
Sun Java System Web Server 6.1
SP11 Programmer's Guide to
Web Applications

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–7658
May 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

090430@21990

Contents

Preface ...9

1 Web Applications ...17
Introducing Web Applications .. 17

Servlets .. 18
JSP .. 18
SHTML .. 19
CGI .. 19

Creating a Web Application ... 19
▼ To create a web application ... 19

Securing a Web Application ... 20
Deploying a Web Application .. 20
Virtual Servers ... 21
Default Web Applications .. 21
Servlet and JSP Caching .. 21
Database Connection Pooling ... 22
Configuring the Web Container .. 22
Web Application Samples .. 22

2 Using Servlets ...25
About Servlets .. 25

Servlet Data Flow ... 26
Servlet Types ... 27

Creating Servlets .. 28
Creating the Class Declaration ... 28
Overriding Methods .. 29
Overriding Initialize .. 29

3

Overriding Destroy .. 29
Overriding Service, Get, and Post .. 30
Accessing Parameters and Storing Data .. 31
Handling Sessions and Security ... 31
Handling Threading Issues ... 32
Delivering Client Results .. 33

Invoking Servlets ... 35
Calling a Servlet with a URL ... 35
Calling a Servlet Programmatically ... 36

Servlet Output .. 37
Caching Servlet Results ... 37

Caching Features .. 38
Default Cache Configuration ... 38
Caching Example ... 39
CacheHelper Interface ... 40
CacheKeyGenerator Interface .. 41

Maximizing Servlet Performance .. 42

3 Using JavaServer Pages ..45
Introducing JSPs .. 45
Creating JSPs .. 46

Designing for Ease of Maintenance ... 46
Designing for Portability ... 47
Handling Exceptions ... 47

Compiling JSPs: The Command-Line Compiler ... 47
Package Names Generated by the JSP Compiler .. 50
Other JSP Configuration Parameters .. 50

Debugging JSPs .. 50
JSP Tag Libraries and Standard Portable Tags ... 50
JSP Cache Tags ... 50

cache .. 51
flush ... 53

JSP Search Tags .. 54
<searchForm> .. 54
<CollElem> ... 55

Contents

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 20094

<collection> .. 56
<colIItem> .. 57
<queryBox> .. 57
<submitButton> ... 58
<formAction> .. 59
<formSubmission> .. 59
<formActionMsg> ... 60
<Search> ... 60
<resultIteration> .. 61
<Item> ... 61
<resultStat> ... 62
<resultNav> .. 62

4 Session Managers ..63
Introducing Sessions ... 63

Sessions and Cookies ... 64
Sessions and URL Rewriting ... 64
Sessions and Security ... 64

How to Use Sessions .. 65
Creating or Accessing a Session ... 65
Examining Session Properties .. 66
Binding Data to a Session .. 67
Invalidating a Session .. 68

Session Managers .. 69
StandardManager .. 69
PersistentManager ... 70
IWSSessionManager .. 72
MMapSessionManager (UNIX Only) ... 78

5 Securing Web Applications ..81
Sun Java System Web Server Security Goals .. 81
Security Responsibilities Overview ... 82

Application Developer .. 82
Application Assembler .. 83
Application Deployer .. 83

Contents

5

Common Security Terminology .. 83
Authentication ... 84
Authorization ... 84
Realms ... 84
J2SE Application Role Mapping ... 84
Container Security ... 85

Sun Java System Web Server-specific Security Features ... 85
Sun Java System Web Server Security Model .. 86
Web Application and URL Authorizations .. 88

User Authentication by Servlets .. 88
HTTP Basic Authentication ... 89
SSL Mutual Authentication ... 89
Form-Based Login ... 90

User Authentication for Single Sign-on .. 90
User Authorization by Servlets .. 92

Defining Roles .. 92
Defining Servlet Authorization Constraints ... 93

Fetching the Client Certificate ... 93
Realm Configuration .. 93

File .. 94
LDAP ... 94
Solaris .. 95
Certificate .. 95
Custom Realm .. 96
Native Realm ... 97

Programmatic Login ... 98
Precautions ... 98
Granting Programmatic Login Permission .. 99
The ProgrammaticLogin Class ... 99

Enabling the Java Security Manager .. 100
The server.policy File .. 100

Default Permissions ... 101
Changing Permissions for an Application .. 101

For More Information ... 102

Contents

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 20096

6 Deploying Web Applications ...103
Web Application Structure .. 103
Creating Web Deployment Descriptors ... 104
Deploying Web Applications ... 104

Using the Administration Interface ... 105
Deploying a Web Application using wdeploy .. 105
Using Sun Java Studio .. 107

Enabling and Disabling Web Applications .. 108
Using the Administration Interface ... 108
Editing the server.xml File .. 109

Dynamic Reloading of Web Applications .. 109
▼ To load new servlet files or reload deployment descriptor changes 109

Classloaders .. 110
The sun-web-app_2_3-1.dtd File .. 112

Subelements .. 112
Data .. 113
Attributes .. 113

Elements in the sun-web.xml File .. 114
General Elements ... 114
Security Elements ... 118
Session Elements .. 120
Reference Elements .. 126
Caching Elements .. 130
Classloader Elements ... 140
JSP Elements ... 141
Internationalization Elements .. 143
Alphabetical List of sun-web.xml Elements ... 146

Sample Web Application XML Files ... 147
Sample web.xml File .. 147
Sample sun-web.xml File .. 149

7 Debugging Web Applications ..151
Enabling Debugging ... 151

Using the Administration Interface ... 152
Editing the server.xml File .. 152

Contents

7

JPDA Options .. 152
Using Sun Java Studio for Debugging ... 153

▼ To manually attach the IDE to a remote Web Server ... 153
Debugging JSPs .. 153
Generating a Stack Trace for Debugging .. 154
Logging ... 154

Using the Administration Interface ... 154
Editing the server.xml File .. 154

Profiling .. 155
The HPROF Profiler .. 155
The Optimizeit Profiler ... 157

A Internationalization Issues ..159
Servlets .. 159

Servlet Request ... 159
Servlet Response ... 160

JSPs .. 160

B Migrating Legacy Servlets ...161
JSP by Extension .. 162

Servlet by Extension of Servlet by Directory ... 162
Registered Servlets ... 162
Example ... 162

Index ... 165

Contents

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 20098

Preface

This guide describes how to create and run JavaTM 2 Platform, Standard Edition (J2SE platform)
applications that follow the new open Java standards model for servlets and JavaServer PagesTM

(JSP) technology on the Sun Java System Web Server 6.1. In addition to describing
programming concepts and tasks, this guide offers implementation tips and reference material.

This preface contains the following topics:

■ “Who Should Use This Guide” on page 9
■ “Using the Sun Java System Web Server Documentation” on page 10
■ “How This Guide Is Organized” on page 12
■ “Documentation Conventions” on page 12
■ “Product Support” on page 13

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and deploys web
applications (servlets and JSPs) in a corporate enterprise.

This guide assumes you are familiar with the following topics:

■ The J2SE specification
■ HTML
■ The JavaTM programming language
■ Java APIs as defined in servlet, JSP, and JavaTM DataBase Connectivity (JDBC) specifications
■ Structured database query languages such as SQL
■ Relational database concepts
■ Software development processes, including debugging and source code control

9

Using the Sun Java System Web Server Documentation
The Sun Java System Web Server 6.1 SP11 manuals are available as online files in PDF and
HTML formats at: http://docs.sun.com/app/docs/coll/1308.8

The following table lists the tasks and concepts described in the Sun Java System Web Server
manuals.

TABLE P–1 Sun Java System Web Server Documentation Roadmap

For Information About See the Following

Late-breaking information about the software and
documentation

Sun Java System Web Server 6.1 SP11 Release Notes

Information about Sun Java System Web Server 6.1
FastCGI plug-in, including information about server
application functions (SAFs), installation,
configuration, technical notes, and pointers to
additional resources.

Sun Java System Web Server 6.1 SP11 FastCGI Plug-in
Release Notes

Information about Sun Java System Web Server 6.1
Reverse Proxy plug-in, including information about
server application functions (SAFs), installation,
configuration, technical notes, and pointers to
additional resources.

Sun Java System Web Server 6.1 SP11 Reverse Proxy
Plug-in Release Notes

Getting started with Sun Java System Web Server,
including hands-on exercises that introduce server
basics and features (recommended for first-time
users)

Sun Java System Web Server 6.1 SP11 Getting Started
Guide

Performing installation and migration tasks:
■ Installing Sun Java System Web Server and its

various components, supported platforms, and
environments

■ Migrating from Sun ONE Web Server 4.1 or 6.0 to
Sun Java System Web Server 6.1

Sun Java System Web Server 6.1 SP11 Installation and
Migration Guide

Note: If you have the Sun JavaTM Enterprise System 1
installed on your system and you want to upgrade the
Sun Java System Web Server 6.1 that is part of Sun Java
Enterprise System 1 to Sun Java System Web Server
6.1 SP11, you must use the Java Enterprise System
(JES) installer to perform the upgrade. Do not use the
separate component installer included with Sun Java
System Web Server 6.1 SP11.

Preface

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200910

http://docs.sun.com/app/docs/coll/1308.8
http://docs.sun.com/doc/820-7659
http://docs.sun.com/doc/820-7652
http://docs.sun.com/doc/820-7652
http://docs.sun.com/doc/820-7660
http://docs.sun.com/doc/820-7660
http://docs.sun.com/doc/820-7653
http://docs.sun.com/doc/820-7653
http://docs.sun.com/doc/820-7654
http://docs.sun.com/doc/820-7654

TABLE P–1 Sun Java System Web Server Documentation Roadmap (Continued)
For Information About See the Following

Performing the following administration tasks:
■ Using the Administration and command-line

interfaces

■ Configuring server preferences

■ Using server instances

■ Monitoring and logging server activity

■ Using certificates and public key cryptography to
secure the server

■ Configuring access control to secure the server

■ Using JavaTM 2 Platform, Standard Edition (J2SE
platform) security features

■ Deploying applications

■ Managing virtual servers

■ Defining server workload and sizing the system to
meet performance needs

■ Searching the contents and attributes of server
documents, and creating a text search interface

■ Configuring the server for content compression

■ Configuring the server for web publishing and
content authoring using WebDAV

Sun Java System Web Server 6.1 SP11 Administrator’s
Guide

Using programming technologies and APIs to do the
following:
■ Extend and modify Sun Java System Web Server
■ Dynamically generate content in response to

client requests
■ Modify the content of the server

Sun Java System Web Server 6.1 SP11 Programmer’s
Guide

Creating custom Netscape Server Application
Programmer’s Interface (NSAPI) plugins

Sun Java System Web Server 6.1 SP11 NSAPI
Programmer’s Guide

Implementing servlets and JavaServer PagesTM (JSPTM)
technology in Sun Java System Web Server

Sun Java System Web Server 6.1 SP11 Programmer’s
Guide to Web Applications

Editing configuration files Sun Java System Web Server 6.1 SP11 Administrator’s
Configuration File Reference

Tuning Sun Java System Web Server to optimize
performance

Sun Java System Web Server 6.1 SP11 Performance
Tuning, Sizing, and Scaling Guide

Preface

11

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7657
http://docs.sun.com/doc/820-7657
http://docs.sun.com/doc/820-7655
http://docs.sun.com/doc/820-7655
http://docs.sun.com/doc/820-7658
http://docs.sun.com/doc/820-7658
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7656
http://docs.sun.com/doc/820-7656

How This Guide Is Organized
This guide provides a Sun Java System Web Server environment overview for designing web
applications, and has the following chapters:
■ Chapter 2, Web Applications

This chapter introduces web applications and describes how they are supported in Sun Java
System Web Server.

■ Chapter 3, Using Servlets
This chapter describes how to create and use servlets.

■ Chapter 4, Using JavaServer Pages
This chapter describes how to create and use JSPs.

■ Chapter 5, Session Managers
This chapter describes how to create and manage a session that allows users and transaction
information to persist between interactions.

■ Chapter 6, Securing Web Applications
This chapter describes the basic security features of the Sun Java System Web Server and
how to write secure web applications.

■ Chapter 7, Deploying Web Applications
This chapter describes how web applications are assembled and deployed in the Sun Java
System Web Server.

■ Chapter 8, Debugging Web Applications
This chapter provides guidelines for debugging web applications in Sun Java System Web
Server.

■ Appendix A, Internationalization Issues
This appendix discusses internationalization issues pertaining to servlets and JSPs.

■ Appendix B, Migrating Legacy Servlets
This appendix discusses migrating legacy servlets.

Documentation Conventions
This section describes the types of conventions used throughout this guide.
■ File and directory paths

These are given in UNIX® format (with forward slashes separating directory names). For
Windows versions, the directory paths are the same, except that backslashes are used to
separate directories.

■ URLs are given in the format:

Preface

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200912

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is your Internet
domain name; path is the server's directory structure; and file is an individual file name.
Italic items in URLs are placeholders.

■ Font conventions include:
■ The monospace font is used for sample code and code listings, API and language

elements (such as function names and class names), file names, path names, directory
names, and HTML tags.

■ Italic monospace type is used for code variables.
■ Italic type is also used for book titles, emphasis, variables and placeholders, and words

used in the literal sense.
■ Bold type is used as either a paragraph lead-in or to indicate words used in the literal

sense.

Installation root directories are indicated by install_dir in this guide.

By default, the location of install_dir is as follows:
■ On UNIX-based platforms: /opt/SUNWwbsvr/
■ On Windows: C:\Sun\WebServer6.1

Product Support
If you have problems with your system, contact customer support using one of the following
mechanisms:

■ The online support web site at:

http://www.sun.com/service/sunone/software

■ The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This helps to
ensure that our support staff can best assist you in resolving problems.

■ Description of the problem, including the situation where the problem occurs and its
impact on your operation.

■ Machine type, operating system version, and product version, including any patches and
other software that might be affecting the problem.

■ Detailed steps on the methods you have used to reproduce the problem.
■ Any error logs or core dumps.

Preface

13

http://www.sun.com/service/sunone/software

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Feedback.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200914

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–3 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

15

16

Web Applications

This chapter provides a basic overview of how web applications are supported in the Sun JavaTM

System Web Server 6.1.

This chapter includes the following sections:

■ “Introducing Web Applications” on page 17
■ “Creating a Web Application” on page 19
■ “Securing a Web Application” on page 20
■ “Deploying a Web Application” on page 20
■ “Virtual Servers” on page 21
■ “Default Web Applications” on page 21
■ “Servlet and JSP Caching” on page 21
■ “Database Connection Pooling” on page 22
■ “Configuring the Web Container” on page 22
■ “Web Application Samples” on page 22

Introducing Web Applications
Sun Java System Web Server 6.1 supports the JavaTM Servlet 2.3 API specification and the
JavaServer Pages (JSP) 1.2 specification, which allows servlets and JSPs to be included in web
applications.

A web application is a collection of servlets, JavaServer Pages, HTML documents, and other web
resources that might include image files, compressed archives, and other data. A web
application can be packaged into a Web ARchive file (a WAR file) or exist in an open directory
structure.

In addition, Sun Java System Web Server 6.1 supports SHTML and CGI, which are non-JavaTM 2
Platform, Standard Edition (J2SE platform) application components.

This section includes summaries of the following topics:

1C H A P T E R 1

17

■ “Servlets” on page 18
■ “JSP” on page 18
■ “SHTML” on page 19
■ “CGI” on page 19

Servlets
Java servlets are server-side Java programs that application servers can run to generate content
in response to a client request. Servlets can be thought of as applets that run on the server side
without a user interface. Servlets are invoked through URL invocation or by other servlets.

Sun Java System Web Server 6.1 supports the Java Servlet 2.3 specification.

Note – Java Servlet API version 2.3 is fully compatible with versions 2.1 and 2.2, so all existing
servlets will continue to work without modification or recompilation.

To develop servlets, use Sun's Java Servlet API. For information about using the Java Servlet
API, see the documentation provided by Sun at:

http://java.sun.com/products/servlet/index.jsp

For the Java Servlet 2.3 specification, please visit:

http://java.sun.com/products/servlet/download.html

For information about developing servlets in Sun Java System Web Server, see Chapter 3, Using
Servlets.

JSP
Sun Java System Web Server 6.1 supports the JSP 1.2 specification.

A JSP is a page, much like an HTML page, that can be viewed in a web browser. However, in
addition to HTML tags, it can include a set of JSP tags and directives intermixed with Java code
that extend the ability of the web page designer to incorporate dynamic content in a page. These
additional features provide functionality such as displaying property values and using simple
conditionals.

One of the main benefits of JSPs is that they are like HTML pages. The web page designer simply
writes a page that uses HTML and JSP tags and puts it on his or her web server. The page is
compiled automatically when it is deployed. The web page designer needs to know little about
Java classes and Java compilers. Sun Java System Web Server supports precompilation of JSPs,
however, and this is recommended for production servers.

Introducing Web Applications

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200918

http://java.sun.com/products/servlet/index.jsp
http://java.sun.com/products/servlet/download.html

JSP pages can access full Java functionality by:
■ Embedding Java code directly in scriptlets in the page
■ Using server-side tags that include Java servlets

Servlets are Java classes that must be compiled, but they can be defined and compiled by a Java
programmer, who then publishes the interface to the servlet. The web page designer can access a
precompiled servlet from a JSP page.

Sun Java System Web Server 6.1 supports JSP tag libraries and standard portable tags.

For information about creating JSPs, see Sun's JavaServer Pages web site at:

http://java.sun.com/products/jsp/index.jsp

For information about developing JSPs in Sun Java System Web Server, see Chapter 4, Using
JavaServer Pages.

SHTML
HTML files can contain tags that are executed on the server. In addition to supporting the
standard server-side tags, or SSIs, Sun Java System Web Server 6.1 allows you to embed servlets
and define your own server-side tags. For more information, see the Sun Java System Web
Server 6.1 SP11 Programmer’s Guide.

CGI
Common Gateway Interface (CGI) programs run on the server and generate a response to
return to the requesting client. CGI programs can be written in various languages, including C,
C++, Java, Perl, and as shell scripts. CGI programs are invoked through URL invocation. Sun
Java System Web Server complies with the version 1.1 CGI specification. For more information,
see the Sun Java System Web Server 6.1 SP11 Programmer’s Guide.

Creating a Web Application

▼ To create a web application
Create a directory for all of the web application's files. This is the web application's document
root.

Create any needed HTML files, image files, and other static content. Place these files in the
document root directory or a subdirectory where they can be accessed by other parts of the
application.

1

2

Creating a Web Application

Chapter 1 • Web Applications 19

http://java.sun.com/products/jsp/index.jsp
http://docs.sun.com/doc/820-7657
http://docs.sun.com/doc/820-7657
http://docs.sun.com/doc/820-7657

Create any needed JSP files. For more information, see Chapter 4, Using JavaServer Pages

Create any needed servlets. For more information, see Chapter 3, Using Servlets

Compile the servlets. For details about precompiling JSPs, see “Compiling JSPs: The
Command-Line Compiler”on page 47

Organize the web application as described in “Web Application Structure”on page 103

Create the deployment descriptor files. For more information, see “Creating Web Deployment
Descriptors”on page 104

Package the web application in a .warfile . This is optional. For example:
jar -cvf module_name.war *

Deploy the web application. For more information, see “Deploying Web Applications”on
page 104
You can create a web application manually, or you can use SunTM Java System Studio.

Securing a Web Application
You can write secure web applications for the Sun Java System Web Server with components
that perform user authentication and access authorization. You can build security into web
applications using the following mechanisms:

■ User authentication by servlets
■ User authentication for single sign-on
■ User authorization by servlets
■ Fetching the client certificate

For detailed information about these mechanisms, see Chapter 6, Securing Web Applications.

Deploying a Web Application
Web application deployment descriptor files are packaged within .war files. They contain
metadata and information that identifies the servlet or JSP, and establishes its application role.
For more information about these descriptor files, see Chapter 7, Deploying Web Applications.

3

4

5

6

7

8

9

Securing a Web Application

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200920

Virtual Servers
A virtual server is a virtual web server that uses a unique combination of IP address, port
number, and host name to identify it. You might have several virtual servers, all of which use the
same IP address and port number but are distinguished by their unique host names.

When you first install Sun Java System Web Server, a default virtual server is created. You can
also assign a default virtual server to each new HTTP listener you create. For details, see the Sun
Java System Web Server 6.1 SP11 Administrator’s Guide.

Web applications can be hosted under virtual servers.

Default Web Applications
A web application that is deployed in a virtual server at a URI ”/’ becomes the default web
application for that virtual server. For details, see “Virtual Servers” on page 21 virtual server,
point your browser to the URL for the virtual server, but do not supply a context root. For
example:

http://myvirtualserver:3184/

If none of the web applications under a virtual server are deployed at the URI ”/’, the virtual
server serves HTML or JSP content from its document root, which is usually install_dir/docs.
To access this HTML or JSP content, point your browser to the URL for the virtual server, and
do not supply a context root but rather specify the target file. For example:

http://myvirtualserver:3184/hellothere.jsp

Servlet and JSP Caching
The Sun Java System Web Server has the ability to cache servlet or JSP results in order to make
subsequent calls to the same servlet or JSP faster.

The Sun Java System Web Server caches the request results for a specific amount of time. In this
way, if another data call occurs, the Sun Java System Web Server can return the cached data
instead of performing the operation again. For example, if your servlet returns a stock quote
that updates every 5 minutes, you set the cache to expire after 300 seconds.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 37.

For more information about JSP caching, see “JSP Cache Tags” on page 50.

Servlet and JSP Caching

Chapter 1 • Web Applications 21

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

Database Connection Pooling
Database connection pooling enhances the performance of servlet or JSP database interactions.
For more information about JavaTM DataBase Connectivity (JDBCTM), see the Sun Java System
Web Server 6.1 SP11 Administrator’s Guide.

Configuring the Web Container
You can configure logging in the web container for the entire server by:

■ Using the Administration interface. For more information, see the Sun Java System Web
Server 6.1 SP11 Administrator’s Guide.

■ Editing the server.xml file. For more information, see the Sun Java System Web Server 6.1
SP11 Administrator’s Configuration File Reference.

Web Application Samples
Sun Java System Web Server 6.1 includes a set of sample web applications, which can be found
in the following directory:

server_root/plugins/java/samples/webapps/

The directory contains the directories and samples listed in the following table. It also contains
an index.html file that provides more information about configuring and deploying the
samples.

TABLE 1–1 Sample Directories

Directory Contains

caching JSP and servlet examples that demonstrate how to cache results of JSP and
servlet execution.

i18n A basic J2SE web application that demonstrates how to dynamically change
the display language based on user preference.

javamail A servlet that uses the Javamail API to send an email message.

jdbc Java DataBase Connectivity examples in the following directories:
■ blob: A servlet that accesses Binary Large Objects (BLOBs) via JDBC.

■ simple: A basic servlet that accesses an RDBMS via JDBC.

■ transactions: A servlet that uses the transaction API with JDBC to
control a local transaction.

Database Connection Pooling

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200922

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

TABLE 1–1 Sample Directories (Continued)
Directory Contains

jndi Java Naming and Directory InterfaceTM examples in the following
directories:
■ custom: Demonstrates using the custom resource.

■ external: Demonstrates using the external resource.

■ readenv: Demonstrates using the environment entries specified in the
web.xml file.

■ url: A servlet that uses the URL resource facility to access a resource.

jstl Basic examples that demonstrate usage of the JSP Standard Tag Library.

rmi-iiop Basic example that demonstrates using a servlet to access a stateless EJBTM

using RMI/IIOP running in SunTM Java System Application Server 7.

security Security examples in the following directories:
■ basic-auth: Demonstrates how to develop, configure, and exercise

basic authentication.

■ client-cert: Demonstrates how to develop, configure, and exercise
client certificate authentication.

■ form-auth: Demonstrates how to develop, configure, and exercise
form-based authentication.

■ jdbcrealm: Demonstrates how to develop, configure, and exercise
JDBC realm authentication.

simple Basic JSP and servlet examples combined into a single web application
(Tomcat 3.2.2 samples).

You can also deploy these examples using the wdeploy utility. For more information about this
utility, see “Deploying Web Applications” on page 104.

Web Application Samples

Chapter 1 • Web Applications 23

24

Using Servlets

This chapter describes how to create effective servlets to control web application interactions
running on a Sun Java System Web Server, including standard servlets. In addition, this chapter
describes the Sun Java System Web Server features used to augment the standards.

This chapter has the following sections:

■ “About Servlets” on page 25
■ “Creating Servlets” on page 28
■ “Invoking Servlets” on page 35
■ “Servlet Output” on page 37
■ “Caching Servlet Results” on page 37
■ “Maximizing Servlet Performance” on page 42

For information about internationalization issues for servlets, see Appendix A,
Internationalization Issues and Appendix B, Migrating Legacy Servlets.

About Servlets
Servlets, like applets, are reusable Java applications. Servlets, however, run on a Web Server
rather than in a Web Browser.

Servlets provide a component-based, platform-independent method for building web-based
applications, without the performance overheads, process limitations, and platform-specific
liabilities of CGI programs.

Servlets supported by the Sun Java System Web Server are based on the Java Servlet 2.3
specification.

The following list describes the fundamental characteristics of servlets.

Servlets:

■ Are created and managed at runtime by the Sun Java System Web Server servlet engine.

2C H A P T E R 2

25

■ Operate on input data that is encapsulated in a request object.
■ Respond to a query with data encapsulated in a response object.
■ Are extensible.
■ Provide user session information persistence between interactions.
■ Can be dynamically reloaded while the server is running.
■ Are addressable with URLs. Buttons on an application's pages often point to servlets.
■ Can call other servlets and/or JSPs.

This section includes the following topics:

■ “Servlet Data Flow” on page 26
■ “Servlet Types” on page 27

Servlet Data Flow
When a user clicks a Submit button, information entered in a display page is sent to a servlet.
The servlet processes the incoming data and orchestrates a response by generating content.
Once the content is generated, the servlet creates a response page, usually by forwarding the
content to a JSP. The response is sent back to the client, which sets up the next user interaction.

The following illustration shows the information flow to and from the servlet.

▼ To show the servlet data flow

The servlet processes the client request.

The servlet generates content.

The servlet creates a response and either:

a. Sends it back directly to the client

- or -

b. Dispatches the task to a JSP

The servlet remains in memory, available to process another request.

1

2

3

About Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200926

Servlet Types
There are two main servlet types, generic and HTTP:

■ Generic servlets
■ Extend javax.servlet.GenericServlet.
■ Are protocol independent. They contain no inherent HTTP support or any other

transport protocol.
■ HTTP servlets

■ Extend javax.servlet.HttpServlet.
■ Have built-in HTTP protocol support and are more useful in a Sun Java System Web

Server environment.

For both servlet types, you implement the constructor method init() and the
destructor method destroy() to initialize or deallocate resources.

All servlets must implement a service() method, which is responsible for handling
servlet requests. For generic servlets, simply override the service method to provide
routines for handling requests. HTTP servlets provide a service method that
automatically routes the request to another method in the servlet based on which HTTP
transfer method is used. So, for HTTP servlets, override doPost() to process POST
requests, doGet() to process GET requests, and so on.

FIGURE 2–1 Servlet Data Flow Steps

About Servlets

Chapter 2 • Using Servlets 27

Creating Servlets
To create a servlet, perform the following tasks:

■ Design the servlet into your web application, or, if accessed in a generic way, design it to
access no application data.

■ Create a class that extends either GenericServlet or HttpServlet, overriding the
appropriate methods so it handles requests.

■ Use the Sun Java System Web Server Administration interface to create a web application
deployment descriptor. For details, see Chapter 7, Deploying Web Applications.

The rest of this section discusses the following topics:

■ “Creating the Class Declaration” on page 28
■ “Overriding Methods” on page 29
■ “Overriding Initialize” on page 29
■ “Overriding Destroy” on page 29
■ “Overriding Service, Get, and Post” on page 30
■ “Accessing Parameters and Storing Data” on page 31
■ “Handling Sessions and Security” on page 31
■ “Handling Threading Issues” on page 32
■ “Delivering Client Results” on page 33

Creating the Class Declaration
To create a servlet, write a public Java class that includes basic I/O support as well as the package
javax.servlet. The class must extend either GenericServlet or HttpServlet. Since Sun Java
System Web Server servlets exist in an HTTP environment, the latter class is recommended. If
the servlet is part of a package, you must also declare the package name so the class loader can
properly locate it.

The following example header shows the HTTP servlet declaration called myServlet:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class myServlet extends HttpServlet {

...servlet methods...

}

Creating Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200928

Overriding Methods
Override one or more methods to provide servlet instructions to perform its intended task. A
servlet does all the processing on a request-by-request basis and happens in the service
methods, either service() for generic servlets or one of the do Operation() methods for HTTP
servlets. This method accepts incoming requests, processes them according to the instructions
you provide, and directs the output appropriately. You can create other methods in a servlet as
well.

Overriding Initialize
Override the class initializer init() to initialize or allocate resources for the servlet instance's
life, such as a counter. The init() method runs after the servlet is instantiated but before it
accepts any requests. For more information, see the servlet API specification.

Note – All init()methods must call super.init(ServletConfig) to set their scope. This
makes the servlet's configuration object available to other servlet methods. If this call is omitted,
a 500 SC_INTERNAL_SERVER_ERROR displays in the browser when the servlet starts up.

The following example of the init() method initializes a counter by creating a public integer
variable called thisMany:

public class myServlet extends HttpServlet {

int thisMany;

public void init (ServletConfig config) throws ServletException

{

super.init(config);

thisMany = 0;

}

}

Now other servlet methods can access the variable.

Overriding Destroy
Override the class destructor destroy() to write log messages or to release resources that have
been opened in the servlet's life cycle. Resources should be appropriately closed and
dereferenced so that they are recycled or garbage collected. The destroy() method runs just
before the servlet itself is deallocated from memory. For more information, see the servlet API
specification.

Based on the example for “Overriding Initialize” on page 29, the destroy() method could write
a log message like the following:

Creating Servlets

Chapter 2 • Using Servlets 29

out.println("myServlet was accessed " + thisMany " times.\n");

Overriding Service, Get, and Post
When a request is made, the Sun Java System Web Server hands the incoming data to the servlet
engine to process the request. The request includes form data, cookies, session information, and
URL name-value pairs, all in a type HttpServletRequest object called the request object. Client
metadata is encapsulated as a type HttpServletResponse object called the response object. The
servlet engine passes both objects as the servlet's service() method parameters.

The default service() method in an HTTP servlet routes the request to another method based
on the HTTP transfer method (POST, GET, and so on). For example, HTTP POST requests are
routed to the doPost() method, HTTP GET requests are routed to the doGet() method, and so
on. This enables the servlet to perform different request data processing depending on the
transfer method. Since the routing takes place in service(), there is no need to generally
override service() in an HTTP servlet. Instead, override doGet(), doPost(), and so on,
depending on the expected request type.

The automatic routing in an HTTP servlet is based simply on a call to request.getMethod(),
which provides the HTTP transfer method. In a Sun Java System Web Server, request data is
already preprocessed into a name-value list by the time the servlet sees the data, so simply
overriding the service() method in an HTTP servlet does not lose any functionality. However,
this does make the servlet less portable, since it is now dependent on preprocessed request data.

Override the service() method (for generic servlets) or the doGet() or doPost() methods (for
HTTP servlets) to perform tasks needed to answer the request. Very often, this means collating
the needed information (in the request object or in a JDBC result set object), and then passing
the newly generated content to a JSP for formatting and delivery back to the client.

Most operations that involve forms use either a GET or a POST operation, so for most servlets
you override either doGet() or doPost(). Implement both methods to provide for both input
types or simply pass the request object to a central processing method, as shown in the
following example:

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doPost(request, response);

}

All request-by-request traffic in an HTTP servlet is handled in the appropriate doOperation()
method, including session management, user authentication, JSPs, and accessing Sun Java
System Web Server features.

Creating Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200930

If a servlet intends to call the RequestDispatcher method include() or forward(), be aware
the request information is no longer sent as HTTP POST, GET, and so on. In other words, if a
servlet overrides doPost(), it may not process anything if another servlet calls it, if the calling
servlet happens to receive its data through HTTP GET. For this reason, be sure to implement
routines for all possible input types, as explained above. RequestDispatcher methods always
call service().

For more information, see “Calling a Servlet Programmatically” on page 36.

Note – Arbitrary binary data, such as uploaded files or images, can be problematic, because the
web connector translates incoming data into name-value pairs by default. You can program the
web connector to properly handle these kinds of data and package them correctly in the request
object.

Accessing Parameters and Storing Data
Incoming data is encapsulated in a request object. For HTTP servlets, the request object type is
HttpServletRequest. For generic servlets, the request object type is ServletRequest. The
request object contains all request parameters, including your own request values called
attributes.

To access all incoming request parameters, use the getParameter() method. For example:

String username = request.getParameter("username");

Set and retrieve values in a request object using setAttribute() and getAttribute(),
respectively. For example:

request.setAttribute("favoriteDwarf", "Dwalin");

Handling Sessions and Security
From a web server's perspective, a web application is a series of unrelated server hits. There is no
automatic recognition if a user has visited the site before, even if their last interaction was
seconds before. A session provides a context between multiple user interactions by
remembering the application state. Clients identify themselves during each interaction by a
cookie, or, in the case of a cookie-less browser, by placing the session identifier in the URL.

Creating Servlets

Chapter 2 • Using Servlets 31

A session object can store objects, such as tabular data, information about the application's
current state, and information about the current user. Objects bound to a session are available
to other components that use the same session.

For more information, see Chapter 5, Session Managers.

After a successful login, you should direct a servlet to establish the user's identity in a standard
object called a session object. This object holds information about the current session, including
the user's login name and any additional information to retain. Application components can
then query the session object to obtain user authentication.

For more information about providing a secure user session for your application, see Chapter 6,
Securing Web Applications.

Handling Threading Issues
By default, servlets are not thread-safe. The methods in a single servlet instance are usually
executed numerous times simultaneously (up to the available memory limit). Each execution
occurs in a different thread, though only one servlet copy exists in the servlet engine.

This is efficient system resource usage, but is dangerous because of the way Java manages
memory. Because variables belonging to the servlet class are passed by reference, different
threads can overwrite the same memory space as a side effect. To make a servlet (or a block
within a servlet) thread-safe, do one of the following:
■ Synchronize write access to all instance variables, as in public synchronized void method()

(whole method) or synchronized(this) {...} (block only). Because synchronizing slows
response time considerably, synchronize only blocks, or make sure that the blocks in the
servlet do not need synchronization.
For example, this servlet has a thread-safe block in doGet() and a thread-safe method called
mySafeMethod():

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class myServlet extends HttpServlet {

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

//pre-processing

synchronized (this) {

//code in this block is thread-safe

}

//other processing;

Creating Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200932

}

public synchronized int mySafeMethod (HttpServletRequest request)

{

//everything that happens in this method is thread-safe

}

}

■ Use the SingleThreadModel class to create a single-threaded servlet. When a
single-threaded servlet is deployed to the Sun Java System Web Server, the servlet engine
creates a servlet instance pool used for incoming requests (multiple copies of the same
servlet in memory). You can change the number of servlet instances in the pool by setting
the singleThreadedServletPoolSize property in the Sun Java System Web Server-specific
web application deployment descriptor. For more information, see Chapter 7, Deploying
Web Applications. Servlet is slower under load because new requests must wait for a free
instance in order to proceed. In load-balanced applications, the load automatically shifts to a
less busy process.
For example, this servlet is completely single-threaded:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class myServlet extends HttpServlet

implements SingleThreadModel {

servlet methods...

}

Note – If a servlet is specifically written as a single thread, the servlet engine creates a pool of
servlet instances to be used for incoming requests. If a request arrives when all instances are
busy, it is queued until an instance becomes available. The number of pool instances is
configurable in the sun-web.xml file, in the singleThreadedServletPoolSize property of the
sun-web-app element.

Delivering Client Results
The final user interaction activity is to provide a response page to the client. The response page
can be delivered in two ways, as described in the following topics:
■ “Creating a Servlet Response Page” on page 34
■ “Creating a JSP Response Page” on page 34

Creating Servlets

Chapter 2 • Using Servlets 33

Creating a Servlet Response Page
Generate the output page within a servlet by writing to the output stream. The recommended
way to do this depends on the output type.

Always specify the output MIME type using setContentType() before any output commences,
as in this example:

response.setContentType("text/html");

For textual output, such as plain HTML, create a PrintWriter object and then write to it using
println. For example:

PrintWriter output = response.getWriter();

output.println("Hello, World\n");

For binary output, write to the output stream directly by creating a ServletOutputStream
object and then write to it using print(). For example:

ServletOutputStream output = response.getOutputStream();

output.print(binary_data);

Creating a JSP Response Page
Servlets can invoke JSPs in two ways, the include() method and the forward() method:
■ The include() method in the RequestDispatcher interface calls a JSP and waits for it to

return before continuing to process the interaction. The include() method can be called
multiple times within a given servlet.
This example shows a JSP using include():

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("JSP_URI");
dispatcher.include(request, response);

... //processing continues

■ The forward() method in the RequestDispatcher interface hands the JSP interaction
control. The servlet is no longer involved with the current interaction's output after
invoking forward(), thus only one call to the forward() method can be made in a
particular servlet.

Creating Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200934

Note – You cannot use the forward() method if you have already defined a PrintWriter or
ServletOutputStream object.

This example shows a JSP using forward():

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("JSP_URI");
dispatcher.forward(request, response);

Note – Identify which JSP to call by specifying a Universal Resource Identifier (URI). The path is
a String describing a path within the ServletContext scope. There is also a
getRequestDispatcher() method in the request object that takes a String argument
indicating a complete path. For more information about this method, see the Java Servlet 2.3
specification, section 8.

For more information about JSPs, see Chapter 4, Using JavaServer Pages.

Invoking Servlets
You can invoke a servlet by directly addressing it from a Web page with a URL or by calling it
programmatically from an already running servlet, as described in the following sections:

■ “Calling a Servlet with a URL” on page 35
■ “Calling a Servlet Programmatically” on page 36

Calling a Servlet with a URL
You can call servlets by using URLs embedded as links in HTML or JSP pages. The format of
these URLs is as follows:

http://server:port/context_root/servlet/servlet_name?name=value

The following table describes each URL section. The left column lists the URL elements, and the
right column lists descriptions of each URL element.

Invoking Servlets

Chapter 2 • Using Servlets 35

TABLE 2–1 URL Fields for Servlets within a Web Application

URL Element Description

server:port The IP address (or host name) and optional port number.

To access the default web application for a virtual server, specify only this
URL section. You do not need to specify the context_root or servlet_name
unless you also wish to specify name-value parameters.

context_root The context path without the leading “/” at which the web application is
installed.

servlet Only needed if no servlet-mapping is defined in the web.xml file.

servlet_name The servlet-name (or servlet-mapping if defined) as configured in the
web.xml file.

?name=value... Optional servlet name-value parameters.

In this example, leMort is the host name, MortPages is the context root, and calcMortgage is
the servlet name:

http://www.leMort.com/MortPages/servlet/calcMortgage?rate=8.0&per=360&bal=180000

Calling a Servlet Programmatically
First, identify which servlet to call by specifying a URI. This is normally a path relative to the
current application. For example, if your servlet is part of an application with a context root
called OfficeFrontEnd, the URL to a servlet called ShowSupplies from a browser is as follows:

http://server:port/OfficeApp/OfficeFrontEnd/servlet/ShowSupplies?name=value

You can call this servlet programmatically from another servlet in one of two ways, as described
below.

■ To include another servlet's output, use the include() method from the
RequestDispatcher interface. This method calls a servlet by its URI and waits for it to
return before continuing to process the interaction. The include() method can be called
multiple times within a given servlet.
For example:

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/ShowSupplies");
dispatcher.include(request, response);

Invoking Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200936

■ To hand interaction control to another servlet, use the RequestDispatcher interface's
forward() method with the servlet's URI as a parameter.
This example shows a servlet using forward():

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/ShowSupplies");
dispatcher.forward(request, response);

Servlet Output
By default, the System.out and System.err output of servlets is sent to the server log, and
during startup server log messages are echoed to the System.err output. Also by default, on
Windows, there is no console created for the System.err output.

You can change these defaults using the Administration interface. For more information, see
“Setting Error Logging Options” in Chapter 10 of the Sun Java System Web Server 6.1 SP11
Administrator’s Guide.

Caching Servlet Results
The Sun Java System Web Server can cache the results of invoking a servlet, a JSP, or any URL
pattern to make subsequent invocations of the same servlet, JSP, or URL pattern faster. The Sun
Java System Web Server caches the request results for a specific amount of time. In this way, if
another data call occurs, the Sun Java System Web Server can return the cached data instead of
performing the operation again. For example, if your servlet returns a stock quote that updates
every 5 minutes, you set the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, you could cache a high-level report showing demographic data
taken from quiz results that is updated once an hour.

You can define how a Sun Java System Web Server web application handles response caching by
editing specific fields in the sun-web.xml file. In this way, you can create programmatically
standard servlets that still take advantage of this valuable Sun Java System Web Server feature.

For more information about JSP caching, see “JSP Cache Tags” on page 50.

The rest of this section covers the following topics:

■ “Caching Features” on page 38
■ “Default Cache Configuration” on page 38

Caching Servlet Results

Chapter 2 • Using Servlets 37

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

■ “Caching Example” on page 39
■ “CacheHelper Interface” on page 40
■ “CacheKeyGenerator Interface” on page 41

Caching Features
Sun Java System Web Server 6.1 has the following web application response caching
capabilities:

■ Caching is configurable based on the servlet name or the URI.
■ When caching is based on the URI, this includes user-specified parameters in the query

string. For example, a response from /garden/catalog?category=roses is different from a
response from /garden/catalog?category=lilies. These responses are stored under
different keys in the cache.

■ Cache size, entry timeout, and other caching behaviors are configurable.
■ Entry timeout is measured from the time an entry is created or refreshed. You can override

this timeout for an individual cache mapping by specifying the cache-mapping subelement
timeout.

■ You can determine caching criteria programmatically by writing a cache helper class. For
example, if a servlet only knows when a back-end data source was last modified, you can
write a helper class to retrieve the last-modified timestamp from the data source and decide
whether to cache the response based on that timestamp. See “CacheHelper Interface” on
page 40.

■ You can determine cache key generation programmatically by writing a cache key generator
class. See “CacheKeyGenerator Interface” on page 41.

■ All non-ASCII request parameter values specified in cache key elements must be URL
encoded. The caching subsystem attempts to match the raw parameter values in the request
query string.

■ Since newly updated classes impact what gets cached, the web container clears the cache
during dynamic deployment or reloading of classes.

■ The following HttpServletRequest request attributes are exposed:
■ com.sun.appserv.web.cachedServletName, the cached servlet target
■ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

Default Cache Configuration
If you enable caching but do not provide any special configuration for a servlet or JSP, the
default cache configuration is as follows:

■ The default cache timeout is 30 seconds.

Caching Servlet Results

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200938

■ Only the HTTP GET method is eligible for caching.
■ HTTP requests with cookies or sessions automatically disable caching.
■ No special consideration is given to Pragma:, Cache-control:, or Vary: headers.
■ The default key consists of the Servlet Path (minus pathInfo and the query string).
■ A "least recently used" list is maintained to evict cache entries if the maximum cache size is

exceeded.
■ Key generation concatenates the servlet path with key field values, if any are specified.

Caching Example
Here is an example cache element in the sun-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>

<servlet-name>myservlet</servlet name>

<timeout name="timefield">120</timeout>
<http-method>GET</http-method>

<http-method>POST</http-method>

</cache-mapping>

<cache-mapping>

<url-pattern> /catalog/* </url-pattern>

<!-- cache the best selling category; cache the responses to

-- this resource only when the given parameters exist. cache

-- only when the catalog parameter has ’lilies’ or ’roses’

-- but no other catalog varieties:

-- /orchard/catalog?best&category=’lilies’

-- /orchard/catalog?best&category=’roses’

-- but not the result of

-- /orchard/catalog?best&category=’wild’

-->

<constraint-field name=’best’ scope=’request.parameter’/>

<constraint-field name=’category’ scope=’request.parameter’>

<value> roses </value>

<value> lilies </value>

</constraint-field>

<!-- Specify that a particular field is of given range but the

-- field doesn’t need to be present in all the requests -->

<constraint-field name=’SKUnum’ scope=’request.parameter’>

<value match-expr=’in-range’> 1000 - 2000 </value>

</constraint-field>

<!-- cache when the category matches with any value other than

-- a specific value -->

<constraint-field name="category" scope="request.parameter>

Caching Servlet Results

Chapter 2 • Using Servlets 39

<value match-expr="equals" cache-on-match-failure="true">bogus</value>
</constraint-field>

</cache-mapping>

<cache-mapping>

<servlet-name> InfoServlet </servlet name>

<cache-helper-ref>myHelper</cache-helper-ref>

</cache-mapping>

</cache>

For more information about the sun-web.xml caching settings, see “Caching Elements” on
page 130.

CacheHelper Interface
Here is the CacheHelper interface:

package com.sun.appserv.web.cache;

import java.util.Map

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

/** CacheHelper interface is an user-extensible interface to customize:

* a) the key generation b) whether to cache the response.

*/

public interface CacheHelper {

// name of request attributes

public static final String ATTR_CACHE_MAPPED_SERVLET_NAME =

"com.sun.appserv.web.cachedServletName";
public static final String ATTR_CACHE_MAPPED_URL_PATTERN =

"com.sun.appserv.web.cachedURLPattern";
public static final int TIMEOUT_VALUE_NOT_SET = -2;

/** initialize the helper

* @param context the web application context this helper belongs to

* @exception Exception if a startup error occurs

*/

public void init(ServletContext context, Map props) throws Exception;

/** getCacheKey: generate the key to be used to cache this request

* @param request incoming <code>HttpServletRequest</code> object

* @returns the generated key for this requested cacheable resource.

*/

public String getCacheKey(HttpServletRequest request);

/** isCacheable: is the response to given request cacheable?

* @param request incoming <code>HttpServletRequest</code> object

* @returns <code>true</code> if the response could be cached. or

* <code>false</code> if the results of this request must not be cached.

*/

public boolean isCacheable(HttpServletRequest request);

/** isRefreshNeeded: is the response to given request to be refreshed?

Caching Servlet Results

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200940

* @param request incoming <code>HttpServletRequest</code> object

* @returns <code>true</code> if the response needs to be refreshed.

* or return <code>false</code> if the results of this request

* don’t need to be refreshed.

*/

public boolean isRefreshNeeded(HttpServletRequest request);

/** get timeout for the cached response.

* @param request incoming <code>HttpServletRequest</code> object

* @returns the timeout in seconds for the cached response; a return

* value of -1 means the response never expires and a value of -2 indicates

* helper cannot determine the timeout (container assigns default timeout)

*/

public int getTimeout(HttpServletRequest request);

/**

* Stop the helper from active use

* @exception Exception if an error occurs

*/

public void destroy() throws Exception;

}

CacheKeyGenerator Interface
The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom
CacheKeyGenerator implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the
cacheKeyGeneratorAttrName property in the default-helper element of the sun-web.xml
deployment descriptor. For more information, see “default-helper” on page 133.

Here is the CacheKeyGenerator interface:

package com.sun.appserv.web.cache;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

/** CacheKeyGenerator: a helper interface to generate the key that

* is used to cache this request.

*

* Name of the ServletContext attribute implementing the

* CacheKeyGenerator is configurable via a property of the

* default-helper in sun-web.xml:

* <default-helper>

* <property

* name="cacheKeyGeneratorAttrName"
* value="com.acme.web.MyCacheKeyGenerator" />

* </default-helper>

*

Caching Servlet Results

Chapter 2 • Using Servlets 41

* Caching engine looks up the specified attribute in the servlet

* context; the result of the lookup must be an implementation of the

* CacheKeyGenerator interface.

*/

public interface CacheKeyGenerator {

/** getCacheKey: generate the key to be used to cache the

* response.

* @param context the web application context

* @param request incoming <code>HttpServletRequest</code>

* @returns key string used to access the cache entry.

* if the return value is null, a default key is used.

*/

public String getCacheKey(ServletContext context,

HttpServletRequest request);

}

Maximizing Servlet Performance
Consider the following guidelines for improving servlet performance:

■ Increase the Java heap size to help garbage collection. The Java heap size can be defined by
adjusting the values specified to the —Xms and —Xmx jvm- options in server.xml. For
example, <jvm-options>-Xms128m-Xmx256m</jvm-options> sets the minimum Java heap
size to 128 MB and 256 MB. For more information see, Sun Java System Web Server 6.1 SP11
Administrator’s Guide.

■ Sun Java System Web Server 6.1 may occasionally run out of stack space if applications use
deep recursion when a JIT (just-in-time) compiler is enabled, especially on UNIX platforms
where the default stack size is small, or in any cases where very complex JSP pages are used.
You can set the stack space using the StackSize directive in the magnus.conf file. For more
information, see the Sun Java System Web Server 6.1 SP11 NSAPI Programmer’s Guide.

■ Create servlet sessions only if required as the Session ID generator employs
cryptographically unique random number generation algorithms. While sessions are being
created, limit the size of sessions and configure them depending on whether the application
uses short-lived or long-lived sessions. For more information on optimal session
configuration, see “Configuring the Web Application’s Session Settings” in Sun Java System
Web Server 6.1 SP11 Performance Tuning, Sizing, and Scaling Guide.

■ Use servlet cache when possible. For more information, see “Caching Servlet Results” on
page 37.

■ Use precompiled JSPs if the JSPs do not change after deployment to the Web Server. The
precompiled JSPs should include the reload-interval property setting in the jsp-config
element in sun-web.xml. This eliminates time-consuming compilation and periodic
checking by the Web Server.

■ Reduce the number of directories in the classpath.

Maximizing Servlet Performance

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200942

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7655
http://docs.sun.com/doc/820-7656/abyek?a=view
http://docs.sun.com/doc/820-7656/abyek?a=view

■ Disable dynamic reloading.
■ Disable the Java Security Manager.

Maximizing Servlet Performance

Chapter 2 • Using Servlets 43

44

Using JavaServer Pages

This chapter describes how to use JavaServer Pages (JSPs) as page templates in a Sun Java
System Web Server web application.

This chapter has the following sections:

■ “Introducing JSPs” on page 45
■ “Creating JSPs” on page 46
■ “Compiling JSPs: The Command-Line Compiler” on page 47
■ “Debugging JSPs” on page 50
■ “JSP Tag Libraries and Standard Portable Tags” on page 50
■ “JSP Cache Tags” on page 50
■ “JSP Search Tags” on page 54

For information about internationalization issues for JSPs, see Appendix A,
Internationalization Issues.

Introducing JSPs
JSPs are browser pages in HTML or XML. They also contain Java code, which enables them to
perform complex processing, conditionalize output, and communicate with other application
objects. JSPs in Sun Java System Web Server are based on the JSP 1.2 specification.

In a Sun Java System Web Server application, JSPs are the individual pages that make up an
application. You can call a JSP from a servlet to handle the user interaction output. You can also
use a JSP as an interaction destination as JSPs have the same application environment access as
any other application component.

JSPs are made up of JSP elements and template data. Template data is anything not in the JSP
specification, including text and HTML tags. For example, the minimal JSP requires no
processing by the JSP engine and is a static HTML page.

3C H A P T E R 3

45

The Sun Java System Web Server compiles JSPs into HTTP servlets the first time they are called
(or they can be precompiled for better performance). This makes them available to the
application environment as standard objects and enables them to be called from a client using a
URL.

JSPs run inside the server's JSP engine, which is responsible for interpreting JSP-specific tags
and performing the actions they specify in order to generate dynamic content. This content,
along with any template data surrounding it, is assembled into an output page and is returned
to the caller.

Creating JSPs
You create JSPs in basically the same way you create HTML files. You can use an HTML editor
to create pages and edit the page layout. You make a page a JSP by inserting JSP-specific tags
into the raw source code where needed, and by giving the file a .jsp extension.

JSPs that adhere to the JSP 1.2 specification follow XML syntax for the most part, which is
consistent with HTML. For a summary of the JSP tags you can use, see “JSP Tag Libraries and
Standard Portable Tags” on page 50

JSPs are compiled into servlets, so servlet design considerations also apply to JSPs. JSPs and
servlets can perform the same tasks, but each excels at one task at the expense of the other.
Servlets are strong in processing and adaptability. However, performing HTML output from
them involves many cumbersome println statements that must be coded by hand. Conversely,
JSPs excel at layout tasks because they are simply HTML files and can be created with HTML
editors, though performing complex computational or processing tasks with them is awkward.
For information about servlets, see Chapter 3, Using Servlets

Additional JSP design tips are described in the following sections:

■ “Designing for Ease of Maintenance” on page 46
■ “Designing for Portability” on page 47
■ “Handling Exceptions” on page 47

Designing for Ease of Maintenance
Each JSP can call or include any other JSP. For example, you can create a generic corporate
banner, a standard navigation bar, and a left-side column table of contents, where each element
is in a separate JSP and is included for each page built. The page can be constructed with a JSP
functioning as a frameset, dynamically determining the pages to load into each subframe. A JSP
can also be included when the JSP is compiled into a servlet or when a request arrives.

Creating JSPs

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200946

Designing for Portability
JSPs can be completely portable between different applications and different servers. A
disadvantage is that they have no particular application data knowledge, but this is only a
problem if they require that kind of data.

One possible use for generic JSPs is for portable page elements such as navigation bars or
corporate headers and footers, which are meant to be included in other JSPs. You can create a
library of reusable generic page elements to use throughout an application, or even among
several applications.

For example, the minimal generic JSP is a static HTML page with no JSP-specific tags. A slightly
less minimal JSP might contain some Java code that operates on generic data such as printing
the date and time, or that makes a change to the page's structure based on a standard value set in
the request object.

Handling Exceptions
If an uncaught exception occurs in a JSP file, Sun Java System Web Server generates an
exception, usually a 404 or 500 error. To avoid this problem, set the errorPage attribute of the
<%@ page%> tag.

Compiling JSPs: The Command-Line Compiler
Sun Java System Web Server provides the following ways of compiling JSP 1.2-compliant source
files into servlets:

■ JSPs are automatically compiled at runtime.
■ The jspc command-line tool, described in this section, allows you to precompile JSPs at the

command line.

To allow the JSP container to pick up the precompiled JSPs from a JAR file, you must disable
dynamic reloading of JSPs. To do this, set the reload-interval property to -1 in the
jsp-config element of the sun-web.xml file. For more information, see “JSP Elements” on
page 141

The jspc command-line tool is located under install_dir/bin/https/bin (make sure this
directory is in your path). The format of the jspc command is as follows:

jspc [options] file_specifier

The following table shows what file_specifier can be in the jspc command. The left column lists
file specifiers, and the right column lists descriptions of those file specifiers.

Compiling JSPs: The Command-Line Compiler

Chapter 3 • Using JavaServer Pages 47

TABLE 3–1 File Specifiers for the jspc Command

File Specifier Description

files One or more JSP files to be compiled.

-webapp dir A directory containing a web application. All JSPs in the directory and its
subdirectories are compiled. You cannot specify a WAR, JAR, or ZIP file;
you must first extract it to an open directory structure.

The following table shows the basic options for the jspc command. The left column lists the
option, and the right column describes what the option does.

TABLE 3–2 Basic jspc Options

Option Description

-q Enables quiet mode (same as -v0). Only fatal error messages are displayed.

-d dir Specifies the output directory for the compiled JSPs. Package directories are
automatically generated based on the directories containing the
uncompiled JSPs. The default top-level directory is the directory from
which jspc is invoked.

-p name Specifies the name of the target package for all specified JSPs, overriding the
default package generation performed by the -d option.

-c name Specifies the target class name of the first JSP compiled. Subsequent JSPs are
unaffected.

-uribase dir Specifies the URI directory to which compilations are relative. Applies only
to explicitly declared JSP files.

This is the location of each JSP file relative to the uriroot. If this cannot be
determined, the default is /.

-uriroot dir Specifies the root directory against which URI files are resolved. Applies
only to explicitly declared JSP files.

If this option is not specified, all parent directories of the first JSP page are
searched for a WEB-INF subdirectory. The closest directory to the JSP page
that has one is used.

If none of the JSP’s parent directories have a WEB-INF subdirectory, the
directory from which jspc is invoked is used.

-genclass Generates class files in addition to Java files.

Compiling JSPs: The Command-Line Compiler

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200948

The following table shows the advanced options for the jspc command. The left column lists
the option, and the right column describes what the option does.

TABLE 3–3 Advanced jspc Options

Option Description

-v[level] Enables verbose mode. The level is optional; the default is 2. Possible level
values are:
■ 0 - fatal error messages only
■ 1 - error messages only
■ 2 - error and warning messages only
■ 3 - error, warning, and informational messages
■ 4 - error, warning, informational, and debugging messages

-mapped Generates separate write calls for each HTML line and comments that
describe the location of each line in the JSP file. By default, all adjacent
write calls are combined and no location comments are generated.

-die[code] Causes the JVM to exit and generates an error return code if a fatal error
occurs. If the code is absent or unparsable it defaults to 1.

-webinc file Creates partial servlet mappings for the -webapp option, which can be
pasted into a web.xml file.

-webxml file Creates an entire web.xml file for the -webapp option.

-ieplugin class_id Specifies the Java plugin COM class ID for Internet Explorer. Used by the
<jsp:plugin> tags.

-deprecatedjavac Forces compilation of generated servlets using the deprecated
sun.tools.javac.Main.

For example, this command compiles the hello JSP file and writes the compiled JSP under
hellodir:

jspc -d hellodir -genclass hello.jsp

This command compiles all of the JSP files in the web application under webappdir into class
files under jspclassdir:

jspc -d jspclassdir -genclass -webapp webappdir

To use either of these precompiled JSPs in a web application, put the classes under hellodir or
jspclassdir into a JAR file, place the JAR file under WEB-INF/lib, and set the
reload-interval property to -1 in the sun-web.xml file.

Compiling JSPs: The Command-Line Compiler

Chapter 3 • Using JavaServer Pages 49

Package Names Generated by the JSP Compiler
When a JSP is compiled, a package is created for it. The package name starts with _jsps, and
each path name component of the JSP is prefixed with an underscore. For example, the
generated package name for /myjsps/hello.jsp would be _jsps._myjsps.

Other JSP Configuration Parameters
For information about the various JSP configuration parameters, see “jsp-config” on page 141
The JSP compiler uses the default values for parameters that are not included in the file.

Debugging JSPs
When you use Sun Java Studio to debug JSPs, you can set breakpoints in either the JSP code or
the generated servlet code, and you can switch between them and see the same breakpoints in
both.

For information about setting up debugging in Sun Java System Studio, see “Using Sun Java
Studio for Debugging” on page 153.

JSP Tag Libraries and Standard Portable Tags
Sun Java System Web Server supports tag libraries and standard portable tags. For more
information about tag libraries, see the JSP 1.2 specification at:

http://java.sun.com/products/jsp/download.html

For a handy summary of JSP 1.2 tag syntax, see the following PDF file:

http://java.sun.com/products/jsp/syntax/1.2/card12.pdf

JSP Cache Tags
JSP cache tags allow you to cache JSP page fragments within the Java engine. Each can be cached
using different cache criteria. For example, suppose you have page fragments to view stock
quotes, weather information, and so on. The stock quote fragment can be cached for 10
minutes, the weather report fragment for 30 minutes, and so on.

For more information about response caching as it pertains to servlets, see “Caching Servlet
Results” on page 37

JSP caching uses the custom tag library support provided by JSP 1.2. JSP caching is
implemented by a tag library packaged into the install_dir/bin/https/jar/webserv-rt.jar

Debugging JSPs

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200950

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/syntax/1.2/card12.pdf

file, which is always on the server classpath. The sun-web-cache.tld tag description file can be
found in install_dir/bin/https/tlds directory and can be copied into the WEB-INF directory of
your web application.

You can add a taglib mapping in the web.xml of your application as follows:

<taglib>

<taglib-uri>/com/sun/web/taglibs/cache</taglib-uri>

<taglib-location>/WEB-INF/sun-web-cache.tld</taglib-location>

</taglib>

You can then refer to these tags in your JSP files as follows:

<%@ taglib prefix="mypfx" uri="/com/sun/web/taglibs/cache" %>

Subsequently, the cache tags are available as <mypfx:cache> and <mypfx:flush>.

The tags are as follows:

■ “cache” on page 51
■ “flush” on page 53

cache
The cache tag allows you to cache fragments of your JSP pages. It caches the body between the
beginning and ending tags according to the attributes specified. The first time the tag is
encountered, the body content is executed and cached. Each subsequent time it is run, the
cached content is checked to see if it needs to be refreshed and if so, it is executed again, and the
cached data is refreshed. Otherwise, the cached data is served.

Attributes
The following table describes attributes for the cache tag. The left column lists the attribute
name, the middle column indicates the default value, and the right column describes what the
attribute does.

TABLE 3–4 cache Attributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached
entry. The cache key is suffixed to the servlet path to generate a
key to access the cached entry. If no key is specified, a number is
generated according to the position of the tag in the page.

JSP Cache Tags

Chapter 3 • Using JavaServer Pages 51

TABLE 3–4 cache Attributes (Continued)
Attribute Default Description

timeout 60s (optional) The time in seconds after which the body of the tag is
executed and the cache is refreshed. By default, this value is
interpreted in seconds. To specify a different unit of time, add a
suffix to the timeout value as follows: s for seconds, m for
minutes, h for hours, d for days. For example, 2h specifies two
hours.

nocache false (optional) If set to true, the body content is executed and served
as if there were no cache tag. This offers a way to
programmatically decide whether the cached response should be
sent or whether the body must be executed, though the response
is not cached.

refresh false (optional) If set to true, the body content is executed and the
response is cached again. This lets you programmatically refresh
the cache immediately, regardless of the timeout setting.

Example
The following example represents a cached JSP page:

<%@ taglib prefix="mypfx" uri="/com/sun/web/taglibs/cache" %>

<%

String cacheKey = null;

if (session != null)

cacheKey = (String)session.getAttribute("loginId");

// check for nocache

boolean noCache = false;

String nc = request.getParameter("nocache");
if (nc != null)

noCache = "true";

// force reload

boolean reload=false;

String refresh = request.getParameter("refresh");
if (refresh != null)

reload = true;

%>

<mypfx:cache key="<%= cacheKey %>" nocache="<%= noCache %>" refresh="
<%= reload %>" timeout="10m">
<%

String page = request.getParameter("page");
if (page.equals("frontPage") {

// get headlines from database

JSP Cache Tags

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200952

} else {

.....

%>

</mypfx:cache>

<mypfx:cache timeout="1h">
<h2> Local News </h2>

<%

// get the headline news and cache them

%>

</mypfx:cache>

flush
Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no
key is specified, the entire cache is flushed.

Attributes
The following table describes attributes for the flush tag. The left column lists the attribute
name, the middle column indicates the default value, and the right column describes what the
attribute does.

TABLE 3–5 flush Attributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the cached
entry. The cache key is suffixed to the servlet path to generate a
key to access the cached entry. If no key is specified, a number is
generated according to the position of the tag in the page.

Examples
To flush the entry with key="foobar":

<mypfx:flush key="foobar">

To flush the entire cache:

<% if (session != null && session.getAttribute("clearCache") != null) { %>

<mypfx:flush >

<% } %>

JSP Cache Tags

Chapter 3 • Using JavaServer Pages 53

JSP Search Tags
Sun Java System Web Server includes a set of JSP tags that can be used to customize the search
query and search results pages in the search interface. This section describes the tags and how
they’re used. For more information about using the search feature, see the Sun Java System Web
Server 6.1 SP11 Administrator’s Guide.

The search tag library is packaged into the install_dir/bin/https/jar/webserv-rt.jar file,
which is always on the server classpath. The sun-web-search.tld tag description file can be
found in the install_dir/bin/https/tlds directory, and can be copied into the WEB-INF
directory of your web application.

The search tags are as follows:

■ “<searchForm>” on page 54
■ “<CollElem>” on page 55
■ “<collection>” on page 56
■ “<colIItem>” on page 57
■ “<queryBox>” on page 57
■ “<submitButton>” on page 58
■ “<formAction>” on page 59
■ “<formSubmission>” on page 59
■ “<formActionMsg>” on page 60
■ “<Search>” on page 60
■ “<resultIteration>” on page 61
■ “<Item>” on page 61
■ “<resultStat>” on page 62
■ “<resultNav>” on page 62

Note – The Sun Java System Web Server search feature is i18n compliant, and supports multiple
character encoding schemes in the same collection. Custom JSPs that expose search can be in
any encoding.

<searchForm>

Function
Constructs an HTML form that contains default and hidden form elements such as the current
search result index and number of records per page by default. The default names for the form,
index, and number of records are searchform, si, and ns.

JSP Search Tags

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200954

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

Attributes
Name. Specifies the name of the form. The default is searchform. The name of a form is the
identifier for all other tags.

Action. (optional) Specifies the form action.

Method. (optional) Specifies the method of submission, GET or POST. The default is GET.

elemStart. (optional) Specifies the name of the hidden Start element. If not specified, the
default "si" will be used.

Start. (optional) An integer indicating the starting index for displaying the search result. The
default is 1.

elemNumShown. (optional) The name of the nShown element. If not specified, the default "ns" is
used.

numShown. (optional) An integer indicating the number of results to be shown per page. The
value of the attribute will be retrieved by requesting parameter elemNumShown. The default is 10.

Usage
<s1ws:form action="results.jsp" >

...

</s1ws:searchForm>

This creates an HTML form tag <form name="searchform" action="results.jsp"
method="GET"> along with two hidden inputboxes:

■ A hidden inputbox for starting index named "si" with a value from the "si" parameter or
default 1, and

■ A hidden inputbox for number of records per page named "ns" with a value from the ns
parameter or default 20.

<CollElem>

Function
Creates a hidden inputbox or select box, or multiple checkboxes depending on the attribute
input. If there is only one collection, the tag creates a hidden inputbox by default.

Attributes
Name. Specifies the name of the form element created. The default is "c."

items. (optional) A comma-delimited string representing search collections available. The tag
retrieves all collections available on the server if the attribute is empty.

JSP Search Tags

Chapter 3 • Using JavaServer Pages 55

Type. (optional) The type of form element used for displaying collections. Valid options are
hidden, select, and checkbox. If there is only one collection, the default value is hidden else
the default value is checkbox.

Rows. (optional) Represents size if type is select, or number of rows if checkboxes. The default
behavior is to satisfy the Cols attribute first. That is, the collections will be listed in columns as
specified by the Cols attribute.

Cols. Represents number of columns and is only required if type is checkbox. If Cols and Rows

are not specified, the collections will be listed horizontally, that is, in one row.

Defaults. Specifies a comma-delimited string containing 1s or 0s indicating the selection status
of the search collections. An item is selected if 1, and not selected if 0. If there is a form action,
these values will be retrieved from the form elements.

cssClass. (optional) The class name that will be used in every HTML tag created in this tag. This
is particularly useful when the type is checkbox, since an HTML table will be used for the layout.
See the sample code below for details.

Usage
<s1ws:collElem type="checkbox" cols="2" values="1,0,1,0" cssClass="body" >

This creates checkboxes in 2 columns with a default name "c," with the first and third items
selected. Fonts and any other HTML styles are defined in css classes "body," which includes
tr.body, td.body, and input.body.

<collection>

Function
Retrieves the name of search collections on the server, and iterates through and passes each of
them to the collectionitem tag. Users may choose to use this tag along with collection item
tags so they can write their own HTMLs.

Attributes
items. (optional) A comma-delimited string representing the search collections available. The
tag retrieves all collections available on the server if the attribute is empty.

Usage
<table border=0>

<s1ws:collection>

<tr><td><input type=checkbox name="c"

JSP Search Tags

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200956

value="<s1ws:collItem property="name" >">
<s1ws:collItem property="display name" >

</td></tr>

</s1ws:collection>

</table>

The above code will display all collections with checkboxes.

<select name=elementname>

<s1ws:collection>

<option value="<s1ws:collItem property=\"name\" >">
<s1ws:colleItem property="display name" >

</s1ws:collection>

</select>

This iterates through the available collections and passes each item to the collection item tag,
which in turn displays the name and display name of the item.

<colIItem>

Function
Displays the name and label of one collection item. Must be used inside the collection tag.

Attributes
property. Specifies a keyword indicating which property the tag should output. Valid inputs
include name, display name, and description. Default is name.

Usage
<select name=elementname>

<s1ws:collection>

<option value="<s1ws:collItem property=\"name\" >">
<s1ws:collItem property="display name" >

</s1ws:collection>

</select>

This iterates through the available collections and passes each item to the collection item tag,
which in turn displays the name and display name of the item.

<queryBox>

Function
Creates an inputbox.

JSP Search Tags

Chapter 3 • Using JavaServer Pages 57

Attributes
name. (optional) The name of the inputbox. The default is "qt."

default. (optional) The default value for the query box. If the form is submitted, its value will be
set using what has been submitted.

size. (optional) The size of the inputbox. The default is 50.

maxlength. (optional) The maxlength of the inputbox. The default is 50.

cssClass. (optional) The CSS class.

Usage
<s1ws:queryBox size="30" >

This creates an inputbox with default name "qt" and size=30.

<submitButton>

Function
Creates a submit button.

Attributes
name. (optional) The name of the button. The default is "sb."

default. (optional) The default value of the button, which will be "search."

cssClass. (optional) The CSS class name.

style. The CSS style.

image. The optional image for the button.

Usage
<s1ws:submitButton cssClass="navBar" style="padding: 0px; margin: 0px; width: 50px">

This creates a submit button with default name "sb."

JSP Search Tags

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200958

<formAction>

Function
Handles form action. It retrieves all elements on the search form. It validates that there is at least
one collection selected and the query is not empty. After validation, it passes the values on to
search and results tags as parent or through the page context.

Attributes
formId. Specifies the name of the form. If not specified, the default form "searchForm" will be
used.

elemColl. (optional) The name of the Collection element. The default name "c" is used.

elemQuery. (optional) The name of the Start element. The default name "qt" is used.

elemStart. (optional) The name of the Start element. The default name "si" is used.

elemNumShown. (optional) The name of the numShown element. The default name "ns" is used.

Usage
<s1ws:formAction >

<formSubmission>

Function
Tests if the form submission is successful.

Attributes
formId. Specifies the name of the form in question. It must be the same as that for
<formAction>.

success. Indicates if the form submission is successful. The values true or yes represents
successful action. All other inputs will be rendered as failure.

Usage
<s1ws:formSubmission success="true" >

<s1ws:search>

...

</s1ws:formSubmission>

JSP Search Tags

Chapter 3 • Using JavaServer Pages 59

<formActionMsg>

Function
Prints out an error message from formAction, if any.

Attributes
formId. (optional) Specifies the name of the form in question. If not specified, the default id is
"searchForm."

elem. (optional) Specifies the name of the element. Valid inputs are "query" and "collection."
When specified, the tag returns an error message, if any, regarding the element. Otherwise, it
prints out all of the error messages generated.

Usage
<FormActionMsg elem="query">

This tag will display a message "query text not specified" if a query is not submitted.

The message is printed from the form action where the tag is placed.

<Search>

Function
Executes a search query and returns search results. The search tag retrieves a query string and
collection(s) from either a form parent tag or the query and collection attributes. The search
results are saved in the page context with a page or session scope.

Attributes
formId. Specifies the name of the form used for the search. The default form will be used if the
attribute is left empty. If this tag is used without a form, this attribute must be set to provide an
identifier for the resultIterate tag.

Collection. (optional) A comma-delimited string representing collection(s) used for a search. If
there is a form action, this attribute is ignored and the values are retrieved by requesting the
collection element.

Query. (optional) Specifies the query text. If not provided, it is retrieved from the query
element.

Scope. Specifies an integer indicating the scope of the search results. The value 1, which is the
default, indicates page scope, and 2 indicates session scope.

JSP Search Tags

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200960

Usage
<s1ws:search >

This search tag uses the default parameters and executes a search. The search results will be
saved in pageContext with a page scope.

<s1ws:search Collection="col1, col2" Query="Java Web Service" scope="2" >

This search tag will execute a search in col1 and col2 using "Java Web Service" as the query
string. The search results will be saved in pageContext with a session scope.

<resultIteration>

Function
Retrieves the search results from either the parent search tag or the page context. The tag is
responsible for iterating through the results and passing the searchitems to the item tags.

Attributes
formId. Specifies the name of the form associated. The default form will be used if the attribute
is left empty. If this tag is used without a form, this attribute must be set as a reference to the
search tag.

Start. Specifies an integer representing the starting position in the search results. The default is
0. The value is retrieved from the parent <formAction> tag or pageContext, or the parameter
value.

numShown. Specifies an integer indicating the number of results to be shown in one page. The
default is 20. The value is retrieved from the parent <formAction> tag or pageContext.

<Item>

Function
Retrieves a searchitem from the Results parent tag and outputs its properties as specified by
the property attribute.

Attributes
Property. Specifies a case-sensitive string representing field names in a search item, such as title,
number, score, filename, URL, size, and date.

JSP Search Tags

Chapter 3 • Using JavaServer Pages 61

<resultStat>

Function
Returns numbers indicating number of records returned and the range currently displayed.

Attributes
formId. Specifies the name of the form associated. The default form will be used if the attribute
is left empty. If this tag is used without a form, this attribute must be set as a reference to the
search tag.

type. Specifies the type of statistics data. Valid inputs are "start," "end," "range" (for example,
1-20), and "total."

<resultNav>

Function
Creates a navigation bar.

Attributes
formId. Specifies the name of the form associated. The default form will be used if the attribute
is left empty. If this tag is used without a form, this attribute must be set as a reference to the
search tag.

type. Specifies the type of navigation bar. Valid inputs are "full," "previous," and "next." A full
navigation bar looks like this: previous 1 2 3 4 5 6 7 8 9 10 next, where 5 is currently
selected. The number of "page number" links is determined by the "offset" attribute and the
number of pages available.

caption. Only necessary if type is previous or next and the default text is not wanted. Caption
can be any HTML.

offset. Specifies the number of page links around the selected page. For example, if offset=2,
the sample bar above would look like this: previous 3 4 5 6 7 next . Only required for type
"full."

JSP Search Tags

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200962

Session Managers

Session objects maintain state and user identity across multiple page requests over the normally
stateless HTTP protocol. A session persists for a specified period of time, across more than one
connection or page request from the user. A session usually corresponds to one user, who may
visit a site many times. The server can maintain a session either by using cookies or by rewriting
URLs. Servlets can access the session objects to retrieve state information about the session.

This chapter describes sessions and session managers, and has the following sections:
■ “Introducing Sessions” on page 63
■ “How to Use Sessions” on page 65
■ “Session Managers” on page 69

Introducing Sessions
The term user session refers to a series of user application interactions that are tracked by the
server. Sessions are used for maintaining user specific state, including persistent objects (such as
handles to database result sets) and authenticated user identities, among many interactions. For
example, a session could be used to track a validated user login followed by a series of directed
activities for a particular user.

The session itself resides in the server. For each request, the client transmits the session ID in a
cookie or, if the browser does not allow cookies, the server automatically writes the session ID
into the URL.

The Sun Java System Web Server supports the servlet standard session interface, called
HttpSession, for all session activities. This interface enables you to write portable, secure
servlets.

This section includes the following topics:
■ “Sessions and Cookies” on page 64
■ “Sessions and URL Rewriting” on page 64

4C H A P T E R 4

63

■ “Sessions and Security” on page 64

Note – As of Sun Java System Web Server 6.1, form-login sessions are no longer supported. You
can use single sign-on sessions instead.

Sessions and Cookies
A cookie is a small collection of information that can be transmitted to a calling browser, which
retrieves it on each subsequent call from the browser so that the server can recognize calls from
the same client. A cookie is returned with each call to the site that created it, unless it expires.

Sessions are maintained automatically by a session cookie that is sent to the client when the
session is first created. The session cookie contains the session ID, which identifies the client to
the browser on each successive interaction. If a client does not support or allow cookies, the
server rewrites the URLs where the session ID appears in the URLs from that client.

You can configure whether and how sessions use cookies. See “session-properties” on page 124
and “cookie-properties” on page 125 elements in the sun-web.xml file, described in Chapter 7,
Deploying Web Applications.

Sessions and URL Rewriting
There are two situations in which the Sun Java System Web Server plugin performs implicit
URL rewriting:

■ When a response comes back from the Sun Java System Web Server. If implicit URL
rewriting has been chosen, the plugin rewrites the URLs in the response before passing the
response to the client.

■ When the request given by a client need not be sent to the Sun Java System Web Server and
can be served on the web server side. Such requests may occur in the middle of a session and
the response may need to be rewritten.

You can configure whether sessions use URL rewriting. See the “session-properties” on page 124
element in the sun-web.xml file, described in Chapter 7, Deploying Web Applications.

Sessions and Security
The Sun Java System Web Server security model is based on an authenticated user session. Once
a session has been created, the application user is authenticated (if authentication is used) and
logged in to the session. Each interaction step from the servlet that receives a request does two
things: generates content for a JSP to format the output, and checks if the user is properly
authenticated.

Introducing Sessions

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200964

Additionally, you can specify that a session cookie is only passed on a secured connection (that
is, HTTPS), so the session can only remain active on a secure channel.

For more information about security, see Chapter 6, Securing Web Applications.

How to Use Sessions
To use a session, first create a session using the HttpServletRequest method getSession().
Once the session is established, examine and set its properties using the provided methods. If
desired, set the session to time out after being inactive for a defined time period, or invalidate it
manually. You can also bind objects to the session, which store them for use by other
components.

This section includes the following topics:

■ “Creating or Accessing a Session” on page 65
■ “Examining Session Properties” on page 66
■ “Binding Data to a Session” on page 67
■ “Invalidating a Session” on page 68

Creating or Accessing a Session
To create a new session or gain access to an existing session, use the HttpServletRequest
method getSession(), as shown in the following example:

HttpSession mySession = request.getSession();

getSession() returns the valid session object associated with the request, identified in the
session cookie that is encapsulated in the request object. Calling the method with no arguments
creates a session if one does not exist that is associated with the request. Additionally, calling the
method with a Boolean argument creates a session only if the argument is true.

The following example shows the doPost() method from a servlet that only performs the
servlet's main functions, if the session is present. Note that the false parameter to getSession()

prevents the servlet from creating a new session if one does not already exist:

public void doPost (HttpServletRequest req, HttpServletResponse

res) throws ServletException, IOException

{

if (HttpSession session = req.getSession(false)) {

// session retrieved, continue with servlet operations

}

else{

// no session, return an error page

How to Use Sessions

Chapter 4 • Session Managers 65

}

}

Note – The getSession() method should be called before anything is written to the response
stream.

For more information about getSession(), see the Java Servlet 2.3 specification.

Examining Session Properties
Once a session ID has been established, use the methods in the HttpSession interface to
examine session properties, and the methods in the HttpServletRequest interface to examine
request properties that relate to the session.

The following table shows the methods used to examine session properties. The left column lists
HttpSession methods, and the right column lists descriptions of these methods.

TABLE 4–1 HttpSession Methods

HttpSession Method Description

getCreationTime() Returns the session time in milliseconds since January 1, 1970, 00:00:00
GMT.

getId() Returns the assigned session identifier. An HTTP session's identifier is a
unique string that is created and maintained by the server.

getLastAccessedTime() Returns the last time the client sent a request carrying the assigned session
identifier (or -1 if it’s a new session) in milliseconds since January 1, 1970,
00:00:00 GMT.

isNew() Returns a Boolean value indicating if the session is new. It’s a new session if
the server has created it and the client has not sent a request to it. This
means the client has not acknowledged or joined the session and may not
return the correct session identification information when making its next
request.

For example:

String mySessionID = mySession.getId();

if (mySession.isNew()) {

log.println(currentDate);

log.println("client has not yet joined session " + mySessionID);

}

How to Use Sessions

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200966

The following table shows the methods used to examine servlet request properties. The left
column lists HttpServletRequest methods, and the right column lists descriptions of these
methods.

TABLE 4–2 HttpServletRequest Methods

HttpServletRequest Method Description

getRequestedSessionId() Returns the session ID specified with the request. This may differ
from the session ID in the current session if the session ID given by
the client is invalid and a new session was created. Returns null if the
request does not have a session associated with it.

isRequestedSessionIdValid() Checks if the request is associated to a currently valid session. If the
session requested is not valid, it is not returned through the
getSession() method.

isRequestedSessionIdFromCookie() Returns true if the request's session ID provided by the client is a
cookie, or false otherwise.

isRequestedSessionIdFromURL() Returns true if the request's session ID provided by the client is a
part of a URL, or false otherwise.

For example:

if (request.isRequestedSessionIdValid()) {

if (request.isRequestedSessionIdFromCookie()) {

// this session is maintained in a session cookie

}

// any other tasks that require a valid session

} else {

// log an application error

}

Binding Data to a Session
You can bind objects to sessions to make them available across multiple user interactions.

The following table shows the HttpSession methods that provide support for binding objects
to the session object. The left column lists HttpSession methods, and the right column lists
descriptions of these methods.

How to Use Sessions

Chapter 4 • Session Managers 67

TABLE 4–3 HttpSession Methods

HttpSession Method Description

getAttribute() Returns the object bound to a given name in the session, or null if there is no
such binding.

getAttributeNames() Returns an array of names of all attributes bound to the session.

setAttribute() Binds the specified object into the session with the given name. Any existing
binding with the same name is overwritten. For an object bound into the
session to be distributed it must implement the serializable interface.

removeAttribute() Unbinds an object in the session with the given name. If there is no object
bound to the given name, this method does nothing.

Binding Notification with HttpSessionBindingListener
Some objects require you to know when they are placed in or removed from a session. To obtain
this information, implement the HttpSessionBindingListener interface in those objects.
When your application stores or removes data with the session, the servlet engine checks
whether the object being bound or unbound implements HttpSessionBindingListener. If it
does, the Sun Java System Web Server notifies the object under consideration, through the
HttpSessionBindingListener interface, that it is being bound into or unbound from the
session.

Invalidating a Session
Direct the session to invalidate itself automatically after being inactive for a defined time period.
Alternatively, invalidate the session manually with the HttpSession method invalidate().

Invalidating a Session Manually
To invalidate a session manually, simply call the following method:

session.invalidate();

All objects bound to the session are removed.

Setting a Session Timeout
Session timeout is set using the session-timeout element in the web.xml deployment
descriptor file. For more information, see the Java Servlet 2.3 specification.

How to Use Sessions

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200968

Session Managers
A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

In compliance with the Java Servlet 2.3 API specification, session managers allow for session
scoping only by web application.

To successfully restore the state of session attributes, all such attributes must implement the
java.io.Serializable interface. You can configure the session manager to enforce this
restriction by including the distributable element in the web application deployment
descriptor file, web.xml.

Sun Java System Web Server 6.1 provides the following session management options, which are
described in this section:
■ “StandardManager” on page 69, the default session manager
■ “PersistentManager” on page 70, a provided session manager that uses a persistent data store
■ “IWSSessionManager” on page 72, a provided session manager that allows backward

compatibility with any custom session managers you may have created using Sun Java
System Web Server 6.0

■ “MMapSessionManager (UNIX Only)” on page 78, a provided persistent memory map
(mmap) file-based session manager that works in both single-process and multi-process
mode

Note – The session manager interface is unstable. An unstable interface may be experimental or
transitional, and thus may change incompatibly, be removed, or be replaced by a more stable
interface in the next release.

StandardManager
The StandardManager is the default session manager.

Enabling StandardManager
You may want to specify StandardManager explicitly to change its default parameters. To do so,
edit the sun-web.xml file for the web application as in the following example. Note that
persistence-type must be set to memory.

<sun-web-app>

...

<session-config>

Session Managers

Chapter 4 • Session Managers 69

<session-manager persistence-type=”memory”>

<manager-properties>

<property name="reapIntervalSeconds" value="20" >

</manager-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

For more information about the sun-web.xml file, Chapter 7, Deploying Web Applications.

Manager Properties for StandardManager
The following table describes manager-properties properties for the StandardManager
session manager. The left column lists the property name, the middle column indicates the
default value, and the right column describes what the property does.

TABLE 4–4 manager-properties Properties for StandardManager

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed web
site, or you could lose the last few hits each time you
restart the server.

maxSessions -1 Specifies the maximum number of active sessions,
or -1 (the default) for no limit.

sessionFilename SESSIONS Specifies the absolute or relative path name of the
file in which the session state is preserved between
application restarts, if preserving the state is
possible. A relative path name is relative to the
temporary directory for this web application.

PersistentManager
The PersistentManager is another session manager provided with Sun Java System Web Server.
For session persistence, PersistentManager can use a file, to which each session is serialized. You
can also create your own persistence mechanism.

Session Managers

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200970

Enabling PersistentManager
You may want to specify PersistentManager explicitly to change its default parameters. To do
so, edit the sun-web.xml file for the web application as in the following example. Note that
persistence-type must be set to file.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”file”>

<manager-properties>

<property name=reapIntervalSeconds value=20 >

</manager-properties>

<store-properties>

<property name=directory value=sessions >

</store-properties>

</session-manage>

...

</session-config>

...

</sun-web-app>

For more information about the sun-web.xml file, Chapter 7, Deploying Web Applications.

Manager Properties for PersistentManager
The following table describes manager-properties properties for the PersistentManager
session manager. The left column lists the property name, the middle column indicates the
default value, and the right column describes what the property does.

TABLE 4–5 manager-properties Properties for PersistentManager

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed web
site, or you could lose the last few hits each time you
restart the server.

maxSessions -1 Specifies the maximum number of active sessions,
or -1 (the default) for no limit.

Session Managers

Chapter 4 • Session Managers 71

IWSSessionManager
The IWSSessionManager ensures backward compatibility with any custom session managers
that you may have created on Sun Java System Web Server 6.0.

IWSSessionManager works in both single-process and multi-process mode. It can be used for
sharing session information across multiple processes possibly running on different machines.
The MaxProcs directive in the magnus.conf file determines whether the server is running in
single-process or multi-process mode.

Note – If the value of MaxProcs is higher than 1 and no session manager is configured, then by
default the session manager used is the IWSSessionManager with file-based persistence.

For more information on the MaxProcs directive, see the Sun Java System Web Server 6.1 SP11
NSAPI Programmer’s Guide.

For session persistence, IWSSessionManager can use a database or a distributed file system
(DFS) path that is accessible from all servers in a server farm. Each session is serialized to the
database or distributed file system. You can also create your own persistence mechanism.

If Sun Java System Web Server is running in single-process mode, then by default, no session
persistence mode is defined and therefore sessions are not persistent.

If Sun Java System Web Server is running in multi-process mode, sessions are persistent by
default. If a persistence mode is not defined, IWSSessionManager uses a DFS.

Multi-process mode is supported only on UNIX platforms. All multi-process mode features of
IWSSessionManager are ignored on Windows.

Enabling IWSSessionManager
You may want to enable IWSSessionManager to change its default parameters. You can also
enable IWSSessionManager for a particular context if the server is running in single-process
mode. To do so, edit the sun-web.xml file for the web application as in the following example.
Note that persistence-type must be set to s1ws60.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”s1ws60”>

<manager-properties>

<property name=”classname” value=”com.iplanet.server.http.

session.IWSSessionManager”>

// other manager-related properties

</manager-properties>

Session Managers

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200972

http://docs.sun.com/doc/820-7655
http://docs.sun.com/doc/820-7655

</session-manager>

...

</session-config>

...

</sun-web-app>

In the case of persistent sessions:

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”s1ws60”>

<manager-properties>

<property name=”classname” value=”com.iplanet.server.http.

session.IWSSessionManager”>

// other manager-related properties

</manager-properties>

<store-properties>

<property name=”classname” value=”com.iplanet.server.http.

session.FileStore”>

<property name=”directory” value=”<directory name to

store the persistant sessions>”>

// other store-related properties

</store-properties>

</session-manager>

...

</session-config>

...

</sun-web-app>

For more information about the sun-web.xml file, Chapter 7, Deploying Web Applications.

Manager Properties for IWSSessionManager
The following table describes manager-properties properties for the IWSSessionManager
session manager. The left column lists the property name, the middle column indicates the
default value, and the right column describes what the property does.

TABLE 4–6 manager-properties Properties for IWSSessionManager

Property Name Default Value Description

maxSessions 1000 The maximum number of sessions maintained
by the session manager at any given time. The
session manager refuses to create any more new
sessions if there are already maxSessions
number of sessions present at that time.

Session Managers

Chapter 4 • Session Managers 73

TABLE 4–6 manager-properties Properties for IWSSessionManager (Continued)
Property Name Default Value Description

timeOut 1800 The amount of time in seconds after a session is
accessed by the client before the session
manager destroys it. Those sessions that haven’t
been accessed for at least timeOut seconds are
destroyed by the reaper method.

If session-timeout is specified in web.xml, it
overrides this timeOut parameter value.

reapInterval 600 The amount of time in seconds that the
SessionReaper thread sleeps before calling the
reaper method again.

maxLocks 10 The number of cross-process locks to use for
synchronizing access to individual sessions
across processes. The default value is used if the
value 0 is specified. This parameter is ignored in
single-process mode.

session-data-store The name of the class that determines the means
of session persistence. The classes supplied with
Sun Java System Web Server are:
■ com.iplanet.server.http.session.JdbcStore

■ com.iplanet.server.http.session.FileStore

If you do not specify the
session-data-store parameter, sessions
are not persistent in single-process mode,
and FileStore is the default in
multi-process mode.
The JdbcStore and FileStore classes are
subclasses of the session-data-store class.
You can create your own class that
implements session persistence by
extending SessionDataStore.

session-failover-enabled Specifies whether sessions are reloaded from the
persistent store for every request, and always
forced to true in multi-process mode.

Applicable only if the session-data-store
parameter is set to the JdbcStore or FileStore
class.

Session Managers

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200974

TABLE 4–6 manager-properties Properties for IWSSessionManager (Continued)
Property Name Default Value Description

session-data-dir (this should all be on one
line)

server_root/server_id

/SessionData/virtual_

server_id/web_app_URI

The directory in which session data for all
servers and web applications is kept.

Applicable only if the session-data-store
parameter is set to the FileStore class.

provider The JDBC driver (the default is
sun.jdbc.odbc.JdbcOdbcDriver). For more
information about the JDBC API, see the
following web site:

http://java.sun.com/

products/jdbc/index.jsp

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

url jdbc:odbc:LocalServer Specifies the data source.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

table sessions Name of the SQL table that store sessions.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

username none The login user name for the database.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

password none The login password for the database.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

reaperActive true Tells the session manager whether to run session
reaper to remove expired sessions from the
database when true, which is the default value.
It is recommended that only one server in the
cluster be running the reaper.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

Session Managers

Chapter 4 • Session Managers 75

http://java.sun.com/products/jdbc/index.jsp
http://java.sun.com/products/jdbc/index.jsp

TABLE 4–6 manager-properties Properties for IWSSessionManager (Continued)
Property Name Default Value Description

accessTimeColumn AccessTime The name of the column that holds the last
access time in minutes. The SQL type is
NUMERIC(9).

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

timeOutColumn TimeOut The name of the column that holds the session
timeout in minutes. The SQL type is
NUMERIC(9).

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

sessionIdColumn SessionID The name of the column that holds the session
ID. The SQL type is VARCHAR(100).

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

valueColumn Value The name of the column that holds the session
object. The SQL type is VARBINARY(4096).
This column must be large enough to
accommodate all of your session data.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

lookupPool 4 The number of dedicated connections that
perform search operations on the database. Each
of these connections would have a precompiled
SQL statement for higher performance.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

insertPool 4 The number of dedicated connections that
perform insert operations on the database. Each
of these connections would have a precompiled
SQL statement for higher performance.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

Session Managers

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200976

TABLE 4–6 manager-properties Properties for IWSSessionManager (Continued)
Property Name Default Value Description

updatePool 4 The number of dedicated connections that
perform update operations on the database.
Each of these connections would have a
precompiled SQL statement for higher
performance.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

deletePool 2 The number of dedicated connections that
perform delete operations on the database. Each
of these connections would have a precompiled
SQL statement for higher performance.

Applicable only if the session-data-store
parameter is set to the JdbcStore class.

Note –

■ Prior to using JdbcStore, you must create the table in which the session information is
stored. The name of the table is specified by the table parameter, and the table’s four
columns are specified by the accessTimeColumn, timeOutColumn, sessionIdColumn, and
valueColumn parameters.

■ FileStore, JdbcStore, IWSSessionManager, IWSHttpSession, IWSHttpSessionManager,
and SessionDataStore have been deprecated in Sun Java System Web Server 6.1.

Source Code for IWSSessionManager
The IWSSessionManager creates an IWSHttpSession object for each session. The source files
for IWSSessionManager.java and IWSHttpSession.java are in the
server_root/plugins/java/apis directory. The source code files for IWSSessionManager.java
and IWSHttpSession.java are provided so you can use them as the starting point for defining
your own session managers and session objects.

IWSSessionManager extends IWSHttpSessionManager. The class file for
IWSHttpSessionManager is in the JAR file webserv-rt.jar in the directory
server_root/bin/https/jar. The IWSSessionManager implements all of the methods in
IWSHttpSessionManager that need to be implemented, so you can use IWSSessionManager as
an example of how to extend IWSHttpSessionManager. When compiling your subclass of
IWSSessionManager or IWSHttpSessionManager, be sure that the JAR file webserv-rt.jar is
in your compiler’s classpath.

Session Managers

Chapter 4 • Session Managers 77

The JdbcStore.java and FileStore.java source files and the source file for the parent class,
SessionDataStore.java, are provided so you can modify the session persistence mechanism
of IWSSessionManager. These files are also located in the directory
server_root/plugins/java/apis directory.

MMapSessionManager (UNIX Only)
This is a persistent memory map (mmap) file-based session manager that works in both
single-process and multi-process mode.

The MaxProcs directive in the magnus.conf file determines whether the server is running in
single-process or multi-process mode. For more information, see the Sun Java System Web
Server 6.1 SP11 NSAPI Programmer’s Guide.

Enabling MMapSessionManager
You may want to enable MMapSessionManager to change its default parameters. You can also
enable MMapSessionManager for a particular context if the server is running in single-process
mode. To do so, edit the sun-web.xml file for the web application as in the following example.
Note that persistence-type must be set to mmap.

<sun-web-app>

...

<session-config>

<session-manager persistence-type=”mmap”>

...

</session-manager>

...

</session-config>

...

</sun-web-app>

For more information about the sun-web.xml file, see Chapter 7, Deploying Web Applications

Manager Properties for MMapSessionManager
The following table describes manager-properties properties for the MMapSessionManager
session manager. The left column lists the property name, the middle column indicates the
default value, and the right column describes what the property does.

Session Managers

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200978

http://docs.sun.com/doc/820-7655
http://docs.sun.com/doc/820-7655

TABLE 4–7 manager-properties Properties for MMapSessionManager

Property Name Default Value Description

maxSessions 1000 The maximum number of sessions maintained by
the session manager at any given time. The session
manager refuses to create any more new sessions if
there are already maxSessions number of sessions
present at that time.

maxValuesPerSession 10 The maximum number of values or objects a session
can hold.

maxValueSize 4096 The maximum size of each value or object that can
be stored in the session.

timeOut 1800 The amount of time in seconds after a session is last
accessed by the client before the session manager
destroys it. Those sessions that haven’t been
accessed for at least timeOut seconds are destroyed
by the reaper method.

If session-timeout is specified in web.xml, it
overrides this timeOut parameter value.

reapInterval 600 The amount of time in seconds that the
SessionReaper thread sleeps before calling the
reaper method again.

maxLocks 1 The number of cross-process locks to use for
synchronizing access to individual sessions across
processes. The default value is used if the value 0 is
specified. This parameter is ignored in
single-process mode.

Note – The MMapSessionManager can only store objects that implement
java.io.Serializable.

Session Managers

Chapter 4 • Session Managers 79

80

Securing Web Applications

This chapter describes the basic goals and features of Sun Java System Web Server 6.1 security,
and describes how to write secure web applications containing components that perform user
authentication and access authorization tasks. Since it is helpful to have a basic understanding
of security responsibilities and terminology, the beginning of the chapter discusses those topics.

This chapter has the following sections:

■ “Sun Java System Web Server Security Goals” on page 81
■ “Security Responsibilities Overview” on page 82
■ “Common Security Terminology” on page 83
■ “Sun Java System Web Server-specific Security Features” on page 85
■ “User Authentication by Servlets” on page 88
■ “User Authentication for Single Sign-on” on page 90
■ “User Authorization by Servlets” on page 92
■ “Fetching the Client Certificate” on page 93
■ “Realm Configuration” on page 93
■ “Programmatic Login” on page 98
■ “Enabling the Java Security Manager” on page 100
■ “The server.policy File” on page 100
■ “For More Information” on page 102

Sun Java System Web Server Security Goals
In an enterprise computing environment there are many security risks. The goal of Sun Java
System Web Server is to provide highly secure, interoperable, and distributed component
computing based on the J2SE security model. The security goals for Sun Java System Web
Server include the following:

■ Full compliance with the Java Servlet 2.3 security model. This includes servlet role-based
authorization. For more information, see the Security chapter in the Java Servlet 2.3
specification, which can be downloaded from:

5C H A P T E R 5

81

http://java.sun.com/products/servlet/download.html

■ Support for single sign-on across all Sun Java System Web Server applications within a
single security domain.

■ Support for several underlying authentication realms, such as simple file and LDAP.
Certificate authentication is also supported for SSL client authentication. For Solaris, OS
platform authentication is supported in addition to these.

■ Support for declarative security via Sun Java System Web Server-specific XML-based role
mapping.

■ Support for Java policy (Security Manager) enforcement.

The Sun Java System Web Server 6.1 Administrator’s Guide also contains detailed information
about J2SE-based security.

Security Responsibilities Overview
Before delving into the specific security features of Sun Java System Web Server, it is helpful to
first understand responsibilities pertaining to security. This section provides that overview.

A J2SE platform's primary goal is to isolate the developer from the security mechanism details
and facilitate a secure application deployment in diverse environments. This goal is addressed
by providing mechanisms for the application security specification requirements declaratively
and outside the application.

When developing applications for Sun Java System Web Server, it is necessary to decide
whether your application should use the traditional Sun Java System Web Server native ACL
subsystem or the J2SE/Servlet access control model. For guidelines on how to make this
decision, see the Sun Java System Web Server 6.1 SP11 Administrator’s Guide.

The roles described in this section apply to the J2SE/Servlet model and are described in more
detail in the J2SE specification:

■ “Application Developer” on page 82
■ “Application Assembler” on page 83
■ “Application Deployer” on page 83

Application Developer
The application developer is responsible for the following:

■ Specifying application roles.
■ Defining role-based access restrictions for the application components (servlets and JSPs

components).

Security Responsibilities Overview

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200982

http://java.sun.com/products/servlet/download.html
http://docs.sun.com/doc/820-7651

■ If programmatic security is used, verifying the user roles and authorizing access to features
based on these roles. (Programmatic security management is discouraged because it
hard-codes the security login in the application instead of allowing the containers to manage
it.)

Application Assembler
The application assembler or application component provider must identify all security
dependencies embedded in a component, including:

■ All role names used by the components that call isUserInRole.
■ References to all external resources accessed by the components.
■ References to all intercomponent calls made by the component.

Application Deployer
The application deployer takes all component security views provided by the assembler and
uses them to secure a particular enterprise environment in the application, including:

■ Assigning users or groups (or both) to security roles.
■ Refining the privileges required to access component methods to suit the requirements of

the specific deployment scenario.

Common Security Terminology
Before getting into the specific security features and capabilities of Sun Java System Web Server,
it is helpful to have a basic understanding of the common security terminology used throughout
this chapter. This section provides that overview.

The most common security processes are authentication, authorization, realm assignment, and
role mapping. The following sections define this and other common security terminology:

■ “Authentication” on page 84
■ “Authorization” on page 84
■ “Realms” on page 84
■ “J2SE Application Role Mapping” on page 84
■ “Container Security” on page 85

Common Security Terminology

Chapter 5 • Securing Web Applications 83

Authentication
Authentication verifies the user. For example, the user may enter a user name and password in a
web browser, and if those credentials match the permanent profile stored in the active realm,
the user is authenticated. The user is associated with a security identity for the remainder of the
session.

Authorization
Authorization permits a user to perform the desired operations, after being authenticated. For
example, a human resources application may authorize managers to view personal employee
information for all employees, but allow employees to view only their own personal
information.

Realms
A realm, also called a security policy domain or a security domain in the J2SE specification, is a
scope over which a common security policy is defined and enforced by the security
administrator of the security service. Supported realms in Sun Java System Web Server are
file, ldap, certificate, solaris, custom, and nativerealm. For more information about
supported realms, see “Realm Configuration” on page 93.

J2SE Application Role Mapping
In the J2SE/Servlet security model, a client may be defined in terms of a security role. For
example, a company might use its employee database to generate both a company-wide phone
book application and payroll information. Obviously, while all employees might have access to
phone numbers and email addresses, only some employees would have access to the salary
information. Employees with the right to view or change salaries might be defined as having a
special security role.

A role is different from a user group in that a role defines a function in an application, while a
group is a set of users who are related in some way. For example, members of the groups
astronauts, scientists, and (occasionally) politicians all fit into the role of
SpaceShuttlePassenger.

In Sun Java System Web Server, roles correspond to users or groups (or both) configured in the
active realm.

Common Security Terminology

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200984

Container Security
The component containers are responsible for providing J2SE application security. Two
security forms are provided by the container, as discussed below: programmatic security and
declarative security.

Programmatic Security
Programmatic security is when a servlet uses method calls to the security API, as specified by
the J2SE security model, to make business logic decisions based on the caller or remote user's
security role. Programmatic security should only be used when declarative security alone is
insufficient to meet the application's security model.

The J2SE 1.3 specification defines programmatic security with respect to servlets as consisting
of two methods of the servlet HttpServletRequest interface. Sun Java System Web Server
supports these interfaces as defined in the specification.

In addition to the programmatic security defined in the J2SE specifications, Sun Java System
Web Server also supports programmatic login. For more information, see “Programmatic
Login” on page 98.

Declarative Security
Declarative security means that the security mechanism for an application is declared and
handled external to the application. Deployment descriptors describe the J2SE application's
security structure, including security roles, access control, and authentication requirements.

Sun Java System Web Server supports the DTDs specified by the J2SE 1.3 specification, and has
additional security elements included in its own deployment descriptors. Declarative security is
the application deployer's responsibility.

Sun Java System Web Server-specific Security Features
In addition to supporting the J2SE 1.3 security model, Sun Java System Web Server also
supports the following features that are specific to the Web Server:

■ Single sign-on across all Sun Java System Web Server applications within a single security
domain.

■ Programmatic login.
■ The parallel Access Control List (ACL)-based security model, in addition to the J2SE/Servlet

security model.
■ Support for secure ACL-based Java web applications, in addition to native content.

This section discusses the following:

Sun Java System Web Server-specific Security Features

Chapter 5 • Securing Web Applications 85

■ “Sun Java System Web Server Security Model” on page 86
■ “Web Application and URL Authorizations” on page 88

Sun Java System Web Server Security Model
Secure applications require a client to be authenticated as a valid application user and have
authorization to access servlets and JSPs.

Applications with a secure web container may enforce the following security processes for
clients:
■ Authenticate the caller
■ Authorize the caller for access to each servlet/JSP based on the applicable access control

configuration

Authentication is the process of confirming an identity. Authorization means granting access to
a restricted resource to an identity, and access control mechanisms enforce these restrictions.
Authentication and authorization can be enforced by a number of security models and services.

Sun Java System Web Server 6.1 provides authentication and authorization support through the
following mechanisms, which are discussed in this section:
■ ACL-based authentication and authorization
■ J2SE/Servlet-based authentication and authorization

Whether performed by the ACL subsystem or the J2SE/Servlet authentication subsystem,
authentication and authorization are still the two fundamental operations that define secure
web content.

ACL-based Authentication and Authorization
ACL-based access control is described at length in the Sun Java System Web Server 6.1
Administrator’s Guide. This section provides a brief overview of the key concepts.

Sun Java System Web Server 6.1 supports authentication and authorization through the use of
locally stored access control lists (ACLs), which describe what access rights a user has for a
resource. For example, an entry in an ACL can grant a user named John read permission to a
particular folder named misc:

acl "path=/export/user/990628.1/docs/misc/";
authenticate (user,group) {

database = "default";
method = "basic";

};

deny (all)

(user = "John");

Sun Java System Web Server-specific Security Features

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200986

allow (read);

The core ACLs in Sun Java System Web Server 6.1 support three types of authentication: basic,
certificate, and digest.

Basic authentication relies on lists of user names and passwords passed as cleartext. Certificates
bind a name to a public key. Digest authentication uses encryption techniques to encrypt the
user’s credentials.

The main features of the ACL-based access control model are described below:

■ ACL-based authentication uses the following configuration files:
■ server-install/httpacl/*.acl files
■ server-install/userdb/dbswitch.conf
■ server-install/config/server.xml

Authentication is performed by auth-db modules that are configured in the dbswitch.conf
file.

■ Authorization is performed by access control rules set in the server-install/httpacl/*.acl
files, if ACLs are configured.

In addition, the Sun Java System Web Server 6.1 SSL engine supports external crypto hardware
to offload SSL processing and to provide optional tamper-resistant key storage.

For more information about access control and the use of external crypto hardware, see the Sun
Java System Web Server 6.1 SP11 Administrator’s Guide.

J2SE/Servlet-based Authentication and Authorization
Sun Java System Web Server 6.1, apart from providing ACL-based authentication, also
leverages the security model defined in the J2SE 1.3 specification to provide several features that
help you develop and deploy secure Java web applications.

A typical J2SE-based web application consists of the following parts, access to any or all of
which can be restricted:

■ Servlets
■ JavaServer Pages (JSP) components
■ HTML documents
■ Miscellaneous resources, such as image files and compressed archives

The J2SE/Servlet-based access control infrastructure relies on the use of security realms. When
a user tries to access the main page of an application through a web browser, the web container
prompts for the user's credential information, and then passes it for verification to the realm
that is currently active in the security service.

Sun Java System Web Server-specific Security Features

Chapter 5 • Securing Web Applications 87

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

A realm, also called a security policy domain or security domain in the J2SE specification, is a
scope over which a common security policy is defined and enforced by the security
administrator of the security service.

The main features of the J2SE/Servlet-based access control model are described below:

■ J2SE/Servlet-based authentication uses the following configuration files:
■ The web application deployment descriptor files web.xml and sun-web.xml

■ server-install/config/server.xml

Authentication is performed by Java security realms that are configured through AUTHREALM

entries in the server.xml file.
■ Authorization is performed by access control rules in the deployment descriptor file,

web.xml, in case any such rules have been set.

Web Application and URL Authorizations
Secure web applications may have authentication and authorization properties. The web
container supports three types of authentication: basic, certificate, and form-based. The core
ACLs support basic, certificate, and digest. For more information about ACL configuration, see
the Sun Java System Web Server 6.1 SP11 Administrator’s Guide.

When a browser requests the main application URL, the web container collects the user
authentication information (for example, user name and password) and passes it to the security
service for authentication.

For J2SE web applications, Sun Java System Web Server consults the security policies (derived
from the deployment descriptors) associated with the web resource to determine the security
roles used to permit resource access. The web container tests the user credentials against each
role to determine if it can map the user to the role.

User Authentication by Servlets
The web-based login mechanisms required by the J2SE 1.3 specification are supported by the
Sun Java System Web Server. These mechanisms are discussed in this section:

■ “HTTP Basic Authentication” on page 89
■ “SSL Mutual Authentication” on page 89
■ “Form-Based Login” on page 90

The login-config element in the web.xml deployment descriptor file describes the
authentication method used, the application's realm name displayed by the HTTP basic
authentication, and the form login mechanism's attributes.

The login-config element syntax is as follows:

User Authentication by Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200988

http://docs.sun.com/doc/820-7651

<!ELEMENT login-config (auth-method?,realm-name?,form-login-config?)>

Note – The auth-method subelement of login-config is officially optional, but if it is not
included, the server defaults to HTTP Basic Authentication, which is not very secure.

For more information about web.xml elements, see the Java Servlet 2.3 specification (chapter
SRV.13, “Deployment Descriptor”). You can find the specification here:

http://java.sun.com/products/servlet/download.html

For more information regarding sun-web.xml elements, see Chapter 7, Deploying Web
Applications.

HTTP Basic Authentication
HTTP basic authentication (RFC 2617) is supported by the Sun Java System Web Server.
Because passwords are sent with base64 encoding, this authentication type is not very secure.
Use of SSL or another equivalent transport encryption is recommended to protect the password
during transmission.

SSL Mutual Authentication
SSL 3.0 and the means to perform mutual (client/server) certificate-based authentication is a
J2SE 1.3 specification requirement. This security mechanism provides user authentication
using HTTPS (HTTP over SSL).

The Sun Java System Web Server SSL mutual authentication mechanism (also known as HTTPS
authentication) supports the following cipher suites:

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

User Authentication by Servlets

Chapter 5 • Securing Web Applications 89

http://java.sun.com/products/servlet/download.html

Form-Based Login
The login screen's look and feel cannot be controlled with the HTTP browser's built-in
mechanisms. J2SE introduces the ability to package a standard HTML or servlet/JSP based form
for logging in. The login form is associated with a web protection domain (an HTTP realm) and
is used to authenticate previously unauthenticated users.

Because passwords are sent in the clear (unless protected by the underlying transport), this
authentication type is not very secure. Use of SSL or another equivalent transport encryption is
recommended to protect the password during transmission.

For the authentication to proceed appropriately, the login form action must always be
j_security_check.

The following is an HTML sample showing how to program the form in an HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">

</form>

You can specify the parameter encoding for the form. For details, see “parameter-encoding” on
page 143.

User Authentication for Single Sign-on
The single sign-on across applications on the Sun Java System Web Server is supported by the
Sun Java System Web Server servlets and JSPs. This feature allows multiple applications that
require the same user sign-on information to share this information between them, rather than
having the user sign on separately for each application. These applications are created to
authenticate the user one time, and when needed this authentication information is propagated
to all other involved applications.

An example application using the single sign-on scenario could be a consolidated airline
booking service that searches all airlines and provides links to different airline web sites. Once
the user signs on to the consolidated booking service, the user information can be used by each
individual airline site without requiring another sign on.

Single sign-on operates according to the following rules:
■ Single sign-on applies to web applications configured for the same realm and virtual server.

The realm is defined by the realm-name element in the web.xml file. For information about
virtual servers, see the Sun Java System Web Server 6.1 SP11 Administrator’s Guide or the
Sun Java System Web Server 6.1 SP11 Administrator’s Configuration File Reference.

User Authentication for Single Sign-on

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200990

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7650

■ As long as users access only unprotected resources in any of the web applications on a
virtual server, they are not challenged to authenticate themselves.

■ As soon as user accesses a protected resource in any web application associated with a
virtual server, the user is challenged to authenticate, using the login method defined for the
web application currently being accessed.

■ Once authenticated, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

■ When the user logs out of one web application (for example, by invalidating or timing out
the corresponding session if form-based login is used), the user's sessions in all web
applications are invalidated. Any subsequent attempt to access a protected resource in any
application requires the user to authenticate him or herself again.

■ The single sign-on feature utilizes HTTP cookies to transmit a token that associates each
request with the saved user identity, so it can only be used in client environments that
support cookies.

To configure single sign-on, set the following properties in the VS element of the server.xml
file:

■ sso-enabled: If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default value is set to
false.

■ sso-max-inactive-seconds: Specifies the time after which a user's single sign-on record
becomes eligible for purging if no client activity is received. Since single sign-on applies
across several applications on the same virtual server, access to any of the applications keeps
the single sign-on record active. The default value is 5 minutes (300 seconds). Higher values
provide longer single sign-on persistence for the users at the expense of more memory use
on the server.

■ sso-reap-interval-seconds: Specifies the interval between purges of expired single
sign-on records. The default value is 60.

Here is an example configuration with all default values:

<VS id="server1" ... >

...

<property name="sso-enabled" value="true">
<property name="sso-max-inactive-seconds" value="300">
<property name="sso-reap-interval-seconds" value="60">

</VS>

User Authentication for Single Sign-on

Chapter 5 • Securing Web Applications 91

User Authorization by Servlets
Servlets can be configured to only permit access to users with the appropriate authorization
level. This section covers the following topics:

■ “Defining Roles” on page 92
■ “Defining Servlet Authorization Constraints” on page 93

Defining Roles
Security roles define an application function, made up of a number of users, groups, or both.
The relationship between users and groups is determined by the specific realm implementation
being used.

You define roles in the J2SE deployment descriptor file,web.xml, and the corresponding role
mappings in the Sun Java System Web Server deployment descriptor file, sun-web.xml. For
more information about sun-web.xml, see Chapter 7, Deploying Web Applications

Each security-role-mapping element in the sun-web.xml file maps a role name permitted by
the web application to principals and groups. For example, a sun-web.xml file for a deployed
web application might contain the following:

<sun-web-app>

<security-role-mapping>

<role-name>manager</role-name>

<principal-name>jgarcia</principal-name>

<principal-name>mwebster</principal-name>

<group-name>team-leads</group-name>

</security-role-mapping>

<security-role-mapping>

<role-name>administrator</role-name>

<principal-name>dsmith</principal-name>

</security-role-mapping>

</sun-web-app>

Note that the role-name in this example must match the role-name in the security-role
element of the corresponding web.xml file.

For web applications, the roles are always specified in the sun-web.xml file. A role can be
mapped to either specific principals or to groups (or both). The principal or group names used
must be valid principals or groups in the current realm.

User Authorization by Servlets

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200992

Defining Servlet Authorization Constraints
On the servlet level, you define access permissions using the auth-constraint element of the
web.xml file.

The auth-constraint element on the resource collection must be used to indicate the user
roles permitted to the resource collection. Refer to the Java Servlet specification for details on
configuring servlet authorization constraints.

Fetching the Client Certificate
When you enable SSL and require client certificate authorization, your servlets have access to
the client certificate as shown in the following example:

if (request.isSecure()) {

java.security.cert.X509Certificate[] certs;

certs = request.getAttribute("javax.servlet.request.X509Certificate");
if (certs != null) {

clientCert = certs[0];

if (clientCert != null) {

// Get the Distinguised Name for the user.

java.security.Principal userDN = clientCert.getSubjectDN();

...

}

}

}

The userDn is the fully qualified Distinguished Name for the user.

Realm Configuration
This section provides an overview of the configuration characteristics of the supported realms.
For detailed information about configuring realms, see the Sun Java System Web Server 6.1 SP11
Administrator’s Guide.

The section describes the following realms:

■ “File” on page 94
■ “LDAP” on page 94
■ “Solaris” on page 95
■ “Certificate” on page 95
■ “Custom Realm” on page 96

Realm Configuration

Chapter 5 • Securing Web Applications 93

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

■ “Native Realm” on page 97

File
The file realm is the default realm when you first install Sun Java System Web Server, and has
the following configuration characteristics:

■ Name: file
■ Classname: com.iplanet.ias.security.auth.realm.file.FileRealm

Required properties are as follows:

■ file: The name of the file that stores user information. By default this file is
instance_dir/config/keyfile.

■ jaas-context: The value must be fileRealm.

The user information file is initially empty, so you must add users before you can use the file
realm.

LDAP
The LDAP realm allows you to use an LDAP database for user security information, and has the
following configuration characteristics:

■ Name: ldap
■ Classname: com.iplanet.ias.security.auth.realm.ldap.LDAPRealm

Required properties are as follows:

■ directory: The LDAP URL to your server.
■ base-dn: The base DN for the location of user data. This base DN can be at any level above

the user data, since a tree scope search is performed. The smaller the search tree, the better
the performance.

■ jaas-context: The value must be ldapRealm.

You can add the following optional properties to tailor the LDAP realm behavior:

■ search-filter: The search filter to use to find the user. The default is uid=%s (%s expands
to the subject name).

■ group-base-dn: The base DN for the location of group data. By default it is same as the
base-dn, but it can be tuned if necessary.

■ group-search-filter: The search filter to find group memberships for the user. The
default is uniquemember=%d (%d expands to the user element DN).

■ group-target: The LDAP attribute name that contains group name entries. The default is
CN.

Realm Configuration

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200994

■ search-bind-dn: An optional DN used to authenticate to the directory for performing the
search-filter lookup. Only required for directories that do not allow anonymous search.

■ search-bind-password: The LDAP password for the DN given in search-bind-dn.

You must create the desired user(s) in your LDAP directory. You can do this from the SunTM

Java System Directory Server console, or through any other administration tool that supports
LDAP and your directory's schema. User and group information is stored in the external LDAP
directory.

The principal-name used in the deployment descriptors must correspond to your LDAP user
information.

Solaris
The Solaris realm allows authentication using Solaris user name and password data. This realm
is supported only on Solaris 9, and has the following configuration characteristics:

■ Name: solaris
■ Classname: com.iplanet.ias.security.auth.realm.file.SolarisRealm

Required properties are as follows:

■ jaas-context: The value must be solarisRealm.

Users and groups are stored in the underlying Solaris user database, as determined by the
system’s PAM (Pluggable Authentication Module) configuration.

Note – The Solaris realm invokes the underlying PAM infrastructure for authentication. If the
configured PAM modules require root privileges, the instance must run as root to use this
realm. For details, see the "Using Authentication Services (Tasks)" chapter in the Solaris 9
System Administration Guide: Security Services.

Certificate
The certificate realm supports SSL authentication. The certificate realm sets up the user identity
in Sun Java System Web Server's security context and populates it with user data from the client
certificate. The J2SE containers then handle authorization processing based on each user's DN
from his or her certificate. The certificate realm has the following configuration characteristics:

■ Name: certificate
■ Classname: com.iplanet.ias.security.auth.realm.certificate.CertificateRealm

You can add the following optional property to tailor the certificate realm behavior:

Realm Configuration

Chapter 5 • Securing Web Applications 95

■ assign-groups: If this property is set, its value is taken to be a comma-separated list of
group names. All clients presenting valid certificates are assigned membership to these
groups for the purposes of authorization decisions in the web container.

When you deploy an application, you must specify CLIENT-CERT as the authentication
mechanism in the web.xml file as follows:

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

You must obtain a client certificate and install it in your browser to complete the setup for client
certificate authentication. For details on how to set up the server and client certificates, see the
Sun Java System Web Server 6.1 SP11 Administrator’s Guide.

You can configure the server instance for SSL authentication in these ways:

■ Configure an SSLPARAMS element in server.xml, then restart the server. For more
information about the server.xml file, see the Sun Java System Web Server 6.1 SP11
Administrator’s Configuration File Reference.

■ Use the Administration interface as described in the Sun Java System Web Server 6.1 SP11
Administrator’s Guide.

Note – In most cases, it is not necessary to configure a certificate realm in server.xml when
using CLIENT-CERT authentication in web applications. Since the CLIENT-CERT
authentication method inherently implies certificate-based authentication, Sun Java System
Web Server will internally use a certificate realm even if one is not configured in server.xml.
You can still configure a certificate realm if you want to specify properties for it (for example,
assign-groups).

Custom Realm
You can create a custom realm by providing a JavaTM Authentication and Authorization Service
(JAAS) login module and a realm implementation. Note that client-side JAAS login modules
are not suitable for use with Sun Java System Web Server. For more information about JAAS,
refer to the JAAS specification for Java 2 SDK, v1.4, available here:

http://java.sun.com/products/jaas/

A sample application that uses a custom realm is available with Sun Java System Web Server at
the following location:

server_root/plugins/java/samples/webapps/security

Realm Configuration

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200996

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://java.sun.com/products/jaas/

Native Realm
The native realm is a special realm that provides a bridge between the core Sun Java System Web
Server ACL-based authentication and the J2SE/Servlet authentication model. By using the
native realm for Java web applications, it becomes possible to have the ACL subsystem perform
the authentication (instead of having the Java web container do so) and yet have this identity
available for Java web applications.

This functionality is provided by pluggable realm called NativeRealm, which acts as a bridge
between the J2SE security subsystem and the access control security subsystem.

Depending on whether a security constraint is configured for a web application, the two modes
of operation described below are supported by the native realm:
■ If a security constraint is defined in the application’s deployment descriptor file, web.xml,

the web container carries out normal authentication and authorization processing. When
the NativeRealm realm is invoked for validating user information, the task of verification is
delegated to the core auth-db specified in the realm configuration. See the Sun Java System
Web Server 6.1 SP11 Administrator’s Guide for more information on how to configure
auth-db in dbswitch.conf and server.xml.
For example (classname= is all on one line, with no spaces):

<AUTHREALM name="native"
classname="com.iplanet.ias.security.auth.realm.webcore.
NativeRealm">

<PROPERTY name="auth-db" value="name">
<PROPERTY name="jaas-context" value="nativeRealm">

</AUTHREALM>

■ If a security constraint is not defined in the application’s deployment descriptor file web.xml
when using NativeRealm, the Java web container does not carry out authentication and
authorization tasks. These tasks are left to the core access control lists (ACLs). ACLs are
collections of rules that follow a hierarchy and determine whether access should be granted
or denied for the requested resource. The ACLs yield the user’s identity, which is then made
available to the Java web application. In other words, if the servlet later invokes a principal’s
identity with the request.getUserPrincipal() method, the correct user identity will be
returned.
In this scenario it is not necessary to provide an auth-db to the NativeRealm configuration,
since the access control list that was applied to the given request is already bound to an
auth-db.
For example:

<AUTHREALM name="native"
classname="com.iplanet.ias.security.auth.realm.webcore.
NativeRealm">
</AUTHREALM>

Realm Configuration

Chapter 5 • Securing Web Applications 97

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

For more details about access control lists, see the Sun Java System Web Server 6.1 SP11
Administrator’s Guide.

Note – While it is possible to apply both ACL access control rules and web.xml security
constraints on a single application, this usage is discouraged. It may lead to duplicate
authentication prompts or otherwise confusing behavior. You should always pick either core
ACL or J2SE web.xml-based access control mechanisms for a given web application.

Programmatic Login
Programmatic login allows a deployed J2SE application to invoke a login method. If the login is
successful, a SecurityContext is established as if the client had authenticated using any of the
conventional J2SE mechanisms.

Programmatic login is useful for an application with unique needs that cannot be
accommodated by any of the J2SE standard authentication mechanisms.

This section discusses the following topics:
■ “Precautions” on page 98
■ “Granting Programmatic Login Permission” on page 99
■ “The ProgrammaticLogin Class” on page 99

Precautions
The Sun Java System Web Server is not involved in how the login information (user name and
password) is obtained by the deployed application. Programmatic login places the burden on
the application developer with respect to assuring that the resulting system meets security
requirements. If the application code reads the authentication information across the network,
it is up to the application to determine whether to trust the user.

Programmatic login allows the application developer to bypass the application
server-supported authentication mechanisms and feed authentication data directly to the
security service. While flexible, this capability should not be used without some understanding
of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence,
the application developer must be very careful in making sure that authentication is established
before accessing any restricted resources or methods. It is also the application developer's
responsibility to verify the status of the login attempt and to alter the behavior of the application
accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single
sign-on.

Programmatic Login

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 200998

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651

Lazy authentication is not supported for programmatic login. If an access check is reached and
the deployed application has not properly authenticated using the programmatic login method,
access is denied immediately and the application may fail if not properly coded to account for
this occurrence.

Granting Programmatic Login Permission
The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application. This permission is not granted by default to deployed
applications because this is not a standard J2SE mechanism.

To grant the required permission to the application, add the following to the
instance_dir/config/server.policy file:

grant codeBase "file:jar_file_path" {

permission com.sun.appserv.security.ProgrammaticLoginPermission

"login";
};

The jar_file_path is the path to the application's JAR file.

For more information about the server.policy file, see “The server.policy File” on page 100.

The ProgrammaticLogin Class
The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically.

The login method for servlets or JSPs has the following signature:

public Boolean login(String user, String password,

javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

This method:

■ Performs the authentication
■ Returns true if login succeeded, false if login failed

Programmatic Login

Chapter 5 • Securing Web Applications 99

Enabling the Java Security Manager
Sun Java System Web Server 6.1 supports the Java Security Manager. The Java Security Manager
is disabled by default when you install the product, which may improve performance
significantly for some types of applications. Enabling the Java Security Manager may improve
security by restricting the rights granted to your J2SE web applications. To enable the Java
Security Manager, “uncomment” entries in the server.xml file:

<JVMOPTIONS>-Djava.security.manager</JVMOPTIONS>

<JVMOPTIONS>-Djava.security.policy=instance_dir

/config/server.policy</JVMOPTIONS>

where instance_dir is the path to the installation directory of this server instance.

Based on your application and deployment needs, you should evaluate whether to run with or
without the Security Manager.

Running with the Security Manager on will help catch some spec-compliance issues with J2SE
applications. All J2SE applications should be able to run with the Security Manager active and
with only the default permissions. For this reason it is recommended that the Security Manager
be turned on during development. This will help produce applications that can easily be
deployed in environments where the Security Manager is always active (such as SunTM Java
System Application Server). Running with the Security Manager also helps isolate applications
and may catch inappropriate operations.

The main drawback of running with the Security Manager is that it negatively impacts
performance. Depending on the application details and the deployment environment, this
impact may be negligible or quite significant.

The server.policy File
Each Sun Java System Web Server instance has its own standard JavaTM 2 Platform, Standard
Edition (J2SE) policy file, located in the instance_dir/config directory. The file is named
server.policy.

Sun Java System Web Server 6.1 is a J2SE 1.3-compliant web server. As such, it follows the
recommendations and requirements of the J2SE specification, including the optional presence
of the Security Manager (the Java component that enforces the policy), and a limited permission
set for J2SE application code.

This section includes the following topics:

■ “Default Permissions” on page 101
■ “Changing Permissions for an Application” on page 101

Enabling the Java Security Manager

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009100

Default Permissions
Internal server code is granted all permissions. These are covered by the AllPermission grant
blocks to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously.

A few permissions above the minimal set are also granted in the default server.policy file.
These are necessary due to various internal dependencies of the server implementation. J2SE
application developers must not rely on these additional permissions.

Changing Permissions for an Application
The default policy for each instance limits the permissions of J2SE-deployed applications to the
minimal set of permissions required for these applications to operate correctly. If you develop
applications that require more than this default set of permissions, you can edit the
server.policy file to add the custom permissions that your applications need.

You should add the extra permissions only to the applications that require them, not to all
applications deployed to a server instance. Do not add extra permissions to the default set (the
grant block with no codebase, which applies to all code). Instead, add a new grant block with a
codebase specific to the application requiring the extra permissions, and only add the minimally
necessary permissions in that block.

Note – Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the Security Manager, yet you still get the
performance overhead associated with it.

As noted in the J2SE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not
document the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by
observing AccessControlException occurrences in the server log. If this is not sufficient, you
can add the -Djava.security.debug=all JVM option to the server instance. For details, see
the Sun Java System Web Server 6.1 SP11 Administrator’s Guide or the Sun Java System Web
Server 6.1 SP11 Administrator’s Configuration File Reference.

You can use the J2SE standard policy tool or any text editor to edit the server.policy file. For
more information, see:

http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

The server.policy File

Chapter 5 • Securing Web Applications 101

http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650
http://java.sun.com/docs/books/tutorial/security1.2/tour2/index.html

For detailed information about the permissions you can set in the server.policy file, see:

http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html

The Javadoc for the Permission class is here:

http://java.sun.com/j2se/1.4.2/docs/api/java/security/Permission.html

For More Information
The following table describes where you can find more information about security and security
configuration topics in the Sun Java System Web Server 6.1 documentation:

TABLE 5–1 More Information on Security-related Issues

For Information On See

Configuring Java security and
realm-based authentication

The chapter “Securing Your Web Server” in the Sun Java System Web
Server 6.1 Administrator’s Guide.

Certificates and public key
cryptography

The chapter “Using Certificates and Keys” in the Sun Java System Web
Server 6.1 Administrator’s Guide.

ACL-based security The chapter “Controlling Access to Your Server” in the Sun Java System
Web Server 6.1 Administrator’s Guide.

Configuring auth-db in the
dbswitch.conf and server.xml

files

The chapter “Controlling Access to Your Server” in the Sun Java System
Web Server 6.1 Administrator’s Guide.

For More Information

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009102

http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Permission.html

Deploying Web Applications

This chapter describes how web applications are assembled and deployed in Sun Java System
Web Server.

This chapter includes the following sections:

■ “Web Application Structure” on page 103
■ “Creating Web Deployment Descriptors” on page 104
■ “Deploying Web Applications” on page 104
■ “Enabling and Disabling Web Applications” on page 108
■ “Dynamic Reloading of Web Applications” on page 109
■ “Classloaders” on page 110
■ “The sun-web-app_2_3-1.dtd File” on page 112
■ “Elements in the sun-web.xml File” on page 114
■ “Sample Web Application XML Files” on page 147

Web Application Structure
Web applications have a directory structure, which is accessible from a mapping to the
application's document root (for example, /hello). The document root contains JSP files,
HTML files, and static files such as image files.

A WAR file (Web ARchive file) contains a web application in compressed form.

A special directory under the document root, WEB-INF, contains information related to the
application that is not in the public document tree. No file contained in WEB-INF can be served
directly to the client. The contents of WEB-INF include:

■ /WEB-INF/classes/*: The directory for servlet and other classes.
■ /WEB-INF/web.xml and /WEB-INF/sun-web.xml: XML-based deployment descriptors that

specify the web application configuration, including mappings, initialization parameters,
and security constraints.

6C H A P T E R 6

103

The web application directory structure follows the structure outlined in the J2SE specification.
The following is an example directory structure of a simple web application:

+ hello/

|--- index.jsp

|--+ META-INF/

| |--- MANIFEST.MF

’--+ WEB-INF/

|--- web.xml

’--- sun-web.xml

Creating Web Deployment Descriptors
Sun Java System Web Server web applications include two deployment descriptor files:

■ A J2SE standard file (web.xml), described in the Java Servlet 2.3 specification (chapter SRV
.13, “Deployment Descriptor”). You can find the specification here:

http://java.sun.com/products/servlet/download.html

■ An optional Sun Java System Web Server-specific file (sun-web.xml), described later in this
chapter.

The easiest way to create the web.xml and sun-web.xml files is to deploy a web application using
the Sun Java Studio. For example, web.xml and sun-web.xml files, see “Sample Web Application
XML Files” on page 147.

Deploying Web Applications
When you deploy, undeploy, or redeploy a web application, you do not need to restart the
server. Deployment is dynamic.

You can deploy a web application in the following ways, which are described briefly in these
sections:

■ “Using the Administration Interface” on page 105
■ “Deploying a Web Application using wdeploy” on page 105
■ “Using Sun Java Studio” on page 107

Creating Web Deployment Descriptors

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009104

http://java.sun.com/products/servlet/download.html

Using the Administration Interface

▼ To deploy web applications using the administration interface

In the Server Manager interface, click the Virtual Server Class tab.
The Manage a Class of Virtual Servers page displays.

Select a class of virtual servers, and then click Manage.
The Class Manager interface displays.

Select a virtual server, and then click Manage.
The Virtual Server Manager interface displays.

Click the Web Applications tab, and then click the Deploy Web Application link.
The Deploy Web Application page displays.

Enter the following information:

■ WAR File On. Select a Local Machine when uploading a WAR file to your server, or Server
Machine when the WAR file already resides there.
■ WAR File Path. Enter the path on the local or server machine to the WAR file

containing the web application. On server machines, enter the absolute path to the WAR
file. On local machines, you can browse the available paths.

■ Application URI. Enter the URI on the virtual server for the web application.
■ Installation Directory. Enter the absolute path to the directory on the server machine

from which the contents of the WAR file will be extracted. If the directory does not exist,
a directory will be created.

Click OK.
For more information about using the Administration interface to manage Sun Java System
Web Server, see the Sun Java System Web Server 6.1 SP11 Administrator’s Guide.

Deploying a Web Application using wdeploy
Before you can deploy a web application manually, you must make sure that the
server_root/bin/https/bin directory is in your path.

You can use the wdeploy utility at the command line to deploy a WAR file into a virtual server
web application environment as follows:

wdeploy deploy -u uri_path -i instance -v vs_id [-d directory] war_file

1

2

3

4

5

6

Deploying Web Applications

Chapter 6 • Deploying Web Applications 105

http://docs.sun.com/doc/820-7651

You can also delete a virtual server web application:

wdeploy delete -u uri_path -i instance -v vs_id hard|soft

You can also list the web application URIs and directories for a virtual server:

wdeploy list -i instance -v vs_id

The following table describes the command parameters. The left column lists the parameter,
and the right column describes the parameter.

TABLE 6–1 command Parameters

Parameter Description

uri_path The URI prefix for the web application (requires a leading “/”).

instance The server instance name.

vs_id The virtual server ID.

directory (optional) The directory to which the application is deployed, or from
which the application is deleted. If not specified for deployment, the
application is deployed to instance_directory/webapps/vs_id/webappname.
For example:

/opt/SUNWwbsvr/https-test/webapps/https-test/testapp

hard|soft Specifies whether the directory and the server.xml entry are deleted
(hard), or just the server.xml entry (soft).

war_file The WAR file name.

When you execute the wdeploy deploy command, two things happen:

■ A web application with the given uri_path and directory gets added to the server.xml file.
■ The WAR file gets extracted at the target directory.

Example usage of the command is as follows:

wdeploy deploy -u /hello -i server.sun.com -v acme.com

<server_root>/plugins/java/sample/webapps/simple/webapps-simple.war

After you have deployed an application, you can access it from a browser as follows:

http://vs_urlhost[:vs_port]/uri_path/[index_page]

The following table describes the parts of the URL. The left column lists the part, and the right
column describes what the part means.

Deploying Web Applications

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009106

TABLE 6–2 Parts of the URL

Part Description

vs_urlhost One of the urlhosts values for the virtual server.

vs_port (optional) Only needed if the virtual server uses a nondefault port.

uri_path The same one you used to deploy the application. This is also the context
path.

index_page (optional) The page in the application that end users are meant to access
first.

For example:

http://acme.com:80/hello/index.jsp

- or -

http://acme.com/hello/

Using Sun Java Studio
Sun Java System Web Server 6.1 supports Sun Java Studio 5, Standard Edition. You can use Sun
Java Studio to assemble and deploy web applications.

Sun Java Studio technology is Sun's powerful, extensible, integrated development environment
(IDE) for Java technology developers. Sun Java Studio 8 is based on NetBeansTM software, and
integrated with the Sun Java System platform. (Sun Java System Web Server 6.1 also supports
NetBeans 3.5 and 3.5.1.)

Sun Java Studio support is available on all platforms supported by Sun Java System Web Server
6.1. You can obtain the plugin for the Web Server in the following ways:

■ From the Companion CD in the Sun Java System Web Server 6.1 Media Kit
■ By using the AutoUpdate feature of Sun Java Studio
■ From the download center for Sun Java System Web Server 6.1 at

http://www.sun.com/software/download/inter_ecom.html

Note – The Sun Java Studio 5 plugin for Sun Java System Web Server 6.1 works only with a local
Web Server (that is, with the IDE and the Web Server on the same machine).

For information about using the web application features in Sun Java Studio 8, explore the
resources at

Deploying Web Applications

Chapter 6 • Deploying Web Applications 107

http://www.sun.com/software/download/inter_ecom.html

http://developers.sun.com/

prodtech/javatools/jsstandard/reference/docs/index.html

The behavior of the Sun Java Studio 8 plugin for Sun Java System Web Server 6.1 is the same as
that for SunTM Java System Application Server 7. If you are using the "Web Application Tutorial"
at the web site listed above, for instance, you would set the Sun Java System Web Server 6.1
instance as the default, and then take the same actions described in the tutorial.

For more information about Sun Java Studio 8, visit

http://www.sun.com/software/sundev/jde/

Note – For information about using Sun Java Studio to debug web applications, see “Using Sun
Java Studio for Debugging” on page 153 in this guide.

Enabling and Disabling Web Applications
Sun Java System Web Server 6.1 allows you to enable or disable a web application. You can do so
in either of the following ways, as discussed in this section:

■ “Using the Administration Interface” on page 108
■ “Editing the server.xml File” on page 109

Using the Administration Interface

▼ To enable or disable a deployed web application using the
administrator interface

Access the Administration Server, select the server instance, and click Manage.

Click the Virtual Server Class tab.

Select the virtual server class that contains the virtual server instance in which the web
application is deployed, and click Manage.

Select the virtual server in which the web application is deployed, and click Manage.

Click the Web Applications tab, and then click the Edit Web Applications link.

From the Action drop-down list, select Enable or Disable to enable or disable a specific web
application.

1

2

3

4

5

6

Enabling and Disabling Web Applications

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009108

http://developers.sun.com/prodtech/javatools/jsstandard/reference/docs/index.html
http://developers.sun.com/prodtech/javatools/jsstandard/reference/docs/index.html
http://www.sun.com/software/sundev/jde/

Click OK.

Editing the server.xml File
By default, an application is automatically enabled with the value set to true in the
server-id/config/server.xml file. You can disable the application by setting the value to
false.

Example:

<WEBAPP uri="/catalog" path="/export/apps/catalog" enabled="false">

For more information, see the Sun Java System Web Server 6.1 SP11 Administrator’s
Configuration File Reference.

Dynamic Reloading of Web Applications
If you make code changes to a web application and dynamic reloading is enabled, you do not
need to redeploy the web application or restart the server.

To enable dynamic reloading, you must edit the following attribute of the server.xml file's
JAVA element, then restart the server:

dynamicreloadinterval=integer

where integer specifies the interval (in seconds) after which a deployed application will be
checked for modifications and reloaded if necessary. To enable dynamic reloading, you must
specify a value greater than 0.

The server.xml setting is the default value for all applications. An individual application can
override the value for dynamicreloadinterval by specifying a value to the class-loader
element in the sun-web.xml file.

For information about sun-web.xml, see the section, “The sun-web-app_2_3-1.dtd File” on
page 112 Server 6.1 Administrator's Configuration File Reference.

▼ To load new servlet files or reload deployment
descriptor changes

Create an empty file named .reload at the root of the deployed module. For example:
instance_dir/webapps/vs_id/uri/.reload

where vs_id is the virtual server ID in which the web application is deployed, and uri is the value
of the uri attribute of the <WEBAPP> element.

7

1

Dynamic Reloading of Web Applications

Chapter 6 • Deploying Web Applications 109

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

Explicitly update the .reload file's timestamp (touch .reload in UNIX) each time you make the
above changes.

For JSPs, changes are reloaded automatically at a frequency set in the reload-interval
property of the jsp-config element in the sun-web.xml file. To disable dynamic reloading of
JSPs, set the reload-interval property to -1.

Classloaders
In a Java Virtual Machine (JVM), the classloaders dynamically load a specific Java class file
needed for resolving a dependency. For example, when an instance of java.util.Enumeration
needs to be created, one of the classloaders loads the relevant class into the environment.

Classloaders in the Sun Java System Web Server 6.1 runtime follow the hierarchy shown in the
following figure.

FIGURE 6–1 Classloader Runtime Hierarchy

2

Classloaders

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009110

Note that this is not a Java inheritance hierarchy, but a delegation hierarchy. In the delegation
design, a classloader delegates classloading to its parent before attempting to load a class itself. If
the parent classloader can't load a class, the findClass()method is called on the classloader
subclass. In effect, a classloader is responsible for loading only the classes not available to the
parent.

The exception is the Web Application Classloader, which follows the delegation model in the
Servlet specification. The Web Application Classloader searches in the local classloader before
delegating to its parent. You can make the Web Application Classloader delegate to its parent
first by setting delegate="true" in the class-loader element of the sun-web.xml file. For
more information, see “Classloader Elements” on page 140

The following table describes Sun Java System Web Server 6.1 classloaders. The left column lists
the classloaders, and the right column lists descriptions of those classloaders and the files they
examine.

TABLE 6–3 Sun Java System Web Server 6.1 Classloaders

Classloader Description

Bootstrap The Bootstrap Classloader loads the JDK classes. Only one instance of this
classloader exists in the entire server.

System The System Classloader loads the core Sun Java System Web Server 6.1
classes. It is created based on the classpathprefix, serverclasspath, and
classpathsuffix attributes of the <JAVA> element in the server.xml file.
The environment classpath is included if envclasspathignored="false" is
set in the <JAVA> element. Only one instance of this classloader exists in the
entire server. If any changes are made to these attributes/classes, the server
must be restarted for the changes to take effect. For more information about
the <JAVA> element in server.xml, see the Sun Java System Web Server 6.1
SP11 Administrator’s Configuration File Reference.

Common The Common Classloader loads classes in the instance_dir/lib/classes
directory, followed by JAR and ZIP files in the instance_dir/lib directory.
The existence of these directories is optional; if they don't exist, the
Common Classloader is not created. If any changes are made to these
classes, the server must be restarted for the changes to take effect.

Web Application The Web Application Classloader loads the servlets and other classes in a
specific web application. That is, from WEB-INF/lib and WEB-INF/classes

and from any additional classpaths specified in the extra-class-path
attribute of the class-loader element in sun-web.xml. For more
information, see “Classloader Elements” on page 140

An instance of this classloader is created for each web application. If
dynamic reloading is enabled, any changes made to these attributes/classes
are reloaded by the server without the need for a restart. For more
information, see “Dynamic Reloading of Web Applications” on page 109

Classloaders

Chapter 6 • Deploying Web Applications 111

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

TABLE 6–3 Sun Java System Web Server 6.1 Classloaders (Continued)
Classloader Description

JSP The JSP Classloader loads the compiled JSP classes of JSPs. An instance of
this classloader is created for each JSP file. Any changes made to a JSP are
automatically detected and reloaded by the server, unless dynamic
reloading of JSPs has been disabled by setting the reload-interval
property to -1 in the jsp-config element of the sun-web.xml file. For more
information, see“jsp-config” on page 141

The sun-web-app_2_3-1.dtd File
The sun-web-app_2_3-1.dtd file defines the structure of the sun-web.xml file, including the
elements it can contain and the subelements and attributes these elements can include. The
sun-web-app_2_3-1.dtd file is located in the install_dir/bin/https/dtds directory.

Note – Do not edit the sun-web-app_2_3-1.dtd file. The file contents change only with new
versions of Sun Java System Web Server.

For more information about DTD files and XML, see the XML specification at:

http://www.sun.com/software/dtd/appserver/sun-web-app_2_3-1.dtd

Each element defined in a DTD file (which may be present in the corresponding XML file) can
contain the following:

■ “Subelements” on page 112
■ “Data” on page 113
■ “Attributes” on page 113

Subelements
Elements can contain subelements. For example, the following file fragment defines the cache
element.

<!ELEMENT cache (cache-helper*, default-helper?, property*, cache-mapping*)>

The ELEMENT tag specifies that a cache element can contain cache-helper, default-helper,
property, and cache-mapping subelements.

The following table shows how optional suffix characters of subelements determine the
requirement rules, or number of allowed occurrences, for the subelements. The left column lists
the subelement ending character, and the right column lists the corresponding requirement
rule.

The sun-web-app_2_3-1.dtd File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009112

http://www.sun.com/software/dtd/appserver/sun-web-app_2_3-1.dtd

TABLE 6–4 Requirement Rules and Subelement Suffixes

Subelement Suffix Requirement Rule

element* Can contain zero or more of this subelement.

element? Can contain zero or one of this subelement.

element+ Must contain one or more of this subelement.

element (no suffix) Must contain only one of this subelement.

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead of a list of
element names in parentheses.

Data
Some elements contain character data instead of subelements. These elements have definitions
of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT description (#PCDATA)>

In the sun-web.xml file, white space is treated as part of the data in a data element. Therefore,
there should be no extra white space before or after the data delimited by a data element. For
example:

<description>class name of session manager</description>

Attributes
Elements that have ATTLIST tags contain attributes (name-value pairs). For example:

<!ATTLIST cachemax-capacity CDATA "4096"
timeout CDATA "30"
enabled %boolean; "false">

A cache element can contain max-capacity, timeout, and enabled attributes.

The #REQUIRED label means that a value must be supplied. The #IMPLIED label means that the
attribute is optional, and that Sun Java System Web Server generates a default value. Wherever
possible, explicit defaults for optional attributes (such as "true") are listed.

Attribute declarations specify the type of the attribute. For example, CDATA means character
data, and %boolean is a predefined enumeration.

The sun-web-app_2_3-1.dtd File

Chapter 6 • Deploying Web Applications 113

Elements in the sun-web.xml File
This section describes the XML elements in the sun-web.xml file. Elements are grouped as
follows:

■ “General Elements” on page 114
■ “Security Elements” on page 118
■ “Session Elements” on page 120
■ “Reference Elements” on page 126
■ “Caching Elements” on page 130
■ “Classloader Elements” on page 140
■ “JSP Elements” on page 141
■ “Internationalization Elements” on page 143

This section also includes an alphabetical list of the elements for quick reference. See
“Alphabetical List of sun-web.xml Elements” on page 146.

Note – Subelements must be defined in the order in which they are listed under each
Subelements heading, unless otherwise noted.

Note – Each sun-web.xml file must begin with the following DOCTYPE header:

<!DOCTYPE sun-web-app PUBLIC ’-//Sun Microsystems, Inc.//DTD Sun Java System Web

Server 6.1 Servlet

2.3//EN’’http://www.sun.com/software/sunone/webserver/dtds/sun-web-app_2_3-1.dtd’>

For an alphabetical list of elements in sun-web.xml, see “Alphabetical List of sun-web.xml
Elements” on page 146

General Elements
General elements are as follows:

■ “sun-web-app” on page 114
■ “property” on page 116
■ “description” on page 117

sun-web-app
Defines Sun Java System Web Server-specific configuration for a web application. This is the
root element; there can only be one sun-web-app element in a sun-web.xml file.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009114

Subelements

The following table describes subelements for the sun-web-app element. The left column lists
the subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE 6–5 sun-web-app Subelements

Element Required Description

“sun-web-app” on
page 114sun-web-app

zero or more Maps roles to users or groups in the currently active
realm.

“servlet” on page 118servlet zero or more Specifies a principal name for a servlet, which is used
for the run-as role defined in web.xml.

“session-config” on page 120 zero or one Specifies session manager, session cookie, and other
session-related information.

“resource-env-ref” on page 126 zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding J2SE XML
file.

“resource-ref” on page 127 zero or more Maps the absolute JNDI name to the resource-ref
in the corresponding J2SE XML file.

“cache” on page 130 zero or one Configures caching for web application
components.

“class-loader” on page 140 zero or one Specifies classloader configuration information.

“jsp-config” on page 141 zero or one Specifies JSP configuration information.

“locale-charset-info” on
page 144

zero or one Specifies internationalization settings.

property“property” on
page 116

zero or more Specifies a property, which contains a name and a
value.

Attributes

none

Properties

The following table describes properties for the sun-web-app element. The left column lists the
property name, the middle column indicates the default value, and the right column describes
what the property does.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 115

TABLE 6–6 sun-web-app Properties

Property Name Default Value Description

crossContextAllowed true If true, allows this web application to access the
contexts of other web applications using the
ServletContext.getContext() method.

encodeCookies true If true, Sun Java System Web Server URL encodes
cookies before sending them to the client. If you
do not want cookies to be encoded, add the
following to sun-web.xml:

<property name="encodeCookies"
value="false">

For the above example, enter the line directly
under the <sun-web-app> tag; do not embed this
in any other tag.

tempdir instance_dir/ClassCache
/vs_id/uri

Specifies a temporary directory for use by this web
application. This value is used to construct the
value of the javax.servlet.context.tempdir
context attribute. Compiled JSPs are also placed in
this directory.

singleThreadedServletPoolSize5 Specifies the maximum number of servlet
instances allocated for each SingleThreadModel

servlet in the web application.

reuseSessionID false If true, this property causes the web application
to reuse the JSESSIONID value (if present) in the
request header as the session ID when creating
sessions. The default behavior of web applications
is to not reuse session IDs and instead generate
cryptographically random session IDs for new
sessions.

relativeRedirectAllowed false If true, allows the web application to send a
relative URL to the client using the
HttpServletResponse.sendRedirect() API
(that is, it suppresses the container from
translating a relative URL to a fully qualified
URL).

property
Specifies a property, which contains a name and a value. A property adds configuration
information to its parent element that is one or both of the following:

■ Optional with respect to Sun Java System Web Server.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009116

■ Needed by a system or object that Sun Java System Web Server does not have knowledge of,
such as an LDAP server or a Java class.

For example, a manager-properties element can include property subelements:

<manager-properties>

<property name="reapIntervalSeconds" value="20" >

</manager-properties>

Which properties a manager-properties element uses depends on the value of the parent
session-manager element's persistence-type attribute. For details, see the description of the
session-manager element.

Subelements

The following table describes subelements for the property element. The left column lists the
subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE 6–7 property Subelements

Element Required Description

“description” on page 117 zero or one Contains a text description of this element.

Attributes

The following table describes attributes for the property element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

TABLE 6–8 property Attributes

Attribute Default Description

name none Specifies the name of the property or variable.

value none Specifies the value of the property or variable.

description
Contains a text description of the parent element.

Subelements

none

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 117

Attributes

none

Security Elements
Security elements are as follows:

■ “security-role-mapping” on page 118
■ “servlet” on page 118
■ “servlet-name” on page 119
■ “role-name” on page 119
■ “principal-name” on page 119
■ “group-name” on page 120

security-role-mapping
Maps roles to users or groups in the currently active realm.

Subelements

The following table describes subelements for the security-role-mapping element. The left
column lists the subelement name, the middle column indicates the requirement rule, and the
right column describes what the element does.

TABLE 6–9 security-role-mapping Subelements

Element Required Description

“role-name” on page 119 only one Contains the role name.

“principal-name” on page 119 requires at least one
principal-name or
group-name

Contains a principal (user) name in the current
realm.

“group-name” on page 120 requires at least one
principal-name or
group-name

Contains a group name in the current realm.

Attributes

none

servlet
Specifies a principal name for a servlet, which is used for the run-as role defined in web-xml.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009118

Subelements

The following table describes subelements for the servlet element. The left column lists the
subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE 6–10 servlet Subelements

Element Required Description

“servlet-name” on page 119 only one Contains the name of a servlet, which is matched to
a servlet-name in web.xml.

“principal-name” on page 119 only one Contains a principal (user) name in the current
realm.

Attributes

none

servlet-name
Contains data that specifies the name of a servlet, which is matched to a servlet-name in the
web.xml file. This name must be present in the web.xml file.

Subelements

none

Attributes

none

role-name
Contains data that specifies the role-name in the security-role element of the web.xml file.

Subelements

none

Attributes

none

principal-name
Contains data that specifies a principal (user) name in the current realm.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 119

Subelements

none

Attributes

none

group-name
Contains data that specifies a group name in the current realm.

Subelements

none

Attributes

none

Session Elements
Session elements are as follows:

■ “session-config” on page 120
■ “session-manager” on page 121
■ “manager-properties” on page 122
■ “store-properties” on page 123
■ “session-properties” on page 124
■ “cookie-properties” on page 125

Note – The session manager interface is unstable. An unstable interface may be experimental or
transitional, and thus may change incompatibly, be removed, or be replaced by a more stable
interface in the next release.

session-config
Specifies session configuration information.

Subelements

The following table describes subelements for the session-config element. The left column
lists the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009120

TABLE 6–11 session-config Subelements

Element Required Description

“session-manager” on page 121 zero or one Specifies session manager configuration
information.

“session-properties” on
page 124

zero or one Specifies session properties.

“cookie-properties” on
page 125

zero or one Specifies session cookie properties.

Attributes

none

session-manager
Specifies session manager information.

Note – In Sun Java System Web Server 6.1, you cannot define a session manager either for a
single sign-on session or for a virtual server. You must define session managers at the level of
web applications.

Subelements

The following table describes subelements for the session-manager element. The left column
lists the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

TABLE 6–12 session-manager Subelements

Element Required Description

“manager-properties” on
page 122

zero or one Specifies session manager properties.

“store-properties” on page 123 zero or one Specifies session persistence (storage) properties.

Attributes

The following table describes attributes for the session-manager element. The left column lists
the attribute name, the middle column indicates the default value, and the right column
describes what the attribute does.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 121

TABLE 6–13 session-manager Attributes

Attribute Default Value Description

persistence-type memory (optional) Specifies the session persistence
mechanism. Allowed values are memory, file,
s1ws60, and mmap.

Setting the value of persistence type to memory is
equivalent to using Sun Java System Web Server’s
IWSSessionManager without any store.

Setting the value of persistence type to file is
equivalent to using Sun Java System Web Server’s
IWSSessionManager with FileStore.

manager-properties
Specifies session manager properties.

Subelements

The following table describes subelements for the manager-properties element. The left
column lists the subelement name, the middle column indicates the requirement rule, and the
right column describes what the element does.

TABLE 6–14 manager-properties Subelements

Element Required Description

“property” on page 116 zero or more Specifies a property, which contains a name and a
value.

Attributes

none

Properties

The following table describes properties for the manager-properties element. The left column
lists the property name, the middle column indicates the default value, and the right column
describes what the property does.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009122

TABLE 6–15 manager-properties Properties

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed web
site, or you could lose the last few hits each time you
restart the server.

maxSessions -1 Specifies the maximum number of active sessions,
or -1 (the default) for no limit.

sessionFilename none; state is not
preserved across
restarts

Specifies the absolute or relative path name of the
file in which the session state is preserved between
application restarts, if preserving the state is
possible. A relative path name is relative to the
temporary directory for this web application.

Applicable only if the persistence-type attribute
of the “session-manager” on page 121 element is
memory.

store-properties
Specifies session persistence (storage) properties.

Subelements

The following table describes subelements for the store-properties element. The left column
lists the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

TABLE 6–16 store-properties Subelements

Element Required Description

“property” on page 116 zero or more Specifies a property, which contains a name and a
value.

Attributes

none

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 123

Properties

The following table describes properties for the store-properties element. The left column
lists the property name, the middle column indicates the default value, and the right column
describes what the property does.

TABLE 6–17 store-properties Properties

Property Name Default Value Description

reapIntervalSeconds 60 Specifies the number of seconds between checks for
expired sessions for those sessions that are currently
swapped out.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed web
site, or you could lose the last few hits each time you
restart the server.

directory directory specified by
javax.servlet

.context.tempdir

context attribute

Specifies the absolute or relative path name of the
directory into which individual session files are
written. A relative path is relative to the temporary
work directory for this web application.

session-properties
Specifies session properties.

Subelements

The following table describes subelements for the session-properties element. The left
column lists the subelement name, the middle column indicates the requirement rule, and the
right column describes what the element does.

TABLE 6–18 session-properties Subelements

Element Required Description

“property” on page 116 zero or more Specifies a property, which contains a name and a
value.

Attributes

none

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009124

Properties
The following table describes properties for the session-properties element. The left column
lists the property name, the middle column indicates the default value, and the right column
describes what the property does.

TABLE 6–19 session-properties Properties

Property Name Default Value Description

timeoutSeconds 600 Specifies the default maximum inactive interval (in
seconds) for all sessions created in this web
application. If set to 0 or less, sessions in this web
application do not expire.

If a session-timeout element is specified in the
web.xml file, the session-timeout value overrides
any timeoutSeconds value. If neither
session-timeout nor timeoutSeconds is specified,
the timeoutSeconds default is used.

Note that the session-timeout element in web.xml

is specified in minutes, not seconds.

enableCookies true Uses cookies for session tracking if set to true.

enableURLRewriting true Enables URL rewriting. This provides session
tracking via URL rewriting when the browser does
not accept cookies. You must also use an encodeURL

or encodeRedirectURL call in the servlet or JSP.

cookie-properties
Specifies session cookie properties.

Subelements
The following table describes subelements for the cookie-properties element. The left
column lists the subelement name, the middle column indicates the requirement rule, and the
right column describes what the element does.

TABLE 6–20 cookie-properties Subelements

Element Required Description

“property” on page 116 zero or more Specifies a property, which contains a name and a
value.

Attributes
none

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 125

Properties

The following table describes properties for the cookie-properties element. The left column
lists the property name, the middle column indicates the default value, and the right column
describes what the property does.

TABLE 6–21 cookie-properties Properties

Property Name Default Value Description

cookiePath context path at which
the web application is
installed.

Specifies the path name that is set when the session
tracking cookie is created. The browser sends the
cookie if the path name for the request contains this
path name. If set to / (slash), the browser sends
cookies to all URLs served by the Sun Java System
Web Server. You can set the path to a narrower
mapping to limit the request URLs to which the
browser sends cookies.

cookieMaxAgeSeconds -1 Specifies the expiration time (in seconds) after
which the browser expires the cookie. The default
value of -1 indicates that the cookie never expires.

cookieDomain (unset) Specifies the domain for which the cookie is valid.

cookieComment Sun Java System Web
Server session tracking
cookie

Specifies the comment that identifies the session
tracking cookie in the cookie file. Applications can
provide a specific comment for the cookie.

Reference Elements
Reference elements are as follows:

■ “resource-env-ref” on page 126
■ “resource-env-ref-name” on page 127
■ “resource-ref” on page 127
■ “res-ref-name” on page 128
■ “default-resource-principal” on page 128
■ “name” on page 129
■ “password” on page 129
■ “jndi-name” on page 129

resource-env-ref
Maps the res-ref-name in the corresponding J2SE web.xml file “resource-env-ref” on
page 126entry to the absolute jndi-name of a resource.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009126

Subelements

The following table describes subelements for the resource-env-ref element. The left column
lists the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

TABLE 6–22 resource-env-ref Subelements

Element Required Description

“resource-env-ref-name” on
page 127

only one Specifies the res-ref-name in the corresponding
J2SE web.xml file resource-env-ref entry.

“jndi-name” on page 129 only one Specifies the absolute jndi-name of a resource.

Attributes

none

resource-env-ref-name
Contains data that specifies the res-ref-name in the corresponding J2SE web.xml file
resource-env-ref entry.

Subelements

none

Attributes

none

resource-ref
Maps the “res-ref-name” on page 128e in the corresponding J2SE web.xml file resource-ref
entry to the absolute “jndi-name” on page 129 of a resource.

Subelements

The following table describes subelements for the resource-ref element. The left column lists
the subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 127

TABLE 6–23 resource-ref Subelements

Element Required Description

“res-ref-name” on page 128 only one Specifies the res-ref-name in the corresponding
J2SE web.xml file resource-ref entry.

“jndi-name” on page 129 only one Specifies the absolute jndi-name of a resource.

“default-resource-principal”
on page 128

zero or one Specifies the default principal (user) for the
resource.

Attributes

none

res-ref-name
Contains data that specifies the res-ref-name in the corresponding J2SE web.xml file
resource-ref entry.

Subelements

none

Attributes

none

default-resource-principal
Specifies the default principal (user) for the resource.

If this element is used in conjunction with a JMS Connection Factory resource, the name and
password subelements must be valid entries in SunTM Java System Message Queue's broker user
repository.

Subelements

The following table describes subelements for the default-resource-principal element. The
left column lists the subelement name, the middle column indicates the requirement rule, and
the right column describes what the element does.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009128

TABLE 6–24 default-resource-principal Subelements

Element Required Description

“name” on page 129 only one Contains the name of the principal.

“password” on page 129 only one Contains the password for the principal.

Attributes
none

name
Contains data that specifies the name of the principal.

Subelements
none

Attributes
none

password
Contains data that specifies the password for the principal.

Subelements
none

Attributes
none

jndi-name
Contains data that specifies the absolute jndi-name of a URL resource or a resource in the
server.xml file.

Note – To avoid collisions with names of other enterprise resources in JNDI, and to avoid
portability problems, all names in a Sun Java System Web Server application should begin with
the string java:comp/env.

Subelements
none

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 129

Attributes

none

Caching Elements
For details about response caching as it pertains to servlets, see “Caching Servlet Results” on
page 37 “JSP Cache Tags” on page 50

Caching elements are as follows:

■ “cache” on page 130
■ “cache-helper” on page 132
■ “default-helper” on page 133
■ “cache-mapping” on page 134
■ “url-pattern” on page 135
■ “cache-helper-ref” on page 135
■ “timeout” on page 136
■ “refresh-field” on page 136
■ “http-method” on page 137
■ “key-field” on page 137
■ “constraint-field” on page 138
■ “value” on page 139

cache
Configures caching for web application components.

Subelements

The following table describes subelements for the cache element. The left column lists the
subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE 6–25 cache Subelements

Element Required Description

“cache-helper” on page 132 zero or more Specifies a custom class that implements the
CacheHelper interface.

“default-helper” on page 133 zero or one Allows you to change the properties of the default,
built-in cache-helper class.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009130

TABLE 6–25 cache Subelements (Continued)
Element Required Description

“property” on page 116 zero or more Specifies a cache property, which contains a name
and a value.

“cache-mapping” on page 134 zero or more Maps a URL pattern or a servlet name to its
cacheability constraints.

Attributes

The following table describes attributes for the cache element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

TABLE 6–26 cache Attributes

Attribute Default Value Description

max-entries 4096 (optional) Specifies the maximum number of entries
the cache can contain. Must be a positive integer.

timeout-in-seconds 30 (optional) Specifies the maximum amount of time
in seconds that an entry can remain in the cache
after it is created or refreshed. Can be overridden by
a timeout element.

enabled false (optional) Determines whether servlet and JSP
caching is enabled. Legal values are on, off, yes, no,
1, 0, true, false.

Properties

The following table describes properties for the cache element. The left column lists the
property name, the middle column indicates the default value, and the right column describes
what the property does.

TABLE 6–27 cache Properties

Property Name Default Value Description

cacheClassName com.sun.appserv.web.

cache.LruCache

Specifies the fully qualified name of the class that
implements the cache functionality. See The
Table 6–28

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 131

TABLE 6–27 cache Properties (Continued)
Property Name Default Value Description

MultiLRUSegmentSize 4096 Specifies the number of entries in a segment of
the cache table that should have its own LRU
(least recently used) list. Applicable only if
cacheClassName is set to
com.sun.appserv.web.cache.MultiLruCache.

MaxSize unlimited;

Long.MAX_VALUE

Specifies an upper bound on the cache memory
size in bytes (KB or MB units). Example values
are 32 KB or 2 MB. Applicable only if
cacheClassName is set to
com.sun.appserv.web.cache.BoundedMultiLruCache.

Cache Class Names
The following table lists possible values of the cacheClassName property. The left column lists
the value, and the right column describes the kind of cache the value specifies.

TABLE 6–28 cacheClassName Values

Value Description

com.sun.appserv.web.cache.

LruCache

A bounded cache with an LRU cache replacement policy.

com.sun.appserv.web.cache.

BaseCache

An unbounded cache suitable if the maximum number of entries is
known.

com.sun.appserv.web.cache.

MultiLruCache

A cache suitable for a large number of entries (>4096). Uses the
MultiLRUSegmentSize property.

com.sun.appserv.web.cache.

BoundedMultiLruCache

A cache suitable for limiting the cache size by memory rather than
number of entries. Uses the MaxSize property.

cache-helper

Specifies a class that implements the CacheHelper interface. For details, see “CacheHelper
Interface” on page 40

Subelements

The following table describes subelements for the cache-helper element. The left column lists
the subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009132

TABLE 6–29 cache-helper Subelements

Element Required Description

“property” on page 116 zero or more Specifies a property, which contains a name and a
value.

Attributes

The following table describes attributes for the cache-helper element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

TABLE 6–30 cache-helper Attributes

Attribute Default Value Description

name default Specifies a unique name for the helper class, which is
referenced in the cache-mapping element.

class-name none Specifies the fully qualified class name of the cache
helper, which must implement the
com.sun.appserv.web.CacheHelper interface.

default-helper
Allows you to change the properties of the built-in default cache-helper class.

Subelements

The following table describes subelements for the default-helper element. The left column
lists the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

TABLE 6–31 default-helper Subelements

Element Required Description

“property” on page 116 zero or more Specifies a property, which contains a name and a
value.

Attributes

none

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 133

Properties

The following table describes properties for the default-helper element. The left column lists
the property name, the middle column indicates the default value, and the right column
describes what the property does.

TABLE 6–32 default-helper Properties

Property Name Default Value Description

cacheKeyGeneratorAttrName uses the built-in
default cache-helper
key generation, which
concatenates the
servlet path with
key-field values, if
any.

The caching engine searches in the ServletContext
for an attribute with a name equal to the value
specified for this property to determine whether a
customized CacheKeyGenerator implementation is
used. An application may provide a customized key
generator rather than using the default helper.

For more information, see CacheKeyGenerator
Interface

cache-mapping
Maps a URL pattern or a servlet name to its cacheability constraints.

Subelements

The following table describes subelements for the cache-mapping element. The left column lists
the subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE 6–33 cache-mapping Subelements

Element Required Description

“servlet-name” on page 119 requires one
servlet-name or
url-pattern

Contains the name of a servlet.

“url-pattern” on page 135 requires one
servlet-name or
url-pattern

Contains a servlet URL pattern for which caching is
enabled.

“cache-helper-ref” on page 135 required if timeout,
refresh-field,

http-method,
key-field, and
constraint-field

are not used

Contains the name of the cache-helper used by the
parent cache-mapping element.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009134

TABLE 6–33 cache-mapping Subelements (Continued)
Element Required Description

“timeout” on page 136 zero or one if
cache-helper-ref is
not used

Contains the cache-mapping specific maximum
amount of time in seconds that an entry can remain
in the cache after it is created or refreshed

“refresh-field” on page 136 zero or one if
cache-helper-ref is
not used

Specifies a field that gives the application
component, programmatic way to refresh a cached
entry.

“http-method” on page 137 zero or more if
cache-helper-ref is
not used

Contains an HTTP method that is eligible for
caching.

“key-field” on page 137 zero or more if
cache-helper-ref is
not used

Specifies a component of the key used to look up
and extract cache entries.

“constraint-field” on page 138 zero or more if
cache-helper-ref is
not used

Specifies a cacheability constraint for the given
url-pattern or servlet-name.

Attributes

none

url-pattern
Contains data that specifies a servlet URL pattern for which caching is enabled. See the Java
Servlet 2.3 specification, section SRV 11.2 for applicable patterns.

Subelements

none

Attributes

none

cache-helper-ref
Contains data that specifies the name of the cache-helper used by the parent cache-mapping
element.

Subelements

none

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 135

Attributes

none

timeout
Contains data that specifies the cache-mapping specific maximum amount of time in seconds
that an entry can remain in the cache after it is created or refreshed. If not specified, the default
is the value of the timeout attribute of the cache element.

Subelements

none

Attributes

The following table describes attributes for the timeout element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

TABLE 6–34 timeout Attributes

Attribute Default Value Description

name none Specifies the timeout input parameter, whose value
is interpreted in seconds. The field's type must be
java.lang.Long or java.lang.Integer.

scope context.attribute (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

refresh-field
Specifies a field that gives the application component a programmatic way to refresh a cached
entry.

Subelements

none

Attributes

The following table describes attributes for the refresh-field element. The left column lists
the attribute name, the middle column indicates the default value, and the right column
describes what the attribute does.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009136

TABLE 6–35 refresh-field Attributes

Attribute Default Value Description

name none Specifies the input parameter name. If the parameter
is present in the specified scope and it’s value is true,
the cache will be refreshed.

scope request.parameter (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

http-method
Contains data that specifies an HTTP method that is eligible for caching. The default is GET.

Subelements

none

Attributes

none

key-field
Specifies a component of the key used to look up and extract cache entries. The web container
searches for the named parameter, or field, in the specified scope.

If this element is not present, the web container uses the Servlet Path (the path section that
corresponds to the servlet mapping that activated the current request). See the Servlet 2.3
specification, section SRV 4.4, for details on the Servlet Path.

Subelements

none

Attributes

The following table describes attributes for the key-field element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 137

TABLE 6–36 key-field Attributes

Attribute Default Value Description

name none Specifies the input parameter name.

scope request.parameter (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

constraint-field
Specifies a cacheability constraint for the given url-pattern or servlet-name.

All constraint-field constraints must pass for a response to be cached. If there are value
constraints, at least one of them must pass.

Subelements

The following table describes subelements for the constraint-field element. The left column
lists the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

TABLE 6–37 constraint-field Subelements

Element Required Description

“value” on page 139 zero or more Contains a value to be matched to the input
parameter value.

Attributes

The following table describes attributes for the constraint-field element. The left column
lists the attribute name, the middle column indicates the default value, and the right column
describes what the attribute does.

TABLE 6–38 constraint-field Attributes

Attribute Default Value Description

name none Specifies the input parameter name.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009138

TABLE 6–38 constraint-field Attributes (Continued)
Attribute Default Value Description

scope request.parameter (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request.header,
request.parameter, request.cookie,
session.id, and session.attribute.

cache-on-match true (optional) If true, caches the response if matching
succeeds. Overrides the same attribute in a value
subelement.

cache-on-match-failure false (optional) If true, caches the response if matching
fails. Overrides the same attribute in a value
subelement.

value
Contains data that specifies a value to be matched to the input parameter value. The matching is
case sensitive. For example:

<value match-expr="in-range">1-60</value>

Subelements

none

Attributes

The following table describes attributes for the value element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

TABLE 6–39 value Attributes

Attribute Default Value Description

match-expr equals (optional) Specifies the type of comparison
performed with the value. Allowed values are
equals, not-equals, greater, lesser, and
in-range.

If match-expr is greater or lesser, the value must be
a number. If match-expr is in-range, the value must
be of the form n1-n2, where n1 and n2 are numbers.

cache-on-match true (optional) If true, caches the response if matching
succeeds.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 139

TABLE 6–39 value Attributes (Continued)
Attribute Default Value Description

cache-on-match-failure false (optional) If true, caches the response if matching
fails.

Classloader Elements
Classloader elements are as follows:

■ “class-loader” on page 140

class-loader
Configures the classloader for the web application.

Subelements

none

Attributes

The following table describes attributes for the class-loader element. The left column lists the
attribute name, the middle column indicates the default value, and the right column describes
what the attribute does.

TABLE 6–40 class-loader Attributes

Attribute Default Value Description

extra-class-path null (optional) Specifies additional classpath settings
for this web application.

delegate false (optional) If true, the web application follows
the standard classloader delegation model and
delegates to its parent classloader first before
looking in the local classloader. If false, the web
application follows the delegation model
specified in the Servlet specification and
searches in its classloader before looking in the
parent classloader.

For a web component of a web service, you must
set this value to true.

Legal values are on, off, yes, no, 1, 0, true,
false.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009140

TABLE 6–40 class-loader Attributes (Continued)
Attribute Default Value Description

dynamic-reload-interval value of the
dynamicreloadinterval

attribute of the <JAVA>
element in server.xml

(optional) Allows an application to override the
dynamicreloadinterval setting in server.xml.

Specifies the frequency (in seconds) at which a
web application is checked for modifications,
and then reloaded if modifications have been
made. Setting this value to less than or equal to 0
disables dynamic reloading of the application. If
not specified, the value from server.xml is used.

For more information about server.xml, see
the Sun Java System Web Server 6.1 SP11
Administrator’s Configuration File Reference.

JSP Elements
JSP elements are as follows:

■ “jsp-config” on page 141

jsp-config
Specifies JSP configuration information.

Subelements

The following table describes subelements for the jsp-config element. The left column lists the
subelement name, the middle column indicates the requirement rule, and the right column
describes what the element does.

TABLE 6–41 jsp-config Subelements

Element Required Description

“name” on page 129 zero or more Specifies a property.

Attributes

none

Properties

The following table describes properties for the jsp-config element. The left column lists the
property name, the middle column indicates the default value, and the right column describes
what the property does.

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 141

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

TABLE 6–42 jsp-config Properties

Property Name Default Value Description

ieClassId clsid:8AD9C840-

044E-11D1-B3E9-

00805F499D93

The Java plugin COM class ID for Internet Explorer.
Used by the <jsp:plugin> tags.

javaCompilerPlugin internal JDK compiler
(javac)

The fully qualified class name of the Java compiler
plugin to be used. Not needed for the default
compiler.

For example, to use the jikes compiler for JSP
pages, set the javaCompilerPlugin property to
org.apache.jasper.compiler.JikesJavaCompiler,
then set the javaCompilerPath property to point to
the jikes executable.

To use sun.tools.javac.Main to compile
JSP-generated servlets, set the javaCompilerPlugin
property to
org.apache.jasper.compiler.SunJavaCompiler

(see also the -deprecatedjavac switch of jspc,
described in

“Compiling JSPs: The Command-Line Compiler”
on page 47

javaCompilerPath none Specifies the path to the executable of an
out-of-process Java compiler such as jikes. Ignored
for the default compiler. It is required only if the
javaCompilerPlugin property is specified.

javaEncoding UTF8 Specifies the encoding for the generated Java servlet.
This encoding is passed to the Java compiler used to
compile the servlet as well. By default, the web
container tries to use UTF8. If that fails, it uses the
javaEncoding value.

For encodings, see: http://java.sun.com/
j2se/1.4.2/docs/guide/intl/encoding.doc.html

classdebuginfo false Specifies whether the generated Java servlets should
be compiled with the debug option set (-g for
javac).

keepgenerated true If set to true, keeps the generated Java files. If false,
deletes the Java files.

largefile false If set to true, static HTML is stored in a separate
data file when a JSP is compiled. This is useful when
a JSP is very large, because it minimizes the size of
the generated servlet.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009142

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

TABLE 6–42 jsp-config Properties (Continued)
Property Name Default Value Description

mappedfile false If set to true, generates separate write calls for each
HTML line and comments that describe the location
of each line in the JSP file. By default, all adjacent
write calls are combined and no location comments
are generated.

scratchdir default work directory
for the web
application

The working directory created for storing all of the
generated code.

reload-interval 0 Specifies the frequency (in seconds) at which JSP
files are checked for modifications. Setting this value
to 0 checks JSPs for modifications on every request.
Setting this value to -1 disables checks for JSP
modifications and JSP recompilation.

initial-capacity 32 Specifies the initial size of the hash table of compiled
JSP classes.

The following example illustrates the use of the initial-capacity property described in the
table above. The example shows how you can configure a value of 1024:

<jsp-config>

<property name=”initial-capacity” value=”1024” >

</jsp-config>

Internationalization Elements
Internationalization elements are as follows:

■ “parameter-encoding” on page 143
■ “locale-charset-info” on page 144
■ “locale-charset-map” on page 145

parameter-encoding
Specifies a hidden field or default charset that determines the character encoding the web
container. This web container is used to decode parameters for request.getParameter calls
when the charset is not set in the request's Content-Type.

For encodings you can use, see:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 143

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Subelements

none

Attributes

The following table describes attributes for the parameter-encoding element. The left column
lists the attribute name, the middle column indicates the default value, and the right column
describes what the attribute does.

TABLE 6–43 parameter-encoding Attributes

Attribute Default Value Description

form-hint-field j_encoding The value of the hidden field in the form that
specifies the parameter encoding.

default-charset none This value is used for parameter encoding if neither
request.setCharacterEncoding() is called nor
form-hint-field is found in the request.

locale-charset-info
Specifies the mapping between the locale and the character encoding that should be set in the
Content-type header of the response if a servlet or JSP sets the response locale using the
ServletResponse.setLocale method. This overrides the web container's default
locale-to-charset mapping.

Subelements

The following table describes subelements for the locale-charset-info element. The left
column lists the subelement name, the middle column indicates the requirement rule, and the
right column describes what the element does.

TABLE 6–44 locale-charset-info Subelements

Element Required Description

“locale-charset-map” on
page 145

one or more Maps a locale to a character set.

“parameter-encoding” on
page 143

zero or one Deprecated. Use the parameter-encoding element
under sun-web-app instead. This is supported only
for backward compatibility with applications
developed under Sun Java System Application
Server 7.

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009144

Attributes

The following table describes attributes for the locale-charset-info element. The left column
lists the attribute name, the middle column indicates the default value, and the right column
describes what the attribute does.

TABLE 6–45 locale-charset-info Attributes

Attribute Default Value Description

default-locale none Ignored in Sun Java System Web Server 6.1.

locale-charset-map
Maps a locale to a specific character encoding.

For encodings you can use, see:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Attributes

The following table describes attributes for the locale-charset-map element. The left column
lists the attribute name, the middle column indicates the default value, and the right column
describes what the attribute does.

TABLE 6–46 locale-charset-map Attributes

Attribute Default Value Description

locale none Specifies the locale name.

agent none Ignored in Sun Java System Web Server 6.1.

charset none Specifies the character set for that locale.

The following table provides a locale-charset-map example, listing the locale and the
corresponding charset:

TABLE 6–47 locale-charset-map Example

Locale Charset

ja EUC-JP

zh UTF-8

Elements in the sun-web.xml File

Chapter 6 • Deploying Web Applications 145

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Alphabetical List of sun-web.xml Elements
This section provides an alphabetical list for the easy lookup of sun-web.xml elements.

“cache” on page 130

“cache-helper” on page 132

“cache-helper-ref” on page 135

“cache-mapping” on page 134

“class-loader” on page 140

“constraint-field” on page 138

“cookie-properties” on page 125

“default-helper” on page 133

“default-resource-principal” on page 128

“description” on page 117

“group-name” on page 120

“http-method” on page 137

“jndi-name” on page 129

“jsp-config” on page 141

“key-field” on page 137

“locale-charset-info” on page 144

“locale-charset-map” on page 145

“manager-properties” on page 122

“name” on page 129

“parameter-encoding” on page 143

“password” on page 129

“principal-name” on page 119

“property” on page 116

“refresh-field” on page 136

Elements in the sun-web.xml File

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009146

“res-ref-name” on page 128

“resource-env-ref” on page 126

“resource-env-ref-name” on page 127

“resource-ref” on page 127

“role-name” on page 119

“security-role-mapping” on page 118

“servlet” on page 118

“servlet-name” on page 119

“session-config” on page 120

“session-manager” on page 121

“session-properties” on page 124

“store-properties” on page 123

“sun-web-app” on page 114

“timeout” on page 136

“url-pattern” on page 135

“value” on page 139

Note – For a list of sun-web.xml elements by category, see “Elements in the sun-web.xml File”
on page 114.

Sample Web Application XML Files
This section includes the following:

■ “Sample web.xml File” on page 147
■ “Sample sun-web.xml File” on page 149

Sample web.xml File
The following is a sample web.xml file:

Sample Web Application XML Files

Chapter 6 • Deploying Web Applications 147

<?xml version="1.0" encoding="UTF-8"?>
<!--

Copyright 2002 Sun Microsystems, Inc. All rights reserved.

-->

<!DOCTYPE web-app PUBLIC ’-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN’ ’http://java.sun.com/dtd/web-app_2_3.dtd’>

<web-app>

<display-name>i18n-simple</display-name>

<distributable></distributable>

<filter>

<filter-name>Simple Filter</filter-name>

<filter-class>samples.i18n.simple.servlet.SimpleFilter

</filter-class>

<init-param>

<param-name>encoding</param-name>

<param-value>UTF-8</param-value>

</init-param>

<init-param>

<param-name>usefilter</param-name>

<param-value>true</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>Simple Filter</filter-name>

<url-pattern>/SimpleFilterServlet</url-pattern>

</filter-mapping>

<servlet>

<servlet-name>SimpleI18nServlet</servlet-name>

<servlet-class>samples.i18n.simple.servlet.SimpleI18nServlet

</servlet-class>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet>

<servlet-name>IncludedServlet</servlet-name>

<servlet-class>samples.i18n.simple.servlet.IncludedServlet

</servlet-class>

</servlet>

<servlet>

<servlet-name>ForwardedServlet</servlet-name>

<servlet-class>samples.i18n.simple.servlet.ForwardedServlet

</servlet-class>

</servlet>

<servlet>

<servlet-name>SimpleFilterServlet</servlet-name>

<servlet-class>samples.i18n.simple.servlet.SimpleFilterServlet

</servlet-class>

</servlet>

Sample Web Application XML Files

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009148

<servlet>

<servlet-name>LocaleCharsetServlet</servlet-name>

<servlet-class>samples.i18n.simple.servlet.LocaleCharsetServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>SimpleI18nServlet</servlet-name>

<url-pattern>/SimpleI18nServlet</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>IncludedServlet</servlet-name>

<url-pattern>/IncludedServlet</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ForwardedServlet</servlet-name>

<url-pattern>/ForwardedServlet</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>SimpleFilterServlet</servlet-name>

<url-pattern>/SimpleFilterServlet</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>LocaleCharsetServlet</servlet-name>

<url-pattern>/LocaleCharsetServlet</url-pattern>

</servlet-mapping>

<taglib>

<taglib-uri>/i18ntaglib</taglib-uri>

<taglib-location>/WEB-INF/tlds/i18ntaglib.tld

</taglib-location>

</taglib>

</web-app>

Sample sun-web.xml File
The following is a sample sun-web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!--

Copyright 2002 Sun Microsystems, Inc. All rights reserved.

-->

<!DOCTYPE sun-web-app PUBLIC ’-//Sun Microsystems, Inc.//DTD Sun ONE

Web Server 6.1 Servlet 2.3//EN’ ’http://www.sun.com/software/sunone

/webserver/dtds/sun-web-app_2_3-1.dtd’>

<sun-web-app>

<session-config>

Sample Web Application XML Files

Chapter 6 • Deploying Web Applications 149

<session-manager/>

</session-config>

<cache enabled="true" timeout-in-seconds="300" >

<cache-mapping>

<servlet-name>ServCache</servlet-name>

<key-field name="inputtext"
scope="request.parameter"/>

<constraint-field name="inputtext"
scope="request.parameter">

<value>one</value>

<value>two</value>

</constraint-field>

</cache-mapping>

</cache>

</sun-web-app>

Sample Web Application XML Files

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009150

Debugging Web Applications

This chapter provides guidelines for debugging web applications in Sun Java System Web
Server.

This includes the following sections:

■ “Enabling Debugging” on page 151
■ “JPDA Options” on page 152
■ “Using Sun Java Studio for Debugging” on page 153
■ “Debugging JSPs” on page 153
■ “Generating a Stack Trace for Debugging” on page 154
■ “Logging” on page 154
■ “Profiling” on page 155

In order to debug applications, you need to edit the server.xml file as described in this chapter.
For more general information about this file, see the Sun Java System Web Server 6.1 SP11
Administrator’s Configuration File Reference.

Enabling Debugging
When you enable debugging, you need to enable both local and remote debugging.

You can enable debugging in one of these ways, as described in the following sections:

■ “Using the Administration Interface” on page 152
■ “Editing the server.xml File” on page 152

Sun Java System Application Server debugging is based on the JPDA (JavaTM Platform Debugger
Architecture software). For more information, see “JPDA Options” on page 152

7C H A P T E R 7

151

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

Using the Administration Interface

▼ To enable debugging

Access the Server Manager and click the Java tab.

Click JVM General.

Specify the Java home in the Java Home field.
The Java home is the path to the directory where the JDK is installed.

To enable debugging, select On from the Debug Enabled drop-down list

Specify debug options in the Debug Options field.
For more information about debug options, see “JPDA Options” on page 152

Click OK.

Editing the server.xml File
To enable debugging, set the following attributes of the JAVA element in the server.xml file:
■ Set debug="true" to turn on debugging.
■ Add any desired JPDA debugging options in the debugoptions attribute. See “JPDA

Options” on page 152
■ To specify the port to use when attaching the JVM to a debugger, specify

address=port_number in the debugoptions attribute.

For details about the server.xml file, see the Sun Java System Web Server 6.1 SP11
Administrator’s Configuration File Reference.

JPDA Options
The default JPDA options are as follows:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n

If you substitute suspend=y, the JVM starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM starts.

To specify the port to use when attaching the JVM to a debugger, specify
address=port_number.

1

2

3

4

5

6

JPDA Options

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009152

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

You can include additional options. A list of JPDA debugging options is available here:

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Using Sun Java Studio for Debugging
You can use SunTM Java System Studio 5 technology for "remote debugging", in order to
manually attach the IDE to a remote Web Server started in debug mode.

▼ To manually attach the IDE to a remote Web Server
Using the Sun Java System Web Server Administration interface, restart the server instance in
debug mode (Server Manager > JVM General > Debug Enabled).

Note the JPDA port number.

Start the IDE.

Choose Debug > Start.

Select the dt_socketmethod, and then enter the remote machine name and the JPDA port
number.

At that moment, any breakpoint created in the IDE on servlet source code of a deployed
application will be active.
For more information about the Sun Java Studio 8 plugin for Sun Java System Web Server, and
about using Sun Java Studio, see “Using Sun Java Studio” on page 107.

Debugging JSPs
When you use Sun Java Studio to debug JSPs, you can set breakpoints in either the JSP code or
the generated servlet code, and you can switch between them and see the same breakpoints in
both.

To set up debugging in Sun Java Studio, see the previous section.

1

2

3

4

5

6

Debugging JSPs

Chapter 7 • Debugging Web Applications 153

http://java.sun.com/products/jpda/doc/conninv.html#Invocation

Generating a Stack Trace for Debugging
You can generate a Java stack trace for debugging as described here:

If the -Xrs flag is set (for reduced signal usage) in the server.xml file (under <JVMOPTIONS>),
comment it out before generating the stack trace. If the -Xrs flag is used, the server may simply
dump core and restart when you send the signal to generate the trace.

The stack trace goes to the system log file or to stderr based on the LOG attributes in server.xml.

For more information about the server.xml file, see the Sun Java System Web Server 6.1 SP11
Administrator’s Configuration File Reference.

Logging
You can use the Sun Java System Web Server's log files to help debug your applications. For
general information about logging, see the Sun Java System Web Server 6.1 SP11 Administrator’s
Guide. For information about configuring logging in the server.xml file, see the Sun Java
System Web Server 6.1 SP11 Administrator’s Configuration File Reference.

You can change logging settings in one of these ways:

■ “Using the Administration Interface” on page 154
■ “Editing the server.xml File” on page 154

Using the Administration Interface

▼ To change logging settings

Access the Server Manager and click the Logs tab.

Set log preferences as desired.

Apply your changes.

Editing the server.xml File
To change logging settings, set the attributes of the LOG element in the server.xml file. For
details about server.xml file, see the Sun Java System Web Server 6.1 SP11 Administrator’s
Configuration File Reference.

1

2

3

Generating a Stack Trace for Debugging

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009154

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7651
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

Profiling
You can use a profile to perform remote profiling on the Sun Java System Web Server to
discover bottlenecks in server-side performance. This section describes how to configure these
profilers for use with Sun Java System Web Server:

■ “The HPROF Profiler” on page 155
■ “The Optimizeit Profiler” on page 157

The HPROF Profiler
HPROF is a simple profiler agent shipped with the JavaTM 2 SDK. It is a dynamically linked
library that interacts with the JVMPI (JavaTM Virtual Machine Profiler Interface) and writes out
profiling information either to a file or to a socket in ASCII or binary format. This information
can be further processed by a profiler front-end tool such as HAT.

HPROF can present CPU usage, heap allocation statistics, and monitor contention profiles. In
addition, it can also report complete heap dumps and states of all of the monitors and threads in
the Java virtual machine. For more details on the HPROF profiler, see the JDK documentation
at:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

Once HPROF is installed using the following instructions, its libraries are loaded into the server
process.

▼ To use HPROF profiling on UNIX

Configure Sun Java System Web Server in one of these ways:

■ Go to the server instance page in the Administration interface, select the Java tab, click the
JVM Profiler link, and edit the following fields before clicking OK:
■ Profiler: Enable

■ Classpath: (leave blank)
■ Native Lib Path: (leave blank)
■ JVM Option: For each of these options, type the option in the JVM Option field,

select Add, then check its box in the JVM Options list:
-Xrunhprof:file=log.txt,options

Edit the server.xml file:

<!-- hprof options -->

<PROFILER name="hprof" enabled="true">
<JVMOPTIONS>

1

Profiling

Chapter 7 • Debugging Web Applications 155

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html

-Xrunhprof:file=log.txt,options

</JVMOPTIONS>

</PROFILER>

Note – Do not use the -Xrs flag.

Here is an example of options that you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file option is important because it determines where the stack dump is written in step
6.

The syntax of HPROF options is as follows:

-Xrunhprof[:help]|[:option=value,option2=value2, ...]

Using help lists options that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|old CPU usage off

format=a|b ascii or binary output a

file=<file> write data to file java.hprof

(.txt for ascii)

net=<host>:<port> send data over a socket write to file

depth=<size> stack trace depth 4

cutoff=<value> output cutoff point 0.0001

lineno=y|n line number in traces? y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

You must also change a line in the Sun Java System Web Server start script. The start script file is
instance_dir/start. Change the following line:
PRODUCT_BIN=webservd-wdog

to this:

PRODUCT_BIN=webservd

Start the server by running the start script. Since the server runs in the foreground (the change
in step 2), the command prompt returns only after the server is stopped.

In another window or terminal, find the process ID of the server process.
% ps -ef | grep webservd

2

3

4

Profiling

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009156

This command lists two webservd processes. Look at the PPID (parent process ID) column and
identify which of the two processes is the parent process and which is the child process. Note the
PID (process ID) of the child process ID.

Send a SIGQUIT signal (signal 3) to the child process:
% kill -QUIT child_PID

To stop the Web Server, run the stop script from another window.
% ./stop

This writes an HPROF stack dump to the file you specified using the file HPROF option in step
1. For general information about using a stack dump, see “Generating a Stack Trace for
Debugging” on page 154

To return your Web Server to its original configuration, undo the changes in steps 1 and 2.

The Optimizeit Profiler
Information about OptimizeitTM is available at:

http://www.borland.com/us/products/optimizeit/index.html

Once Optimizeit is installed using the following instructions, its libraries are loaded into the
server process.

To enable remote profiling with Optimizeit, do one of the following:

■ Go to the server instance page in the Administration interface, select the Java tab, click the
JVM Profiler link, and edit the following fields before selecting OK:
■ Profiler: Enable
■ Classpath: Optimizeit_dir/lib/optit.jar
■ Native Lib Path: Optimizeit_dir/lib
■ JVM Option: For each of these options, type the option in the JVM Option field, select

Add, then check its box in the JVM Options list:
■ -DOPTITHOME=Optimizeit_dir
■ -Xrunoii

■ -Xbootclasspath/a:Optimizeit_dir/lib/oibcp.jar

Edit the server.xml file:

<!-- Optimizeit options -->

<PROFILER classpath="Optimizeit_dir/lib/optit.jar"
nativelibrarypath="Optimizeit_dir/lib" enabled="true">

5

6

7

Profiling

Chapter 7 • Debugging Web Applications 157

http://www.borland.com/us/products/optimizeit/index.html

<JVMOPTIONS>

-DOPTIT_HOME=Optimizeit_dir -Xboundthreads -Xrunoii

-Xbootclasspath/a:Optimizeit_dir/lib/oibcp.jar

</JVMOPTIONS>

</PROFILER>

In addition, you may need to set the following in your server.policy file:

grant codeBase "file:Optimizeit_dir/lib/optit.jar" {

permission java.security.AllPermission;

};

For more information about the server.policy file, see “The server.policy File” on
page 100

When the server starts up with this configuration, you can attach the profiler. For further
details, see the Optimizeit documentation.

Note – If any of the configuration options are missing or incorrect, the profiler may
experience problems that affect the performance of the Sun Java System Web Server.

Profiling

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009158

Internationalization Issues

This appendix explains internationalization issues as it applies to the following components:

■ “Servlets” on page 159
■ “JSPs” on page 160

Servlets
This section describes how the Sun Java System Web Server determines the character encoding
for the servlet request and the servlet response.

For encoding, see
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Servlet Request
When processing the servlet request, the server uses the following order of precedence, first to
last, to determine the character encoding for the request parameters:

■ The ServletRequest.setCharacterEncoding() method.
■ A hidden field in the form, if specified using the form-hint-field attribute of the

parameter-encoding element in the sun-web.xml file. For more information about this
element, see “parameter-encoding” on page 143

■ The character encoding specified in the default-charset attribute of the
parameter-encoding element in the sun-web.xml file. For more information about this
element, see “parameter-encoding” on page 143

■ The default encoding, which is ISO-8859-1.

AA P P E N D I X A

159

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Servlet Response
When processing a servlet response, the server uses the following order of precedence, first to
last, to determine the response character encoding:

■ The ServletResponse.setContentType() method or the ServletResponse.setLocale()
method.

■ The default encoding, which is ISO-8859-1.

To specify the character encoding that should be set in the Content-type header of the
response if the response locale is set using the ServletResponse.setLocale method. You can
use the locale-charset-map under the locale-charset-info element in the sun-web.xml
file. For more information about this element, see“locale-charset-info” on page 144

JSPs
A JSP page uses a character encoding. For encodings you can use, see:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

The encoding can be described explicitly using the pageEncoding attribute of the page
directive. The character encoding defaults to the encoding indicated in the contentType
attribute of the page directive if it is given, or to ISO-8859-1.

For more information, see the “Localization Issues” chapter of the JSP 1.2 specification, which
you can be find at the following location:

http://java.sun.com/products/jsp/index.jsp

Also see the article Developing Multilingual Applications Using JavaServer Pages Technology at:

http://java.sun.com/

developer/technicalArticles/Intl/MultilingualJSP/index.html

JSPs

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009160

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html
http://java.sun.com/products/jsp/index.jsp
http://java.sun.com/developer/technicalArticles/Intl/MultilingualJSP/index.html
http://java.sun.com/developer/technicalArticles/Intl/MultilingualJSP/index.html

Migrating Legacy Servlets

Netscape Enterprise Server/ iPlanet Web Server 4.0 and 4.1 supported the Java Servlet 2.1
specification. This specification did not include web applications. A deployment scheme was
developed to make servlet deployment simpler. With the advent of Java web applications (.war
files) and their deployment descriptors, it is no longer necessary to maintain a proprietary
deployment system.

iPlanet Web Server 6.0 supported both types of deployment schemes, but the 4.x
implementation (referred to as legacy servlets) was marked as deprecated (See Chapter 8:
“Legacy Servlet and JSP Configuration” of the iPlanet Web Server, Enterprise Edition
Programmer's Guide to Servlets).

Sun Java System Web Server 6.1 no longer supports legacy servlets. The legacy-style properties
files for the server you want to migrate (servlet.properties, context.properties, and
rules.properties) are removed during migration. For more information about these files, see
"Appendix A" in the Sun Java System Web Server 6.1 SP11 Administrator’s Configuration File
Reference.

Because there is no one-to-one mapping for all of the features, legacy servlets cannot be
migrated automatically. This section describes the main features involved in migrating legacy
servlets to web applications.

This appendix includes the following topics:

■ “JSP by Extension” on page 162
■ “Servlet by Extension of Servlet by Directory” on page 162
■ “Registered Servlets” on page 162

BA P P E N D I X B

161

http://docs.sun.com/doc/820-7650
http://docs.sun.com/doc/820-7650

JSP by Extension
In Sun Java System Web Server 6.1, JSP by extension works as it did in previous releases. Any
file in the document tree that is named as an extension of .jsp will be treated as a JSP as long as
the Java is turned on for the virtual server.

Servlet by Extension of Servlet by Directory
This is not supported in Sun Java System Web Server 6.1. You can deploy a web application to
respond to a directory, but all of the servlets must be in the WEB-INF/classes directory of the
web application. You can no longer copy a servlet in the .class file into the document tree and
have it run as a servlet or have all of the contents of a directory run as a servlet. The web
application will treat only .class files as servlets.

Registered Servlets
In the legacy servlet system there was a two-step process of registering servlets
(servlet.properties) and mapping them to a URL (rules.properties). In Sun Java System
Web Server 6.1, the servlets must be moved into a web application, and these settings will be
maintained in the web.xml file of that web application.

Example
A registered servlet contains entries in both the servlet.properties and rules.properties

files.

The following example uses a servlet file called BuyNow1A.class, which respons to /buynow. It is
assumed that the web application is deployed at '/'.

The servlet.properties file has:

servlet.BuyNowServlet.classpath=

D:/Netscape/server4/docs/servlet/buy;D:/Netscape/server4/docs/myclasses

servlet.BuyNowServlet.code=BuyNow1A

servlet.BuyNowServlet.initArgs=arg1=45,arg2=online,arg3="quick shopping"

The rules.properties file has:

/buynow=BuyNowServlet

Those must be translated to a web.xml setting.

The servlet.properties setting will translate into the <servlet> element.

JSP by Extension

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009162

The classpath is automated so there is no classpath setting. All classes to be used must be in the
WEB-INF/classes directory or in a .jar file in the WEB-INF/lib directory of the web application.

The servlet-name element is the part between the dots in the servlets.properties file. The
code translates to the servlet-class. IntArgs translate to init-params. This entry would
translate to:

<servlet>

<servlet-name> BuyNowServlet </servlet-name>

<servlet-class> BuyNow1A </servlet-class>

<init-param>

<param-name> arg1 </param-name>

<param-value> 45 </param-value>

</init-param>

<init-param>

<param-name> arg2 </param-name>

<param-value> online </param-value>

</init-param>

<init-param>

<param-name> arg3 </param-name>

<param-value> “quick shopping” </param-value>

</init-param>

</servlet

The rules.properties entries translate to servlet-mapping elements. This entry would
translate to.

<servlet-mapping>

<servlet-name> BuyNowServlet </servlet-name>

<url-pattern> /buynow </url-pattern>

</servlet-mapping>

Some other entries in the servlets.properties file map to the web.xml file. These include.

■ Servlets.startup: The servlet listed here should have a load-on-startup element in it.
■ Servlets.config.reloadInterval: This translates to the dynamicreloadinterval

attribute of the JAVA element in server.xml. This is an instance-wide setting so it affects all
virtual servers and all web applications.

■ Servlets.sessionmgr: This translates to the session-manager element in the
sun-web.xml file.

JSP by Extension

Appendix B • Migrating Legacy Servlets 163

164

Index

A
about this guide

audience, 9
contents, 12
other resources, 10-12

about
JSPs, 18-19, 45-46
servlets, 18, 25-27
sessions, 63-65
virtual servers, 21
web applications, 17-19

accessing a session, 65-66
Administration interface, using to

change logging settings, 154
deploy web applications, 105
enable debugging, 152
enable or disable web applications, 108-109
use HPROF profiler, 155
use Optimizeit profiler, 157

Administration interface, more information about, 11
AllPermission, 101
application permissions, 100-102

changing, 101-102
default, 101

application role mapping, 84
ATTLIST tags, 113
auth-constraint, 93
authentication, 84, 86

ACL-based, 86-87
by servlets, 88-90
for single sign-on, 90-91
HTTP basic, 89

authentication (Continued)
J2SE/Servlet-based, 87-88
secure web applications, 88
SSL mutual, 89

authorization, 84, 86
ACL-based, 86-87
by servlets, 92-93
client certificate, 93
constraints, 93
J2SE/Servlet-based, 87-88
secure web applications, 88

B
binding objects to sessions, 67-68
Bootstrap Classloader, 111

C
cache class names, 132-133
cache element, 130-132
cache-helper-ref, 135-136
cache-mapping, 134-135
cache tags, 50-53
cacheClassName property, 132-133
CacheHelper interface, 40-41
CacheKeyGenerator interface, 41-42
caching

default cache configuration, 38-39
example, 39-40
JSP, 21, 50-53

165

caching (Continued)
servlet results, 21, 37-42
Sun Java System Web Server features, 38

certificate realm, 95-96
CGI

programs, 19
using, 17

character encoding
JSP, 160
servlet, 159-160

cipher suites, 89
class declaration, 28
class-loader, 111, 140-141
classloaders, 110-112

Bootstrap, 111
Common, 111
JSP, 112
runtime hierarchy, 110
System, 111
Web Application, 111

client
certificates, 93
results, 33-35

Common Classloader, 111
compiling JSPs, 47-50
configuring

logging in the server.xml file, 154
servlet authorization constraints, 93
the web container, 22

connection pooling, 22
constraint-field, 138-139
container security, 85
context.properties, 161
cookies, 63, 64, 69, 91, 125
cookies, encoding, 116
creating

JSPs, 46-47
servlets, 28-35
sessions, 65-66
web applications, 19-20
web deployment descriptors, 104

custom realm, 96
customizing search, 54-62

D
database connection pooling, 22
debugging

enabling, 151-152
generating stack trace for, 154
JPDA options, 152-153
JSPs, 153
using log files, 154
using profilers, 155-158
using Sun Java Studio, 153
web applications, 151-158

declarative security, 85
default-helper, 133-134
default web applications, 21
defining

security roles, 92
servlet authorization constraints, 93

deleting web applications, 105
deploying web applications, 20, 103-150
deployment descriptor files

sun-web.xml, 104
web.xml, 104

destroy, overriding, 29-30
disabling web applications, 108-109
documentation, Sun Java System Web Server, 10-12
DTD files, 112

attributes, 113
data, 113
subelements, 112-113
sun-web-app_2_3-1.dtd, 112-113

dynamic-reload-interval attribute, 141
dynamic reloading of web applications, 109-110
dynamicreloadinterval, 109, 141

E
editing server.xml

for debugging, 151, 154
to change logging settings, 154
to configure logging, 22
to configure single sign-on, 91
to enable debugging, 152
to enable dynamic reloading of web

applications, 109

Index

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009166

editing server.xml (Continued)
to enable or disable web applications, 109
to use HPROF profiling, 155
to use Optimizeit profiler, 157

elements in sun-web.xml, 114-147
alphabetical list of, 146-147
caching, 130-140
classloader, 140-141
general, 114-118
internationalization, 143-146
JSP, 141-143
reference, 126-130
security, 118-120
session, 120-126

enabling
debugging, 151-152
IWSSessionManager, 72-73
MMapSessionManager, 78
PersistentManager, 71
StandardManager, 69-70
the Java Security Manager, 100
web applications, 108-109

encodeCookies, 116
examples

caching, 39-40
sun-web.xml file, 149-150
web applications, 22-23
web.xml file, 147-149

exceptions in JSP files, 47

F
fetching client certificates, 93
file realm, 94
FileStore.java, 78
form-based login, 90

G
Get, overriding, 30-31

H
HPROF profiler, 155-157
HTTP basic authentication, 89
http-method, 137
HTTPS authentication, 89

I
improving servlet performance, 42-43
internationalization issues

JSPs, 160
servlets, 159-160

internationalizing search, 54
invalidating a session, 68
invoking servlets, 35-37
IWSHttpSession, 77-78
IWSHttpSession.java, 77
IWSSessionManager, 72-78
IWSSessionManager.java, 77
IWSSessionManager

enabling, 72-73
manager properties, 73-77
source code, 77-78

J
J2SE

application role mapping, 84
security model, 81-82

JAAS, 96
Java class file, loading, 110-112
Java Enterprise System (JES), 10
Java Security Manager, enabling, 100
Java Servlet 2.3 security model, 81
Java Servlet API, 18
JDBC, 22
JDBC driver, for session management, 75
JdbcStore.java, 78
JDPA options, 152-153
JES, 10
jndi-name, 129-130
jsp-config, 47, 141-143
JSP tags, 50

Index

167

JSP tags (Continued)
cache, 50-53
library location, 50
search, 54-62

JSP
about, 45-46
by extension, 162-163

jspc command, 47
jspc command-line tool, 47
jspc command

advanced options, 49
basic options, 48
example of, 49
file specifiers, 47
format of, 47

JSP
caching, 21, 50-53
classloader, 112
command-line compiler, 47-50
creating, 46-47
debugging, 153
ease of maintenance, 46
handling exceptions, 47
internationalization, 160
overview, 18-19
package names, 50
parameters, 50
portability of, 47
specification, 18-19
standard portable tags, 50
tag libraries, 50
using, 45-62

K
key-field, 137-138

L
LDAP realm, 94-95
library location, JSP tags, 50
list of sun-web.xml elements, 146-147
locale-charset-info, 144-145

locale-charset-map, 145-146
logging, 154
login mechanisms

form-based, 90
HTTP basic authentication, 89
SSL mutual authentication, 89

M
MMapSessionManager, 78-79

enabling, 78
manager properties, 78-79

N
name element, 129
native realm, 97-98
NativeRealm, 97-98

O
Optimizeit profiler, 157-158
overriding

destroy, 29-30
initialize, 29
methods, 29
service, Get, Post, 30-31

P
package names for JSPs, 50
parameter-encoding, 143-144
password element, 129
performance

improving for servlets, 42-43
servlet and JSP caching, 21

permissions
application, 100-102
changing for an application, 101-102
default, 101
setting in server.policy file, 102

Index

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009168

persistent session manger, 78-79
PersistentManager, 70-72

enabling, 70-72
manager properties, 71-72

portability, 47
portable tags, JSP, 50
Post, overriding, 30-31
profiling, 155-158

HPROF profiler, 155-157
Optimizeit profiler, 157-158

programmatic login, 98-99
programmatic security, 85
ProgrammaticLogin, 99

R
realm configuration, 93-98
realms, 84, 93-98

certificate, 95-96
custom, 96
file, 94
LDAP, 94-95
native, 97-98
Solaris, 95

reaper method, 74, 79
refresh-field, 136-137
registered servlets, 162
reloading web applications, 109-110
resource-env-ref, 126-127
resource-ref, 127-128
response page, 33-35
responsibilities, 82-83

assembler, 83
deployer, 83
developer, 82-83

role mappings, 92
role-name, 92
rules.properties, 161, 162

S
samples, web application, 22-23
search tags, 54-62

search tags (Continued)
collection, 56-57
CollElem, 55-56
collItem, 57
formAction, 59
formActionMsg, 60
formSubmission, 59
Item, 61
library location, 54
queryBox, 57-58
resultIteration, 61
resultNav, 62
resultStat, 62
Search, 60-61
searchForm, 54-55
submitButton, 58

search, internationalizing, 54
Secure Socket Layer (SSL), 89, 90, 93
security, 81-102
Security Manager, Java, 100
security-role-mapping, 92, 118
security

and sessions, 31-32, 64-65
container, 85
J2SE security model, 81-82
responsibilities, 82-83
terminology, 83-85
web applications, 81-102
Web Server features, 85-88
Web Server goals, 81-82
Web Server security model, 85-88

server.policy file, 100-102
server.xml, editing

for debugging, 151, 154
to change logging settings, 154
to configure logging, 22
to configure single sign-on, 91
to enable debugging, 152
to enable dynamic reloading of web

applications, 109
to enable or disable web applications, 109
to use HPROF profiler, 155
to use Optimizeit profiler, 157

service, overriding, 30-31

Index

169

Servlet API, 18
servlet by extension, 162
servlet.properties, 161, 162
servlets, 25-43

about, 25-27
accessing parameters, 31
authorization by, 92-93
authorization constraints, 93
caching, 38-39, 39-40
caching results, 37-42
calling programmatically, 36-37
calling with a URL, 35-36
creating, 28-35
creating the class declaration, 28
data flow, 26
delivering client results, 33-35
example of accessing, 107
improving performance, 42-43
invoking, 35-37
output, 37
overriding destroy, 29-30
overriding initialize, 29
overriding methods, 29
overriding service, Get, Post, 30-31
overview, 18
performance, 42-43
registered, 162
security, 31-32
session managers, 63-79
sessions, 31-32, 63
storing data, 31
threading, 32-33
types, 27
using, 25-43

session-config, 120-121
session cookie, 64
session managers, 63-79

IWSSessionManager, 72-78
MMapSessionManager, 78-79
persistent, 78-79
PersistentManager, 70-72
StandardManager, 69-70

session properties, examining, 66-67
session timeout, 68, 125

sessions
about, 63
and cookies, 64
and security, 64-65
and URL rewriting, 64
binding objects to, 67-68
creating or accessing, 65-66
examining session properties, 66-67
invalidating, 68
timeout, 68, 125

SHTML
about, 19
using, 17

single sign-on, 85, 90-91
Solaris realm, 95
specifications

Java Servlet, 17-19
JSP, 17-19

SSL, 90, 93
SSL mutual authentication, 89

cipher suites, 89
stack trace, generating for debugging, 154
StackSize directive, 42
StandardManager, 69-70

enabling, 69-70
manager properties, 70

Sun Java Enterprise System (JES), 10
Sun Java Studio, using for

debugging, 153
deploying web applications, 107-108

sun-web-app, 114-116
sun-web-app_2_3-1.dtd, 112-113
sun-web.xml, security role mapping, 92
sun-web.xml elements, 114-147

alphabetical quick-reference list, 146-147
cache, 130-132
cache-helper-ref, 135-136
cache-mapping, 134-135
class-loader, 140-141
constraint-field, 138-139
default-helper, 133-134
http-method, 137
jndi-name, 129-130
jsp-config, 141-143

Index

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009170

sun-web.xml elements (Continued)
key-field, 137-138
name, 129
parameter-encoding, 143-144
password, 129
refresh-field, 136-137
resource-env-ref, 126-127
resource-ref, 127-128
security-role-mapping, 118
session-config, 120-121
sun-web-app, 114-116
timeout, 136
value, 139-140

sun-web.xml file
about, 104
changes to, 106
creating, 104
elements in, 114-147
example, 149-150
structure of, 112-113

System Classloader, 111

T
tag libraries, JSP, 50
tags, JSP

cache, 50-53
search, 54-62

threading issues, 32-33
timeout element, 136

U
URL, parts of, 106
url-pattern, 135
URL rewriting and sessions, 64
using

JSPs, 45-62
servlets, 25-43
Sun Java Studio, 107-108, 153

V
value element, 139-140
virtual servers, 21

W
WAR files, 17, 20, 103, 105
wdeploy utility, 105
Web Application Classloader, 111
web applications, 17-23

about, 17-19
creating, 19-20
database connection pooling, 22
debugging, 151-158
default, 21
deploying, 20, 103-150
directory structure of, 103-104
dynamic reloading of, 109-110
enabling and disabling, 108-109
examples, 22-23
Java Servlet and JSP specifications, 17-19
response caching, 38
securing, 81-102
servlet and JSP caching, 21
virtual servers, 21

web container, configuring, 22
web deployment descriptors, 104
WEB-INF directory, 103
web.xml elements

auth-constraint, 93
login-config, 88
more information about, 89
realm-name, 90
res-ref-name, 126
run-as role, 115
security-role, 92, 119
servlet-name, 119
session-timeout, 74, 79, 125

web.xml file, 69, 104
about, 92
creating, 104
defining roles, 92
example, 147-149
jspc command options, 49

Index

171

web.xml file (Continued)
more information about, 89

webapps examples directory, 22
webserv-rt.jar, 50, 54, 77

Index

Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications • May 2009172

	Sun Java System Web Server 6.1 SP11 Programmer's Guide to Web Applications
	Preface
	Who Should Use This Guide
	Using the Sun Java System Web Server Documentation
	How This Guide Is Organized
	Documentation Conventions
	Product Support
	Documentation, Support, and Training
	Sun Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples

	Web Applications
	Introducing Web Applications
	Servlets
	JSP
	SHTML
	CGI

	Creating a Web Application
	To create a web application

	Securing a Web Application
	Deploying a Web Application
	Virtual Servers
	Default Web Applications
	Servlet and JSP Caching
	Database Connection Pooling
	Configuring the Web Container
	Web Application Samples

	Using Servlets
	About Servlets
	Servlet Data Flow
	To show the servlet data flow

	Servlet Types

	Creating Servlets
	Creating the Class Declaration
	Overriding Methods
	Overriding Initialize
	Overriding Destroy
	Overriding Service, Get, and Post
	Accessing Parameters and Storing Data
	Handling Sessions and Security
	Handling Threading Issues
	Delivering Client Results
	Creating a Servlet Response Page
	Creating a JSP Response Page

	Invoking Servlets
	Calling a Servlet with a URL
	Calling a Servlet Programmatically

	Servlet Output
	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	CacheHelper Interface
	CacheKeyGenerator Interface

	Maximizing Servlet Performance

	Using JavaServer Pages
	Introducing JSPs
	Creating JSPs
	Designing for Ease of Maintenance
	Designing for Portability
	Handling Exceptions

	Compiling JSPs: The Command-Line Compiler
	Package Names Generated by the JSP Compiler
	Other JSP Configuration Parameters

	Debugging JSPs
	JSP Tag Libraries and Standard Portable Tags
	JSP Cache Tags
	cache
	Attributes
	Example

	flush
	Attributes
	Examples

	JSP Search Tags
	<searchForm>
	Function
	Attributes
	Usage

	<CollElem>
	Function
	Attributes
	Usage

	<collection>
	Function
	Attributes
	Usage

	<colIItem>
	Function
	Attributes
	Usage

	<queryBox>
	Function
	Attributes
	Usage

	<submitButton>
	Function
	Attributes
	Usage

	<formAction>
	Function
	Attributes
	Usage

	<formSubmission>
	Function
	Attributes
	Usage

	<formActionMsg>
	Function
	Attributes
	Usage

	<Search>
	Function
	Attributes
	Usage

	<resultIteration>
	Function
	Attributes

	<Item>
	Function
	Attributes

	<resultStat>
	Function
	Attributes

	<resultNav>
	Function
	Attributes

	Session Managers
	Introducing Sessions
	Sessions and Cookies
	Sessions and URL Rewriting
	Sessions and Security

	How to Use Sessions
	Creating or Accessing a Session
	Examining Session Properties
	Binding Data to a Session
	Binding Notification with HttpSessionBindingListener

	Invalidating a Session
	Invalidating a Session Manually
	Setting a Session Timeout

	Session Managers
	StandardManager
	Enabling StandardManager
	Manager Properties for StandardManager

	PersistentManager
	Enabling PersistentManager
	Manager Properties for PersistentManager

	IWSSessionManager
	Enabling IWSSessionManager
	Manager Properties for IWSSessionManager
	Source Code for IWSSessionManager

	MMapSessionManager (UNIX Only)
	Enabling MMapSessionManager
	Manager Properties for MMapSessionManager

	Securing Web Applications
	Sun Java System Web Server Security Goals
	Security Responsibilities Overview
	Application Developer
	Application Assembler
	Application Deployer

	Common Security Terminology
	Authentication
	Authorization
	Realms
	J2SE Application Role Mapping
	Container Security
	Programmatic Security
	Declarative Security

	Sun Java System Web Server-specific Security Features
	Sun Java System Web Server Security Model
	ACL-based Authentication and Authorization
	J2SE/Servlet-based Authentication and Authorization

	Web Application and URL Authorizations

	User Authentication by Servlets
	HTTP Basic Authentication
	SSL Mutual Authentication
	Form-Based Login

	User Authentication for Single Sign-on
	User Authorization by Servlets
	Defining Roles
	Defining Servlet Authorization Constraints

	Fetching the Client Certificate
	Realm Configuration
	File
	LDAP
	Solaris
	Certificate
	Custom Realm
	Native Realm

	Programmatic Login
	Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	Enabling the Java Security Manager
	The server.policy File
	Default Permissions
	Changing Permissions for an Application

	For More Information

	Deploying Web Applications
	Web Application Structure
	Creating Web Deployment Descriptors
	Deploying Web Applications
	Using the Administration Interface
	To deploy web applications using the administration interface

	Deploying a Web Application using wdeploy
	Using Sun Java Studio

	Enabling and Disabling Web Applications
	Using the Administration Interface
	To enable or disable a deployed web application using the administrator interface

	Editing the server.xml File

	Dynamic Reloading of Web Applications
	To load new servlet files or reload deployment descriptor changes

	Classloaders
	The sun-web-app_2_3-1.dtd File
	Subelements
	Data
	Attributes

	Elements in the sun-web.xml File
	General Elements
	sun-web-app
	Subelements
	Attributes
	Properties

	property
	Subelements
	Attributes

	description
	Subelements
	Attributes

	Security Elements
	security-role-mapping
	Subelements
	Attributes

	servlet
	Subelements
	Attributes

	servlet-name
	Subelements
	Attributes

	role-name
	Subelements
	Attributes

	principal-name
	Subelements
	Attributes

	group-name
	Subelements
	Attributes

	Session Elements
	session-config
	Subelements
	Attributes

	session-manager
	Subelements
	Attributes

	manager-properties
	Subelements
	Attributes
	Properties

	store-properties
	Subelements
	Attributes
	Properties

	session-properties
	Subelements
	Attributes
	Properties

	cookie-properties
	Subelements
	Attributes
	Properties

	Reference Elements
	resource-env-ref
	Subelements
	Attributes

	resource-env-ref-name
	Subelements
	Attributes

	resource-ref
	Subelements
	Attributes

	res-ref-name
	Subelements
	Attributes

	default-resource-principal
	Subelements
	Attributes

	name
	Subelements
	Attributes

	password
	Subelements
	Attributes

	jndi-name
	Subelements
	Attributes

	Caching Elements
	cache
	Subelements
	Attributes
	Properties

	Cache Class Names
	cache-helper
	Subelements
	Attributes

	default-helper
	Subelements
	Attributes
	Properties

	cache-mapping
	Subelements
	Attributes

	url-pattern
	Subelements
	Attributes

	cache-helper-ref
	Subelements
	Attributes

	timeout
	Subelements
	Attributes

	refresh-field
	Subelements
	Attributes

	http-method
	Subelements
	Attributes

	key-field
	Subelements
	Attributes

	constraint-field
	Subelements
	Attributes

	value
	Subelements
	Attributes

	Classloader Elements
	class-loader
	Subelements
	Attributes

	JSP Elements
	jsp-config
	Subelements
	Attributes
	Properties

	Internationalization Elements
	parameter-encoding
	Subelements
	Attributes

	locale-charset-info
	Subelements
	Attributes

	locale-charset-map
	Attributes

	Alphabetical List of sun-web.xml Elements

	Sample Web Application XML Files
	Sample web.xml File
	Sample sun-web.xml File

	Debugging Web Applications
	Enabling Debugging
	Using the Administration Interface
	To enable debugging

	Editing the server.xml File

	JPDA Options
	Using Sun Java Studio for Debugging
	To manually attach the IDE to a remote Web Server

	Debugging JSPs
	Generating a Stack Trace for Debugging
	Logging
	Using the Administration Interface
	To change logging settings

	Editing the server.xml File

	Profiling
	The HPROF Profiler
	To use HPROF profiling on UNIX

	The Optimizeit Profiler

	Internationalization Issues
	Servlets
	Servlet Request
	Servlet Response

	JSPs

	Migrating Legacy Servlets
	JSP by Extension
	Servlet by Extension of Servlet by Directory
	Registered Servlets
	Example

	Index

