
Sun Java System Web Server 6.1
SP12 Performance Tuning,
Sizing, and Scaling Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 821–0985
May 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

100122@23031

Contents

Preface ...7

1 Performance and Monitoring Overview ..15
Performance Issues .. 15
Virtual Servers ... 16
Monitoring Server Performance .. 16

Monitoring Current Activity Using the Server Manager .. 16
Monitoring Current Activity Using the perfdump Utility .. 19
Using Performance Buckets .. 21

2 Tuning Sun Java System Web Server .. 25
General Tuning Tips ... 25
Using Statistics to Tune Your Server ... 26

Connection Queue Information .. 27
Listen Socket Information .. 28
Keep-Alive/Persistent Connection Information .. 30
Session Creation Information .. 33
Cache Information ... 33
Thread Pools ... 35
DNS Cache Information ... 39
Busy Functions ... 40

Threads, Processes, and Connections ... 40
Connection-Handling Overview ... 41
Process Modes .. 42
Listen Socket Acceptor Threads ... 44
Maximum Simultaneous Requests .. 44
Keep-Alive Subsystem Tuning ... 45

3

Example ... 47
Example ... 48

Tuning the File Cache ... 48
Configuring the File Cache ... 48
Using the nocache Parameter ... 50
Monitoring the File Cache with the Server Manager ... 51
File Cache Dynamic Control and Monitoring ... 51

Tuning the ACL User Cache .. 53
ACL User Cache Directives .. 53
Verifying ACL User Cache Settings ... 54

Tuning Java Web Applications Performance ... 55
Using Java Heap Tuning .. 55
Using Precompiled JSPs .. 55
Using Servlet/JSP Caching .. 56
Configuring the Java Security Manager ... 56
Configuring Class Reloading .. 56
Avoiding Directories in the Classpath ... 56
Configuring the Web Application’s Session Settings ... 57
Configuring JDBC Connection Pooling ... 58
JDBC Connection Pool Attributes ... 58

3 Miscellaneous Performance Topics ..61
Miscellaneous magnus.conf Directives .. 61

Buffer Size ... 61
Connection Timeout ... 62
CGIStub Processes (UNIX/Linux) .. 62

Miscellaneous obj.conf Parameters ... 63
find-pathinfo-forward ... 63
nostat ... 64

Using Quality of Service ... 64
Using Load Balancing ... 65

Using libloadbal ... 65

4 Common Performance Problems ..71
Magnus Editor Values ... 71

Contents

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 20094

check-acl Server Application Functions ... 71
Low-memory Situations ... 72
Under-throttled Server ... 72
Cache Not Utilized .. 73
Keep-Alive Connections Flushed .. 73
Log File Modes ... 74

5 Platform-specific Issues and Tips ..75
Solaris-specific Issues .. 75

Files Open in a Single Process ... 75
File Descriptor Limits .. 75
Failure to Connect to HTTP Server ... 76
Connection Refused Errors .. 77
Tuning TCP Buffering ... 77
Using the Solaris Network Cache and Accelerator (SNCA) ... 77

Solaris File System Tuning ... 79
High File System Page-in Rate .. 79
Reduce File System Housekeeping ... 79
Long Service Times on Busy Disks or Volumes ... 80

Solaris-specific Performance Monitoring .. 80
Short-term System Monitoring .. 80
Long-term System Monitoring .. 81
"Intelligent" Monitoring ... 81

Tuning Solaris for Performance Benchmarking .. 82

6 Sizing and Scaling Your Server .. 85
Processors ... 85
Memory .. 85
Drive Space ... 86
Networking .. 86

7 Scalability Studies ...87
Study Goals ... 87
General Conclusions ... 88

Contents

5

Sun Java System Web Server Configuration .. 88
Tuned Server Settings .. 88
nsfc.conf Settings ... 89
System Configuration .. 89

Performance Results ... 90
Static Content Test ... 90
Dynamic Content Test: WASP Servlet .. 91
Dynamic Content Test: C CGI ... 92
Dynamic Content Test: Perl CGI ... 93
Dynamic Content Test: NSAPI .. 94
SSL Performance Test: Static Content ... 95
SSL Performance Test: Perl CGI ... 96
SSL Performance Test: C CGI ... 98
SSL Performance Test: NSAPI .. 99
JDBC Connection Pooling with OCI Driver .. 100
PHP Scalability Tests ... 101

Index ... 105

Contents

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 20096

Preface

This guide discusses adjustments you can make that may improve the performance of Sun
JavaTM Systems Web Server 6.1. The guide provides tuning, scaling, and sizing tips and
suggestions; possible solutions to common performance problems; and data from scalability
studies. It also addresses miscellaneous configuration and platform-specific issues, and
describes the perfdump performance utility and tuning parameters that are built into the server.

This preface contains the following topics:

■ “Who Should Use This Guide” on page 7
■ “Using the Sun Java System Web Server Documentation” on page 7
■ “How This Guide Is Organized” on page 10
■ “Documentation Conventions” on page 10
■ “Product Support” on page 11

Who Should Use This Guide
This guide is intended for advanced administrators. Be sure to read this guide and other
relevant server documentation before making any changes. Be very careful when tuning your
server, and always back up your configuration files before making any changes.

Using the Sun Java System Web Server Documentation
The Sun Java System Web Server 6.1 SP12 manuals are available as online files in PDF and
HTML formats at: http://docs.sun.com/app/docs/coll/1308.9

The following table lists the tasks and concepts described in the Sun Java System Web Server
manuals.

TABLE P–1 Sun Java System Web Server Documentation Roadmap

For Information About See the Following

Late-breaking information about the software and
documentation

Sun Java System Web Server 6.1 SP12 Release Notes

7

http://docs.sun.com/app/docs/coll/1308.9
http://docs.sun.com/doc/821-0988

TABLE P–1 Sun Java System Web Server Documentation Roadmap (Continued)
For Information About See the Following

Information about Sun Java System Web Server 6.1
FastCGI plug-in, including information about server
application functions (SAFs), installation,
configuration, technical notes, and pointers to
additional resources.

Sun Java System Web Server 6.1 SP12 FastCGI Plug-in
Release Notes

Information about Sun Java System Web Server 6.1
Reverse Proxy plug-in, including information about
server application functions (SAFs), installation,
configuration, technical notes, and pointers to
additional resources.

Sun Java System Web Server 6.1 SP12 Reverse Proxy
Plug-in Release Notes

Getting started with Sun Java System Web Server,
including hands-on exercises that introduce server
basics and features (recommended for first-time
users)

Sun Java System Web Server 6.1 SP12 Getting Started
Guide

Performing installation and migration tasks:
■ Installing Sun Java System Web Server and its

various components, supported platforms, and
environments

■ Migrating from Sun ONE Web Server 4.1 or 6.0 to
Sun Java System Web Server 6.1

Sun Java System Web Server 6.1 SP12 Installation and
Migration Guide

Note: If you have the Sun Java Enterprise System 1
installed on your system and you want to upgrade the
Sun Java System Web Server 6.1 that is part of Sun Java
Enterprise System 1 to Sun Java System Web Server
6.1 SP11, you must use the Java Enterprise System
(JES) installer to perform the upgrade. Do not use the
separate component installer included with Sun Java
System Web Server 6.1 SP11.

Preface

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 20098

http://docs.sun.com/doc/821-0981
http://docs.sun.com/doc/821-0981
http://docs.sun.com/doc/821-0989
http://docs.sun.com/doc/821-0989
http://docs.sun.com/doc/821-0982
http://docs.sun.com/doc/821-0982
http://docs.sun.com/doc/821-0983
http://docs.sun.com/doc/821-0983

TABLE P–1 Sun Java System Web Server Documentation Roadmap (Continued)
For Information About See the Following

Performing the following administration tasks:
■ Using the Administration and command-line

interfaces

■ Configuring server preferences

■ Using server instances

■ Monitoring and logging server activity

■ Using certificates and public key cryptography to
secure the server

■ Configuring access control to secure the server

■ Using JavaTM 2 Platform, Standard Edition (J2SE
platform) security features

■ Deploying applications

■ Managing virtual servers

■ Defining server workload and sizing the system to
meet performance needs

■ Searching the contents and attributes of server
documents, and creating a text search interface

■ Configuring the server for content compression

■ Configuring the server for web publishing and
content authoring using WebDAV

Sun Java System Web Server 6.1 SP12 Administrator’s
Guide

Using programming technologies and APIs to do the
following:
■ Extend and modify Sun Java System Web Server
■ Dynamically generate content in response to

client requests
■ Modify the content of the server

Sun Java System Web Server 6.1 SP12 Programmer’s
Guide

Creating custom Netscape Server Application
Programmer’s Interface (NSAPI) plugins

Sun Java System Web Server 6.1 SP12 NSAPI
Programmer’s Guide

Implementing servlets and JavaServer PagesTM (JSPTM)
technology in Sun Java System Web Server

Sun Java System Web Server 6.1 SP12 Programmer’s
Guide to Web Applications

Editing configuration files Sun Java System Web Server 6.1 SP12 Administrator’s
Configuration File Reference

Tuning Sun Java System Web Server to optimize
performance

Sun Java System Web Server 6.1 SP12 Performance
Tuning, Sizing, and Scaling Guide

Preface

9

http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0986
http://docs.sun.com/doc/821-0986
http://docs.sun.com/doc/821-0984
http://docs.sun.com/doc/821-0984
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0985
http://docs.sun.com/doc/821-0985

How This Guide Is Organized
This guide is organized as follows:
■ Chapter 1, Performance and Monitoring Overview

This chapter discusses server performance considerations and server performance
monitoring.

■ Chapter 2, Tuning Sun Java System Web Server
This chapter describes specific adjustments to improve Sun Java System Web Server
performance.

■ Chapter 3, Miscellaneous Performance Topics
This chapter describes miscellaneous performance topics, including discussion of
magnus.conf and obj.conf settings that can be used to improve server performance.

■ Chapter 4, Common Performance Problems
This chapter discusses common web site performance problems, and offers tips and
solutions.

■ Chapter 5, Platform-specific Issues and Tips
This chapter provides platform-specific tuning tips.

■ Chapter 6, Sizing and Scaling Your Server
This chapter examines the subsystems of your server, and provides recommendations for
optimal performance.

■ Chapter 7, Scalability Studies
This chapter describes the results of scalability studies. You can use these studies as
examples of how you might configure your system to best take advantage of Sun Java
SystemWeb Server’s strengths.

Documentation Conventions
This section describes the types of conventions used throughout this guide.
■ File and directory paths

These are given in UNIX® format (with forward slashes separating directory names). For
Windows versions, the directory paths are the same, except that backslashes are used to
separate directories.

■ URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is your Internet
domain name; path is the server's directory structure; and file is an individual file name.
Italic items in URLs are placeholders.

Preface

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200910

■ Font conventions include:
■ The monospace font is used for sample code and code listings, API and language

elements (such as function names and class names), file names, path names, directory
names, and HTML tags.

■ Italic monospace type is used for code variables.
■ Italic type is also used for book titles, emphasis, variables and placeholders, and words

used in the literal sense.
■ Bold type is used as either a paragraph lead-in or to indicate words used in the literal

sense.

Installation root directories are indicated by install_dir in this guide.

By default, the location of install_dir is as follows:
■ On UNIX-based platforms: /opt/SUNWwbsvr/
■ On Windows: C:\Sun\WebServer6.1

Product Support
If you have problems with your system, contact customer support using one of the following
mechanisms:

■ The online support web site at:
http://www.sun.com/service/sunone/software

■ The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This helps to
ensure that our support staff can best assist you in resolving problems:

■ Description of the problem, including the situation where the problem occurs and its
impact on your operation

■ Machine type, operating system version, and product version, including any patches and
other software that might be affecting the problem

■ Detailed steps on the methods you have used to reproduce the problem
■ Any error logs or core dumps

Preface

11

http://www.sun.com/service/sunone/software

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Feedback.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200912

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–3 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

13

14

Performance and Monitoring Overview

Sun Java System Web Server is designed to meet the needs of the most demanding, high-traffic
sites in the world. It runs flexibly on UNIX, Linux, and Windows, and can serve both static and
dynamically generated content. Sun Java System Web Server can also run in SSL mode,
enabling the secure transfer of information.

This guide helps you to define your server workload and size a system to meet your
performance needs. Your environment is unique, however, so the impacts of the suggestions
provided here also depend on your specific environment. You must rely on your own
judgement and observations to select the adjustments that are best for you.

This chapter provides a general discussion of server performance considerations, and more
specific information about monitoring server performance.

This chapter includes the following topics:
■ “Performance Issues” on page 15
■ “Virtual Servers” on page 16
■ “Monitoring Server Performance” on page 16

Performance Issues
The first step toward sizing your server is to determine your requirements. Performance means
different things to users than to webmasters. Users want fast response times (typically less than
100 milliseconds), high availability (no “connection refused” messages), and as much interface
control as possible. Webmasters and system administrators, on the other hand, want to see high
connection rates, high data throughput, and uptime approaching 100%. In addition, for virtual
servers the goal might be to provide a targeted level of performance at different price points.
You need to define what performance means for your particular situation.

Here are some areas to consider:
■ The number of peak concurrent users

1C H A P T E R 1

15

■ Security requirements
Encrypting your Sun Java System Web Server’s data streams with SSL makes an enormous
difference to your site’s credibility for electronic commerce and other security conscious
applications, but it can also seriously impact your CPU load. SSL always has a significant
impact on throughput, so for best performance minimize your use of SSL, or consider using
a multi-CPU server to handle it.

■ The size of the document tree
■ Dynamic versus static content

The content you serve affects your server’s performance. A Sun Java System Web Server
delivering mostly static HTML can run much faster than a server that must execute CGIs for
every query.

Virtual Servers
Virtual servers add another layer to the performance improvement process. Certain settings are
tunable for the entire server, while others are based on an individual virtual server. You can also
use the quality of service (QOS) features to set resource utilization constraints for an individual
virtual server or class of virtual servers. For example, you can use QOS features to limit the
number of connections allowed for a virtual server or class of virtual servers.

For more information about using the quality of service features, see the Sun Java System Web
Server 6.1 SP12 Administrator’s Guide.

Monitoring Server Performance
Making the adjustments described in this guide without measuring their effects does not make
sense. If you don’t measure the system’s behavior before and after making a change, you won’t
know whether the change was a good idea, a bad idea, or merely irrelevant. You can monitor the
performance of Sun Java System Web Server in several different ways, as discussed in the
following topics:
■ “Monitoring Current Activity Using the Server Manager” on page 16
■ “Monitoring Current Activity Using the perfdump Utility” on page 19
■ “Using Performance Buckets” on page 21

For more information about monitoring server performance, see “General Tuning Tips” on
page 25“Solaris-specific Performance Monitoring” on page 80

Monitoring Current Activity Using the Server Manager
You can monitor many performance statistics through the Server Manager user interface, and
through stats-xml. Once statistics are activated, you can monitor the following areas:

Virtual Servers

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200916

http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980

■ Connections
■ DNS
■ Keep-alive
■ Cache
■ Virtual Server

Activating Statistics
You must activate statistics on Sun Java System Web Server before you can monitor
performance. This can be done through the Server Manager, or by editing the obj.conf and
magnus.conf files.

Caution – When you activate statistics/profiling, statistics information is made available to any
user of your server.

Activating Statistics from the Server Manager

You can activate statistics from the user interface.

▼ To activate statistics from the user interface

From the Server Manager, click the Monitor tab, and then click Monitor Current Activity.
The Enable Statistics/profiling page appears.

Select Yes to activate Statistics/Profiling.

Click OK, click Apply, and then click the Apply Changes button to activate Statistics/Profiling.

Activating Statistics with stats-xml

You can also activate statistics directly by editing the obj.conf and magnus.conf files. Users
who create automated tools or write customized programs for monitoring and tuning may
prefer to work directly with stats-xml.

▼ To activate statistics using stats-xml

Under the default object in obj.conf, add the following line:
NameTrans fn="assign-name" from="/stats-xml/*" name="stats-xml"

Add the following Service function to obj.conf:
<Object name="stats-xml"> Service fn="stats-xml" </Object>

1

2

3

1

2

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 17

Add the stats-init SAF to magnus.conf.
Here's an example of stats-init in magnus.conf:

Init fn="stats-init" update-interval="5" virtual-servers="2000" profiling="yes"

The above example shows you can also designate the following:

■ update-interval. The period in seconds between statistics updates. A higher setting (less
frequent) will be better for performance. The minimum value is 1; the default value is 5.

■ virtual-servers. The maximum number of virtual servers for which you track statistics. This
number should be set equal to or higher than the number of virtual servers configured.
Smaller numbers result in lower memory usage. The minimum value is 1; the default is
1000.

■ profiling. Activate NSAPI performance profiling. The default is "no," which results in
slightly better server performance. However, if you activate statistics through the user
interface, profiling is turned on by default.

Monitoring Statistics
Once you’ve activated statistics, you can get a variety of information on how your server
instance and your virtual servers are running. The statistics are broken up into functional areas.

▼ To monitor statistics from the Server Manager

From the Server Manager, click the Monitor tab, and then click Monitor Current Activity.

To ensure that statistics/profiling is activated ("Yes" is selected and applied for "Activate
Statistics/Profiling?").

From the drop-down list, select a refresh interval.
This is the interval, in seconds, that updated statistics will be displayed on your browser.

From the drop-down list, select the type of web server statistics to display.

Click Submit.
A page appears displaying the type of statistics you selected. The page is updated every 5-15
seconds, depending on the refresh interval. All pages will display a bar graph of activity, except
for Connections.

Select the process ID from the drop-down list.
You can view the current activity through the Server Manager, but these categories are not fully
relevant for tuning your server. The perfdump statistics is recommended for tuning your server.
For more information, see “Using Statistics to Tune Your Server” on page 26

3

1

2

3

4

5

6

Monitoring Server Performance

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200918

Virtual Server Statistics
Virtual server statistics can be viewed from the Server Manager. You can choose to display
statistics for the server instance, for an individual virtual server, or for all. This information is
not provided through perfdump.

Monitoring Current Activity Using the perfdump
Utility
The perfdump utility is a Server Application Function (SAF) built into Sun Java System Web
Server that collects various pieces of performance data from the Web Server internal statistics
and displays them in ASCII text. The perfdump utility allows you to monitor a greater variety of
statistics than those available through the Server Manager.

With perfdump, the statistics are unified. Rather than monitoring a single process, statistics are
multiplied by the number of processes, which gives you a more accurate view of the server as a
whole.

Installing the perfdump Utility

▼ To install perfdump, make the following modifications in obj.conf

Add the following object to your obj.conffile after the default object:
<Object name="perf">Service fn="service-dump"</Object>

Add the following to the default object:
NameTrans fn=assign-name from="/.perf" name="perf"

Make sure that the .perf NameTrans directive is specified before the document-root NameTrans
directive in the default object.

If not already activated, activate stats-xml.
For more information, see “Activating Statistics” on page 17

Restart your server software.

Access perfdumpby entering this URL:
http://yourhost/.perf

You can request the perfdump statistics and specify how frequently (in seconds) the browser
should automatically refresh. The following example sets the refresh to every 5 second

http://yourhost/.perf?refresh=5

1

2

3

4

5

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 19

See Also
“Using Statistics to Tune Your Server” on page 26

Sample perfdump Output
The following is sample perfdump output:

--

webservd pid: 2408

ConnectionQueue:

Current/Peak/Limit Queue Length 0/0/4096

Total Connections Queued 0

Average Queueing Delay 0.00 milliseconds

ListenSocket ls1:

Address http://0.0.0.0:8080

Acceptor Threads 1

Default Virtual Server https-iws-files2.red.iplanet.com

KeepAliveInfo:

KeepAliveCount 0/256

KeepAliveHits 0

KeepAliveFlushes 0

KeepAliveRefusals 0

KeepAliveTimeouts 0

KeepAliveTimeout 30 seconds

SessionCreationInfo:

Active Sessions 1

Total Sessions Created 48/128

CacheInfo:

enabled yes

CacheEntries 0/1024

Hit Ratio 0/0 (0.00%)

Maximum Age 30

Native pools:

NativePool:

Idle/Peak/Limit 1/1/128

Monitoring Server Performance

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200920

Work Queue Length/Peak/Limit 0/0/0

Server DNS cache disabled

Async DNS disabled

Performance Counters:

--

Average Total Percent

Total number of requests: 0

Request processing time: 0.0000 0.0000

default-bucket (Default bucket)

Number of Requests: 0 (0.00%)

Number of Invocations: 0 (0.00%)

Latency: 0.0000 0.0000 (0.00%)

Function Processing Time: 0.0000 0.0000 (0.00%)

Total Response Time: 0.0000 0.0000 (0.00%)

Sessions:

Process Status Function

2408 response service-dump

--

Using Performance Buckets
Performance buckets allow you to define buckets and link them to various server functions.
Every time one of these functions is invoked, the server collects statistical data and adds it to the
bucket. For example, send-cgi and NSServletService are functions used to serve the CGI and
Java servlet requests respectively. You can either define two buckets to maintain separate
counters for CGI and servlet requests, or create one bucket that counts requests for both types
of dynamic content. The cost of collecting this information is little and impact on the server
performance is usually negligible. This information can later be accessed using the perfdump
utility. The following information is stored in a bucket:

■ Name of the bucket. This name is used for associating the bucket with a function.
■ Description. A description of the functions that the bucket is associated with.
■ Number of requests for this function. The total number of requests that caused this

function to be called.

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 21

■ Number of times the function was invoked. This number may not coincide with the
number of requests for the function because some functions may be executed more than
once for a single request.

■ Function latency or the dispatch time. The time taken by the server to invoke the function.
■ Function time. The time spent in the function itself.

The default-bucket is predefined by the server. It records statistics for the functions not
associated with any user-defined bucket.

Configuration
You must specify all configuration information for performance buckets in the magnus.conf
and obj.conf files. Only the default bucket is automatically enabled.

First, you must enable performance measurement as described in “Monitoring Current Activity
Using the perfdump Utility” on page 19

The following examples show how to define new buckets in magnus.conf:

Init fn="define-perf-bucket" name="acl-bucket" description="ACL bucket"

Init fn="define-perf-bucket" name="file-bucket" description="Non-cached responses"

Init fn="define-perf-bucket" name="cgi-bucket" description="CGI Stats"

The example above creates three buckets: acl-bucket, file-bucket, and cgi-bucket. To
associate these buckets with functions, add bucket=bucket-name to the obj.conf function for
which you wish to measure performance.

Example

PathCheck fn="check-acl" acl="default" bucket="acl-bucket"
...

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file" bucket="file-bucket"
...

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"
</Object>

Performance Report
The server statistics in buckets can be accessed using the perfdump utility. The performance
buckets information is located in the last section of the report returned by perfdump.

Monitoring Server Performance

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200922

The report contains the following information:

■ Average, Total, and Percent columns give data for each requested statistic.
■ Request Processing Time is the total time required by the server to process all requests it

has received so far.
■ Number of Requests is the total number of requests for the function.
■ Number of Invocations is the total number of times that the function was invoked. This

differs from the number of requests in that a function could be called multiple times while
processing one request. The percentage column for this row is calculated in reference to the
total number of invocations for all of the buckets.

■ Latency is the time in seconds Sun Java System Web Server takes to prepare for calling the
function.

■ Function Processing Time is the time in seconds Sun Java System Web Server spent inside
the function. The percentage of Function Processing Time and Total Response Time is
calculated with reference to the total Request Processing Time.

■ Total Response Time is the sum in seconds of Function Processing Time and Latency.
The following is an example of the performance bucket information available through
perfdump:

Performance Counters:

--

Average Total Percent

Total number of requests: 0

Request processing time: 0.0000 0.0000

default-bucket (Default bucket)

Number of Requests: 0 (0.00%)

Number of Invocations: 0 (0.00%)

Latency: 0.0000 0.0000 (0.00%)

Function Processing Time: 0.0000 0.0000 (0.00%)

Total Response Time: 0.0000 0.0000 (0.00%)

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 23

24

Tuning Sun Java System Web Server

This chapter describes specific adjustments you can make that may improve Sun Java System
Web Server performance. The chapter includes the following topics:

■ “General Tuning Tips” on page 25
■ “Using Statistics to Tune Your Server” on page 26
■ “Threads, Processes, and Connections” on page 40
■ “Tuning the File Cache” on page 48
■ “Tuning the ACL User Cache” on page 53
■ “Tuning Java Web Applications Performance” on page 55

General Tuning Tips
As you tune your server it is important to remember that your specific environment is unique.
The impacts of the suggestions provided in this guide will vary, depending on your specific
environment. Ultimately you must rely on your own judgement and observations to select the
adjustments that are best for you.

Note – Be very careful when tuning your server. Always back up your configuration files before
making any changes.

As you work to optimize performance, keep the following guidelines in mind:

■ Work Methodically
As much as possible, make one adjustment at a time. Measure your performance before and
after each change, and rescind any change that does not produce a measurable
improvement.

■ Adjust Gradually

2C H A P T E R 2

25

When adjusting a quantitative parameter, make several stepwise changes in succession,
rather than trying to make a drastic change all at once. Different systems face different
circumstances, and you may leap right past your system’s best setting if you change the value
too rapidly.

■ Start Fresh
At each major system change, be it a hardware or software upgrade or deployment of a
major new application, review all previous adjustments to see whether they still apply. After
a Solaris upgrade, it is strongly recommended that you start over with an unmodified
/etc/system file.

■ Stay Informed
Read the Sun Java System Web Server and Solaris release notes whenever you upgrade your
system. The release notes often provide updated information about specific adjustments.

Using Statistics to Tune Your Server
This section describes the information available through the perfdump utility, and discusses
how to tune some parameters to improve your server’s performance.

The default tuning parameters are appropriate for all sites except those with very high volume.
The only parameters that large sites may regularly need to change are RqThrottle,
MaxKeepAliveConnections, and KeepAliveTimeout, which are tunable from magnus.conf and
the Server Manager.

The perfdump utility monitors statistics in the following categories, which are described in this
section:

■ “Connection Queue Information” on page 27
■ “Listen Socket Information” on page 28
■ “Keep-Alive/Persistent Connection Information” on page 30
■ “Session Creation Information” on page 33
■ “Cache Information” on page 33
■ “Thread Pools” on page 35
■ “DNS Cache Information” on page 39
■ “Busy Functions” on page 40

Note – For general information about perfdump, see “Monitoring Current Activity Using the
perfdump Utility” on page 19

Once you have viewed the statistics you need, you can tune various aspects of your server’s
performance using:

■ The magnus.conf file

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200926

■ The Server Manager Preferences tab
The Server Manager Preferences tab includes many interfaces for setting values for server
performance, including the Performance Tuning page and the File Cache Configuration
page.
The Magnus Editor allows you to set values for numerous directives in the following
categories, which are accessible from the drop-down list:

■ DNS Settings
■ SSL Settings
■ Performance Settings
■ CGI Settings
■ Keep-Alive Settings
■ Logging Settings
■ Language Settings

Connection Queue Information
Connection queue information shows the number of sessions in the queue, and the average
delay before the connection is accepted.

Following is an example of how these statistics are displayed in perfdump:

ConnectionQueue:

Current/Peak/Limit Queue Length 0/0/4096

Total Connections Queued 0

Average Queueing Delay 0.00 milliseconds

Current /Peak /Limit
Current/Peak/Limit queue length shows, in order:

■ The number of connections currently in the queue
■ The largest number of connections that have been in the queue simultaneously
■ The maximum size of the connection queue

Tuning

If the peak queue length is close to the limit, you may wish to increase the maximum connection
queue size to avoid dropping connections under heavy load.

You can increase the connection queue size by:

■ Setting or changing the value of ConnQueueSize in the Magnus Editor of the Server Manager

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 27

■ Editing the ConnQueueSize directive in magnus.conf

Total Connections Queued
Total Connections Queued is the total number of times a connection has been queued. This
includes newly accepted connections and connections from the keep-alive system.

This setting is not tunable.

Average Queuing Delay
Average Queueing Delay is the average amount of time a connection spends in the connection
queue. This represents the delay between when a request connection is accepted by the server
and when a request processing thread (also known as a session) begins servicing the request.

This setting is not tunable.

Listen Socket Information
The following listen socket information includes the IP address, port number, number of
acceptor threads, and the default virtual server for the listen socket. For tuning purposes, the
most important field in the listen socket information is the number of acceptor threads.

You can have many listen sockets enabled for virtual servers, but at least one will be enabled for
your default server instance (usually http://0.0.0.0:80).

ListenSocket ls1:

Address http://0.0.0.0:8080

Acceptor Threads 1

Default Virtual Server https-iws-files2.red.iplanet.com

Tuning
You can create listen sockets through the Server Manager, and edit much of a listen socket’s
information. For more information about adding and editing listen sockets, see the Sun Java
System Web Server 6.1 SP12 Administrator’s Guide.

If you have created multiple listen sockets, perfdump displays all of them.

Set the TCP/IP listen queue size for all listen sockets by:

■ Editing the ListenQ parameter in magnus.conf

■ Setting or changing the ListenQ value in the Magnus Editor of the Server Manager
■ Entering the value in the Listen Queue Size field of the Performance Tuning page of the

Server Manager

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200928

http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980

Address
The Address field contains the base address that this listen socket is listening on. It contains the
IP address and the port number.

If your listen socket listens on all IP addresses for the machine, the IP part of the address is
0.0.0.0.

Tuning

This setting is tunable when you edit a listen socket. If you specify an IP address other than
0.0.0.0, the server will make one less system call per connection. Specify an IP address other
than 0.0.0.0 for best possible performance.

For more information about adding and editing listen sockets, see the Sun Java System Web
Server 6.1 SP12 Administrator’s Guide.

Acceptor Threads
Acceptor threads are threads that wait for connections. The threads accept connections and put
them in a queue where they are then picked up by worker threads. Ideally, you want to have
enough acceptor threads so that there is always one available when a user needs one, but few
enough so that they do not provide too much of a burden on the system. A good rule is to have
one acceptor thread per CPU on your system. You can increase this value to about double the
number of CPUs if you find indications of TCP/IP listen queue overruns.

Tuning

You can tune this number through the user interface when you edit a listen socket.

For more information about adding and editing listen sockets, see the Sun Java System Web
Server 6.1 SP12 Administrator’s Guide.

Default Virtual Server
Software virtual servers work using the HTTP/1.1 Host header. If the end user’s browser does
not send the Host header, or if the server cannot find the virtual server specified by the Host
header, Sun Java System Web Server handles the request using a default virtual server. Also, for
hardware virtual servers, if Sun Java System Web Server cannot find the virtual server
corresponding to the IP address, it displays the default virtual server. You can configure the
default virtual server to send an error message or serve pages from a special document root.

Tuning

You can specify a default virtual server for an individual listen socket and for the server
instance. If a given listen socket does not have a default virtual server, the server instance’s
default virtual server is used.

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 29

http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980

You can specify a default virtual server for a listen socket by:
■ Setting or changing the default virtual server information using the Edit Listen Sockets page

on the Preferences tab of the Server Manger.
■ Editing the defaultvs attribute of the CONNECTIONGROUP element in the server.xml file. For

more information about server.xml, see the Sun Java System Web Server 6.1 SP12
Administrator’s Configuration File Reference.

Keep-Alive/Persistent Connection Information
This section provides information about the server’s HTTP-level keep-alive system. For
additional tuning information, see “Monitoring Current Activity Using the perfdump Utility”
on page 19

The following example shows the keep-alive statistics displayed by perfdump:

KeepAliveInfo:

KeepAliveCount 0/256

KeepAliveHits 0

KeepAliveFlushes 0

KeepAliveRefusals 0

KeepAliveTimeouts 0

KeepAliveTimeout 30 seconds

Note – The name "keep-alive" should not be confused with TCP "keep-alives." Also, note that
the name "keep-alive" was changed to "Persistent Connections" in HTTP/1.1, but the .perf
continues to refer to them as "KeepAlive" connections.

Both HTTP/1.0 and HTTP/1.1 support the ability to send multiple requests across a single
HTTP session. A web server can receive hundreds of new HTTP requests per second. If every
request was allowed to keep the connection open indefinitely, the server could become
overloaded with connections. On UNIX/Linux systems this could lead to a file table overflow
very easily.

To deal with this problem, the server maintains a "Maximum number of waiting keep-alive
connections" counter. A "waiting" keep-alive connection has fully completed processing the
previous request, and is now waiting for a new request to arrive on the same connection. If the
server has more than the maximum waiting connections open when a new connection waits for
a keep-alive request, the server closes the oldest connection. This algorithm keeps an upper
bound on the number of open waiting keep-alive connections that the server can maintain.

Sun Java System Web Server does not always honor a keep-alive request from a client. The
following conditions cause the server to close a connection, even if the client has requested a
keep-alive connection:

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200930

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

■ KeepAliveTimeout is set to 0.
■ MaxKeepAliveConnections count is exceeded.
■ Dynamic content, such as a CGI, does not have an HTTP content-length header set. This

applies only to HTTP/1.0 requests. If the request is HTTP/1.1, the server honors keep-alive
requests even if the content-length is not set. The server can use chunked encoding for
these requests if the client can handle them (indicated by the request header
transfer-encoding: chunked). For more information about chunked encoding, see the
Sun Java System Web Server 6.1 SP12 NSAPI Programmer’s Guide.

■ Request is not HTTP GET or HEAD.
■ The request was determined to be bad. For example, if the client sends only headers with no

content.

KeepAliveThreads
You can configure the number of threads used in the keep-alive system by:

■ Editing the KeepAliveThreads parameter in magnus.conf

■ Setting or changing the KeepAliveThreads value in the Magnus Editor of the Server
Manager

KeepAliveCount
This setting has two numbers:

■ Number of connections in keep-alive mode
■ Maximum number of connections allowed in keep-alive mode simultaneously

Tuning

You can tune the maximum number of sessions that the server allows to wait at one time before
closing the oldest connection by:

■ Editing the MaxKeepAliveConnections parameter in the magnus.conf file
■ Setting or changing the MaxKeepAliveConnections value in the Magnus Editor of the

Server Manager

Note – The number of connections specified by MaxKeepAliveConnections is divided equally
among the keep-alive threads. If MaxKeeepAliveConnections is not equally divisible by
KeepAliveThreads, the server may allow slightly more than MaxKeepAliveConnections

simultaneous keep-alive connections.

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 31

http://docs.sun.com/doc/821-0984

KeepAliveHits
The number of times a request was successfully received from a connection that had been kept
alive.

This setting is not tunable.

KeepAliveFlushes
The number of times the server had to close a connection because the KeepAliveCount
exceeded the MaxKeepAliveConnections. In the current version of the server, the server does
not close existing connections when the KeepAliveCount exceeds the
MaxKeepAliveConnections. Instead, new keep-alive connections are refused and the
KeepAliveResusals count is incremented.

KeepAliveRefusals
The number of times the server could not hand off the connection to a keep-alive thread,
possibly due to too many persistent connections (or when KeepAliveCount exceeds
MaxKeepAliveConnections). Suggested tuning would be to increase
MaxKeepAliveConnections.

KeepAliveTimeout
The time (in seconds) before idle keep-alive connections are closed.

KeepAliveTimeouts
The number of times the server terminated keep-alive connections as the client connections
timed out, without any activity. This is a useful statistic to monitor; no specific tuning is
advised.

UseNativePoll
This option is not displayed in perfdump or Server Manager statistics. However, for
UNIX/Linux users, it should be enabled for maximum performance.

▼ To enable native poll for your keep-alive system from the Server
Manager

Go to the Server Manager Preferences tab and select the Mangus Editor.

From the drop-down list, choose Keep-Alive Settings and click Manage.

Use the drop-down list to set UseNativePoll to On.

1

2

3

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200932

Click OK, and then click Apply.

Select Apply Changes to restart the server for your changes to take effect.

Session Creation Information
Session creation statistics are only displayed in perfdump. Following is an example of the
statistics displayed:

SessionCreationInfo:

Active Sessions 1

Total Sessions Created 48/128

Active Sessions shows the number of sessions (request processing threads) currently
servicing requests.

Total Sessions Created shows both the number of sessions that have been created and the
maximum number of sessions allowed.

Reaching the maximum number of configured threads is not necessarily undesirable, and you
do not need to automatically increase the number of threads in the server. Reaching this limit
means that the server needed this many threads at peak load, but as long as it was able to serve
requests in a timely manner, the server is adequately tuned. However, at this point connections
will queue up in the connection queue, potentially overflowing it. If you check your perfdump
output on a regular basis and notice that total sessions created is often near the RqThrottle
maximum, you should consider increasing your thread limits.

Tuning
You can increase your thread limits by:

■ Editing the RqThrottle parameter in magnus.conf

■ Setting or changing the RqThrottle value in the Magnus Editor of the Server Manager
■ Entering the value in the Maximum Simultaneous Requests field of the Performance Tuning

page in the Server Manager

Cache Information
The cache information section provides statistics on how your file cache is being used. The file
cache caches static content so that the server handles requests for static content quickly. For
tuning information, see“Tuning the File Cache” on page 48.

Following is an example of how the cache statistics are displayed in perfdump:

4

5

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 33

CacheInfo:

enabled yes

CacheEntries 0/1024

Hit Ratio 0/0 (0.00%)

Maximum Age 30

enabled
If the cache is disabled, the rest of this section is not displayed.

Tuning

The cache is enabled by default. You can disable it by:

■ Unselecting it from the File Cache Configuration page under Preferences in the Server
Manger.

■ Editing the FileCacheEnable parameter in the nsfc.conf file. For more information about
this file, see the Sun Java System Web Server 6.1 SP12 Administrator’s Configuration File
Reference.

CacheEntries
The number of current cache entries and the maximum number of cache entries are both
displayed. A single cache entry represents a single URI.

Tuning

You can set the maximum number of cached entries by:

■ Entering a value in the Maximum # of Files field on the File Cache Configuration page under
Preferences in the Server Manger

■ Creating or editing the MaxFiles parameter in the nsfc.conf file. For more information
about this file, see the Sun Java System Web Server 6.1 SP12 Administrator’s Configuration
File Reference.

Hit Ratio (CacheHits / CacheLookups)
The hit ratio gives you the number of file cache hits versus cache lookups. Numbers
approaching 100% indicate the file cache is operating effectively, while numbers approaching
0% could indicate that the file cache is not serving many requests.

This setting is not tunable.

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200934

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

Maximum Age
This displays the maximum age of a valid cache entry. The parameter controls how long cached
information is used after a file has been cached. An entry older than the maximum age is
replaced by a new entry for the same file.

Tuning

If your web site’s content changes infrequently, you may want to increase this value for
improved performance. You can set the maximum age by:

■ Entering or changing the value in the Maximum Age field of the File Cache Configuration
page in the Server Manager.

■ Editing the MaxAge parameter in the nsfc.conf file. For more information about this file,
see the Sun Java System Web Server 6.1 SP12 Administrator’s Configuration File Reference.

Thread Pools
Three types of thread pools can be configured through the Server Manager:

■ Thread Pools (UNIX/Linux)
■ Native Thread Pools (Windows)
■ Generic Thread Pools (Windows)

Thread Pools (UNIX/Linux Only)
Since threads on UNIX/Linux are always operating system (OS)-scheduled, as opposed to
user-scheduled, UNIX/Linux users do not need to use native thread pools, and this option is not
offered in the user interface for these platforms. However, you can edit the OS-scheduled thread
pools and add new thread pools if needed, using the Server Manager.

Native Thread Pools (Windows Only)
On Windows, the native thread pool (NativePool) is used internally by the server to execute
NSAPI functions that require a native thread for execution. Windows users can edit native
thread pool settings using the Server Manager.

Sun Java System Web Server uses NSPR, which is an underlying portability layer providing
access to the host OS services. This layer provides abstractions for threads that are not always
the same as those for the OS-provided threads. These non-native threads have lower scheduling
overhead so their use improves performance. However, these threads are sensitive to blocking
calls to the OS, such as I/O calls. To make it easier to write NSAPI extensions that can make use
of blocking calls, the server keeps a pool of threads that safely support blocking calls. This
usually means it is a native OS thread. During request processing, any NSAPI function that is
not marked as being safe for execution on a non-native thread is scheduled for execution on one
of the threads in the native thread pool.

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 35

http://docs.sun.com/doc/821-0979

If you have written your own NSAPI plugins such as NameTrans, Service, or PathCheck
functions, these execute by default on a thread from the native thread pool. If your plugin makes
use of the NSAPI functions for I/O exclusively or does not use the NSAPI I/O functions at all,
then it can execute on a non-native thread. For this to happen, the function must be loaded with
a NativeThread=”no” option, indicating that it does not require a native thread.

To do this, add the following to the "load-modules" Init line in the magnus.conf file:

Init funcs="pcheck_uri_clean_fixed_init"
shlib="C:/Netscape/p186244/P186244.dll" fn="load-modules"
NativeThread="no"

The NativeThread flag affects all functions in the funcs list, so if you have more than one
function in a library, but only some of them use native threads, use separate Init lines.

Generic Thread Pools (Windows Only)
On Windows, you can set up additional thread pools using the Server Manger. Use thread pools
to put a limit on the maximum number of requests answered by a service function at any
moment. Additional thread pools are a way to run thread-unsafe plugins. By defining a pool
with a maximum number of threads set to 1, only one request is allowed into the specified
service function.

Idle /Peak /Limit
Idle indicates the number of threads that are currently idle. Peak indicates the peak number in
the pool. Limit indicates the maximum number of native threads allowed in the thread pool,
and is determined by the setting of NativePoolMaxThreads.

Tuning

You can modify the NativePoolMaxThreads by:
■ Editing the NativePoolMaxThreads parameter in magnus.conf

■ Entering or changing the value in the Maximum Threads field of the Native Thread Pool
page in the Server Manager

Work Queue Length /Peak /Limit
These numbers refer to a queue of server requests that are waiting for the use of a native thread
from the pool. The Work Queue Length is the current number of requests waiting for a native
thread.

Peak is the highest number of requests that were ever queued up simultaneously for the use of a
native thread since the server was started. This value can be viewed as the maximum
concurrency for requests requiring a native thread.

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200936

Limit is the maximum number of requests that can be queued at one time to wait for a native
thread, and is determined by the setting of NativePoolQueueSize.

Tuning

You can modify the NativePoolQueueSize by:

■ Editing the NativePoolQueueSize parameter in magnus.conf

■ Entering or changing the value in the Queue Size field of the Native Thread Pool page in the
Server Manager

NativePoolStackSize
The NativePoolStackSize determines the stack size in bytes of each thread in the native
(kernel) thread pool.

Tuning

You can modify the NativePoolStackSize by:

■ Editing the NativePoolStackSize parameter in magnus.conf

■ Setting or changing the NativePoolStackSize value in the Magnus Editor of the Server
Manager

■ Entering or changing the value in the Stack Size field of the Native Thread Pool page in the
Server Manager

NativePoolQueueSize
The NativePoolQueueSize determines the number of threads that can wait in the queue for the
thread pool. If all threads in the pool are busy, then the next request-handling thread that needs
to use a thread in the native pool must wait in the queue. If the queue is full, the next
request-handling thread that tries to get in the queue is rejected, with the result that it returns a
busy response to the client. It is then free to handle another incoming request instead of being
tied up waiting in the queue.

Setting the NativePoolQueueSize lower than the RqThrottle value causes the server to execute
a busy function instead of the intended NSAPI function whenever the number of requests
waiting for service by pool threads exceeds this value. The default returns a "503 Service
Unavailable" response and logs a message if LogVerbose is enabled. Setting the
NativePoolQueueSize higher than RqThrottle causes the server to reject connections before a
busy function can execute.

This value represents the maximum number of concurrent requests for service that require a
native thread. If your system is unable to fulfill requests due to load, letting more requests queue
up increases the latency for requests, and could result in all available request threads waiting for

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 37

a native thread. In general, set this value to be high enough to avoid rejecting requests by
anticipating the maximum number of concurrent users who would execute requests requiring a
native thread.

The difference between this value and RqThrottle is the number of requests reserved for
non-native thread requests, such as static HTML and image files. Keeping a reserve and
rejecting requests ensures that your server continues to fill requests for static files, which
prevents it from becoming unresponsive during periods of very heavy dynamic content load. If
your server consistently rejects connections, this value is either set too low, or your server
hardware is overloaded.

Tuning

You can modify the NativePoolQueueSize by:
■ Editing the NativePoolQueueSize parameter in magnus.conf

■ Entering or changing the value in the Queue Size field of the Native Thread Pool page in the
Server Manager

NativePoolMaxThreads
NativePoolMaxThreads determine the maximum number of threads in the native (kernel)
thread pool.

A higher value allows more requests to execute concurrently, but has more overhead due to
context switching, so bigger is not always better. Typically, you will not need to increase this
number, but if you are not saturating your CPU and you are seeing requests queue up, then you
should increase this number.

Tuning

You can modify the NativePoolMaxThreads by:
■ Editing the NativePoolMaxThreads parameter in magnus.conf

■ Entering or changing the value in the Maximum Threads field of the Native Thread Pool
page in the Server Manager

NativePoolMinThreads
Determines the minimum number of threads in the native (kernel) thread pool.

Tuning

You can modify the NativePoolMinThreads by:
■ Editing the NativePoolMinThreads parameter in magnus.conf

Using Statistics to Tune Your Server

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200938

■ Setting or changing the NativePoolMinThreads value in the Magnus Editor of the Server
Manager

■ Entering or changing the value in the Minimum Threads field of the Native Thread Pool
page in the Server Manager

DNS Cache Information
The DNS cache caches IP addresses and DNS names. Your server’s DNS cache is disabled by
default. Statistics are displayed in the DNS Statistics for Process ID page under Monitor in the
Server Manager.

enabled
If the DNS cache is disabled, the rest of this section is not displayed.

Tuning

By default, the DNS cache is off. You can enable DNS caching by:

■ Adding the following line to magnus.conf:
Init fn=dns-cache-init

■ Setting the DNS value to "on" in the Magnus Editor of the Server Manager
■ Selecting DNS Enabled from the Performance Tuning page under Preferences in the Server

Manger

CacheEntries (CurrentCacheEntries / MaxCacheEntries)
The number of current cache entries and the maximum number of cache entries. A single cache
entry represents a single IP address or DNS name lookup. The cache should be as large as the
maximum number of clients that will access your web site concurrently. Note that setting the
cache size too high will waste memory and degrade performance.

Tuning

You can set the maximum size of the DNS cache by:

■ Adding the following line to the magnus.conf file:
Init fn=dns-cache-init cache-size=1024

The default cache size is 1024
■ Entering or changing the value in the Size of DNS cache field of the Performance Tuning

page in the Server Manager

Using Statistics to Tune Your Server

Chapter 2 • Tuning Sun Java System Web Server 39

HitRatio (CacheHits / CacheLookups)
The hit ratio displays the number of cache hits versus the number of cache lookups.

This setting is not tunable.

Busy Functions
The default busy function returns a "503 Service Unavailable" response and logs a message if
LogVerbose is enabled. You may wish to modify this behavior for your application. You can
specify your own busy functions for any NSAPI function in the obj.conf file by including a
service function in the configuration file in this format:

busy="<my-busy-function>"

For example, you could use this sample service function:

Service fn="send-cgi" busy="service-toobusy"

This allows different responses if the server become too busy in the course of processing a
request that includes a number of types (such as Service, AddLog, and PathCheck). Note that
your busy function will apply to all functions that require a native thread to execute when the
default thread type is non-native.

To use your own busy function instead of the default busy function for the entire server, you can
write an NSAPI init function that includes a func_insert call as shown below:

extern "C" NSAPI_PUBLIC int my_custom_busy_function(pblock *pb,

Session *sn, Request *rq);

my_init(pblock *pb, Session *, Request *){

func_insert("service-toobusy", my_custom_busy_function);

}

Busy functions are never executed on a pool thread, so you must be careful to avoid using
function calls that could cause the thread to block.

Threads, Processes, and Connections
This section includes the following topics:

■ “Connection-Handling Overview” on page 41
■ “Process Modes” on page 42
■ “Listen Socket Acceptor Threads” on page 44
■ “Maximum Simultaneous Requests” on page 44
■ “Keep-Alive Subsystem Tuning” on page 45

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200940

Connection-Handling Overview
In Sun Java System Web Server, acceptor threads on a listen socket accept connections and put
them into a connection queue. Session threads then pick up connections from the queue and
service the requests. The session threads post more session threads if required at the end of the
request. The policy for adding new threads is based on the connection queue state:

■ Each time a new connection is returned, the number of connections waiting in the queue
(the backlog of connections) is compared to the number of session threads already created.
If it is greater than the number of threads, more threads are scheduled to be added the next
time a request completes.

■ The previous backlog is tracked, so that if it is seen to be increasing over time, and if the
increase is greater than the ThreadIncrement value, and the number of session threads
minus the backlog is less than the ThreadIncrement value, then another ThreadIncrement
number of threads are scheduled to be added.

■ The process of adding new session threads is strictly limited by the RqThrottle value.
■ To avoid creating too many threads when the backlog increases suddenly (such as the

startup of benchmark loads), the decision as to whether more threads are needed is made
only once every 16 or 32 times a connection is made based on how many session threads
already exist.
The following directives that affect the number and timeout of threads, processes, and
connections can be tuned in the Magnus Editor or magnus.conf:

■ AcceptTimeout

■ ConnQueueSize

■ HeaderBufferSize

■ KeepAliveThreads

■ KeepAliveTimeout

■ KernelThreads

■ ListenQ

■ MaxKeepAliveConnections

■ MaxProcs (UNIX Only)

■ PostThreadsEarly

■ RcvBufSize

■ RqThrottle

■ RqThrottleMin

■ SndBufSize

■ StackSize

■ StrictHttpHeaders

Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 41

■ TerminateTimeout

■ ThreadIncrement

■ UseNativePoll (UNIX only)

For detailed information about these directives, see the Sun Java System Web Server 6.1 SP12
Administrator’s Configuration File Reference.

Process Modes
You can run Sun Java System Web Server in one of the following two modes:

■ “Single-Process Mode” on page 42
■ “Multi-Process Mode” on page 42

Single-Process Mode
In the single-process mode the server receives requests from web clients to a single process.
Inside the single server process many threads are running that are waiting for new requests to
arrive. When a request arrives, it is handled by the thread receiving the request. Because the
server is multi-threaded, all NSAPI extensions written to the server must be thread-safe. This
means that if the NSAPI extension uses a global resource, like a shared reference to a file or
global variable, then the use of that resource must be synchronized, so that only one thread
accesses it at a time. All plugins provided by Netscape/Sun Java System are thread-safe and
thread-aware, providing good scalability and concurrency. However, your legacy applications
may be single-threaded. When the server runs the application, it can only execute one at a time.
This leads to server performance problems when put under load. Unfortunately, in the
single-process design, there is no real workaround.

Multi-Process Mode
You can configure the server to handle requests using multiple processes with multiple threads
in each process. This flexibility provides optimal performance for sites using threads, and also
provides backward compatibility to sites running legacy applications that are not ready to run
in a threaded environment. Because applications on Windows generally already take advantage
of multi-thread considerations, this feature applies to UNIX/Linux platforms.

The advantage of multiple processes is that legacy applications that are not thread-aware or
thread-safe can be run more effectively in Sun Java System Web Server. However, because all of
the Netscape/Sun ONE extensions are built to support a single-process threaded environment,
they may not run in the multi-process mode, and the Search plugins will fail on startup if the
server is in multi-process mode.

In the multi-process mode, the server spawns multiple server processes at startup. Each process
contains one or more threads (depending on the configuration) that receive incoming requests.
Since each process is completely independent, each one has its own copies of global variables,

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200942

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

caches, and other resources. Using multiple processes requires more resources from your
system. Also, if you try to install an application that requires shared state, it has to synchronize
that state across multiple processes. NSAPI provides no helper functions for implementing
cross-process synchronization.

When you specify a MaxProcs value greater than 1, the server relies on the operating system to
distribute connections among multiple server processes (see“MaxProcs (UNIX/Linux)” on
page 43 “MaxProcs (UNIX/Linux)” on page 43 for information about the MaxProcs directive).
However, many modern operating systems will not distribute connections evenly, particularly
when there are a small number of concurrent connections.

Because Sun Java System Web Server cannot guarantee that load is distributed evenly among
server processes, you may encounter performance problems if you specify RqThrottle 1 and
MaxProcs greater than 1 to accommodate a legacy application that is not thread-safe. The
problem will be especially pronounced if the legacy application takes a long time to respond to
requests (for example, if the legacy application contacts a backend database). In this scenario, it
may be preferable to use the default value for RqThrottle and serialize access to the legacy
application using thread pools. For more information about creating a thread pool, refer to the
description of the thread-pool-init SAF in the Sun Java System Web Server 6.1 NSAPI
Programmer's Guide.

If you are not running any NSAPI in your server, you should use the default settings: one
process and many threads. If you are running an application that is not scalable in a threaded
environment, you should use a few processes and many threads, for example, 4 or 8 processes
and 128 or 512 threads per process.

MaxProcs (UNIX/Linux)

Use this directive to set your UNIX/Linux server in multi-process mode, which may allow for
higher scalability on multi-processor machines. If you set the value to less than 1, it will be
ignored and the default value of 1 will be used. See“Multi-Process Mode” on page 42
“Multi-Process Mode” on page 42 for a discussion of the performance implications of setting
this to a value greater than 1.

Tuning

You can set the value for MaxProcs by:

■ Editing the MaxProcs parameter in magnus.conf

■ Setting or changing the MaxProcs value in the Magnus Editor of the Server Manager

Note – You will receive duplicate startup messages when running your server in MaxProcs mode.

Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 43

Listen Socket Acceptor Threads
You can specify how many threads you want in accept mode on a listen socket at any time. It’s a
good practice to set this to less than or equal to the number of CPUs in your system.

Tuning
You can set the number of listen socket acceptor threads by:

■ Editing the server.xml file
■ Entering the number of acceptor threads you want in the Number of Acceptor Threads field

of the Edit Listen Socket page of the Server Manager

Maximum Simultaneous Requests
The RqThrottle parameter in the magnus.conf file specifies the maximum number of
simultaneous transactions the Web Server can handle. The default value is 128. Changes to this
value can be used to throttle the server, minimizing latencies for the transactions that are
performed. The RqThrottle value acts across multiple virtual servers, but does not attempt to
load balance.

To compute the number of simultaneous requests, the server counts the number of active
requests, adding one to the number when a new request arrives, subtracting one when it finishes
the request. When a new request arrives, the server checks to see if it is already processing the
maximum number of requests. If it has reached the limit, it defers processing new requests until
the number of active requests drops below the maximum amount.

In theory, you could set the maximum simultaneous requests to 1 and still have a functional
server. Setting this value to 1 would mean that the server could only handle one request at a
time, but since HTTP requests for static files generally have a very short duration (response
time can be as low as 5 milliseconds), processing one request at a time would still allow you to
process up to 200 requests per second.

However, in actuality, Internet clients frequently connect to the server and then do not
complete their requests. In these cases, the server waits 30 seconds or more for the data before
timing out. You can define this timeout period using the AcceptTimeout directive in
magnus.conf. The default value is 30 seconds. By setting it to less than the default you can free
up threads sooner, but you might also disconnect users with slower connections. Also, some
sites perform heavyweight transactions that take minutes to complete. Both of these factors add
to the maximum simultaneous requests that are required. If your site is processing many
requests that take many seconds, you may need to increase the number of maximum
simultaneous requests. For more information about AcceptTimeout, see the Sun Java System
Web Server 6.1 SP12 Administrator’s Configuration File Reference.

Suitable RqThrottle values range from 100-500, depending on the load.

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200944

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

RqThrottleMin is the minimum number of threads the server initiates upon startup. The
default value is 48. RqThrottle represents a hard limit for the maximum number of active
threads that can run simultaneously, which can become a bottleneck for performance. The
default value is 128.

Note – If you are using older NSAPI plugins that are not reentrant, they will not work with the
multi-threading model described in this document. To continue using them, you should revise
them so that they are reentrant. If this is not possible, you can configure your server to work
with them by setting RqThrottle to 1, and then using a high value for MaxProcs, such as 48 or
greater, but this will adversely impact your server’s performance.

Note – When configuring Sun Java System Web Server to be used with SNCA (the Solaris
Network Cache and Accelerator), setting the RqThrottle and ConnQueueSize parameters to 0
provides better performance. Because SNCA manages the client connections, it is not necessary
to set these parameters. These parameters can also be set to 0 with non-SNCA configurations,
especially for cases in which short latency responses with no keep-alives must be delivered. It is
important to note that RqThrottle and ConnQueueSize must both be set to 0.

For more information about RqThrottle and ConnQueueSize, see the chapter pertaining to
magnus.conf in the Sun Java System Web Server 6.1 SP12 Administrator’s Configuration File
Reference. Also consult the RqThrottle and ConnQueueSize entries in the index in this book.
For information about using SNCA, see“Using the Solaris Network Cache and Accelerator
(SNCA)” on page 77

Tuning
You can tune the number of simultaneous requests by:

■ Editing RqThrottleMin and RqThrottle in the magnus.conf file
■ Entering or changing values for the RqThrottleMin and RqThrottle fields in the Magnus

Editor of the Server Manager
■ Entering the desired value in the Maximum Simultaneous Requests field from the

Performance Tuning page under Preferences in the Server Manger

Keep-Alive Subsystem Tuning
The keep-alive (or HTTP/1.1 persistent connection handling) subsystem in Sun Java System
Web Server 6.1 is designed to be massively scalable. The out-of-the-box configuration can be
less than optimal if the workload is non-persistent (that is, HTTP/1.0 without the KeepAlive
header), or for a lightly loaded system that’s primarily servicing keep-alive connections.

Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 45

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

There are several tuning parameters that can help improve performance. Those parameters are
listed below:

■ acceptorthreads: Number of threads waiting to accept incoming connections on a given
network port. This is specified per the listen socket (LS) element in server.xml.

■ ConnQueueSize: Size of the queue of active, ready-to-process connections.
■ RqThrottle: Number of worker threads in the server. Each thread parses and services a

request from an active connection. Worker threads, in contrast with acceptor threads,
service requests. The maximum number of worker threads is configured using RqThrottle.
For more information, see“Maximum Simultaneous Requests” on page 44

■ MaxKeepAliveConnections: This controls the maximum number of keep-alive connections
the Web Server can maintain at any time. The default is 256. The range is 0 to 32768.

■ KeepAliveTimeout: This directive determines the maximum time (in seconds) that the
server holds open an HTTP keep-alive connection or a persistent connection between the
client and the server. The default is 30 seconds. The connection will timeout if idle for more
than 30 seconds. The maximum is 300 seconds (5 minutes).

■ KeepAliveThreads: This directive determines the number of threads in the keep-alive
subsystem. It is recommended that this number be a small multiple of the number of
processors on the system (for example, a 2 CPU system should have 2 or 4 keep-alive
threads). The default is 1.

■ KeepAliveQueryMaxSleepTime: Specifies an upper limit to the time slept (in milliseconds)
after polling keep-alive connections for further requests. The default is 100. On lightly
loaded systems that primarily service keep-alive connections, you can lower this number to
enhance performance. Doing so can increase CPU usage, however.

■ KeepAliveQueryMeanTime: Specifies the desired keep-alive latency in milliseconds. The
default value of 100 is appropriate for almost all installations. Note that CPU usage will
increase with lower KeepAliveQueryMeanTime values.

For more information about the Web Server’s keep-alive subsystem,
see“Keep-Alive/Persistent Connection Information” on page 30

For information about connection queue sizing, see“Connection Queue Information” on
page 27

HTTP/1.0-style Workload
Since HTTP/1.0 results in a large number of new incoming connections, the default acceptor
threads of 1 per listen socket would be suboptimal. Increasing this to a higher number should
improve performance for HTTP/1.0-style workloads. For instance, for a system with 2 CPUs,
you may want to set it to 2.

Threads, Processes, and Connections

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200946

Example
In the following example, acceptor threads are increased, and keep-alive connections are
reduced:

In magnus.conf:

MaxKeepAliveConnections 0

RqThrottle 128

RcvBufSize 8192

In server.xml:

<SERVER legacyls="ls1">
<LS id="ls1" ip="0.0.0.0" port="8080" security="off" blocking="no"

acceptorthreads="2"
</SERVER>

HTTP/1.0-style workloads would have many connections established and terminated.

If users are experiencing connection timeouts from a browser to Sun Java System Web Server
when the server is heavily loaded, you can increase the size of the HTTP listener backlog queue
by setting the ListenQ parameter in the magnus.conf file to:

ListenQ 8192

The ListenQ parameter specifies the maximum number of pending connections on a listen
socket. Connections that time out on a listen socket whose backlog queue is full will fail.

HTTP/1.1-style Workload
In general, it is a tradeoff between throughput and latency while tuning server persistent
connection handling. The KeepAliveQueryQuery* directives (KeepAliveQueryMeanTime and
KeepAliveQueryMaxSleepTime) control latency. Lowering the values of these directives is
intended to lower latency on lightly loaded systems (for example, reduce page load times).
Increasing the values of these directives is intended to raise aggregate throughput on heavily
loaded systems (for example, increase the number of requests per second the server can handle).
However, if there's too much latency and too few clients, aggregate throughput will suffer as the
server sits idle unnecessarily. As a result, the general keep-alive subsystem tuning rules at a
particular load are as follows:

■ If there's idle CPU time, decrease KeepAliveQueryMeanTime and/or
KeepAliveQueryMaxSleepTime.

■ If there's no idle CPU time, increase KeepAliveQueryMeanTime and/or
KeepAliveQueryMaxSleepTime.

For more information about these directives, see“Keep-Alive Subsystem Tuning” on
page 45

Threads, Processes, and Connections

Chapter 2 • Tuning Sun Java System Web Server 47

Also, chunked encoding could affect the performance for HTTP/1.1 workload. Tuning the
response buffer size could positively affect the performance. A higher OutputStreamSize
for a plugin would result in sending Content-length: header, instead of chunking the
response.

Example
In the following example, MaxKeepAliveConnections is increased, as is UseOutputStreamSize
for the nsapi_test Service function:

In magnus.conf:

MaxKeepAliveConnections 8192

KeepAliveThreads 2

UseNativePoll 1

RqThrottle 128

RcvBufSize 8192

In obj.conf:

<Object name="nsapitest">
ObjectType fn="force-type" type="magnus-internal/nsapitest"
Service method=(GET) type="magnus-internal/nsapitest" fn="nsapi_test"
UseOutputStreamSize=8192

</Object>

Tuning the File Cache
Sun Java System Web Server uses a file cache to serve static information faster. In previous
versions of the server, there was also an accelerator cache that routed requests to the file cache,
but the accelerator cache is no longer used. The file cache contains information about files and
static file content. The file cache also caches information that is used to speed up processing of
server-parsed HTML.

This section includes the following topics:
■ “Configuring the File Cache” on page 48
■ “Using the nocache Parameter” on page 50
■ “Monitoring the File Cache with the Server Manager” on page 51
■ “File Cache Dynamic Control and Monitoring” on page 51

Configuring the File Cache
The file cache is turned on by default. The file cache settings are contained in a file called
nsfc.conf. You can use the Server Manager to change the file cache settings. For more
information about nsfc.conf, see the Sun Java System Web Server 6.1 SP12 Administrator’s
Configuration File Reference.

Tuning the File Cache

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200948

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

▼ To configure the cache

From the Server Manager, select the Preferences tab.

Select File Cache Configuration.

Select Enable File Cache, if not already selected.

Choose whether to transmit files.

When you enable Transmit File, the server caches open file descriptors for files in the file cache,
rather than the file contents, and PR_TransmitFile is used to send the file contents to a client.
When Transmit File is enabled, the distinction normally made by the file cache between small,
medium, and large files no longer applies, since only the open file descriptor is being cached. By
default, Transmit File is enabled on Windows, and disabled on UNIX. On UNIX, only enable
Transmit File for platforms that have native OS support for PR_TransmitFile, which currently
includes HP-UX and AIX. It is not recommended for other UNIX/Linux platforms.

Enter a size for the hash table.
The default size is twice the maximum number of files plus 1. For example, if your maximum
number of files is set to 1024, the default hash table size is 2049.

Enter a maximum age in seconds for a valid cache entry.
By default, this is set to 30.

This setting controls how long cached information will continue to be used once a file has been
cached. An entry older than MaxAge is replaced by a new entry for the same file, if the same file is
referenced through the cache.

Set the maximum age based on whether the content is updated (existing files are modified) on a
regular schedule. For example, if content is updated four times a day at regular intervals, you
could set the maximum age to 21600 seconds (6 hours). Otherwise, consider setting the
maximum age to the longest time you are willing to serve the previous version of a content file
after the file has been modified.

Enter the Maximum Number of Files to be cached.
By default, this is set to 1024.

(UNIX/Linux only) Enter medium and small file size limits in bytes.
By default, the Medium File Size Limit is set to 537600.

By default, the Small File Size Limit is set to 2048.

The cache treats small, medium, and large files differently. The contents of medium files are
cached by mapping the file into virtual memory (currently only on UNIX/Linux platforms).

1

2

3

4

5

6

7

8

Tuning the File Cache

Chapter 2 • Tuning Sun Java System Web Server 49

The contents of small files are cached by allocating heap space and reading the file into it. The
contents of large files (larger than medium) are not cached, although information about large
files is cached.

The advantage of distinguishing between small files and medium files is to avoid wasting part of
many pages of virtual memory when there are lots of small files. So the Small File Size Limit is
typically a slightly lower value than the VM page size.

(UNIX/Linux only) Set the medium and small file space.
The medium file space is the size in bytes of the virtual memory used to map all medium sized
files. By default, this is set to 10485760.

The small file space is the size of heap space in bytes used for the cache, including heap space
used to cache small files. By default, this is set to 1048576 for UNIX/Linux.

Click OK, and then click Apply.

Select Apply Changes to restart your server and put your changes into effect.

Using the nocache Parameter
You can use the parameter nocache for the Service function send-file to specify that files in a
certain directory should not be cached. For example, if you have a set of files that changes too
rapidly for caching to be useful, you can put them into a directory and instruct the server not to
cache files in that directory by editing obj.conf.

Example
<Object name=default>

...

NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir"
name="myname"
...

Service method=(GET|HEAD|POST) type=*~magnus-internal/*

fn=send-file

...

</Object>

<Object name="myname">
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

nocache=""
</Object>

In the above example, the server does not cache static files from /export/mydir/ when
requested by the URL prefix /myurl.

9

10

11

Tuning the File Cache

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200950

Monitoring the File Cache with the Server Manager

▼ To view the file cache statistics with the Server Manager

From the Server Manager, select Monitor.

Select Monitor Current Activity.
If you have not yet activated statistics, do so when the Enable Statistics/Profiling page displays,
click OK, and then restart the server and return to this page.

Select a refresh interval from the drop-down list.

From the drop-down list of statistics to be displayed, choose Cache and then click Submit.

The cache statistics display and are refreshed every 5-15 seconds, depending on the refresh
interval.
The statistics include information on your cache settings, how many hits the cache is getting,
and so on.

File Cache Dynamic Control and Monitoring
You can add an object to obj.conf to dynamically monitor and control the nsfc.conf file
cache while the server is running.

▼ To add an object to obj.conf

Add a NameTransdirective to the default object:
NameTrans fn="assign-name" from="/nsfc" name="nsfc"

Add an nsfcobject definition:
<Object name=”nsfc”> Service fn=service-nsfc-dump </Object>

This enables the file cache control and monitoring function (nsfc-dump) to be accessed through
the URI, "/nsfc." By changing the "from" parameter in the NameTrans directive, a different URI
can be used.

The following is an example of the information you receive when you access the URI:
Sun Java System Web Server File Cache Status (pid 7960)

The file cache is enabled.

Cache resource utilization

1

2

3

4

5

1

2

Tuning the File Cache

Chapter 2 • Tuning Sun Java System Web Server 51

Number of cached file entries = 1039 (112 bytes each, 116368 total

bytes)

Heap space used for cache = 237641/1204228 bytes

Mapped memory used for medium file contents = 5742797/10485760 bytes

Number of cache lookup hits = 435877/720427 (60.50 %)

Number of hits/misses on cached file info = 212125/128556

Number of hits/misses on cached file content = 19426/502284

Number of outdated cache entries deleted = 0

Number of cache entry replacements = 127405

Total number of cache entries deleted = 127407

Number of busy deleted cache entries = 17

Parameter settings

HitOrder: false

CacheFileInfo: true

CacheFileContent: true

TransmitFile: false

MaxAge: 30 seconds

MaxFiles: 1024 files

SmallFileSizeLimit: 2048 bytes

MediumFileSizeLimit: 537600 bytes

CopyFiles: false

Directory for temporary files: /tmp/netscape/https-axilla.mcom.com

Hash table size: 2049 buckets

You can include a query string when you access the "/nsfc" URI. The following values are
recognized:
■ ?list: Lists the files in the cache.
■ ?refresh=n: Causes the client to reload the page every n seconds.
■ ?restart: Causes the cache to be shut down and then restarted.
■ ?start: Starts the cache.
■ ?stop: Shuts down the cache.

If you choose the ?list option, the file listing includes the file name, a set of flags, the
current number of references to the cache entry, the size of the file, and an internal file ID
value. The flags are as follows:

■ C: File contents are cached.
■ D: Cache entry is marked for delete.
■ E: PR_GetFileInfo() returned an error for this file.
■ I: File information (size, modify date, and so on) is cached.
■ M: File contents are mapped into virtual memory.
■ O: File descriptor is cached (when TransmitFile is set to true).

Tuning the File Cache

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200952

■ P: File has associated private data (should appear on shtml files).
■ T: Cache entry has a temporary file.
■ W: Cache entry is locked for write access.

For sites with scheduled updates to content, consider shutting down the cache while the
content is being updated, and starting it again after the update is complete. Although
performance will slow down, the server operates normally when the cache is off.

Tuning the ACL User Cache
The ACL user cache is on by default. Because of the default size of the cache (200 entries), the
ACL user cache can be a bottleneck, or can simply not serve its purpose on a site with heavy
traffic. On a busy site, more than 200 users can hit ACL-protected resources in less time than the
lifetime of the cache entries. When this situation occurs, Sun Java System Web Server must
query the LDAP server more often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the size of the ACL cache with the
ACLUserCacheSize directive in magnus.conf. Note that increasing the cache size will use more
resources; the larger you make the cache, the more RAM you'll need to hold it.

There can also be a potential (but much harder to hit) bottleneck with the number of groups
stored in a cache entry (4 by default). If a user belongs to 5 groups and hits 5 ACLs that check for
these different groups within the ACL cache lifetime, an additional cache entry is created to
hold the additional group entry. When there are 2 cache entries, the entry with the original
group information is ignored.

While it would be extremely unusual to hit this possible performance problem, the number of
groups cached in a single ACL cache entry can be tuned with the ACLGroupCacheSize directive.

This section includes the following topics:

■ “ACL User Cache Directives” on page 53
■ “Verifying ACL User Cache Settings” on page 54

ACL User Cache Directives
To adjust the ACL user cache values you must manually add the following directives to your
magnus.conf file:

■ ACLCacheLifetime

■ ACLUserCacheSize

■ ACLGroupCacheSize

Tuning the ACL User Cache

Chapter 2 • Tuning Sun Java System Web Server 53

ACLCacheLifetime
Set this directive to a number that determines the number of seconds before the cache entries
expire. Each time an entry in the cache is referenced, its age is calculated and checked against
ACLCacheLifetime. The entry is not used if its age is greater than or equal to the
ACLCacheLifetime. The default value is 120 seconds. If this value is set to 0, the cache is turned
off. If you use a large number for this value, you may need to restart Sun Java System Web Server
when you make changes to the LDAP entries. For example, if this value is set to 120 seconds,
Sun Java System Web Server might be out of sync with the LDAP server for as long as two
minutes. If your LDAP is not likely to change often, use a large number.

ACLUserCacheSize
Set this directive to a number that determines the size of the User Cache (default is 200).

ACLGroupCacheSize
Set this directive to a number that determines how many group IDs can be cached for a single
UID/cache entry (default is 4).

Verifying ACL User Cache Settings
With LogVerbose you can verify that the ACL user cache settings are being used. When
LogVerbose is running, you should expect to see these messages in your errors log when the
server starts:

User authentication cache entries expire in ### seconds.

User authentication cache holds ### users.

Up to ### groups are cached for each cached user.

Tuning
You can turn LogVerbose on by:

■ Editing the LogVerbose parameter in magnus.conf

■ Setting or changing the LogVerbose value to "on" in the Magnus Editor of the Server
Manager

Note – Do not turn on LogVerbose on a production server. Doing so degrades performance and
greatly increases the size of your error logs.

Tuning the ACL User Cache

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200954

Tuning Java Web Applications Performance
This section includes the following topics:

■ “Using Java Heap Tuning” on page 55
■ “Using Precompiled JSPs” on page 55
■ “Using Servlet/JSP Caching” on page 56
■ “Configuring the Java Security Manager” on page 56
■ “Configuring Class Reloading” on page 56
■ “Avoiding Directories in the Classpath” on page 56
■ “Configuring the Web Application’s Session Settings” on page 57
■ “Configuring JDBC Connection Pooling” on page 58
■ “JDBC Connection Pool Attributes” on page 58

Using Java Heap Tuning
As with all Java programs, the performance of the web applications in the Sun Java System Web
Server is dependent on the heap management performed by the virtual machine (VM). There is
a trade-off between pause times and throughput. A good place to start is by reading the
performance documentation for the Java HotSpot virtual machine, which can be found at the
following location:

http://java.sun.com/docs/hotspot/index.html

Java VM options are specified using the JVMOPTIONS subelement of the JAVA element in
server.xml. For more information, see the Sun Java System Web Server 6.1 SP12
Administrator’s Configuration File Reference.

Using Precompiled JSPs
Compiling JSPs is a resource-intensive and relatively time-consuming process. By default, the
Web Server periodically checks to see if your JSPs have been modified and dynamically reloads
them; this allows you to deploy modifications without restarting the server. The
reload-interval property of the jsp-config element in sun-web.xml controls how often the
server checks JSPs for modifications. However, there is a small performance penalty for that
checking.

When the server detects a change in a .jsp file, only that JSP is recompiled and reloaded; the
entire web application is not reloaded. If your JSPs do not change, you can improve
performance by precompiling your JSPs before deploying them onto your server. For more
information about jsp-config and about precompiling JSPs for Sun Java System Web Server,
see the Sun Java System Web Server 6.1 SP12 Programmer’s Guide to Web Applications. Also see
the following section, “Configuring Class Reloading” on page 56.

Tuning Java Web Applications Performance

Chapter 2 • Tuning Sun Java System Web Server 55

http://java.sun.com/docs/hotspot/index.html
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0987

Using Servlet/JSP Caching
If you spend a lot of time re-running the same servlet/JSP, you can cache its results and return
results out of the cache the next time it is run. For example, this is useful for common queries
that all visitors to your site run: you want the results of the query to be dynamic because it might
change day to day, but you do not need to run the logic for every user.

To enable caching, you configure the caching parameters in the sun-web.xml file of your
application. For more details, see information about caching servlet results in the Sun Java
System Web Server 6.1 SP12 Programmer’s Guide to Web Applications.

Configuring the Java Security Manager
Sun Java System Web Server 6.1 supports the Java Security Manager. The main drawback of
running with the Security Manager is that it negatively impacts performance. The Java Security
Manager is disabled by default when you install the product. Running without the Security
Manager may improve performance significantly for some types of applications. Based on your
application and deployment needs, you should evaluate whether to run with or without the
Security Manager. For more information, see the Sun Java System Web Server 6.1 SP12
Programmer’s Guide to Web Applications.

Configuring Class Reloading
The dynamicreloadinterval of the JAVA element in server.xml and the
dynamic-reload-interval of the class-loader element in sun-web.xml controls the
frequency at which the server checks for changes in servlet classes. When dynamic reloading is
enabled and the server detects that a .class file has changed, the entire web application is
reloaded. In a production environment where changes are made in a scheduled manner, set this
value to -1 to prevent the server from constantly checking for updates. The default value is -1
(that is, class reloading is disabled). For more information about elements in server.xml, see
the Sun Java System Web Server 6.1 SP12 Administrator’s Configuration File Reference. For more
information about elements in sun-web.xml, see the Sun Java System Web Server 6.1 SP12
Programmer’s Guide to Web Applications. Also see the previous section in this guide, “Using
Precompiled JSPs” on page 55.

Avoiding Directories in the Classpath
For certain applications (especially if the Java Security Manager is enabled), you can improve
the performance by ensuring that there are no directories in the classpath. To do so, ensure that
there are no directories in the classpath elements in server.xml (serverclasspath,
classpathprefix, classpathsuffix). For more information about these elements, see the Sun

Tuning Java Web Applications Performance

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200956

http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0979

Java System Web Server 6.1 SP12 Administrator’s Configuration File Reference. Also, package the
web application's .class files in a .jar archive in WEB-INF/lib instead of packaging the .class
files as is in WEB-INF/classes, and ensure that the .war archive does not contain a
WEB-INF/classes directory.

Configuring the Web Application’s Session Settings
If you have relatively short-lived sessions, try decreasing the session timeout by configuring the
value of the timeOutSeconds property under the session-properties element in
sun-web.xml from the default value of 10 minutes.

If you have relatively long-lived sessions, you can try decreasing the frequency at which the
session reaper runs by increasing the value of the reapIntervalSeconds property from the
default value of once every minute.

For more information about these settings, and about session managers, see the Sun Java System
Web Server 6.1 SP12 Programmer’s Guide to Web Applications.

In multi-process mode when the persistence-type in sun-web.xml is configured to be either
s1ws60 or mmap, the session manager uses cross-process locks to ensure session data integrity.
These can be configured to improve performance as described below.

Tuning maxLocks (UNIX/Linux)
The implication of the number specified in the maxLocks property can be gauged by dividing
the value of maxSessions with maxLocks. For example, if maxSessions = 1000 and you set
maxLocks = 10, then approximately 100 sessions (1000/10) will contend for the same lock.
Increasing maxLocks will reduce the number of sessions that contend for the same lock and may
improve performance and reduce latency. However, increasing the number of locks also
increases the number of open file descriptors, and reduces the number of available descriptors
that would otherwise be assigned to incoming connection requests.

For more information about these settings, see the "Session Managers" chapter in the Sun Java
System Web Server 6.1 SP12 Programmer’s Guide to Web Applications.

Tuning MMapSessionManager (UNIX/Linux)
The following example describes the effect on process size when configuring the
persistence-type="mmap" using the manager-properties properties (documented for the
MMapSessionManager in the Sun Java System Web Server 6.1 Programmer’s Guide to Web
Applications):

maxSessions = 1000

maxValuesPerSession = 10

maxValueSize = 4096

Tuning Java Web Applications Performance

Chapter 2 • Tuning Sun Java System Web Server 57

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987
http://docs.sun.com/doc/821-0987

This example would create a memory mapped file of size 1000 X 10 X 4096 bytes, or ~40 MB. As
this is a memory mapped file, the process size will increase by 40 MB upon startup. The larger
the values you set for these parameters, the greater will be the increase in process size.

Configuring JDBC Connection Pooling
A JDBC connection pool is a named group of JDBC connections to a database. These
connections are created when the first request for connection is made on the pool when you
start Sun Java System Web Server.

The JDBC connection pool defines the properties used to create a connection pool. Each
connection pool uses a JDBC driver to establish a connection to a physical database at server
start-up.

A JDBC-based application or resource draws a connection from the pool, uses it, and when no
longer needed, returns it to the connection pool by closing the connection. If two or more JDBC
resources point to the same pool definition, they will be using the same pool of connections at
run time.

The use of connection pooling improves application performance by doing the following:
■ Creating connections in advance. The cost of establishing connections is moved outside of

the code that is critical for performance.
■ Reusing connections. The number of times connections are created is significantly lowered.
■ Controlling the amount of resources a single application can use at any moment.

JDBC connection pools can be created and edited using the Administration interface, or by
editing the attributes of the JDBCCONNECTIONPOOL element in the server.xml file. For more
information, see the Sun Java System Web Server 6.1 SP12 Administrator’s Guide and the Sun
Java System Web Server 6.1 SP12 Administrator’s Configuration File Reference, respectively.

Note – Each defined pool is instantiated during web server startup. However, the connections
are only created the first time the pool is accessed. It is recommended that you jump-start a pool
before putting it under heavy load.

JDBC Connection Pool Attributes
Depending on your application’s database activity, you may need to size connection pool
attributes. Attributes of a JDBC connection pool are listed below, along with considerations
relating to performance.
■ name

The pool name.

Tuning Java Web Applications Performance

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200958

http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

■ datasourceclassname
The jdbc driver class that implements javax.sql.DataSource.

■ steadypoolsize
The size the pool will tend to keep during the life of the server instance. Also the initial size
of the pool. Defaults to 8.
This number should be as close as possible to the expected average size of the pool. Use a
high number for a pool that is expected to be under heavy load. This will minimize creation
of connections during the life of the application, and will minimize pool resizing. Use a
lower number if the pool load is expected to be small. This will minimize resource
consumption.

■ maxpoolsize
The maximum number of connections that a pool can have at any given time. Defaults to 32.
Use this parameter to enforce a limit in the amount of connection resources that a pool or
application can have. This limit is also beneficial to avoid application failures due to
excessive resource consumption.

■ poolresizequantity
Number of connections to be removed when the idletimeout timer expires. Connections
that have been idle longer than the timeout are candidates for removal. When the pool size
reaches steady-pool-size, the connection removal stops. Defaults to 2.
Keep this number low for pools that expect regular and steady changes in demand. A higher
number is recommended for pools that expect infrequent and pronounced changes in the
load.

■ idletimeout
The maximum amount in seconds that a connection is ensured to remain unused in the
pool. Also the intervals at which the resizer task will be scheduled.
Note that this does not control connection timeouts enforced at the database server side.
Defaults to 300.
Setting this attribute to 0 prevents the connections from being closed and causes the resizing
task not to be scheduled. This is recommended for pools that expect continuous high
demand. Otherwise, administrators are advised to keep this timeout shorter than the
database server-side timeout (if such timeouts are configured on the specific vendor's
database), to prevent accumulation of unusable connections in the pool.

■ maxwaittime
The amount of time in milliseconds that a request waits for a connection in the queue before
timing out. Defaults to 60000.
Setting this attribute to 0 causes a request for a connection to wait indefinitely. This could
also improve performance by keeping the pool from having to account for connection
timers.

■ connectionvalidationrequired

Tuning Java Web Applications Performance

Chapter 2 • Tuning Sun Java System Web Server 59

If set to true, the pool will always execute a call on the connection to verify its validity.
Defaults to off.
The overhead caused by this call can be avoided by setting the parameter to false.

■ connectionvalidationmethod
The method used for validation. Defaults to auto-commit.
If validation is needed, the methods auto-commit and meta-data are less costly than the
method table. The first two require a method call, but they might not be effective if the
JDBC driver caches the result of the call. The third method is almost always effective, but it
requires the execution of a SQL statement, and thus is less performance-friendly.

■ validationtablename
The user-defined table to be use for validation. Defaults to test.
If this method is used, it is strongly recommended that the table used be dedicated only to
validation, and the number of rows in the table be kept to a minimum.

■ failallconnections
Indicates whether all connection in the pool are re-created when one is found to be invalid
or only the invalid one. Only applicable if connectionvalidationrequired is set to true.
Defaults to off.
If set to true, all of the re-creation work will be done in one step, and the thread requesting
the connection will be heavily affected. If set to false, the load of re-creating connections
will be distributed between the threads requesting each connection.

■ transactionisolationlevel
Specifies the Transaction Isolation Level on the pooled database connections. This setting is
optional and has no default.
If left empty, the default isolation level of the connection will be left intact. Setting it to any
value will incur the small performance penalty cause by the method call.

■ solationlevelguaranteed
Only applicable if a transactionisolationlevel has been specified. Defaults to off.
Leaving this as off or false will cause the isolation level to be set only when the connection
is created. Setting this to true will set the level every time the connection is leased to an
application. It is recommended that you leave this set to false.

Tuning Java Web Applications Performance

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200960

Miscellaneous Performance Topics

This chapter provides miscellaneous performance information and includes the following
topics:
■ “Miscellaneous magnus.conf Directives” on page 61
■ “Miscellaneous obj.conf Parameters” on page 63
■ “Using Quality of Service” on page 64
■ “Using Load Balancing” on page 65

Miscellaneous magnus.conf Directives
The following topics discuss magnus.conf directives you can use to configure your server to
function more effectively:
■ “Buffer Size” on page 61
■ “Connection Timeout” on page 62
■ “CGIStub Processes (UNIX/Linux)” on page 62

For a complete list and description of magnus.conf directives, see the Sun Java System Web
Server 6.1 SP12 Administrator’s Configuration File Reference.

Buffer Size
You can specify the size of the send buffer (SndBufSize) and the receiving buffer (RcvBufSize)
at the server’s sockets. For more information regarding these buffers, see your UNIX/Linux
documentation.

Tuning
You can set the buffer size by:

■ Editing the SndBufSize and RcvBufSize parameters in magnus.conf

3C H A P T E R 3

61

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

■ Setting or changing the SndBufSize and RcvBufSize values in the Magnus Editor of the
Server Manager

Connection Timeout
You can specify the number of seconds the server waits for data to arrive from the client before
closing the connection by using theAcceptTimeout directive. If data does not arrive before the
timeout expires, the connection is closed. This is set to 30 seconds by default. Under most
circumstances, you won’t need to change this setting. You can free up threads by setting this to
less than the default, but you might also disconnect users with slower connections.

Tuning
You can set AcceptTimeout by:

■ Editing the AcceptTimeout parameter in magnus.conf

■ Setting or changing the AcceptTimeout value in the Magnus Editor of the Server Manager

CGIStub Processes (UNIX/Linux)
You can adjust the CGIStub parameters on UNIX/Linux systems. In Sun Java System Web
Server, the CGI engine creates CGIStub processes as needed. On systems that serve a large load
and rely heavily on CGI-generated content, it is possible for the CGIStub processes to consume
all system resources. If this is happening on your server, the CGIStub processes can be tuned to
restrict how many new CGIStub processes can be spawned, their timeout value, and the
minimum number of CGIStub processes that will be running at any given moment.

Note – If you have an init-cgi function in the magnus.conf file and you are running in
multi-process mode, you must add LateInit = yes to the init-cgi line.

The four directives and their defaults that can be tuned to control Cgistub are:

■ MinCGIStubs

■ MaxCGIStubs

■ CGIStubIdleTimeout

■ CGIExpirationTimeout

MinCGIStubs controls the number of processes that are started by default. The first CGIStub
process is not started until a CGI program has been accessed. The default value is 2. If you
have a init-cgi directive in the magnus.conf file, the minimum number of CGIStub
processes are spawned at startup.

Miscellaneous magnus.conf Directives

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200962

MaxCGIStubs controls the maximum number of CGIStub processes the server can spawn.
This is the maximum concurrent CGIStub processes in execution, not the maximum
number of pending requests. The default value shown should be adequate for most systems.
Setting this too high may actually reduce throughput. The default is 10.
CGIStubIdleTimeout causes the server to kill any CGIStub processes that have been idle for
the number of seconds set by this directive. Once the number of processes is at
MinCGIStubs, it does not kill any more processes. The default is 45.
CGIExpirationTimeout limits the maximum time in seconds that CGI processes can run.

Tuning
You can set the CGIStub processes by:

■ Editing them in magnus.conf

■ Setting or changing their values in the Magnus Editor of the Server Manager

Miscellaneous obj.conf Parameters
You can use some obj.conf function parameters to improve your server’s performance, as
discussed in the topics in this section:

■ “find-pathinfo-forward” on page 63
■ “nostat” on page 64

In addition to these parameters, see“Using the nocache Parameter” on page 50“Using the
nocache Parameter” on page 50
For more information about obj.conf, see the Sun Java System Web Server 6.1 SP12
Administrator’s Configuration File Reference.

find-pathinfo-forward
The parameter find-pathinfo-forward for the PathCheck function find-pathinfo and the
NameTrans functions pfx2dir and assign-name can help you improve your performance. The
find-pathinfo-forward parameter instructs the server to search forward for PATH_INFO in the
path after ntrans-base, instead of backward from the end of path in the server function
find-pathinfo.

Note – The server ignores the find-pathinfo-forward parameter if the ntrans-base parameter
is not set in rq-\>vars when the server function find-pathinfo is called. By default,
ntrans-base is set.

Example

Miscellaneous obj.conf Parameters

Chapter 3 • Miscellaneous Performance Topics 63

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"
dir="/export/home/cgi-bin" name="cgi"

NameTrans fn="assign-name" from="/perf" find-pathinfo-forward=""
name="perf"

This feature can improve performance for certain URLs by doing fewer stats in the server
function find-pathinfo. On Windows, you can also use this feature to prevent the server from
changing "\" to "/" when using the PathCheck server function find-pathinfo.

nostat
You can specify the parameter nostat in the NameTrans function assign-name to prevent the
server from doing a stat on a specified URL whenever possible. Use the following syntax:

nostat=virtual-path

Example

<Object name=default>NameTrans fn="assign-name" from="/nsfc"
nostat="/nsfc" name="nsfc"</Object>
<Object name=nsfc>Service fn=service-nsfc-dump</Object>

In the previous example, the server does not stat for path /ntrans-base/nsfc and
/ntrans-base/nsfc/* if ntrans-base is set. If ntrans-base is not set, the server does not stat for
URLs /nsfc and /nsfc/*. By default, ntrans-base is set. The example assumes the default
PathCheck server functions are used.

When you use nostat= virtual-path in the assign-name NameTrans, the server assumes that
stat on the specified virtual-path will fail. Therefore, use nostat only when the path of the
virtual-path does not exist on the system, for example, in NSAPI plugin URLs. Using nostat on
those URLs improves performance by avoiding unnecessary stats on those URLs.

Using Quality of Service
The quality of service features allow you to limit the amount of bandwidth and number of
connections for a server instance, class of virtual servers, or an individual virtual server. You can
set these performance limits, track them, and optionally enforce them.

For more information about using the quality of service features, see the Sun Java System Web
Server 6.1 SP12 Administrator’s Guide.

Using Quality of Service

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200964

http://docs.sun.com/doc/821-0980
http://docs.sun.com/doc/821-0980

Using Load Balancing
With load balancing, the amount of server traffic is divided between two or more computers so
that more work gets done in the same amount of time and all online users will generally be
served faster. Third-party plugins can be used to provide load balancing capabilities for Sun
Java System Web Server. Contact load balancing plugin providers for information about
solutions that work with Sun Java System Web Server.

Using libloadbal
You can use the load balancing plugin libloadbal to allow your server to execute a program
when certain thread load conditions are met, so a load distribution product on the front-end
can redistribute the load.

There are two methods that you can use to trigger the load balancer to increase or decrease load:
■ Standard

Base load decisions on the number of queued requests. This is a passive approach. By letting
the queue fill up you are already delaying some requests. In this case, you want the
HighThreshold to be a low value and LowThreshold to be a high value.

■ Aggressive
Base load decisions on the number of active threads in the pool. This is designed to more
tightly control the requests so that you would reduce the load before requests get queued.

Library configuration
To enable the plugin, you must modify magnus.conf manually. This should look something like
this:

Init fn="load-modules" funcs="init-resonate"
shlib="server_root/bin/https/lib/libloadbal.so"
Init fn="init-resonate" ThreadPool="sleep"
EventExePath="/tools/ns/bin/perl5" LateInit="yes"
CmdLow="/opt/SUNWwbsvr/plugins/loadbal/CmdLow.pl"
CmdHigh="/opt/SUNWwbsvr/plugins/loadbal/CmdHigh.pl"

The init-resonate function can take the following parameters:

TABLE 3–1 init-resonate Parameters

Parameter Description

ThreadPool Name of the thread pool to monitor.

Aggressive If set to TRUE, this argument causes the plugin to use the pool thread count
rather than the queue thread count.

Using Load Balancing

Chapter 3 • Miscellaneous Performance Topics 65

TABLE 3–1 init-resonate Parameters (Continued)
Parameter Description

PollTime How frequently to check the thread status. The default is 2000 milliseconds.

HighThreshold Defines the queue size/# of threads where HighCmd is executed to increase load
on the server. The default is 4096.

LowThreshold Defines the queue size/# of threads where the LowCmd is executed to decrease
load on the server. The default is 1.

EventExePath Pointer to the script program you want to run (for instance, /usr/bin/perl
or /bin/sh). Defaults to perl or perl.exe, depending on the platform.

CmdLow Pointer to the script to be run when the LowThreshold is met.

ArgsLow Arguments to send to CmdLow.

CmdHigh Pointer to the script to be run when the HighThreshold is met.

ArgsHigh Arguments to send to CmdHigh.

Note – You must specify LateInit="yes" when loading this module. The module creates a
monitoring thread, and this monitoring thread must start after ns-httpd has started.

If you set LogVerbose on in magnus.conf, the error log contains information on how the plugin
is configured and when it is invoked.

A sample of the information in the error log is shown below:

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin watching

thread pool sleep

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin

aggressive setting is FALSE

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin poll time

set to 2000

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin

HighThreshold set to 5

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin

LowThreshold set to 1

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin event

executable path set to /tools/ns/bin/perl5

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin low

command set to /opt/SUNWwbsvr/plugins/loadbal/CmdLow.pl

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin high

command set to /opt/SUNWwbsvr/plugins/loadbal/CmdHigh.pl

This is what the log entries will look like when LogVerbose on is set and the plugin is activated:

Using Load Balancing

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200966

[12/Jun/2003:09:40:12] verbose (20699): Resonate plugin reducing load.

[12/Jun/2003:09:40:14] verbose (20699): Resonate plugin reducing load.

[12/Jun/2003:09:40:16] verbose (20699): Resonate plugin reducing load.

[12/Jun/2003:09:40:18] verbose (20699): Resonate plugin reducing load.

[12/Jun/2003:09:40:20] verbose (20699): Resonate plugin reducing load.

[12/Jun/2003:09:40:30] verbose (20699): Resonate plugin increasing load.

Testing
To test the load balancer, you can create an NSAPI plugin that prints an HTML page and then
calls sleep() for a period to simulate execution time. This way you can build up a simulated
load on the server and ensure that the load balancer commands are working properly.

▼ To configure the sample program

Add a new mime.type so this isn't run for every request by modifying config/mime.types and
adding:
type=magnus-internal/sleep exts=sleep

Create a file in your document root directory with the extension of .sleep.
It does not matter if anything is in this file; it is used only as a placeholder.

Load the module into the server by editing magnus.conf.
Init fn="load-modules" funcs="dosleep"
shlib="/opt/SUNWwbsvr/plugins/nsapi/examples/dosleep.so" pool="sleep"

In the example above, you are changing shlib to the location of the library, and setting pool to
the name of the thread pool you defined earlier.

Add this Service line where the others are found (note that order is not important):
Service method="(GET|HEAD)" fn="dosleep" duration="10"
type="magnus-internal/sleep"

The argument duration tells the server how long to sleep for each request in seconds.

Restart your server.
You should now be ready to test the load balancer plugin. The NSAPI plugin will keep the
threads busy long enough to simulate your desired load. The load balancing plugin is tested by
retrieving the .sleep file you created earlier.

Sample
Below is a sample dosleep.c:

1

2

3

4

5

Using Load Balancing

Chapter 3 • Miscellaneous Performance Topics 67

#ifdef XP_WIN32

#define NSAPI_PUBLIC __declspec(dllexport)

#else /* !XP_WIN32 */

#define NSAPI_PUBLIC

#endif /* !XP_WIN32 */

#include "nsapi.h"

#define BUFFER_SIZE 1024

#ifdef __cplusplus

extern "C"
#endif

NSAPI_PUBLIC int dosleep(pblock *pb, Session *sn, Request *rq)

{

char buf[BUFFER_SIZE];

int length, duration;

char *dur = pblock_findval("duration", pb);

if (!dur) {

log_error(LOG_WARN, "dosleep", sn, rq, "Value for duration

is not set.");

return REQ_ABORTED;

}

duration = atoi(dur);

/* We need to get rid of the internal content type. */

param_free(pblock_remove("content-type", rq->srvhdrs));

pblock_nvinsert("content-type", "text/html", rq>srvhdrs);

protocol_status(sn, rq, PROTOCOL_OK, NULL);

/* get ready to send page */

protocol_start_response(sn, rq);

/* fill the buffer with our message */

length = util_snprintf(buf, BUFFER_SIZE,

"<title>%s</title><h1>%s</h1>\n", "Sleeping", "Sleeping");
length += util_snprintf(&buf[length], BUFFER_SIZE - length,

"Sample NSAPI that is sleeping for %d seconds...\n", duration);

/* write the message to the client */

if (net_write(sn->csd, buf, length) == IO_ERROR)

{

return REQ_EXIT;

}

Using Load Balancing

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200968

sleep(duration);

return REQ_PROCEED;

}

Using Load Balancing

Chapter 3 • Miscellaneous Performance Topics 69

70

Common Performance Problems

This chapter discusses common web site performance problems, and includes the following
topics:

■ “Magnus Editor Values” on page 71
■ “check-acl Server Application Functions” on page 71
■ “Low-memory Situations” on page 72
■ “Under-throttled Server” on page 72
■ “Cache Not Utilized” on page 73
■ “Keep-Alive Connections Flushed” on page 73
■ “Log File Modes” on page 74

Note – For platform-specific issues, seeChapter 6, Platform-specific Issues and Tips

Magnus Editor Values
You can set most of the tuning parameter values of the magnus.conf file using the Magnus
Editor in the Server Manager. However, note that once you have set the values, the
Administration Server does not verify that they are valid.

check-acl Server Application Functions
For optimal performance of your server, use ACLs only when required.

The default server is configured with an ACL file containing the default ACL allowing write
access to the server only to "all," and an es-internal ACL for restricting write access for
"anybody." The latter protects the manuals, icons, and search UI files in the server.

The default obj.conf file has NameTrans lines mapping the directories that need to be read-only
to the es-internal object, which in turn has a check-acl SAF for the es-internal ACL.

4C H A P T E R 4

71

The default object also contains a check-acl SAF for the "default" ACL.

You can improve your server’s performance by removing the aclid properties from virtual
server tags in server.xml. This stops any ACL processing.

You can also improve performance by removing the check-acl SAF from the default object for
URIs that are not protected by ACLs.

Low-memory Situations
If Sun Java System Web Server must run in low-memory situations, reduce the thread limit to a
bare minimum by lowering the value of RqThrottle. Also, you may want to reduce the
maximum number of processes that the server will spawn by lowering the value of the MaxProcs
value.

Your web applications running under stress may sometimes result in the server running out of
Java VM runtime heap space, as can be seen by java.lang.OutOfMemoryError messages in the
server log file. There could be several reasons for this (such as excessive allocation of objects),
but such behavior could affect performance. To address this problem, you would need to profile
the application. Refer to the following HotSpot VM performance FAQ for tips on profiling
allocations (objects and their sizes) of your application:

http://java.sun.com/docs/hotspot/PerformanceFAQ.html

At times your application could be running out of maximum sessions (as evidenced by the "too
many active sessions message" in the server log file), which would result in the container
throwing exceptions, which in turn impacts application performance. A due consideration of
session manager properties, session creation activity (note that JSPs have session enabled by
default), and session idle time would be needed to address this situation.

Under-throttled Server
The server does not allow the number of active threads to exceed the thread limit value. If the
number of simultaneous requests reaches that limit, the server stops servicing new connections
until the old connections are freed up. This can lead to increased response time.

In Sun Java System Web Server, the server’s default RqThrottle value is 128. If you want your
server to process more requests concurrently, you need to increase the RqThrottle value.

The symptom of an under-throttled server is a server with a long response time. Making a
request from a browser establishes a connection fairly quickly to the server, but on
under-throttled servers it may take a long time before the response comes back to the client.

The best way to tell if your server is being throttled is to see if the number of active sessions is
close to, or equal to, the maximum number allowed via RqThrottle. To do this, see“Maximum
Simultaneous Requests” on page 44“Maximum Simultaneous Requests” on page 44

Low-memory Situations

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200972

http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Cache Not Utilized
If the cache is not utilized, your server is not performing optimally. Since most sites have lots of
GIF or JPEG files that should always be cacheable, you need to use your cache effectively.

Some sites, however, do almost everything through CGIs, SHTML, or other dynamic sources.
Dynamic content is generally not cacheable, and inherently yields a low cache hit rate. Do not
be too alarmed if your site has a low cache hit rate. The most important thing is that your
response time is low. You can have a very low cache hit rate and still have very good response
time. As long as your response time is good, you may not care that the cache hit rate is low.

Check your hit ratio using statistics from perfdump or the Monitor Current Activity page of the
Server Manager. The hit ratio is the percentage of times the cache was used with all hits to your
server. A good cache hit rate is anything above 50%. Some sites may even achieve 98% or higher.
For more information, see“Cache Information” on page 33

In addition, if you are doing a lot of CGI or NSAPI calls, you may have a low cache hit rate. If
you have custom NSAPI functions, you may also have a low cache hit rate.

Keep-Alive Connections Flushed
A web site that might be able to service 75 requests per second without keep-alive connections
may be able to do 200-300 requests per second when keep-alive is enabled. Therefore, as a client
requests various items from a single page, it is important that keep-alive connections are being
used effectively. If the KeepAliveCount exceeds the MaxKeepAliveConnections, subsequent
keep-alive connections will be closed, or "flushed," instead of being honored and kept alive.

Check the KeepAliveFlushes and KeepAliveHits values using statistics from perfdump or the
Monitor Current Activity page of the Server Manager. For more information,
see“Keep-Alive/Persistent Connection Information” on page 30

On a site where keep-alive connections are running well, the ratio of KeepAliveFlushes to
KeepAliveHits is very low. If the ratio is high (greater than 1:1), your site is probably not
utilizing keep-alive connections as well as it could.

To reduce keep-alive flushes, increase the MaxKeepAliveConnections value in the magnus.conf
file or the Magnus Editor of the Server Manager. The default value is 256. By raising the value,
you keep more waiting keep-alive connections open.

Caution – On UNIX/Linux systems, if the MaxKeepAliveConnections value is too high, the
server can run out of open file descriptors. Typically 1024 is the limit for open files on
UNIX/Linux, so increasing this value above 500 is not recommended.

Keep-Alive Connections Flushed

Chapter 4 • Common Performance Problems 73

Log File Modes
Keeping the log files on verbose mode can have a significant impact on performance. You can
set LogVerbose to "on" in magnus.conf or the Magnus Editor of the Server Manager.

Log File Modes

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200974

Platform-specific Issues and Tips

This chapter provides platform-specific tuning tips, and includes the following topics:

■ “Solaris-specific Issues” on page 75
■ “Solaris File System Tuning” on page 79
■ “Tuning Solaris for Performance Benchmarking” on page 82

Solaris-specific Issues
This section discusses miscellaneous Solaris-specific issues and tuning tips, and includes the
following topics:

■ “Files Open in a Single Process” on page 75
■ “File Descriptor Limits” on page 75
■ “Failure to Connect to HTTP Server” on page 76
■ “Connection Refused Errors” on page 77
■ “Tuning TCP Buffering” on page 77
■ “Using the Solaris Network Cache and Accelerator (SNCA)” on page 77

Files Open in a Single Process
Different platforms have different limits on the number of files that can be open in a single
process at one time. For busy sites, increase that number to 8192. To do so on Solaris, make the
change in the file /etc/system by setting rlim_fd_max, and then reboot.

File Descriptor Limits
Append the following line to the file /etc/system to increase the number of file descriptors for
Sun Java System Web Server:

5C H A P T E R 5

75

set rlim_fd_max=65536

After making this or any change in the /etc/system file, reboot Solaris to put the new settings
into effect. In addition, if you upgrade to a new version of Solaris, any line added to
/etc/system should be removed and added again only after verifying that it is still valid.

Failure to Connect to HTTP Server
If users are experiencing connection timeouts from a browser to Sun Java System Web Server
when the server is heavily loaded, you can increase the size of the HTTP listener backlog queue.
To increase this setting, edit the file ListenQ parameter in the magnus.conf file:

ListenQ 8192

In addition to this setting, you must also increase the limits within the Solaris TCP/IP
networking code. There are two parameters that are changed by executing the following
commands:

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 8192

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 8192

These two settings increase the maximum number of two Solaris listen queues that can fill up
with waiting connections. tcp_conn_req_max_q increases the number of completed
connections waiting to return from an accept() call. tcp_conn_req_max_q0 increases the
maximum number of connections with the handshake incomplete. The default values are 128
and 1024 respectively. To automatically have these ndd commands executed after each system
reboot, place them in a file called /etc/init.d/network-tuning and create a link to that file
named /etc/rc2.d/S99network-tuning.

You can monitor the effect of these changes by using the netstat -s command and looking at
the tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop values. Review them before
adjusting these values. If they are not zero, adjust the value to 2048 initially, and continue to
monitor the netstat output.

The Sun Java System Web Server ListenQ setting and the related Solaris tcp_conn_req_max_q
and tcp_conn_req_max_q0 settings should match the throughput of the Sun Java System Web
Server HTTP server. These queues act as a "buffer" to manage the irregular rate of connections
coming from web users. These queues allow Solaris to accept the connections and hold them
until they are processed by the Sun Java System Web Server HTTP server application.

You do not want to accept more connections than the Sun Java System Web Server HTTP
server will be able to process. It is better to limit the size of these queues and reject further
connections than to accept excess connections and fail to service them. The value of 2048 for
these three parameters will typically reduce connection request failures, and improvement has
been seen with values as high as 4096.

Solaris-specific Issues

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200976

This adjustment is not expected to have any adverse impact in any web hosting environment, so
you can consider this suggestion even if your system is not showing the symptoms mentioned.

Connection Refused Errors
If users are experiencing connection refused errors on a heavily loaded server, you can tune the
use of network resources on the server.

When a TCP/IP connection is closed, the port is not reused for the duration of
tcp_time_wait_interval (default value of 240000 milliseconds). This is to ensure that there
are no leftover segments. The shorter the tcp_time_wait_interval, the faster precious
network resources are again available. This parameter is changed by executing the following
command (do not reduce it below 60000):

usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

To automatically have this ndd command executed after each system reboot, place it in a file
called /etc/init.d/network-tuning and create a link to that file named
/etc/rc2.d/S99network-tuning.

If your system is not exhibiting the symptoms mentioned, and if you are not well-versed in
tuning the TCP protocol, it is suggested that you do not change the above parameter.

Tuning TCP Buffering
If you are seeing unpredictable intermittent slowdowns in network response from a
consistently loaded server, you might investigate setting the sq_max_size parameter by adding
the following line to the /etc/system file:

set sq_max_size=512

This setting adjusts the size of the sync queue, which transfers packets from the hardware driver
to the TCP/IP protocol driver. Using the value of 512 allows the queue to accommodate high
volumes of network traffic without overflowing.

Using the Solaris Network Cache and Accelerator
(SNCA)
The Solaris Network Cache and Accelerator (SNCA) is a caching server that provides improved
web performance to the Solaris operating system. It is available on Solaris 8 Update 5 and
higher.

Solaris-specific Issues

Chapter 5 • Platform-specific Issues and Tips 77

It is assumed that SNCA has been configured for the system on which the Web Server is
running. For more information about SNCA and its configuration and tuning, refer to the
following man pages on your system:

■ ncab2clf(1)

■ ncakmod(1)

■ nca(1)

■ snca(1)

■ nca.if(4)

■ ncakmod.conf(4)

■ ncalogd.conf(4)

Additional information about the configuration and tuning of SNCA for a particular
operating system version and patch level can also be obtained from the many resources on .

Enable SNCA to work with Sun Java System Web Server (assuming SNCA configuration, as
discussed above)

▼ To enable SNCA to work with Sun Java System Web Server

Edit the Sun Java System Web Server server.xmlfile so the listen socket on port 80 includes
family="nca" as shown below (the server must be listening on port 80 for this to work):

<LS id="ls1" ip="0.0.0.0" port="80" family="nca" security="off"
acceptorthreads="1">

Edit the Sun Java System Web Server nsfc.conffile and set the following:

CacheFileContent=falseTransmitFile=true

Restart the Web Server for changes to take effect.

RqThrottle and ConnQueueSize
When configuring Sun Java System Web Server to be used with SNCA, setting the RqThrottle
and ConnQueueSize parameters in magnus.conf to 0 provides better performance. Because
SNCA manages the client connections, it is not necessary to set these parameters. These
parameters can also be set to 0 with non-SNCA configurations, especially for cases in which
short latency responses with no keep-alives must be delivered..

Note – RqThrottle and ConnQueueSize must both be set to 0.

1

2

3

Solaris-specific Issues

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200978

For more information about RqThrottle and ConnQueueSize, see the chapter pertaining to
magnus.conf in the Sun Java System Web Server 6.1 SP12 Administrator’s Configuration File
Reference. Also consult the RqThrottle and ConnQueueSize entries in the index in this book.

Solaris File System Tuning
This section discusses changes that can be made for file system tuning, and includes topics that
address the following issues:

■ “High File System Page-in Rate” on page 79
■ “Reduce File System Housekeeping” on page 79
■ “Long Service Times on Busy Disks or Volumes” on page 80

Please read the descriptions of the following parameters carefully. If the description matches
your situation, consider making the adjustment.

High File System Page-in Rate
If you are seeing high file system page-in rates on Solaris 8 or 9, you may benefit from increasing
the value of segmap_percent. This parameter is set by adding the following line to the
/etc/system file:

set segmap_percent=25

segmap_percent adjusts the percentage of memory that the kernel will map into its address
space for the file system cache. The default value is 12; that is, the kernel will reserve enough
space to map at most 12% of memory for the file system cache. On a heavily loaded machine
with 4 GB of physical memory, improvements have been seen with values as high as 60. You
should experiment with this value, starting with values around 25. On systems with large
amounts of physical memory, you should raise this value in small increments, as it can
significantly increase kernel memory requirements.

Reduce File System Housekeeping
UNIX file system (UFS) volumes maintain the time that each file was accessed. Note that the
following change does not turn off the access time updates when the file is modified, but only
when the file is accessed. If the file access time updates are not important in your environment,
you could turn off the same by adding the noatime parameter to the data volume's mount point
in /etc/vfstab. For example:

/dev/dsk/c0t5d0s6 /dev/rdsk/c0t5d0s6 /data0 ufs 1 yes noatime

Solaris File System Tuning

Chapter 5 • Platform-specific Issues and Tips 79

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

Long Service Times on Busy Disks or Volumes
Sun Java System Web Server's responsiveness depends greatly on the performance of the disk
subsystem. Use the iostat utility to monitor how busy the disks are and how rapidly they
complete I/O requests (the %b and svc_t columns, respectively). Service times are unimportant
for disks that are less than about 30% busy, but for busier disks service times should not exceed
about 20 milliseconds. If your busy disks have slower service times, improving disk
performance may help Sun Java System Web Server performance substantially.

Your first step should be to balance the load: if some disks are busy while others are lightly
loaded, move some files off of the busy disks and onto the idle disks. If there is an imbalance,
correcting it will usually give a far greater payoff than trying to tune the overloaded disks.

Solaris-specific Performance Monitoring
This section describes some of the Solaris-specific tools and utilities you can use to monitor
your system's behavior, and includes the following topics:
■ “Short-term System Monitoring” on page 80
■ “Long-term System Monitoring” on page 81
■ “"Intelligent" Monitoring” on page 81

The tools described in this section monitor performance from the standpoint of how the
system responds to the load Sun Java System Web Server generates. For information about
using Sun Java System Web Server's own capabilities to track the demands users place on the
Web Server itself, see“Monitoring Server Performance” on page 16

Short-term System Monitoring
Solaris offers several tools for taking "snapshots" of system behavior. Although you can capture
their output in files for later analysis, the tools listed below are primarily intended for
monitoring system behavior in real time:
■ The iostat -x 60 command reports disk performance statistics at 60-second intervals.

Watch the %b column to see how much of the time each disk is busy, and for any disk busy
more than about 20% of the time pay attention to the service time as reported in the svct
column. Other columns report the I/O operation rates, the amount of data transferred, and
so on.

■ The vmstat 60 command summarizes virtual memory activity and some CPU statistics at
60-second intervals.
Monitor the sr column to keep track of the page scan rate and take action if it's too high
(note that "too high" is very different for Solaris 8 and 9 than for earlier releases). Watch the
us, sy, and id columns to see how heavily the CPUs are being used; remember that you need

Solaris-specific Performance Monitoring

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200980

to keep plenty of CPU power in reserve to handle sudden bursts of activity. Also keep track
of the r column to see how many threads are contending for CPU time; if this remains
higher than about four times the number of CPUs, you may need to reduce the server's
concurrency.

■ The mpstat 60 command gives a detailed look at CPU statistics, while the netstat -i 60
command summarizes network activity.

Long-term System Monitoring
It is important not only to "spot-check" system performance with the tools mentioned above,
but to collect longer-term performance histories so you can detect trends. If nothing else, a
baseline record of a system performing well may help you figure out what has changed if the
system starts behaving poorly. We recommend you enable the system activity reporting
package by doing the following:

■ Edit the file /etc/init.d/perf and remove the # comment characters from the lines near
the end of the file.

■ Run the command crontab -e sys and remove the # comment characters from the lines
with the sa1 and sa2 commands. You may also wish to adjust how often the commands run
and at what times of day depending on your site's activity profile (see man crontab for an
explanation of the format of this file).
This causes the system to store performance data in files in the /var/adm/sa directory,
where by default they are retained for one month. You can then use the sar command to
examine the statistics for time periods of interest.

"Intelligent" Monitoring
The "SE toolkit" is a freely downloadable software package developed by Sun performance
experts. In addition to collecting and monitoring raw performance statistics, the toolkit can
apply heuristics to characterize the overall health of the system and highlight areas that may
need adjustment. You can download the toolkit and its documentation from the following
location:

http://www.setoolkit.com/

Solaris-specific Performance Monitoring

Chapter 5 • Platform-specific Issues and Tips 81

http://www.setoolkit.com/

Tuning Solaris for Performance Benchmarking
The following table shows the operating system tuning for Solaris used when benchmarking for
performance and scalability. These values are an example of how you might tune your system to
achieve the desired result.

TABLE 5–1 Tuning Solaris for performance benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 1024 8192 Process open file descriptors
limit; should account for the
expected load (for the
associated sockets, files, pipes
if any).

rlim_fd_cur /etc/system 64 8192

sq_max_size /etc/system 2 0 Controls streams driver
queue size; setting to 0 makes
it infinity so the performance
runs won’t be hit by lack of
buffer space. Set on clients
too.

tcp_close_wait_interval ndd /dev/tcp 240000 60000 Set on clients too.

tcp_time_wait_interval ndd /dev/tcp 240000 60000 For Solaris 7 only. Set on
clients too.

tcp_conn_req_max_q ndd /dev/tcp 128 1024

tcp_conn_req_max_q0 ndd /dev/tcp 1024 4096

tcp_ip_abort_interval ndd /dev/tcp 480000 60000

tcp_keepalive_interval ndd /dev/tcp 7200000 900000 For high traffic web sites,
lower this value.

tcp_rexmit_interval_initialndd /dev/tcp 3000 3000 If retransmission is greater
than 30-40%, you should
increase this value.

tcp_rexmit_interval_max ndd /dev/tcp 240000 10000

tcp_rexmit_interval_min ndd /dev/tcp 200 3000

tcp_smallest_anon_port ndd /dev/tcp 32768 1024 Set on clients too.

tcp_slow_start_initial ndd /dev/tcp 1 2 Slightly faster transmission
of small amounts of data.

Tuning Solaris for Performance Benchmarking

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200982

TABLE 5–1 Tuning Solaris for performance benchmarking (Continued)
Parameter Scope Default Value Tuned Value Comments

tcp_xmit_hiwat ndd /dev/tcp 8129 32768 To increase the transmit
buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 32768 To increase the receive
buffer.

Tuning Solaris for Performance Benchmarking

Chapter 5 • Platform-specific Issues and Tips 83

84

Sizing and Scaling Your Server

This chapter examines the subsystems of your server, and provides recommendations for
optimal performance. The chapter includes the following topics:

■ “Processors” on page 85
■ “Memory” on page 85
■ “Drive Space” on page 86
■ “Networking” on page 86

Processors
On Solaris and Windows, Sun Java System Web Server transparently takes advantage of
multiple CPUs. In general, the effectiveness of multiple CPUs varies with the operating system
and the workload. Dynamic content performance improves as more processors are added to the
system. Because static content involves mostly IO, and more primary memory means more
caching of the content (assuming the server is tuned to take advantage of the memory) more
time is spent in IO rather than any busy CPU activity.

Memory
As a baseline, Sun Java System Web Server requires 64 MB RAM. Multiple CPUs require at least
64 MB per CPU. For example, if you have four CPUs, you should install at least 256 MB RAM
for optimal performance. For high numbers of peak concurrent users, also allow extra RAM for
the additional threads. After the first 50 concurrent users, add an extra 512 KB per peak
concurrent user.

6C H A P T E R 6

85

Drive Space
You need to have enough drive space for your OS, document tree, and log files. In most cases 2
GB total is sufficient.

Put the OS, swap/paging file, Sun Java System Web Server logs, and document tree each on
separate hard drives. Thus, if your log files fill up the log drive, your OS will not suffer. Also,
you’ll be able to tell whether, for example, the OS paging file is causing drive activity.

Your OS vendor may have specific recommendations for how much swap or paging space you
should allocate. Based on our testing, Sun Java System Web Server performs best with swap
space equal to RAM, plus enough to map the document tree.

Networking
For an Internet site, decide how many peak concurrent users you need the server to handle, and
multiply that number of users by the average request size on your site. Your average request
may include multiple documents. If you are not sure, try using your home page and all of its
associated subframes and graphics.

Next decide how long the average user will be willing to wait for a document, at peak utilization.
Divide by that number of seconds. That’s the WAN bandwidth your server needs.

For example, to support a peak of 50 users with an average document size of 24 KB, and
transferring each document in an average of 5 seconds, we need 240 KBs (1920 Kbit/s). So our
site needs two T1 lines (each 1544 Kbit/s). This also allows some overhead for growth.

Your server’s network interface card should support more than the WAN it’s connected to. For
example, if you have up to three T1 lines, you can get by with a 10BaseT interface. Up to a T3
line (45 Mbit/s), you can use 100BaseT. But if you have more than 50 Mbit/s of WAN
bandwidth, consider configuring multiple 100BaseT interfaces, or look at Gigabit Ethernet
technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can use the same
calculations as above to decide.

Drive Space

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200986

Scalability Studies

This chapter describes the results of scalability studies. You can refer to these studies for a
sample of how the server performs, and how you might configure your system to best take
advantage of Sun Java System Web Server’s strengths.

This chapter includes the following topics:

■ “Study Goals” on page 87
■ “General Conclusions” on page 88
■ “Sun Java System Web Server Configuration” on page 88
■ “Performance Results” on page 90

Study Goals
This study shows how well Sun Java System Web Server 6.1 scales against 1, 2, and 4 CPUs. The
goal of the tests in the study was to saturate the server CPU. The tests also help to determine
what kind of configuration (CPU and memory) is required for different types of content. The
studies were conducted against the following content:

■ 100% static
■ 100% C CGI
■ 100% Perl CGI
■ 100% NSAPI
■ 100% Java servlets
■ 100% PHP/FastCGI

7C H A P T E R 7

87

General Conclusions
■ The tuned server performed significantly better than the out-of-the-box server for static

loads.
■ The tuned server performed slightly better than the out-of-the-box server for dynamic

loads.
■ The tuned server showed no significant performance improvement for SSL-encrypted static

and dynamic workloads.

Sun Java System Web Server Configuration
■ Mostly out-of-the box settings
■ File cache configured via nsfc.conf for cache static tests
■ Tested with two virtual servers (secure and non-secure) on two listen sockets of the same

instance
■ SSL and non-SSL run without configuring two instances
■ Java tests run with both the default and /usr/lib/lwp thread libraries
■ HTTP/1.0 and HTTP/1.1 for static tests

This section lists:
■ “Tuned Server Settings” on page 88
■ “nsfc.conf Settings” on page 89
■ “System Configuration” on page 89

Tuned Server Settings
The following table shows the server settings for the non-SSL performance runs. Also note the
following:
■ nsfc.conf in the tuned server was configured to cache all files in the heap.
■ The size of files in the specweb fileset ranged between 102 bytes to 912 KB.
■ JVM settings were default.

TABLE 7–1 Tuned Server Settings

Setting Value

DNS Off

AccessLog Off

StackSize 262144

General Conclusions

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200988

TABLE 7–1 Tuned Server Settings (Continued)
Setting Value

MaxKeepAliveConnections 2000

ConnQueueSize 10000

ListenQ 8192

SSLCacheEntries 100000000

SSL3SessionTimeout 86400

SSLSessonTimeout 100

CGIStubIdleTimeout 10000

nsfc.conf Settings
The following table lists the nsfc.conf settings.

TABLE 7–2 nsfc.conf Settings

Setting Out of the Box Tuned

MaxAge 30 86400

MaxFiles 1024 240000

SmallFileSizeLimit 2048 1000000

SmallFileSpace 1048576 2147483648

MediumFileSizeLimit 537600 1000001

MediumFileSpace 10485760 1

For more information about nsfc.conf, see the Sun Java System Web Server 6.1 SP12
Administrator’s Configuration File Reference.

System Configuration
■ Server machine: Sun FireTM V880, 900 Mhz (only 4 CPUs were used for the tests)
■ RAM: 16384 MB
■ Network connection: 1 GB/sec private interface

Sun Java System Web Server Configuration

Chapter 7 • Scalability Studies 89

http://docs.sun.com/doc/821-0979
http://docs.sun.com/doc/821-0979

Performance Results
For most cases, scalability plots are shown. Performance is shown as a function of the number of
CPUs enabled. The following metrics were used to characterize performance:

■ Operations per second (ops/sec) = successful transactions per second
■ Response time for single transaction (round-trip time) in milliseconds

While operations per second (ops/sec) data is shown for most cases, the response time and
throughput are shown only where available.

Results are provided for the following tests, which are discussed in the remainder of this
chapter:

■ “Static Content Test” on page 90
■ “Dynamic Content Test: WASP Servlet” on page 91
■ “Dynamic Content Test: C CGI” on page 92
■ “Dynamic Content Test: Perl CGI” on page 93
■ “Dynamic Content Test: NSAPI” on page 94
■ “SSL Performance Test: Static Content” on page 95
■ “SSL Performance Test: Perl CGI” on page 96
■ “SSL Performance Test: C CGI” on page 98
■ “SSL Performance Test: NSAPI” on page 99
■ “JDBC Connection Pooling with OCI Driver” on page 100
■ “PHP Scalability Tests” on page 101

Static Content Test
This test was performed with static download of a randomly selected file from a pool of 400
directories, each containing 100 files ranging in size from 5 KB to 250 KB. Tests were done with
the file cache configured to include all files in the directories. The goal of static content tests was
to identify the maximum number of conforming connections the server could handle. A
conforming connection is one that operates faster than 320 Kbps (kilobits per second).

Simultaneous connections: 1500

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200990

TABLE 7–3 Static Content Test

CPUs

Response
Time(Out of Box)
msec

Response
Time(Tuned)
msec

Op/Sec(Out of
Box) Op/Sec (Tuned)

Number
ofConnections
(Out of Box)

Number
ofConnections
(Tuned)

1 346.69 320.5 1456.9 2169.3 510 700

2 337.01 305.3 2280.1 3565.1 775 1100

4 307.19 299.6 3220.8 5279.1 1000 1600

Dynamic Content Test: WASP Servlet
This test was conducted using the WASP servlet. It prints out the servlet's initialization
arguments, environments, request headers, connection/client info, URL information, and
remote user information. The goal was to saturate the CPUs on the server.

Number of clients: 3600

FIGURE 7–1 Static Content Test

Performance Results

Chapter 7 • Scalability Studies 91

TABLE 7–4 Dynamic Content Test: WASP Servlet

CPUs
Response Time(Out of Box)
msec

Response Time(Tuned)
msec Op/Sec(Out of Box) Op/Sec (Tuned)

1 6436.46 4159.93 414.6 571.87

2 4031.66 2052.63 518.8 870.25

4 2177.81 732.42 832.1 1280.43

Dynamic Content Test: C CGI
This test was performed by accessing a C executable called printenv.This executable outputs
approximately 0.5 KB of data per request. The goal was to saturate the CPUs on the server.

Number of clients: 2400

FIGURE 7–2 Dynamic Content Test: WASP Servlet

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200992

TABLE 7–5 Dynamic Content Test: C CGI

CPUs
Response Time(Out of Box)
msec

Response Time(Tuned)
msec Op/Sec(Out of Box) Op/Sec (Tuned)

1 7350.41 6819.63 244.8 265.17

2 2801.64 2391.25 436.8 473.46

4 1127.31 719.36 750.59 873.6

Dynamic Content Test: Perl CGI
This test ran against a Perl script called printenv.pl that prints the CGI environment. This
script outputs approximately 0.5 KB of data per request. The goal was to saturate the CPUs on
the server.

Number of clients: 450

FIGURE 7–3 Dynamic Content Test: C CGI

Performance Results

Chapter 7 • Scalability Studies 93

TABLE 7–6 Dynamic Content Test: Perl CGI

CPUs
Response Time(Out of Box)
msec

Response Time(Tuned)
msec Op/Sec(Out of Box) Op/Sec (Tuned)

1 5484.17 4777.72 57.6 62.05

2 2111.22 1704.28 107.8 119.32

4 363.81 132.85 189.6 209.76

Dynamic Content Test: NSAPI
The NSAPI module used in this test was printenv2.so. It prints the NSAPI environment
variables along with some text to make the entire response 2 KB. The goal was to saturate the
CPUs on the server.

Number of clients: 6300

FIGURE 7–4 Dynamic Content Test: Perl CGI

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200994

TABLE 7–7 Dynamic Content Test: NSAPI

CPUs
Response Time(Out of Box)
msec

Response Time(Tuned)
msec Op/Sec(Out of Box) Op/Sec (Tuned)

1 2208.06 1259.16 758.9 1212.07

2 1123.85 931.13 1636.3 1965.68

4 952.67 177.9 2106.1 2804.05

SSL Performance Test: Static Content
A 1 KB static SSL file was used for this test. The goal was to saturate the CPUs on the server.

Simultaneous connections: 550

FIGURE 7–5 Dynamic Content Test: NSAPI

Performance Results

Chapter 7 • Scalability Studies 95

TABLE 7–8 SSL Test: Static Content

CPUs
Response Time(Out of Box)
msec

Response Time(Tuned)
msec Op/Sec(Out of Box) Op/Sec (Tuned)

1 1259.11 1357.81 392.5 404.7

2 650.61 697.31 764.3 784.3

4 351.31 368.01 1422.6 1484.5

SSL Performance Test: Perl CGI
This test was performed by accessing the printenv C executable in SSL mode. The goal was to
saturate the CPUs on the server. The test was performed in SSL mode with the SSL session cache
both enabled and disabled.

FIGURE 7–6 SSL Test: Static Content

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200996

TABLE 7–9 SSL/Perl CGI: No Session Cache Reuse

of CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 41.9 42.19

2 81.0 81.86

4 145.1 146.05

TABLE 7–10 SSL/Perl CGI: 100% Session Cache Reuse

of CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 55.29 55.42

2 105.01 107.05

4 194.35 197.91

TABLE 7–11 SSL/Perl CGI: Session Cache Comparison

of CPUs No Session Cache(Tuned) 100% Session Cache(Tuned)

1 42.19 55.42

2 81.86 107.05

4 146.05 197.91

FIGURE 7–7 SSL Performance Test: Perl CGI

Performance Results

Chapter 7 • Scalability Studies 97

SSL Performance Test: C CGI
This test was performed by accessing the printenv C executable in SSL mode. The goal was to
saturate the CPUs on the server. The test was performed in SSL mode with the SSL session cache
both enabled and disabled.

TABLE 7–12 SSL/C CGI: No Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 84.8 82.73

2 165.0 164.38

4 290.6 291.63

TABLE 7–13 SSL/C CGI: 100% Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 160.65 165.69

2 308.11 310.51

4 538.54 550.19

FIGURE 7–8 SSL Performance Test: C CGI

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 200998

TABLE 7–14 SSL/C CGI: Session Cache Comparison

CPUs No Session Cache(Tuned) 100% Session Cache(Tuned)

1 82.73 160.65

2 164.38 308.11

4 291.63 538.54

SSL Performance Test: NSAPI
This test was performed by accessing the printenv C executable in SSL mode. The goal was to
saturate the CPUs on the server. The test was performed in SSL mode with the SSL session cache
both enabled and disabled.

TABLE 7–15 SSL/NSAPI: No Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 114.08 114.44

2 223.58 225.04

4 380.88 382.78

FIGURE 7–9 SSL Performance Test: NSAPI

Performance Results

Chapter 7 • Scalability Studies 99

TABLE 7–16 SSL/NSAPI: 100% Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 321.24 333.21

2 554.87 551.45

4 762.04 791.62

TABLE 7–17 SSL/NSAPI: Session Cache Comparison

CPUs No Session Cache(Tuned) 100% Session Cache(Tuned)

1 114.44 333.21

2 225.04 551.45

4 382.78 791.62

JDBC Connection Pooling with OCI Driver
This test tested the scalability and performance of the JDBC connection pooling module. In this
test a simple servlet requests a row from a large database and prints its content. An Oracle
database and the Oracle OCI driver were used for the test. JDBC connection pool resource
configuration is shown below (server.xml).

<RESOURCES>

<JDBCRESOURCE jndiname="jdbc/tpcwDB" poolname="TpcwPool"
enabled="true">

<JDBCCONNECTIONPOOL name="TpcwPool"
datasourceclassname="oracle.jdbc.pool.OracleDataSource"
steadypoolsize="1000" maxpoolsize="1000" poolresizequantity="2"
idletimeout="0" maxwaittime="0"
connectionvalidationrequired="false"
connectionvalidationmethod="auto-commit"
validationtablename="string" failallconnections="false" >

<PROPERTY name="URL"
value="jdbc:oracle:oci8:@(description=(address=(host=mach-3)
(protocol=tcp)(port=1521))(connect_data=(sid=10K)))">
<PROPERTY name="user" value="tpcw">
<PROPERTY name="password" value="tpcw">

</JDBCCONNECTIONPOOL>

</RESOURCES>

Number of clients: 3600

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 2009100

TABLE 7–18 JDBC Connection Pooling Test

CPUs Response Time (msec) Op/Sec

1 4223.66 529.14

2 1508.53 966.74

4 153.19 1634.94

PHP Scalability Tests
PHP is a widely used scripting language uniquely suited to creating dynamic Web based
content. It is the most rapidly expanding scripting language in use on the Internet due to its
simplicity, accessibility, wide number of available modules, and large number of easily available
applications.

The scalability of Sun Java System Web Server combined with the versatility of the PHP engine
provides a highly performant and versatile web deployment platform for dynamic content.

The PHP (version 4.3.2) tests were performed in two modes:
■ Out-of-process "fastcgi-php" application invoked using the FastCGI plugin available for

Sun Java System Web Server 6.1 (the download will be available from
http://www.sun.com/download/index.jsp?tab=1).

■ In-process PHP NSAPI plugin (available with PHP).
The test executes the phpinfo() query. Mostly out-of-the-box settings were used, plus
PHP-related settings in the obj.conf and magnus.conf files, as shown after the test graphs
and data.

FIGURE 7–10 JDBC Connection Pool

Performance Results

Chapter 7 • Scalability Studies 101

http://www.sun.com/download/index.jsp?tab=1

FastCGI

TABLE 7–19 PHP Scalability Test: FastCGI

CPUs Op/Sec Latency (msec)

1 54 214

2 105 225

4 199 230

NSAPI

FIGURE 7–11 PHP Scalability Tests: FastCGI

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 2009102

TABLE 7–20 PHP Scalability Test: NSAPI

CPUs Op/Sec Latency

1 63 190

2 125 193

4 251 190

magnus.conf Settings
Init fn="load-modules"
shlib="/export0/ES61/install/bin/https/lib/libphp4.so"\
funcs="php4_init,php4_close,php4_execute,php4_auth_trans"
Init fn="php4_init"/

errorString="PHP Totally Blowed Up!"

Init fn="load-modules"
shlib="/export0/ES61/install/bin/https/lib/libnsapi_fcgi.
so" funcs="FCGIRequestHandler,FCGIInit" shlib_flags="(global|now)"

Init fn="FCGIInit" errorString "Unable to start the FCGI NSAPI module"

obj.conf Settings
NameTrans fn="pfx2dir"
from="/php-nsapi"dir="/export0/ES61/install/docs/php-nsapi" name="php-nsapi"

FIGURE 7–12 PHP Scalability Tests: NSAPI

Performance Results

Chapter 7 • Scalability Studies 103

NameTrans fn="pfx2dir"
from="/php-fcgi"dir="/export0/ES61/install/docs/php-fcgi" name="fastcgi"

Service type="magnus-internal/fastcgi-php" fn="FCGIRequestHandler"
BindPath="localhost:8082" AppPath="/export0/php-fastcgi/bin/php"
StartServers="5" PHP_FCGI_CHILDREN="10" PHP_FCGI_MAX_REQUEST="2000"

<Object name="fastcgi">
ObjectType fn="force-type" type="magnus-internal/fastcgi-php"
Service type="magnus-internal/fastcgi-php"

fn=FCGIRequestHandler

BindPath="localhost:8082"
AppPath="/export0/php-fastcgi/bin/php"
StartServers="5"
PHP_FCGI_CHILDREN="10"
PHP_FCGI_MAX_REQUEST="2000"

</Object>

<Object name="php-nsapi">
Set the MIME type

ObjectType fn="force-type" type="magnus-internal/x-httpd-php"
Run the function

Service fn=php4_execute

</Object>

Performance Results

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 2009104

Index

A
about this guide

audience, 7
contents, 10
conventions, 10-11

acceptor threads, 29
AcceptTimeout directive, 62
access time updates, 79
acl-bucket, 22
ACL cache, tuning, 53
ACLCacheLifetime, 54
ACLGroupCacheSize, 54
ACLUserCacheSize, 53, 54
activating statistics, with stats-xml, 17
AddLog, 40
Administration interface, more information about, 9
assign-name, 63, 64

B
benchmarking, tuning Solaris for, 82
buckets, performance, 21
buffer size, tuning, 61-62
busy functions, 40

C
cache, DNS, 39
cache information, 33-35
cache not utilized, 73

CacheEntries, 34, 39
CacheHits, 34
CacheLookups, 34, 40
caching, servlet/JSP, 56
cgi-bucket, 22
CGIStub processes, 62-63

CGIExpirationTimeout, 63
CGIStubIdleTimeout, 63
MaxCGIStubs, 63
MinCGIStubs, 62

check-acl SAF, 71-72
class-loader, 56
class reloading, configuring, 56
classpath, directories in, 56-57
classpath elements, 56
classpathprefix, 56
classpathsuffix, 56
connection handling, 41-42
connection pooling, JDBC, 58

configuring, 58
connection queue information, 27-28
connection refused errors, 77
connection timeout, tuning, 62
connection timeouts, 76
connections, 40-48

closed, 30
settings in magnus.conf, 40-48
simultaneous via RqThrottle parameter, 44

connectionvalidationmethod, 60
connectionvalidationrequired, 59
ConnQueueSize, 41, 46

and SNCA, 78-79

105

content_length, 31
crontab -e sys command, 81
CurrentCacheEntries, 39

D
default-bucket, 22
defaultvs, 30
determining requirements, 86
directives, performance-related, 61
directories in the classpath, 56-57
DNS cache information, 39-40
documentation, Web Server, 7-10
drive space, sizing issues, 86
dynamicreloadinterval, 56

F
failallconnections, 60
file-bucket, 22
file cache

configuring, 48
flags for ?list option, 52
low hit rate with custom NSAPI functions, 73
magnus.conf directives, 53
problems, cache not utilized, 73
tuning, 48-53
virtual memory, 50

file descriptor limits, 75-76
file system tuning, Solaris, 79-80
FileCacheEnable, 34
find-pathinfo, 63
find-pathinfo-forward, 63-64
flushed keep-alive connections, 73-74
func_insert, 40

H
hardware virtual servers, 29
high file system page-in rate, 79
hit ratio, 34, 73
HitRatio, 40

HotSpot VM performance FAQ, 72
HTTP/1.0-style workload, 46
HTTP/1.1-style workload, 47-48

I
Idle, 36
idletimeout, 59
improving application performance, 58
init-cgi, multi-process mode, 62
init-resonate

parameters, 65
iostat -x 60 command, 80
iostat utility, 80
isolationlevelguaranteed, 60

J
Java Enterprise System (JES), 8
Java heap tuning, 55
Java HotSpot VM, 55
java.lang.OutOfMemoryError, 72
Java Security Manager, configuring, 56
Java VM heap space, 72
Java web applications, tuning performance, 55-60
JDBC connection pool attributes

connectionvalidationmethod, 60
connectionvalidationrequired, 59
failallconnections, 60
idletimeout, 59
isolationlevelguaranteed, 60
maxpoolsize, 59
maxwaittime, 59
name, 58
poolresizequantity, 59
steadypoolsize, 59
transactionisolationlevel, 60
validationtablename, 60

JDBC connection pooling
advantages of, 58
configuring, 58
improving application performance, 58

JDBCCONNECTIONPOOL, 58

Index

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 2009106

JES, 8
jsp-config, 55

K
keep-alive connections, flushed, 73-74
keep-alive information, 30-33
KeepAlive connections, about, 30
KeepAliveCount, 31-32, 73
KeepAliveFlushes, 32, 73
KeepAliveHits, 32, 73
KeepAliveMaxCount, 73
KeepAliveQueryMaxSleepTime, 46
KeepAliveQueryMeanTime, 46
KeepAliveRefusals, 32
KeepAliveThreads, 31, 46
KeepAliveTimeout, 31, 32, 46
KeepAliveTimeouts, 32

L
libloadbal

enabling via magnus.conf, 65
library configuration, 65-67
plugin, 65-69
sample, 67-69
using, 65-69

listen socket
default virtual server, 29
statistics, 28

ListenQ, 28, 33, 61, 63, 76
load balancing, libloadbal plugin, 65-69
load balancing, using, 65-69
load-modules, 36
log file modes, 74

verbose, 74
LogVerbose, 37, 40, 66
long service times, 80
low-memory problems, 72

M
magnus.conf

ACLUserCacheSize, 53
activating statistics, 17
directives, performance-related, 61
enabling libloadbal, 65
file cache directives, using, 53
init-cgi, multi-process mode, 62
listen queue, 28, 33, 61, 62, 63
simultaneous connections via RqThrottle, 44

Magnus Editor, using to tune, 71
manager-properties properties, 57
MaxCacheEntries, 39
MaxKeepAlive, 31
MaxKeepAliveConnections, 31, 46, 73
maxLocks, tuning, 57
maxpoolsize, 59
MaxProcs, 43, 72
maxSessions, 57
maxwaittime, 59
memory, sizing issues, 85
memory requirements, 85
MinCGIStubs, 62
MMapSessionManager, tuning, 57-58
modes

log file, 74
multi-process, 42-44
single-process, 42

monitoring server performance
overview, 15-23
using perfdump, 19-21
using performance buckets, 21-23
using stats-xml, 17
using the Server Manager, 16-19

monitoring statistics, 18
SE toolkit, 81

mpstat 60 command, 81
multi-process mode, 42-44
multi-thread mode, 42

N
NameTrans, 36, 63, 64
native threads pool, 35

Index

107

NativePool, 35
NativePoolMaxThreads, 36, 38, 43-44, 54-55
NativePoolMinThreads, 38-39
NativePoolQueueSize, 37
NativePoolStackSize, 37
NativeThread, 36
NCA, 77-79
netstat -i 60, 81
netstat -s command, 76
networking, sizing issues, 86
nocache parameter, 50
nostat, 64
nsfc.conf, file cache settings, 48
nsfc.conf settings, 89
NSPR, 35
NSServletService, 21
ntrans-base, 63

O
obj.conf

activating statistics, 17
perfdump utility, 19
performance buckets, 22
performance-related parameters, 63-64
timeout period, 44

P
PATH_INFO, 63
PathCheck, 36, 40, 63
peak concurrent users, 86
perfdump

about, 19-21
installing, 19
performance buckets, 21
sample output, 20-21
statistics monitored, 26
using to monitor server activity, 19-21

performance
buckets, 21
issues, 15-16
monitoring tools, 16

performance (Continued)
overview, 15-23
problems, 71
studies, 87-104
tuning, 25-60

performance buckets
configuration of, 22
defining in magnus.conf, 22
information in perfdump, 23
performance report, 22-23
using to monitor activity, 21

performance monitoring, Solaris-specific, 80-81
performance report, performance buckets, 22-23
persistence-type, 57
persistent connection information, 30-33
persistent connections, 30
pfx2dir, 63
PHP scalability tests, 101-104
poll interval, 18
pool, native threads, 35
poolresizequantity, 59
PR_GetFileInfo, 52
PR_TransmitFile, 49
precompiled JSPs, 55
problems

common, 71
connection timeouts, 76
KeepAlive connections flushed, 73-74
log file modes, 74
low memory, 72
under-throttled server, 72

process modes, 42-44
processes, 40-48

settings in magnus.conf, 40-48
processors, sizing issues, 85
product support, 11
profiling, 18

Q
quality of service (QOS) features, 16, 64
queue, peak work, 36

Index

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 2009108

R
ratio, hit, 34
RcvBufSize, 61
reapIntervalSeconds, 57
refresh, 52
reload-interval, 55
restart, 52
rlim_fd_cur, 82
rlim_fd_max, 82
RqThrottle, 26, 43, 46, 72

and SNCA, 78-79
NativePoolQueueSize, 37
simultaneous connections, 44
under-throttled server, 72

S
scalability studies, 87-104
SE toolkit, 81
segmap_percent, 79
send-cgi, 21
send-file, nocache parameter, 50
serverclasspath, 56
Service, 36, 40
servlet/JSP caching, 56
session creation information, 33
session-properties, 57
session settings, web application, 57-58
single-process mode, 42
SNCA

RqThrottle and ConnQueueSize, 78-79
using, 77-79

SndBufSize, 61
Solaris

file system tuning, 75-79
Network Cache and Accelerator, 77-79
platform-specific issues, 75-79
tuning for performance benchmarking, 82

Solaris-specific performance monitoring, 80-81
long-term system monitoring, 81
SE toolkit, 81
short-term system monitoring, 80-81

sq_max_size, 77, 82
SSL test, 95-96, 96-98, 98-99, 99-100

static test, 90-91, 95-96
statistics

busy function, 40
cache information, 33
connection queue, 27
hit ratio, 34
listen socket information, 28
monitoring, 16, 18
nocache parameter, 50
performance buckets, 21
poll interval, 18
types monitored by perfdump, 26
viewing, 18, 19
virtual server, 19

stats-xml, activating statistics, 17
steadypoolsize, 59
studies, 87-104

general conclusions, 88
goals, 87
nsfc.conf settings, 89
results, 90-104
system configuration, 89
tuned server settings, 88-89
Web Server configuration, 88-89

Sun Java Enterprise System (JES), 8
Support, 11

T
TCP buffering, tuning, 77
tcp_close_wait_interval, 82
tcp_conn_req_max_q, 76, 82
tcp_conn_req_max_q0, 76, 82
tcp_ip_abort_interval, 82
tcp_keepalive_interval, 82
tcp_recv_hiwat, 83
tcp_rexmit_interval_initial, 82
tcp_rexmit_interval_max, 82
tcp_rexmit_interval_min, 82
tcp_slow_start_initial, 82
tcp_smallest_anon_port, 82
tcp_time_wait_interval, 82
tcp_xmit_hiwat, 83
tcpHalfOpenDrop, 76

Index

109

tcpListenDrop, 76
tcpListenDropQ0, 76
test results, 87-104
thread pools, 35-39
thread POOLS, native, 35
threads, 40-48

acceptor, 29
multi-process mode, 42
settings in magnus.conf, 40-48

tips, general, 25-26
transactionisolationlevel, 60
tuning maxLocks, 57
tuning MMapSessionManager, 57-58
tuning rules, keep-alive subsystem, 47
tuning TCP buffering, 77
tuning the file cache, 48-53
tuning the Web Server, 25-60

ACL user cache, 53-55
Java web applications performance, 55-60
the file cache, 48-53
threads, processes, and connections, 40-48
using statistics, 26-40

tuning tips
general, 25-26
platform-specific, 75-83

U
UFS, 79
under-throttled server, 72
UNIX file system, 79
update-interval, 18
UseNativePoll, 32-33
using Java heap tuning, 55
using statistics to tune your server, 26-40

V
validationtablename, 60
viewing statistics, 18, 19
virtual memory, file cache, 50
virtual servers, 16

default, 29

virtual servers (Continued)
hardware/software, 29
listen sockets, 28
monitoring statistics, 19
performance, 16

vmstat 60 command, 80

W
WASP servlet test, 90-91
web application session settings, 57-58
web applications, tuning performance, 55-60
work queue, length, 36

Index

Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide • May 2009110

	Sun Java System Web Server 6.1 SP12 Performance Tuning, Sizing, and Scaling Guide
	Preface
	Who Should Use This Guide
	Using the Sun Java System Web Server Documentation
	How This Guide Is Organized
	Documentation Conventions
	Product Support
	Documentation, Support, and Training
	Sun Welcomes Your Comments
	Typographic Conventions
	Shell Prompts in Command Examples

	Performance and Monitoring Overview
	Performance Issues
	Virtual Servers
	Monitoring Server Performance
	Monitoring Current Activity Using the Server Manager
	Activating Statistics
	Activating Statistics from the Server Manager
	To activate statistics from the user interface
	Activating Statistics with stats-xml
	To activate statistics using stats-xml

	Monitoring Statistics
	To monitor statistics from the Server Manager

	Virtual Server Statistics

	Monitoring Current Activity Using the perfdump Utility
	Installing the perfdump Utility
	To install perfdump, make the following modifications in obj.conf

	See Also
	Sample perfdump Output

	Using Performance Buckets
	Configuration
	Performance Report

	Tuning Sun Java System Web Server
	General Tuning Tips
	Using Statistics to Tune Your Server
	Connection Queue Information
	Current /Peak /Limit
	Tuning

	Total Connections Queued
	Average Queuing Delay

	Listen Socket Information
	Tuning
	Address
	Tuning

	Acceptor Threads
	Tuning

	Default Virtual Server
	Tuning

	Keep-Alive/Persistent Connection Information
	KeepAliveThreads
	KeepAliveCount
	Tuning

	KeepAliveHits
	KeepAliveFlushes
	KeepAliveRefusals
	KeepAliveTimeout
	KeepAliveTimeouts
	UseNativePoll
	To enable native poll for your keep-alive system from the Server Manager

	Session Creation Information
	Tuning

	Cache Information
	enabled
	Tuning

	CacheEntries
	Tuning

	Hit Ratio (CacheHits / CacheLookups)
	Maximum Age
	Tuning

	Thread Pools
	Thread Pools (UNIX/Linux Only)
	Native Thread Pools (Windows Only)
	Generic Thread Pools (Windows Only)
	Idle /Peak /Limit
	Tuning

	Work Queue Length /Peak /Limit
	Tuning

	NativePoolStackSize
	Tuning

	NativePoolQueueSize
	Tuning

	NativePoolMaxThreads
	Tuning

	NativePoolMinThreads
	Tuning

	DNS Cache Information
	enabled
	Tuning

	CacheEntries (CurrentCacheEntries / MaxCacheEntries)
	Tuning

	HitRatio (CacheHits / CacheLookups)

	Busy Functions

	Threads, Processes, and Connections
	Connection-Handling Overview
	Process Modes
	Single-Process Mode
	Multi-Process Mode
	MaxProcs (UNIX/Linux)
	Tuning

	Listen Socket Acceptor Threads
	Tuning

	Maximum Simultaneous Requests
	Tuning

	Keep-Alive Subsystem Tuning
	HTTP/1.0-style Workload

	Example
	HTTP/1.1-style Workload

	Example

	Tuning the File Cache
	Configuring the File Cache
	To configure the cache

	Using the nocache Parameter
	Example

	Monitoring the File Cache with the Server Manager
	To view the file cache statistics with the Server Manager

	File Cache Dynamic Control and Monitoring
	To add an object to obj.conf

	Tuning the ACL User Cache
	ACL User Cache Directives
	ACLCacheLifetime
	ACLUserCacheSize
	ACLGroupCacheSize

	Verifying ACL User Cache Settings
	Tuning

	Tuning Java Web Applications Performance
	Using Java Heap Tuning
	Using Precompiled JSPs
	Using Servlet/JSP Caching
	Configuring the Java Security Manager
	Configuring Class Reloading
	Avoiding Directories in the Classpath
	Configuring the Web Application’s Session Settings
	Tuning maxLocks (UNIX/Linux)
	Tuning MMapSessionManager (UNIX/Linux)

	Configuring JDBC Connection Pooling
	JDBC Connection Pool Attributes

	Miscellaneous Performance Topics
	Miscellaneous magnus.conf Directives
	Buffer Size
	Tuning

	Connection Timeout
	Tuning

	CGIStub Processes (UNIX/Linux)
	Tuning

	Miscellaneous obj.conf Parameters
	find-pathinfo-forward
	nostat

	Using Quality of Service
	Using Load Balancing
	Using libloadbal
	Library configuration
	Testing
	To configure the sample program

	Sample

	Common Performance Problems
	Magnus Editor Values
	check-acl Server Application Functions
	Low-memory Situations
	Under-throttled Server
	Cache Not Utilized
	Keep-Alive Connections Flushed
	Log File Modes

	Platform-specific Issues and Tips
	Solaris-specific Issues
	Files Open in a Single Process
	File Descriptor Limits
	Failure to Connect to HTTP Server
	Connection Refused Errors
	Tuning TCP Buffering
	Using the Solaris Network Cache and Accelerator (SNCA)
	To enable SNCA to work with Sun Java System Web Server
	RqThrottle and ConnQueueSize

	Solaris File System Tuning
	High File System Page-in Rate
	Reduce File System Housekeeping
	Long Service Times on Busy Disks or Volumes

	Solaris-specific Performance Monitoring
	Short-term System Monitoring
	Long-term System Monitoring
	″Intelligent″ Monitoring

	Tuning Solaris for Performance Benchmarking

	Sizing and Scaling Your Server
	Processors
	Memory
	Drive Space
	Networking

	Scalability Studies
	Study Goals
	General Conclusions
	Sun Java System Web Server Configuration
	Tuned Server Settings
	nsfc.conf Settings
	System Configuration

	Performance Results
	Static Content Test
	Dynamic Content Test: WASP Servlet
	Dynamic Content Test: C CGI
	Dynamic Content Test: Perl CGI
	Dynamic Content Test: NSAPI
	SSL Performance Test: Static Content
	SSL Performance Test: Perl CGI
	SSL Performance Test: C CGI
	SSL Performance Test: NSAPI
	JDBC Connection Pooling with OCI Driver
	PHP Scalability Tests
	FastCGI
	NSAPI
	magnus.conf Settings
	obj.conf Settings

	Index

