
Getting Started
Sun ONE Application Framework

Version 2.0

817-0446-10
October 2002

Copyright (c) 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.Patents
Pending.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard
license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject
to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end
users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright (c) 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits
réservés.Brevets en cours.Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la
FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.Distribué par des licences qui en restreignent l'utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc.
aux Etats-Unis et dans d'autres pays.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations ("U.S. Commerce
Department's Table of Denial Orders "et la liste de ressortissants spécifiquement désignés (" U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

Contents 3

Contents

Contents . 3

About This Document . 7

Who Should Use This Guide . 7
Using the Documentation . 8
How This Guide Is Organized . 8
Related Information . 9
Documentation Conventions . 10

General Conventions . 10
Conventions Referring to Directories . 11

Product Support . 12

Chapter 1 Before You Begin . 13
Primary Features of the Sun ONE Application Framework . 13
QA Certification . 14

Chapter 2 Getting Started . 17
Introduction . 17
Writing Sun ONE Application Framework Applications . 18

J2EE/Sun ONE Application Framework Terminology . 19
How Sun ONE Application Framework Applications Are Organized . 20

About the Sun ONE Application Tutorial . 22

Chapter 3 Tutorial Sections (Links to) . 23
Sections 1.1—1.3 . 23
Sections 2.1—2.6 . 23

4 Sun ONE Application Framework Getting Started • October 2002

Chapter 4 Tutorial—Section 1.1
Application Infrastructure . 25
Task 1: New Sun ONE Web Application . 25

Create an Application Wizard . 25
Module Node . 30
Application Servlet . 30
Module Servlet . 31
Advanced Tip - Modules . 31

Chapter 5 Tutorial—Section 1.2
Create Login Page . 33
Task 2: Create the Login Page . 33

1.2.1 Add a ViewBean . 33
1.2.2 Add Display Fields to the ViewBean . 37
1.2.3 Add Code to the Login Button . 41

Chapter 6 Tutorial—Section 1.3
Test Run the Login Page . 45
Task 3: Test Run the Login Page . 45

1.3.1 Set the Servlet Properties for Execution . 45
1.3.2 Compile the Web Application . 46
1.3.3 Test Run the Login Page . 46
Test a Successful Login . 47
Test an Unsuccessful Login . 48
Alternative Runtime Environments . 49

Chapter 7 Tutorial—Section 2.1
Prepare Application to Access
SQL Database . 51
Task 1: Accessing a SQL Database . 52

2.1.1 Connect to the Sample Database . 52
Connect to the Sample Database Before Proceeding . 52

2.1.2 Create a Datasource . 52
2.1.3 Tomcat SQL Connection Preparation . 54

Chapter 8 Tutorial—Section 2.2
Create the CustomerModel . 57
Task 2: Create the CustomerModel . 57

2.2.1 Create a JDBC SQL Model . 57
2.2.2 Mark the Model’s Key Field(s) . 62
2.2.3 Add Connection Code for Non-JNDI Enabled Containers . 63

Contents 5

Chapter 9 Tutorial—Section 2.3
Create Customer Page . 65
Task 3: Create the Customer Page . 65

2.3.1 Add a ViewBean . 65
2.3.2 Making a Model Auto Retrieve . 71
2.3.3 Add a Button View Component . 72
2.3.4 Add a Hidden Field . 76

Chapter 10 Tutorial—Section 2.4
Test Run the Customer Page . 79
Task 4: Test Run the Customer Page . 79

Test a Customer Update . 80

Chapter 11 Tutorial—Section 2.5
Link Login Page to Customer Page . 81
Task 5: Link the Login Page to the Customer Page . 81

Edit the handleLoginRequest Method in LoginViewBean . 81

Chapter 12 Tutorial—Section 2.6
Run Application . 85
Task 6: Run the Application . 85

Index . 87

6 Sun ONE Application Framework Getting Started • October 2002

7

About This Document

This Sun™ ONE Application Framework Getting Started Guide, with its associated
tutorial, introduces developers to the mechanics and techniques used to build Web
applications with the Sun ONE Application Framework tools.

This document and the tutorial assume Java expertise and familiarity with the
development and deployment procedures for the specific servlet container and
development tools being used.

This preface contains the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Related Information

• Documentation Conventions

• Product Support

Who Should Use This Guide
The intended audience for this guide is the developer who is at least somewhat
familiar with building Web applications using existing J2EE Web Technologies
(servlets and JSPs), but new to building Web applications with the Application
Framework.

This guide assumes you are familiar with software development processes,
including debugging and source code control.

Using the Documentation

8 Sun ONE Application Framework Getting Started • October 2002

Using the Documentation
The Sun ONE Application Framework manuals are available as online files in
Portable Document Format (PDF) and Hypertext Markup Language (HTML)
formats, at:

http://docs.sun.com/

The following Sun ONE Application Framework Documentation Roadmap table
lists concepts described in the Sun ONE Application Framework documentation.
The left column lists the concepts, and the right column lists the corresponding
documents.

How This Guide Is Organized
This guide contains the following documentation components:

• About This Document

For information about See the following

Late-breaking information about the Sun
ONE Application Framework software and
documentation

Release Notes

An introduction to the Sun ONE
Application Framework Web application
and discussion of developmental issues of a
J2EE Web application

Sun ONE Application Framework
Overview

An introduction to the user of the Sun ONE
Application Framework and the Forte tool
plugin, with a description of the mechanics
and techniques used to build, deploy and
test a Web application using this powerful
tool

Sun ONE Application Framework Getting
Started

A description of the environment and steps
required to install the Sun ONE
Application Framework within the Sun
ONE Studio

Sun ONE Framework Installation Guide

Wizard-based concepts and components Sun ONE Application Framework Online
Help (installed with the product)

http://docs.sun.com/

Related Information

About This Document 9

• Getting Started

• Before You Begin

• Tutorial Sections (Links to)

• Tutorial—Section 1.1 Application Infrastructure

• Tutorial—Section 1.2 Create Login Page

• Tutorial—Section 1.3 Test Run the Login Page

• Tutorial—Section 2.1 Prepare Application to Access SQL Database

• Tutorial—Section 2.2 Create the CustomerModel

• Tutorial—Section 2.3 Create Customer Page

• Tutorial—Section 2.4 Test Run the Customer Page

• Tutorial—Section 2.5 Link Login Page to Customer Page

• Tutorial—Section 2.6 Run Application

• Index

Related Information
In addition to the information in the Sun ONE Application Framework
documentation collection listed in Using the Documentation, the following
resources may be helpful:

• J2EE Specifications

http://java.sun.com/products/

• Enterprise JavaBeans Specification, Version 2.0

http://java.sun.com/products/ejb/docs.html#specs

• General EJB product information:

http://java.sun.com/products/ejb

• Java Software tutorials:

http://java.sun.com/j2ee/docs.html

• Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing,
ISBN 0-596-00226-2

http://java.sun.com/products/
http://java.sun.com/products/ejb/docs.html#specs
http://java.sun.com/products/ejb
http://java.sun.com/j2ee/docs.html

Documentation Conventions

10 Sun ONE Application Framework Getting Started • October 2002

http://www.oreilly.com/catalog/entjbeans3/

• Enterprise JavaBeans Design Patterns, ISBN 0-471-20831-0

• Core J2EE Patterns, ISBN 0-13-064884-1

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables, book titles, emphasis, variables and
placeholders, and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories.”
on page 11.

http://www.oreilly.com/catalog/entjbeans3/
http://server.domain/path/file.html

Documentation Conventions

About This Document 11

By default, the location of install_dir on most platforms is:

❍ Solaris 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 11
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9, 12/02, bundled installations, this guide uses the following
document conventions to correspond to the various default installation
directories provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

Product Support

12 Sun ONE Application Framework Getting Started • October 2002

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

http://www.sun.com/supportraining/

13

Chapter 1

Before You Begin

Welcome to the Sun™ ONE Application Framework, the J2EE Web application
framework and toolset (IDE) for enterprise Web application development.

This section contains the following topics:

• Primary Features of the Sun ONE Application Framework

• QA Certification

Primary Features of the Sun ONE Application
Framework

The primary features of the Sun ONE Application Framework are:

• Turnkey J2EE application development.

• High performance, proven J2EE framework runtime.

• Full component-based development.

• Graphical application builder toolset:

❍ Logical application tree explorer view.

❍ Automated synchronization of changes between application components
and JSPs.

❍ High-level wizards.

• Support for Web Services Model (Enterprise Edition only).

The Application Framework is used by:

QA Certification

14 Sun ONE Application Framework Getting Started • October 2002

• Large enterprises doing medium-, large-, or massive-scale enterprise Web
applications.

• Financial, Manufacturing, Government, Education, Health Care, and
Telecommunications sectors.

The Application Framework is a valuable tool to:

• Guide naïve and junior Java/J2EE Developers:

❍ Provides exceptional ease of use and an easy learning curve with the
graphical development tools.

❍ Leverages complex J2EE APIs for those without detailed knowledge.

❍ Inexperienced developers learn J2EE as they build high-performance
enterprise applications.

• Complement advanced Java/J2EE developers and architects:

❍ Advanced developers gain higher productivity by avoiding tedious
low-level J2EE development.

❍ Architects have well-defined points from which to extend the application
architecture.

• Accelerate Web Application development and skill/component reuse by
providing easy entree into the J2EE API world.

This document shows you how to use the Application Framework features to:

• Create a Sun ONE Web Application.

• Create a page (ViewBean) and an associated JSP.

• Create and use a Model.

• Link pages together.

QA Certification
• Solaris 8

• Solaris 9

• Windows 2000

• Javasoft RI and Tomcat

QA Certification

Chapter 1 Before You Begin 15

• Sun ONE Application Server 6.5 and 7.0, WebLogic, WebSphere

(J2EE container testing done via WAR import export)

• Sun ONE Studio 4.1, Enterprise Edition

• Sun ONE Studio 4.1, Community Edition

QA Certification

16 Sun ONE Application Framework Getting Started • October 2002

17

Chapter 2

Getting Started

This chapter outlines the mechanics of using the Sun™ ONE Application
Framework tools to build a J2EE Web application.

This section contains the following topics:

• Introduction

• Writing Sun ONE Application Framework Applications

• About the Sun ONE Application Tutorial

Introduction
This document, with its associated tutorial, introduces developers to the mechanics
and techniques used to build Web applications with the Sun™ ONE Application
Framework tools.

It is intended for developers who are at least somewhat familiar with building Web
applications using existing J2EE Web technologies (servlets and JSPs), but new to
building Web applications with the Application Framework.

This document and the tutorial assume Java expertise and familiarity with the
development and deployment procedures for the specific servlet container and
development tools being used.

Because the Application Framework is foremost a design pattern and a set of
interfaces, the examples here show only the most basic way of creating an
Application Framework application, by extending existing Application Framework
implementation base classes and manually constructing certain application objects.
Realize, though, that this is only one possible way to create an Application
Framework application.

Writing Sun ONE Application Framework Applications

18 Sun ONE Application Framework Getting Started • October 2002

There are two reasons for not showing more advanced techniques in this
document. First, starting at a fundamental level is the most direct way to impart
how the Application Framework works to someone new to the framework. Being
able to see exactly how the framework interacts with the application is critical to
getting the most out of the Application Framework.

Second, building an application using these fundamental techniques is a
prerequisite to fully understanding the many possible ways to build Application
Framework applications. Features that extend the Application Framework to add
additional capabilities are built on the techniques demonstrated in this document.
After understanding these basic examples, you have a greater understanding of
how these features extend and complement the Application Framework core, and
you are able to optionally decide not to use them and instead construct your own
Application Framework extensions (or simply fall back to a more basic approach
where necessary).

The ultimate goal of this document, then, is to introduce developers to the most
fundamental way to build Application Framework applications, so they become
familiar with Application Framework’s interactions with applications built on top
of it, and more fluent in the Application Framework itself.

Writing Sun ONE Application Framework
Applications

Writing an Application Framework application consists of first laying out an
application structure, and then incrementally adding Application Framework
objects to that structure. Although this can be done entirely by hand, from scratch,
the task has been simplified by creating an Application Framework tools module
for the Sun™ ONE Developer Studio that assists developers in writing their
Application Framework applications. With the assistance of these tools, creating an
Application Framework application becomes a simple process of generating
Application Framework components using wizards and customizing them to an
application.

Before demonstrating the creation of a simple Application Framework application,
you will cover the basics of how an Application Framework application is
structured.

Writing Sun ONE Application Framework Applications

Chapter 2 Getting Started 19

J2EE/Sun ONE Application Framework
Terminology
In this document, you will come across terms such as application, module, and
components. These terms can be confusing, because they are also used in more
general Web architecture and development discussions.

The following table contains a list of the most important terms that you will find in
this document.

Term Description

J2EE component* Sometimes referred to as J2EE application components; concrete
software components which are deployed, managed, and executed
on a J2EE server including EJBs, Servlets, and Java Server Pages
(JSPs); there are components including HTML and Applets which
are also J2EE components but these are not relevant to the Sun
ONE Application Framework Web application discussion.

J2EE module* Represents the basic unit of composition of a J2EE application. A
J2EE module consists of one or more J2EE components and one
component-level deployment descriptor. J2EE modules can be
deployed as stand-alone units or can be assembled with a J2EE
application deployment descriptor and deployed as a J2EE
application. Servlet and/or JSP components are packaged as a J2EE
module and deployed as a WAR file. EJB components are
packaged as a J2EE module and deployed as a JAR file. An
arbitrary number or WAR files and JAR files may be combined to
form a J2EE application and deployed as an EAR file. WAR files
(J2EE modules which are also known as J2EE Web applications)
may be deployed stand-alone on a J2EE server.

J2EE Web application* Stand-alone J2EE modules containing J2EE components
deployable in a J2EE servlet container (Web application container).
Depending on the context of the term application or J2EE application,
the intent may be to refer to a J2EE Web application; there are
products such as Sun ONE Application Server 6.x and Apache
Tomcat which support J2EE Web applications in that they can
manage J2EE modules consisting of Servlets and JSPs, but they
cannot manage a complete J2EE application which may have EJB
J2EE modules.

Writing Sun ONE Application Framework Applications

20 Sun ONE Application Framework Getting Started • October 2002

* Refer to the Java 2 Platform Enterprise Edition Specification v1.2 (J2EE) section J2EE8.1 for a detailed explanation of this term.

How Sun ONE Application Framework
Applications Are Organized
The Application Framework provides formal application and module entities. An
Application Framework application is a base Java package that contains one or
more sub-packages (Application Framework modules). It is perfectly acceptable for
an application to consist of only one module, and it is likely be the common
situation for smaller applications. Each module inherits behavior from its parent
application-level components, and may also customize this behavior separately
from other modules.

In J2EE Web application container terms, an Application Framework application
corresponds one-to-one with a servlet context, and thus is subject to the constraints
enforced by the container for servlet contexts.

J2EE application* Consists of one or more J2EE modules and one J2EE application
deployment descriptor, packaged using the Java archive (JAR) file
format into a file with a .ear (enterprise archive) filename
extension.

Sun ONE Application
Framework module

Refers to both a logical and physical partition of content and
components within a Sun ONE Application Framework
application (not to be confused with a J2EE module).

Sun ONE Application
Framework application

In informal terms, a Sun ONE Application Framework application
is a J2EE Web application that has been written using the Sun ONE
Application Framework. It consists of at least one J2EE module (the
Web application), but may also include other standard J2EE
components or modules. A minimal Sun ONE Application
Framework application is a J2EE Web application consisting of one
WAR file. In formal terms, a Sun ONE Application Framework
application is a collection of related Sun ONE Application
Framework modules, all running in the same servlet context. In
this sense, Sun ONE Application Framework application refers only to
this logical Sun ONE Application Framework abstraction.

Term Description

Writing Sun ONE Application Framework Applications

Chapter 2 Getting Started 21

Before starting to develop your application, you should first decide how it should
be organized:

• Determine which modules will be grouped together into your Application
Framework application.

Avoid over-categorizing your application into several modules simply because
the Application Framework provides this capability. In many cases, one
module is sufficient.

• Decide on an application package name.

The application package name can be arbitrarily complex and will likely reflect
your organization's packaging strategy. Each of your modules becomes a
package beneath this application package.

• Assign a deployment-time or published Web application name.

In Apache Tomcat, the directory immediately beneath the /webapps directory
would bear this name. In the Sun™ ONE Application Server, the directory
immediately beneath the /ias/APPS/modules directory would bear this name.
The deployed application name is the same as the name WAR file name.

For example, suppose you have two Application Framework modules (named
module1 and module2) that comprise an Application Framework application. You
would call this application myapp. The full application package name is
com.mycompany.myapp.

• The application package would be com.mycompany.myapp

• The module1 package would be com.mycompany.myapp.module1

• The module2 package would be com.mycompany.myapp.module2

One final note about application and module naming conventions: In general, the
application package name should be different from that of any of its modules.

For example, your first instinct might be to name both your application and its
primary module foo. This can easily lead to confusion for someone trying to
understand your application, as well as your application development tools.
Instead, consider naming the application package something like fooapp, or calling
the primary module something like main or module1. This makes your application
structure much easier to understand, especially when you add to it in the future.

About the Sun ONE Application Tutorial

22 Sun ONE Application Framework Getting Started • October 2002

About the Sun ONE Application Tutorial
You will now develop a simple application to get a taste of using the Sun ONE
Application Framework and the tools. This application consists of two pages: a
login page, and a customer account page, and demonstrates the following:

• Retrieving field values submitted by the user.

• Returning a status message to the user.

• Using a QueryModel to retrieve customer information.

• Using a QueryModel to update customer information.

• Coordinating user input with QueryModel SQL WHERE criteria.

• Moving from one page to another.

This tutorial breaks the steps required to develop the application into chapters and
tasks. Each chapter addresses a broad topic, at the end of which you have an
application that you can run. Each task within a chapter is a relatively
self-contained topic and contains several more detailed steps.

23

Chapter 3

Tutorial Sections (Links to)

This section outlines the sections contained in this Sun™ ONE Application
Framework Getting Started document.

This section lists the links to the various tasks as follows:

• Sections 1.1—1.3

• Sections 2.1—2.6

Sections 1.1—1.3
In Sections 1.1 through 1.3, you create the application infrastructure needed for all
subsequent chapters, and add your first Sun™ ONE Application Framework page.

• Section 1.1

Task 1: New Sun ONE Web Application

• Section 1.2

Task 2: Create the Login Page

• Section 1.3

Task 3: Test Run the Login Page

Sections 2.1—2.6
In Sections 2.1 through 2.6, you expand the existing application by adding a
SQL-based model, and a page to display that model’s data. You then link the two
application pages together so they show coordinated data.

Sections 2.1—2.6

24 Sun ONE Application Framework Getting Started • October 2002

• Section 2.1

Task 1: Accessing a SQL Database

• Section 2.2

Task 2: Create the CustomerModel

• Section 2.3

Task 3: Create the Customer Page

• Section 2.4

Task 4: Test Run the Customer Page

• Section 2.5

Task 5: Link the Login Page to the Customer Page

• Section 2.6

Task 6: Run the Application

25

Chapter 4

Tutorial—Section 1.1
Application Infrastructure

This section describes how to create the Sun™ ONE Application Framework
application infrastructure needed for all subsequent tasks.

Task 1: New Sun ONE Web Application
Before developing any pages, you need to create the Application Framework
application infrastructure (the WAR directory structure and supporting files). This
is a onetime requirement for each Application Framework application.

Create an Application Wizard
Before you create the application, you need to decide where the application should
be located. Typically, developers develop the application directly in the webapps
directory of a servlet container so the application can be tested without deploying
it to the target runtime environment. Since you are already using the Sun ONE
Studio, you can locate the application anywhere and use the built-in Tomcat
module to test it in place without the deployment step.

1. Select the menu option File-->New from the Sun ONE Studio.

The Choose Template page appears.

2. Expand the Sun ONE Application Framework folder.

3. Select Application.

Task 1: New Sun ONE Web Application

26 Sun ONE Application Framework Getting Started • October 2002

4. Click Next.

The Application Location page appears.

Task 1: New Sun ONE Web Application

Chapter 4 Tutorial—Section 1.1 Application Infrastructure 27

The default base directory is your Sun ONE Studio user-dir, which may be
different than the one shown in this example. You can choose any existing
directory to be your base directory for your Sun ONE Application Framework
applications.

5. Enter JatoTutorial in the Web Context Name field.

The New App Directory field is populated after you make entries in the Base
Directory and Context Name fields.

6. Click Next.

The Application Properties page appears.

NOTE Many developers use the webapps directory of the servlet
container in which the application is deployed.

Later in this tutorial, you will see how to run your Sun ONE
Application Framework Web application using the Sun ONE
Studio, so you can put your Web application anywhere you want
it to be.

Task 1: New Sun ONE Web Application

28 Sun ONE Application Framework Getting Started • October 2002

The fields on this page are populated using the value of the Web Context Name
field from the previous page.

7. For this tutorial, accept the default values.

8. Click Next.

The Module Properties page appears.

Task 1: New Sun ONE Web Application

Chapter 4 Tutorial—Section 1.1 Application Infrastructure 29

9. For this tutorial, accept the default values.

10. Click Finish.

11. Click OK.

The application is created.

The new application appears in the Sun ONE Application tree in the Sun ONE
Studio Explorer (Sun ONE Web Apps).

12. Expand the modules node in the Sun ONE Studio Explorer on the Sun ONE
Web Apps tab to see the application layout and observe the code in the two
servlet classes that were created:

❍ JatoTutorialAppServletBase

❍ MainModuleServlet

NOTE The processing time depends upon your machine.

Task 1: New Sun ONE Web Application

30 Sun ONE Application Framework Getting Started • October 2002

Module Node
The file structure under the Classes node appears to be duplicated under the
Modules node.

In reality, the Modules node is a flattened version of the Classes node, but only
folders that are marked as Application Framework modules appear in the Modules
node.

The Classes node reflects the complete and true layout of the package structure of
your application. The Modules node makes it easier to navigate your application,
since the most commonly visited classes are located in a module folder.

Application Servlet
The application servlet, JatoTutorialAppServletBase, has no special meaning to
the application, except that it is meant to be a super class for all module servlets in
the application.

Task 1: New Sun ONE Web Application

Chapter 4 Tutorial—Section 1.1 Application Infrastructure 31

The Application Framework module servlets have events that can be implemented
to customize and control the session and request life cycle.

For example:

• onNewSession

• onSessionTimeout

• onBeforeRequest

• onAfterRequest

It is common that all module servlets within the same application require the same
behavior for all of these events. Therefore, it is a good idea to implement such
behavior for these events in a class that all module servlets can extend.

However, technically speaking, the application servlet is not required. You can
customize the hierarchy of the module servlet as long as that hierarchy derives
from the Application Framework com.iplanet.jato.ApplicationServletBase
file.

This application has only one module (and by definition, one module servlet), so
the role of the application servlet is not as beneficial as it would be in multi-module
applications.

Module Servlet
The module servlet, MainModuleServlet, is the actual servlet that is invoked for
every request. All access to the application goes through this front controller
servlet before control is handed to the appropriate request handler class
(implemented later in this tutorial).

Not much code is required in this class. All of the necessary request handling code
is located in the Application Framework’s
com.iplanet.jato.ApplicationServletBase file.

To gain some insight on how requests are handled, see the source code for this
servlet class.

Advanced Tip - Modules
Notice above that the main module is selected, and its properties are reflected in
the property sheet at the bottom of the Sun ONE Studio Explorer window.

Notice also that its Module property is True. By changing it to False, this module
becomes an ordinary folder, and the entries in the web.xml file for the
MainModuleServlet are removed.

Task 1: New Sun ONE Web Application

32 Sun ONE Application Framework Getting Started • October 2002

You can make any ordinary folder an Application Framework module by
right-clicking the folder and selecting the Convert to Module action. You are then
prompted to select a Java class from that folder to be the module servlet, or you can
provide a name to create a new one.

33

Chapter 5

Tutorial—Section 1.2
Create Login Page

This section describes how to add your first Sun™ ONE Application Framework
page to the application infrastructure you created.

Task 2: Create the Login Page
You will now create the first page of the application.

1.2.1 Add a ViewBean
1. Select the main module from the Sun ONE Studio Explorer window.

Task 2: Create the Login Page

34 Sun ONE Application Framework Getting Started • October 2002

2. Select the menu option File-->New from the Sun ONE Studio.

The Choose Template page appears.

Task 2: Create the Login Page

Chapter 5 Tutorial—Section 1.2 Create Login Page 35

3. Expand the Sun ONE Application Framework folder.

4. Select View.

5. Click Next.

The View Location page appears.

6. Enter Login in the Name field (to replace <default>).

7. In the View beans tab, select Basic ViewBean.

8. Click Next.

The View Summary page appears.

Task 2: Create the Login Page

36 Sun ONE Application Framework Getting Started • October 2002

The Name, Package, and Class name fields are populated as a result of
previous entries.

9. Click Finish to create the ViewBean.

The Sun ONE Studio Explorer page appears.

NOTE There are additional steps in the View Wizard. However, those
steps involve model field binding which is not required for this
Login ViewBean. In a later task, you will use these additional
steps.

Task 2: Create the Login Page

Chapter 5 Tutorial—Section 1.2 Create Login Page 37

10. Double-click LoginViewBean.

The added code appears in the right-hand panel of the Sun ONE Studio
Explorer page.

1.2.2 Add Display Fields to the ViewBean
11. Expand the LoginViewBean from the Sun ONE Studio Explorer page.

NOTE • Because you created a JSP when you created the ViewBean, a
JSP was added to the Documents folder in a directory structure
that mirrors the ViewBean’s package structure
(/jatotutorial/main).

• For convenience, a link to the JSPs that use this ViewBean (just
one for LoginViewBean) are placed in the JSPs’ node, which is
under the LoginViewBean node.

Task 2: Create the Login Page

38 Sun ONE Application Framework Getting Started • October 2002

12. Right-click View Components.

13. Select Add View Component... from the pop-up menu.

The Component Browser dialog appears.

14. Select Static Text Field.

Task 2: Create the Login Page

Chapter 5 Tutorial—Section 1.2 Create Login Page 39

15. Click OK.

This adds a text field to the View Bean.

The default name is staticText1.

16. Right-click the staticText1 field name.

17. Select Rename.

18. Rename the field message.

19. Add two more display fields.

The following table contains a list of the two display field types with each of
their names and the initial value for the Button type.

Adding display fields to the ViewBean also adds the fields to the JSPs using
this ViewBean.

Type Name Initial Value

Text Field customerNum

Button login Object Type: String
Object Value: Login

Task 2: Create the Login Page

40 Sun ONE Application Framework Getting Started • October 2002

20. Set the button’s Initial Value property:

Click the “...” button in the property’s value cell.

The Initial Value property editor appears.

21. Set Object type to String.

22. Set Object value to Login.

The button’s value appears on the button in the browser.

23. Open the Login JSP to see the tags for the three display fields.

24. Format your JSP layout any way you want to, however:

a. Give customerNum a label.

Task 2: Create the Login Page

Chapter 5 Tutorial—Section 1.2 Create Login Page 41

b. Make certain the message is on its own line (at the minimum, place a

after the tag).

You can edit it directly in the Sun ONE Studio editor, or you can use your
favorite WYSWIG HTML editor.

1.2.3 Add Code to the Login Button
25. Right-click login.

NOTE Currently, the JSPs that are generated are left in a vanilla state.
This allows you to format the JSP the way you want to
without having to undo a whole lot of unwanted prescribed
layout. (Customizable JSP templates are planned for an
upcoming release of the tools.)

Task 2: Create the Login Page

42 Sun ONE Application Framework Getting Started • October 2002

26. Select Events-->handleRequest.

The LoginViewBean.java file opens and the handleLoginRequest event stub is
inserted.

27. Add the code that will be run when a user clicks login in the browser.

The following table contains the code that you need to add.

Task 2: Create the Login Page

Chapter 5 Tutorial—Section 1.2 Create Login Page 43

public void handleLoginRequest(RequestInvocationEvent event)
{

// Retrieve the customer number
String custNum = getDisplayFieldStringValue(CHILD_CUSTOMER_NUM);

String theMessage = "";

// Check the customer number
if (custNum.equals(“1”) ||

custNum.equals(“777”) ||
custNum.equals(“410”))

{
theMessage = "Congratulations, " + custNum +

", you are now logged in!";
}

else
{

theMessage = "Sorry, " + custNum +
", your customer number was incorrect!";

}

// Set the ouput status message
getDisplayField(CHILD_MESSAGE).setValue(theMessage);

// Redisplay the current page
forwardTo();

}

Task 2: Create the Login Page

44 Sun ONE Application Framework Getting Started • October 2002

45

Chapter 6

Tutorial—Section 1.3
Test Run the Login Page

This section describes how to run your Sun™ ONE Application Framework
application.

Task 3: Test Run the Login Page

1.3.1 Set the Servlet Properties for Execution
As mentioned previously, the Sun ONE Studio has a method for executing Web
applications in place using the built-in Tomcat servlet container module. In an
ordinary (non Sun ONE Application Framework) Web module, to take advantage
of this facility, you would have to first prepare the servlet for execution (in this
case, the module servlet MainModuleServlet) by manipulating execution and URL
properties.

Fortunately, the Sun ONE Application Framework tools module has automated
everything. All Module Servlets and ViewBeans in the application are already
prepared to be run as is.

However, first you need to compile the Web application.

Task 3: Test Run the Login Page

46 Sun ONE Application Framework Getting Started • October 2002

1.3.2 Compile the Web Application
1. Right-click the Classes folder.

2. Select Compile All from the pop-up menu.

The Output Window (compiler) at the bottom of the page displays the message
Finished.

If you followed all of the tutorial instructions, the Web application compiles
without error.

1.3.3 Test Run the Login Page
1. Right-click LoginViewBean.

2. Select Execute.

This deploys and executes the application.

Task 3: Test Run the Login Page

Chapter 6 Tutorial—Section 1.3 Test Run the Login Page 47

The status page appears.

A default browser starts the application.

Test a Successful Login
1. Enter a valid login (for example, 1, 777 or 410).

NOTE The Execute (Force Reload) option forces Tomcat to reload all
resources (JSPs, classes, and so on). It is just like restarting
Tomcat.

For some browsers, you might have to close all instances of that
browser before you can rerun any page in your application.

NOTE Use 1, 777, and 410, and hard-coded valid customer numbers.
Later you login with a customer number that exists in the
database so that you can retrieve and update the customer’s
record.

Task 3: Test Run the Login Page

48 Sun ONE Application Framework Getting Started • October 2002

2. Click Login.

The login page should refresh displaying the success message.

Test an Unsuccessful Login
1. Enter an invalid login name (for example, foo, 8 or 14 - anything other than the

valid, hard-coded customer numbers described above).

2. Click Login.

The login page should refresh displaying the failure message.

CAUTION If you press the enter key while in the text field, the form will be
submitted for you. However, the server won’t know which
button such a submit should address. The <jato:form> tag
provides an attribute defaultCommandChild that can be used to tell
the server which button should be activated in the default case.

Refer to the tag library documentation for more information on
this feature.

However, for now, just click the button directly.

Task 3: Test Run the Login Page

Chapter 6 Tutorial—Section 1.3 Test Run the Login Page 49

Alternative Runtime Environments
1. If you prefer to test run you application outside of the Sun ONE Studio,

compile and package your application into a WAR file and place the WAR file
in the webapps directory (this varies from container to container, but most call
it webapps).

2. Open a browser and run it with the URL appropriate to the servlet container.

The only possible variation is the page name (Login) at the end of the URL.

❍ Apache Tomcat or Caucho Resin

http://localhost:8080/JatoTutorial/module1/Login

❍ Sun ONE Application Server 6.x

http://localhost/NASApp/JatoTutorial/module1/Login

NOTE You may find it necessary to refer to this task again during
this tutorial.

http://localhost:8080/JatoTutorial/module1/Login
http://localhost/NASApp/JatoTutorial/module1/Login

Task 3: Test Run the Login Page

50 Sun ONE Application Framework Getting Started • October 2002

51

Chapter 7

Tutorial—Section 2.1
Prepare Application to Access

SQL Database

This section describes how to expand the application and prepare the Sun™ ONE
Application Framework application to access a SQL Database.

You expand the existing application by adding a SQL-based model and a page to
display that model’s data. You then link the two application pages together so they
show coordinated data.

Task 1: Accessing a SQL Database

52 Sun ONE Application Framework Getting Started • October 2002

Task 1: Accessing a SQL Database

2.1.1 Connect to the Sample Database

Connect to the Sample Database Before Proceeding

Select the menu option Tools-->PointBase Network Server-->Start Server from the
Sun ONE Studio to start the PointBase Network Server (database server).

2.1.2 Create a Datasource
Create a JDBC Datasource using the Sun ONE Application Framework JDBC
Datasource wizard.

NOTE • The remainder of the tutorial assumes the presence of an
RDBMS database which is used as a prerequisite for introducing
you to some additional Application Framework features.

There is no requirement for an Application Framework
application to access an RDBMS. Therefore, your actual
applications may not access an RDBMS, but rather some other
enterprise system that requires another form of preparation,
setup, and connection.

• The step that follows (starting the PointBase Network Server)
uses a Sun ONE Studio tool that is not actually a part of the Sun
ONE Application Framework toolset module. However, the
sample database, the PointBase Network Server, and the tools to
connect to it are included with all of the various versions of the
Sun ONE Studio.

Task 1: Accessing a SQL Database

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 53

1. Select File-->New-->Sun ONE Application Framework-->JDBC Datasource.

The Choose Template page appears.

2. Click Next.

The Define datasource page appears.

3. Enter sample in the New datasource name textbox.

4. In the Select connection combo box, select the PointBase sample database jdbc
connection, which is the only connection option available.

5. Click Finish.

A dialog box appears confirming that the jdbc/sample datasource has been
properly saved.

You do not find a datasource file, node, or property anywhere. It is only
needed when creating JDBC SQL Models.

The JDBC SQL wizard presents you with a selection of the datasources that
you have created.

Task 1: Accessing a SQL Database

54 Sun ONE Application Framework Getting Started • October 2002

2.1.3 Tomcat SQL Connection Preparation

1. Expand the Classes folder.

2. Expand the jatotutorial package folder.

3. Double-click the SQLConnectionManagerImpl class to open it.

There is not much code in here.

You need to make three modifications.

At the beginning of the static initializer code, you see a line of code that looks
like the following:

setUsingJNDI(true);

4. Change true to false.

The container will then use JDBC URLs instead of JNDI lookups.

Below that code, a block of disabled code appears.

The following table contains that block of disabled code:

NOTE • If you are using the Sun ONE Application Server to run your
tutorial application, this step is optional.

• If you are using the built-in Tomcat engine, or running the
tutorial application in another servlet container that does not
support JNDI, then you need to make a few minor modifications
to the SQLConnectionManagerImpl class in your application.

/*
* enable this code block and add the necessary jdbc drivers
entries in the try block

try
{
// load the PointBase JDBC driver

Class.forName(“com.pointbase.jdbc.jdbcUniversalDriver”);
}
catch(ClassNotFoundException e)
{

e.printStackTrace();
}

*/

Task 1: Accessing a SQL Database

Chapter 7 Tutorial—Section 2.1 Prepare Application to Access SQL Database 55

5. Delete the enclosing comment markers (/*,* and */) so that the JDBC driver
will be loaded.

Just before the end of the static initializer code block, there is a line of code as
follows:

// addDataSourceMapping(“jdbc/sample”,
“jdbc:PointBase://localhost:9092/sample”);

6. Remove the comment marker (//) to enable this line of code.

Your application will now use a JDBC URL directly to make a connection to the
database, instead of using the connection pooling via JNDI.

PointBase://localhost:9092/sample�

Task 1: Accessing a SQL Database

56 Sun ONE Application Framework Getting Started • October 2002

57

Chapter 8

Tutorial—Section 2.2
Create the CustomerModel

This section describes how to create a model to access the RDBMS in the Sun™
ONE Application Framework application.

Task 2: Create the CustomerModel

2.2.1 Create a JDBC SQL Model
1. Right-click the main module folder.

Task 2: Create the CustomerModel

58 Sun ONE Application Framework Getting Started • October 2002

2. Select the menu option New-->Sun ONE Application Framework-->Model.

The Choose Model Type page appears.

3. Enter CustomerModel in the Name field.

Task 2: Create the CustomerModel

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 59

4. Select JDBC SQL Query Model from the model component list.

5. Click Next.

The Select Datasource page appears.

6. Select jdbc/sample from the Existing Datasource combo box.

7. Click Next.

The Select Database Tables page appears.

Task 2: Create the CustomerModel

60 Sun ONE Application Framework Getting Started • October 2002

8. Select CUSTOMER_TBL.

9. Click Add.

10. Click Next.

The Select Columns page appears.

Task 2: Create the CustomerModel

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 61

11. Click Add All to include all of the columns in your Model.

12. Click Finish to create the Model.

The Customer model object is created in the main module.

Task 2: Create the CustomerModel

62 Sun ONE Application Framework Getting Started • October 2002

13. Expand the CustomerModel so that you can see all of the columns.

14. Double-click the CustomerModel folder to view the code in the
CustomerModel Java class.

2.2.2 Mark the Model’s Key Field(s)

1. Select the CUSTOMER_TBL_CUSTOMER_NUM model field.

2. In the property sheet, select the Model Field Properties tab.

3. Change the value of the Key Field property from false to true.

NOTE Due to a special key field indicator in the PointBase database, the
Model wizard does not properly detect the key field
CUSTOMER_TBL_CUSTOMER_NUM. Therefore, you must set the
key field manually.

This will be corrected in the next update of the Sun ONE
Application Framework tools module.

Task 2: Create the CustomerModel

Chapter 8 Tutorial—Section 2.2 Create the CustomerModel 63

2.2.3 Add Connection Code for Non-JNDI
Enabled Containers
For servlet containers that do not support JNDI data sources, or for rapid
prototyping work, as in this tutorial, you can rely on explicit use of a JDBC driver.

Note that in section 2.1 of this tutorial, you disabled the use of JNDI and declared
the explicit use of the PointBase JDBC driver in the SQLConnectionManagerImpl
class.

Now, you will set the connection username and password explicitly in the model
so that a proper database connection can be opened during model execution.

The following table contains two lines of code (shown in bold) that you need to add
to the CustomerModel’s constructor:

NOTE For production environments, you should use JNDI connections.

public CustomerModel()
{

super();
setDefaultConnectionUser(“pbpublic”);
setDefaultConnectionPassword(“pbpublic”);

}

Task 2: Create the CustomerModel

64 Sun ONE Application Framework Getting Started • October 2002

65

Chapter 9us

Tutorial—Section 2.3
Create Customer Page

This section describes how to create a page in the Sun™ ONE Application
Framework that displays data it gets from a model that accesses data from an
RDBMS.

Task 3: Create the Customer Page
You will now create the second page of the application.

However, this page will bind to a model (to model fields). This binding process
automatically creates on the page display fields that will display the data from the
model.

2.3.1 Add a ViewBean
1. Right-click the main module from the Sun ONE Studio Explorer page.

Task 3: Create the Customer Page

66 Sun ONE Application Framework Getting Started • October 2002

2. Select New-->Sun ONE Application Framework-->View.

The View Location page appears.

3. Enter Customer in the Name field (to replace <default>).

4. Select Basic ViewBean in the View beans tab to create a ViewBean.

Task 3: Create the Customer Page

Chapter 9 Tutorial—Section 2.3 Create Customer Page 67

5. Click Next.

The View Summary page appears.

The Name, Package, and Class name fields are populated as a result of previous
entries.

6. Click Next.

The Model Associations page appears.

Task 3: Create the Customer Page

68 Sun ONE Application Framework Getting Started • October 2002

7. Expand Current Application Components to expose jatotutorial-->main.

8. Select Customer model.

9. Click Add.

10. Click Next.

The Bind Display Fields page appears.

Task 3: Create the Customer Page

Chapter 9 Tutorial—Section 2.3 Create Customer Page 69

You only want to use three fields.

11. Add the first field:

a. Select the CUSTOMER_TBL_CUSTOMER_NUM field.

Accept the Static text default.

b. Click Add field(s).

The CUSTOMER_TBL_CUSTOMER_NUM field is added to the Current
bound fields list box.

12. Add the second and third fields simultaneously:

a. Select the CUSTOMER_TBL_EMAIL and CUSTOMER_TBL_NAME fields
(hold down the Ctrl key to select multiple non-sequential fields).

b. Select Text field.

c. Click Add field(s).

The CUSTOMER_TBL_EMAIL and CUSTOMER_TBL_NAME fields are
added to the Current bound fields list box.

13. Click Finish.

You have created the ViewBean.

Task 3: Create the Customer Page

70 Sun ONE Application Framework Getting Started • October 2002

14. Double-click CustomerViewBean.

The code appears in the right-hand panel.

NOTE Like the LoginViewBean, a JSP for the CustomerViewBean was
added to the Documents folder (/jatotutorial/main), and
there is a link to that JSP under this ViewBean’s JSPs folder.

You see three display fields that were created because you
indicated that you wanted to bind to the CustomerModel’s
fields. This allows data to automatically be displayed on the
Customer page.

You also see an entry under the Non-Visual Components node
which is a reference to the CustomerModel class.

Task 3: Create the Customer Page

Chapter 9 Tutorial—Section 2.3 Create Customer Page 71

2.3.2 Making a Model Auto Retrieve
Finally, make the CustomerModel auto retrieve when the Customer page is
requested for display.

You accomplish this by populating the ViewBean’s Auto Retrieving Models
property with the appropriate model reference—in this case, the customerModel
reference.

1. Select the CustomerViewBean node.

2. Click the value area for the Auto Retrieving Models property.

The “...” button appears.

3. Click “...”.

The Auto Retrieving Models custom editor launches.

Note that the Properties area is blank when this editor first appears.

4. Click New.

This adds an entry.

Task 3: Create the Customer Page

72 Sun ONE Application Framework Getting Started • October 2002

5. Select customerModel from the Auto Retrieving Models combo box.

6. Click OK.

This sets the property.

2.3.3 Add a Button View Component
1. Add a button to the CustomerViewBean.

The following table contains the specifications for adding a button to the
CustomerViewBean.

2. Enable the button to update the customer record.

a. Select the update button field.

b. Click in the value area of the Command Descriptor property.

The “...” button appears.

NOTE You could have written a few lines of code to accomplish the
same goal.

Commonly, this code would be implemented in the
CustomerViewBean’s beginComponentDisplay event.

Type Name Initial Value

Button update Object Type: String
Object Value: Update

Task 3: Create the Customer Page

Chapter 9 Tutorial—Section 2.3 Create Customer Page 73

c. Click “...”.

The Command Descriptor editor launches.

The Use existing shared instance option is the default selection.

3. Select Create new shared instance.

4. Select WebActionCommand Descriptor from the list.

Task 3: Create the Customer Page

74 Sun ONE Application Framework Getting Started • October 2002

5. Select the Component Properties tab at the bottom of the editor.

6. Select ACTION_UPDATE for the Operation Name property.

Accept the defaults for the other two properties.

Task 3: Create the Customer Page

Chapter 9 Tutorial—Section 2.3 Create Customer Page 75

7. Click OK.

You have finished setting this property.

Now you need to add the customerModel reference as an Auto Updating
Model on the CustomerViewBean.

This is exactly the same procedure that you followed to set the Auto Retrieving
Models property in an earlier step. See the section 2.3.2 Making a Model Auto
Retrieve.

NOTE A new entry is added under the Non-Visual Components node,
and the Command Descriptor property is set.

Task 3: Create the Customer Page

76 Sun ONE Application Framework Getting Started • October 2002

2.3.4 Add a Hidden Field
2.3.4 Add a Hidden Field Tag to the JSP

Add a hidden field tag in the JSP to preserve the value of the key field
customerNum to ensure proper update logic.

In the Customer.jsp file, the customerNum field is associated with a jato:text tag.
Jato:text tags render their values as static, non-editable HTML content, not as
HTML input fields. Therefore, the customerNum value will be displayed in the
rendered document, but it will not be submitted back to the server when the form
is posted.

However, the update logic needs the value of the key field in order to limit the
update to a single database row. This value must be posted back along with the
other input field values so that you can perform an update on the proper customer
record. To achieve this, you will preserve the customerNum field value in a hidden
field, which will be posted back on form submit.

NOTE You could have implemented some code in the update button’s
handleUpdateRequest event to accomplish this task.

You might want to do this in a more complex, real-world
application.

Task 3: Create the Customer Page

Chapter 9 Tutorial—Section 2.3 Create Customer Page 77

1. Copy the jato:text tag for the customerNum field tag and paste it just below.

2. Change this copy from a jato:text to a jato:hidden.

Leave the name attribute the same.

There is no need to modify anything in the peer ViewBean. Both tags use the
same peer display field.

CAUTION If you neglect this step, no key field value is submitted with the
form. The resulting JDBC update statement would lack a WHERE
clause and therefore result in the unintentional modification of the
entire table.

Task 3: Create the Customer Page

78 Sun ONE Application Framework Getting Started • October 2002

79

Chapter 10

Tutorial—Section 2.4
Test Run the Customer Page

This section describes how to run your Sun™ Application Framework application.

Task 4: Test Run the Customer Page

1. Right-click CustomerViewBean.

NOTE Make sure that the PointBase Network Server is running.

Task 4: Test Run the Customer Page

80 Sun ONE Application Framework Getting Started • October 2002

2. Select Execute (Force Reload).

This ensures that Tomcat restarts and picks up all changes.

A default browser starts the application.

Test a Customer Update
1. Make a change to some or all of the fields.

In the screenshot, the email name, domain, and customer name were changed.

2. Click Update.

81

Chapter 11

Tutorial—Section 2.5
Link Login Page to Customer Page

This section describes how to link the Login page to the Customer page in the
Sun™ ONE Application Framework application, filtering the data the Customer
page displays based on the user’s login.

Task 5: Link the Login Page to the Customer
Page

Edit the handleLoginRequest Method in
LoginViewBean
Edit the LoginViewBean.java file.

Modify the logic in the handleLoginRequest() method as shown in the code
example below so that in the event of a successful login, the Customer page
displays with the customer data that corresponds to the value entered in the User
Name field.

Task 5: Link the Login Page to the Customer Page

82 Sun ONE Application Framework Getting Started • October 2002

The following table contains the code you need to enter to modify the logic in the
handleLoginRequest() method.

NOTE • In the code example below, the only legal values for the User
Name field are also CustomerID values.

Therefore, you can take the Login ID value and apply it to the
where clause used by the CustomerModel.

This ensures that the data retrieved by the CustomerModel
corresponds to the appropriate CustomerID.

• Make code changes cautiously.

The code that appears below practically replaces all of the code
that appeared previously in this event.

Adding just what appears to be the delta likely leads to errors.

public void handleSubmitRequest(RequestInvocationEvent event)
throws ServletException, IOException

{
// Retrieve the customer number
String custNum = getDisplayFieldStringValue(CHILD_CUSTOMER_NUM);

String theMessage = "";

// Check the customer number
// Note, we don’t check the password in this example
if (custNum.equalsIgnoreCase("1") ||

custNum.equals("777") ||
custNum.equals("410"))

{
// Instead of returning the login page, display the Customer
// page for the customer that matches the customer number
// theMessage = "Congratulations, " + custNum + ...

// Get a reference to the CustomerModel
CustomerModel model =
(CustomerModel)getModel(CustomerModel.class);

// Modify the where criteria to reflect the customer number used to login
model.clearUserWhereCriteria();
model.addUserWhereCriterion(
"CUSTOMER_TBL_CUSTOMER_NUM", new Integer(custNum));

// Display the Customer page

Task 5: Link the Login Page to the Customer Page

Chapter 11 Tutorial—Section 2.5 Link Login Page to Customer Page 83

getViewBean(CustomerViewBean.class).forwardTo(event.getRequestContext());
}
else
{

theMessage = "Sorry, "+ custNum +
“,your customer number was incorrect!”;

// Set the output status message
getDisplayField(CHILD_MESSAGE).setValue(theMessage);

forwardTo();
}
}

Task 5: Link the Login Page to the Customer Page

84 Sun ONE Application Framework Getting Started • October 2002

85

Chapter 12

Tutorial—Section 2.6
Run Application

This section describes how to run the Sun™ ONE Application Framework
application now that you have added an additional page to your application and
have linked it to the first page.

Task 6: Run the Application
1. Compile the application.

2. Execute (force reload) on the LoginViewBean.

3. Enter a valid customer number (1, 777, or 410).

4. Click Login.

You should see the Customer page with the customer record that corresponds
to the customer number that you used to login.

Task 6: Run the Application

86 Sun ONE Application Framework Getting Started • October 2002

Index 87

Index

A
About This Document 7
add page to application infrastructure 33–43
Advanced Tip - Modules 31
alternative runtime environments 49
Apache Tomcat 21
Apache Tomcat URL 49
application

basic 17
deploy and execute 46
expand and prepare to access SQL database 51–53
infrastructure, create 25
Sun ONE Application Framework 20
wizard, create 25

Application Properties page 27
audience

for this document 17
for this guide 7

Auto Retrieve, making a model 71
Auto Retrieving Models

combo box 72
custom editor 71
property, populate View Bean’s 71

B
base directory 27
basic application 17
before you begin 13–15
Bind Display Fields page 68
binding process 65
build a J2EE Web application 17
button type 39
Button View Component, add 72

C
Caucho Resin URL 49
Certification, QA 14
Choose Model Type page 58
Choose Template page 34
Classes node 30
code

view in CustomerModel Java class 62
view in Sun ONE Studio Explorer 37

Command customer editor 73
Component Browser dialog 38
Component Properties tab 74
connect to sample database 52

88 Sun ONE Application Framework Getting Started • October 2002

connection code for non-JNDI enabled containers,
add 63

Convert to Module action 32
Core J2EE Patterns 10
create an application wizard 25
Create Customer Page 65–77
create login page 33
Create new shared instance option 73
Current Application Components, expose 68
Current bound fields list box 69
customer number, enter a valid 85
Customer Page

create 65
test run the 79

customer support 12
Customer Update, test a 80
customerModel reference, add as Auto Updating

Model 75
CustomerModel, create 57–63
CustomerModel’s constructor, add code to 63
CustomerViewBean JSP, link to 70

D
datasource, create 52
Define datasource page 53
deploy and execute application 46
deployment-time name, assign 21
developmental issues of a J2EE Web application 8
display fields, add to ViewBean 37
documentation conventions

directories 11
general 10

documentation roadmap 8

E
EJB product information 9
Enterprise JavaBeans 9

Design Patterns 10
Specification, Version 2.0 9

entities, application and module 20
environment description 8
Execute (Force Reload) option 47
execute application 46
Existing Datasource combo box 59
expand application and prepare to access SQL

Database 51

F
failure message, test unsuccessful login 48
features, Sun ONE Application Framework 13
first page of application 33
fundamental techniques used 18

G
Getting Started 17–22
Getting Started, description of mechanics and

techniques 8

H
handleLoginRequest Method in LoginViewBean,

edit 81
handleLoginRequest() method, code to modify logic

in 82

I
infrastructure, how to create 25–32
Initial Value property editor 40
Installation Guide, describes environment and steps

8

Index 89

Introduction Sun ONE Application Framework 17
introduction to Forte tool plugin 8

J
J2EE

application 20
application components 19
component 19
module 19
Specifications 9
Sun ONE Application Framework Terminology

19
Web application 17, 19
Web application developmental issues 8

JatoTutorial file, edit 27
jatotutorial-->main 68
JatoTutorialAppServletBase, super class for all

module servlets 30
Java

expertise assumed 17
package and sub-package(s) 20
Software tutorials 9

JDBC
Datasource wizard 52
datasource, create 52
SQL Query Model option 59

JDBC SQL model, create 57
JSPs, link to 37

K
key field(s) 62

L
late-breaking information 8
location of application 25
Login Button, add code to 41

login code 43
Login Page, Link to Customer Page 81–83
login page, test run 46
login test

successful 47
unsuccessful 48

M
main module 33
MainModuleServlet invoked for every request 31
mechanics and techniques, description 8
Model Associations page 67
module and module servlet, only one 31
Module Node 30
Module Properties page 28
Module Servlet 31
module, Sun ONE Application Framework 20
modules 20
Modules node is flattened version of Classes node 30

N
name, Web application (assign) 21
naming conventions, application and module 21
Non-Visual Components node 75
Non-Visual Components node, entry under 70

O
Online Help, wizard-based concepts and

components 8
Operation Name property 74
organization, Sun ONE Application Framework

applications 20
Overview 8

90 Sun ONE Application Framework Getting Started • October 2002

P
package name of application 21
package structure layout 30
PointBase Network Server 52
Preface 7–12
processing time 29
product support 12

Q
QA Certification 14

R
RDBMS database, presence of assumed 52
Release Notes 8
requests, how handled 31
resources and related information 9
Run Application 85, 85
runtime environments, alternative 49

S
Select Columns page 60
Select Database Tables page 59
Select Datasource page 59
servlet properties, set for execution 45
SQL Database, prepare application to access 51
Static text default 69
Static Text field 38
status page 47
success message, test successful login 48
Sun Microsystems customer support 12
Sun ONE Application Framework

application 20
features 13
module 20

product support 12
test run application 45–49
used by 13
used to 14
writing applications 18

Sun ONE Application Server URL 49
Sun ONE Developer Studio, assists developers 18
Sun ONE Web Apps tab 29
support, product 12

T
Table of Contents 3
terminology 19
Test Run the Customer Page 79–80
Text field, select 69
Tomcat module, test application in 25
tutorial sections, links to 23–24
tutorial, about 22

U
Use existing shared instance option 73
using the documentation 8

V
View beans tab 35, 66
View Location page 35, 66
View Summary page 35, 67
ViewBean, add 33, 65

W
WAR directory structure 25
WAR file in webapps directory 49

Index 91

Web application
compile 46
executing in place 45

WebActionCommand Descriptor 73
webapps directory of servlet container 27
Who Should Use This Guide 7
wizard-based concepts and components, Online

Help 8
writing applications 18

92 Sun ONE Application Framework Getting Started • October 2002

	Getting Started
	Contents
	About This Document
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Product Support

	Before You Begin
	Primary Features of the Sun ONE Application Framework
	QA Certification

	Getting Started
	Introduction
	Writing Sun ONE Application Framework Applications
	J2EE/Sun ONE Application Framework Terminology
	How Sun ONE Application Framework Applications Are Organized

	About the Sun ONE Application Tutorial

	Tutorial Sections (Links to)
	Sections 1.1—1.3
	Sections 2.1—2.6

	Tutorial—Section 1.1 Application Infrastructure
	Task 1: New Sun ONE Web Application
	Create an Application Wizard

	Tutorial—Section 1.2 Create Login Page
	Task 2: Create the Login Page
	1.2.1 Add a ViewBean
	1.2.2 Add Display Fields to the ViewBean
	1.2.3 Add Code to the Login Button

	Tutorial—Section 1.3 Test Run the Login Page
	Task 3: Test Run the Login Page
	1.3.1 Set the Servlet Properties for Execution
	1.3.2 Compile the Web Application
	1.3.3 Test Run the Login Page
	Test a Successful Login
	Test an Unsuccessful Login
	Alternative Runtime Environments

	Tutorial—Section 2.1 Prepare Application to Access SQL Database
	Task 1: Accessing a SQL Database
	2.1.1 Connect to the Sample Database
	2.1.2 Create a Datasource
	2.1.3 Tomcat SQL Connection Preparation

	Tutorial—Section 2.2 Create the CustomerModel
	Task 2: Create the CustomerModel
	2.2.1 Create a JDBC SQL Model
	2.2.2 Mark the Model’s Key Field(s)
	2.2.3 Add Connection Code for Non-JNDI Enabled Containers

	Tutorial—Section 2.3 Create Customer Page
	Task 3: Create the Customer Page
	2.3.1 Add a ViewBean
	2.3.2 Making a Model Auto Retrieve
	2.3.3 Add a Button View Component
	2.3.4 Add a Hidden Field

	Tutorial—Section 2.4 Test Run the Customer Page
	Task 4: Test Run the Customer Page
	Test a Customer Update

	Tutorial—Section 2.5 Link Login Page to Customer Page
	Task 5: Link the Login Page to the Customer Page
	Edit the handleLoginRequest Method in LoginViewBean

	Tutorial—Section 2.6 Run Application
	Task 6: Run the Application

	Index

