Sun Storage 6 Gb SAS REM HBA

安装指南 (适用于 HBA 型号 SGX-SAS6-REM-Z 和 SG-SAS6-REM-Z)

版权所有 © 2010, 2011, 2012, 2013 , Oracle 和/或其附属公司。保留所有权利。

本软件和相关文档是根据许可证协议提供的,该许可证协议中规定了关于使用和公开本软件和相关文档的各种限制,并受知识产权法的保护。除非在许可证协议中明确许可或适用法律明确授权,否则不得以任何形式、任何方式使用、拷贝、复制、翻译、广播、修改、授权、传播、分发、展示、执行、发布或显示本软件和相关文档的任何部分。除非法律要求实现互操作,否则严禁对本软件进行逆向工程设计、反汇编或反编译。

此文档所含信息可能随时被修改,恕不另行通知,我们不保证该信息没有错误。如果贵方发现任何问题,请书面通知我们。

如果将本软件或相关文档交付给美国政府,或者交付给以美国政府名义获得许可证的任何机构,必须符合以下规定:

U.S. GOVERNMENT END USERS:

Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

本软件或硬件是为了在各种信息管理应用领域内的一般使用而开发的。它不应被应用于任何存在危险或潜在危险的应用领域,也不是为此而开发的,其中包括可能会产生人身伤害的应用领域。如果在危险应用领域内使用本软件或硬件,贵方应负责采取所有适当的防范措施,包括备份、冗余和其它确保安全使用本软件或硬件的措施。对于因在危险应用领域内使用本软件或硬件所造成的一切损失或损害,Oracle Corporation 及其附属公司概不负责。

Oracle 和 Java 是 Oracle 和/或其附属公司的注册商标。其他名称可能是各自所有者的商标。

Intel 和 Intel Xeon 是 Intel Corporation 的商标或注册商标。所有 SPARC 商标均是 SPARC International, Inc 的商标或注册商标,并应按照许可证的规定使用。AMD、Opteron、AMD 徽标以及 AMD Opteron 徽标是 Advanced Micro Devices 的商标或注册商标。UNIX 是 The Open Group 的注册商标。

本软件或硬件以及文档可能提供了访问第三方内容、产品和服务的方式或有关这些内容、产品和服务的信息。对于第三方内容、产品和服务,Oracle Corporation 及其附属公司明确表示不承担任何种类的担保,亦不对其承担任何责任。对于因访问或使用第三方内容、产品或服务所造成的任何损失、成本或损害,Oracle Corporation 及其附属公司概不负责。

目录

前	言	
	相关 Oracle 文档	
	相关第三方文档	
	文档反馈	5
	支持和辅助功能	6
1.	HBA 概述	7
	工具包中的物品	
	HBA 特性	
	HDD 和 SSD 的有效驱动器混合配置	9
	操作系统和技术要求	
	系统互操作性	
	主机平台支持	
	存储系统支持	
	软件支持	
	- サイス行	
_		
۷.	硬件安装和移除	
	遵守 ESD 和操作预防措施	
	安装 HBA	
	▼ 准备硬件安装	
	▼ 安装 HBA	
	▼ 连接 HBA 与驱动器	
	▼ 完成安装	
	验证 HBA 逻辑驱动器的 Solaris 标签 (Solaris OS)	
	▼ 验证逻辑驱动器的 Solaris 标签是否有效	
	后续步骤	. 19
	移除 HBA	19
	▼ 移除 HBA	
3.	在预引导环境中创建可引导的驱动器	21
	在预引导环境中创建可引导驱动器的概述	21
	实用程序概述	. 21
	创建可引导驱动器的方法	
	创建可引导的驱动器 (SPARC)	
	▼ 创建可引导的驱动器 (SPARC)	
	使用 FCode 实用程序创建可引导的驱动器 (SPARC)	
	为可引导的驱动器创建别名 (SPARC)	
	创建可引导的驱动器 (x86)	
	使用 "UEFI" 菜单创建可引导的 RAID 卷 (x86)	
	使用 BIOS 配置实用程序(Legacy BIOS 引导)创建可引导的驱动器 (x86)	20
	安装 Oracle Solaris OS ▼ 准备安装 Oracle Solaris OS	
	▼ 安装 Oracle Solaris OS	
_	后续步骤	
4.	HBA 软件安装	
	安装 Oracle Solaris 驱动程序和固件	
	固件更新	
	安装 Linux 驱动程序和固件	. 39

▼ 安装 Linux 驱动程序	40
固件更新	40
安装 Windows Server 驱动程序和固件	40
▼ 安装 Windows 驱动程序	40
固件更新	40
· · · · · · · · · · · · · · · · · · ·	40
安装 RAID 配置实用程序	
激活卷	43
:: · · · · · · · · · · · · · · · · · ·	
▼ 激活卷 (从 OS)	
6. 已知问题	
	45
	45
无法热拔插 HBA 卡	
无法通过 MSM GUI 分配全局热备件	
实用程序相关问题	
在 RAID 卷名称中出现非字母字符	46
使用 SAS2IRCU 实用程序无法删除 RAID 卷	
没有用于创建 RAID 10 卷的 FCode 实用程序命令	
虚拟驱动器显示两次	
硬盘驱动器不显示在 BIOS 设置实用程序中	47
无法查看新插入的驱动器	47
存储相关问题	48
.,	48
系统 BIOS 引导列表中仅显示了 24 个设备	49
按 Ctr1+N 组合键不会按预期启动网络引导或装入 HBA 选项 ROM	49
Oracle Solaris 操作系统安装挂起	50
系统在删除某个 RAID 卷后挂起	
在卷重新生成过程中绿色 LED 指示灯不闪烁	50
A. HBA 规范	
物理尺寸	
PCI 性能	
SAS 端口带宽	
环境要求	
HBA 的特征	
LED 指示灯	52
连接器	
词汇表	

使用本文档

本安装指南介绍了如何安装和移除 Oracle 的 Sun Storage 6 千兆位/秒 (Gb) 串行连接 SCSI/SATA (SAS) RAID 扩展模块 (RAID Expansion Module, REM) 主机总线适配器 (host bus adapter, HBA)。还说明了如何安装 HBA 所需的任何驱动程序、修补程序和固件,并提供了产品的任何已知问题。

本文档的目标读者是技术人员、系统管理员、应用服务提供商 (application service provider, ASP),以及在排除硬件故障和更换硬件方面具有丰富经验的用户。

本前言包含以下主题:

- "相关 Oracle 文档" [5]
- "相关第三方文档" [5]
- "文档反馈" [5]
- "支持和辅助功能" [6]

相关 Oracle 文档

要查看、打印或购买 Oracle 提供的各类文档(包括本地化版本),请访问:http://www.oracle.com/documentation

您可以从以下位置获得所列出的 Oracle Sun Blade 6000 模块化系统联机文档: http://www.oracle.com/pls/topic/lookup?ctx=sb6000&id=homepage

应用程序/硬件	书名	文件号码	格式	位置
Sun Blade 6000 模块化系统	《SAS-1/SAS-2 Compatibility Upgrade Guide For the Sun Blade 6000 Modular System》	821-1800-nn	PDF	联机提供

要获取 HBA 和聚合网络适配器文档,请访问:http://www.oracle.com/technetwork/documentation/oracle-storage-networking-190061.html

相关第三方文档

您可以从以下位置获得所列的联机文档:

http://www.lsi.com/sep/Pages/oracle/index.aspx

应用程序/硬件	书名	格式	位置
MegaRAID 图形用户界面 (graphical user interface, GUI)	《MegaRAID SAS Software User's Guide》	PDF	联机提供
	《MegaRAID SAS Software Release Notes》	PDF	联机提供
SAS2 Integrated RAID Solution(SAS2IRCU 实用程序)	《SAS2 Integrated RAID Solution User's Guide》	PDF	联机提供

文档反馈

可以通过以下网址提供有关本文档的反馈:

使用本文档 5

http://www.oracle.com/goto/docfeedback

支持和辅助功能

说明	链接
通过 My Oracle Support 获取电子支持。	http://support.oracle.com
	对于听障人士:
	http://www.oracle.com/accessibility/support.html
了解 Oracle 致力于增强辅助功能的相 关信息。	http://www.oracle.com/us/corporate/accessibility/index.html

•••第 1 章

HBA 概述

本章简要概述了 Oracle 的 Sun Storage 6 千兆位/秒 (Gb) 串行连接 SCSI/SATA (SAS) RAID 扩展模块 (RAID Expansion Module, REM) 主机总线适配器 (host bus adapter, HBA),该 HBA采用了 LSI 技术。另外还介绍了支持HBA的各种操作系统、主机平台、存储器和基础结构配置。

本章包括以下主题:

- "工具包中的物品" [7]
- "HBA 特性" [7]
- "HDD 和 SSD 的有效驱动器混合配置" [9]
- "操作系统和技术要求" [9]
- "系统互操作性" [10]
- "引导支持" [11]

工具包中的物品

- Sun Storage 6 Gb SAS REM HBA
- 《Accessing Documentation》文档

注

HBA 产品套件中的《Accessing Documentation》文档提供了有关如何访问 Oracle HBA 安装文档的说明。有关访问与该 HBA 有关的非 Oracle 文档的信息,请参见"相关第三方文档" [5]。

HBA 特性

Sun Storage 6 Gb SAS REM HBA(SGX-SAS6-REM-Z、SG-SAS6-REM-Z)提供了用于连接到 SAS/SATA(串行 ATA)设备的八个串行 PHY。每个 PHY 可支持 1.5 Gb、3 Gb 或 6 Gb SAS 和 SATA 链路速率。PCIe 在每个方向的数据传输和接收速率为 5 Gb,因此对于每个全双工通道可生成 10 Gb 的总带宽。

第 1 章 HBA 概述 7

注

虽然每个 PHY 都可以实现 6 Gb 的 SAS 和 SATA 链路速率,但八个 PHY 中只有四个可同时以 6 Gb 的链路速率运行。这是为了适应不是设计为以 6 Gb/s 的速率运行的平台。

HBA 包含用于存储 BIOS 和固件的板上闪存以及用于嵌入式镜像的 NVSRAM。HBA 上的 LED 指示灯会在固件检测到时报告心跳、活动和故障情况。Fusion-MPT 固件支持 HBA。

HBA 的功能源于 LSISAS2008 控制器芯片。通过那些通过夹层连接器路由的 PCIe 信号,HBA 控制器最多可将八个 SAS/SATA 设备连接到一个计算机系统。HBA 控制器使用八个 PCIe PHY。

HBA 具有以下特性:

- 串行 SCSI 协议 (Serial SCSI Protocol, SSP)、串行 ATA 隧道协议 (Serial ATA Tunneling Protocol, STP) 以及串行管理协议 (Serial Management Protocol, SMP) 均在《Serial Attached SCSI (SAS) Specification》 (版本 2.0) 中有定义
- 支持 RAID 级别 0、1 和 10
- 最多支持两个逻辑 RAID 卷,可由 HBA 提供
- 在任何单个 RAID 卷内最多支持 10 个物理设备,在所有组合 RAID 卷内最多支持 14 个物理设备。
- 基于每个 PHY 进行可配置的驱动器旋转加速排序
- 点对点的企业级串行存储接口
- 使用 SCSI 信息单元传输数据的能力
- 与 SATA 目标设备的兼容性
- 窄端口和宽端口 (请参见表 1.1 [8])

表 1.1. 6 Gb SAS 带宽

半双工	全双工
窄带端口(1 通道),600 MB/s	窄带端口(1 通道),1200 MB/s
宽带端口(2 通道),1200 MB/s	宽带端口(2 通道),2400 MB/s
宽带端口(4 通道),2400 MB/s	宽带端口(4 通道),4800 MB/s

图 1.1 [9] 显示了 HBA 的物理特性。

图 1.1. Oracle 的 Sun Storage 6 Gb SAS REM HBA

HDD 和 SSD 的有效驱动器混合配置

该 HBA 支持使用 SATA II 驱动器和/或SAS 驱动器进行连接。下面是一些有关可以使用的驱动器类型的基本规则:

- 在逻辑卷中:
 - 不能混合使用 SAS 和 SATA 驱动器。
 - 不能混合使用任何类型的 HDD 和 SSD。
- 在附件 (SAS 扩展器或直接连接 SAS 电缆)中,可以混合使用任何驱动器类型,但应受到附件所具有的任何限制的制约。

操作系统和技术要求

表 1.2 [9] 列出了 HBA 所需的最低操作系统 (operating system, OS) 和技术级别。

表 1.2. 支持的操作系统/技术版本

操作系统/技术	支持的版本 (最低)
	• Oracle Solaris 11.1 (带有 SRU 7)
Oracle Solaris OS	• Oracle Solaris 10 01/13 (至少带有修补程序 149176-02 和 145649-04)
	要获得最新的修补程序和 SRU,请访问 http://support.oracle.com
	• Oracle Solaris 11.1 (带有 SRU 7)
台的 Oracle Solaris OS	• Oracle Solaris 10 01/13 (至少带有修补程序 149175-02 和 145648-04)
	要获得最新的修补程序和 SRU,请访问 http://support.oracle.com
Linux OS(64 位)	• Red Hat Enterprise Linux (RHEL) 5.9 和 6.4
	SUSE Linux Enterprise Server (SLES) 11SP2
	• Oracle Enterprise Linux 5.9 和 6.4 (至少带有 Red Hat 兼容内核 (Red Hat Compatible Kernel, RHCK) 和 Unbreakable Enterprise Kernel (UEK) 2)
虚拟机 OS	Oracle VM 3.2.1
Microsoft Windows OS (64 位)	• 含 SP1 的 Windows Server 2008 R2 (64 位)
	Windows Server 2012

第1章 HBA 概述 9

操作系统/技术	支持的版本 (最低)
VMware 技术	VMware ESX/ESXi 5.0
	VMware ESX/ESXi 5.1

系统互操作性

本节提供有关主机平台支持、存储器支持和软件支持的信息。本节包含以下主题:

- "主机平台支持" [10]
- "存储系统支持" [10]
- "软件支持" [10]

主机平台支持

表 1.3 [10] 列出了支持 HBA 的平台。有关最新信息,请参见 Oracle 系统的产品说明和 Web 页。

有关支持的操作系统和技术版本,请参见表 1.2 [9]。

表 1.3. 主机平台支持

平台	支持的操作系统/技术
Oracle SPARC 服务器	
Sun Blade T6320	Oracle Solaris
Sun Blade T6340	Oracle Solaris
Oracle x86 服务器	
Sun Blade X6270 M2	Oracle Solaris、Linux、虚拟机、VMware 和 Windows
Sun Blade X3-2B	Oracle Solaris、Linux、虚拟机、VMware 和 Windows
SunBlade X4-2B	Oracle Solaris、Linux、虚拟机、VMware 和 Windows

存储系统支持

HBA 支持以下存储器:

- 内部磁盘驱动器
- Sun Blade 6000 Virtualized Multi-Fabric 10GbE Network Express Module (NEM)
- Sun Blade 6000 Storage Module M2
- Sun Blade 6000 Virtualized Multi-Fabric 10GE NEM M2

注

有关 Sun Blade 6000 模块化系统支持的更多信息,请参见《SAS-1/SAS-2 Compatibility Upgrade Guide For the Sun Blade 6000 Modular System》文档,网址为:http://download.oracle.com/docs/cd/E19938-01/index.html。

软件支持

提供了安装、Flash 和 BIOS 配置实用程序。HBA 对于所有的主要操作系统都使用 Fusion-MPT 体系结构,该体系结构允许使用更瘦的驱动程序来实现更佳的性能。要获得支持您操作

系统的最新设备驱动程序、固件以及引导代码,请访问:http://www.lsi.com/sep/Pages/oracle/index.aspx。

引导支持

以下操作系统和技术环境支持通过 HBA 进行引导:

- 适用于 SPARC 和 x86 平台的 Oracle Solaris 10 01/13 OS
- 适用于 SPARC 和 x86 平台的 Oracle Solaris 10 11.1 OS
- RHEL 5.9 和 6.4 OS
- SLES 11 SP2 OS
- Oracle Linux 5.9 和 6.4 OS
- Oracle VM 3.2.1 OS
- 含 SP1 的 Winows Server 2008 R2 OS
- Windows Server 2012 OS
- ESX 和 ESXi 服务器版本 5.0 和 5.1 技术

第 1 章 HBA 概述 11

•••第 2 章

硬件安装和移除

本章将介绍如何安装和移除 HBA。有关详细说明,请参见系统安装或服务手册以及要连接到 HBA 的存储设备的安装手册。

本章包括以下主题:

- "遵守 ESD 和操作预防措施" [13]
- "安装 HBA" [13]
- "验证 HBA 逻辑驱动器的 Solaris 标签 (Solaris OS)" [17]
- "后续步骤" [19]
- "移除 HBA" [19]

遵守 ESD 和操作预防措施

注意

操作时不小心或静电放电 (electrostatic discharge, ESD) 可能会损坏 HBA。在操作 HBA 时要始终保持谨慎,以避免损坏对静电敏感的组件。

为了最大程度地降低造成与 ESD 相关的损坏的可能性,请同时使用工作站防静电垫和 ESD 手腕带。从任何声誉良好的电子产品商店均可买到 ESD 手腕带,也可以从 Oracle 购买该产品,其部件号为 #250-1007。

请遵守以下预防措施,以避免出现与 ESD 相关的问题:

- 做好在系统中安装 HBA 的一切准备之前,一直将它放在防静电包里。
- 在操作 HBA 时,应始终使用手腕带或其他合适的 ESD 防护装置,手腕带要正确系好并接地,并遵守正确的 ESD 接地技术。
- 将 HBA 从保护性防静电包取出后,将其放置在正确接地的防静电工作台垫上。

安装 HBA

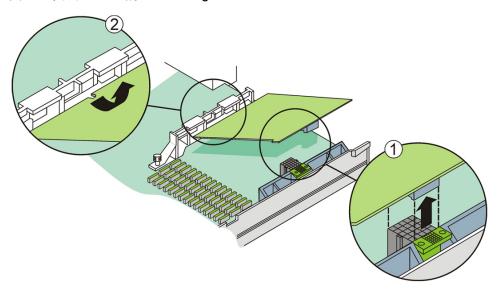
在开始安装之前,请阅读本节中的说明以及那些要连接到 HBA 的存储设备的安装说明。本节包含以下主题:

第2章硬件安装和移除 13

- 准备硬件安装 [14]
- 安装 HBA [14]
- 连接 HBA 与驱动器 [15]
- 完成安装 [15]
- 验证逻辑驱动器的 Solaris 标签是否有效 [17]

▼ 准备硬件安装

- 1. 备份数据。
- 2. 熟悉 HBA 的物理特性。 请参见"HBA 特性" [7]。
- 3. 确保初始化的磁盘驱动器的数量与阵列要使用的 RAID 级别相对应。 为了获得最佳性能,请在创建逻辑驱动器时使用类似的驱动器(类型、速度和大小)。 所有磁盘驱动器必须具有相同的性能级别。虽然您可以在阵列中使用不同大小的磁盘驱动器,但该阵列将受限而仅具有最小、最慢磁盘驱动器的容量。 有关更多信息,请参阅《MegaRAID SAS Software User's Guide》,网址为: http://www.lsi.com/sep/Pages/oracle/index.aspx HBA 支持 SAS 磁盘驱动器和 SATA II 磁盘驱动器。
- 4. 在没有静电的环境中打开包含该 HBA 的包装箱并检查它是否损坏。


注

在准备好安装该 HBA 之前,请将它保留在保护袋中。如有损坏,请与 Oracle 客户支持人员联系。

▼ 安装 HBA

- 1. 有关如何在系统的机箱中定位 REM 连接器的说明,请参阅适用于您特定系统的服务或安装手册。
- 2. 系上防静电手腕带,将 HBA 从包装中取出。 请参见"遵守 ESD 和操作预防措施" [13]。
- 3. 将 HBA 的凹槽插入系统托架(位于夹层插头连接器附近)中,然后将 HBA 上的 210 针夹层插头连接器连接到系统板上的 210 针夹层插头连接器(请参见图 2.1 [15])。

图 2.1. 安装 Oracle 的 Sun Storage 6 Gb SAS REM HBA

图例

- 1 将 HBA 的凹槽插入托架。
- 2 向下按此处。

注

机壳的配置可能与该图所示有所不同。

4. 轻稳地向下按,将 HBA 装入夹层插头连接器中。

▼ 连接 HBA 与驱动器

HBA 通过 REM 连接器与主机系统进行连接,该连接器可实现 x8 通道 PCI-Express 总线信号传输。可以使用同一 REM 连接器将 SAS 硬盘驱动器或 SATA 硬盘驱动器与 HBA 连接。该接口最多可为八个 HDD 端口提供链路。

• 在系统中配置并安装 SAS 设备和/或 SATA II 设备。 请参见设备的文档以了解更多信息。

注

除非使用扩展器,否则每个 SAS PHY 只能连接一个设备。

在系统中配置并安装设备后,HBA 即可与这些设备相连接。无需执行任何其他步骤。

▼ 完成安装

- 1. 为服务器模块装上机盖,如系统文档中所述。
- 2. 将完全组装的服务器模块插入回到包含任何所需 HDD 的机箱中。

第2章硬件安装和移除 15

注

确保在打开服务器模块电源之前或打开电源的同时,接通了 SAS 设备和/或 SATA II 设备的电源。如果在打开这些设备的电源之前打开了系统电源,则可能会不识别这些设备。

- 3. 如果需要在系统上安装 OS,请完成第3章 [21]中的过程,然后转到下一步。
- 4. 如果已在 x86 系统上安装了 OS,请查看 BIOS 引导消息,确保您可以看到 LSI BIOS 初始化标题,并且收到使用 BIOS 实用程序的提示(按 **Ctr1+C**)。如果您看见此标题并获得使用该实用程序的提示,说明 BIOS 已检测到 HBA 卡。
- 5. 如果已在 SPARC 系统上安装了 OS,则在打开系统电源期间,请在出现 OpenBoot PROM (OBP) ok 提示时使用 probe-scsi-all 命令来验证系统是否识别 HBA。 probe-scsi-all 命令会显示连接到主机的 SCSI 设备,如下面的示例所示。

{0} ok probe-scsi-all /pci@0/pci@0/pci@8/pci@0/pci@a/LSI,sas@0 MPT Version 2.00, Firmware Version 4.00.00.00 Target 9 Unit 0 Disk SEAGATE ST914602SSUN146G0603 286739329 Blocks, 146 GB SASAddress 5000c5000b305b4d PhyNum 0 Target a Unit 0 Disk SEAGATE ST914602SSUN146G0603 286739329 Blocks, 146 GB SASAddress 5000c5000b304cad PhyNum 1 Target b Unit 0 Disk HITACHI H101414SCSUN146GSA23 286739329 Blocks, 146 GB SASAddress 5000cca000310015 PhyNum 2 Target c HITACHI H101414SCSUN146GSA23 Unit 0 Disk 286739329 Blocks, 146 GB SASAddress 5000cca0002cf035 PhyNum 3

本例显示了连接到四个物理驱动器的 SAS 2 控制器 (LSI,sas@0)。

- 6. (可选) 如果您要在系统上创建更多 RAID 卷 (每个系统最多有两个 RAID 0、RAID 1 及 RAID 10 卷) ,请执行步骤 6.a [16] 或步骤 6.b [16],然后继续执行步骤 6.c [16]:
 - a. (仅限于 SPARC) 在打开系统电源期间,通过发出相应的 FCode 命令来访问 OBP 并为 HBA 创建 RAID 卷。

有关可用于创建 RAID 卷的其他 FCode 命令的更多信息,请参见第3章 [21]。

b. (仅限 x86) 在系统加电启动过程中,查看 BIOS 引导消息,在出现提示时按 Ctrl+C 访问 BIOS 配置实用程序,并通过 BIOS 实用程序为 HBA 创建卷。

有关通过 BIOS 实用程序创建卷的更多信息,请参见第 3 章 [21]。

c. 转至 LSI Web 站点中的 Oracle 支持区域 (http://www.lsi.com/sep/Pages/oracle/index.aspx),下载 SAS2IRCU 实用程序,然后在命令行或终端窗口中发出 sas2ircu 命令(不带选项)。

发出不带选项的 sas2ircu 命令后,将会生成 SAS2IRCU 实用程序命令列表,您可以使用此列表为 HBA 创建 RAID 卷。查看命令列表后,使用合适的命令创建 RAID 卷。

注

在实用程序 SAS2IRCU 版本 04.250.04.02 中,请谨慎使用 DELETE 命令。DELETE 命令不能 带参数或采用单个参数。不带参数发出 DELETE 命令会删除所有的 RAID 卷。使用单个参数发 出此命令仅会删除您在参数中指定的 RAID 卷。在实用程序 SAS2IRCU 版本 6.250.02.00 或更高版本中,使用 DELETEVOLUME 命令可删除单个 RAID 卷。

有关 RAID 配置实用程序的更多信息,请参见"安装 RAID 配置实用程序" [40]。

d. 转至 LSI Web 站点的 Oracle 支持区域 (http://www.lsi.com/sep/Pages/oracle/index.aspx),下载 MegaRAID Storage Manager 软件及其支持文档,并通过此软件为 HBA 创建逻辑驱动器。

有关 RAID 配置实用程序的更多信息,请参见"安装 RAID 配置实用程序" [40]。

开始创建 RAID 1 或 RAID 10 卷后,HBA 会在后台执行初始化任务,为整个卷同步镜像每一面的未处理块。此后台任务以透明形式运行,因此不会阻止与卷的正常通信或直接镜像写入卷中的新数据。但是,在完成后台初始化任务之前,应用程序可能会出现性能下降问题。

验证 HBA 逻辑驱动器的 Solaris 标签 (Solaris OS)

本节介绍如何验证可能为 HBA 创建的所有原始物理驱动器和逻辑驱动器的 Solaris 标签(如完成安装 [15]中所述)。驱动器必须具有有效的 Solaris 标签才能被 Solaris OS 识别。有时,需要使用 format 命令对逻辑驱动器进行重新标记。

本节包含以下主题:

• 验证逻辑驱动器的 Solaris 标签是否有效 [17]

▼ 验证逻辑驱动器的 Solaris 标签是否有效

注

如果在安装了 Solaris OS 以外的其他 OS 的系统上安装了 HBA,则不需要执行此过程中的步骤。

1. 成为 root 用户,并使用 format 命令。

第2章硬件安装和移除 17

- c5t5000CCA0002CF034d0 <SUN146G cyl 14087 alt 2 hd 24 sec 848>
 /scsi_vhci/disk@g5000cca0002cf034
 c5t5000CCA000310014d0 <SUN146G cyl 14087 alt 2 hd 24 sec 848>
 /scsi_vhci/disk@g5000cca000310014
 Specify disk (enter its number):
- 2. 出现提示时,键入连接到新安装 HBA 卡的磁盘驱动器的编号,然后按 Enter 键。

```
# format
Searching for disks...done
c5t5000C5000B304CAFd0: configured with capacity of 136.71GB
c5t5000C5000B305B4Fd0: configured with capacity of 136.71GB
c5t5000CCA0002CF034d0: configured with capacity of 136.71GB
c5t5000CCA000310014d0: configured with capacity of 136.71GB
AVAILABLE DISK SELECTIONS:
0. c5t5000C5000B304CAFd0 <SUN146G cyl 14087 alt 2 hd 24 sec 848>
          /scsi_vhci/disk@g5000c5000b304caf
1. c5t5000C5000B305B4Fd0 <SUN146G cyl 14087 alt 2 hd 24 sec 848>
          /scsi vhci/disk@q5000c5000b305b4f
2. c5t5000CCA0002CF034d0 <SUN146G cyl 14087 alt 2 hd 24 sec 848>
          /scsi_vhci/disk@g5000cca0002cf034
3. c5t5000CCA000310014d0 <SUN146G cyl 14087 alt 2 hd 24 sec 848>
          /scsi_vhci/disk@g5000cca000310014
AVAILABLE DISK SELECTIONS:
Specify disk (enter its number): 2
selecting c5t5000CCA0002CF034d0
[disk formatted]
```

此时会显示 "Format" 菜单。

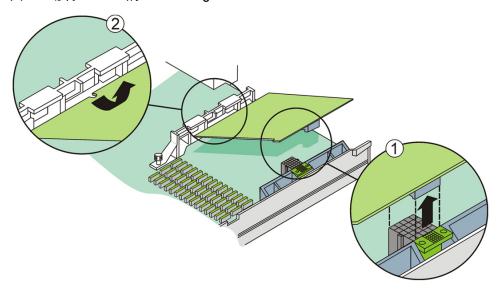
- 3. 如果看到 Disk not labeled. Label it now? 消息,键入 y 对选定的磁盘进行标记。
- 键入 q 退出实用程序。

```
FORMAT MENU:
 disk - select a disk
 type - select (define) a disk type
 partition - select (define) a partition table
 current - describe the current disk
 format - format and analyze the disk
 fdisk - run the fdisk program
 repair - repair a defective sector
 label - write label to the disk
 analyze - surface analysis
 defect - defect list management
 backup - search for backup labels
 verify - read and display labels
 save - save new disk/partition definitions
 inquiry - show vendor, product and revision
 scsi - independent SCSI mode selects
 cache - enable, disable or query SCSI disk cache
 volname - set 8-character volume name
 !<cmd> - execute <cmd>, then return
 quit
format> q
```

此时 HBA 就可以使用了。

后续步骤

针对您的操作系统,安装 HBA 需要的任何软件,如第4章 [39]中所述。


移除 HBA

如果由于任何原因需要从系统中移除 HBA,请按本节中的过程操作。

▼ 移除 HBA

- 1. 要在系统机箱中定位 HBA,请参阅您特定服务器的服务手册。
- 2. 轻稳地向上提起 HBA 上的 REM 连接器,将其从系统机箱上的相应 REM 连接器上取下, 如图 2.2 [19] 所示。

图 2.2. 移除 Oracle 的 Sun Storage 6 Gb SAS REM HBA

图例

- 向上提起以取下夹层插头。
- 从托架上取下 HBA 的凹槽。
 - 3. 从托架上取下 HBA 另一端的凹槽。
 - 4. 向上提起 HBA,将其从托架中取下。
 - 5. 要更换系统机箱中的服务器模块,请参阅您特定系统的服务手册。

第2章硬件安装和移除 19

•••第 3 章

在预引导环境中创建可引导的驱动器

本章介绍如何在系统上安装操作系统 (operating system, OS) 之前将 HBA 用于引导设备。

注

如果要将 HBA 安装到已安装 OS 的系统,则无需执行本章中的任何过程,而是按照 第 2 章 [13]中所述完成 HBA 的安装。

本章包括以下主题:

- "在预引导环境中创建可引导驱动器的概述" [21]
- "为可引导的驱动器创建别名 (SPARC)" [25]
- "创建可引导的驱动器 (x86)" [26]
- "安装 Oracle Solaris OS" [37]
- "后续步骤" [37]

在预引导环境中创建可引导驱动器的概述

作为一个安装选项,您可以选择将 HBA 安装到尚未安装 OS 的系统。如果您计划将 HBA 用作引导设备,可以选择使用此安装选项为 HBA 创建 RAID 卷。然后可以将 OS 安装至物理驱动器或该 RAID 卷,使您能够从 HBA 进行引导。在 SPARC 系统中,将会通过 Fcode 实用程序执行这些操作。在 x86 系统上,将通过 BIOS 设置实用程序的 "Unified Extensible Firmware Interface (UEFI) Drive Control" 菜单(UEFI 引导)执行这些操作,或通过 BIOS 配置实用程序(Legacy BIOS 引导)执行这些操作。

本节包含以下主题:

- "实用程序概述" [21]
- "创建可引导驱动器的方法" [22]

实用程序概述

您可以使用以下实用程序之一指定将 HBA 作为您的引导设备:

- FCode 实用程序 一种可以在 SPARC 系统上运行的实用程序,可以通过 Open Boot PROM (OBP) 环境进行访问。此实用程序包含一组用于显示目标和管理 RAID 卷的特殊命令。
- BIOS 设置实用程序的 "UEFI" 菜单 该实用程序仅在已将系统 BIOS 设置为以 UEFI BIOS 模式引导时(可以通过 BIOS 设置实用程序的 "Boot" 菜单指定),才可在 x86 系统上运行。访问此实用程序的方法如下:在引导过程中出现提示时,按 F2 键,然后使用向右方向键导航到屏幕顶部的 "UEFI Driver Control" 菜单。"UEFI Driver Control" 菜单为引导操作系统、管理物理磁盘和 RAID 卷以及运行预引导应用程序提供了一个标准环境。

注

某些操作系统版本不支持 UEFI BIOS 模式。有关操作系统是否支持 UEFI BIOS 模式的信息,请参阅系统和操作系统文档。

• BIOS 配置实用程序 - 一种传统引导实用程序,仅在已将系统 BIOS 设置为以 Legacy 模式引导时(可以通过 BIOS 设置实用程序的 "Boot" 菜单指定),才可在 x86 系统上运行。在引导期间,出现提示时,可以键入 Ctrl+C 访问此实用程序。该实用程序由基于文本的用户界面组成,可用于管理物理磁盘和 RAID 卷。

注

进入 BIOS 配置实用程序(即使在此实用程序中没有做任何更改)可能会导致重置系统 BIOS 提供的系统引导顺序列表。为了确保引导顺序在退出实用程序后准确无误,请在下次重新引导系统期间访问服务器主板 BIOS。查看引导顺序列表以验证顺序是否正确,并在必要时进行任何更改。每次进入该实用程序时都会发生此过程。

创建可引导驱动器的方法

根据您安装 HBA 的系统的类型(SPARC 或 x86),执行以下某一部分的过程:

- 如果要将 HBA 安装到 SPARC 系统,请转至"创建可引导的驱动器 (SPARC)" [22]。
- 如果要将 HBA 安装到 x86 系统,请转至"创建可引导的驱动器 (x86)" [26]。

创建可引导的驱动器 (SPARC)

执行本节中的步骤可在 SPARC 系统上的预引导环境中创建可引导驱动器:

• 创建可引导的驱动器 (SPARC) [22]

▼ 创建可引导的驱动器 (SPARC)

如果计划将 Oracle Solaris OS 安装到物理驱动器,则不需要执行此过程中的两个步骤。如果计划使用物理驱动器安装 OS,请直接转至步骤 2。

- 1. (可选) 创建可从中进行引导的 RAID 卷 (请参见"使用 FCode 实用程序创建可引导的驱动器 (SPARC)" [23]) 。
- 2. 为可引导驱动器创建别名(请参见"为可引导的驱动器创建别名(SPARC)" [25])。

使用 FCode 实用程序创建可引导的驱动器 (SPARC)

本节介绍如何在安装 Oracle Solaris 操作系统 (operating system, OS) 之前使用 FCode 实用程序在 SPARC 系统上设置 RAID 卷。随后您可以使用该 RAID 卷作为引导驱动器,在其中安装 Oracle Solaris OS。本节包含以下主题:

- 使用 FCode 实用程序之前的准备工作 (SPARC) [23]
- 使用 FCode 实用程序创建 RAID 卷 (SPARC) [24]

▼ 使用 FCode 实用程序之前的准备工作 (SPARC)

使用 FCode 实用程序在 SPARC 系统上设置 RAID 卷之前,需要通过执行以下操作来做好使用 FCode 实用程序的准备:

注

如果想要在非 RAID 卷上安装 OS,无需执行本节中的步骤,而应直接转至为可引导的驱动器创建别名 (SPARC) [25]。

- 1. 打开 xterm 或 gnome 终端窗口。 FCode 命令可生成大量的详细输出。xterm 和 gnome 终端窗口提供了滚动条功能,利用此功能可以查看此类输出。
- 2. 通过执行以下任务之一进入 OBP 环境:
 - 在 Oracle Sun 键盘上按 STOP+A 组合键。
 - 从远程控制台发出一个中断。
- 3. 使用 show-devs 命令列出系统上的设备路径,然后选择 HBA 的设备路径。 基于 mpt sas 的控制器将会以 LSI, sas@number 作为结尾。

{0} ok show-devs

/pci@1e,600000/pci@0/pci@3/**LSI,sas@0**/pci@1e,600000/pci@0/pci@3/LSI,sas@0/disk
/pci@1e,600000/pci@0/pci@3/LSI,sas@1
<...>

- 4. 使用 select 命令选择要对其运行所发出的 FCode 命令的 HBA。 {0} ok select /pci@1e,600000/pci@0/pci@3/LSI,sas@0
- 5. 如果能够在上一步确定所需的卡并选择了该卡,请跳至步骤 6 [23]。否则,如果在 show-devs 输出中显示了多个基于 mpt_sas 的卡,请使用 select 和 .properties 命令确定 您需要的卡,然后选择该卡。

```
{0} ok select /pci@1e,600000/pci@0/pci@3/LSI,sas@0
{0} ok .properties
```

subsystem-id

00003180

REM 卡包含子系统 ID 00003180。要更进一步指定卡,还可使用 show-children 命令显示任何已连接驱动器的 SAS 地址。

6. 查看下表以了解有用的 Fcode 命令。

FCode 命令	说明
show-children	列出所有已连接的物理驱动器和 RAID 卷。
show-volumes	详细列出所有已连接的 RAID 卷。
create-raid0-volume	创建 RAID 0 卷(至少两个目标)。
create-raid1-volume	创建 RAID 1 卷(正好两个目标)。
create-raid10-volume	创建 RAID 10 卷(至少四个目标)。
delete-volume	删除 RAID 卷。

现已准备就绪,可以使用 FCode 命令选择性地在 HBA 上创建 RAID 卷。有关更多信息,请参见使用 FCode 实用程序创建 RAID 卷 (SPARC) [24]。如果计划将 OS 安装到物理驱动器上,请转至为可引导的驱动器创建别名 (SPARC) [25]。

▼ 使用 FCode 实用程序创建 RAID 卷 (SPARC)

如果想要选择性地在 SPARC 系统上配置 RAID 卷,请执行本节中的步骤。然后,您可以在该 RAID 卷上安装 Oracle Solaris 操作系统 (operating system, OS)。

注

如果想要在非 RAID 卷上安装 OS,无需执行本节中的步骤,而应直接转至为可引导的驱动器 创建别名 (SPARC) [25]。

1. 使用 show-children 命令列出连接到 HBA 的所有物理驱动器。

{0} ok show-children

MPT Version 2.00, Firmware Version 4.00.00.00

Target 9

<...>Unit 0 Disk SEAGATE ST914602SSUN146G0603 286739329 Blocks, 146 GB

SASAddress 5000c5000b305b4d PhyNum 0

Target a

Unit 0 Disk SEAGATE ST914602SSUN146G0603 286739329 Blocks, 146 GB

SASAddress 5000c5000b304cad PhyNum 1

Target b

Unit 0 Disk HITACHI H101414SCSUN146GSA23 286739329 Blocks, 146 GB

SASAddress 5000cca000310015 PhyNum 2

Target c

Unit 0 Disk HITACHI H101414SCSUN146GSA23 286739329 Blocks, 146 GB

SASAddress 5000cca0002cf035 PhyNum 3

2. 使用 create-raid0-volume、create-raid1-volume 或 create-raid10-volume 命令基于物理磁 盘创建 RAID 卷。

注

HBA 仅支持使用 MAX 大小创建的卷(这些卷可以最大限度地使用驱动器空间)。不支持空间小于卷中最小物理驱动器的最大空间的卷。

- {0} ok 9 a create-raid0-volume -- for RAID 0, with targets 9 and a --
- {0} ok 9 a b c create-raid10-volume -- for RAID 10 with targets 9, a, b and c --
 - 3. 完成"为可引导的驱动器创建别名 (SPARC)" [25]中的步骤。

为可引导的驱动器创建别名 (SPARC)

本节介绍如何为可引导的驱动器创建别名,以便帮助简化驱动器引导过程。本节包含以下主题:

• 为可引导的驱动器创建别名 (SPARC) [25]

▼ 为可引导的驱动器创建别名 (SPARC)

1. 发出 show-disks 命令列出系统上的磁盘。 请注意,如下例所示,可通过查找 LSI,sas@number 标签确定 HBA 驱动器,其中 number 为 0 表示检测到的第一个 HBA,每检测到一个其他 HBA,其值就会递增。

{0} ok show-disks
<...>
a) /pci@1e,600000/pci@0/pci@3/LSI,sas@0/disk
b) /pci@1e,600000/pci@0/pci@3/LSI,sas@1/disk
c) /pci@1e,600000/pci@0/pci@3/LSI,sas@2/disk
<...>
q) NO SELECTION
Enter Selection, q to quit:

- 2. 选择要为其创建别名的可引导驱动器。
 - a) /pci@1e,600000/pci@0/pci@3/LSI,sas@0/disk
 - b) /pci@1e,600000/pci@0/pci@3/LSI,sas@1/disk
 - c) /pci@1e,600000/pci@0/pci@3/LSI,sas@2/disk

<...>

q) NO SELECTION

Enter Selection, q to quit: c

/pci@1e,600000/pci@0/pci@3/LSI,sas@2/disk has been selected.

- 3. 使用 nvalias alias-name HBA-drive-path 命令为在步骤 2 [25] 中选择的可引导驱动器创建别名(可以按 Ctrl+Y 组合键粘贴设备路径)。 在下例中,别名为 mydev。
 - {0} ok nvalias mydev /pci@1e,600000/pci@0/pci@3/LSI,sas@2/disk
- 4. 现在可通过使用 boot alias-name 命令从可引导驱动器进行引导。
 - {0} ok boot mydev
- 5. 要选择性地将可引导驱动器添加到引导设备列表,然后通过控制引导设备顺序自动从该驱动器引导,请发出如下所示的命令。
 - {0} ok printenv boot-device
 boot-device = disk0 disk1
 {0} ok setenv boot-device mydev disk0
 boot-device = mydev disk0

在此示例中,mydev 别名设置为 disk0 (引导设备列表中的第一个磁盘)。这会导致自动引导可引导的驱动器 /pci@1e,600000/pci@0/pci@3/LSI,sas@2/disk。

6. 按照安装 Oracle Solaris OS [37]中的步骤,在可引导驱动器上安装 Oracle Solaris OS。

创建可引导的驱动器 (x86)

您可以通过以下方法在 x86 系统上创建可引导的驱动器:

- 如果已将系统 BIOS 设置为以 UEFI BIOS 模式进行引导(可以通过 BIOS 设置实用程序的 "Boot" 菜单指定),请执行以下操作之一:
 - 通过使用 Oracle System Assistant 实用程序在非 RAID 卷上安装 OS。有关更多信息,请 参见 Oracle System Assistant 文档。
 - 通过使用设置实用程序的 "UEFI" 菜单设置 RAID 卷 (如"使用 "UEFI" 菜单创建可引导的 RAID 卷 (x86)" [26]中所述) ,在 RAID 卷上安装 OS。
- 如果已将系统 BIOS 设置为以 Legacy 模式进行引导(可以通过 BIOS 设置实用程序的 "Boot" 菜单指定),请执行"使用 BIOS 配置实用程序(Legacy BIOS 引导)创建可引导的 驱动器 (x86)" [33]中的步骤。

使用 "UEFI" 菜单创建可引导的 RAID 卷 (x86)

本节介绍如何使用 BIOS 设置实用程序中的 "UEFI Driver Control" 菜单选择性地在 x86 系统上设置 RAID 卷。然后,您可以在该 RAID 卷上安装操作系统。

注

如果要在非 RAID 卷上安装 OS,则不需要执行本节中的步骤,而是应该在引导过程中启动 Oracle System Assistant 并指定要在其上安装 OS 的可引导驱动器。有关更多信息,请参见 Oracle System Assistant 文档。

为了配置 RAID 卷,HBA 必须安装固件版本 11.05.02.00 或更高版本。在执行本节中的步骤之前,请验证 HBA 上的固件级别,必要时执行任何固件更新。有关更新固件的信息,请参见。

按照下列顺序执行以下过程,在 x86 系统上配置 RAID 卷:

- 确认驱动器及其插槽 (x86) [26]
- 创建 RAID 卷 (x86) [29]
- 确认 RAID 卷创建 (x86) [32]

▼ 确认驱动器及其插槽 (x86)

此过程可帮助您确定要用于配置 RAID 卷的驱动器。

- 1. 从 Integrated Lights Out Manager (ILOM) 软件或视频图形阵列 (Video Graphics Array, VGA) 视频端口访问系统控制台。
- 2. 启动系统引导。 在引导期间,BIOS 初始化标题列出了有关发现的 SAS 适配器和设备的信息,这些适配器 和设备连接至系统中发现的 HBA。

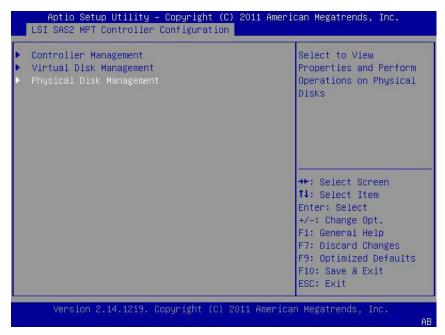

- 3. 在引导过程中出现提示时,按 F2 键启动 BIOS 设置实用程序,然后使用向右方向键导航 至 "UEFI Driver Control" 菜单。
- 4. 从显示的控制器列表中,使用向上和向下方向键导航至 "LSI SAS2 MPT Controller" 菜单选项,然后按 Enter 键。 在以下示例中,"LSI SAS2 MPT Controller HII Configuration Application" 字段随后将显示在该实用程序的左侧选项卡中。

图 3.1. "LSI SAS2 MPT Controller HII Configuration Application" 字段

- 5. 按 Enter 键可显示 "Controller Management"、"Virtual Disk Management" 和 "Physical Disk Management" 菜单选项。
- 6. 使用方向键导航至 "Physical Disk Managment" 菜单选项,然后按 Enter 键。

图 3.2. 选择 "Physical Disk Managment" 菜单选项

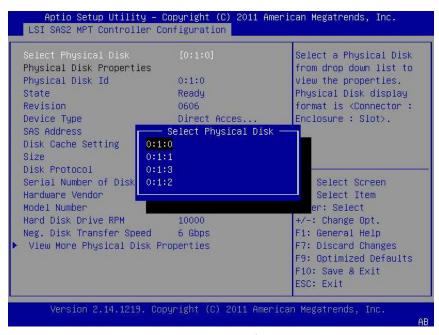

7. 从显示的菜单选项中,导航至 "View Physical Disk Properties" 菜单选项,然后按 Enter 键。

图 3.3. 选择 "View Physical Disk Properties" 菜单选项

8. 在显示的属性页上,导航至 "View Physical Disk Properties" 字段,然后按 Enter 键。 此时将显示 "Select Physical Disk" 弹出式窗口。在以下示例中,插槽 0、1、2 和 3 中共有 4 个驱动器。

图 3.4. "Select Physical Disk" 弹出式窗口

9. 查看物理磁盘,记下它们各自的插槽以备将来参考。 然可以使用这些磁盘作为 RAID 卷配置的一部分。请参见创建 RAID 卷 (x86) [29]。

▼ 创建 RAID 卷 (x86)

验证哪些驱动器可用于 RAID 卷配置(如确认驱动器及其插槽 (x86) [26]中所述)之后,即可使用这些驱动器来创建 RAID 卷。在以下过程中,将使用步骤 8 [28] 中的驱动器 2 和 3 (0:1:2, 0:1:3) 来创建 RAID 1 卷。

注

如果要在非 RAID 卷上安装操作系统,则无需执行此过程中的步骤,而应该使用 Oracle System Assistant。

HBA 必须安装固件级别 11.05.02.00 或更高级别。

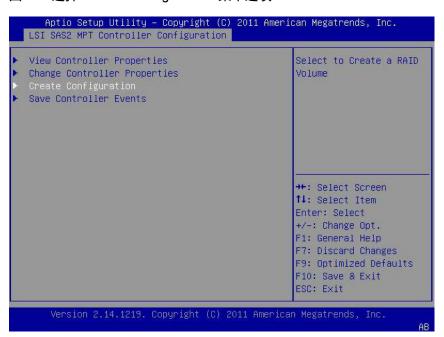
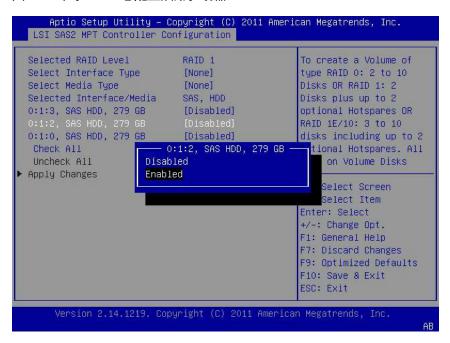

1. 在 "Select Physical Disk" 弹出式窗口(图 3.4 [29])中,使用 Esc 键返回到 "Controller Management" 菜单选项,然后按 Enter 键。

图 3.5. 选择 "Controller Management" 菜单选项

2. 从显示的菜单选项中,使用方向键导航至 "Create Configuration" 菜单选项,然后按 Enter 键。

图 3.6. 选择 "Create Configuration" 菜单选项

3. 从显示的菜单选项中,使用方向键导航至 "Select Physical Disks" 菜单选项,然后按 Enter 键。 在以下示例中,请注意已选中 RAID 1 级别。根据您的要求,可能需要创建其他级别的 RAID 卷。


图 3.7. 选择 "Select Physical Disks" 菜单选项

- 4. 对于 RAID 卷配置中需要的每个驱动器,请执行以下操作:
 - a. 使用方向键导航至该驱动器。
 - b. 按 Enter 键启动该驱动器的 "Enabled/Disabled" 弹出式窗口。
 - c. 在弹出式窗口中,导航至 "Enabled" 字段并按 Enter 键。

弹出式窗口将关闭,该驱动器现在以 "Enabled" 状态列出。

图 3.8. 针对 RAID 卷配置启用驱动器

- 5. 在启用了 RAID 卷要包含的所有驱动器后,使用方向键导航至同一页上的 "Apply Changes" 字段,然后按 Enter 键。 此时即使用您启用的驱动器创建了 RAID 卷。
- 6. 完成确认 RAID 卷创建 (x86) [32]中的步骤。

▼ 确认 RAID 卷创建 (x86)

在执行此过程之前,验证各个驱动器及其插槽 (确认驱动器及其插槽 (x86) [26]) 并创建一个 RAID 卷 (创建 RAID 卷 (x86) [29])。

- 1. 使用 Esc 键返回到 "Create Configuration" 菜单选项(图 3.7 [31])并按 Enter 键。 此时将显示一个页面,询问是否要继续创建卷。
- 2. 通过执行以下操作确认卷创建:
 - a. 使用方向键导航至 "Confirm" 字段。
 - b. 将 "Confirm" 字段的值更改为 "Enabled" 并按 Enter 键。

此时将显示 "Yes" 和 "No" 字段。

c. 使用方向键导航至 "Yes" 字段并按 Enter 键。

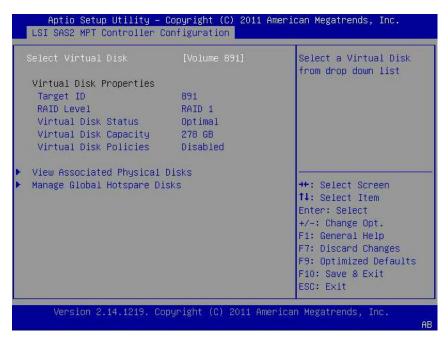

这样就完成了 RAID 卷创建过程。

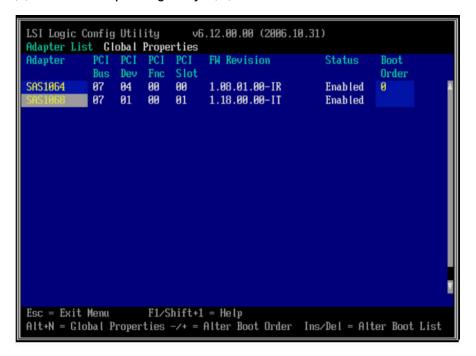
图 3.9. 确认 RAID 卷创建

3. 要验证 RAID 卷(逻辑卷)是否已创建,请使用方向键导航至 "Virtual Disk Management" 菜单选项(图 3.2 [28])并按 Enter 键,然后在所显示的页面上查看 RAID 卷信息。在以下示例中,创建了 RAID 1 卷,其目标 ID 为 891。

图 3.10. 查看新创建的 RAID 卷

4. 退出设置实用程序,重新引导到 Oracle System Assistant 实用程序,以在该 RAID 卷上安装 OS 或对引导驱动器进行操作。

使用 BIOS 配置实用程序(Legacy BIOS 引导)创建可引导的驱动器 (x86)

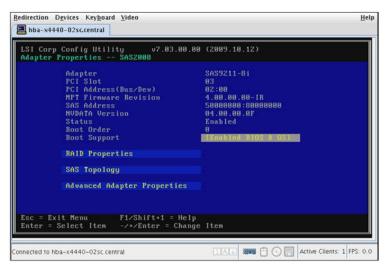

本节介绍如何在安装 OS 之前,使用 BIOS 配置实用程序在 x86 系统上设置驱动器。随后您可以使用该驱动器作为引导驱动器,在其中安装 OS。本节包含以下主题:

- 准备使用 BIOS 配置实用程序 [33]
- 使用 BIOS 配置实用程序创建 RAID 卷 (x86) [35]

▼ 准备使用 BIOS 配置实用程序

- 1. 从 Integrated Lights Out Manager (ILOM) 软件或视频图形阵列 (Video Graphics Array, VGA) 视频端口访问系统控制台。
- 2. 启动系统引导。 在引导期间,BIOS 初始化标题列出了有关发现的 SAS 适配器和设备的信息,这些适配器 和设备连接至系统中发现的 HBA。
- 3. 出现 "Press Ctrl-C to start LSI Corp Configuration Utility..." 提示后,立即 按 Ctrl+C 访问 LSI Corp Config Utility 实用程序。 此时将会显示 "LSI Corp Config Utility" 菜单(请参见图 3.11 [34])。

图 3.11. "LSI Corp Config Utility" 菜单



4. 要更改引导选项,请使用方向键导航至 "Boot Order" 字段,并使用键盘上的按键更改其值 (请参见下表)。

键	功能
Insert	启用引导
Del	禁用引导
加号 (+)	增大数字值以更改引导顺序
减号 (-)	减小数字值以更改引导顺序


5. 要更改其他选项,请使用方向键导航至所需的 HBA,然后按 Enter 键。 此时会针对选中的 HBA 显示 "Adapter Properties" 屏幕(请参见图 3.12 [35])。

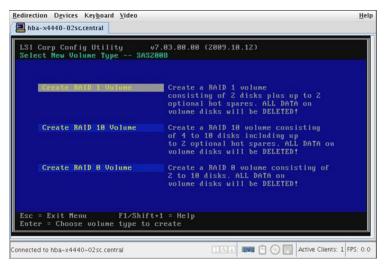
图 3.12. "Adapter Properties" 屏幕

6. 要查看连接到 HBA 的设备和 RAID 卷,请使用方向键导航至 "SAS Topology" 字段,然后按 Enter 键。 此时将显示 "SAS Topology" 屏幕(请参见图 3.13 [35])。

图 3.13. "SAS Topology" 屏幕

现在可以使用 BIOS 配置实用程序在 HBA 上创建 RAID 卷。

▼ 使用 BIOS 配置实用程序创建 RAID 卷 (x86)



注

如果想要在非 RAID 卷上安装 OS,无需执行本节中的步骤,而应直接转至选择可引导的驱动器 (x86) [36]。

1. 从 LSI Corp Config Utility 实用程序的 "Adapter Properties" 屏幕中,使用方向键导航至 "RAID Properties" 字段,然后按 Enter 键。 此时会显示 "Select New Volume Type" 屏幕(请参见图 3.14 [36])。

图 3.14. "Select New Volume Type" 屏幕

- 2. 导航至您希望创建的卷的类型,然后按 Enter 键。
- 3. 按 C 创建卷,选择保存更改,然后退出菜单。 此时返回到 "Adapter Properties" 屏幕,并成功创建了要在其中安装 OS 的 RAID 卷。
- 4. 执行"选择可引导的驱动器 (x86)" [36]中的步骤。

选择可引导的驱动器 (x86)

本节介绍如何选择要用于在 x86 系统中安装 OS 的可引导驱动器。本节包含以下主题:

• 选择可引导的驱动器 (x86) [36]

▼ 选择可引导的驱动器 (x86)

- 从 LSI Corp Config Utility 实用程序的 "Adapter Properties" 屏幕中,导航至 "SAS Topology" 字段,然后按 Enter 键。 此时将显示 "SAS Topology" 屏幕。
- 2. 导航至所需的设备,按 Alt+B 选择此设备作为主引导设备。
- 3. 如果您需要备用引导设备,请导航至所需的设备,然后按 Alt+A。
- 4. 确认您所做的更改后,保存配置,然后按 Esc 键退出此实用程序。

注

其他用于 HBA 的引导设备可能会作为可能的磁盘选项出现在系统 BIOS 中。然而,这些设备在存储配置更改后不一定保持一致。

5. 安装 OS (有关支持的 OS 列表,请参见"操作系统和技术要求" [9]) 。如果计划安装 Oracle Solaris OS,请按照安装 Oracle Solaris OS [37]中的说明执行操作。

安装 Oracle Solaris OS

您可以按本章所述在已创建的可引导驱动器上安装 Oracle Solaris 10 01/13 OS(最低)。从 Oracle Solaris 10 01/13 OS 开始,HBA 所需的驱动程序随 Oracle Solaris OS 一起提供。本节包含以下主题:

- 准备安装 Oracle Solaris OS [37]
- 安装 Oracle Solaris OS [37]

▼ 准备安装 Oracle Solaris OS

按本章所述确保存在要在其上安装 Oracle Solaris OS 的可引导驱动器。

▼ 安装 Oracle Solaris OS

- 1. 从以下下载站点获取 Oracle Solaris 10 01/13 OS(最低): http://www.oracle.com/technetwork/server-storage/solaris10/overview/index.html
- 2. 按 Solaris 10 安装文档中所述执行常规安装。
- 3. 应用系统专门需要的任何修补程序。 可从以下网址获取这些 Oracle Solaris 修补程序: http://support.oracle.com
- 4. 重新引导系统。

reboot

现在,系统将能够看到已装有 Oracle Solaris OS 的 RAID 卷,而且能够从中进行引导。

后续步骤

继续安装 HBA,如完成安装 [15]中所述。

•••第 4 章

HBA 软件安装

在安装了硬件并接通了系统电源之后,请按照本章中列出的适用于您的操作系统的说明,安装 HBA 驱动程序以及此安装所需的任何其他实用程序。

本章包括以下主题:

- "安装 Oracle Solaris 驱动程序和固件" [39]
- "安装 Linux 驱动程序和固件" [39]
- "安装 Windows Server 驱动程序和固件" [40]
- "安装 VMware 驱动程序和固件" [40]
- "安装 RAID 配置实用程序" [40]

安装 Oracle Solaris 驱动程序和固件

此 HBA 的最新驱动程序 (mpt_sas) 已包含在 Oracle Solaris 10 01/13 OS 和 Oracle Solaris 11 .1 OS 中。可从以下网址获取 Oracle Solaris OS 的最新版本:

http://www.oracle.com/technetwork/server-storage/solaris10/overview/index.html

HBA 至少需要以下修补程序和 SRU 才可使驱动程序正常工作:

- Oracle Solaris 10 01/13 (对于 SPARC 环境) :修补程序 149175-02 和 145648-04
- Oracle Solaris 10 01/13 (对于 x86 环境) : 修补程序 149176-02 和 45649-04
- Oracle Solaris 11.1:SRU 7

可从以下网址获取这些 Solaris 修补程序:

http://support.oracle.com

固件更新

可从以下网址下载 HBA 的 Solaris 固件和引导代码更新以及任何随附文档:

http://www.lsi.com/sep/Pages/oracle/index.aspx

安装 Linux 驱动程序和固件

请参阅 Oracle 硬件平台文档,以确定您的特定主机平台支持哪些 Linux 发行版。

第 4 章 HBA 软件安装 39

可从以下网址下载在 Linux OS 中运行 HBA 所需的 Linux 驱动程序:

http://www.lsi.com/sep/Pages/oracle/index.aspx

▼ 安装 Linux 驱动程序

- 1. 登录到主机。
- 2. 在浏览器中,转至 http://www.lsi.com/sep/Pages/oracle/index.aspx。
- 3. 选择所需的 HBA 类型和型号 (SG(X)-SAS6-REM-Z)。
- 4. 选择并下载您硬件平台上的 Linux 发行版(Red Hat Enterprise Linux、SuSE Linux Enterprise Server 或 Oracle Enterprise Linux)支持的 Linux 驱动程序。
- 选择并下载与 Linux 驱动程序对应的自述文件,然后按照自述文件中的说明完成该驱动程序的安装。

固件更新

可从以下网址下载 HBA 的 Linux 固件和引导代码更新以及任何随附文档:

http://www.lsi.com/sep/Pages/oracle/index.aspx

安装 Windows Server 驱动程序和固件

请参阅 Oracle 硬件平台文档,以确定您的特定主机平台支持哪些 Windows 发行版。

可从以下网址下载运行 HBA 所需的 Windows Server 驱动程序:

http://www.lsi.com/sep/Pages/oracle/index.aspx

▼ 安装 Windows 驱动程序

- 1. 登录到主机。
- 2. 在浏览器中,转至 http://www.lsi.com/sep/Pages/oracle/index.aspx。
- 3. 选择所需的 HBA 类型和型号 (SG(X)-SAS6-REM-Z)。
- 4. 选择并下载您的硬件平台上的 Windows 发行版支持的特定 Windows 驱动程序。
- 5. 选择并下载与 Windows 驱动程序对应的自述文件,然后按照自述文件中的说明完成该驱动程序的安装。

固件更新

可从以下网址下载 HBA 的 Windows 固件和引导代码更新以及任何随附文档:

http://www.lsi.com/sep/Pages/oracle/index.aspx

安装 VMware 驱动程序和固件

HBA 驱动程序会作为 VMware ESX Server 安装的一部分提供。安装 VMware ESX Server 时不需要用户执行任何操作。

安装 RAID 配置实用程序

可以针对 RAID 级别 0、1 和 10 对 HBA 进行配置。以下 RAID 配置实用程序适用于 HBA:

- MegaRAID SAS 软件 一个图形用户界面,通过该界面可以为 HBA 创建 RAID 卷。
- SAS2IRCU 实用程序 一种命令行实用程序,可用于为 HBA 创建 RAID 卷。

可从以下网址下载这些实用程序及其相关文档:

http://www.lsi.com/sep/Pages/oracle/index.aspx

第 4 章 HBA 软件安装 41

•••第 5 章

激活卷

本章介绍如何使 HBA 识别新连接的 RAID 卷,此卷是在连接到 HBA 之前创建的或者之前已连接到其他 HBA。

本章包括以下各节:

- "卷激活概述" [43]
- "激活卷" [43]

卷激活概述

如果您将一个 RAID 卷连接到 HBA,且该卷是在 HBA 之外创建的或者之前连接到了其他 HBA,该 HBA 会将此卷视为外部 RAID 卷。为保护数据,在手动激活外部 RAID 卷之前,操作系统或系统引导装载程序无法使用此外部 RAID 卷。在以下几种情况下,您必须手动激活卷:

- 您需要将组成硬件 RAID 卷的物理磁盘从一个系统移动到另一个安装有 HBA 的系统。
- 您需要将管理硬件 RAID 卷的现有 HBA 更换为新的 HBA。

激活卷

基于您的配置,请使用以下相应实用程序手动激活 RAID 卷:

- 如果 HBA 安装在 SPARC 系统中 使用 FCode 实用程序。请参见激活卷 (SPARC) [43]。
- 如果 HBA 安装在 x86 系统中 使用 BIOS 配置实用程序。请参见激活卷 (x86) [44]。
- 如果从某个操作系统 (operating system, OS) 中执行激活操作 使用 SAS2IRCU 实用程序。请参见激活卷 (从 OS) [44]。

▼ 激活卷 (SPARC)

- 1. 选择外部卷连接到的 HBA,如使用 FCode 实用程序之前的准备工作 (SPARC) [23]中所述。
- 2. 通过发出 show-volumes 命令,列出活动的外部卷。
- 3. 发出 volume-number-of-foreign-volume activate-volume 命令。 现在卷已激活,可供 HBA 使用。

第 5 章 激活卷 43

▼ 激活卷 (x86)

- 1. 进入 BIOS 配置实用程序,如准备使用 BIOS 配置实用程序 [33]中所述。
- 2. 导航到外部卷连接到的 HBA,并按 Enter 键。
- 3. 导航到 "RAID Properties" 字段并按 Enter 键。
- 4. 导航到 "View Existing Volume" 并按 Enter 键。
- 5. 确保屏幕上显示了相应的外部卷。 通过按 Alt+N 组合键,您可以在两个卷之间进行切换。
- 6. 导航到 "Manage Volume" 并按 Enter 键。
- 7. 导航到 "Activate Volume" 并按 Enter 键。 现在卷已激活,可供 HBA 使用。

▼ 激活卷 (从 OS)

- 1. 转至 LSI Web 站点中的 Oracle 支持区域 (http://www.lsi.com/sep/Pages/oracle/index.aspx),下载 SAS2IRCU 实用程序,然后在命令行或终端窗口中发出 sas2ircu 命令(不带选项)。
- 2. 要显示 SAS2IRCU 实用程序命令行参数的用法概要,请发出 sas2ircu 0 activate 命令。
- 3. 要获取控制器 ID,请发出 sas2ircu list 命令。
- 4. 要获取卷 ID,请发出 sas2ircu controller-ID display 命令。 现在卷已激活,可供 HBA 使用。

•••第6章

已知问题

本章提供了有关 HBA 的补充信息和解决方法信息,并为服务人员提供了具体的错误标识号。

本章包括以下各节:

- "MegaRAID Storage Manager 相关问题" [45]
- "实用程序相关问题" [46]
- "存储相关问题" [48]

MegaRAID Storage Manager 相关问题

本节包含以下信息:

- "无法通过 MSM 升级 HBA 上的固件" [45]
- "无法热拔插 HBA 卡" [45]
- "无法通过 MSM GUI 分配全局热备件" [46]

无法通过 MSM 升级 HBA 上的固件

错误 15664024

问题:使用 MegaRAID Storage Manager 软件升级 HBA 上的固件后,固件级别保持不变。您可能还会遇到消息,指明更新失败。

解决方法:此 HBA 不支持通过 MegaRAID Storage Manager 软件升级固件。要升级 HBA上的固件,请使用 SAS2IRCU 实用程序。您可以从 LSI Web 站点的 Oracle 支持区域获取 SAS2IRCU 实用程序:

http://www.lsi.com/sep/Pages/oracle/index.aspx

无法热拔插 HBA 卡

错误 15700904、15757240

问题:如果在系统上已安装 MegaRAID Storage Manager (MSM) 软件且 MSM 软件服务已在运行,则无法对 HBA 执行热拔插移除和插入操作。当尝试执行此类操作时,会显示弹出式窗口,指明 HBA 卡繁忙且您必须关闭正在访问该卡的程序。

第6章已知问题 45

解决方法:使用任务管理器应用程序停止以下 MSM 软件服务:

- MSMFramework
- MegaMontiorSrv

在停止这些服务之后,即可执行 HBA 卡热拔插操作。在完成热拔插操作之后,可以重新启动 这些 MSM 软件服务。

无法通过 MSM GUI 分配全局热备件

错误 15762780

问题:在 MegaRAID Storage Manager (MSM) 图形用户界面 (graphical user interface, GUI)中,使用 2 个硬盘创建一个驱动器后,用于从第三个硬盘驱动器创建全局热备件的选项变为非活动状态。

解决方法:不支持通过 MSM GUI 分配全局热备件,而应该使用 SAS2IRCU 实用程序来分配 全局热备件。

实用程序相关问题

本节包含以下信息:

- "在 RAID 卷名称中出现非字母字符" [46]
- "使用 SAS2IRCU 实用程序无法删除 RAID 卷" [46]
- "没有用于创建 RAID 10 卷的 FCode 实用程序命令" [46]
- "虚拟驱动器显示两次" [47]
- "硬盘驱动器不显示在 BIOS 设置实用程序中" [47]
- "无法查看新插入的驱动器" [47]

在 RAID 卷名称中出现非字母字符

错误 15597943

问题:在 LSI BIOS 配置实用程序中,非字母字符偶尔会出现在 RAID 卷的卷名中。这种问题偶尔会发生;后续的重新引导可能会消除这些字符而显示正确的卷名,也可能会导致继续显示乱码字符。这只是显示问题。卷的功能不受影响而且可用。

解决方法: 您可以在 LSI BIOS 配置实用程序中,通过查看卷的编号或组成磁盘识别每个卷。

使用 SAS2IRCU 实用程序无法删除 RAID 卷

错误 15625274

问题:没有关于如何通过 SAS2IRCU 实用程序删除 RAID 卷的 SAS2IRCU 实用程序帮助说明。

解决方法:有关如何使用 SAS2IRCU 实用程序删除特定 RAID 卷的信息,请参见完成安装 [15]的步骤 6.c [16] 中的"注"。

没有用于创建 RAID 10 卷的 FCode 实用程序命令

错误 15635981

问题:该 HBA 所支持的 RAID 类型为 0、1 和 10。但是,没有可用于创建 RAID 10 卷的 FCode 命令(在 SPARC OBP 环境中),而是存在用于创建 RAID 1E 卷的命令(createraid1e-volume 命令)。当使用该命令创建卷时,SAS2IRCU 实用程序会将该卷显示为 RAID 10 卷。

解决方法:要通过 FCode 实用程序创建 RAID 10 卷,请使用 create-raid1e-volume 命令。

虚拟驱动器显示两次

错误 15758202

问题:当系统 BIOS 处于 UEFI 引导模式且系统机箱中安装了两个 NEM 时,在 HBA 上配置的某些虚拟驱动器可能会在 BIOS 设置实用程序中显示两次。

解决方法: 您可以通过执行以下过程之一来防止发生这种情况。

过程1:

1. 移除系统机箱中已安装的 NEM 之一。

现在物理驱动器在 BIOS 设置实用程序中将只列出一次。

- 2. 在系统引导过程中出现提示时,通过按 F2 键访问 BIOS 设置实用程序。
- 3. 创建虚拟驱动器。
- 4. 更换系统机箱中的 NEM。

过程 2:

- 1. 在系统引导过程中出现提示时,通过按 F2 键访问 BIOS 设置实用程序。
- 2. 通过 BIOS 设置实用程序的 "Boot" 菜单更改系统 BIOS 的引导模式,使系统以 "Legacy" 模式进行引导。
- 3. 使用 BIOS 配置实用程序 (在引导过程中出现提示时按 Ctrl+C 组合键可访问该实用程序) 创建虚拟驱动器。
- 4. 在创建驱动器后,通过 BIOS 设置实用程序的 "Boot" 菜单恢复回到 UEFI 引导模式。

硬盘驱动器不显示在 BIOS 设置实用程序中

错误 15769403

问题:在将 HBA 上 RAID-1 虚拟驱动器配置中的某个硬盘驱动器移除并重新插入后,该硬盘驱动器不再显示在 BIOS 设置实用程序中。

解决方法:无。这是预期行为。要在重新插入后查看硬盘驱动器,请重新引导系统并进入 BIOS 设置实用程序。现在,您即可查看该硬盘驱动器。

无法查看新插入的驱动器

错误 15772754

问题:如果从 HBA 上配置的 RAID 卷中移除一个驱动器,该移除操作会导致 RAID 卷变为 "Failed" 状态。如果随后插入一个新驱动器来替换移除的驱动器,新驱动器可能不会显示在 Legacy BIOS 配置实用程序中的 "SAS Topology" > "Direct Attach Drives" 屏幕上。

解决方法:无。您可以在 Legacy BIOS 配置实用程序中的 "RAID Properties" > "View Existing Volumes" 屏幕上查看新驱动器。

第6章已知问题 47

存储相关问题

本节包含以下信息:

- "在发出 cfgadm -c unconfigure 命令后,蓝色的"可以移除"LED 指示灯未亮起" [48]
- "系统 BIOS 引导列表中仅显示了 24 个设备" [49]
- "按 Ctrl+N 组合键不会按预期启动网络引导或装入 HBA 选项 ROM" [49]
- "Oracle Solaris 操作系统安装挂起" [50]
- "系统在删除某个 RAID 卷后挂起" [50]
- "在卷重新生成过程中绿色 LED 指示灯不闪烁" [50]

在发出 cfgadm -c unconfigure 命令后,蓝色的"可以移除"LED 指示灯未亮起

错误 15622936

问题:如果在运行 Oracle Solaris OS 的系统上需要更换连接到 HBA 的某个驱动器,很难在发出 cfgadm -c unconfigure 命令之后物理地定位该驱动器。这是因为驱动器上蓝色的"可以移除"LED 指示灯本应该亮起却没有。

解决方法:要确定该磁盘的物理位置,然后对其进行热拔插,请执行本节中的过程。

▼ 确定磁盘物理位置,然后进行热拔插

1. 对您希望在系统机箱中实际找到的磁盘运行 format 命令。 在以下示例中,需要更换的磁盘为 /dev/dsk/c14t50010B90004BEF66d0。

```
# format c14t50010B90004BEF66d0
selecting c14t50010B90004BEF66d0
[disk formatted]
FORMAT MENU:
disk - select a disk
type - select (define) a disk type
partition - select (define) a partition table
current - describe the current disk
format - format and analyze the disk
fdisk - run the fdisk program
repair - repair a defective sector
label - write label to the disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
verify - read and display labels
save - save new disk/partition definitions
inquiry - show vendor, product and revision
volname - set 8-character volume name
!<cmd> - execute <cmd>, then return
quit
format>
```

2. 发出 analyze 格式命令。

```
format> analyze
```

```
ANALYZE MENU:

read - read only test (doesn't harm SunOS)

refresh - read then write (doesn't harm data)

test - pattern testing (doesn't harm data)

write - write then read (corrupts data)

compare - write, read, compare (corrupts data)

purge - write, read, write (corrupts data)

verify - write entire disk, then verify (corrupts data)

print - display data buffer

setup - set analysis parameters

config - show analysis parameters

!<cmd> - execute <cmd> , then return

quit

quit
```

3. 发出 read 分析命令并在提示下键入 y。

```
analyze> read
Ready to analyze (won't harm SunOS). This takes a long time,
but is interruptable with CTRL-C. Continue? ypass 0
```

- 4. 要在系统机箱中找到物理驱动器插槽,请检查驱动器上闪烁的活动 LED 指示灯。 在您希望更换的驱动器上,活动 LED 指示灯的闪烁速率将会保持匀速。
- 5. 如果您因为受到其他驱动器活动闪烁速率的干扰而无法确定驱动器插槽的位置,请执行以下操作:
 - a. 在命令行中按 Ctrl+Z 组合键暂停分析功能。
 - b. 查看驱动器插槽,确认您所需的驱动器上有持续亮起的活动 LED 指示灯(指示灯不再闪烁,而是一直保持亮起状态)。
 - c. 找到所需的驱动器插槽后,运行 fg 命令继续执行分析功能。
- 6. 在命令行中按 Ctrl+C 组合键中断读取测试。
- 7. 如果您无法按照此过程中步骤 4 [49] 和步骤 5 [49] 所述识别驱动器,请执行以下操作:
 - a. 将系统设为单用户模式,以便停止其他所有系统活动。
 - b. 重复步骤 1 [48] 到步骤 6 [49]。
- 8. 现在已经实际找到了驱动器,请发出 cfgadm -c unconfigure 命令以取消驱动器的配置,然后从机箱中移除此驱动器。

系统 BIOS 引导列表中仅显示了 24 个设备

错误 15648283

问题:如果在一个 x86 系统中安装了多个 HBA 卡,为所有卡填充的设备总数不能超过 24 个。将不会在系统 BIOS 引导列表中显示其他设备。

解决方法:使用 BIOS 配置实用程序选择哪些适配器是用于引导的候选适配器,以及哪些驱动器连接到您希望指定为引导驱动器的适配器。这使您能够确定哪些驱动器会始终列在系统 BIOS 引导列表中。

按 Ctrl+N 组合键不会按预期启动网络引导或装入 HBA 选项 ROM

错误 15601623

第 6 章 已知问题 49

问题:如果 HBA 安装在 x86 系统中,当您在串行控制台上按 Ctrl+N 组合键启动网络引导时,网络引导可能不会启动,HBA 的选项 ROM (Option ROM) 可能也不会装入。

解决方法:执行以下操作之一:

- 使用 ILOM 远程控制台并按 F12 键来启动网络引导。
- 如果使用串行控制台,请按 Ctrl+E 组合键进入 "BIOS Boot Device Priority" 菜单,然后将所需的 PXE 适配器(网络引导设备)移动到 "Boot Device Priority" 列表的顶部。这样该 PXE 适配器将被用作引导设备。
- 在 HBA 选项 ROM 代码运行期间或之后按 Ctr1+N 组合键。显示以下标题时,表示选项 ROM 代码正在运行: LSI Corporation MPT SAS2 BIOS. Copyright 2000-2010 LSI Corporation。

Oracle Solaris 操作系统安装挂起

错误 15761911

问题:如果使用图形用户界面 (graphical user interface, GUI) 模式安装 Oracle Solaris 操作系统 (operating system, OS), 且将 OS 安装到在 HBA 上配置的某个卷,则 OS 安装可能会在安装过程的 "detecting locale" (正在检测语言环境) 阶段挂起。

解决方法:确认计划在其上安装 OS 的卷不是正在进行重新同步的 RAID 1 或 RAID 10 卷。为了防止挂起,请确保在安装 OS 之前该卷处于最佳模式而不是重新同步模式。

系统在删除某个 RAID 卷后挂起

错误 15764098

问题:如果删除在 HBA 上配置的某个 RAID 卷而该卷处于 resync 模式,则安装有 HBA 的系统可能会挂起。

解决方法:当需要删除在 HBA 上配置的某个 RAID 卷时,请确认该卷处于 optimal 模式而不是 resync 模式。如果该卷正在重新同步,请等待 resync 过程完成之后再删除该卷。

在卷重新生成过程中绿色 LED 指示灯不闪烁

错误 15761906

问题:在插入驱动器以重新生成 RAID 10 卷之后,每个新插入驱动器上的绿色 LED 指示灯未按预期闪烁。

解决方法:无。请在重新生成过程中忽略绿色 LED 指示灯。

•••附录 A

HBA 规范

本附录包含 HBA 的规范。本附录包含以下主题:

- "物理尺寸" [51]
- "PCI 性能" [51]
- "SAS 端口带宽" [52]
- "环境要求" [52]
- "HBA 的特征" [52]

物理尺寸

HBA 板的尺寸为 4.5 英寸 x 5.5 英寸。PCIe 和 SAS/SATA 接口连接是通过夹层连接器 J1 实现的。J1 符合《PCIe Card Electromechanical Specification 2.0》。

PCI 性能

HBA 的 PCI Express 特性包括:

- 提供可伸缩的接口
 - 最高 0.5 GB/s (500 MB/s) 的单通道聚合带宽
 - 最高 2 GB/s (2000 MB/s) 的四通道聚合带宽
 - 最高 4.0 GB/s (4000MB/s) 的八通道聚合带宽
- 支持设备之间的串行点对点互连
- 支持通道反向和极性反转
- 支持 PCI Express 的高级错误报告功能
- 使用分组和分层体系结构
- 每个管脚以很低的开销和很短的等待时间实现很高的带宽
- PCI Express 软件与 PCI 和 PCI-X 软件兼容
 - 综合利用现有的 PCI 设备驱动程序
 - 支持内存、I/O 和配置地址空间
 - 支持内存读/写事务、I/O 读/写事务和配置读/写事务
- 每个设备提供 4 KB PCI 配置地址空间
- 支持已发布和未发布的事务
- 支持流量类 0 和类 1 虚拟通道

附录 A. HBA 规范 51

- 支持消息信号中断 (MSI 和 MSI-X) 以及 INTx 中断信号,从而支持传统 PCI
- 支持端对端 CRC (ECRC) 和高级错误报告

SAS 端口带宽

HBA 支持窄带和宽带端口,如下表所述。

表 A.1. 6 Gb SAS 带宽

半双工	全双工
窄带端口(1 通道),600 MB/s	窄带端口(1 通道),1200 MB/s
宽带端口(2 通道),1200 MB/s	宽带端口(2 通道),2400 MB/s
宽带端口(4 通道),2400 MB/s	宽带端口(4 通道),4800 MB/s

环境要求

表 A.2 [52] 列出了 HBA 环境要求。

表 A.2. HBA 环境规范

规范	运行期间	非运行期间
温度	+10°C 至 +60°C (没有电池备份单元)+10°C 至 +44.8°C (有 iBBU 电池备份)	-30°C 至 +80°C (没有电池备份单元)0°C 至 +45°C (有 iBBU 电池备份)
湿度	5% 至 90% RH,无冷凝,最高 40°C,最大湿球温度 27°C,最长可停留 16 小时	93% RH,无冷凝,最高 40℃,120 小时
海拔高度	40°C 时 3200 米, 可停留 4 小时	0°C 时 12,200 米,可停留 4 小时
振动	5-500-5 Hz 扫描,所有轴向 0.25G,1 倍频/分钟时所 有轴向有 5 个扫描	5-500-5 Hz 扫描,所有轴向 1.2G,1 倍频/分钟时所有 轴向有 5 个扫描
震动	5.5G,11 ms 半正弦,在 x、y 和 z 轴上有 10± 次震 动	33G, 11 ms 半正弦, 在 x、y 和 z 轴上有 3± 次震动
气流	至少每分钟 200 线性英尺 (LFPM)	至少每分钟 200 线性英尺 (LFPM)

HBA 的特征

HBA 使用 Oracle 指定的服务器的 HBA 控制器提供 6 Gb SAS 性能。该板包含适用于固件和 BIOS 的板上闪存以及适用于嵌入式镜像的 NVSRAM。HBA 上的八个 PHY 中的任意一个都可以实现 6 Gb、3 Gb 或 1.5 Gb 的 SAS 或 SATA 链路速率。

LED 指示灯

该板具有八个活动 LED 指示灯(以绿色闪烁,表示 SAS 活动),八个端口故障 LED 指示灯(一直显示黄色,表明端口中存在故障链路),以及一个心跳 LED 指示灯(以绿色闪烁,表示固件心跳,并表明该卡可以进行常规活动)。

连接器

本节提供了主机总线适配器上不同连接器的说明。

- SAS/SATA 和 PCIe 夹层连接器 (J1)。支持 x8 PCIe 接口和 x8 SAS/SATA 接口。
- UART 连接器 (J4)。需要特殊电缆和 Oracle 支持才能收集详细 IOC 状态的调试端口。

表 A.3 [53] 列出了各种 UART 连接以及对应的功能。

表 A.3. UART 连接

管脚	功能
1	TX_OUT
2	GND
3	RX_IN
4	3.3 V

附录 A. HBA 规范

词汇表

A, B

BIOS

基本输入/输出系统 (Basic Input/Output System) 的首字母缩略词。提供基本读/写功能的软件。通常保持为固件(基于 ROM)。计算机主板上的系统 BIOS 会引导并控制系统。主机适配器上的 BIOS 充当系统 BIOS 的扩展。

C

configuration (配置)

指的是设置计算机的方式,包括构成计算机系统的组合硬件组件(计算机、显示器、键盘和外围设备)或使硬件组件可以互相通信的软件设置。

D

device driver (设备驱动程序)

一种程序,使微处理器 (通过操作系统) 可以指引外围设备的运行。

domain validation (域验证)

一种软件过程,主机从中查询设备以确定其以协商数据速率通信的能力。

drive group (驱动器组)

一组物理驱动器,用于将驱动器上的存储空间组合到单个存储空间段。热备用驱动器不会主动加入驱动器组中。

E

EEPROM

电子可擦可编程只读存储器 (electronically erasable programmable read-only memory) 的首字母缩略词。它是一种存储器芯片,通常存储配置信息,可在断电时提供长时间的稳定存储,并且可以进行重新编程。请参阅 NVRAM。

external SAS device (外部 SAS 设备) 安装在计算机机柜外部的 SAS 设备。这些设备使用特定类型的屏蔽电缆进行连接。

F

Fusion-MPT architecture (Fusion-MPT 体系结构) Fusion 消息传递技术 (Fusion-Message Passing Technology) 体系结构的首字 母缩略词。Fusion-MPT 由多个主要元素构成:Fusion-MPT 固件、光纤通道和 SCSI 硬件,以及支持这些体系结构的操作系统级驱动程序。Fusion-MPT 体系结构提供了一个支持光纤通道设备和 SCSI 设备的二进制操作系统驱动程序。

$\mathsf{G}_{\mathsf{v}}\mathsf{H}$

host adapter board (主机适配器板)

提供与计算机系统的设备连接的电路板或集成电路。

词汇表 55

host bus adapter (主机总线适配器)

将主机连接到网络和存储设备的一件硬件。

host (主机)

在其中安装了 RAID 适配器的计算机系统。它使用 RAID 适配器在连接到 SCSI 总线的设备之间传输信息。

hot spare (热备件)

处于空闲状态并且已打开电源的备用驱动器,在驱动器出现故障时可以立即投入使用。热备件不包含任何用户数据。热备件可专用于单个冗余阵列,也可以 是适配器管理的所有阵列的全局热备用池的一部分。

当驱动器出现故障时,适配器固件会自动将数据从出现故障的驱动器替换并重构至热备件。只能从具有冗余(RAID 级别 1、5、6、10、50 和 60;不是RAID 级别 0)的虚拟驱动器中重构数据,并且热备件必须具有足够的容量。

internal SAS device (内部 SAS 设备)

安装在计算机机柜内部的 SAS 设备。这些设备使用屏蔽电缆进行连接。

J、K、L、M

main memory (主内存)

CPU 可以直接访问的计算机内存部分 (通常与 RAM 同义)。

N

NVRAM

非易失性随机存取存储器 (nonvolatile random access memory) 的首字母缩略词。存储配置信息的 EEPROM (electronically erasable programmable readonly memory, 电子可擦可编程只读存储器) 芯片。请参阅 EEPROM。

 $O \setminus P$

PCI

外设部件互连 (peripheral component interconnect) 的首字母缩略词。使设备可以直接连接到计算机内存的高性能本地总线规范。通过 PCI 本地总线,可以从 32 位数据路径 (33 MHz) 透明升级到 64 位数据路径 (33 MHz),也可以从 32 位数据路径 (66 MHz) 透明升级到 64 位数据路径 (66 MHz)。

PCI Express

外设部件互连加速 (Peripheral Component Interconnect Express) 的首字母缩略词。使设备可以直接连接到计算机内存的高性能本地总线规范。PCI Express 是一种双向串行连接,可在两对点对点数据线上传输数据。PCI Express 超越了 PCI 规范,因为它可用作各种系统的统一 I/O 体系结构:台式机、工作站、移动设备、服务器、通信和嵌入式设备。

peripheral device (外围设备)

用于计算机且受计算机控制的一件硬件(如视频显示器、驱动器、打印机或CD-ROM)。SCSI 外围设备通过 MegaRAID SAS RAID 控制器(主机适配器)进行控制。

PHY

传送和接收在串行总线中传输的数据包所需的接口。

每个 PHY 可以构成与其他 SATA 设备上的 PHY 连接的物理链路的一端。物理链路包含构成两个差分信号对的四根线。一个差分对传送信号,而另一个差

分对接收信号。这两个差分对同时运行,允许在接收和传送方向同时进行并发数据传输。

Q、R、S

SAS

串行连接 SCSI (Serial Attached SCSI) 的首字母缩略词。利用经过实证的 SCSI 协议集的串行点对点企业级设备接口。与并行 SCSI 相比,SAS 接口可提供改进的性能、简化的布线、更少的连接、更低的针计数和更低的电源要求。SAS 适配器利用与串行 ATA 兼容的通用电气和物理连接端口。SAS 适配器支持 ANSI《Serial Attached SCSI Standard》(版本 2.0)。此外,适配器还支持《Serial ATA Specification》(版本 1.0a)定义的串行 ATA II (Serial ATA II, SATA II) 协议。SAS 适配器是一种通用适配器,既支持 SAS 接口也支持 SATA II 接口,可为服务器环境和高端工作站环境提供主干。SAS RAID 适配器上的每个端口都支持 SAS 设备和/或 SATA II 设备。

SAS device (SAS 设备)

符合 SAS 标准且通过 SAS 电缆连接到 SAS 总线的任何设备。这包括 SAS RAID 适配器(主机适配器)和 SAS 外围设备。

SATA

串行高级技术附件 (Serial Advanced Technology Attachment) 的首字母缩略词。一种物理存储接口标准,SATA 是提供设备之间的点对点连接的串行链路。使用更细的串行电缆可以使系统中的通风更顺畅,并且允许机箱设计更小巧。

SMP

串行管理协议 (Serial Management Protocol) 的首字母缩略词。SMP 直接与连接的 SAS 扩展器设备进行拓扑管理信息的通信。适配器上的每个 PHY 都可用作 SMP 启动器。

spanning (跨越)

将多个驱动器组合为一个逻辑驱动器的方法。如果希望在一个驱动器组中包含所有驱动器容量,可以跨越(合并)驱动器,以便操作系统只看到一个大型驱动器。有关更多信息,请参阅《MegaRAID SAS Software User's Guide》,网址为:http://www.lsi.com/sep/Pages/oracle/index.aspx。

SSP

串行 SCSI 协议 (Serial SCSI Protocol) 的首字母缩略词。使用 SSP 可以与其他 SAS 设备通信。SAS 适配器上的每个 PHY 都可用作 SSP 启动器或 SSP目标。

STP

串行隧道协议 (Serial Tunneling Protocol) 的首字母缩略词。使用 STP 可通过连接的扩展器与 SATA II 设备通信。SAS 适配器上的每个 PHY 都可用作 STP 启动器。

stripe size (条带大小)

条带占用的驱动器总空间不包括奇偶校验驱动器空间。例如,假设条带包含64 KB 的驱动器空间并且有16 KB 的数据位于条带中的每个驱动器上。在这种情况下,条带大小为64 KB 并且条带元素大小为16 KB。条带深度为四(条带中四个驱动器)。可以为每个逻辑驱动器指定8 KB、16 KB、32 KB、64 KB、128 KB、256 KB、512 KB 或1 MB 的条带大小。

较大的条带大小可以改善读取性能,连续进行大多数读取时尤其如此。对于通常的随机读取,请选择较小的条带大小。

striping (条带化)

驱动器条带化跨两个或多个驱动器写入数据。每个条带可跨越两个或多个驱动器,但是只占用每个驱动器的一部分。因此,每个驱动器可以有多个条带。条带占用的空间量与条带中包括的每个驱动器上的空间量相同。位于一个驱动器

词汇表 57

上的条带部分是条带元素。条带化本身不会提供数据冗余;与奇偶校验组合条带化会提供数据冗余。

T, U, V, W, X, Y, Z

virtual drive (虚拟驱动器)

RAID 控制器基于一个或多个驱动器创建的存储单元。虽然可以基于多个驱动器创建虚拟驱动器,但是操作系统将其视为一个驱动器。根据所使用的 RAID 级别,虚拟驱动器可以在驱动器出现故障时保留冗余数据。