

StorageTek™ Host Software Component (HSC) MVS software

Configuration Guide

Part Number: 312642201 Revision:C Version: 6.2

StorageTek™ Host Software Component (MVS Implementation)

Configuration Guide

Release 6.2

312642201

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciées de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

We welcome your feedback. Please contact the Sun Learning Services Feedback System at:

SLSFS@Sun.com

or

Sun Learning Services Sun Microsystems Inc. One StorageTek Drive Louisville, CO 80028-3256 USA

Document Effectivity

EC Number	Date	Doc Kit Number	Туре	Effectivity
132519	March, 2007		Revision A	This document applies to the Host Software Component for MVS (MVS/HSC), Version 6.2.
	April, 2008		Revision B	
	September, 2008		Revision C	

Contents

What's New With This Release?	xv
Preface	xxiii
Scope	xxiii
Intended Audience	xxiii
How To Use This Guide	xxiii
Reference To HSC Product Releases	xxiii
Related Publications	xxiv
Storage Technology Corporation Publications	xxiv
Additional Information	XXV
Sun's External Web Site	XXV
Customer Resource Center	XXV
Partners Site	XXV
Hardcopy Publications	XXV
Customer Support	xxvi
Customer-initiated Maintenance	xxvi
Sun's Worldwide Offices	xxvii
Chapter 1. Overview	1
Summary of Configuration Tasks	1
Performing Library Modifications	3
Customizing HSC Software	5
Macros	5
Utilities	5
HSC Control Statements	5
Operator Commands	5
Interacting With Third Party Software	6
Library Configuration Checklist	6
Chapter 2. Configuring the HSC Environment	7
Physical Plan Verification	7
System Software Verification	8
Migration from Earlier HSC Releases	8
Verification of Third-Party Software Compatibility	8
LSM/Pass-thru Port Relationship Definition	9
Considerations for Configuring Unit Addresses and Esoterics	10
JCL Considerations	10

	Remote Library Considerations	10
	CDS Considerations	10
	DFHSM Considerations	10
	HSC Scratch Allocation Considerations	10
	Configuring MVS Unit Addresses and Esoterics	11
	Unit Addresses	11
	Nonlibrary Esoteric	11
	Library Esoteric(s)	11
	Configuring LIBGEN Unit Addresses	12
	Unit Addresses	12
	DASD Planning	13
	Control Data Set Recovery Strategies	13
	DASD Sharing	16
	I/O Device Reserve Considerations	16
	Calculating DASD Space	18
	Automated Space Calculation	19
	Data Set Placement	19
	Cartridge Capacity Calculation - SL8500 and SL3000	20
~		•
Ch	apter 3. Performing Pre-execution Tasks	21
	Adding Definitions for ACF/VTAM Communications	22
	Coding and Cataloging the HSC Started Task Procedure	24
	IPLing the System	24
Ch	apter 4. Creating the Library Configuration File (LIBGEN)	25
Ch		25 25
Ch	Defining the Library Configuration File (LIBGEN)	
Ch		25
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN)	25 25
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros	25 25 26
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro	25 25 26 32
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLILIBRY Macro SLIALIST Macro	25 25 26 32 34
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLILIBRY Macro SLIALIST Macro SLIACS Macro	25 25 26 32 34 42
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLILIBRY Macro SLIALIST Macro	25 25 26 32 34 42 43
Ch	Defining the Library Configuration File (LIBGEN)	25 25 26 32 34 42 43 47
Ch	Defining the Library Configuration File (LIBGEN)	25 25 26 32 34 42 43 47 49
Ch	Defining the Library Configuration File (LIBGEN)	25 25 26 32 34 42 43 47 49 59
Ch	Defining the Library Configuration File (LIBGEN)	25 25 26 32 34 42 43 47 49 59 61
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLIRLIBRY Macro SLIALIST Macro SLIALIST Macro SLISTATN Macro SLISTATN Macro SLIDLIST Macro SLIDLIST Macro SLIDRIVS Macro SLIENDGN Macro LIBGEN Outputs	25 25 26 32 34 42 43 47 49 59 61 67
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLIRLIBRY Macro SLIALIST Macro SLIACS Macro SLISTATN Macro SLISTATN Macro SLIDLIST Macro SLIDLIST Macro SLIDRIVS Macro SLIDRIVS Macro LIBGEN Outputs LIBGEN Process Verification	25 25 26 32 34 42 43 47 49 59 61 67 68
Ch	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLIRLIBRY Macro SLIALIST Macro SLIALIST Macro SLISTATN Macro SLISTATN Macro SLIDLIST Macro SLIDLIST Macro SLIDRIVS Macro SLIENDGN Macro LIBGEN Outputs	25 25 26 32 34 42 43 47 49 59 61 67 68 68
Ch	Defining the Library Configuration File (LIBGEN)	25 25 26 32 34 42 43 47 49 59 61 67 68 68 68
	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLIRCVRY Macro SLIALIST Macro SLIACS Macro SLISTATN Macro SLISTATN Macro SLIDLIST Macro SLIDLIST Macro SLIDRIVS Macro SLIENDGN Macro LIBGEN Outputs LIBGEN Process Verification Assembler and Linkage Editor JCL Verifying the Library Generation (LIBGEN) SLIVERFY Program	25 25 26 32 34 42 43 47 49 59 61 67 68 68 68 68 68
	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLIRCVRY Macro SLILIBRY Macro SLIALIST Macro SLIALIST Macro SLISTATN Macro SLISTATN Macro SLIDLIST Macro SLIDLIST Macro SLIDRIVS Macro SLIDRIVS Macro LIBGEN Outputs LIBGEN Process Verification Assembler and Linkage Editor JCL Verifying the Library Generation (LIBGEN) SLIVERFY Program	25 25 26 32 34 42 43 47 49 59 61 67 68 68 68 68 69 69 71
	Defining the Library Configuration File (LIBGEN) Procedure for Library Generation (LIBGEN) LIBGEN Macros SLIRCVRY Macro SLIRCVRY Macro SLIALIST Macro SLIACS Macro SLISTATN Macro SLISTATN Macro SLIDLIST Macro SLIDLIST Macro SLIDRIVS Macro SLIENDGN Macro LIBGEN Outputs LIBGEN Process Verification Assembler and Linkage Editor JCL Verifying the Library Generation (LIBGEN) SLIVERFY Program	25 25 26 32 34 42 43 47 49 59 61 67 68 68 68 68 69 69

Calculating DASD Space using SLICREAT	74
Calculating Cartridge Capacity - SL8500 and SL3000	74
Executing the SLICREAT Program	75
Verifying Successful Completion of the SLICREAT Program	78
Reformatting the SLSJRNnn Data Sets	78
Creating Only the SLSSTBY CDS	78
Storage Cell Capacity for 4410, 9310, and ExtendedStore LSMs	79
Storage Cell Capacity for 9360 LSMs	79
Storage Cell Capacity for TimberWolf 9740 LSMs	80
Storage Cell Capacity for StreamLine SL8500 Libraries	81
Storage Cell Capacity for StreamLine 3000 Libraries	82
Backup Utility Recommendation	84
Chapter 6. Defining HSC Control Statements	85
	85
Definition Data Set Control Statements	
Parameter Library (PARMLIB) Control Statements	86
Chapter 7. Configuring NCS License Keys	89
Overview	89
Permanent License Key	89
Trial Period - HSC Only	89
Emergency License Key	90
LKEYINFO Control Statement	91
LKEYDEF Command and Control Statement	93
Chapter 8. Initializing the HSC	95
Starting the HSC	95
Creating an HSC START Procedure	95
Executing the HSC START Procedure	102
Modifying LSMs Online	102
Configuration Mismatches	102
Multiple Hosts Startup Considerations	103
Issuing the START Command	103
Preinitializing the HSC as a Subsystem	104
Starting the HSC with PARM='INIT'	105
Initializing the HSC Under the Master Subsystem	105
Starting the HSC Using the SSYS Parameter	100
Starting the HSC to the Full Service Level	107
Starting the HSC to the Pull Service Level	107
Chapter 9. Terminating the HSC	109
Stopping the HSC	109
Orderly Termination of the HSC	109 110
Chapter 10. Testing the Installation	111
Scope of Installation Verification	111

Installa	tion Verification Prerequisites	114
	nctional Test Phases	114
Basic I	nstallation Integrity Test	115
R	ecommended Test Procedure	115
ACS an	nd HSC Functionality Test	116
R	ecommended Test Procedure	116
	tilities and Basic Commands Test	117
	ecommended Test Procedure	117
Manual	l Mode Test	119
	ecommended Test Procedure	119
	otion of Test Programs	120
•	LIEXERS Program	120
Chapter 11	. Planning Migration to the Library	123
Tri-Opt	tic Label Verification	123
	Γ External Media Label Requirements	124
	Γ External Media Label Requirements	124
	External Media Label Requirements	124
	T9840A, T9840B, or T9840C) External Media Label Requirements	124
	T9940A or T9940B) External Media Label Requirements	124
	DLT, T10000 External Media Label and Media Domain Requirements	125
	g Cartridges into the Library	127
	Nter Command	127
	Ianually Loading Cartridges into LSM	127
	nitialize Cartridge Utility	128
	sing an Auto-mode CAP to Load Cartridges	128
	ng Applications to Library Use	128
Appendix A	A. Library Configuration Checklist	129
Appendix E	3. Library Configurations	133
	Configurations with LIBGEN Files	133
-	ost, One ACS, One SL3000 Library Configuration	133
	lardware Components	134
	IBGEN	134
	ost, Two ACSs, One 9310 LSM, One SL8500 Library Configuration	136
	lardware Components	136
	IBGEN01	136
	ost, One ACS, One 9310, One 9360 LSM Configuration	141
	lardware Components	141
	IBGEN02	141
	ost, One ACS, Two 9360 WolfCreek LSM Configuration	141
	lardware Components	145
	IBGEN03	145
	ost, One ACS, One 9310 LSM, Dual LMU Configuration	149
	lardware Components	149
	IBGEN04	149
L		エモノ

Two Host, One ACS, Two 9310 LSM Configuration	152
Hardware Components	152
LIBGEN05	152
Appendix C. Macros, Control Statements, Utilities and Commands Syntax Conventions	157
Syntax Flow Diagrams	157
Specifying Commands	157
Variables	157
Delimiters	157
Flow Lines	158
Single Required Choice	158
Single Optional Choice	159
Defaults	159
Repeat Symbol	159
Syntax Continuation (Fragments)	160
Library Identification	161
Ranges and Lists	162
Control Statement Syntax Conventions	165
Appendix D. Migration and Coexistence Processes	167
Overview of Migration and Coexistence	168
HSC Migration Scenarios	169
Software Support	169
HSC Coexistence Scenarios	169
HSC Installation Scenarios	170
Installation in a Verification Environment	170
Direct Installation into a Production Environment	170
Hardware Support Dependencies Between HSC Releases	171
HSC Support for Virtual Media	174
Control Data Set and Journal Requirements	175
Backup Requirements	175
CDS Conversion Requirements (Up-Level Migration)	175
CDS Conversion Requirements (Down-Level Migration)	175
MERGEcds Utility	175
Utility Usage Requirements	175
Compatibility of Stand-Alone Utilities	176
Compatibility of Utilities Requiring the HSC Subsystem	176
Up-Level Migration	170
Procedure for 6.0/6.1 to 6.2 Up-Level Migration	177
Procedure to Verify HSC 6.2 Functions Against a Separate CDS	178
Procedure to Verify HSC 6.2 Functions Without Library Hardware	179
Procedure to Verify 6.2 Functions With Library Hardware	181
Down-Level Migration	182
De-installation of PTFs	182
Procedure for 6.2 to 6.0/6.1 Down-Level Migration	182
e e e e e e e e e e e e e e e e e e e	
Glossary	183

Index		199
-------	--	-----

Figures

Figure 1.	Configuration/Installation Flow Diagram	4
Figure 2.	Required Order for Specifying the LIBGEN Macros	28
Figure 3.	Sample Library Configuration	29
Figure 4.	LIBGEN MACRO Relationship	30
Figure 5.	Example of Pass-thru Port Relationships	53
Figure 6.	SL3000 Drive Panel Layout Example	63
Figure 7.	Data Set Initialization	77
Figure 8.	Installation Verification Flow Diagram	112
Figure 9.	Cartridge with Tri-Optic Label and ECART Media Type Indicator	123
Figure 10.	LIBGEN for One Host, One ACS, One SL3000 Library Configuration	134
Figure 11.	One Host, One ACS, One SL3000 Library Configuration	135
Figure 12.	LIBGEN for One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration	137
Figure 13.	One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration	140
Figure 14.	LIBGEN for One Host, One ACS, One 9310 LSM, One 9360 LSM Configuration	142
Figure 15.	One Host, One ACS, One 9310 LSM, One 9360 LSM Configuration	144
Figure 16.	LIBGEN for One Host, One ACS, Two 9360 LSM Configuration	146
Figure 17.	One Host, One ACS, Two 9360 LSM Configuration	148
Figure 18.	LIBGEN for One Host, One ACS, One 9310 LSM, Dual LMU Configuration	150
Figure 19.	One Host, One ACS, One 9310 LSM, Dual LMU Configuration	151
Figure 20.	LIBGEN for Two Host, One ACS, Two 9310 LSM Configuration	153
Figure 21.	Two Host, One ACS, Two 9310 LSM Configuration	155

Tables

Table 1.	Other Software Products Compatible with the HSC	8
Table 2.	Mapping of Command Prefix Codes to Characters	36
Table 3.	SL8500 Drive Panel Layout Example - Outside Library	64
Table 4.	SL8500 Drive Panel Layout Example - Inside Library	64
Table 5.	LIBGEN Job Step Return Codes	68
Table 6.	Storage Cell Capacity of 4410, 9310, ExtendedStore LSMs	79
Table 7.	Storage Cell Capacity of WolfCreek 9360-050 LSMs	79
Table 8.	Storage Cell Capacity of WolfCreek 9360-075 LSMs	80
Table 9.	Storage Cell Capacity of WolfCreek 9360-100 LSMs	80
Table 10.	Storage Cell Capacity of TimberWolf 9740 LSMs	80
Table 11.	Storage Cell Capacity of StreamLine (SL8500) Libraries	81
Table 12.	Storage Cell Capacity of StreamLine (SL3000) Libraries	82
Table 13.	HSC Initialization	104
Table 14.	Utilities Tested During Installation Verification	112
Table 15.	Commands Tested During Installation Verification	113
Table 16.	Job Processing Functions Tested During Installation Verification	114
Table 21.	Non-legacy Media Type/Domain Definitions	125
Table 23.	HSC Library Hardware Dependencies	173

What's New With This Release?

Enhancement/Modification	Publication(s)/ Primary Locations
Revision C:	·
Support for T10000B drive encryption recording techniques and model types.	System Programmer's Guide Chapter 2, T10000 Drive EncryptionChapter 3, VOLATTR control statementChapter 4, EJECt Cartridge and

HSC 6.2 includes the following enhancements and modifications:

Enhancement/Modification	Publication(s)/ Primary Locations
Revision B:	
Support for the SL3000 library (HSC 6.1 and later).	<i>Configuration Guide</i> Chapter 2, Calculating DASD Space
	Chapter 4, SLILSM, SLIDRIVS macros
	Chapter 5, Storage Cell Capacity for StreamLine SL3000 Libraries
	Appendix B, Library Configurations
	<i>Operator's Guide</i> Chapter 2, CAPPref, DRAin, EJect, ENter, MODify, MOVe, RELease CAP, VIew commands
	System Programmer's Guide Chapter 2, Mixing Media Types and Recording Techniques
	Chapter 4, AUDIt , EJECt Cartridge, Initialize Cartridge utilities
	Appendix B, HSC Support for the SL3000 Library

Enhancement/Modification	Publication(s)/ Primary Locations
SL8500 library LSM partitioning (HSC 6.1 and later).	System Programmer's Guide Chapter 3, LMUPATH control statement
	Chapter 4, SET FREEZE utility
	Appendix A, HSC Support for the SL8500 Library
	<i>Operator's Guide</i> Chapter 2, Display ACS, Display LSM, and Display Exceptions
	<i>Messages and Codes Guide</i> New messages:
	• SLS0073I
	• SLS0695I
	• SLS4232I
	• SLS4412I
	• SLS4413I
	• SLS4643I
	Changed messages:
	• SLS0653I
	• SLS0663I
	• SLS1000I
	• SLS2008I
	• SLS4401I
	• SLS4407I
	• SLS4610I
Considerations for SL8500 library TCP/IP communications (HSC 6.1 and later).	System Programmer's Guide Appendix A, HSC Support for the SL8500 Library
Dual IP connections to an SL8500 library (HSC 6.1 and later).	System Programmer's Guide Appendix A, HSC Support for the SL8500 Library
Multiple connections to an SL8500 library (HSC 6.1 and later).	System Programmer's Guide Appendix A, HSC Support for the SL8500 Library

Enhancement/Modification	Publication(s)/ Primary Locations
Support for T9840D drives (HSC 6.1 and later).	<i>Configuration Guide</i> Chapter 2, Unit Addresses
	Chapter 4, SLIDRIVS macro
	Chapter 11, External Media Requirements
	<i>Operator's Guide</i> Chapter 2, Display Drives, Display SCRatch, Display Mount, THReshld, EJect, Warn
	<i>System Programmer's Guide</i> Chapter 3, TAPEREQ, UNITATTR, VOLATTR
	Chaper 4, EJECt, SCRatch Redistribution
	Appendix H, MOUNT, QDRLIST, QSCRATCH, SELSCR
Support for LTO generation 4 drives (HSC 6.1 and later).	Configuration Guide
Note: LTO transports are not supported in an MVS environment. These transports are recognized by the HSC but are accessible only to open systems clients using LibraryStation.	Chapter 2, Unit Addresses Chapter 4, SLIDRIVS macro
	Chapter 11, External Media Requirements
	<i>Operator's Guide</i> Chapter 2, Display Drives, Display SCRatch, Display Mount, THReshld, EJect, Warn
	<i>System Programmer's Guide</i> Chapter 3, TAPEREQ, UNITATTR, VOLATTR
	Chaper 4, EJECt, SCRatch Redistribution
	Appendix H, MOUNT, QDRLIST, QSCRATCH, SELSCR
The Point-in-Time (SLUPCOPY) utility provides a faster, less disruptive method to create a backup of the HSC CDS (HSC 6.1 and later).	System Programmer's Guide Chapter 4, Point-in-Time Copy (SLUPCOPY) Utility

Enhancement/Modification	Publication(s)/ Primary Locations
The SLILIBRY macro adds the FUTRACS parameter to allow new ACSs to be added to the library complex (HSC 6.1 and later).	<i>Configuration Guide</i> Chapter 4, SLILIBRY macro
The SLILSM macro adds the TYPE=3000 and DOOR=3000 parameters for the SL3000 library (HSC 6.1 and later).	<i>Configuration Guide</i> Chapter 4, SLILSM macro
The OPTion command DUPOFL parameter allows the duplicate VOLSER process to continue when the VOLSER being entered exists in an ACS that is disconnected or in an LSM that is offline (HSC 6.1 and later).	<i>Operator's Guide</i> Chapter 4, OPTion command
The LMUPATH control statement PARTID parameter defines a partition ID for an SL3000 or SL8500 library (HSC 6.1 and later).	System Programmer's Guide Chapter 3, LMUPATH control statement
The EJECt Cartridge utility SEQ parameter specifies whether or not CAP eject processing fills the CAP cells in the same order specified by the VOLser parameter (HSC 6.1 and later).	<i>System Programmer's Guide</i> Chapter 4, EJECt Cartridge utility
The LIST diagnostic command has been expanded with more control blocks and enhanced storage dump capability (HSC 6.1 and later).	System Programmer's Guide Chapter 5, LIST command
The CDS swap process has been enhanced to dynamically correct unit address information .	System Programmer's Guide Appendix C, Swapping a CDS

Enhancement/Modification	Publication(s)/ Primary Locations
Revision A:	
SLUADMIN output options, date field formats, and alphabetic data field formats have been expanded to include structured XML and comma-separated values (CSV).	System Programmer's Guide Chapter 4, "SLUADMIN Output" and "Parameters Controlling Report Headings"
Support for the Unified User Interface (UUI) and CSV.	NCS/VTCS XML User's Guide
Support for T10000 drive encryption recording techniques and model types.	System Programmer's Guide Chapter 2, T10000 Drive Encryption
	Chapter 3, VOLATTR control statement
	Chapter 4, EJECt Cartridge and Scratch Redistribution utilities
	Appendix G, MOUNT, QDRLIST, QSCRATCH, and SELSCR requests
	<i>Operator's Guide</i> Chapter 2, Display DRives, Display SCRatch, Display THReshld, EJect, Warn commands
The "Serializing CDSs" topic discusses resource serialization using either the IBM Global Resource Serialization (GRS) facility or the Unicenter CA-MIM/MII third-party software. This replaces the "Global Resource Sharing (GRS) and Multi-Image Integrity Manager (MII)" section.	System Programmer's Guide Chapter 7, Software Interaction
The starting column for the control statement information area has been changed from column 2 to column 1.	Control Statement Syntax Conventions, found in the following documents:
	<i>System Programmer's Guide</i> Appendix C
	<i>Operator's Guide</i> Appendix C
	Reference Summary
The BACKup utility DD parameter allows a backup to be run on a selected CDS.	System Programmer's Guide Chapter 4, BACKup utility
The EJECt utility WAITCAP parameter specifies whether a list of ejecting volumes waits for available CAP if one is not available.	<i>System Programmer's Guide</i> Chapter 4, EJECt utility

Enhancement/Modification	Publication(s)/ Primary Locations
The Scratch Conversion utility SLUDRCA1, SLUDRTLM, and SLUDRRMM load modules are distributed in the SMC SMCLINK library during SMP/E installation. Previously, the HSC SLULINK library was used.	<i>System Programmer's Guide</i> Chapter 4, Scratch Conversion utility
The Volume Report utility NOVOL parameter displays summary and/or subpool totals without producing volume detail.	<i>System Programmer's Guide</i> Chapter 4, Volume Report utility
The Display SCRatch command ALL parameter specifies that all scratch subpool totals, including 0 scratch count values, will be displayed.	<i>Operator's Guide</i> Chapter 4, Display command
The SCRAtch and UNSCRatch operator commands have been added to allow you to scratch or unscratch up to 100 volumes.	<i>Operator's Guide</i> Chapter 2, SCRAtch and UNSCRatch commands
Support for circumventing the IBM length restriction of 255 characters for a macro parameter.	<i>Configuration Guide</i> Chapter 4, SLIACS macro, LSM2, LSM3, and LSM4 parameters
	<i>System Programmer's Guide</i> Chapter 4, Reconfiguration utility

Preface

Scope

This guide provides information about the Sun StorageTek[™] Host Software Component (HSC) and its use with the Automated Cartridge System. Information is provided for systems programmers to configure and maintain the HSC.

Intended Audience

This guide is intended primarily for systems programmers responsible for installing and maintaining HSC software at their library sites. Library operators and computer system administrators may also find information contained in this guide useful on occasions to review or understand some HSC system concepts.

Users responsible for installation and maintenance of HSC software involving the technical details should be familiar with the following software topics:

- MVS operating system
- JES2 principles and functions (if applicable)
- JES3 principles and functions (if applicable)
- ACF/VTAM functions and principles
- System Management Facility (SMF)
- System Modification Program Extended (SMP/E).

How To Use This Guide

This guide should be read completely prior to beginning installation tasks. Familiarize yourself with the overall organization and location of various information for reference purposes.

Reference To HSC Product Releases

The HSC Release 6.2.0 product is referred to as HSC 6.2.

Related Publications

Some or all of the following documents are referenced in this guide. Additional information may be obtained on specific topics relating to the Automated Cartridge System from these publications.

Storage Technology Corporation Publications

The following documents are available for MVS and related miscellaneous topics.

NCS Publications — MVS Environment

- NCS Installation Guide
- NCS User Exit Guide
- Storage Management Component (SMC) Configuration and Administration Guide
- NCS/VTCS XML Guide

HSC Publications - MVS Environment

- Configuration Guide
- Operator's Guide
- System Programmer's Guide
- Messages and Codes Manual
- Reference Summary

Additional Information

Sun Microsystems, Inc. (Sun) offers several methods for you to obtain additional information.

Sun's External Web Site

Sun's external Web site provides marketing, product, event, corporate, and service information. The external Web site is accessible to anyone with a Web browser and an Internet connection.

The URL for the Sun external Web site is: http://www.sun.com

The URL for Sun StorageTekTM brand-specific information is: http://www.sun.com/storagetek

Customer Resource Center

The Sun StorageTek product Customer Resource Center (CRC) is a Web site that enables members to resolve technical issues by searching code fixes and technical documentation for StorageTek brand products. CRC membership entitles you to other proactive services, such as HIPER subscriptions, technical tips, answers to frequently asked questions, addenda to product documentation books, and online product support contact information. Customers who have a current warranty or a current maintenance service agreement may apply for membership by clicking on the Request Password button on the CRC home page. Sun employees may enter the CRC through the SunWeb PowerPort.

The URL for the CRC is http://www.support.storagetek.com

Partners Site

The Sun StorageTek Partners site is a Web site for partners with a Sun StorageTek Partner Agreement. This site provides information about products, services, customer support, upcoming events, training programs, and sales tools to support Sun StorageTek Partners. Access to this site, beyond the Partners Login page, is restricted. On the Partners Login page, Sun employees and current partners who do not have access can request a login ID and password and prospective partners can apply to become Sun StorageTek resellers.

The URL for the Sun StorageTek Partners site is: http://members.storagetek.com

The URL for partners with a Sun Partner Agreement is: http://www.sun.com/partners/

Hardcopy Publications

Contact a Sun sales or marketing representative to order additional paper copies of this publication or to order other StorageTek brand product customer publications in paper format.

Customer Support

Customer support is available 24 hours a day, seven days a week, to customers with Sun or StorageTek maintenance contracts and to Sun employees. You can find additional information about customer support on the Customer Resource Center (CRC) Web site at: http://www.support.storagetek.com

Customer-initiated Maintenance

Customer-initiated maintenance begins with a telephone call from you to Sun Microsystems StorageTek Support. You receive immediate attention from qualified Sun personnel, who record problem information and respond with the appropriate level of support.

To contact Sun Microsystems StorageTek Support about a problem:

1. Use the telephone and call:

2 800.872.4786 (1.800.USA.4SUN) (inside the United States)

2 800.722.4786 (Canada)

For international locations, go to

http://www.sun.com/service/contacting/solution.html for the appropriate telephone number

2. Describe the problem to the call taker. The call taker will ask several questions and will either route your call to or dispatch a support representative.

If you have the following information when you place a service call, the process will be much easier:

Account name	
Site location number	
Contact name	
Telephone number	
Equipment model number	
Device address	
Device serial number (if known)	
Urgency of problem	
Fault Symptom Code (FSC)	
Problem description	

Sun's Worldwide Offices

You may contact any of Sun's worldwide offices to discuss complete storage, service, and support solutions for your organization. You can find address and telephone number information on Sun's external Web site at: http://www.sun.com/worldwide/

Chapter 1. Overview

This chapter defines the procedures to plan and complete the configuration of the Host Software Component (HSC) product. Refer to the *NCS Installation Guide* for information about installing the HSC software.

Summary of Configuration Tasks

There are a variety of tasks necessary to configure the HSC software and prepare the library for use. Figure 1 on page 4 illustrates the flow of the major tasks recommended for installing and configuring the HSC (refer to the *NCS Installation Guide* for installation information). The order for performing the tasks may vary depending upon various circumstances, such as hardware availability. A summary description follows for each chapter contained in this guide:

- **Chapter 1, "Overview"** This chapter summarizes the steps in planning for and configuring the HSC.
- **Chapter 2, "Configuring the HSC Environment"** This chapter discusses configuration planning issues that relate to ensuring that all hardware installation/environmental provisions, software, and installation requirements are predetermined and complete before installing the software.
- Chapter 3, "Performing Pre-execution Tasks" Preexecution tasks involve adding definitions for ACF/VTAM communications, coding and cataloging the HSC started task procedure, and IPLing the system.
- Chapter 4, "Creating the Library Configuration File (LIBGEN)" The LIBGEN process consists of defining the library configuration using LIBGEN macros. The LIBGEN macros define the hardware configuration, recovery requirements, global characteristics, and library control data sets and journals to the HSC software.

In addition, the important process of verifying the LIBGEN is described. This verification process is performed to make sure that the library configuration defined in the LIBGEN is correct. Verification is performed by executing the SLIVERFY program.

PARMLIB control statements for data set allocation (CDSDEF) and for any journaling (JRNDEF) are required. If you are upgrading from a prior release of the HSC or are adding hardware, it may be necessary to define the HSC 6.2 control data set (CDS) using the RECDEF control statement followed by an execution of the

MERGEcds Utility (see "MERGEcds Utility" in the HSC System Programmer's Guide).

- Chapter 5, "Initializing the Control Data Sets" The data set initialization process creates the library control data sets. The process results in the creation of a primary control data set, optional secondary and standby control data sets, and optional journal data sets.
- Chapter 6, "Defining HSC Control Statements" Definition data sets allow you to define tape request characteristics, volume attributes, and unit attributes for mixed media and mixed device support.

Defining PARMLIB control statements involves specifying static operational parameters for the HSC that are invoked at installation and initialization. The control statements become members in a user-defined data set that is used by the HSC at startup.

- Chapter 7, "Configuring NCS License Keys" This chapter discusses configuration procedures for Sun StorageTek HSC and LibraryStation license keys.
- Chapter 8, "Initializing the HSC" Starting execution of HSC software involves issuing the MVS START command that activates the library software. Starting execution of HSC software involves executing a job file for starting the subsystem. Refer to Appendix D, "Migration and Coexistence Processes" on page 167 for related information.
- Chapter 9, "Terminating the HSC" Terminating HSC software involves issuing the MVS STOP command. Orderly and forced termination of the HSC are discussed.
- Chapter 10, "Testing the Installation" Testing the software installation involves ensuring that information specified in the LIBGEN process is fully operational with the HSC software as installed with a working library configuration. The tests involve exercising the operational phases of the HSC software using the SLIEXERS program. The process includes exercising the library tape transports which mount, read, write to, and dismount tape cartridges. Refer to Appendix D, "Migration and Coexistence Processes" on page 167 for related information.

Other tests are recommended to thoroughly test the installation. Each command and utility as well as every major HSC function should be fully verified to make sure that the HSC operates as intended.

Since each library site has unique operating requirements, you should make sure that HSC defaults are properly set during the testing phase of HSC installation. To accomplish this, adjust your PARMLIB defaults to match the requirements for your library site.

- Chapter 11, "Planning Migration to the Library" Planning involves the following tasks:
 - determining the procedures necessary to place external Tri-Optic labels on cartridges before loading them into a Library Storage Module
 - determining the method of entering cartridges into the library
 - invoking the Audit utility to update the control data set.

Refer to "Loading Cartridges into the Library" on page 127 for performance considerations when loading cartridges into an LSM.

- Appendix A, "Library Configuration Checklist" This appendix provides a checklist to make sure that steps necessary for software installation are completed.
- Appendix B, "Library Configurations" This appendix contains sample configurations and corresponding LIBGENs.
- Appendix C, "Macros, Control Statements, Utilities and Commands Syntax Conventions" This appendix describes conventions used for control statement, utility, and command entry and also explains how syntax diagrams can be interpreted.
- Appendix D, "Migration and Coexistence Processes" This appendix details requirements for migration to and from earlier HSC releases and discusses coexistence between different HSC releases accessing the same CDS in a multiple-host environment.

Performing Library Modifications

After installation and verification of a successful installation of the HSC, you may perform modifications to the library software configuration. These modifications cannot take place during the initial installation of the software. Library modifications may be made any time after the initial installation, when requirements at your site change.

Typical library modifications are to alter the LIBGEN macros and use the MERGEcds utility (refer to the *HSC System Programmer's Guide*) to enable library configuration modifications. This type of modification can be done without requiring a full audit of the library.

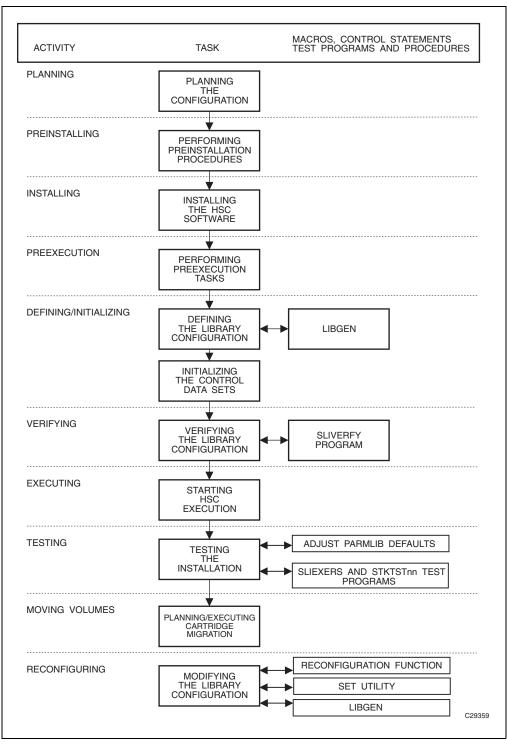


Figure 1. Configuration/Installation Flow Diagram

Refer to "MERGEcds Utility" in the *HSC System Programmer's Guide* for detailed procedures for reconfiguring the library.

See the "SET Utility" in the *HSC System Programmer's Guide* for information on setting or changing the library configuration without performing reconfiguration.

Customizing HSC Software

Macros, utilities, HSC control statements, and operator commands allow users to customize the HSC.

Macros

LIBGEN macros are used to establish the library configuration and recovery options for the HSC. These macros are discussed in Chapter 4, "Creating the Library Configuration File (LIBGEN)" on page 25.

Utilities

Utilities allow you to dynamically control library resources. These appear in "Utility Functions" in the *HSC System Programmer's Guide*.

One utility, Scratch Conversion, calls three routines (SLUDRCA1, SLUDRTLM, and SLUDRRMM) that read tape management library systems (TLMS) scratch data and then format this information so that it can be used by the Scratch Update utility. See "Scratch Conversion (SLUCONDB) Utility" in the *HSC System Programmer's Guide*.

HSC Control Statements

Two types of control statements can be defined: PARMLIB, used to set system values at initialization, and definition data set, used to specify mixed media and devices. These control statements are discussed in Chapter 3, "Performing Pre-execution Tasks" on page 21.

Operator Commands

Operator commands allow system operators to perform daily library operations. In addition, operator commands can be specified as PARMLIB control statements. Refer to "Commands, Control Statements, and Utilities" in the *HSC Operator's Guide* for detailed information about each command.

Interacting With Third Party Software

The HSC operates with the following third-party software:

- Multi-Image Manager (MIM)
- CA-ASM2
- Global Resource Sharing (GRS)
- Multi-Image Integrity Manager (MII).
- CONTROL-M/TAPE Tape Management System

See "Software Interaction" in the *HSC System Programmer's Guide* for information about restrictions when using these products in conjunction with the HSC.

Library Configuration Checklist

A Library Configuration Checklist is provided to help you identify all of the steps involved in the configuration process for HSC software. This checklist is used to make sure that all of the tasks relating to the configuration process are performed.

Refer to Appendix A, "Library Configuration Checklist" on page 129 for the checklist.

Chapter 2. Configuring the HSC Environment

Configuration planning is an important phase of the installation process that must be completed to allow smooth installation of the HSC software. The customer is responsible for ensuring that each task is successfully completed. Planning tasks include:

- physical plan verification
- system software verification
- migration from earlier HSC releases
- · verification of third-party software compatibility
- LSM/pass-thru port (PTP) relationship definition(s)
- considerations for configuring unit addresses and esoterics
- configuring MVS unit addresses and esoterics
- configuring LIBGEN unit addresses and esoterics
- DASD planning
- DASD sharing
- calculating DASD space.

Physical Plan Verification

All of the installation activities should be thoroughly planned before proceeding with installation of the HSC. Sun StorageTek recommends that the configuration plan be available at the beginning of the installation process. The completed physical plan is your installation blueprint. Make sure that provisions are made for the following requirements:

- floor space
- power
- environmental considerations.

Note: All space requirements are computed using the Sun StorageTek Nearline Physical *Planning Guide* and the templates provided. In the computations, provisions are made for each library component ordered, future components considered for growth of the system, service areas, personnel clearances, and furniture.

System Software Verification

The MVS version of the HSC system supports both JES2 and JES3. The specific MVS and JES2/JES3 levels supported coincide with IBM's current support position on these operating system levels. That is, if IBM currently provides program services for a particular level, then the HSC also supports it; however, Sun StorageTek may require the customer to apply additional IBM maintenance to allow satisfactory HSC operation. If IBM has dropped support for a particular level, then the HSC no longer supports that level. For newly announced IBM operating system levels, it is our intent to support each such new level.

Note: If you have installed third-party software at your site, refer to "Third-Party Software Interaction" in the *HSC System Programmer's Guide* for any restrictions that may apply to installing the HSC when such software is present. Refer to "Verification of Third-Party Software Compatibility" below for program product levels required for use with the HSC.

Migration from Earlier HSC Releases

If your installation plans to run a multiple-host environment including HSC 6.2 and earlier versions of the HSC on other hosts, only HSC 6.0 and 6.1 can run with HSC 6.2. Refer to Appendix D, "Migration and Coexistence Processes" on page 167 for more information.

For information regarding the latest PTF and PUT levels, contact Sun StorageTek Software Support. Refer to the guide *Requesting Help from Software Support* for information on how to contact Sun StorageTek Software Support.

Verification of Third-Party Software Compatibility

Caution: Initialization of the HSC subsystem in conjunction with initialization of third-party software and/or other subsystems may be order dependent. It may be necessary to initialize the HSC subsystem after third-party or other subsystem initialization.

The software products shown in the following table are compatible for use with the HSC.

Software Product	Minimum Level Required
ACF Virtual Telecommunications Access Method (ACF/VTAM)	Release 3.2
CA-1	Release 4.7
CA DYNAM/TLMS	Release 5.2
DFSMSrmm	Version 1, Release 1
DF/SORT	Release 6
Multi-Image Manager (MIM)	Version 2
SYNCSORT	Release 2.5E

Table 1. Other Software Products Compatible with the HSC

Note: HSC provides limited support for the CONTROL-M/TAPE tape management system. Refer to the BMC publication CONTROL-M/TAPE Implementation Guide for more information.

LSM/Pass-thru Port Relationship Definition

If your ACS contains only one LSM, you do not need to perform this installation step.

If your ACS contains two or more connected LSMs, you must define the LSM/pass-thru port (PTP) relationships.

PTPs are not designated as master or slave; the terms master and slave refer to the LSMs which share a common PTP. An LSM that controls the PTP is called the "master" LSM, and the LSM which shares that PTP and does not control it is called the "slave" LSM.

All LSMs, except the SL8500, can be a master of only two PTPs. Even though an LSM may have more than two PTPs, it can control only two PTPs; therefore, it is possible for one LSM to be both a master and a slave.

- SL8500 libraries can control eight PTPs
- SL3000 libraries do not contain PTPs.

The LSM/PTP relationships are defined in the Configuration Plan. Verify that the Configuration Plan defines these relationships. These relationships will be logically defined later in the LIBGEN.

If verification is confirmed, continue with the installation. If verification of the LSM/PTP relationships is not confirmed, cease installation activity until resolution is achieved.

Refer to the "SLILSM Macro" on page 49 for additional information about PTP relationship definition.

Considerations for Configuring Unit Addresses and Esoterics

JCL Considerations

There is no need to change JCL. Continue to use the generic or esoteric which allows any library or nonlibrary device to be allocated. The Storage Management Component (SMC) influences MVS to allocate the correct transport within the specified generic or esoteric.

Remote Library Considerations

For information about device allocation relating to the operation of remote-linked libraries, refer to "Special Considerations for Control Data Sets Processing Independently" in the *HSC System Programmer's Guide*.

CDS Considerations

Unit Control Blocks (UCBs) for HSC CDS volumes can be defined either as LOCANY=N0 or LOCANY=YES using the IBM Hardware Configuration Definition (HCD) facility.

DFHSM Considerations

If you plan to use Data Facility Hierarchical Storage Manager (DFHSM) for library transports, and you plan to use the DFHSM ARCCMD*xx* member's SETSYS command to direct the DFHSM output to an esoteric covering library drives, you must code the SETSYS command to define the tape environment. You must also specify the esoteric name that represents the library transports used for DFHSM functions on the USERUNITTABLE parameter.

However, if you plan to use UX02 to direct DFHSM scratch mounts to the ACS, and you do not use the USERUNITTABLE parameter, you do not have to code the SETSYS command or specify the esoteric name.

See the appropriate IBM publication on Data Facility Hierarchical Storage for more information.

HSC Scratch Allocation Considerations

HSC scratch allocation can be modified using the LSMPREF, SCRTECH, and LOWSCR keywords on the ALLOC operator command/PARMLIB statement.

Configuring MVS Unit Addresses and Esoterics

Unit Addresses

The HCD facility is used to assign MVS unit addresses to the devices in your I/O configuration. Refer to the appropriate IBM publications for more information about these facilities.

An LMU Station emulates a 3278-2 terminal attached to a local controller and must be assigned an MVS unit address. The LMU must be defined as a 3x74 local controller.

A 4480 cartridge tape transport is plug-compatible with an IBM 3480; 4490, 9490, and 9490EE cartridge tape transports are plug-compatible with an IBM 3490E; and SD-3, 9840, T9840B, T9840C, T9940A, T9940B, LTO, SDLT, T10000A, and T10000B cartridge tape transports are plug-compatible with either an IBM 3490E or 3590. All cartridge tape transports must be assigned MVS unit addresses.

Note: LTO and SDLT transports are not supported as direct-attach devices in an **MVS environment.** These transports are recognized by the HSC but are accessible only to open systems clients using LibraryStation.

If unit addresses are generated for nonexistent library tape transports, make sure that these addresses are also defined in a SLIDRIVS macro. Such drives are treated by the HSC as incompatible with any media type and are excluded from HSC allocation counts.

Nonlibrary Esoteric

Nonlibrary esoterics are no longer used to control allocation processing, except when an SMC 6.0 client is communicating with an HSC 6.1 or 6.2 server. Device types for Sun StorageTek tape transports outside the library can be defined by using the SMC UNITATTR command, which can also identify devices to be excluded from any allocation by specifying the MOdel(IGNORE) parameter. Refer to the SMC Configuration and Administration Guide for more information.

Library Esoteric(s)

Library esoteric names are no longer used to control allocation processing.

Configuring LIBGEN Unit Addresses

Unit Addresses

For a given host, the unit address of each cartridge tape transport attached to an LSM is defined to the HSC using the ADDRESS parameter on the SLIDRIVS macro. Nonexistent devices can be defined in LIBGEN only if the LIBGEN and LMU panel types match. Changing an LMU panel type requires action by a Sun StorageTek Customer Service Engineer. When the new devices are actually installed, be sure to reconfigure your MVS unit address and esoteric definitions to accurately reflect the changes.

Sun StorageTek recommends specifying unit addresses for devices not defined on a host **if that host may be used as a server for another host where device addresses have been configured**.

DASD Planning

The HSC uses some data sets resident on DASD devices:

- the primary control data set
- optional secondary and standby control data sets
- optional journal data sets
- backup data sets.

As a result, some DASD planning is required. The following considerations must be made for DASD planning:

- control data set recovery strategies
- DASD space planning
- DASD sharing

Each of these requirements is described in the following paragraphs.

Control Data Set Recovery Strategies

To guard against the destruction of the primary control data set, the following recovery techniques are available:

- optional multiple copies of the control data set, available at all times, to the library hosts
- optional multiple journals recording library transactions separately from the control data sets
- BACKup and RESTore utilities available that perform extensive checking and reporting
- automatic switching of control data sets in cases of failure or degradation
- operator controlled switching of control data sets to allow for uninterrupted library operation during problem investigation.

The control data sets are important components relating to the recovery process. These data sets include:

Primary Control Data Set

The primary control data set resides on a DASD or solid state disk (SSD) device. The primary control data set must be accessible by all CPUs configured with the library. All configuration information about the ACS is stored in this data set, and it is continuously updated to reflect changes resulting from volume processing.

Secondary Control Data Set

This data set is an exact duplicate of the primary control data set and is also continuously updated to reflect changes in the library. In general, if the primary control data set becomes corrupted, the HSC continues to operate without interruption by automatically switching to the secondary control data set. Thus, the secondary control data set becomes the primary control data set. However, the data set name remains unchanged.

Note: It is highly recommended that the secondary control data set reside on separate HDAs and separate strings from the primary control data set.

The secondary control data set is commonly referred to as the Shadow CDS. The HSC allows for the SHADOW option to be specified at the time of product installation during library generation (LIBGEN). Refer to "SLIRCVRY Macro" on page 32 for instructions on specifying the use of a secondary control data set.

Standby Control Data Set

The standby control data set is optional. This data set is a formatted CDS containing only the first CDS record. If necessary, this data set is used for control data set disaster recovery. Refer to "Software Diagnostics and Recovery" in the *HSC System Programmer's Guide* for more information on recovery techniques.

The HSC allows for the STANDBY option to be specified at the time of product installation during library generation (LIBGEN). Refer to the "SLIRCVRY Macro" on page 32 for instructions on specifying the use of a standby control data set.

Journals

Journals are data sets that record a running log of all transactions that affect the control data set(s). If journaling is used as a recovery technique, two journals must be specified for each host to record any activity affecting the primary control data set since the last HSC backup.

One journal is used to record all activity until it becomes full; then, the HSC automatically switches to the other journal and issues a message to inform the operator. The operator should then offload the first journal or back up the control data set. Backing up the CDS resets the journals to empty when the backup is completed.

By default, HSC abends when both journals become full. Warning messages are issued when the journals are more than 75 percent full. A second option can be specified by operator command or in the PARMLIB options to allow the HSC to "continue" to run without journals on all hosts, if both data sets become full on any one host.

Caution: With this option, if journaling is disabled, none of the journals may be used for recovery purposes.

Refer to "Journal Definition (JRNDEF) Control Statement" in the *HSC System Programmer's Guide* for a description of the CONTINUE option for the JRNDEF control statement.

The control data set can be reconstructed by using the journals and the most recent CDS backup. All HSCs must be stopped before attempting recovery by this technique and must remain down until the restore operation is finished.

The HSC allows for the journaling option to be specified at the time of product installation during library generation (LIBGEN). Refer to the "SLIRCVRY Macro" on page 32 for instructions on specifying the use of journaling.

Using a standby data set provides the best protection for the CDS. Journals should be used when the SHADOW and STANDBY techniques are not possible. Failure to specify any technique may require running an audit of the entire library to re-create the control data set.

Note: If a VM host shares the library, then the journal offload data sets must also reside on shared DASD.

DASD Sharing

There are very stringent requirements for DASD volumes shared between multiple host systems and processors.

Some data sets must be capable of being shared in read/write mode by all host systems which access the ACS. These data sets include:

- primary control data set
- · optional secondary and standby control data sets
- optional journals for offload or backup reset.

The primary, secondary, and standby control data sets must be accessible to all hosts sharing the ACS. If the data sets are required by only one system, then this sharing requirement can be disregarded.

If you decide to use the optional journals and offload journals at your installation, a set of two journals (Journal 1 and Journal 2) is unique to each host. The same requirement applies for the optional offload journals.

I/O Device Reserve Considerations

Sun StorageTek strongly recommends that you do **not** place copies of the control data set on the same volume(s) as other data sets that generate high I/O activity and excessive reserves to that volume during normal processing. This applies to all control data set copies including secondary (shadow) and standby.

Warning: If you place data sets on volumes that contain CDSs, you must ensure programs that interact with each other do not access multiple CDS volumes concurrently, or a *deadly embrace* scenario can occur. The best solution is for you to place data sets that require reserve/release functions on disks that do not contain HSC CDS data sets.

For example, TMS catalog and audit data sets are known to cause contention and lockout problems when on the same volume as HSC CDSs, while a backup copy of a data set that is used only occasionally for restore purposes normally does not cause a significant problem. However, if response problems or lockouts do occur, an examination should be made of all ENQ and I/O activity related to that volume.

Various problems have been encountered when running the HSC on a VM host that shares the CDS with an HSC running on MVS.

- The DEFRAG utility running on MVS has caused problems with lockout conditions as well as moving a CDS copy while a VM HSC was running.
- HSM processing has caused problems with lockout conditions

In order to prevent errors caused by contention lockout situations with other hosts, it is recommended that the VM missing interrupt interval (MITIME) for the DASD volumes containing the primary, secondary, and standby control data sets be set to a value slightly greater than the length of the longest reserve that will be held on either pack. For backup utilities this is a minimum of thirty seconds and may take several minutes. Refer to the appropriate IBM Command Reference for the syntax of the SET MITIME command.

In order to prevent errors caused by contention lockout situations with other hosts when an MVS system is running as a guest under VM, it is recommended that the missing interrupt handler (MIH) for the DASD volumes containing the primary, secondary, and standby control data sets be set to a value slightly greater than the length of the longest reserve that will be held on either pack. Use the MIH parameter to set the time for specific devices in the MVS PARMLIB member IECIOSxx. Set the MVS MIH TIME value to either one half or two times the VM MITIME value, depending on which system you want to have control first. Set the value large enough so that a missing interrupt is not detected while a reserve is being held.¹ Then do one of the following:

- Issue the MVS SET IOS=xx command to read the PARMLIB member and reinstate it (where xx is the suffix of IECIOSxx PARMLIB member).
- IPL the system.

If you are running the HSC on a VM host that shares the CDS with an HSC running on MVS, make sure your command prefix does not conflict with any of the VM facilities, such as the CP line editing symbol.

^{1.} If a reserve is being held, it can show up as a missing interrupt to other systems.

Calculating DASD Space

Instructions for computing the DASD space requirements for these data sets are contained in this section. The formula used for the computations calculates the number of 4K blocks required.

Notes:

- It is recommended that each data set reside on a different HDA. If possible, the primary, secondary, and standby control data sets should be on different control units and different channels. Each control data set must be allocated in a single DASD extent.
- If you are running Virtual Storage Manager (VSM), refer to the VTCS documentation to determine DASD space requirements for VSM.

Since the HSC uses hardware device reserve/release to control sharing, it is recommended for performance reasons that the library configuration allow device reserve/release to be issued.

For DASD planning, use the following formula to estimate the number of 4K blocks (NUMBLKS) necessary to store the primary, secondary, and standby control data sets, and each journal data set:

```
\begin{aligned} \mathsf{NUMBLKS} &= 225 + (130 * sp1sm) + (70 * w1sm) + (50 * t1sm) + (25 * s181sm) \\ &+ (25 * s131sm) + (25 * future-1sms) \end{aligned}
```

where:

splsm

the total number of 4410 (Standard) or 9310 (PowderHorn) LSMs

wlsm

the total number of 9360 (WolfCreek) LSMs

tlsm

the total number of 9740 (TimberWolf) LSMs.

sl8lsm

the total number of real SL8500 LSMs. Each SL8500 library counts as four LSMs.

sl3lsm

the total number of real SL3000 LSMs.

future-lsms

This parameter applies to SL3000 and SL8500 libraries only. It is the sum of the following two values:

• Include planned SL3000 or SL8500 libraries as if they were physically present. Refer to the FUTRACS parameter in the "SLILIBRY Macro" on page 34.

The value is the number of future ACSs times the number of future LSMs as specified in the FUTRACS parameter. Each FUTRACS value represents an SL3000 or an SL8500 library.

Note: To allow sufficient CDS space, assume each future ACS is an SL8500 and equals 4 LSMs.

• Include planned SL8500 libraries as if they were physically present. Refer to the FUTRLSM parameter in the "SLIACS Macro" on page 43.

Each FUTRLSM value can represent only future SL8500 LSMs added to an existing ACS.

Notes:

- No additional space is required for an HSC 6.1 CDS.
- The "225" constant in the DASD space calculation accounts for hosts and ACSs. Drives are attributed in the constant multiplier for each LSM type, for example, the "25" in the 25 * *s181sm* portion of the formula.

The CDS size increase allows users to specify additional drives for each LSM and to dynamically define more hosts.

Beside planning for the DASD space requirements for the primary, secondary, standby control data sets, and the unique set of journals to each host, you must make sure that enough DASD space exists for HSC authorized target and distribution libraries (refer to the *NCS Installation Guide*).

Automated Space Calculation

You can automatically calculate DASD space when you run the SLICREAT program, which is used to create the control data sets. Refer to "Calculating DASD Space using SLICREAT" on page 74 for more information.

Data Set Placement

For performance and recovery considerations, each copy of the CDS should reside on a separate DASD HDA. Separate control units are also recommended to provide adequate recovery conditions. A CDS should not reside on the same volume as other high reserve or high I/O data sets. All journals for all hosts may be on the same volume as long as that volume does **not** contain a CDS.

Cartridge Capacity Calculation - SL8500 and SL3000

Message SLS0557I displays the maximum cartridge capacity for the library. **For the SL8500 and SL3000 libraries only**, you must first vary the library online (Vary ACS command) to see the actual capacity of the library rather than the maximum capacity of the library.

The library type is specified in the SLILSM LIBGEN macro, however, the HSC cannot determine whether or not the SL8500 or SL3000 contains expansion panels. Until the library is varied online, the HSC assumes the maximum number of panels allowable or zero.

After you vary the library online, enter the Display Acs or Display Lsm command to show the actual SL8500 or SL3000 library capacity. Refer to the *HSC Operator's Guide* for information about the Vary and Display commands.

Chapter 3. Performing Pre-execution Tasks

The following tasks must be performed as pre-execution tasks:

- adding definitions for ACF/VTAM communications
- adding a command list to the HSC
- coding and cataloging the HSC started task procedure.

Note: The majority of the pre-execution tasks are installation-related. Refer to the *NCS Installation Guide* for a description of these items.

If you are migrating from a previous HSC release, some of these tasks can be bypassed. Review each task and verify that it is properly completed before proceeding to the next task.

Adding Definitions for ACF/VTAM Communications

Make sure that you are familiar with the information presented in "Communication Functions" in the *HSC System Programmer's Guide* before attempting to add communication definitions.

If ACF/VTAM is going to be used as a method for HSC host-to-host communications, the following definitions must be defined to VTAM:

- APPL
- CDRSC
- CDRM (if not using existing CDRMs)
- LOGMODE table entry for SNASVCMG (contained in the IBM-supplied logon mode table)
- LOGMODE table entry for SLSSVCMG. This can be defined the same as SNASVCMG. If not defined, the default logmode entry is used.

A sample APPL statement is contained in the HSC SAMPLIB member HSCAPPL. Assuming your HSC application program minor node (APPLID) is APHSC1, the sample APPL statement shows the recommended operands:

+

+

+

+

```
HSCAPPL VBUILD TYPE=APPL
APHSC1 APPL APPC=YES,
AUTOSES=1,
DMINWNL=1,
DMINWNR=1,
DESESLIM=2,
EAS=10
```

where:

APPC=YES

must be coded because HSC uses VTAM LU 6.2 services.

AUTOSES=1

defines the number of contention-winner sessions VTAM is to establish automatically with the first CNOS request.

DMINWNL=1

defines the minimum number of parallel sessions with the local LU as the contention-winner. HSC only requires and uses one local contention-winner session.

DMINWNR=1

defines the minimum number of parallel sessions with the remote LU as the contention-winner. HSC only requires and uses one remote contention-winner session.

DSESLIM=2

defines the maximum number of sessions allowed between the local LU and a remote LU. This should be 2 because the HSC only establishes two sessions between each HSC: one local contention-winner session and one remote contention-winner session.

EAS=10

sets an estimated number of concurrent sessions this APPLID will have with other LUs.

Refer to the IBM ACF/VTAM manuals for definitions and explanations.

Coding and Cataloging the HSC Started Task Procedure

Your system cataloged procedure library must contain a started task procedure for HSC 6.2. The following JCL is a sample cataloged procedure to run HSC 6.2. This JCL is also contained in HSC SAMPLIB member JCLPROC.

Note: The PARMLIB control statement CDSDEF must be defined in your PARMLIB to allocate data sets. If journaling is desired, the JRNDEF control statement must also be defined in your PARMLIB. For more information, refer to "Parameter Library (PARMLIB) Control Statements" on page 86.

```
//SLSØ PROC PROG=SLSBINIT,PRM=' '
//*
//IEFPROC EXEC PGM=&PROG,TIME=144Ø,
// PARM='&PRM E(EØ86) F(23) M(ØØ) SSYS(SLSØ)',REGION=ØM
//*
//STEPLIB DD DSN=SLS.SLSLINK,DISP=SHR
//*
//SLSSYSØØ DD DSN=SLS.PARMS,DISP=SHR
```

Refer to "Creating an HSC START Procedure" on page 95 for a complete description of the parameters that may be specified in the PARM operand.

IPLing the System

A system IPL is required after defining the HSC as a subsystem via the Subsystem Name Table entry IEFSSN*xx* for the first time. Once the HSC has been defined, you do not need to re-IPL in order to stop and start the HSC.

If you are migrating from a previous HSC release and the HSC is defined in the IEFSSN*xx* member, then a system IPL is not required. You must perform a COLD start at the first HSC startup. Subsequent HSC startups should not require a COLD start unless a problem is encountered.

If you are using SLSBPREI to initialize the HSC under JES, refer to "Preinitializing the HSC as a Subsystem" on page 105 for additional information about starting the HSC.

If you are **not** using SLSBPREI, refer to "Starting the HSC with PARM='INIT'" on page 105 and "Initializing the HSC Under the Master Subsystem" on page 106 for additional information about starting the HSC.

Chapter 4. Creating the Library Configuration File (LIBGEN)

Defining the Library Configuration File (LIBGEN)

LIBGEN is a process of defining the library configuration and recovery options to the HSC. LIBGEN provides HSC with information necessary to control the automated library.

LIBGEN output is an object module created by the assembler and must be link-edited into a load module. This load module is loaded by the HSC during library control data set initialization and used to format the control data sets.

Note: The LIBGEN module **must** reside in an APF-authorized library, but does not itself require APF authorization.

The Installation Verification Process is used to verify information specified during the LIBGEN process.

Procedure for Library Generation (LIBGEN)

The LIBGEN process consists of the following steps:

- Create a file to contain the assembler statements for the LIBGEN. The assembler file invokes a set of macros provided by Sun StorageTek to describe the library configuration. The LIBGEN macros are described in "LIBGEN Macros" on page 26. Sample LIBGEN files are contained in Appendix B, "Library Configurations" on page 133.
- 2. Assemble and link-edit the LIBGEN file.
- 3. Allocate and initialize the library control data sets using the SLICREAT program. Refer to Chapter 5, "Initializing the Control Data Sets" on page 71 for information on data set initialization.

P Note: If you are migrating from a prior release of the HSC, refer to Appendix D, "Migration and Coexistence Processes" on page 167 for information concerning updating the CDS for HSC 6.2.

Upon the completion of these steps, the library generation is completed and the library control data sets are ready to use.

LIBGEN Macros

The LIBGEN macros are provided in source format on the distribution tape in SLS.SLSMAC.

Description of LIBGEN Macros

Each LIBGEN macro has a specific function. Descriptions of the LIBGEN macros follow:

Macro	Description	
SLIRCVRY	This macro describes the recovery characteristics of the HSC. One SLIRCVRY macro is specified. It is the first macro of the LIBGEN.	
SLILIBRY	This macro describes all global characteristics of the library. One SLILIBRY macro is specified. It must follow the SLIRCVRY macro.	
SLIALIST	This macro includes a list of all of the ACSs which comprise the library. One SLIALIST macro follows the SLILIBRY macro.	
SLIACS	This macro describes the characteristics of each ACS listed in the SLIALIST macro. One SLIACS macro is specified for each ACS listed in the SLIALIST macro. The ACSDRV parameter contains the esoterics of all attached transports. The STATION parameter contains label names used in SLISTATN macros. The LSM, LSM2, LSM3, and LSM4 parameters contain label names used in SLILSM macros.	
SLISTATN	This macro lists the stations (LMU interfaces) that connect a host to an ACS. One SLISTATN macro is specified for each station entry listed in the SLIACS macro. The SLISTATN macros follow the SLIACS macro in the order specified on the SLIACS macro STATION parameter.	
SLILSM	This macro describes the characteristics of each Library Storage Module (LSM) defined by the SLIACS macro. One SLILSM macro is specified for each LSM listed in the SLIACS macro LSM, LSM2, LSM3, and LSM4 parameters. The SLILSM macro follows the SLISTATN macro and both are referenced by the SLIACS macro. The SLILSM macro contains a PASTHRU parameter defining the LSM/PTP relationships. The ADJACNT parameter defines the label of the SLILSM macro which is adjacent to this LSM.	
SLIDLIST	This macro lists the SLIDRIVS macro for each host. One SLIDLIST macro is specified for each DRVELST parameter entry listed in the SLILSM macro. The SLIDLIST macro follows the SLILSM macro which refers to it.	
SLIDRIVS	This macro lists the transport device addresses used by each host attached to an LSM. The SLIDRIVS macro follows the SLIDLIST macro which refers to it.	
SLIENDGN	This macro specifies the end of the LIBGEN macros.	

Required Order for Specifying LIBGEN Macros

Figure 2 on page 28 illustrates a list of LIBGEN macros in required order.

LIBGEN Macro Relationship to a Library Configuration

Figure 3 on page 29 is an example of a typical library configuration. Figure 4 on page 30 contains the corresponding LIGBEN components applicable to the example configuration. The illustration and corresponding LIBGEN definitions are provided to help you better understand the relationship of a LIBGEN to an actual configuration.

Macro Syntax Conventions

Syntax conventions are important when specifying macros in LIBGEN. Refer to Appendix C, "Macros, Control Statements, Utilities and Commands Syntax Conventions" on page 157 for an explanation of macro syntax conventions.

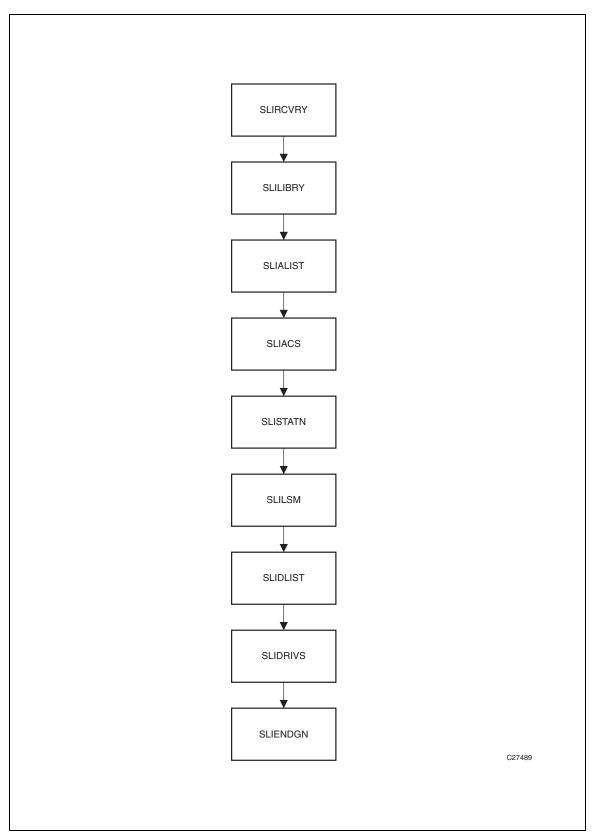


Figure 2. Required Order for Specifying the LIBGEN Macros

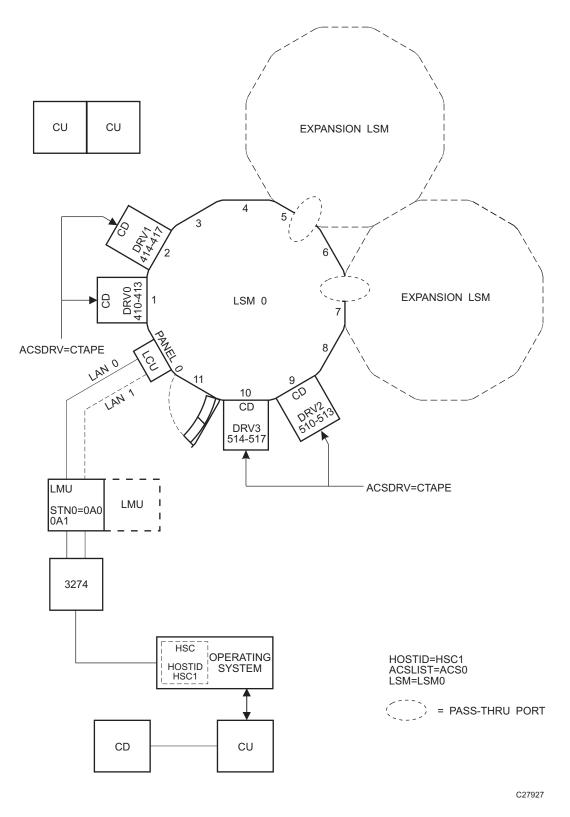


Figure 3. Sample Library Configuration

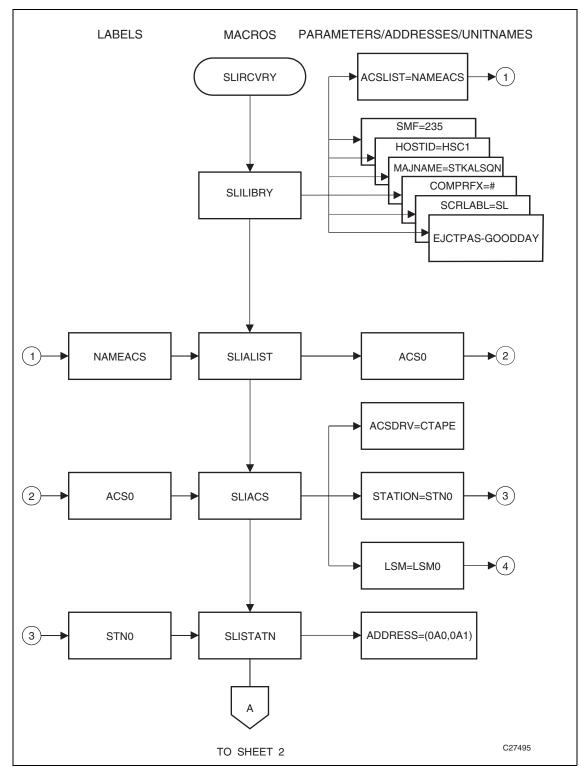


Figure 4. LIBGEN MACRO Relationship (1 of 2)

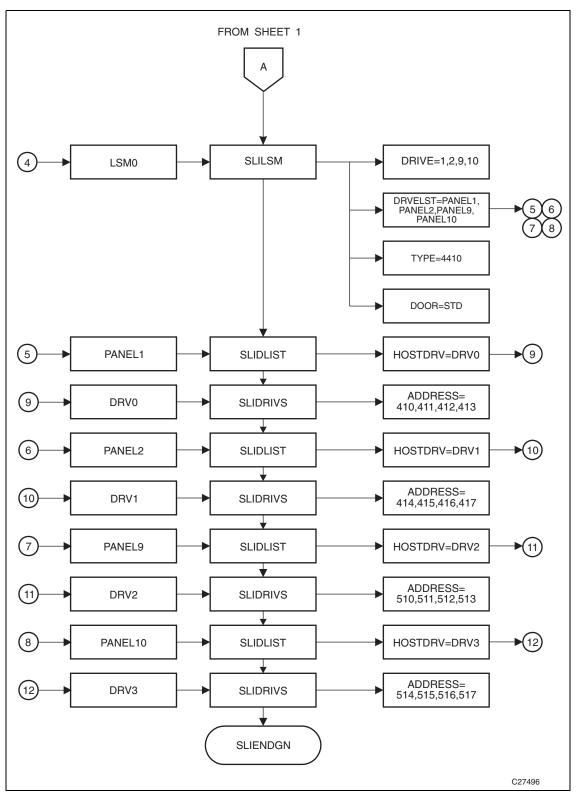
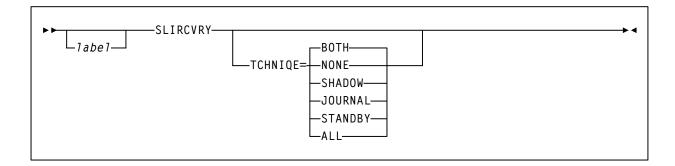



Figure 4. LIBGEN Macro Relationship (2 of 2)

SLIRCVRY Macro

The SLIRCVRY macro defines criteria to determine when a control data set has become inoperable and requires recovery processing. Only one SLIRCVRY macro is specified, and it is the first macro in the LIBGEN.

Syntax

Parameters

label

name of the CSECT generated by LIBGEN. If not specified, an unnamed CSECT is generated.

SLIRCVRY

name of this macro.

TCHNIQE

parameter that selects the form of recovery from a CDS failure.

BOTH

specifies that two distinct copies of the control data set (primary and secondary) and journals are specified for recovery purposes. The default is **BOTH**.

NONE

specifies no form of recovery is used for the control data set. Thus, the primary control data set must be rebuilt, if inaccessible.

SHADOW

specifies that there is to be two distinct copies of the control data set (primary and secondary) for recovery purposes. It is recommended that these data sets reside on separate HDAs and separate strings. A journal is not recorded.

JOURNAL

specifies that there is to be only one primary control data set and that journals are kept. These data sets are to be used for recovery purposes.

The journals contain a record of all transactions that update the control data set. There are two journals per host. It is recommended that they are placed on separate HDAs from the primary control data set DASD volume.

STANDBY

specifies that primary, secondary, and standby control data sets are to be recorded for recovery purposes. No journals are recorded during HSC operation.

ALL

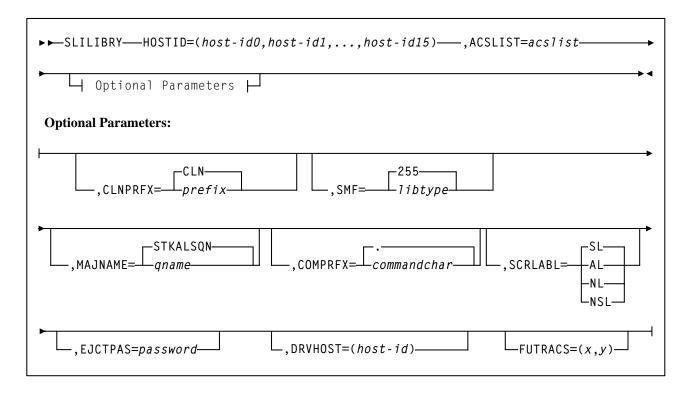
specifies that all control data sets (primary, secondary, and standby) and journals are to be kept and available for recovery purposes.

Note: The SLIRCVRY LIBGEN macro TCHNIQE parameter determines how many CDS copies will be initialized by the SLICREAT program and whether or not journals will be initialized by SLICREAT.

The number of CDS copies used by the HSC is dependent on the number of CDS copies defined in the CDSDEF PARMLIB control statement. It is **not** determined by the TCHNIQE parameter.

The HSC uses all of the CDS copies defined in the CDSDEF control statement (whether this includes more or less CDS copies than are specified by the TCHNIQE parameter). However, if journaling is specified by the TCHNIQE parameter, journals must be defined for successful HSC initialization.

Example


SLIRCVRY Statement

LIBGEN SLIRCVRY TCHNIQE=STANDBY

SLILIBRY Macro

The SLILIBRY macro defines the global characteristics of the library. Only one SLILIBRY macro is specified and immediately follows the SLIRCVRY macro.

Syntax

Parameters

SLILIBRY

name of this macro.

HOSTID=

host-id0, *host-id1*, ..., *host-id15* identifies each host that accesses the library. This represents the SMF system ID for **both** JES2 and JES3. Valid characters for a HOSTID are A-Z, 0-9, #, \$, and @.

Example:

HOSTID=(MVSA,MVSB)

where MVSA is Host0 and MVSB is Host1.

R

Note: The order of the hosts specified is positional. This information is used by other LIBGEN macros. Any changes in host order here may affect other areas of your LIBGEN configuration.

ACSLIST=

acslist is the assembler label of the SLIALIST macro that defines ACSs in the configuration.

Example:

ACSLIST=LACSLIST

CLNPRFX=

prefix is the three-character prefix that applies to all types of cleaning cartridges. Valid characters are A-Z, 0-9, \$, #, and @. All cartridges having this prefix followed by numerics on their external labels are treated as cleaning cartridges. **CLN** is the default.

Examples:

CLNPRFX=CLN CLNPRFX=KCR

Note: Cleaning cartridges defined by VOLATTR control statements must still use the cleaning prefix established in the LIBGEN.

SMF=

libtype is the System Management Facility (SMF) record type used by the HSC to record cartridge movement and library performance. The value specified must match the SUBSYS type specified for the HSC in SMFPRMxx. The default is **255**.

Example:

SMF=235

MAJNAME=

qname specifies the ENQ/DEQ/QNAME used by host software for serialization. It must conform to the requirements for an ENQ/RESERVE/DEQ QNAME as defined by the IBM publication *MVS Supervisor Services and Macros*. The default is **STKALSQN**.

Example:

MAJNAME=STKALSQN

COMPRFX=

commandchar specifies the command prefix character used to direct operator commands to the HSC. It is a single character. The default command prefix character is a **period** (.).

Example command prefixes are: ϕ , #, !

Note: Make sure that the prefix character used does not conflict with any of the following:

• another subsystem's command prefix character (such as "\$" for JES2, "*" for JES3, or ";" the delimiter for TSO)

- the command delimiter for MVS specified as the value for the CMDDELIM keyword in SYS1.PARMLIB (CONSOLxx) and described in the IBM publication *Installation and Tuning Guide for MVS*
- a JES line editing character as specified in the JES initialization statements or default. For JES2 the initialization statement is CONDEF.

For JES3 the initialization statement is CONSTD. Descriptions of these statements and default values can be found in the IBM MVS publication *Initialization and Tuning Guide*.

• If you are running the HSC on a VM host that shares the CDS with an HSC running on MVS, make sure that your command prefix does not conflict with any of the VM facilities, such as the CP line editing symbol.

A null character can be specified as the command prefix character. During library operation, to specify an HSC command when the command prefix is a null character, you **must** use the MVS MODIFY command to issue commands to the HSC.

Even if you have specified a command prefix, you may use either method for issuing commands to the HSC:

- Specify an HSC command with the command prefix preceding the command.
- Specify an HSC command using the MVS MODIFY command. The following formats for the MVS MODIFY command may be used:

Example:

MODIFY hsc-subsystem-name, hsc-command

or

F hsc-subsystem-name, hsc-command

where *hsc-subsystem-name* is the HSC subsystem name specified in the HSC startup proc.

Examples of how a specific HSC command can be issued are:

MODIFY hsc-subsystem-name, DISPLAY CDS

or

F hsc-subsystem-name, DISPLAY CDS

Table 2. Mapping of Command Prefix Codes to Characters

Hex	Character	Description
40	null	blank
4A	¢	cent
4B		period

Hex	Character	Description
4C	<	less than
4D	(left parenthesis
4E	+	plus
4F		vertical bar
50	&	ampersand
5A	!	exclamation point
5B	\$	dollar sign
5C	*	asterisk
5D)	right parenthesis
5E	;	semicolon
5F		not symbol
60	-	minus
61	/	slash
6B	,	comma
6C	%	percent
6D		underscore
6E	>	greater than
6F	?	question mark
7A	:	colon
7B	#	crosshatch
7C	@	at sign
7E	=	equals sign
7F	"	double quote

Table 2. Mapping of Command Prefix Codes to Characters (Continued)

Note: If you specify a null command prefix (hex 40), you must use the MVS MODIFY command to perform any HSC operator command.

Example:

F SLSØ, MOUNT EDUØ5Ø, B3Ø

where

F

an abbreviation for the MVS MODIFY command

SLS0

an HSC subsystem

MOUNT

an HSC operator command

EDU050

a VOLSER

B30

a designated tape drive

Because of IBM assembler restrictions, a single ampersand (&) cannot be specified as a command prefix. However, if you want to use an ampersand (&) as the command prefix, specify two ampersands (&&). When the LIBGEN file is assembled, the assembler strips off the first ampersand and leaves the second one. The result is that the valid command prefix is a single ampersand.

Example:

COMPRFX=&&

If specifying a left parenthesis (4D) or right parenthesis (5D), the prefix character must be enclosed in single quotes. For example:

COMPRFX='('

COMPRFX=')'

Another example of specifying a valid command prefix is:

COMPRFX=@

SCRLABL=

specifies the magnetic label type of a library controlled scratch volume. The HSC assumes nonspecific requests with other than the SCRLABL label type are outside the library. If a nonspecific volume is requested with the label type specified, it is considered a scratch volume. Parameter options are:

SL

standard label. The default is SL.

AL

ANSI label

NL

nonlabeled

NSL

nonstandard label.

Automated mounts of scratch volumes other than the SCRLABL label type can be performed by using user exits. Refer to the *NCS User Exit Guide* for information about invoking user exits.

Example:

SCRLABL=NSL

EJCTPAS=

password specifies that a password is required for the EJect operator command. The password is one to eight alphanumeric characters. Acceptable characters include A-Z (must be capitalized) and numbers 0-9.

Note: Existing passwords do not need to be changed to conform to these restrictions, but any new passwords must follow the guidelines described above. If EJCTPAS is not specified, no password is used. An encrypted form of the password is maintained in the control data set.

Example:

EJCTPAS=G00DDAY

DRVHOST

hostid specifies a host ID to be used as the "master" host for drive address definitions in a client/server environment. This parameter provides a consistent server environment when a single SMC can communicate with multiple servers that have different defined drive addresses. DRVHOST is used in conjunction with the SMC DRIVEMAP command (refer to the *SMC Configuration and Administration Guide*).

If DRVHOST is not specified, each HSC host reports its defined drive configuration to the SMC.

Example:

DRVHOST=MVSA

FUTRACS=

Notes:

This parameter is used when new ACSs are to be added to the library complex. x specifies the number of ACSs, and y optionally specifies the number of LSMs to add for each added ACS.

Caution: The additional CDS records you create can cause your system to generate an 878-10 ABEND error if there is not enough space to hold the internal records for some operations. If you run out of space during the HSC INIT, you need to re-create your LIBGEN and lower these numbers.

R

- The number of ACSs specified can be between 1 and 255, but the total number of real ACSs and FUTRACS must not exceed 255.
- The number of LSMs for each FUTRACS must be a multiple of 4 and range between 4 and 40.
- If you do not specify LSMs (y), it defaults to 12.
- The FUTRACSs are generic, meaning you can use them to dynamically add an SL3000 or a string of SL8500s, not to exceed the number of LSMs generated.
- You must specify REGION=0M on your HSC start JCL.

Example

SLILIBRY Statement

```
SLILIBRY HOSTID=(MVSA,MVSB),
ACSLIST=LACSLIST,
CLNPRFX=CLN,
SMF=235,
MAJNAME=STKALSQN,
COMPRFX=Ø,
SCRLABL=NSL,
EJCTPAS=GOODAY,
DRVHOST=MVSA
```

X X

Х

Х

Х

Х

Х

Х

SLIALIST Macro

The SLIALIST macro contains the assembler labels of the SLIACS macro(s). The first ACS listed has an ACSid of 00, the second 01, etc.

Syntax

► acslist — SLIALIST — acs0, acs1,....acs255

Parameters

acslist

assembler label referred to by the SLILIBRY macro ACSLIST parameter.

SLIALIST

name of this macro.

acs0,acs1,...,acs255

label name used by the SLIACS macro(s). One label name is specified for each ACS, and at least one label name is required.

▶∢

Example

SLIALIST Statement

ACSLIST SLIALIST ACSØ,ACS1

SLIACS Macro

The SLIACS macro defines the following items:

- the esoteric unit name used by tape transports attached to an ACS
- the communication paths between a host (or hosts) and an ACS
- the LSMs attached to an ACS
- preallocating space in the CDS for additional SL8500 LSMs.

There must be one and only one SLIACS macro for each ACS.

The SLIACS macro for the first ACS must appear immediately after the SLIALIST macro. The SLIACS macro for each subsequent ACS must appear immediately after the last SLIDRIVS macro for the prior ACS definition.

Syntax

▶ → <i>acs0</i> ——SLIACS——— Additional Parameters	►◀
Additional Parameters:	
├──ACSDRV=(<i>esoteric0,,esoteric15</i>)	
,LSM=(1sm0,1sm1,,1sm23),,STATION=(station0,,station15),	
,FUTRLSM=(8500,1smnum)	

Parameters

acs0

assembler label referred to by the SLIALIST macro ACS positional parameter.

SLIACS

name of this macro.

ACSDRV=

esoteric0, ..., esoteric15 specifies the esoteric unit name defined by the I/O Configuration for each host which refers to the transports attached to this ACS. If an esoteric is omitted for a host, a comma is used in its place.

R S

Notes:

• The ACSDRV operands are positional. The SLILIBRY macro HOSTID parameter determines the positional ordering of the operands specified in the ACSDRV parameter. The first operand specified in the ACSDRV parameter corresponds to the first host specified in the SLILIBRY macro HOSTID parameter, etc.

Example:

ACSDRV=CTAPE,

where CTAPE corresponds to Host0.

Example:

ACSDRV=(CTAPEA,CTAPEB),

where CTAPEA corresponds to Host0 and CTAPEB corresponds to Host1.

• The ACSDRV esoterics are not used by SMC allocation.

STATION=

station0, ...,*station15* are the assembler labels of the SLISTATN macro. They define the station numbers used to communicate between a host and an ACS. Multiple hosts (maximum of 16) may refer to the same SLISTATN macro.

Note: To establish communication with an ACS if the LIBGEN SLISTATN macro has been omitted, use the SET SLISTATN utility to add station addresses for the ACS. See the *HSC System Programmer's Guide* for a description of this utility.

This parameter is optional.

If STATION is specified, parameters can be omitted for hosts that are not attached to the ACS by using the comma delimiter as follows:

STATION=(,STN1)

where Host0 does not have a defined connection and STN1 is a defined connection to Host1.

Note: Users running TCP/IP LMU network attachment are not required to supply either SLIACS station number or SLISTATN station address statements. However, if you intend to transition between TCP/IP and 3270 station connections, you should specify both the SLIACS STATION labels and SLISTATN ADDRESS settings.

If STATION is omitted, the ACS has no defined 3270 connections to any host. Leaving out this parameter is desirable if the user wants to define a future ACS and automatically bypass the "ACS *acs-id* is disconnected" message.

Caution: If a CDS is created using HSC 6.2 LIBGEN macros without STATION definitions, then HSC 6.0 and 6.1 systems cannot operate with this CDS.

Examples:

If the SLILIBRY macro has been entered as:

SLILIBRY HOSTID(MVSØ,MVS1)

and, if the STATION parameter is specified as:

STATION=(STNØ),

STN0 corresponds to MVS0.

If STATION is specified as:

STATION=(STNØ,STN1),

STN0 corresponds to MVS0, and STN1 corresponds to MVS1.

LSM, LSM2, LSM3, LSM4=

lsm0,lsm1 ... are the assembler labels of the SLILSM macros that define each LSM configured within the ACS.

The number of assembler labels that can be specified on an **LSM**, **LSM2**, **LSM3**, or **LSM4** parameter is variable and depends on the length of each label, the number of imbedded commas, and the opening and closing parentheses.

The total number of characters specified cannot exceed the IBM limitation of 255 characters. The **LSM2**, **LSM3**, and **LSM4** are optional parameters not required if the number of LSMs in the ACS and your naming convention results in a string length less than 255 characters.

For example, if each assembler label is four characters long, a maximum of 50 assembler labels can be specified on the **LSM** parameter:

```
200 label characters + 49 imbedded commas + 2 parentheses = 251 characters
```

Adding another assembler label results in a LIBGEN assembly error. To resolve this problem, add an **LSM2** parameter on the SLIACS macro and specify the fifty-first assembler label on that parameter.

In general, if the ACS contains more LSMs (assembler labels) than can be supported by the LSM parameter, you must code LSM2, LSM3, or LSM4 parameters, as necessary, for the other LSMs. It is recommended that you code additional LSMx parameters in ascending order for easier maintainability. Also, note that there is an architectural limit of 256 LSMs for each ACS.

Examples:

LSM=(LØØØ) LSM=(LØØØ,LØØ1,LØØ2)

FUTRLSM=

8500 indicates to preallocate space in the CDS for SL8500 LSMs. This space is used when new LSMs are to be added to the ACS through PTP connections.

lsmnum defines the number of future preformatted LSM records written to the CDS. The number specified must be between 4 and 124.

This parameter is optional.

Notes:

- An SL8500 library contains four rails (LSMs), thus the *lsmnum* value must be in multiples of four (4, 8, 12, 16, and so on).
- If the number specified in *lsmnum* is too small, another LIBGEN will be required to add additional LSMs. If the number entered for *lsmnum* is too large, the result is unused CDS space reserved for future expansion.

Example

SLIACS Statement

ACSØ	SLIACS	ACSDRV=(CTAPEA,CTAPEB),	Х
		STATION=(STNØ,STN1), LSM=(LSMØ,LSM1,LSM2),	X X
		FUTRLSM=(8500,16)	

SLISTATN Macro

The SLISTATN macro contains LMU station addresses that connect a host system to an ACS. One SLISTATN macro is used for each station label coded in the SLIACS macro STATION parameter. The SLISTATN macro must appear immediately following the SLIACS macro which references them and in the order specified on the SLIACS macro STATION parameter.

Normally, the HSC waits for offline stations when it attempts to initiate communication. This means message IEF238D is issued when the HSC allocates the station.

However, if the HSC has already established communication with at least one station, the HSC does not wait for other stations to come on during initialization. Therefore, list the stations that are designated for backup usage last. These backup stations are normally offline.

Note: If you are using only TCP/IP LMU connections, you can omit this macro statement, but if you are using 3270 or a combination of 3270 with TCP/IP, then you need to include the SLISTATN macro.

Syntax

► station0—SLISTATN ADDRESS=(addr0,...,addr15)—

Parameters

station0

assembler label referred to by the SLIACS macro STATION parameter.

SLISTATN

name of this macro.

ADDRESS=

addr0,...,addr15 specifies the LMU addresses that connect the ACS to the host system. A minimum of one and a maximum of 16 station addresses may be used by a single host to communicate with an ACS. A maximum of 16 connections per ACS is allowed. In a dual LMU configuration the maximum is 32 connections per ACS; 16 to each LMU in the dual LMU configuration.

Examples:

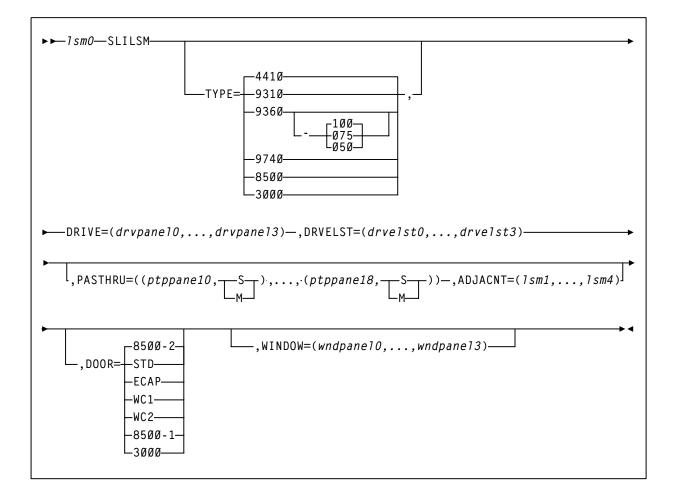
ADDRESS=(ØAØ) ADDRESS=(ØAØ,ØA1) * 4

Example

SLISTATN Statement

```
STNØ SLISTATN ADDRESS=(ØAØ,ØA1)
```

SLILSM Macro


This macro defines the panel numbers and relative position of cartridge drive panels around an LSM, the assembler labels for the SLIDLIST macro, the panel number for each pass-thru port in an LSM, and the assembler labels of SLILSM macros.

The first SLILSM macro for an ACS must appear immediately after the last SLISTATN macro for an ACS. Subsequent SLILSM macros for the ACS must appear immediately after the last SLIDRIVS macro referred to by the preceding SLILSM macro. The SLILSM macros are coded in the same order as specified in the SLIACS macro LSM, LSM2, LSM3, and LSM4 parameters.

Note: For the SL3000 library, the only required parameter is **TYPE=3000**, although the other parameters are still valid. If you specify only TYPE=3000 and decompile the CDS, the other relevant parameters are shown in the decompile output.

Syntax

Parameters

lsm0

assembler label referred to by the SLIACS macro LSM, LSM2, LSM3, and LSM4 parameters.

SLILSM

specifies the name of this macro.

TYPE=

specifies the LSM type.

Caution: The value specified must match both the physical hardware configuration and the value coded by the Sun StorageTek CSE or panel mismatch errors appear at startup. Confirm the value you are specifying on the **TYPE** parameter with your CSE.

Options include:

4410

standard LSM. 4410 is the default.

9310

specifies a PowderHornTM LSM.

9360-*xxx*

specifies a WolfCreekTM LSM with a distinct cartridge capacity. Allowable values for *xxx* are:

050

500 cartridge capacity WolfCreek. This is a WolfCreek LSM without cell arrays on panels 3 and 4.

075

750 cartridge capacity WolfCreek. This is a WolfCreek LSM without cell arrays on panel 4.

100

1000 cartridge capacity WolfCreek. This is the default value.

9740

specifies a TimberWolf LSM.

8500

specifies an SL8500 library.

3000

specifies an SL3000 library.

Note: For the SL3000 library, the DRIVE and DRVELST parameters are optional. If you do not specify them, you must run the SET SLIDRIVS utility to add the MVS drive unit addresses.

DRIVE=

drvpanel0,...,drvpanel3 specifies the range of panel numbers. *drvpanel0* specifies the panel number of the first cartridge drive panel moving clockwise from the door; *drvpanel1* specifies the second cartridge drive panel, etc. The following are LSM-specific panel requirements:

- For the 4410 standard LSM and the 9310 PowderHorn LSM, *drvpanel* must be in the range from 1 through 10, with a maximum of four panels specified. For the ExtendedStoreTM LSM, panel 10 **must** be defined as a drive panel because the SLIDRIVS macro requires a definition for panel 10 (see "SLIDRIVS Macro" on page 61 for additional information).
- 9360 (WolfCreek) LSMs must have one drive defined in panel 1, with the optional drive/viewing window available in panel 3.
- In 9740 (TimberWolf) LSMs, panel 1 is the drive panel (up to 10 drives can be specified), and panel 3 includes a viewing window if optional cells are not requested.
- For SL8500 libraries, panel 1 is the only drive panel.
- For SL3000 libraries, panels 10 and 12 are the only drive panels.

Examples:

```
DRIVE=(9,10)
DRIVE=(1,2,9,10)
DRIVE=(7,8,9,10)
DRIVE=(1) (WolfCreek or TimberWolf DRIVE example)
```

DRVELST=

drvelst0,...,*drvelst3* defines the assembler labels for the SLIDLIST macros. The positional ordering of the DRVELST parameter is determined by the DRIVE parameter.

Example:

DRVELST=(PANEL1,PANEL2,PANEL9,PANEL1Ø)

PASTHRU=

ptppanel0 specifies the panel number for each pass-thru port in the LSM.

- For 4410 Standard, and 9310 PowderHorn LSMs, *ptppanel0* is a decimal number in the range from 1 through 9 and identifies the panel number of a pass-thru port (PTP).
- For the 9360 WolfCreek and 9740 TimberWolf LSMs, the only valid values for *ptppanel0* are 0 and 2.
- For SL8500, valid values for *ptppanel0* are 0 (internal elevator) and 1 (external PTPs).

Note: The SL8500 contains 3 internal PTPs (elevator) that move cartridges between LSMs (rails).

• For SL3000, this parameter is invalid.

The S or M specification defines LSM/PTP relationship.

S

indicates this LSM does not control the PTP (slave).

Μ

indicates this LSM controls the PTP (master).

There can be a total of four pass-thru port panels per 4410 and 9310 LSMs and a total of two pass-thru ports for the 9360, 9740, and SL8500 LSMs.

A maximum of two master (M) pass-thru ports are allowed per LSM as shown in Figure 5 on page 53.

For 9360 WolfCreek LSMs, panel zero (0) is always a master PTP. When a 9360 WolfCreek LSM is connected to a 4410 or 9310 LSM, the panel of the 9360 (panel 0 and or 2) connected to the 4410 or 9310 LSM is always a master. When 9360s are connected in a series with other 9360s, panel 0 is always a master and panel 2 is always a slave.

For 9740 TimberWolf LSMs, panel 2 is the master PTP and panel 0 is the slave. 9740 LSMs can attach only to other 9740s.

For SL8500 libraries, the lowest numbered LSM is always the master PTP.

If the PASTHRU parameter is specified, the ADJACNT parameter must also be specified. The order of PTPs listed must correspond to that specified in the ADJACNT parameter.

Examples:

PASTHRU=((5,M)) PASTHRU=((5,M),(7,S)) PASTHRU=((1,M),(3,M),(5,S))

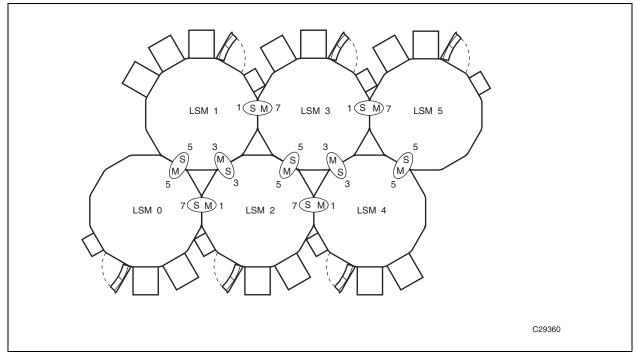


Figure 5. Example of Pass-thru Port Relationships PASTHRU=((Ø,M),(2,S)) (WolfCreek Example)

PASTHRU=((2,M),(Ø,S)) (974Ø Example) PASTHRU=((Ø,M),(Ø,M),(Ø,M)) (SL85ØØ Example)

Note: All of parentheses delimiters must be included in the macro statement even if only one PTP is specified. For example, if only one PTP is specified, the double parentheses must be indicated as shown in the following example.

Example:

PASTHRU=((6,M))

ADJACNT=

lsm0,lsm1,lsm2,lsm3 specifies the assembler labels of SLILSM macros, as coded in the SLILSM macro, which are connected via PTPs to this LSM. If the ADJACNT parameter is specified, the PASTHRU parameter must also be specified. The order listed must correspond to that specified in the PASTHRU parameter.

Examples:

ADJACNT=(LSM1)

where LSM1 is ptppanel0

ADJACNT=(LSM2,LSMØ)

where LSM2 is ptppanel0 and LSM0 is ptppanel2

[A

Note: For the SL3000 library, this parameter is invalid.

DOOR=

optionally specifies the CAP configuration in the LSM access door.

Note: The 9740 TimberWolf LSM contains either a 10-cell removable magazine or a 14-cell permanent rack. The HSC receives CAP configuration information directly from the LMU, so it is not necessary to specify this parameter for the 9740.

STD

indicates the LSM access door contains a standard CAP (capacity of twenty-one cartridges).

ECAP

indicates the LSM access door contains an enhanced CAP. The enhanced CAP door features two large CAPs (capacity of forty cartridges each), and one small CAP, referred to as the priority CAP or PCAP (capacity of one cartridge).

WC1

indicates the LSM access door contains a WolfCreek CAP having a 20-cell capacity and a PCAP.

WC2

indicates the LSM access door contains an optional WolfCreek CAP having a 30-cell capacity. This is in addition to the capacity provided by the WC1 CAP door. Thus a WolfCreek with an optional WC2 CAP has the following configuration: WC1 with 20-cell capacity and a PCAP plus a WC2 with 30-cell capacity.

8500-1

indicates an SL8500 configured with one CAP (capacity of 39 cartridges).

8500-2

indicates an SL8500 configured with two CAPs (capacity of 39 cartridges each). **8500-2 is the default.**

3000

indicates an SL3000.

WINDOW=

wndpanel0,...,wndpanel3 specifies one or more panel numbers containing a viewing window. *wndpanel0* specifies the panel number of the first window panel moving clockwise from the access door; *wndpanel1* specifies the second window panel, etc. The panel number(s) designated for the viewing window(s) must be enclosed in parentheses.

Viewing windows are an available option on the following LSM types:

- PowderHorn (9310)
- WolfCreek (9360)
- TimberWolf (9740)
- SL3000 available only on panel 13. If not specified, the HSC self-discovers the window at HSC INIT.

Note: The standard LSM (TYPE=4410) does not allow the replacement of a panel with a viewing window. TYPE=4410 is the default LSM type. You must enter an LSM type of TYPE=9310 (PowderHorn), TYPE=9360-*xxx* (WolfCreek), or TYPE=9740 (TimberWolf) in order to specify a viewing window.

Only one viewing window can be specified for a WolfCreek or a TimberWolf LSM, and it must be defined in panel number three (3). Selecting any panel number other than three causes an error message to be displayed. If the viewing window is defined for the WolfCreek LSM, panel three may not be designated as a DRIVE panel.

The following example shows the WolfCreek and TimberWolf LSM viewing window selection:

Example:

WINDOW = (3)

The PowderHorn LSM supports from one to four viewing windows. Panel numbers one (1) through nine (9) are eligible for designations as viewing windows. Panel numbers zero (0), ten (10), and eleven (11), are not eligible as viewing windows. If panels zero, ten, or eleven are designated as viewing windows, an error message is issued describing their ineligibility.

The following examples show PowderHorn LSM viewing window selections:

Examples:

WINDOW=(2) WINDOW=(2,5,7,9)

If more than one panel is designated as a viewing window, the panel numbers must be separated by commas and the entire list must be enclosed in parentheses. Panel numbers selected for viewing windows may not be designated as DRIVE panels or as PASTHRU panels.

Examples

```
LSMØ SLILSM DRIVE=(1,2,9,10), X
DRVELST=(PANEL1,PANEL2,PANEL9,PANEL10), X
PASTHRU=((5,M),(7,S)), X
ADJACNT=(LSM1,LSM2), X
DOOR=STD
```

SLILSM Statement for LSM Model 9310-PowderHorn

DRVELST=(PANEL1,PANEL2,PANEL9,PANEL1Ø), PASTHRU=((5,M),(7,S)),	
---	--

SLILSM Statement Specifying LSM Model 9360-100 WolfCreek

LSM4	SLILSM	<pre>TYPE=936Ø-1ØØ, DRIVE=(1), DRVELST=(PANEL1), PASTHRU=((Ø,M)), ADJACNT=(LSMØ), DOOR=WC2, WINDOW=(3)</pre>
		DRVELST=(PANEL1), PASTHRU=((Ø,M)), ADJACNT=(LSMØ), DOOR=WC2,

SLILSM Statement Specifying LSM Model 9740 - TimberWolf

LSMØ	SLILSM	TYPE=974Ø	Х
		DRIVE=(1),	Х
		DRVELST=(PANEL1),	Х
		PASTHRU=((2,M)),	Х
		ADJACNT=(LSM1),	Х
		WINDOW=(3)	

X X X X X X X

LSMØ	SLILSM	TYPE=8500,	Х
		DRIVE=(1),	Х
		DRVELST=(PANEL1),	Х
		$PASTHRU = ((\emptyset, M), (\emptyset, M), (\emptyset, M)),$	Х
		ADJACNT=(LSM1,LSM2,LSM3),	Х
		D00R=85ØØ-1	

SLILSM Statement Specifying LSM Model SL3000 - StreamLine

LSMØ SLILSM TYPE=3000

SLIDLIST Macro

Each SLIDLIST macro specifies an assembler label corresponding to a SLIDRIVS macro which identifies the unique host addresses associated with the transports residing on a cartridge drive panel.

The first SLIDLIST macro for an LSM must appear immediately after the SLILSM macro which refers to it. Subsequent SLIDLIST macros for the LSM must appear immediately after the last SLIDRIVS macro for the preceding SLIDLIST macro.

Syntax

▶ → drvelst0 — SLIDLIST — HOSTDRV= (drives0,...,drives15)

Parameters

drvelst0

specifies the assembler label that is referred to by the SLILSM macro DRVELST parameter.

→ 4

SLIDLIST

name of this macro.

HOSTDRV=

(*drives0*,...,*drives15*) specifies the assembler label name of each SLIDRIVS macro which defines transport addresses.

Note: The HOSTDRV operands are positional. The SLILIBRY macro HOSTID parameter determines the positional ordering of the operands specified in the HOSTDRV parameter. The first operand specified in the HOSTDRV parameter corresponds to the first host specified in the SLILIBRY macro HOSTID parameter, etc.

Examples:

HOSTDRV=(DRVØ)

where DRV0 is for Host0

HOSTDRV=(DRVØ,DRV1)

where DRV0 is for Host0 and DRV1 is for Host1

HOSTDRV=(DRVØ,DRVØ)

where DRV0 is for Host0 and DRV0 is for Host1

Example

SLIDLIST Statement

PANEL1 SLIDLIST HOSTDRV=(DRVØ,DRVØ)

SLIDRIVS Macro

The SLIDRIVS macro lists the transport device addresses used by a host, which correspond to a specific cartridge drive panel. A SLIDRIVS macro must be specified for each unique operand coded in the SLIDLIST macro HOSTDRV parameter. The SLIDRIVS macro(s) must appear immediately following the SLIDLIST macro which references it.

Syntax

▶ → drives0 SLIDRIVS ADDRESS=(addr0,addr1...)

Parameters

drives0

specifies the assembler label that is referenced by the SLIDLIST macro HOSTDRV parameter.

* 4

SLIDRIVS

name of this macro.

ADDRESS=

addr0,addr1,... specifies the host-unique device addresses associated with transports residing in a cartridge drive panel. Nonexistent transports are indicated by position-holding commas. Duplicate unit addresses are not allowed for a given host.

Note: If addresses exceed more than one line, place a comma after the last address **and** a nonblank character in column 72 (e.g., an X). Continue on the next line starting in column 16. Unlike control statements, no plus (+) or minus (-) continuation characters are required after the last parameter value.

Examples:

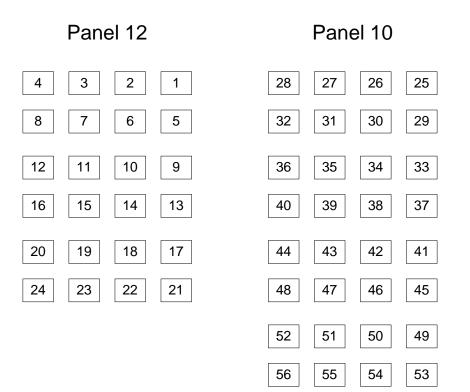
ADDRESS=(410,411,412,413)	for a 4480 M24, 4490 M34, 9490 M34, 9490EE M34, or SD-3 H34 device
ADDRESS=(410,,412,)	for a 4480 M22 or 4490 M32 device
ADDRESS=(,B75,,B76)	for a 9490 or 9490EE M32 or SD-3 H32 device
ADDRESS=(,B75,,)	for an SD-3 H31 device
ADDRESS=(,B75,B76,B77)	for an SD-3 H33 device
ADDRESS=(C10,C11,C12,C13,C14, X C15,C16,C17,C18,C19)	for a 9840, T9840B, T9840C, T9940A, or T9940B device (10-drive panel)

ADDRESS=(C10,C11,C12,C13,C14, C15,C16,C17,C18,C19,C1A,C1B, C1C,C1D,C1E,C1F,C20,C21,C22, C23)	X X X	for a 9840, T9840B, T9840C, T9940A, or T9940B device (20-drive panel)
ADDRESS=(,,,,9AØ1,,,,9AØ2,,,,9AØ3,,, 9AØ4)	Х	for an SL8500 device (16-drive panel)
ADDRESS=(,,,,ØØCA,,,,ØØCB,,,,ØØCC,,,, ØØCD,,,,ØØCE,,,)	х	for an SL3000 device (24-drive panel)

Notes:

- If you are executing the HSC as a remote server for the SMC, and drive addresses are defined differently on different HSC server hosts, you may need to specify either or both the HSC SET DRVHOST utility or the SMC DRIVEMAP command to define client/server drive mapping. Refer to the SMC DRIVEMAP command in the *SMC Configuration and Administration Guide* and the SET DRVHOST utility in the *HSC System Programmer's Guide*.
- You must specify at least one drive address for each ACS. For example, you cannot specify

ADDRESS=(,,,)


for all drive addresses in an ACS.

Caution: If you fail to enter at least one drive address, the Database Decompile utility will fail against this CDS.

- The total number of drive positions, including position-holding commas, must be 4, 10, 16, or 20 depending on the LSM type:
 - 4410 or 9360 LSM, 4-drives per panel are supported.
 - 9740 LSM, 4-drive or 10-drives per panel are supported.
 - 9310 LSM, 4-drive, 10-drive, and 20-drives per panel are supported.
 - SL3000: 32 drives per panel are supported for panel 10; 24 drives per panel are supported for panel 12
 - SL8500, 16-drives per panel are supported.

• Outside and back of the SL3000 library, drive panel numbering proceeds from top to bottom, right to left. Figure 6 shows an example of drive numbering for drive addresses on panels 12 and 10.

SL3000 Drive Panels as vewed from the outside back

Figure 6. SL3000 Drive Panel Layout Example

Refer to Appendix B, "HSC Support for the SL3000," in the HSC System *Programmer's Guide* for more information.

• Outside the SL8500 library, drive panel numbering proceeds from top to bottom, right to left, as viewed outside the structure from the drive end. Table 3 shows an example of drive numbering for drives on one LSM (LSM0) and drive addresses on drives 3 and 15.

LSM	Drive Panel				Row
Listvi	+2	+1	-1	-2	Row
	12	8	4	0	1
LSM0	13	9	5	1	2
(Rail 1)	14	10	6	2	3
	15	11	7	3	4
	(1624)			(1621)	

Table 3. SL8500 Drive Panel Layout Example - Outside Library

Inside the library, drive panel numbering is top to bottom, left to right, as viewed inside the library from the CAP end. Table 4 shows the same drive configuration as Table 3.

Table 4. SL8500 Drive Panel Layout Example - Inside Library

LSM	Drive Panel				Row
LOW	-2	-1	+1	+2	NUW
	0	4	8	12	1
LSM0	1	5	9	13	2
(Rail 1)	2	6	10	14	3
	3	7	11	15	4
	(1621)			(1624)	

To specify the drives above, the SLIDRIVs statement is:

SLIDRIVS ADDRESS=(,,,1621,,,,,,1624)

Refer to Appendix A, "HSC Support for the SL8500," in the HSC System *Programmer's Guide* for more information.

- The total number of drive positions specified by all SLIDRIVS statements for a single panel must be the same.
- For an ExtendedStore library, panel 10 must be defined using commas to indicate nonexistent transports. Example:

ADDRESS=(,,,)

• On all LSMs except the 9740, drives are defined to the HSC from top to bottom, with *addr0* representing the topmost drive and *addrn* the bottommost drive.

On a 9740 10-drive panel LSM, the drives are populated and configured in the 9740 LSM from bottom to top. (9740 4-drive panels are configured to the 9740 LSM from top to bottom, as are all other LSM drive panels.)

An example showing how to define a 9740 10-drive panel containing five 9840 drives is:

ADDRESS=(,,,,BD4,BD3,BD2,BD1,BDØ)

Examples

SLIDRIVS Statement

DRVØ SLIDRIVS ADDRESS=(410,411,412,413)

SLILSM, SLIDLIST, SLIDRIVS Statements for ExtendedStore LSM

The following example illustrates how to code drive specifications for an ExtendedStore LSM on a system with four hosts.

LSM1	SLILSM	DRIVE=(10), PASTHRU=((1,S)), ADJACNT=(LSM0), DRVELST=(PANL110),
		TYPE=4410, DOOR=STD HOSTDRV=(DRV110,DRV110,DRV110,DRV110) ADDRESS=(,,,)

SLILSM, SLIDLIST, SLIDRIVS Statements for a 9740 LSM

The following example illustrates how to code drive specifications for a 9740 LSM that contains a 10-drive 9840 panel.

MZITIZ	TYPE=9740	
SEIESH		Y
		X
	DRVELSI=(PANELI),	Х
	PASTHRU=((2,M)),	Х
	ADJACNT=(LSM1),	Х
	WINDOW=(3)	Х
SLIDLIST	HOSTDRV=(P1ØDRVØ)	
SLIDRIVS	ADDRESS=(D19,D18,D17,D16,D15,D14,D13,	Х
	D12,D11,D10)	
		DRIVE=(1), DRVELST=(PANEL1), PASTHRU=((2,M)), ADJACNT=(LSM1), WINDOW=(3) SLIDLIST HOSTDRV=(P10DRV0) SLIDRIVS ADDRESS=(D19,D18,D17,D16,D15,D14,D13,

X X X X X

SLILSM, SLIDLIST, SLIDRIVS Statements for a 9310 LSM

The following example illustrates how to code drive specifications for a 9310 LSM that contains a 20-drive 9840 panel.

```
LSM1
                 DRIVE=(10),
                                                                       Х
        SLILSM
                 PASTHRU=((5,S)),
                                                                       Х
                 ADJACNT=(LSMØ),
                                                                       Х
                                                                       Х
                 DRVELST=(PANEL8),
                                                                       Х
                 TYPE=9310,
                 DOOR=STD
PANEL8 SLIDLIST HOSTDRV=(DRV1Ø5)
DRV105 SLIDRIVS ADDRESS=(C10,C11,C12,C13,C14,C15,
                                                                       χ
                 C16,C17,C18,C19,C1A,C1B,C1C,C1D,
                                                                       Х
                 C1E,C1F,C20,C21,C22,C23)
```

SLIENDGN Macro

The SLIENDGN macro specifies the end of the LIBGEN macros. It must appear as the last statement of the LIBGEN. No comments or other statements can follow this macro because they generate assembler warning messages.

►◀

Syntax

► ► SLIENDGN-

Parameters

SLIENDGN

name of this macro. The SLIENDGN macro has no parameters.

LIBGEN Outputs

Job step return codes are listed in the following table.

Table 5. LIBGEN Job Step Return Codes

Return Code	Description	
0, x'00'	Indicates a successful LIBGEN.	
4, x'04'	Indicates successful LIBGEN; however, warning messages have been issued.	
12, x'0C'	Indicates that the LIBGEN failed.	

LIBGEN error messages are issued as assembler MNOTES. Refer to the *HSC Messages and Codes Guide* for an explanation of any error message encountered while running LIBGEN.

LIBGEN Process Verification

The LIBGEN macros must be assembled and link edited into a load module used by control data set initialization. (It is recommended that you use the High-Level Assembler.) Refer to Chapter 5, "Initializing the Control Data Sets" on page 71 for more information.

Assembler and Linkage Editor JCL

The assembler and linkage editor JCL for LIBGEN is shown in the following listing.

//* //ASM EXEC PGM=ASMA9Ø //SYSPRINT DD SYSOUT=* //SYSTERM DD SYSOUT=* (optional) DD DSN=SYS1.MACLIB,DISP=SHR //SYSLIB DD DSN=SLS.SLSMAC,DISP=SHR 11 //SYSUT1 DD UNIT=SYSDA, SPACE=(CYL, (3,1)) //SYSLIN DD DSN=&&OBJ,UNIT=SYSDA, SPACE=(CYL,(1,1)),DISP=(,PASS) 11 //SYSIN DD * LIBGEN deck goes here /* //LKED EXEC PGM=IEWL, PARM='LIST, XREF, RENT, REUS, REFR, RMODE=24', $COND = (\emptyset, NE)$ 11 //SYSPRINT DD SYSOUT=* DD DSN=SLS.your.hsc.linklib(lgenname),DISP=SHR //SYSLMOD //SYSUT1 DD UNIT=SYSDA, SPACE=(CYL, (3,1)) //SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE) //*

Verifying the Library Generation (LIBGEN)

After creation of the LIBGEN, it is important to verify that the configuration is correct.

To verify the LIBGEN, execute the SLIVERFY program. Verification can be performed at this point or can be performed during installation verification when testing the basic installation (refer to "Basic Installation Integrity Test" on page 115).

SLIVERFY Program

The SLIVERFY program must be installed in an APF-authorized library. The program validates the nonlibrary esoteric defined in the LIBGEN and compares it with the Eligible Device Table (EDT). The ACS esoteric names are **not** validated, since they are not used in allocation processing.

Station and transport device addresses are verified against Unit Control Blocks (UCBs) for each of a host's defined LMU addresses and transports. This verifies that the LMU addresses, if supplied, are 3278 devices. If transports exist, SLIVERFY makes sure that they are 3480, 3490, or 3590 devices, however, it does **not** verify that UCBs exist for all transports. SLIVERFY must execute on a host defined to access the library.

Sample JCL for SLIVERFY is contained in the HSC SAMPLIB member JCLVRFY.

Example

SLIVERFY Program JCL

```
//SLIVERFY job (account),'programmer',CLASS=A
//*
//VERIFY EXEC PGM=SLIVERFY,PARM='libgen-load-module-name'
//STEPLIB DD DSN=your.hsc.linklib,DISP=SHR
//SYSPRINT DD SYSOUT=*
//*
```

SLIVERFY does not need to be run on all hosts defined in the LIBGEN unless different configurations exist.

Chapter 5. Initializing the Control Data Sets

Data set initialization creates the library control data sets and must be performed before the library is operational.

Steps required to initialize the library control data sets are:

- 1. Create data set definitions in the data set initialization JCL using the SLICREAT program.
- 2. Execute SLICREAT to create the library control data sets.
- 3. Verify successful completion of the SLICREAT program and note the library volume capacity displayed in a confirming message.

Note: If you are migrating from a prior release of the HSC, refer to Appendix D, "Migration and Coexistence Processes" on page 167 for more information regarding control data set changes.

Creating Control Data Set Initialization JCL

Creating the definitions for the library control data set is done by coding JCL in a job file named SLICREAT.

The following is an example of JCL for the SLICREAT program. This sample is also included in the HSC SAMPLIB as member JCLCRT.

```
//SLICREAT JOB (account), 'programmer', CLASS=A
//CREATE EXEC PGM=SLICREAT,
                             CDS CREATE MODULE
11
         PARM='libgen-load-module-name',
11
         REGION=ØM
//*
//STEPLIB DD DSN=your.hsc.linklib,DISP=SHR
//SYSPRINT DD SYSOUT=*
                             MESSAGES
//*
//*
        LIBRARY PRIMARY CONTROL DATASET (CDS)
//SLSCNTL DD DSN=SLS.SLSCNTL,
                             PRIMARY CDS
11
         SPACE=(4096, s,, CONTIG, ROUND), REPLACE 's' WITH YOUR
11
         DISP=(NEW,CATLG,DELETE), SPACE CALCULATIONS
         UNIT=SYSDA
11
//*
         LIBRARY SECONDARY CONTROL DATASET (CDS)
//SLSCNTL2 DD DSN=SLS.SLSCNTL2,
                            SECONDARY CDS
11
         SPACE=(4096,s,,CONTIG,ROUND), REPLACE 's' WITH YOUR
         DISP=(NEW,CATLG,DELETE), SPACE CALCULATIONS
11
11
         UNIT=SYSDA
//*
         LIBRARY STANDBY CONTROL DATASET (CDS)
STANDBY CDS
//SLSSTBY DD DSN=SLS.SLSCNTL3.
         SPACE=(4096,s,,CONTIG,ROUND), REPLACE 's' WITH YOUR
11
11
         DISP=(NEW,CATLG,DELETE),
                            SPACE CALCULATIONS
11
         UNIT=SYSDA
//*
     LIBRARY JOURNAL DATASET (INITIAL)
//SLSJRNØ1 DD DSN=SLS.SLSJRNØ1,
                            INITIAL JOURNAL
11
         SPACE=(4096,u,,CONTIG,ROUND), REPLACE 'u' WITH YOUR
11
         DISP=(NEW,CATLG,DELETE), SPACE CALCULATIONS
11
         UNIT=SYSDA
//*
         LIBRARY JOURNAL DATASET (ALTERNATE)
//SLSJRNØ2 DD DSN=SLS.SLSJRNØ2,
                            ALTERNATE JOURNAL
         SPACE=(4096,u,,CONTIG,ROUND), REPLACE 'u' WITH YOUR
DISP=(NEW,CATLG,DELETE), SPACE CALCULATIONS
11
11
11
         UNIT=SYSDA
//* ONE PAIR OF JOURNALS ARE REQUIRED FOR EACH GENED HOST
//*
```

Note: Refer to "Calculating DASD Space using SLICREAT" on page 74 for information about how to estimate DASD space before running SLICREAT.

Descriptions of DD Statements

The following are descriptions of the JCL DD statements that must be used to define the library control data sets.

SYSPRINT

output messages.

Refer to the following criteria when allocating the control and journal data sets:

- Do not specify the DCB statement. The HSC defines the required blocksize (4K).
- The data set(s) must be allocated in a single contiguous extent.
- The CDS(s) must not include existing data sets containing records prior to running the SLICREAT process.
- Sun StorageTek recommends that the CDSs do **not** reside on the same volume(s) as other CDSs or other data sets that generate high I/O activity. Refer to "I/O Device Reserve Considerations" on page 16 for more information.

SLSCNTL

primary library control data set. This is the initial data set that is used to control and synchronize all activities within the HSC. It is used by the HSC until the controlling data set is switched to the secondary, either automatically or manually. Refer to "Control Data Set Recovery Strategies" on page 13 for more information on multiple data set configurations.

SLSCNTL also controls the SLICREAT process. If you do not include an SLSCNTL DD statement when you run SLICREAT,

- the CDSs will not be formatted, and
- the size requirement (in blocks) of the LIBGEN load module included in the PARM statement will be calculated and reported and journal formatting will be attempted.

SLSCNTL2

secondary copy of the primary control data set. This is required only if the SLIRCVRY macro TCHNIQE parameter is SHADOW, STANDBY, BOTH, or ALL.

SLSSTBY

standby control data set. This data set is required only if the SLIRCVRY macro TCHNIQE parameter is STANDBY or ALL. A secondary data set is required if a standby control data set is specified. This data set is also required for STBYONLY processing (refer to "Creating Only the SLSSTBY CDS" on page 78).

SLSJRNnn

specifies the two journal DD statements for each host. This is required only if the SLIRCVRY macro TCHNIQE parameter is JOURNAL, BOTH, or ALL. The range if '*nn*' is from 01 to 32.

During SLICREAT, two SLSJRNnn statements are used per host specified. For example, if you define three hosts in the SLILIBRY macro, SLICREAT formats only the first six SLSJRNnn statements (two for each host), SLSJRN01 through SLSJRN06. Any other SLSJRNnn statements are ignored by SLICREAT. SLICREAT always formats the SLSJRNnn statements in sequential order, thus you may not specify that your formatted journals begin with SLSJRN24 and end with SLSJRN29.

Calculating DASD Space using SLICREAT

You can determine the minimum DASD space required for the CDSs by executing SLICREAT without specifying the SLSCNTL and SLSJRNnn DD statements. The HSC generates a message that indicates the minimum space requirements in 4096-byte blocks. When you execute SLICREAT, you must specify the number of blocks for each of these data sets that is **at least** as large as this minimum.

Note: If you are specifying multiple CDSs (SLSCNTL2, SLSSTBY), Sun StorageTek recommends that you allocate the same amount of space (in blocks) for all your data sets when you define them.

If the data sets are defined with different space allocations, the HSC uses the size of the smallest data set to determine the number of 4K blocks that it will use for the CDS. The additional space in the other CDS data sets, if any, will not be used by the HSC.

The difference in space between the minimum space required (returned by SLICREAT) and the size of the smallest CDS copy is formatted as CDS free blocks.

Note: HSC 6.1 and 6.2 create a 6.1.0-level CDS.

Calculating Cartridge Capacity - SL8500 and SL3000

Message SLS0557I displays the total cartridge capacity for the library. For the SL8500 and SL3000 libraries, you must first vary the library online (Vary ACS command) to see the actual capacity of the library rather than the maximum capacity of the library. Before you vary the library, the maximum capacity is based on the highest possible number of panels that the HSC allows to be defined, not the number you defined in LIBGEN.

After you vary the library online, enter the Display Acs or Display Lsm command to show the actual library capacity. Refer to the HSC Operator's Guide for information about the Vary and Display commands.

Executing the SLICREAT Program

The next step in initializing the control data sets is to execute the SLICREAT program. Figure 7 on page 77 illustrates execution of SLICREAT.

The EXEC statement to execute the SLICREAT program which creates the library control data sets is

EXEC Statement for the SLICREAT Program

EXEC PGM=SLICREAT, PARM='libgen-load-module-name'

The PARM value indicates the LIBGEN load module name. The steplib statement must point to the appropriate library in which the LIBGEN load module currently resides.

Note: SLICREAT requires a LIBGEN load module assembled with the same level macros as the release LINKLIB. A LIBGEN load module created with earlier HSC releases cannot be used as input to a later release of SLICREAT.

The CDS files that are created by SLICREAT (SLSCNTL, SLSCNTL2, and SLSSTBY) are verified to be empty data sets prior to being formatted. If SLICREAT identifies any of these files as containing records, an error message is displayed and the creation process terminates. If this occurs, specify a different data set(s) or delete and redefine the data set(s) and reexecute SLICREAT.

The journal files (all SLSJRN*nn* files) are also verified prior to being formatted. If SLICREAT identifies any journal file as containing records prior to formatting, an error message is generated and that journal file is not formatted. If this occurs, specify a different data set or delete and redefine the data set and reexecute SLICREAT without specifying the SLSJRN*nn* DD statement. Refer to "Reformatting the SLSJRNnn Data Sets" on page 78 for more information about formatting journals.

If your installation previously installed the HSC and you have never created a standby control data set, you can run the SLICREAT program to create only the standby control data set. At least a primary control data set must exist before the SLICREAT program can be executed for this purpose.

A standby control data set is created by specifying the PARM='STBYONLY' statement.

Note: For a standby data set to be recognized by the system, it must be defined by a CDSDEF statement in the PARMLIB.

SLICREAT EXEC Statement to Create Standby CDS

```
EXEC PGM=SLICREAT, PARM='STBYONLY'
```

This method does not create a backup of the primary control data set. The first record of the primary control data set is copied and the remainder of the data set is formatted to allow the standby CDS to be enabled.

The following figure illustrates the dataset initialization process.

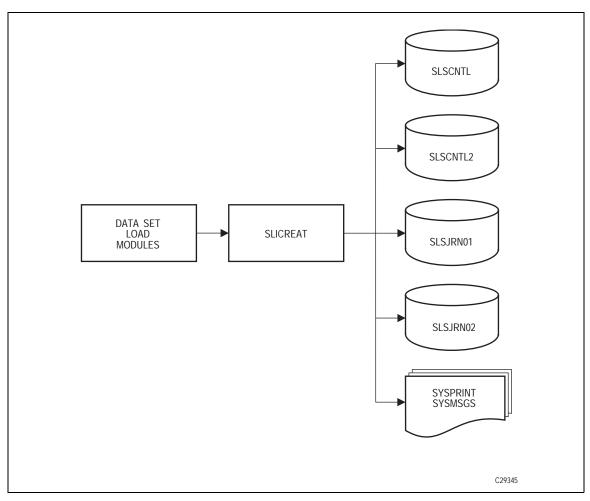


Figure 7. Data Set Initialization

Verifying Successful Completion of the SLICREAT Program

After the SLICREAT program is successfully processed, a message is generated indicating the status and the capacity of the library. An example is:

SLICREAT Success Status Message

SLSØ557I DATABASE SUCCESSFULLY INITIALIZED: TOTAL CARTRIDGE CAPACITY: DDDDDDDDDDD VOLUMES

Note: Refer to "Calculating Cartridge Capacity - SL8500 and SL3000" on page 74 for information about how the total cartridge capacity is determined for SL8500 libraries.

Reformatting the SLSJRNnn Data Sets

SLICREAT can be used to reformat your HSC journal file(s). To reformat only the journal file(s), you can run SLICREAT without the SLSCNTL DD statement. You should also omit any journal files you do not wish to have reformatted. The

PARM='libgen-load-module-name'

parameter is required.

SLICREAT attempts to reformat any valid journal file it finds and issues a message for all omitted DD statements.

Note: A backup must be run after you reformat any journal file(s).

Creating Only the SLSSTBY CDS

SLICREAT can be used to create an additional CDS. If the HSC was previously installed without a standby CDS, you can run the SLICREAT program to create one.

Note: You must have a primary CDS before you can run the STBYONLY option of SLICREAT.

This method does not make a backup of the primary CDS. It formats the additional CDS and allows you to activate it with the CDS Enable command.

A standby CDS is created by specifying the following EXEC statement:

SLICREAT EXEC Statement to

EXEC PGM=SLICREAT, PARM='STBYONLY'

The SLSCNTL and SLSSTBY DD statements must be specified with the STBYONLY parameter.

Note: For the additional CDS to be recognized by the HSC, it must be defined by a CDSDEF statement in the PARMLIB.

Storage Cell Capacity for 4410, 9310, and ExtendedStore LSMs

Refer to Table 6 to determine the cartridge storage capacity of a 4410 standard, 9310 PowderHorn, or ExtendedStore LSM. Refer to Table 7, Table 8, and Table 9 to determine the cartridge storage capacity of the three 9360 WolfCreek LSM models.

Number of PTPs	Number of Drive Panels			
	1	2	3	4
0	5970	5786	5602	5418
1	5946	5762	5578	5394
2	5922	5738	5554	5370
3	5898	5714	5530	5346
4	5874	5690	N/A	N/A

 Table 6. Storage Cell Capacity of 4410, 9310, ExtendedStore LSMs

- If you have installed an enhanced CAP, reduce the number of cartridges by 240 for any given scenario listed in the table above.
- If you have installed a PowderHorn (9310) window, reduce the number of cartridges by 288 for each window for any given scenario listed in the table above.

Storage Cell Capacity for 9360 LSMs

Storage capabilities for the 9360 WolfCreek LSMs is affected by the number of pass-thru ports, cartridge drives, CAPs, and whether a viewing window is desired. Certain options preclude each other. For instance, you may select the viewing window or add a second cartridge drive, but not both, since they both need the same panel for installation. Multiple CAPs will also affect cartridge storage volume as well as multiple pass-thru ports. The following tables illustrate the storage capacity available for each model, dependent on the options available and selected.

WolfCreek 9360-050	0 PTPs	1 PTP	2 PTPs	
Base Unit	504	496	488	
Additional options do not affect capacity				

Table 7. Storage Cell Capacity of WolfCreek 9360-050 LSMs

WolfCreek 9360-075	0 PTPs	1 PTP 2	PTPs
1 Cartridge Drive (CD)	756	748	740
2nd CD (optional)	648	640	632
Viewing window (optional)	672	664	656

Table 8. Storage Cell Capacity of WolfCreek 9360-075 LSMs

Table 9. Storage Cell Capacity of WolfCreek 9360-100 LSMs

WolfCreek 9360-100	0 PTPs	1 PTP	2 PTPs
1 CD, standard WolfCreek CAP	949	941	933
1 CD, standard and optional WolfCreek CAPs	865	857	849
2nd optional CD, standard WolfCreek CAP	841	833	825
2nd optional CD, standard and optional WolfCreek CAPs	757	749	741
Viewing window, standard WolfCreek CAP	865	857	849
Viewing window option, standard and optional WolfCreek CAPs	781	773	765

Storage Cell Capacity for TimberWolf 9740 LSMs

Storage capacity for the TimberWolf 9740 LSMs varies depending on the number of PTPs (two maximum) configured and whether or not a viewing window is present. The following table illustrates the storage capacity available.

Table 10. Storage Cell Capacity of TimberWolf 9740 LSMs

9740 LSM	0 PTPs	1 PTP	2 PTPs
Standard 9740 (window present)	326	322	318
9740 without window	494	488	484

Storage Cell Capacity for StreamLine SL8500 Libraries

Storage capacity for the SL8500 library varies depending on how many expansion modules/frames are present. No viewing windows are included. The following table lists the storage capacity for the base library and expansion frames.

Module/Frame Type	Cartridge Capacity Per Module/Frame	Total Cartridge Capacity
Control Module/Tape Drive Frame	0	
Robotics Interface Module	800	
Customer Interface Module	648	
Base Library		1448
First Expansion Frame	1728	3176
Second Expansion Frame	1728	4904
Third Expansion Frame	1728	6632
Fourth Expansion Frame	1728	8360
Fifth Expansion Frame	1728	10088

Table 11. Storage Cell Capacity of StreamLine (SL8500) Libraries

Storage Cell Capacity for StreamLine 3000 Libraries

As with the SL8500 library, you can reconfigure the SL3000 library capacity by adding modules. This library can contain a viewing window. Table 12 shows storage capacity for each module.

Note: Refer to "Calculating Cartridge Capacity - SL8500 and SL3000" on page 74 for information about how the total cartridge capacity is determined for SL3000 libraries.

Module	Configuration	Total Cartridge Capacity
Access Expansion Module - Panels 0, 1, 22, 23		0
Base Drive Module - Par	nel 12	
	8 Drives	216
	16 Drives	150
	24 Drives	78
	Back Panel - Last on Left - 8 Drives	180
	Back Panel - Last on Left - 16 Drives	125
	Back Panel - Last on Left - 24 Drives	65
Base Drive Module - Par	nel 13	
	Front Panel - Full - With Window - With CAP	205
	Front Panel - Full - No Window - With CAP	228
	Front Panel - Last on Left - With Window - With CAP	153
	Front Panel - Last on Left - No Window - With CAP	176
Drive Expansion Module	e - Panel 10	
	Back Panel - Full - 8 Drives	216
	Back Panel - Full - 16 Drives	150
	Back Panel - Full - 24 Drives	78
	Back Panel - Full - 32 Drives	0
	Back Panel - Last on Left - 8 Drives	180
	Back Panel - Last on Left - 16 Drives	125
	Back Panel - Last on Left - 24 Drives	65
	Back Panel - Last on Left - 32 Drives	0

Table 12. Storage Cell Capacity of StreamLine (SL3000) Libraries

Module	Configuration	Total Cartridge Capacity			
Drive Expansion Module	Drive Expansion Module - Panel 11				
	Front Panel - Full - With Window - With CAP	205			
	Front Panel - Full - No Window - With CAP	228			
	Front Panel - Full - With Window - No CAP	282			
	Front Panel - Full - No Window - No CAP	305			
	Front Panel - Last on Left - With Window - With CAP	153			
	Front Panel - Last on Left - No Window - With CAP	176			
	Front Panel - Last on Left - With Window - No CAP	230			
	Front Panel - Last on Left - No Window - No CAP	253			
Cartridge Expansion Mod	dule - Panels (L) 2, 4, 6, 8; (R) 14, 16, 18, 20				
	Back Panel - Full	308			
	Back Panel - Last on Left	256			
Cartridge Expansion Module - Panels (L) 3, 5, 7, 9; (R) 15, 17, 19, 21					
	Front Panel - Full - With CAP	234			
	Front Panel - Full - No CAP	312			
	Front Panel - Last on Left - With CAP	182			
	Front Panel - Last on Left - No CAP	260			

T-11- 40	01			N / 11
Table 12.	Storage Cell Ca	pacity of Stream	Line (SL3000)) LIDraries

Backup Utility Recommendation

It is recommended that the BACKup utility be executed after data set initialization to maintain the integrity of the library system should a DASD failure occur. The primary control data set is backed up to a user-specified data set.

At this point, in the event of CDS problem, it is quicker to rebuild a CDS from a backup than it is to execute a SLICREAT again.

If journaling is enabled, all specified journal data sets are reset during backup processing, and the primary control data set is returned to support normal library processing. For additional instructions, refer to the "BACKup Utility" in the *HSC System Programmer's Guide*.

Chapter 6. Defining HSC Control Statements

At this point in the installation process, you may want to consider setting up your definition data set and PARMLIB control statements. The following sections briefly discuss these two kinds of control statements: definition data set, which allow you to define mixed media and devices, and PARMLIB, which are used to define various operation parameters.

Definition Data Set Control Statements

Definition data sets contain control statements that can be used to define to the HSC the volume attributes, unit attributes, and tape request characteristics for your data center. The HSC uses this information to make sure:

- the correct media type is used to satisfy the request
- the cartridge is mounted on an appropriate device (i.e., 4480, 4490, 9490, 9490EE, SD-3, T9840A, T9840B, T9840C, T9940A, T9940B, LTO, SDLT, T10000A, or T10000B).

Definition data set control statements include:

- OPTion TITLE
- Scratch Subpool Definition (SCRPDEF).
- Tape Request (TAPEREQ) controlled by the SMC
- Tape Request Definition (TREQDEF) controlled by the SMC
- Unit Attribute (UNITATTR) controlled by the SMC
- Volume Attribute (VOLATTR)
- Volume Attribute Definition (VOLDEF).

Note: If your library contains more than one media type or device type, enter TAPEREQ, VOLATTR, and UNITATTR control statements to manage allocation of mixed media and/or devices. The TAPEREQ and UNITATTR statements are controlled by the SMC. Refer to the *SMC Configuration and Administration Guide* for detailed information.

For VOLATTR statements, you must enter a statement for each media type so that the HSC can correctly determine scratch counts.

Some alternatives are available to using these control statements:

- create esoterics for each device type (4480, 4490, 9490, 9490EE, SD3, T9840A, T9840B, T9840C, T9940A, T9940B, LTO, SDLT, T10000A, or T10000B)
- change the UNIT parameter in your JCL to specify the esoteric containing the devices you wish to use
- create scratch subpools for each media type
- define and invoke User Exit 01 and 02 to direct scratch mount requests to the scratch subpool you select. See the *NCS User Exit Guide* for more information.

If you do not use any of these methods to manage allocation of mixed media and devices, unacceptable media/devices may be selected.

For more detailed information about definition data sets, refer to "HSC Control Statements and HSC Start Procedure" in the HSC System Programmer's Guide.

Parameter Library (PARMLIB) Control Statements

PARMLIB consists of command and control statements that are executed during each time the HSC is initialized. PARMLIB control statements provide a way, at HSC initialization, to statically define various operation parameters. Identifying your system needs and then specifying various control statements permits you to tailor the HSC to the needs of your data center.

PARMLIB control statements discussed in the *HSC System Programmer's Guide* include the following:

- CDS Definition (CDSDEF)
- EXECParm Control Definition
- Journal Definition (JRNDEF)
- License Key Definition (LKEYDEF)
- Reconfiguration CDS Definition (RECDEF).

Additional control statements that can be entered as operator commands include:

- Allocation (ALLOC)
- CAP Preference (CAPPref)
- Communications Path (COMMpath)
- MNTD
- OPTion
- User Exit (UEXIT).

These are described in the HSC Operator's Guide.

Some PARMLIB options can be altered after HSC initialization with the HSC executing. These options can be changed using an appropriate HSC operator command, which means that it is not necessary to stop the HSC and restart it to initialize the new or changed options.

R

Note: PARMLIB control statements that can be altered with the HSC executing are identified as PARMLIB commands or control statements.

Any operator command can be specified in a PARMLIB control statement.

For a detailed discussion of the PARMLIB command and control statements, refer to "HSC Control Statements and HSC Start Procedure" in the *HSC System Programmer's Guide*.

Chapter 7. Configuring NCS License Keys

Overview

License keys are required to initialize NCS product components (HSC, MVS/CSC, LibraryStation), although the requirement is less stringent for the HSC. The topics discussed in this chapter include:

- permanent license keys
- trial period HSC only
- emergency license key.

You can acquire a license key through the Sun StorageTek Customer Resource Center (CRC) at **www.support.storagetek.com**, or by contacting your Sun StorageTek Software Manufacturing Distribution Representative, Marketing Representative, or Systems Engineer. License Keys are generally issued within 48 hours of receipt of the request.

Once a licence key is issued by Sun StorageTek, you must make the license key information available to the license key validation service. This is accomplished using the LKEYDEF and LKEYINFO control statements described on the following pages. License keys are validated during initialization and immediately after midnight each day.

Permanent License Key

To initialize the NCS product components (HSC, MVS/CSC, LibraryStation), Sun StorageTek requires you to obtain a *permanent license key*.

A single permanent license key can be used to initialize all NCS products you are running. You cannot acquire different license keys for each product.

Trial Period - HSC Only

For the HSC, until you input the permanent key, the HSC will initialize and run normally for a trial period of 75 days without a key. You will be notified daily as you approach the end of this time period.

Warning: At 12:00 a.m. at the end of the 75th day, all processing will be terminated, and the HSC cannot be reinitialized.

Emergency License Key

In the event you need one, for example, if the trial period expires, you can download an *emergency license key* from the CRC. The emergency key extends the expiration date for seven days. You will be notified daily about how many days remain in the seven-day emergency period.

Warning: At 12:00 a.m. at the end of the seventh day, all processing will be terminated, and the HSC cannot be reinitialized.

LKEYINFO Control Statement

The LKEYINFO control statement is used to input license key information for NCS products. It is placed in a data set or Partitioned Data Set member identified by an LKEYDEF control statement in the HSC START procedure, and must be present for HSC and/or LibraryStation to initialize.

Syntax

►► LKEYINF0 — PRODuct(product_identifier) — CUSTomer('customer_name') —

SITEno(nnnnnn) — EXPRdate(yyyyddd) — KEY(license_key_string) —

Parameter Descriptions

Note: All parameters must be entered exactly as received from Sun StorageTek.

PRODuct

Specifies the product and release to which the license key applies.

product-identifier

Indicates the product identifier. For the NCS 6.2 release, the product identifier is **VER0620**.

CUSTomer

Specifies the customer name as received from Sun StorageTek. A maximum of 20 characters can be entered for the customer name.

customer-name

Indicates the customer name.

SITEno

Specifies the site number as received from Sun StorageTek.

nnnnnn

Indicates the site number.

EXPRdate

Specifies the expiration date of the license key as received from Sun StorageTek.

yyyyddd

Indicates the expiration date.

KEY

Specifies the license key string as received from Sun StorageTek.

license-key-string

Indicates the license key string.

Example

In the following example, the LKEYINFO control statement is used to input license key information as received from Sun StorageTek.

```
LKEYINFO PROD(VER0620) -
CUST('CUSTOMER NAME') -
SITE(111222) -
EXPRD(2003365) -
KEY(5IX4IX4ITE*T8M3W)
```

LKEYDEF Command and Control Statement

The LKEYDEF command/control statement retrieves LKEYINFO control statements containing HSC, MVS/CSC, and LibraryStation license key information, and loads them into an address space where they are available for retrieval by the HSC license key validation service.

ST	OP
	_/

Warning: The LKEYDEF control statement **must** be present in the HSC START procedure prior to initialization. The SLSSYS*xx* DD statement specifies the data set that contains PARMLIB start-up parameters. Refer to "Creating an HSC START Procedure" on page 95 for detailed information.

The LKEYDEF operator command can be used to reload modified LKEYINFO control statements from the console without terminating the HSC, MVS/CSC, or LibraryStation.

Syntax

►► LKEYDEF DATASET(dataset.name) VOLume(volser)	
UNIT(unitname) HOSTID(host-id)	

Command Name

LKEYDEF

initiates the LKEYDEF command or control statement.

Parameter Descriptions

DATASET or DSN

Specifies the name of the data set containing the LKEYINFO control statement(s).

dataset-name

Indicates the name of the data set.

The definition data set can be a fixed length 80-byte sequential data set, or a fixed length 80-byte member of a PDS. If the definition data set is a member of a PDS, you must enclose the PDS and member name within single quotes.

VOLume

Optionally, specifies the volume on which the data set resides. This parameter is required if the data set is not cataloged.

volser

Indicates the volume serial number.

UNIT

Optionally, specifies the unit where the definition data set resides.

unitname

Indicates the unit name. If the definition data set is not cataloged or this parameter is omitted, a unit name of SYSDA is the default.

HOSTID

(This parameter is valid only for use in PARMLIB, so that multiple systems can share a PARMLIB member containing SCRPOol, TAPEREQ, VOLATTR, or UNITATTR statements for different releases of HSC. If entered from the console, message SLS0018I is issued.)

Optionally, the HOSTid parameter limits the execution of this control statement to the specified hosts. If one of the specified hostids matches the host executing this control statement, the control statement is executed for that host. Otherwise, it is ignored. If this parameter is omitted, the control statement is executed on all hosts.

host-id

specifies the name of one or more hosts from which to execute this control statement. Multiple hosts must be separated by commas.

Example

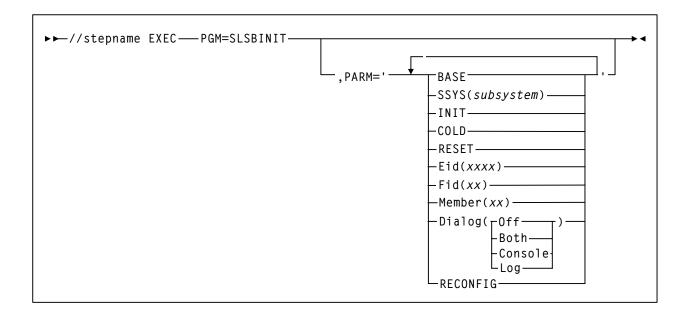
In the following example, the LKEYDEF control statement specifies that HSC and LibraryStation license key information is retrieved from the data set MY.LKEYINFO.FILE during initialization.

LKEYDEF DSN(MY.LKEYINFO.FILE)

Chapter 8. Initializing the HSC

Starting the HSC

Starting the HSC has two requirements:


- creating an HSC START procedure
- executing the HSC START procedure.

Creating an HSC START Procedure

A procedure for starting the HSC must be created in the cataloged procedure library of the host system. The START command invokes the cataloged procedure. The procedure loads the initialization routine specified in the nucleus of the HSC into main storage, instructs the operating system to allocate data sets, and activates the library host software.

This section describes how to create the procedure. A typical syntax for the EXEC statement and full descriptions of each of the parameters follows.

EXEC Statement Syntax

EXEC Statement Parameters

PARM=

defines the list of parameters passed to the HSC initialization routine.

Note: If you enter more than one of the following parameters, **you must separate them with a blank space** (e.g., BASE SSYS(subsystem) RESET).

BASE

specifies that the HSC initialize and execute at the base service level.

SSYS

specifies that HSC initialization search for the *subsystem* name specified. If the name is not found or is not a valid name, the subsystem terminates. *subsystem* must be a 1-to 4-character name or problems can occur when initializing the HSC.

This parameter permits you to symbolically specify the subsystem and retain the same startup procedure whether starting the HSC before or after JES.

INIT

specifies that only preinitialization of the HSC occur. See "Preinitializing the HSC as a Subsystem" on page 105.

Note: If PARM=INIT is specified, the HSC subsystem is only initialized. It is still necessary to issue an HSC Start command to start the HSC. If any other parameters are specified with INIT (except for SSYS), they are ignored.

COLD

specifies that any permanent in-memory data structures previously allocated by HSC are reallocated and reinitialized.

On the first startup of the HSC after an IPL, this option is meaningless. If the HSC has been brought up previously for this IPL, use of this option results in the loss of a system linkage index for Program Call (PC) instructions. There are a limited number of system linkage indexes. Once exhausted, they can only be restored by IPLing. If COLD is not specified, the linkage index used previously by the HSC is reused.

This parameter should be used only when absolutely necessary. (The installation instructions for some HSC maintenance may direct you to perform a COLD start.)

Note: You do **not** need to include the COLD parameter when you are initializing an HSC that is at a different release level than the HSC that was previously running on a host. When an initializing HSC detects a release level difference, it performs an automatic internal cold start. For an automatic cold start, PC system linkage indexes are reused by the HSC.

If error conditions persist, contact Sun StorageTek Software Support before using this parameter (see the guide *Requesting Help from Software Support*).

RESET

specifies that all subsystem status flags in the MVS Subsystem Communications Vector Table (SSCVT) for the HSC are unconditionally reset. Use of this option may correct a situation in which the HSC was terminated abnormally without resetting the status flags; for example, if the HSC was terminated with the MVS FORCE command. One possible symptom of this situation is the message:

```
... ACS subsystem CCCC is ACTIVE
or
... ACS subsystem CCCC is TERMINATING
or
... ACS subsystem CCCC is INITIALIZING
```

at HSC startup, when a display of active jobs indicates that the subsystem is not, in fact, active.

This parameter should only be used in extreme situations and may not correct all error conditions. Contact Sun StorageTek Software Support before using this parameter.

Eid

xxxx is 1 to 4 hex characters specifying the GTF event ID used for the duration of this subsystem. "E" is the abbreviation for this parameter. The default Eid value is **E086**.

Fid

xx is 1 to 2 hex characters specifying the GTF format ID used for the duration of this subsystem. "F" is the abbreviation for this parameter. The default Fid value is **17**.

Note: Refer to "EXECParm Control Statement" in the HSC System Programmer's Guide for an alternative method of specifying GTF Eid and Fid parameters.

Member

For MVS, *xx* is the suffix of the SLSSYS*xx* member in SYS1.PARMLIB, or an SLSSYS*xx* DD statement in the startup procedure used as the automatic commands (PARMLIB control statements) data set. "M" is the abbreviation for this parameter.

Dialog

specifies that messages can be displayed on the operator console and/or written to the system log. This option can be used to further restrict where messages are displayed based on the ROUTCDE. These messages indicate that the HSC is waiting for an active task to complete before the HSC terminates.

For more information on Dialog, see "OPTION Command and Control Statement" in the *HSC Operator's Guide*.

If Dialog is specified, one of the options **must** be selected. There is no default. The options for Dialog include:

Off

specifies that you do not want messages displayed on the operator console or written to the system log.

Both

specifies that messages are displayed on the operator console and written to the system log.

Console

specifies that messages are displayed on the operator console only.

Log

specifies that messages are written to the system log only.

RECONFIG

specifies this execution of the HSC will only run the Reconfiguration utility.

Example

The following listing is an example PROC for the START command. This sample is also included in the HSC SAMPLIB as member JCLPROC.

Example PROC for START Command

//SLSØ PROC PROG=SLSBINIT,PRM=' '
//*
//IEFPROC EXEC PGM=&PROG,TIME=1440,
// PARM='&PRM E(E0086) F(23) M(00) SSYS(SLS0)',REGION=00M
//*
//STEPLIB DD DSN=SLS.SLSLINK,DISP=SHR
//*
//SLSUEXIT DD DSN=load.module.library,DISP=SHR
//SLSSYS00 DD DSN=SLS.PARMS,DISP=SHR

In this example, SLS0 is used as both the name of the started task procedure (line 1) and as the subsystem name defined in the SSYS parameter "SSYS (SLS0)" in line 4. Your site is not required to use these values. You can replace either or both of these values with more meaningful or useful names pertaining to your site specific needs. However, you must keep in mind the following:

- HSC subsystem names must be cataloged in your IEFSSNxx member.
- The subsystem name must be 4 characters in length.
- If the started task member name and the subsystem name are identical, the SSYS parameter is not necessary in the started task procedure. If the started task procedure name is not identical to the subsystem name, then the SSYS parameter must be used to point the started task procedure to the required HSC subsystem.

For more information on using the SSYS parameter, refer to "SSYS" on page 96 and "Starting the HSC Using the SSYS Parameter" on page 107.

Notes:

Control data sets are normally defined using the CDSDEF and RECDEF control statements. The CDSDEF statement **must** be present in your PARMLIB definitions. Control and journal data sets may no longer be defined in JCL. Refer to "CDS Definition (CDSDEF) Control Statement" in the HSC System Programmer's Guide for more information.

When the HSC is started to run the Reconfiguration utility, the CDSDEF control statement identifies the old control data sets, while the RECDEF control statement designates the new control data sets. If the old and new CDSs are to be temporarily placed on VIO to reduce reconfiguration time during the reconfiguration, (see "Minimizing I/O Time" in the *HSC System Programmer's Guide*), JCL DD statements are required to identify the temporary VIO data sets. Refer to "Reconfiguration Utility" in the *HSC System Programmer's Guide* for more details.

- The number of CDS copies used by the HSC is dependent on the number of CDS copies defined in the CDSDEF PARMLIB control statement. It is **not** determined by the TCHNIQE parameter of the LIBGEN SLIRCVRY macro. The HSC uses all of the CDS copies defined in the CDSDEF control statement (whether this includes more or less CDS copies than are specified by the TCHNIQE parameter).
- Journals are defined using the JRNDEF control statement. The JRNDEF statement must be present in your PARMLIB definitions if you want to use journaling. Journal data sets may no longer be defined in JCL. Refer to and "Journal Definition (JRNDEF) Control Statement" in the *HSC System Programmer's Guide* for more information.
- If journaling is specified by the TCHNIQE parameter of the LIBGEN SLILIBRY macro, journals must be defined in your PARMLIB definitions for successful HSC initialization.

- A control statement is terminated if the statement is not continued. For additional information, refer to "Control Statement Syntax Conventions" on page 165.
- TIME=1440 or TIME=NOLIMIT should be coded to make sure that the HSC does not time out and terminate.

Descriptions of DD Statements

The following are descriptions of the JCL DD statements used in the example PROC for the START command.

SLSSYSxx

statement that defines the data set containing the HSC PARMLIB. In the example procedure above, xx is replaced by the suffix "00". The SLSSYS00 DD statement matches the M(00) declaration and points to the PARMLIB member "00" that contains your start-up parameters.

SLSUEXIT

statement that defines the data set containing HSC user exits.

Executing the HSC START Procedure

The HSC cataloged procedure is invoked by issuing the MVS START command. Refer to "Issuing the START Command" on page 104 for information about the MVS START command, syntax, and parameter descriptions. During HSC initialization, messages inform you when HSC base service level initialization completes and when full service level initialization completes.

Note: When it is initialized, the HSC determines whether this release differs from the release level of the previous HSC subsystem. If there is a difference, an internal cold start is invoked.

Before starting the internal cold start processing, however, the Program Call system linkage index is saved, and the HSC's main in-memory data structure is freed. This reduces the resources lost due to the cold start.

If your SMF options for the HSC did not specify the SUBTYPE parameter, the HSC issues a message indicating that SMF record subtypes 1 through 6 are being recorded.

If you did not specify GTF Eid and Fid parameters on the PARM operand in the HSC startup procedure, HSC issues a message indicating that default Eid and Fid values are being used.

The HSC may be started prior to hardware arrival to make sure that it has been installed properly. The HSC subsystem comes up with the LMU stations offline. HSC operator commands may be entered, but any functions requiring interaction with the ACS hardware result in error messages.

Modifying LSMs Online

When the CDS is initialized, the status of all LSMs defined in the LIBGEN is OFFLINE. You must issue the HSC MODify ONline command to bring all of your LSMs online.

For subsequent executions of the HSC, the last recorded status of the LSMs is obtained from the control data set.

When an LSM is modified online for the first time, the drive types of all drives in the LSM are recorded in the CDS. Before an LSM is modified online, the drive type is determined from UNITATTR control statements, if any exist. If not, drive types are set to a model type of IGNORE, which is incompatible with all media types.

Configuration Mismatches

During HSC initialization, the HSC remains active if LSM or panel type configuration mismatches occur between the CDS and LMU. Specifically, these mismatches include:

- different numbers of LSMs
- different or unknown types of LSMs
- different or unknown panel types in an LSM.

In these cases, the affected ACS(s) is forced offline. The HSC continues to support the unaffected ACS(s).

While the unaffected ACS(s) remains online, the mismatched configuration can be corrected, and the affected ACS(s) can then be brought online. Otherwise, the configuration can be changed through the LIBGEN/SLICREAT/MERGEcds process at your convenience.

Multiple Hosts Startup Considerations

In a multiple-host configuration, start one host at a time. **Do not bring up multiple hosts simultaneously**.

Issuing the START Command

The HSC software is initialized by issuing the MVS START command. Parameters associated with PARM= on the EXEC statement of the HSC cataloged procedure (see "Creating an HSC START Procedure" on page 95) can also be supplied via PARM= on the START command. The PARM= specification on the START command overrides the PARM= specification in the HSC cataloged procedure.

Note: Examples in this section relevant to single PARM= parameters may need to be accompanied by other parameters present in the HSC cataloged procedure.

Alternately, a JCL substitution symbol may be specified in the HSC cataloged procedure, and additional parameters passed via the START command using the substitution symbol.

The HSC can be initialized to a full or base service level by issuing the MVS START command. The HSC can also be preinitialized or initialized under the MVS Master Subsystem (MSTR) through the START command.

The following table shows examples of the START command options introduced in this section. For further information about these options, refer to the paragraphs following the table.

HSC Start Command	Proc Name Same as EFSSNxx Entry	SLSBPREI in IEFSSNxx or Previous HSC Start With PARM='INIT'
HSC Started Under MSTR	and PROC in SYS1.PR	OCLIB
S SLS0	Yes	No
S SLS0,SUB=MSTR	Yes	Ignored
S SLS0,PRM='SSYS(SLS0)',SUB=MSTR	No	Ignored
HSC Started Under JES	and PROC in a PROC	LIB
S SLS0	Yes	Yes
S SLS0,PARM='INIT' S SLS0	Yes	No
S SLS0,PARM='SSYS(SLS0)'	No	Yes
S SLS0,PARM='INIT SSYS(SLS0)' S SLS0,PARM='SSYS(SLS0)'	No	No

Table 13. HSC Initialization

Preinitializing the HSC as a Subsystem

The HSC must first be initialized as an MVS subsystem before it can perform any services such as mount/dismount of cartridges, etc. This is accomplished by placing the HSC subsystem name in the IEFSSN*xx* member of SYS1.PARMLIB. In addition to this, there are two valid ways to preinitialize the HSC as a JES-dependent subsystem:

• specifying SLSBPREI as the HSC subsystem initialization routine in the IEFSSNxx member of the system PARMLIB and IPLing MVS

```
SUBSYS SUBNAME(SLSØ) INITRTN(SLSBPREI) /* keyword format */
```


Note: SLSBPREI must reside in SYS1.LINKLIB or another link-listed library. After installation, copy the SLSBPREI module from the HSC load library to a library in the MVS link list.

• starting the HSC with PARM='INIT'.

By using this method, HSC is **not** a subsystem of MVS. Some tasks, such as enters and ejects, can be done, but HSC cannot determine drive or cartridge selection nor perform other tasks.

Starting the HSC with PARM='INIT'

An alternative method to the SLSBPREI subsystem initialization routine is to specify PARM='INIT' in a START command for a preinitialization startup followed by a START command for the actual startup of the HSC.

The need for the HSC's subsystem Master Subsystem Initialization (MSI) routine is eliminated. Its functions are taken over by the main HSC address space initialization routines. The use of any subsystem MSI exit routine imposes a restriction that it must be in a data set that is cataloged in the master catalog, and included in the LNKLST. Previous HSC versions have distributed this module to install in SYS1.LINKLIB.

The first example is the START command for preinitializing the HSC; the second example is the START command for actual startup of the HSC. The first START command performs only the preinitialization and must be followed by the second command to startup the HSC. The example command is:

Preinitialization of HSC

S SLSØ,PARM='INIT'

The second START command performs actual HSC startup. The example command is:

S SLSØ

The startup procedure can be a normal procedure with the exception of using the INIT parameter or it can be specified separately.

Note: This preinitialization of the HSC is for initializing the HSC under the primary Job Entry Subsystem (JES).

Initializing the HSC Under the Master Subsystem

If you want to initialize the HSC under the Master subsystem (MSTR), the following circumstances must be considered:

• If SLSBPREI is part of the subsystem definition in IEFSSNxx or a prior execution of the subsystem using the INIT parameter was done, then the subparameter SUB=MSTR must be appended to the START command to start the HSC under Master subsystem control. For example:

SLSBPREI Defined in IEFSSNxx or Prior Execution Using INIT

S SLSØ, SUB=MSTR

• If SLSBPREI is not part of the subsystem definition in IEFSSNxx and the subsystem name is the same as the start procedure name, then no preinitialization or SUB=MSTR is necessary. For example:

Subsystem Name is the same as Start Procedure Name

S SLSØ

Note: When running the HSC under the Master subsystem, JES services are not used. It is also possible to receive duplicate messages in the system log.

If you want to initialize the HSC under JES later, the INIT parameter may be used to do the preinitialization when necessary.

Starting the HSC Using the SSYS Parameter

The HSC can be started against a particular subsystem by specifying the SSYS parameter. Refer to "Creating an HSC START Procedure" on page 95.

Starting HSC Against a Subsystem Named SLS0

In this example, PARM overrides all other parameter values.

S HSCPROC,PARM='SSYS(SLSØ)'

Note: This example shows that the procedure name specified (HSCPROC) is more than four characters long. The SSYS parameter contains the subsystem name identified in the IEFSSNxx member of SYS1.PARMLIB. Note that the first four characters of the procedure name can be different than the subsystem name.

Starting the HSC to the Full Service Level

Normally, HSC software is initialized to the full service level when it is started. The syntax for the START command to initialize the HSC to the full service level is:

Starting to Full Service Level

S SLSØ

Starting the HSC at the Base Service Level

HSC software can be started only to the base level by coding the BASE parameter in the PARM field of the MVS START command.

The syntax for the START command to initialize the HSC to the base service level is:

```
Starting to Base Service Level
```

S SLSØ, PRM='BASE'

Note: PRM adds the parameter BASE to the startup PARMs.

The BASE parameter should be used with other parameters in the START command since these parameters override whatever is specified in the HSC START Procedure. A sample START command with parameters is:

```
S SLSØ, PARM='BASE E(Ø86) F(23) M(ØØ)'
```

In this case, PARM overrides all parameters in the PARM field.

Refer to "Creating an HSC START Procedure" on page 95 for a description of these and other related parameters.

After initializing to this point, the HSC SRVlev command can be used to bring the subsystem up to full function. Refer to "SRVlev (Service Level) Command" in the *HSC Operator's Guide* for more information.

Chapter 9. Terminating the HSC

Stopping the HSC

The HSC may be terminated by issuing MVS commands. Either an orderly or forced termination of the HSC can be accomplished depending upon the MVS command used.

Orderly Termination of the HSC

You may terminate execution of the HSC in an orderly manner by issuing the MVS STOP command at an operator console. An orderly termination causes the HSC to complete all outstanding processing for library activity known to the HSC before termination begins. The HSC is not aware of new activity while in termination processing. Make sure that tape allocation is not being performed by the operating system before executing termination of the HSC. During termination, the following actions occur:

- 1. The HSC waits for pending work to complete. This includes actions against the LMU such as current mounts and dismounts, utilities, active CAPs, operator commands, and station termination(s).
- The control data sets and journals are updated as the outstanding processes are performed.
- 3. Resource cleanup and termination occurs.
- 4. An HSC message is displayed on the system console indicating that the HSC is terminated.

Restart of the HSC is achieved by running the HSC startup procedure. After startup, the HSC executes and normal operation of the library occurs. See "Executing the HSC START Procedure" on page 102 for more information.

Forced Termination of the HSC

You may force the immediate termination of the HSC by issuing an MVS Cancel command at an operator console. If this does not work, issue a second Cancel command, and if this still does not terminate the HSC, issue the MVS FORCE command.

Warning: Forced termination of the HSC is not recommended by Sun StorageTek as a normal form of termination, and should be avoided if possible. Unpredictable results may occur on subsequent startups following forced terminations.

Before executing forced termination of the HSC, verify that alternative library paths exist for the active SMC to continue performing allocation influencing and mount automation.

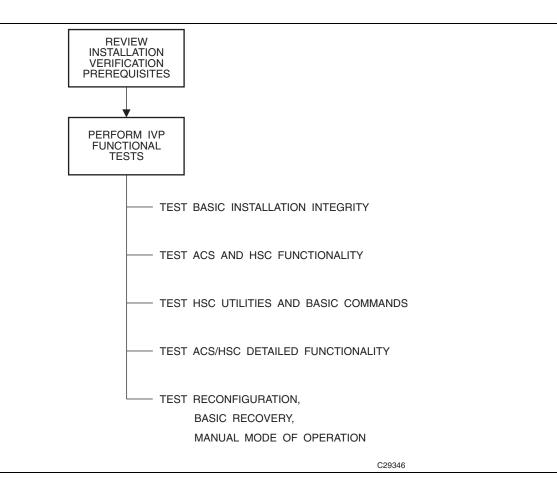
A forced termination of the HSC causes all HSC processes to abort immediately and termination occurs. Any of the following conditions may exist:

- Volumes may be left in-transit, however, mounted volumes are not affected by forced HSC termination.
- Outstanding utilities may abend.
- The control data sets and journals may lose synchronization.

An MVS message is displayed at an operator console indicating that the HSC subsystem was abnormally terminated.

Restart of the HSC after a forced termination may produce unpredictable results and may affect subsequent operation of the library.

Errant volume records are created for volumes left in the playground, CAPs, or pass-thru ports. Operator intervention may be required to resolve the status of errant volumes when HSC execution is resumed. Tape transports may require operator intervention to satisfy mount requests.


Chapter 10. Testing the Installation

Testing the installation consists of executing the Installation Verification Process (IVP). The process consists of performing a set of recommended test procedures for testing of the Automated Cartridge System before introducing the library into the production environment. Individual procedures contain steps to test the basic functions of the HSC, the Automated Cartridge System (library), and the attached tape transports. The procedures also contain functional tests to exercise the main functions of the HSC components.

Each program is contained in the HSC SAMPLIB on the HSC Base tape.

Scope of Installation Verification

Installation verification consists of the execution of planned tests to verify proper functioning of basic HSC operations. Figure 8 on page 112 illustrates the flow of a recommended verification process.

Figure 8. Installation Verification Flow Diagram

The following tables provide a summary of recommended IVP tests.

Table 14. Utilities Tested During Installation Verification

Utility	Description of Required Function
ACTIvities Report	Produces a report presenting library activity.
AUDIt	Causes the robot to scan all library cells and to update the control data sets with cartridge location information.
ВАСКир	Creates a backup copy of the HSC control data sets and analyzes data.
EJECt	Ejects tape cartridges from the library.
INITialize cartridge	Initializes tape cartridges through the CAP.
MOVe	Directs the robot to move cartridges to specified designations.
RESTore	Restores the HSC control data sets and generates control statements.

Utility	Description of Required Function
Scratch Conversion	Reads the TMS database and produces input of scratch VOLSERs to be used by the Scratch Update utility.
Scratch Update	Updates the scratch list contained in the control data sets.
Volume Report (VOLRpt)	Produces a volume report by VOLSER and LOCATION sequence.
SLIVERFY and SLIEXERS are two additional utility-type testing programs used specifically during Installation Verification. Refer to "SLIVERFY Program" on page 69 and "SLIEXERS Program" on page 120 for more information about these programs.	

 Table 14. Utilities Tested During Installation Verification

Refer to "Utility Functions" in the *HSC System Programmer's Guide* for detailed information on each HSC utility.

Command	Description of Required Function
САР	Pref Sets and resets CAP selection parameters.
COMMPath	Establishes or changes the communication method for a host.
DISMount	Performs an operator requested dismount for a specific volume and for any volume.
Display	Display CDS displays control data set information. Other Display commands display status of an ACS, an LSM, a volume in the library, a detailed status of a volume in the library, a message, a command, a drive request, the status of a CAP, and so forth.
DRAin	Terminates an ENter or EJect command and releases the CAP from the enter mode.
EJect	Ejects the labeled volumes (previously entered) from the library. Ejects one unlabeled volume from the library.
ENter	Enters a number of labeled volumes into the library. Enters one unlabeled volume into the library.
MODify	Changes status of an LSM or CAP from online to offline.
Mount	Performs an operator requested mount.
MOVe	Directs the robot to move cartridges to specified designations.
Vary	Varies a station online and offline.
VIew	If video monitors are attached to the LSM, permits visual inspection of the interior of the LSM.
Warn	Sets the scratch warning threshold values.

 Table 15. Commands Tested During Installation Verification

Job Processing Function	Description of Required Function
Initialization	Performs the following:
	Successful initializations of the HSC
	Displays the ACS from all hosts
	• Verifies that all station addresses indicate online.
Drive Exclusion	Verifies that library tape transports are selected for library volumes and that nonlibrary transports are selected for nonlibrary volumes.
Drive Prioritization	Verifies that tape transports allocated are attached to LSMs containing the requested volumes.
Multi-unit DD statements	Verifies successful execution of a job that contains multi-unit DD statements in the JCL.
Multi-volume file	Verifies successful execution of a job that reads from and writes to a multi-volume file.

Table 16. Job Processing Functions Tested During Installation Verification

Installation Verification Prerequisites

There are certain initial requirements and considerations of which you should be aware before performing the verification. These include:

- Make sure that you have the complete set of Sun StorageTek documentation. Refer to the HSC publications shown in the Preface for a complete list.
- Verify that you have all pertinent IBM documentation.
- Prepare/setup JCL in advance for those HSC utilities being tested.
- Store the test JCL in a permanent library for future use.

IVP Functional Test Phases

Installation Verification consists of several phases. Each phase is dependent on the previous phase; therefore, testing is executed in a required order. Some portions of the tests consist of simply verifying that all of the necessary installation tasks were completed. Other portions of the tests require that you run jobs or issue commands to make sure that the HSC and the library function as intended.

It is highly recommended that every procedure in the IVP be performed and completed to allow absolute system functionality.

Direct any questions or notification of problems to Sun StorageTek Support Services. Refer to the guide *Requesting Help from Software Support* for support information.

Use the tables contained in following sections as reference for running each testing step and as a check list to validate completion of each testing phase.

IVP programs used for testing are described in "Description of Test Programs" on page 120. Refer to this section for a description of each test used in the IVP.

Basic Installation Integrity Test

The HSC must be installed but not started to perform the following recommended tests.

Recommended Test Procedure

Perform the steps listed in the following table to test the HSC and library basic functions.

When you have completed this test phase, go to "ACS and HSC Functionality Test" on page 116 to continue the installation verification process.

Table 17. Basic Installation Test Procedure

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
1	Verify that the HSC software was installed as specified in the NCS Installation Guide.		
2	Verify that all PUT tapes to date were received and applied as specified in the <i>NCS Installation Guide</i> .		
3	Verify that LIBGEN modules are coded, assembled, and link-edited. The EJECt password will be changed in another testing phase.		
4	Verify that the SLIVERFY utility was executed to confirm a valid LIBGEN with the existing hardware configuration.		
5	Verify that the SLICREAT utility was executed to initialize the library control data sets.		

ACS and HSC Functionality Test

The HSC must be installed and running to perform the following recommended tests.

Recommended Test Procedure

Perform the steps listed in Table 19 to test ACS and HSC functionality.

When you have completed this test phase, go to "HSC Utilities and Basic Commands Test" on page 117 to continue the installation verification process.

Table 18. ACS and HSC Functionality Test Procedure

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
1	Verify that the HSC was initialized on each host. The MVS START command (S hscprocname) was used.		
2	Issue the Display CDS command to display database information.		
3	Display the ACS from all attached hosts. Verify that all configured station addresses are online.		
4	Display each LSM from each host.		
5	Vary all LSMs online.		
6	Display the CAP status.		
7	Display the help text for any message (Display Message <i>msg-id</i>).		
8	Issue the ENter command for a CAP.		
9	Issue the DRAin command for a CAP.		
10	Display, modify, and restore CAPPref parameters.		
11	Display (Display THReshld), modify, and restore Warn parameters.		
12	Modify an LSM offline, display the LSM, modify the LSM back online. Display LSM status.		
13	Vary a station address offline. Vary the station back online.		
14	Use the VOLDEF command to load/reload the definition data sets. Then display information about the VOLDEF data set.		
15	Display the drive status (Display DRives).		
16	Display, modify, and restore COMMPath settings.		
17	Use the OPTion command to change output to uppercase and back to mixed case.		

HSC Utilities and Basic Commands Test

The HSC must be installed and running to perform the following recommended tests.

Recommended Test Procedure

Perform the steps listed in Table 19 to test the functionality of HSC utilities and basic operator commands.

When you have completed this test phase, go to "Manual Mode Test" on page 119 to continue the installation verification process.

Table 19. HSC Utilities and Basic Commands Test Procedure

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
1	Execute the BACKup utility. Verify that the backup of the control data sets was successful.		
2	Execute the RESTore utility. Verify that the restore of the control data sets was successful.		
3	Open the door to an LSM and place cartridges into a panel and row of the LSM. Close the LSM door.		
	Note: If you enter an SL8500, all LSM activity for the library ceases.		
	Execute the AUDIt utility for the LSM, panel, and row where the cartridges were placed. Specify APPly(YES).		
4	Use the Initialize Cartridge utility to initialize several volumes through the CAP.		
5	Execute the EJect command to eject half of the volumes that were entered in the previous step.		
6	Execute the EJect utility to eject the remainder of the volumes that were entered through the CAP.		
7	Use the ENter command to place volumes ejected in the previous two steps back into the LSM.		
8	Use the DRAin command to terminate the ENter function.		

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
9	Make sure that there is at least one initialized volume in the ACS for each type of drive attached to the ACS (specifically, an STK1 volume for 9840, T9840B, and T9840C drives; an STK2 volume for T9940A or T9940B drives; a helical volume for SD-3s; an 18-track volume for 4480s; and a 36-track volume for 4490s, 9490s, and 9490EEs; an LTO volume; an SDLT volume; and a T10000A or T10000B volume). These volumes are needed for the SLIEXERS program (see below).		
	If necessary, use the ENter command to enter the required volumes.		
10	Use the SLIEXERS program to automatically exercise each available transport in an ACS. Refer to "SLIEXERS Program" on page 120 for more information.		
11	Execute the VOLRpt utility to produce a volume report.		
12	If your tape management system is CA-1, CA-DYNAM/TLMS, or DFSMSrmm, use the Scratch Conversion utility to generate transactions for the Scratch Update utility.		
13	Execute the SCRAtch utility to scratch designate the cartridges entered in Step 7 as scratch volumes.		
14	Use the Mount, MVS UNLOAD, and DISMount commands to mount and dismount a selected volume.		
15	Use the SET utility to change the EJect password. Use the EJect command to eject a volume. Use the SET utility to change the password back to its original setting.		
16	Use the MOVe command to move some cartridges to a new location.		
17	Use the MOVe utility to move other cartridges to a different panel.		
18	Execute the VOLRpt utility to produce a volume report (again). Examine the entries for the scratch cartridges in the volume report.		
19	If video monitors are attached to an LSM, use the VIew command to display a cartridge in its cell and in cells in a CAP.		

Table 19. HSC Utilities and Basic Commands Test Procedure (Continued)

Manual Mode Test

The HSC must be installed and running to perform the following recommended tests.

Recommended Test Procedure

Perform the steps listed in Table 20 to test manual mode operation.

When you have completed this test phase, the installation verification process is completed.

Table 20. Manual Mode Functionality Test Procedure

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
1	Modify an LSM from automatic to manual mode. Verify that the LSM switched to the manual mode successfully.		
2	Restore automatic mode from manual mode. Verify that the LSM switched to the Automatic mode successfully.		

Description of Test Programs

Various test programs are provided to verify performance of the HSC as installed on your system. These programs include:

- SLIVERFY (refer to "SLIVERFY Program" on page 69)
- SLIEXERS
- hardware test programs
- allocation test programs.

The following paragraphs describe the purpose for each program and the functions that the program tests.

SLIEXERS Program

The SLIEXERS program automatically exercises each available transport in an ACS. The ACS is defined by the PARM parameter of the EXEC statement. It is recommended that SLIEXERS be executed on each host and each ACS combination to verify library installation.

Note: This program must be executed from an APF-authorized library. SLIEXERS dynamically allocates each library transport defined to the executing host. A compatible scratch cartridge is then retrieved from the ACS, mounted on the transport, opened, written to, read from, and closed.

This process is repeated for each transport in the specified ACS. If no scratch tapes of the required media type are available, a WTOR is issued to the operator requesting a scratch cartridge VOLSER.

Note: Make sure your TMC is configured to allow a scratch mount by VOLSER.

For SLIEXERS to execute properly, the HSC subsystem must be started. Refer to "Issuing the START Command" on page 104 for detailed information on the START command.

SLIEXERS DD Parameters

SLIEXERS JCL consists of the following statements:

EXEC statement

Specify PGM=SLIEXERS.

The PARM parameter specifies one operand: the ID (range 00 to FF) of the ACS to be exercised.

STEPLIB

The partitioned data set name where the SLIEXERS program resides. This data set must be APF-authorized.

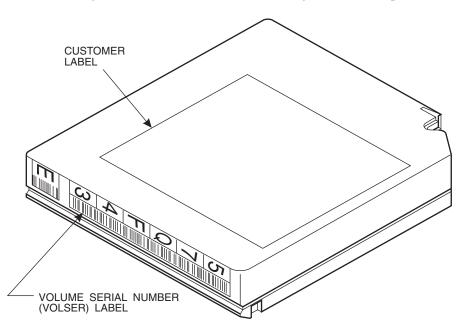
SYSPRINT

Diagnostic messages.

Example

JCL for SLIEXERS Program

```
//SLIEXERS job (account),'programmer',CLASS=A
//*
//EXERS EXEC PGM=SLIEXERS,PARM='ØØ'
//STEPLIB DD DSN=your.hsc.linklib,DISP=SHR
//SYSPRINT DD SYSOUT=*
//*
```


Chapter 11. Planning Migration to the Library

To provide a successful movement and installation of cartridges into an LSM, a Tri-Optic label verification must be made and the cartridges must be loaded into the library.

Tri-Optic Label Verification

Verify that the Tri-Optic labels are placed correctly on the cartridge. When the cartridge is positioned so the customer label is on the left while the leader block is pointing up and away from the person verifying the label, a recessed area is visible on the cartridge surface.

The Tri-Optic label should be centered in this area, without any edges extending beyond the recessed area, and the VOLSER characters must be to the left of the bar code. After the Tri-Optic labels have been visually verified, cartridges can be stored in the LSM, and the labels may be read by the machine-vision system.

Refer to Figure 9 for an illustration of a cartridge with a Tri-Optic label attached.

C28516

Figure 9. Cartridge with Tri-Optic Label and ECART Media Type Indicator

ECART External Media Label Requirements

ECART cartridges require a volume serial number (VOLSER) but do not require a media type indicator in their external labels. Sun StorageTek recommends, however, that customers provide a media type indicator for all ECARTs. The media type for ECARTs is "E." The VOLSER occupies the first six positions of the external label.

ZCART External Media Label Requirements

Every ZCART cartridge requires both a volume serial number (VOLSER) and a media type indicator in its external label. The VOLSER occupies the first six positions of the external label; the media type indicator occupies the seventh position of the external label. The media type for ZCART cartridges is "Z."

Helical External Media Label Requirements

Every helical cartridge requires both a volume serial number (VOLSER) and a media type indicator in its external label. The VOLSER occupies the first six positions of the external label; the media type indicator occupies the seventh position of the external label. The media type for helical cartridges must be one of the following:

- A (10 GB)
- B (25 GB)
- C (50 GB)
- D (cleaning cartridge).

STK1 (T9840A, T9840B, or T9840C) External Media Label Requirements

Every STK1 cartridge requires both a volume serial number (VOLSER) and a media type indicator in its external label. The VOLSER occupies the first six positions of the external label; the media type indicator occupies the seventh position of the external label. The media type for STK1 cartridges must be one of the following:

- R
- U (cleaning cartridge)
- Y (cleaning cartridge T9840D). .

STK2 (T9940A or T9940B) External Media Label Requirements

Every STK2 cartridge requires both a volume serial number (VOLSER) and a media type indicator in its external label. The VOLSER occupies the first six positions of the external label; the media type indicator occupies the seventh position of the external label. The media type for STK2 cartridges must be one of the following:

- P
- W (cleaning cartridge).

LTO, SDLT, T10000 External Media Label and Media Domain Requirements

Every LTO, SDLT, and T10000 cartridge requires a volume serial number (VOLSER) in its external label. The VOLSER occupies the first six positions of the external label.

In addition, because the LTO, SDLT, and T10000 cartridges apply to non-legacy media types, media domains are supported in the HSC as a means to separate a logical collection of differing media into distinct pools known as a domain.

The media domain is shown as part of the external label and is affixed to the outside of the cartridge following the volume serial label. This information is returned to the host as part of an LMU catalog response. Physical move requests for all volumes require a media domain to be supplied as part of the LMU request initiated by the controlling software. Failure to provide the correct domain results in the LMU failing the request.

All legacy Sun StorageTek media (e.g., ECARTs) belong to domain "0"; non-legacy media belong to other domains as defined in Table 21.

Media Name	Media Domain	Media Type
LTO-10G	,Ľ,	'C'
LTO-35G	,Ľ,	'B'
LTO-50G	'L'	'A'
LTO-100G	,Ľ,	'1'
LTO-200G	,Ľ,	'2'
LTO-400G	,Г,	'3'
LTO-400W	'L'	'T'
LTO-800G	,Г,	'4'
LTO-800W	,Г,	'U'
LTO-CLN1	'С'	'1'
LTO-CLN2	'С'	'2'
LTO-CLNU	'С'	'U'
SDLT	'1'	'S'
SDLT-2	'1'	'2'
SDLT-S1	'S'	'1'
SDLT-S2	'S'	'2'
SDLT-S3	'S'	'3'
SDLT-S4	'S'	'4'
SDLT-4	'1'	'4'

Table 21. Non-legacy Media Type/Domain Definitions

Media Name	Media Domain	Media Type
T10000T1	'Т'	'1'
T10000TS	'T'	'S'
T10000CT	°C'	'T'

Table 21. Non-legacy Media Type/Domain Definitions

Loading Cartridges into the Library

There are several ways to load cartridges into the library during initial installation of the system:

- Use the ENter command to load initialized cartridges into the LSM.
- Manually load initialized cartridges into LSM and invoke the AUDIt utility.
- Use the Initialize Cartridge utility to enter cartridges through the CAP.
- Use an auto-mode CAP to load cartridges into an LSM without using HSC commands or utilities.
- Manually load and run IEHINITT.

ENter Command

The ENter command is used to move cartridges from the CAP to the LSM and to record the location data in the primary control data set. The operator types the ENter command at the system console; the CAP is then available for inserting cartridges. The operator can insert one or more cartridges into the LSM via the CAP (when free cells exist) placing them under library control. The HSC selects a storage cell location for the cartridge at the time of entry.

Note: When a cartridge is entered, if the vision system does not detect a media label, the cartridge is entered and the media type defaults to Standard. If the media label is unreadable, a message is displayed prompting the operator to supply a valid media type or eject the cartridge. VOLATTR information is not used during ENter processing.

The CAP remains in enter mode until the console operator terminates enter processing by issuing the DRAin command.

Scratch volumes can also be placed into the LSM by specifying the SCRatch parameter for the ENter command. The scratch status of volumes previously entered into the LSM may be changed using the SCRatch Update utility.

Manually Loading Cartridges into LSM

Cartridges may be loaded into LSM cell storage locations by opening the LSM door and manually placing them into the cells.

Note: If you enter an SL8500, all LSM activity for the library ceases.

Refer to the appropriate hardware operator's guide for the location of reserved cells. Once the LSM has been filled with cartridges, the AUDIt utility may be invoked to update the control data set with physical volume location information. The SCRatch Update function may be executed to update scratch status for these volumes, if required. Refer to "Overview of Library Utilities" in the HSC System Programmer's Guide for a description of library utilities.

Note: Before loading the LSM, verify that the cartridges have Tri-Optic labels. Cartridges without Tri-Optic labels are ejected by the AUDIt utility.

Initialize Cartridge Utility

The Initialize Cartridge utility permits batch entry of cartridges into the library through the CAP and the writing of magnetic labels for those cartridges. This program reads the external Tri-Optic labels and records them in the data set defined through the CNTLDD parameter. When there are no more cartridges to be labeled, and the empty CAP has been opened and closed, cartridge initialization begins. For additional information, refer to "Initialize Cartridge (INITialize) Utility" in the HSC System Programmer's Guide.

Using an Auto-mode CAP to Load Cartridges

An automatic mode CAP (referred to as an auto-mode CAP), allows cartridges to be entered into an LSM without using HSC commands or utilities. Any CAP can be placed in automatic mode, which unlocks the CAP making it available for entering cartridges.

Note: An auto-mode CAP may be locked temporarily while another process is using it for enter/eject processing.

When cartridges are entered into an LSM through an auto-mode CAP, the AUDit utility is run automatically. Refer to the HSC Operator's Guide for more information about using an auto-mode CAP.

Migrating Applications to Library Use

Sun StorageTek recommends using TAPEREQ statements to direct new scratch allocations to the library. Alternatively, user exits can be used.

Refer to the SMC Configuration and Administration Guide for information on TAPEREQ control statements and to the NCS User Exit Guide for information on user exits.

Appendix A. Library Configuration Checklist

The following check list can be used to make sure that all necessary steps for installing HSC software are complete.

 Table 22. Library Configuration Checklist

Step	Description of Action	Checkmark to Verify Completion	Person Responsibl for Test / Verification
	Planning the Configuration	l	
1	Verify the physical plan, including floor space, power, environmental considerations.		
2	Verify that the operating system release level is at the proper level.		
3	If your installation utilizes application programs that will interface with the HSC, verify that custom routines have been considered and that program routines conform to the requirements specified in "Programmatic Interface," in the <i>HSC System Programmer's Guide</i> .		
4	Verify that LSM/pass-thru port relationships are properly defined.		
5	Verify that MVS and LIBGEN esoterics are defined.		
6	Verify that DASD space is planned and sufficient to accommodate library data sets.		
7	Determine which control data sets and journals will be allocated and the locations on DASD.		
8	Determine which control data sets are shared data sets; make sure that space calculations are completed.		
	Performing Pre-execution Tasks		
9	Add definitions for ACF/VTAM communications.		
10	Code and catalog the HSC started task procedure.		
11	IPL the system.		
	Defining the Library Configuration (LI	BGEN)	•
12	Prepare the library configuration (LIBGEN file).		

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
13	Assemble and link-edit the LIBGEN file.		
	Verifying the Library Generation		
14	Execute SLIVERFY program to verify the library configuration created by the LIBGEN file.		
	Initializing the Control Data Sets		
15	Create JCL to initialize the library control data sets.		
16	Execute SLICREAT program to initialize the data sets.		
17	Verify completion of SLICREAT program.		
18	Verify the storage capacity of the LSMs in the installation.		
19	Execute the BACKup utility.		
	Defining Definition Data Sets and PARMLIB Cor	trol Statements	
20	Define TAPEREQ, UNITATTR, and VOLATTR control statements.		
	Note: TAPEREQs and UNITATTRs are now defined and processed by the SMC. Refer to the <i>SMC Configuration and Administration Guide</i> for more information.		
21	Define PARMLIB control statements applicable for your installation:		
	License Key definition Control data set definition Journal data set definition Device allocation CAP preference Communications path definition EXECparm definition		
	Mount processing control General purpose OPTions Scratch subpool definitions User exit execution control VOLDEF definition.		
	Defining License Keys		
22	Define the LKEYINFO data sets.		
	Starting HSC Execution		

Table 22. L	Library Configuration Checklist (Continued)
-------------	---

Step	Description of Action	Checkmark to Verify Completion	Person Responsible for Test / Verification
23	Start the SMC software. Refer to the <i>SMC Configuration and Administration Guide</i> for more information about starting the SMC.		
	Note: The SMC is not required to be initialized before the HSC or to be running on the same host as the HSC. However, if the HSC is brought up without SMC, the HSC acts as a server only and cannot perform allocations or device preferencing.		
24	Start the HSC software. Determine and verify if system IPL is required and performed.		
25	Modify LSMs and CAPs online.		
	Testing the Installation (Recommended T	esting)	
26	Perform each group of recommended test procedures. Verify completion of each test by completing the applicable test form contained in that section.		
	Planning and Executing Cartridge Migration in	to the Library	
27	Verify that Tri-Optic labels are correctly placed on each cartridge.		
28	Load cartridges into the library.		

Appendix B. Library Configurations

This appendix contains examples of library configurations that can be used as models for analyzing how you can configure your library and future expansion. Example LIBGEN files corresponding to each configuration are also provided.

Sample Configurations with LIBGEN Files

Examples provided include the following:

- one host, one ACS, one SL3000 library configuration
- one host, two ACSs, one 9310 PowderHorn LSM, one SL8500 library configuration
- one host, one ACS, one 9310 LSM, one 9360-075 WolfCreek LSM configuration
- one host, one ACS, one 9360-050 LSM, one 9360-100 LSM configuration
- one host, one ACS, one 9310 LSM, dual LMU configuration
- two host, one ACS, two 9310 LSM configuration.

Note: For two host configurations, it is absolutely necessary that host IDs be included in the LIBGEN for each host having access to the library CDS. An example is:

SLILIBRY ... HOSTID=(HSC1,HSC2)

Be aware that the HSC does not distinguish the type of host; that is, production or test machine.

The source code for the example LIBGENs shown in this appendix are included in the SAMPLIB as members LIBGENnn, where nn is the corresponding LIBGEN example number.

One Host, One ACS, One SL3000 Library Configuration

Hardware Components

This configuration consists of the following components:

- one host (EC20)
- one ACS (ACS00)
- library transport esoteric (TACS0) for ACS00
- one SL3000 standalone library containing one LSM (LSM000).

Figure 11 on page 135 illustrates a sample layout.

LIBGEN

An example LIBGEN for this configuration is shown in Figure 10.

```
LIBGEN
         SLIRCVRY TCHNIQE=SHADOW
*
         SLILIBRY SMF=245,
                                                                           χ
               ACSLIST=ACSLIST,
                                                                           Х
               FUTRACS=(3, 12),
                                                                           χ
               HOSTID=(EC2Ø),
                                                                           Х
               DELDISP=SCRTCH,
                                                                           χ
               MAJNAME=TESTING,
                                                                           χ
               CLNPRFX=CLN,
                                                                           Х
               COMPRFX=-,
                                                                           Х
               SCRLABL=SL
ACSLIST SLIALIST ACSØØ
ACSØØ
         SLIACS ACSDRV=(TACSØ,TACSØ,TACSØ,TACSØ),
                                                                           Х
                 STATION=(STØØØ,STØØØ,STØØØ,STØØØ),
                                                                           χ
                 LSM=(LSMØØØ)
STØØØ
         SLISTATN ADDRESS=(ØØCC,ØØCD)
         SLILSM TYPE=3000
LSMØØØ
*
         SLIENDGN ,
```

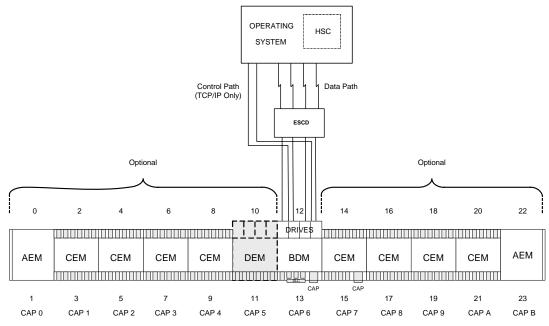



Figure 11. One Host, One ACS, One SL3000 Library Configuration

One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration

Hardware Components

This configuration consists of the following components:

- one host (HSC1)
- manual transport esoteric (CARTAPE)
- two ACSs (ACS00 and ACS01)
- library transport esoteric (CTAPE) for ACS00
- one 9310 LSM with:
 - four cartridge drive panels (P000001, P000002, P000009, P000010) and an enhanced CAP
 - two station addresses (0A0,0A1)
 - sixteen transports (410-417 and 510-517)
- one SL8500 standalone library containing four LSMs (LSM0100, LSM0101, LSM0102, LSM0103) with:
 - four cartridge drive panels (P010001, P010101, P010201, P010301)
 - eight transports (9400-9407).

Figure 13 on page 140 illustrates the current layout for this configuration.

LIBGEN01

An example LIBGEN for this configuration is shown in Figure 12 on page 137.

Label definitions: * * ACS - 'ACSxx' where 'xx' is the ACS number in printable hex. * where 'xx' is the ACS number in printable hex, and 'yy' LSM - 'LSMxxyy' * is the LSM number within the ACS in printable hex. * STATION - 'STxxh' where 'xx' is the ACS number in printable hex, and 'h' is the host index in printable hex. PANEL - 'Pxxyypp' where 'xx' is the ACS number in printable hex,'yy' is the LSM number in printable hex, and 'pp' is the panel number in decimal. DRIVE where 'xx' is the ACS number in printable hex, 'yy' is 'Dxxyypph' * the LSM number in printable hex, 'pp' is the panel number in printable hex, and 'h' is the host index in * printable hex. LIBGENØ1 SLIRCVRY TCHNIQE=BOTH * SLILIBRY HOSTID=HSC1. Х SMF=235, χ COMPRFX=#, Х ACSLIST=NAMEACS. Х χ MAJNAME=STKALSQN, SCRLABL=SL, Х EJCTPAS=GOODAY, χ CLNPRFX=CLN, χ NAMEACS SLIALIST ACSØØ, ACSØ1 ACSØØ SLIACS ACSDRV=CTAPE. Х STATION=STØØØ, χ LSM=(LSMØØØØ) STØØØ SLISTATN ADDRESS=(ØAØ,ØA1) LSMØØØØ SLILSM DRIVE=(1, 2, 9, 10),Х DRVELST=(P000001,P000002,P000009,P000010), χ **TYPE=9310**. χ DOOR=ECAP PØØØØØ1 SLIDLIST HOSTDRV=DØØØØØ1Ø DØØØØØ1Ø SLIDRIVS ADDRESS=(410,411,412,413) PØØØØØ2 SLIDLIST HOSTDRV=DØØØØØ2Ø DØØØØØ2Ø SLIDRIVS ADDRESS=(414,415,416,417) PØØØØØ9 SLIDLIST HOSTDRV=DØØØØØ9Ø DØØØØØ9Ø SLIDRIVS ADDRESS=(510,511,512,513)

Figure 12. LIBGEN for One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration (1 of 3)

```
PØØØØ1Ø SLIDLIST HOSTDRV=DØØØØ1ØØ
DØØØØ1ØØ SLIDRIVS ADDRESS=(514,515,516,517)
ACSØ1
         SLIACS ACSDRV=(SL8500,SL8500),
                                                                       Х
                                                                       Х
               FUTRLSM=(SL8500,16),
               LSM=(LSMØ1ØØ,LSMØ1Ø1,LSMØ1Ø2,LSMØ1Ø3)
LSMØ1ØØ SLILSM PASTHRU=((1,M),(2,M),(3,M)),
                                                                        Х
               ADJACNT=(LSMØ1Ø1,LSMØ1Ø2,LSMØ1Ø3),
                                                                        Х
               DRIVE=(1),
                                                                        χ
                                                                        Х
               DRVELST=(PØ1ØØØ1),
               TYPE=8500,
                                                                        Х
               D00R=85ØØ-1
*
PØ1ØØØ1 SLIDLIST HOSTDRV=(DØ1ØØØ1Ø,DØ1ØØØ11)
DØ100010 SLIDRIVS ADDRESS=(,,,9400,,,,9401,,,,,,)
DØ1ØØØ11 SLIDRIVS ADDRESS=(,,,94ØØ,,,,94Ø1,,,,,,)
*
LSMØ1Ø1 SLILSM PASTHRU=((Ø,S),(2,M),(3,M)),
                                                                        Х
               ADJACNT=(LSMØ1ØØ,LSMØ1Ø2,LSMØ1Ø3),
                                                                        Х
                                                                        Х
               DRIVE=(1),
               DRVELST=(PØ1Ø1Ø1),
                                                                        Х
                                                                        Х
               TYPE=8500,
               D00R=85ØØ-1
*
PØ1Ø1Ø1 SLIDLIST HOSTDRV=(DØ1Ø1Ø1Ø,DØ1Ø1Ø11)
DØ1Ø1Ø1Ø SLIDRIVS ADDRESS=(,,,,,,,,,,94Ø2,,,,94Ø3)
DØ1Ø1Ø11 SLIDRIVS ADDRESS=(,,,,,,,,,,94Ø2,,,,94Ø3)
LSMØ1Ø2 SLILSM PASTHRU=((Ø,S),(1,S),(3,M)),
                                                                        Х
               ADJACNT=(LSMØ1ØØ,LSMØ1Ø1,LSMØ1Ø3),
                                                                        Х
                                                                        Х
               DRIVE=(1),
               DRVELST=(PØ1Ø2Ø1),
                                                                        Х
               TYPE=8500,
                                                                        Х
               D00R=85ØØ-1
PØ1Ø2Ø1 SLIDLIST HOSTDRV=(DØ1Ø2Ø1Ø,DØ1Ø2Ø11)
DØ102010 SLIDRIVS ADDRESS=(,,,,,,,,,,9406,,,,9407)
DØ102011 SLIDRIVS ADDRESS=(,,,,,,,,,,,9406,,,,9407)
```

Figure 12. LIBGEN for One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration (2 of 3)

```
LSMØ1Ø3 SLILSM PASTHRU=((Ø,S),(1,S),(2,S)),
                                                                        Х
                                                                       Х
               ADJACNT=(LSMØ1ØØ,LSMØ1Ø1,LSMØ1Ø2),
                                                                        Х
               DRIVE=(1),
               DRVELST=(PØ1Ø3Ø1),
               TYPE=8500,
                                                                        Х
               D00R=8500-1
PØ1Ø3Ø1 SLIDLIST HOSTDRV=(DØ1Ø3Ø1Ø,DØ1Ø3Ø11)
*
DØ1Ø3Ø1Ø SLIDRIVS ADDRESS=(,,,94Ø4,,,,94Ø5,,,,,,)
DØ1Ø3Ø11 SLIDRIVS ADDRESS=(,,,94Ø4,,,,94Ø5,,,,,,,)
*
*
         SLIENDGN
```

Figure 12. LIBGEN for One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration (3 of 3)

931Ø CLUSTER(ACSØØ)

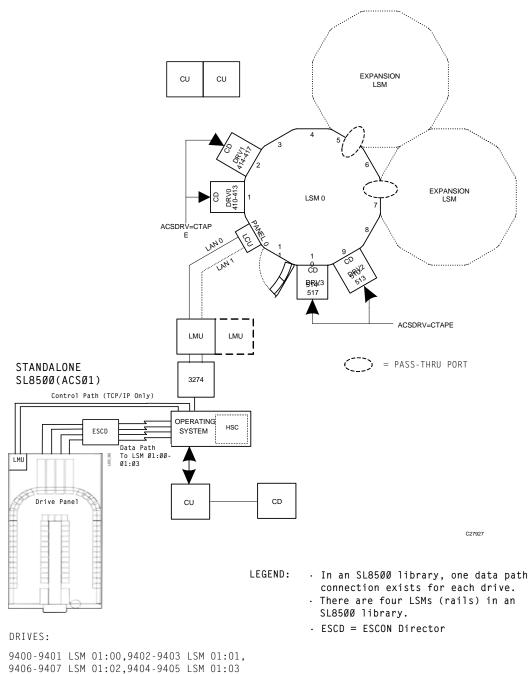


Figure 13. One Host, Two ACSs, One 9310 LSM, One SL8500 Library Configuration

One Host, One ACS, One 9310, One 9360 LSM Configuration

Hardware Components

This configuration consists of the following components:

- one host (HSC1)
- manual transport esoteric (CARTAPE)
- one Automated Cartridge System (ACS00)
- library transport esoterics (CTAPEA) for ACS00
- Library Storage Modules
 - one 9310 LSM designated as LSM0000 with four cartridge drive panels (1,2,9,10) and a standard 21-cell CAP
 - one 9360-075 WolfCreek LSM designated as LSM01 with two cartridge drive panels (1 and 3) and a 20-cell WolfCreek CAP
- two station addresses (0A0,0A1)
- twenty-four tape transports (410-417, 510-517, 610-617).

Figure 15 on page 144 illustrates the layout for this configuration.

LIBGEN02

An example LIBGEN for this configuration is shown in Figure 14 on page 142.

Label definitions: * * ACS - 'ACSxx' where 'xx' is the ACS number in printable hex. * LSM - 'LSMxxyy' where 'xx' is the ACS number in printable hex, and 'yy' * is the LSM number within the ACS in printable hex. STATION - 'STxxh' where 'xx' is the ACS number in printable hex, and 'h' * * is the host index in printable hex. * PANEL - 'Pxxyypp' where 'xx' is the ACS number in printable hex,'yy' is * the LSM number in printable hex, and 'pp' is the panel * number in decimal. * DRIVE - 'Dxxyypph' where 'xx' is the ACS number in printable hex, 'yy' is * the LSM number in printable hex, 'pp' is the panel * number in printable hex, and 'h' is the host index in * printable hex. LIBGENØ2 SLIRCVRY TCHNIQE=SHADOW SLILIBRY HOSTID=HSC1, Х SMF=235, χ COMPRFX=#, Х ACSLIST=NAMEACS, χ MAJNAME=STKALSQN, Х SCRLABL=SL, Х EJCTPAS=GOODAY, Х CLNPRFX=CLN, Х * NAMEACS SLIALIST ACSØØ ACSØØ SLIACS ACSDRV=(CTAPEA), Х STATION=STNØØØ, Х LSM=(LSMØØØØ,LSMØØØ1) * STNØØØ SLISTATN ADDRESS=(ØAØ,ØA1) LSMØØØØ SLILSM DRIVE=(1,2,9,10),Х DRVELST=(P000001,P000002,P000009,P000010), Х PASTHRU = ((5,S)),Х ADJACNT=(LSM1), Х TYPE=9310, Х DOOR=STD PØØØØØ1 SLIDLIST HOSTDRV=DØØØØØØØ DØØØØØØ SLIDRIVS ADDRESS=(410,411,412,413) PØØØØØ2 SLIDLIST HOSTDRV=DØØØØØ1Ø DØØØØØ1Ø SLIDRIVS ADDRESS=(414,415,416,417)

Figure 14. LIBGEN for One Host, One ACS, One 9310 LSM, One 9360 LSM Configuration (1 of 2)

```
PØØØØØ9 SLIDLIST HOSTDRV=DØØØØØ2Ø
DØØØØØ2Ø SLIDRIVS ADDRESS=(510,511,512,513)
PØØØØ1Ø SLIDLIST HOSTDRV=DØØØØØ3Ø
DØØØØØ3Ø SLIDRIVS ADDRESS=(514,515,516,517)
*
LSMØØØ1 SLILSM
                                                                        Х
                   DRIVE=(1,3),
               DRVELST=(PØØØ1Ø1,PØØØ1Ø3),
                                                                        χ
                                                                        χ
               PASTHRU=((\emptyset, M)),
                                                                        Х
               ADJACNT=(LSMØ),
                                                                        Х
               TYPE=9360-075,
               DOOR=WC1
*
PØØØ1Ø1 SLIDLIST HOSTDRV=DØØØØØ4Ø
DØØØØØ4Ø SLIDRIVS ADDRESS=(610,611,612,613)
*
PØØØ1Ø3 SLIDLIST HOSTDRV=DØØØØØ5Ø
*
DØØØØØ5Ø
             SLIDRIVS ADDRESS=(614,615,616,617)
*
         SLIENDGN
```

Figure 14. LIBGEN for One Host, One ACS, One 9310 LSM, One 9360 LSM Configuration (2 of 2)

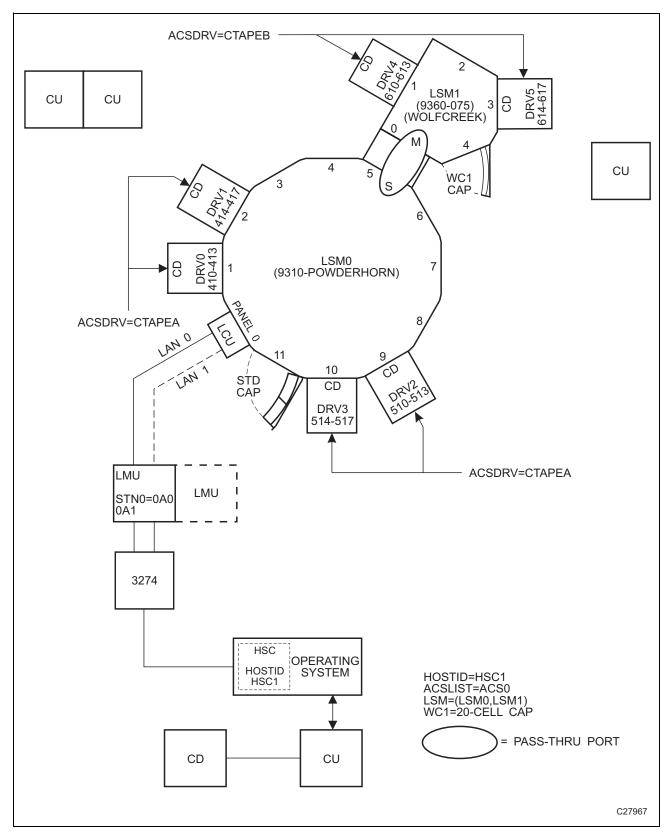


Figure 15. One Host, One ACS, One 9310 LSM, One 9360 LSM Configuration

One Host, One ACS, Two 9360 WolfCreek LSM Configuration

Hardware Components

This configuration consists of the following components:

- one host (HSC1)
- manual transport esoteric (CARTAPE)
- one Automated Cartridge System (ACS00)
- library transport esoterics (CTAPEA) for ACS00
- Library Storage Modules
 - one 9360-050 WolfCreek LSM designated as LSM0000 with two cartridge drive panels (1,3) and a 20-cell CAP
 - one 9360-100 WolfCreek LSM designated as LSM0001 with two cartridge drive panels (1,3) and an optional 30-cell WolfCreek CAP
- two station addresses (0A0,0A1)

Figure 17 on page 148 illustrates the layout for this configuration.

LIBGEN03

An example LIBGEN for this configuration is shown in Figure 16 on page 146.

* Label definitions: * * ACS - 'ACSxx' where 'xx' is the ACS number in printable hex. * LSM - 'LSMxxyy' where 'xx' is the ACS number in printable hex, and 'yy' * is the LSM number within the ACS in printable hex. * STATION - 'STxxh' where 'xx' is the ACS number in printable hex, and 'h' * is the host index in printable hex. * PANEL where 'xx' is the ACS number in printable hex,'yy' is - 'Pxxyypp' * the LSM number in printable hex, and 'pp' is the panel * number in decimal. * DRIVE where 'xx' is the ACS number in printable hex, 'yy' is - 'Dxxyypph' * the LSM number in printable hex, 'pp' is the panel number in printable hex, and 'h' is the host index in * * printable hex. LIBGENØ3 SLIRCVRY TCHNIQE=SHADOW * SLILIBRY HOSTID=HSC1, Х SMF=235, Х COMPRFX=#, χ ACSLIST=NAMEACS, χ Х MAJNAME=STKALSQN, Х SCRLABL=SL, EJCTPAS=GOODAY, Х CLNPRFX=CLN, Х * NAMEACS SLIALIST ACSØØ ACSØØ SLIACS ACSDRV=(CTAPEA), χ STATION=STØØØ, Х LSM=(LSMØØØØ,LSMØØØ1) * STØØØ SLISTATN ADDRESS=(ØAØ,ØA1) LSMØØØØ SLILSM DRIVE=(1,3), χ DRVELST=(PØØØØ01,PØØØØ03), χ PASTHRU=((2,S)),Х ADJACNT=(LSMØØØ1), Х TYPE=9360-050, Х DOOR=WC1

Figure 16. LIBGEN for One Host, One ACS, Two 9360 LSM Configuration (1 of 2)

```
PØØØØØ1 SLIDLIST HOSTDRV=DØØØØØØØ
DØØØØØØØ SLIDRIVS ADDRESS=(310,311,312,313)
PØØØØØ3 SLIDLIST HOSTDRV=DØØØØØ1Ø
DØØØØØ1Ø SLIDRIVS ADDRESS=(410,411,412,413)
*
LSMØØØ1
           SLILSM
                     DRIVE=(1,3),
                                                                        Х
               DRVELST=(PØØØ1Ø1,PØØØ1Ø3),
                                                                        Х
               PASTHRU=((\emptyset, M)),
                                                                        Х
                                                                        Х
               ADJACNT=(LSMØØØØ),
               TYPE=9360-100,
                                                                        Х
               DOOR=WC2
PØØØ1Ø1 SLIDLIST HOSTDRV=DØØØØØ2Ø
DØØØØØ2Ø SLIDRIVS ADDRESS=(510,511,512,513)
PØØØ1Ø3 SLIDLIST HOSTDRV=DØØØØØ3Ø
DØØØØØ3Ø SLIDRIVS ADDRESS=(610,,612,)
*
         SLIENDGN
```

Figure 16. LIBGEN for One Host, One ACS, Two 9360 LSM Configuration (2 of 2)

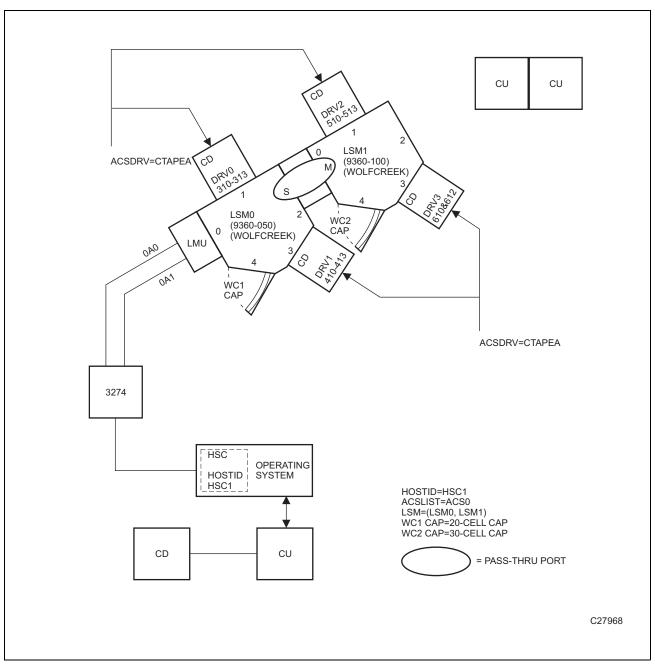


Figure 17. One Host, One ACS, Two 9360 LSM Configuration

One Host, One ACS, One 9310 LSM, Dual LMU Configuration

Hardware Components

This configuration consists of the following components:

- one host (HSC1)
- manual transport esoteric (CARTAPE)
- one Automated Cartridge System (ACS00) Library transport esoteric (CTAPE) for ACS00
- one 9310 Library Storage Module (LSM0000)
- four station addresses (0A0,0A1,0C0,0C1)
- four cartridge drive panels (1,2,9,10)
- sixteen transports (410-417 and 510-517).

Figure 19 on page 151 illustrates the layout for this configuration.

LIBGEN04

An example LIBGEN for this configuration is shown in Figure 18 on page 150.

* Label definitions: * * ACS - 'ACSxx' where 'xx' is the ACS number in printable hex. * where 'xx' is the ACS number in printable hex, and 'yy' LSM - 'LSMxxyy' * is the LSM number within the ACS in printable hex. * STATION - 'STxxh' where 'xx' is the ACS number in printable hex, and 'h' * is the host index in printable hex. * PANEL - 'Рххуурр' where 'xx' is the ACS number in printable hex,'yy' is * the LSM number in printable hex, and 'pp' is the panel * number in decimal. * DRIVE - 'Dxxyypph' where 'xx' is the ACS number in printable hex, 'yy' is * the LSM number in printable hex, 'pp' is the panel number in printable hex, and 'h' is the host index in * printable hex. LIBGENØ4 SLIRCVRY TCHNIQE=BOTH SLILIBRY HOSTID=HSC1, Х Х SMF=235, Х COMPRFX=#, Х ACSLIST=NAMEACS, χ MAJNAME=STKALSQN, SCRLABL=SL, Х EJCTPAS=GOODDAY, Х CLNPRFX=CLN, Х NAMEACS SLIALIST ACSØØ ACSØØ SLIACS ACSDRV=CTAPE, Х STATION=STØØØ, Х LSM=(LSMØØØØ) * STØØØ SLISTATN ADDRESS=(ØAØ,ØA1,ØCØ,ØC1) * LSMØØØØ SLILSM DRIVE=(1, 2, 9, 10),Х DRVELST=(P000001,P000002,P000009,P000010), Х TYPE=9310, Х DOOR=STD * PØØØØØ1 SLIDLIST HOSTDRV=DØØØØØØØ DØØØØØØ SLIDRIVS ADDRESS=(410,411,412,413) PØØØØØ2 SLIDLIST HOSTDRV=DØØØØØ1Ø DØØØØØ1Ø SLIDRIVS ADDRESS=(414,415,416,417) PØØØØØ9 SLIDLIST HOSTDRV=DØØØØØ2Ø DØØØØØ2Ø SLIDRIVS ADDRESS=(510,511,512,513) PØØØØ1Ø SLIDLIST HOSTDRV=DØØØØØ3Ø DØØØØØ3Ø SLIDRIVS ADDRESS=(514,515,516,517) SLIENDGN

Figure 18. LIBGEN for One Host, One ACS, One 9310 LSM, Dual LMU Configuration

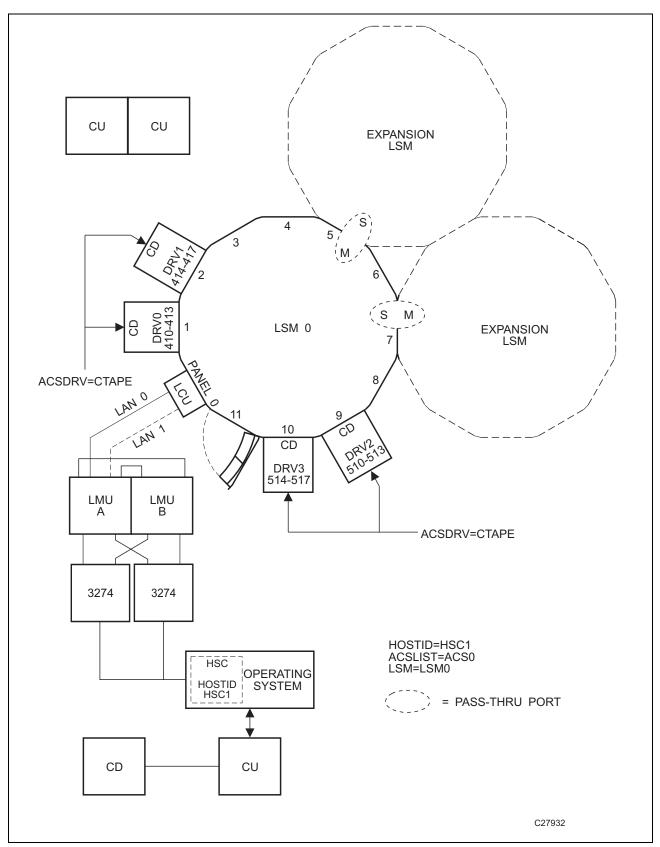


Figure 19. One Host, One ACS, One 9310 LSM, Dual LMU Configuration

Two Host, One ACS, Two 9310 LSM Configuration

Hardware Components

This configuration consists of the following components:

- two hosts (HSC1,HSC2)
- two manual transport esoterics (CARTAPEA,CARTAPEB)
- one Automated Cartridge System (ACS00)
- two library transport esoterics (CTAPEA, CTAPEB) for ACS01
- Library Storage Modules
 - one 9310 LSM designated as LSM0000 with four cartridge drive panels (1,2,9,10) and a standard CAP.
 - one 9310 LSM designated as LSM0001 with four cartridge drive panels (7,8,9,10) and an enhanced CAP
- four station addresses (0A0,0A1,0A2,0A3)
- thirty-two transports (410-41F and 510-51F).

Figure 21 on page 155 illustrates the current layout for this configuration.

LIBGEN05

An example LIBGEN for this configuration is shown in Figure 20 on page 153.

* Label definitions: * * ACS - 'ACSxx' where 'xx' is the ACS number in printable hex. * LSM - 'LSMxxyy' where 'xx' is the ACS number in printable hex, and 'yy' * is the LSM number within the ACS in printable hex. * STATION - 'STxxh' where 'xx' is the ACS number in printable hex, and 'h' * is the host index in printable hex. * where 'xx' is the ACS number in printable hex,'yy' is PANEL - 'Pxxyypp' * the LSM number in printable hex, and 'pp' is the panel * number in decimal. * where 'xx' is the ACS number in printable hex, 'yy' is DRIVE - 'Dxxyypph' * the LSM number in printable hex, 'pp' is the panel * number in printable hex, and 'h' is the host index in printable hex. LIBGENØ5 SLIRCVRY TCHNIQE=SHADOW * SLILIBRY SMF=235, Х HOSTID=(HSC1,HSC2), χ ACSLIST=NAMEACS. χ MAJNAME=STKALSQN, Х χ COMPRFX=#, Х SCRLABL=SL, EJCTPAS=GOODDAY, χ Х CLNPRFX=CLN, NAMEACS SLIALIST ACSØØ ACSØØ SLIACS ACSDRV=(CTAPEA,CTAPEB), Х STATION=(STØØØ,STØØ1), χ LSM=(LSMØØØØ,LSMØØØ1) STØØØ SLISTATN ADDRESS=(ØAØ,ØA1) STØØ1 SLISTATN ADDRESS=(ØA2,ØA3) * LSMØØØØ SLILSM DRIVE=(1, 2, 9, 10),χ DRVELST=(P000001,P000002,P000009,P000010), χ PASTHRU=((5,M)), Х ADJACNT=(LSMØØØ1). χ Х TYPE=9310, DOOR=STD * PØØØØØ1 SLIDLIST HOSTDRV=(DØØØØØØØ,DØØØØØØ) DØØØØØØ SLIDRIVS ADDRESS=(410,411,412,413) PØØØØØ2 SLIDLIST HOSTDRV=(DØØØØØ1Ø,DØØØØØ1Ø) DØØØØØ1Ø SLIDRIVS ADDRESS=(414,415,416,417) PØØØØØ9 SLIDLIST HOSTDRV=(DØØØØØ2Ø,DØØØØØ2Ø) DØØØØØ2Ø SLIDRIVS ADDRESS=(418,419,41A,41B) PØØØØ1Ø SLIDLIST HOSTDRV=(DØØØØØ3Ø,DØØØØØ3Ø) DØØØØØ3Ø SLIDRIVS ADDRESS=(41C,41D,41E,41F)

Figure 20. LIBGEN for Two Host, One ACS, Two 9310 LSM Configuration (1 of 2)

```
LSMØØØ1
          SLILSM
                    DRIVE=(7,8,9,10),
                                                                      Х
              DRVELST=(PØØØ107,PØØØ108,PØØØ109,PØØØ110),
                                                                      Х
                                                                      Х
              PASTHRU=((5,S)),
              ADJACNT=(LSMØØØØ),
                                                                      Х
              TYPE=9310,
                                                                      Х
              DOOR=ECAP
*
PØØØ107 SLIDLIST HOSTDRV=(DØØØØ040,DØØØØ040)
DØØØØØ4Ø SLIDRIVS ADDRESS=(510,511,512,513)
PØØØ1Ø8 SLIDLIST HOSTDRV=(DØØØØØ5Ø,DØØØØØ5Ø)
DØØØØØ5Ø SLIDRIVS ADDRESS=(514,515,516,517)
PØØØ1Ø9 SLIDLIST HOSTDRV=(DØØØØØ6Ø,DØØØØØ6Ø)
DØØØØØ6Ø SLIDRIVS ADDRESS=(518,519,51A,51B)
PØØØ11Ø SLIDLIST HOSTDRV=(DØØØØØ7Ø,DØØØØØ7Ø)
DØØØØØ7Ø SLIDRIVS ADDRESS=(51C,51D,51E,51F)
*
         SLIENDGN
```

Figure 20. LIBGEN for Two Host, One ACS, Two 9310 LSM Configuration (2 of 2)

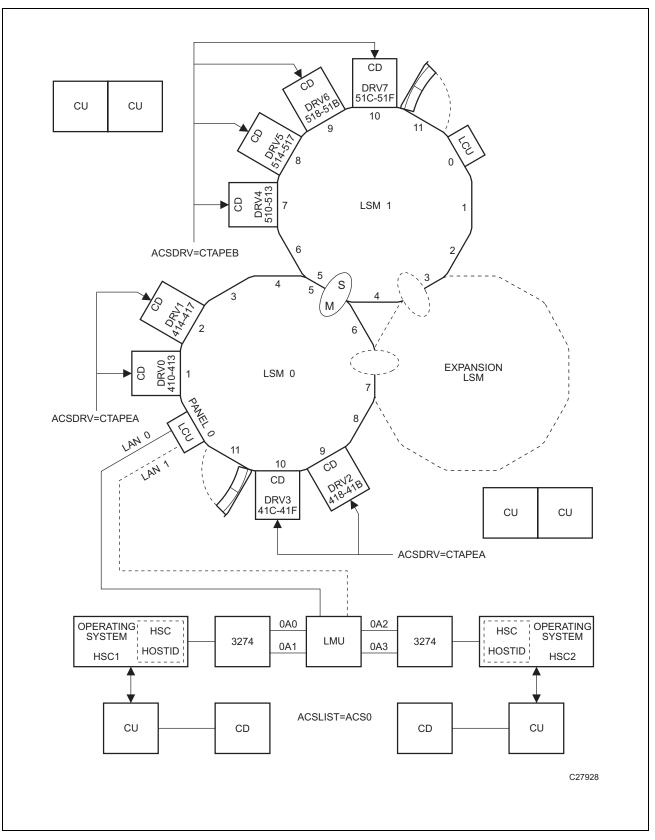


Figure 21. Two Host, One ACS, Two 9310 LSM Configuration

Appendix C. Macros, Control Statements, Utilities and Commands Syntax Conventions

Syntax Flow Diagrams

Syntax is illustrated using flow diagrams. These can include the following elements:

- syntax the diagram itself
- items individual elements inside the diagram. Items can be keywords, variables, delimiters, operators, fragment references, and separators
- groups a collection of items or other groups

The following sections describe syntax flow diagram features and include some generic examples.

Specifying Commands

Commands are composed of command names, keyword parameters, and positional parameters. Command names initiate command execution, keyword parameters are operands that contain keywords and their related values, and positional parameters are operands that are identified by their position in the command string rather than by keywords.

- keyword parameters can be specified in any order. The HSC accepts (tolerates) multiple occurrences of a keyword. The value assigned to a keyword reflects the last occurrence of a keyword within a command.
- positional parameters must be entered in the order shown in the syntax diagram.
- uppercase letters indicate the minimum abbreviation for the command name, keyword, or positional parameter.

Variables

Variables are italicized.

Delimiters

If a comma (,), a semicolon (;), or other delimiter is shown with an element of the syntax diagram, it must be entered as part of the statement or command.

Flow Lines

Syntax diagrams consist of horizontal and vertical lines and the text of a command, control statement, macro, or utility.

►► COMMANE	D/MACRO/UTILITY	.
	or	
▶ ► Item1 Item2 Item3		
-Item2	2	
∟Item3		

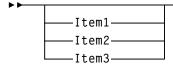
Diagrams are read left to right and top to bottom. Arrows show flow and direction.

- A statement begins with ►►
- A statement ends with $\blacktriangleright \blacktriangleleft$
- Diagrams continuing to the next line begin with ►
- Fragments begin and end with |

► COMMAND/UTILITY NAME Item1(variable) Item2(-	variable2	-)
►►──COMMAND/UTILITY NAME───Item1(variable)──Item2(-	variable3——	
	wariable4	

► Item3(variable5)

Single Required Choice


Branch lines, without repeat arrows, indicate that a single choice must be made. If one of the items from which a choice is being made is on the base line of the diagram, a single choice is required.

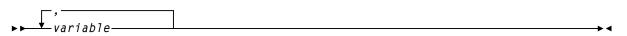
+∢

Single Optional Choice

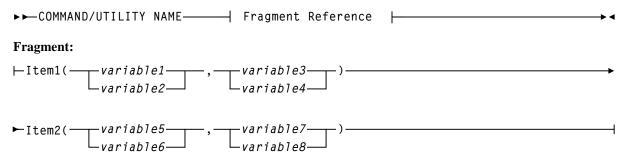
If the first item is on the line below the base line, a single choice of items in the stack is optional.

Defaults

Default values and parameters appear above the syntax diagram line. In the following example, if a value is not specified with the command, Default Value is used by the HSC.



Some keyword parameters provide a choice of values in a stack. When the stack contains a default value, the keyword and the value choices are placed below the baseline to indicate that they are optional, and the default value appears above the keyword line. In the following example, if the keyword is not specified with the command, Keyword (Default Value) is used by the HSC.


Repeat Symbol

A repeat symbol indicates that more than one choice can be made or that a single choice can be made more than once. The repeat symbol shown in this example indicates that a comma is required as the repeat separator.

Syntax Continuation (Fragments)

Fragment references direct you to parts (fragments) of the syntax that contain more detail than can be shown in the main syntax diagram.

Library Identification

Each ACS, LSM, and CAP is assigned a unique identification number during LIBGEN. Use this number in HSC commands and utilities when identifying a specific ACSid, LSMid, or CAPid.

- ACSid (*acs-id*) is a hexadecimal value from 00 through FF that identifies the LMU. An *acs-id* is the result of defining the SLIALIST macro during a LIBGEN. See "LIBGEN Macros" on page 26 for information about the SLIALIST macro. The first ACS listed in this macro acquires a hexadecimal identifier of 00, the second ACS listed acquires a hexadecimal identifier of 01, and so forth until all ACSs are identified.
- An LSM number (*ll*) is a hexadecimal value from 00 through 17. It differentiates an LSM from every other LSM connected to the same LMU.

An LSM number is the result of defining the SLIACS macro LSM, LSM2, LSM3, and LSM4 parameters. See "LIBGEN Macros" on page 26 for information about the SLIACS macro. The first LSM listed for an ACS acquires a hexadecimal number of 00, the second LSM listed for an ACS acquires a hexadecimal number of 01, and so forth.

- An LSMid (*lsm-id*) is made up of the ACSid and the LSM number separated by a colon (:). It differentiates an LSM from every other LSM in a library.
- A CAP number is a hexadecimal value from 00 to 02. The CAP number identifies a specific CAP in an LSM that has more than one CAP.
- A CAPid (*cap-id*) is a hexadecimal value made up of the LSMid and the CAP number separated by a colon.

Some HSC commands and utilities require, or optionally allow, the user to specify a host identifier or a VOLSER.

- The *host-id* for a given host is the identifier specified in the HOSTID parameter of the SLILIBRY macro in the LIBGEN. The HOSTID parameter is the SMF system identifier for **both** JES2 and JES3. Valid characters for a HOSTID are A-Z, 0-9, #, \$, and @.
- A VOLSER (*volser*) identifies a volume serial number consisting of one to six characters. Valid characters are A-Z, 0-9, # (crosshatch), \$, ¥ (yen character), and optional trailing blanks. Leading blanks are not allowed.

Ranges and Lists

HSC commands and utilities often allow the user to specify ranges and lists of elements.

- 1. An inclusive range is indicated by a pair of elements of the same length and data type, joined by a dash. The first element must be strictly less than the second element.
 - A hexadecimal range consists of a pair of hexadecimal numbers (for example, 0A2-0AD, or 000-0FC).
 - A decimal range consists of a pair of decimal numbers (for example, 1-9, or 010-094). Leading zeros are not required.
 - A numeric VOLSER range (*vol-range*) consists of a pair of VOLSER elements containing a decimal numeric portion of 1 to 6 digits (for example, ABC012-ABC025, or X123CB-X277CB). The decimal portion is referred to as an incremental range. The following additional restrictions apply:
 - The character positions of the incremental portion of both range elements must match.
 - The non-incremental characters of the first element must be identical to those of the second element.
 - You cannot increment two portions of a range element. If 11<u>1</u>AA<u>A</u> is the first element, you cannot specify 11<u>2</u>AA<u>B</u> for the second element.
 - If a VOLSER range contains more than one decimal portion, any portion is valid as the incremental range. For example:

A <u>00</u> B <u>00</u>	the largest range that can be specified is A00B00 through A99B99.
A <u>0</u> B <u>0</u> CC	the largest range that can be specified is A0B0CC through A9B9CC.
<u>000</u> XXX	the largest range that can be specified is 000XXX through 999XXX.

Note: A VOLSER range for most operator commands is limited to 100 entries. If a larger range is entered, only the first 100 VOLSERs in the range are acted on. If HSC utilities are used, the entire range is processed.

- An alphabetic VOLSER range (*vol-range*) consists of a pair of VOLSER elements containing an incremental portion of 1 to 6 characters (for example, 000<u>AAA-000ZZZ</u>, or 9<u>AAA</u>55-9<u>ZZZ</u>55). This portion is referred to as an incremental range. The following additional restrictions apply:
 - The character positions of the incremental portion of both range elements must match.
 - The non-incremental characters of the first element must be identical to those of the second element.

- You cannot increment two portions of a range element. If 11<u>1</u>AA<u>A</u> is the first element, you cannot specify 11<u>2</u>AA<u>B</u> for the second element.
- The alphabetic portion of the VOLSER range is defined as being from character A to Z. To increment multi-character sequences, each character increments to Z. For instance, ACZ is part of the AAA-AMM range. Examples are:

A <u>00</u> A0-A <u>99</u> A0	increments VOLSERs A00A0 through A09A0, then A10A0 through A99A0.
9 <u>AA</u> 9A-9 <u>ZZ</u> 9A	increments VOLSERs 9AA9A through 9AZ9A, then 9BA9A through 9ZZ9A.
111 <u>AAA</u> -111 <u>ZZZ</u>	increments VOLSERs 111AAA through 111AAZ, then 111ABA through 111ZZZ.
999 <u>AM</u> 8- 999 <u>CM</u> 8	increments VOLSERs 999AM8 through 999AZ8, then 999BA8 through 999CM8
A3 <u>BZZ</u> 9- A3 <u>CDE</u> 9	increments VOLSERs A3BZZ9 through A3CAA9, then A3CAB9 through A3CDE9
AAAAAA- AAACCC	increments VOLSERs AAAAAA through AAAAAZ, then AAAABA through AAACCC
<u>CCCNNN</u> - <u>DDDNNN</u>	increments VOLSERs CCCNNN through CCCNNZ, then CCCNOA through DDDNNN*

* **Caution:** This is a very large range.

The number of volumes in an alphabetic VOLSER range depends on the number of elements in the incrementing portion of the VOLSER range. For an A to Z range in each character position, the number of volumes can be calculated by 26 to the power of the number of positions that are being incremented.

A-Z	26^{1}	26
AA-ZZ	26 ²	676
AAA-ZZZ	26 ³	17,576
AAAA-ZZZZ	26^4	456,976
AAAAA-ZZZZZ	26 ⁵	11,881,376
AAAAAA-ZZZZZZ	26 ⁶	308,915,776

B

Note: For most operator commands, a VOLSER range is limited to 100 entries. If a large range is entered, only the first 100 VOLSERs are acted upon. If HSC utilities are used, the entire range is processed.

- 2. A list consists of one or more elements. If more than one element is specified, the elements must be separated by a comma or a blank, and the entire list enclosed in parentheses.
 - For some HSC operator commands, an element may consist of a single item or a range. Refer to the individual command explanations for valid list entries.
 - In general, HSC utilities do not allow ranges to be specified in a list. The exception to this is a VOLSER list (vol-list) which does allow ranges to be specified.

For VOLATTR control statements, you can use wildcard characters (%, ?, or *) to identify a list of VOLSERs.

Control Statement Syntax Conventions

The control statement for each utility program consists of a command (indicating the utility function) followed by parameters, as applicable, in 80-character card-image records. The standard syntax conventions for control statements are as follows:

- The only valid control statement information area is from column 1 to column 72. Columns 73-80 are ignored.
- Parameters are separated by one or more blanks or a comma.
- A value is associated with a parameter by an equal sign (=) or by enclosing the value in parentheses, and concatenating it immediately after the parameter.
- Case (upper or lower) is ignored in actual control statements.
- Control statements may be interspersed with comments designated by an asterisk (*) in column one.

For definition data sets (VOLATTRs, UNITATTRs and TAPEREQs) comments must be in the new format (/*...*/). Asterisk (*) comments are not allowed. A /*...*/ comment in the first line is not required for definition data sets.

- A control statement is terminated if the statement is not continued. Comments cannot be nested, and mixing the two comment styles (* and /*) is not allowed.
- The 80-character card-image records use conventional continuation rules.
 - A space and a dash (-) following a parameter or parameter value indicates that a blank is to be inserted between the last nonblank character of this line and the first nonblank character of the next nonblank record.
 - A plus sign (+) specifies that the continued control information is to be concatenated directly after the character preceding the plus sign. The continued data starts at column two of the next nonblank record.

Note: You can use a continuation only after a new keyword or after the natural end of a value. Some examples follow.

The following examples illustrate continuations used correctly:

SCRPOOL NAME=STD36,RANGE+ (AAAØØØ-AAA999,ZZZØØØ-ZZZ999) SCRPOOL NAME=STD36,RANGE(AAAØØØ-AAA999,-ZZZØØØ-ZZZ999)

The following example illustrates a continuation used incorrectly:

SCRPOOL NAME=STD36,RANGE(AAAØØØ-AAA999,ZZZ+ ØØØ-ZZZ999)

- The maximum length of a control statement is 32,767 characters.
- The maximum length of a command (used as a command or in PARMLIB) is 126 characters.

Appendix D. Migration and Coexistence Processes

This appendix describes the requirements and procedures for migrating HSC software from Releases 6.0 and 6.1 to Release 6.2 (up-level migration), and, if required, from Release 6.2 to Releases 6.1 or 6.0 (down-level migration). It is very important that all guidelines, procedures, and cautions be followed. Successful migration depends on following the requirements and instructions described here.

In addition, library hardware and software requirements are discussed that must be considered before attempting to migrate between HSC releases.

This appendix also details the conditions for coexistence of different HSC releases in a multiple-host environment. Coexistence occurs when HSC 6.0 or 6.1, *and* HSC 6.2 are installed and executing on separate hosts sharing the same library complex and CDS.

- A 2.1-level CDS format can run with HSC 6.0, 6.1 and HSC 6.2. A 6.1-level CDS is built automatically if you use 6.2 load libraries.
- In HSC 6.0, 6.1 and 6.2, the HSC lets you convert the CDS to extended format to support future enhancements to the Virtual Tape Control System (VTCS). After you convert the CDS to extended format, **you cannot run VTCS 5.1 or earlier versions** against the converted CDS.

Refer to the VTCS documentation for additional information about converting the CDS to extended format.

Overview of Migration and Coexistence

As discussed in this appendix, migration is the process of upgrading from a previous release of the HSC (i.e., 6.0 or 6.1) to HSC 6.2. Migration may also involve moving back to the previous release and returning to a production environment.

Coexistence applies only to a multiple-host environment and is intended to be an interim step in the migration process, where different hosts temporarily run different HSC releases (i.e., 6.0, 6.1, and 6.2) and share a control data set. This appendix describes the requirements and restrictions for operating in a coexistence environment.

HSC Migration Scenarios

The following migration scenarios are possible:

- Up-level:
 - HSC 6.0 to HSC 6.2
 - HSC 6.1 to HSC 6.2.
- Down-level:
 - HSC 6.2 to HSC 6.1
 - HSC 6.2 to HSC 6.0.

Migration should be performed by system programmers responsible for installing and maintaining HSC software. System programmers must be knowledgeable and experienced in topics discussed in the *HSC System Programmer's Guide*.

Software Support

For questions regarding migration, contact Sun StorageTek Software Support for assistance. Refer to the guide *Requesting Help from Software Support* for software support reporting procedures and phone numbers.

HSC Coexistence Scenarios

In multiple-host configurations, HSC 6.0 and 6.1 can coexist with HSC 6.2.

Each HSC release provides new functions that were not present in previous releases. For this reason, any coexistence environment must be carefully managed to take advantage of new functions and to make sure that the HSC control data set accurately reflects library contents.

HSC Installation Scenarios

Two installation scenarios are described in this appendix:

- installing HSC in a verification environment before installing it in your production environment
- installing HSC directly into your production environment.

Installation in a Verification Environment

Installing 6.2 into a verification environment in your data center involves installing 6.2 onto a verification system during off-hours or off-peak times. This approach has distinct advantages:

- It allows system programmers, application programmers, operators, and system users to become thoroughly familiar with 6.2 functions and operation before it is placed on production systems. Comparison of new to previous functions enables your personnel to better understand the enhancements provided by this release.
- For more information about 6.2 functions, refer to "What's New With This Release?" on page xv.
- It allows you to validate the environmental specifics of your library complex. These can include unique conditions and implementation of user exits, designation of scratch subpools, allocation, and other specific operation processes.
- It allows you to update one host (subsystem) at a time instead of immediately migrating the entire library complex.

This appendix describes procedures to migrate from HSC 6.0 or 6.1 to HSC 6.2 using a verification system. Refer to "Procedure to Verify HSC 6.2 Functions Against a Separate CDS" on page 178 for more information. Also included are procedures for temporarily terminating HSC 6.0 or 6.1; initiating a 6.2 verification subsystem; terminating a 6.2 subsystem; and returning back to your 6.0 or 6.1 system for production operations.

Direct Installation into a Production Environment

For data centers installing 6.2 directly into a production environment, the contents of this appendix is extremely important. For successful installation, the procedures described should be followed carefully.

Migration and Coexistence Considerations

The following guidelines apply to migration and coexistence involving HSC 6.0 or 6.1.

Migration

- No new LMU microcode is required for HSC 6.2 if you are migrating from HSC 6.0 or 6.1.
- Programs using the programmatic interface (PGMI) do not need to be recompiled for HSC 6.2.
- You are not required to re-assemble your user exits. If you choose to do so, Sun StorageTek suggests that user modifications to user exits and other Sun StorageTek-supplied programs be based on the source code shipped in the current release.

Coexistence PTFS

Coexistence PTFs to HSC 6.0 and 6.1 allow HSC 6.0, 6.1, and 6.2 to run on multiple hosts sharing the same CDS. Refer to the *NCS Read Me First* document to see a list of the 6.2 compatibility PTFs.

A 2.1-level CDS format can run with HSC 5.1, 6.0, and HSC 6.1. A 6.1-level CDS is built if you use 6.2 load libraries.

Refer to "Control Data Set and Journal Requirements" on page 175 for more detailed information.

Notes:

- HSC 6.0, 6.1, and 6.2 will not initialize if any ACS is defined that does not include attached stations.
- HSC 5.0 and 5.1 can be active in the same host complex with HSC 6.0, 6.1, and 6.2, as long as compatibility PTFs have been installed.
- Coexistence PTFs to HSC 5.0, 5.1, 6.0, and 6.1 do not allow dynamic hardware reconfiguration changes on a 6.2 system if the downlevel hosts are active. In this case, the downlevel hosts must be terminated until the changes are completed. They can then be restarted, and the CDS is updated at initialization to reflect the changes.

Coexistence

- Utilities that require HSC services must match the HSC release level. That is, a 6.1 utility must run with an active 6.1 subsystem, a 6.2 utility must run with an active 6.2 subsystem, and so forth. See "Utility Usage Requirements" on page 176 for additional information.
- Some stand-alone utilities (not requiring an active HSC) are dependent on the CDS level. HSC 5.1, 6.0, and 6.1 stand-alone utilities run with a CDS in 2.1 format, unless 6.2 load libraries are used, which results in a 6.1-level CDS being built.

Stand-alone utilities can be run from all of these releases. Refer to "Utility Usage Requirements" on page 176 for additional information.

• If you run Database Decompile using HSC 6.2 load libraries, you must run the LIBGEN using HSC 6.2 load libraries.

Hardware Support Dependencies Between HSC Releases

Library hardware support varies depending on the release level and composition of the library. Table 23 on page 173 lists the supported functionality for major library hardware components under 6.0, 6.1, and 6.2 subsystems.

Hardware Component	HSC 6.0	HSC 6.1	HSC 6.2
4410 (Standard) LSM	Supported	Supported	Supported
9310 (PowderHorn) LSM	Supported	Supported	Supported
9360 (WolfCreek) LSM	Supported	Supported	Supported
9740 (TimberWolf) LSM	Supported	Supported	Supported
SL8500 (StreamLine)	Supported	Supported	Supported
SL3000 (StreamLine)	Not Supported	Supported	Supported
4430 LMU	Supported for non-9840	Supported for non-9840	Supported for non-9840
9315 LMU	Supported	Supported	Supported
9330 LMU	Supported	Supported	Supported
4480 (18-track) Cartridge Subsystem	Supported	Supported	Supported
4490 (36-track) Cartridge Subsystem	Supported	Supported	Supported
9490 (36-track) Cartridge Subsystem	Supported	Supported	Supported
9490EE (36-track) Cartridge Subsystem	Supported	Supported	Supported
9840 Cartridge Subsystem	Supported	Supported	Supported
T9840B Cartridge Subsystem	Supported	Supported	Supported
T9840C Cartridge Subsystem	Supported	Supported	Supported
T9940A Cartridge Subsystem	Supported	Supported	Supported
T9940B Cartridge Subsystem	Supported	Supported	Supported
Virtual Tape Storage Subsystem	Supported	Supported	Supported

Table 23. HSC Library Hardware Dependencies

HSC Support for Virtual Media

Only Virtual media can be mounted on Virtual Tape Drives. Refer to the VTCS documentation for more information.

Control Data Set and Journal Requirements

The format of the HSC control data set is identified by the "CDS level."

For HSC 6.0, 6.1, and 6.2, the CDS level defaults to 2.1. SLICREAT automatically builds a 6.1-level CDS if 6.2 load libraries are used.

Notes:

- It is possible to remove LSMs from the SL8500 configuration without performing a LIBGEN, MERGEcds, and recycle of the HSC. However, **this operation requires assistance from Sun**.
- If you intend to add drives, run the SET SLIDRIVS utility to allow the HSC to recognize drive locations and associated UCB addresses and to ensure the CDS reflects the new tape drive configuration. Refer to the SET SLIDRIVS utility in the HSC System Programmer's Guide.

Caution: Sun StorageTek recommends that you do not run CDS-related commands and utilities while dynamic hardware changes are being implemented.

Refer to the Appendix B, "HSC Support for Near Continuous Operation (NCO)" in the *HSC System Programmer's Guide*, for important procedural information, requirements, and warnings.

The CDS level is contained in the CDS and may be seen using the Display CDS command or by browsing the CDS. If you browse the CDS, the level is found in the first record (DHB) at columns 1725-1730 or in the second record (DPV) at columns 45-50. The CDS level is a 6-character field, 020100 for a 2.1-level CDS.

Expert Library Manager (ExLM) 3.0 and later runs with a 2.1 CDS. ExLM 2.1 requires PTF(s) to work with a 2.1 CDS.

Backup Requirements

Use the HSC 6.0 or 6.1 BACKup utility before migrating, and the HSC 6.2 BACKup utility after migrating.

CDS Conversion Requirements (Up-Level Migration)

No CDS conversion is required to migrate from HSC 6.0 or 6.1 to 6.2.

CDS Conversion Requirements (Down-Level Migration)

No CDS conversion is required to migrate from HSC 6.2 to HSC 6.0 or 6.1.

MERGEcds Utility

The MERGEcds utility can merge volume and configuration information from a 2.1 CDS to a 6.0-level CDS or from a 6.0-level CDS to a 2.1 CDS.

Utility Usage Requirements

Whenever you are migrating between HSC releases or operating in a coexistence environment, correct usage of utilities is extremely important. HSC utilities are categorized as follows:

• stand-alone utilities, which do not require HSC services. These utilities can execute with or without an active HSC subsystem.

Some stand-alone utilities function only with the corresponding CDS level; 6.0, 6.1, and 6.2 stand-alone utilities are used with a 2.1 CDS, unless 6.0 load libraries are used and an SL8500 library has been specified in the SLILSM macro. In this case, a 6.0-level CDS is built automatically. If 6.2 load libraries are used, a 6.1-level CDS is created automatically.

• utilities requiring HSC services. These utilities are dependent on the release level of the HSC

Compatibility of Stand-Alone Utilities

The following stand-alone utilities are not dependent on the HSC release or CDS level:

- Activities Report
- Journal Offload
- Performance Log Reblocker
- Scratch Conversion (SLUCONDB), unless LIBONLY is specified as an option.

Compatibility of Utilities Requiring the HSC Subsystem

Utilities requiring the services of an active HSC are dependent on the release level of the HSC. For example, a 6.2 utility requiring an active HSC must execute against an active HSC 6.2 subsystem.

In this circumstance, the general rule is that the release level of the utility's execution library should match the release level of the current HSC subsystem for that host. That is, a 6.2 utility must execute with a 6.2 subsystem, a 6.1 utility must execute with a 6.1 subsystem, and so forth.

If a 6.2 utility is executed with a 6.0 or 6.1 subsystem, an error message describing the incompatibility is displayed on the system console and the utility terminates. The following HSC utilities require HSC services:

- AUDIt
- EJECt
- INITialize Cartridge
- MERGEcds
- MOVe
- SCRAtch, UNSCratch, REPLaceall
- Scratch Conversion (SLUCONDB) with the LIBONLY parameter
- Scratch Redistribution (SCREdist)
- UNSElect.

Up-Level Migration

Up-level migration to 6.2 should be performed by a system programmer who is familiar with the HSC product. Before attempting to perform an up-level migration, verify the release level of the current HSC subsystem and make sure that the migration being attempted is supported (see "HSC Migration Scenarios" on page 169).

Procedure for 6.0/6.1 to 6.2 Up-Level Migration

The step-by-step procedure presented in Table 24 is a summary of the required steps to migrate HSC software from 6.0 or 6.1 to 6.2.

This procedure is a recommended approach and is not considered to be the only method to migrate successfully. Each site may have specific conditions that require special precautions and procedures. If you think your site requires additional assistance, contact Sun StorageTek Software Support for assistance (refer to the guide *Requesting Help from Software Support* for instructions).

Table 24. Procedure for 6.0/6.1 to 6.2 Up-Level Migration

Step	Description of Action	Verification
1	Apply the coexistence PTFs on all 6.0 or 6.1 hosts (see the <i>NCS Installation Guide</i> for information and the <i>NCS/VTCS Read Me First</i> document for a list of the 6.2 PTFs).	
2	Identify the host(s) being migrated to 6.2. All active hosts must be running HSC 6.0 or 6.1 with the 6.2 coexistence PTF(s) applied.	
3	Install HSC 6.2. See the NCS Installation Guide for detailed information.	
4	Initialize HSC 6.2 on any host to be migrated. See Chapter 8 , "Initializing the HSC" for more information.	
5	Exercise any or all 6.2 functions including enter, eject, automating mounts, and utilities.	

Host-by-host Migration - 6.0/6.1 to 6.2

If desired, users can migrate from 6.0 or 6.1 to 6.2 on a host-by-host basis without having to terminate the HSC on all hosts. HSC 6.0 or 6.1 hosts, with the 6.2 coexistence PTF(s) applied, will run with a 6.2 host initialized. The CDS does not need to be converted.

Procedure to Verify HSC 6.2 Functions Against a Separate CDS

This procedure permits you to perform initial 6.2 verification against a separate CDS before migrating the production CDS. Your initial verification of 6.2 should exercise the HSC 6.2 utilities that must be executed with a CDS in 2.1 format. Specifically, the 6.2 BACKup, 6.2 RESTore, and 6.2 SET utilities should be executed against the 2.1 CDS. Execute 6.2 functions using the following procedures:

- verifying 6.2 functions at the Base service level (without library hardware). Refer to "Procedure to Verify HSC 6.2 Functions Without Library Hardware" on page 179 for detailed steps.
- verifying 6.2 functions at the Full service level (with library hardware). Refer to "Procedure to Verify 6.2 Functions With Library Hardware" on page 181 for detailed steps.

After the initial verification is successfully completed, you can perform more extensive investigation of 6.2 on a subsystem sharing a common 6.0-level CDS with other hosts.

Procedure to Verify HSC 6.2 Functions Without Library Hardware

Table 25 describes the procedure to verify HSC 6.2 with the HSC initialized to the Base service level and without access to library hardware. You can perform this type of verification in parallel with your production systems executing against the library hardware. The 6.2 functions that require library hardware cannot be exercised, but many functions can be.

Table 25. Procedure to Verify 6.2 Functions without Library Hardware

Step	Description of Action	Verification
1	 Create a separate 2.1 CDS by doing the following: Run the 6.2 BACKup utility. Run the 6.2 RESTore utility. For more information on these two utilities, refer to the <i>HSC System Programmer's Guide</i>. 	
2	Verify the following 6.2 stand-alone utilities that do not require HSC services. • BACKup • RESTore • SET Verify remaining 6.2 stand-alone utilities: • ACTIvities report • Database Decompile • Journal OFFLoad (of 6.2 journals) • Scratch Conversion • VOLRpt	

Step	Description of Action	Verification
3	 Start the SMC subsystem. Refer to the <i>SMC Configuration and Administration Guide</i> for more information about starting the SMC. Note: The SMC is not required to be initialized before the HSC or to be running on the same host as the HSC. However, if the HSC is brought up without SMC, the 	
	HSC acts as a server only and cannot perform allocations or device preferencing. Initialize an HSC 6.2 subsystem to the Base service level (specify an EXEC PARM of BASE in the startup PROC):	
	Exercise the following HSC operator commands.	
	• CDs	
	• COMMPath	
	 Display Display SCRatch Display THReshld Display UNITDEF Display Volume 	
	• OPTion	
	• UEXIT	
	Verify the following utilities that require HSC services:	
	• SCRAtch	
	• UNSCratch	
	• UNSElect	
	Verify the MERGEcds utility, from a 2.1-level (6.2) CDS to a 2.1-level (6.2) CDS.	

 Table 25. Procedure to Verify 6.2 Functions without Library Hardware (Continued)

Procedure to Verify 6.2 Functions With Library Hardware

Caution: HSC subsystems using the production CDS must not be active during these periods because HSCs running with separate CDSs cannot share the same library hardware.

The steps necessary to validate 6.2 functions with the library hardware are shown in Table 26.

Table 26. Procedure to Verify 6.2 Functions with Library Hardware

Step	Description of Action	Verification
1	 Terminate all HSC subsystems using the shared 2.1 CDS. Back up the 2.1 CDS using a 6.2 BACKup utility. Restore the backup of the 2.1 CDS to a separate data set using the 6.2 RESTore utility. 	
2	 utility. Initialize 6.2 subsystem(s) to the Full service level. Full service level is the default. Set float off (MNTD Float OFf) via PARMLIB or the operator command. 	
3	 Enter test cartridges specifically used for performing the verifications identified in this procedure. Note: Verification should be done only with separate test cartridges, so the location of cartridges recorded in the production CDS will not change. 	
4	Exercise any or all 6.2 functions, including enter, eject, automating mounts, and utilities.	
5	Eject all cartridges used for 6.2 verification. This makes sure that the locations of cartridges recorded in the production CDS match the contents of the library.	
6	Terminate the HSC subsystems that were exercised against the library hardware.	
7	If desired, execute a 6.2 BACKup OPTion(Analyze) to compare the contents of the 2.1 CDS used above and the production CDS that was used to create the test CDS. The production CDS has not changed. The Discrepancy Report from the BACKup utility should not show any VOLSER or cell location discrepancies, as only test volumes were used in the above process. These test volumes were entered at the beginning and ejected at the end of the verification process.	
8	Initialize all production subsystems using the shared production CDS. Your library environment is back to its former configuration.	

Down-Level Migration

The step-by-step procedures presented in this section are a summary of the required steps to migrate HSC software from 6.2 to 6.0 or 6.1.

De-installation of PTFs

It is not necessary, or advisable, to remove the HSC coexistence PTFs from 6.0, 6.1, or 6.2 subsystems.

Procedure for 6.2 to 6.0/6.1 Down-Level Migration

Follow the steps listed in Table 27 to perform a down-level migration from 6.2 to 6.0 or 6.1.

Table 27. Procedure for 6.2 to 6.0/6.1 Down-Level Migration

Step	Description of Action	Verification
1	If compatibility and coexistence PTFs have been applied to hosts running 6.0, 6.1, or 6.2, do not remove them.	
2	Terminate the HSC on all hosts.	
3	Initialize HSC 6.0, 6.1, or 6.2 with tape activity suspended.	

Glossary

Terms are defined as they are used in the text. If you cannot find a term here, check the index.

Α

AC— Alternating current.

access method— A technique for moving data between processor storage and I/O devices.

ACS—See Automated Cartridge System.

ACSid— An ACSid (*acs-id*) is a hexadecimal value from 00 through FF that identifies the LMU. An ACSid is the result of defining the SLIALIST macro during the library generation (LIBGEN) process. The first ACS listed in this macro acquires a hexadecimal identifier of 00, the second acquires a hexadecimal identifier of 01, and so forth, until all ACSs are identified.

allocation— The selection of a cartridge drive, either inside the library or outside (by the SMC software for SMC allocation, or MVS for MVS allocation without the HSC).

APF— Authorized Program Facility.

APPL— VTAM APPLID definition for the HSC.

archiving— The storage of backup files and associated journals, usually for a given period of time.

Automated Cartridge System (ACS)— The library subsystem consisting of one or two LMUs, and from 1 to 16 attached LSMs.

automated library— See library.

automatic mode— A relationship between an LSM and all attached hosts. LSMs operating in automatic mode handle cartridges without operator

intervention. This is the normal operating mode of an LSM that has been modified online.

В

basic direct access method (BDAM)— An access method used to directly retrieve or update particular blocks of a data set on a direct access device.

basic sequential access method (BSAM)— An access method for storing and retrieving data blocks in a continuous sequence, using either a sequential access or direct access device.

BDAM— See Basic direct access method.

beginning-of-tape (BOT)— The location on a tape where written data begins.

block— A collection of contiguous records recorded as a unit. Blocks are separated by interblock gaps, and each block may contain one or more records.

BOT— See beginning-of-tape.

BSAM— See Basic Sequential Access Method.

buffer— A routine or storage used to compensate for a difference in rate of data flow, or time of occurrence of events, when transferring data from one device to another.

С

CA-1 (TMS)— Computer Associates Tape Management

System— Third-party software by Computer Associates International, Inc.

CAP—See Cartridge Access Port.

capacity— See media capacity.

CAPid— A CAPid uniquely defines the location of a CAP by the LSM on which it resides. A CAPid is of the form *AAL:CC* where *AA* is the ACSid, *L* is the LSM number, and *CC* is the CAP number. Some commands and utilities permit an abbreviated CAPid format of *AAL*.

cartridge— The plastic housing around the tape. It is approximately 4 inches (100 mm) by 5 inches (125 mm) by 1 inch (25 mm). The tape is threaded automatically when loaded in a transport. A plastic leader block is attached to the tape for automatic threading. The spine of the cartridge contains a Tri-Optic label listing the VOLSER.

Cartridge Access Port (CAP)— An assembly which allows an operator to enter and eject cartridges during automated operations. The CAP is located on the access door of an LSM.

See also standard CAP, enhanced CAP, priority CAP, WolfCreek CAP, WolfCreek optional CAP, or TimberWolf CAP.

Cartridge Drive (CD)— A device containing two or four cartridge transports with associated power and pneumatic supplies.

Cartridge Scratch Loader— An optional feature for the Cartridge Drive. It allows the automatic loading of premounted tape cartridges or the manual loading of single tape cartridges.

cartridge system tape— Also known as a Standard tape. The basic tape cartridge media that can be used with 4480, 4490, or 9490 Cartridge Subsystems. They are visually identified by a one-color cartridge case.

CAW— See Channel Address Word.

CD— See Cartridge Drive.

CDRM— Cross Domain Resource Manager definition (if not using existing CDRMs).

CDRSC— Cross Domain Resource definition.

CDS—See control data set.

CE— Channel End.

CEL— Customer Emulation Lab. cell. A storage slot in the LSM that is used to store a tape cartridge.

Central Support Remote Center (CSRC)— *See* Remote Diagnostics Center.

CFT— Customer Field Test.

channel— A device that connects the host and main storage with the input and output control units.

Channel Address Word (CAW)— An area in storage that specifies the location in main storage where a channel program begins.

channel command— A command received by a CU from a channel.

Channel Status Word (CSW)— An area in storage that provides information about the termination of I/O operations.

check— Detection of an error condition.

CI— Converter/Interpreter (JES3).

connected mode— A relationship between a host and an ACS. In this mode, the host and an ACS are capable of communicating (at least one station to this ACS is online).

control data set (CDS)— The data set containing all configuration and volume information used by the host software to control the functions of the automated library. Also known as a library control data set.

See also Primary CDS, Secondary CDS, and Standby CDS.

control data set allocation map— A CDS subfile that marks individual blocks as used or free.

control data set data blocks— CDS blocks that contain information about the library and its configuration or environment.

control data set directory— A part of the CDS that maps its subdivision into subfiles.

control data set free blocks— CDS blocks available for future subfile expansion.

control data set pointer blocks— CDS blocks that contain pointers to map data blocks belonging to a subfile.

control data set recovery area— A portion of the CDS reserved for maintaining integrity for updates that affect multiple CDS blocks.

control data set subfile— A portion of the CDS consisting of Data Blocks and Pointer Blocks containing related information.

Control Unit (CU)— (1) A microprocessor-based unit situated logically between a host channel (or channels) and from two to sixteen transports. It functions to translate channel commands into transport commands, send transport status to the channel(s), and pass data between the channel(s) and transport(s). (2) A device that controls I/O operations for one or more devices. cross-host recovery. The ability for one host to perform recovery for another host that has failed.

CSE— Customer Service Engineer.

CSI— Consolidated System Inventory.

CSL— See Cartridge Scratch Loader.

CSRC— Central Support Remote Center (*See* Remote Diagnostics Center)

CST— (1) A value that can be specified on the MEDia parameter and that includes only standard capacity cartridge tapes. (2) An alias of Standard. (3) *See* Cartridge System Tape.

CSW— See Channel Status Word.

CU— See Control Unit.

D

DAE— Dump Analysis Elimination.

DASD— Direct access storage device.

data— Any representations such as characters or analog quantities to which meaning is, or might be, assigned.

Database Heartbeat record (DHB)— The record that contains the names of the control data sets recorded by the HSC and identifies the correct primary, secondary, and standby CDS.

data class— A collection of allocation and space attributes, defined by the storage administrator, that are used to create a data set.

data compaction— An algorithmic data-reduction technique that encodes data from the host and stores it in less space than unencoded data. The original data is recovered by an inverse process called decompaction.

data-compaction ratio— The number of host data bytes mathematically divided by the number of encoded bytes. It is variable depending on the characteristics of the data being processed. The more random the data stream, the lower the opportunity to achieve compaction.

Data Control Block (DCB)— A control block used by access routines in storing and retrieving data.

data set— The major unit of data storage and retrieval, consisting of a collection of data in one of several prescribed arrangements and described by control information to which the system has access.

data streaming— A continuous stream of data being transmitted in character or binary-digit form, using a specified format.

DC— Direct current.

DCB— *See* Data Control Block.

DD3— A generic value that can be specified on the MEDia and RECtech parameters and includes all types of helical cartridges and recording techniques.

DD3A, DD3B, DD3C, DD3D— Values that can be specified on the MEDia parameter and include only the specified type of helical cartridge. Aliases are A, B, C, and D, respectively.

DDR—See Dynamic Device Reconfiguration.

default value— A value assumed when no value has been specified.

demand allocation— An MVS term meaning that a user has requested a specific unit.

device allocation— The HSC function of *influencing* the MVS device selection process to choose either a manual transport or a transport in a particular ACS, based on the location of the volume (specific requests) or the subpool rules in effect (scratch requests).

device group— A subset of the eligible devices. Device groups are defined by esoteric unit names but also may be created implicitly if common devices exist in different device groups.

device number— A four-digit hexadecimal number that uniquely identifies a device attached to a processor.

device separation— See drive exclusion.

DFP— Data Facility Product. A program that isolates applications from storage devices, storage management, and storage device hierarchy management.

DFSMS— Refers to an environment running MVS/ESA SP and DFSMS/MVS, DFSORT, and RACF. This environment helps automate and centralize the management of storage through a combination of hardware, software, and policies.

DFSMS ACS routine— A sequence of instructions for having the system assign data class, storage class, management class, and storage group for a data set.

DHB— See Database Heartbeat record.

directed allocation— See drive prioritization.

disconnected mode— A relationship between a host and an ACS. In this mode, the host and an ACS are not capable of communicating (there are no online stations to this ACS).

DOMed— Pertaining to a console message that was previously highlighted during execution, but is now at normal intensity.

drive exclusion— (previously referred to as *device separation*) refers to the Storage Management Component (SMC) function of excluding drives for an allocation request based on SMC exclusion criteria. See the *SMC Configuration and Administration Guide* for more information.

drive loaded— A condition of a transport in which a tape cartridge has been inserted in the transport, and the tape has been threaded to the beginning-of-tape position.

drive panel— A wall of an LSM that contains tape transports. Drive panels for T9840A transports have either 10 or 20 transports per panel; drive panels for

all other transports contain up to four transports per panel.

drive prioritization— (previously referred to as *directed allocation*) refers to the Storage Management Component (SMC) function of influencing selection of a particular drive based on allocation criteria, including volume location. See the *SMC Configuration and Administration Guide* for more information.

DRIVEid— A DRIVEid uniquely defines the location of a tape transport by its location within an LSM. A DRIVEid is of the form *AAL:PP:NN* where *AA* is the ACSid, *L* is the LSM number, *PP* is the panel where the drive is located, and *NN* is the drive number within the panel.

DSI— Dynamic System Interchange (JES3).

dual LMU— A hardware/µ-software feature that provides a redundant LMU capability.

dual LMU HSC— HSC release 1.1.0 or later that automates a switch-over to the standby LMU in a dual LMU configuration.

dump— To write the contents of storage, or of a part of storage, usually from an internal storage to an external medium, for a specific purpose such as to allow other use of storage, as a safeguard against faults or errors, or in connection with debugging.

Dynamic Device Reconfiguration (DDR)— An MVS facility that allows a dismountable volume to be moved and repositioned if necessary, without abnormally terminating the job or repeating the initial program load procedure.

Ε

ECAP— *See* enhanced CAP.

ECART— (1) Cartridge system tape with a length of 1100 feet that can be used with 4490 and 9490 Cartridge Drives. These tapes are visually identified by a two-tone (black and tan) colored case. (2) A value that can be specified on the MEDia parameter and that includes only 36-track enhanced capacity cartridge system tapes. (3) *See* Enhanced Capacity Cartridge System Tape.

ECCST— (1) A value that can be specified on the MEDia parameter and that includes only enhanced capacity cartridge system tapes. (2) An alias of ECART. (3) *See* Enhanced Capacity Cartridge System Tape.

EDL—See eligible device list.

EDTGEN— Eligible Device Table Generation. A process used to replace an installation-defined and named representation of the devices that are eligible for allocation.

EETape— *See* Extended Enhanced Tape.

Effective Recording Density— The number of user bytes per unit of length of the recording medium.

eject— The process where the LSM robot places a cartridge in a Cartridge Access Port (CAP) so the operator can remove it from the LSM.

eligible device list— (1) A group of transports that are available to satisfy an allocation request. (2) For JES2 and JES3, a list of devices representing the UNIT parameter specified by way of invoking JCL. The EDL can contain both library and nonlibrary transports depending on the I/O GEN.

enable— The modification of system, control unit, or device action through the change of a software module or a hardware switch (circuit jumper) position.

enhanced CAP (ECAP)— An enhanced CAP contains two forty-cell magazine-style CAPs and a one-cell priority CAP (PCAP). Each forty-cell CAP holds four removable magazines of ten cells each. An LSM access door with an enhanced CAP contains no cell locations for storing cartridges.

See also Cartridge Access Port, standard CAP, priority CAP, WolfCreek CAP, WolfCreek optional CAP, or TimberWolf CAP.

Enhanced Capacity Cartridge System Tape— Cartridge system tape with increased capacity that can be used with 4490 and 9490 Cartridge Drives. These tapes are visually identified by a two-tone (black and tan) housing.

EOF— End-of-File.

EOT— End-of-Tape marker.

EPO— Emergency Power Off.

EREP— Environmental Recording, Editing, Printing.

ERP— See error recovery procedures.

error recovery procedures (ERP)— Procedures designed to help isolate and, where possible, to recover from errors in equipment.

esoteric— A user-defined name that groups devices into classes.

ETAPE— (1) A value that can be specified on the MEDia parameter and that includes only enhanced capacity cartridge system tapes. (2) An alias of ECART. (3) *See* Enhanced Capacity Cartridge System Tape.

Extended Capacity Tape— *See* Enhanced Capacity Cartridge System Tape.

Extended Enhanced Tape (EETape)— A synonym for a ZCART, which is a cartridge that can only be used with a 9490EE drive. An EETape (ZCART) provides greater storage capacity than an ECART.

ExtendedStore Library— One or more LSMs with no Cartridge Drives (CDs) that are attached by pass-thru ports to other LSMs (with CDs) in an ACS. These LSMs provide archive storage for cartridges containing less active data sets. Cartridges can be entered and ejected directly into and out of this LSM though either a standard CAP or an enhanced CAP.

F

FDRPASTM— A product from Innovation Data Processing, Inc. that allows two disk devices to be non-disruptively swapped with each other.

FIFO— First in, first out.

file protected— Pertaining to a tape volume from which data can be read only. Data cannot be written on or erased from the tape.

format— The arrangement or layout of data on a data medium.

frozen panel— A panel to which cartridges cannot be moved. This restriction includes allocating new cartridge locations on a panel as a result of:

- a MOVe command, utility, or PGMI request
- cartridge entry into the ACS
- float, scratch dismount, or scratch redistribution processing.

G

GB— Gigabyte, billion (10 9) bytes.

GDG— Generation Data Group. An MVS data set naming convention. Sequence numbers are appended to the basic data set name to track the generations created for that data set.

GDG Separation— Occurs when a Generation Data Group gets separated because the volumes of different generations reside in different locations. Usually, all generations of a GDG are mounted on a single drive to reduce the number of drives needed for a job.

GTF— Generalized Trace Facility. An MVS facility used to trace software functions and events.

Η

HDA— Head/disk assembly.

Helical— A generic value that can be specified on the RECtech parameter and includes all helical transports.

HOSTid— A HOSTid is the host identifier specified in the HOSTID parameter of the SLILIBRY LIBGEN macro. The HOSTid is the SMF system identifier for both JES2 and JES3.

High Watermark Setup (HWS)— In JES3, a setting specified on the HWSNAME initialization statement that reduces the number of devices reserved for a job. JES3 accomplishes this task by assessing each jobstep to determine the maximum number of devices needed for each device type and reserving those devices.

Host Software Component (HSC)— That portion of the Automated Cartridge System which executes on host systems attached to an automated library. This component acts as the interface between the operating system and the rest of the automated library.

host system— A data processing system that is used to prepare programs and the operating environments for use on another computer or controller.

HSC— See Host Software Component.

HWS— See High Watermark Setup.

I

invoked.

ICRC— *See* Improved Cartridge Recording Capability.

ID— Identifier or identification.

IDAX— Interpreter Dynamic Allocation Exit. This is a subfunction of the DFSMS/MVS subsystem request (SSREQ 55) that the MVS JCL Interpreter and dynamic allocation functions issue for calling DFSMS ACS routines for management of the data set requested.

IDRC— Improved Data Recording Capability.

IML— See Initial Microprogram Load.

Improved Cartridge Recording Capability (**ICRC**)— An improved data recording mode that, when enabled, can increase the effective cartridge data capacity and the effective data rate when

index— A function performed by the cartridge scratch loader that moves cartridges down the input or output stack one cartridge position. A scratch loader can perform multiple consecutive indexes.

INISH deck— A set of JES3 initialization statements.

Initial Microprogram Load (IML)— A process that activates a machine reset and loads system programs to prepare a computer system for operation. Processors having diagnostic programs activate these programs at IML execution. Devices running μ -software reload the functional μ -software usually from a floppy diskette at IML execution.

Initial Program Load (IPL)— A process that activates a machine reset and loads system programs to prepare a computer system for operation. Processors having diagnostic programs activate these programs at IPL execution. Devices running μ -software reload the functional μ -software usually from a floppy diskette at IPL execution.

initial value— A value assumed until explicitly changed. It must then be explicitly specified in another command to restore the initial value. An initial value for the HSC is the value in effect when the product is installed.

inline diagnostics— Diagnostic routines that test subsystem components while operating on a time-sharing basis with the functional μ -software in the subsystem component.

input stack— The part of the cartridge loader where cartridges are premounted.

intervention required— Manual action is needed.

IPL— *See* Initial Program Load.

ips— Inches per second.

IVP— Installation Verification Programs. A package of programs that is run by a user after the library is installed in order to verify that the library is functioning properly.

J

JCL— See Job Control Language.

Job Control Language— Problem-oriented language designed to express statements in a job that are used to identify the job or describe its requirements to an operating system.

journal— The log associated with journaling. The log (stored in a data set) contains a record of completed work and changes to the control data set since the last backup was created.

journaling— A technique for recovery that involves creating a backup control data set and maintaining a log of all changes (transactions) to that data set.

JST— Job Summary Table (JES3).

Κ

KB— Kilobyte, thousand (10 3) bytes.

keyword parameter— In command and utility syntax, operands that include keywords and their related values (*See* positional parameter).

Values are concatenated to the keyword either by an equal sign, "KEYWORD=value," or by parentheses, "KEYWORD(value)." Keyword parameters can be specified in any order. The HSC accepts (tolerates) multiple occurrences of a keyword. The value assigned to a keyword reflects the last occurrence of a keyword within a command.

L

LAN— See Local Area Network.

LCU— See Library Control Unit.

LED— *See* Light Emitting Diode.

LIBGEN— The process of defining the configuration of the automated library to the host software.

library— An installation of one or more ACSs, attached cartridge drives, volumes placed into the ACSs, host software that controls and manages the ACSs and associated volumes, and the library control data set that describes the state of the ACSs.

library control data set— See control data set.

Library Control Unit (LCU)— The portion of the LSM that controls the picking, mounting, dismounting, and replacing of cartridges.

Library Management Unit (LMU)— The portion of the ACS that manages from one to sixteen LSMs and communicates with the host CPU.

Library Storage Module (LSM)— The storage area for cartridges plus the robot necessary to move the cartridges. The term LSM often means the LCU and LSM combined.

Light Emitting Diode (LED)— An electronic device used mainly as an indicator on status panels to show equipment on/off conditions.

Linear Tape Open (LTO)— A technology developed jointly by HP, IBM, and Seagate for new tape storage options. LTO technology is an open format, which means that users have multiple sources of products and media. LMU— See Library Management Unit.

LMUPATH— An HSC control statement contained in the definition data set specified by the LMUPDEF command. An LMUPATH statement allows users to define network LMU attachments.

LMUPDEF— An HSC command used to load the definition data set that contains LMUPATH control statements.

load point— The beginning of the recording area on magnetic tape.

loader— See Cartridge Scratch Loader.

Local Area Network (LAN)— A computer network in which devices within the network can access each other for data transmission purposes. The LMU and attached LCUs are connected with a local area network.

logical ejection— The process of removing a volume from the control data set without physically ejecting it from its LSM location.

Logical End Of Tape— A point on the tape where written data normally ends.

LONG— (1) A value that can be specified on the MEDia parameter and that includes only enhanced capacity cartridge system tapes (not to be confused with LONGItud). (2) An alias of ECART. (3) *See* Enhanced Capacity Cartridge System Tape.

LONGItud— (1) A generic value that can be specified on the RECtech parameter and includes all 18-track and 36-track devices. (2) A generic value that can be specified on the MEDia parameter and includes all standard and enhanced capacity cartridge system tapes.

LSM— See Library Storage Module.

LSMid— An LSMid (*lsm-id*) is a hexadecimal value that consists of the ACSid and LSM number separated by a colon (i.e., *AA:LL*, where *AA* is the ACSid and *LL* is the LSMid). The LSMid differentiates an LSM from every other LSM in a library.

LSM number— A method used to identify an LSM. An LSM number is the result of defining the SLIACS macro LSM parameter during a LIBGEN. The first LSM listed in this parameter acquires the LSM number of 00 (hexadecimal), the second LSM listed acquires a hexadecimal number of 01, and so forth, until all LSMs are identified (maximum of 24 or hexadecimal 17).

LTO— See Linear Tape Open.

LTO*x*— A media type designating either an LTO data cartridge with a capacity between 10GB and 400GB or an LTO cleaning cartridge.

Μ

machine initiated maintenance— See ServiceTek.

magnetic recording— A technique of storing data by selectively magnetizing portions of a magnetizable material.

magnetic tape— A tape with a magnetizable surface layer on which data can be stored by magnetic recording.

magnetic tape drive— A mechanism for moving magnetic tape and controlling its movement.

maintenance facility— Hardware contained in the CU and LMU that allows a CSE and the RDC to run diagnostics, retrieve status, and communicate with respective units through their control panels.

management class— A collection of management attributes, assigned by the storage administrator, that are used to control the allocation and use of space by a data set.

manual mode— A relationship between an LSM and all attached hosts. LSMs operating in manual mode have been modified offline and require human assistance to perform cartridge operations.

master LMU— The LMU currently controlling the functional work of the ACS in a dual LMU configuration.

MB— Megabyte, million (10⁶) bytes.

MDS— Main Device Scheduler (JES3).

MEDia— The parameter used to specify media type.

This is not to be confused with MEDIA1 or MEDIA2, which are values that can be specified on the MEDia parameter. **MEDIA1**— (1) A value that can be specified on the MEDia parameter and that includes only standard capacity cartridge tapes. (2) An alias of Standard.

MEDIA2— (1) A value that can be specified on the MEDia parameter and that includes only enhanced capacity cartridge system tapes. (2) An alias of ECART. (3) *See* Enhanced Capacity Cartridge System Tape.

media capacity— The amount of data that can be contained on storage media and expressed in bytes of data.

media mismatch— A condition that occurs when the media value defined in a VOLATTR control statement does not match the media value recorded in the CDS VAR record.

micro-software— *See* µ-software under Symbols.

MIM— Multi-Image Manager. Third-party software by Computer Associates International, Inc.

mixed configurations— Installations containing cartridge drives under ACS control and cartridge drives outside of library control. These configurations cause the Host Software Component to alter allocation to one or the other.

MODel— The parameter used to specify model number.

modem— Modulator/demodulator. An electronic device that converts computer digital data to analog data for transmission over a telecommunications line (telephone line). At the receiving end, the modem performs the inverse function.

monitor— A device that observes, records, and verifies selected system activities to determine significant departure from expected operation.

MSM— Multiple Sessions Management. Third-party software by Computer Associates International, Inc.

Ν

Near Continuous Operation (**NCO**) — Facilities and techniques that allow customers to make dynamic changes to the library that do not disrupt the library hardware and environment. In most cases, users can perform these procedures without requiring the HSC to be terminated and restarted.

0

OCR— Optical Character Recognition.

operating system (OS)— Software that controls the execution of programs that facilitate overall system operation.

output stack— The part of the cartridge loader that receives and holds processed cartridges.

over-limit cleaning cartridge— A cleaning cartridge that has been used more than the value (limit) specified by either the MNTD MAXclean or VOLATTR MAXclean settings. This kind of cartridge may not be able to adequately clean a tape transport, however, it can be mounted and will attempt to execute the cleaning process. *See also* spent cleaning cartridge.

over-use cleaning cartridge— A cartridge that has a usage (select) count over the MAXclean value (*see* over-limit cleaning cartridge) or that has used up its cleaning surface (see spent cleaning cartridge).

Ρ

paired-CAP mode— The two forty-cell CAPs in an enhanced CAP function in paired-CAP mode as a single eighty-cell CAP.

PARMLIB control statements— Parameter library (PARMLIB) control statements allow you to statically specify various operation parameters which take effect at HSC initialization. Identifying your system requirements and then specifying the appropriate control statements permits you to customize the HSC to your data center.

pass-thru port (PTP)— A mechanism that allows a cartridge to be passed from one LSM to another in a multiple LSM ACS.

PCAP—See priority CAP.

P/DAS— Peer-to-Peer Remote Copy Dynamic Address Switching. An IBM capability to nondisruptively swap PPRC volumes. **Peer-to-Peer Remote Copy (PPRC)**— An IBM capability to mirror disk volumes from one storage subsystem to another.

physical end of tape— A point on the tape beyond which the tape is not permitted to move.

playground— The playground is a reserved area of cells where the robot deposits cartridges that it finds in its hands during LSM initialization. Normal LSM initialization recovery processing moves cartridges from the playground cells to either their home cells or their intended destinations, but under abnormal circumstances cartridges may be left in playground cells.

positional parameter— In command and utility syntax, operands that are identified by their position in the command string rather than by keywords (*See* keyword parameter).

Positional parameters must be entered in the order shown in the syntax diagram.

PowderHorn (9310) LSM— A high-performance LSM featuring a high-speed robot. The PowderHorn has a capacity of up to approximately 6000 cartridges.

PPRC— See Peer-to-Peer Remote Copy.

primary CDS— The active control data set. It contains the inventory of all cartridges in the library, the library configuration, information about library hardware and resource ownership across multiple processors, and serves as a vehicle of communication between HSCs running on multiple processors.

priority CAP (PCAP)— A one-cell CAP that is part of an enhanced CAP. A PCAP allows a user to enter or eject a single cartridge that requires immediate action.

See also Cartridge Access Port, standard CAP, enhanced CAP, WolfCreek CAP, WolfCreek optional CAP, or TimberWolf CAP.

Program Temporary Fix (PTF)— A unit of corrective maintenance delivered to a customer to repair a defect in a product, or a means of packaging a Small Programming Enhancement (SPE).

Program Update Tape (PUT)— A tape containing a collection of PTFs. PUTs are shipped to customers

on a regular basis under the conditions of the customer's maintenance license.

PTF— *See* Program Temporary Fix.

PTP— *See* pass-thru port.

PUT— See Program Update Tape.

Q

QSAM— See Queued Sequential Access Method.

Queued Sequential Access Method (QSAM)— An extended version of the basic sequential access method (BSAM). When this method is used, a queue is formed of input data blocks that are awaiting processing or output data blocks that have been processed and are awaiting transfer to auxiliary storage or to an output device.

R

RACF— See Resource Access Control Facility.

RDC— See Remote Diagnostics Center.

Recording Density— The number of bits in a single linear track measured per unit of length of the recording medium.

RECtech— The parameter used to specify recording technique.

RedWood— (1) The program name of the Sun StorageTek transport that supports a helical recording technique. (2) *See* SD-3.

Remote Diagnostics Center (RDC)— The Remote Diagnostics Center at Sun StorageTek. RDC operators can access and test Sun StorageTek systems and software, through telecommunications lines, from remote customer installations. Also referred to as the Central Support Remote Center (CSRC).

Resource Access Control Facility (RACF)— Security software controlling access to data sets.

S

SCP—See System Control Program.

scratch tape subpool— A defined subset of all scratch tapes. Subpools are composed of one or more

ranges of VOLSERs with similar physical characteristics (type of volume {reel or cartridge}, reel size, length, physical location, etc.). Some installations may also subdivide their scratch pools by other characteristics, such as label type (AL, SL, NSL, NL).

The purpose of subpooling is to make sure that certain data sets are built only within particular ranges of volumes (for whatever reason the user desires). If a volume which does not belong to the required subpool is mounted for a particular data set, it is dismounted and the mount reissued.

SD-3— The model number of the Sun StorageTek transport that supports a helical recording technique.

SDLT—See SuperDLT.

SDLT*x*— A media type designating an SDLT data cartridge with a capacity of either 125GB or 160GB.

secondary CDS— The optional duplicate copy of the primary CDS.

secondary recording— A technique for recovery involving maintaining both a control data set and a copy (secondary) of the control data set.

SEN — *See* Significant Event Notification.

SER—Software Enhancement Request.

ServiceTek (machine initiated maintenance)— A unique feature of the ACS in which an expert system monitors conditions and performance of subsystems and requests operator attention before a potential problem impacts operations. Customers can set maintenance threshold levels.

servo— A device that uses feedback from a sensing element to control mechanical motion.

Shared Tape Allocation Manager (STAM)— Third-party software by Computer Associates International, Inc.

Significant Event Notification (SEN) — An HSC facility that allows an application to request notification of specific HSC and VTCS events.

Silverton— See 4490 Cartridge Subsystem.

SL3000 library— See StreamLine (SL3000) library.

SL8500 library— See Streamline (SL8500) library.

Small Programming Enhancement (SPE)— A supplement to a released program that can affect several products or components.

SMC— Storage Management Component.

SMF— System Management Facility. An MVS facility used to record system actions which affect system functionality.

SMP— System Modification Program.

SMP/E— *See* System Modification Program Extended.

SMS— Storage Management Subsystem.

SPE—See Small Programming Enhancement.

special use cartridge— A generic description for a type of cartridge used on T9840A drives. These include:

- T9840A cleaning cartridge
- T9840A microcode load cartridge
- T9840A dump collection cartridge.

When an attempt is made to mount a special use cartridge, LMU error response code 1012 is generated.

The error code is defined as "load failure for special use cartridge."

If the error code is received for a special use cleaning cartridge, it is either ejected or marked as unusable, and it is retained in the ACS (depending on the MNTD EJctauto setting). The HSC does not mount unusable cartridges.

spent cleaning cartridge— A cleaning cartridge that has exhausted its cleaning material and can no longer be used to clean tape transports. *See also* over-limit cleaning cartridge.

SSD— Solid state disk.

STAM— *See* Shared Tape Allocation Manager.

Standard— (1) A value that can be specified on the MEDia parameter and that includes only standard capacity cartridge tapes. (2) *See* Cartridge System Tape.

standard CAP— A standard CAP has a capacity of twenty-one cartridges (three rows of seven cells each). An LSM access door with a standard CAP contains cell locations for storing cartridges.

See also Cartridge Access Port, enhanced CAP, priority CAP, WolfCreek CAP, WolfCreek optional CAP, or TimberWolf CAP.

standard (4410) LSM— An LSM which provides a storage capacity of up to approximately 6000 cartridges.

standby— The status of a station that has been varied online but is connected to the standby LMU of a dual LMU ACS.

standby CDS— The optional data set that contains only one valid record, the Database Heartbeat (DHB). The DHB contains the names of the control data sets recorded by the HSC and is used to identify the correct primary, secondary, and standby CDS.

standby LMU— The redundant LMU in a dual LMU configuration that is ready to take over in case of a master LMU failure or when the operator issues the SWitch command.

station— A hardware path between the host computer and an LMU over which the HSC and LMU send control information.

STD— (1) A value that can be specified on the MEDia parameter and that includes only standard capacity cartridge tapes. (2) An alias of Standard.

STK1— A generic value that can be specified on the MEDia and RECtech parameters and includes all types of T9840A cartridges and recording techniques.

STK1R— Value that can be specified on the MEDia and RECtech parameters and includes only the specified type of T9840A cartridge or recording technique. STK1R can be abbreviated as R.

STK1U— Value that can be specified on the MEDia parameter and includes the specified types of T9840A, T9840B, and T9840C cleaning cartridges. STK1U can be abbreviated as U.

STK1Y— Value that can be specified on the MEDia parameter and includes only the specified type of

T9840D cleaning cartridge. STK1Y can be abbreviated as Y.

STK2— A generic value that can be specified on the MEDia parameter and includes all types of 9940 cartridges and recording techniques.

STK2P— Value that can be specified on the MEDia and RECtech parameters and includes only the specified type of 9940 cartridge or recording technique. STK2P can be abbreviated as P.

STK2W— Value that can be specified on the MEDia parameter and includes only the specified type of 9940 cleaning cartridge. STK2W can be abbreviated as W.

storage class— A named list of storage attributes that identify performance goals and availability requirements for a data set.

storage group— A collection of storage volumes and attributes defined by the storage administrator.

Storage Management Component (SMC)— Required NCS software component that performs the allocation function for NCS, replacing the functions previously performed by HSC and MVS/CSC. The SMC resides on the MVS host with HSC and/or MVS/CSC, and communicates with these products to determine policies, volume locations, and drive ownership.

StreamLine (SL3000) library— A modular library that can scale from 200 to 4500 cartridges in mainframe, Windows, UNIX, and supercomputer environments. The SL3000 utilizes hot swap components and multiple robots.

StreamLine (SL8500) library— A modular library that can scale from 1,500 to over 200,000 cartridges in mainframe, Windows, UNIX, and supercomputer environments. The SL8500 utilizes hot swap components and multiple robots.

StreamLine CAP— The StreamLine CAP contains 3, 13-cell removable magazines. You can also add an optional CAP that has the same configuration.

SuperDLT— The next generation of DLT (Digital Linear Tape) products, which remains a standard for mid-range operating systems.

switchover— The assumption of master LMU functionality by the standby LMU.

SYNCSORT— Third-party software by Syncsort, Inc.; a sort, merge, copy utility program.

System Control Program— The general term to describe a program which controls access to system resources, and allocates those resources among executing tasks.

system-managed storage— Storage that is managed by the Storage Management Subsystem, which attempts to deliver required services for availability, performance, space, and security applications.

System Modification Program Extended— An IBM-licensed program used to install software and software maintenance.

Т

T10000 Tape Drive— A cartridge tape drive that features a 500GB (T10000A) or 1TB (T10000B) cartridge capacity and data transfer rates up to 120MB/sec. In addition, the T10000 offers media reusability for at least two generations and device-based encryption.

tape cartridge— A container holding magnetic tape that can be processed without separating it from the container.

tape drive— A device that is used for moving magnetic tape and includes the mechanisms for writing and reading data to and from the tape.

tape unit— A device that contains tape drives and their associated power supplies and electronics.

TAPEREQ— An SMC control statement that is contained in the definition data set specified by the TREQDEF command. A TAPEREQ statement defines a specific tape request. It is divided into two parts, the input: job name, step name, program name, data set name, expiration date or retention period, and an indication for specific requests or nonspecific (scratch) requests; and the output: media type and recording technique capabilities.

TDMFTM— Transparent Data Migration Facility. A product from Softek Storage Solutions Corp. that

allows two disk devices to be non-disruptively swapped with each other.

Timberline— See 9490 Cartridge Subsystem.

Timberline EE— *See* 9490EE Cartridge Subsystem.

TimberWolf (9740) LSM— A high performance LSM that provides a storage capacity of up to 494 cartridges. Up to 10 drives (STD, 4490, 9490, 9490EE, T9840A, and SD-3) can be configured. TimberWolf LSMs can only attach to other TimberWolfs.

TimberWolf CAP— The TimberWolf CAP contains either a 10-cell removable magazine or a 14-cell permanent rack. It is not necessary to define a configuration; the HSC receives CAP information directly from the LMU.

See also Cartridge Access Port, standard CAP, enhanced CAP, priority CAP, WolfCreek CAP, or WolfCreek optional CAP.

TP— Tape-to-Print.

transaction— A short series of actions with the control data set. These actions are usually related to a specific function (e.g., Mount, ENter).

transport— An electromechanical device capable of threading tape from a cartridge, moving the tape across a read/write head, and writing data onto or reading data from the tape.

TREQDEF— An SMC command that is used to load the definition data set that contains TAPEREQ control statements.

Tri-Optic label— An external label attached to the spine of a cartridge that is both human and machine readable.

TT— Tape-to-Tape.

U

unit affinity— A request that all cartridges be mounted on a single drive (either for read or write purposes), usually to reduce the number of drives needed for a job.

unit parameter value— A JCL term meaning the value of a JCL UNIT parameter. The value can be a

single address of a drive, an esoteric list, or a generic list.

UNITATTR— An SMC control statement that defines the transport's media type and recording technique capabilities.

utilities— Utility programs. The programs that allow an operator to manage the resources of the library and to monitor overall library performance.

V

VAR—See Volume Attribute Record.

VAT— See Volume Attribute Table Entry.

Virtual Storage Manager (VSM)— A storage solution that virtualizes volumes and transports in a VTSS buffer in order to improve media and transport use.

Virtual Tape Control System (VTCS)— The primary host code for the Virtual Storage Manager (VSM) solution. This code operates in a separate address space, but communicates closely with HSC.

Virtual Tape Storage Subsystem (VTSS)— The DASD buffer containing virtual volumes (VTVs) and virtual drives (VTDs). The VTSS is a Sun StorageTek RAID 6 hardware device with microcode that enables transport emulation. The RAID device can read and write "tape" data from/to disk, and can read and write the data from/to a real tape drive (RTD).

virtual thumbwheel— An HSC feature that allows read-only access to a volume that is not physically write-protected.

VOLATTR— An HSC control statement that is contained in the definition data set specified by the VOLDEF command. A VOLATTR statement defines to the HSC the media type and recording technique of the specified volumes.

VOLDEF— An HSC command that is used to load the definition data set that contains VOLATTR control statements.

VOLSER— A six-character alphanumeric label used to identify a tape volume.

volume— A data carrier that is mounted or dismounted as a unit. (*See* cartridge).

Volume Attribute Record (VAR)— An HSC internal record that contains the data base-resident information of a cartridge entered into the library.

Volume Attribute Table Entry (VAT)— An HSC internal table that contains entries to the intransit record token and the Volume Attribute Record (VAR). The VAT is used as the communications area for internal service calls.

W

WolfCreek (9360) LSM— A smaller capacity high-performance LSM. WolfCreek LSMs are available in 500, 750, and 1000 cartridge capacities (model numbers 9360-050, 9360-075, and 9360-100, respectively). WolfCreek LSMs can be connected by pass-thru ports to 4410, 9310, or other WolfCreek LSMs.

WolfCreek CAP— The standard WolfCreek CAP contains a 20-cell magazine-style CAP and a priority CAP (PCAP).

See also Cartridge Access Port, standard CAP, enhanced CAP, priority CAP, WolfCreek optional CAP, or TimberWolf CAP.

WolfCreek optional CAP— The WolfCreek optional CAP contains a 30-cell magazine-style CAP which is added to the standard WolfCreek CAP.

See also Cartridge Access Port, standard CAP, enhanced CAP, priority CAP, WolfCreek CAP, or TimberWolf CAP.

Write Tape Mark (WTM)— The operation performed to record a special magnetic mark on tape. The mark identifies a specific location on the tape.

WTM— See Write Tape Mark.

WTO— Write-to-Operator.

WTOR—Write-to-Operator with reply.

Ζ

ZCART— (1) Cartridge system tape with a length of 2200 feet that can be used only with 9490EE Cartridge Drives. (2) A value that can be specified on

the MEDia parameter and that includes only 36-track 9490EE cartridge system tapes. (3) *See also* Extended Enhanced Tape.

Symbols

µ-software— Microprogram. A sequence of microinstructions used to perform preplanned functions and implement machine instructions.

Numerics

18-track— A recording technique that uses 18 tracks on the tape. The tape is written in only the forward motion.

18track— A generic value that can be specified on the RECtech parameter and includes all 18-track transports.

3480— (1) A value that can be specified on the MEDia parameter and that includes only standard capacity cartridge tapes. (2) An alias of Standard.

3480X— The 3480 upgrade that supports ICRC.

3490— The IBM cartridge drive that replaced the 3480X and supports ICRC but not 36-track or long tape. It is equivalent to the IBM 3480X.

3490E— (1) The IBM cartridge drive that replaced the 3490 and supports ICRC, 36-track, and long tape. It reads 18-track but does not write 18-track. (2) A value that can be specified on the MEDia parameter and that includes only enhanced capacity cartridge system tapes. (3) An alias of ECART.

3590— The IBM cartridge drive that supports 128-track recording and holds 10GB of uncompressed data. It has the same form factor as a 3490E.

36-track— A recording technique that uses 36 tracks on the tape. 18 tracks of data are written in the forward motion and then an additional 18 tracks in the backward motion for a total of 36.

36track— A generic value that can be specified on the RECtech parameter and includes all 36-track transports.

36Atrack— A value that can be specified on the RECtech parameter and includes only 4490 (Silverton) 36-track transports.

36Btrack— A value that can be specified on the RECtech parameter and includes only 9490 (Timberline) 36-track transports.

36Ctrack— A value that can be specified on the RECtech parameter and includes only 9490EE (Timberline EE) transports.

4410 LSM— See standard LSM.

4480 Cartridge Subsystem— Cartridge tape transports that provide read/write capability for 18-track recording format. The Sun StorageTek 4480 Cartridge Subsystem is equivalent to a 3480 device.

4490 Cartridge Subsystem— Cartridge tape transports that provide read/write capability for 36-track recording format and extended capacity tape. 4490 transports can also read data recorded in 18-track format. The Sun StorageTek 4490 Cartridge Subsystem is equivalent to a 3490E device.

3000 library— *See* StreamLine (SL3000) library.

8500 library— See StreamLine (SL8500) library.

9310 LSM— See PowderHorn LSM.

9360 LSM— See WolfCreek LSM.

9490 Cartridge Subsystem— Cartridge tape transports that provide read/write capability for 36-track recording format and extended capacity tape and provide improved performance over the 4490 Cartridge Subsystem. 9490 transports can also read data recorded in 18-track format. The Sun StorageTek 9490 Cartridge Subsystem offers better performance (faster data transfer rate, faster load/unload) than a 3490E device.

9490EE Cartridge Subsystem— A

high-performance tape transport that provides read/write capability for Extended Enhanced tape (EETape) cartridges. It is functionally equivalent to the IBM 3490E device.

9740 LSM— See TimberWolf LSM.

T9840A Cartridge Subsystem— A high performance tape transport for enterprise and open systems environments that reads and writes T9840A cartridges. T9840As can be defined in 10-drive and 20-drive panel configurations. The T9840A can perform as a standalone subsystem with a cartridge scratch loader attached, or it can be attached to a Sun StorageTek ACS.

T9840B—The Sun StorageTek cartridge transport that reads and writes T9840B cartridges.

T9840C— The Sun StorageTek cartridge transport that reads and writes T9840C cartridges.

T9840D— The Sun StorageTek cartridge transport that reads and writes T9840D cartridges

T9940A— The Sun StorageTek capacity-centric cartridge transport capable of reading and writing 60GB T9940A cartridges.

T9940B— The Sun StorageTek capacity-centric cartridge transport capable of reading and writing 200GB T9940B cartridges.

Index

Numerics

4480 Cartridge Subsystem, defined 197
4490 Cartridge Subsystem, defined 197
9490 Cartridge Subsystem, defined 197
9490EE Cartridge Subsystem, defined 197

A

access method, defined 183 ACF/VTAM, VTAM requirements 22 ACS *See* Automated Cartridge System ACSDRV 43 ACSId, defined 183 ACSLIST 35 ADDRESS 61 ADJACNT 54 AL 38 ALL 33 allocation, defined 183 assembler and linkage editor JCL 68 Automated Cartridge System (ACS), defined 183 automated space calculation, DASD space 19

В

BASE 96, 97, 98, 99 base service level, HSC 107 BDAM, defined 183 BSAM, defined 183

С

CA DYNAM/TLMS 8 CA-1 (TMS) 8 calculating DASD space 18 calculating SL3000 library cartridge capacity 74

calculating SL8500 library cartridge capacity 74 CAP See Cartridge Access Port CAPid, defined 184 cartridge capacity calculation for SL3000 20 capacity calculation for SL8500 library 20 capacity, calculating for SL3000 library 74 capacity, calculating for SL8500 library 74 defined 184 ECART, defined 186 over-limit cleaning cartridge, defined 191 over-use cleaning cartridge, defined 191 special use cartridge, defined 193 spent cleaning cartridge, defined 193 ZCART, defined 196 Cartridge Access Port (CAP) defined 184 standard, defined 194 TimberWolf, defined 195 WolfCreek optional, defined 196 WolfCreek, defined 196 Cartridge Drive (CD), defined 184 Cartridge Scratch Loader (CSL), defined 184 cartridges loading into LSM manually 127 loading into the library 127 planning migration to the library 123 CD See Cartridge Drive CDS See Control Data Set CDS See control data set client/server drive mapping, defining 62 **CLNPRFX 35** coexistence, HSC scenarios 169 COLD 97 COMPRFX 35 configuration mismatches 103 configuration, library checklist 129 configuration, MVS unit addresses and esoterics 11

configurations, library 133

configuring unit addresses 12 connected mode, defined 184 contacting Sun Microsystems StorageTek Support xxvi contention lockout situations 17 control data set creating a 6.0 and 6.1 CDS 167 definition of types 13 initialization JCL 71 journal requirements 175 journals 14 primary 13 recovery strategies 13 secondary 13 shared DASD 16 standby CDS 14 Control Data Set (CDS) allocation map, defined 184 considerations for Unit Control Blocks 10 data blocks, defined 184 defined 184 directory, defined 184 free blocks, defined 184 pointer blocks, defined 184 recovery area, defined 185 subfile, defined 185 control statement LKEYDEF 93 LKEYINFO 91 Control Unit (CU), defined 185 CONTROL-T Tape Management System 9 CST, defined 185 CU See Control Unit CUSTomer 91 Customer Resource Center (CRC) xxv customer support xxvi customer-initiated maintenance (CIM) xxvi D DASD automated space calculation 19 calculating space 18 planning 13

sharing 16 Data Facility Hierarchical Storage Manager (DFHSM) 10 Database Heartbeat (DHB) record, defined 185 DATASET 93 DD statements, descriptions 101 defining esoterics 11 HSC control statements 85

LSM pass-thru port relationships 9 VTAM parameters for ACF/VTAM 22 definition data set control statements 85 DEFRAG utility 16 device group, defined 186 device number, defined 186 DF/SORT 8 DFP (Data Facility Product), defined 186 DFSMS ACS routine, defined 186 defined 186 DFSMSrmm 8 Dialog 98 directed allocation, defined 186 disconnected mode, defined 186 discussion of configuration tasks 1 DOMed, defined 186 DOOR 54 down-level migration 182 DRIVE 51 drive exclusion, defined 186 drive loaded, defined 186 drive panel, defined 186 drive prioritization, defined 186 DRIVEid, defined 186 DRVELST 51 drvelst 59 DRVHOST 39 **DSN 93** dual LMU, defined 186 dump, defined 186 duplicate copy, control data set 13 Dynamic Device Reconfiguration (DDR), defined 186 dynamic hardware reconfiguration requirements before running 171, 175 restriction 171

Ε

ECART defined 186 external media label requirements 124 ECCST, defined 187 Eid 98 EJCTPAS 39 eject, defined 187 eligible device list, defined 187 emergency license keys 90 Enhanced CAP (ECAP), defined 187 Enhanced Capacity Cartridge System Tape (ECCST), defined 187 ENter command 127 esoteric, defined 187 esoterics address configuration 10 library configuration 11 nonlibrary configuration 11 ETAPE, defined 187 examples HOSTID parameter in SLILBRY 34 LIBGEN, SLIVERFY 69 library configurations 133 LKEYDEF command/control statement 94 LKEYINFO control statement 92 PROC for START command 99 SLIACS macro statement 46 SLIALIST macro statement 42 SLIDLIST 60 SLIDRIVS macro statement 65 SLILSM macro statement 57 SLIRCVRY macro 33 SLISTATN macro statement 48 EXEC statement parameters 96 BASE 96 COLD 97 Dialog 98 Eid 98 Fid 98 INIT 97 Member 98 PARM 96 **RECONFIG** 99 RESET 97 SSYS 96 syntax 96 executing SLICREAT 75 EXPRdate 91 Extended Enhanced Tape (EETape), defined 187 ExtendedStore, Library, defined 187

F

FDRPAS, defined 187 Fid 98 flow diagrams, syntax 157 forced termination of the HSC 110 full service level, HSC 107 FUTRACS 40 FUTRLSM 46

G

Generation Data Groups (GDG) separation, defined 188

Η

hardware, HSC support dependencies 173 helical external media, label requirements 124 Helical, defined 188 help, technical support xxv Host Software Component (HSC) coexistence scenarios 169 customizing the software 5 defined 188 defining client/server drive mapping 62 defining HSC control statements 85 EXEC statement 96 EXEC statement parameters 96 executing the START procedure 102 forced termination 110 forced termination, SMC consideration 110 hardware support dependencies 173 initialization order with SMC 131, 180 initializing 95 initializing under the Master Subsystem 106 installation scenarios production environment 171 verification environment 170 license keys 89 migration and coexistence considerations 171 migration scenarios 169 preinitializing the HSC as a subsystem 105 START Procedure 95 start task procedure 24 starting HSC using the SSYS parameter 107 starting HSC with PARM='INIT' 105 starting the HSC to the base service level 107 starting the HSC to the full service level 107 terminating the HSC 109 host system, defined 188 HOSTID 34, 94 host-id 34 HOSTid, defined 188 HSC See Host Software Component HSM, processing problems 16

I/O Device Reserve Considerations 16

identification, library 161 Improved Cartridge Recording Capability (ICRC), defined 188 Index, defined 188 INISH deck, defined 188 INIT 97 Initial Microprogram Load (IML), defined 188 Initial Program Load (IPL), defined 188 initial value, defined 189 initialization order, HSC/SMC 131, 180 initializing control data set, JCL 71 control data sets 71 HSC 95 HSC under the Master Subsystem 106 input stack, defined 189 installation configuration planning 7 DASD planning 13 DFHSM considerations 10 HSC scenarios 170 IPLing the system 24 issuing the START command 104 non-library esoterics 11 planning, overview 1 pre-execution tasks 21 preinitializing the HSC as a subsystem 105 PROC for START command example 99 recovery strategies for CDS 13 Installation Verification Programs (IVP), defined 189 IPL requirements 24 IPLing the System 24 Issuing the START Command 104

J

JCL, DD Statements, descriptions 101 JES3, minimum release level 8 Job Control Language (JCL) defined 189 job step return codes 68 JOURNAL 32 journaling CDS and journal requirements 175 journaling, defined 189 journals, control data set 14

Κ

KEY 92 keyword parameter, defined 189

L

label 32 labels, Tri-Optic, verification 123 LAN, defined 189 LCU See Library Control Unit LIBGEN assembler and linkage editor JCL 68 defined 189 esoterics and address configuration 10 job step return codes 68 library configuration file 25 macros SLIACS 43 SLIBRY 34 SLIDLIST 59 SLIDRIVS 61 SLIENDGN 67 SLILSM 49 SLISTATN 47 macros, relationship to a library configuration 27 procedure for library generation 25 SLIVERFY 69 verifying the library generation 69 library configuration checklist 6, 129 defined 189 esoterics 11 identification 161 modifications 3 library configurations 133 Library Control Unit (LCU), defined 189 Library Management Unit (LMU) defined 189 standby, defined 194 Library Storage Module calculating DASD space for future LSMs 19 Library Storage Module (LSM) defined 189 number, defined 190 preallocating CDS space for SL8500 LSMs 46 relationship definition with pass-thru port 9 SLIACS parameter 45 SLILSM parameter 50 standard (4410), defined 194 TimberWolf (9740), defined 195 WolfCreek (9360), defined 196 libtype 35 license keys emergency 90 permanent 89 trial period (HSC only) 89 lists and ranges, VOLSER 162

LKEYDEF command and control statement example 94 overview 93 parameters 93 syntax 93 LKEYINFO control statement examples 92 overview 91 parameters 91 syntax 91 LMU See Library Management Unit LMUPATH control statement defined 190 LMUPDEF command and control statement defined 190 loading cartridges into LSM manually 127 cartridges into the library 127 lockout problems 17 logical ejection, defined 190 LONGItud, defined 190 LSM See Library Storage Module lsm0 50 LSMid, defined 190

Μ

macros SLIACS 43 SLIDLIST 59 SLIENDGN 67 SLILBRY 34 SLILSM 49 SLISTATN 47 MAJNAME 35 manual mode defined 190 master LMU defined 190 media capacity, defined 191 media mismatch, defined 191 MEDia, defined 190 Member 98 migration applications to library use 128 coexistence processes 167 down-level 182 HSC migration and coexistence considerations 171 HSC scenarios 169 planning 123 up-level 177

missing interrupt handler (MIH) 17 missing interrupt interval (MITIME) 17 MODel, defined 191 modifying library 3 modifying LSMs online 102 Multi-Image Manager (MIM) 8 multiple hosts startup considerations 103 MVS unit addresses and esoterics, configuring 11

Ν

NCO *See* Near Continuous Operation Near Continuous Operation (NCO) defined 191 preallocating CDS space for SL8500 LSMs 46 NL 39 NONE 32 nonlibrary esoterics, MVS configuration 11 NSL 39

0

output stack, defined 191 over-limit cleaning cartridge defined 191 over-use cleaning cartridge defined 191 overview LIBGEN macros 26 of configuration tasks 1

Ρ

P/DAS, defined 191 Paired-CAP mode, defined 191 parameter library (PARMLIB) control statements 86 parameters 050 50 075 50 100 50 4410 50 9310 50 9360 50 9740 50 ACSDRV 43 ACSLIST 35, 42 ADDRESS 47, 61 ADJACNT 54 AL 38 ALL 33 BOTH 32

CLN 35 CLNPRFX 35 COMPRFX 35 CUSTomer 91 DOOR 54 DRIVE 51 DRVELST 51 drvelst 59 DRVHOST 39 **DSN 93** EJCTPAS 39 EXPRdate 91 FUTRACS 40 FUTRLSM 46 HOSTDRV 59 HOSTID 34, 94 host-id 94 JOURNAL 32 **KEY 92** label 32 LSM 45, 50 MAJNAME 35 NL 39 NONE 32 NSL 39 PASTHRU 52 PRODuct 91 SATASET 93 SCRLABL 38 SHADOW 32 SITEno 91 SL 38 SL3000 51 SL8500 50 SLIACS 43 SLIENDGN 67 SLIRCVRY 32 SMF 35 STANDBY 33 STATION 44 station 47 TCHNIOE 32 **TYPE 50** UNIT 94 VOLume 93 WINDOW 55 PARM 96 PARM='INIT', starting the HSC with 105 PARMLIB control statements, description 86 partners web site, SUN xxv pass-thru port (PTP), defined 191 pass-thru port relationship definition 9 PASTHRU 52 Peer-to-Peer Remote Copy (PPRC), defined 192 permanent license keys 89

physical plan, verification 7 plan components DASD planning 13 DASD sharing plan 16 esoterics and address configuration definitions 10 pass-thru port and LSM definitions 9 physical plan verification 7 system software verification 8 planning calculating DASD space 18 cartridge migration to the library 123 configuration 1 DASD sharing 16 DASD space for shadowing and journaling 16 DASD, automated space calculation 19 playground, defined 192 positional parameter, defined 192 PowderHorn (9310) LSM, defined 192 pre-execution tasks 21 prefix 35 primary CDS defined 192 primary control data set 13, 76 priority CAP (PCAP), defined 192 problems DEGRAG with VM HSC 16 MVS running under VM 17 processing HSM 16 PRODuct 91 PTFs, deinstallation 182 ptppanel0 52

Q

Queued Sequential Access Method (QSAM), defined 192

R

ranges and lists, VOLSER 162 RECONFIG 99 reconfiguring the library 3 recovering the CDS 14 recovery strategies, control data set 13 RECtech, defined 192 related publications NCS publications xxiv Remote Diagnostics Center (RDC), defined 192 requirements CDS and journaling 175 DASD sharing 16 for utility usage 176 RESET 97

S

SCRLABL 38 secondary CDS defined 193 secondary control data set 13 service levels starting the HSC to the base service level 107 starting the HSC to the full service level 107 ServiceTek, defined 193 Shadow CDS, Secondary Control Data Set 14 shadowing 14 Significant Event Notification (SEN) defined 193 SITEno 91 SL 38 SL3000 library calculating cartridge capacity 20, 74 calculating DASD space for 18 calculating DASD space for future LSMs 19 drive panel numbering 63 SLILSM requirement 49 storage cell capacity 82 SL8500 library calculating cartridge capacity 20, 74 calculating DASD space for 18 drive panel numbering 64 Near Continuous Operation (NCO), SLIACS FUTRLSM parameter 46 PTP considerations 9 SLILSM example 58 storage cell capacity 81 SLIACS example 46 parameters 43 FUTRLSM 46 LSM 45 SLIACS 43 STATION 44 purpose 43 syntax 43 SLIALIST example 42 parameters 42 acslist 42 purpose 42 syntax 42 SLICREAT executing 75 verifying completion 78

SLIDLIST example 60 parameters 59 drvelst0 59 HOSTDRV 59 purpose 59 syntax 59 **SLIDRIVS** example 65 parameters 61 ADDRESS 61 purpose 61 SL3000 library drive panel numbering 63 SL8500 library drive panel numbering 64 syntax 61 SLIENDGN parameters 67 purpose 67 syntax 67 SLIEXERS test program 120 SLILIBRY example 41 parameters 35 ACSLIST 35 CLNPRFX 35 COMPRFX 35 DRVHOST 39 **EJECTPAS** 39 FUTRACS 40 HOSTID 34 MAJNAME 35 SCRLABL 38 purpose 34 syntax 34 SLILSM example 57 parameters 50 050 50 075 50 100 50 3000 51 4410 50 8500 50 9310 50 9360 50 9740 50 ADJACNT 54 DOOR 54 DRIVE 51 DRVELST 51 LSM 50 PASTHRU 52 TYPE 50 WINDOW 55 purpose 49 syntax 49

SLIRCVRY example 33 parameters 32 ALL 33 **BOTH 32** JOURNAL 32 label 32 NONE 32 SHADOW 32 STANDBY 33 TCHNIOE 32 purpose 32 syntax 32 SLISTATN example 48 parameters 47 ADDRESS 47 station 47 purpose 47 syntax 47 SLIVERFY 69 SMC, initialization order with HSC 131, 180 **SMF 35** software support 169 software, support for down-level HSC releases 8 special use cartridge, defined 193 spent cleaning cartridge defined 193 SSYS parameter, starting HSC using 96 standard (4410) LSM, defined 194 standard CAP, defined 194 STANDBY 33 standby CDS defined 194 standby control data set 14, 76 standby LMU defined 194 standby, defined 194 START command, issuing 104 START PROC, descriptions of DD statements 101 START procedure 102 start task procedure HSC coding and cataloging 24 cold start 97 starting HSC using the SSYS parameter 107 HSC with PARM='INIT' 105 the HSC 95 the HSC to the base service level 107 the HSC to the full service level 107

station, defined 194 STK1 (9840), external media label requirements 124 STK2 (T9940), external media label requirements 124 stopping the HSC 109 storage class, defined 194 group, defined 194 storage cell capacity for 4410, 9310, and ExtendedStore LSMs 79 for 9360 LSMs 79 for SL3000 libraries 82 for SL8500 libraries 81 for TimberWolf 9740 LSMs 80 summary of configuration tasks 1 of LIBGEN macros 26 support, software level verification 8 support, technical xxv symbols, µ-software, defined 197 SYNCSORT 8 svntax flow diagrams 157 HSC EXEC statement 96 system support, software level verification 8

Т

STATION 44

T9840A Cartridge Subsystem, defined 197 T9840B Cartridge Subsystem, defined 198 T9840C Cartridge Subsystem, defined 198 T9940A Cartridge Subsystem, defined 198 T9940B Cartridge Subsystem, defined 198 TCHNIQE 32 technical support xxv terminating, the HSC 109 test programs, SLIEXERS 120 testing the installation 111 TimberWolf (9740) LSM, defined 195 TimberWolf CAP, defined 195 transport, defined 195 trial period license keys 89 Tri-Optic label verification 123 Tri-Optic label, defined 195 troubleshooting xxv **TYPE 50**

U

UNIT 94 unit addresses, configuring 12 unit affinity, defined 195 up-level migration 177 USERUNITTABLE parameter, DFHSM 10 utility usage requirements 176

V

verifying installation 111 library generation 69 successful completion of SLICREAT 78 virtual media, HSC support for 174 Virtual Thumbwheel, defined 196 VOLSER defined 196 ranges and lists 162 VOLume 93 volume, defined 196 VSM, with HSC 174

W

web site, SUN xxv WINDOW 55 WolfCreek (9360) LSM, defined 196 WolfCreek CAP, defined 196 WolfCreek optional CAP, defined 196 worldwide offices, SUN xxvii

Ζ

ZCART, defined 196 ZCART, external media label requirements 124

Printed in U.S.A.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

ARGENTING: \$411-4317-5636 & AUSTRAUE: 1-800-550786 & AUSTRAUE: 431-601-26.0 & BALKARS: 301-6188-111 & BLIGUME: 32 2704 89 83 & BRAUE: 5511-5187/2100 & BRUNE: 65216-8333 & CANARA: 1-800-422-8020 (GENERAL); 416-964/22001 (LEARNING MAAAAEMENT SNITEM SALES, TORONTO) & CHILE: 562-372-4500 & COLOMBIA: 571-629-233 CERTER REPUBLIC: 42 23300311 & DEMARRE: 45 4555 500 & EDRTE 100 202 570 9424 & PIRLURE: 358-95551 & FLANCE: 334-448/331-717 & GEMARRY: 498-9460-60-2788 & GEREE: 301-6188101 & HORE KORE: 852-3877/707 & HUNARE: 551-202-4115 & HUNAE: 158-02-2428-303 & HERMER: 353-1658-377 EARLING: 5000 & HURE: 302-052511 & JANNE: 357-952551 & FLANCE: 334-418-1317-17 & GEMARRY: 498-9460-60-2788 & GEREE: 301-6188101 & HORE KORE: 852-3877/707 & HUNARE: 551-202-4115 & HONE: 1582-02-24333 & SINGLARE: 707-7230-9400 & HUNAE: 1592-052511 & JANNE: 1587-00-2278-303 & HERMER: 353-1658-377 AUSTRALING: 500-5633 & NEWERE: 46-563-52551 & FLANCE: 354-16587 & MORE: ESST: 00714-356333 & MURE: 552-16-8303 & SUBME: 7095-935-8411 & SAURI ARABURE: 00714-356533 & NEWERE: 502-6530 & SOURT AFRICA: 2711-256-6300 & SOURT AFRICA: 2721-255-700 & VERTICA: 27200 & SOURT AFRIC

SUN[®] THE NETWORK IS THE COMPUTER ©2006 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.