instead of the
sendfile method. A filter should not implement the sendfile method unless it also
implements the write method.

Under some circumstances, the server may run slightly faster when filters that implement the
write filter method also implement the sendfile filter method.

SeeAlso
“sendfile” on page 197 in Chapter 7, NSAPI Function Reference

Position of Filters in the Filter Stack

All data sent to the server (such as the result of an HTML form) or sent from the server (such as
the output of a JSP page) is passed through a set of filters known as a filter stack. The server
creates a separate filter stack for each connection. While processing a request, individual filters
can be inserted into and removed from the stack.

Chapter4 - Creating Custom Filters 99

Position of Filters in the Filter Stack

100

Different types of filters occupy different positions within a filter stack. Filters that deal with
application-level content (such filters that translates a page from XHTML to HTML) occupy a
higher position than filters that deal with protocol-level issues (such as filters that format HTTP
responses). When two or more filters are defined to occupy the same position in the filter stack,
filters that were inserted later will appear higher than filters that were inserted earlier.

Filters positioned higher in the filter stack are given an earlier opportunity to process outgoing
data, while filters positioned lower in the stack are given an earlier opportunity to process
incoming data. For example, in the following figure, the xml- to-xhtml filter is given an earlier
opportunity to process outgoing data than the xhtml-to-html filter.

Service fn="send-file”

* v

HigheSt xml-to-xhtml
Filter
- o Content
+ + Translation
() Filters

xhtml-to-html

Content
Lowest http-compression Coding
Filter Filter

U v

Incoming Outgoing
Request Response
Data Data

FIGURE 4-1 Position of Filters in the Filter Stack

When you create a filter with the filter_create function, you specify what position your filter
should occupy in the stack. You can also use the init-filter-order Init SAF to control the
position of specific filters within filter stacks. For example, init-filter-order can be used to
ensure that a filter that converts outgoing XML to XHTML is inserted above a filter that
converts outgoing XHTML to HTML.

For more information, see “filter_create” on page 155 and“init-filter-order” on page 62.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Filters that Alter Content-Length

Filters that Alter Content-Length

Filters that can alter the length of an incoming request body or outgoing response body must
take special steps to ensure interoperability with other filters and SAFs.

Filters that process incoming data are referred to as input filters. If an input filter can alter the
length of the incoming request body (for example, if a filter decompresses incoming data) and
thereisa Content-Length header in the rq->headers pblock, the filter's insert filter method
should remove the Content-Length header and replace it with a Transfer-encoding:
identity header as follows:

pb_param *pp;

pp = pblock remove("content-length", layer->context->rq->headers);
if (pp !'= NULL) {
param free(pp);
pblock nvinsert("transfer-encoding", "identity", layer->context->rq->headers);

}

Because some SAFs expect a Content-Length header when a request body is present, before
calling the first Service SAF the server will insert all relevant filters, read the entire request
body, and compute the length of the request body after it has been passed through all input
filters. However, by default, the server will read at most 8192 bytes of request body data. If the
request body exceeds 8192 bytes after being passed through the relevant input filters, the
request will be cancelled. For more information, see the description of
ChunkedRequestBufferSize in the "Syntax and Use of magnus.conf” chapter in the Sun Java
System Web Server 6.1 SP10 Administrator’s Configuration File Reference.

Filters that process outgoing data are referred to as output filters. If an output filter can alter the
length of the outgoing response body (for example, if the filter compresses outgoing data), the
filter's insert filter method should remove the Content-Length header from rq->srvhdrs as
follows:

pb_param *pp;
pp = pblock remove("content-length", layer->context->rq->srvhdrs);

if (pp != NULL)
param_free(pp);

Chapter4 - Creating Custom Filters 101

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Creating and Using Custom Filters

Creating and Using Custom Filters

Custom filters are defined in shared libraries that are loaded and called by the server.

v To create a custom filter

1 “Write the Source Code” on page 102 using the NSAPI functions.

2 “Compile and Link” on page 103 the source code to create a shared library (. so, .s1, or .d11)
file.

3 “Loadand Initialize the Filter” on page 103 by editing the magnus . conf file.

4 “Instruct the Server to Insert the Filter” on page 103 by editing the obj . conf file to insert your
custom filter(s) at the appropriate time.

5 “Restartthe Server”on page 104.

6 “Testthe Filter” on page 104 by accessing your server from a browser with a URL that triggers
your filter.

These steps are described in greater detail in the following sections.

Write the Source Code

Write your custom filter methods using NSAPI functions. For a summary of the NSAPI
functions specific to filter development, see “Overview of NSAPI Functions for Filter
Development” on page 104 “Filter Methods” on page 96 for the filter method prototypes.

The filter must be created by a call to filter_create. Typically, each plug-in defines an
nsapi_module_init function thatisused to call filter_create and perform any other
initialization tasks. See “nsapi_module_init” on page 172 and “filter_create” on page 155 for
more information.

Filter methods are invoked whenever the server or an SAF calls certain NSAPI functions such as
net_writeor filter_insert. Asa result, filter methods can be invoked from any thread and
should only block using NSAPI functions (for example, crit_enter and net_read).Ifa filter
method blocks using other functions (for example, the Windows WaitForMultipleObjects
and ReadFile functions), the server may hang. Also, shared objects that define filters should be
loaded with the NativeThread="no" flag, as described in “Load and Initialize the Filter” on

page 103

102 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Creating and Using Custom Filters

Ifa filter method must block using a non-NSAPI function, KernelThreads 1 should be set in
magnus . conf. For more information about KernelThreads, see the description in the chapter
"Syntax and Use of magnus.conf" in the Sun Java System Web Server 6.1 SP10 Administrator’s
Configuration File Reference.

Keep the following in mind when writing your filter:

m Write thread-safe code

= JO should only be performed using the NSAPI functions documented in “File I/O” on
page 86

= Thread synchronization should only be performed using NSAPI functions documented
in“Threads” on page 86

= Blocking may affect performance.
= Carefully check and handle all errors

For examples of custom filters, see server_root/plugins/nsapi/examples and also
Chapter 5, Examples of Custom SAFs and Filters

Compile and Link

Filters are compiled and linked in the same way as SAFs. See “Compile and Link” on page 78

Load and Initialize the Filter

For each shared library (plug-in) containing custom SAFs to be loaded into the Sun Java System
Web Server, add an Init directive that invokes the load-modules SAF to magnus . conf. The
syntax for a directive that loads a filter plug-in is:

Init fn=load-modules shlib=[path]sharedlibname NativeThread="no"

= shlibisthelocal file system path to the shared library (plug-in).

= NativeThread indicates whether the plug-in requires native threads. Filters should be
written to run on any type of thread (see “Write the Source Code” on page 102

When the server encounters such a directive, it calls the plug-in's nsapi_module_init
function to initialize the filter.

Instruct the Server to Insert the Filter

Add an Input or Output directive to obj . conf to instruct the server to insert your filter into the
filter stack. The format of the directive is as follows:

Directive fn=insert-filter filter="filter-name" [namel="valuel"]...[nameN="valueN"]

Chapter4 - Creating Custom Filters 103

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Overview of NSAPI Functions for Filter Development

m Directiveis Input or Output.
= filter-name is the name of the filter, as passed to filter_create, to insert.

= nameN="valueN" are the names and values of parameters that are passed to the filter's
insert filter method.

Filters that process incoming data should be inserted using an Input directive. Filters that
process outgoing data should be inserted using an Output directive.

To ensure that your filter is inserted whenever a client sends a request, add the Input or
Output directive to the default object. For example, the following portion of obj . conf
instructs the server to insert a filter named example- replace and pass it two parameters,
fromand to:

<Object name="default">

Output fn=insert-filter
filter="example-replace"
from="0ld String"
to="New String"

</0bject>

Restart the Server

For the server to load your plug-in, you must restart the server. A restart is required for all
plug-ins that implement SAFs and/or filters.

Test the Filter

Test your SAF by accessing your server from a browser. You should disable caching in your
browser so that the server is sure to be accessed. In Netscape Navigator, you can hold the shift
key while clicking the Reload button to ensure that the cache is not used. (Note that the
shift-reload trick does not always force the client to fetch images from source if the images are
already in the cache.) Examine the access and error logs to help with debugging.

Overview of NSAPI Functions for Filter Development

104

NSAPI provides a set of C functions that are used to implement SAFs and filters. This section
lists the functions that are specific to the development of filters. All of the public routines are
described in detail inChapter 7, NSAPI Function Reference

The NSAPI functions specific to the development of filters are:

= “filter_create” on page 155 creates a new filter

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Overview of NSAPI Functions for Filter Development

“filter_insert” on page 156 inserts the specified filter into a filter stack

“filter_remove” on page 158 removes the specified filter from a filter stack

“filter_name” on page 158 returns the name of the specified filter

“filter_find” on page 156 finds an existing filter given a filter name

“filter_layer” on page 157 returns the layer in a filter stack that corresponds to the specified
filter

Chapter4 - Creating Custom Filters 105

106

CHAPTER 5

Examples of Custom SAFs and Filters

This chapter provides examples of custom Sever Application Functions (SAFs) and filters for
each directive in the request-response process. You may wish to use these examples as the basis
for implementing your own custom SAFs and filters. For more information about creating your
own custom SAFs, seeChapter 3, Creating Custom SAFs Chapter 4, Creating Custom Filters

Before writing custom SAFs, you should be familiar with the request-response process and the
role of the configuration file obj . conf (this file is discussed in the Sun Java System Web Server
6.1 Administrator’s Configuration File Reference).

Before writing your own SAF, check to see if an existing SAF serves your purpose. The
predefined SAFs are discussed in the Sun Java System Web Server 6.1 SP10 Administrator’s
Configuration File Reference.

For a list of the NSAPI functions for creating new SAFs, see Chapter 7, NSAPI Function
Reference

This chapter has the following sections:

“Examples in the Build” on page 108
“AuthTrans Example” on page 108
“NameTrans Example” on page 111
“PathCheck Example” on page 114
“ObjectType Example” on page 117
“Output Example” on page 119

“Service Example” on page 125

“AddLog Example” on page 127

“Quality of Service Example” on page 130

107

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Examples in the Build

Examples in the Build

The nsapi/examples/ or plugins/nsapi/examples subdirectory within the server installation
directory contains examples of source code for SAFs.

You can use the example . mak makefile in the same directory to compile the examples and create
alibrary containing the functions in all of the example files.

To test an example, load the examples shared library into the Sun Java System Web Server by
adding the following directive in the Init section of magnus. conf:

Init fn=load-modules shlib=examples.so/dll
funcs=functionl,function2,function3

The funcs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization function in the
funcs argument to load-modules, and also add an Init directive to call the initialization
function.

For example, the PathCheck example implements the restrict-by-acf function, which is
initialized by the acf-init function. The following directive loads both these functions:

Init fn=load-modules youtlibrary funcs=acf-init,restrict-by-acf
The following directive calls the acf-init function during server initialization:
Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling process, add an
appropriate directive in the object to which it applies, for example:

PathCheck fn=restrict-by-acf

After adding new Init directives to magnus.conf, you always need to restart the Sun Java
System Web Server to load the changes, since Init directives are only applied during server
initialization.

AuthTrans Example

108

This simple example of an AuthTrans function demonstrates how to use your own custom ways
of verifying that the user name and password that a remote client provided is accurate. This
program uses a hard-coded table of user names and passwords and checks a given user's
password against the one in the static data array. The userdb parameter is not used in this
function.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

AuthTrans Example

AuthTrans directives work in conjunction with PathCheck directives. Generally, an AuthTrans
function checks if the user name and password associated with the request are acceptable, but it
does not allow or deny access to the request; it leaves that to a PathCheck function.

AuthTrans functions get the user name and password from the headers associated with the
request. When a client initially makes a request, the user name and password are unknown so
the AuthTrans function and PathCheck function work together to reject the request, since they
can not validate the user name and password. When the client receives the rejection, the usual
response is for it to present a dialog box asking the user for their user name and password. The
client submits the request again, this time including the user name and password in the headers.

In this example, the hardcoded -auth function, which is invoked during the AuthTrans step,
checks if the user name and password correspond to an entry in the hard-coded table of users
and passwords.

Installing the Example

To install the function on the Sun Java System Web Server, add the following Init directive to
magnus . conf to load the compiled function:

Init fn=load-modules shlib=yourlibrary funcs=hardcoded-auth

Inside the default object in obj . conf, add the following AuthTrans directive:

AuthTrans fn=basic-auth auth-type="basic" userfn=hardcoded-auth
userdb=unused

Note that this function does not actually enforce authorization requirements, it only takes given
information and tells the server if it's correct or not. The PathCheck function require-auth
performs the enforcement, so add the following PathCheck directive as well:

PathCheck fn=require-auth realm="test realm" auth-type="basic"

Source Code

The source code for this example is in the auth. c file in the nsapi/examples/ or
plugins/nsapi/examples subdirectory of the server root directory.

#include "nsapi.h"

typedef struct {
char *name;
char *pw;

} user_s;

Chapter5 - Examples of Custom SAFs and Filters 109

AuthTrans Example

static user_s user_set[] = {
{"joe", "shmoe"},
{"suzy", "creamcheese"},
{NULL, NULL}

+

#include "frame/log.h"

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int hardcoded auth(pblock *param, Session *sn, Request
*rq)

{

/* Parameters given to us by auth-basic */
char *pwfile = pblock findval("userdb", param);
char *user = pblock findval("user", param);
char *pw = pblock findval("pw", param);

/* Temp variables */
register int x;

for(x = 0; user set[x].name != NULL; ++x) {
/* If this isn’t the user we want, keep going */
if(strcmp(user, user set[x].name) != 0) continue;

/* Verify password */
if(strcmp(pw, user set[x].pw)) {
log error(LOG SECURITY, "hardcoded-auth", sn, rq,
"user %s entered wrong password", user);
/* This will cause the enforcement function to ask */
/* user again */
return REQ NOACTION;
}
/* If we return REQ PROCEED, the username will be accepted */
return REQ PROCEED;
}
/* No match, have it ask them again */
log error(LOG SECURITY, "hardcoded-auth", sn, rq,
"unknown user %s", user);
return REQ _NOACTION;

110 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

NameTrans Example

NameTrans Example

The ntrans. c filein the nsapi/examples/ or plugins/nsapi/examples subdirectory of the
server root directory contains source code for two example NameT rans functions:

m explicit pathinfo
This example allows the use of explicit extra path information in a URL.
= https redirect
This example redirects the URL if the client is a particular version of Netscape Navigator.

This section discusses the first example. Look at the source code in ntrans. c for the second
example.

Note — A NameTrans function is used primarily to convert the logical URL in ppath in rq->vars
to a physical path name. However, the example discussed here, explicit_pathinfo, does not
translate the URL into a physical path name; it changes the value of the requested URL. See the
second example, https_redirect, in ntrans.c for an example of a NameTrans function that
converts the value of ppath in rq->vars from a URL to a physical path name.

The explicit_pathinfo example allows URLs to explicitly include extra path information for
use by a CGI program. The extra path information is delimited from the main URL by a
specified separator, such as a comma.

For example:

http://server-name/cgi/marketing,/jan/releases/hardware

In this case, the URL of the requested resource (which would be a CGI program) is
http://server-name/cgi/marketing, and the extra path information to give to the CGI
programis /jan/releases/hardware.

When choosing a separator, be sure to pick a character that will never be used as part of the real
URL.

The explicit_pathinfo function reads the URL, strips out everything following the comma,
and puts it in the path-info field of the vars field in the request object (rq->vars). CGI
programs can access this information through the PATH_INFO environment variable.

One sside effect of explicit pathinfo is that the SCRIPT NAME CGI environment variable has
the separator character tacked onto the end.

NameTrans directives usually return REQ_PROCEED when they change the path, so that the server
does not process any more NameTrans directives. However, in this case we want name
translation to continue after we have extracted the path info, since we have not yet translated
the URL to a physical path name.

Chapter5 - Examples of Custom SAFs and Filters m

NameTrans Example

Installing the Example

To install the function on the Sun Java System Web Server, add the following Init directive to
magnus . conf to load the compiled function:

Init fn=load-modules shlib=yourlibrary funcs=explicit-pathinfo

Inside the default object in obj . conf, add the following NameTrans directive:

NameTrans fn=explicit-pathinfo separator=

This NameTrans directive should appear before other NameTrans directives in the default object.

Source Code

This example is in the ntrans. c file in the nsapi/examples/ or plugins/nsapi/examples
subdirectory of the server root directory.

#include "nsapi.h"

#include <string.h> /* strchr */

#include "frame/log.h" /* log error */

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int explicit pathinfo(pblock *pb, Session *sn, Request *rq)
{

/* Parameter: The character to split the path by */
char *sep = pblock findval("separator", pb);
/* Server variables */
char *ppath = pblock findval('ppath", rg->vars);
/* Temp var */
char *t;
/* Verify correct usage */
if(!sep) {
log error(LOG MISCONFIG, "explicit-pathinfo", sn, rq,
"missing parameter (need root)");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;
}
/* Check for separator. If not there, don’t do anything */
t = strchr(ppath, sep[0]);
if('t)
return REQ NOACTION;
/* Truncate path at the separator */
*t++ = '\0’;

112 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

NameTrans Example

/* Assign path information */

pblock nvinsert("path-info", t, rq->vars);

/* Normally NameTrans functions return REQ PROCEED when they
change the path. However, we want name translation to
continue after we’re done. */

return REQ NOACTION;

}

#include "base/util.h" /* is _mozilla */
#include "frame/protocol.h" /* protocol status */
#include "base/shexp.h" /* shexp_cmp */
#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int https redirect(pblock *pb, Session *sn, Request *rq)
{
/* Server Variable */
char *ppath = pblock findval("ppath", rg->vars);
/* Parameters */
char *from = pblock findval("from", pb);
char *url = pblock findval("url", pb);
char *alt = pblock findval("alt", pb);
/* Work vars */
char *ua;
/* Check usage */
if((!from) || (turl)) {
log error(LOG MISCONFIG, "https-redirect", sn, rq,
"missing parameter (need from, url)");
return REQ ABORTED;
}
/* Use wildcard match to see if this path is one we should
redirect */
if(shexp cmp(ppath, from) != 0)
return REQ NOACTION; /* no match */
/* Sigh. The only way to check for SSL capability is to
check UA */
if(request header("user-agent", &ua, sn, rq) == REQ ABORTED)
return REQ ABORTED;
/* The is_mozilla function checks for Mozilla version 0.96
or greater */
if(util is mozilla(ua, "0", "96")) {
/* Set the return code to 302 Redirect */
protocol status(sn, rq, PROTOCOL REDIRECT, NULL);
/* The error handling functions use this to set the
Location: */
pblock nvinsert("url", url, rg->vars);
return REQ_ABORTED;
}
/* No match. Old client. */

Chapter5 - Examples of Custom SAFs and Filters 113

PathCheck Example

/* If there is an alternate document specified, use it. */
if(alt) {

pb_param *pp = pblock find("ppath", rq->vars);

/* Trash the old value */

FREE (pp->value);

/* We must dup it because the library will later free

this pblock */
pp->value = STRDUP(alt);
return REQ_PROCEED;

}
/* Else do nothing */
return REQ NOACTION;

PathCheck Example

The example in this section demonstrates how to implement a custom SAF for performing path
checks. This example simply checks if the requesting host is on a list of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP addresses with one IP
address per line. The PathCheck function restrict_by_acf gets the IP address of the host that
is making the request and checks if it is on the list. If the host is on the list, it is allowed access;
otherwise, access is denied.

For simplicity, the studio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus. conf file:

Init fn=load-modules yourlibrary funcs=acf-init,restrict-by-acf

To call the function, acf-init for reading the list of allowable hosts, add the following line to
the Init section in magnus. conf. (This line must come after the one that loads the library
containing acf-init).

Init fn=acf-init file=fileContainingHostsList

To execute your custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

PathCheck fn=restrict-by-acf

114 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

PathCheck Example

Source Code

The source code for this example is in pcheck. c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include "nsapi.h"
/* Set to NULL to prevent problems with people not calling
acf-init */
static char **hosts = NULL;
#include <stdio.h>
#include "base/daemon.h"
#include "base/util.h" /* util_sprintf */
#include "frame/log.h" /* log error */
#include "frame/protocol.h" /* protocol status */
/* The longest line we’'ll allow in an access control file */
#define MAX ACF_LINE 256
/* Used to free static array on restart */
#ifdef cplusplus
extern "C"
#endif
NSAPI PUBLIC void acf free(void *unused)
{
register int x;
for(x = 0; hosts[x]; ++x)
FREE (hosts[x]);
FREE (hosts) ;
hosts = NULL;
}
#ifdef cplusplus
extern "C"
#endif
NSAPI PUBLIC int acf init(pblock *pb, Session *sn, Request *rq)
{
/* Parameter */
char *acf file = pblock findval("file", pb);
/* Working variables */
int num _hosts;
FILE *f;
char err[MAGNUS ERROR LEN];
char buf[MAX ACF LINE];
/* Check usage. Note that Init functions have special
error logging */
if(lacf file) {
util sprintf(err, "missing parameter to acf init
(need file)");
pblock nvinsert("error", err, pb);
return REQ_ABORTED;

Chapter5 - Examples of Custom SAFs and Filters 115

PathCheck Example

f = fopen(acf_file, 'r);
/* Did we open it? */
if(!f) {
util sprintf(err, "can’t open access control file %s (%s)"
acf file, system errmsg());
pblock nvinsert('error", err, pb);
return REQ ABORTED;
}
/* Initialize hosts array */
num_hosts = 0;
hosts = (char **) MALLOC(1 * sizeof(char *));
hosts[@] = NULL;
while(fgets(buf, MAX ACF LINE, f)) {
/* Blast linefeed that stdio helpfully leaves on there */
buf[strlen(buf) - 1] = ’'\0’;
hosts = (char **) REALLOC(hosts, (num hosts + 2) *
sizeof(char *));
hosts[num hosts++] = STRDUP(buf);
hosts[num hosts] = NULL;
}
fclose(f);
/* At restart, free hosts array */
daemon_atrestart(acf_ free, NULL);
return REQ PROCEED
}
#ifdef _ cplusplus
extern "C"
#endif
NSAPI PUBLIC int restrict by acf(pblock *pb, Session *sn, Request *rq)
{
/* No parameters */
/* Working variables */
char *remip = pblock findval("ip", sn->client);
register int x;
if('hosts) {
log error(LOG MISCONFIG, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* When we abort, the default status code is 500 Server
Error */
return REQ_ABORTED;
}
for(x = 0; hosts[x] '= NULL; ++x) {
/* If they’'re on the list, they’re allowed */
if(!strcmp(remip, hosts[x]))
return REQ NOACTION;
}
/* Set response code to forbidden and return an error. */
protocol status(sn, rq, PROTOCOL FORBIDDEN, NULL);

116 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

ObjectType Example

return REQ_ABORTED;

ObjectType Example

The example in this section demonstrates how to implement html2shtml, a custom SAF that
instructs the server to treata .html fileasa . shtml fileifa . shtml version of the requested file
exists.

A well-behaved ObjectType function checks if the content type is already set, and if so, does
nothing except return REQ_NOACTION.

if(pblock findval("content-type", rq->srvhdrs))
return REQ NOACTION;

The primary task an ObjectType directive needs to perform is to set the content type (if it is not
already set). This example sets it to magnus-internal/parsed-html in the following lines:

/* Set the content-type to magnus-internal/parsed-html */
pblock nvinsert("content-type", "magnus-internal/parsed-html"
rg->srvhdrs);

The html2shtml function looks at the requested file name. If it ends with . html, the function
looks for a file with the same base name, but with the extension . shtml instead. If it finds one, it
uses that path and informs the server that the file is parsed HTML instead of regular HTML.
Note that this requires an extra stat call for every HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in the Init section of
the magnus. conf file:

Init fn=load-modules shlib=yourlibrary funcs=html2shtml

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

ObjectType fn=html2shtml

Source Code

The source code for this example is in otype. c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

Chapter5 - Examples of Custom SAFs and Filters 17

ObjectType Example

118

#include "nsapi.h"
#include <string.h> /* strncpy */
#include "base/util.h"

#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int html2shtml(pblock *pb, Session *sn, Request *rq)

{

/* No parameters */

/* Work variables */

pb param *path = pblock find("path", rg->vars);
struct stat finfo;

char *npath;

int baselen;

/* If the type has already been set, don’t do anything */
if(pblock findval("content-type", rq->srvhdrs))
return REQ NOACTION;

/* If path does not end in .html, let normal object types do
* their job */
baselen = strlen(path->value) - 5;
if(strcasecmp(&path->value[baselen], ".html") !'= 0)
return REQ NOACTION;

/* 1 = Room to convert html to shtml */

npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy(npath, path->value, baselen);
strcpy(&npath[baselen], ".shtml")

/* If it’s not there, don’t do anything */
if(stat(npath, &finfo) == -1) {
FREE (npath) ;
return REQ NOACTION;
}
/* Got it, do the switch */
FREE (path->value);
path->value = npath;

/* The server caches the stat() of the current path. Update it.

(void) request stat path(NULL, rq);

pblock nvinsert("content-type", "magnus-internal/parsed-html",
rq->srvhdrs);
return REQ PROCEED;

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

*/

Output Example

Output Example

This section describes an example NSAPI filter named example- replace, which examines
outgoing data and substitutes one string for another. It shows how you can create a filter that
intercepts and modifies outgoing data.

Installing the Example

To load the filter, add the following line in the Init section of the magnus . conf file:

Init fn="load-modules" shlib="<path>/replace.ext"
NativeThread="no"

To execute the filter during the request-response process for some object, add the following line
to that object in the obj . conf file:

Output fn="insert-filter" type="text/*" filter="example-replace"
from="iPlanet" to="Sun Java System"

Source Code

The source code for this example is in the replace. c file in the plugins/nsapi/examples
subdirectory of the server root directory.

#ifdef XP_WIN32

#define NSAPI PUBLIC declspec(dllexport)
#else /* IXP WIN32 */

#define NSAPI PUBLIC

#endif /* IXP WIN32 */

/*
* nsapi.h declares the NSAPI interface.
*/

#include "nsapi.h"

/*

* ExampleReplaceData will be used to store information between

* filter method invocations. Each instance of the example-replace
* filter will have its own ExampleReplaceData object.

*/

Chapter5 - Examples of Custom SAFs and Filters 119

Output Example

120

typedef struct ExampleReplaceData ExampleReplaceData;

struct ExampleReplaceData {

char *from; /* the string to replace */

int fromlen; /* length of "from" */

char *to; /* the string to replace "from" with */

int tolen; /* length of "to" */

int matched; /* number of "from" chars matched */
+
[*¥ mmeeeemeeaaa example_replace_insert ------------------------ */
/*

* example replace insert implements the example-replace filter’s
* insert method. The insert filter method is called before the

* server adds the filter to the filter stack.

*/

#ifdef cplusplus
extern "C"
#endif
int example replace insert(FilterLayer *layer, pblock *pb)
{
const char *from;
const char *to;
ExampleReplaceData *data;

/*
* Look for the string to replace, "from", and the string to
* replace it with, "to". Both values are required.
*/
from = pblock findval("from", pb);
to = pblock findval("to", pb);
if (from == NULL || to == NULL || strlen(from) < 1) {
log_error(LOG_MISCONFIG, "example-replace-insert",
layer->context->sn, layer->context->rq,
"missing parameter (need from and to)");
return REQ ABORTED; /* error preparing for insertion */

/*
* Allocate an ExampleReplaceData object that will store
* configuration and state information.
*/
data = (ExampleReplaceData *)MALLOC(sizeof (ExampleReplaceData));
if (data == NULL)
return REQ ABORTED; /* error preparing for insertion */

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Output Example

/* Initialize the ExampleReplaceData */
data->from = STRDUP(from);
data->fromlen = strlen(from);

data->to = STRDUP(to);

data->tolen = strlen(to);

data->matched = 0;

/* Check for out of memory errors */
if (data->from == NULL || data->to == NULL) {
FREE (data->from);
FREE (data->to);
FREE (data) ;
return REQ ABORTED; /* error preparing for insertion */

* Store a pointer to the ExampleReplaceData object in the
* FilterLayer. This information can then be accessed from other
filter methods.

*

*/
layer->context->data = data;

/* Remove the Content-length: header if we might change the
* body length */
if (data->tolen != data->fromlen) {
pb_param *pp;
pp = pblock remove("content-length", layer->context->rq->srvhdrs);
if (pp)
param_free(pp);

}

return REQ PROCEED; /* insert filter */
}
YA example replace remove ------------------------ */
/*

* example replace remove implements the example-replace filter’s
* remove method. The remove filter method is called before the

* server removes the filter from the filter stack.

*/

#ifdef _ cplusplus

extern "C"

#endif

void example replace remove(FilterLayer *layer)

Chapter5 - Examples of Custom SAFs and Filters 121

Output Example

ExampleReplaceData *data;

/* Access the ExampleReplaceData we allocated in example replace insert */
data = (ExampleReplaceData *)layer->context->data;

/* Send any partial "from" match */
if (data->matched > 0)
net write(layer->lower, data->from, data->matched);

/* Destroy the ExampleReplaceData object */
FREE (data->from);

FREE (data->to0);

FREE (data);

/*

* example replace write implements the example-replace filter’s

* write method. The write filter method is called when there is data
* to be sent to the client.

*/

#ifdef _ cplusplus
extern "C"
#endif
int example replace write(FilterLayer *layer, const void *buf, int amount)
{
ExampleReplaceData *data;
const char *buffer;
int consumed;
int i,
int unsent;
int rv;

/* Access the ExampleReplaceData we allocated in example_replace insert */
data = (ExampleReplaceData *)layer->context->data;

/* Check for "from" matches in the caller’s buffer */
buffer = (const char *)buf;
consumed = 0;
for (i = 0; i < amount; i++) {
/* Check whether this character matches */
if (buffer[i] == data->from[data->matched]) {
/* Matched a(nother) character */
data->matched++;

122 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Output Example

/* If we've now matched all of "from"... */
if (data->matched == data->fromlen) {
/* Send any data that preceded the match */
unsent = i + 1 - consumed - data->matched;
if (unsent > 0) {
rv = net write(layer->lower, &buffer[consumed], unsent);
if (rv !'= unsent)
return I0_ERROR;

/* Send "to" in place of "from" */
rv = net write(layer->lower, data->to, data->tolen);
if (rv != data->tolen)

return IO ERROR;

/* We've handled up to and including buffer[i] */
consumed = i + 1;

/* Start looking for the next "from" match from scratch */
data->matched = 0;

} else if (data->matched > 0) {
/* This match didn’'t pan out, we need to backtrack */
int j;
int backtrack = data->matched;
data->matched = 0;

/* Check for other potential "from" matches
* preceding buffer[i] */
for (j = 1; j < backtrack; j++) {
/* Check whether this character matches */
if (data->from[j] == data->from[data->matched]) {
/* Matched a(nother) character */
data->matched++;

} else if (data->matched > 0) {
/* This match didn’t pan out, we need to
* backtrack */
j -= data->matched;
data->matched = 0;

/* If the failed (partial) match begins before the buffer... */
unsent = backtrack - data->matched;
if (unsent > i) {

Chapter5 - Examples of Custom SAFs and Filters 123

Output Example

*

*/

/* Send the failed (partial) match */
rv = net write(layer->lower, data->from, unsent);
if (rv != unsent)

return IO ERROR;

/* We'’ve handled up to, but not including,
* puffer[i] */
consumed = 1i;

/* We’'re not done with buffer[i] yet */
i--;

/* Send any data we know won’t be part of a future
* "from" match */
unsent = amount - consumed - data->matched;
if (unsent > 0) {
rv = net write(layer->lower, &buffer[consumed], unsent);
if (rv !'= unsent)
return IO ERROR;

return amount;

This is the module initialization entry point for this NSAPI
plugin. The server calls this entry point in response to the
Init fn="load-modules" line in magnus.conf.

NSAPI PUBLIC nsapi module init(pblock *pb, Session *sn, Request *rq)

{

FilterMethods methods = FILTER METHODS INITIALIZER;
const Filter *filter;

/*
* Create the example-replace filter. The example-replace filter
* has order FILTER CONTENT TRANSLATION, meaning it transforms
* content (entity body data) from one form to another. The
* example-replace filter implements the write filter method,
* meaning it is interested in outgoing data.
*/

124 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Service Example

methods.insert = &example_replace insert;
methods.remove = &example replace remove;
methods.write = &example replace write;
filter = filter create("example-replace"
FILTER CONTENT TRANSLATION,
&methods) ;
if (filter == NULL) {
pblock nvinsert("error", system errmsg(), pb);
return REQ_ABORTED; /* error initializing plugin */

}
return REQ_PROCEED; /* success */
}
Service Example

This section discusses a very simple Service function called simple_service. All this function
does is send a message in response to a client request. The message is initialized by the
init_simple_service function during server initialization.

For a more complex example, see the file service. c in the examples directory, which is
discussed in “More Complex Service Example” on page 127.

Installing the Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus . conf file:

Init fn=load-modules shlib=yourlibrary funcs=simple-service-init,simple-service

To call the function, simple-service-init function for initializing the message representing
the generated output, add the following line to the Init section in magnus. conf. (This line must
come after the one that loads the library containing simple-service-init.)

Init fn=simple-service-init
generated-output="<H1>Generated output msg</H1>"

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

Service type="text/html" fn=simple-service

The type="text/html" argument indicates that this function is invoked during the Service
stage only if the content-type has been set to text/html.

Chapter5 - Examples of Custom SAFs and Filters 125

Service Example

Source Code

#include <nsapi.h>

static char *simple msg = "default customized content";

/* This is the initialization function.
* It gets the value of the generated-output parameter
* specified in the Init directive in magnus.conf

*/

NSAPI PUBLIC int init-simple-service(pblock *pb, Session *sn,
Request *rq)

{
/* Get the message from the parameter in the directive in
* magnus.conf
*/
simple msg = pblock findval("generated-output", pb);
return REQ_PROCEED;
}

/* This is the customized Service SAF.
* It sends the "generated-output" message to the client.
*/
NSAPI PUBLIC int simple-service(pblock *pb, Session *sn, Request *rq)
{
int return value;
char msg_length[8];
/* Use the protocol status function to set the status of the
* response before calling protocol start response.
*/
protocol status(sn, rq, PROTOCOL OK, NULL);
/* Although we would expect the ObjectType stage to
* set the content-type, set it here just to be
* completely sure that it gets set to text/html.
*/
param_free(pblock remove("content-type", rq->srvhdrs));
pblock nvinsert(“content-type", "text/html", rqg->srvhdrs);
/* If you want to use keepalive, need to set content-length header.
* The util itoa function converts a specified integer to a
* string, and returns the length of the string. Use this
* function to create a textual representation of a number.
*/
util itoa(strlen(simple _msg), msg_length);
pblock nvinsert("content-length", msg length, rg->srvhdrs);
/* Send the headers to the client*/
return_value = protocol start response(sn, rq);
if (return_value == REQ NOACTION) {
/* HTTP HEAD instead of GET */
return REQ PROCEED;
}

/* Write the output using net write*/

126 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

AddLog Example

return_value = net_write(sn->csd, simple_msg,
strlen(simple msg));

if (return_value == IO ERROR) {
return REQ EXIT;

}
return REQ PROCEED;

More Complex Service Example

The send-images function is a custom SAF that replaces the doit.cgi demonstration available
on the iPlanet home pages. When a file is accessed as /dirl/dir2/something.picgroup, the
send- images function checks if the file is being accessed by a Mozilla/1.1 browser. If not, it
sends a short error message. The file something.picgroup contains alist of lines, each of which
specifies a file name followed by a content - type (for example, one.gif image/gif).

To load the shared object containing your function, add the following line at the beginning of
the magnus . conf file:

Init fn=load-modules shlib=yourlibrary funcs=send-images
Also, add the following line to the mime . types file:
type=magnus-internal/picgroup exts=picgroup

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file (send- images takes an optional parameter,
delay, which is not used for this example):

Service method=(GET|HEAD) type=magnus-internal/picgroup fn=send-images

The source codeisin service.cin the nsapi/examples/ or plugins/nsapi/examples
subdirectory within the server root directory.

AddLog Example

The example in this section demonstrates how to implement brief-log, a custom SAF for
logging only three items of information about a request: the IP address, the method, and the
URI (for example, 198.93.95.99 GET /jocelyn/dogs/homesneeded.html).

Chapter5 - Examples of Custom SAFs and Filters 127

AddLog Example

128

Installing the Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus. conf file:

Init fn=load-modules shlib=yourlibrary funcs=brief-init,brief-log

To call brief-init to open the log file, add the following line to the Init section in
magnus . conf. (This line must come after the one that loads the library containing brief-init.)

Init fn=brief-init file=/tmp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the following line to
that object in the obj . conf file:

AddLog fn=brief-log

Source Code

The source code is in addlog. c file in the nsapi/examples/ or plugins/nsapi/examples
subdirectory within the server root directory.

#include "nsapi.h"

#include "base/daemon.h" /* daemon_atrestart */

#include "base/file.h" /* system fopenWA, system fclose */
#include "base/util.h" /* sprintf */

/* File descriptor to be shared between the processes */
static SYS FILE logfd = SYS ERROR FD;

#ifdef _ cplusplus
extern "C"
#endif
NSAPI PUBLIC void brief terminate(void *parameter)
{
system fclose(logfd);
logfd = SYS ERROR FD;

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int brief init(pblock *pb, Session *sn, Request *rq)
{

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

AddLog Example

/* Parameter */
char *fn = pblock findval("file", pb);

if(!fn) {
pblock nvinsert("error", "brief-init: please supply a file name", pb);
return REQ ABORTED;

}

logfd = system fopenWA(fn);

if(logfd == SYS ERROR FD) {
pblock nvinsert("error", "brief-init: please supply a file name", pb);
return REQ ABORTED;

}

/* Close log file when server is restarted */

daemon_atrestart(brief terminate, NULL);

return REQ PROCEED;

#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int brief log(pblock *pb, Session *sn, Request *rq)
{

/* No parameters */

/* Server data */

char *method = pblock findval('method", rqg->reqpb);
char *uri = pblock findval("uri", rqg->regpb);

char *ip = pblock findval("ip", sn->client);

/* Temp vars */
char *logmsg;
int len;

logmsg = (char *)
MALLOC(strlen(ip) + 1 + strlen(method) + 1 + strlen(uri) + 1 + 1);
len = util sprintf(logmsg, "%s %s %s\n", ip, method, uri);
/* The atomic version uses locking to prevent interference */
system fwrite atomic(logfd, logmsg, len);
FREE (logmsg) ;

return REQ PROCEED;

Chapter5 - Examples of Custom SAFs and Filters 129

Quality of Service Example

Quality of Service Example

The code for the gos-handler (AuthTrans) and qos-error (Error) SAFs is provided as an
example in case you want to define your own SAFs for quality of service handling.

For more information about predefined SAFs, see the Sun Java System Web Server 6.1 SP10
Administrator’s Configuration File Reference.

Installing the Example

Inside the default object in obj . conf, add the following AuthTrans and Error directives:
AuthTrans fn=qos-handler

Error fn=qos-error code=503

Source Code

The source code for this example is in the qos.. c file in the plugins/nsapi/examples
subdirectory of the server root directory.

#include "nspr.h"
#include "base/pblock.h"
#include "frame/log.h"
#include "frame/http.h"

decode : internal function used for parsing of QOS values in pblock

void decode(const char* val, PRInt32* var, pblock* pb)
{

char* pbval;
if ((tvar) || (tval) || (!pb))
return;
pbval = pblock findval(val, pb);
if (!pbval)
return;

*var = atoi(pbval);

qos_error_sample

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Quality of Service Example

This function is meant to be an error handler for an HTTP 503 error
code, which is returned by gos handler when Q0S limits are exceeded
and enforced.

This sample function just prints out a message about which
limits were exceeded.

NSAPI_PUBLIC int qos_error_sample(pblock *pb, Session *sn, Request *rq)
{
char error[1024] = "";
char* err _header = "<HTML><HEAD><TITLE>Unable to service request
</TITLE></HEAD><BODY>";
char* err footer = "</BODY></HTML>"

PRBool ours = PR _FALSE;

PRINt32 vs bw = 0, vs bwlim = 0, vs bw ef = 0,
vs conn = @, vs connlim = @, vs conn ef =0,
vsc bw = 0, vsc bwlim = 0, vsc bw ef =0,
vsc_conn = @, vsc_connlim = @, vsc_conn_ef
srv_bw = 0, srv_bwlim = @, srv_bw ef = 0,
srv_conn = @, srv_connlim = @, srv _conn ef = 0;

1}
S

pblock* apb = rqg->vars;

decode("vs bandwidth", &vs bw, apb);
decode("vs_connections", &vs conn, apb);

decode("vs bandwidth limit", &vs bwlim, apb);
decode("vs_bandwidth _enforced", &vs bw _ef, apb);

decode("vs connections limit", &vs connlim, apb);
decode("vs connections enforced", &vs conn ef, apb);

decode("vsclass bandwidth", &vsc bw, apb);
decode("vsclass connections", &sc conn, apb);

decode("vsclass_bandwidth limit", &vsc bwlim, apb);
decode("vsclass bandwidth enforced", &vsc bw ef, apb);

decode("vsclass _connections limit", &vsc connlim, apb);
decode("vsclass_connections enforced", &vsc _conn ef, apb);

decode("server bandwidth", &srv_bw, apb);
decode("server connections", &srv_conn, apb);

Chapter5 - Examples of Custom SAFs and Filters 131

Quality of Service Example

decode("server bandwidth limit", &srv_bwlim, apb);
decode("server_bandwidth_enforced", &srv_bw ef, apb);

decode("server connections limit", &srv_connlim, apb);
decode("server connections enforced", &srv conn ef, apb);

if ((vs_bwlim) && (vs_bw>vs bwlim))

{
/* VS bandwidth limit was exceeded, display it */
ours = PR TRUE;
sprintf(error, "<P>Virtual server bandwidth limit of %d .
Current VS bandwidth : %d . <P>"
vs_bwlim, vs bw);
};
if ((vs_connlim) && (vs conn>vs connlim))
{
/* VS connection limit was exceeded, display it */
ours = PR_TRUE;
sprintf(error, "<P>Virtual server connection limit of %d .
Current VS connections : %d . <P>"
vs_connlim, vs conn);
+
if ((vsc_bwlim) && (vsc_bw>vsc bwlim))
{
/* VSCLASS bandwidth limit was exceeded, display it */
ours = PR TRUE;
sprintf(error, "<P>Virtual server class bandwidth limit of %d .
Current VSCLASS bandwidth : %d . <P>"
vsc_bwlim, vsc bw);
+
if ((vsc_connlim) && (vsc_conn>vsc_connlim))
{
/* VSCLASS connection limit was exceeded, display it */
ours = PR_TRUE;
sprintf(error, "<P>Virtual server class connection limit of %d .
Current VSCLASS connections : %d . <P>"
vsc_connlim, vsc conn);
+i

if ((srv_bwlim) && (srv_bw>srv_bwlim))

/* SERVER bandwidth limit was exceeded, display it */

ours = PR_TRUE;

sprintf(error, "<P>Global bandwidth limit of %d .
Current bandwidth : %d . <P>",

132 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Quality of Service Example

srv_bwlim, srv_bw);

+
if ((srv_connlim) && (srv_conn>srv_connlim))
{

/* SERVER connection limit was exceeded, display it */

ours = PR_TRUE;

sprintf(error, "<P>Global connection limit of %d .

Current connections : %d . <P>",
srv_connlim, srv_conn);

}
if (ours)
{

/* this was really a QOS failure, therefore send the error page */

pb_param *pp = pblock remove ("content-type", rq->srvhdrs);

if (pp != NULL)

param free (pp);

pblock nvinsert ("content-type", "text/html", rq->srvhdrs);

protocol start response(sn, rq);

net write(sn->csd, err header, strlen(err header));

net write(sn->csd, error, strlen(error));

net write(sn->csd, err footer, strlen(err_footer));

return REQ PROCEED;
}
else
{

/* this 503 didn’t come from a QOS SAF failure,

let someone else handle it */

return REQ PROCEED;

+
}
JF o oo

gos_handler sample
This is an NSAPI AuthTrans function.

It examines the QOS values in the request and compares them to the
Q0S limits.

It does several things:

1) It will log errors if the QO0S limits are exceeded.

2) It will return REQ ABORTED with a 503 error code if the Q0S limits
are exceeded, and the QO0S limits are set to be enforced. Otherwise

Chapter5 - Examples of Custom SAFs and Filters 133

Quality of Service Example

it will return REQ_PROCEED.

NSAPI PUBLIC int qos handler sample(pblock *pb, Session *sn, Request *rq)

{
PRBool ok = PR _TRUE;

PRINt32 vs bw = 0, vs bwlim = 0, vs bw ef =0,
vs_conn = @, vs_connlim = @, vs_conn_ef = 0,
vsc bw = 0, vsc bwlim = 0, vsc bw ef = 0,

vsc_conn = @, vsc_connlim = @, vsc_conn ef = 0,
srv_bw = 0, srv bwlim = 0, srv bw ef =0,
srv_conn = @, srv_connlim = @, srv_conn_ef = 0;

pblock* apb = rqg->vars;

decode("vs bandwidth", &vs bw, apb);
decode("vs_connections", &vs conn, apb);

decode("vs bandwidth limit", &vs bwlim, apb);
decode("vs_bandwidth enforced", &s bw ef, apb);

decode("vs connections limit", &vs connlim, apb);
decode("vs connections enforced", &vs conn ef, apb);

decode("vsclass bandwidth", &vsc bw, apb);
decode("vsclass connections"”, &vsc conn, apb);

decode("vsclass bandwidth limit", &vsc _bwlim, apb);
decode("vsclass bandwidth enforced", &vsc bw ef, apb);

decode("vsclass_connections limit", &vsc_connlim, apb);
decode("vsclass connections enforced", &sc conn_ef, apb);

decode("server bandwidth", &srv _bw, apb);
decode("server connections", &srv_conn, apb);

decode("server bandwidth limit", &srv bwlim, apb);
decode("server bandwidth enforced", &srv bw ef, apb);

decode("server connections limit", &srv_connlim, apb);
decode("server connections enforced", &srv_conn ef, apb);

if ((vs_bwlim) && (vs bw>vs bwlim))
{
/* bandwidth limit was exceeded, log it */
ereport (LOG_FAILURE, "Virtual server bandwidth limit of %d exceeded.
Current VS bandwidth : %d", &vs bwlim, vs bw);

134 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Quality of Service Example

if (vs_bw ef)

{
/* and enforce it */
ok = PR_FALSE;
+
+
if ((vs_connlim) && (vs_conn>vs_connlim))
{
/* connection limit was exceeded, log it */
ereport(LOG FAILURE, "Virtual server connection limit of %d exceeded.
Current VS connections : %d", &vs_connlim, vs conn);
if (vs_conn_ef)
{
/* and enforce it */
ok = PR FALSE;
I
I
if ((vsc_bwlim) && (vsc_bw>vsc bwlim))
{
/* bandwidth limit was exceeded, log it */
ereport(LOG FAILURE, "Wirtual server class bandwidth limit of %d exceeded.
Current VSCLASS bandwidth : %d", &vsc bwlim, vsc bw);
if (vsc bw ef)
{
/* and enforce it */
ok = PR _FALSE;
I
I
if ((vsc_connlim) && (vsc conn>vsc connlim))
{
/* connection limit was exceeded, log it */
ereport(LOG_FAILURE, "Virtual server class connection limit of %d exceeded.
Current VSCLASS connections : %d", &vsc_connlim, vsc conn);
if (vsc_conn_ef)
{
/* and enforce it */
ok = PR _FALSE;
+
I

Chapter5 - Examples of Custom SAFs and Filters 135

Quality of Service Example

if ((srv_bwlim) && (srv_bw>srv_bwlim))

{
/* bandwidth limit was exceeded, log it */
ereport (LOG FAILURE, "Global bandwidth limit of %d exceeded.
Current global bandwidth : %d", &srv bwlim, srv_bw);
if (srv_bw ef)
{
/* and enforce it */
ok = PR FALSE;
+
+
if ((srv_connlim) && (srv_conn>srv_connlim))
{
/* connection limit was exceeded, log it */
ereport (LOG_FAILURE, "Global connection limit of %d exceeded.
Current global connections : %d", &srv_connlim, srv _conn);
if (srv_conn_ef)
{
/* and enforce it */
ok = PR _FALSE;
};
+;
if (ok)
{
return REQ_PROCEED;
}
else
{
/* one of the limits was exceeded
therefore, we set HTTP error 503 "server too busy" */
protocol status(sn, rq, PROTOCOL SERVICE UNAVAILABLE, NULL);
return REQ ABORTED;
+

136 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

CHAPTER 6

Creating Custom Server-parsed HTMLTags

HTML files can contain tags that are executed on the server. For general information about
server-parsed HTML tags, see the Sun Java System Web Server 6.1 SP10 Programmer’s Guide to
Web Applications.

In Sun Java System Web Server 6.1, you can define your own server-side tags. For example, you
could define the tag HELLO to invoke a function that prints "Hello World!" You could have the
following code in your hello.shtml file:

<html>

<head>

<title>shtml custom tag example</title>
</head>

<body>

<!--#HELLO-->

</body>

</html>

When the browser displays this code, each occurrence of the HELLO tag calls the function.

1. “Define the Functions that Implement the Tag” on page 138.

You must define the tag execution function. You must also define other functions that are
called on tag loading and unloading, and on page loading and unloading.

2. “Write an Initialization Function” on page 141 .
Write an initialization function that registers the tag using the shtml_add_tag function.

3. “Load the New Taginto the Server” on page 141.

137

http://docs.sun.com/doc/820-5721
http://docs.sun.com/doc/820-5721

Define the Functions that Implement the Tag

Define the Functions that Implement the Tag

Define the functions that implement the tags in C, using NSAPIL

138

Include the header shtml_public.h, which is in the directory install_dir/include/shtml.

Link against the SHTML shared library. On Windows, shtml.d1lisin install_dir/bin. On
UNIX platforms, libshtml.so or.slisin install dir/lib.

ShtmlTagExecuteFunc is the actual tag handler. It gets called with the usual NSAPI pblock,
Session, and Request variables. In addition, it also gets passed the TagUserData created
from the result of executing the tag loading and page loading functions (if defined) for that
tag.

The signature for the tag execution function is:

typedef int (*ShtmlTagExecuteFunc) (pblock*, Session*, Request*,
TagUserData, TagUserData);

Write the body of the tag execution function to generate the output to replace the tag in the
.shtml page. Do this in the usual NSAPI way, using the net_write NSAPI function, which
writes a specified number of bytes to a specified socket from a specified buffer.

For more information about writing NSAPI plug-ins, see Chapter 3, Creating Custom SAFs

For more information about net_write and other NSAPI functions, see Chapter 7, NSAPI
Function Reference

The tag execution function must return an int that indicates whether the server should
proceed to the next instruction in obj . conf, which is one of:

REQ PROCEED -- the execution was successful

REQ_NOACTION -- nothing happened

REQ ABORTED - - an error occurred

REQ EXIT - - the connection was lost

The other functions you must define for your tag are:

ShtmlTagInstanceload

This is called when a page containing the tag is parsed. It is not called if the page is retrieved
from the browser's cache. It basically serves as a constructor, the result of which is cached
and is passed into ShtmlTagExecuteFunc whenever the execution function is called.

ShtmlTagInstanceUnload

This is basically a destructor for cleaning up whatever was created in the
ShtmlTagInstanceload function. It gets passed the result that was originally returned from
the ShtmlTagInstanceload function.

ShtmlTagPagelLoadFunc

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Define the Functions that Implement the Tag

This is called when a page containing the tag is executed, regardless of whether the page is
still in the browser's cache. This provides a way to make information persistent between
occurrences of the same tag on the same page.

® ShtmlTagPageUnLoadFn

This is called after a page containing the tag has executed. It provides a way to clean up any
allocations done in a ShtmlTagPageLoadFunc and hence gets passed the result returned
from the ShtmlTagPageLoadFunc.

The signatures for these functions are:

#define TagUserData void*
typedef TagUserData (*ShtmlTagInstancelLoad) (

const char* tag, pblock*, const char*, size t);
typedef void (*ShtmlTagInstanceUnload)(TagUserData);
typedef int (*ShtmlTagExecuteFunc) (

pblock*, Session*, Request*, TagUserData, TagUserData);
typedef TagUserData (*ShtmlTagPagelLoadFunc) (

pblock* pb, Session*, Request*);
typedef void (*ShtmlTagPageUnLoadFunc) (TagUserData);

Here is the code that implements the HELLO tag:

/*
* mytag.c: NSAPI functions to implement #HELLO SSI calls
*/
#include "nsapi.h"
#include "shtml/shtml public.h"
/* FUNCTION : mytag con
*
* DESCRIPTION: ShtmlTagInstancelLoad function
*/
#ifdef _ cplusplus
extern "C"
#endif
TagUserData
mytag con(const char* tag, pblock* pb, const char* cl, size t t1)
{
return NULL;
}
/* FUNCTION : mytag des
*
* DESCRIPTION: ShtmlTagInstanceUnload
*/
#ifdef _ cplusplus
extern "C"
#endif
void

Chapter6 - Creating Custom Server-parsed HTML Tags 139

Define the Functions that Implement the Tag

mytag des(TagUserData v1)
{
}
/* FUNCTION : mytag load
* DESCRIPTION: ShtmlTagPageLoadFunc
*/
#ifdef _ cplusplus
extern "C"
#endif
TagUserData
mytag load(pblock *pb, Session *sn, Request *rq)
{
return NULL;
}
/* FUNCTION : mytag unload
*
* DESCRIPTION: ShtmlTagPageUnloadFunc
*/
#
#ifdef cplusplus
extern "C"
#endif
void
mytag unload(TagUserData v2)
{
}
/* FUNCTION : mytag
* DESCRIPTION: ShtmlTagExecuteFunc
*/
#ifdef _ cplusplus
extern "C"
#endif
int
mytag(pblock* pb, Session* sn, Request* rq, TagUserData tl, TagUserData t2)
{
char* buf;
int length;
char* client;
buf = (char *) MALLOC(100*sizeof(char));
length = util sprintf(buf, "<hl>Hello World! </h1>", client);
if (net write(sn->csd, buf, length) == IO ERROR)

{

FREE (buf) ;

return REQ_ABORTED;
}
FREE (buf) ;

return REQ PROCEED;

140 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Load the New Tag into the Server

/* FUNCTION : mytag init
* DESCRIPTION: initialization function,
calls shtml add tag() to
* load new tag
*/
#
#ifdef _ cplusplus
extern "C"
#endif
int
mytag init(pblock* pb, Session* sn, Request* rq)
{
int retval = 0;
// NOTE: ALL arguments are required in the shtml_add tag()
function retVal = shtml add tag
("HELLO", mytag con, mytag des, mytag,
mytag load, mytag unload);
return retVal;
}
/* end mytag.c */

Write an Initialization Function

In the initialization function for the shared library that defines the new tag, register the tag using
the function shtml_add_tag. The signature is:

NSAPI PUBLIC int shtml_add tag (
const char* tag,
ShtmlTagInstancelLoad ctor,
ShtmlTagInstanceUnload dtor,
ShtmlTagExecuteFunc execFn,
ShtmlTagPageLoadFunc pagelLoadFn,
ShtmlTagPageUnLoadFunc pageUnLoadFn);

Any of these arguments can return NULL except for the tag and execFn.

Load the New Tag into the Server

After creating the shared library that defines the new tag, you load the library into the Sun Java
System Web Server in the usual way for NSAPI plug-ins. Add the following directives to the
configuration file magnus . conf:

Add an Init directive whose fn parameter is load-modules and whose shlib parameter is the
shared library to load. For example, if you compiled your tag into the shared object
install_dir/hello. so, it would be:

Chapter6 - Creating Custom Server-parsed HTML Tags 141

Load the New Tag into the Server

Init funcs="mytag,mytag init" shlib="install dir/hello.so"
fn="load-modules"

Add another Init directive whose fn parameter is the initialization function in the shared
library that uses shtml_add_tag to register the tag. For example:

Init fn="mytag init"

142 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

L K R 4 CHAPTER 7

NSAPI Function Reference

This chapter lists all of the public C functions and macros of the Netscape Server Applications
Programming Interface (NSAPI) in alphabetic order. These are the functions you use when
writing your own Server Application Functions (SAFs).

See Chapter 2, SAFs in the magnus.conf File for a list of the predefined Init SAFs. For more
information about the other predefined SAFs used in obj . conf, see the Sun Java System Web
Server 6.1 SP10 Administrator’s Configuration File Reference.

Each function provides the name, syntax, parameters, return value, a description of what the
function does, and sometimes an example of its use and a list of related functions.

For more information on data structures, see Chapter 8, Data Structure Reference include
directory in the build for Sun Java System Web Server 6.1.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix A, “Alphabetical List of NSAPI
Functions and Macros”

143

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

144

CALLOC

The CALLOC macro is a platform-independent substitute for the Clibrary routine calloc. It
allocates num*size bytes from the request’s memory pool. If pooled memory has been disabled
in the configuration file (with the pool-init built-in SAF), PERM_CALLOC and CALLOC both
obtain their memory from the system heap.

Syntax

void *CALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the size in bytes of each element.

Example
char *name;name = (char *) CALLOC(100);

SeeAlso

“FREE” on page 159, “REALLOC” on page 193, “STRDUP” on page 201, “PERM_MALLOC” on
page 184, “PERM_FREE” on page 184, “PERM_REALLOC” on page 185, “PERM_STRDUP” on
page 186

cinfo_find

The cinfo_find() function uses the MIME types information to find the type, encoding,
and/or language based on the extension(s) of the URI or local file name. Use this information to
send headers (rq->srvhdrs) to the client indicating the content-type, content-encoding, and
content-language of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no slash is found. File
name extensions are not case-sensitive. The name may contain multiple extensions separated
by period (.) to indicate type, encoding, or language. For example, the URI
a/b/filename.jp.txt.zip could represent a Japanese language, text/plain type, zip encoded
file.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax

cinfo *cinfo find(char *uri);

Returns
A pointer to a newly allocated cinfo structure if content info was found, or NULL if no content

was found.

The cinfo structure that is allocated and returned contains pointers to the content - type,
content-encoding, and content-language, if found. Each is a pointer into static data in the
types database, or NULL if not found. Do not free these pointers. You should free the cinfo
structure when you are done using it.

Parameters

char *uri is a URI or local file name. Multiple file name extensions should be separated by
periods (.).

condvar_init

The condvar_init function is a critical-section function that initializes and returns a new
condition variable associated with a specified critical-section variable. You can use the
condition variable to prevent interference between two threads of execution.

Syntax

CONDVAR condvar init(CRITICAL id);

Returns
A newly allocated condition variable (CONDVAR).

Parameters

CRITICAL id is a critical-section variable.

SeeAlso

“condvar_notify” on page 146, “condvar_terminate” on page 146, “condvar_wait” on page 147,
“crit_init” on page 148, “crit_enter” on page 147, “crit_exit” on page 148, “crit_terminate” on
page 149

Chapter 7 « NSAPI Function Reference 145

146

condvar_notify

The condvar _notify function is a critical-section function that activates threads that are
blocked on the given critical-section variable. Use this function to awaken threads of execution
of a given critical section. First, use crit_enter to gain ownership of the critical section. Then
use the returned critical-section variable to call condvar_notify to awaken the threads. Finally,
when condvar_notify returns, call crit_exit to surrender ownership of the critical section.

Syntax
void condvar notify(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

SeeAlso

“condvar_init” on page 145, “condvar_terminate” on page 146, “condvar_wait” on page 147,
“crit_init” on page 148, “crit_enter” on page 147, “crit_exit” on page 148, “crit_terminate” on
page 149

condvar_terminate

The condvar_terminate function is a critical-section function that frees a condition variable.
Use this function to free a previously allocated condition variable.

Warning

Terminating a condition variable that is in use can lead to unpredictable results.

Syntax

void condvar_ terminate(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

SeeAlso

“condvar_init” on page 145, “condvar_notify” on page 146, “condvar_wait” on page 147,
“crit_init” on page 148, “crit_enter” on page 147, “crit_exit” on page 148, “crit_terminate” on
page 149

condvar_wait

The condvar_wait function is a critical-section function that blocks on a given condition
variable. Use this function to wait for a critical section (specified by a condition variable
argument) to become available. The calling thread is blocked until another thread calls
condvar_notify with the same condition variable argument. The caller must have entered the
critical section associated with this condition variable before calling condvar_wait.

Syntax

void condvar wait(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

SeeAlso

“condvar_init” on page 145, “condvar_terminate” on page 146, “condvar_notify” on page 146,
“crit_init” on page 148, “crit_enter” on page 147, “crit_exit” on page 148, “crit_terminate” on
page 149

crit_enter

The crit_enter function is a critical-section function that attempts to enter a critical section.
Use this function to gain ownership of a critical section. If another thread already owns the
section, the calling thread is blocked until the first thread surrenders ownership by calling
crit_exit.

Syntax

void crit enter(CRITICAL crvar);

Returns

void

Chapter 7 « NSAPI Function Reference 147

148

Parameters

CRITICAL crvar is a critical-section variable.

SeeAlso

“crit_init” on page 148, “crit_exit” on page 148, “crit_terminate” on page 149

crit_exit

The crit_exit function is a critical-section function that surrenders ownership of a critical
section. Use this function to surrender ownership of a critical section. If another thread is
blocked waiting for the section, the block will be removed and the waiting thread will be given
ownership of the section.

Syntax

void crit exit(CRITICAL crvar);

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

SeeAlso

“crit_init” on page 148, “crit_enter” on page 147, “crit_terminate” on page 149

crit_init

The crit init function is a critical-section function that creates and returns a new
critical-section variable (a variable of type CRITICAL). Use this function to obtain a new instance
of a variable of type CRITICAL (a critical-section variable) to be used in managing the prevention

of interference between two threads of execution. At the time of its creation, no thread owns the
critical section.

Warning

Threads must not own or be waiting for the critical section when crit_terminate is called.

Syntax

CRITICAL crit init(void);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns
A newly allocated critical-section variable (CRITICAL).

Parameters

none

SeeAlso

“crit_enter” on page 147, “crit_exit” on page 148, “crit_terminate” on page 149

crit_terminate

The crit_terminate function is a critical-section function that removes a previously allocated
critical-section variable (a variable of type CRITICAL). Use this function to release a
critical-section variable previously obtained by a call to crit_init.

Syntax

void crit terminate(CRITICAL crvar);

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

SeeAlso

“crit_init” on page 148, “crit_enter” on page 147, “crit_exit” on page 148

daemon_atrestart

The daemon_atrestart function lets you register a callback function named by fn to be used
when the server terminates. Use this function when you need a callback function to deallocate
resources allocated by an initialization function. The daemon_atrestart functionisa
generalization of the magnus_atrestart function.

Chapter 7 « NSAPI Function Reference 149

150

The magnus. conf directives TerminateTimeout and ChildRestartCallback also affect the
callback of NSAPI functions.

Syntax

void daemon atrestart(void (*fn)(void *), void *data);

Returns

void

Parameters

void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is restarted.

Example

/* Register the log close function, passing it NULL */

/* to close *a log file when the server is *//* restarted or shutdown. */
daemon_atrestart(log close, NULL);NSAPI PUBLIC void log close(void *parameter)
{system fclose(global logfd);}

fc_open

The fc_open function returns a pointer to PRFileDesc that refers to an open file (fileName).
The fileName must be the full path name of an existing file. The file is opened in read-only
mode. The application calling this function should not modify the currency of the file pointed
to by the PRFileDesc * unless the DUP_FILE_DESC is also passed to this function. In other words,
the application (at minimum) should not issue a read operation based on this pointer that
would modify the currency for the PRFileDesc *. If such a read operation is required (that may
change the currency for the PRFileDesc *), then the application should call this function with
the argument DUP_FILE_DESC.

On a successful call to this function, a valid pointer to PRFileDesc is returned and the handle
'FcHd'is properly initialized. The size information for the file is stored in the 'fileSize'
member of the handle.

Syntax

PRFileDesc *fc_open(const char *fileName,
FcHdl *hD1l, PRUint32 flags, Session *sn, Request *rq);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns
Pointer to PRFileDesc, or NULL on failure.

Parameters

const char *fileName is the full path name of the file to be opened.
FcHd1*hD1 is a valid pointer to a structure of type FcHd 1.

PRUint32 flags can be @ or DUP_FILE DESC.

Session *sn is a pointer to the session.

Request *rq is a pointer to the request.

fc_close

The fc_close function closes a file opened using fc_open. This function should only be called
with files opened using fc_open.

Syntax

void fc close(PRFileDesc *fd, FcHdl *hDl);

Returns

void
Parameters
PRFileDesc *fd is a valid pointer returned from a prior call to fc_open.

FcHd1 *hD1 is a valid pointer to a structure of type FcHdl. This pointer must have been
initialized by a prior call to fc_open.

filebuf buf2sd

The filebuf_buf2sd function sends a file buffer to a socket (descriptor) and returns the
number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax
int filebuf buf2sd(filebuf *buf, SYS NETFD sd);

Chapter 7 « NSAPI Function Reference 151

152

Returns

The number of bytes sent to the socket if successful, or the constant I0_ERROR if the file buffer
could not be sent.

Parameters
filebuf *buf is the file buffer that must already have been opened.
SYS_NETFD sd is the platform-independent socket descriptor. Normally this will be obtained

from the csd (client socket descriptor) field of the sn (session) structure.

Example
if (filebuf buf2sd(buf, sn->csd) == I0 ERROR) return(REQ EXIT);

SeeAlso

“filebuf_close” on page 152, “filebuf_open” on page 153, “filebuf_open_nostat” on page 154,
“filebuf_getc” on page 153

filebuf close

The filebuf close function deallocates a file buffer and closes its associated file.

Generally, use filebuf_open first to open a file buffer, and then filebuf_getc to access the
information in the file. After you have finished using the file bufter, use filebuf_close to close
it.

Syntax
void filebuf close(filebuf *buf);

Returns

void

Parameters
filebuf *buf is the file buffer previously opened with filebuf_open.

Example
filebuf close(buf);

SeeAlso

“filebuf_open” on page 153, “filebuf_open_nostat” on page 154, “filebuf_buf2sd” on page 151,
“filebuf_getc” on page 153

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

filebuf_getc

The filebuf getc function retrieves a character from the current file position and returns it as
an integer. It then increments the current file position.

Use filebuf_getc to sequentially read characters from a buffered file.

Syntax
filebuf getc(filebuf b);

Returns

An integer containing the character retrieved, or the constant I0_EOF or I0_ERROR upon an end
of file or error.

Parameters
filebuf b is the name of the file buffer.

SeeAlso

“filebuf_close” on page 152, “filebuf_buf2sd” on page 151, “filebuf_open” on page 153,
“filter_create” on page 155

filebuf_open

The filebuf_open function opens a new file bufter for a previously opened file. It returns a new
buffer structure. Buffered files provide more efficient file access by guaranteeing the use of
buffered file I/O in environments where it is not supported by the operating system.

Syntax

filebuf *filebuf open(SYS FILE fd, int sz);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer could be
opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file which has already been
opened.

int sz is the size, in bytes, to be used for the buffer.

Chapter 7 « NSAPI Function Reference 153

154

Example
filebuf *buf = filebuf open(fd, FILE BUFFERSIZE);if (!buf) { system fclose(fd);}

SeeAlso

“filebuf_getc” on page 153, “filebuf _buf2sd” on page 151, “filebuf close” on page 152,
“filebuf_open_nostat” on page 154

filebuf_open_nostat

The filebuf_open_nostat function opens a new file buffer for a previously opened file. It
returns a new buffer structure. Buffered files provide more efficient file access by guaranteeing
the use of buffered file I/O in environments where it is not supported by the operating system.

This function is the same filebuf open, but is more efficient, since it does not need to call the
request stat path function. It requires that the stat information be passed in.

Syntax

filebuf* filebuf open_nostat(SYS FILE fd, int sz, struct stat *finfo);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer could be
opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file that has already been
opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the filebuf_open_nostat
function, you must call the request_stat_path function to retrieve the file information.

Example
filebuf *buf = filebuf open nostat(fd, FILE BUFFERSIZE, &finfo);
if ('buf) {
system fclose(fd);
}
SeeAlso

“filebuf_close” on page 152, “filebuf_open” on page 153, “filebuf_getc” on page 153,
“filebuf_buf2sd” on page 151

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

filter_create
The filter create function defines a new filter.

The name parameter specifies a unique name for the filter. If a filter with the specified name
already exists, it will be replaced.

Names beginning with magnus - or server- are reserved by the server.

The order parameter indicates the position of the filter in the filter stack by specifying what class
of functionality the filter implements.

The following table describes parameters allowed order constants and their associated
meanings for the filter_create function. The left column lists the name of the constant, the
middle column describes the functionality the filter implements, and the right column lists the
position the filter occupies in the filter stack.

TABLE7-1 filter-create constants

Constant Functionality Filter Implements Position in Filter Stack
FILTER CONTENT TRANSLATION Translates content from one form | Top
to another (for example, XSLT)
FILTER CONTENT_CODING Encodes content (for example, Middle
HTTP gzip compression)
FILTER TRANSFER CODING Encodes entity bodies for Bottom
transmission (for example, HTTP
chunking)

The methods parameter specifies a pointer to a FilterMethods structure. Before calling
filter_create, you must first initialize the “FilterMethods” on page 246 structure using the
FILTER_METHODS_INITIALIZER macro,and then assign function pointers to the individual
FilterMethods members (for example, insert, read, write, and so on) that correspond to the
filter methods the filter will support.

filter_create returns const Filter *, a pointer to an opaque representation of the filter.
This value may be passed to filter_insert to insert the filter in a particular filter stack.

Syntax

const Filter *filter create(const char *name, int order, const FilterMethods *methods);

Returns
The const Filter * that identifies the filter or NULL if an error occurred.

Chapter 7 « NSAPI Function Reference 155

156

Parameters

const char *name is the name of the filter.
int order is one of the order constants above.

const FilterMethods *methods contains pointers to the filter methods the filter supports.

Example

FilterMethods methods = FILTER METHODS INITIALIZER;

const Filter *filter;

/* This filter will only support the "read" filter method */
methods.read = my input filter read;

/* Create the filter */

filter = filter create("my-input-filter", FILTER CONTENT TRANSLATION,
&methods) ;

filter_find

The filter_find function finds the filter with the specified name.

Syntax

const Filter *filter find(const char *name);

Returns
The const Filter * that identifies the filter, or NULL if the specified filter does not exist.

Parameters

const char *name is the name of the filter of interest.

filter _insert

The filter_insert function inserts a filter into a filter stack, creating a new filter layer and
installing the filter at that layer. The filter layer's position in the stack is determined by the order
value specified when “filter_create” on page 155 was called, and any explicit ordering
configured by “init-filter-order” on page 62. If a filter layer with the same order value already
exists in the stack, the new layer is inserted above that layer.

Parameters may be passed to the filter using the pb and data parameters. The semantics of the
data parameter are defined by individual filters. However, all filters must be able to handle a
data parameter of NULL.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

When possible, plug-in developers should avoid calling filter_insert directly, and instead
use the insert-filter SAF (applicable in Input-class directives).

Syntax

int filter_insert(SYS_NETFD sd, pblock *pb, Session *sn, Request
*rq, void *data, const Filter *filter);

Returns

Returns REQ_PROCEED if the specified filter was inserted successfully, or REQ_NOACTION if the
specified filter was not inserted because it was not required. Any other return value indicates an
error.

Parameters
SYS_NETFD sd is NULL (reserved for future use).

pblock *pb is a set of parameters to pass to the specified filter's init method.
Session *sn is the Session.

Request *rq is the Request.

void *data is filter-defined private data.

const Filter *filter is the filter to insert.

filter_layer

The filter_layer function returns the layer in a filter stack that corresponds to the specified
filter.

Syntax

FilterLayer *filter layer(SYS NETFD sd, const Filter *filter);

Returns

The topmost FilterLayer * associated with the specified filter, or NULL if the specified filter is
not part of the specified filter stack.

Parameters
SYS_NETFD sd is the filter stack to inspect.

const Filter *filter is the filter of interest.

Chapter 7 « NSAPI Function Reference 157

158

filter name

The filter name function returns the name of the specified filter. The caller should not free the
returned string.

Syntax

const char *filter name(const Filter *filter);

Returns

The name of the specified filter, or NULL if an error occurred.

Parameters

const Filter *filter is the filter of interest.

filter remove

The filter_remove function removes the specified filter from the specified filter stack,
destroying a filter layer. If the specified filter was inserted into the filter stack multiple times,
only that filter's topmost filter layer is destroyed.

When possible, plug-in developers should avoid calling filter_remove directly, and instead
use the remove-filter SAF (applicable in Input-,Output-, Service-, and Error-class directives).

Syntax

int filter_remove(SYS NETFD sd, const Filter *filter);

Returns

Returns REQ_PROCEED if the specified filter was removed successfully or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
SYS NETFD sd is the filter stack, sn->csd.

const Filter *filter is the filter to remove.

flush

The flush filter method is called when buffered data should be sent. Filters that buffer outgoing
data should implement the flush filter method.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Upon receiving control, a f lush implementation must write any buffered data to the filter layer
immediately below it. Before returning success, a flush implementation must successfully call
the “net_flush” on page 164 function:

net flush(layer->lower).

Syntax

int flush(FilterLayer *layer);

Returns

0 on success or -1 ifan error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

Example

int myfilter flush(FilterLayer *layer)

{
MyFilterContext context = (MyFilterContext *)layer->context->data;
if (context->buf.count) {

int rv;
rv = net write(layer->lower, context->buf.data, context->buf.count);
if (rv !'= context->buf.count)

return -1; /* failed to flush data */
context->buf.count = 0;

}

return net flush(layer->lower);
}
SeeAlso

“net_flush” on page 164

FREE

The FREE macro is a platform-independent substitute for the Clibrary routine free. It
deallocates the space previously allocated by MALLOC, CALLOC, or STRDUP from the request’s
memory pool.

Syntax

FREE (void *ptr);

Chapter 7 « NSAPI Function Reference 159

160

Returns

void

Parameters

void *ptrisa (void *) pointer to a block of memory. If the pointer is not one created by
MALLOC, CALLOC, or STRDUP, the behavior is undefined.

Example
char *name;name = (char *) MALLOC(256);...FREE(name);

SeeAlso

“CALLOC” on page 144, “REALLOC” on page 193, “STRDUP” on page 201,
“PERM_MALLOC?” on page 184, “PERM_FREE” on page 184, “PERM_REALLOC” on page 185,
“PERM_STRDUP” on page 186

func_exec

The func_exec function executes the function named by the fn entry in a specified pblock. If
the function name is not found, it logs the error and returns REQ_ABORTED.

You can use this function to execute a built-in SAF by identifying it in the pblock.

Syntax

int func_exec(pblock *pb, Session *sn, Request *rq);

Returns

The value returned by the executed function, or the constant REQ_ABORTED if no function was
executed.

Parameters

pblock pb is the pblock containing the function name (fn) and parameters.
Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAE.

SeeAlso

“log_error” on page 163

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

func_find

The func_find function returns a pointer to the function specified by name. If the function does
not exist, it returns NULL.

Syntax

FuncPtr func_find(char *name);

Returns

A pointer to the chosen function, suitable for dereferencing, or NULL if the function could not
be found.

Parameters

char *name is the name of the function.

Example

/* this block of code does the same thing as func_exec */char
*afunc = pblock findval("afunction", pb);FuncPtr afnptr = func_find(afunc);
if (afnptr) return (afnptr)(pb, sn, rq);

SeeAlso

“func_exec” on page 160

func_insert

The func_insert function dynamically inserts a named function into the server's table of
functions. This function should only be called during the Init stage.

Syntax

FuncStruct *func_insert(char *name, FuncPtr fn);

Returns

Returns the FuncStruct structure that identifies the newly inserted function. The caller should
not modify the contents of the FuncStruct structure.

Parameters

char *name is the name of the function.

FuncPtr fn is the pointer to the function.

Chapter 7 « NSAPI Function Reference 161

162

Example

func_insert("my-service-saf", &my service saf);

SeeAlso

“func_exec” on page 160, “func_find” on page 161

insert

The insert filter method is called when a filter is inserted into a filter stack by the “filter_insert”
on page 156 function or insert-filter SAF (applicable in Input-class directives).

Syntax

int insert(FilterLayer *layer, pblock *pb);

Returns

Returns REQ PROCEED if the filter should be inserted into the filter stack, REQ_NOACTION if the
filter should not be inserted because it is not required, or REQ_ABORTED if the filter should not be
inserted because of an error.

Parameters
FilterLayer *layer is the filter layer at which the filter is being inserted.

pblock *pb is the set of parameters passed to filter_insert or specified by the
fn="insert-filter" directive.

Example

FilterMethods myfilter methods = FILTER METHODS INITIALIZER;const Filter
*myfilter;int myfilter insert(FilterLayer *layer, pblock *pb)

{if (pblock findval("dont-insert-filter", pb))

return REQ_NOACTION;return REQ PROCEED;}...myfilter methods.insert = &myfilter insert;

myfilter = filter create("myfilter", &myfilter methods);...

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

log_error
The log_error function creates an entry in an error log, recording the date, the severity, and a

specified text.

Syntax

int log error(int degree, char *func, Session *sn, Request *rq, char *fmt, ...);

Returns

0 if the log entry was created, or -1 if the log entry was not created.

Parameters

int degree specifies the severity of the error. It must be one of the following constants:

LOG_WARN -- warning LOG_MISCONFIG -- a syntax error or permission violation LOG_SECURITY --
an authentication failure or 403 error from a hostLOG_FAILURE -- an internal

problemLOG CATASTROPHE -- a nonrecoverable server errorLOG_INFORM -- an informational
message

char *func is the name of the function where the error has occurred.

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.
char *fmt specifies the format for the printf function that delivers the message.

... represents a sequence of parameters for the printf function.

Example

log error(LOG WARN, "send-file", sn, rq,
"error opening buffer from %s (%s)"), path,
system_errmsg(fd));

SeeAlso

“func_exec” on page 160

Chapter 7 « NSAPI Function Reference 163

164

MALLOC

The MALLOC macro is a platform-independent substitute for the C library routine malloc. It
normally allocates from the request’s memory pool. If pooled memory has been disabled in the
configuration file (with the pool-init built-in SAF), PERM_MALLOC and MALLOC both obtain
their memory from the system heap.

Syntax

void *MALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example
/* Allocate 256 bytes for a name */char *name;name = (char *) MALLOC(256);

SeeAlso

“FREE” on page 159, “CALLOC” on page 144, “REALLOC” on page 193, “STRDUP” on
page 201, “PERM_MALLOC” on page 184, “PERM_FREE” on page 184, “PERM_CALLOC” on
page 183, “PERM_REALLOC” on page 185, “PERM_STRDUP” on page 186

net_flush

The net_flush function flushes any buffered data. If you require that data be sent immediately,
call net_flush after calling network output functions such as net_write or net_sendfile.

Syntax
int net flush(SYS _NETFD sd);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns

0 on success, or a negative value if an error occurred.

Parameters
SYS NETFD sd is the socket to flush.

Example

net write(sn->csd, "Please wait... ", 15);
net flush(sn->csd);
/* Perform some time-intensive operation */

net write(sn->csd, "Thank you.\n", 11);

SeeAlso

“net_write” on page 168, “net_sendfile” on page 166

net_ip2host

The net_ip2host function transforms a textual IP address into a fully-qualified domain name
and returns it.

Note - This function works only if the DNS directive is enabled in the magnus . conf file. For more
information, see Chapter 2, SAFs in the magnus.conf File.

Syntax

char *net_ip2host(char *ip, int verify);

Returns

A new string containing the fully-qualified domain name if the transformation was
accomplished, or NULL if the transformation was not accomplished.

Parameters

char *ip is the IP address as a character string in dotted-decimal notation: nnn.nnn.nnn.nnn

int verify, if nonzero, specifies that the function should verify the fully-qualified domain
name. Though this requires an extra query, you should use it when checking access control.

Chapter 7 « NSAPI Function Reference 165

166

net_read

The net_read function reads bytes from a specified socket into a specified buffer. The function
waits to receive data from the socket until either at least one byte is available in the socket or the
specified time has elapsed.

Syntax

int net read (SYS NETFD sd, char *buf, int sz, int timeout);

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative value is
returned if an error has occurred, in which case errno is set to the constant ETIMEDOUT if the
operation did not complete before timeout seconds elapsed.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer to receive the bytes.
int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before returning. The
purpose of timeout is not to return because not enough bytes were read in the given time, but to
limit the amount of time devoted to waiting until some data arrives.

SeeAlso

“net_write” on page 168

net_sendfile

The net_sendfile function sends the contents of a specified file to a specified socket. Either the
whole file or a fraction may be sent, and the contents of the file may optionally be preceded
and/or followed by caller-specified data.

Parameters are passed to net_sendfile in the sendfiledata structure. Before invoking
net_sendfile, the caller must initialize every sendfiledata structure member.

Syntax
int net sendfile(SYS NETFD sd, const sendfiledata *sfd);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns

A positive number indicates the number of bytes successfully written, including the headers, file

contents, and trailers. A negative value indicates an error.

Parameters
SYS_NETFD sd is the socket to write to.

const sendfiledata *sfd identifies the data to send.

Example
The following Service SAF sends a file bracketed by the strings "begin" and "end.

#include <string.h>
#include "nsapi.h"

NSAPI PUBLIC int service net sendfile(pblock *pb, Session *sn, Request *rq)
{

char *path;

SYS FILE fd;

struct sendfiledata sfd;

int rv;

path = pblock findval("path", rg->vars);
fd = system fopenRO(path);
if (!1fd) {
log_error(LOG_MISCONFIG, "service-net-sendfile", sn, rq,
"Error opening %s (%s)", path, system errmsg());
return REQ ABORTED;

}

sfd.fd = fd; /* file to send */

sfd.offset = 0; /* start sending from the beginning */
sfd.len = 0; /* send the whole file */

sfd.header = "begin"; /* header data to send before the file */
sfd.hlen = strlen(sfd.header); /* length of header data */
sfd.trailer = "end"; /* trailer data to send after the file */
sfd.tlen = strlen(sfd.trailer); /* length of trailer data */

/* send the headers, file, and trailers to the client */
rv = net_sendfile(sn->csd, &sfd);

system fclose(fd);

if (rv < 0) {
log error(LOG_INFORM, "service-net-sendfile", sn, rg,"Error sending %s

Chapter7 « NSAPIFunction Reference

167

168

(%s)", path, system errmsg());
return REQ_ABORTED;

}

return REQ PROCEED;
}
SeeAlso

“net_flush” on page 164

net_write
The net_write function writes a specified number of bytes to a specified socket from a specified

buffer.

Syntax

int net write(SYS NETFD sd, char *buf, int sz);

Returns

The number of bytes written, which may be less than the requested size if an error occurred.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.

int sz is the number of bytes to write.

Example
if (net write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO ERROR) return REQ EXIT;

SeeAlso
“net_read” on page 166

netbuf buf2sd

The netbuf_buf2sd function sends a buffer to a socket. You can use this function to send data
from IPC pipes to the client.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax
int netbuf buf2sd(netbuf *buf, SYS NETFD sd, int len);

Returns

The number of bytes transferred to the socket, if successful, or the constant I0_ERROR if
unsuccessful.

Parameters
netbuf *buf is the buffer to send.

SYS_NETFD sd is the platform-independent identifier of the socket.

int len is the length of the buffer.

SeeAlso

“netbuf_close” on page 169, “netbuf_getc” on page 171, “netbuf_grab” on page 171,
“netbuf_open” on page 172, “netbuf_getbytes” on page 170

netbuf close

The netbuf close function deallocates a network buffer and closes its associated files. Use this
function when you need to deallocate the network buffer and close the socket.

You should never close the netbuf parameter in a session structure.

Syntax

void netbuf close(netbuf *buf);

Returns

void

Parameters
netbuf *buf is the buffer to close.

SeeAlso

“netbuf_buf2sd” on page 168, “netbuf_getc” on page 171, “netbuf _grab” on page 171,
“netbuf_open” on page 172, “netbuf_getbytes” on page 170

Chapter 7 « NSAPI Function Reference 169

netbuf_getbytes

The netbuf_getbytes function reads bytes from a network buffer into a caller-supplied buffer.
If the network buffer is empty, the function waits to receive data from the network buffer's
socket until either at least one byte is available from the socket or the network buffer's timeout
has elapsed.

Syntax

int netbuf getbytes(netbuf *buf, char *buffer, int sz);

Returns

The number of bytes placed into buffer (between 1 and sz) if the operation is successful, the
constant NETBUF_EOF on end of file, or the constant NETBUF ERROR if an error occurred.

Parameters

netbuf *buf is the buffer from which to retrieve bytes.
char *buffer is the caller-supplied buffer that receives the bytes.

int sz is the maximum number of bytes to read.

Example

int cl = 0;

* Read the entire request body */
for (;;) {

char mybuf[1024];

int rv;

rv = netbuf getbytes(sn->inbuf, mybuf, sizeof(mybuf));
if (rv == NETBUF _EOF) {
log_error(LOG_INFORM, "mysaf", sn, rq,
"Received %d byte(s)",
cl);
break;
}
if (rv == NETBUF_ERROR) {
log error(LOG FAILURE, "mysaf", sn, rq,
"Error reading request body (%s)"
cl, system errmsg());
break; }

cl += rv;

170 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

SeeAlso

“netbuf_buf2sd” on page 168, “netbuf_close” on page 169, “netbuf getc” on page 171,
“netbuf_grab” on page 171, “netbuf_open” on page 172

netbuf_getc

The netbuf_getc function retrieves a character from the cursor position of the network buffer
specified by b.

Syntax

netbuf getc(netbuf b);

Returns

The integer representing the character if one was retrieved, or the constant I0_EOF or I0_ERROR
for end of file or error.

Parameters

netbuf b is the buffer from which to retrieve one character.

SeeAlso

“netbuf_buf2sd” on page 168, “netbuf_close” on page 169, “netbuf_grab” on page 171,
“netbuf_open” on page 172, “netbuf getbytes” on page 170

netbuf_grab

The netbuf_grab function reads sz number of bytes from the network buffer’s (buf) socket into
the network buffer. If the buffer is not large enough it is resized. The data can be retrieved from
buf->inbuf on success.

This function is used by the function netbuf_buf2sd.

Syntax

int netbuf grab(netbuf *buf, int sz);
Returns
The number of bytes actually read (between 1 and sz) if the operation was successful, or the

constant I0_EOF or I0_ERROR for end of file or error.

Chapter 7 « NSAPI Function Reference 171

172

Parameters
netbuf *buf is the buffer to read into.

int sz is the number of bytes to read.

SeeAlso

“netbuf_buf2sd” on page 168, “netbuf_close” on page 169, “netbuf_grab” on page 171,
“netbuf_open” on page 172, “netbuf_getbytes” on page 170

netbuf_open

The netbuf_open function opens a new network buffer and returns it. You can use
netbuf_open to create a netbuf structure and start using buffered I/O on a socket.

Syntax

netbuf* netbuf open(SYS _NETFD sd, int sz);

Returns

A pointer to a new netbuf structure (network buffer).

Parameters
SYS_NETFD sd is the platform-independent identifier of the socket.

int sz is the number of characters to allocate for the network buffer.

SeeAlso

“netbuf_buf2sd” on page 168, “netbuf_close” on page 169, “netbuf_getc” on page 171,
“netbuf_grab” on page 171, “netbuf_getbytes” on page 170

nsapi_module_init

Plugin developers may define an nsapi_module_init function, which is a module initialization
entry point that enables a plug-in to create filters when it is loaded. When an NSAPI module
contains an nsapi_module_init function, the server will call that function immediately after
loading the module. The nsapi_module_init presents the same interface asan Init SAF and it
must follow the same rules.

The nsapi_module_init function may be used to register SAFs with func_insert, create filters
with “filter_create” on page 155, register virtual server initialization/destruction callbacks with
“vs_register_cb” on page 235, and perform other initialization tasks.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax

int nsapi module init(pblock *pb, Session *sn, Request *rq);

Returns
REQ_PROCEED on success, or REQ_ABORTED on error.

Parameters

pblock *pb is a set of parameters specified by the fn="load-modules" directive.
Session *sn (the Session) is NULL.

Request *rq (the Request) is NULL.

NSAPI_RUNTIME_VERSION

The NSAPI RUNTIME VERSION macro defines the NSAPI version available at runtime. This is the
same as the highest NSAPI version supported by the server the plug-in is running in. The
NSAPI version is encoded as in USE_NSAPI_VERSION.

The value returned by the NSAPI_RUNTIME_VERSION macro is valid only in iPlanet™ Web Server
6.0, Netscape Enterprise Server 6.0, and Sun Java System Web Server 6.1. That is, the server
must support NSAPI 3.1 for this macro to return a valid value. Additionally, to use
NSAPI_RUNTIME_VERSION, you must compile againstan nsapi.h header file that supports
NSAPI 3.2 or higher.

Plugin developers should not attempt to set the value of the NSAPI_RUNTIME_VERSION macro
directly. Instead, see the USE_NSAPI_VERSION macro.

Syntax

int NSAPI_RUNTIME_VERSION

Example

NSAPI PUBLIC int log nsapi_runtime version(pblock *pb, Session *sn, Request *rq) {
log_error(LOG_INFORM, "log-nsapi-runtime-version", sn, rq,
"Server supports NSAPI version %d.%d\n"
NSAPI RUNTIME VERSION / 100,
NSAPI RUNTIME VERSION % 100);
return REQ PROCEED;
}

SeeAlso
“NSAPI_VERSION” on page 174,“USE_NSAPI_VERSION” on page 215

Chapter 7 « NSAPI Function Reference 173

174

NSAPI_VERSION

The NSAPI_VERSION macro defines the NSAPI version used at compile time. This value is
determined by the value of the USE_NSAPI_VERSION macro. If the plug-in developer did not
define USE_NSAPI_VERSION, by the highest NSAPI version supported by the nsapi.h header the
plug-in was compiled against. The NSAPI version is encoded as in USE_NSAPI_VERSION.

Plugin developers should not attempt to set the value of the NSAPI_VERSION macro directly.
Instead, see the USE_NSAPI_VERSION macro.

Syntax
int NSAPI_VERSION

Example

NSAPI PUBLIC int log nsapi_compile time version(pblock *pb, Session *sn, Request *rq) {
log error(LOG INFORM, "log-nsapi-compile-time-version", sn, rq,
"Plugin compiled against NSAPI version %d.%d\n",
NSAPI VERSION / 100,
NSAPI_VERSION % 100);
return REQ PROCEED;
}

SeeAlso
“NSAPI_RUNTIME_VERSION” on page 173, “USE_NSAPI_VERSION” on page 215

param_create

The param_create function creates a pb_param structure containing a specified name and
value. The name and value are copied. Use this function to prepare a pb_param structure to be
used in calls to pblock routines such as polock_pinsert.

Syntax

pb_param *param create(char *name, char *value);

Returns

A pointer to a new pb_param structure.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters

char *name is the string containing the name.
char *value is the string containing the value.

Example

pb_param *newpp = param create("content-type
pblock pinsert(newpp, rq->srvhdrs);

text/plain");

SeeAlso
“param_free” on page 175, “pblock_pinsert” on page 181, “pblock_remove” on page 182

param_free

The param_free function frees the pb_param structure specified by pp and its associated
structures. Use the param_free function to dispose a pb_param after removing it from a pblock
with pblock_remove.

Syntax

int param free(pb param *pp);

Returns

1if the parameter was freed or 0 if the parameter was NULL.

Parameters

pb_param *pp is the name-value pair stored in a pblock.

Example

if (param free(pblock remove(“content-type", rg-srvhdrs)))
return; /* we removed it */

SeeAlso

“param_create” on page 174, “pblock_pinsert” on page 181, “pblock_remove” on page 182

pblock_copy

The pblock_copy function copies the entries of the source pblock and adds them into the
destination pblock. Any previous entries in the destination pblock are left intact.

Chapter 7 « NSAPI Function Reference 175

176

Syntax
void pblock copy(pblock *src, pblock *dst);

Returns

void

Parameters

pblock *src is the source pblock.
pblock *dst is the destination pblock.

Names and values are newly allocated so that the original pblock may be freed, or the new
pblock changed without affecting the original pblock.

SeeAlso

“pblock_create” on page 176, “pblock_dup” on page 177, “pblock_free” on page 178,
“pblock_find” on page 177, “pblock_findval” on page 178, “pblock_remove” on page 182,
“pblock_nvinsert” on page 179

pblock_create

The pblock_create function creates a new pblock. The pblock maintains an internal hash table
for fast name-value pair lookups.

Syntax

pblock *pblock create(int n);

Returns
A pointer to a newly allocated pblock.

Parameters

int n is the size of the hash table (number of name-value pairs) for the pblock.

SeeAlso

“pblock_copy” on page 175, “pblock_dup” on page 177, “pblock_find” on page 177,
“pblock_findval” on page 178, “pblock_free” on page 178, “pblock_nvinsert” on page 179,
“pblock_remove” on page 182

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

pblock_dup
The pblock_dup function duplicates a pblock. It is equivalent to a sequence of pblock_create

and pblock copy.

Syntax
pblock *pblock dup(pblock *src);

Returns
A pointer to a newly allocated pblock.

Parameters

pblock *src is the source pblock.

SeeAlso

“pblock_create” on page 176, “pblock_find” on page 177, “pblock_findval” on page 178,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182

pblock_find

The pblock_find function finds a specified name-value pair entry in a pblock, and returns the
pb_param structure. If you only want the value associated with the name, use the
pblock findval function.

This function is implemented as a macro.

Syntax
pb param *pblock find(char *name, pblock *pb);

Returns

A pointer to the pb_param structure if one was found, or NULL if name was not found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.
SeeAlso

“pblock_copy” on page 175, “pblock_dup” on page 177, “pblock_findval” on page 178,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182

Chapter 7 « NSAPI Function Reference 177

178

pblock_findval

The pblock_findval function finds the value of a specified name in a pblock. If you just want
the pb_param structure of the pblock, use the pblock_find function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to modify it, do a
STRDUP and modify the copy.

Syntax
char *pblock findval(char *name, pblock *pb);

Returns

A string containing the value associated with the name or NULL if no match was found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

Example

see “pblock_nvinsert” on page 179.

SeeAlso

“pblock_create” on page 176, “pblock_copy” on page 175, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182,
“request_header” on page 194

pblock_free

The pblock_free function frees a specified pblock and any entries inside it. If you want to save
a variable in the pblock, remove the variable using the function pblock_remove and save the
resulting pointer.

Syntax
void pblock free(pblock *pb);

Returns

void

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters
pblock *pb is the pblock to be freed.

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_dup” on page 177,
“pblock_find” on page 177, “pblock_findval” on page 178, “pblock_nvinsert” on page 179,
“pblock_remove” on page 182

pblock_nninsert

The pblock_nninsert function creates a new entry with a given name and a numeric value in
the specified pblock. The numeric value is first converted into a string. The name and value
parameters are copied.

Syntax

pb_param *pblock nninsert(char *name, int value, pblock *pb);

Returns

A pointer to the new pb_param structure.

Parameters

char *name is the name of the new entry.

int value is the numeric value being inserted into the pblock. This parameter must be an
integer. If the value you assign is not a number, then instead use the function pblock_nvinsert
to create the parameter.

pblock *pb is the pblock into which the insertion occurs.

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182,
“pblock_str2pblock” on page 182

pblock_nvinsert

The pblock_nvinsert function creates a new entry with a given name and character value in
the specified pblock. The name and value parameters are copied.

Chapter 7 « NSAPI Function Reference 179

180

Syntax

pb param *pblock nvinsert(char *name, char *value, pblock *pb);

Returns

A pointer to the newly allocated pb_param structure.

Parameters

char *name is the name of the new entry.
char *value is the string value of the new entry.

pblock *pb is the pblock into which the insertion occurs.

Example

pblock nvinsert("content-type", "text/html", rqg->srvhdrs);

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nninsert” on page 179, “pblock_remove” on page 182,
“pblock_str2pblock” on page 182

pblock_pb2env

The pblock_pb2env function copies a specified pblock into a specified environment. The
function creates one new environment entry for each name-value pair in the pblock. Use this
function to send pblock entries to a program that you are going to execute.

Syntax

char **pblock_pb2env(pblock *pb, char **env);

Returns

A pointer to the environment.

Parameters
pblock *pb is the pblock to be copied.

char **env is the environment into which the pblock is to be copied.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182,
“pblock_str2pblock” on page 182

pblock_pblock2str

The pblock_pblock2str function copies all parameters of a specified pblock into a specified
string. The function allocates additional non-heap space for the string, if needed.

Use this function to stream the pblock for archival and other purposes.

Syntax
char *pblock pblock2str(pblock *pb, char *str);

Returns

The new version of the str parameter. If str is NULL, this is a new string; otherwise, itis a
reallocated string. In either case, it is allocated from the request’s memory pool.

Parameters
pblock *pb is the pblock to be copied.

char *str is the string into which the pblock is to be copied. It must have been allocated by
MALLOC or REALLOC, not by PERM_MALLOC or PERM_REALLOC (which allocate from the system
heap).

Each name-value pair in the string is separated from its neighbor pair by a space, and is in the
format name="value."

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182,
“pblock_str2pblock” on page 182

pblock_pinsert
The function pblock_pinsert insertsapb_param structure into a pblock.

Syntax
void pblock pinsert(pb param *pp, pblock *pb);

Chapter 7 « NSAPI Function Reference 181

182

Returns

void

Parameters

pb_param *pp is the pb_param structure to insert.

pblock *pb is the pblock.

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182,
“pblock_str2pblock” on page 182

pblock_remove

The pblock_remove function removes a specified name-value entry from a specified pblock. If
you use this function, you should eventually call param_f ree to deallocate the memory used by
the pb_param structure.

Syntax

pb param *pblock remove(char *name, pblock *pb);

Returns

A pointer to the named pb_param structure if it was found, or NULL if the named pb_param was
not found.

Parameters

char *name is the name of the pb_param to be removed.

pblock *pb is the pblock from which the name-value entry is to be removed.

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “param_create” on page 174,
“param_free” on page 175

pblock_str2pblock

The pblock_str2pblock function scans a string for parameter pairs, adds them to a pblock,
and returns the number of parameters added.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax
int pblock str2pblock(char *str, pblock *pb);

Returns

The number of parameter pairs added to the pblock, if any, or -1 if an error occurred.

Parameters

char *str is the string to be scanned.
The name-value pairs in the string can have the format name=value or name="value".

All backslashes (\) must be followed by a literal character. If string values are found with no
unescaped = signs (no name=), it assumes the names 1, 2, 3, and so on, depending on the string
position. For example, if pblock str2pblock finds "some strings together", the function
treats the strings as if they appeared in name-value pairs as 1="some" 2="strings"
3="together".

pblock *pb is the pblock into which the name-value pairs are stored.

SeeAlso

“pblock_copy” on page 175, “pblock_create” on page 176, “pblock_find” on page 177,
“pblock_free” on page 178, “pblock_nvinsert” on page 179, “pblock_remove” on page 182,
“pblock_pblock2str” on page 181

PERM_CALLOC

The PERM_CALLOC macro is a platform-independent substitute for the Clibrary routine calloc.
It allocates int size bytes of memory that persist after the request that is being processed has
been completed. If pooled memory has been disabled in the configuration file (with the
pool-init built-in SAF), PERM_CALLOC and CALLOC both obtain their memory from the system
heap.

Syntax
void *PERM CALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the size in bytes of each element.

Chapter 7 « NSAPI Function Reference 183

184

Example
char **name;name = (char **) PERM CALLOC(100);

SeeAlso

“PERM_FREE” on page 184, “PERM_STRDUP” on page 186, “PERM_MALLOC” on page 184,
“PERM_REALLOC” on page 185, “MALLOC” on page 164, “FREE” on page 159, “CALLOC”
on page 144, “STRDUP” on page 201, “REALLOC” on page 193

PERM_FREE

The PERM_FREE macro is a platform-independent substitute for the C library routine free. It
deallocates the persistent space previously allocated by PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP. If pooled memory has been disabled in the configuration file (with the pool-init
built-in SAF), both PERM_FREE and FREE deallocates memory in the system heap.

Syntax

PERM FREE(void *ptr);

Returns

void

Parameters

void *ptrisa (void *) pointer to block of memory. If the pointer is not one created by
PERM MALLOC, PERM_CALLOC, or PERM_STRDUP, the behavior is undefined.

Example
char *name;name = (char *) PERM MALLOC(256);...PERM FREE(name);

SeeAlso

“FREE” on page 159, “MALLOC” on page 164, “CALLOC” on page 144, “REALLOC” on
page 193, “STRDUP” on page 201, “PERM_MALLOC” on page 184, “PERM_CALLOC” on
page 183, “PERM_REALLOC” on page 185, “PERM_STRDUP” on page 186

PERM_MALLOC

The PERM_MALLOC macro is a platform-independent substitute for the Clibrary routine malloc.
It provides allocation of memory that persists after the request that is being processed has been
completed. If pooled memory has been disabled in the configuration file (with the pool-init
built-in SAF), PERM_MALLOC and MALLOC both obtain their memory from the system heap.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax
void *PERM MALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example
/* Allocate 256 bytes for a name */char *name;name = (char *) PERM MALLOC(256);

SeeAlso

“PERM_FREE” on page 184, “PERM_STRDUP” on page 186, “PERM_CALLOC” on page 183,
“PERM_REALLOC” on page 185, “MALLOC” on page 164, “FREE” on page 159, “CALLOC”
on page 144, “STRDUP” on page 201, “REALLOC” on page 193

PERM_REALLOC

The PERM_REALLOC macro is a platform-independent substitute for the Clibrary routine
realloc. It changes the size of a specified memory block that was originally created by MALLOC,
CALLOC, or STRDUP. The contents of the object remains unchanged up to the lesser of the old and
new sizes. If the new size is larger, the new space is uninitialized.

Warning

Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLOC, or STRDUP will not
work.

Syntax
void *PERM REALLOC(vod *ptr, int size)

Returns

A void pointer to a block of memory.

Parameters

void *ptravoid pointer to a block of memory created by PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP.

int size is the number of bytes to which the memory block should be resized.

Chapter 7 « NSAPI Function Reference 185

186

Example

char *name;name = (char *) PERM MALLOC(256);if (NotBigEnough())
name = (char *) PERM REALLOC(512);

SeeAlso

“PERM_MALLOC” on page 184,“PERM_FREE” on page 184, “PERM_CALLOC” on page 183,
“PERM_STRDUP” on page 186, “MALLOC” on page 164, “FREE” on page 159, “STRDUP” on
page 201, “CALLOC” on page 144, “REALLOC” on page 193

PERM_STRDUP

The PERM_STRDUP macro is a platform-independent substitute for the Clibrary routine st rdup.
It creates a new copy of a string in memory that persists after the request that is being processed
has been completed. If pooled memory has been disabled in the configuration file (with the
pool-init built-in SAF), PERM_STRDUP and STRDUP both obtain their memory from the system
heap.

The PERM_STRDUP routine is functionally equivalent to:

newstr = (char *) PERM MALLOC(strlen(str) + 1);strcpy(newstr, str);

A string created with PERM_STRDUP should be disposed with PERM_FREE.

Syntax
char *PERM STRDUP(char *ptr);

Returns

A pointer to the new string.

Parameters

char *ptr is a pointer to a string.

SeeAlso

“PERM_MALLOC” on page 184,“PERM_FREE” on page 184, “PERM_CALLOC” on page 183,
“PERM_REALLOC” on page 185, “MALLOC” on page 164, “FREE” on page 159, “STRDUP”
on page 201, “CALLOC” on page 144, “REALLOC” on page 193

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

prepare_nsapi_thread

The prepare_nsapi_thread function allows threads that are not created by the server to act
like server-created threads. This function must be called before any NSAPI functions are called
from a thread that is not server-created.

Syntax

void prepare nsapi thread(Request *rq, Session *sn);

Returns

void

Parameters
Request *rq is the Request.

Session *sn is the Session.

The Request and Session parameters are the same as the ones passed into your SAE

SeeAlso

“protocol_start_response” on page 188

protocol_dump822

The protocol_dump822 function prints headers from a specified pblock into a specific buffer,
with a specified size and position. Use this function to serialize the headers so that they can be
sent, for example, in a mail message.

Syntax

char *protocol dump822(pblock *pb, char *t, int *pos, int tsz);

Returns

A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Parameters
pblock *pb is the pblock structure.

char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.

int *pos is the position within the buffer at which the headers are to be dumped.

Chapter 7 « NSAPI Function Reference 187

188

int tsz is the size of the buffer.

SeeAlso

“protocol_start_response” on page 188, “protocol_status” on page 189

protocol_set_finfo

The protocol set finfo function retrieves the content-length and last-modified date
from a specified stat structure and adds them to the response headers (rq->srvhdrs). Call
protocol_set_finfo before calling protocol_start_response.

Syntax

int protocol set finfo(Session *sn, Request *rq, struct stat *finfo);

Returns

The constant REQ_PROCEED if the request can proceed normally, or the constant REQ_ABORTED if
the function should treat the request normally but not send any output to the client.

Parameters

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAE.
stat *finfo is the stat structure for the file.

The stat structure contains the information about the file from the file system. You can get the
stat structure info using request_stat_path.

SeeAlso

“protocol_start_response” on page 188, “protocol_status” on page 189

protocol_start_response

The protocol_start_response function initiates the HTTP response for a specified session
and request. If the protocol version is HTTP/0.9, the function does nothing, because that
version has no concept of status. If the protocol version is HT'TP/1.0, the function sends a status
line followed by the response headers. Use this function to set up HTTP and prepare the client
and server to receive the body (or data) of the response.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax

int protocol start response(Session *sn, Request *rq);

Returns

The constant REQ_PROCEED if the operation succeeded, in which case you should send the data
you were preparing to send.

The constant REQ_NOACTION if the operation succeeded but the request method was HEAD, in
which case no data should be sent to the client.

The constant REQ_ABORTED if the operation did not succeed.

Parameters

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.

Example
/* A noaction response from this function means the request
was HEAD */if (protocol start response(sn, rq) == REQ NOACTION)

filebuf close(groupbuf); /* close our file*/ return REQ PROCEED;}

SeeAlso

“protocol_status” on page 189

protocol_status

The protocol_status function sets the session status to indicate whether an error condition
occurred. If the reason string is NULL, the server attempts to find a reason string for the given
status code. If it finds none, it returns “Unknown reason.” The reason string is sent to the client
in the HTTP response line. Use this function to set the status of the response before calling the
function protocol start response.

For the complete list of valid status code constants, please refer to the file "nsapi.h" in the
server distribution.

Syntax

void protocol status(Session *sn, Request *rq, int n, char *r);

Chapter 7 « NSAPI Function Reference 189

190

Returns

void, but it sets values in the Session/Request designated by sn/rq for the status code and the
reason string.

Parameters

Session *sn is the Session.

Request *rqis the Request.

The Session and Request parameters are the same as the ones passed into your SAE.
int n is one of the status code constants above.

char *r is the reason string.

Example

/* if we find extra path-info, the URL was bad so tell the *//*

browser it was not found */if (t = pblock findval("path-info", rg->vars))
protocol status(sn, rg, PROTOCOL NOT_FOUND, NULL); log error(LOG_WARN,
“function-name", sn, rq, "%s not found", path);

return REQ ABORTED;}

SeeAlso

“protocol_start_response” on page 188

protocol_uri2url

The protocol_uri2url function takes strings containing the given URI prefix and URI suffix,
and creates a newly allocated, fully qualified URL in the form
http://(server): (port) (prefix) (suffix).Seeprotocol uri2url dynamic.

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the value for either
parameter.

Syntax

char *protocol _uri2url(char *prefix, char *suffix);

Returns
A new string containing the URL.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters

char *prefix is the prefix.
char *suffix is the suffix.

SeeAlso

“protocol_start_response” on page 188, “protocol_status” on page 189, “pblock_nvinsert” on
page 179, “protocol_uri2url_dynamic” on page 191

protocol_uri2url_dynamic

The protocol_uri2url function takes strings containing the given URI prefix and URI suffix,
and creates a newly allocated, fully qualified URL in the form
http://(server): (port) (prefix) (suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the value for either
parameter.

The protocol uri2url_dynamic function is similar to the protocol_uri2url function, but
should be used whenever the session and request structures are available. This ensures that
the URL it constructs refers to the host that the client specified.

Syntax

char *protocol uri2url(char *prefix, char *suffix, Session *sn, Request *rq);

Returns
A new string containing the URL.

Parameters

char *prefix is the prefix.

char *suffix is the suffix.

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.

SeeAlso

“protocol_start_response” on page 188, “protocol_status” on page 189,
“protocol_uri2url_dynamic” on page 191

Chapter 7 « NSAPI Function Reference 191

192

read

The read filter method is called when input data is required. Filters that modify or consume
incoming data should implement the read filter method.

Upon receiving control, a read implementation should fill buf with up to amount bytes of input
data. This data may be obtained by calling the “net_read” on page 166 function, as shown in the
example below.

Syntax

int read(FilterLayer *layer, void *buf, int amount, int timeout);

Returns

The number of bytes placed in buf on success, 0 if no data is available, or a negative value if an
error occurred.

Parameters

FilterLayer *layer is the filter layer in which the filter is installed.
void *buf is the buffer in which data should be placed.
int amount is the maximum number of bytes that should be placed in the buffer.

int timeout is the number of seconds to allow for the read operation before returning. The
purpose of timeout is not to return because not enough bytes were read in the given time, but to
limit the amount of time devoted to waiting until some data arrives.

Example

int myfilter read(FilterLayer *layer, void *buf, int amount,

int timeout){ return net read(layer->lower, buf, amount, timeout);}
SeeAlso

“net_read” on page 166

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

REALLOC

The REALLOC macro is a platform-independent substitute for the Clibrary routine realloc. It
changes the size of a specified memory block that was originally created by MALLOC, CALLOC, or
STRDUP. The contents of the object remains unchanged up to the lesser of the old and new sizes.
If the new size is larger, the new space is uninitialized.

Warning

Calling REALLOC for a block that was allocated with PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP will not work.

Syntax

void *REALLOC(void *ptr, int size);

Returns

A pointer to the new space if the request could be satisfied.

Parameters
void *ptrisa (void *) pointer to a block of memory. If the pointer is not one created by

MALLOC, CALLOC, or STRDUP, the behavior is undefined.

int size is the number of bytes to allocate.

Example

char *name;name = (char *) MALLOC(256);if (NotBigEnough())
name = (char *) REALLOC(512);

SeeAlso

“MALLOC” on page 164, “FREE” on page 159, “STRDUP” on page 201, “CALLOC” on
page 144, “PERM_MALLOC” on page 184, “PERM_FREE” on page 184, “PERM_REALLOC”
on page 185, “PERM_CALLOC” on page 183, “PERM_STRDUP” on page 186

remove

The remove filter method is called when the filter stack is destroyed, or when a filter is removed
from a filter stack by the “filter_remove” on page 158 function or remove-filter SAF
(applicable in Input-, Output-, Service-, and Error-class directives).

Note that it may be too late to flush buffered data when the remove method is invoked. For this
reason, filters that buffer outgoing data should implement the flush filter method.

Chapter 7 « NSAPI Function Reference 193

194

Syntax

void remove(FilterLayer *layer);

Returns

void

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

SeeAlso
“flush” on page 158

request_get_vs
The request_get vs function finds the VirtualServer* to which a request is directed.
The returned VirtualServerx is valid only for the current request. To retrieve a virtual server

ID that is valid across requests, use “vs_get_id” on page 233.

Syntax

const VirtualServer* request get vs(Request* rq);

Returns

The VirtualServer* to which the request is directed.

Parameters

Request *rq is the request for which the VirtualServerx is returned.

SeeAlso
“vs_get_id” on page 233

request_header

The request_header function finds an entry in the pblock containing the client’s HTTP
request headers (rq->headers). You must use this function rather than pblock findval when
accessing the client headers, since the server may begin processing the request before the
headers have been completely read.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax

int request header(char *name, char **value, Session *sn, Request *rq);

Returns

A result code, REQ PROCEED if the header was found, REQ ABORTED if the header was not found,
REQ_EXIT if there was an error reading from the client.

Parameters

char *name is the name of the header.

char **value is the address where the function will place the value of the specified header. If
none is found, the function storesa NULL.

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.

SeeAlso

request create, request free

request_stat_path

The request_stat_path function returns the file information structure for a specified path or,
if none is specified, the path entry in the vars pblock in the specified request structure. If the
resulting file name points to a file that the server can read, request_stat_path returns a new
file information structure. This structure contains information on the size of the file, its owner,
when it was created, and when it was last modified.

You should use request_stat_path to retrieve information on the file you are currently
accessing (instead of calling stat directly), because this function keeps track of previous calls
for the same path and returns its cached information.

Syntax

struct stat *request stat path(char *path, Request *rq);

Returns

Returns a pointer to the file information structure for the file named by the path parameter. Do
not free this structure. Returns NULL if the file is not valid or the server cannot read it. In this
case, it also leaves an error message describing the problem in rq->staterr.

Chapter 7 « NSAPI Function Reference 195

Parameters

char *path is the string containing the name of the path. If the value of path is NULL, the
function uses the path entry in the vars pblock in the request structure denoted by rq.

Request *rq is the request identifier for a Server Application Function call.

Example

fi = request stat path(path, rq);

SeeAlso

request create, request free, request header

request_translate_uri

The request_translate_uri function performs virtual to physical mapping on a specified URI
during a specified session. Use this function when you want to determine which file would be
sent back if a given URI is accessed.

Syntax

char *request_translate_uri(char *uri, Session *sn);

Returns
A path string if it performed the mapping, or NULL if it could not perform the mapping.

Parameters

char *uri is the name of the URI.

Session *sn is the Session parameter that is passed into your SAE.

SeeAlso

request create, request free, request header

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

sendfile

The sendfile filter method is called when the contents of a file are to be sent. Filters that
modify or consume outgoing data may choose to implement the sendfile filter method.

If a filter implements the write filter method but not the sendfile filter method, the server will

automatically translate “net_sendfile” on page 166 calls to “net_write” on page 168 calls. Asa
result, filters interested in the outgoing data stream do not need to implement the sendfile

filter method. However, for performance reasons, it is beneficial for filters that implement the

write filter method to also implement the sendfile filter method.

Syntax

int sendfile(FilterLayer *layer, const sendfiledata *data);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

const sendfiledata *sfd identifies the data to send.

Example

int myfilter sendfile(FilterLayer *layer, const sendfiledata *sfd)

{

return net _sendfile(layer->lower, sfd);

SeeAlso
“net_sendfile” on page 166

session_dns

The session_dns function resolves the IP address of the client associated with a specified
session into its DNS name. It returns a newly allocated string. You can use session_dns to
change the numeric IP address into something more readable.

Chapter7 « NSAPIFunction Reference

197

198

The session_maxdns function verifies that the client is who it claims to be; the session_dns
function does not perform this verification.

Note - This function works only if the DNS directive is enabled in the magnus . conf file. For more
information, seeChapter 2, SAFs in the magnus.conf File

Syntax

char *session dns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the IP
address.

Parameters

Session *sn is the Session.

The Session is the same as the one passed to your SAE.

session_maxdns

The session_maxdns function resolves the IP address of the client associated with a specified
session into its DNS name. It returns a newly allocated string. You can use session_maxdns to
change the numeric IP address into something more readable.

Note - This function works only if the DNS directive is enabled in the magnus . conf file. For more
information, seeChapter 2, SAFs in the magnus.conf File

Syntax

char *session _maxdns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the IP
address.

Parameters

Session *sn is the Session.

The Session is the same as the one passed to your SAE.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

shexp_casecmp

The shexp_casecmp function validates a specified shell expression and compares it with a
specified string. It returns one of three possible values representing match, no match, and
invalid comparison. The comparison (in contrast to that of the shexp_cmp function) is not
case-sensitive.

Use this function if you have a shell expression like * . netscape. com and you want to make sure

that a string matches it, such as foo.netscape. com.

Syntax

int shexp casecmp(char *str, char *exp);

Returns

0 if a match was found.
1if no match was found.

-1if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

SeeAlso
“shexp_cmp” on page 199, “shexp_match” on page 200, “shexp_valid” on page 201

shexp_cmp

The shexp_casecmp function validates a specified shell expression and compares it with a
specified string. It returns one of three possible values representing match, no match, and
invalid comparison. The comparison (in contrast to that of the shexp casecmp function) is
case-sensitive.

Use this function if you have a shell expression like * . netscape . com and you want to make sure
that a string matches it, such as foo.netscape. com.

Syntax

int shexp cmp(char *str, char *exp);

Chapter 7 « NSAPI Function Reference 199

200

Returns

0 if a match was found.

1if no match was found.

-1ifthe comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example

/* Use wildcard match to see if this path is one we want */char
*path;char *match = "/usr/netscape/*";if (shexp cmp(path, match) != 0)
return REQ NOACTION; /* no match */

SeeAlso
“shexp_casecmp” on page 199, “shexp_match” on page 200, “shexp_valid” on page 201

shexp_match

The shexp_match function compares a specified prevalidated shell expression against a
specified string. It returns one of three possible values representing match, no match, and
invalid comparison. The comparison (in contrast to that of the shexp_casecmp function) is
case-sensitive.

The shexp_match function doesn’t perform validation of the shell expression; instead the
function assumes that you have already called shexp_valid.

Use this function if you have a shell expression such as *. netscape. com, and you want to make
sure that a string matches it, such as foo.netscape. com.

Syntax

int shexp match(char *str, char *exp);

Returns
0 if a match was found.

1 if no match was found.

-1if the comparison resulted in an invalid expression.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters

char *str is the string to be compared.

char *exp is the prevalidated shell expression (wildcard pattern) to compare against.

SeeAlso
“shexp_casecmp” on page 199, “shexp_cmp” on page 199, “shexp_valid” on page 201

shexp_valid

The shexp_valid function validates a specified shell expression named by exp. Use this
function to validate a shell expression before using the function shexp_match to compare the
expression with a string.

Syntax

int shexp valid(char *exp);

Returns
The constant NON_SXP if exp is a standard string.

The constant INVALID_SXP if exp is a shell expression, but invalid.

The constant VALID SXP if exp is a valid shell expression.

Parameters

char *exp is the shell expression (wildcard pattern) to be validated.

SeeAlso
“shexp_casecmp” on page 199, “shexp_match” on page 200, “shexp_cmp” on page 199

STRDUP

The STRDUP macro is a platform-independent substitute for the Clibrary routine strdup. It
creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

Chapter 7 « NSAPI Function Reference 201

202

A string created with STRDUP should be disposed with FREE.

Syntax

char *STRDUP(char *ptr);

Returns

A pointer to the new string.

Parameters

char *ptr is a pointer to a string.

Example

char *namel = "MyName";char *name2 = STRDUP(namel);

SeeAlso

“MALLOC” on page 164, “FREE” on page 159, “CALLOC” on page 144, “REALLOC” on
page 193, “PERM_MALLOC” on page 184, “PERM_FREE” on page 184, “PERM_CALLOC” on
page 183, “PERM_REALLOC” on page 185, “PERM_STRDUP” on page 186

system_errmsg

The system_errmsg function returns the last error that occurred from the most recent system
call. This function is implemented as a macro that returns an entry from the global array
sys_errlist. Use this macro to help with I/O error diagnostics.

Syntax

char *system errmsg(int paraml);

Returns

A string containing the text of the latest error message that resulted from a system call. Do not
FREE this string.

Parameters

int paraml is reserved, and should always have the value 0.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

SeeAlso

“system_fopenRO” on page 204, “system_fopenRW” on page 204, “system_fopenWA” on

page 205, “system_lseek” on page 209, “system_fread” on page 205, “system_fwrite” on page 206,
“system_fwrite_atomic” on page 207, “system_flock” on page 203, “system_ulock” on page 210,
“system_fclose” on page 203

system_fclose

The system fclose function closes a specified file descriptor. The system fclose function
must be called for every file descriptor opened by any of the system_fopen functions.

Syntax

int system fclose(SYS FILE fd);

Returns
0 if the close succeeded, or the constant I0 ERROR if the close failed.

Parameters
SYS FILE fd is the platform-independent file descriptor.

Example
SYS_FILE logfd; system fclose(logfd);

SeeAlso

system errmsg, system fopenRO, system fopenRW, system fopenWA, system lseek,
system fread, system fwrite, system fwrite atomic, system flock, system ulock

system_flock

The system_flock function locks the specified file against interference from other processes.
Use system_flock if you do not want other processes to use the file you currently have open.
Overusing file locking can cause performance degradation and possibly lead to deadlocks.

Syntax
int system_flock(SYS FILE fd);

Returns
The constant I0_OKAY if the lock succeeded, or the constant I0 ERROR if the lock failed.

Chapter 7 « NSAPI Function Reference 203

204

Parameters
SYS_FILE fd is the platform-independent file descriptor.

SeeAlso

system errmsg, system fopenRO, system fopenRW, system fopenWA, system lseek,
system fread, system fwrite, system fwrite atomic, system ulock, system fclose

system_fopenRO

The system_fopenR0 function opens the file identified by path in read-only mode and returns a
valid file descriptor. Use this function to open files that will not be modified by your program. In
addition, you can use system_fopenRO to open a new file buffer structure using filebuf_open.

Syntax

SYS FILE system fopenRO(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the open
failed.

Parameters

char *path is the file name.

SeeAlso

system errmsg, system fopenRW, system fopenWA, system lseek, system fread,
system fwrite, system fwrite atomic, system flock, system ulock, system fclose

system_fopenRW

The system_fopenRW function opens the file identified by path in read-write mode and returns
avalid file descriptor. If the file already exists, system_fopenRW does not truncate it. Use this
function to open files that will be read from and written to by your program.

Syntax
SYS FILE system fopenRW(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the open
failed.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters

char *path is the file name.

Example
SYS FILE fd;fd = system fopenRO(pathname);if (fd == SYS ERROR FD) break;

SeeAlso

system errmsg, system fopenRO, system fopenWA, system lseek, system fread,
system fwrite, system fwrite atomic, system flock, system ulock, system fclose

system_fopenWA

The system_fopenWA function opens the file identified by path in write-append mode and
returns a valid file descriptor. Use this function to open those files to which your program will
append data.

Syntax
SYS FILE system fopenWA(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the open
failed.

Parameters

char *path is the file name.

SeeAlso

system errmsg, system fopenRO, system fopenRW, system lseek, system fread,
system fwrite, system fwrite atomic, system flock, system ulock, system fclose

system_fread

The system_fread function reads a specified number of bytes from a specified file into a
specified buffer. It returns the number of bytes read. Before system_fread can be used, you
must open the file using any of the system_fopen functions (except system_fopenWA).

Syntax

int system fread(SYS FILE fd, char *buf, int sz);

Chapter 7 « NSAPI Function Reference 205

206

Returns

The number of bytes read, which may be less than the requested size if an error occurred or the
end of the file was reached before that number of characters were obtained.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

SeeAlso

system errmsg, system fopenRO, system fopenRW, system fopenWA, system lseek,
system fwrite, system fwrite atomic, system flock, system ulock, system fclose

system_fwrite

The system_fwrite function writes a specified number of bytes from a specified buffer into a
specified file.

Before system_fwrite can be used, you must open the file using any of the system_fopen

functions (except system_fopenR0).

Syntax

int system fwrite(SYS FILE fd, char *buf, int sz);

Returns
The constant I0_OKAY if the write succeeded, or the constant I0_ERROR if the write failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.
SeeAlso
system errmsg, system fopenRO, system fopenRW, system fopenWA, system lseek,

system fread, system fwrite atomic, system flock, system ulock, system fclose

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

system_fwrite_atomic

The system_fwrite_atomic function writes a specified number of bytes from a specified buffer
into a specified file. The function also locks the file prior to performing the write, and then
unlocks it when done, thereby avoiding interference between simultaneous write actions.
Before system fwrite_atomic can be used, you must open the file using any of the
system_fopen functions, except system_fopenRO.

Syntax

int system_fwrite atomic(SYS_FILE fd, char *buf, int sz);

Returns

The constant I0 OKAY if the write/lock succeeded, or the constant I0 ERROR if the write/lock
failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

Example

SYS FILE logfd;char *logmsg = "An error occurred."
system fwrite atomic(logfd, logmsg, strlen(logmsg));

SeeAlso

system errmsg, system fopenRO, system fopenRW, system fopenWA, system lseek,
system fread, system fwrite, system flock, system ulock, system fclose

system_gmtime

The system_gmtime function is a thread-safe version of the standard gmtime function. It returns
the current time adjusted to Greenwich Mean Time.

Syntax

struct tm *system gmtime(const time t *tp, const struct tm *res);

Chapter 7 « NSAPI Function Reference 207

208

Returns

A pointer to a calendar time (tm) structure containing the GMT time. Depending on your
system, the pointer may point to the data item represented by the second parameter, or it may
point to a statically-allocated item. For portability, do not assume either situation.

Parameters

time_ t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example

time t tp;struct tm res, *resp;tp = time(NULL);resp = system gmtime(&tp, &res);

SeeAlso

system localtime, util strftime

system_localtime

The system localtime function is a thread-safe version of the standard localtime function. It
returns the current time in the local time zone.

Syntax

struct tm *system localtime(const time t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the local time. Depending on your
system, the pointer may point to the data item represented by the second parameter, or it may
point to a statically-allocated item. For portability, do not assume either situation.

Parameters

time t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

SeeAlso

system gmtime, util strftime

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

system_lIseek
The system lseek function sets the file position of a file. This affects where data from

system freador system fwrite isread or written.

Syntax

int system lseek(SYS FILE fd, int offset, int whence);

Returns

The offset, in bytes, of the new position from the beginning of the file if the operation
succeeded, or -1 if the operation failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

int of fset isa number of bytes relative to whence. It may be negative.
int whence is one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK END, from the end of the file.

SeeAlso

system errmsg, system fopenRO, system fopenRW, system fopenWA, system fread,
system fwrite, system fwrite atomic, system flock, system ulock, system fclose

system_rename

The system_rename function renames a file. It may not work on directories if the old and new
directories are on different file systems.

Syntax

int system rename(char *old, char *new);

Returns

0 if the operation succeeded, or -1 if the operation failed.

Chapter 7 « NSAPI Function Reference 209

210

Parameters
char *old is the old name of the file.

char *new is the new name for the file.

system_ulock

The system_ulock function unlocks the specified file that has been locked by the function
system_lock. For more information about locking, see system_flock.

Syntax
int system ulock(SYS FILE fd);

Returns

The constant I0_OKAY if the operation succeeded, or the constant I0_ERROR if the operation
failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

SeeAlso

system errmsg, system fopenRO, system fopenRW, system fopenWA, system fread,
system fwrite, system fwrite atomic, system_flock, system_fclose

system_unix2local

The system_unix2local function converts a specified UNIX-style path name to a local file
system path name. Use this function when you have a file name in the UNIX format (such as
one containing forward slashes), and you need to access a file on another system such as
Windows. You can use system_unix2local to convert the UNIX file name into the format that
Windows accepts. In the UNIX environment this function does nothing, but may be called for
portability.

Syntax

char *system unix2local(char *path, char *1p);

Returns
A pointer to the local file system path string.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters
char *path is the UNIX-style path name to be converted.

char *1p is the local path name.

You must allocate the parameter 1p, and it must contain enough space to hold the local path
name.

SeeAlso

system fclose, system flock, system fopenRO, system fopenRW, system fopenWA,
system fwrite

systhread_attach

The systhread_attach function makes an existing thread into a platform-independent thread.

Syntax

SYS THREAD systhread attach(void);

Returns
A SYS_THREAD pointer to the platform-independent thread.

Parameters

none

SeeAlso

systhread current, systhread getdata, systhread init, systhread newkey,
systhread setdata, systhread sleep, systhread start, systhread timerset

systhread_current

The systhread_current function returns a pointer to the current thread.

Syntax

SYS THREAD systhread current(void);

Returns
A SYS_THREAD pointer to the current thread.

Chapter 7 « NSAPI Function Reference 211

212

Parameters

none

SeeAlso

systhread getdata, systhread newkey, systhread setdata, systhread sleep,
systhread start, systhread timerset

systhread_getdata

The systhread_getdata function gets data that is associated with a specified key in the current
thread.

Syntax

void *systhread getdata(int key);

Returns

A pointer to the data that was earlier used with the systhread_setkey function from the
current thread, using the same value of key if the call succeeds. Returns NULL if the call did not
succeed. For example, if the systhread_setkey function was never called with the specified key
during this session.

Parameters

int key is the value associated with the stored data by a systhread_setdata function. Keys are
assigned by the systhread_newkey function.

SeeAlso

systhread current, systhread newkey, systhread setdata, systhread sleep,
systhread start, systhread timerset

systhread_newkey

The systhread_newkey function allocates a new integer key (identifier) for thread-private data.
Use this key to identify a variable that you want to localize to the current thread, then use the
systhread_setdata function to associate a value with the key.

Syntax

int systhread newkey(void);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns
An integer key.

Parameters

none

SeeAlso

systhread current, systhread getdata, systhread setdata, systhread sleep,

systhread start, systhread timerset

systhread_setdata

The systhread_setdata function associates data with a specified key number for the current

thread. Keys are assigned by the systhread_newkey function.

Syntax

void systhread setdata(int key, void *data);

Returns

void

Parameters
int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value of key.

SeeAlso

systhread current, systhread getdata, systhread newkey, systhread sleep,
systhread start, systhread timerset

systhread_sleep

The systhread_sleep function puts the calling thread to sleep for a given time.

Syntax

void systhread sleep(int milliseconds);

Chapter7 « NSAPIFunction Reference

213

214

Returns

void

Parameters

int milliseconds is the number of milliseconds the thread is to sleep.

SeeAlso

systhread current, systhread getdata, systhread newkey, systhread setdata,
systhread start, systhread timerset

systhread_start

The systhread_start function creates a thread with the given priority, allocates a stack of a
specified number of bytes, and calls a specified function with a specified argument.

Syntax

SYS THREAD systhread start(int prio, int stksz, void (*fn)(void *), void *arg);

Returns

A new SYS_THREAD pointer if the call succeeded, or the constant SYS_ THREAD ERROR if the call
did not succeed.

Parameters

int prio is the priority of the thread. Priorities are system-dependent.

int stksz is the stack size in bytes. If stksz is zero (0), the function allocates a default size.
void (*fn) (void *) is the function to call.

void *arg is the argument for the fn function.

SeeAlso

systhread current, systhread getdata, systhread newkey, systhread setdata,
systhread sleep, systhread timerset

systhread_timerset

The systhread_timerset function starts or resets the interrupt timer interval for a thread
system.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Most of the systems do not allow the timer interval to be changed, this should be considered a
suggestion, rather than a command.

Syntax

void systhread timerset(int usec);

Returns

void

Parameters

int usec is the time, in microseconds

SeeAlso

systhread current, systhread getdata, systhread newkey, systhread setdata,
systhread sleep,systhread start

USE_NSAPI_VERSION

Plugin developers can define the USE_NSAPI_VERSION macro before including the nsapi.h
header file to request a particular version of NSAPI. The requested NSAPI version is encoded by
multiplying the major version number by 100 and then adding this to the minor version
number. For example, the following code requests NSAPI 3.2 features:

#define USE_NSAPI_VERSION 302 /* We want NSAPI 3.2 (Web Server 6.1) */
#include "nsapi.h"

To develop a plug-in that is compatible across multiple server versions, define
USE_NSAPI_VERSION to the highest NSAPI version supported by all of the target server versions.

The following table lists server versions and the highest NSAPI version supported by each:

TABLE7-2 NSAPI Versions Supported by Different Servers

ServerVersion NSAPI Version

iPlanet Web Server 4.1 3.0

Chapter 7 « NSAPI Function Reference 215

TABLE7-2 NSAPI Versions Supported by Different Servers (Continued)

ServerVersion NSAPI Version
iPlanet Web Server 6.0 3.1
Netscape Enterprise Server 6.0 3.1
Netscape Enterprise Server 6.1 3.1
Sun Java System Application Server 7.0 3.1
Sun Java System Web Server 6.1 3.2

It is an error to request a version of NSAPT higher than the highest version supported by the
nsapi.hheader that the plug-in is being compiled against. Additionally, to use
USE_NSAPI_VERSION, you must compile against an nsapi.h header file that supports NSAPI 3.2
or higher.

Syntax
int USE_NSAPI_VERSION

Example

The following code can be used when building a plug-in designed to work with iPlanet Web
Server 4.1 and Sun Java System Web Server 6.1:

#define USE_NSAPI_VERSION 300 /* We want NSAPI 3.0 (Web Server 4.1) */
#include "nsapi.h"

SeeAlso
“NSAPI_RUNTIME_VERSION” on page 173, “NSAPI_VERSION” on page 174

util can_exec

UNIX Only

The util_can_exec function checks that a specified file can be executed, returning eithera 1
(executable) or a 0. The function checks if the file can be executed by the user with the given
user and group ID.

Use this function before executing a program using the exec system call.

Syntax

int util can_exec(struct stat *finfo, uid_t uid, gid t gid);

216 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns

1if the file is executable, or 0 if the file is not executable.

Parameters

stat *finfo is the stat structure associated with a file.
uid t uid is the UNIX user id.

gid_t gid is the UNIX group id. Together with uid, this determines the permissions of the
UNIX user.

SeeAlso

util env create, util getline, util hostname

util_chdir2path

The util_chdir2path function changes the current directory to a specified directory, where
you can access a file.

When running under Windows, use a critical section to ensure that more than one thread does
not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker, because you do not
need to use a full path.

Syntax

int util chdir2path(char *path);

Returns
0 if the directory was changed, or -1 if the directory could not be changed.

Parameters

char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_cookie find

The util_cookie_find function finds a specific cookie in a cookie string and returns its value.

Chapter 7 « NSAPI Function Reference 217

218

Syntax

char *util cookie find(char *cookie, char *name);

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie. Otherwise, returns
NULL. This function modifies the cookie string parameter by NULL terminating the name and
value.

Parameters

char *cookie is the value of the Cookie: request header.

char *name is the name of the cookie whose value is to be retrieved.

util_env_find
The util_env_find function locates the string denoted by a name in a specified environment

and returns the associated value. Use this function to find an entry in an environment.

Syntax

char *util env_find(char **env, char *name);

Returns

The value of the environment variable if it is found, or NULL if the string was not found.

Parameters

char **env is the environment.

char *name is the name of an environment variable in env.

SeeAlso

“util_env_replace” on page 219, “util_env_str” on page 220, “util_env_free” on page 218,
util_env_create

util_env free

The util_env_free function frees a specified environment. Use this function to de-allocate an
environment you created using the function util_env_create.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax

void util env free(char **env);

Returns

void

Parameters

char **env is the environment to be freed.

SeeAlso

“util_env_replace” on page 219, “util_env_str” on page 220, “util_env_find” on page 218,
util env _create

util_env_replace

The util_env_replace function replaces the occurrence of the variable denoted by aname in a
specified environment with a specified value. Use this function to change the value of a setting
in an environment.

Syntax

void util env replace(char **env, char *name, char *value);

Returns

void

Parameters

char **env is the environment.
char *name is the name of a name-value pair.

char *value is the new value to be stored.

SeeAlso

“util_env_str” on page 220, “util_env_free” on page 218, “util_env_find” on page 218,
util env create

Chapter 7 « NSAPI Function Reference 219

220

util_env_str

The util_env_str function creates an environment entry and returns it. This function does
not check for non-alphanumeric symbols in the name (such as the equal sign “="). You can use
this function to create a new environment entry.

Syntax

char *util env_str(char *name, char *value);

Returns

A newly allocated string containing the name-value pair.

Parameters

char *name is the name of a name-value pair.

char *value is the new value to be stored.

SeeAlso

“util_env_replace” on page 219, “util_env_free” on page 218, “util_env_find” on page 218,
util env_create

util_getline

The util_getline function scans the specified file buffer to find a line feed or carriage
return/line feed terminated string. The string is copied into the specified buffer, and
NULL-terminates it. The function returns a value that indicates whether the operation stored a
string in the buffer, encountered an error, or reached the end of the file.

Use this function to scan lines of a text file, such as a configuration file.

Syntax

int util getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns

0 if successful; 1ine contains the string.
1if the end of file was reached; line contains the string.

-1ifan error occurred; line contains a description of the error.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Parameters
filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an error occurs. The
caller is responsible for making sure the line number is accurate.

int maxlen is the maximum number of characters that can be written into 1.
char *1 is the buffer in which to store the string. The user is responsible for allocating and

deallocating line.

SeeAlso

“util_can_exec” on page 216, util_env_create, “util_hostname” on page 221

util hostname

The util_hostname function retrieves the local host name and returns it as a string. If the
function cannot find a fully-qualified domain name, it returns NULL. You may reallocate or
free this string. Use this function to determine the name of the system you are on.

Syntax

char *util hostname(void);

Returns

If a fully-qualified domain name was found, returns a string containing that name else returns
NULL.

Parameters

none

util is mozilla

The util_is_mozilla function checks whether a specified user-agent header string is a
Netscape browser of at least a specified revision level, returning a 1 if it is, and @ otherwise. This
function uses strings to specify the revision level to avoid ambiguities such as 1.56 > 1.5.

Syntax

int util is mozilla(char *ua, char *major, char *minor);

Chapter 7 « NSAPI Function Reference 221

222

Returns

1if the user-agent is a Netscape browser, or 0 if the user-agent is not a Netscape browser.

Parameters

char *ua is the user-agent string from the request headers.
char *major is the major release number (to the left of the decimal point).
char *minor is the minor release number (to the right of the decimal point).

SeeAlso
“atil_is_url” on page 222, “util_later_than” on page 223

util_is_url

Theutil_is_url function checks whether a string is a URL, returning 1 if it is and @ otherwise.
The string is a URL if it begins with alphabets followed by a colon (:).

Syntax

int util is url(char *url);

Returns
1if the string specified by url isa URL, or 0 if the string specified by urlis nota URL.

Parameters

char *url is the string to be examined.

SeeAlso

“util_is_mozilla” on page 221, “util_later_than” on page 223

util_itoa

The util_itoa function converts a specified integer to a string, and returns the length of the
string. Use this function to create a textual representation of a number.

Syntax

int util itoa(int i, char *a);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns
The length of the string created.

Parameters

int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible for the allocation
and deallocation of a, and it should be at least 32 bytes long.

util later _than

The util_later_than function compares the date specified in a time structure against a date
specified in a string. If the date in the string is later than or equal to the one in the time structure,
the function returns 1. Use this function to handle RFC 822, RFC 850, and ctime formats.

Syntax

int util later than(struct tm *lms, char *ims);

Returns

1ifthe date represented by ims is the same as or later than that represented by the ms, or 0 if the
date represented by ims is earlier than that represented by the lms.

Parameters
tm *ms is the time structure containing a date.
char *ims is the string containing a date.

See Also
“util_strftime” on page 226

util_sh_escape

The util_sh_escape function parses a specified string and places a backslash (\) in front of any
shell-special characters, returning the resultant string. Use this function to ensure that strings
from clients won’t cause a shell to do anything unexpected.

The shell-special characters includes space and the following characters:

&;~"" | *¥2~<>" () [1{3$\#!

Chapter 7 « NSAPI Function Reference 223

Syntax

char *util sh escape(char *s);

Returns

A newly allocated string.

Parameters

char *s is the string to be parsed.

SeeAlso

“util_uri_escape” on page 227

util_snprintf

The util_snprintf function formats a specified string, using a specified format, into a
specified buffer using the printf-style syntax and performs bounds checking. It returns the
number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util snprintf(char *s, int n, char *fmt, ...);

Returns

The number of characters formatted into the buffer.
Parameters

char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only %d and %s strings. It does not handle
any width or precision strings.

... represents a sequence of parameters for the printf function.

SeeAlso
util_sprintf, “util_vsnprintf” on page 229, “util_vsprintf” on page 230

224 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

util_sprintf

The util_sprintf function formats a specified string, using a specified format, into a specified
buffer, using the printf-style syntax without bounds checking. It returns the number of
characters in the formatted buffer.

Because util_sprintf doesn’t perform bounds checking, use this function only if you are
certain that the string fits the buffer. Otherwise, use the function util_snprintf. For more
information, see the documentation on the printf function for the runtime library of your
compiler.

Syntax

int util sprintf(char *s, char *fmt, ...);

Returns

The number of characters formatted into the buffer.
Parameters
char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only %d and %s strings. It does not handle
any width or precision strings.

... represents a sequence of parameters for the printf function.

Example

char *logmsg;int len;logmsg = (char *) MALLOC(256);1len =
util sprintf(logmsg, "%s %s %s\n", ip, method, uri);

SeeAlso
“util_snprintf” on page 224, “util_vsnprintf” on page 229, “util_vsprintf” on page 230

util_strcasecmp

The util_strcasecmp function performs a comparison of two alphanumeric strings and
returns a -1, 0, or 1 to signal which is larger or that they are identical.

The comparison is not case-sensitive.

Syntax

int util strcasecmp(const char *sl, const char *s2);

Chapter 7 « NSAPI Function Reference 225

226

Returns

1if s1is greater than s2.
0ifslisequaltos2.

-lif slislessthan s2.
Parameters

char *s1 is the first string.
char *s2 is the second string.

SeeAlso

“util_strncasecmp” on page 227

util_strftime

The util_strftime function translates a tm structure, which is a structure describing a system
time, into a textual representation. It is a thread-safe version of the standard strftime function

Syntax

int util strftime(char *s, const char *format, const struct tm *t);

Returns

The number of characters placed into s, not counting the terminating NULL character.

Parameters
char *s is the string buffer to put the text into. There is no bounds checking, so you must make

sure that your buffer is large enough for the text of the date.

const char *format is a format string, a bit like a printf string in that it consists of text with
certain %x substrings. You may use the constant HTTP_DATE_FMT to create date strings in the
standard Internet format. For more information, see the documentation on the printf
function for the runtime library of your compiler. Refer toChapter 10, Time Formats for details
on time formats.

const struct tm *t is a pointer to a calendar time (tm) structure, usually created by the
function system localtime or system_gmtime.

SeeAlso

system localtime, system gmtime

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

util_strncasecmp

Theutil strncasecmp function performsa comparison of the first n characters in the
alphanumeric strings and returns a -1, 0, or 1 to signal which is larger or that they are identical.

The function’s comparison is not case-sensitive.

Syntax

int util strncasecmp(const char *sl1, const char *s2, int n);

Returns

1if s1is greater than s2.
0ifslisequaltos2.

-lifslislessthans2.

Parameters

char *s1 is the first string.
char *s2 is the second string.

int n is the number of initial characters to compare.

SeeAlso

util strcasecmp

util_uri_escape

The util_uri_escape function converts any special characters in the URI into the URI format
(%XX, where XX is the hexadecimal equivalent of the ASCII character), and returns the escaped
string. The special characters are %?#: +&*"<>, space, carriage return, and line feed.

Use util_uri_escape before sending a URI back to the client.

Syntax

char *util uri escape(char *d, char *s);

Returns
The string (possibly newly allocated) with escaped characters replaced.

Chapter 7 « NSAPI Function Reference 227

228

Parameters

char *d is a string. If d is not NULL, the function copies the formatted string into d and returns
d.If d is NULL, the function allocates a properly sized string and copies the formatted special
characters into the new string, then returns d.

Theutil uri_escape function does not check bounds for the parameter d. Therefore, if d is
not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URI.

SeeAlso

util uri is evil, util uri parse, util uri unescape

util_uri_is_evil

Theutil uri_is_evil function checks a specified URI for insecure path characters. Insecure
path charactersinclude //,/./,/../and/., /.. (also for Windows. /) at the end of the URL
Use this function to see if a URI requested by the client is insecure.

Syntax

int util uri is evil(char *t);

Returns
1ifthe URI is insecure, or 0 if the URI is OK.

Parameters
char *t is the URI to be checked.

SeeAlso

util uri_escape, util_uri_parse

util_uri_parse

Theutil uri_parse function converts //,/./,and /*/. ./ into / in the specified URI (where *
is any character other than /). You can use this function to convert a URI’s bad sequences into
valid ones. First use the function util uri_is evil to determine whether the function has a
bad sequence.

Syntax

void util uri parse(char *uri);

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Returns

void

Parameters

char *uri is the URI to be converted.

SeeAlso

util uri is evil, util uri unescape

util_uri_unescape

Theutil uri_unescape function converts the encoded characters of a URI into their ASCII
equivalents. Encoded characters appear as %XX, where XX is a hexadecimal equivalent of the
character.

Note - You cannot use an embedded NULL in a string, because NSAPI functions assume that a
NULL is the end of the string. Therefore, passing unicode-encoded content through an NSAPI
plug-in doesn’t work.

Syntax

void util uri unescape(char *uri);

Returns

void

Parameters

char *uri is the URI to be converted.

SeeAlso

util uri escape, util uri is evil, util uri parse

util_vsnprintf

The util_vsnprintf function formats a specified string, using a specified format, into a
specified buffer using the vprintf-style syntax. The function performs bounds checking and
returns the number of characters in the formatted buffer.

Chapter 7 « NSAPI Function Reference 229

230

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util vsnprintf(char *s, int n, register char *fmt, va list args);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.
int n is the maximum number of bytes allowed to be copied.

register char *fmt is the format string. The function handles only %d and %s strings; it does
not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to va_start.

See Also
util sprintf, util vsprintf

util_vsprintf

The util_vsprintf function formats a specified string, using a specified format, into a
specified buffer using the vprintf-style syntax without bounds checking. It returns the number
of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util vsprintf(char *s, register char *fmt, va list args);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

register char *fmt is the format string. The function handles only %d and %s strings. It does
not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to va_start.

SeeAlso

util snprintf, util vsnprintf

vs_alloc_slot

The vs_alloc_slot function allocates a new slot for storing a pointer to data specific to a
certain VirtualServer*. The returned slot number may be used in subsequent “vs_set_data”
on page 236 and “vs_get_data” on page 231 calls. The returned slot number is valid for any
VirtualServer*.

The value of the pointer (which may be returned by a call to “vs_set_data” on page 236) defaults
to NULL for every VirtualServer*.

Syntax

int vs alloc slot(void);

Returns

A slot number on success, or -1 on failure.

SeeAlso
“vs_get_data” on page 231, “vs_set_data” on page 236

vs_get_data

The vs_get_data function finds the value of a pointer to data for a given VirtualServer* and
slot. The slot must be a slot number returned from “vs_alloc_slot” on page 231 or
“vs_set_data” on page 236.

Syntax

void* vs get data(const VirtualServer* vs, int slot);

Chapter 7 « NSAPI Function Reference 231

232

Returns

The value of the pointer previously stored via “vs_set_data” on page 236, or NULL on failure.

Parameters

const VirtualServer* vs represents the virtual server to query the pointer for.

int slot is the slot number to retrieve the pointer from.

SeeAlso

“vs_set_data” on page 236, “vs_alloc_slot” on page 231

vs_get_default_httpd_object

Thevs _get_default_httpd object function obtains a pointer to the default (or root)
httpd_object from the virtual server's httpd_objset (in the configuration defined by the

obj . conf file of the virtual server class). The default object is typically named default. Plug-ins
may only modify the httpd_object at VSInitFunc time (see “vs_register_cb” on page 235 for an
explanation of VSInitFunc time).

Do not FREE the returned object.

Syntax

httpd object* vs get default httpd object(VirtualServer* vs);

Returns
A pointer the default httpd_object, or NULL on failure. Do not FREE this object.

Parameters

VirtualServer* vs represents the virtual server for which to find the default object.

SeeAlso
“vs_get_httpd_objset” on page 233, “vs_register_cb” on page 235

vs_get_doc_root

Thevs get doc_root function finds the document root for a virtual server. The returned
string is the full operating system path to the document root.

The caller should FREE the returned string when done with it.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Syntax

char* vs_get doc_root(const VirtualServer* vs);

Returns

A pointer to a string representing the full operating system path to the document root. It is the
caller's responsibility to FREE this string.

Parameters

const VirtualServer* vs represents the virtual server for which to find the document root.

vs_get_httpd_objset

The vs_get_httpd_objset function obtains a pointer to the httpd_objset (the configuration
defined by the obj . conf file of the virtual server class) for a given virtual server. Plugins may
only modify the httpd_objset at VSInitFunc time (see “vs_register_cb” on page 235 for an
explanation of VSInitFunc time).

Do not FREE the returned objset.

Syntax

httpd objset* vs get httpd objset(VirtualServer* vs);

Returns
A pointer to the httpd_objset, or NULL on failure. Do not FREE this objset.

Parameters

VirtualServer* vs represents the virtual server for which to find the objset.

See Also
“vs_get_default_httpd_object” on page 232, “vs_register_cb” on page 235

vs_get_id
Thevs get id function finds the ID of a VirtualServer*.

The ID of a virtual server is a unique NULL-terminated string that remains constant across
configurations. Note that while IDs remain constant across configurations, the value of
VirtualServer* pointers do not.

Chapter 7 « NSAPI Function Reference 233

234

Do not FREE the virtual server ID string. If called during request processing, the string will
remain valid for the duration of the current request. If called during VSInitFunc processing, the
string will remain valid until after the corresponding VSDestroyFunc function has returned (see
“vs_register_cb” on page 235).

To retrieve a VirtualServer* thatis valid only for the current request, use “request_get_vs” on

page 194.

Syntax

const char* vs get id(const VirtualServer* vs);

Returns

A pointer to a string representing the virtual server ID. Do not FREE this string.

Parameters

const VirtualServer* vs represents the virtual server of interest.

SeeAlso

“vs_register_cb” on page 235, “request_get_vs” on page 194

vs_get_mime_type

The vs_get_mime_type function determines the MIME type that would be returned in the
content-type: header for the given URL

The caller should FREE the returned string when done with it.

Syntax

char* vs get mime type(const VirtualServer* vs, const char* uri);

Returns

A pointer to a string representing the MIME type. It is the caller's responsibility to FREE this
string.

Parameters

const VirtualServer* vs represents the virtual server of interest.

const char* uri is the URI whose MIME type is of interest.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

vs_lookup_config_var

The vs_lookup_config_var function finds the value of a configuration variable for a given
virtual server.

Do not FREE the returned string.

Syntax

const char* vs lookup config var(const VirtualServer* vs, const char* name);

Returns

A pointer to a string representing the value of variable name on success, or NULL if variable
name was not found. Do not FREE this string.

Parameters

const VirtualServer* vs represents the virtual server of interest.

const char* name is the name of the configuration variable.

vs_register_cb

The vs_register_cb function allows a plug-in to register functions that will receive
notifications of virtual server initialization and destruction events. The vs_register cb
function would typically be called from an Init SAF in magnus. conf.

When a new configuration is loaded, all registered VSInitFunc (virtual server initialization)
callbacks are called for each of the virtual servers before any requests are served from the new
configuration. VSInitFunc callbacks are called in the same order they were registered; that is,
the first callback registered is the first called.

When the last request has been served from an old configuration, all registered VSDest royFunc
(virtual server destruction) callbacks are called for each of the virtual servers before any virtual
servers are destroyed. VSDestroyFunc callbacks are called in reverse order; that is, the first
callback registered is the last called.

Either initfn or destroyfn maybe NULL if the caller is not interested in callbacks for
initialization or destruction, respectively.

Syntax

int vs_register cb(VSInitFunc* initfn, VSDestroyFunc* destroyfn);

Chapter 7 « NSAPI Function Reference 235

236

Returns
The constant REQ_PROCEED if the operation succeeded.

The constant REQ_ABORTED if the operation failed.

Parameters

VSInitFunc* initfn isa pointer to the function to call at virtual server initialization time, or
NULL if the caller is not interested in virtual server initialization events.

VSDestroyFunc* destroyfn is a pointer to the function to call at virtual server destruction
time, or NULL if the caller is not interested in virtual server destruction events.

vs_set data

The vs_set_data function sets the value of a pointer to data for a given virtual server and slot.
The *slot must be -1 or a slot number returned from vs_alloc slot.If*slotis -1,
vs_set_datacallsvs_alloc_slot implicitly and returns the new slot number in *slot.

Note that the stored pointer is maintained on a per-VirtualServer* basis, not a per-ID basis.
Distinct VirtualServer*s from different configurations may exist simultaneously with the
same virtual server IDs. However, since these are distinct VirtualServerxs, they each have
their own VirtualServer*-specific data. Asaresult, vs_set_data should generally not be
called outside of VSInitFunc processing (see “vs_register _cb” on page 235 for an explanation of
VSInitFunc processing).

Syntax

void* vs set data(const VirtualServer* vs, int* slot, void* data);

Returns

Data on success, or NULL on failure.

Parameters

const VirtualServer* vs represents the virtual server to set the pointer for.
int* slot is the slot number to store the pointer at.

void* data is the pointer to store.

SeeAlso

“vs_get_data” on page 231, “vs_alloc_slot” on page 231, “vs_register_cb” on page 235

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

vs_translate uri

Thevs_translate_uri function translates a URI as though it were part of a request for a
specific virtual server. The returned string is the full operating system path.

The caller should FREE the returned string when done with it.

Syntax

char* vs translate uri(const VirtualServer* vs, const char* uri);

Returns

A pointer to a string representing the full operating system path for the given URL It is the
caller's responsibility to FREE this string.

Parameters

const VirtualServer* vs represents the virtual server for which to translate the URI.

const char* uri is the URI to translate to an operating system path.

write

The write filter method is called when output data is to be sent. Filters that modify or consume
outgoing data should implement the write filter method.

Upon receiving control, a write implementation should first process the data as necessary, and
then pass it on to the next filter layer; for example, by calling net_write(layer->lower,

...,). Ifthe filter buffers outgoing data, it should implement the “flush” on page 158 filter
method.

Syntax

int write(FilterLayer *layer, const void *buf, int amount);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Chapter 7 « NSAPI Function Reference 237

238

Parameters
FilterLayer *layer is the filter layer in which the filter is installed.

const void *buf is the buffer that contains the outgoing data.

int amount is the number of bytes in the buffer.

Example

int myfilter write(FilterLayer *layer, const void *buf, int amount)

{

return net write(layer->lower, buf, amount);

}
See Also

“flush” on page 158, “net_write” on page 168, “writev” on page 238

writev

Thewritev filter method is called when multiple buffers of output data are to be sent. Filters
that modify or consume outgoing data may choose to implement the writev filter method.

If a filter implements the write filter method but not the writev filter method, the server
automatically translates net_writev calls to “net_write” on page 168 calls. As a result, filters
interested in the outgoing data stream do not need to implement the writev filter method.
However, for performance reasons, it is beneficial for filters that implement the write filter
method to also implement the writev filter method.

Syntax

int writev(FilterLayer *layer, const struct iovec *iov, int iov size);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

const struct iovec *iov is an array of iovec structures, each of which contains outgoing
data.

int iov_size is the number of iovec structures in the iov array.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Example

int myfilter writev(FilterLayer *layer, const struct iovec *iov, int iov_size)

{

return net writev(layer->lower, iov, iov size);

SeeAlso
“flush” on page 158, “net_write” on page 168, “write” on page 237

Chapter7 « NSAPIFunction Reference

239

240

CHAPTER 8

Data Structure Reference

NSAPI uses many data structures that are defined in the nsapi. h header file, which is in the
directory server-root/plugins/include.

The NSAPI functions described in Chapter 7, NSAPI Function Reference Before directly
accessing a data structure in naspi. h, check to see if an accessor function exists for it.

For information about the privatization of some data structures in Sun Java System Web Server
4.x, see “Privatization of Some Data Structures” on page 242.

The rest of this chapter describes public data structures in nsapi. h. Note that data structures in
nsapi.h thatare not described in this chapter are considered private and may change
incompatibly in future releases.

This chapter has the following sections:

= “Session” on page 242

= “pblock” on page 243
“pb_entry” on page 243
“pb_param” on page 243
“Session->client” on page 243
“Request” on page 244

“stat” on page 244
“shmem_s” on page 245

= “cinfo” on page 245
“sendfiledata” on page 245
“Filter” on page 246
“FilterContext” on page 246
= “FilterLayer” on page 246

= “FilterMethods” on page 246

241

Privatization of Some Data Structures

Privatization of Some Data Structures

Session

242

In Sun Java System Web Server 4.x, some data structures were moved from nsapi.h to
nsapi_pvt.h. The data structures in nsapi_pvt.h are now considered to be private data
structures, and you should not write code that accesses them directly. Instead, use accessor
functions. We expect that very few people have written plug-ins that access these data structures
directly, so this change should have very little impact on customer-defined plug-ins. Look in
nsapi_pvt.h to see which data structures have been removed from the public domain, and to
see the accessor functions you can use to access them from now on.

Plug-ins written for Enterprise Server 3.x that access contents of data structures defined in
nsapi_pvt.h will not be source compatible with Sun Java System Web Server 4.x and 6.x, that
is, it will be necessary to #include "nsapi_pvt.h" to build such plug-ins from source. There is
also a small chance that these programs will not be binary compatible with Sun Java System
Web Server 4.x and 6.x, because some of the data structures in nsapi_pvt.h have changed size.
In particular, the directive structure is larger, which means that a plug-in that indexes
through the directives in a dtable will not work without being rebuilt (with nsapi_pvt.h
included).

We hope that the majority of plug-ins do not reference the internals of data structures in
nsapi_pvt.h, and therefore that most existing NSAPI plug-ins will be both binary and source
compatible with Sun Java System Web Server 6.1.

A session is the time between the opening and closing of the connection between the client and
the server. The session data structure holds variables that applies throughout the session,
regardless of the requests being sent, as shown here:

typedef struct {
/* Information about the remote client */
pblock *client;

/* The socket descriptor to the remote client */
SYS NETFD csd;

/* The input buffer for that socket descriptor */
netbuf *inbuf;

/* Raw socket information about the remote */
/* client (for internal use) */
struct in_addr iaddr;

} Session;

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide - September 2008

Session->client

pblock

The parameter block is the hash table that holds pb_entry structures. Its contents are
transparent to most code. This data structure is frequently used in NSAPL. It provides the basic
mechanism for packaging up parameters and values. There are many functions for creating and
managing parameter blocks, and for extracting, adding, and deleting entries. See the functions
whose names start with pblock_ in Chapter 7, NSAPI Function Reference. You should not
write code that accesses pblock data fields directly.

typedef struct {

int hsize;

struct pb entry **ht;
} pblock;

pb_entry
The pb_entry is a single element in the parameter block.

struct pb_entry {
pb_param *param;
struct pb entry *next;

+

pb_param
The pb_paramrepresents a name-value pair, as stored ina pb_entry.

typedef struct {
char *name, *value;
} pb_param;

Session->client

The Session->client parameter block structure contains two entries:

= The ip entry is the IP address of the client machine.

= The dns entry is the DNS name of the remote machine. This member must be accessed
through the session_dns function call:

/** session dns returns the DNS host name of the client for this* session
and inserts it into the client pblock. Returns NULL if* unavailable.*/char
*session_dns(Session *sn);

Chapter 8 - Data Structure Reference 243

Request

Request

stat

244

Under HTTP protocol, there is only one request per session. The request structure contains
the variables that apply to the request in that session (for example, the variables include the
client’s HTTP headers).

typedef struct {
/* Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
block *reqpb;

/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */
int senthdrs;
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd _objset *os;
} Request;

When a program calls the stat() function for a given file, the system returns a structure that
provides information about the file. The specific details of the structure should be obtained
from your platform’s implementation, but the basic outline of the structure is as follows:

struct stat {

dev_t st _dev; /* device of inode */

inot t st ino; /* inode number */

short st _mode; /* mode bits */

short st_nlink; /* number of links to file /*
short st uid; /* owner’s user id */

short st gid; /* owner’s group id */

dev_t st _rdev; /* for special files */

off t st size; /* file size in characters */
time t st _atime; /* time last accessed */

time t st mtime; /* time last modified */

time t st _ctime; /* time inode last changed*/

}

The elements that are most significant for server plug-in API activities are st_size, st_atime,
st mtime,and st ctime.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

sendfiledata

shmem_s

typedef struct {
void *data; /* the data */
HANDLE fdmap;
int size; /* the maximum length of the data */
char *name; /* internal use: filename to unlink if exposed */
SYS FILE fd; /* internal use: file descriptor for region */

} shmem s;

cinfo
The cinfo data structure records the content information for a file.

typedef struct {
char *type;
/* Identifies what kind of data is in the file*/
char *encoding;
/* encoding identifies any compression or other /*
/* content-independent transformation that’s been /*
/* applied to the file, such as uuencode)*/
char *language;
/* Identifies the language a text document is in. */
} cinfo;

sendfiledata

The sendfiledata data structure is used to pass parameters to the net_sendfile function. The
structure is also passed to the sendfile method in an installed filter in response to a
net sendfile call.

typedef struct {

SYS FILE fd; /* file to send */

size t offset; /* offset in file to start sending from */
size t len; /* number of bytes to send from file */
const void *header; /* data to send before file */

int hlen; /* number of bytes to send before file */
const void *trailer; /* data to send after file */

int tlen; /* number of bytes to send after file */

} sendfiledata;

Chapter 8 - Data Structure Reference 245

Filter

Filter

The Filter data structure is an opaque representation of a filter. A Filter structure is created
by calling “filter_create” on page 155.

typedef struct Filter Filter;

FilterContext

The FilterContext data structure stores context associated with a particular filter layer. Filter
layers are created by calling “filter_insert” on page 156.

Filter developers may use the data member to store filter-specific context information.

typedef struct {
pool_handle t *pool; /* pool context was allocated from */

Session *sn; /* session being processed */
Request *rq; /* request being processed */
void *data; /* filter-defined private data */

} FilterContext;

FilterLayer

The FilterLayer data structure represents one layer in a filter stack. The FilterLayer
structure identifies the filter installed at that layer and provides pointers to layer-specific
context and a filter stack that represents the layer immediately below it in the filter stack.

typedef struct {
Filter *filter; /* the filter at this layer in the filter stack */
FilterContext *context; /* context for the filter */
SYS_NETFD lower; /* access to the next filter layer in the stack */
} FilterlLayer;

FilterMethods

The FilterMethods data structure is passed to “filter_create” on page 155 to define the filter
methods a filter supports. Each new FilterMethods instance must be initialized with the
FILTER_METHODS_INITIALIZER macro. For each filter method a filter supports, the
corresponding FilterMethods member should point to a function that implements that filter
method.

typedef struct {

size t size;
FilterInsertFunc *insert;

246 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

FilterMethods

FilterRemoveFunc *remove;

FilterFlushFunc *flush;

FilterReadFunc *read;

FilterWriteFunc *write;

FilterWritevFunc *writev;

FilterSendfileFunc *sendfile;
} FilterMethods;

Chapter 8 - Data Structure Reference 247

248

L K R 4 CHAPTER 9

Using Wildcard Patterns

This chapter describes the format of wildcard patterns used by the Sun Java System Web Server.
These wildcards are used in:

= Directives in the configuration file obj . conf (see the Sun Java System Web Server 6.1 SP10
Administrator’s Configuration File Reference for detailed information about obj . conf).

= Various built-in SAFs (see the Sun Java System Web Server 6.1 SP10 Administrator’s
Configuration File Reference for more information about these predefined SAFs).

= Some NSAPI functions (see Chapter 2, SAFs in the magnus.conf File.)

Wildcard patterns use special characters. If you want to use one of these characters without
the special meaning, precede it with a backslash (\) character.

This chapter has the following sections:

= “Wildcard Patterns” on page 249

“Wildcard Examples” on page 250

Wildcard Patterns

The following table describes wildcard patterns, listing the pattern and its use.

TABLE9-1 Wildcard Patterns

Pattern Use
* Match zero or more characters.
? Match exactly one occurrence of any character.

249

http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713
http://docs.sun.com/doc/820-5713

Wildcard Examples

TABLE9-1 W ildcard Patterns (Continued)

Pattern Use

| An or expression. The substrings used with this operator can
contain other special characters such as * or $. The substrings must
be enclosed in parentheses, for example, (a|b|c), but the parentheses
cannot be nested.

$ Match the end of the string. This is useful in or expressions.

[abc] Match one occurrence of the characters a, b, or c. Within these
expressions, the only character that needs to be treated as a special
character is]; all others are not special.

[a-2] Match one occurrence of a character between a and z.

[~az] Match any character excepta or z.

This expression, followed by another expression, removes any
pattern matching the second expression.

Match zero or more characters.

Wildcard Examples

The following table provides wildcard examples, listing the pattern and the result.

TABLE9-2 Wildcard Examples

Pattern

Result

*.netscape.com
(quark|energy) .netscape.com

198.93.9[23].77?7?

~netscape-

*.netscape.com~quark.netscape.com

*.netscape.com~(quark|energy|

neutrino).netscape.com

.com~.netscape.com

Matches any string ending with the characters . netscape. com.
Matches either quark.netscape.comor energy.netscape. com.

Matches a numeric string starting with either 198.93.92 or
198.93.93 and ending with any 3 characters.

Matches any string with a period in it.
Matches any string except those starting with netscape-.

Matches any host from domain netscape. com except for a single
host quark.netscape. com.

Matches any host from domain .netscape. com except for hosts
quark.netscape.com, energy.netscape.com, and
neutrino.netscape.com.

Matches any host from domain . com except for hosts from
subdomain netscape. com.

250 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Wildcard Examples

TABLE9-2 Wildcard Examples (Continued)
Pattern Result

type=*~magnus-internal/* Matches any type that does not start with magnus - internal/.

This wildcard pattern is used in the file obj . conf in the catch-all
Service directive.

Chapter9 - Using Wildcard Patterns 251

252

L K R 4 CHAPTER 10

Time Formats

This chapter describes the format strings used for dates and times. These formats are used by
the NSAPI function util_strftime, by some built-in SAFs such as append-trailer, and by
server-parsed HTML (parse-html). The formats are similar to those used by the strftime C
library routine, but not identical.

Time and Date Strings

The following table describes the symbols and their meanings.

TABLE10-1 Time Formats

Symbol Meaning

%a Abbreviated weekday name (3 chars)

%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099
%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"

%A Full weekday name

Time and Date Strings

TABLE10-1 Time Formats (Continued)
Symbol Meaning
%B Full month name
%C "%a %Db %e %H:%M:%S %Y"
%c Date & time "%m/%d/%y %H:%M:%S"
%D Date "%m/%d/%y"
%e Day of month as decimal number (1-31) without leading zeros
%I Hour in 12-hour format (01-12)
%j Day of year as decimal number (001-366)
%k Hour in 24-hour format (0-23) without leading zeros
%l Hour in 12-hour format (1-12) without leading zeros
%m Month as decimal number (01-12)
%n line feed
%p A.M./PM. indicator for 12-hour clock
%R Time "%H:%M"
%1 Time "%I:%M:%S %p"
%t tab
%U Week of year as decimal number, with Sunday as first day of week (00-51)
%w Weekday as decimal number (0-6; Sunday is 0)
%W Week of year as decimal number, with Monday as first day of week (00-51)
%x Date "%m/%d/%y"
%y Year without century, as decimal number (00-99)
%% Percent sign

254 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide - September 2008

CHAPTER 11

Dynamic Results Caching Functions

The functions described in this chapter allow you to write a results caching plug-in for Sun Java
System Web Server. A results caching plug-in, which is a Service SAF, caches data, a page, or
part of a page in the web server address space, which the web server can refresh periodically on
demand. An Init SAF initializes the callback function that performs the refresh.

A results caching plug-in can generate a page for a request in three parts:

A header, such as a page banner, which changes for every request
A body, which changes less frequently
A footer, which also changes for every request

Without this feature, a plug-in would have to generate the whole page for every request
(unless an IFRAME is used, where the header or footer is sent in the first response along with
an IFRAME pointing to the body, in this case the browser must send another request for the
IFRAME).

If the body of a page has not changed, the plug-in needs to generate only the header and
footer and to call the dr_net_write function (instead of net_write) with the following
arguments:

header

footer

handle to cache

key to identify the cached object

The web server constructs the whole page by fetching the body from the cache. If the cache
has expired, it calls the refresh function and sends the refreshed page back to the client.

An Init SAF thatis visible to the plug-in creates the handle to the cache. The Init SAF
must pass the following parameters to the dr_cache_init function:

RefreshFunctionPointer

FreeFunctionPointer

255

dr_cache_destroy

m KeyComparatorFunctionPtr
m RefreshInterval

TheRefreshInterval value mustbeaPrIntervalTime type. For more information, see the
NSPR reference at:

http://www.mozilla.org/projects/nspr/reference/html/index.html

As an alternative, if the body is a file that is present in a directory within the web server
system machine, the plug-in can generate the header and footer and call the fc_net_write
function along with the file name.

This chapter lists the most important functions a results caching plug-in can use. For more
information, see the following file:

server_root/plug-ins/include/drnsapi.h

This chapter has the following sections:
= “dr_cache_destroy” on page 256
m “dr_cache_init” on page 257
= “dr_cache_refresh” on page 258
= “dr_net_write” on page 259

= “fc_net_write” on page 262

dr_cache_destroy

The dr_cache_destroy function destroys and frees resources associated with a previously
created and used cache handle. This handle can no longer be used in subsequent calls to any of
the above functions unless another dr_cache_init is performed.

Syntax

void dr cache destroy(DrHdl *hdl);

Parameters

DrHdl *hdl is a pointer to a previously initialized handle to a cache (see dr_cache_init).

Returns

void

256 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

http://www.mozilla.org/projects/nspr/reference/html/index.html

dr_cache_init

Example

dr _cache destroy(&myHdl);

dr_cache init

Thedr_cache_init function creates a persistent handle to the cache, or NULL on failure. It is

called by an Init SAF.

Syntax

PRINt32 dr cache init(DrHdl *hdl, RefreshFunc t ref, FreeFunc t fre,
CompareFunc_t cmp, PRUint32 maxEntries, PRIntervalTime maxAge);

Returns
1if successful.

0 if an error occurs.

Parameters

The following table describes parameters for the dr_cache_init function.

TABLE11-1 dr_cache_init parameters

Parameter

Description

DrHd1 hdl

RefreshFunc_t ref

FreeFunc t fre
CompareFunc_t cmp
PRUint32 maxEntriesp

PRIntervalTime maxAgep

Pointer to an unallocated handle.

Pointer to a cache refresh function. This can be NULL. See the DR_CHECK
flagand DR_EXPIR return value for dr_net_write.

Pointer to a function that frees an entry.
Pointer to a key comparator function.
Maximum number of entries possible in the cache for a given hdl.

The maximum amount of time that an entry is valid. If 0, the cache never
expires.

Chapter 11 « Dynamic Results Caching Functions 257

dr_cache_refresh

Example

if(!'dr_cache init(&hdl, (RefreshFunc_t)FnRefresh,
(FreeFunc_t)FnFree, (CompareFunc t)FnCompare, 150000,
PR _SecondsToInterval(7200)))
{
ereport (LOG FAILURE, "dr cache init() failed")
return(REQ_ABORTED) ;

dr_cache_refresh

258

The dr_cache_refresh function provides a way of refreshing a cache entry when the plug-in
requires it. This can be achieved by passing NULL for the ref parameter indr_cache_init and
by passing DR_CHECKinadr_net_write call. IfDR_CHECKis passed to dr_net_write and it
returns with DR_EXPIR, the plug-in should generate new content in the entry and call
dr_cache_refresh with that entry before calling dr_net_write again to send the response.

The plug-in may simply decide to replace the cached entry even if it has not expired (based on
some other business logic). The dr_cache_refresh function is useful in this case. This way the
plug-in does the cache refresh management actively by itself.

Syntax

PRINt32 dr cache refresh(DrHdl hdl, const char *key, PRUint32 klen,
PRIntervalTime timeout, Entry *entry, Request *rq, Session *sn);

Returns
1 if successful.

0 if an error occurs.

Parameters

The following table describes parameters for the dr_cache_refresh function.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

dr_net_write

TABLE11-2 dr_cache_refresh parameters

Parameter Description

DrHdl hdl Persistent handle created by the dr_cache_init function.

const char *key Key to cache, search, or refresh.

PRUint32 klen Length of the key in bytes.

PRIntervalTime timeout Expiration time of this entry. If a value of @ is passed, the maxAge value

passed todr_cache_init is used.

Entry *entry The not NULL entry to be cached.
Request *rq Pointer to the request.

Session *sn Pointer to the session.
Example

Entry entry;
char *key = "MOVIES"
GenNewMovielist(&entry.data, &entry.datalLen); // Implemented by
// plugin developer
if(!dr_cache refresh(hdl, key, strlen(key), @, &entry, rq, sn))
{
ereport(LOG FAILURE, "dr cache refresh() failed");
return REQ ABORTED;

dr_net_write

The dr_net_write function sends a response back to the requestor after constructing the full
page with hdr, the content of the cached entry as the body (located using the key), and ftr. The
hdr, ftr, or hdl can be NULL, but not all of them can be NULL. If hd1 is NULL, no cache
lookup is done and the caller must pass DR_NONE as the flag.

By default, this function refreshes the cache entry if it has expired by making a call to the ref
function passed to dr_cache_init. If no cache entry is found with the specified key, this
function adds a new cache entry by calling the ref function before sending out the response.
However, if the DR_CHECK flag is passed in the flags parameter and if either the cache entry has
expired or the cache entry corresponding to the key does not exist, dr_net_write does not send
any data out. Instead it returns with DR_EXPIR.

Chapter 11 « Dynamic Results Caching Functions 259

dr_net_write

If ref (passed todr_cache_init)is NULL, the DR_CHECK flag is not passed in the flags
parameter, and the cache entry corresponding to the key has expired or does not exist, then
dr_net_write fails with DR_ERROR. However, dr_net write refreshes the cache if ref is not
NULL and DR_CHECK is not passed.

If ref (passed todr_cache_init)is NULL and the DR_CHECK flag is not passed but DR_IGNORE is
passed and the entry is present in the cache, dr_net_write sends out the response even if the
entry has expired. However, if the entry is not found, dr_net_write returns DR_ERROR.

If ref (passed todr_cache_init)is not NULL and the DR_CHECK flag is not passed but
DR_IGNORE is passed and the entry is present in the cache, dr_net_write sends out the response
even if the entry has expired. However, if the entry is not found, dr_net_write calls the ref
function and stores the new entry returned from ref before sending out the response.

Syntax

PRINt32 dr_net write(DrHdl hdl, const char *key, PRUint32 klen,
const char *hdr, const char *ftr, PRUint32 hlen, PRUint32 flen,
PRIntervalTime timeout, PRUint32 flags, Request *rq, Session *sn);

Returns

10 OKAY if successful.

I0 ERRORifan error occurs.

DR_ERROR if an error in cache handling occurs.

DR_EXPIR if the cache has expired.

Parameters

The following table describes parameters for the dr_net_write function.

TABLE11-3 dr_net_write parameters

Parameter Description

DrHdl hdl Persistent handle created by the dr_cache_init function.
const char *key Key to cache, search, or refresh.

PRUint32 klen Length of the key in bytes.

260 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

dr_net_write

TABLE11-3 dr_net_write parameters (Continued)

Parameter

Description

const char *hdr

const char *ftr
PRUint32 hlen

PRUint32 flen
PRIntervalTime timeout
PRUint32 flags

Request *rq

Session *sn

Any header data (which can be NULL).

Any footer data (which can be NULL).

Length of the header data in bytes (which can be 0).

Length of the footer data in bytes (which can be 0).

Timeout before this function aborts.

ORed directives for this function (see the Flags table, below).
Pointer to the request.

Pointer to the session.

Flags

The following table describes flags for dr_net_write.

TABLE 11-4 Flags for dr_net_write

Flag Description

DR_NONE Specifies that no cache is used, so the function works as net_write does.
DrHd1 can be NULL.

DR_FORCE Forces the cache to refresh, even if it has not expired.

DR_CHECK Returns DR_EXPIR if the cache has expired, if the calling function has not
provided a refresh function and this flag is not used, DR_ERROR is returned.

DR_IGNORE Ignores cache expiration and sends out the cache entry even if it has expired.

DR_CNTLEN Supplies the Content-Length header and does a
PROTOCOL_START_RESPONSE.

DR_PROTO Does a PROTOCOL START RESPONSE.

Example

if(dr_net write(Dr, szFileName, ilenK, NULL, NULL, @, 0, O,
DR CNTLEN | DR PROTO, rq, sn) == IO ERROR)

{
return(REQ EXIT);

Chapter 11 « Dynamic Results Caching Functions 261

fc_net_write

fc_net_write

The fc_net write function is used to send a header and/or footer and a file that exists
somewhere in the system. The fileName should be the full path name of a file.

Syntax

PRINt32 fc_net write(const char *fileName, const char *hdr, const
char *ftr, PRUint32 hlen, PRUint32 flen, PRUint32 flags,
PRIntervalTime timeout, Session *sn, Request *rq);

Returns
10 OKAY if successful.
I0 ERRORifan error occurs.

FC_ERROR if an error in file handling occurs.

Parameters

The following table describes parameters for the fc_net_write function.

TABLE11-5 fc_net_write parameters

Parameter Description

const char *fileName File to be inserted.

const char *hdr Any header data (which can be NULL).

const char *ftr Any footer data (which can be NULL).

PRUint32 hlen Length of the header data in bytes (which can be 0).
PRUint32 flen Length of the footer data in bytes (which can be 0).
PRUint32 flags ORed directives for this function (see the Flags table, below).
PRIntervalTime timeout Timeout before this function aborts.

Request *rq Pointer to the request.

Session *sn Pointer to the session.

262 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

fc_net_write

Flags

The following table describes flags for fc_net_write.

TABLE11-6 Flags for fc_net_write

Flag Description

FC_CNTLEN Supplies the Content-Length header and does a
PROTOCOL_ START RESPONSE.

FC_PROTO Does a PROTOCOL START RESPONSE.

Example

const char *fileName = "/docs/myads/filel.ad";

char *hdr = GenHdr(); // Implemented by plugin

char *ftr = GenFtr(); // Implemented by plugin

if(fc_net write(fileName, hdr, ftr, strlen(hdr), strlen(ftr),
FC_CNTLEN, PR _INTERVAL NO TIMEOUT, sn, rq) != IO OKEY)

ereport(LOG FAILURE, "fc net write() failed");
return REQ ABORTED;

Chapter 11 « Dynamic Results Caching Functions

263

264

L R 2 4 CHAPTER 12

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol (a set of rules that describes how
information is exchanged) that allows a client (such as a web browser) and a web server to
communicate with each other.

HTTP is based on a request-response model. The browser opens a connection to the server and
sends a request to the server. The server processes the request and generates a response, which it
sends to the browser. The server then closes the connection.

This chapter provides a short introduction to a few HTTP basics. For more information on
HTTP, see the IETF home page at:

http://www.ietf.org/home.html

This chapter has the following sections:

= “Compliance” on page 265

= “Requests” on page 266

= “Responses” on page 267

= “Buffered Streams” on page 269
Compliance

Sun Java System Web Server 6.1 supports HI'TP/1.1. Previous versions of the server supported
HTTP/1.0. The server is conditionally compliant with the HTTP/1.1 proposed standard, as
approved by the Internet Engineering Steering Group (IESG), and the Internet Engineering
Task Force (IETF) HTTP working group.

For more information on the criteria for being conditionally compliant, see the Hypertext
Transfer Protocol -- HTTP/1.1 specification (RFC 2068) at:

http://www.ietf.org/rfc/rfc2068.txt?number=2068

265

http://www.ietf.org/home.html
http://www.ietf.org/rfc/rfc2068.txt?number=2068

Requests

Requests

266

A request from a browser to a server includes the following information:

= “Request Method, URIL, and Protocol Version” on page 266
= “Request Headers” on page 266
= “Request Data” on page 266

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly used methods
include the following:

® GET -- Requests the specified resource (such as a document or image)
= HEAD -- Requests only the header information for the document

m POST -- Requests that the server accept some data from the browser, such as form input for a
CGI program

m PUT -- Replaces the contents of a server’s document with data from the browser

Request Headers

The browser can send headers to the server. Most are optional.

The following table lists some of the commonly used request headers.

TABLE12-1 Common Request Headers

Request Header Description
Accept File types the browser can accept.
Authorization Used if the browser wants to authenticate itself with a server. Information

such as the user name and password are included.

User-Agent Name and version of the browser software.
Referer URL of the document where the user clicked on the link.
Host Internet host and port number of the resource being requested.

Request Data

If the browser has made a POST or PUT request, it sends data after the blank line following the
request headers. If the browser sends a GET or HEAD request, there is no data to send.

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Responses

Responses

The server’s response includes the following:

= “HTTP Protocol Version, Status Code, and Reason Phrase” on page 267
= “Response Headers” on page 268
= “Response Data” on page 269

HTTP Protocol Version, Status Code, and Reason

Phrase

The server sends back a three-digit numeric status code. The five categories of status codes are:

= 100-199 a provisional response.

®m 200-299 a successful transaction.

= 300-399 the requested resource should be retrieved from a different location.

= 400-499 an error was caused by the browser.

® 500-599 a serious error occurred in the server.

The following table lists some common status codes.

TABLE 12-2 Common HTTP Status Codes

Status Code

Meaning

200

201

206

302

304

400

401

OK, request has succeeded for the method used (GET, POST, HEAD).
The request has resulted in the creation of a new resource reference by the returned URI.
The server has sent a response to byte range requests.

Found. Redirection to a new URL. The original URL has moved. This is not an error and
most browsers will get the new page.

Use alocal copy. If a browser already has a page in its cache, and the page is requested again,
some browsers (such as Netscape Navigator) relay to the web server the “last-modified”
timestamp on the browser’s cached copy. If the copy on the server is not newer than the
browser’s copy, the server returns a 304 code instead of returning the page, reducing
unnecessary network traffic. This is not an error.

Sent if the request is not a valid HTTP/1.0 or HTTP/1.1 request. For example HTTP/1.1
requires a host to be specified either in the Host header or as part of the URI on the request
line.

Unauthorized. The user requested a document but didn’t provide a valid user name or
password.

Chapter 12 - Hypertext Transfer Protocol 267

Responses

TABLE 12-2 Common HTTP Status Codes (Continued)

Status Code

Meaning

403

404

408

411

413

414

416

500

503

Forbidden. Access to this URL is forbidden.

Not found. The document requested isn’t on the server. This code can also be sent if the
server has been told to protect the document by telling unauthorized people that it doesn’t
exist.

If the client starts a request but does not complete it within the keep-alive timeout
configured in the server, then this response will be sent and the connection closed. The
request can be repeated with another open connection.

The client submitted a POST request with chunked encoding, which is of variable length.
However, the resource or application on the server requires a fixed length - a
Content-Length header to be present. This code tells the client to resubmit its request with
content-length.

Some applications (e.g., certain NSAPI plug-ins) cannot handle very large amounts of data,
so they will return this code.

The URI is longer than the maximum the web server is willing to serve.
Data was requested outside the range of a file.

Server error. A server-related error occurred. The server administrator should check the
server’s error log to see what happened.

Sent if the quality of service mechanism was enabled and bandwidth or connection limits
were attained. The server will then serve requests with that code. See the "quality of service'
section.

Response Headers

The response headers contain information about the server and the response data.

The following table lists some common response headers.

TABLE12-3 Common Response Headers

Response Header

Description

Server

Date
Last-Modified
Expires

Content-Length

Name and version of the web server.
Current date (in Greenwich Mean Time).
Date when the document was last modified.

Date when the document expires.

Length of the data that follows (in bytes).

268 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Buffered Streams

TABLE 12-3 Common Response Headers (Continued)

Response Header Description

content-type MIME type of the following data.

WwW-Authenticate Used during authentication and includes information that tells the
browser software what is necessary for authentication (such as user name
and password).

Response Data
The server sends a blank line after the last header. It then sends the response data such as an
image or an HTML page.

Buffered Streams

Buffered streams improve the efficiency of network I/O (for example, the exchange of HTTP
requests and responses), especially for dynamic content generation. Buffered streams are
implemented as transparent NSPR I/O layers, which means even existing NSAPI modules can
use them without any change.

The buffered streams layer adds the following features to the Sun Java System Web Server:

Enhanced keep-alive support: When the response is smaller than the buffer size, the
buffering layer generates the Content-Length header so that the client can detect the end of
the response and reuse the connection for subsequent requests.

Response length determination: If the buffering layer cannot determine the length of the
response, it uses HT'TP/1.1 chunked encoding instead of the Content-Length header to
convey the delineation information. If the client only understands HTTP/1.0, the server
must close the connection to indicate the end of the response.

Deferred header writing: Response headers are written out as late as possible to give the
servlets a chance to generate their own headers (for example, the session management
header set-cookie).

Ability to understand request entity bodies with chunked encoding: Though popular clients
do not use chunked encoding for sending POST request data, this feature is mandatory for
HTTP/1.1 compliance.

The improved connection handling and response length header generation provided by
buffered streams also addresses the HTTP/1.1 protocol compliance issues, where absence of
the response length headers is regarded as a category 1 failure. In previous Enterprise Server
versions, it was the responsibility of the dynamic content generation programs to send the
length headers. If a CGI script did not generate the Content - Length header, the server had
to close the connection to indicate the end of the response, breaking the keep-alive

Chapter 12 - Hypertext Transfer Protocol 269

Buffered Streams

270

mechanism. However, it is often very inconvenient to keep track of response length in CGI
scripts or servlets, and as an application platform provider, the web server is expected to
handle such low-level protocol issues.

Output buffering has been built in to the functions that transmit data, such as “net_write”
on page 168 (see Chapter 7, NSAPI Function Reference stream buffering, which are
described in detail in the chapter “Syntax and Use of magnus.conf” in the Sun Java System
Web Server 6.1 Administrator’s Configuration File Reference.

m UseOutputStreamSize
® ChunkedRequestBufferSize
® ChunkedRequestTimeout

The UseOutputStreamSize, ChunkedRequestBufferSize, and ChunkedRequestTimeout
parameters also have equivalent magnus . conf directives, see “Chunked Encoding” in the
chapter “Syntax and Use of magnus.conf” in the Sun Java System Web Server 6.1
Administrator’s Configuration File Reference. The obj . conf parameters override the
magnus . conf directives.

Note - The UseOutputStreamSize parameter can be set to zero (0) in the obj . conf file to disable
output stream buffering. For the magnus. conf file, setting UseOutputStreamSize to zero has no
effect.

To override the default behavior when invoking an SAF that uses one of the functions
“net_read” on page 166 or “netbuf_grab” on page 171, you can specify the value of the
parameter in obj . conf, for example:

Service fn="my-service-saf" type=perf UseOutputStreamSize=8192

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide - September 2008

APPENDIX A

Alphabetical List of NSAPI Functions and

Macros

This appendix provides an alphabetical list for the easy lookup of NSAPI functions and macros.

C

CALLOC
cinfo_find
condvar_init
condvar_notify
condvar_terminate
condvar_wait
crit_enter

crit_exit

crit_init
crit_terminate

daemon_atrestart

fc_close
fc_open
filebuf buf2sd
filebuf_close
filebuf_getc

filebuf_open

271

Alphabetical List of NSAPI Functions and Macros

—

z z

272

filebuf_open_nostat
filter_find
filter_insert
filter_layer
filter name
filter_remove
filter-create
flush

FREE
func_exec
func_find

func_insert
insert
log_error
MALLOC

net_flush
net_ip2host
net_read
net_sendfile
net_write
netbuf buf2sd
netbuf_close
netbug_getbytes
netbuf_getc
netbuf_grab

netbuf_open

Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide

+ September 2008

Alphabetical List of NSAPI Functions and Macros

nsapi_module_init
NSAPI RUNTIME_ VERSION

NSAPI_VERSION

P param_create
param_free
pblock_copy
pblock_create
pblock_dup
pblock_find
pblock_findval
pblock_free
pblock_nninsert
pblock_nvinsert
pblock_pb2env
pblock_pblock2str
pblock_pinsert
pblock_remove
pblock_str2pblock
PERM_CALLOC
PERM_FREE
PERM_MALLOC
PERM_REALLOC
PERM_STRDUP
prepare_nsapi_thread

protocol_dump

Appendix A - Alphabetical List of NSAPI Functions and Macros 273

Alphabetical List of NSAPI Functions and Macros

protocol_set_finfo
protocol_start_response
protocol_status
protocol_uri2url

protocol_uri2url dynamic

R read
REALLOC
remove
request_get_vs
request_header
request_stat_path

request_translate_uri

S sendfile
session_dns
session_maxdns
shexp_casecmp
shexp_cmp
shexp_match
shexp_valid
STRDUP
system_errmsg
system_fclose
system_flock
system_fopenRO

system_fopenRW

274 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Alphabetical List of NSAPI Functions and Macros

system_fopenWA
system_fread
system_fwrite
system_fwrite_atomic
system_gmtime
system_localtime
system_lseek
system_rename
system_ulock
system_unix2local
systhread_attach
systhread_current
systhread_getdata
systhread_newkey
systhread_setdata
systhread_sleep
systhread_start

systhread_timerset

U USE_NSAPI_VERSION
util_can_exec
util_chdir2path
util_chdir2path
util_cookie_find
util_env_find

util_env_free

Appendix A - Alphabetical List of NSAPI Functions and Macros 275

Alphabetical List of NSAPI Functions and Macros

“util_env_replace” on page 219
util_env_str
util_getline
util_hostname
util_is_mozilla
util_is_url

“util_itoa” on page 222
util_later_than
util_sh_escape
util_snprintf
util_sprintf
util_strcasecmp
util_strftime
util_strncasecmp
util_uri_escape
util_uri_is_evil
util_uri_parse
util_uri_unescape
util_vsnprintf

util_vsprintf

V vs_alloc_slot
vs_get_data
vs_get_default_httpd_object
vs_get_doc_root

vs_get_httpd_objset

276 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Alphabetical List of NSAPI Functions and Macros

vs_get_id
vs_get_mime_type
vs_lookup_config_var
vs_register_cb
vs_set_data

vs_translate_uri

W write

writev

Appendix A - Alphabetical List of NSAPI Functions and Macros 277

278

Index

A

about this guide
contents, 19-20
other resources, 17-19

AddLog, 26
example of custom SAF, 127-129
flow of control, 44
requirements for SAFs, 88-91,91
summary, 30

Administration interface, more information about, 18

alphabetical reference, NSAPI functions, 143-239
API functions
CALLOC, 144
cinfo_find, 144
condvar_init, 145
condvar_notify, 146
condvar_terminate, 146-147
condvar_wait, 147
crit_enter, 147-148
crit_exit, 148
crit_init, 148-149
crit_terminate, 149
daemon_atrestart, 149-150
dr_cache_init, 257-258
dr_cache_refresh, 258-259
dr_net_write, 259-261
fc_close, 151
fc_net_write, 262-263
filebuf buf2sd, 150-151,151-152
filebuf close, 152
filebuf_getc, 153
filebuf_open, 153-154

API functions (Continued)

filebuf_open_nostat, 154
filter_create, 155-156
filter_find, 156
filter_insert, 156-157
filter_layer, 157
filter_name, 158
filter_remove, 158
flush, 158-159

FREE, 159-160
func_exec, 160
func_find, 161
func_insert, 161-162
insert, 162

log_error, 163
MALLOC, 164
net_ip2host, 165
net_read, 166
net_write, 168
netbuf_buf2sd, 168-169
netbuf_close, 169
netbuf_getbytes, 170-171
netbuf_getc, 171
netbuf grab, 171-172
netbuf_open, 172
param_create, 174-175
param_free, 175
pblock_copy, 175-176
pblock_create, 176
pblock_dup, 177
pblock_find, 177
pblock_findval, 178

279

Index

API functions (Continued) API functions (Continued)
pblock_free, 178-179 system_lseek, 209
pblock_nninsert, 179 system_rename, 209-210
pblock_nvinsert, 179-180 system_ulock, 209,210
pblock_pb2env, 180-181 system_unix2local, 210-211
pblock_pblock2str, 181 systhread_attach, 211
pblock_pinsert, 181-182 systhread_current, 211-212
pblock_remove, 182 systhread_getdata, 212
pblock_str2pblock, 182-183 systhread_newkey, 212-213
PERM_FREE, 184 systhread_setdata, 213
PERM_MALLOC, 183-184,184-185,185-186 systhread_sleep, 213-214
PERM_STRDUP, 186 systhread_start, 214
prepare_nsapi_thread, 187 systhread_timerset, 214-215
protocol_dump822, 187-188 util_can_exec, 216-217
protocol_set_finfo, 188 util_chdir2path, 217
protocol_start_response, 188-189 util-cookie_find, 217-218
protocol_status, 189-190 util_cookie_find, 217-218
protocol_uri2url, 190-191, 191 util_env_find, 218
read, 192 util_env_free, 218-219
REALLOC, 193 util_env_replace, 219
remove, 193-194 util_env_str, 220
request_get_vs, 194 util_getline, 220-221
request_header, 194-195 util_hostname, 221
request_stat_path, 195-196 util_is_mozilla, 221-222
request_translate_uri, 196 util_is_url, 222
sendfile, 197 util_itoa, 222-223
session_dns, 197-198 util_later_than, 223
session_maxdns, 198 util_sh_escape, 223-224
shexp_casecmp, 199 util_snprintf, 224
shexp_cmp, 199-200 util-sprintf, 225
shexp_match, 200-201 util_strcasecmp, 225-226
shexp_valid, 201 util_strftime, 226
STRDUP, 201-202 util_strncasecmp, 227
system_errmsg, 202-203 util_uri_escape, 227-228
system_fclose, 203 util_uri_is_evil, 228
system_flock, 203-204 util_uri_parse, 228-229
system_fopenRO, 204 util_uri_unescape, 229
system_fopenRW, 204-205 util_vsnprintf, 229-230
system_fopenWA, 205 util_vsprintf, 230-231
system_fread, 205-206 vs_alloc_slot, 231
system_fwrite, 206 vs_get_data, 231-232
system_fwrite_atomic, 207 vs_get_default_httpd_object, 232
system_gmtime, 207-208 vs_get_doc_root, 232-233
system_localtime, 208 vs_get_httpd_objset, 233

280 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Index

API functions (Continued)
vs_get_id, 233-234
vs_get_mime_type, 234
vs_lookup_config_var, 235
vs_register_cb, 235-236
vs_set_data, 236
vs_translate_uri, 237
write, 237-238
writev, 238-239
AUTH_TYPE environment variable, 92
AUTH_USER environment variable, 92
AuthTrans, 26
example of custom SAF, 108-110
flow of control, 37
requirements for SAFs, 88-91
summary, 28

B

browsers, 24

buffer-size parameter, 55
buffered streams, 269-270
buffers-per-file parameter, 55

C
cache, enabling memory allocation pool, 67-68
cache-size parameter, 53
caching, results caching plug-in, 255-263
CALLOC API function, 144
case sensitivity in obj.conf, 46
CGl
environment variables in NSAPI, 91-93
execution, 60
to NSAPI conversion, 91-93
cgistub-path parameter, 60
chunked encoding, 269-270,270
cindex-init function, 51-52
cinfo_find API function, 144
cinfo NSAPI data structure, 245
client
field in session parameter, 75
getting DNS name for, 243

client (Continued)

getting IP address for, 243

requests, 24-27

sessions and, 242
CLIENT_CERT environment variable, 92
Client tag, 32-36
comments in obj.conf, 47
Common Log subsystem, initializing, 61-62
compatibility issues, 74,242
compiling custom SAFs, 78-81
compression, HTTP, 31-32
condvar_init API function, 145
condvar_notify API function, 146
condvar_terminate API function, 146-147
condvar_wait API function, 147
configuration, dynamic, 27
CONTENT_LENGTH environment variable, 92
CONTENT_TYPE environment variable, 92
context->data, 97
context->rq, 97
context->sn, 96
creating

custom filters, 95-105

custom SAFs, 73-93

custom server-parsed HTML tags, 137-142
crit_enter API function, 147-148
crit_exit API function, 148
crit_init API function, 148-149
crit_terminate API function, 149
csd field in session parameter, 75
custom

filters, 95-105,107-136

SAFs, 73-93,107-136

server-parsed HTML tags, 137-142

D
daemon_atrestart API function, 149-150
data structures, 241-247

cinfo, 245

compatibility issues, 242

Filter, 246

FilterContext, 246

FilterLayer, 246

281

Index

data structures (Continued)

FilterMethods, 246-247

nsapi.h header file, 241

nsapi_pvt.h, 242

pb_entry, 243

pb_param, 243

pblock, 243

privatization of, 242

removed from nsapi.h, 242

request, 244

sendfiledata, 245

session, 242

Session->client, 243

shmem_s, 245

stat, 244
day of month, 253
define-perf-bucket function, 52-53
defining

custom SAFs, 73-93

server-side tags, 137
description parameter, 53
directives

for handling requests, 26-27

order of, 45-46

summary for obj.conf, 28-31

syntax in obj.conf, 27
disable parameter, 67,68
dns-cache-init function, 53-54
DNS names, getting clients, 243
dr_cache_init API function, 257-258
dr_cache_refresh API function, 258-259
dr_net_write API function, 259-261
dynamic link library, loading, 65
dynamic reconfiguration, 27

E
env-variables parameter, 60
environment variables

and init-cgi function, 60

CGI to NSAPI conversion, 91-93
Error directive, 26

flow of control, 44

requirements for SAFs, 88-91,91

Error directive (Continued)
summary, 30

errors, finding most recent system error, 202-203

examples
location in the build, 108
of custom filters, 107-136
of custom SAFs (plug-ins), 107-136
of custom SAFs in the build, 108
quality of service, 130-136
wildcard patterns, 250-251

expire parameter, 54

F
fancy indexing, 51-52
fc_close API function, 151
fc_net_write API function, 262-263
file descriptor

closing, 203

locking, 203-204

opening read-only, 204

opening read-write, 204-205

opening write-append, 205

reading into a buffer, 205-206

unlocking, 209,210

writing from a buffer, 206

writing without interruption, 207
file I/O routines, 86
file name extensions, object type, 39-40

filebuf buf2sd API function, 150-151,151-152

filebuf close API function, 152
filebuf getc API function, 153
filebuf_open API function, 153-154
filebuf_open_nostat API function, 154
filter_create API function, 155-156
filter_find API function, 156
filter_insert API function, 156-157
filter_layer API function, 157
filter methods, 96-99

C prototypes for, 96-97

FilterLayer data structure, 96

flush, 98

insert, 97

remove, 97-98

282 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Index

filter methods (Continued) func_insert API function, 161-162
sendfile, 99 funcs parameter, 65,82
write, 98-99 functions, reference, 143-239
writev, 99

filter name API function, 158
Filter NSAPI data structure, 246

filter_remove API function, 158 G

FilterContext NSAPI data structure, 246 -G option, 81

FilterLayer NSAPI data structure, 96,246 GATEWAY_INTERFACE environment variable, 92
context->data, 97 GMT time, getting thread-safe value, 207-208

context->rq, 97
context->sn, 96

lower, 97 H
FilterMethods NSAPI data structure, 246-247
flters headers

field in request parameter, 76
request, 266
response, 268-269
HOST environment variable, 92
HTML tags, creating custom, 137-142
HTTP
basics, 24
buffered streams, 269-270
compliance with HTTP/1.1, 265
HTTP/1.1 specification, 265
overview, 265
registering methods, 68
requests, 266
responses, 267-269

altering Content-length, 101
creating custom, 95-105
examples of, 107-136
functions used to implement, 104-105
input, 101
interface, 96
methods, 96-99
NSAPI function overview, 104-105
output, 101
stack position, 99-100
using, 102-104
filters parameter, 63
flex-init formatting, 56
flex-init function, 54-58 status codes, 267
flex-log function, 30,44, 54 HTTP_* environment variable, 92
flex-rotate-init function, 58-59 HTTP compression, 31-32
flexible logging, 54-58

http-compression filter, 30
flow of control, 37-44

http-decompression filter, 29

flush API fun.ctio%l, 9§' 15_8'15? HTTPS environment variable, 92
fn argument, in fhr ectives in obj.conf, 27 HTTPS_KEYSIZE environment variable, 92
force-type function, 40 HTTPS_SECRETKEYSIZE environment variable, 92

forcing object type, 40-41
format parameter, 52
formats, time, 253-254

forward slashes, 47 |

FREE API function, 159-160 icon-uri parameter, 52
free-size parameter, 68 IETF home page, 265
func_exec API function, 160 ignore parameter, 52
func_find API function, 161 include directory, for SAFs, 79

283

Index

indexing, fancy, 51-52
init-cgi function, 60
init-clf function, 61-62
init-dav function, 62
Init SAFs in magnus.conf, 49
requirements for SAFs, 88-91
init-uhome function, 64
initializing
for CGI, 60
global settings, 49
plug-ins, 81-82
SAFs, 81-82
the WebDAYV subsystem, 62
Input
flow of control, 41
requirements for SAFs, 88-91
summary, 29
input filters, 101
insert API function, 97,162
IP address, getting client, 243

L

LateInit parameter, 49
layer parameter, 96
line continuation, 46
linking SAFs, 78-81
load-modules function, 65
example, 81
loading
custom SAFs, 81-82
plug-ins, 81-82
SAFs, 81-82
localtime, getting thread-safe value, 208
log entries, chronological order, 55
log_error API function, 163
log file format, 55-57
logFileName parameter, 55,61
logging
cookies, 56
flexible, 54-58
rotating logs, 58-59

M
magnus.conf

about, 49

SAFsin, 49-71
Makefile file, 81
MALLOC API function, 164
matching, special characters, 249-250
maxthreads parameter, 70
memory allocation, pool-init function, 67-68
memory management routines, 85
methods parameter, 68
minthreads parameter, 70
month name, 253

name attribute
in obj.conf objects, 32
in objects, 33
name parameter, 53,70
NameTrans
example of custom SAF, 111-114
flow of control, 37-39
requirements for SAFs, 88-91
summary, 28
native thread pools, defining in obj.conf, 69-71
NativeThread parameter, 65,69
net_ip2host API function, 165
net_read API function, 166
net_write API function, 168
netbuf_buf2sd API function, 168-169
netbuf_close API function, 169
netbuf_getbytes API function, 170-171
netbuf_getc API function, 171
netbuf_grab API function, 171-172
netbuf_open API function, 172
network I/O routines, 86
nondefault objects, processing, 38-39
NSAPI
alphabetical function reference, 143-239
CGI environment variables, 91-93
data structure reference, 241-247
filter interface, 96
function overview, 84-88

284 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Index

NSAPI filters

interface, 96

methods, 96-99
nsapi.h, 241
nsapi_pvt.h, 242
nt-console-init function, 66

o
obj.conf
adding directives for new SAFs, 82-83
case sensitivity, 46
Client tag, 34-36
comments, 47
directive syntax, 27
directives, 27-31
directives summary, 28-31
flow of control, 37-44
Object tag, 32-34
order of directives, 45-46
parameters for directives, 46
predefined SAFs, 23
processing other objects, 38-39
server instructions, 27-31
standard directives, 23
syntax rules, 45-47
use, 23-47
Object tag, 32-36
name attribute, 32
ppath attribute, 32
object type
forcing, 40-41
setting by file extension, 39-40
objects, processing nondefault objects, 38-39
ObjectType
example of custom SAF, 117-118
flow of control, 39-41
requirements for SAFs, 88-91
summary, 29
opts parameter, 51
order
of directives in obj.conf, 45-46
of filters in filter stack, 99-100
Output, 26

Output (Continued)
example of custom SAE, 119-125
flow of control, 41-42
requirements for SAFs, 88-91
summary, 29

output filters, 101

P

param_create API function, 174-175
param_free API function, 175
parameter block

manipulation routines, 84-85

SAF parameter, 74-75
parameters

for obj.conf directives, 46

for SAFs, 74-76
PATH_INFO environment variable, 92
path name, converting UNIX-style to local, 210-211
path names, 47
PATH_TRANSLATED environment variable, 92
PathCheck

example of custom SAF, 114-117

flow of control, 39

requirements for SAFs, 88-91

summary, 29
patterns, 249-251
pb_entry NSAPI data structure, 243
pb_param NSAPI data structure, 243
pb SAF parameter, 74-75
pblock, NSAPI data structure, 243
pblock_copy API function, 175-176
pblock_create API function, 176
pblock_dup API function, 177
pblock_find API function, 177
pblock_findval API function, 178
pblock_free API function, 178-179
pblock_nninsert API function, 179
pblock_nvinsert API function, 179-180
pblock_pb2env API function, 180-181
pblock_pblock2str API function, 181
pblock_pinsert API function, 181-182
pblock_remove API function, 182
pblock_str2pblock API function, 182-183

285

Index

perf-init function, 66-67
PERM_FREE API function, 184
PERM_MALLOC API function, 183-184, 184-185,
185-186
PERM_STRDUP API function, 186
pfx2dir function, 38
plug-ins
compatibility issues, 74,242
creating, 73
example of new plug-ins, 107-136
instructing the server to use, 82-83
loading and initializing, 81-82
private data structures, 242
pool-init function, 67-68
pool parameter, 65
ppath attribute
in obj.conf objects, 32
in objects, 33-34
predefined SAFs in obj.conf, 23
prepare_nsapi_thread API function, 187
private data structures, 242
processing nondefault objects, 38-39
product support, 21
profiling parameter, 69
protocol_dump822 API function, 187-188
protocol_set_finfo API function, 188
protocol_start_response API function, 188-189
protocol_status API function, 189-190
protocol_uri2url API function, 190-191, 191
protocol utility routines, 85
pwfile parameter, 64

Q

qos.cfile, 130

quality of service, example code, 130-136
QUERY environment variable, 92
QUERY_STRING environment variable, 92
queueSize parameter, 70

quotes, 46

R
read API function, 98,192
REALLOC API function, 193
reference

data structure, 241-247

NSAPI functions, 143-239
register-http-method function, 68
relink_36plugin file, 81
REMOTE_ADDR environment variable, 92
REMOTE_HOST environment variable, 92
REMOTE_IDENT environment variable, 92
REMOTE_USER environment variable, 92
remove API function, 97-98,193-194
replace.c, 119
REQ_ABORTED response code, 76
REQ_EXIT response code, 77
REQ_NOACTION response code, 76
REQ_PROCEED response code, 76
reqpb, field in request parameter, 76
request

NSAPI data structure, 244

SAF parameter, 75-76
request_get_vs API function, 194
request-handling process, 88-91

flow of control, 37-44

steps, 25-26
request_header API function, 194-195
request headers, 266
REQUEST_METHOD environment variable, 92
request-response model, 265
request_stat_path API function, 195-196
request_translate_uri API function, 196
requests

directives for handling, 26-27

how server handles, 24-27

HTTP, 266

methods, 24

steps in handling, 25-26
requirements for SAFs, 88-91

AddLog, 91

AuthTrans, 89

Error directive, 91

Init, 89

Input, 90

286 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Index

requirements for SAFs (Continued)
NameTrans, 89
ObjectType, 90
Output, 90
PathCheck, 90
Service, 90-91
response headers, 268-269
responses, HTTP, 267-269
result codes, 76-77
results caching plug-in, 255
important functions used by, 256
rotate-access parameter, 59
rotate-callback parameter, 59
rotate-error parameter, 59
rotate-interval parameter, 59
rotate-start parameter, 59
rotating logs, 58-59
rq->headers, 76
rq->reqpb, 76
rq->srvhdrs, 76
rq->vars, 75
rq SAF parameter, 75-76
rules, for editing obj.conf, 45-47

S
s, 243
SAFs
compiling and linking, 78-81
creating, 73-93
examples of custom SAFs, 107-136
in magnus.conf, 49-71
include directory, 79
interface, 74
loading and initializing, 81-82
parameters, 74-76
predefined, 23
result codes, 76-77
return values, 76
signature, 74
testing, 84
SCRIPT_NAME environment variable, 92
search patterns, 249-251
sendfile API function, 99, 197

sendfiledata NSAPI data structure, 245
separators, 46
server
flow of control, 37-44
initialization directives in magnus.conf, 49
instructions for using plug-ins, 82-83
instructions in obj.conf, 27-31
processing nondefault objects, 38-39
request handling, 24-27
SERVER_NAME environment variable, 92
server-parsed HTML tags
creating custom, 137-142
more information, 137
SERVER_PORT environment variable, 92
SERVER_PROTOCOL environment variable, 92
SERVER_SOFTWARE environment variable, 92
SERVER_URL environment variable, 93
server.xml, variables defined in, 36-37
Service
default directive, 43-44
directives for new SAFs (plug-ins), 83
example of custom SAF, 125-127
examples, 42-43
flow of control, 42-44
requirements for SAFs, 88-91
summary, 30
session
defined, 242
NSAPI data structure, 242
resolving the IP address of, 197-198, 198
Session->client NSAPI data structure, 243
session_dns API function, 197-198
session_maxdns API function, 198
session SAF parameter, 75
shared library, loading, 65
shell expression
comparing (case-blind) to a string, 199
comparing (case-sensitive) to a string, 199-200,
200-201
validating, 201
shexp_casecmp API function, 199
shexp_cmp API function, 199-200
shexp_match API function, 200-201
shexp_valid API function, 201

287

Index

shlib parameter, 65,81
shmem_s NSAPI data structure, 245
ShtmlTaglInstanceLoad function, 138
ShtmlTaglInstanceUnload function, 138
ShtmlTagPageLoadFunc function, 138
ShtmlTagPageUnLoadFn, 139
sn->client, 75
sn->csd, 75
sn SAF parameter, 75
socket

closing, 169

reading from, 166

sending a buffer to, 168

sending file buffer to, 151

writing to, 168
spaces, 46
special characters, 249-251
sprintf, see util_sprintf, 225
srvhdrs, field in request parameter, 76
stackSize parameter, 70
stat NSAPI data structure, 244
stats-init function, 69
status codes, 267
stderr parameter, 66
stdout parameter, 66
STRDUP API function, 201-202
streams, buffered, 269-270
string, creating a copy of, 201-202

Sun Java System Web Server documentation, 17-19

support, 21
syntax

directives in obj.conf, 27

for editing obj.conf, 45-47
system_errmsg API function, 202-203
system_fclose API function, 203
system_flock API function, 203-204
system_fopenRO API function, 204
system_fopenRW API function, 204-205
system_fopenWA API function, 205
system_fread API function, 205-206
system_fwrite API function, 206
system_fwrite_atomic API function, 207
system_gmtime API function, 207-208
system_localtime API function, 208

system_lseek API function, 209
system_rename API function, 209-210
system_ulock API function, 209,210
system_unix2local API function, 210-211
systhread_attach API function, 211
systhread_current API function, 211-212
systhread_getdata API function, 212
systhread_newkey API function, 212-213
systhread_setdata API function, 213
systhread_sleep API function, 213-214
systhread_start API function, 214
systhread_timerset API function, 214-215

T
tags
Client, 34-36
creating custom, 137-142
Object, 32-34
testing custom SAFs, 84
thread
allocating a key for, 212-213
creating, 214
getting a pointer to, 211-212
getting data belonging to, 212
putting to sleep, 213-214
setting data belonging to, 213
setting interrupt timer, 214-215
thread-pool-init function, 69-71
thread pools, defining in obj.conf, 69-71
thread routines, 86-87
time formats, 253-254
timeout parameter, 60
timezones parameter, 52

U

unicode, 87,229

update-interval parameter, 69

URL, translated to file path, 28

util _can_exec API function, 216-217
util_chdir2path API function, 217
util_cookie_find API function, 217-218

288 Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide « September 2008

Index

util_env_find API function, 218
util_env_free API function, 218-219
util_env_replace API function, 219
util_env_str API function, 220
util_getline API function, 220-221
util_hostname API function, 221
util_is_mozilla API function, 221-222
util_is_url API function, 222

util_itoa API function, 222-223
util_later_than API function, 223
util_sh_escape API function, 223-224
util_snprintf API function, 224
util_sprintf API function, 225
util_strcasecmp API function, 225-226
util_strftime API function, 226,253
util_strncasecmp API function, 227
util_uri_escape API function, 227-228
util_uri_is_evil API function, 228
util_uri_parse API function, 228-229
util_uri_unescape API function, 229
util_vsnprintf API function, 229-230
util_vsprintf API function, 230-231
utility routines, 87

Vv

vars, fleld in request parameter, 75
virtual server routines, 87-88
virtual-servers parameter, 69
vs_alloc_slot API function, 231
vs_get_data API function, 231-232
vs_get_default_httpd_object API function, 232
vs_get_doc_root API function, 232-233
vs_get_httpd_objset API function, 233
vs_get_id API function, 233-234
vs_get_mime_type API function, 234
vs_lookup_config_var API function, 235
vs_register_cb API function, 235-236
vs_set_data API function, 236
vs_translate_uri API function, 237
vsnprintf, see util_vsnprintf, 229-230
vsprintf, see util_vsprintf, 230-231

w

weekday, 253

widths parameter, 51

wildcard patterns, 249-251

write API function, 98-99,237-238
writev API function, 99,238-239

289

290

	Sun Java System Web Server 6.1 SP10 NSAPI Programmer's Guide
	Preface
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	Product Support

	Syntax and Use of obj.conf
	How the Server Handles Requests from Clients
	HTTP Basics
	NSAPI Filters
	Request-handling Process
	To handle request

	Directives for Handling Requests

	Dynamic Reconfiguration
	Server Instructions in obj.conf
	Summary of the Directives

	Configuring HTTP Compression
	The Object and Client Tags
	The Object Tag
	Objects that Use the name Attribute
	Objects that Use the ppath Attribute

	The Client Tag
	Client Tag Parameters

	Variables Defined in server.xml
	Flow of Control in obj.conf
	AuthTrans
	NameTrans
	How and When the Server Processes Other Objects

	PathCheck
	ObjectType
	Setting the Type By File Extension
	Forcing the Type

	Input
	Output
	Service
	Service Examples
	Default Service Directive

	AddLog
	Error

	Changes in Function Flow
	Internal Redirects
	Restarts
	URI Translation

	Syntax Rules for Editing obj.conf
	Order of Directives
	Parameters
	Case Sensitivity
	Separators
	Quotes
	Spaces
	Line Continuation
	Path Names
	Comments

	About obj.conf Directive Examples

	SAFs in the magnus.conf File
	Init SAFs
	Syntax

	cindex-init
	Parameters
	Example

	define-perf-bucket
	Parameters
	Example
	See Also

	dns-cache-init
	Parameters
	Example

	flex-init
	Parameters
	More on Log Format
	Examples
	See Also

	flex-rotate-init
	Parameters
	Example
	See Also

	init-cgi
	Parameters
	Example

	init-clf
	Parameters
	Examples
	See Also

	init-dav
	Parameters
	Example
	Example

	init-filter-order
	Parameters
	Example

	init-j2ee
	Parameters
	Example

	init-uhome
	Parameters
	Examples

	load-modules
	Parameters
	Examples

	nt-console-init
	Parameters
	Example

	perf-init
	Parameters
	Example
	See Also

	pool-init
	Parameters
	Example

	register-http-method
	Parameters
	Example

	stats-init
	Parameters
	Example

	thread-pool-init
	Parameters
	Example
	See Also

	Creating Custom SAFs
	Future Compatibility Issues
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	To create a custom SAF
	Write the Source Code
	Compile and Link
	Include Directory and nsapi.h File
	Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags
	Compiling 3.x Plugins on AIX

	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Restart the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities
	Virtual Server

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Input SAFs
	Output SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs

	CGI to NSAPI Conversion

	Creating Custom Filters
	Future Compatibility Issues
	The NSAPI Filter Interface
	Filter Methods
	C Prototypes for Filter Methods
	insert
	See Also

	remove
	See Also

	flush
	See Also

	read
	See Also

	write
	See Also

	writev
	See Also

	sendfile
	See Also

	Position of Filters in the Filter Stack
	Filters that Alter Content-Length
	Creating and Using Custom Filters
	To create a custom filter
	Write the Source Code
	Compile and Link
	Load and Initialize the Filter
	Instruct the Server to Insert the Filter
	Restart the Server
	Test the Filter

	Overview of NSAPI Functions for Filter Development

	Examples of Custom SAFs and Filters
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Output Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	Quality of Service Example
	Installing the Example
	Source Code

	Creating Custom Server-parsed HTML Tags
	Define the Functions that Implement the Tag
	Write an Initialization Function
	Load the New Tag into the Server

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	C
	CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	cinfo_find
	Syntax
	Returns
	Parameters

	condvar_init
	Syntax
	Returns
	Parameters
	See Also

	condvar_notify
	Syntax
	Returns
	Parameters
	See Also

	condvar_terminate
	Warning
	Syntax
	Returns
	Parameters
	See Also

	condvar_wait
	Syntax
	Returns
	Parameters
	See Also

	crit_enter
	Syntax
	Returns
	Parameters
	See Also

	crit_exit
	Syntax
	Returns
	Parameters
	See Also

	crit_init
	Warning
	Syntax
	Returns
	Parameters
	See Also

	crit_terminate
	Syntax
	Returns
	Parameters
	See Also

	D
	daemon_atrestart
	Syntax
	Returns
	Parameters
	Example

	F
	fc_open
	Syntax
	Returns
	Parameters

	fc_close
	Syntax
	Returns
	Parameters

	filebuf_buf2sd
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_close
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_getc
	Syntax
	Returns
	Parameters
	See Also

	filebuf_open
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_open_nostat
	Syntax
	Returns
	Parameters
	Example
	See Also

	filter_create
	Syntax
	Returns
	Parameters
	Example

	filter_find
	Syntax
	Returns
	Parameters

	filter_insert
	Syntax
	Returns
	Parameters

	filter_layer
	Syntax
	Returns
	Parameters

	filter_name
	Syntax
	Returns
	Parameters

	filter_remove
	Syntax
	Returns
	Parameters

	flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	func_exec
	Syntax
	Returns
	Parameters
	See Also

	func_find
	Syntax
	Returns
	Parameters
	Example
	See Also

	func_insert
	Syntax
	Returns
	Parameters
	Example
	See Also

	I
	insert
	Syntax
	Returns
	Parameters
	Example

	L
	log_error
	Syntax
	Returns
	Parameters
	Example
	See Also

	M
	MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	N
	net_flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_ip2host
	Syntax
	Returns
	Parameters

	net_read
	Syntax
	Returns
	Parameters
	See Also

	net_sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_write
	Syntax
	Returns
	Parameters
	Example
	See Also

	netbuf_buf2sd
	Syntax
	Returns
	Parameters
	See Also

	netbuf_close
	Syntax
	Returns
	Parameters
	See Also

	netbuf_getbytes
	Syntax
	Returns
	Parameters
	Example
	See Also

	netbuf_getc
	Syntax
	Returns
	Parameters
	See Also

	netbuf_grab
	Syntax
	Returns
	Parameters
	See Also

	netbuf_open
	Syntax
	Returns
	Parameters
	See Also

	nsapi_module_init
	Syntax
	Returns
	Parameters

	NSAPI_RUNTIME_VERSION
	Syntax
	Example
	See Also

	NSAPI_VERSION
	Syntax
	Example
	See Also

	P
	param_create
	Syntax
	Returns
	Parameters
	Example
	See Also

	param_free
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_copy
	Syntax
	Returns
	Parameters
	See Also

	pblock_create
	Syntax
	Returns
	Parameters
	See Also

	pblock_dup
	Syntax
	Returns
	Parameters
	See Also

	pblock_find
	Syntax
	Returns
	Parameters
	See Also

	pblock_findval
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_free
	Syntax
	Returns
	Parameters
	See Also

	pblock_nninsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_nvinsert
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_pb2env
	Syntax
	Returns
	Parameters
	See Also

	pblock_pblock2str
	Syntax
	Returns
	Parameters
	See Also

	pblock_pinsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_remove
	Syntax
	Returns
	Parameters
	See Also

	pblock_str2pblock
	Syntax
	Returns
	Parameters
	See Also

	PERM_CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_STRDUP
	Syntax
	Returns
	Parameters
	See Also

	prepare_nsapi_thread
	Syntax
	Returns
	Parameters
	See Also

	protocol_dump822
	Syntax
	Returns
	Parameters
	See Also

	protocol_set_finfo
	Syntax
	Returns
	Parameters
	See Also

	protocol_start_response
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_status
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_uri2url
	Syntax
	Returns
	Parameters
	See Also

	protocol_uri2url_dynamic
	Syntax
	Returns
	Parameters
	See Also

	R
	read
	Syntax
	Returns
	Parameters
	Example
	See Also

	REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See Also

	remove
	Syntax
	Returns
	Parameters
	See Also

	request_get_vs
	Syntax
	Returns
	Parameters
	See Also

	request_header
	Syntax
	Returns
	Parameters
	See Also

	request_stat_path
	Syntax
	Returns
	Parameters
	Example
	See Also

	request_translate_uri
	Syntax
	Returns
	Parameters
	See Also

	S
	sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	session_dns
	Syntax
	Returns
	Parameters

	session_maxdns
	Syntax
	Returns
	Parameters

	shexp_casecmp
	Syntax
	Returns
	Parameters
	See Also

	shexp_cmp
	Syntax
	Returns
	Parameters
	Example
	See Also

	shexp_match
	Syntax
	Returns
	Parameters
	See Also

	shexp_valid
	Syntax
	Returns
	Parameters
	See Also

	STRDUP
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_errmsg
	Syntax
	Returns
	Parameters
	See Also

	system_fclose
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_flock
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRO
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRW
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_fopenWA
	Syntax
	Returns
	Parameters
	See Also

	system_fread
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite_atomic
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_gmtime
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_localtime
	Syntax
	Returns
	Parameters
	See Also

	system_lseek
	Syntax
	Returns
	Parameters
	See Also

	system_rename
	Syntax
	Returns
	Parameters

	system_ulock
	Syntax
	Returns
	Parameters
	See Also

	system_unix2local
	Syntax
	Returns
	Parameters
	See Also

	systhread_attach
	Syntax
	Returns
	Parameters
	See Also

	systhread_current
	Syntax
	Returns
	Parameters
	See Also

	systhread_getdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_newkey
	Syntax
	Returns
	Parameters
	See Also

	systhread_setdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_sleep
	Syntax
	Returns
	Parameters
	See Also

	systhread_start
	Syntax
	Returns
	Parameters
	See Also

	systhread_timerset
	Syntax
	Returns
	Parameters
	See Also

	U
	USE_NSAPI_VERSION
	Syntax
	Example
	See Also

	util_can_exec
	UNIX Only
	Syntax
	Returns
	Parameters
	See Also

	util_chdir2path
	Syntax
	Returns
	Parameters

	util_cookie_find
	Syntax
	Returns
	Parameters

	util_env_find
	Syntax
	Returns
	Parameters
	See Also

	util_env_free
	Syntax
	Returns
	Parameters
	See Also

	util_env_replace
	Syntax
	Returns
	Parameters
	See Also

	util_env_str
	Syntax
	Returns
	Parameters
	See Also

	util_getline
	Syntax
	Returns
	Parameters
	See Also

	util_hostname
	Syntax
	Returns
	Parameters

	util_is_mozilla
	Syntax
	Returns
	Parameters
	See Also

	util_is_url
	Syntax
	Returns
	Parameters
	See Also

	util_itoa
	Syntax
	Returns
	Parameters

	util_later_than
	Syntax
	Returns
	Parameters
	See Also

	util_sh_escape
	Syntax
	Returns
	Parameters
	See Also

	util_snprintf
	Syntax
	Returns
	Parameters
	See Also

	util_sprintf
	Syntax
	Returns
	Parameters
	Example
	See Also

	util_strcasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_strftime
	Syntax
	Returns
	Parameters
	See Also

	util_strncasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_uri_escape
	Syntax
	Returns
	Parameters
	See Also

	util_uri_is_evil
	Syntax
	Returns
	Parameters
	See Also

	util_uri_parse
	Syntax
	Returns
	Parameters
	See Also

	util_uri_unescape
	Syntax
	Returns
	Parameters
	See Also

	util_vsnprintf
	Syntax
	Returns
	Parameters
	See Also

	util_vsprintf
	Syntax
	Returns
	Parameters
	See Also

	V
	vs_alloc_slot
	Syntax
	Returns
	See Also

	vs_get_data
	Syntax
	Returns
	Parameters
	See Also

	vs_get_default_httpd_object
	Syntax
	Returns
	Parameters
	See Also

	vs_get_doc_root
	Syntax
	Returns
	Parameters

	vs_get_httpd_objset
	Syntax
	Returns
	Parameters
	See Also

	vs_get_id
	Syntax
	Returns
	Parameters
	See Also

	vs_get_mime_type
	Syntax
	Returns
	Parameters

	vs_lookup_config_var
	Syntax
	Returns
	Parameters

	vs_register_cb
	Syntax
	Returns
	Parameters

	vs_set_data
	Syntax
	Returns
	Parameters
	See Also

	vs_translate_uri
	Syntax
	Returns
	Parameters

	W
	write
	Syntax
	Returns
	Parameters
	Example

	writev
	Syntax
	Returns
	Parameters
	Example
	See Also

	Data Structure Reference
	Privatization of Some Data Structures
	Session
	pblock
	pb_entry
	pb_param
	Session->client
	Request
	stat
	shmem_s
	cinfo
	sendfiledata
	Filter
	FilterContext
	FilterLayer
	FilterMethods

	Using Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Time and Date Strings

	Dynamic Results Caching Functions
	dr_cache_destroy
	Syntax
	Parameters
	Returns
	Example

	dr_cache_init
	Syntax
	Returns
	Parameters
	Example

	dr_cache_refresh
	Syntax
	Returns
	Parameters
	Example

	dr_net_write
	Syntax
	Returns
	Parameters
	Flags
	Example

	fc_net_write
	Syntax
	Returns
	Parameters
	Flags
	Example

	Hypertext Transfer Protocol
	Compliance
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Alphabetical List of NSAPI Functions and Macros
	Index

