
SPARCompiler Ada Reference Guide

Part No.: 801-4863-11
Revision B, August 1994

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in
the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other
product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

VADS, VADScross, and Verdix are registered trademarks of Rational Software Corporation (formerly Verdix).

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. SPARCompiler Ada Files and Libraries 1-1

1.1 Topics . 1-1

1.1.1 Ada Compilation Units — units and dependencies 1-1

1.1.2 File Formats — types of files used by SC Ada. . . 1-4

1.1.3 SC Ada Release Libraries — contents of the SC Ada
libraries. 1-7

1.1.4 standard . 1-8

1.1.5 verdixlib . 1-18

1.1.6 publiclib . 1-19

1.1.7 examples . 1-20

SC Ada User Libraries — libraries created for source file
compilations . 1-22

1.1.8 ada.lib File . 1-24

1.1.9 GVAS_table File. 1-28

1.1.10 .LINK_INFO and .MAKE_INFO Files 1-30

2. Command Reference . 2-1

iv SPARCompiler Ada Reference Guide

ada — invoke the Ada compiler. 2-3

a.app — preprocess Ada source . 2-11

a.ar — create an archive library of Ada object files 2-13

a.cleanlib — reinitialize library directory 2-16

a.cp — copy unit and library information. 2-18

a.das — disassemble object files. 2-20

a.db — debug Ada and C source code programs 2-23

a.du — summarize disk usage for Ada libraries. 2-29

a.error — analyze and disperse error messages. 2-31

a.header — print the information stored in a unit net
header . 2-34

a.help — invoke the interactive help utility. 2-40

a.info — list or change SC Ada library directives. 2-42

a.ld — build an executable program from previously compiled
units . 2-53

a.list — produce source code listing 2-57

a.ls — list compiled units . 2-58

a.make — recompile source files in dependency order . . 2-60

a.mklib — create an SC Ada library directory 2-66

a.mv — move unit and library information 2-69

a.path — report or change SC Ada library search list. . . 2-71

a.pr — format source code . 2-74

a.prof — analyze and display profile data. 2-79

a.report — report deficiency or suggestion 2-81

a.rm — remove an Ada unit from a library 2-83

Contents v

a.rmlib — remove compilation library. 2-85

a.symtab — display symbol information for all static package
variables and constants . 2-87

a.tags — create a source file cross reference of units . . . 2-95

a.vadsrc — display versions and create library configuration
file . 2-98

a.view — provide aliases and history for C shell user . . 2-100

a.version — Display if licensed for Multithreaded Ada 2-103

a.which — Find a compiled unit . 2-104

a.xref — print cross-reference information for a given Ada unit
or library . 2-105

3. Debugger Reference . 3-1

3.1 Summary . 3-1

a — (advance) step one source line over calls. 3-5

address — address memory directly 3-7

ai — (advance instruction) single step machine code over
calls . 3-8

:= — assign a value . 3-9

asynchronous debugging — run the debugger in
asynchronous mode . 3-11

ax — (advance signal) advance, pass the signal to the
program . 3-15

b — (break) break at a line or beginning of a subprogram 3-16

bd — (break down) break after current subprogram 3-20

bi — (break instruction) break at machine instruction . . . 3-22

br — (break return) set permanent breakpoint at return . 3-24

vi SPARCompiler Ada Reference Guide

breakpoints — control program execution 3-26

bx — (break exception) break when an Ada exception
occurs . 3-28

call stack — display current state of program. 3-31

cb — (call bottom) move to the call stack bottom frame. . 3-33

cd — (call down) move down on the call stack 3-34

command syntax — syntax of debugger commands 3-36

core file — debugging a program that produced a “core” file 3-38

cs —. (call stack) display the call stack 3-40

ct — (call top) move to the call stack top frame 3-42

cu — (call up) move up on the call stack. 3-43

current frame — current position on the call stack 3-45

current position — current position in a source file 3-46

d — (delete) delete breakpoints . 3-47

disassembly — display disassembled source code. 3-49

display memory — display raw memory 3-51

e — (enter) move to a new source file 3-60

edit — edit a subprogram or a file 3-62

examine — display program elements and components. . 3-63

exit — terminate the debugger session 3-64

expressions — arithmetic expressions in the debugger . . . 3-65

files — specify files to debug. 3-67

g — (go) continue executing . 3-68

gw — (go while) continue executing until a variable changes 3-69

Contents vii

gx — (go signal) continue executing, pass the signal to the
program . 3-70

help — print help text. 3-71

home position — execution point in current frame 3-73

inline expansions — debugging inline expansions 3-74

invocation — invoking the debugger. 3-76

l — (list) display part of a source program. 3-81

lb — (list breakpoints) list all currently set breakpoints. . 3-83

li — (list instructions) list disassembled instructions . . . 3-84

line editing — command history and line editing functions 3-86

line numbers — move to a specified line. 3-91

lt — (list tasks) list all active tasks 3-93

lu — (list processes) list UNIX processes 3-104

overloading — disambiguate overloaded names 3-106

p — (print) display the value of a variable or expression . 3-108

procedure calls — call subprograms from the program . . 3-112

put — (put) send characters to program input 3-114

put_line — (put line) send characters to program input, append
new line . 3-116

quit — terminate the debugger session 3-118

r — run a program . 3-119

read — read debugger commands from a file 3-121

reg — list the current machine register contents 3-123

register variables. 3-125

Return — re-execute debugger command 3-128

viii SPARCompiler Ada Reference Guide

return — return from all called subprograms 3-129

s — (step) single step source code into subprograms 3-130

screen mode — screen-oriented debugger interface 3-132

search — search for a pattern in the current file 3-140

set — set debugger parameters. 3-142

si — (step instruction) single step machine code into
program . 3-147

signals — set/ignore signals . 3-148

stop — stop the debugger or program 3-150

strings — string operations and support 3-151

sx — (step signal) single step, pass the signal to the
program . 3-155

task — print current task or choose a new current task . 3-156

terminal control — catching program input/output 3-158

vi — (visual) switch the debugger to screen mode 3-159

visibility rules — determine visible identifiers at a
breakpoint . 3-160

w — (window) list a group of source lines. 3-161

wi — (window instruction) list disassembled and original
code. 3-162

x — (eXamine) monitor memory location(s). 3-164

A. Limits . A-1

A.1 Compiler and Tool Limits . A-1

A.2 Source File Limits . A-2

ix

Figures

Figure 1-1 SPARCompiler Ada Library Contents . 1-22

Figure 1-2 Example of ada.lib File. 1-24

Figure 2-1 Example of Debugger Start-up Environment 2-26

Figure 2-2 Example of a.error Output . 2-32

Figure 2-3 Example of a.path -i (interactive) Menu. 2-72

Figure 2-4 Example of Report Generated by a.report 2-82

Figure 2-5 a.symtab . 2-94

Figure 2-6 Example of a.xref Source Code . 2-110

Figure 2-7 Example of a.xref Output . 2-112

Figure 3-1 Example of Output from the li Command 3-49

Figure 3-2 Example of Debugger Start-up Environment 3-79

Figure 3-3 Example of Output from the lt Command 3-97

Figure 3-4 Example of Output for lt dining_room 3-98

Figure 3-5 Example of Output from lt use . 3-102

Figure 3-6 Example of Output from lu Command. 3-104

Figure 3-7 Example of Output from lu PID Command. 3-105

x SPARCompiler Ada Reference Guide

Figure 3-8 Example of Overloading. 3-106

Figure 3-9 Example of Output from reg . 3-123

Figure 3-10 Example Display of Floating Point Registers 3-124

Figure 3-11 Example of Debugging with Register Variables-1 3-125

Figure 3-12 Example of Debugging with Register Variables-2 3-126

Figure 3-13 Example of String Comparisons . 3-153

Figure 3-14 data.a and csl.a . 3-168

Figure 3-15 Use of x Commands . 3-171

xi

Tables

Table 3-1 Summary of Responses in Debugger Help 3-72

Table 3-2 Line Editing Commands. 3-87

Table 3-3 Task State Conditions . 3-94

Table 3-4 Paging: Responses to --More-- in Screen Mode 3-133

xii SPARCompiler Ada Reference Guide

1-1

SPARCompiler Ada Files and
Libraries 1

1.1 Topics
This chapter discusses the following SPARCompiler Ada file, directory, unit,
and library topics:

Ada compilation units Ada units and dependencies in Ada

File Formats Types of files used by Ada
SC Ada Release Directories Description of the directories provided

with Ada

SC Ada User Libraries Definition and contents of Ada libraries
created by users for source file compilations

Hereafter, SPARCompiler Ada is referred to as SC Ada.

1.1.1 Ada Compilation Units — units and dependencies

Each Ada source file contains the text for a single Ada compilation, which
consists of one or more compilation units. A compilation unit is the smallest
piece of Ada code that compiles successfully.

A compilation unit is any of the following:

“Thou art the book,
The library whereon I look.”

Henry King

1-2 SPARCompiler Ada Reference Guide

1

Subprogram declaration
Generic declaration
Package declaration
Generic instantiation
Subprogram body
Library unit body (subprogram body or package body)
Subunit (subprogram body, package body or task body)

A source file contains one or more units, even though all units in the file are
not used for the application. The compiler, not knowing which of the units are
required for the application, produces a separate object file for each unit in the
file. The object file is stored in the directory .objects . The prelinker, a.ld ,
determines which units are required for the application and invokes the linker,
passing the appropriate object filenames as parameters.

References
Section A.2, “Source File Limits,” on page A-2, Appendix A.

Unit Dependencies
When compiling a unit that references other units, the compiler checks that
each reference is valid. It checks actual data types in referencing units against
specified data types in the referenced unit.

This checking is automatic when compiling with a.make . It is enabled when
using ada , but Ada compilation units must be compiled in dependency order.
Dependency order means if one unit depends on specifications or definitions
provided in another unit, the unit containing those specifications or definitions
must be compiled first.

The files fact.a and prob.a , shown here, illustrate a simple case of such a
dependency. When the file containing FACTORIAL (fact.a) is compiled, a
record is made in the Ada library that a function named FACTORIAL can be
called and that FACTORIAL requires an INTEGER argument and returns an
INTEGER result, as shown in this code segment:

SPARCompiler Ada Files and Libraries 1-3

1

Another compilation, the file prob.a that uses FACTORIAL, is shown here.
The separate compilation information from the compiled unit FACTORIAL is
used to check that it is called with parameters of the correct number and type
in the file prob.a , as shown in this code segment:

References
order of compilation, section 10.3 in Ada Reference Manual

-- file: fact.a --
function FACTORIAL (N: INTEGER) return INTEGER is
 begin
if N <= 0 then return 1;
else return N * FACTORIAL (N - 1);
end if;
end FACTORIAL;

-- file: prob.a --
with FACTORIAL;
function PROBABILITY (NUM_ITEMS : INTEGER) return FLOAT
is
begin
return 1.0 / FLOAT (FACTORIAL (NUM_ITEMS));
end PROBABILITY;

1-4 SPARCompiler Ada Reference Guide

1

1.1.2 File Formats — types of files used by SC Ada

This section introduces the various types of files used by SC Ada and briefly
describes the file structure.

File formats of several types represent the interface between various portions
of the SC Ada tools. For example, the IL (Intermediate Language) file
generated by the front end of the compiler is used as input to the code
generator.

The details of these files are generally of interest only for specialized
applications involving the creation or modification of object or other files by
tools other than those supplied with SC Ada.

Ada Source Files
Ada source files are ordinary text files. Edit them with any text editor.

The SC Ada compiler no longer requires that Ada source filenames end with
the extension.a . Specify any suffix. For example, text_io.spec , foo.bar ,
and example.ada are all valid source filenames.

The root name of a source filename is that part which remains when the suffix
is removed. For example, the root name of text_io.spec is text_io .

SC Ada imposes no restriction on the location of subprogram specifications
and bodies. It is often useful to place them in separate files or to distribute
them among several program libraries.

Source files must be compiled within an SC Ada library directory. Create an
SC Ada library directory anywhere in the file system with the a.mklib tool.

When a unit is compiled, an entry is made in the ada.lib file. The third field
of this entry specifies the name of a file, which is always in the .nets
subdirectory. If the compiled unit has an associated object file, then that file
exists in both the .objects and .lines subdirectories.

Source File Structure and Restrictions
Character Set - SC Ada provides the full graphic_character textual
representation for programs. The character set for source files and internal
character representations is ASCII.

SPARCompiler Ada Files and Libraries 1-5

1

Lexical Elements, Separators, and Delimiters - Ada uses normal text files as
input.

References

Section A.2, “Source File Limits,” on page A-2

Object Files

When an Ada source file compiles, the compiler produces a set of object files
(one for each unit) that are in the .objects directory. The compiler names
each unit by replacing the source file extension with a unique two-digit
number. The object file format evolved from the Berkeley UNIX 4.2 BSD a.out
format. The symbol table and string table are still the same but we have altered
the a.out header to add information that better supports embedded systems.
Often object files are referred to as relocatable files, because the linker relocates
the files in memory when it produces the executable file.

Executable Files
SC Ada executable files are the end result of the linking process, which links
the object files for the units required by an application. SC Ada produces object
executable files with the default name a.out . Specify an executable filename
other than the default when you link your application.

Lines Files
The Ada compiler produces lines files for use by the debugger. They are in the
.lines directory. Lines files contain the information required by the debugger
to map an instruction address to a source file and line number and to support
debugging optimized code. Only compilation units that generate code have
lines files.

Nets Files
The Ada compiler produces nets files, which contain separate compilation
information. They are in the .nets directory. When an Ada unit is compiled,
its name is entered in the program library with a pointer to the associated net
file. The compiler produces one net file for each compilation unit.

1-6 SPARCompiler Ada Reference Guide

1

The compiler uses this information when a library is with ed by another
compilation unit. a.make uses the information to compute the correct
compilation order and to check for units that require recompiling because they
are out of date. a.ld uses the compilation information to determine which
object files must be linked to build a program, the exception tables, and
elaboration tables. Finally, the debugger uses the information to provide
symbol name, type, and address information for symbolic debugging.

Archive Files
Archiving files provides a compact and efficient method for creating archive
libraries of object files and for indexing these files to enable high-speed access
by the SC Ada prelinker. Archive files are created by using the standard
archiving method provided with your host operating system.

SPARCompiler Ada Files and Libraries 1-7

1

1.1.3 SC Ada Release Libraries — contents of the SC Ada libraries

SC Ada provides a number of directories, including configuration directories,
support directories, object file and executable file directories, and runtime
libraries. The SPARCompiler Ada User’s Guide gives a listing and brief
description of each SC Ada directory. Appendix A of the SPARCompiler Ada
Programmer’s Guide gives detailed descriptions of the contents and functionality
of the user configuration directory, usr_conf .

This section details most of the directories that are classified as part of the
SC Ada runtime system. These directories are accessed when you compile
applications or are used to compile certain programs. The following sections
describe the packages contained in the standard , publiclib , and
verdixlib libraries. Filenames are in parentheses.

A major SC Ada runtime library, vads_exec is not included in this discussion.
This library contains the routines that provide the user interface to many of the
runtime services including interrupt handling, mailboxes, memory
management, semaphores, tasking operations, and stack operations.

This section lists the contents of the examples directory.

References
configuring the usr_conf library and directories provided with SC Ada,
SPARCompiler Ada User’s Guide
vads_exec library, SPARCompiler Ada Runtime System Guide

1-8 SPARCompiler Ada Reference Guide

1

1.1.4 standard

The standard library contains specifications and bodies for predefined Ada
packages.

Note – Do not recompile the files in this directory in this library.

Packages in standard other than those defined in the Ada Reference Manual
support the predefined packages or provide interfaces to SC Ada RTS services.
The following packages are supported.

A_STRINGS implements a set of variable-length string operations based on the
type definition:

This representation provides the best opportunity for optimizations in the
future while having convenient reference. We recommend its use for variable-
length strings (a_strings.a, a_strings_b.a).

ADA_DEFS contains the Ada Kernel implementation definitions that are Solaris
threads specific. (ada_location/self_thr/standard). (a_defs.a)

ADA_KRN_DEFS contains the Ada Kernel type definitions (ada_krn_defs.a)

References
Ada Kernel, SPARCompiler Ada Runtime System Guide

ADA_KRN_I contains the interface to the Ada Kernel services ada_krn_i.a)

References
Ada Kernel, SPARCompiler Ada Runtime System Guide

type STRING_REC(len: natural) is record
 s: string(1..len);
end record;
type A_STRING is access STRING_REC;

SPARCompiler Ada Files and Libraries 1-9

1

C_STRINGS implements a set of variable-length string operations based on the
type definition:

(c_strings.a , c_strings_b.a):

CALENDAR implements the predefined package CALENDAR (calendar.a ,
calendar_b.a , calendar_s.a).

CLOSE_ALL closes all open files. Generally, the RTS calls it on program exit
(close_all.a).

CURRENT_EXCEPTION provides the name, in string form, of a raised exception.
function EXCEPTION_NAME returns the current exception name. It must be
called from an exception handler. If EXCEPTION_NAME is called from outside
an exception handler, a zero length string is returned (curr_except.a) .

Note – Use V_I_EXCEPT.EXCEPTION_CURRENT and
V_I_EXCEPT.EXCEPTION_NAME to get the current exception name when
outside the exception handler.

DATES provides functions for commonly-used manipulations of dates
(dates.a , dates_b.a).

DIRECT_IO implements the predefined package DIRECT_IO (dir_io.a ,
dir_io_b.a).

ENUMERATION_IO implements the body for the generic package
ENUMERATION_IO defined in the predefined package TEXT_IO
(enum_io_s.a).

type C_STRING is access string (1.integer'last);
--WARNING: this package mimics the behavior of
--ASCII.nul-terminated strings commonly used in
--the C programming language. It should be used
--to represent strings that are to be passed to
--and from host OS utilities, for example.

package CURRENT_EXCEPTION is
 function EXCEPTION_NAME return string;
 pragma BUILT_IN(EXCEPTION_NAME);
end;

1-10 SPARCompiler Ada Reference Guide

1

ERRNO contains enumeration type definitions for error codes returned by OS
functions and the interface to the errno variable (errno.a).

ERRNO_SUPPORT contains the routines to get and put the UNIX errno value
for the current task. This addresses the multiprocessor case where errno needs
to be accessed through special OS provided services (errno_sup.a).

FCNTL and FNCTL(2) are the OS file control packages (fcntl.a).

FILENAMES defines a set of utilities for dealing with filenames on operating
systems that support SC Ada. It is portable and its use is recommended for
creating portable system utilities. For example, the following code calls a
subprogram DO_IT for all files in a directory with names matching the pattern
‘*str*.a ' (filenames.a , filenames_b.a):

FILE_SUPPORT supports file activities for Ada standard I/O. Use this package
for lower-level file activities other than those defined by Ada TEXT_IO,
SEQUENTIAL_IO, and DIRECT_IO (file_spprt.a , file_spprt_b.a).

FIXED_IO implements the body for the generic package FIXED_IO defined
in the predefined package TEXT_IO (fixed_io_s.a).

FLOAT_IO implements the body for the generic package FLOAT_IO defined
in the predefined package TEXT_IO (float_io_s.a).

HEX supports INTEGER'IMAGE and INTEGER'VALUE (as functions rather than
attributes) but using hexadecimal strings rather than decimal (hex.a ,
hex_b.a).

IFACE_INTR provides interface to the OS signal handling services
(iface_intr.a).

THIS_DIR: FILE_NAMES.FIND_FILE_INFO :=
 FILE_NAMES.INIT_FIND_FILE (to_A("*str*.a"));
 FILE: A_STRINGS.A_STRING;
begin
 loop
 file := FILE_NAMES.FIND_FILE(THIS_DIR);
 doit(file);
 end loop;
exception
when FILE_NAMES.NO_MORE_FILES => ...

SPARCompiler Ada Files and Libraries 1-11

1

INTEGER_IO implements the body for the generic package INTEGER_IO
defined in the predefined package INTEGER_IO (integer_io_s.a).

IO_EXCEPTIONS implements the predefined package IO_EXCEPTIONS
specification (io_excpt.a).

IOCTL and IOCTL_FMT supply an interface to OS I/O control functions
(ioctl.a , ioctl_fmt.a).

KRN_CALL_I contains the interface to the routines resident in the user
program that calls the kernel services. Only present for VADS MICRO
(ada_location/self/standard) (krn_call.a)

KRN_CPU_DEFScontains the kernel program’s type definitions that are CPU-
specific. Only present for VADS MICRO (ada_location/self/standard)
(krn_cpu_defs.a)

KRN_DEFS contains the kernel program’s type definitions. Only present for
VADS MICRO (ada_location/self/standard) (krn_defs.a)

KRN_ENTRIES contains the kernel program’s service entry IDs and
arguments. Only present for VADS MICRO (ada_location/self/standard)
(krn_entries.a)

LANGUAGE defines the prefixes and suffixes in the link names generated by the
system linker. Use it in interface programming. It provides portability across
operating systems (language.a).

LIBC supplies an interface to Solaris 2.1 library functions (libc.a).

LINK_BLOCK defines the communication structure for the debugger, the
runtime kernel, and the user program (link_block.a , link_block_b.a).

LOW_LEVEL_IO implements LOW_LEVEL_IO as described in the Ada Reference
Manual to access physical devices. Replace the null subprograms contained in
the body of the package with your own routines (lowlevel_io.a).

MACHINE_TYPES supplies definitions of byte (8-bit) and word (16-bit)
unsigned types (mach_types.a).

MACHINE_CODE defines machine code statements described in Ada Reference
Manual 13.8 (machine_code.a).

1-12 SPARCompiler Ada Reference Guide

1

MEMORY supplies PEEK, POKE, and COPY on untyped memory. Because these
routines circumvent the normal memory protection provided by Ada, use this
package with extreme caution (memory.a , memory_b.a).

NUMBER_IO contains support routines used by the TEXT_IO in FIXED_IO ,
FLOAT_IO, and INTEGER_IO package bodies (number_io.a ,
number_io_b.a).

OS_FILES supplies a machine-independent interface to low-level I/O
operations. Write programs using OS_FILES if the files contain untyped binary
information (os_files.a , os_files_b.a).

OS_SIGNAL provides the interface to the OS’s signal services used by the Ada
RTS. It also contains the typed definitions for the signal structures and the
signal number constants (os_signal.a).

OS_SYNC provides the interface to the mutex, condition variable and counting
semaphore data structures, and services provided by Solaris threads
(ada_location/self_thr/standard) (os_thread.a).

OS_THREAD provides the interface to the Solaris thread services. It is only
present for Solaris MT Ada (ada_location/self_thr/standard)
(os_thread.a)

OS_TIME provides the interface to the UNIX time services. (os_time.a)

OS_VARIANT contains host OS specific routines used by the OS_FILES
package body (os_variant.a , os_variant_b.a).

PERROR contains routines for getting (GET_MSG) or putting (PERROR) the
message text associated with error codes returned by Solaris 2.1 functions
(perror.a , perror_b.a).

RAW_DUMP prints regions of memory in hexadecimal representation
(raw_dump.a).

SAFE_SUPPORT provides Ada tasking safe support for I/O (safe_sup.a ,
safe_sup_b.a)

SEQUENTIAL_IO implements the predefined package SEQUENTIAL_IO
(seq_io.a , seq_io_b.a).

SPARCompiler Ada Files and Libraries 1-13

1

SHARED_IO triggers generation of shared object code for generic packages in
TEXT_IO for the common Ada types. This package improves disk usage by
ensuring that only one instantiation of these I/O packages exists for each
SC Ada installation. (shared_io.a).

SIMPLE_IO provides unprotected subprograms that can be called from an ISR
(UNIX signal handler) (simple_io.a).

STATUS supplies a definition of the Solaris 2.1 STATUS_BUFFER data type. This
type is returned by calls to stat(2) and fstat(2) (status.a ,
status_b.a).

STRINGS defines types and routines for manipulating normal Ada strings
(strings.a , strings_b.a

STRLEN, STRNCPY duplicates the corresponding C functions (strlen.a ,
strlen_b.a , strncpy.a , strncpy_b.a).

SYSTEM is the predefined Ada package SYSTEM (system.a).

TEXT_IO implements the predefined package TEXT_IO (text_io.a ,
text_io_b.a).

TEXT_SUPPRT contains support routines used by TEXT_IO and NUMBER_IO
package bodies (text_sup.a , text_sup_b.a).

TTY and TTY_SIZES supply a definition of the Solaris 2.1 tty(4) data
structures (tty.a , tty_b.a , tty_sizes.a).

U_ENV supplies a definition of the command line argument interface
(u_env.a).

UNCHECKED_CONVERSION and UNCHECKED_DEALLOCATION specify the
predefined generic library subprograms (unchecked.a).

UNIX supplies a direct interface to the most common Solaris 2.1 system calls
(unix.a,unix_b.a).

UNIX_DIRS supplies a specialized interface for the Solaris 2.1 directory
manipulation utilities (unix_dirs.a , unix_dirs_b.a).

UNIX_LIMITS is an interface to the Solaris 2.1 limit commands
(unix_limits.a).

1-14 SPARCompiler Ada Reference Guide

1

STATUS supplies a definition of the Solaris 2.1 STATUS_BUFFER data type. This
type is returned by calls to stat(2) and fstat(2) (status.a ,
status_b.a).

STRINGS defines types and routines for manipulating normal Ada strings
(strings_.a).

STRLEN, STRNCPY duplicates the corresponding C functions (strlen.a ,
strlen_b.a , strncpy.a , strncpy_b.a).

SYSTEM is the predefined Ada package SYSTEM (system.a).

TEXT_IO implements the predefined package TEXT_IO (text_io.a ,
text_io_b.a).

TEXT_SUPPRT contains support routines used by TEXT_IO and NUMBER_IO
package bodies (text_sup.a , text_sup_b.a).

TTY and TTY_SIZES supply a definition of the Solaris 2.1 tty(4) data
structures (tty.a , tty_b.a , tty_sizes.a).

U_ENV supplies a definition of the command line argument interface
(u_env.a).

UNCHECKED_CONVERSION and UNCHECKED_DEALLOCATION specify the
predefined generic library subprograms (unchecked.a).

UNIX supplies a direct interface to the most common Solaris 2.1 system calls
(unix.a,unix_b.a).

UNIX_DIRS supplies a specialized interface for the Solaris 2.1 directory
manipulation utilities (unix_dirs.a , unix_dirs_b.a).

UNIX_LIMITS is an interface to the Solaris 2.1 limit commands
(unix_limits.a).

UNIX_PRCS supplies a specialized interface to the Solaris 2.1 process-control
utilities (unix_prcs.a).

UNIX_TIME is an interface to UNIX time functions (unix_time.a).

UNSIGNED_TYPES is supplied to illustrate the definition of and services for the
unsigned types supplied in this version of SC Ada (unsigned.a).

SPARCompiler Ada Files and Libraries 1-15

1

Caution – Use package UNSIGNED_TYPES with caution. We do not give any
warranty, expressed or implied, for the effectiveness or legality of this package
The package is supplied in comment form because the actual package cannot
be expressed in normal Ada - the types are not symmetric about 0 as required
by the Ada Reference Manual.

USER_DEFS contains the type definitions for services resident in the user
program. Only present for VADS MICRO (ada_location/self/standard)
(user_defs).

UTIMES provides an interface to the utimes(2) function of BSD UNIX and the
utimes(2) function for UNIX System V (utimes.a, utimes_b.a).

V_ADA_INFO provides the interface to the ada.lib INFO directive parameters
placed in the executable by a.ld (for example, PROCESSOR_TYPE)
(v_ada_info.a).

V_BITS is the inline equivalent of V_I_BITS and contains an identical
interface (v_bits.a , v_bits_b.a).

This routine results in faster code because call overhead is eliminated. The
V_BITS functions assume that the parameters passed to them are accessible in
a specific way. While this method works in the majority of cases, in some cases
it does not. It does not work on a RISC machine, for example, where any of the
parameters passed to one of these functions is stored at some location in
memory rather than in a register. If your program does not compile using this
package, chances are the parameters are not stored in the way that the function
expects.

Caution – The SC Ada compiler does not correctly print error messages in this
case - the compiler detects an error but it does not flag the correct line. One
simple work-around is to use package V_I_BITS instead.

V_I_ALLOC interfaces to the SC Ada memory allocation services
(v_i_alloc.a).

This package provides the interfaces to the heap memory allocators for the
user space. Normally, it is not needed by the user since using “new” and
instantiating UNCHECKED_DEALLOCATION work. However, you can bypass the

!

!

1-16 SPARCompiler Ada Reference Guide

1

normal Ada mechanisms and use these functions directly. If you write a new
memory allocator to supplant the default, this package provides the spec to
write it against.

V_I_BITS supplies BIT_AND, BIT_OR, BIT_XOR, BIT_NEG, BIT_SRA,
BIT_SRL , and BIT_SRL on integers (v_i_bits.a).

V_I_CALLOUT interfaces to the program, task and idle callout services
(v_i_callout.a).

V_I_CIFO interfaces to the CIFO type definitions used by Ada tasking
(v_i_cifo.a).

V_I_CSEMA is the low-level interface to counting (nonbinary) semaphores
(v_i_csema.a).

V_I_EXCEPT is the low level interface to the Ada exception services such as
getting the ID, PC, and string name of the current Ada exception or installing a
callout for raised exceptions (v_I_except.a).

References
list of services, SPARCompiler Ada Runtime System Guide

V_I_INTR interfaces to the SC Ada interrupt services (v_i_intr.a).

V_I_LIBOP interfaces to library routines called by the compiler. It has support
for image and value attributes, val/pos, bit copy and test, catenation, memory
copy, zero and compare, fixed point mantissa, and string copy (v_i_libop.a).

V_I_MBOX is the low-level interface to the runtime mailbox services
(v_i_mbox.a).

V_I_MEM is the low-level interface to the runtime memory services - fixed, flex,
and heap pools (v_i_mem.a).

V_I_MUTEX is the low level interface to the ABORT_SAFE mutes services
(v_i_mutex.a).

References
list of services, SPARCompiler Ada Runtime System Guide

V_I_PASS interfaces to the SC Ada passive task data structures and support
services (v_i_pass.a).

SPARCompiler Ada Files and Libraries 1-17

1

V_I_RAISE interfaces to the SC Ada exception support services
(v_i_raise.a).

V_I_SEMA is the low level interface to binary semaphores (v_i_sema.a).

V_I_SIG interfaces to the SC Ada interrupt entry signal services (v_i_sig.a).

V_I_TASKOP interfaces to the Ada tasking subprograms called by the compiler
to implement the Ada tasking semantics (v_i_taskop.a).

V_I_TASKS provides the low-level interface to binary semaphores
(v_i_tasks.a).

V_I_TIME interfaces to the SC Ada time subprograms (v_i_time.a).

V_I_TIMEOP interfaces to the SC Ada time operator subprograms
(v_i_timeop.a).

V_I_TYPES supplies types used in the SC Ada Runtime System. It includes the
type definitions for TIME_T, ALLOC_T, TEST_AND_SET_T, and
FLOATING_POINT_CONTROL_T. (v_i_types.a).

V_SEMA is the inline equivalent of V_I_SEMA and contains an identical
interface (v_sema.a).

V_TAS provides inline test-and-set capability (v_tas.a , v_tas_b.a).

V_USR_CONF_I contains the interface for configuring the user library
(v_usr_conf_i.a).

Note – This file has been moved from the usr_conf directory

X_CALENDAR provides extensions to CALENDAR, such as SET_CLOCK and
DELAY_UNTIL (xcalendar.a).

References
Machine Code Insertions, package MACHINE_CODE, and package
UNSIGNED_TYPES, SPARCompiler Ada Programmer’s Guide

1-18 SPARCompiler Ada Reference Guide

1

1.1.5 verdixlib

The SC Ada library verdixlib contains Ada packages that provide
mathematical functions and other capabilities to the user. These packages are
proprietary to SunSoft. Both verdixlib and standard are automatically on
the path of any SC Ada library created by a.mklib (unless a parent library is
given), making their packages available to user programs. Additional
information is supplied in the header of each package specification file.

Note – Do not recompile the files in this directory.

COMMAND_LINE provides easy access to the command line arguments used to
invoke a program. These closely follow the C language conventions and enable
the program to access the environment variables as well (cmd_line.a).

COMPLEX_ARITH provides functions for complex value arithmetic using
generic floating types and functions for composition and decomposition of the
complex data type (complex_body.a , complex_spec.a).

DATES provides functions for commonly-used manipulations of dates
(dates.a , dates_b.a).

MATH provides mathematical constants, exponential, logarithmic, circular
trigonometric, inverse circular trigonometric, hyperbolic trigonometric, polar
conversion, and Bessel functions (math_spec.a , math_body.a).

ORDERING provides various generic sorting and permutation routines and is
instantiated with a variety of data types (ordering_b.a , ordering_s.a).

REPORT provides functions for reporting the pass/fail/not-applicable results of
tests (report_spec.a , report_body.a).

UNIX_CALLS provides Ada language routines for performing many of the
most common and useful UNIX system calls (unixcallspec.a ,
callbody.a).

SPARCompiler Ada Files and Libraries 1-19

1

1.1.6 publiclib

publiclib contains public domain and other Ada packages not supported by
SunSoft but used in programming. Complete source code is provided. The
headers of the package specification files supply additional information.

BIT_FLG_FIX provides integer to bit-field conversions. It is used with CURSES
(bit_flg_fix.a).

C_PRINTF is an implementation of printf for C programs converted to Ada
(c_printf.a , c_printf_b.a).

C_TO_A_TYPE provides Ada equivalents for C types (c_to_a_type.a).

CHARACTER_TYPE provides character class comparisons like the C ctype
macros (char_type.a).

CURSES is an interface to the curses library (curses_body.a ,
curses_spec.a).

U_RAND is a package implementing a random number generator (u_rand.a).

VSTRINGS is a package implementing variable length strings
(vstring_body.a , vstring_spec.a).

1-20 SPARCompiler Ada Reference Guide

1

1.1.7 examples

examples is a directory containing SC Ada programming examples using the
libraries listed above. Each file contains directions on compiling and linking its
program. Copy the files to a user Ada library and compile.

alloc_exer.a
alloc_exer_b.a Memory allocation exercise package

arguments.a Tests the COMMAND_LINE interface in verdixlib

convert.a
convert.cmp
convert_b.a
convert_b.cmp
convert_b.deb
convert_b.deb1
convert_s.a
convert_s.cmp
convert_s.cmp1
iio.a
test_convert.a Files needed to complete the compiler and debugger

tutorials

build_iface .a routine to build interface code for any subroutine
called from C or FORTRAN

date.a Show date/time using package CALENDAR from
standard library

example_exer.a Example main program that uses memory allocation

hanoi.a Tower of hanoi with screen-oriented display

hello.a Prints Hello, world.

mortgage.a Uses the package MATH from verdixlib

permute_list.a Uses the package ORDERING from verdixlib

phl.a A screen-oriented implementation of dining
philosophers

queens.a Solve the eight queens problems

SPARCompiler Ada Files and Libraries 1-21

1

random.a Use CALENDAR from standard to generate random
numbers

README Guide to example programs

.menu
slidedoc01
slidedoc02
slidedoc03
slidedoc04
slideshow.a Show interface to CURSES in publiclib

sort_file.a A tree-based sort program for text files

sort_ints.a Sort files of integers using TEXT_IO and ORDERING

termbody.a
termspec.a Terminal interface, used by HANOI

.cal
uc.1.man
uc.p
uctran.a A calendar reminder program

xview_examples Example programs that exercise a variety of XView
packages.

1-22 SPARCompiler Ada Reference Guide

1

SC Ada User Libraries — libraries created for source file compilations

Definition of an SC Ada Library
Often, a library is described as a file or directory that contains a set of
specialized routines for a particular application or development system. While
this is true for Ada, libraries have a more specialized meaning; they are
directories that are initialized to contain subdirectories and files that are
required by the development system before an Ada source file is compiled in
that directory. Because they are normal directories, libraries contain any
number of items besides Ada source code, and SC Ada files. The specialized
files and directories that reside in an SC Ada library are shown in Figure 1-1.

Figure 1-1 SPARCompiler Ada Library Contents

All Ada source file compilations occur in an SC Ada library. SC Ada includes a
complete set of tools for creating, managing, and deleting libraries.

Every directory converted to an SC Ada library contains the ada.lib ,
grnx.lib , and GVAS_table files and the directories .imports , .objects ,
.nets , and .lines . Before you compile a program in a directory, run
a.mklib on that directory, converting it to an SC Ada library and be sure
these files and directories are present. If you attempt to use the compiler from
a directory that is not an SC Ada library, the compiler fails.

SPARCompiler Ada Library Contents
files

ada.lib

grnx.lib

GVAS_table .imports

.objects

.lines

.nets

directories

SPARCompiler Ada Files and Libraries 1-23

1

The following sections describe each of the SC Ada library files and
subdirectories.

References
SC Ada library management tools, SPARCompiler Ada User’s Guide

1-24 SPARCompiler Ada Reference Guide

1

1.1.8 ada.lib File

The ada.lib file is a user-modifiable file that contains file mapping
information, library search path information, and linker directives. Use
a.cleanlib , a.info , a.mklib , a.mv , a.path , a.rm or a.rmlib to modify
the ada.lib file.

A description of the ada.lib file is useful in understanding compiler
operation.

Figure 1-2 is a sample ada.lib file:

Figure 1-2 Example of ada.lib File

The first line is an internal identification of the file and must not be changed.

The second line contains the library search list, an ordered list of predecessor
libraries. Line length is restricted only by the line length limitation of the
system. Multiple ADAPATH lines are allowed.

Subsequent lines in the ada.lib are of four types: INFO directives, LINK
directives, DEFINE directives, INCLUDE directives, and compilation results.
Each of these lines has at least three fields separated by colons and the line
ends with a colon.

INFO directives have the word INFO in the second field, a name of some
significance to the compiler and other SC Ada tools in the first field, and a
value in the third field.

LINK directives have the word LINK in the second field. The first field is a
name (having some specific meaning to the linker) or the word WITHn
directing the linker to link the value in the third field (a filename or library)
each time a program is linked using this library.

!ada library
ADAPATH= /ada_location/self/verdixlib
/ada_location/self/standard
HOST:INFO:host_name:
LIBRARY:LINK:/ada_location/self/standard/.objects/library_name:
 UNIX_HOST:DEFINE:BOOLEAN:TRUE:
hex 1F32ECD2:YNLPS#:hex01:
hex 1F32ECE4:XNLPB#:hex_b01:
low_level_io_2A0CF1E3:YNLPS#:lowlevel_io01:
low_level_io_2A0CF1DA:XNLPB#:lowlevel_io02:

SPARCompiler Ada Files and Libraries 1-25

1

DEFINE directives have the word DEFINE as the second field.

INCLUDE directives have the word INCLUDE as the second field. The first field
is the source filename. The third field is the include filename. This directive is
the result of a successful compilation in a library when preprocessing is
enabled.

Although we have just discussed the format of directives in the ada.lib file,
you seldom need to change these directives. This information is presented to
help you understand the role of directives. Typically, you create a master
ada.lib file and reference that master file for your compilations.

Other lines in an ada.lib file are the result of a compilation (or attempted
compilation) in the library and have this form:

 unit:type
time_created: ada_library_file : suffix_value :[pathname:]

For example, in this line from the ada.lib :

 low_level_io_2A0CF1DA:XNLPB#:lowlevel_io02:

low_level_io is the name of the compiled unit. XNLPB# is the type field
explained below. 2A0CF1DA is an 8-digit hexadecimal number indicating the
time the unit is created and lowlevel_io02 is the name of files created at
compile time in the .nets , .lines , and .objects directories. The name of
these files and the name of the unit correspond to the name of the source file,
in this case, lowlevel_io.a . The example above has no suffix_value because
the suffix of the source file matches the machine’s default suffix (.a). If the
extension does not match the default, it is listed here. The default suffix can be
changed using the DEFAULT_SRC_EXT_INFO directive. The example above has
no pathname because lowlevel_io.a is in the current directory. If the source
is in a different directory, /rc/test for example, it is represented in the
ada.lib as:

low_level_io_2A0CF1DA:XNLPB#:lowlevel_io02:/rc/test/lowlevel_io.a:

The ada.lib file contains one entry for each unit specification or body; unit is
always recorded in lower case. The value field is a concatenation of the
filename containing the unit and a 2-character sequence incremented for each
Ada library entry from a particular file. The type field contains a combination
of letters that categorize the unit. The manner in which the letters are used
divides them into three groups. The groups and meanings are listed here.
(a.ls presents this information in a more user-readable form.)

1-26 SPARCompiler Ada Reference Guide

1

The type field can begin with zero or more of the following special characters:

L Arises from pragma LINK_WITH

V Indicates INCLUDE file dependence

W Shadow body, dummy body for a spec which does not
need a body

X The package has elaboration code

Y The unit cannot raise exceptions (no exception table is
needed)

Z Designates both X and Y

D Defines an inline

U Uncompiled (See NOTE below.)

M Can be a ‘main' program

T Has a task

E pragma ELABORATE

B No body needed

R Unit contains the body of a generic

Note – ‘Normal' is a place holder that means “not generic, not an instantiation,
and not shared.” An uncompiled unit (special character U) is entered into the
ada.lib file when the compiler is invoked with the -d option. An uncompiled
unit is entered into the ada.lib file when the -f option to a.make is used.

SPARCompiler Ada Files and Libraries 1-27

1

The last four characters of the type field contains one letter from each of the
following four columns:

Note – All type entries are padded to a minimum length of 6 characters. The
pad character is #.

Examples:

MNLSS# Possible main program, normal library-level subprogram
spec

NLPB## Normal library-level package body

UNSTB# Uncompiled normal separate task body

GLPS## Generic library package spec

Entries for generic instantiations have a slightly different form giving the
generic names and a sequential number concatenated into INSTXX in the value
field. The following example illustrates a typical entry for an instantiation:

float_io$text_io$27:SLPB#:INST28XX:

This indicates a shared instantiation of package FLOAT_IO from package
TEXT_IO rather than the generic body.

References
[ChapNumber,ChapNumberA]>-44
[ChapNumber,ChapNumberA]>-51
“a.make — recompile source files in dependency order” on page 2-60
[ChapNumber,ChapNumberA]>-45

1 2 3 4

N normal L library S subprogram S spec

G generic S separate P package B body

I instantiation T task

S shared

1-28 SPARCompiler Ada Reference Guide

1

1.1.9 GVAS_table File

The GVAS_table file keeps track of which virtual addresses are free. The
attachment of a virtual address to each compiled unit enables the SC Ada
compiler to reuse information about compiled units rapidly.

The GVAS (Global Virtual Address Space) holds the DIANA nets for your Ada
code. DIANA is the data structure that SC Ada uses to represent the separate
compilation information for each compiled unit. The files containing this
information are known as DIANA nets or nets files. Each SC Ada library has its
own GVAS. The GVAS is large but it is possible that all the GVAS for a library
become allocated. If this happens, the compiler reports that the GVAS is
exhausted and begins reusing previously allocated space. Compilation times
can increase due to relocation of DIANA nets which are expensive. If this occurs
and the message “GVAS exhausted” is displayed, use a.cleanlib to clear
your GVAS. Note that you must recompile units in this library after running
a.cleanlib .

gnrx.lib File
The gnrx.lib file contains a descriptor for each generic body, for each request
for a generic instantiation, and for each actual generic instantiation. This file,
like GVAS_table and ada.lib , is maintained and used by the compiler.

The file gnrx.lib is a binary file and is not readable.

.imports Directory
The files in the .imports of an Ada library can consume large amounts of
disk space. The compiler and the tools can operate without the .imports
directory being present.

The .imports directory is a DIANA net cache, which holds nets from other
Ada libraries that you have with ed in this library. For example, if your
program says “with text_io;” then the compiler imports the net for
TEXT_IO into the .imports directory.

Each Ada library has a Global Virtual Address Space (GVAS) assigned to it. As
units are compiled, the net that is generated is put at a specific area in the
appropriate GVAS. When a net is brought in from another library because of an
Ada with statement, it is relocated into the local GVAS. This relocated net is
put into the .imports directory so it does not need to be relocated each time
units that with the net are recompiled, making recompilations faster.

SPARCompiler Ada Files and Libraries 1-29

1

If nets are assigned to the same GVAS address in the importing library, no new
net copy is made. However, a small file is created reflecting the position of the
net.

Each net in the .imports directory is slightly different from the original net in
the parent library because they occupy different GVAS areas. When you remove
nets from the .imports directory the compiler must re-import and relocate
the nets when recompiling the units that with them. If you remove the
.imports directory, the compiler must relocate the net every time it
recompiles, which extends compilation time but is not burdensome normally.

If you are not compiling in your Ada libraries often, conserve disk space by
cleaning the .imports directory.

.objects Directory
The .objects directory contains the object files generated for each Ada
compilation unit in the library. The .o file is a special object module created by
a.ld that contains information required for linking. The 01, 02, etc. files are
object module files created for each compilation unit.

.nets Directory
The .nets directory contains files holding the separate compilation
information for each compiled unit. SC Ada uses the DIANA intermediate
representation for each unit and stores this representation in the directory
.nets . These files are referred to as ‘net' files in this document.

References
[ChapNumber,ChapNumberA]>-4
“Overview of System Components,” SPARCompiler Ada User’s Guide

.lines Directory
The .lines directory contains line number reference files for use by the
debugger and disassembler. This information appears only in the .lines files
and is not present in the executable. The debugger and disassembler use these
files to map address and lines in the source code. Files in the .lines directory
are binary.

1-30 SPARCompiler Ada Reference Guide

1

1.1.10 .LINK_INFO and .MAKE_INFO Files

Each invocation of a.ld (and later a.make) writes a file named .LINK_INFO
(or .MAKE_INFO) in the SC Ada user library. These files contain summaries of
the dependency analysis of the last link or make, as well as the elaboration
order. This information is used in later links or makes to reduce prelink and
make times.

2-1

Command Reference 2

SC Ada includes the components listed. The reference manual pages that
follow are arranged alphabetically,

ada Invoke the Ada compiler

a.app Invoke the Ada preprocessor

a.ar Create an archive library of Ada objects

a.cleanlib Reinitialize library directory

a.cp Copy unit and library information

a.das Disassemble object files

a.db Debug Ada and C source code programs

a.du Summarize disk usage for Ada libraries

a.error Analyze and disperse error messages

a.header Print the information stored in a unit net header

a.help Invoke an interactive help utility for SC Ada

a.info List or change SC Ada library directives

a.ld Build an executable program from previously compiled units

a.list Produce a source code listing

a.ls List compiled units

a.make Recompile source files in dependency order

“Men have become the tool of their tools.”

Thoreau

2-2 SPARCompiler Ada Reference Guide

2

a.mklib Create an SC Ada library directory

a.mv Move unit and library information

a.path Report or change an SC Ada library search list

a.pr Format source code

a.prof Analyze and display profile data

a.report Report SC Ada deficiencies

a.rm Remove an Ada unit from a library

a.rmlib Remove a compilation Ada library

a.symtab Display symbol information for all static package variables and
constants

a.tags Create a source file cross reference of units

a.vadsrc Display versions and create a library configuration file

a.version Display if licensed for Multithreaded Ada

a.view Provide aliases and history for a C shell user

a.which Find a compiled unit

a.xref Print cross-reference information for a given Ada unit or library

(Continued)

Command Reference 2-3

2

ada — invoke the Ada compiler

Syntax
ada [options] [source_file]... [object_file.o]...

Arguments
object_file.o

Non-Ada object filenames. These files are passed to the linker and are linked
with the specified Ada object files.

options
Options to the compiler are:

-A
(disassemble) Disassemble the units in the source file after compiling them.
Follow -A with arguments that further define the disassembly display (for
example, -Aa , -Ab , -Ad , -Af , -Al , -As).

a
Add hexadecimal display of instruction bytes to disassembly listing

b
Disassemble the unit body [default]

d
Also print the data section (if present)

f
Use the alternative format for output

l
Put the disassembly output in file “filename.das ”

s
Disassemble the unit spec

-a filename
(archive) Treat filename as an object archive file created by ar . Since some
archive files end with .a , -a distinguishes archive files from Ada source
files.

2-4 SPARCompiler Ada Reference Guide

2

-B static/dynamic
(static) If static is indicated, the Ada program is compiled and linked
statically. The default is dynamic.

Follow -A by arguments that further define the disassembly display (for
example, -Aa , -Ab , -Ad , -Af , -Al , -As).) If static is indicated, the Ada
program is compiled and linked statically. The default is dynamic.

-c
(no control) Suppress the control messages generated when pragma PAGE
and/or pragma LIST are encountered.

-D identifier type value
(define) Define an identifier of a specified type and value.

-d
(dependencies) Analyze for dependencies only. Do not do semantic analysis
or code generation. Update the library, marking any defined units as
uncompiled. a.make uses the -d option to establish dependencies among
new files. This option attempts to do imports for any units referenced from
outer libraries. This reduces relocation and disk space usage.

-E
-E directory

(error output) Without a file or directory argument, ada processes error
messages using a.error and directs a brief message to standard output;
the raw error messages are left in source_file.err. If a file path name is given,
the raw error messages are placed in that file. If a directory argument is
given, the raw error output is placed in dir/source.err . Use the file of raw
error messages as input to a.error . Use either -e or -E option.

-e
(error) Process compilation error messages using a.error and send it to
the standard output. Only the source lines containing errors are listed. Only
use one -e or -E option.

-Ef error_file source_file
(error) Process source_file and place any error messages in the file indicated
by error_file. Note that no space is between the -Ef and error_file.

Command Reference 2-5

2

-El
-El directory

(error listing) Same as the -E option, except that a source listing with errors
is produced.

-el
(error listing) Intersperse error messages among source lines and direct to
standard output.

-Elf error_file source_file
(error listing) Same as the -Ef option, except that a source listing with
errors is produced.

-ev
(error vi(1)) Process syntax error messages using a.error , embed them
in the source file and call the environment editor ERROR_EDITOR. (If
ERROR_EDITOR is defined, define the environment variable
ERROR_PATTERN. ERROR_PATTERN is an editor search command that
locates the first occurrence of ‘### ’ in the error file.) If no editor is
specified, vi(1) is invoked.

The value of the environment variable ERROR_TABS, if set, is used instead
of the default tab settings (8).

-F
(full DIANA) Do not trim the DIANA tree before output to net files. To save
disk space, the DIANA tree is trimmed so that all pointers to nodes that did
not involve a subtree that define a symbol table are nulled (unless those
nodes are part of the body of an inline or generic or certain other values to
be retained for the debugging or compilation information). Generally, the
trimming removes initial values of variables and all statements.

-G (GVAS)
Display suggested values for the MIN_GVAS_ADDR and MAX_GVAS_ADDR
INFO directives.

-K
(keep) Keep the intermediate language (IL) file produced by the compiler
front end. The IL file is placed in the .objects directory, with the filename
unit_name.i.

2-6 SPARCompiler Ada Reference Guide

2

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-l file_abbreviation
(library search) This is an option passed to the Solaris 2.1 linker, ld(1)
telling it to search the specified library file. Do not use a space between the
-l and the file abbreviation.

-M unit_name
(main) Produce an executable program by linking the named unit as the
main program. unit_name must be compiled already. It must be either a
parameterless procedure or a parameterless function returning an integer.
The executable program is named a.out unless overridden with the -o
option.

-M source_file
(main) Produce an executable program by compiling and linking source_file.
The main unit of the program is assumed to be the root name of the .a file
(for foo.a the unit is foo). Only precede one .a file by -M. The executable
program is named a.out unless overridden with the -o option.

-N
(no code sharing) Compile all generic instantiations without sharing code
for their bodies. This option overrides the SHARE_BODY INFO directive and
the SHARE_CODE or SHARE_BODY pragmas.

-O[0-9]
(optimize) Invoke the code optimizer. An optional digit (no space is before
the digit) provides the level of optimization. The default is -O4 .

Note – Each level of optimization is cumulative. For example, optimization
level 4 (O4) incorporates all the features of optimization levels 1 through 3,
plus hoisting invariants from loops and address optimizations.

Command Reference 2-7

2

-O
Full optimization.

-O0
No optimization.

-O1
Copy propagation, constant folding, removing dead variables,
subsuming moves between scalar variables.

-O2
Add common subexpression elimination in basic blocks.

-O3
Add global common subexpression elimination.

-O4
Add hoisting invariants from loops and address optimizations.

-O5
Add range optimizations, instruction scheduling, and one pass of
reducing induction expressions.

-O6
No change.

-O7
Add one more pass of induction expression reduction.

-O8
Add one more pass of induction expression reduction.

-O9
Add one more pass of induction expression reduction and add hoisting
expressions common to the then and the else parts of if statements.

Hoisting from branches (and cases alternatives) can be slow and does not
always provide significant performance gains so it can be suppressed.

-o executable_file
(output) This option is used in conjunction with the -M option. executable_file
is the name of the executable rather than the default, a.out .

-P
Invoke the Ada preprocessor.

2-8 SPARCompiler Ada Reference Guide

2

-R ada_library
(recompile instantiation) Force analysis of all generic instantiations, causing
reinstantiation of any that are out- of-date.

-S
(suppress) Apply pragma SUPPRESS to the entire compilation for all
suppressible checks.

-sh
(show) Display the name of the tool executable but do not execute it.

-T
(timing) Print timing information for the compilation.

-v
(verbose) Print compiler version number, date, and time of compilation,
name of file compiled, command input line, total compilation time, and
error summary line. Disk usage information about the object file is
provided. With OPTIM the output format of compression (the size of
optimized instructions) is as a percentage of input (unoptimized
instructions).

-w
(warnings) Suppress warning diagnostics.

source_file
 Name of the source file to compile.

Description
The ada command executes the Ada compiler and compiles the named Ada
source file. The file must reside in an SC Ada library directory. The ada.lib
file in this directory is modified after each Ada unit is compiled.

By default, ada produces only object and net files. If the -M option is used, the
compiler invokes a.ld automatically and builds a complete program with the
named library unit as the main program.

The compiler generates object files compatible with the host linker.

Give non-Ada object files (.o files produced by a compiler for another
language) as arguments to ada . These files are passed to the linker and linked
with the specified Ada object files.

Command Reference 2-9

2

Specify command line options in any order, but the order of compilation and
the order of the files to be passed to the linker can be significant.

Several SC Ada compilers can be simultaneously available on a single system.
Because the ada command in any ada_location/bin on a system executes the
correct compiler components based upon visible library directives, the option
-sh option prints the name of the components actually executed.

a.db or a.das generate program listings with a disassembly of machine code
instructions.

Note – If two files of the same name from different directories are compiled in
the same Ada library using the -L option (even if the contents and unit names
are different), the second compilation overwrites the first. For example: The
compilation of

/usr2/directory2/foo.a -L /usr2/ada_2.1/test
overwrites the compilation of

/usr2/directory1/foo.a -L /usr2/ada_2.1/test
in SC Ada library /usr2/ada_2.1/test .

Diagnostics
The diagnostics produced by the SC Ada compiler are intended to be self-
explanatory. Most refer to the Ada Reference Manual. Each Reference Manual
reference includes a section number and, optionally, a paragraph number
enclosed in parentheses.

2-10 SPARCompiler Ada Reference Guide

2

References
“a.app — preprocess Ada source” on page 2-11
“a.das — disassemble object files” on page 2-20
“a.db — debug Ada and C source code programs” on page 2-23
“a.error — analyze and disperse error messages” on page 2-31
“a.ld — build an executable program from previously compiled units” on
page 2-53
“a.info — list or change SC Ada library directives” on page 2-42
“a.make — recompile source files in dependency order” on page 2-60
“Syntax” on page 2-66
optimizations, SPARCompiler Ada User’s Guide
Ada preprocessor, pragma OPTIMIZE_CODE, and
suppress checks (pragma suppress), SPARCompiler Ada Programmer’s Guide
ld(1) , Solaris Developer Documentation

Command Reference 2-11

2

a.app — preprocess Ada source

Syntax
a.app [options] [in_file [out_file]]

Arguments
in_file

Name of the Ada source file to preprocess.

options
Options to the a.app command are:

-D identifier type value
(define) Define an identifier of a specified type and value.

-L library_name
(Library) Operate in SC Ada library library_name (the current working
directory is the default).

-s
(strip) Strip control and inactive lines from the output source.

-w
(warnings) Suppress warning diagnostics.

out_file
Name of the output file.

Except for the -s (strip) option, which is available only when invoking a.app
directly, these options are recognized by ada .

2-12 SPARCompiler Ada Reference Guide

2

Description
Invoke the Ada preprocessor by either including the -P option on the
command line of the invocation of ada , a.make , and a.tags , or by including
the APP INFO directive in the ada.lib .

The syntax of the INFO directive is:

APP:INFO: boolean_value:

If boolean_value is set to TRUE, the compiler invokes a.app automatically
before compiling the source; any other value for boolean_value has no effect.

The -P option to ada takes precedence over the APP INFO directive.

When the compiler invokes a.app , it creates a temporary output file and
discards it at the end of the compile. All diagnostics are in reference to the
original input file. If an error is encountered, then out_file is not created.

If no files are specified on the command line, they default to standard input
and standard output.

References
“a.info — list or change SC Ada library directives” on page 2-42
preprocessing Ada programs, SPARCompiler Ada Programmer’s Guide.

Command Reference 2-13

2

a.ar — create an archive library of Ada object files

Syntax
a.ar [options] [-L library_name] archive_name [unit_name]

[-O object_list]

Arguments
archive_name

 Name of the archive library to be created.

options
Options to a.ar are:

-A
(all) Include in the archive objects from all libraries on the ADAPATH.

-f
(force) Create the archive even if some units are out-of-date or need
elaboration.

-L library_name
(library) Find the specified unit in library library_name (or use all units in
library library_name if no unit_name is specified).

-O object_list
(objects) Add the objects in object_list to the archive.

-s
(suppress) Suppress error and warning messages regarding units that are
out-of-date or need elaboration. It must be used in conjunction with -f .

-sh
(show) Display the name of the tool executable to do not execute it.

-V
(verify) Print the archiving commands without executing them (the archive
is not created).

-v
(verbose) Print the archiving commands prior to executing them.

unit_name
Name of an Ada unit.

2-14 SPARCompiler Ada Reference Guide

2

Description
When used below, “closure” is defined as the set of units that contains:

• Named unit specification

• All units named in the context clause of the specified unit

• Its parent, if the specified unit is a subunit

• Bodies for all units in the closure

• Subunits for all units in the closure, if any exist

• Instantiations created by all units in the closure, if any exist

• All units named in the context clause of all units in the closure

If a unit name is specified, a.ar creates an archive library of all objects
corresponding to the units in the closure of unit unit_name. By default, only
those objects in the current SC Ada library (i.e., the current working directory
or the library specified by -L library_name) are added to the archive. If an
object is in the closure but is located in a library that is on the current library
ADAPATH, it is added to the archive only if the -A option is specified.

If no unit_name is specified, all objects in the current SC Ada library are
included in the archive. Again, objects that are in the closure but do not reside
in the current library are included in the archive only if the -A option is
specified.

a.ar invokes the UNIX tool ar to create the archive library.

Note that elaboration code is not executed for Ada units that are extracted
from an archive library. Thus if a unit requiring elaboration is linked in this
manner, the elaboration is not performed and the program may be erroneous.
By default, a.ar generates an error message if any object to be added to the
archive requires elaboration, and the archive is not created. The -f option
forces a.ar to create the archive, including in it the object requiring
elaboration However an error message generates unless the -s option, which
suppresses error messages, is used.

If any units whose objects are to be included in the archive are determined to
be out-of-date, an error message generates and the archive is not built. Again,
-f forces a.ar to create the archive, including these out-of-date units (and -s
suppresses any error messages).

Command Reference 2-15

2

Be careful when using the -f option to force into the archive units that are
out-of-date or needing elaboration. Any such erroneous unit linked in your
program can make your program erroneous.

The -O option adds objects to the archive that not normally included by a.ar
(e.g. non-Ada object files). This option must come after the archive and unit
names on the command line.

2-16 SPARCompiler Ada Reference Guide

2

a.cleanlib — reinitialize library directory

Syntax
a.cleanlib [options] [ada_library]

Arguments
ada_library

Name of the library in which a.cleanlib is to operate. If no library is
specified, the current working directory is assumed.

options
Options to the a.cleanlib command are:

-c
(check) Remove all erroneous libraries from ADAPATH [default].

-F
(force name) Allow the cleaning of an SC Ada library having a reserved
name.

-f
(force) Clean the SC Ada library structure even if components are missing or
if lock files exist.

-v
(verbose) Report libraries removed. The -v option provides output only
when used with -c .

Description

The command empties the files ada.lib , gnrx.lib , and GVAS_table of all
separate compilation information and removes the contents of the directories
.imports , .nets , .lines , and .objects from the named library or, if no
library is specified, from the current library directory. a.cleanlib preserves
all library directives in the ada.lib .

a.cleanlib preserves all non-compilation information contained in
ada.lib , including the library search list and any directives.

If a.cleanlib cannot find every library component, it aborts without
removing any information unless the -f (force) option is given.

Command Reference 2-17

2

The -F option allows a.cleanlib to clean a library having a reserved name
(standard , verdixlib , publiclib).

Files

References
“Syntax” on page 2-66
“a.rm — remove an Ada unit from a library” on page 2-83

ada.lib Library reference file

gnrx.lib Generic instantiation reference file

GVAS.lock, gnrx.lock Lock the library while reading or writing special
library files

GVAS_table Address assignment file

.imports Imported Ada units directory

.lines Line number reference files directory

.nets SC Ada DIANA net files directory

.objects SC Ada (global) object files directory

2-18 SPARCompiler Ada Reference Guide

2

a.cp — copy unit and library information

Syntax
a.cp unit_name [, ...] [options] target_directory
a.cp source_file [, ...] [options] target_directory

Arguments
options

Options to the a.cp command are:

-b
(body) Copy the bodies of the named units.

-F
(force name) Enable copy of units to protected libraries, that is, standard ,
verdixlib , publiclib .

-f
(force) Do not report matching errors if unit name is not found.

-L library_name
(library) Copy from SC Ada library library_name (the current working
directory is the default).

-s
(spec) Copy the compilation information for the specifications of the named
units.

-u
(unit) Force the next name to be treated as a unit even if it contains a period
(.).

-V
(verify) List the units to copy but do not copy them.

-v
(verbose) List the units as they are copied.

source_file
Name of an Ada source file.

Command Reference 2-19

2

target_directory
Directory to which the unit and library information is copied. This directory
must be an SC Ada library.

unit_name
Name of an Ada unit or subunit. Unit names with dotted notation such as
aaa.bbb or aaa.bbb.ccc are interpreted as the names of Ada source files
unless the -u option is specified.

Description
Executing a.cp copies all information associated with the named unit(s) or
file(s). When a unit is specified, the corresponding .nets , .lines , and
.objects files are copied, and the ada.lib entries are copied for the affected
unit(s).

When source_file is specified, the corresponding files in .nets , .lines , and
.objects are copied for each unit defined in source_file, and the appropriate
entries are created in the ada.lib file in the target directory.

A variety of options copy specifications and bodies separately. The -u (unit)
option enables references to units whose names contain a period (.). Without
the -u option, a name containing a period is treated as a source filename.

You can specify unit_name and source_file with regular expressions. For
example, a.cp “f*” copies all units beginning with the letter “f .” The
command, a.cp “f*.a” copies units in source files that begin with the letter
“f.”

References
“a.ls — list compiled units” on page 2-58
“a.mv — move unit and library information” on page 2-69

2-20 SPARCompiler Ada Reference Guide

2

a.das — disassemble object files

Syntax
a.das [options] unit_name
a.das -E value - n object_file

Arguments
object_file

Name of object file to disassemble. Use this argument with the -n option.

options
Options to the a.das command are:

-A
(assembly) Output the entire source file with the assembly listing.

-a
(all) Add hexadecimal display of instruction bytes to disassembly listing.

-b
(body) Disassemble the indicated subprogram body. [default]

-d [format]
(data) Print the data section (if present). Follow -d by arguments that
indicate the output format, one from each of the following two groups:

B or b in bytes
W or w in words
L or l in longwords

x hexadecimal output
d decimal output

With no arguments, the -d option defaults to -dWx . No space is required
between the -d and the qualifying letters.

-E value
Specify the endian value for targets that support both big and little endian.
value is b for big endian and l for little endian. Default: [b].

Command Reference 2-21

2

-f
(format) Specify an alternative format for output. Use of the -f option takes
the tabs out of the disassembly output. The default has the disassembly
tabbed in, so the source lines are closer to the left margin.

-i
(instructions) Print the number of machine code instructions generated for
each line of source code. -i can be followed by arguments that indicate the
output format:

d Do not print the disassembly, just print the instruction count.

n Order the output by source line number. The default orders the
output by instruction count.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-n object_file
(no source) Disassemble object files. No SC Ada library files are required.

-p
(profiling) Read the mon.list file (generated by a.prof -d) and insert
source line execution percentages in listings.

-S source_file
(source) Disassemble all units in the named source file.

-s
(spec) Disassemble the indicated subprogram specification.

-sh
(show) Display the name of the tool executable but do not execute it.

unit_name
Ada unit name. If a.das is not run from within the SC Ada library
containing the unit, the -L command must be used to name the library
where the unit is held.

2-22 SPARCompiler Ada Reference Guide

2

Description
a.das is an object module disassembler that interleaves Ada source lines and
assembler instructions. Unlike disassembling from within a.db , it needs no
target hardware to operate. a.das disassembles any Ada unit except those
containing generics. Without the -s or -b option, it disassembles the given
unit body.

a.das requires only the Ada unit_name when run from the SC Ada library
containing the unit.

a.das disassembles object files produced by the compiler when it is invoked
using the -n option and naming the file directly.

List the data section (if present) in various forms with the -d option.

ada_location/bin/a.das is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This enables
multiple SC Ada compilers to exist on the same host. The -sh option prints the
name of the actual executable file.

References
“Instruction and Source Submodes” on page 3-134

Command Reference 2-23

2

a.db — debug Ada and C source code programs

Syntax
a.db [a. db_options] [executable_file [executable_file_options]]

Arguments
a.db_options

Options to the a.db command are:

-a PID
Invoke the debugger on the currently executing process (PID). The debugger
does not join the process group of that process. Use ps or jobs to get the
PID.

-ag PID
Invoke the debugger on the currently executing process (PID). The debugger
does join the process group of that process. Use ps or jobs to get the PID.
This enables Control-c.

-c
Debug C programs. This option avoids error messages relating to missing
Ada libraries.

-e entry_point
(entry) Specify the program entry point. This option starts a program at an
address different than the default starting address.

-I argument_list
(interface) Pass arguments defined in argument_list down when the
debugger interface process is invoked.

-i filename
(input) Read input from the specified file.

-L library_name
(library) Read program compilation information from the specified library,
rather than the current directory, as though you were operating in the
specified library. This option is for debugging Ada programs only.

-N target_node
(node) Specify target node name to supercede the VADS_TARGET_NAME
environment variable.

2-24 SPARCompiler Ada Reference Guide

2

-r “executable_file [executable_file_options] ”
(run) Initialize set run with executable_file and executable_file_options.

-sh
(show) Display the name of the debugger executable but do not execute.
This option is useful if multiple version of SC Ada are on a system.

-t filename
(terminal) Read terminal state from a file. Used only when the debugger is
being run in the background.

When the debugger runs in the background, it cannot reliably get the state
of the controlling terminal, as that state changes as you run other programs
in the foreground. However, the output of the program being debugged
depends on the set up of your terminal. To ensure that the output is
displayed in a consistent way, we provide the program tty_state in
ada_location/sup/diag . tty_state must be run in the foreground and it
dumps the terminal state to a file. Invoke this program as follows:

tty_state -f filename -w

Supply that same filename to the debugger with the -t option. Note that
you can print the tty state that is written to filename by typing:

tty_state -f filename -r

-v
(visual) Invoke the screen-mode debugger directly.

executable_file
Name of file to execute and debug. If executable_file is not specified, the
debugger searches for a.out . If only a root filename is given (foo , as
opposed to /vc/sbq/foo), the debugger searches the directories on the
PATH environment (exported) variable for an executable file foo just as the
shell does. Note that if “.” is not on your PATH, you must enter a.db ./foo .

Command Reference 2-25

2

executable_file_options
Command line options that pertain to the executable_file being debugged. All
command line options that follow the name of the executable are assumed
to belong to the program being debugged.

References
command file input, display debugger executable, executable file, invoking the
debugger, and screen mode, SPARCompiler Ada User’s Guide
“screen mode — screen-oriented debugger interface” on page 3-132

Description
a.db is a symbolic debugger for SC Ada and for C programs. On the
Solaris 2.1 operating system, C programs must be compiled with both the -g
option and the -xs option to be compatible with the SC Ada debugger.

Specify invocation options to the debugged program on debugger invocation.

Note – All command line options that follow the name of the executable are
assumed to belong to the program being debugged.

The -r option provides a means to disambiguate options to the debugger and
options to the executable file as they are interpreted by the shell on subsequent
invocations of the debugger. The -r option initializes set run to a string
made up of the executable_file and the executable_file_options enclosed in quotes.
Enclosing shell commands that pertain to the executable file within the quotes,
output redirection for example, ensures that they are not interpreted by the
shell to apply to the debugger itself.

Any single unit or token on the command line can be up to 511 characters long.

Detailed descriptions of interactive a.db commands are provided in this
reference, which is available also online using a.help or the debugger internal
help command.

Use the quit command to leave the debugger and return to the shell.

References
debugging C programs, SPARCompiler Ada User’s Guide

2-26 SPARCompiler Ada Reference Guide

2

Invocation File
In addition to the invocation line, supply parameters to a.db using a .dbrc
file. During debugger initialization, a.db checks for ./.dbrc . If that does not
exist, it checks for $HOME/.dbrc . The .dbrc file contains only set
commands. These commands execute before any other commands, including
those in the input file specified on the command line but not before command
line options.

A set source command in the .dbrc file can specify the location of an
ada.lib for the debugging session other than the default ada.lib . If a set
source command is present, the debugger searches the directories specified in
the set source command for the first directory that contains an ada.lib .
The debugger uses that directory to obtain the DIANA net files and the line
number files produced by the compiler.

References
“set — set debugger parameters” on page 3-142

Start-up Environment
The debugger establishes the debugging environment when it starts up.
Certain key parameters are displayed on the screen to verify what and where it
is debugging. See Figure 2-1.

Figure 2-1 Example of Debugger Start-up Environment

The first line of the example is the invocation of the debugger on the file phl ,
the dining philosophers program copied from the examples directory and
compiled.

% a.db /vc/wheels/atst/phl
Debugging: /vc/atst/phl
ada_library: /vc/atst
library search list:/vc/wheels/atst
 /usr2/ada_2.1/self/verdixlib
 /usr2/ada_2.1/self/standard
 /vc/install/build/tasking
>

Command Reference 2-27

2

The first line of output shows the full path and name of the program being
debugged. set source is initialized to this path automatically. set run is
initialized to this path with the executable name automatically. This facilitates
subsequent invocations of the debugger on this executable file. Any options
that follow the executable filename are assumed to be for the executable and
are sent to set run unless the -r option is used.

The ada_library is the name of the SC Ada library directory used for this
debugging session.

The library search list is derived from the ada.lib file in the ada_library. It
shows the Ada library directories that are searched when the debugger looks
for an Ada unit. The search list prints in the same order that the debugger
searches it.

The last line, “>,” is the debugger prompt.

References
Ada library directory, SPARCompiler Ada User’s Guide

Redirecting Program and Debugger Input/Output
Normally the debugger reads from the terminal. By using the following
redirection options to a.db , redirect standard input, standard output, and
standard error to a file.

<filename Direct input to the debugger from filename.

>filename Direct output from the debugger to filename.

>& filename Direct debugger output and error messages to filename.

2-28 SPARCompiler Ada Reference Guide

2

Two restrictions exist to using redirection:

• You cannot use screen mode when debugging input is a file.

• Your program cannot share the debugger input file. Use set input
filename or set run < filename to set the input file for your program. A
sample debug.in file is:

Run the debugger in background by appending & to the invocation line. For
example:

a.db my_prog < debug.in >& debug.out &

Or, if my_prog has input parameters, use the debugger -r option:

a.db -r “ my_prog my_prog_options” < debug.in >& debug.out &

References
redirecting input/output SPARCompiler Ada User’s Guide

Files

set input debug.in
load
r
quit

ada.lib Library reference file

gnrx.lib Generic instantiation reference file

GVAS.lock, gnrx.lock Lock the library while reading or writing special
library files

GVAS_table Address assignment file

.imports Imported Ada units directory

.lines Line number reference files directory

.nets Ada network control files directory

.objects Ada object files directory

Command Reference 2-29

2

a.du — summarize disk usage for Ada libraries

Syntax
a.du [options] [ada_library, ...]

Arguments
ada_library

Name(s) of the SC Ada library in which to operate. [Default: current
working directory]

options
Options to the a.du command are:

-i
(imports) Display only information for imported units.

-f
(force) Display information even if the library is incomplete.

-v
(verbose) Display information in verbose mode.

Description
a.du lists the size in bytes for all compiler-generated files in the specified
SC Ada libraries. If no library is specified, the current directory is assumed.

Default output is in six columns without headers:

1. Size of files in .nets directory
2. Size of files in .objects directory
3. Size of files in .lines directory
4. Spec or body
5. Unit name
6. Source file (if any)

The -v option prints headers and additional information.

ada_location/bin/a.du is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This enables
multiple SC Ada compilers to exist on the same host.

2-30 SPARCompiler Ada Reference Guide

2

Files

GVAS_table Address assignment file

.imports Imported Ada units directory

.lines Line number reference files directory

.nets Ada network control files directory

.objects Ada object files directory

Command Reference 2-31

2

a.error — analyze and disperse error messages

Syntax
a.error [options] [error_file]

Arguments
error_file

Name of error file to analyze. This error file is generated by invoking the
ada or a.make command with the -E error_file option.

options
Options to the a.error command are:

-e editor
(editor) Insert the error messages in the source file and invoke the specified
editor.

-f
(force) Force a listing even if pragma LIST(OFF) is encountered.

-l
(listing) Produce a listing on the standard output.

-n
(no) Do not display line numbers.

-s
(short) Display only the error messages and the lines associated with them.

-t number
(tabs) Change the tab settings, overriding the value of the environment
variable ERROR_TABS, if it is set. A default tab setting of 8 is applied if
neither ERROR_TABS nor the -t option is used.

-V
(validation) Do not change formfeeds to a two character representation of
'^''L' . If error_file is not produced by the SC Ada compiler, the output is
similar to that of a.list .

2-32 SPARCompiler Ada Reference Guide

2

-v
(vi) Embed error messages in the source file and call the environment editor
ERROR_EDITOR. (If ERROR_EDITOR is defined, define the environment
variable ERROR_PATTERN. ERROR_PATTERN is an editor search command
that locates the first occurrence of ‘### ’ in the error file.) If no editor is
specified, vi(1) is called.

-w
(warnings) Ignore warnings.

Description
Generally, a.error is called from the ada command, but use it separately.
a.error analyzes and optionally disperses diagnostic error messages
produced by the SC Ada compiler. It looks at the specified error file or
standard input, determines the source file and line number to which the error
refers, determines whether the error is ignored or not, and outputs the
associated source line followed by the error line(s).

a.error inserts the error lines into the source file and invokes the vi(1)
editor if the -v option is given. Error lines placed into files this way are of two
types. The first gives the position of the error and the second identifies it.
Multiple errors on a single line are referenced by sequential alphabetic
characters. See Figure 2-2.

Figure 2-2 Example of a.error Output

Because all error lines are flagged with ### , use the vi(1) editor command
:g/###/d to delete them. However, any source lines containing ### are
deleted also; consequently, do not use ### in any source with which a.error
-v may be used.

In the case of source files with multiple links, a.error creates a new copy of
the file with only one link to it.

 subtype T is range 1..1f;
-----------------^A ###
---------------------------^B ###
--### A: syntax error: “identifier” inserted
--### B: lexical error: deleted

Command Reference 2-33

2

Diagnostics
a.error produces diagnostics indicating no errors if -v is used and no
errors are detected, and no such file or directory if invoked with an
invalid filename.

References
“ada — invoke the Ada compiler” on page 2-3
“a.make — recompile source files in dependency order” on page 2-60

2-34 SPARCompiler Ada Reference Guide

2

a.header — print the information stored in a unit net header

Syntax
 a.header [options] unit_name| net_file_name [-L library_name]

Arguments
net_file_name

Name of the net file to be used.

options
Options to the a.header command are:

-addr
Print the base GVAS address.

-all
Print all information in the net header. [default]

-b
Print the information in the unit body net. [default]

-body
Same as -b .

-cmdline
Print the command line options the unit was compiled with.

-copyright
Print the copyright.

-define
Print the DEFINE directives visible when the unit was compiled.

-deps
Print the list of dependencies for the unit.

-gvas_timestamp
Print the date and time of the GVAS table at the time the unit was compiled.

-info
Print the INFO directives visible when the unit was compiled.

Command Reference 2-35

2

-l
Print additional information, where applicable.

-long
Same as -l .

-L library_name
Find the specified unit in library library_name (or all units in library_name if
no net or unit name is given).

-net
Same as -n .

-options
Print the command-line options and the visible INFO and DEFINE directives
the unit was compiled with. (-options = -cmdline -define -info)

-priority
Print the priority of the unit, if applicable.

-single
Print the information for each dependency on a single line.

-size
Print the size of the DIANA net for the unit.

-s
Print the information in the unit spec net.

-spec
Same as -s .

-sh
Print the name of the tool executable but do not execute it.

-timestamp
Print the date and time the unit was compiled.

-type
Print the string representation for the unit type.

-v
Print labels for the various pieces of information.

2-36 SPARCompiler Ada Reference Guide

2

-verbose
Same as -v .

-version
Print the net version number for the unit net file.

unit_name
Name of Ada unit.

Description
The information listed below is stored in the net file corresponding to a unit.
a.header prints the following information in the order listed:

type
The unit type. The string that categorizes a unit is printed. This string
corresponds to the type field in the ada.lib entry for that unit.

The -l/-long option prints, in parenthesis, an encrypted integer value that
corresponds to the type string, following the string.

timestamp
The date and time the unit was compiled. The 26-character string
corresponding to the date and time, as produced by the UNIX ctime(3v)
routine, is printed.

The -l/-long option prints, in parenthesis, the long integer representation
for the date/time, following the string.

copyright
The copyright message.

net version number
The internal net version number.

GVAS timestamp
The date and time of the GVAS_table file at the time the unit was
compiled. The 26-character string corresponding to the date and time, as
produced by the UNIX ctime(3v) routine, is printed.

The -l/-long option prints, in parenthesis, the integer representation for
the date/time, following the string.

Command Reference 2-37

2

priority
If a unit is a main program (as indicated by the unit type), its priority is
stored in the net. If this information is in the net, its integer value is printed.
If the information is not in the net, nothing is printed.

compilation option size
The number of characters in the string(s) that contain the command line
options, visible INFO directives and visible DEFINE directives the unit was
compiled with.

command line options
The command line options the unit was compiled with. All command line
arguments are printed on a single line, separated by a single space.

INFO directives
The list of INFO directives visible at the time the unit was compiled. Each
INFO directive, of the form name:INFO:value: is printed on its own line.

DEFINE directives
The list of DEFINE directives visible at the time the unit was compiled. Each
DEFINE directive, of the form name:DEFINE:type:value is printed on its
own line.

number of dependencies
The number of units the specified unit is dependent upon.

dependency list
Information regarding each of the units this unit depends on. The default is
to print only the names of these units, with each unit name on its own line.
The -l/-long option causes the following information regarding the units
in the dependency list to be printed as well. Each field, or piece of
information, is printed on its own line. After the direct dependency field, a
blank line is printed to easily group the information regarding each
dependency.

type
The unit type. The string that categorizes a unit, and an encrypted integer
value (in parenthesis), are printed. The string corresponds to the type field
in the ada.lib entry for that unit.

2-38 SPARCompiler Ada Reference Guide

2

 timestamp
The date and time the unit was compiled. The 26-character string
corresponding to the date and time, as produced by the UNIX ctime(3v)
routine, and the integer representation for that date/time (in parenthesis) is
printed.

base GVAS address
The base address the unit net file has been assigned in GVAS. A hexadecimal
value, preceded by a 0x , is printed.

direct dependency
A boolean value indicating whether or not the specified unit is directly
dependent upon this unit. If the unit is on the specified unit WITH list, it is a
direct dependency, and the value TRUE is printed. Otherwise, it is an
indirect dependency and FALSE is printed.

base GVAS address
The base address the unit net file has been assigned in GVAS. A hexadecimal
value, preceded by a 0x , is printed.

size of the DIANA net
The size, in bytes, of the unit DIANA net. A hexadecimal value, preceded by
a 0x , is printed.

By default, a "short" version of all information in the net header is printed,
with no label to indicate the meaning of the information.

The -l/-long option prints some additional information, where applicable, as
described above.

The -v/-verbose option prints labels preceding each piece of information.

Each distinct piece of information has its own option that can be used by itself,
or in conjunction with other options. Unless stated otherwise, each piece of
information is printed on its own line. The information is always printed in the
order as listed above and cannot be changed. For example, the command

% a.header -timestamp -type

always gives the type followed by the timestamp. The order of the options
does not affect the order of the output.

Command Reference 2-39

2

Note that when reading/interpreting the output from a.header , it is
necessary to know whether or not the output contains the priority information
(unless, of course, you are not using the -all option (the default), and did not
specify -priority). You can do this in two ways:

• The unit type string indicates that it is a main unit by the presence of an M in
the string. If the type string contains an M, it is a main unit and the priority
information is contained in the output.

• Invoke a.header -priority unit_name. If no output exists from this
command, the output being read does not contain the priority information.

It is possible to give a specific net file name instead of a unit name. The -n
option indicates that the name given is a net file name and not a unit name.

If neither a unit name nor a net file name have been specified, and
-L library_name is given, the net header information for all units in the library
library_name is given. For each unit, the information as described above is
preceded by the unit and source file name and followed by the string
##########, e.g.,

unit_name1 (source_file1.a)
net header info
##########
unit_name2 (source_file2.a)
net_header_info
##########

ada_location/bin/a.header is a wrapper program that executes the correct
executable based on directives visible in the ada.lib file. Therefore multiple
SC Ada compilers can exist on the same host. The -sh option prints the name
of the executable file.

References
“ada.lib File” on page 1-24

2-40 SPARCompiler Ada Reference Guide

2

a.help — invoke the interactive help utility

Syntax
a.help [options] [subject]

Arguments
options

Options to the a.help command are:

-p pager
(pager) Use pager as the paging program. The complete path name must be
given with surrounding quotes if additional options to the paging program
are desired.

-sh
(show) Display the name of the tool executable but do not execute it.

subject
Name of subject for which help information is displayed. To display a list of
the subjects for which help is available, enter:

% a.help vads_intro

Description
a.help provides on-line help for each of the SC Ada utilities and for debugger
commands and concepts.

Reference manual entries for the compiler and tools are available on-line by using
the man command if the local system administrator has installed them. Obtain
a list of topics by typing:

man ada

Obtain an entry for a specific command with:

man ada_command

Without a specified subject, a.help provides information on use of the help
utility and prompts for additional subject names. Use q to exit from a.help .

Command Reference 2-41

2

Without the -p option, a.help uses the paging program defined by the
environment variable PAGER, requiring the full path name, including
surrounding quotes, for additional options. If PAGER is not defined, the default
is used.

ada_location/bin/a.help is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This enables
multiple SC Ada compilers to exist on the same host. The -sh option prints the
name of the actual executable file.

On-Line Help from the Debugger
Access on-line help for the debugger as well as the compiler and tools during a
debugging session by typing:

help [subject]

or, while in screen mode:

: help [subject]

If the subject is omitted, a list of debugger commands is displayed. Obtain this
overview by typing intro after a help prompt. Get help with the help
command by typing help at a help prompt.

Files
ada_location/sup/help_files/*

References
on-line help in the debugger, SPARCompiler Ada User’s Guide

2-42 SPARCompiler Ada Reference Guide

2

a.info — list or change SC Ada library directives

Syntax
a.info [options]

Arguments
options

Options to the a.info command are:

-a name value
(add) Add the INFO or LINK directive name with the specified value. When
used with the -D option, the -a option requires an additional field:

a.info -D -a name var_type value.

-A[ll]
(all) Search all directories on the path.

-D
Operate on a DEFINE directive. The -D option must appear before a -a , -d ,
-r or -q option on the command line.

-d name [value]
(delete) Delete the INFO or LINK directive name with the specified value. If
no value is specified, all directives of that name are deleted.

-F
(force) Override protection of named libraries to allow changes to directives.

-h [directive_name]
(help) Display help information about valid directives(s). Entering -h with
no parameters displays information about all directives. Entering the name
of a single directive displays information about that directive. Note that you
can also use wildcards in directive_name (e.g., foo*).

-f
Operate in silent mode.

-I
(invariant) List the invariant directives in the library path specified. a.info
disallows the replacing, adding, setting or deleting of invariant directives.
Invariant directives are those directives whose values must not be changed.

Command Reference 2-43

2

-i
(interactive) Operate in interactive mode.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-l
(list) Display visible directives and their corresponding values. [default]

-q name [value]
(query) This boolean function returns TRUE if the directive name exists. If
value is specified, TRUE is returned if the directive name with value exists.

-r name value
(replace) Replace the INFO or LINK directive name with the specified value.

-s name value
(set) Combine the -q and -a or the -q and -r options; that is, query
directive name, and if it is found, replace it with name and value or query
directive name, and if it is not found, add it with value.

-v
(verbose) Display maximum information for visible and hidden directives.

Description
a.info is used to examine, add, delete, replace, and query INFO, LINK , and
DEFINE directives and their values.

An INFO directive is an entry in the ada.lib file that provides information to
the compiler and SC Ada tools regarding the characteristics of the release and
the type of code generated.

A LINK directive is an entry in the ada.lib file that provides information to
the linker.

A DEFINE directive is an entry in the ada.lib file that provides information
to the Ada preprocessor.

2-44 SPARCompiler Ada Reference Guide

2

INFO and LINK directives have the format: name: type: value: DEFINE
directives have an additional field: name:type:var_type:value: name is the name of
the directive. type can be the word LINK , INFO or DEFINE. value is one of the
possible values for the directive of that type. var_type is one of STRING, TEXT,
BOOLEAN, INTEGER or REAL.

Without options, a.info displays all visible directives in the current library.

The -i option executes a.info in interactive mode. In this mode, all
directives that can be added are listed, and all command line actions can be
performed interactively. a.info prompts for the desired directive names and
values. The notation !.* or “” indicates that any value is acceptable. You
cannot change the ADAPATH using a.info in the interactive mode (use
a.path).

Help information describing each of the directives valid on your system is
available through the menu displayed when the -i option is selected. Selecting
the entry, Help on a directive? , displays a list of valid directives.
Selecting a directive name from the list displays syntax and descriptive
information about the directive.

Follow the operating system documentation, ed(1) to form regular
expressions, shown in the options.

INFO Directive Names
SC Ada supports the following INFO directives, which use the indicated
syntax:

APP:INFO :boolean: Automatically invokes a.app

ARCHITECTURE:INFO:value: Generate code optimized for either
Version 7 (VERSION7) or for
Viking (VIKING) architecture.
[Default: VERSION7]

AUTO_INLINE:INFO :boolean: Does automatic inlining

COMMENT:INFO:any_value: Includes user comments in ada.lib

CPU_LIMIT:INFO :cpu_seconds: Limits time used by the front end of the
compiler

Command Reference 2-45

2

DEBUG_XREF:INFO:boolean: Perform extra checks to ensure no
references are being missed or
erroneously added.

DEFAULT_SRC_EXT:INFO:suffix_value: Specify default source file suffix

DEFER_INSTANTIATIONS:INFO :
boolean:

Prevent compiler from performing
body instantiations until explicitly
requested

ENDIAN:INFO:endian_value Specify endian type of target processor

FLOAT_REGISTER_VARIABLES:INFO:
boolean:

Use the floating point registers

HOST:INFO:host_name: Specifies the host system name

MAX_GVAS_ADDR:INFO:integer: Specify the maximum address boundary
of GVAS

MAX_INLINE_NESTING:INFO :integer: Specify the maximum depth of nested
inline subroutine expansion

MAX_VIRTUAL_ADDR:INFO:integer: Specify the maximum address boundary
of virtual memory

MIN_GVAS_ADDR:INFO:integer: Specify the minimum address boundary
of GVAS

MULTISOURCE_FE:INFO:boolean: Accept multiple source files in batches

PARALLEL_CODE_GEN:INFO:boolean: Invoke the fe/optim/cg in parallel,
using pipes for the intermediate
language input and output instead of
temporary files

READ_ONLY_LIBRARY:INFO:boolean Specifies that SC Ada library is not
modifiable.

SHARE_BODY:INFO:boolean: Set default for pragma SHARE_BODY

STATIC_LINKING:INFO :value: Links programs statically (static) rather
than dynamically (dynamic).
[Default: dynamic].

TARGET:INFO:boolean Name of target processor

TARGET_C_LIBRARY:INFO:
library_name:

Name of alternate library to use when
linking

(Continued)

2-46 SPARCompiler Ada Reference Guide

2

APP — This directive, when set to TRUE, causes the compiler to invoke the Ada
preprocessor, a.app , automatically before compiling the source. The -P option
to ada that invokes a.app takes precedence over the directive. If set to FALSE,
this directive has no effect.

ARCHITECTURE — This directive controls whether code is generated for
SPARC Version 7 architecture or SPARC Version 8 (Viking) architecture. Code
generated for the Version 7 architecture runs on the Viking architecture.
However, code that is optimized for the Viking can be generated by setting this
directive to VIKING . Code generated for the Viking does not run on Version 7.
To have code run correctly on any SPARC, leave this directive set to
VERSION7. If the code is only going to run on Viking SPARCs, set it to
VIKING . [Default: VERSION7]

CPU_LIMIT — This directive limits the CPU time used by the SC Ada compiler
front-end. The limit applies to compilation, but not to execution of the user
program. The directive can occur in any ada.lib file on the search path.

Caution – This directive is intended for use only as a backstop. The SC Ada
library can be left in an inconsistent state when terminated in this way.

TARGET_C_P_LIBRARY:INFO:
library_name:

Name of alternate profiling library to
use when linking

TARGET:INFO: target_processor: Name of target processor

UNSAFE_LIBRARY_SEARCHES:INFO:
boolean:

Suppresses checks on ada.lib file
version.

USE_LAST_LINK_INFO:INFO:boolean Speed links retaining information from
last link

VADS:INFO: ada_location: Pointer to release area

VERSION:INFO: version_number: Current version of SC Ada

XREF:INFO: boolean: Print cross-reference information for a
given Ada unit or library.

(Continued)

Command Reference 2-47

2

DEBUG_XREF — If DEBUG_XREF is set to TRUE, the compiler does additional
internal checks to ensure that no references are being missed or erroneously
added. If these checks are done and a missing or erroneous reference exists, the
compiler issues a warning to that effect. These checks require additional time
and space resources. [Default: FALSE]

DEFAULT_SRC_EXT — This directive enables you to specify a default source
file suffix. The compiler runs slightly faster when most of the source files have
a suffix that matches the default. Valid suffixes must begin with a period (.)
and not contain another period (.) in the name

DEFER_INSTANTIATIONS — This directive prevents the compiler from
performing body instantiations until they are explicitly requested by invoking
the ada command with the -R option or by invoking a.make . Use of this
directive can save time if generic bodies are being repeatedly modified and
recompiled.

ENDIAN — This directive enables you to specify the endian type of the target
system. Possible endian values are BIG and LITTLE . The default is BIG .

FLOAT_REGISTER_VARIABLES — This directive enables the use of register
variables for floating point numbers. Its default value is TRUE.

HOST — This directive specifies the name of the host. The Ada preprocessor
a.app uses this value.

MAX_GVAS_ADDR — This INFO directive specifies the maximum boundary of
GVAS. The -G option to the ada command displays the suggested value for this
directive.

MAX_INLINE_NESTING — This INFO directive specifies the maximum depth
of nested inline subroutine expansions. Valid values are integers between 0 and
50. When 0, no inline expansions are performed. Be careful when specifying a
value larger than 5 as the size of the compiler code becomes quite large. The
default depth of nesting is 5.

The compiler limits the inline nesting depth of directly recursive routines to 4.

MAX_VIRTUAL_ADDR — This INFO directive specifies the maximum boundary
of virtual memory.

MIN_GVAS_ADDR — This INFO directive specifies the minimum boundary of
GVAS. The -G option to the ada command displays the suggested value for this
directive.

2-48 SPARCompiler Ada Reference Guide

2

MULTISOURCE_FE — When this directive is set to TRUE, the a.make and ada
commands invoke the front end with as many as 20 files at a time. If the front
end finds an error in one file, it does not compile subsequent files. However,
a.make attempts to recompile the subsequent files if it determines that they do
not depend on the erroneous file. Currently, only one file is passed to the front
end if the APP INFO directive is TRUE or any of the following options are on
the command line: -d , -P , -e or -E .

PARALLEL_CODE_GEN — When this directive is set to TRUE, it invokes the
front end, optimizer, and code generator in parallel, using pipes for the
intermediate language (IL) input and output rather than temporary files. The
file descriptors for the pipes are passed to the fe, optim, and cg through the
-pi number (input pipe) and -po number (output pipe) options. For example,
given the following:

fe -po 1 | optim -pi 0 -po 1 | cg -pi 0

the IL is read from stdin and written to stdout . This fails if anything
besides the IL stream is written to the standard output file. The ada tool
creates pipes and passes the file descriptions of these pipes to the tools. The
pipes are usually file descriptions 3 through 6.

This directive makes the compiler slightly faster on uniprocessor machines. It
significantly increases the speed of the compiler on multiprocessor systems.
Multisource compiles show the greatest speed improvements. Default: [FALSE]

READ_ONLY_LIBRARY — If this directive is set to TRUE, it specifies that the
SC Ada library is not to be modified by SC Ada. The SC Ada compiler, make
utility and library management tools will not modify read-only libraries.

The presence of this directive in an SC Ada library allows SC Ada to perform
optimizations during library operations. No lock files are created in read-only
libraries. Units compiled within read-only libraries are assumed to be up to
date, and timestamps on the units are not compared with the last-modified
times of the source files. The reduction in file system operations allowed by the
presence of this directive increases the performance of the SC Ada compiler
and tools, especially when SC Ada libraries are accessed over a network.

The effects of this directive are a super-set of the effects of the
UNSAFE_LIBRARY_SEARCHES directive. That directive does not suppress the
checks for file timestamps performed by a.make and a.ld , which are
suppressed by the READ_ONLY_LIBRARY directive.

Command Reference 2-49

2

SHARE_BODY — This INFO directive specifies the default method the compiler
uses to perform generic instantiation. If TRUE, the compiler compiles instances
so the code for the body of the generic is shared among the instances. This is
the default. If FALSE, each instance of a generic causes the compiler to
regenerate the code for the generic body. Override the default with pragma
SHARE_BODY.

STATIC_LINKING — This directive defines whether programs are linked
dynamically (dynamic) or statically (static). [Default: dynamic]

TARGET — This directive informs the compiler and other tools of the target
processor for which code is being generated.

For self host applications, target_processor is SELF_TARGET.

TARGET_C_LIBRARY — This directive provides the name of the library to use
when linking if libc (the default) is not used.

TARGET_C_P_LIBRARY — This directive provides the name of the profiling
library to use when linking if libc (the default) is not used.

UNSAFE_LIBRARY_SEARCHES — SC Ada tools read the ada.lib files on the
ADAPATH during initialization. When an operation on a library is performed,
the tools check that the version of the ada.lib file in memory matches the
version on the disk. Setting this directive to TRUE suppresses these checks and
can increase the performance of the SC Ada tools. However, as its name
implies, use this directive with great caution.

The suppression of these checks can lead to serious errors if one SC Ada tool
modifies the ada.lib file while another tool is running. It is the user’s
responsibility to ensure that this never happens. [Default: FALSE]

USE_LAST_LINK_INFO — When this directive is set to TRUE, a.ld creates a
file, .LAST_LINK , in the local Ada library that retains the list of units, their
types, seals and their dependencies in the following format:

unit_nameXseal {non_trivial_dependent_numbers}*

where

X is '|' if unit_name's body has elaboration code
X is '>' if unit_name's body has no elaboration code
X is ':' if unit_name's spec has elaboration code
X is '<' if unit_name's spec has no elaboration code

2-50 SPARCompiler Ada Reference Guide

2

seal is the timestamp value for the compilation date of unit_name

NON_TRIVIAL_DEPENDENT_NUMBERS is a list of numbers for units that
unit_name depends upon, which, if regarded in transitive closure produce
the direct dependencies of unit_name. The numbers identify the unit lines of
the .LAST_LINK file. The numbers are biased by the lines of header
information, currently two lines.

Note – The..LAST_LINK file has two header lines, giving the number of units
involved, and the timestamp of the link. The order of the .LAST_LINK file is
significant and represents the elaboration order decided for the last link. The
a.ld processor attempts to use this order again, unless dependency changes
prevent it. The .LAST_LINK file acts to stabilize links, in that elaboration order
tends to remain steady. Use the .LAST_LINK file to encourage a specific
elaboration order. Editing the .LAST_LINK file is considered dangerous, as the
dependent numbers are changed. The .LAST_LINK information is normally
useful even when linking different programs in succession, as long as a
number of units are shared by the programs. If set to FALSE, this directive has
no effect. [Default: FALSE]

VADS — This directive provides a pointer to the directory containing a
particular version of SC Ada. Its provides SC Ada tools with a base location for
the release area.

VERSION — This directive specifies which version SC Ada library this is and
what version of other SC Ada tools have worked in this Ada library.

XREF — This directive generates cross-reference information for the unit(s)
compiled with it. This information is stored in the net file and is used by the
a.xref tool to generate cross-reference listings for designated units and/or
libraries. [Default: FALSE]

Command Reference 2-51

2

LINK Directive Names
SC Ada supports the following LINK directives, which use the indicated
syntax:

LIBRARY — This directive provides the name of the file that contains the
SC Ada Runtime System library for programs that do not use tasking.

RMIN_TASKING — This directive provides the name of the file that contains
the SC Ada Runtime System Library for programs that use tasking but contain
no abort or select with terminate statements. Since the program does
not need this capability, it has been eliminated in the file to reduce the size of
the program and to get rid of unnecessary checks.

STARTUP — This directive provides the name of the object file that contains the
program start-up routine. The STARTUP directive causes a.ld to include the
object file in the link before any other object file.

TASKING — This directive provides the name of the file that contains the
SC Ada Runtime System Library for programs that use tasking. The CPU linker
selects the correct link entry to use.

WITHn — This directive enables you to add files and/or commands to the list
of files/commands that a.ld sends to the linker. n is any integer. Any break in
the sequence WITH1, WITH2,... causes the prelinker to stop processing WITHn
directives. If a set of WITHn directives have the names WITH1, WITH2, WITH4,
and WITH5, only WITH1 and WITH2 are processed. Because WITH3 is missing,
WITH4 and WITH5 are not processed.

LIBRARY:LINK: filename: RTS system library for programs without
tasking

MIN_TASKING:LINK :filename: RTS system library for programs with tasking
but which do not have abort or select
with terminate .

STARTUP:LINK: object_filename: Name of a startup file

TASKING:LINK :filename: RTS system library for programs with tasking

WITHn:LINK: string: Pass files and/or commands to the linker

2-52 SPARCompiler Ada Reference Guide

2

Files
ada_location/sup/legal.all List of legal directives for the current

implementation.

References
“a.ld — build an executable program from previously compiled units” on
page 2-53
“a.make — recompile source files in dependency order” on page 2-60
“register variables” on page 3-125
on-line help in the debugger, SPARCompiler Ada User’s Guide

Command Reference 2-53

2

a.ld — build an executable program from previously compiled units

Syntax
a.ld [options] unit_name [linker_options]

Arguments
linker_options

All arguments after unit_name pass to the linker. These are options for the
linker, archive libraries, library abbreviations or object files.

options
Options to the a.ld command are:

-DO
(objects) Use partially linked objects instead of archives as an intermediate
file if the entire list of objects cannot be passed to the linker in one
invocation. This option is useful because of limitations in the archiver on
some hosts (but not Solaris 2.1).

-DT
(time) Displays how long each phase of the prelinking process takes.

-Du unit_list
(units) Traces the addition of indirect dependencies to the named units.

-Dx
(dependencies) Displays the elaboration dependencies used each time a unit
is arbitrarily chosen for elaboration.

-DX
(debug) Debug memory overflow (use in cases where linking a large
number of units causes the error message “local symbol overflow ” to
occur).

-E unit_name
(elaborate) Elaborate unit_name as early in the elaboration order as possible.

-F
(files) Print a list of dependent files in order and suppress linking.

2-54 SPARCompiler Ada Reference Guide

2

-L library_name
(library) Collect information required for linking in library_name instead of
the current directory. However, place the executable in the current directory.

-o executable_file
(output) Use the specified filename as the name of the output rather than
the default, a.out .

-sh
(show) Display the name of the tool executable but do not execute it.

-T
(table) List the symbols in the elaboration table to standard output.

-U
(units) Print a list of dependent units in order and suppress linking.

-V
(verify) Print the linker command but suppress execution.

-v
(verbose) Print the linker command before executing it.

-w
(warnings) Suppress warning messages.

unit_name
Name of an Ada unit. It must name a non-generic subprogram. If unit_name
is a function, it must return a value of the type STANDARD.INTEGER. This
integer result passes to the shell as the status code of the execution.

Description

a.ld collects the object files to make unit_name a main program and calls the
ld(1) linker to link together all Ada and other language objects required to
produce an executable image in a.out . The utility uses the net files produced
by the Ada compiler to check dependency information. a.ld produces an
exception mapping table and a unit elaboration table and passes this
information to the linker. The elaboration list generated by a.ld does not
include library level packages that do not need elaboration. Similarly, packages
that contain no code that can raise an exception no longer have exception
tables.

Command Reference 2-55

2

a.ld reads instructions for generating executables from the ada.lib file in
the SC Ada libraries on the search list. Besides information generated by the
compiler, these directives include WITHn directives that allow the automatic
linking of object modules compiled from other languages or Ada object
modules not named in context clauses in the Ada source. Place any number of
WITHn directives in a library but number them contiguously beginning at
WITH1. The directives are recorded in the library ada.lib file and have the
following form.

WITH1:LINK: object_file:
WITH2:LINK: archive_file:

Place WITHn directives in the local SC Ada libraries or in any Ada library on
the search list.

A WITHn directive in a local SC Ada library or earlier on the library search list
hides the same numbered WITHn directive in a library later in the library
search list.

Use a.info to change or report library directives in the current library.

ada_location/bin/a.ld is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This enables
multiple SC Ada compilers to exist on the same host. The -sh option prints the
name of the actual executable file.

Files

a.out Default output file

.nets Ada DIANA net files directory

.objects/* Ada object files

ada_location/standard /* Startup and standard library
routines

2-56 SPARCompiler Ada Reference Guide

2

Diagnostics
Self-explanatory diagnostics are produced for missing files, and so forth.
Additional messages are produced by the ld linker.

References
“a.info — list or change SC Ada library directives” on page 2-42
“LINK Directive Names” on page 2-51
ld(1) , Solaris Developer Documentation

Command Reference 2-57

2

a.list — produce source code listing

Syntax
a.list [-n -V] source_file
a.list [-n -V] -p prof_file

Arguments
options

Options to the a.list command are:

-n
(no) Suppress line numbers.

-p
(profiling) Read the mon.list file (generated by a.prof -d) and insert
source line execution percentages in listings.

prof_file
Name of file containing profiling information. If no file is listed, mon.list
is the default.

source_file
Name of Ada source file.

-V
(validation) Do not change the formfeeds to a two-character representation
pf “6”L .”.

Description
a.list produces a listing for programs containing no errors that closely
resembles the output of a.error . The listing is written to the standard output
and can be piped or redirected to a file.

References
“a.error — analyze and disperse error messages” on page 2-31
“a.prof — analyze and display profile data” on page 2-79

2-58 SPARCompiler Ada Reference Guide

2

a.ls — list compiled units

Syntax
a.ls [options] [unit_name]

Arguments
options

Options to the a.ls command are:

-a or -All
(all) List all units visible in libraries on the library search list.

-b
(body) Limit output to unit bodies.

-f source_file
(file) List only units in source_file.

-F
(suffix) List unit bodies with a trailing #.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-l
(long) List net file date, source file date, unit, and unit type.

-M
(main) List main units.

-s
(specification) Limit output to unit specifications.

-v
(verbose) List source filename, source file date, net file date, and unit.

-1
(one/single) Print output in a single column.

unit_name
Name of an Ada unit. unit_name is expressed as a regular expression. See the
following Description for specifications for regular expressions.

Command Reference 2-59

2

Description
a.ls provides a list of the units compiled in the current or specified SC Ada
library. Options give more or less extensive information, change the format of
the list or provide a list of compiled units occurring in specified source files.

You can specify unit_name as a regular expression (similar to regular
expressions in csh(1)) to match groups of units. If the regular expression
contains any of the shell meta characters, quote the expression, for example,
a.ls “f*” will list all units beginning with the letter “f”.

If no match is found for the input criteria, a.ls returns a non-zero exit status.

Specifications for Regular Expressions
• Special characters are ?, * , [] , and {} .

• Any character except a special character matches itself.

• ? matches a single character.

• * matches any number of characters.

• A non-empty string s or bracketed [s] matches any character in s . In s , \
has no special meaning. Use [only as the first character. A substring, a- b,
with a and b in ascending ASCII order, stands for the inclusive range of
ASCII characters.

• Specify alternative matches with {first, second, third}.

Without the -l or -v options, a.ls prints output in multiple columns. -l and
-v cannot be used with the -s option.

The options -F , -l , and -v (in increasing order of listing detail) are mutually
exclusive. If more than one of these three is given, the listing is that with the
most detail.

References
regular expressions in csh(1) , Solaris Developer Documentation

2-60 SPARCompiler Ada Reference Guide

2

a.make — recompile source files in dependency order

Syntax
a.make [options] [unit_name]... [ld_options] [-f source_file ...]

Arguments
ld_options

Options are passed directly to the linker and a.make does not process.

options

-A ada_library [-A ada_library] ...
(add) Bring the listed libraries up to date if necessary.

-All
(all) Bring all libraries on the library search path up-to-date.

-C “ compiler”
(compiler) Use the string compiler in recompiling the required units. Only
use this option to pass options to the compiler that a.make does not
recognize.

-D identifier type value
(define) Define an identifier of a specified type and value.

-Dv
(debug) Print debugging information.

-d
(dependencies) List the file-to-file dependencies. Note that dependency
information for instantiation bodies is not listed.

-E
-E directory

(error output) Without a file or directory argument, a.make processes error
messages using a.error and directs a brief output to standard output; the
raw error messages are left in ada_source.err . If a file path name is given,
the raw error messages are placed in that file. If a directory argument is
supplied, the raw error output is placed in dir/source.err . Use the file of
raw error messages as input to a.error . Only use one -e or -E option.

Command Reference 2-61

2

-e
(error) Process compilation error messages using a.error and send it to
standard output. Only the source lines containing errors are listed. Use
either the -e or -E option, not both.

-Ef error_file source_file
(error) Process source_file and place any error messages in the file indicated
by error_file. Note that no space is between the -Ef and error_file.

-El
-El directory

(error listing) Same as the -E option, except that a source listing with errors
is produced.

-el
(error listing) Intersperse error messages among source lines and direct to
standard output.

-Elf error_file source_file
(error listing) Same as the -Ef option, except that a source listing with
errors is produced.

-ev
(error vi(1)) Process syntax error messages using a.error , embed them
in the source file, and call the environment editor ERROR_EDITOR. (If
ERROR_EDITOR is defined, define the environment variable
ERROR_PATTERN. ERROR_PATTERN is an editor search command that
locates the first occurrence of ‘### ’ in the error file.) If no editor is specified,
vi(1) is called.

-f source_file_list
(files) Treat remaining non-option arguments as filenames in the current
SC Ada library to consider for compilation. All units in these files are
brought up-to-date; use -f with one of the other options to print actions or
dependencies without executing them, but must be the last option given.

-F filename
(named file) Consider for compilation the source files listed in filename. This
option is similar to -f option, except that listing the source files in filename
allows a list that may otherwise exceed the command-line limit. In filename,
list multiple filenames on a single line with any number of blanks or tabs
separating them.

2-62 SPARCompiler Ada Reference Guide

2

-I source_file
(if) List actions that are taken if source_file changes.

-i
(ignore errors) Do not suppress compilation if file is dependent upon
another file that did not compile successfully.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-l “ linker”
(linker) Use the string linker in linking the required units. This option
provides unusual options to a.ld when using a.make .

-O[0-9]
(optimize) Invoke the code optimizer. An optional digit (no space is before
the digit) provides the level of optimization. The default is -O4 .

Note – Each level of optimization is cumulative. For example, optimization
level 4 (O4) incorporates all the features of optimization levels 1 through 3,
plus hoisting invariants from loops and address optimizations.

-O
Full optimization

-O0
No optimization

-O1
Copy propagation, constant folding, removing dead variables,
subsuming moves between scalar variables

-O2
Add common subexpression elimination within basic blocks

-O3
Add global common subexpression elimination

-O4
Add hoisting invariants from loops and address optimizations

-O5
Add range optimizations, instruction scheduling and one pass of
reducing induction expressions

Command Reference 2-63

2

-O6
No change and instruction scheduling

-O7
Add one more pass of induction expression reduction

-O8
Add one more pass of induction expression reduction

-O9
Add one more pass of induction expression reduction and add hoisting
expressions common to the then and the else parts of if statements

Hoisting from branches (and cases alternatives) can be slow and does not
always provide significant performance gains so it can be suppressed.

-o executable_file
(output) Use the specified filename as the name of the output rather than
the default, a.out.

-P
(preprocessor) Invoke the Ada Preprocessor.

-S
(suppress) Apply pragma SUPPRESS to the entire compilation.

-sh
(show) Display the name of the tool executable but do not execute it.

-T
(timing) Print timing information for the compilation. This option is not
used directly by a.make but is passed to ada which prints the timing
information for the files compiled.

-U
(units) List the list of dependent units in order but do not link.

-v
(verbose) List the recompilation commands as they are executed.

-V
(verify) List the recompilation commands to execute but do not execute
them.

-w
(warnings) Suppress warning diagnostics.

2-64 SPARCompiler Ada Reference Guide

2

Description
a.make unit_name determines which files must be recompiled in order to
produce a current executable file with unit_name as the main unit.

a.make -f source_file_list determines which units in source_file_list must be
recompiled. Use the -f option anytime you are starting in a new library. The
command

a.make -v -f *.a

makes all Ada files in a library in the correct order. You do not need to specify
a main unit in this case, but if you do, that main unit is linked. This option
provides the mechanism to bootstrap a.make and start things off.

a.make unit_name -f source_file_list considers for compilation all files that are
needed by unit_name, regardless of whether they are included in source_file_list.
If a file is included in source_file_list but is not needed by unit_name, it is not
considered for compilation. If a file is needed by unit_name but is not included
in source_file_list, it nevertheless is considered for compilation. However, the
-f source_file_list option makes the dependency information about all units in

source_file_list visible to the library.

a.make has no knowledge of any source file (foo.a) until that file is compiled
in a way that changes the program library. Unless the -f option is used, this
requires that foo.a be compiled “by hand” at least once. Unless the -U or - d
option is given, the file must compile successfully or else the program library
remains unchanged. In any case, syntax errors must be corrected before the file
is “seen” by a.make .

Command Reference 2-65

2

a.make uses DIANA net files to determine the correct order of compilation and
elaboration.

ada_location/bin/a.make is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This enables
multiple SC Ada compilers to exist on the same host. The -sh option prints the
name of the actual executable file.

Supplied names and unknown options are passed to a.ld .

Files

References
“a.app — preprocess Ada source” on page 2-11
“a.ld — build an executable program from previously compiled units” on
page 2-53
compiling Ada programs (optimization), SPARCompiler Ada User’s Guide
pragma OPTIMIZE_CODE, SPARCompiler Ada Programmer’s Guide

ada.lib Library reference file

gnrx.lib Generic instantiation reference file

GVAS.lock,
gnrx.lock

Lock the library while reading or writing special library
files

GVAS_table Address assignment file

.imports Imported Ada units directory

.lines Line number reference files directory

.nets Ada network control files directory

.objects Ada object files directory

2-66 SPARCompiler Ada Reference Guide

2

a.mklib — create an SC Ada library directory

Syntax
a.mklib [-F -f -v -i] [-t target] [new_ada_library] [parent_ada_library]

Arguments
new_ada_library

Name of directory to initialize as an SC Ada library. If no directory is
specified, the current working directory is initialized.

options
Options to the a.mklib command are:

-f
(force) Create SC Ada library structure even if some components are already
present.

-F
(force name) Allow creation of an SC Ada library with a restricted name.

-i
(interactive) Display all versions of SC Ada installed on the system and
prompt for selection of SC Ada version unless modified with the -t option.

-t target
(target) Create a library for a specific target machine.

-v
(verbose) Display the library search list and target directives.

parent_ada_library
Name of an existing SC Ada library. If a parent library is named, the library
search list in the new ada.lib consists of the parent library and the parent
library path. As a result, Ada units in the new library reference all Ada units
defined by the parent library and all units that are accessible from the parent
library.

Command Reference 2-67

2

Description
a.mklib creates and initializes a new SC Ada library directory, creating three
files (GVAS_table , ada.lib , and gnrx.lib) and four directories (.lines ,
.imports , .nets , and .objects). The library search list in the new
ada.lib consists of the parent library and the parent library path. As a result,
Ada units in the new library can reference all Ada units defined by the parent
library and all units that are accessible from the parent library.

Note – We recommend using a.mklib with the -i (interactive) option. It
provides a choice of the available releases. The -i option provides the contents
of the VADS_END file for each release on the system. The VADS_END file
contains information about the host, host operating system, version number,
and dates for each compiler.

The -v option cannot be used with the -i option.

The tool a.vadsrc creates a local configuration file called .vadsrc . Place it
either in the current directory or in your home directory. Future libraries are
created using the parent_ada_library specified by the target entry in this file.

When no parent_ada_library is specified on the command line, a.mklib
searches the /etc/VADS file for a unique entry for target. If multiple target
entries exist for target in /etc/VADS (such as when more than one version of
SC Ada is installed for target), then a.mklib searches for a unique target entry
in a .vadsrc file in the local directory, and then in a .vadsrc file in your
home directory. If the target entry in the /etc/VADS file is not unique and no
.vadsrc file exists, an error message results, and a.mklib requires the -t
target option, the -i option or a parent_ada_library specified on the command
line.

The -t target option specifies a particular target machine. Obtain a list of
available targets with the -i option or with the tool a.vadsrc . These values
are case-insensitive, for example, SELF_TARGET or self_target .

The -f option forces initialization of an SC Ada library structure, overwriting
any existing components and deleting any existing lock files.

a.mklib prohibits the creation of libraries named standard , verdixlib or
publiclib . The -F options overrides this restriction.

2-68 SPARCompiler Ada Reference Guide

2

Example
If you are positioned at the directory /usr2/babbage/code and the SC Ada
library parent_library exists, the command

a.mklib new_library parent_library

creates the library directory /usr2/babbage/code/new_library and
provides access to the Ada compilation units compiled previously in the
parent_library library directory. Any units available to parent_library from other
libraries are now available from new_library as well.

However, if parent_library is not an SC Ada library, a.mklib issues an error
message.

Files

Diagnostics
An error is reported and no action is taken (without the -f option) if
new_ada_library contains any SC Ada components or lock files, or if the name
specified exists but is not a directory.

References
“a.cleanlib — reinitialize library directory” on page 2-16
“a.rmlib — remove compilation library” on page 2-85
“a.vadsrc — display versions and create library configuration file” on
page 2-98
“SPARCompiler Ada Library Contents” on page 1-22
creating an SC Ada library, SPARCompiler Ada User’s Guide

/etc/VADS SC Ada version reference file

.vadsrc Local configuration file

~/.vadsrc Your home directory configuration file

Command Reference 2-69

2

a.mv — move unit and library information

Syntax
a.mv unit_name [, ...] [options] target_directory
a.mv source_file [, ...] [options] target_directory

Arguments
options

Options to the a.mv command. These are:

-b
(body) Move the bodies of the named units.

-F
(force name) Move units to protected libraries, that is, standard ,
verdixlib , publiclib .

-f
(force) Do not report matching errors if unit name is not found.

-L library_name
(library) Move from SC Ada library library_name (the current working
directory is the default).

-s
(spec) Move the compilation information for the specifications of the named
units.

-u
(unit) Force the next name to be treated as a unit even though it contains a
period (.).

-V
(verify) List the units to move but do not move them.

-v
(verbose) List the units as they are moved.

source_file
Name of an Ada source file.

2-70 SPARCompiler Ada Reference Guide

2

target_directory
 Directory to which the unit and library information is to move. This dire
ctory must be an SC Ada library.

unit_name
Name of an Ada unit or subunit. Unit names with dotted notation such as
aaa.bbb or aaa.bbb.ccc are taken to be the names of Ada source files
unless the -u option is specified.

Description
Executing a.mv moves all information associated with the named unit(s) or
file(s). When a unit is specified, the corresponding .nets , .lines , and
.objects directories are moved, and the ada.lib entries are deleted from
the source library and created in the target library for the affected units.

If source_file is specified, the corresponding files in .nets , .lines , and
.objects are moved for each unit defined in source_file, the appropriate
entries are deleted from the ada.lib in the source library created in the
ada.lib in the target directory.

A variety of options move specifications and bodies separately. The -u (unit)
option enables references to units whose names contain a period (.). Without
the -u option, any name that contains a period is treated as a source filename.

Specify unit_name and source_file with regular expressions. For example, a.mv
“f*” moves all units beginning with the letter “f .” The command, a.mv
“f*.a,” moves all units in source files that begin with the letter “f .”

References
“a.cp — copy unit and library information” on page 2-18
“Specifications for Regular Expressions” on page 2-59

Command Reference 2-71

2

a.path — report or change SC Ada library search list

Syntax
a.path [options] [ada_library1 [ada_library2]]

Arguments
options

Options to the a.path command are:

-a ada_library1 [ada_library2]
(append) Append ada_library1 after ada_library2. With a single argument,
append ada_library1 to the end of the library search list. Both ada_library1
and ada_library2 must be SC Ada libraries.

-all ada_library
(all) Append the ADAPATH of ada_library to the ADAPATH of the current
library.

-d
(dependency check) Check for circularities in the path. This option provides
additional path cycle information when used with -v.

-f
(force) Override checks on libraries to allow the use of erroneous or
nonexisting library names with a.path options.

-c
(cleanup) Remove from ADAPATH all erroneous libraries.

-i ada_library1 [ada_library2]
(insert) Insert ada_library1 before ada_library2. With a single argument, insert
ada_library1 at the beginning of the list. Both ada_library1 and ada_library2
must be SC Ada libraries.

-I
(interactive) Operate in interactive mode.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

2-72 SPARCompiler Ada Reference Guide

2

-r ada_library1
(remove) Remove ada_library1 from the library search list.

-v
(verbose) Display path as it is changed.

-x ada_library1
(except) Remove all libraries except ada_library1 from the list.

Description
a.path changes or reports the list of library names to search during
compilation. This list is maintained in the ada.lib file in the current SC Ada
directory. During compilation, any program units not in the current library are
searched for in the SC Ada libraries listed on the search list. If the unit is not in
the first SC Ada library, it is searched for in the second and so on in listed
order. When a.path is used with no options, it reports the contents of the
current library search list, one library to a line. a.path flags any incomplete
library on its command line unless the -f option is specified

When the -I (interactive) option is specified, the following menu appears.
Implement all other options through this menu. To operate in a different
ada_library, include the -L library_name option on the a.path command line.
See Figure 2-3.

Figure 2-3 Example of a.path -i (interactive) Menu

Removing a library name from the library search list does not remove
compilation information from the referenced libraries.

1. List local library search list ? (ADAPATH)
2. Append entire library search list to ADAPATH ?
3. Append to library search list ?
4. Insert into library search list ?
5. Remove from library search list ?
6. Remove all EXCEPT from library search list ?
7. Cleanup the library search list ?
8. Exit?

Which option? (1-8) ->

Command Reference 2-73

2

The maximum length of each element in the library search list is the maximum
line length of the system. However, the library search list itself is unlimited.

References
“ada.lib File” on page 1-24

2-74 SPARCompiler Ada Reference Guide

2

a.pr — format source code

Syntax
a.pr [options] [source_file]

Arguments
options

The two types of a.pr options are configuration file options and command
line options.

.prrc Configuration File Options [default shown in brackets]
align_cmts where

Align comments to the right of the longest line (line) or the longest line
containing a comment (comment). [comment is the default.]

chars number
Specify maximum number of characters of code per line, including comment
and indentation; any line extending over this limit is continued on the next
line; valid range is from 20 to 500 [132].

comment case
Print all comments in the specified case: upper , lower , same. [same]

ident case
Print all identifiers in the specified case: upper , lower , same. [upper]

indent number
Specify amount of indentation between levels; valid range is from 1 to 8. [8]

lines number
Specify maximum number of lines allowed on a page; valid range is from 1
to 1000. [55]

margin number
Specify starting margin for top-most level; valid range is from 0 to 15. [0]

no_page
Paginate only when pragma PAGE is encountered. [page]

Command Reference 2-75

2

no_warning
Suppress warning messages regarding line length greater than desired.
[provide warnings]

page number
Set page size; perform pagination with blank lines; valid range is from 1 for
1000. [paginate using form feeds]

page_lu
Start each library unit (indicated by a with clause) on a new page. [do not
start on new page]

record where
Print record on either the same line (same) or on the next one (next).
[same]

reserved case
Print all reserved words in the specified case: upper , lower , same. [lower]

tabs number
Print tabs for indentation whenever the number of spaces needed for
indentation is greater than or equal to the specified number; valid range is
from 0 to 8; if tabs 0 is specified, indentation is performed with blanks. [8]

a.pr Command Line Options [default shown in brackets]
-ac

(align comment) Align comments to the right of the longest line that
contains a comment. [default]

-al
(align line) Align comments to the right of the longest line, regardless of
whether it contains a comment. [-ac]

-c number
(characters) Specify maximum number of characters of source code allowed
on a line. Valid range is from 20 to 500. [132]

-cl
(comments lower) Print comments in lowercase. [-cs]

-cs
(comments same) Print comments as in source code. [default]

2-76 SPARCompiler Ada Reference Guide

2

-cu
(comments upper) Print comments in uppercase. [-cs]

-i number
(indent) Specify indentation between levels. Valid range is from 1 to 8. [8]

-il
(identifiers lower) Print identifiers in lowercase. [-iu]

-is
(identifiers same) Print identifiers as in source code. [-iu]

-iu
(identifiers upper) Print identifiers in uppercase. [default]

-l number
(lines) Specify maximum number of lines allowed on a page. Valid range is
from 1 to 1000. [55]

-m number
(margin) Specify starting margin for top-most level. Valid range is from 0 to
15. [0]

-nl
(no page library unit) Do not start a new page for each library unit. [default]

-np
(no pagination) Specify no pagination. Pagination occurs only when pragma
PAGE is encountered. [-pg]

-nw
(no warnings) Suppress warning messages regarding line length. [-w]

-p number
(page) Specify page size. Valid range is from 1 to 1000. [-pg]

-pg
(pagination) Paginate using form feeds. [default]

-pl
(page library) Start a new page when a library unit is encountered. [-nl]

-rl
(reserved lower) Print reserved words in lowercase. [default]

Command Reference 2-77

2

-RN
(record next) Print record on the line following type or for . [-RS]

-rs
(reserved same) Print reserved words as in source code. [-rl]

-RS
(record same) Print record on the same line as type or for . [default]

-ru
(reserved upper) Print reserved words in uppercase. [-rl]

-t number
(tabs) Specify tabs for indentation whenever the number of spaces needed is
greater than or equal to the specified number. If -t 0 is specified,
indentation is performed with spaces. Valid range is from 0 to 8. [8]

-w
(warning) Provide warning messages regarding line lengths greater than
desired. [default]

source_file
Name of the Ada source file to format.

Description
a.pr reformats Ada source code according to options specified in a runtime
configuration file with the name .prrc . Tailor a.pr for individual Ada coding
standards. Place the configuration file either in your current working directory
or your home directory.

Additionally, specify options on the command line that override those in the
configuration file.

Invoked without a filename, a.pr reads its input from standard input.

Error and warning messages are written to stderr .

Note that command line options only override corresponding .prrc options.
For example, a -iu command line option overrides a set indent lower
.prrc option but has no effect on a set commands upper .prrc option.

2-78 SPARCompiler Ada Reference Guide

2

Only one .prrc file is used. If a .prrc file is found in the current working
directory, the .prrc file in the home history is completed ignored. If a .prrc
file is not found in the current working directory, the $HOME/.prrc file is
used (if it exists).

References
formatting source code, Solaris Developer Documentation

Command Reference 2-79

2

a.prof — analyze and display profile data

Syntax
a.prof [options] [filename [monitor...]]

Arguments
filename

Name of the Ada source file to analyze.

monitor
The monitor file, mon.out , contains frequencies for address ranges. The
UNIX monitor() subroutine produces it .

options
Options to the a.prof command are:

-a
(addresses) Display symbol addresses. This disambiguates overloaded and
mysterious symbols.

-d
(disassembly) Generate source line profiling information in mon.list .
a.list and a.das use this information.

-l
(list) Sort output by symbol value.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-s
(summary) Produce a summary profile file in mon.sum . Useful when more
than one profile file is specified.

-sh
(show) Display the executable tool path name but do not execute it.

-z
(zero) Display routines which are not used.

2-80 SPARCompiler Ada Reference Guide

2

Description
Statistical profiling is a simple way for you to determine the relative CPU
usage of all the parts of your Ada programs. SC Ada offers profiling Ada
libraries, which cause Ada programs to be interrupted at regular intervals and
the program instruction counter examined and saved.

a.prof interprets the file produced by a program linked with the
profile_conf directory.

Solaris 2.1 kernel support for profiling makes this method effective and
unobtrusive for self-host development (see ada_location/profile_conf).

You control the accuracy of profiling by the duration for which you run your
programs and the amount of memory allocated to profiling accounting.

When used properly, profiling provides an accurate description of the CPU
utilization of your entire Ada Program, including the runtime system.

a.prof interprets the monitor file produced by the execution of an Ada
program. The symbol table of the named executable (or a.out by default) is
read and correlated with the monitor file (mon.out by default). For every
external symbol, the percentage of time spent executing between that symbol
and the next, as well as the total time, are printed.

For multiple monitor files, the output represents the sum of the profiles.

Files

References
Statistical Profiler, SPARCompiler Ada Programmer’s Guide

a.out Executable

mon.list For source line profile

mon.out For profile

mon.sum For summary profile

Command Reference 2-81

2

a.report — report deficiency or suggestion

Syntax
a.report

Description
a.report enables customers with SC Ada Support contracts to submit
problems to Sun Answer Centers.

Sun Answer Center assigns a unique Service Order (SO) and acknowledges the
SO.

a.report captures the date, time, site name, user ID, and Ada configuration
information automatically. (See the sample report at the end of this entry.) It
prompts for the name of source files illustrating the problem to be appended to
the report and invokes vi(1) or the editor defined by the environment editor
variable to enable editing of general text that describes the problem. The
formatting lines supplied by a.report separate parts of the text for the Sun
Answer Center’s automated processing. Abort report generation at any point
by means of the Intr key (usually mapped to Control–c).

A warning is displayed if the report length is greater than that acceptable by
most network mailers. In that case, be certain that no intervening systems are
between the Sun Answer Center and the report site. If so, save the report in a
file and send it to the Sun Answer Center via magnetic tape.

When a report is complete, the entire file is electronically mailed to persons
determined by the system administrator when SC Ada was installed. Usually,
this list includes the site Ada administrator. Add additional mail destinations
and/or save a copy of the report by supplying a filename when prompted.

Submit customer reports to the Sun Answer Center by telephone or by
electronic mail.

Please ask your Sun sales representative for more information: contract price,
nearest Sun Answer Center, and so forth.

Figure 2-4 is a sample customer report generated by a.report :

2-82 SPARCompiler Ada Reference Guide

2

===

New Report Date/time: Wed Aug 7 16:37:01 EDT 1991
User: John Moore Login: moore
Return-Path: Will use mail header for acknowledgement address
Category: 1-Compilation of Ada Urgency: 3-Serious
Reference: BR007
Description: Identifier undefined at lines 7 and 8
SPARC SunOS Release 4.1, SPARCompiler Ada 1.0
VADS_END: Tue Jul 17 13:11:42 PDT 1990, 1.0(d)
OS Release: SunOS Release 4.1.1 (NSE_kernel) #2: Sun Jul 8 12:27:47
EDT 1990
Host: havoc Hostid: 41000a73 Host#: 41000a73 Report#: 2

===

a.info -A :
FLOATING_POINT_SUPPORT: MC68881
HOST: SPARC
LIBRARY: ada_location/.objects/library.a
TARGET: SELF_TARGET
TASKING: ada_location/standard/.objects/tasking.a
VADS: ada_location
VERSION: 1.0

===

Please enter problem description below:
During the compilation of the bug.a file the following error occurs:

 line 7, char 7: error: RM 8.3: identifier undefined
 line 8, char 7: error: RM 8.3: identifier undefined

===

- --==========++++++++++########## file bug.a
with TEXT_IO;

procedure hello is

begin

 put (“Hello, world.”);
 new_line;

end hello;

- --==========++++++++++########## end

===

Figure 2-4 Example of Report Generated by a.report

Command Reference 2-83

2

a.rm — remove an Ada unit from a library

Syntax
a.rm [options] unit_name
a.rm [options] source_file

Arguments
options

Options to the a.rm command are:

-b
(body) Delete the bodies of the named units.

-F
(force name) Allow the removal of an SC Ada library having a reserved
name.

-f
(force) Ignore warnings and protections.

-i
(interactive) Prompt for confirmation before deleting any unit information.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-s
(spec) Remove the unit(s) specification information.

-u
(unit) Force the next name to be treated as a unit even though it ends in .a .
Specify this option to a.rm if unit_name contains a period (.).

-v
(verbose) List the units as they are removed.

-V
(verify) List the units to remove but do not remove them.

source_file
Name of an Ada source file.

2-84 SPARCompiler Ada Reference Guide

2

unit_name
Name of an Ada unit or subunit. Unit names with dotted notation such as
aaa.bbb or aaa.bbb.ccc are taken to be the names of Ada source files
unless the -u option is specified.

Description
When source_file is specified, the corresponding files in .nets , .objects , and
.lines are removed for each unit defined in source_file and the appropriate
entries are deleted from ada.lib . A name containing a period is taken to be
an Ada source filename unless the -u option is given.

Specify unit_name and source_file with regular expressions. For example, a.rm
“f*” deletes all units beginning with the letter “f .” However, it does not
delete units in source files beginning with “f .” The command, a.rm “f*.a ,”
deletes units in source files that begin with the letter “f .”

References
“a.cp — copy unit and library information” on page 2-18
“Specifications for Regular Expressions” on page 2-59
“a.mv — move unit and library information” on page 2-69

Command Reference 2-85

2

a.rmlib — remove compilation library

Syntax
a.rmlib [-f -F] [ada_library]

Arguments
options

Options to the a.rmlib command are:

-f
(force) Clean the SC Ada library structure even if some components are
missing or lock files exist.

-F
(force name) Clean the SC Ada library structure of a library having a
restricted name.

ada_library
Name of the SC Ada library in which to operate. If no library is specified,
the current working directory is assumed.

Description
a.rmlib removes all SC Ada library components from ada_library or from the
current library if no argument is given. It removes three files (GVAS_table ,
ada.lib , and gnrx.lib), four directories (.lines , .imports , .nets , and
.objects), and lock files (if present) and the -f option is used. The directory
itself, all Ada source files, and other files and directories are left untouched.

If a.rmlib cannot find every library component or lock files exist, it aborts
without removing any files unless the -f (force) option is given.

Without the -F option, a.rmlib cannot operate in a library bearing the name
standard , verdixlib or publiclib .

The directory name for the removed library is left in dependent library paths.
This blocks compilation in any dependent libraries until a.path is used to
remove the path entry that specifies this directory. Compilation proceeds also if
an SC Ada library is recreated in the named directory from which the library
information is removed.

2-86 SPARCompiler Ada Reference Guide

2

Diagnostics
An error is reported and no action is taken (without the -f option) if
ada_library contains an incomplete set of components or a lock file.

An error message is issued if any files or directories are not accessible for
deletion.

References
“a.cleanlib — reinitialize library directory” on page 2-16
“Syntax” on page 2-66

Command Reference 2-87

2

a.symtab — display symbol information for all static package variables and constants

Syntax
 a.symtab symbol_table_file [options]

 [unit_name [unit_name] ...] [-L library_name]

Arguments
options

The following options are available for a.symtab:

-c
(closure) Process all units in the closure of the specified unit. See below for a
definition of closure.

-b
(body) Process the specified unit(s)' body only.

-L library_name
(library) If no units are specified, all units in library library_name
are processed. If a unit is specified, a.symtab looks in the specified
library for the given unit(s).

-r
(renamed) Include renamed objects in the symbol listing.

-s
(specification) Process the specified unit(s)' specification only.

symbol_table_file
Name of file containing a list of symbols in the executable image for the
units being processed.

unit_name
Name of Ada unit for which symbols are to be displayed.

Description
a.symtab generates a listing containing symbol information for one or more
Ada units. This symbol information is generated for all static variables and
constants declared at the package level. Variables and constants nested inside
subprograms are not listed.

2-88 SPARCompiler Ada Reference Guide

2

If the -c option is given, all units in the closure of the specified unit(s) are
processed, where closure is defined as the smallest set of units that contains:

1. the specified unit

2. its specification, if the unit is a body

3. its body, if the unit is a specification

4. its subunits, if any

5. its parent, if the unit is a subunit

6. all units named in the context clause of the specified unit(s)

7. all units named in the context clauses of the units in the context clause of the
specified unit(s), etc.

Thus, if -c is used and the unit specified is a main program, all units that are
needed to build that program are processed.

If neither -s or -b are specified, both the specification and body of the
specified units (if they exist) are processed.

a.symtab uses information stored in the DIANA net files to determine the
type and size of the package objects. The DIANA net also contains the name of
the symbol that corresponds to the base address for this object, and the offset
from that base address. For example, given the following package:

package examples is
 var1 : integer;
 var2 : float;
end;

The symbol containing the base address for the package variables would be
_A_examples..STATIC . The offset for var1 might be 010, the offset for var2
might be 018. In order to determine the absolute address of var1 and var2 ,
a.symtab must have access to the absolute address for the symbol
_A_examples..STATIC . a.symtab requires as input a symbol_table_file that
contains a list of symbols in the executable image for the units being processed.

The Solaris nm tool can be used to create this symbol_table_file. When using nm,
the output must be in the easily parseable, Berkeley (4.3BSD) format, with the
symbol name preceded by its value and a single character indicating its type,
for example, "0000406b88 T _A_examples..STATIC ". On systems where a

Command Reference 2-89

2

System V output format is the default, there is most likely an option that will
produce the Berkeley format (on Silicon Graphic's IRIX 5.0, the option is - B; on
SunOS 5.0, the option is -p).

For example, given a main program, main , the commands

a.ld main -o main.out
nm main.out > main.names
 a.symtab main.names -c main > symtab.out

use the symbol table information in main.names to generate the symbol
information listing.

Symbol Listing Content and Format
Information regarding all static symbols in the specified packages is listed.
Each package listed is followed by the symbols in that package. The packages
are not ordered in any way; the listing is essentially random. The listing of the
symbols within the packages is in the order that they were declared.

The following information is given in the symbol listing:
• level
• symbol name
• format
• size
• address

Each of these is discussed in the next sections.

Level
The level # indicates the level of the symbol name. Each package is at level
1. All objects within that package follow and begin at level 2. If the object is
a record, it components follow the object name and begin at level 3, with
nested records having correspondingly higher level numbers.

Symbol Name
For packages, this is the package name with a "..SPEC" (for specifications) or
"..BODY" (for bodies) suffix appended. For objects and components, the
simple name of the object is given.

2-90 SPARCompiler Ada Reference Guide

2

Format
This is a single character that describes the symbol's base type. The
following format characters are possible:

a -- array
b -- boolean
e -- enumeration
f -- all float and fixed point types
h -- access objects and objects of type system.address
i -- all integer types
r -- record
- -- package

Size
The size, in bits, of the symbol is given. If the object is a record or array, the
total object size is given.

Note that this field is 0 for package (level 1) entries.

 Address
The absolute (runtime) address of the symbol is listed.

Note that this field is 0 for package (level 1) entries.

Note, however, that arrays are a special case. The line following an array
entry (indicated by the 'a' format character), is an entry for the array
element. The level is the level of the array + 1 , the name is the element
type, the format is the same as for objects of that type, the size is the bit size
of the element and the address is 0. If the element type is a record, the
components are then listed as for record objects, with the address field
containing the address of that component in the first array element.

Error Messages
If, for any reason, some of the desired information cannot be obtained about a
symbol, the symbol listing entry is put to stderr (instead of stdout), with an
appropriate message. Possible errors and their messages are:

Command Reference 2-91

2

Dynamic Variable
If a variable is not static (for example. is a record or array that is
dynamically constrained), the size and address are not obtainable. In this
case, the entry sent to stderr would look like:

1 dynamic_var a NOT STATIC

Symbol Not Found In Symbol Table File
It is possible for a unit not to have symbol information in the
symbol_file_table given as input. This can arise due to units not linked in
because of selective-linking, because there is an extra unit in a library that is
not needed and is thus not linked into the executable image or because the
symbol_file_table is out of date). In this case, the entry sent to stderr might
look like:

1 foo i 4 base address _A_unitname..STATIC not found

[fields compacted in example to not extend over 80 chars]

Constants That Have Been Folded
The compiler "folds" constants whenever possible, using the static value of
the constant wherever the constant is referenced. Thus, it is possible for a
constant to not have an address. In this case, the entry sent to stderr
might look like:

1 const i 4 FOLDED

Objects That Have Been Given Address Clauses
Currently, a.symtab does not attempt to figure out the address of objects
that have been given address clauses (e.g. "for foo use at ..."). In this case,
the entry set to stderr might look like:

1 var_with_addr_cause i 4 ADDR CLAUSE

Note that this restriction is temporary, a.symtab will eventually handle
address clauses whenever possible.

Example
Figure 2-5 is a set of example units, and the output to both stdout and
stderr when a.symtab nm.out -c main is invoked.

2-92 SPARCompiler Ada Reference Guide

2

 with system;
 package example is

 type rec1 is record
 f1 : character;
 f2 : short_integer;
 f3 : string(1..10);
 end record;

 type rec2 is record
 f : float;
 r : rec1;
 end record;
 type arr_type is array(1..10) of rec2;

 type int_array is array(integer range <>) of integer;

 int : integer := 5;
 r1 : rec1;
 r2 : rec2;
 rec2_arr : arr_type;
 int_arry : int_array(5..10);

 const : constant integer := 1; -- FOLDED
 dynamic_arr : int_array(1..int); -- NOT STATIC

 var_with_addr : integer; -- ADDR CLAUSE
 for var_with_addr use at int'address;

 end example;

 package body example is

 addr : system.address;
 flt : float;
 end example;
 with example;
 procedure main is
 begin
 null;
 end;
 (Continued)

Command Reference 2-93

2

(Continued)

 stdout:

 1 example..BODY - 0 0
 2 addr h 32 100092D0
 2 flt f 64 100092D8
 1 example..SPEC - 0 0
 2 int i 32 10000040
 2 r1 r 112 10000048
 3 f1 e 8 10000048
 3 f2 i 16 1000004A
 3 f3 a 80 1000004C
 4 character e 8 0
 2 r2 r 176 10000058
 3 f f 64 10000058
 3 r r 112 10000060
 4 f1 e 8 10000060
 4 f2 i 16 10000062
 4 f3 a 80 10000064
 5 character e 8 0
 2 rec2_arr a 1920 10000070
 3 rec2 r 192 0
 3 f f 64 10000070
 3 r r 112 10000078
 4 f1 e 8 10000078
 4 f2 i 16 1000007A
 4 f3 a 80 1000007C
 5 character e 8 0
 2 int_arry a 192 10000160
 3 integer i 32 0
 3 integer i 32 0
 1 system..SPEC - 0 0
 2 max_rec_size i 32 10000020

 (Continued)

2-94 SPARCompiler Ada Reference Guide

2

Figure 2-5 a.symtab

(Continued)

stderr:

 2 const i 32 FOLDED
 2 dynamic_arr a NOT STATIC
 2 var_with_addr i 32 ADDR CLAUSE
 2 system_name e 8 FOLDED
 2 storage_unit i 32 FOLDED
 2 memory_size i 32 FOLDED
 2 min_int i 32 FOLDED
 2 max_int i 32 FOLDED
 2 max_digits i 32 FOLDED
 2 max_mantissa i 32 FOLDED
 2 fine_delta f 64 FOLDED
 2 tick f 64 FOLDED
 2 sig_status_size i 32 FOLDED
 2 byte_order e 8 FOLDED
 2 supports_invocation_by_address b 8 FOLDED
 2 supports_preelaboration b 8 FOLDED
 2 make_access_supported b 8 FOLDED
 2 no_addr h 32 FOLDED
 2 no_task_id i 32 FOLDED
 2 no_program_id i 32 FOLDED
 2 no_long_addr i 32 FOLDED

Command Reference 2-95

2

a.tags — create a source file cross reference of units

Syntax
a.tags [options] source_file ...

Arguments
options

Options to the a.tags command are:

-a
(append) Append to the tags file.

-B
(backward) Record backward searching patterns (?).

-D identifier type value
(define) Define an identifier of a specified type and value (used with the -P
(preprocessor option)).

-F
(forward) Record forward searching patterns (*). [default]

-f tags_file
(file) Override the default output file, tags , with a file named tags_file.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-P
(preprocessor) Invoke the Ada Preprocessor (a.app) for each file being
processed.

-t
(types) Create tags for types.

-v
(vgrind) Generate an index with line numbers for vgrind(1) on the
standard output.

-w
(warnings) Suppress warning messages.

2-96 SPARCompiler Ada Reference Guide

2

-x
(cross) Generate an indexed list of all tags on the standard output.

source_file
Name(s) of the Ada source file(s) to create the tags file.

Description
a.tags makes a tags file from the specified Ada source(s). The operation is
similar to the ctags(1) command with modifications for Ada-specific
features.

Each line of the tags file lists the object name, the file in which it is defined,
and search patterns for locating each object definition. Editors, such as vi(1)
or ex(1), use the tags file to locate units and, if the -t option is used, to
locate types as well.

Create the tags file with the command:

a.tags *.a

For example, to edit unit END_PROG without specifying the file that contains it,
type the following command:

vi -t END_PROG

When using ex(1) or vi(1) with the -t option, the command line must
contain the desired unit or type in the same case (upper or lower) as its
occurrence in the source file.

Ada allows unit name overloading, and a.tags requires special conventions
to access different units having the same name. Ada specifications are named
by prefacing the Ada simple name with s# . Bodies are named with the
unmodified Ada name. Stubs for separates are named by prefacing the Ada
simple name with stub# .

Nested packages, subprograms, types, generics, and task definitions are always
listed, both with their full Ada expanded name and with any tag prefaces
added to the simple name. Simple names for nested units are listed only if the
simple name is unique across all other tags. Thus, you can use the simple name
if it is unique and can always use the full name.

Command Reference 2-97

2

Fully qualified overloaded names in a file are not differentiated. However, the
tag identifies the correct file and repeated application of the search pattern
finds the desired subprogram. The search pattern is generalized to match all
versions of the overloaded subprogram; this generalization can cause the
pattern to recognize things other than the desired unit. Identical fully qualified
names across files are not handled.

The -x and -v options provide listings on the standard output; all other
options refer to the file tags generated for use by ex(1) or vi(1) .

References
ctags(1) , Solaris Developer Documentation

2-98 SPARCompiler Ada Reference Guide

2

a.vadsrc — display versions and create library configuration file

Syntax
a.vadsrc [options] [directory]

Arguments
directory

Name of the directory in which to create the library configuration file.

options
Options to the a.vadsrc command are:

-i
(interactive) Show all versions of SC Ada installed on the system and
prompt for a selection.

-t target
(target) Create a .vadsrc file for a specific target machine.

-v
(verbose) Print the contents of any .vadsrc file in the current directory or
in your HOME directory.

Description
If multiple SC Ada targets or versions are on the same system, a.vadsrc is
useful to control the default version or target processor for which libraries are
created.

With no option, a.vadsrc reports the installed SC Ada versions.

If -i (interactive) is used, the tool prompts for selection of an SC Ada version
and creates a .vadsrc file in the current or specified directory. With this
option, the contents of the VADS_END file are listed for each release present on
the system. The VADS_END file contains information about the host system,
host operating system, version number, and dates for each compiler on the
system.

Command Reference 2-99

2

Files

References
“Syntax” on page 2-66

/etc/VADS SC Ada version reference file

2-100 SPARCompiler Ada Reference Guide

2

a.view — provide aliases and history for C shell user

Syntax
source a.view

Description
a.view defines a number of aliases that simplify and enhance the use of the
basic SC Ada commands for C-shell users. The aliases allow a source filename
to be set once, and thereafter, alias commands use it until it is changed.
Similarly, a main unit name need be entered only once. (It need not be entered
at all if it is the same as the last specified filename prefix.) Compilation and
linking aliases enter history and timing information into the ada.history
file.

To use the aliases without alteration, put the following line in the .login file.
This line must appear at the beginning of scripts using these aliases.

source ada_location/bin/a.view

Aliases defined in a.view are summarized here. The term “tracking” indicates
whether or not the main unit name is set to the same as the filename prefix.

Aliases
a

Compile established filename, put errors in ./ada.errors/ filename and
history entry in ada.history .

ad
Compile and run the debugger.

ah
List last entry in ada.history .

al
List established filename using PAGER (the environment pager set by the
user). If PAGER is undefined, more is used.

ald
Link the established main unit.

Command Reference 2-101

2

am
Execute a.make using filename specified in sm and put errors in
ada.errors/ unit_name.m.

ao
Compile and optimize code.

av
Edit the established filename with vi(1) .

ax
Execute the established main unit.

axtime
Execute a main unit and put timing entry into ada.history .

e
List erroneous lines and diagnostics from last compilation of established
filename.

el
List established filename with diagnostics from last compilation
interspersed. If PAGER is defined, it is used. Otherwise, more is used.

ev
Edit the established filename with vi(1) with diagnostics from last
compilation interspersed.

s name
Set source filename prefix. If new working directory, then set tracking on. If
tracking is on, then set main unit. If an extension is given, s sets the
extension.

sb name
Set source filename prefix and main unit; set tracking on. If an extension is
given, sb sets the extension.

se name
Set file extension.

sm name
Set main unit and set tracking off so that the main unit name does not
change with s command.

2-102 SPARCompiler Ada Reference Guide

2

so level
Set optimization level. Set the optimization level once.

sp
Print settings of filename prefix and main unit. The extension and
optimization settings print also.

vs
List status for the last executed SC Ada command.

In the commands that take name, additional arguments are ignored and any
trailing .a is stripped. (The prefix is desired for the filename.) In addition, only
the tail component of name (the part following the last /) is used to set the
main unit. (Main unit is an Ada unit name, which does not allow “/ .”)

The intention of this convention is to allow the use of filename substitution for
easy specification of a full filename and main unit. For example, if the current
directory contains the files tasking_limit_test.a (Ada source) and
tasking_limit_test.out (executable object), and if no other files begin
with tas , the command s tas* sets the filename prefix to
tasking_limit_test and the main unit to the same string.

When the main unit name differs from the filename, use the sm command.

In all other commands, additional arguments are passed to the underlying
SC Ada command. The following command causes the linker to search the
termlib library in addition to standard libraries:

ald -ltermlib

Files

Diagnostics
Warnings are produced if any set command is used in a non-SC Ada library
directory, or if the specified source file does not exist in the library.

ada.errors Directory containing error files from compilations

ada.history History of compilations and results

Command Reference 2-103

2

a.version — Display if licensed for Multithreaded Ada

Syntax
a.version

Description
If you are licensed for MT (Multithreaded Ada), a.version displays the
following message:

“you are enabled to run sunpro.mpmt.ada”

If you are not licensed for MT Ada, a.version displays an error message.

2-104 SPARCompiler Ada Reference Guide

2

a.which — Find a compiled unit

Syntax
a.which [options] unit_name

Arguments
options

Options to the a.which command are:

-b
(body) Give the location of the body.

-L library_name
(library) Operate in SC Ada library library_name (the current working
directory is the default).

-s
(special) Convert unit_name to all uppercase.

-v
(verbose) Give the library search list.

unit_name
Ada unit name.

Description
Use a.which to list the name of the source file that defines the version of
unit_name visible in the current SC Ada library. The program library search
sequence can be printed also. The -b (body) option lists the source file location
of the unit body. Without this option, the unit specification is located.

Command Reference 2-105

2

a.xref — print cross-reference information for a given Ada unit or library

Syntax
a.xref [options] [unit_name [unit_name...]] [-L library_name]

Arguments
options

Options to the a.xref command are:

-b
(body) Cross-reference the specified unit(s) body. [default]

-c class_name
(class) Cross-reference only those symbols that are of class class_name. See a
description of the various class names under Class.

-i class_name
(ignore)Ignore all symbols that are of class class_name. See a description of
the various class names under Class.

-L library_name
(library) If no units are specified, all units in library library_name are cross-
referenced. If a unit or units are specified, a.xref looks in the specified
library for the given units.

-n symbol_name
(name) Cross-reference only those symbols that have the name symbol_name
(regular expressions are allowed in the symbol name).

-p
(predefined) Include predefined symbols (e.g., integer , boolean) in the
cross-reference listing.

-s
(spec) Cross-reference the specified unit(s) specification.

unit_name
Name(s) of the Ada units to be cross-referenced.

2-106 SPARCompiler Ada Reference Guide

2

Description
a.xref generates a cross-reference listing for units compiled with the XREF
INFO directive set to TRUE. If this directive is not visible or is FALSE at the
time the unit is compiled, a.xref generates a warning and is not able to list
cross-reference information for that unit.

a.xref generates cross-reference listings for one or more Ada units or an
entire library. If multiple units are cross referenced, the cross-reference
information for all units is coalesced and given in one listing (i.e. the
information is not grouped by unit).

unit_name and symbol_name can be specified with regular expressions. For
example, a.xref “f*” cross-references all units beginning with the letter f.
a.xref -n “x*” -n “y?” cross-references all symbols beginning with x and
all symbols beginning with y that are followed by a single character.

Because Ada names are typically long and can make the cross-reference listing
difficult to read, three separate tables are maintained: the Source File Table, the
Unit Table and the Expanded Prefix Table. These tables are each sorted
lexicographically and each entry is assigned a number. These table entry
numbers are referenced in the cross-reference listing.

The Source File Table contains a list of all Ada source files that have definitions
or references listed in the cross-reference listing, the date and time the file was
last modified and the name of the directory that contains the file. The Unit
Table contains a list of all compilation units that have definitions or references
in the cross-reference listing, the unit type (either spec or body), the date and
time the unit was last compiled, and the name of the Ada library that contains
the unit. The Expanded Prefix Table contains a list of all prefixes of expanded
names for symbols. For example, if the expanded name for symbol
variable_name is package_name.subprogram_name.variable_name, the prefix in the
Expanded Prefix Table is package_name.subprogram_name.

Cross Reference Information
The following information is given in the cross-reference listing:

Name
The simple name for the symbol.

Command Reference 2-107

2

Expanded Prefix
The number that corresponds to the appropriate entry in the Expanded Prefix
Table for the symbol's expanded name, preceded by the letter E, e.g. E4 stands
for the fourth entry in the Expanded Prefix Table. If the symbol has no
expanded prefix (e.g. the symbol is for a compilation unit or a predefined
type), this field contains a - .

Class
The class type for the symbol. Class types are as follows:

dtype — derived type
gtype — generic formal type
stype — subtype
ltype — limited private type
ptype — private type
type — type

comp — record component
const — constant
discr — discriminant
enum — enumeration literal
entry — task entry
iter — iteration variable
nstmt — named statement
label — label
task — task
var — variable

ipar — in parameter
iopar — in out parameter
opar — out parameter

func — function
gfunc — generic function
ifunc — function instantiation

proc — procedure
gproc — generic procedure
iproc — procedure instantiation

2-108 SPARCompiler Ada Reference Guide

2

pack — package
gpack — generic package
ipack — package instantiation

op — operator
gop — generic operator

Type
If the class of the symbol is such that the symbol has a type, e.g. variable,
constant, parameter, etc, the name of the symbol type is given. For functions,
the return type is given. This name is in the form En.type_name where En is the
corresponding entry into the Expanded Prefix Table.

Size
For constants, variables, record components and discriminants, parameters and
types, the size (in bits) of that symbol is given.

Address/Offset
For global package variables, the suffix for the symbolic address for the
variable is given. For example, given the following package:

package examples is
 var1 : integer;
 var2 : float;
end;

The symbolic address for the package variables could be:

var1 : _A_examples..STATIC+010
var2 : _A_examples..STATIC+018

In this case, the section name is STATIC and is abbreviated by S. Other
possible section names and their abbreviations are:

“STATIC..BODY ”, abbreviated by “S..B ”
“CONST”, abbreviated by “C”
“CONST..BODY”, abbreviated by “C..B ”

Thus, for our example symbolic address _A_examples..STATIC+10 , the
cross-reference listing contains the string S+010 . The Expanded Prefix field in
the cross-reference listing contains the entry into the Expanded Prefix Table

Command Reference 2-109

2

corresponding to the package name (examples in this example). Catenating
A, the expanded prefix name and the unabbreviated symbolic address suffix
gives you the symbolic address for this field.

If this package has been linked into a program executable, the symbol
_A_examples..STATIC is found in the executable image. The address of that
symbol gives the base address of the package. The hex offset (+010 and +018 in
our example) is added to the base address to determine the runtime address of
the package variable.

Note that it is not always possible to determine the address of a constant. If
possible, the compiler “folds” constants, using the static value of the constant
wherever the constant is used. If the constant is folded, it is not part of the
executable image and has no address. In these cases, the Address/Offset field
of the cross-reference listing contains the word “FOLDED”.

Definition
The locations of symbol definitions are of the form line_number.Fn.Un, where
Fn is the entry into the Source File Table corresponding to the source file that
contains the definition, and Un is the entry into the Unit Table corresponding
to the unit that contains the definition.

References
Reference information is of the form ref_type.line_number.Fn.Un.

Where ref_type indicates the type of the reference, and can be one of:

call — subprogram/entry call
goto — goto
inst — instantiation
raise — raise
set — modification
ref — reference (non-modifying)

line_number is the source code line number of the reference, Fn is the
corresponding entry into the Source File Table for the file containing the
reference and Un is the entry into the Unit Table for the compilation unit that
contains the reference.

2-110 SPARCompiler Ada Reference Guide

2

The references are sorted first by file number; all references to this symbol from
file #1 (if any) are first, followed by all references to this symbol in file #2 (if
any), etc. They are then sorted by line number, in ascending order.

Note – If a field in the cross-reference listing does not apply to a particular
symbol, that field contains a - .

Default Listing
By default, the cross-reference information is sorted by the symbols simple
name. For two symbols with the same simple name, they are further sorted by
expanded name prefix (e.g., for two symbols, unit1.x and unit2.x , unit1 x
is listed first, since unit1 is lexicographically less than unit2.

For example, given the following two Ada source files in Figure 2-6:

Figure 2-6 Example of a.xref Source Code

example1.a: example2.a
1 package example1 is 1 with example1;
2 type int is new integer; 2 procedure example2 is
3 one : int := 1; 3 xxx : example1.int;
4 4 begin
5 function add_one(x : integer) 5 xxx :=
6 return int; 6 example1.add_one(0);
7 end; 7 end;
8
9 package body example1 is
10
11 function add_one(x : integer) return int is
12 begin
13 return int(x) + one;
14 end;
15 end;

Command Reference 2-111

2

The cross-reference listing for the command a.xref -L in a library containing
example1.a and example2.a looks like:

***** SC Ada Cross-Reference Listing *****

***** date: Wed Apr 28 15:51:44 1993
***** args: /rc/ada_2/1/sup/a.xref -L .

Name EPT # Class Type Size Addr/Offset
---- ----- ----- ---- ---- -----------
 Definition References
 ---------- ----------
"+" E1 op E1.int - -
 2.F1 call.13.F1.U2
add_one E1 func E1.int - -
 5.F1 call.6.F2.U4
add_one E1 func E1.int - -
 11.F1
example1 - pack - - -
 1.F1 ref.1.F2.U4
int E1 dtype integer 32 -
 2.F1 ref.3.F1.U1 ref.6.F1.U1 ref.11.F1.U2 ref.13.F1.U2
 ref.3.F2.U4
one E1 var E1.int 32 S+010
 3.F1 set.3.F1.U1 ref.13.F1.U2
x E2 ipar integer 32 -
 5.F1 ref.13.F1.U2
x E2 ipar integer 32 -
 11.F1
xxx E3 var E1.int 32 -
 3.F2 set.5.F2.U4

::::: Source File Table :::::

File No File Name Date of Last Mod Directory Name
------- --------- ---------------- --------------

F1 example1. Tue Apr 27 13:00:52 1993 /vc/carol/xref
F2 example2.a Tue Apr 27 13:00:53 1993 /vc/carol/xref
#

2-112 SPARCompiler Ada Reference Guide

2

Figure 2-7 Example of a.xref Output

::::: Unit Table :::::

Unit No Unit Name Type Date Compiled
------- --------- ---- -------------
 Ada Library Name

U1 example1 spec Tue Apr 27 13:01:35 1993
 /vc/carol/xref
U2 example1 body Tue Apr 27 13:01:35 1993
 /vc/carol/xref
U3 example2 spec Tue Apr 27 13:01:38 1993
 /vc/carol/xref
U4 example2 body Tue Apr 27 13:01:38 1993
 /vc/carol/xref
::::: Expanded Prefix Table :::::

Prefix No Expanded Prefix
--------- ---------------
E1 example1
E2 example1.add_one
E3 example2

3-1

Debugger Reference 3

3.1 Summary
Reference entries for each debugger command and concept (in italic) listed are
on the following pages in alphabetical order.

a Step one source line over calls

address Address memory directly

ai Step one machine instruction over calls

assignment (:=) Assign a value to a variable, register or memory location(s)

async Operate debugger in asynchronous mode

ax Advance, pass the signal to the program

b Set breakpoint at a line or beginning of a subprogram

bd Set breakpoint after current subprogram

bi Set breakpoint at machine instruction

br Set permanent breakpoint at return

breakpoints Control program execution

bx Set a breakpoint when an Ada exception occurs

call stack Display current state of program

cb Move to the bottom frame of the call stack

“Huge and Mighty Forms that do not live like living men
moved slowly through the mind by day and were a
trouble to my dreams.”

Wordsworth

3-2 SPARCompiler Ada Reference Guide

3

cd Move down on the call stack

command history See line editing.

command syntax Syntax of debugger commands

core file Debugging a program that produced a core file

cs Display the call stack

ct Move to the top frame of the call stack

cu Move up on the call stack

current frame Current position on the call stack

current position Current position in a source file

d Delete breakpoints

disassembly Display disassembled source code

display memory Display raw memory

e Move to a new source file

edit Invoke the editor on a subprogram or file

examine Display variables, files, debugger parameters, and so forth

exit Terminate the debugger session

expressions Arithmetic expressions in the debugger

files Specify files to be used by the debugger

g Continue executing the program

gw Continue executing until a variable changes

gx Continue execution and pass the signal to the program

help Print help text

home position Execution point in the current frame

inline expansions Debugging inline expansions

invocation Invoking the debugger

l Display part of a source program

lb List all currently set breakpoints

li List disassembled instructions

(Continued)

Debugger Reference 3-3

3

line editing Command history and line editing functions

line numbers Move to a specified line

lt List all active tasks

lu List UNIX processes

overloading Disambiguate overloaded names

p Display the value of a variable or expression

procedure calls Call subprograms from the program

quit Terminate the debugger session

r Run the program

read Read debugger commands from a file

reg List the current machine register contents

Return Re-execute debugger command

return Return from all called subprograms

s Step one source line, into subprograms

screen mode Screen-oriented debugger interface

search (? /) Search forward/backward in the current file for a pattern

set Set debugger parameters

si Single step one machine instruction into program

signals set/ignore signals

stop Stop the debugger or program

strings String printing, assignment, procedure calling, and use

sx Single step, pass the signal to the program

task Identify a new current task

terminal control Catching program input/output

vi Switch the debugger into screen mode

visibility rules Determine which identifiers are visible at a breakpoint

(Continued)

3-4 SPARCompiler Ada Reference Guide

3

w List a group of source lines surrounding a line

wi List disassembled code with original code

x Monitor memory location(s)

(Continued)

Debugger Reference 3-5

3

a — (advance) step one source line over calls

Syntax
a Pressing Return repeats

Description
a single steps to the next source line for which the compiler generated code,
stepping over subprogram calls.

Other stepping commands are ai , s , si , and gw. The s command steps one
source line into called subprograms.

If the program is not started or if it terminates, a starts the program, stepping
one source line. For Ada programs, this steps over all the library unit
elaborations.

Use two debugger parameters, alert_freq and step_alert , to track the
number of instructions that are stepped. Using the default settings, a message
is displayed after the first 1000 instructions are stepped (step_alert). After
that, every 100 additional instructions stepped (alert_freq), generates a new
message. In line mode, these messages are periods - one after the initial
number of instructions are stepped with a new period displayed for each 100
additional instructions stepped.

In Screen Mode

The a command is directly supported in screen mode: type a to single step one
source line over subprogram calls. It is not necessary to press Return in screen
mode.

With safe mode set on , the screen mode command becomes aa .

The number of instructions stepped appears as a number on the dashed line
separating the command and source window. This number is first displayed
after the first 1000 instructions are stepped (step_alert). This number is
incremented for every 100 instructions stepped after the initial display
(alert_freq).

In instruction submode, a is interpreted as ai .

3-6 SPARCompiler Ada Reference Guide

3

Note – The a command does not advance over entry calls, only procedure
calls.

References
“ai — (advance instruction) single step machine code over calls” on page 3-8
“screen mode — screen-oriented debugger interface” on page 3-132
“Instruction and Source Submodes” on page 3-134
“set — set debugger parameters” on page 3-142
step one command, SPARCompiler Ada User’s Guide

Debugger Reference 3-7

3

address — address memory directly

Description
Some commands (li , wi , bi) take an address as a parameter, which is
expressed as a hexadecimal number (with a leading 0).

In addition, you can type in an address using the form number. The number is
either decimal or hexadecimal.

References
“display memory — display raw memory” on page 3-51

3-8 SPARCompiler Ada Reference Guide

3

ai — (advance instruction) single step machine code over calls

Syntax
ai Pressing Return repeats

Description
ai single steps one machine instruction over call instructions.

Other stepping commands are a, s , si , and gw. The si command single steps
one instruction into called subprograms.

If the program has not executed or if it terminates, ai starts the program,
stepping one instruction. This relocates the current position from the main
subprogram to the actual starting subprogram preceding your program.

In Screen Mode
Precede this command with : and follow with Return.

In instruction submode, a is interpreted as ai .

References
“Instruction and Source Submodes” on page 3-134
step one command, SPARCompiler Ada User’s Guide

Debugger Reference 3-9

3

:= — assign a value

Syntax
name := expression
address [, number] := expression

Arguments
address

A number that represents the address of a storage unit in memory. address is
represented by a decimal number, hexadecimal number (with a leading
zero) or by an expression (e.g., $epb - 32).

expression
A scalar expression or a string. If it is an arithmetic expression, its final
value must be of type INTEGER or type FLOAT .

name
Any Ada or C expression that identifies a scalar object or a register name
(preceded by a dollar sign). If name is a debugger keyword, precede it with
a backslash or it results in a syntax error.

number
The number of bytes that are modified. If the value of expression is an
integer, number must be 1, 2, 3 or 4. If the value of expression is a floating
point number, number must be either 4 or 8. [Default: 4]

Description
This command modifies memory. After the memory or register is modified, a
line of the form:

address: new/old

is printed. address is where the value is written; new is the value that is written;
old is the previous value. For variable names, address is not printed.

In Screen Mode
Precede this command with : and follow with Return.

3-10 SPARCompiler Ada Reference Guide

3

Examples
>0200034 := "this is it"
>date := "January 5, 1991"
>0f7ffeac1,8 := FLOAT_NUM * 3.5
>a.b(3) := 3

Note – No type checking is performed between the name and the expression.

References
“Summary” on page 3-1
“expressions — arithmetic expressions in the debugger” on page 3-65
“strings — string operations and support” on page 3-151
value assignment, SPARCompiler Ada User’s Guide
expressions, section 4.1 in Ada Reference Manual

Debugger Reference 3-11

3

asynchronous debugging — run the debugger in asynchronous mode

Description
Asynchronous debugging is now supported in SC Ada. With asynchronous
debugging, debugger can accept and execute commands while a program is
running.

Note that the debugger is asynchronous only in the sense that it continues to
accept commands after the program ha started or resumed execution. The
debugger itself is still synchronous. It accepts and executes one command at a
time. It does not prompt for another command until it completes the last one.
It cannot start and stop individual tasks independent of the rest of the
program.

The original debugger still works in exactly the same way until it enters
asynchronous mode. Do this in one of two ways: through the -A command line
option or the async option to the debugger's set command.

Once you put the debugger into asynchronous mode, commands that set the
program running no longer have the additional effect of making the debugger
wait for a breakpoint or signal in the program before prompting for additional
commands. These commands that set the program running are g, gx , gw, and
r . The single stepping commands still wait for the single step to complete
before accepting new commands. After setting the program running
asynchronously, the debugger announces that the “Starting program running”,
and prompts for a new command.

Once the program is running in asynchronous mode, most commands that
would normally put the program in motion again have no effect, other than to
produce the “Starting program running” message again. This applies to the
stepping commands, also. Thus, if you type g, and get the “Starting program
running” message, and then type s , the debugger does nothing to the program,
and simply spits out the “Starting program running” message.

There are two exceptions: Whenever you type the r command, the debugger
runs the program from the start, just like it used to. The other exception is the
gw command. This command lets the program continue running, but it sets the
specified data breakpoint.

If you enter screen mode while the program is running asynchronously, the
debugger puts a + character in the prompt position on the screen dividing line,
rather than an asterisk.

3-12 SPARCompiler Ada Reference Guide

3

Most commands work the same way while the program is running as while the
program is stopped. That is, the debugger tries to execute them, and produces
error messages if it has problems. For example, you can set breakpoints while
the program is running, and it will stop when and if it hits them. If you hit
Control-c while the program is running, it will stop.

For several commands, the debugger has to do extra work in asynchronous
mode. The reg command always reads up a new set of registers from the
program. The p, := (assignment), cs , task , and gw commands cause the
debugger to first establish an “instantaneous” call frame environment in which
to execute the command. Thus, successive executions of the cs command, will
produce different results.

Of course, the debugger cannot really establish this environment
instantaneously. Time passes between the moment when the debugger first
reads up the PC, for example, and when it reads up the stack frame associated
with the PC. Thus, information obtained from these commands can be
unreliable. It's also possible that the debugger may be able to successfully
complete the command the first time it's invoked and then have problems with
the next invocation.

If you're debugging a tasking program, particularly an multiprocessor
program, it's likely that the instantaneous environment that the debugger
establishes is in an idle task in the non-Ada threads layer. In this case, you can
use the task command to set up a program context in which the debugger can
look up the names of variables. In asynchronous mode, this “task” is then
automatically selected every time the debugger establishes an execution
environment, rather than using the currently executing task.

Input/Output
If you're using set input pty (the default), the debugger's handling of program
input is different in asynchronous mode. Normally, when you set the program
running, the debugger stops looking for command input, but continues to read
up characters from it's own standard input. It assumes that these keystrokes
are directed towards the program's standard input and passes them along to
the program.

In asynchronous mode, however, all keystrokes are assumed to be debugger
commands whether or not the program is running. Two commands have been
added to the debugger, put and put_line , to allow characters to be sent to

Debugger Reference 3-13

3

the program's input. They are identical, except that put_line puts a new-line
character at the end of the string. Both commands take either a quoted string
or a series of characters and write them down to the program's standard input.

Although your put command writes characters to the program's standard
input, there are no guarantees that the program will read them up. If there are
unread characters when the program announces a breakpoint or signal, or
when you switch the debugger to synchronous mode, the debugger flushes
them and emits a warning message.

Another difference in I/O handling in asynchronous mode is that the debugger
never switches to the tty settings of the program being debugged. Currently,
the debugger resets its tty to look like the program's tty whenever the
program is set in motion.

Program output in asynchronous mode is handled the same way as in
synchronous mode. When the program produces output in asynchronous
mode, however, it may be mixed in with the characters being typed as
debugger command input or be mixed with the output of the debugger.

Any difficulties caused by this different behavior can be circumvented by
creating an X window or screen, and then typing the tty shell command to
find the new window's device name. This name can then be used in set input
and set output commands to separate the program I/O from the debugger's
I/O. For example, if you create a new screen on a machine named picard and
type:

% picard : tty

and get

/dev/ttyq22

then type the debugger commands:

>set input /dev/ttyq22

>set output /dev/ttyq22

then all program I/O happens in the new screen and was not mixed with the
debugger's I/O.

3-14 SPARCompiler Ada Reference Guide

3

References
-A Option, “invocation — invoking the debugger” on page 3-76

“put — (put) send characters to program input” on page 3-114
“put_line — (put line) send characters to program input, append new line” on
page 3-116
“set — set debugger parameters” on page 3-142
“task — print current task or choose a new current task” on page 3-156

Debugger Reference 3-15

3

ax — (advance signal) advance, pass the signal to the program

Syntax
ax

Description
When a signal exception occurs in a program being debugged, first it is passed
to the debugger. The debugger announces the signal exception, the location at
which it occurs, and stops, waiting for commands. To continue advancing as
though the signal does not occur, use a or ai . To continue advancing and pass
the signal to the program, use the ax command. This is useful in debugging
programs that do explicit signal handling.

Use two debugger parameters, alert_freq and step_alert , to track the
number of instructions that are stepped. Using the default settings, a message
is displayed after the first 1000 instructions are stepped (step_alert). After
that, every 100 additional instructions stepped (alert_freq), generates a new
message. In line mode, these messages are periods - one after the initial
number of instructions are stepped with a new period displayed for each 100
additional instructions stepped.

This command cancels the Return key memory.

In Screen Mode
Precede this command with : and follow with Return.

The number of instructions stepped appears as a number on the dashed line
separating the command and source window. This number is first displayed
after the first 1000 instructions are stepped (step_alert). This number is
incremented for every 100 instructions stepped after the initial display
(alert_freq).

References
“a — (advance) step one source line over calls” on page 3-5
“set — set debugger parameters” on page 3-142
“signals — set/ignore signals” on page 3-148

3-16 SPARCompiler Ada Reference Guide

3

b — (break) break at a line or beginning of a subprogram

Syntax
b [line| subprogram] [of task] [begin commands end]
b [line| subprogram] [of task] when expression
b [line| subprogram] [of task] if expression then commands

 [else commands] end [if]
b [line| subprogram] [of task] if expression else commands end [if]

Arguments
commands

A sequence of one or more debugger commands that execute automatically
when the breakpoint is reached. Use the following format:

begin commands end

You can enter the commands on the same line, separated by semicolons, or
enter each command on its own line as long as the first begin , then or
else is on the same line as the b keyword. An execution command (a, ai ,
s , si , g, gw, r) in the commands sequence must be last. The second method
(separate lines) is recommended. As each command of commands is entered
on its own line, the debugger prompts with ?? for each new command until
the sequence terminates with end (or an else in the case of an
if...then...else).

expression
An Ada expression that is evaluated each time the breakpoint is reached.
This evaluation takes place in the environment of the location of the
breakpoint. If expression is FALSE (0), the breakpoint is not announced and
the program continues. If expression is TRUE (nonzero), the breakpoint is
announced.

Use the if statement to set a conditional breakpoint that conditionally
executes debugger commands when the breakpoint is reached. expression is
evaluated each time the breakpoint is reached. If it is TRUE, the breakpoint
is announced and any commands in a then clause execute. If the expression
is FALSE, the commands in an else clause execute.

line
Line number at which the breakpoint is set. Typically, line is a decimal
number; however, all the options specified in the line number section of this
reference are supported.

Debugger Reference 3-17

3

 subprogram
Name of an Ada subprogram, task or package. If the subprogram name
given is a simple identifier, all subprograms, tasks, and packages (with an
elaboration subprogram) in the program are visible.

The subprogram can be given as an expanded name (starting with
standard if desired). The leftmost simple name of an expanded name must
be directly visible from the current context or must be the name of a library
unit.

If the subprogram name has multiple definitions, it is overloaded. The
debugger prints a diagnostic showing the alternatives. Retype the b
command attaching a '1, '2, ... suffix (matching an alternative shown in the
diagnostic) to the subprogram name to disambiguate it. Alternatively,
sometimes it is sufficient to use an expanded name to disambiguate it.

task
Task number of the task at which the breakpoint is announced. Obtain the
task number with the lt command. The breakpoint is announced only for
the specified task.

Description
This command sets a breakpoint. You can set breakpoints at a line in the
current file, at the beginning of a subprogram or in a task. To set a breakpoint
at a line in another file or subprogram, use the e (enter) command to locate the
correct source file first.

If subprogram or line is not specified, a breakpoint is set at the current position
by using the line part of the current position three-part identifier (file, line
number, and instruction address). In line mode, the current position is marked
with <.

You can set a breakpoint only in an instance of a generic. You cannot enter the
source file of a generic, set a breakpoint, and have that breakpoint exist in all
instances of the generic.

Each breakpoint set with b has a number. The number is displayed when the
breakpoint is reached or when the lb command lists all breakpoints. Use the
number to delete individual breakpoints with the d command.

3-18 SPARCompiler Ada Reference Guide

3

In Screen Mode
The current position is the line in the source window that contains the cursor.
When the cursor is located in the source window, typing b is the same as a line
mode b command without any parameters. That is, a breakpoint is set on the
line containing the cursor. The screen-mode b command is acknowledged
immediately by the appearance of = to the left of the line on which the
breakpoint is set.

To set a breakpoint at the beginning of a subprogram while in screen mode,
position the cursor on top of any letter of any occurrence of the name of a
subprogram and press B. This has the same effect as typing b subprogram in
line mode. An acknowledgment message is displayed at the bottom of the
screen to indicate that the breakpoint has is set.

If the subprogram name is overloaded, the debugger prints a diagnostic
showing the alternatives. Retype the B command preceding it with a number
(matching an alternative shown in the diagnostic) to disambiguate it. That is,
typing a number n before the B command has the same effect as typing
b subprogram'n in line mode.

To set a conditional breakpoint in screen mode, type “:” and enter the line-
mode command.

In instruction submode, b is interpreted as bi .

Examples
>b 537 set breakpoint at line 537 of

current source file)
>b SORT_STAMPS (set breakpoint at subprogram

SORT_STAMPS)
>b SORT when FIRST = "January"(conditional breakpoint)
>b MONTH_NO begin (command block)
??p month
??p date'string
??g
??end

Debugger Reference 3-19

3

References
“breakpoints — control program execution” on page 3-26
“current position — current position in a source file” on page 3-46
“d — (delete) delete breakpoints” on page 3-47
“e — (enter) move to a new source file” on page 3-60
“Instruction and Source Submodes” on page 3-134
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
“lt — (list tasks) list all active tasks” on page 3-93
“visibility rules — determine visible identifiers at a breakpoint” on page 3-160
command blocks, set conditional breakpoints, and set breakpoints,
SPARCompiler Ada User’s Guide
expanded names, section 4.1.3(13) in Ada Reference Manual

3-20 SPARCompiler Ada Reference Guide

3

bd — (break down) break after current subprogram

Syntax
bd [of task] [begin commands end]
bd [of task] when expression
bd [of task] if expression then commands [else commands] end [if]
bd [of task] if expression else commands end [if]

Arguments
commands

A sequence of one or more debugger commands that execute automatically
when the breakpoint is reached. Use the following format:

begin commands end

You can enter the commands on the same line, separated by semicolons, or
enter each command on its own line as long as the first begin , then or
else is on the same line as the b keyword. An execution command (a, ai ,
s , si , g, gw, r) in the commands sequence must be last. The second method
(separate lines) is recommended. As each command of commands is entered
on its own line, the debugger prompts with ?? for each new command until
the sequence terminates with end (or an else in the case of an
if...then...else).

expression
An Ada expression that is evaluated each time the breakpoint is reached.
This evaluation takes place in the environment of the location of the
breakpoint. If expression is FALSE (0), the breakpoint is not announced and
the program continues. If expression is TRUE (nonzero), the breakpoint is
announced.

Use the if statement to set a conditional breakpoint that conditionally
executes debugger commands when the breakpoint is reached. expression is
evaluated each time the breakpoint is reached. If it is TRUE, the breakpoint
is announced and any commands in a then clause execute. If the expression
is FALSE, the commands in an else clause execute.

task
Task number of the task in which the breakpoint is announced. The lt
command obtains the task number. The breakpoint is announced only for
the specified task.

Debugger Reference 3-21

3

Description
bd sets a breakpoint in the subprogram that called the current subprogram,
that is, one frame down from the current frame. The breakpoint is reached
immediately when the current entity returns. The current subprogram is the one
represented by the current frame. Immediately means that the bd breakpoint is
set in the first machine instruction following the current subprogram return.
This may not be on a source statement boundary. The breakpoint is removed
automatically when it is reached. To get to the beginning of the next statement,
use the a command.

Usually, bd is used for stopping at the end of the current subprogram after
entering it with the s or si command.

The simplest form of this command, bd , is used most often. But, like the b and
bi commands, you can specify the bd command for a particular task with the
of task clause. A set of commands at the breakpoint, can be automatically
executed at a breakpoint with a begin commands end block. Set a conditional
bd breakpoint by using a when or if statement.

In Screen Mode
Precede this command with : and follow with Return.

References
“b — (break) break at a line or beginning of a subprogram” on page 3-16
“breakpoints — control program execution” on page 3-26
“cd — (call down) move down on the call stack” on page 3-34
“cs —. (call stack) display the call stack” on page 3-40
“d — (delete) delete breakpoints” on page 3-47
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
“lt — (list tasks) list all active tasks” on page 3-93
break down, SPARCompiler Ada User’s Guide

3-22 SPARCompiler Ada Reference Guide

3

bi — (break instruction) break at machine instruction

Syntax
bi [instruction] [of task] [begin commands end]
bi [instruction] [of task] when expression
bi [instruction] [of task] if expression then commands

 [else commands] end [if]
bi [instruction] [of task] if expression else commands end [if]

Arguments
commands

A sequence of one or more debugger commands that execute automatically
when the breakpoint is reached. Use the following format:

begin commands end

You can enter the commands on the same line, separated by semicolons, or
enter each command on its own line as long as the first begin , then or
else is on the same line as the b keyword. An execution command (a, ai ,
s , si , g, gw, r) in the commands sequence must be last. The second method
(separate lines) is recommended. As each command of commands is entered
on its own line, the debugger prompts with ?? for each new command until
the sequence terminates with end (or an else in the case of an
if...then...else).

expression
An Ada expression that is evaluated each time the breakpoint is reached.
This evaluation takes place in the environment of the location of the
breakpoint. If expression is FALSE (0), the breakpoint is not announced and
the program continues. If expression is TRUE (nonzero), the breakpoint is
announced.

instruction
Address of a machine instruction. The address is a hexadecimal number
(with a leading 0).

task
Task number of the task at which the breakpoint is announced. The lt
command obtains the task number. The breakpoint is announced only for
the specified task.

Debugger Reference 3-23

3

Description
bi sets a breakpoint at a specific machine instruction. Use li or wi to display
the instructions (disassembly), and pinpoint exactly where to set the
instruction breakpoint.

Set bi breakpoints for a particular task using the of task option.

Execute a block of debugger commands automatically when the breakpoint is
reached by appending a begin-end block. Set a conditional bi breakpoint
with a when or if statement.

Each breakpoint set with bi has a number. The number is displayed when the
breakpoint is reached or when the lb command lists all breakpoints. Use the
number to delete individual breakpoints with the d command.

In Screen Mode
Precede this command with : and follow with Return.

In instruction submode, b is interpreted as bi .

An = indicates that a breakpoint is set on that line.

References
“b — (break) break at a line or beginning of a subprogram” on page 3-16
“breakpoints — control program execution” on page 3-26
“d — (delete) delete breakpoints” on page 3-47
“Instruction and Source Submodes” on page 3-134
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
“li — (list instructions) list disassembled instructions” on page 3-84
“lt — (list tasks) list all active tasks” on page 3-93
“wi — (window instruction) list disassembled and original code” on
page 3-162
set breakpoint at instruction, SPARCompiler Ada User’s Guide

3-24 SPARCompiler Ada Reference Guide

3

br — (break return) set permanent breakpoint at return

Syntax
br [of task] [begin commands end]
br [of task] when expression
br [of task] if expression then commands [else commands] end [if]
br [of task] if expression else commands end [if]

Arguments
commands

A sequence of one or more debugger commands that execute automatically
when the breakpoint is reached. Use the following format:

begin commands end

Enter the commands on the same line, separated by semicolons, or enter
each command on its own line as long as the first begin , then or else is
on the same line as the b keyword. An execution command (a, ai , s , si , g,
gw, r) in the commands sequence must be last. The second method (separate
lines) is recommended. As each command of commands is entered on its
own line, the debugger prompts with ?? for each new command until the
sequence terminates with end (or an else in the case of an
if...then...else).

expression
An Ada expression that is evaluated each time the breakpoint is reached.
This evaluation takes place in the environment of the location of the
breakpoint. If expression is FALSE (0), the breakpoint is not announced and
the program continues. If expression is TRUE (nonzero), the breakpoint is
announced.

task
Task number of the task at which the breakpoint is announced. The lt
command obtains the task number. The breakpoint is announced only for
the specified task.

Debugger Reference 3-25

3

Description
The br command sets a permanent breakpoint (as opposed to the bd
command) at the last-executed (return) instruction of the current subprogram.
The breakpoint is not deleted after it is hit.

On RISC machines which have delay slots, if the return instruction is followed
by an instruction in the delay slot, the break is set in the delay slot if possible.
If the CPU does not support setting breaks in delay slots, it is set the break in
the previous instruction.

br does not work for inlines. If you set a br in an inline, the break is set at the
return from the procedure which contains the inline.

br also does not work for C.

When the code generator puts out more than one return instruction in a
subprogram, setting one br puts a break at every return statement. If you
already have another kind of break at one or more of the return instructions,
br fails.

References
“bd — (break down) break after current subprogram” on page 3-20
“breakpoints — control program execution” on page 3-26

3-26 SPARCompiler Ada Reference Guide

3

breakpoints — control program execution

Description
A breakpoint is a location (a point) in a program where the debugger is
instructed to suspend (to break) the program execution. The debugger has five
commands that set breakpoints: b, bi , bd , br , and bx . When execution
commands are given (a, ai , g,gx,r,s , or si command), the debugger
ensures that when execution reaches set breakpoints, the program “breaks” —
that is, the program stops executing.

While the program is running, the debugger does not accept commands, but
input to the program or the debugger can be typed ahead. When the program
reaches a breakpoint, its execution is suspended. In line mode, the debugger
announces the breakpoint, as shown in the following example.

The first line of the announcement begins with a breakpoint number in
brackets ([2] in the example above). The remainder of the announcement
message pinpoints the location of the breakpoint. The name in quotes is the
name of the source file and the number following the colon is the line number
in that file where the program stopped. The name following the word in is the
name of the subprogram (package or task) that contains the source line.

If you attempt to set a breakpoint at a passive task, passive interrupt entry or
nonpassive interrupt entry, a label corresponding to the entity is displayed
(PASSIVE ACCEPT, PASSIVE ISR or NON_PASSIVE ISR).

You can define a maximum of 64 breakpoints at a time. In addition to your 64
breakpoints, a breakpoint is set automatically by Ada at a procedure in the Ada
runtime system called SLIGHT_PAUSE. This enables the debugger to recognize
when a program is about to terminate because of an unhandled exception.

You can set breakpoints in a generic instantiation. To do so, enter a subprogram
in the instance (e.g. e foo) and set the breakpoint(s). You can also set
breakpoints in a generic instantiation if you are currently executing code inside
the instance (e.g. you've stepped into the subprogram of an instance).

[2] stopped at “/vc/sbq/tst3/hs.a”:95 in check
95 i : integer := 256;

Debugger Reference 3-27

3

If you position yourself in the source of a generic unit through some other
method than described above, you cannot set breakpoints in the source of the
generic unit. Attempting to do this causes an error message to be displayed: no
instructions at this line . This happens, for example, if you position
yourself in the source of the generic unit by using its source file name as the
argument to the e command.

In Screen Mode
Breakpoints are not announced explicitly in screen mode. The debugger scrolls
the source window, if necessary, to ensure that the line containing the
breakpoint is on the screen. Since the breakpoint is the current home position,
it is marked with an * , as well as =, and the cursor is on the line.

As usual, the debugger signals that it is waiting for input by putting an * in
column 1 or 2 of the dashed line. No * is in either of these columns while the
program is running, and the debugger does not act immediately on new
commands.

Typing ahead in screen mode is not recommended. Input to the program and
input to the debugger are easily confused on the screen, and usually, typing
ahead places unwanted command characters in the source window. (Use
Control-r to refresh the screen.)

References
“b — (break) break at a line or beginning of a subprogram” on page 3-16
“bd — (break down) break after current subprogram” on page 3-20
“bi — (break instruction) break at machine instruction” on page 3-22
“br — (break return) set permanent breakpoint at return” on page 3-24
“bx — (break exception) break when an Ada exception occurs” on page 3-28
“d — (delete) delete breakpoints” on page 3-47
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
breakpoint commands and implicit breakpoints, SPARCompiler Ada User’s Guide

15 --
16*= procedure TEST_SINGLE_DATE(DATE : STRING) is
17 DAY : CONVERT.DATE_REP;
18 TURN_CENTURY: constant STRING(1..2) := "00";
19 begin
20 DAY := CONVERT.GET_DATE_REP(DATE);

3-28 SPARCompiler Ada Reference Guide

3

bx — (break exception) break when an Ada exception occurs

Syntax
bx [NOT] [exception] [of task] [begin commands end]
bx [NOT] [exception] [of task] when expression
bx [NOT] [exception] [of task] if expression then commands

 [else commands] end [if]
bx [NOT] [exception] [of task] if expression else commands end [if]

Arguments
commands

A sequence of one or more debugger commands that execute automatically
when the breakpoint is reached. Use the following format:

begin commands end

You can enter the commands on the same line, separated by semicolons, or
enter each command on its own line as long as the first begin , then or
else is on the same line as the b keyword. An execution command (a, ai ,
s , si , g, gw, r) in the commands sequence must be last. The second method
(separate lines) is recommended. As each command of commands is entered
on its own line, the debugger prompts with ?? for each new command until
the sequence terminates with end (or an else in the case of an
if...then...else).

exception
An Ada exception.

expression
An Ada expression that is evaluated each time the breakpoint is reached.
This evaluation takes place in the environment of the location of the
breakpoint. If expression is FALSE (0), the breakpoint is not announced and
the program continues. If expression is TRUE (nonzero), the breakpoint is
announced.

Use the if statement to set a conditional breakpoint that conditionally
executes debugger commands when the breakpoint is reached. expression is
evaluated each time the breakpoint is reached. If it is TRUE, the breakpoint
is announced and any commands in a then clause execute. If the expression
is FALSE, the commands in an else clause execute.

Debugger Reference 3-29

3

NOT
All exceptions except the one listed are announced.

task
Task number of the task in which the breakpoint is announced. The lt
command obtains the task number. The breakpoint is announced only for
the specified task.

Description
bx sets a breakpoint that is reached when the named exception occurs (for
example, bx constraint_error). If the exception field is omitted, a
breakpoint is announced when any exception occurs.

For example:

>bx constraint_error

Like b, bd , and bi breakpoints, set bx breakpoints for a particular task, using
the of task option and follow it with a block of debugger commands to execute
when the breakpoint is reached.

Each breakpoint set with bx is given a number. The number displays when the
breakpoint is reached or when all breakpoints are listed by the lb command.
Use the number to delete individual breakpoints with the d command.

The use of the bx NOT command has some restrictions. bx and bx NOT exception
cannot be used in the same task. However, bx exception and bx NOT
other_exception can be used in the same task. Thus, the following are legal:

bx constraint_error
bx not numeric_error

The following can be used to ignore several exceptions in the same task.

bx not constraint_error of task b
bx not numeric_error of task b

This option can be used to set breaks which would otherwise conflict in
separate tasks.

bx of task a
bx constraint_error of task b
bx not constraint_error of task c

3-30 SPARCompiler Ada Reference Guide

3

In Screen Mode
Precede this command with : and follow with Return.

References
“breakpoints — control program execution” on page 3-26
“d — (delete) delete breakpoints” on page 3-47
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
“lt — (list tasks) list all active tasks” on page 3-93
“read — read debugger commands from a file” on page 3-121
set breakpoint at exception, SPARCompiler Ada User’s Guide

Debugger Reference 3-31

3

call stack — display current state of program

To represent the current state of the program being debugged, the debugger
uses a model known as the call stack. The call stack represents all currently
active subprograms in the program being debugged. These are subprograms
that have been called but have not returned to their caller. When the program
executes, the subprogram that is executing currently is at the top of the call
stack. A subprogram call ‘pushes' the called subprogram on top of the stack.
When a subprogram returns to its caller, the returning subprogram is ‘popped'
from the top of the stack.

When the program being debugged halts at a breakpoint or after a single-step,
the subprogram containing the point of execution where the program stops is
the top of the call stack. The debugger provides cd (call down) that lets the
user ‘move' down the call stack, that is, from the current subprogram to the
subprogram that called the current one. The following commands are for
moving up (cu), to the top (ct), to the bottom (cb) and displaying the call
stack (cs). Changing the current level on the call stack changes the variables
that are directly visible.

When the program stops, the debugger initializes two ‘positions' # the home
position (execution position) and the current position (viewing position). The
home position represents where the program executes next (or where the
program is executing) at the current level of the call stack. The current position
represents that part of the source code seen on the terminal at this moment.
The viewing position changes as debugger commands display different source
files or disassemble part of the program. The execution position changes only
when moving up and down on the call stack. When the execution position
changes, the viewing position changes to match it.

> cs
line procedure params
1 63 get_date_rep (date = "January 1, 1900")
2 20 test_single_date (date = "January 1, 1900")
3 44 test_convert()

3-32 SPARCompiler Ada Reference Guide

3

References
“cb — (call bottom) move to the call stack bottom frame” on page 3-33
“cd — (call down) move down on the call stack” on page 3-34
“cs —. (call stack) display the call stack” on page 3-40
“ct — (call top) move to the call stack top frame” on page 3-42
“cu — (call up) move up on the call stack” on page 3-43
“current position — current position in a source file” on page 3-46
“home position — execution point in current frame” on page 3-73

Debugger Reference 3-33

3

cb — (call bottom) move to the call stack bottom frame

Syntax
cb

Description
cb moves both the current position and the current frame to the bottom or
lowest frame on the call stack. For Ada programs, this is the frame
corresponding to the main program.

The call stack is represented with the breakpointed subprogram at the top of
the stack. Use cs to display the call stack.

The debugger prints a one-line display corresponding to the new current
frame. This line is the same line that the cs command displays for the frame:
to the left is the frame number, followed by the name of the subprogram,
package or task that the frame represents, followed by the names and values of
actual parameters, if any. Inline frames are marked with a + character
immediately after the frame number.

Use cb to see local variables and parameters in the bottom frame of the call
stack.

In Screen Mode
Type cb to move to the bottom of the stack in screen mode. Pressing Return
afterward is not necessary.

In response to the command in screen mode, the debugger displays the source
code surrounding the new home position in the source window. The one-line
display mentioned above is shown in the command window.

References
“cs —. (call stack) display the call stack” on page 3-40
call stack bottom, SPARCompiler Ada User’s Guide
main program, section.10.1(8) in Ada Reference Manual

3-34 SPARCompiler Ada Reference Guide

3

cd — (call down) move down on the call stack

Syntax
cd [name| number]

Arguments
name

Name of a frame on the call stack.

number
Number of a frame on the call stack. If number is 0, cd moves the current
position to the home position in the current frame. This is useful after
moving away from the current frame, for example, in a new file with the e
command. The * command is a synonym for cd 0 .

Description
cd moves the current position down one frame on the call stack. If name or
number is specified, the current position moves down to the next frame on the
call stack with that name or number. (This moves in either direction — up or
down.) The cs command displays the contents of the stack, starting with the
current frame and shows the frame numbers.

The call stack is represented with the breakpointed subprogram being at the
top of the stack. The call stack is displayed with the cs command, starting
with the current frame. Each frame is shown with its number. cd moves down
to the frame of the procedure that called the top frame.

After the cd command executes, the new frame becomes the current frame and
the line executing in that frame becomes the home position. The line
containing the current home position is marked with * when it is displayed on
the screen in screen mode or by a display command (l , li , w, wi) in line mode.

After executing the cd command, the debugger prints a one-line display
corresponding to the new current frame. This line is the same line that the cs
command displays for the frame, to the left is the frame number, followed by
the name of the subprogram, package or task that the frame represents,
followed by the names and values of actual parameters, if any exist. Inline
frames are marked with a + character immediately following the frame
number.

Debugger Reference 3-35

3

To display the values of local variables and parameters of a procedure
currently active on the call stack, move the current frame to that frame on the
stack. This makes the local variables visible.

In Screen Mode
Type cd in screen mode. Pressing Return afterward is not necessary.

The name option cannot be used directly in screen mode, but the number option
is supported. However, the number parameter must precede cd (unlike line
mode where the number follows cd). For example, to move to stack frame 5 on
the call stack in screen mode, type 5cd .

In response to the command in screen mode, the debugger displays the source
code surrounding the new home position in the source window. The one-line
display mentioned above is shown in the command window.

References
“cs —. (call stack) display the call stack” on page 3-40
“current frame — current position on the call stack” on page 3-45
“inline expansions — debugging inline expansions” on page 3-74
“line numbers — move to a specified line” on page 3-91
“visibility rules — determine visible identifiers at a breakpoint” on page 3-160
call stack down, SPARCompiler Ada User’s Guide

3-36 SPARCompiler Ada Reference Guide

3

command syntax — syntax of debugger commands

Most debugger commands are of the form: keyword parameters.

In line mode, debugger keywords are not case sensitive. For example b 357 ,
set breakpoint at line 357 can be entered as B 357. However, certain identifiers,
pathnames, and C variables for example, are case sensitive.

In screen mode, due to several special cases, debugger keywords are case
sensitive. Examples:

B (break at procedure) vs. b (break at line)

C (change window size) vs. cs , ct , cu , cd , cb (call stack commands)

G (move to the bottom of the view) vs. Control-g (print the file and line)

H (help lines) vs. h (move cursor left)

P..p (to print dotted names) vs p (print simple name)

In line mode, enter a list of commands on a single line, separated by
semicolons (except commands with parameters that the shell interprets). In
screen mode, precede a list of commands with a colon.

Line-mode commands execute when Return is pressed. The single exception is
a breakpoint command followed by a block of commands as illustrated here.
The breakpoint is set after the final Return after the end keyword.

The debugger uses Ada syntax for comments: characters between the double
dash (--) and Return are ignored.

While in line mode, Return repeats the most recent of several commands (a,
ai , s , si , l , li , / or ?). Debugging a program with a r (run) or g (go)
command clears Return until one of the repeatable commands is used again.
Each command that repeats in this way is marked in the documentation with
the phrase ‘Return repeats.' In screen mode, repeat the previous command line
with a period. To require certain single-letter commands (a, g, r , and s) to be
typed twice for safety, set the debugger safe parameter to on (set safe on).

Debugger Reference 3-37

3

You can enter a number as either decimal or hexadecimal. If hexadecimal,
begin the number with a leading 0. If the leading digit of a number is a zero,
the debugger assumes it is a hexadecimal number (0123 or 0F2). If a number
begins with a decimal digit (0-9) but contains a hexadecimal digit (A-F), the
debugger interprets the number as a hexadecimal number (12A3 or 9AAF).
Note: precede a hexadecimal number that has a leading hexadecimal digit (F2)
with zero (0F2) or it is interpreted as an identifier.

When a name can be either a debugger keyword or a variable name, the
debugger interprets it as a keyword. Precede the name with a backslash (\) to
force the debugger to interpret it as a variable.

Frequently, the documentation for the debugger refers to the Interrupt key
(Intr). The system command stty enables this function to be assigned to any
convenient key (often Control-c). Intr halts the program being debugged, if it is
running or the debugger current operation. The debugger responds
immediately to Intr with a prompt for the next command.

Control characters (e.g., Control-z) have their usual meaning.

References
“stop — stop the debugger or program” on page 3-150
command syntax, SPARCompiler Ada User’s Guide
stty(1) , tty(4) , Solaris Developer Documentation

3-38 SPARCompiler Ada Reference Guide

3

core file — debugging a program that produced a “core” file

Description
 UNIX programs produce “core” files when certain signals occur that are
neither caught nor ignored. The core file contains a complete snapshot of the
program's state at the time the signal occurred. See your UNIX signal
documentation for the list of signals that cause a core file to be produced.

 The debugger automatically reads a core file if it exists in the directory the
debugger was invoked from. Alternatively, the path name of a core file can be
given explicitly with the -C core_file_name debugger option.

 After reading the core file the debugger informs you that it is using the core
file image:

[using memory image in “core” file from program “foo”]

 It then announces the signal that caused the core file to be produced. This
announcement looks identical to the announcement produced if the signal had
occurred while running the program from the debugger. It includes the signal
name, the source file and line, and the subprogram name where the signal
occurred.

You can then use any of the debugger's commands to interrogate the state of
the program at the point it produced the core file. For example, you can
display the call stack, display variable values, examine registers, list task
information, etc.

 You cannot continue the program from its core file state. All execution
commands (a, ai, s, si, g, gw, gx, r) cause the program to be restarted. You can
also type 'set run' to reset the program to its normal startup state (e.g. you
might do this if you were not really interested in the core file state).

 In some situations, the debugger produces warning and/or error messages
about a core file. If error messages are produced the core file is ignored. Here
are some of the more common messages:

Warning: program name from “core” file does not match
executable name

Debugger Reference 3-39

3

The program executable's path name stored in the core file does not match
the program executable's path name given on the debugger's invocation
line. This does no necessarily indicate that the core file was not produced by
the given program. Therefore, this is just a warning.

=> “core” file ignored .. it is older than the executable

The file modification time of the program executable is more recent than the
file modification time of the core file. Therefore, the core file was not
produced by the executable.

=== memory address is out-of-bounds: 02a520
=> cannot read opcode at PC 02a520
- (was the “core” file produced by this program?)
=> “core” file ignored

The value of the PC register recorded in the core file does not correspond to
a valid text address in the program executable (nor does it correspond to a
data address in the core file memory image). Therefore, the core file was not
produced by the executable

3-40 SPARCompiler Ada Reference Guide

3

cs —. (call stack) display the call stack

Syntax
cs [reg] [number] [of task]

Arguments
number

Number of frames to display.

reg
Provide hexadecimal dump information.

task
Task identifier. This identifier is in the ADDR column of output from the lt
command.

Description
cs displays the call stack, starting with the current frame. number specifies the
topmost number of frames to be displayed (0 means all). The of task clause
displays the call stack for a specific task with the task identifier.

The leftmost column of the display contains a number for each frame. Use this
number with the cd and cu commands. Frames that correspond to inline
expansions are marked with a + character immediately after the frame number.

line procedure params
1 63 get_date_rep (date="January 1, 1900")
2 20 test_single_date (date="January 1, 1900")
3 44 test_convert ()

Debugger Reference 3-41

3

The debugger recognizes passive tasks, passive interrupt entries, and
nonpassive interrupt entries, and indicates these entities on the call stack. The
following labels are used:

Other stack commands are cb , cd , cu , and ct .

If the keyword reg is used, an extra three-line hexadecimal dump is provided
per frame. The first line shows the values of the PC, FP, and AP registers. (On
most machines, the FP and AP registers are the same register). The second line
displays a row of 32-bit words, starting with the word pointed to by FP and
then moving down to lower addressed words. The third line displays a row of
32-bit words, starting with the word pointed to by the AP and then moving up,
to higher addressed words.

In Screen Mode
Type cs in screen mode; pressing Return afterward is not necessary. However,
in screen mode the number parameter precedes the cs (unlike line mode where
the number follows cs). For example, to see the top three frames of the call
stack in screen mode, type 3cs .

References
“inline expansions — debugging inline expansions” on page 3-74
“lt — (list tasks) list all active tasks” on page 3-93
call stack and display call stack, SPARCompiler Ada User’s Guide

PASSIVE ACCEPT Current frame is an accept of a passive task entry

PASSIVE ISR “Wrapper” procedure the compiler puts into the
exception vector table to call a passive interrupt entry

NON_PASSIVE ISR “Wrapper” procedure the compiler puts into the
exception vector table to call an interrupt entry for a
nonpassive task

3-42 SPARCompiler Ada Reference Guide

3

ct — (call top) move to the call stack top frame

Syntax
ct

Description
ct moves the current frame and current position to the top of the stack that is
also the breakpointed frame. When a process breakpoints, the current position
is initialized to be the top of the stack. Use cs to display the call stack.

The debugger prints a one-line display corresponding to the new current
frame. This line is the same line that the cs command displays for the frame,
to the left is the frame number, followed by the name of the subprogram,
package or task that the frame represents, followed by the names and values of
actual parameters, if any exist. Inline frames are marked with a + character
immediately following the frame number.

Local variables and parameters of the subprogram at the top of the call stack
are made visible with ct .

In Screen Mode
Type ct to move to the top of the stack in screen mode; pressing Return
afterward is not necessary.

In response to the command in screen mode, the debugger displays the source
code surrounding the new home position in the source window. The one-line
display mentioned above is shown in the command window.

References
“cs —. (call stack) display the call stack” on page 3-40
“inline expansions — debugging inline expansions” on page 3-74
call stack top, SPARCompiler Ada User’s Guide

Debugger Reference 3-43

3

cu — (call up) move up on the call stack

Syntax
cu [name| number]

Arguments
name

Name of a frame on the call stack.

number
Number of frames to display.

Description
cu moves up one frame on the call stack. If name or number is provided, cu
moves up to the next frame on the call stack with that name or number.

The new frame becomes the current frame and the line executing in that frame
becomes the current home position, marked with * .

The debugger prints a one-line display corresponding to the new current
frame. This line is the same line that the cs command displays for the frame,
to the left is the frame number, followed by the name of the subprogram
(package or task) that the frame represents, followed by the names and values
of actual parameters, if any exist. Inline frames are marked with a + character
immediately following the frame number.

Use cu 0 or * to move to the home position in the current frame. This is
helpful after moving into a new file using the e command.

In Screen Mode

Type cu in screen mode; pressing Return afterward is not necessary. The name
option cannot be used in screen mode, but the number option is supported;
however, the number parameter precedes cu instead of following it as in line
mode. For example, to move to stack frame 5 on the call stack in screen mode,
type 5cu .

3-44 SPARCompiler Ada Reference Guide

3

In response to the command in screen mode, the debugger displays the source
code surrounding the new home position in the source window. The one-line
display mentioned above is shown in the command window.

References
“inline expansions — debugging inline expansions” on page 3-74
“line numbers — move to a specified line” on page 3-91
call stack down, SPARCompiler Ada User’s Guide

Debugger Reference 3-45

3

current frame — current position on the call stack

Description
The current frame is the current position on the call stack. When a breakpoint
is announced, the current frame is always set to the breakpointed subprogram,
package or task. This frame is the topmost frame of the call stack. In moving
up and down the call stack (cd and cu commands), the current frame is the
frame moved to most recently. The current frame is always the topmost frame
of a cs command listing.

Each frame has a current instruction associated with it. For the topmost
non-inline frame, this is the instruction that executes next. For all other
non-inline frames, it is the call instruction that called the next higher non-inline
frame. For inline frames, the current instruction is the same as the current
instruction of the next lower non-inline frame. This instruction address, plus
the source line and filename that generated it, constitute the home position for
that frame. In showing disassembled instructions, the home position (marked
with *) is displayed next to the current instruction for the current frame.

The current frame can be changed only with the call stack commands (cu , cd ,
ct , and cb) or by running the program to a new breakpoint.

The current frame plays a central role in establishing what program names are
currently visible at any point during a debugging session.

When a breakpoint is reached or a call stack command executes, the current
position is always set equal to the home position of the current frame.
Examining the program source or instructions changes the current position.
Return to home position in the current frame by typing

*

This command is described in the section on line numbers. It has the effect of
moving the current position back to the home position of the current frame.

References
“current position — current position in a source file” on page 3-46
“inline expansions — debugging inline expansions” on page 3-74
“line numbers — move to a specified line” on page 3-91
“visibility rules — determine visible identifiers at a breakpoint” on page 3-160

3-46 SPARCompiler Ada Reference Guide

3

current position — current position in a source file

Description
The current position is represented by a three-part identifier consisting of file,
line number, and instruction address. This identifier represents the present
location in the source program.

The e command is the only command that permits changing the current
position to an arbitrary file. The e command, without any parameters, displays
the current position (except the instruction address).

The debugger keeps track of the current position to make certain frequently
used commands more convenient. In particular, the commands b, l , li , w, and
wi use the current position as a default parameter. This section explains how
the current position is initialized, how it is changed, and how to find out what
it is.

When a breakpoint occurs or after a call stack command executes, the current
position is set to the home position of the current frame. For the top frame of
the call stack, this corresponds to the breakpoint. For all other frames, the
home position is the location of the call to the next higher frame. You can
change the current position with the call stack commands (cu , cd , ct , and cb),
the e command, the line number command, the listing commands (l , li , w,
and wi), and the searching commands (/ and ?).

In line mode, if the source line containing the current position is displayed, a <
appears to the left of the source line.

In Screen Mode
The current position is always the line in the source window that contains the
cursor.

Debugger Reference 3-47

3

d — (delete) delete breakpoints

Syntax
d all| breakpoint_number [, breakpoint_number]...

Arguments
all

Delete all breakpoints.

breakpoint_number
Number assigned to each set breakpoint.

Description
d deletes the listed breakpoints. All breakpoints are deleted if all is used.

Multiple breakpoint numbers comprising the breakpoint_number (obtained
using lb and displayed in brackets) must be separated by commas in this
command as illustrated here:

d 1, 2, 3

Delete a breakpoint at any time.

In scripts and command blocks, it is possible to delete a break at the current
position without using the breakpoint number by simply using d alone. For
example,

b if condition then
 d
 b if other_condition then return read all else g; end if
else
 g end;

In Screen Mode
d deletes a breakpoint set on the line in the source window that contains the
cursor. If a source line contains a breakpoint, = appears to the left of the line.

3-48 SPARCompiler Ada Reference Guide

3

Delete a breakpoint by moving the cursor to a line with = and typing d.
Pressing Return is not necessary. The = disappears, showing that the
breakpoint is gone.

References
“b — (break) break at a line or beginning of a subprogram” on page 3-16
“bd — (break down) break after current subprogram” on page 3-20
“bi — (break instruction) break at machine instruction” on page 3-22
“bx — (break exception) break when an Ada exception occurs” on page 3-28
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
break point commands and delete breakpoints, SPARCompiler Ada User’s Guide

Debugger Reference 3-49

3

disassembly — display disassembled source code

Description
Display disassembled machine instructions using the list instructions (li) and
display window instructions (wi) commands. These commands use the
following format:

li [line|instruction] [, number]
wi [line|instruction] [, number]

li (list instructions) lists a specified number of disassembled instructions
(source code with corresponding assembly language code) and repeats by
pressing Return. Similarly, wi (window instructions) prints a window of
disassembled code surrounding a specified line or instruction address
(hexadecimal number).

Figure 3-1 is sample output:

Figure 3-1 Example of Output from the li Command

 21 pragma priority (7);
 22 end p2;
 23 task body p2 is
 24= i:integer;
 25 begin
 26* for i in 1..50 loop
 27 put ("Task p2 prints this");
 28 new_line;
 29 end loop;
 30 end p2;
*--taskpr1.a--
:li
 26 for i in 1..50 loop
 015ba4:* or %g0, +01, %i1
 27 put("Task p2 prints this");
 015ba8: sethi %hi(+015c00), %g2
 015bac: add %g2, +020, %o0
 015bb0: sethi %hi(+015c00), %g3
 015bb4: add %g3, +010, %o1
 015bb8: call 0ff68 -> _A_put.118S12.text_io
 015bbc: #nop
 28 new_line;

3-50 SPARCompiler Ada Reference Guide

3

In addition to the li and wi commands for displaying instructions, the
debugger operates in instruction submode of screen mode. In instruction
submode, the source window contains disassembled machine instructions,
interspersed with source code, if available. Although the source window
contains machine instructions, control it as usual. In this mode, the s and a
debugger commands are interpreted as their machine instruction counterparts,
the si and ai commands, respectively. The b command is interpreted as bi ,
setting a breakpoint at the machine instruction under the cursor. All searching
and window commands are available, including the p and the I commands.
Use the p command with registers and, toggle in and out of instruction
submode with the I command.

References
“bi — (break instruction) break at machine instruction” on page 3-22
“Instruction and Source Submodes” on page 3-134
“li — (list instructions) list disassembled instructions” on page 3-84
“wi — (window instruction) list disassembled and original code” on
page 3-162

Debugger Reference 3-51

3

display memory — display raw memory

Syntax
[p] hexadecimal_address[: display][number]
[p] decimal_address: display[number]
[p] name: display [number]

Arguments
decimal_address

Memory address in decimal notation.

display
One- or two-character code indicating how the contents of the memory
address are displayed. See the Description section for a listing of these
codes.

hexadecimal_address
Memory address in hexadecimal notation (begins with a leading 0).

name
Ada or C object to display. This can be a complex expression. name can be a
register name of the form $register_name in which case the contents of the
register are displayed.

If name is a debugger keyword, it must preceded with a backslash or a
syntax error results. For example, b:=3 results in a syntax error because b is
a debugger keyword but \b :=3 is legal.

number
Number of values to display.

Description
Use the p command to display memory. In screen mode, if you want to display
memory at a variable location, use the P..y facility. After the variable is
yanked to the command line, enter :m Return following the variable name to
display memory at that variable location.

In the last syntax form (p name:display [number]), name is evaluated and the
address of the named object is used. name can be an Ada object or a C variable.

The address of the item can be specified with an expression, e.g., $pc+4

3-52 SPARCompiler Ada Reference Guide

3

The precedence of operators is that the C unary operators * and & have the
highest precedence, followed by the : in display memory, and then the binary
operators. For example, if the source is C, the debugger evaluates
p* address:display as p(* address):display. Use parentheses to establish a different
precedence, p* (address:display).

For binary operators, p$pc+4:m is evaluated, by default, as p$pc+(4:m) . Use
parentheses within binary expressions preceding the : to avoid ambiguity,
p($pc+4):m . Note that the trailing m in this expression is a format character
(discussed below).

display consists of a length character alone, a length character and a format
character or a format character alone. The default is shown in brackets.

Length

B 8-bit [default number base established by set obase]

D 64-bit floating point

E Largest size floating-point format available

F 32-bit floating point

L 32-bit [default number base established by set obase]

W 16-bit [default number base established by set obase]

Format

a Show the address of the item

b Display as bits

c ASCII character

d Decimal [32 bits]

f Floating point [32 bits]

m One line of STORAGE_UNITS, first in hexadecimal, then as ASCII
characters

n Like m but bytes are interpreted in reverse order

o Octal [32 bits]

p Hexadecimal pointer [32 bits]

Debugger Reference 3-53

3

You can enter number in either decimal or hexadecimal with a leading zero. If
the leading digit of a number is a zero, the debugger assumes it is a
hexadecimal number (0123 or 0F2). If a number begins with a decimal digit
(1–9) but contains a hexadecimal digit (A–F), the debugger interprets the
number as a hexadecimal number (12A3 or 9AAF). Precede a hexadecimal
number with a leading hexadecimal digit (F2) by zero (0F2) or it is interpreted
as an identifier.

number determines how many values are displayed. The address is advanced
by a number corresponding to the letter being used. For example, to display 8,
16-bit decimal values starting at address 01A9A, type the following command:

01a9a:Wx 8

The debugger responds with this output:

The default length is 32 bits. The default format is either decimal, octal or
hexadecimal, depending on the setting of the set obase command. The
default count is 1. Specifying an address of the form hexadecimal_number
displays 32 bits in the current output base. The following command example
displays two lines each, beginning at address 01A9A. Each line displays in
hexadecimal format followed by an ASCII string:

01a9a:m 2

The debugger responds with this output:

r Reverse-map the address to a procedure name

s Null-terminated (C-style) string

x Hexadecimal [32 bits]

z Show the address of the dope vector for records and unconstrained
arrays

01a9a: 2074 6865 204e 2071 7565 656e 7320 7072

01a9a: 20 74 68 65 20 4e 20 71 75 65 65 6e 73 20 70 72 “ the N queens pr”
01aaa: 6f 62 6c 65 6d a 0 0 0 1 0 0 0 1 0 0 “oblem..........”

(Continued)

Format

3-54 SPARCompiler Ada Reference Guide

3

The :a format is useful for finding the address of any name expression. For
example, given the array object MY_ARRAY, the command

MY_ARRAY(1):a

displays the address of the first element. Use the :a format for expanded
names, selected names, and so forth.

Note - Even though they cannot be typed in directly by the user, the debugger
can display bit addresses using the notation hex_byte_addr.bit_offset. For
example, given the following declarations,type boo is:

the following can be displayed:

User-defined Formats
In addition to the lengths and formats of display listed above, the debugger
can display memory at a given address using a type declared in the user Ada
or C program. For example, if TASK_BLOCK is a complex variant record type,
p 080040:TASK_BLOCK displays the entire record at address 080040,
including all the correct variants.

You can use the field of a record type as a type:

p (080040:TASK_BLOCK).NEXT_TASK

As another example, consider these type declarations:

type task_block_ptr is access task_block;

array(1..8) of boolean;
 pragma pack (boo);
 abc: boo := (true, true, false, false, true, true, false, false);

>abc:b
07fffc620: 11001100 01000001 10011011 10000100 00010000 00000101
>abc(0):b
07fffc620: 11001100 01000001 10011011 10000100 00010000 00000101
>abc(1):b
07fffc620.01: .1001100 01000001 10011011 10000100 00010000 00000101
>abc(2):b
07fffc620.02: ..001100 01000001 10011011 10000100 00010000 00000101
>abc(3):b
07fffc620.03: ...01100 01000001 10011011 10000100 00010000 00000101

Debugger Reference 3-55

3

type queue;
type queue_ptr is access queue;

type queue is
record

 next: queue_ptr
 node: task_block_ptr;

end record

If the user is breakpointed in a subprogram where the register i4 holds a
QUEUE_PTR value, the following expressions can be typed:

After an object is created using the p address:type syntax, use it in any
expression where such an object is legal.

Note – First, the debugger checks the specified type against the debugger basic
display values. If a match exists, it uses the basic value, even if the Ada
program contains a declared type of the same name. The debugger display
values are listed above and are displayed as part of the diagnostic if an
unrecognized value is used.

Name Expressions
The :a format is useful for finding the address of any name expression. For
example, given the array object MY_ARRAY, the command

p MY_ARRAY:a

displays the address of the first element. Use the :a format for expanded
names, selected names, etc.

Debugger command Value printed

> p $i4:queue_ptr The access value in i4 , i.e., an
address

> p ($i4:queue_ptr).all The object pointed to by the access
in i4 as type QUEUE

> p ($i4:queue_ptr).node The access value of the node field

> p ($i4:queue_ptr).node.all The task_block object pointed to by
node

3-56 SPARCompiler Ada Reference Guide

3

Note – Typing a plain decimal number moves the current position to that line
number. Memory displays require the number to be followed by a colon and a
display letter. The p command symbolically displays the value of variables or
name expressions; a command consisting of only a name expression is a syntax
error.

Type Casting of Raw Memory to a Data Structure
The debugger also has the ability to display an object in memory when no
visible variable points to that object.

There are times when debugging that you either have only the address of an
object because you are debugging a machine code routine, or are in a location
in your program where the debugger cannot determine with certainty where
an object is. In the latter case, you can often determine the address of the object
by examining the machine instructions and/or register contents. In addition,
there is a convenient way for you to display your object using just its address
and type mark.

The syntax of the debugger command is an extension of the syntax for
examining memory. Instead of supplying a format specifier such as L or B, you
supply the type mark (which must be visible according to the standard
visibility rules). Consider the following example:

package dashboard is
 ...
 type speedometer_t is record
 speed: speed_t;
 trip_counter: miles_t;
 odometer: miles_t;
 end record;

Suppose you know that the address of an object of this type is 16#100A48#. To
display the object you would simply enter the command:

>0100a48:dashboard.speedometer_t

Further, if the object is located at an offset of 16 off of register r0 , you could
either get the address in register r0 , add 16 then use the method above, or
more simply type:

>*($r0+16):dashboard.speedometer_t

Debugger Reference 3-57

3

This expression is evaluated as follows:

$r0
value in register r0

$rp+16
add 16 to value in r0

*($r0_16)
The * means “indirect”, i.e., read the memory whose address is $r0+1 6.
The 32 bits of memory at that location are the address that is used to display
dashboard.speedometer.t .

To display an object as another type, use the same command as above but
substitute the name of the object for the address on the left. For example, if
there is an object declared in the program as

foo:speed_t

and you want to display foo as type MILES_T, simply enter the command

foo:dashboard.miles_t

and the debugger displays the object foo as type MILES_T.

Note that the "typecast" operation, : , binds most tightly. If you have an
expression to the immediate left of the : , you must use parentheses to
typecast the entire expression. For example, if you type:

> sym + foo:newtype

foo is recast to newtype . To recast sym+foo , you must surround the
expression with parentheses.

> (aym + doo) :newtype

Typecasting is also available for C in Sun SPARC or Sun-3 self-hosted
debuggers.

For example, in X-window applications, you may want to look at the fields of
a widget. The type WIDGET is defined as:

typedef struct _WidgetRec {
 CorePart core;
} WidgetRec, *Widget;

3-58 SPARCompiler Ada Reference Guide

3

Even though all the widget variables declared are used as though they are
type WIDGET, in fact they are more complex structures.

For example, when a label widget is created, it returns a pointer to a
LabelRec :

typedef struct _LabelRec {
 CorePart core;
 SimplePart simple;
 LabelPart label;
} LabelRec, *LabelWidget;

If a variable LABEL_W is declared as

label_w: Widget

the debugger command

p *label_w

displays only the fields in CorePart of the widget. To display ALL the
information about this label WIDGET , the variable can be typecast:

p *(label_w: LabelWidget)

or

p (*label_w): LabelRec

As with Ada typecasting, an address can be used instead of a variable name.

Some special restrictions with C typecasting are:

• The only types that can be used are the C basic types (e.g. int , double ,
char , etc.) or names defined by typedefs . No C symbolic information
exists for #defines or struct <type>s . To use a structure, declare a
typedef as shown above for Widget.

• By default, the debugger searches only for typedefs defined in the current
file or in header (.h) files included in the current file. If you want the
debugger to search all the symbolic information in the entire executable, use
the debugger set command:

 set c_types global

Debugger Reference 3-59

3

References
Section 3.1, “Summary,” on page 3-1
“expressions — arithmetic expressions in the debugger” on page 3-65
“p — (print) display the value of a variable or expression” on page 3-108
“In Screen Mode” on page 3-110
“obase number” on page 3-143
display raw memory, SPARCompiler Ada User’s Guide

3-60 SPARCompiler Ada Reference Guide

3

e — (enter) move to a new source file

Syntax
e [ada_entity| ada_source_file]

Arguments
ada_entity

Name of an Ada entity such as a subprogram, package, task, variable,
constant, etc.

ada_source_file
Name of an Ada source file. This file must in a directory on your ADAPATH.

Description
The e command provides a convenient way to move the current position to a
new file or line within a file. If a file is specified, the current position becomes
the beginning of the file. If an Ada entity is specified, the current position
becomes the first line in the source file of the entity full definition. For
example, for a subprogram, the current position becomes the first line of the
subprogram body. For a type, the current position becomes the first line of the
type full declaration.

For purposes of the e, edit , and vi commands, visibility rules for the
ada_entity name are as follows.

If the ada_entity name given is a simple identifier, all subprograms, tasks, and
packages (with an elaboration subprogram) in the program are visible. Other
Ada entities (including packages with no elaboration subprogram) must be
directly visible from the current context or must be library units.

If the ada_entity name has multiple definitions, it is overloaded. The debugger
prints a diagnostic showing the alternatives. Retype the e command attaching
a '1, '2, ... suffix (matching an alternative shown in the diagnostic) to the
ada_entity name to disambiguate it. Alternatively, sometimes it is sufficient to
use an expanded name to disambiguate it.

Debugger Reference 3-61

3

Filenames
Filenames that contain only alphanumeric characters, dots, and underscores do
not need to enclosed in quotes, but those containing other characters must be
enclosed in quotes. Enclosing a filename in quotes (“file.a”) often
eliminates errors if, for example, part of the filename collides with a keyword
or program variable.

In addition, the debugger interprets csh(1) tilde notation and shell
environment (exported) variables if the filename is enclosed in quotes,

e “$al/foo.a”

or

e “~/tst/math.a”

In Screen Mode
Invoke the e command by positioning the cursor on any character of a Ada
entity simple name and typing Control-]. This has the same effect as typing
e ada_entity in line mode—the source window is rewritten with the source code
corresponding to the named subprogram.

If the Ada entity name is overloaded, the debugger prints a diagnostic showing
the alternatives. Retype the <Control-]> command preceding it with a number
(matching an alternative shown in the diagnostic) to disambiguate it. That is,
typing a number n before <Control-]> has the same effect as typing
e ada_entity 'n in line mode.

Use e in screen mode by preceding the command with : and following with
Return.

References
“overloading — disambiguate overloaded names” on page 3-106
move current position, SPARCompiler Ada User’s Guide
expanded names, section 4.1.3(13) in Ada Reference Manual

3-62 SPARCompiler Ada Reference Guide

3

edit — edit a subprogram or a file

Syntax
edit [ada_entity| ada_source_file]

Arguments
ada_entity

Name of an Ada entity such as a subprogram, package, task, variable,
constant, etc.

ada_source_file
Name of an Ada source file. This file must in a directory on your ADAPATH.

Description
edit invokes the editor with the specified file or the file containing the
specified Ada entity. If no parameter is given, the file containing the current
position is used.

The debugger consults the environment (exported) variable EDITOR for the
name of the editor. If EDITOR is not defined, the debugger uses vi as the
editor.

The parameters are interpreted exactly as they are for the e command.

In Screen Mode
Precede this command with : and follow with Return.

References
enter editor, SPARCompiler Ada User’s Guide

Debugger Reference 3-63

3

examine — display program elements and components

Description
The following table lists the available debugger display commands and their
functions:

References
“cs —. (call stack) display the call stack” on page 3-40
“display memory — display raw memory” on page 3-51
“e — (enter) move to a new source file” on page 3-60
“edit — edit a subprogram or a file” on page 3-62
“l — (list) display part of a source program” on page 3-81
“lb — (list breakpoints) list all currently set breakpoints” on page 3-83
“lt — (list tasks) list all active tasks” on page 3-93
“p — (print) display the value of a variable or expression” on page 3-108
“set — set debugger parameters” on page 3-142
“signals — set/ignore signals” on page 3-148
“w — (window) list a group of source lines” on page 3-161

Command Function

p Variable values

e, edit , l or w Files of source code

li or wi Machine instructions

lb Current breakpoints

lt Active tasks

cs Call stack of currently active subprograms

set all Current debugger parameter settings

set signal Current signal setting

address:display Raw memory display (display memory)

3-64 SPARCompiler Ada Reference Guide

3

exit — terminate the debugger session

Syntax
exit

Description
exit exits from the debugger. Also, use quit to leave a.db .

In Screen Mode
Precede this command with : and follow with Return.

Debugger Reference 3-65

3

expressions — arithmetic expressions in the debugger

Binary Operators
The debugger performs arithmetic using the following Ada binary operators:

+ >=
- <
* <=
/ /=
** =
> AND

OR

The operands to the AND and OR operations must be integer or boolean;
floating point operands are not allowed. If both operands to AND are non-zero,
the result is non-zero. If either or both operands to AND are 0, the result is 0. If
either or both operands to OR are 1, the result is 1. If both operands to OR are
0, the result is 0.

Unary Operators
The debugger supports the following unary operators:

+
-

For debugging C, the following unary operators are supported:

& — Returns the address of its operand
* — Dereferences pointers

Operands
Operands are numbers (integers or floating point), program variables or
function calls. More than one function call can appear in the same expression;
use functions calls as parameters to other function calls, and so forth.

In an expression, the debugger implicitly converts an integer number to a
floating point number if the integer is one operand of a binary operation (+, –,
* , /) and the other operand is a floating point number.

3-66 SPARCompiler Ada Reference Guide

3

The comparison operators in the following list return an integer value of either
0 (FALSE) or 1 (TRUE).

> <=
>= /=
< =

Currently, the final value of an expression must have type INTEGER or type
FLOAT. Also, any operand to one of the above operators must be an integer or
floating point value. Ada access values are currently converted to 32-bit
integers.

Attributes
The Ada debugger supports the following attributes:

’ADDRESS ’FIRST(N)
’BASE ’LAST
’CALLABLE ’LAST(N)
’COUNT ’RANGE(N)
’DELTA ’SIZE
’DIGITS ’TERMINATED
’EMAX ’WIDTH

’BASE must be the prefix to another attribute.

References
“Unary Operators for Debugging C” on page 3-109
each attribute, Appendix A in Ada Reference Manual

Debugger Reference 3-67

3

files — specify files to debug

Description
The Invocation section explains how to control which executable file is being
debugged.

For example, assume pathname is the name of a Ada directory. When
debugging a program generated from

pathname/foo.a

the debugger uses the net files in

pathname/.nets/foo*

produced by the Ada compiler to obtain most of the Ada symbolic information
for foo.a . Other important files are in pathname/.lines/foo* . The line
number files contain a mapping between line numbers and instruction
addresses for all the object code generated from foo.a .

The commands e, vi , and edit accept a filename. The filename can be
contained in double quotes. Simple filenames, containing only alphanumeric
characters, dots, and underscores need not be surrounded by quotes — type
them in directly, for example, foo.a, baz.exp_cmd.a . For the e, vi , and
edit commands, the debugger interprets the shell tilde (~) notation and shell
environment (exported) variables for filenames, but only if the filename is
enclosed in double quotes. The named file must be in a directory on your
ADAPATH.

The r , set , and < commands can contain filenames. Do not enclose them in
quotes. The debugger interprets tilde and environment (exported) variables in
filenames in these commands.

References
“invocation — invoking the debugger” on page 3-76
“r — run a program” on page 3-119
“read — read debugger commands from a file” on page 3-121
“set — set debugger parameters” on page 3-142

3-68 SPARCompiler Ada Reference Guide

3

g — (go) continue executing

Syntax
g

Description
g continues executing the program from where it stops. If the process is
breakpointed because of a UNIX signal, g continues the process, ignoring the
signal. Use the command gx to continue with the signal. Use the command gw
to continue the program while watching for a variable value to change. Use the
command gw to continue the program while watching for a variable value to
change. The single-stepping commands s , si , a, and ai , execute the program,
but only for one source line or instruction.

If the program has not started execution, the g command runs the program,
although no invocation processing (processing of I/O redirection, options and
other parameters used by the program) is done. If the program exits or
terminates, the g command reruns the program, using the invocation
parameters used the last time the program was run. To rerun a program from
the beginning at any time, use the r command. r accepts csh -like invocation
parameters.

g cancels the Return key memory.

In Screen Mode
Typing g when in screen mode causes the program to continue; pressing
Return is not required. With set safe on , the screen mode command
becomes gg .

References
“gw — (go while) continue executing until a variable changes” on page 3-69
“Return — re-execute debugger command” on page 3-128
“set — set debugger parameters” on page 3-142
continue execution, SPARCompiler Ada User’s Guide

Debugger Reference 3-69

3

gw — (go while) continue executing until a variable changes

Syntax
gw name| address [, number]

Arguments
address

Memory address. This is either decimal or hexadecimal. If hexadecimal, a
leading 0 is required.

name
Name of a variable.

number
Number of bytes. This value is from 1 to 16 inclusive. [Default: 4].

Description
gw executes the program until the value of the named variable changes. If an
address (number) is used, the specified number of bytes (number) at that
address is polled for change (4 is the default).

This breakpoint is useful, but it can be slow since the value being polled is
checked after the execution of each machine instruction.

In Screen Mode
Precede this command with : and follow with Return.

References
continue execution, SPARCompiler Ada User’s Guide

3-70 SPARCompiler Ada Reference Guide

3

gx — (go signal) continue executing, pass the signal to the program

Syntax
gx

Description
When a signal occurs in a program being debugged, the program is first
presented to the debugger. The debugger announces the signal and the location
at which it occurs and stops, waiting for commands. To continue execution of
the program as though the signal has not occurred, use g, a, ai , s , or si . To
continue execution and pass the signal to the program, use the gx command.
This is useful in debugging programs that do explicit signal handling.

This command cancels the Return key memory.

Some UNIX signals are transferred into Ada exceptions by the Ada runtime
system. If the program stops when it receives such a signal, type gx to raise the
corresponding Ada exception.

In Screen Mode
Precede this command with : and follow with Return.

References
“Return — re-execute debugger command” on page 3-128
“signal [signal_list|all] [b|g|gx]” on page 3-144
“sx — (step signal) single step, pass the signal to the program” on page 3-155
continue execution, SPARCompiler Ada User’s Guide

Debugger Reference 3-71

3

help — print help text

Syntax
help [subject]

Arguments
subject

Debugger command, debugger concept or SC Ada tool.

Description
In a debugging session, on-line help is available for debugger commands and
concepts as well as for other Ada tools.

At the debugger prompt (>) type:

>help [subject]

If subject is omitted, the intro screen is printed listing the debugger
commands and concepts. This screen is available by typing help intro .

The help text for subject entries is paged automatically and --More-- is
displayed at the last line of the screen. Table 3-1 provides a list of responses to
the --More-- prompt. The paging program is defined by the environment
(exported) variable PAGER. If PAGER is not defined, the default is used .

At the end of each subject entry, a deb subject? prompt is displayed. Type a
subject name:

deb subject? subject

to access help for another subject or q, followed by Return, to exit help .

In Screen Mode
When using the debugger in screen mode, the command

:help [subject]

provides the facility described above, paged on the lower portion of the screen.

A separate additional help facility provides help for the pager commands.
Type:

H

3-72 SPARCompiler Ada Reference Guide

3

which prints a line of the pager commands at the bottom of the screen. Type H
again for an additional line of commands.

References
on-line debugger help, SPARCompiler Ada User’s Guide

Table 3-1 Summary of Responses in Debugger Help

Prompt You type Response

> help [subject]
quit

Print help screen(s) for subject.
Exit the debugger.

--More- - Press Space
Press Return
q
H
. (dot)

Print the next screen of help text.
Print next line of help text.
Skip to the end of the help text for subject.
Print pager help screen.
Repeat the previous command.

deb subject? subject
q and press Return

Print the help screen(s) for subject.
Exit help .

Debugger Reference 3-73

3

home position — execution point in current frame

Description
The home position is the execution point in the current stack frame, the next
instruction to execute. The line containing the home position is marked with an
asterisk.

When program execution moves to a new frame, the home position changes as
well. For the topmost frame(s), (i.e., topmost non-inline frame plus any inline
frames above it), the home position is the instruction that executes next. For all
other frames, it is the call instruction that called the next higher non-inline
frame.

The asterisk is recognized in line mode as being a valid line number, meaning
“the line containing the home position.” Use an asterisk as a command by itself
to move the current position to the home position.

References
“inline expansions — debugging inline expansions” on page 3-74
“line numbers — move to a specified line” on page 3-91
home position, SPARCompiler Ada User’s Guide

3-74 SPARCompiler Ada Reference Guide

3

inline expansions — debugging inline expansions

Description
The Ada debugger supports the debugging of inline expansions. Inline
expansions occur for each inline call to an INLINE or INLINE_ONLY
subprogram (including auto-inlined calls to small subprograms controlled by
the AUTO_INLINE INFO directive) and for each generic instantiation that is
inlined, i.e., a generic package specification is copied inline.

It is possible to step into inline expansions using the step (s) command and
step over inline expansions using the advance (a) command. After an inline
expansion is entered, for example, by stepping into it with the step command,
it is possible to display the parameters and local variables of the expansion and
to set breakpoints in the expansion.

The call stack (cs) command displays inline frames. These frames are marked
with a + character immediately after the frame number. The call down (cd) and
call up (cu) commands enable you to navigate up and down through inline
expansion frames. Inline frames do not correspond to an actual hardware
frame in the program call stack. They are logical frames that simulate the
existence of a real frame for the inline, i.e., as if the inline is called with a
normal call instruction. An inline frame shares all the hardware characteristics
of the next lower non-inline frame, i.e., it has the same PC, FP, and SP register
values.

The debugger supports the debugging of inline expansions with no call site
code (hereafter referred to as NCSC inlines). An example of an NCSC inline is
a call to a parameterless procedure or function. No parameter binding code is
generated, so the first instruction generated is due to a source line in the inline
body. With optimized code, even calls to subprograms with parameters can be
NCSC inlines.

The first instruction of an NCSC inline is, in effect, associated with multiple
source lines, that is, the line that causes the code to generate in the inline body
and all the call site lines. Potentially, more than one call site line exists for
nested calls (e.g., A calls B who calls C who has first instruction).

Debugger Reference 3-75

3

The debugger supports setting breaks at NCSC inline call sites. Similarly, it
supports stepping to such lines without stepping into the inline. At such a call
site, advance over the inline call or step into it. To do the latter, the debugger
simulates the step into. That is, your context changes to the inline context, but
the program is not physically stepped, i.e., the PC does not change.

A breakpoint associated with multiple source lines is announced at the line
where the breakpoint is set originally. The list breaks (lb) command lists all
lines associated with an inline breakpoint. A + character marks the line where
the breakpoint is announced. In screen mode, breakpoint marks (characters =
and -) are displayed at all lines associated with an inline breakpoint.

Caution – The stepping support for NCSC inlines is based on heuristics that
fail in some situations. However, they work in most common cases. In the
worst case, you are inside an inline when you wanted to be at the call site (or
vice versa). Stepping out of an inline can step several inline frames down (e.g.
last line in A calls B, last line in B calls C, step from last line of C goes to caller
of A). Similarly, a bd from an inline frame may break several inline frames
down.

3-76 SPARCompiler Ada Reference Guide

3

invocation — invoking the debugger

Syntax
a.db [a.db_options] [executable_file [executable_file_options]]

Arguments
a.db_options

Options to the debugger are:

-A
(asynchronous) Invoke debugger in asynchronous mode.

-a pid
Invoke the debugger on the currently executing process (pid). The debugger
does not join the process group of that process. Use the ps(1) or jobs
command to get the pid.

-ag pid
Invoke the debugger on the currently executing process (pid). The debugger
joins the process group of that process. Use the ps(1) or jobs command to
get the pid. This enables Control-c to work.

-c
Debug C programs. This option avoids error messages relating to missing
Ada libraries.

-I argument_list
(interface) Pass arguments defined in argument_list to DB_IFACE when the
debugger interface process is invoked.

-i filename
(input) Read input from the specified file.

-L library_name
(library) Read program compilation information from the specified library,
rather than the current directory, as though you are operating in the
specified library. This option is for debugging Ada programs only.

-r “executable_file [executable_file_options]”
(run) Initialize set run with executable_file and executable_file_options.

Debugger Reference 3-77

3

-sh
(show) Display the name of the debugger executable but do not execute.
This option is useful if multiple versions of Ada are on a system.

-t filename
(terminal) Read terminal state from filename.

When the debugger runs in the background, it cannot reliably get the state
of the controlling terminal, as that state changes as you run other programs
in the foreground. But the output of the debugged program depends on the
set up of your terminal. To ensure that the output is displayed in a
consistent way, we provide the program tty_state in
ada_location/sup/diag . tty_state must be run in the foreground and it
dumps the terminal state to a file. Invoke this program as follows:

tty_state -f filename -w

Then supply that same filename to the debugger with the -t option. Note
that you can print the tty state that is written to filename by typing:

tty_state -f filename -r

-v
(visual) Invoke the screen-mode debugger directly.

executable_file
Name of file to execute and debug. If executable_file is not specified, the
debugger searches for a.out . If only a root filename is given (foo , as
opposed to /vc/sbq/foo), the debugger searches the directories on the
PATH environment (exported) variable for an executable file foo just as the
shell does. Note that if “.” is not on your PATH, you must enter
a.db ./foo .

executable_file_options
Command line options that pertain to the executable_file being debugged. All
command line options that follow the name of the executable are assumed
to belong to the program being debugged.

References
“screen mode — screen-oriented debugger interface” on page 3-132
command file input, display debugger executable, executable file, invoking the
debugger, and screen mode, SPARCompiler Ada User’s Guide

3-78 SPARCompiler Ada Reference Guide

3

Description
a.db is a symbolic debugger for Ada and C programs. On the Solaris 2.1
operating system, C programs must be compiled with both the -g option and
the -xs option to be compatible with the Ada debugger.

Invocation options to the program being debugged can be specified at
debugger invocation. All command line options that follow the name of the
executable are assumed to belong to the program being debugged.

The -r option provides a means to disambiguate options to the debugger and
options to the executable file as they are interpreted by the shell on subsequent
invocations of the debugger. The -r option initializes set run to a string
made up of the executable_file and the executable_file_options enclosed in quotes.
Enclosing shell commands that pertain to the executable file within the quotes,
(output redirection for example) assures that they are not interpreted by the
shell to apply to the debugger itself.

Any single unit or token on the command line can be up to 511 characters long.

Detailed descriptions of interactive a.db commands are provided in this
reference, which is available also online using a.help or the debugger internal
help command.

Use the quit command to leave the debugger and return to the shell.

References
debugging C programs, SPARCompiler Ada User’s Guide

Invocation File
In addition to the invocation line, you can supply parameters to a.db using an
invocation file named .dbrc . During debugger initialization, a.db checks for
./.dbrc . If that does not exist, it checks for $HOME/.dbrc . The .dbrc file
can contain only set commands. These commands execute before commands
in an input file specified on the command line but not before command line
options.

Debugger Reference 3-79

3

A set source command in the .dbrc file can specify the location of an
ada.lib for the debugging session other than the default ada.lib . If a set
source command is present, the debugger searches the directories specified in
the set source command for the first directory that contains an ada.lib .
The debugger uses that directory to obtain the DIANA net files and the line
number files produced by the compiler.

References
“set — set debugger parameters” on page 3-142

Start-up Environment
The debugger establishes the debugging environment when it starts up.
Certain key parameters are displayed on the screen to verify what and where it
is debugging. For example:

Figure 3-2 Example of Debugger Start-up Environment

The first line of the example is the invocation of the debugger on the file phl ,
the dining philosophers program copied from the examples directory and
compiled.

The first line of output shows the full path and name of the program being
debugged. set source is initialized automatically to this path. set run is
initialized automatically to this path with the executable name. This facilitates
subsequent invocations of the debugger on this executable file. Any options
that follow the executable filename are assumed to be for the executable and
are sent to set run unless the -r option is used.

The ada_library is the name of the Ada library directory for this debugging
session.

a.db /vc/atst/phl
Debugging: /vc/atst/phl
ada_library : /vc/atst
library search list:
/vc/atst
/usr2/ada_2.1/self/verdixlib
/usr2/ada_2.1/self/standard
/vc/install/build/tasking

>

3-80 SPARCompiler Ada Reference Guide

3

The first line of the example is the invocation of the debugger on the file phl ,
the dining philosophers program, copied from the examples directory and
compiled.

The library search list is derived from the ada.lib file in the ada_library. It
shows the Ada library directories that are searched when the debugger looks
for an Ada unit. The search list is displayed in the same order that the
debugger searches it.

References
Ada library directory, SPARCompiler Ada User’s Guide

Redirecting Debugger Input and Output
Normally, the debugger reads from the terminal. By using the following
redirection options to a.db , redirect standard input, standard output, and
standard error to a file.

< filename Direct input to the debugger from filename.
> filename Direct output from the debugger to filename.
>& filename Direct debugger output and error messages to filename.

The two restrictions to using redirection are:

 1. You cannot use screen mode when debugging input is a file.

 2. Your program cannot share the debugger input file. Use set input
filename to set the input file for your program. A sample debug.in file
is:

set input debug.in
r quit

Run the debugger in the background, by appending ‘&' to the invocation line.
For example:

a.db my_prog < debug.in >& debug.out &

 Or, if my_prog has input parameters, use the debuggers -r option:

 a.db -r "my_prog my_prog_options" < debug.in >& debug.out &

References
redirecting input/output, SPARCompiler Ada User’s Guide

Debugger Reference 3-81

3

l — (list) display part of a source program

Syntax
l [line] [, number] Pressing Return repeats

Arguments
line

Line number at which to start the listing.

number
Number of lines to display. [Default: 10]

Description
l lists a specified number of lines of the current source file starting at the
specified line. The default value for number is 10, but change this with the set
command. The default line is the current line, which is marked with < to the
left. In screen mode, the current line is the line under the cursor.

The possible forms of line are:

After the l command executes, the current line is the last line displayed.
Consequently, typing l without parameters continues listing where the last l
command stopped.

If * is displayed after the line number, that line is the current home position for
this file. If = appears after the line number, a breakpoint is set for that line.

If – appears after the line number, a breakpoint is set in the code generated for
this line but not on the first instruction. If both = and – apply to the same line,
the one set most recently is displayed.

If + appears after the line number, this represents an inline frame.

number Move to specified line

+number Move number lines forward

–number Move number lines backward

* Move to home position

3-82 SPARCompiler Ada Reference Guide

3

In Screen Mode
Precede this command with : and follow with Return.

References
“line numbers — move to a specified line” on page 3-91
“Instruction and Source Submodes” on page 3-134
display lines, SPARCompiler Ada User’s Guide

Debugger Reference 3-83

3

lb — (list breakpoints) list all currently set breakpoints

Syntax
lb

Description
lb lists all currently set breakpoints. To the left of each breakpoint is a number
in brackets. Use it to delete the breakpoint.

In Screen Mode
Precede this command with : and follow with Return.

References
“d — (delete) delete breakpoints” on page 3-47
display breakpoints, SPARCompiler Ada User’s Guide

3-84 SPARCompiler Ada Reference Guide

3

li — (list instructions) list disassembled instructions

Syntax
li [expression| decimal_number] [, number] Pressing Return repeats

Arguments
expression

Expression defining the instruction address where listing is starts.

decimal_number
Decimal number indicating the line number at which listing is to start.

number
Number of lines to display in the listing. [Default: 10]

Description
li lists the specified number of lines including disassembled machine
instructions interspersed with source lines. If a decimal line number is given,
disassembly starts with the first line of code generated by or after that line.
instruction stands for an instruction address expressed as a hexadecimal
number with a leading zero. If expression is specified, the listing starts with the
instruction at that address.

If * appears next to the instruction address, that instruction is the home
position for the current frame. Use * as the expression| decimal_number to start
disassembly at the home position.

If an equals sign appears after the address, a breakpoint is at that instruction.

If [expression| decimal_number] is omitted, the listing begins with the line or
instruction following the most recently l ’d or li ’d line or instruction or the
home line or instruction if no l or li command is given for this file. Listing
begins with the home position if expression| decimal_number is * .

The display contains program source lines interspersed among disassembled
machine instructions. The first instruction is preceded by the source line that
generated it, except when no source is available or disassembly begins
mid-statement.

Debugger Reference 3-85

3

The debugger does not, in one li command, disassemble across a source file
boundary, no matter how many lines it is instructed to print. It stops the
display at the source file boundary. The next li command with no parameters
starts at the beginning of the next source file.

In Screen Mode
Precede this command with : and follow with Return. You can show
disassembly in the upper window with Instruction Submode.

In screen mode, toggle the upper window (source window) to display either
source code or disassembled machine instructions. This screen mode
command, I (uppercase i), performs this toggling.

References
“Instruction and Source Submodes” on page 3-134
“wi — (window instruction) list disassembled and original code” on
page 3-162
display instructions, SPARCompiler Ada User’s Guide

3-86 SPARCompiler Ada Reference Guide

3

line editing — command history and line editing functions

Description
The debugger supports line editing functions that enable the user to make
simple changes to a command before transmitting it to the debugger. In
addition, the debugger supports a command history mechanism that enables
the user to recall a previous command for editing and execution.

The best way to learn about the line editing and command history features of
the debugger is to try them. We recommend getting into a debugging session
and typing a few commands. Then try out the features described in the
following sections.

Line editing and command history apply only to line-oriented debugger
commands. A line-oriented command is submitted to the debugger when the
debugger is in line mode or when entering a command in response to a :
prompt in screen mode. Window control commands and debugger commands
that are entered directly in screen mode cannot be line edited and are not saved
in the history buffer.

Command History
When you transmit a command to the debugger by typing Return, the
debugger remembers it (unless it is exactly the same as the previous
command). The debugger has a 2048 character circular buffer to save the most
recent non-screen-mode commands. Since debugger commands are typically
under 10 characters, this buffer holds about 200 of the most recent commands.

Two line editing commands are specific to command history:

k Go backwards in history one command.

j Go forward in history. Only use j after at least one k .

Enter these two commands when line editing a debugger command (but not
when in insert mode). Every time you type a k you go back one command.
That command is displayed at the current prompt with the cursor at the right
of the command. If you then type a Return, the command is submitted to the
debugger. Alternatively, use any of the line editing commands to change the
command, before typing Return to submit it to the debugger.

Debugger Reference 3-87

3

Line editing
When you enter a command to the debugger, you are in one of two modes,
insert or edit. Normally you are in insert mode with the cursor at the end of
the command line. Each character you type is added to the command at the
end. The two most common line editing commands used in insert mode are
“erase” (usually Control-h) to backspace over the most recent character, and
“kill” (typically Control-u) to erase the entire line. The debugger uses the user
stty “erase” and “kill” characters to perform these functions. The operating
system stty command displays the current erase and kill characters.

To leave insert mode and enter edit mode, the Escape key is used. This moves
the cursor back one character, placing it over the last character inserted.

Regardless if you are in edit or insert mode, when you type a Return, the entire
line is transmitted to the debugger, even if the cursor is positioned in the
middle of the line. In other words, what you see is what is sent to the
debugger. Here is a list of the available line editing commands:

Table 3-2 Line Editing Commands

Name Command M Meaning

AHEAD j e Go ahead (down) in history

APND_END A e Go to end of line and enter insert mode

APPEND a e Enter insert mode after character under
cursor

BACKWARD k e Go back (up) in history

BEGINSRT I e Move cursor to beginning of line and
enter insert mode

BEGLINE O e Move cursor to beginning of line

CARET ^ e Move to first nonwhite space on line.

CHANGE c {motion} e Change text [see "motion"]

CHGROL C e Change rest of line, from character under
cursor

CHNG_SRCH N e Search in the opposite direction in history
for previous string.

COMPLETE stringEsc\ e Complete string with name visible in
current scope that begins with string. Beep
sounds if 0 or >1 matches are found.

3-88 SPARCompiler Ada Reference Guide

3

CONT_SRC n e Search in same direction in history for
previous string.

DELCHAR x e Delete character underneath cursor

DELETE d {motion} e Delete text [see "motion"]

DELROL D e Delete rest of line, from character under
cursor

DOIT Return b Transmit the current line to the debugger

ENDCOM Esc e End insert mode (or CHANGE mode)
- switch to edit mode

ENDLINE $ e Move cursor to end of line

ENTERIN i e Enter insert mode before character under
cursor

ERASE Control-h i Erase last character, prints
Backspace-blank-backspace

KILL Control-u i Kill entire line typed so far

LITNEXT Control-v i Literalize next input character

LS_NAMES stringEsc = i List all names in current scope that start
with string. Beep sounds if no matches are
found

MATCH_LS stringEsc(#) i Complete the name beginning with string
using # (as produced by LISTMATCHES
command) for the name.

MV_BWORD b e Move cursor to previous word

MV_LEFT h e Move cursor one position left

MV_RIGHT l e Move cursor one position right

MV_WORD w e Move cursor to next word

REPLACE r<char> e Replace one character underneath cursor

REPRINT Control-f i Reprint most recently typed in line

Table 3-2 Line Editing Commands (Continued)

Name Command M Meaning

Debugger Reference 3-89

3

The “M” [mode] column
i = Command available in insert mode
b = Command available in both modes
e = Command available in edit mode

Motion
Select one of the following characters as a motion character for the CHANGE or
DELETE editing functions. The motion character determines what changes.
w - From the cursor through the rest of the word
b - From the beginning of the word to the cursor
0 - From the beginning of the line to the cursor
^ - From the first nonwhite space of the line to the cursor $ - From the cursor to the end
of the line

Additional Notes
 1. For the change commands (CHANGE and CHGROL), you enter change mode after
typing the command. The change area is marked by a dollar sign ($) on the right end
and the cursor on the left end. This entire area is replaced by what you type. If what
you type is shorter than the change area, then the remainder of the change area is
deleted. If what you type is longer, then the remainder of the line is pushed to the
right to make room.

 2. The h, j , k , and l characters give the directions left, down, up, and right
respectively. If you view the history as a page of text, then the j key moves up the
page and the k key moves down the page.

 3. If you type ?p in edit mode, the last command stored in history that has a p in it is
matched. Note that the command does not have to start with a p. If no match is
found, a beep sounds. Use the / in edit mode to search forward in history. Note that N
and n in edit mode must follow the completion of either a / or a ? command.

4. In addition to ERASE and KILL , WERASE, and REPRINT are character sequences
that the debugger inherits from your current stty settings.
5. The command stringEsc= provides the ability to find all names in the current scope
that begin with the string entered before the Esc. For example, if you are debugging
HELLO_WORLD, the following can be entered.

p p<ESC>= (
1) text_io.put_line'2 (string)
(2) text_io.put_line'1 (file_type, string)

SRCH_BWD ?string e Search backward in history for the next
command that contains string.

SRCH_FWD /string e Search forward in history for the most
recent command that contains string.

WERASE Control-w i Erase most recently typed word

Table 3-2 Line Editing Commands (Continued)

Name Command M Meaning

3-90 SPARCompiler Ada Reference Guide

3

(3) text_io.put'4 (string)
(4) text_io.put'3 (file_type, string)
(5) text_io.put'2 (character)
(6) text_io.put'1 (file_type, character)
(7) text_io.positive_count
(8) text_io.page_length'2 () return count
(9) text_io.page_length'1 (file_type) return count
(10) text_io.page'2 () return positive_count
(11) text_io.page'1 (file_type) return positive_count
(12) EXCEPTION.program_error
(13) positive >p p

An additional feature uses the numbers produced from the stringEsc= command to
quickly change the command line. The current string is completed to the string listed
by the number chosen using the stringEsc(#) command. For example, after issuing
the p pEsc= command, you may want to continue the p p command with put'4
(number 3 in the list). You can do this by entering the following at the spot where the
cursor is located:

Esc(3)

The full command appears as >p p<ESC>(3) .

After entering the above and pressing Return, the command line changes to

>p put'4

and you are back in insert mode again.

Note – Matching is done on the names of the procedures or variables that are
visible, not by the name of the package. In the example above, the list comes
from matching the letter p. You do not see the entries in the list that match t
for TEXT_IO if you typed t Esc=. The name of the package is printed in the list
for your convenience.

Debugger Reference 3-91

3

line numbers — move to a specified line

Syntax

Arguments
number

The number of the line to move to or the number of lines to move.

Description
Some debugger commands accept number as a parameter (b, l , w, li , wi). In
line mode, typing number by itself is the debugger command to move to that
line.

Specify a line number as a decimal number, representing that line in the
current file. Typing +number or - number adds or subtracts the specified number
from the current position. For example, typing +5 or -5 as a command changes
the current debugger line position by adding or subtracting 5, respectively.
Typing * as a line number means “use the line number corresponding to the
current home position.” For the debugger commands li and wi , typing *
means the home position instruction (not the line number).

When the debugger displays current home position (in response to an l , li , w
or wi command), * appears left of the line corresponding to home position.

In line mode, the debugger displays the current position by showing < to the
left of the line corresponding to the current position. The e command with no
parameters lists out the current file, subprogram, and line corresponding to the
current position.

number Move to specified line

+number Move number lines forward

-number Move number lines backward

* Move to home position

3-92 SPARCompiler Ada Reference Guide

3

In Screen Mode
Move to a new line in screen mode by using this command:

[number]G

The G must be uppercase. This command moves the debugger source window,
so it displays the line in the current file whose number was specified. If number
is not specified, the source window moves to the end of the file. In screen
mode, both of the following commands move to line 102.

102G
:102

By default, the debugger displays the source with associated line numbers,
(controlled with the set number command).

References
“number [on|off]” on page 3-143
specify new position, SPARCompiler Ada User’s Guide

Debugger Reference 3-93

3

lt — (list tasks) list all active tasks

Syntax
lt [all|use| task]

Arguments
all

Provides a detailed display for all tasks up to the maximum of 300 tasks.

task
Name or hexadecimal address of task for which detailed information is
displayed. The current task is the breakpointed task or the most recent task.

use
Display the location and usage of stacks for all tasks up to the maximum of
300 tasks.

Description
If all , use or task is not specified, lt lists all active tasks (up to a maximum
of 300) and gives a brief status for each one.

Display Status for All Active Tasks
The lt command displays four columns of information for each task. The
columns are labeled Q#, TASK, NUM, and STATUS.

The Q# column (queue numbers) has one of several values: R n indicates that
the task is on the run queue in the nth position. R1 runs next. Dn means that the
task is on the delay queue in the nth position. The delay for D1 expires next.

Note – The queue position numbers are applicable only to the VADS MICRO
kernel. They are not displayed when Ada tasking is layered on Solaris threads.

An asterisk (*) indicates the current task (the breakpointed task or the most
recent task).

An ABNORMAL in the Q# column indicates the task has been aborted.

3-94 SPARCompiler Ada Reference Guide

3

The TASK column contains either the name of the task or a T, followed by the
name of the task type that declared the task. Note that the main program’s task
has no name and is listed as main program . Also, the runtime defines a task
used when all other tasks are suspended and the scheduler is waiting for an
interrupt event. This task is listed as idle task if it is the breakpointed task.
Otherwise, the idle task is not listed

If the breakpointed task is not an Ada task or the idle task, this task is listed as
non-Ada task .

A special signal task is created for each interrupt entry. It is given the name
signal sig_num where sig_num is its interrupt vector number.

For Solaris threads, a special interrupt task is created for each attached ISR. It
is given the name interrupt intr_num where intr_num is its interrupt vector
number.

The NUM column contains the sequence number assigned to the task. This
number is always 1 for the main task and is incremented every time a task is
created. This number is used when setting breakpoints for a particular task.
The number can also be used with the lt command to specify the task, lt5 .
The tcb address of the task can be displayed by getting a full listing of the task
using the lt task command.

The STATUS column shows the state of each task and additional information
for some states. Times displayed are absolute times, which start with 0 unless
the timer is reset via the package CALENDAR or package XCALENDAR. The
time must match CALENDAR.CLOCK. The possible states for each task are
shown in Table 3-3.

Table 3-3 Task State Conditions

State Description

not yet active The task is created but not yet activated. See section 9.3 in the Ada Reference Manual.

ready to start The task is activated and ready to start its first execution.

awaiting activations Parent task suspended while waiting for child tasks to complete their activation.

awaiting terminations Parent task suspended while waiting for child tasks to terminate.

executing The task is executing.

ready The task is on the run queue.

Debugger Reference 3-95

3

suspended at accept The task has executed an accept on an entry that no task is currently calling, so is
now waiting until a task calls it.

suspended at fast accept The task has executed a “fast” accept on an entry that no task is currently calling, so
is waiting until a task calls it.

suspended at trivial accept The task executes an accept on a CIFO ’trivial’ entry that no task is currently calling, so
is waiting until a task calls it.

suspended at select The task has executed a task but no tasks are calling open entries; statement has an
open terminate alternative and is waiting until some event enables it to proceed.

(terminate possible) Task termination conditions satisfied.

(terminate not possible) Task terminate conditions not satisfied; waiting for child
tasks to terminate.

OPEN ENTRIES: entry_name Lists each open entry of select .
NO ENTRIES OPEN: No entries currently open.

suspended at call The task has executed an entry call and remains in this state until transition in
rendezvous state.

task_name[task_addr].entry_name Gives target task and entry

in rendezvous The task has executed an entry call and remains in this state until transition in
rendezvous state.

task_name[task_addr].entry_name Gives target task and entry

attempting rendezvous The task is attempting rendezvous with the called task.

task_name[task_addr].entry_name Gives target task and entry

finished rendezvous The task has just finished its rendezvous with the called task.

task_name[task_addr].entry_name Gives target task and entry

suspended at delay The task has executed a delay statement.

suspended at passive call or
cond wait

The task is suspended calling a passive task’s entry whose guard is closed or the task
is waiting on an ABORT_SAFE condition variable.

finished passive call or cond
wait

The task suspended at a passive call has been resumed. The guard for the called entry
has changed from closed to open. Alternatively, if the task was waiting on an
ABORT_SAFE condition variable, the condition variable has been signalled.

Table 3-3 Task State Conditions (Continued)

State Description

3-96 SPARCompiler Ada Reference Guide

3

Some additional information can be appended to the status entry.

in rendezvous with task_name[task_addr] at entry entry_name

means that the task accepted the entry call from the named task at the named
entry. This message can occur more than once. It repeats for each rendezvous
resulting from outer nested accept s in order from innermost to outermost
accept .

The message

on delay queue, until day: number sec: number

suspended on semaphore Task blocked waiting for its semaphore to be signalled.

[semaphore_addr] Gives semaphore ID

suspended on mutex Task blocked from entering critical region protected by a mutex. Another task has
locked the mutex.

[mutex_addr] Gives mutex ID

suspended on cond Task blocked waiting for its condition variable to be signalled.

[cond_addr] using mutex [mutex_addr] Gives condition variable and mutex IDs

waiting to exit <main program> suspended, waiting for child tasks to terminate.

completed The task has executed all its code body. Upon completion of all subtasks, it terminates.
See section 9.4(5) of the Ada Reference Manual.

terminated The task is terminated. See section 9.4(6) of the Ada Reference Manual.

destroyed The task is has been terminated and is in the process of being destroyed.

waiting for signal The task created for the interrupt entry is waiting to be signalled by its interrupt
handler. After being signalled, this task does an entry call to the interrupt entry in the
attached task.

attached to task_name[task_addr] at entry entry_name Gives attached task and interrupt entry

waiting for interrupt The task created for the interrupt vector is waiting to be signalled by its interrupt
handler. After being signalled, this task calls the attached interrupt service routine
(ISR). The task is blocked at a sigwait() for the attached UNIX signal.

handler at handler_addr] Gives the address of the ISR

Table 3-3 Task State Conditions (Continued)

State Description

Debugger Reference 3-97

3

The lt command produces output like that in Figure 3-3:

Figure 3-3 Example of Output from the lt Command

When tasks are dynamically created, that is, anonymous tasks, only their
identifiers (the address of the task control block) are listed. Use the task
number with the task and cs (call stack) commands.

Using the lt command to display tasks using the fast rendezvous optimization
has a few subtle differences.

References
Fast Rendezvous Optimizations, SPARCompiler Ada Runtime System Guide

>lt
Q TASK NUM STATUS
 rand_delay 14 suspended at accept for entry rand
 T philosopher 13 in rendezvous T output[2].put_cursor
R T philosopher 12 ready
R T philosopher 11 ready
R T philosopher 10 ready
R T philosopher 9 ready
 T fork 8 suspended at fast accept for entry pick_up
 T fork 7 suspended at fast accept for entry pick_up
 T fork 6 suspended at fast accept for entry pick_up
 T fork 5 suspended at fast accept for entry pick_up
 T fork 4 suspended at fast accept for entry pick_up
 T dining_room 3 suspended at select
 open entries: allocate_seat leave
* T output 2 executing
 in rendezvous with T philosopher[13] at entry put_cursor
 <main program> 1 awaiting terminations

3-98 SPARCompiler Ada Reference Guide

3

.Display Single Task Status
The lt task form of this command provides additional information about a
single task. For example, lt dining_room produces the following output
in Figure 3-4:

Figure 3-4 Example of Output for lt dining_room

The first lines are the same as the brief display. The added information
includes a table of entry queue status giving the entry name, whether the entry
is open for a task , and the ordered lists of the tasks waiting at that entry.

The thread ID gives the ID of the underlying OS thread. For the VADS MICRO
kernel, it is the address of its micro kernel task control block

The tcb address line indicates the address the runtime system assigned to the
task when it was created. You can use the address value when identifying
instances of a task type, as the task type name is not a unique identifier. An
address of 00000000 is displayed for idle_task or non-Ada task since they
are not real Ada tasks.

The static priority line gives the task priority. Following that is current
priority . A task executes at the higher of its own static priority and the
current priority of any task with which it is in rendezvous .

>lt dining_room
=> a task type has no address (a task object does): dining_room
Q TASK NUM STATUS
 T dining_room 3 suspended at select
 ENTRY STATUS TASKS WAITING
 allocate_seat open - no tasks waiting -
 enter - no tasks waiting -
 leave open - no tasks waiting -
 waiting to execute fast rendezvous in a calling task
 thread id = 01007d3a0
 thread status = PT_CWAIT
 tcb address = 01007d1c6
 static priority = 0
 current priority = 0
 parent task: <main program>[1]

Debugger Reference 3-99

3

For the VADS MICRO kernel, if the task's thread priority differs from the
current priority, the thread priority is displayed on the line following the
current priority. In the CIFO add-on product, the thread priority can differ
from the current Ada priority when the task owns a priority inheritance or
priority ceiling, or it is a sporadic task.

The parent task line describes the master of this task The task that is
executing this master is 045068 . With this information it is possible to
construct a tree of tasks, linked by their masters to their parent tasks. The task
executing the master is not necessarily the task that creates it.

The system clock can continue to run while the debugger is suspended at a
breakpoint waiting for input. This can cause delays to expire immediately
when stepping away from the breakpoint and the flow of program control to
relate to breakpoints and their timing in an unpredictable fashion.

If time slicing is enabled, a breakpoint is often followed by a time slicing
transfer of control. This transfer can be pathologic if a breakpoint is set in the
actual time slicing logic in the Ada kernel such as in SWITCH or SWITCH_TO.
The time slice response calls SWITCH and reaches another breakpoint. The
delay in handling the breakpoint uses up the time slice, and so another time
slicing interrupt comes just as execution resumes from this breakpoint. For this
reason, it is convenient when debugging tasks to configure the runtime system
without time slicing enabled

v_usr_conf.configuration_table.time_slicing_enabled := false;

or to call the subprogram in V_XTASKING to turn off time slicing.

v_xtasking.set_time_slicing_enabled(false);

3-100 SPARCompiler Ada Reference Guide

3

Warning – Breakpoints in the runtime system itself may leave the tasking data
structures in an unpredictable state. Output from the lt command can then be
questionable, particularly for the current task. For example, a common
breakpoint is SWITCH_TO, which is called when control transfers to a new task.
At this point, in the middle of an accept , rendezvous information may not be
consistent.

Display CIFO Pragma Values
After providing a detailed display for all tasks, the lt all form of this
command displays the values set using the CIFO pragmas in the main
procedure. The CIFO add-on product supports the following pragmas that can
appear in the main procedure:

pragma SET_PRIORITY_INHERITANCE_CRITERIA;
pragma SET_GLOBAL_ENTRY_CRITERIA
 (TO: in QUEUING_DISCIPLINE.DISCIPLINE);

pragma SET_GLOBAL_SELECT_CRITERIA
 (TO: in COMPLEX_DISCIPLINE.SELECT_CRITERIA);

When the main program doesn't have any of the above pragmas, the lt all
command has the following output at the end of its display:

Priority inheritance enabled = false
Global entry criteria = fifo queuing
Global select lexical order = false

The CIFO add-on product allows the entry criteria and select criteria to be
specified on a per task basis using the following pragmas.

pragma SET_ENTRY_CRITERIA
 (TO: in QUEUING_DISCIPLINE.DISCIPLINE);

pragma SET_SELECT_CRITERIA

 (TO: in COMPLEX_DISCIPLINE.SELECT_CRITERIA);

The following lines are displayed for a task when its value differs from the
global pragma value:

entry criteria = fifo queuing | priority queuing
select lexical order = false | true

The CIFO add-on is available from Verdix Corporation (1-800-BUY-VADS)

Debugger Reference 3-101

3

Display Stack Usage and Location
The lt use form of this command displays the location and usage of the task
stacks.

The command, lt use , produces the abbreviated output in Figure 3-5

>lt use
Q TASK NUM STATUS
 rand_delay 14 suspended at accept for entry rand
 wait stack: 0100b7720 .. 0100b86bf, used 499 out of 4000 [12%]
 stack: 0100b4f50 .. 0100b86ef, used 4368 out of 14240 [30%]
 exception stack: 0100b3bc8 .. 0100b4f4f, used 4962 out of 5000 [99%]
 T philosopher 13 in rendezvous T output[2].put_cursor
 wait stack: 0100b27f0 .. 0100b378f, used 443 out of 4000 [11%]
 stack: 0100b0020 .. 0100b37bf, used 4699 out of 14240 [32%]
 exception stack: 0100aec98 .. 0100b001f, used 4962 out of 5000 [99%]
R T philosopher 12 ready
 wait stack: 0100ad8c0 .. 0100ae85f, used 1120 out of 4000 [28%]
 stack: 0100ab0f0 .. 0100ae88f, used 4643 out of 14240 [32%]
 exception stack: 0100a9d68 .. 0100ab0ef, used 4962 out of 5000 [99%]
R T philosopher 11 ready
 wait stack: 0100a8990 .. 0100a992f, used 443 out of 4000 [11%]
 stack: 0100a61c0 .. 0100a995f, used 5472 out of 14240 [38%]
 exception stack: 0100a4e38 .. 0100a61bf, used 4962 out of 5000 [99%]
R T philosopher 10 ready
 wait stack: 0100a3a60 .. 0100a49ff, used 443 out of 4000 [11%]
 stack: 0100a1290 .. 0100a4a2f, used 9776 out of 14240 [68%]
 exception stack: 01009ff08 .. 0100a128f, used 4962 out of 5000 [99%]
R T philosopher 9 ready
 wait stack: 01009eb30 .. 01009facf, used 443 out of 4000 [11%]
 stack: 01009c360 .. 01009faff, used 14080 out of 14240 [98%]
 exception stack: 01009afd8 .. 01009c35f, used 4962 out of 5000 [99%]
 T fork 8 suspended at fast accept for entry pick_up
 wait stack: 010099c00 .. 01009ab9f, used 443 out of 4000 [11%]
 stack: 010097430 .. 01009abcf, used 4611 out of 14240 [32%]
 exception stack: 0100960a8 .. 01009742f, used 4962 out of 5000 [99%]
 T fork 7 suspended at fast accept for entry pick_up
 wait stack: 010094cd0 .. 010095c6f, used 443 out of 4000 [11%]
 stack: 010092500 .. 010095c9f, used 4611 out of 14240 [32%]
 exception stack: 010091178 .. 0100924ff, used 4962 out of 5000 [99%]
 T fork 6 suspended at fast accept for entry pick_up
 wait stack: 01008fda0 .. 010090d3f, used 2368 out of 4000 [59%]
 stack: 01008d5d0 .. 010090d6f, used 4611 out of 14240 [32%]
 exception stack: 01008c248 .. 01008d5cf, used 4962 out of 5000 [99%]
 T fork 5 suspended at fast accept for entry pick_up
 wait stack: 01008ae70 .. 01008be0f, used 443 out of 4000 [11%]
 stack: 0100886a0 .. 01008be3f, used 6720 out of 14240 [47%]
 exception stack: 010087318 .. 01008869f, used 4962 out of 5000 [99%]
 (continued)

3-102 SPARCompiler Ada Reference Guide

3

Figure 3-5 Example of Output from lt use

The lt use command displays the normal stack memory address range and
the exception stack range of a task. The exception stack is located directly
below the normal stack area of a task. This is needed for execution of the
exception unwinding logic to handle the stack limit STORAGE_ERROR
exception. Notice that the size of the exception stack is the same for all tasks. It
is defined by the configuration table parameter, EXCEPTION_STACK_SIZE in
the v_usr_conf_b.a file found in the usr_conf directory.

Also notice that the size of the task stacks has been increased by the
configuration table parameter, WAIT_STACK_SIZE. The wait stack area is
allocated at the top of the task stack. The wait stack is needed to support the
fast rendezvous optimization.

For each task stack range, lt use calculates stack usage by starting at the
LOW_ADDRESS memory location and searching upward for the first nonzero
byte. The following equations are used:

stack_size := (high_address + 1) - low_address
bytes_used := (high_address + 1) - first_nonzero_address
[usage %] := (bytes_used / stack_size) * 100

(continued)
 T fork 4 suspended at fast accept for entry pick_up
 wait stack: 010085f40 .. 010086edf, used 443 out of 4000 [11%]
 stack: 010083770 .. 010086f0f, used 11024 out of 14240 [77%]
 exception stack: 0100823e8 .. 01008376f, used 4962 out of 5000 [99%]
 T dining_room 3 suspended at select
 wait stack: 010081010 .. 010081faf, used 499 out of 4000 [12%]
 stack: 01007e840 .. 010081fdf, used 4699 out of 14240 [32%]
 exception stack: 01007d4b8 .. 01007e83f, used 4962 out of 5000 [99%]
* T output 2 executing
 wait stack: 01007c0e0 .. 01007d07f, used 3200 out of 4000 [80%]
 stack: 010079910 .. 01007d0af, used 6973 out of 14240 [48%]
 exception stack: 010078588 .. 01007990f, used 4962 out of 5000 [99%]
 <main program> 1 awaiting terminations
 wait stack: 07fffb680 .. 07fffc61f, used 3986 out of 4000 [99%]
 stack: 07fdfb690 .. 07fffc62f, used 5295 out of 2101152 [0%]
 exception stack: 07fdfa308 .. 07fdfb68f, used 0 out of 5000 [0%]

Debugger Reference 3-103

3

Warning – Stack usage information may be incorrect for applications having
dynamic task creation and completion. When a task completes, its stack area is
returned to a stack-free list. Subsequently created tasks attempt to get their
stack areas from this free list. We chose to optimize task creation and
completion processing by not zeroing out the task stack areas.

For self-hosts, we assume that the underlying OS returns zeroed memory for
allocation requests. The v_krn_conf.zero_heap_stack routine called by
v_krn_conf.v_start_program zeroes the memory. However, the user can
decrease the time spent doing kernel initialization by eliminating this zeroing
operation.

We assume that nonzero values are pushed on the stack.

References
“b — (break) break at a line or beginning of a subprogram” on page 3-16
“bd — (break down) break after current subprogram” on page 3-20
“bx — (break exception) break when an Ada exception occurs” on page 3-28
“task — print current task or choose a new current task” on page 3-156
display tasks, SPARCompiler Ada User’s Guide
time slice configuration parameters, SPARCompiler Ada User’s Guide
master task, section 9.4 in Ada Reference Manual
Fast Rendezvous Optimizations, SPARCompiler Ada Runtime System Guide

3-104 SPARCompiler Ada Reference Guide

3

lu — (list processes) list UNIX processes

Syntax
lu [PID]

 Arguments
PID

Process identification number of the process to list.

 Description
lu provides a description of the UNIX process(es) to which the debugger is
attached.

If no arguments are listed, a brief description of all the processes the debugger
is attached to is displayed. For example, see Figure 3-6:

Figure 3-6 Example of Output from lu Command

>lu
24600: stopped by the debugger.
24599: stopped by the debugger.
24598: stopped on signal "trap" (5).

Debugger Reference 3-105

3

If a PID is listed following the command, the debugger prints a detailed
description of the process whose process id (PID) is given. For example, see
Figure 3-7:

Figure 3-7 Example of Output from lu PID Command

References
“lt — (list tasks) list all active tasks” on page 3-93
proc or ptrace , UNIX Reference Manuals

>lu 24600
pid 24600, utime 0 sec, stime 0 sec
 ppid 24598, group id: 24596, session id: 0
FLAGS:
 stopped [PR_STOPPED]
 stopped on an event of interest [PR_ISTOP]
 inherit-on-fork flag set [PR_FORK]
run-on-last-close flag set [PR_RLC]
stopped in response to stop directive, normally PIOCSTOP

3-106 SPARCompiler Ada Reference Guide

3

overloading — disambiguate overloaded names

Description
a.db supports a subprogram, task or package name as the object of the e (move
to a new source file), edit (edit a file), vi (enter screen-oriented mode), and b
(set breakpoint) commands. e, edit and vi support other Ada names such as
names of types, variables, constants, etc.

When debugging Ada programs, the name supplied to these commands need
not be fully qualified if it is the name of a subprogram, task or package (with
an elaboration subprogram). For example, the simple name sin can be used in
place of standard.math.sin).

When a simple name is used for one of these commands, the debugger
searches “program-wide” for subprograms of this name (including
subprograms that correspond to task bodies and package elaboration). This
search enables you to set a breakpoint or enter any subprogram even if its
name is not directly visible now.

The e, edit and vi commands search for entities that do not correspond to
subprograms (e.g,. packages with no elaboration subprogram, types, variables,
etc.) directly visible from the current context or that are library units.

If the search finds multiple definitions for the same name, the debugger issues
a message displaying each of the possible alternatives. The notation is
simple_name’n, where n is a number, for example, sin’2 . An example of the
debugger message follows in Figure 3-8. A breakpoint is set at a subprogram
with the simple name add , which is overloaded.

Figure 3-8 Example of Overloading

> b add
=> add is overloaded. Use ‘n to select one:
add’1 (integer, integer) return integer
add’2 (integer, integer) return real_a
add’3 (integer, integer) return float
add’4 (integer)
add’5 (float)
> b add’3

Debugger Reference 3-107

3

The suffix ‘n must be appended to the subprogram name to indicate precisely
the name to reference, where n is one of the numbers listed in the overloading
message (b add’3).

The debugger assigns a number to each occurrence of a simple name, starting
with 1. These numbers remain constant throughout the debugging session.
When the debugger finds overloading, it lists all of the overloadings.

A task that is passive or has interrupt entries shows up as being overloaded. Its
different cases are indicated with the PASSIVE ACCEPT, PASSIVE ISR, and
NON_PASSIVE IRS labels.

References
overload resolution, SPARCompiler Ada User’s Guide

3-108 SPARCompiler Ada Reference Guide

3

p — (print) display the value of a variable or expression

Syntax
p expression

Arguments
expression

Name of a program variable, subprogram name or arithmetic expression.

Description
p is the debugger command for displaying the value of program variables and
for calling subprograms. It evaluates arithmetic expressions that may contain
program variables and/or function calls. If the displayed result is an integer, it
is printed in the current output base (default, 10). Change this default with the
set obase command.

Name Expressions
For Ada variables, the debugger currently supports simple variable names
(MARK, R_A), selected components and expanded names (MARK.LINE),
strings (DATE 1..4), and indexed components (X(Y), Z(1,2)). Use them in
combination (X(M.Z), B.X(1)). The debugger supports the evaluation and
display of Ada array slices, for example, p date (1...3). It evaluates the ’FIRST ,
’LAST, ’ADDRESS, and ’RANGE attributes. Entry calls are not supported yet.

Call Ada subprograms and functions. You can use the results of a function in
the expression. Some restrictions exist. Only parameters of mode in are
supported. in out or out parameters are not supported. Default parameter
values are not supported yet. The debugger does not call a function that
returns an array or a record (functions returning access values are supported).
A parameterless function must be called using empty parentheses, p foo() .
When referencing an Ada subprogram, it may be necessary to resolve
overloading.

The debugger uses visibility rules similar — but not identical — to Ada for
looking up variable names. The current frame determines what names are
visible. The visible names are the same names that are visible if a statement is
added to the program at the point in the source text corresponding to the
current frame.

Debugger Reference 3-109

3

Expressions
The p command calculates the value of an expression and prints the result.

References
“display memory — display raw memory” on page 3-51
“expressions — arithmetic expressions in the debugger” on page 3-65

User Procedure Calls
Call procedures in the program being debugged, user procedures, with the p
command.

References
“procedure calls — call subprograms from the program” on page 3-112

Unary Operators for Debugging C
The debugger supports the * and & unary operators.

The value of the * operand is the address of the memory to be accessed. The
operand cannot be a structure, union, float or double data type.

The * operator dereferences pointers. The fields of structures are given when
the operand is a pointer to a structure.

The & unary operator returns the address of its operand. Use the & operator in
procedure calls and with variables of any type except registers.

References
debugging C programs, SPARCompiler Ada User’s Guide

Display Memory

Use the p command to display raw memory.

Some of the facilities described under display memory can be used to extract
memory as a value and use it in an expression. For example,

p (013A770:L) + 01 A

reads the 32 bytes at address 013A770 , adds 01A to it and prints the result.

3-110 SPARCompiler Ada Reference Guide

3

References
“display memory — display raw memory” on page 3-51

Display Exceptions
The p command is also used to display exceptions. Entering the following
command prints out the current exception name and a PC value very near to
where the exception was raised:

%p $exception

This command is useful if you have set a breakpoint in an exception handler
and there are many possible places where the exception could have been
raised. In addition, if the handler is when others => , this command helps by
displaying the actual name of the exception.

In Screen Mode
The p command has additional support in screen mode. To print the value of a
variable on the screen (either window), position the cursor on top of any letter
of a variable name, and press p. In response, the name of the variable is
displayed in the command window followed by the variable value. This is
useful when single stepping since usually the cursor is near an instance of
variables of interest.

To display a name expression, such as foo(k).link , position the cursor on top
of foo and press uppercase P. This moves the cursor to the f of foo and overwrites
the last letter of foo with @. The cursor and the @ delimit the expression. Type P
again to move the @ right again to the last character of the next part of the name
expression, the right parenthesis of (k) . Continue typing P in this way until the
entire expression to be displayed is delimited by the cursor and the @. At this point,
a p displays the value of the delimited expression. a causes the debugger to
display foo(k).link.all , which prints the object that foo(k).link points
to. * is for C debugging; it displays *c_foo[k].link which prints the object
where c_foo[k].link points. In the following example, the position of the

Debugger Reference 3-111

3

cursor is indicated by the letter contained in the box.

Now you type:

• p to send foo(k).link to the debugger

• a to send foo(k).link.all to the debugger

• * to send *c_foo[k].link to the debugger (where c_foo[k] is a C
array with the field link)

• y to yank the delimited expression to the command line and precede it
with :p

For example, if you enter y, the following appears on the command line:

:p foo(k) .link

Use the P..y facility to print variables using any of the display options described
in the display memory command. For example, to display a variable in hexadecimal
notation, use P..y to yank the variable to the command line (it is automatically
preceded by a :p) and type :x Return after it. The hexadecimal value of that
variable is displayed.

:p variable_name:x Return

To display a variable in decimal notation, enter :d Return after yanking it to the
command line.

:p variable_name:d Return

To display memory at a variable location, enter :m Return after yanking the
variable to the command line.

:p variable_name:m<RETURN>

References
display variables, SPARCompiler Ada User’s Guide

foo(k).link - - Before you type P, the cursor is on the o of the foo .

fo@(k).link - - After you type P.

foo(k@.link - - After you type a second P.

foo(k).link @ - - After you type a third P.

3-112 SPARCompiler Ada Reference Guide

3

procedure calls — call subprograms from the program

Description
It is possible in the debugger to call a procedure that is part of the program
being debugged.

>p factor (5.0)
120

The debugger treats user procedure calling as an expression, and the p
command implements this capability. For example, to call the procedure dump,
enter the following:

>p dump(foo)

With user procedure calling, build customized displays for key objects and
access data structure routines. Write routines to display data structures, to
verify that data structures have certain properties (for example, is the table
sorted?) or to display and navigate through a complex data structure. Then
access these routines in the debugger.

A procedure called by the debugger is not limited to displaying numbers and
text on the screen. The procedure can prompt for input, read it, and act on it,
that is, the procedure can be interactive. Display output from the procedure or
capture it in a log file.

Since these procedures are written in Ada or C as part of the user program,
they can be called from the program, for example, a procedure may display
data structures when an internal error is detected or prior to a catastrophic
failure. If these procedures are left in the program after it is deployed, they
provide a method for debugging the program in the field at a customer site.

Note – If the procedure call hits a breakpoint, the program stops and the user
can debug as normal. However, the debugger abandons evaluating the
expression, if any. Here is an example:

Case 1: the user calls cos() and has no breakpoints set in cos or in any
routines that cos() calls. The debugger prints the return value:

 > p cos(45.0)
 0.5

Debugger Reference 3-113

3

Case 2: The user calls cos() and has a breakpoint set in cos():

 > p cos(45.0)
 [7] stopped at "/u/sincos/cos.a":494 in cos
 > ... -- the user debugs here, inside cos (or some subprogram
 > ... -- that cos has called).
 > g
 Procedure returned normally.

Note that in this second case, the value is not printed. When the procedure
returns from the user-generated call, i.e., from the debugger command
p cos(45.0) , because expression evaluation is interrupted by the breakpoint,
the debugger makes no attempt to continue with expression evaluation.

Case 3: The user calls foo(cos(45.0)) , where foo is a subprogram and has
a breakpoint in cos() :

 > p foo(cos(45.0))
 [7] stopped at "/u/sincos/cos.a":494 in cos
 > ... -- the user debugs here, inside cos (or some subprogram
 > ... -- that cos has called).
 > g
 Procedure returned normally.

In this third case, the procedure that returned normally is cos , not foo() .
Foo() is never called because expression evaluation is abandoned during the
call to cos() because of the breakpoint.

References
“p — (print) display the value of a variable or expression” on page 3-108
“return — return from all called subprograms” on page 3-129
“log [off|filename]” on page 3-143

3-114 SPARCompiler Ada Reference Guide

3

put — (put) send characters to program input

Syntax
put string

Arguments
string

A series of characters or a quoted string.

Description
The put command is used when the debugger is operating in asynchronous
mode. It is used to allow characters to be sent to the program's input. The put
command takes either a quoted string or a series of characters as an argument
and writes them to the program's standard input. A new-line character is not
automatically appended to the end of the string. If you wish for a new-line
character to be appended to the end of the string, use the put_line
command.

In the case of a quoted string, all characters between the double quotes are
transmitted. Otherwise, leading blanks are stripped and the rest of the line up
to the new-line that terminates the command are sent to the program.

Whether or not the string is quoted, the \ character is used as an escape similar
to its use in C strings. The only special character the debugger handles in the
string is the new-line, which is indicated by \n. \" indicates a single double
quote character and \\ indicates a single back slash character.

The following commands are equivalent:

put hello\n

put "hello\n"

put_line "hello"

put_line hello

Although the put command writes characters to the program's standard input,
there are no guarantees that the program will read them up. If there are unread
characters when the program announces a breakpoint or signal, or when you
switch the debugger to synchronous mode, the debugger flushes them and
emits a warning message.

Debugger Reference 3-115

3

References
“asynchronous debugging — run the debugger in asynchronous mode” on

page 3-11
“put_line — (put line) send characters to program input, append new line” on
page 3-116

3-116 SPARCompiler Ada Reference Guide

3

put_line — (put line) send characters to program input, append new line

Syntax
put string

Arguments
string

A series of characters or a quoted string.

Description
The put_line command is used when the debugger is operating in
asynchronous mode. It is used to allow characters to be sent to the program's
input. The put_line command takes either a quoted string or a series of
characters as an argument and writes them to the program's standard input. A
new-line character is automatically appended to the end of the string. If you do
not wish for a new-line character to be appended to the end of the string, use
the put command.

In the case of a quoted string, all characters between the double quotes are
transmitted. Otherwise, leading blanks are stripped, and then the rest of the
line up to the new line that terminates the command are sent to the program.

Whether or not the string is quoted, the \ character is used as an escape
similarly to its use in C strings. The only special character the debugger
handles in the string is new-line, which is indicated by \n. \" indicates a single
double quote character and \\ indicates a single back slash character.

The following commands are equivalent:

put_line "hello"

put_line hello

put hello\n

put "hello\n"

Although the put_line command writes characters to the program's standard
input, there are no guarantees that the program will read them up. If there are
unread characters when the program announces a breakpoint or signal, or
when you switch the debugger to synchronous mode, the debugger flushes
them and emits a warning message.

Debugger Reference 3-117

3

References
“asynchronous debugging — run the debugger in asynchronous mode” on
page 3-11
“put — (put) send characters to program input” on page 3-114

3-118 SPARCompiler Ada Reference Guide

3

quit — terminate the debugger session

Syntax
quit

Description
quit exits the debugger. Also, exit exits the debugger.

In Screen Mode
Precede this command with : and follow with Return.

Debugger Reference 3-119

3

r — run a program

Syntax
r [shell_arguments]

Arguments
shell_arguments

Shell command arguments. The debugger uses csh(1) or the shell defined
in the environment (exported) variable SHELL.

Description
r runs or reruns the program. r must be followed by a space, tab, or new line.
If it is followed immediately by a special character, the debugger assumes that
r is the name of a variable and not the command. All the characters after the r
command (and the required space, tab or new line) are interpreted as a single
entity.

If shell_arguments is specified, r runs the program as if it is executing from the
shell. The debugger supports a subset of shell command arguments. It
supports the following arguments for I/O redirection: >, <, >>, and >& (for
redirecting both standard and error output). The debugger supports
substitution for shell environment (exported) variables and ~name directory
shorthand. Additionally, when argument strings contain dollar signs ($),
backquotes (’), globbing meta symbols (* , ?, []) or in the case of 4.2 BSD
UNIX, curly braces ({}), they are passed to the shell for evaluation. The
debugger uses csh(1) or the shell defined in the environment (exported)
variable SHELL. Strings enclosed in double quotation marks are passed as a
single argument after removing the quotes. Other parameters are passed (-o ,
-Pfoo) just like the shell.

This command starts or restarts the program from the beginning. To continue
execution from a breakpoint or step, use g.

In Screen Mode
Typing r when in screen mode starts or restarts the program executing from
the beginning. (Pressing Return is not required.) In “safe” mode, the command
becomes rr .

3-120 SPARCompiler Ada Reference Guide

3

To establish the invocation parameters in screen mode, first type a colon to get
a line-prompt, and then a full r command with invocation parameters, I/O
redirection, and so forth. Alternatively, use set run after the colon. The
debugger remembers I/O redirection and invocation parameters, so
subsequent r commands without parameters use the parameters of the
previous r command.

Typing set run without any parameters causes the r command to “forget” its
I/O redirection and invocation parameters.

References
“g — (go) continue executing” on page 3-68
“run shell_arguments” on page 3-144
“safe [on|off]” on page 3-144
run the program, SPARCompiler Ada User’s Guide

Debugger Reference 3-121

3

read — read debugger commands from a file

Syntax
read filename

return read

return read all

Arguments
filename

Name of file that contains the debugger commands to execute

return read .
When executing a read filename command, return read terminates the
reading of commands in filename. If the read filename command was typed
at the terminal, the user now gets a prompt at the terminal. If the read
filename command is a command inside another file, the next command to be
read is the command in that file following the read filename command. This
command pops out of nested read s by one level.

return read all
This option returns from all files and the user gets a prompt at the terminal.
For example, file a includes the command read b and file b contains the
command read c . If during the execution of the commands in file c a
return read all command is encountered, all files are exited and a
terminal prompt appears. This command pops out of all nested read
commands.

Description
read switches the debugger input source from the keyboard to the named file.
Additional read commands can occur in the file but only can be nested four
levels. After executing the file, commands are again read from the keyboard
(unless the command file contains an exit or quit command).

Warning – Commands occurring after a read command on the same line do
not execute. For example, the p foo command in

3-122 SPARCompiler Ada Reference Guide

3

read X_DUMP; p foo

does not execute.

In Screen Mode
Precede this command with : and follow with Return.

References
read debugger commands, SPARCompiler Ada User’s Guide

Debugger Reference 3-123

3

reg — list the current machine register contents

Syntax
reg [all|f|s]

Arguments
all

Display the contents of all registers.

f
Display the contents of the floating point registers.

s
Display the contents of the special registers.

Description
reg lists the contents of registers as they are when the program stops. A
sample output is illustrated in Figure 3-9.

Figure 3-9 Example of Output from reg

 1 -- taskprl.a
 2
 3 with TEXT_IO; use TEXT_IO;
 4
 5
*---taskpr1.a---

 :reg
 g0: 0 o0: f7fff158 l0: f7fff428 i0: f7fff158 pc: 7d1c
 g1: 8 o1: 44 l1: f7fff428 i1: 0 npc: 7d20
 g2: f7fff528 o2: 8 l2: f7fff428 i2: 1 y: 16800000
 g3: b o3: 0 l3: 8 i3: f7fff2c0 psr: 00001080
 g4: f7fc1150 o4: 168 l4: 8 i4: 44 impl ver nzvc ec
 g5: 54595045 o5: 0 l5: f7fff2c0 i5: f7fff158 0 0 0000 0
 g6: f7fff568 o6: f7fff118 l6: 8 i6: f7fff568 ef pil s ps et cwp
 g7: 8 o7: 7cfc l7: f7fff428 i7: 211ec 1 0 1 0 0 0

3-124 SPARCompiler Ada Reference Guide

3

The command

reg f

lists the floating-point coprocessor registers if the implementation supports a
coprocessor. See Figure 3-10

Figure 3-10 Example Display of Floating Point Registers

Display individual registers using the p command with the name of the
register preceded by a dollar sign ($). For example (p $i1 , p $fp).

On the SPARC, display floating point registers as single-precision floats using
p $f number ($f2), as double-precision floats using p $d number, and as
extended reals with p $e number.

In Screen Mode
Precede this command with : and follow with Return.

References
display registers, SPARCompiler Ada User’s Guide

 :reg f
 fsr: rd rp tem ftt qne fcc aexc cexc
 5060421 0 0 a 0 0 1 1 1
 f0: 0.000475 f1: 518.113708 d0: 0.000000
 f2: 0.000100 f3: 0.000009 d2: 0.000000
 f4: -4613.000000 f5: 1073757.125000 d4:
 -1250029636495822800535158784.000000
 f6: 1.000000 f7: -NaN d6: 0.007813
 f8: -NaN f9: -NaN d8: -NaN
 f10: -NaN f11: -NaN d10: -NaN
 f12: -NaN f13: -NaN d12: -NaN
 f14: -NaN f15: -NaN d14: -NaN
 f16: -NaN f17: -NaN d16: -NaN
 f18: -NaN f19: -NaN d18: -NaN
 f20: -NaN f21: -NaN d20: -NaN
 f22: -NaN f23: -NaN d22: -NaN
 f24: -NaN f25: -NaN d24: -NaN
 f26: -NaN f27: -NaN d26: -NaN
 f28: -NaN f29: -NaN d28: -NaN
 f30: -NaN f31: 2104.600098 d30: -NaN

Debugger Reference 3-125

3

register variables

Since most RISC architectures rely on register-to-register operations for speed,
the Ada compiler tries to put variables in registers. Since machine registers are
precious resources, the compiler tries to reuse them. The compiler analyzes the
lifetime of each variable, that is, the first point in the program where the
variable is set and the last point in the program where the variable is used. If a
variable is dedicated to a register, the compiler can use the register if execution
has not reached that variable lifetime, or if execution goes past that variable
lifetime.

The following two code examples are taken from a debugging session to
illustrate some of these points. In Figure 3-11, execution has reached statement
19, where variable i is going to be used as input to the CALC function. The
result is stored in variable j . Statement 19 is the last use of variable i and the
first use of variable j .

Figure 3-11 Example of Debugging with Register Variables-1

 13 begin
 14 i := 8;
 15 for k in 1..10 loop
 16 i := i + calc(i - 1);
 17 end loop;
 18
 19*= j := calc(i);
 20
 21 while j < 0 loop
 22 j := calc(j);
 23 end loop;
 24
 25 val := j;
 26 end;
 27
-*---
regopt.a--
 :p i
 6146
 :i:a
 i0
 :p j
 ‘j’ is not yet active

3-126 SPARCompiler Ada Reference Guide

3

Before executing statement 19, we can print the i value (:pi) and the i
address is the SPARC register, i0 (:i:a). However, we cannot print j yet,
because it is not active, that is, execution has not entered lifetime of j yet.

Figure 3-12 shows execution after stepping past statement 19. Two things
happened as a result of executing statement 19: we left lifetime of i and we
entered lifetime of j .

Figure 3-12 Example of Debugging with Register Variables-2

When we try to print i , we see that it was in register i0 but is no longer active.
When we print j , we see that it now has a value; when we display its address,
we see that j is now in register i0 , the register occupied previously by i .

The following list of messages may be printed if the debugger has difficulty in
finding the real value of a variable, which is assigned a logical register number.

 13 begin
 14 i := 8;
 15 for k in 1..10 loop
 16 i := i + calc(i - 1);
 17 end loop;
 18
 19= j := calc(i);
 20
 21* while j < 0 loop
 22 j := calc(j);
 23 end loop;
 24
 25 val := j;
 26 end;
 27
-*--regopt.a--
:p i
‘i’ was in register i0; no longer active
:p j
6145
:j:a
i0

Debugger Reference 3-127

3

In the following messages,

var is a variable name, for example, foo
reg is a register name, for example, g2
r num is a logical register, for example, r120
addr is an instruction (text) address, for example, 02BA4

“var was register reg; no longer active”
At some previous point in the execution of this procedure, var was in reg. It
is now “dead,” that is, the variable is no longer needed, and probably, the
register is being used for other values.

“var was on stack; no longer active”
At some previous point in the execution of this procedure, var was on the
stack. It is now “dead,” that is, the variable is no longer needed and
probably that temporary location on the stack is being used for other values.

“var is not active”
The variable is not in a register, is not on the stack, and is now dead. We are
only documenting this message for completeness; it is possible that this
message can be printed; however, we are not aware of any scenarios that can
cause it.

“var is not yet active”
The address of var is a logical register number. But the program is stopped
at a point BEFORE the logical register is assigned to either a register or an
address. Therefore, the variable has no real address at this point of
execution.

 “var has been optimized away”
This message is printed if a variable is optimized away (that is, it never gets
a real address).

3-128 SPARCompiler Ada Reference Guide

3

Return — re-execute debugger command

Syntax
(Press) Return

Description
Press the Return key to repeat the most recent a, ai , s , si , l , li , / or ?
command. Debugging a program with r , g, or gx causes the Return key to lose
its memory until one of the repeatable commands is used again.

In safe mode, this feature is disabled for the a, ai , s , and si commands.

In Screen Mode
Screen mode disables the use of the Return key to repeat the functions listed
above. However, the dot (.) repeats the previous debugger command line.

References
“Window Control Commands” on page 3-135
“safe [on|off]” on page 3-144

Debugger Reference 3-129

3

return — return from all called subprograms

Syntax
return

Description
return returns from all the user procedures that are called using the debugger
p proc(...) command. After issuing a return command, you are back to where
the original user procedure is called — return always returns from all of the
nested user procedure calls from the call stack.

Frequently, it is convenient to write subprograms as part of a program that
take a pointer to a complex data structure and display it on the screen. The
debugger p proc(...) command calls any subprogram from the debugger. These
data structures display subprograms that are a valuable tool for debugging,
but you may need to debug them. If the procedure that is called using p
proc(...) faults, use the return command to get back to the original executing
program that is being debugged.

Set a breakpoint in a subprogram prior to calling it using p proc(...). After you
hit this breakpoint, a different procedure can be called, that is, you can nest
user procedure calls. The return command clears all procedure calls.

References
“p — (print) display the value of a variable or expression” on page 3-108
“procedure calls — call subprograms from the program” on page 3-112

3-130 SPARCompiler Ada Reference Guide

3

s — (step) single step source code into subprograms

Syntax
s Pressing Return repeats

Description
s single steps one line of source code, stepping into called subprograms. If the
debugger is currently on a source line containing subprogram calls, s executes
the program up to the point where it calls one of the subprograms. The
program then stops inside the called subprogram. The a command single steps
one line of source code, but steps over subprogram calls.

Subprogram here means procedure, function, separate package body or
instantiated generic package.

If the program has not yet started — for example, just after invoking the
debugger — the s command starts the program, stepping one source line. For
Ada programs, this steps over all the library unit elaborations. Other stepping
commands are a, ai , si , and gw.

A frequent debugging mistake is to use the s command to step into a
subprogram when the a command to step over the subprogram is intended.
The bd command sets a breakpoint at the place where the current subprogram
returns. To recover, use bd , and then g. Usually, execution stops very close to
where the a command stops. The breakpoint is deleted automatically so it is
not encountered again. When stopped at the bd breakpoint at the middle of a
source statement, use a to go to the beginning of the next statement.

Use two debugger parameters, alert_freq and step_alert , to track the
number of instructions that are stepped. Using the default settings, a message
is displayed after the first 1000 instructions are stepped (step_alert). After
that, every 100 additional instructions stepped (alert_freq), generates a new
message). In line mode, these messages are periods — one after the initial
number of instructions are stepped with a new period displayed for each 100
additional instructions stepped.

In Screen Mode
Type s in screen mode to single step the program one source line into called
subprograms. Pressing Return is not required. With set safe on , the
command becomes ss .

Debugger Reference 3-131

3

In instruction submode, s is interpreted as si .

The number of instructions stepped appears as a number on the dashed line
separating the command and source window. This number is first displayed
after the first 1000 instructions are stepped (step_alert). This number is
incremented for every 100 instructions stepped after the initial display
(alert_freq).

References
“bd — (break down) break after current subprogram” on page 3-20
“Instruction and Source Submodes” on page 3-134
“alert_freq number” on page 3-142
“safe [on|off]” on page 3-144
“step_alert number” on page 3-145
“si — (step instruction) single step machine code into program” on page 3-147
step one command, SPARCompiler Ada User’s Guide

3-132 SPARCompiler Ada Reference Guide

3

screen mode — screen-oriented debugger interface

Description
The debugger supports a screen-oriented interface in addition to the more
traditional line-oriented interface.

To use the screen interface, either invoke the debugger with the -v option,

a.db -v myprogram

or use the vi command from line mode.

To switch from screen mode to line mode, type the screen command Q.

Windows
In screen mode, the debugger divides the screen into three windows. The top
window is called the source window. It goes from the top of the screen to the
dashed line and is used for program source text. The window below the
dashed line is called the command window. It displays command input to the
debugger, text input to the program being debugged, and debugger/program
output. The last line on the screen is called the error window and displays
error messages from the screen-mode interface, patterns, and so forth. Output
that appears in the error window does not appear in a log file.

The top two windows display a portion of a potentially larger area. For
example, the source window displays part of a source file. This window can
display a different part of the same source file, or it can display part of a
different source file.

The debugger keeps the last 750 lines of text that have been displayed in the
command window in an internal history buffer. Typically, the command
window is positioned to display the most recent interactions (the end of the
history buffer). However, this window behaves just like the source window in
that it can display a different part of the history buffer.

The command window is paged automatically. If output from either a single
debugger command or your program would scroll off the top of the window,
the output is stopped and --More-- is displayed on the last line. The
available responses are listed in Table 3-4.

Debugger Reference 3-133

3

When the screen interface is invoked, the source window is 2/3 of the available
screen size, the error window has 1 line and the command window has the
remainder of the screen. Change the size of the source and command window
at any time using the C command. The debugger remembers the most recent
settings over subsequent Q and vi commands.

References
screen mode windows, SPARCompiler Ada User’s Guide

Entering Commands
Screen-mode commands are those commands that are processed directly by the
screen interface. These commands are not followed by Return — they execute
immediately when the entire command is typed. Some screen commands can
be preceded by an optional numeric argument.

Two classes of screen commands exist. The window control commands enable
manipulation of the window interface. The screen interface recognizes the
immediate debugger commands and passes them directly to the debugger.

The window control commands are applied to the window that contains the
cursor. The , command moves the cursor from source window to command
window, or the reverse.

Table 3-4 Paging: Responses to --More-- in Screen Mode

Keystroke Result

Space Print the next window of text.

Return Print next line.

g Enlarge command window (at expense of source window).
Windows are restored at next debugger command or by window
control command, C.

q Do not display remaining output but enter it into history buffer
and log it to specified file

p Turn off paging for both debugger commands and program
output. Turn paging off when not responding to --More-- with
the :set page off command.

x Abort debugger command. (Stop program output by stopping
the program with Control–c).

3-134 SPARCompiler Ada Reference Guide

3

Instruction and Source Submodes
In screen mode, the debugger supports two submodes, instruction and source.
The I (uppercase i) command toggles the submode, switching from one to the
other. In source mode, the source window displays program source code and
the s and a commands single step at the source statement level.

Source mode is the default. In instruction mode, the source window contains
disassembled machine instructions, interspersed with source code, if available.
Although the source window contains machine instructions, it operates as
usual. In this mode, the s and a debugger commands are interpreted as their
machine instruction counterparts, the si and ai commands, respectively. The
b command is interpreted as bi , setting a breakpoint at the machine
instruction under the cursor. All searching and window commands are
available.

References
instruction and source mode, SPARCompiler Ada User’s Guide

Screen Prompt
Columns 1 and 2 of the dashed line separating the source window from the
command window show the screen-mode prompt, * . The prompt alternates
between these two columns, and is displayed only when the debugger is
awaiting a command. Typing input at any other time is treated as type-ahead
and/or input to the program under debug.

The * alternates between the two columns to indicate that a change takes place
in certain, otherwise non-changing, situations. For example, if stopped at a
breakpoint in a loop, typing g returns to the same breakpoint again. The only
change on the screen is the position of the * .

Alert Frequency
The number of instructions stepped appears on the dashed line. This number
appears after a step (s) or advance (a) command is entered. The default setting
for the initial display is 1000 but change it with the set step_alert
command. After the first 1000 machine instructions are stepped, the alert

Debugger Reference 3-135

3

frequency number on the dashed line increments each time 100 additional
instructions are stepped. Change the default value of 100 with the set
alert_freq command.

References
“alert_freq number” on page 3-142
“step_alert number” on page 3-145

Help
The screen mode H command displays a line of help text in the error window.
This is one of several lines of help text that summarize all screen mode
commands. The next help line displays each time you press the H key.

Window Control Commands
Window control commands control the screen interface. The pattern-matching
commands, / and ?, move the cursor to the bottom of the screen and prompt
for the pattern. To terminate the pattern, press either Escape or Return.

You can precede some commands by an optional number. When number is
given for a Control-d or Control-u command (scroll up or down), that number
is used with all subsequent Control-d and Control-u commands until a new
number is specified. The initial value of number is one-half the size of the
window.

The following are the window control commands. Note that the window
control commands are case-sensitive

Control-b (backwards) Move backward one full window

[number]C (change) Change the number of lines in the window; no
number restores original sizes

[number]Control–d (down) Scroll down 1/2 window or number lines

Control–f (forward) Move forward one full window

Control–g Print the name of file displayed in source window

[number]G (go to) Move to bottom or specified line of file

[number]h or Move left one or number columns

3-136 SPARCompiler Ada Reference Guide

3

H Display the next one-line help message

I Toggle between instruction and source submodes

[number]j or Move down one or number lines

[number]k or Move up one or number lines

[number]l or Move right one or number columns

mark letter Mark a location in either the command or source
window. You can return to this location using the 'letter
command. Note that letter must be lowercase. There is a
separate set of marks for the command and source
windows. The previous set of marks is invalidated by
changing files in the source window or changing the
disassembly-mode with the I command. Since a limited
number of lines are stored, some marked lines may
become lost and the associated mark invalidated.

n (next) Repeat the previous / or ? search

Q Leave screen mode; enter line mode

w Move forward one word

yy Yank line at cursor location (in either window) to
command line (Esc) required from insert mode to
line-edit mode

[[Move forward in the source file to the next procedure,
function, package, task or declare block

]] Move back in the source file to the previous procedure,
function, package, task or declare block

Control–r (redraw) Redraw all windows (clean up display)

[number]Control–u (up) Scroll up 1/2 window or number lines

/ pattern Search forward for pattern

? pattern Search backward for pattern

: Enter a debugger command

. (period) Repeat the previous debugger command line

, Move to the other window

0 Move to beginning of line

(Continued)

Debugger Reference 3-137

3

^ Move to first character on line that is not a tab or blank

$ Move to end of line

% Move forward or back to matching parenthesis or brace

% finds the matching end when the cursor is placed on:
if , loop , for , while , case , record , select ,
function , procedure , package or task . Likewise, %
moves the cursor back from end if to the corresponding
if , back from end procedure_name to the corresponding
procedure , and so forth.

* Move the cursor to the current home position

’letter Return to location previously marked with mark
letter command. Note that this command works across
files.

" Return to the previous destination of a G, /, ?, [[,]]. % or
another '' command. The debugger motion commands
reset the destination of the '' command. Thus, typing the
following sequence of commands returns you to the line
reached by the a command.

a
/package

 ''
Entering another '' returns you to the line reached by
searching for the string "package".

(Continued)

3-138 SPARCompiler Ada Reference Guide

3

References
window command syntax, SPARCompiler Ada User’s Guide

Immediate Debugger Commands
The following list shows the immediate debugger commands. Enter these
commands without a preceding : or a following Return in screen mode. In
addition, you can enter any line-mode debugger command by typing a colon
first. In response to the colon, the screen interface scrolls one line up the
command window, positions the cursor on the bottom line of the command
window, and prompts with a colon. Now enter any line-mode debugger
command followed by Return. After each such debugger command, the cursor
returns to the source window.

a Step to next source line over call statements.

b Set a breakpoint on line containing cursor.

[number]B Set breakpoint at subprogram name (or qualified subprogram
name) under cursor (using number to disambiguate an
overloaded name).

cb (call bottom) Move current position and frame to bottom of
stack.

[number]cd (call down) Move down one frame or number frames on call
stack.

[number]cs (call stack) Display entire call stack or just number frames.

ct (call top) Move current frame and current position to top of
stack.

[number]cu (call up) Move up one frame or number frames on call stack.

d Delete breakpoint at line containing cursor.

g (go) Continue program execution.

p Display value of variable underneath cursor.

P Delimit the expression under the cursor (for use with p).

P[P...]a Print variable.all .

P[P...]* Print * variable.

Debugger Reference 3-139

3

Screen Interface and set output

The set output option displays input and output from the program being
debugged in screen mode without overwriting the source window. With set
output pty , the debugger intercepts the program output and displays it in the
lower window. Terminal input required by the program is taken from the
lower window. With set output tty , the output from a program is presented,
beginning wherever the cursor is located.

When debugging programs that send cursor-positioning strings to the
terminal, it is often useful to alternate between screen and line mode, or to
clear the bottom portion of the screen of all cursor-positioning strings by
typing : followed by Return for each line in the bottom window, and then
refreshing the display with Control-r.

References
“output [pty|tty|filename]” on page 3-143
screen mode debugging, SPARCompiler Ada User’s Guide

P[P...]y Yank variable to command line. The variable appears on the
command line preceded by a:p .

r (run) Start or restart program execution.

s (step) Step to next source line going into subprograms.

yy Yank line at cursor location (in either window) to command line
(Esc required from insert mode to line-edit mode).

[number]Control-] Execute debugger e command for name of any declarable Ada
entity under cursor (using number to disambiguate an
overloaded name). Placing the cursor anywhere within the first
identifier of a qualified name and entering Control-] takes you
to the declaration of that qualified name. Note that each time
you Control-] in another procedure, your current location is
pushed onto a tag stack for use with the Control-t command.

Control-c Interrupt the current debugger operation.

Control-t Return to the position where you last entered Control-] or the e
(edit) command.

(Continued)

3-140 SPARCompiler Ada Reference Guide

3

search — search for a pattern in the current file

Syntax
/ pattern Pressing Return repeats
? pattern Pressing Return repeats

Arguments
pattern

Pattern to search for. If no pattern is given, the most recent pattern for either
a / or ? command is used. Press Return to execute the command again.

Description
The / and ? commands search forward and backward, respectively, in the
current file, starting at the line following the current line, for the specified
pattern. If the pattern exists, the line it is on becomes the current line. The
search wraps around; that is, if the pattern is not between the current line and
the end of the file, the file is searched from the beginning to the current line.
Control the case sensitivity of the search with the set case command.

The searching commands (/ and ?) use regex(3) for pattern matching. This
is similar to vi and is described in the Solaris Developer Documentation under
ed(1) .

The line containing the matching pattern becomes the new current position.

In Screen Mode
Use the searching commands (/ and ?) in either the source or command
window. Typing a / or a ? moves the cursor to the last line on the screen and
prompts for the search pattern. The prompt is either a / or a ?. Terminate the
pattern by pressing Return or Escape. Repeat the command by pressing n.

If the pattern exists, the window displays the line containing the pattern.

Debugger Reference 3-141

3

The n command in screen mode repeats the last / or ? search, but the search
starts from the cursor current location within the current line.

References
“current position — current position in a source file” on page 3-46
“case [on|off]” on page 3-142
ed(1) , and regex(1) , and vi , Solaris Developer Documentation

3-142 SPARCompiler Ada Reference Guide

3

set — set debugger parameters

Syntax
set [option [value]]

Arguments
option and value

Change a debugger parameter. Permissible settings for value are shown in
brackets following the option. The default setting for value is shown in
brackets following the description of the option.

alert_freq number
Update the alert message every number of instructions after the first
warning. In screen mode, the number on the dashed line is updated. In line
mode, a period (.) is displayed after each number of steps. [Default: 100]

all
Print current settings of all set parameters (except signal and run). set
all displays the ada_library that generates the executable program being
debugged.

async [on|off]
Force debugger to operate in asynchronous mode. If you switch to
synchronous mode while the program is running (set async off), the
debugger stops the program. [Default: off]

case [on|off]
Make / and ? searches case-sensitive. [Default: off]

c_types [local|global]
Determine the scope of the search for C-type declarations. local searches
the current file and the include files for the type definition, global
searches the entire executable and include files. While more
comprehensive, use of global requires substantial additional time.
[Default: local]

except_stack [on|off]
Save registers when performing exception unwinding. If off , the fast
exception unwinding algorithms are in effect as it searches for an exception
handler. However, if no handler is found, the debugger cannot determine

Debugger Reference 3-143

3

what exception occurred or where it occurred. If on , the runtime system
goes more slowly, but leaves more information for the debugger. Default:
[off]

If except_stack is off (not being used) and no exception handler is
found, a message indicates the debugger does not have enough information
to find the line where the exception occurred

If except_stack is set (on) and no exception handler is found, additional
information about the exception is available to the debugger.

input[pty|tty| filename]
Set the input device for the program being debugged. If pty , the debugger
passes input to your program. If tty , your program reads directly from the
terminal. If filename, your program reads from that file. Default: [pty]

lines number
Change the number of lines in the display produced by the l , li , w, and wi
commands. number is decimal. Default: [10]

log [off| filename]
Start logging to a file. If a file or off is not given, logging is restarted to the
log file specified most recently. Default: [off]

number [on|off]
In screen mode, determine whether lines in the source window are
numbered. Default: [off]

obase number
Set output number base for displaying commands to 8, 10, or 16.
Default: [10]

output [pty|tty| filename]
Set output device for the program being debugged. If pty , output passes to
the debugger. In screen mode, then the debugger can put the output in the
lower window. Write output from your program in your log file. If tty ,
output writes directly to the screen, wherever the cursor is. If filename,
output is written to that file. Default: [pty]

page [on|off]
Turn paging off or back on in the lower window of screen mode. [on]

3-144 SPARCompiler Ada Reference Guide

3

persist [on|off]
The debugger retains the previous file in the source window when the
current source file is not available. Default: [off]

prompt “new_prompt”
Change the debugger prompt to the specified new_prompt, which must be in
double quotes. Default: [>]

run shell_arguments
Set up the invocation arguments for a program (I/O redirection, options,
and so forth) but do not start it. Without arguments, set run resets the
arguments list to have no arguments. The next a, g, r , or s command
restarts the program.

safe [on|off]
Require certain single-letter commands (a, g, r , and s) to be typed twice in
screen mode for safety when debugging difficult constructs or when
excessive line noise is experienced. Default: [off]

signal [signal_list|all] [b|g|gx]
Set the listed signals to have the behavior specified by the last parameter.
signal_list can be a list of the standard signal numbers or names. (The
command, kill -l o, prints a list of signal names.

set signal without parameters shows the current setting for each signal.
Default: [all b]

b When the signal occurs, it is announced and the program stops as if it
reaches a breakpoint.

g The debugger does not announce the signal but continues the
program execution without reasserting the signal.

gx On /proc systems, the process is configured so that, if possible, the
signal is passed to the program without debugger notification
(SIGTRAP cannot be handled this way). For ptrace systems, the
signal stops the process, the debugger does not announce the signal
and the program execution is continued with the signal passed to it.
This option is useful when debugging programs with exception
handlers for hardware exceptions.

Control the behavior of each signal separately, to ignore some and
propagate others to the program being debugged.

Debugger Reference 3-145

3

The behavior of two signals, ALRM and CONT, cannot be changed.

Be careful in changing certain signal behavior, since set signal INT g
prevents interruption of the program by Control-c.

source path_list
Establish the directory search path the debugger uses to find source files.
path_list is a set of directory names, separated by spaces. Default: [current
directory]

step_alert number
Print a message after a step (s) or advance (a) command steps number
machine instructions. In screen-mode, the number of steps appears on the
dashed line. In line mode, a period (.) is printed after number steps.
[Default: 1000]

tabs number
Set the tab stop to number for listing source (l , li , w, wi , and screen mode).
Default: [8]

verbose [on|off]
The dbx-style debugger cannot debug C files compiled without symbolics.
The set verbose on command must be initialized before symbolics are
read for the C executable. In the .dbrc file, for example, it must precede a
call to a.db . The verbose on parameter to the set command issues the
warning message “sdb symbolic information found in file ***.c”
if such a file is encountered. [Default: off]

Note – This option must be set before symbolics are read for the C executable,
i.e., in the .dbrc file before calling a.db .

with unit_name|all [on|off]
Initiate (on) or do not initiate (off) DIANA net reading for unit_name. If
[on|off] is omitted, the default is on . set with without arguments
returns a listing of the current settings.

These settings provide control over the debugger net reading functions. If
execution halts in a unit and that unit with s an extraordinary number of
packages, use this command to prevent the debugger from reading all the
nets for all the packages.

The initial setting is set with all on . Then, for example:

3-146 SPARCompiler Ada Reference Guide

3

set with unit_name
Indicates that only nets for unit_name are read in.

set with unit_name off
Indicates that all nets except those for unit_name are read in. Add other
units to the with list with additional set with commands.

Limitation: After the debugger initiates net reading for an Ada unit, all of
the nets for that unit and any unit with ed by that unit are read in, even if
set with is off for the with ed unit.

xrate number
Set time interval for x command to display values of monitored data that
has changed. [Default: 5 seconds]

Description
set establishes various debugger parameters. The simple command set , as
well as the command set all , displays the current settings of all the
parameters.

Use set commands on a command line or supply them to the debugger at
invocation.

In Screen Mode
Precede this command with : and follow with Return.

Use set commands on a command line or supply to the debugger at
invocation.

References
“invocation — invoking the debugger” on page 3-76
modify debugger configuration, SPARCompiler Ada User’s Guide

Debugger Reference 3-147

3

si — (step instruction) single step machine code into program

Syntax
si Pressing Return repeats

Description
si single steps the program one machine instruction and steps into a called
subprogram. This is in contrast to the ai command, which single steps one
machine instruction, but treats the machine call instruction as one instruction,
stepping over it. Other stepping instructions are s , a, ai , and gw.

If the program has not executed yet, for example, right after invoking the
debugger, si starts the program, stepping one instruction. This relocates the
current position from the main subprogram to the actual starting subprogram
preceding your current program.

In Screen Mode
Precede this command with : and follow with Return.

References
step instruction, SPARCompiler Ada User’s Guide

3-148 SPARCompiler Ada Reference Guide

3

signals — set/ignore signals

Syntax
set signal [signal_list|all] [b|g|gx]

Arguments
all

Set all signals.

b
When the signal occurs, it is announced and the program stops as if it
reaches a breakpoint.

g
The signal is not announced and the debugger continues the program
execution without passing the signal to the program.

gx

On /proc systems, the process is configured so that, if possible, the signal is
passed to the program without debugger notification (SIGTRAP cannot be
handled this way). For ptrace systems, the signal stops the process, the
debugger does not announce the signal and the program execution is
continued with the signal passed to it. This option is useful when debugging
programs with exception handlers for hardware exceptions.

signal_list
List of signals to set.

Description
The debugger provides the facilities to handle signals in several manners. With
the “set ” switch, instruct the debugger to treat signals in one of three ways: b,
g, and gx . These are described in the Arguments section above.

The default setting for most signals is b (break).

Debugger Reference 3-149

3

To display a list of signal names on UNIX-based systems, enter kill -l . For
example:

To display the current setting for each signal, enter set signal without
parameters. For example:

The debugger resets all signals to their default before starting the process being
debugged. The process has the same initial settings whether it is run under the
debugger or from the shell.

You cannot change the behavior of two signals, ALRM and CONT.

Be careful in changing certain signal behavior. For example, set signal INT
g prevents interruption of the program.

References
“b — (break) break at a line or beginning of a subprogram” on page 3-16
“g — (go) continue executing” on page 3-68
“gx — (go signal) continue executing, pass the signal to the program” on
page 3-70
“signal [signal_list|all] [b|g|gx]” on page 3-144
kill(2) , Solaris Developer Documentation

>kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE BUS SEGV SYS PIPE ALRM TERM URG
STOP TSTP CONT CHLD TTIN TTOU IO XCPU XFSZ VTALRM PROF WINCH LOST
USR1 USR2

>set signal
b: hup..pipe, term..tstp, chld..USR2
g: cont
gx: alrm

3-150 SPARCompiler Ada Reference Guide

3

stop — stop the debugger or program

Description
Stop the program being debugged by setting a breakpoint. After the r , g or gx
command, the program executes until it reaches the breakpoint or exits. If the
program appears to be in an infinite loop, stop it by pressing Control-c.

To terminate the debugger session, use exit or quit .

References
“exit — terminate the debugger session” on page 3-64
“quit — terminate the debugger session” on page 3-118
halting the program, SPARCompiler Ada User’s Guide

Debugger Reference 3-151

3

strings — string operations and support

Description
This section describes debugger support for strings.

Printing Strings
You can print or display strings with the debugger p command. This is useful
for putting comments into a log file.

>p “this is a string”

You can use the p command if you want to set a breakpoint and display a
message when it is reached.

>b 16 begin p “test first date” end

User Procedure Calling with Strings
Call a procedure in the program being debugged with an actual parameter that
is a string constant.

>p lookup(“foo.baz”)

This works for both C and Ada. You can use multiple string parameters in any
position. In Ada, the debugger builds a string array as required by the formal
parameter declaration and the calling conventions of that target. In C, the
debugger places a null-terminated string on the stack and passes a pointer to it
as the parameter.

ssigning Strings to Memory or a Variable
You can modify memory with a string.

>010082 := “this is it”

In the following example, memory location 0F7FFEAAC is assigned the string,
“this is it.” When you modify raw memory with a string, that is, when the
destination is an address, the string is null terminated automatically.

3-152 SPARCompiler Ada Reference Guide

3

You can assign a string to a variable in your program. In Ada, the variable
being modified must be exactly the same length as the string constant or you
get an error. Fortunately, you can use a slice as the destination of the
assignment.

If the destination is an Ada variable, the string is not null terminated. In
addition to simple variables, the destination can be any name expression, for
example, a.b(3) , a(3).c.d(4.9) .

In C, the variable must be an array of char, that is, it cannot be a pointer to a
string. For example, a C variable declared as

char good(40);

is correct but

char *bad;

does not work.

>0F7FFEAAC:m (display one line of STORAGE_UNITS, first in hex then decimal)
 0F7FFEAAC: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
“...........”
> 0F7FFEAAC := “this is it”

> 0F7FFEAAC:m
 0F7FFEAAC: 74 68 69 73 20 69 73 20 69 74 0 1 1 1 1 1 “this is it.....”

 foo: string(1..10);

 >foo := “1234567890”
 >foo(1..5) := “12345”
 >foo := “12345”
 =>cannot assign to 1lhs, string sizes do not match
 => (lhs length: 10, rhs length: 5)

Debugger Reference 3-153

3

In C, no bounds checking is performed, and the string is null terminated
automatically.

String Comparison
The debugger supports relational expressions where both operands are strings.
This includes the operations: <, <=, =, >=, >, and /= .

The result returned is 1 if the relation is TRUE and 0 if it is FALSE. The
operands are variables, Ada slices or string constants.

For example, given the following Ada declarations in Figure 3-13:

Figure 3-13 Example of String Comparisons

 >good := “hello world”
 >/hello world
 >p good
 “hello world”

 foo: string(1..10);
 foo2: string(1..20);

 >foo := “1234567890”
 /1234567890
 >p foo = “1234567890”
 1
 >p foo = “12345678”
 0
 >p foo > “123456789”
 1

 >foo2 := “12345678901234567890”
 /12345678901234567890
 >p foo = foo2
 0
 >p foo /= foo2
 1
 >p foo < foo2
 1
 >p foo = foo2(1..10)
 1

3-154 SPARCompiler Ada Reference Guide

3

String comparison for C works in the same way, except that slices are not
supported. The entire string is examined in each of the string compare
commands.

String comparison is useful for conditional breakpoints.

>b 113 when foo(1..3) = “123” (Ada)

or

>b 223 when name = “foo” (C)

Debugger Reference 3-155

3

sx — (step signal) single step, pass the signal to the program

Syntax
sx

Description
When a signal occurs in a program being debugged, first it passes to the
debugger. The debugger announces the signal and the location at which it
occurs and stops, waiting for commands. To continue single stepping as
though the signal has not occurred, use s or si . To continue single stepping
and pass the signal to the program, use the sx command. This is useful in
debugging programs that do explicit signal handling.

This command cancels the Return key memory.

Use two debugger parameters, alert_freq and step_alert , to track the
number of instructions that are stepped. Using the default settings, a message
is displayed after the first 1000 instructions are stepped (step_alert). After
that, every 100 additional instructions stepped (alert_freq), generates a new
message). In line mode, these messages are periods - one after the initial
number of instructions are stepped with a new period displayed for each 100
additional instructions stepped.

In Screen Mode
Precede this command with : and follow with Return.

The number of instructions stepped appears as a number on the dashed line
separating the command and source window. This number is first displayed
after the first 1000 instructions are stepped (step_alert). This number is
incremented for every 100 instructions stepped after the initial display
(alert_freq).

References
“Return — re-execute debugger command” on page 3-128
“s — (step) single step source code into subprograms” on page 3-130
“alert_freq number” on page 3-142
“signals — set/ignore signals” on page 3-148
“step_alert number” on page 3-145

3-156 SPARCompiler Ada Reference Guide

3

task — print current task or choose a new current task

Syntax
task [new_task]

Arguments
new_task

Task identifier. This identifier can be name of the task, the decimal task
sequence number found in the NUM column of output from the simple lt
command or the hexadecimal number indicating the task's tcb address. The
tcb address can be found using the lt task command.

Description
 The task command, without a specified new_task, displays the type, name and
decimal sequence number of the current task.

>task

T output at 2

>task 3

2 line 200 in dining_room TASK BODY

>task

T output at 2

task new_task identifies a task to become the new current task. The call stack
commands (cs , cd , cu , cb and ct) operate on the current task call stack.

When the task new_task command executes, the current task is deselected
before new_task becomes the new current task. The state of the deselected task
is stored so if it is reselected before the program executes further, the current
frame is the same as it was when the task is deselected.

In Screen Mode

Precede this command with : and follow with Return.

Note – The task command contains all the capabilities of the select
command. The select command is no longer supported by Ada.

Debugger Reference 3-157

3

References
“lt — (list tasks) list all active tasks” on page 3-93
display task number and move current position, SPARCompiler Ada User’s
Guide

3-158 SPARCompiler Ada Reference Guide

3

terminal control — catching program input/output

Description
The principal function of the set output command is to prevent the output of
a program from overwriting the source window when debugging in screen
mode. If you use set output pty , output from your program displays in the
lower window. If you use set output filename, output from your program
writes to filename.

The debugger uses the pseudo terminal drivers (pty s) to position itself
between your terminal and the process being debugged. set input and set
output control this. If input is set to pty , the default standard input (file
descriptor 0) for your process is a pseudo terminal. Likewise, when output is
set to pty , the default standard output (file descriptor 1) is the pseudo
terminal, not the control terminal. The debugger does all I/O on behalf of the
process being debugged. When input or output is set to tty or to a file, the
process being debugged has file descriptors for the actual terminal or file
(assuming no I/O redirection is given with the r command).

If you are logging your debugging session and input is set to pty , all input to
your program appears in the log. And if output is set to pty , output from
your program appears in the log.

The (default) use of pty s is transparent to most programs. However, when you
debug a program that makes use of special video terminal features, this
handling may not be desirable.

References
“input[pty|tty|filename]” on page 3-143
“log [off|filename]” on page 3-143
“output [pty|tty|filename]” on page 3-143
pseudo terminal drivers, Solaris Developer Documentation

Debugger Reference 3-159

3

vi — (visual) switch the debugger to screen mode

Syntax
vi [ada_entity| ada_source_file]

Arguments
ada_entity

Name of an Ada entity such as a subprogram, package, task, variable,
constant, etc.

ada_source_file
Name of an Ada source file. This file must in a directory on your ADAPATH.

Description
The debugger supports two interactive interfaces: a conventional line-oriented
interface, called “line mode” and a screen-oriented interface, known as “screen
mode.” The vi command switches from line mode into screen mode. Once in
screen mode, the Q command switches into line mode.

The debugger starts in line mode by default. Invoking the debugger with the
-v option starts it in screen mode.

The parameters to vi are interpreted exactly like the parameters to the e
command. When switching to screen mode, the top part of the screen displays
source code. This shows the source code that surrounds the current position. If
a file or subprogram name is specified, the corresponding source code displays
instead of the current position.

References
“screen mode — screen-oriented debugger interface” on page 3-132
screen mode operation, SPARCompiler Ada User’s Guide

3-160 SPARCompiler Ada Reference Guide

3

visibility rules — determine visible identifiers at a breakpoint

Description
The debugger visibility rules determine which identifiers are visible at a given
point in the program execution. The current frame establishes the current
visibility rules using the following model.

At any time during a debugging session, the visible program names are those
that are visible upon adding a statement to the program at the point in the
source text corresponding to the current home position in the current frame.

If the current frame is an Ada subprogram, package or task, Ada visibility
rules are used. However, since debugging is not the same as programming,
these rules are extended in two ways.

First, if a name is not found based on the normal Ada visibility rules, a search
is made of the Ada library for a library unit with that name. Therefore, all
library units are visible regardless of what units are withed by the current
context.

Second, a program-wide search is made for subprograms when a simple name
is given as the argument to the b, e, edit , and vi commands. That is, it looks
at all the subprograms, tasks, and packages (with elaboration subprograms) in
the entire program, for one whose simple name matches the name typed in for
the command. The results of this search are merged with the results of
searching using Ada visibility rules (including library search extension).

References
“current frame — current position on the call stack” on page 3-45
“current position — current position in a source file” on page 3-46
“home position — execution point in current frame” on page 3-73
names, section 4.1(2) in Ada Reference Manual.

Debugger Reference 3-161

3

w — (window) list a group of source lines

Syntax
w [line] [, number]

Arguments
line

Line number of the line, used as the center of the window display.

number
Number of lines to display in the window. [Default: 10]

Description
The term “window” means a section of source text. Do not confuse it with the
windows of the screen-mode debugger.

w lists a window of source text around the specified line in the current file. If
line is not specified, the center of the window is the line portion of the current
position. If the line specification is * , the line portion of the current home
position is used as the center of the window. If line is given, the current
position moves to that line, and the window surrounding that line is
displayed.

The window is the specified number of lines large. (Default: 10.) Change the
default with the set lines command.

The w command resets the Return key memory as if an l is typed instead.

In Screen Mode
Precede this command with : and follow with Return.

References
“l — (list) display part of a source program” on page 3-81
“lines number” on page 3-143
display lines, SPARCompiler Ada User’s Guide

3-162 SPARCompiler Ada Reference Guide

3

wi — (window instruction) list disassembled and original code

Syntax
wi [expression| decimal_number] [, number]

Arguments
expression

Expression defining the instruction address at the center of the listing.

decimal_number
Decimal number indicating the line number at the center of the listing.

number
Number of lines to display in the listing. [Default: 10]

Description
The term “window” means a section of source text. Do not confuse it with the
windows of the screen-mode debugger.

wi prints a window containing the specific number of lines including machine
instructions that are interspersed with source code. If a decimal line number is
given (decimal_number), this line is at the center of the window. If expression is
specified, the instruction at the address given by expression is at the center of
the window.

If an equals sign appears after the address, a breakpoint is at that instruction.

If [expression|decimal_number] is omitted, the display is centered on the line or
instruction following the most recent w'd or wi 'd line or instruction or the
home line or instruction if no w or wi command is given for this file. The home
position is centered in the window if [expression|decimal_number] is * .

The display contains program source lines interspersed among disassembled
machine instructions. The first instruction is preceded by the source line that
generated it except when no source is available or disassembly begins mid-
statement.

The debugger does not, in one wi command, disassemble across a source file
boundary, no matter how many lines it is instructed to print. It stops the
display at the source file boundary.

Debugger Reference 3-163

3

wi resets the Return key memory as if li is typed instead.

In Screen Mode
Precede this command with : and follow with Return.

In screen mode, the upper window (source window) toggles to display either
source code or disassembled machine instructions. This screen mode
command, I performs this toggling.

References
“li — (list instructions) list disassembled instructions” on page 3-84
“screen mode — screen-oriented debugger interface” on page 3-132
“Instruction and Source Submodes” on page 3-134
“lines number” on page 3-143
display instructions, SPARCompiler Ada User’s Guide

3-164 SPARCompiler Ada Reference Guide

3

x — (eXamine) monitor memory location(s)

Syntax
x expr
xl
xd integer | all
xb xe

Arguments
all

(all) All memory locations. Used with xd (delete) command to remove all
entries on the list of locations being monitored.

b (begin)
Begin monitoring.

d (delete)
Remove memory location from list of monitored locations.

e
(end) End monitoring.

expr
(expression) Expression to be monitored. Note that expr must resolve to a
memory location. Variable names, record fields, and array elements are
allowed, but not expressions that contain operators or user procedure calls.
The debugger determines the address of the expression at the time the x
command is entered. If this expression denotes a stack based memory
location, and the associated stack frame is deallocated by the program, the
debugger prints out erroneous data.

integer
(integer parameters) number (from xl) command of memory location that is
no longer to be monitored.

l (list) List memory locations being monitored.

Description
The x command is used to monitor user-selected memory locations. It can only
be used with asynchronous debugging on systems that support the / proc
interface.

Debugger Reference 3-165

3

The x expr command signals the debugger to do a periodic display
(examination) of the designated expression, expr.

When the debugger starts the program running asynchronously, it examines
the value of the named variable periodically. If it has changed, the debugger
prints it out. The length of the time period that transpires between
examinations is configurable using the set xrate command.

The following algorithm is used to display variables as they change. When the
debugger first receives the x command, it allocates memory equal to the size of
the variable being monitored and initializes it to all zeroes. This is the saved
value. At every xrate seconds, the debugger reads up the current value of the
variable and compares it to the saved value using a binary compare. If they are
equal, it does nothing. If they are different, it dumps out the new value and
transfers it to the saved value.

Note that since the debugger is examining the variables at discrete intervals, it
is possible that a variable changes value and changes back to its saved value
before it is examined again.

Several memory locations can be monitored by entering several x commands.

The xd command removes a memory location from the list of monitored
locations. It takes a list of integer parameters which can be discovered using
the xl command.

The xb command starts the monitoring process. If the program is running
when the command is entered, monitoring begins immediately. Otherwise,
monitoring starts whenever the program starts running asynchronously and
stops when the program stops.

The xe command stops the monitoring process. The list of monitored memory
locations is unmodified.

Example

Figure 3-15 beginning on page 3-169 is an example of the use of the data
monitoring commands. Note that the debugger is operating in asynchronous
mode. The example uses two files, data.a and cs1.a . Listings for these files
are provided below in Figure 3-14.

3-166 SPARCompiler Ada Reference Guide

3

-- data.a

with system; use system;
package data is
 type rt1 is
 record
 f1: integer;
 end record;

 type rt2 is
 record
 f2: rt1;
 end record;

 type rt3 is
 record
 f3: rt2;
 end record;

 rec: rt3;

 type int_ptr is access integer;
 pointer: int_ptr := new integer;

 int: integer;
-- for int use at system.memory_address(343);
 STACK_MAX: constant := 10000;
 stack_data: array(1 .. STACK_MAX) of integer;
 stack_limit: system.address := stack_data'address;
 pragma external_name(stack_limit,
"DEBUG_STACK_LIMIT");
 stack: system.address
 := stack_data'address + (STACK_MAX *
 (integer'size/storage_unit));
 pragma external_name(stack, "DEBUG_STACK");
end data;
 (Continued)

Debugger Reference 3-167

3

(Continued)
-- csl.a

with data;
with text_io;
use text_io;
procedure csl is

 delay_time: duration := 0.400;

 procedure increment (datum: in out integer) is
 begin
 datum := datum + 1;
 if datum >1000000000 then
 datum := -1000000000;
 end if;
 end increment;

 procedure do_delay is
 begin
 --delay delay_time;
 delay_time := delay_time + 0.001;
 if delay_time > 0.75 then
 delay_time := 0.400;
 end if;
 end do_delay;

 procedure p3 is
 local_p3: duration := delay_time * 4;

 procedure p2 is
 local_p2: duration := delay_time * 3;

 procedure p1 is
 local_p1: duration := delay_time * 2;

 begin --p1
 local_p1 := local_p3 / 4;
 increment(data.int);
 increment(data.rec.f3.f2.f1);
 increment(data.stack_data(343));
 increment(data.pointer.all);
 do_delay;
 local_p1 := delay_time * 10;
 end p1;
 (Continued)

3-168 SPARCompiler Ada Reference Guide

3

Figure 3-14 data.a and csl.a

(Continued)
 begin --p2
 local_p2 := local_p3 / 2;
 do_delay;
 p1;
 local_p2 := delay_time * 20;
 end p2;

 begin --p3
 local_p3 := delay_time * 60;
 do_delay;
 p2;
 local_p3 := delay_time * 30;
 end p3;

begin --csl
 while TRUE
 loop
 do_delay;
 p3;
 end loop;
end csl;

Debugger Reference 3-169

3

 SC Ada Unix Debugger, Version development
 [Wed Jun 9 08:39:17 PDT 1993]
 Host: SPARCY Current directory: /vc/test
 Debugging: /vc/test/csl
 Wed Jun 9 08:47:13 1993

 >>ada_library: /vc/test
 library search list:
 /vc/test
 /usr2/ada2.1/self_thr/standard
 >g
 csl
 Starting program running ...

 -- At this point the program is running asynchronously.
 -- The next command says to add the local variable "delay_time"
 -- to the list (currently empty) of data begin monitored.
 >x delay_time
 Monitoring delay_time.
 -- Now add a simple package level variable to the list.
 >x data.int
 Monitoring data.int.
 -- A field of a record.
 >x data.rec.f3
 Monitoring data.rec.f3.
 -- An array element.
 >x data.stack_data(343)
 Monitoring data.stack_data(integer(343)).
 -- Another array element.
 > data.stack_data(342)
 Monitoring data.stack_data(integer(342)).
 -- A dereferenced access value
 > data.pointer.all
 Monitoring data.pointer.all.
 -- Now list all of the data being monitored.
 >xl
 [1] delay_time
 [2] data.int
 [3] data.rec.f3
 [4] data.stack_data(integer(343))
 [5] data.stack_data(integer(342))
 [6] data.pointer.all
 (Continued)

3-170 SPARCompiler Ada Reference Guide

3

(Continued)
 -- Now tell the debugger to begin the monitoring process.
 >xb
 -- Now every 5.0 seconds (the default since mrate was not
 -- changed using the set mrate command) the debugger dumps
 -- out the values of data that have changed.
 -- Note that data.stack_data(342) isn't being printed out,
 -- since it's not changing.
 Modified data:
 delay_time: 0.625
 data.int: 6946105
 data.rec.f3: f2: RECORD
 f1: 6947114
 data.stack_data(integer(343)): 6947577
 data.pointer.all: 6947835
 Modified data:
 delay_time: 0.748
 data.int: 7554033
 data.rec.f3: f2: RECORD
 f1: 7554784
 data.stack_data(integer(343)): 7555218
 data.pointer.all: 7555328
 Modified data:
 delay_time: 0.714
 data.int: 8160714
 data.rec.f3: f2: RECORD
 f1: 8161722
 data.stack_data(integer(343)): 8162265
 data.pointer.all: 8164389
 Modified data:
 delay_time: 0.443
 data.int: 8768462
 data.rec.f3: f2: RECORD
 f1: 8769242
 data.stack_data(integer(343)): 8769828
 data.pointer.all: 8770312
 Modified data:
 delay_time: 0.48
 data.int: 9376650
 data.rec.f3: f2: RECORD
 f1: 9377638
 data.stack_data(integer(343)): 9378197
 data.pointer.all: 9380123
 -- Now tell the debugger to stop monitoring, but the program
 -- is still running.
 >xe
 (Continued)

Debugger Reference 3-171

3

Figure 3-15 Use of x Commands

References
“asynchronous debugging — run the debugger in asynchronous mode” on
page 3-11
set xrate , “set — set debugger parameters” on page 3-142

 -- List out the monitored data again.
 >xl
 [1] delay_time
 [2] data.int
 [3] data.rec.f3
 [4] data.stack_data(integer(343))
 [5] data.stack_data(integer(342))
 [6] data.pointer.all
 -- Delete the record field and dereferenced pointer from the
 -- list of monitored data.
 >xd 3
 >xd 6
 -- Start monitoring again.
 >xb
 -- Now the monitored output only checks 4 items.
 -- data.stack_data(342) is still being monitored, but it's
 -- still not changing, so it's not being printed out.
 Modified data:
 delay_time: 0.567
 data.int: 16270142
 data.stack_data(integer(343)): 16439472
 -- Change the debugger so that it now dumps out the values
 -- every 7.5 seconds.
 >set xrate 7.5
 Modified data:
 delay_time: 0.712
 data.int: 18938363
 data.stack_data(integer(343)): 18927946
 >xe

3-172 SPARCompiler Ada Reference Guide

3

A-1

Limits A

A.1 Compiler and Tool Limits
This section provides a list of limits for the Ada compiler and tools.

499 Characters in identifiers and literals

4,000,000 Storage units in a statically-sized record type

10,240 Default storage size for a task1

400 STORAGE_SIZE default collection size for access type2

no limit Number of declared objects (except virtual space)

10,240 Characters in a rooted name (full path of an object)

256,000,000 Maximum size of an array (in bits)

4 Number of recursive inlines

50 Number of nested inlines3

400 Number of nested constructs

2048 Characters in a WITHn or INFO directive

200 MB Memory use per compilation (other OS limits may apply)

50 Lexical errors before the front end exits

100 Syntax errors before the front end exits

10 Attempts to lock GVAS_table

“I am strong as a bull moose and you can use me to the
limit.”

Theodore Roosevelt

A-2 SPARCompiler Ada Reference Guide

A

ADAPATH: The limit on each component of the ADAPATH is the operating system
limit on filenames. The full ADAPATH, however, is unlimited.

A.2 Source File Limits

1. If tasks need larger stack sizes, the STORAGE_SIZE attribute may be used with the task type declaration

2. If tasks need larger stack sizes, use the 'STORAGE_SIZE attribute with the task type declaration

3 The default is 4 but can be changed using the MAX_INLINE_NESTING INFO directive.

10 Attempts to lock ada.lib

20 Attempts to lock gnrx.lib

64 Debugger breakpoints

32 Debugger array dimensions in a p command

100 Debugger ‘call parameters’

256 Debugger ‘run parameters’

512 Number of arguments the debugger can support in the program
being debugged

8K Total space available to hold arguments of program being
debugged

499 Characters per source line

1296 Ada units per source file

32767 Lines per source file

(Continued)

Index-1

Index

A
a.app , 2-11
a.cleanlib

files, 2-17
reinitialize library directory, 2-16

a.cp
copy unit and library information,

2-18
a.das

disassemble object files, 2-20
a.db , 3-1
a.du

files, 2-30
summarize disk usage, 2-29

a.error
process compiler error messages,

2-31
a.help

files, 2-41
interactive help utility, 2-40

a.info
files, 2-52
list or change library directives, 2-42

a.ld
add files/commands to invocation,

2-51
files, 2-55

prelinker, 2-53
a.list

list programs containing no errors,
2-57

a.ls
list compiled units, 2-58

a.make
recompile files

dependency order, 2-60
a.mklib

create a library directory, 2-66
example, 2-68

a.mv
move unit and library information,

2-69
a.path

display library search list, 2-71
a.prof

files, 2-80
statistical profiler, 2-79

a.report
report deficiencies, 2-81

a.rm
remove an Ada source file or unit from

a library, 2-83
a.symtab , 2-87

error messages, 2-90
example, 2-91

Index-2 SPARCompiler Ada Reference Guide

symbol listing, 2-89
a.vadsrc

create library configuration file, 2-98
display versions, 2-98

a.view
establish

command abbreviations, 2-100
history mechanism, 2-100

a.which
find a compiled unit, 2-104

A_STRINGS
package, 1-8

a_strings.a , 1-8
a_strings_b.a , 1-8
ABORT_SAFE mutex services

interface, 1-16
Ada

compilation
units, 1-1

source file structure, 1-4
Ada exception services

interface, 1-16
Ada Kernel

CPU specific definitions, 1-11
interface to services, 1-8
interface to user program routines,

1-11
service entryIDs and arguments, 1-11
Solaris Threads specific definitions,

1-8
type definitions, 1-8, 1-11
user program type definitions, 1-15

Ada preprocessor, 2-11
Ada source file

root name, 1-4
Ada strings

manipulate, 1-13
ada.lib file

contents, 1-24
description, 1-24
entries

generic instantiations, 1-27
units, 1-25

example, 1-24

limit attempts to lock, A-2
ADA_DEFS

package, 1-8
ADA_KRN_DEFS

package, 1-8
ADA_KRN_I

package, 1-8
ada_library

reinitialize, 2-16
ADAPATH

line-length limit, A-2
add

directives, 2-42
files/commands to a.ld list, 2-51
mathematical functions, 1-18

address
memory

directly, 3-7
range frequencies, 2-79
virtual, 1-28

advance
after

exception, 3-15
signal, 3-15

debugger command, 3-5
instruction, 3-8

ai
advance instruction, 3-8

alert frequency
screen-mode debugging, 3-134

aliases
a.view , 2-100

analyze
error messages, 2-31

APP
INFO directive, 2-12, 2-46

append
library to search list, 2-71

archive
files, 1-6

arguments
number supported by debugger, A-2
space to hold, A-2

Index-3

supported by debugger, A-2
arithmetic expressions

debugger, 3-65
array

dimension limit in debugger p
command, A-2

assign values
debugger, 3-9

asterisk (*) in screen-mode debugger,
3-134

attributes
supported in debugger, 3-66

automatic
recompilation, 2-60

B
base location of release area, 2-50
bd

break after current subprogram, 3-20
debugger command, 3-20

bi
debugger command, 3-22

BIT_FLG_FIX
package, 1-19

bit_flg_fix.a , 1-19
break

at instruction, 3-22
breakpoint

conditional, 3-16
delete, 3-47
general discussion, 3-26
generic, 3-17
list, 3-83
number, 3-47

maximum (64), 3-26, A-2
passive task, 3-26
set, 3-16

after current subprogram, 3-20
at instruction, 3-22, 3-24
when exception occurs, 3-28

bugs
how to report, 2-81

bx
debugger command, 3-28

C
C_PRINTF

package, 1-19
c_printf.a , 1-19
c_printf_b.a , 1-19
c_strings.a , 1-9
c_strings_b.a , 1-9
C_TO_A_TYPE

package, 1-19
c_to_a_type.a , 1-19
CALENDAR

package, 1-9
calendar.a , 1-9
calendar_b.a , 1-9
calendar_s.a , 1-9
call stack

command
cb (call bottom), 3-33
cd (call down), 3-34
ct (call top), 3-42
cu (call up), 3-43

current frame, 3-45
display, 3-40
hexadecimal dump information, 3-40
move

down frame(s), 3-34
to bottom of, 3-33
to top frame, 3-42
up, 3-43

callbody.a , 1-18
calling

user procedure in debugger, 3-112
callout

services interface, 1-16
cb

debugger command, 3-33
cd

debugger command, 3-34

Index-4 SPARCompiler Ada Reference Guide

change
current position, 3-45, 3-46
library

directives, 2-42
search list, 2-71

char_type.a , 1-19
CHARACTER_TYPE

package, 1-19
characters

full textual representation provided in
set, 1-4

limit
identifiers, A-1
literals, A-1

number/source line, A-2
rooted name limit, A-1

check
references, 1-2

cifo
interface to type definitions, 1-16

close
all open files, 1-9

CLOSE_ALL
package, 1-9

close_all.a , 1-9
cmd_line.a , 1-18
code

no sharing, 2-6
collection size for access type

default size, A-1
command

ada , 2-3
debugger, 3-1

history, 3-86
immediate, 3-138
window control, 3-135

line
arguments easy to access, 1-18
definitions, 1-13, 1-14

read from a file, 3-121
reference summary, 2-1
searching, 3-140
syntax

debugger, 3-36

line mode, 3-36
window

debugger, 3-132
paging, 3-132

COMMAND_LINE
package, 1-18

compilation
information

in ada.lib , 1-25
units

Ada, 1-1
compile

in
clean library, 2-64

compiler
commands, 2-1
invoke, 2-3

complex
value arithmetic, 1-18

COMPLEX_ARITH
package, 1-18

complex_body.a , 1-18
complex_spec.a , 1-18
composition

complex data type, 1-18
conditional

breakpoint, 3-16
constants

display, 2-87
contents

ada.lib , 1-24
release libraries, 1-7
standard library, 1-8

control
characters in debugger, 3-37

Control-c, 3-37
conversion

integer to bit field, 1-19
copy

unit and library information, 2-18
COPY on untyped memory, 1-12
CPU time

use by front-end, 2-46

Index-5

CPU_LIMIT
INFO directive, 2-46

create
default library configuration file,

2-98
executable file, 2-6
library directory, 2-66
portable system utilities, 1-10
SC Ada

library, 1-22
cross reference

create, 2-95
cs

debugger command, 3-40
ct

debugger command, 3-42
cu

debugger command, 3-43
curr_except.a , 1-9
current

frame in debugger, 3-45
position

change, 3-45
debugger, 3-46
definition, 3-31

CURRENT_EXCEPTION
package, 1-9

curses_body.a , 1-19
curses_spec.a , 1-19
customer report

sample, 2-82
customize

object display, 3-112

D
d

debugger command, 3-47
display variable as decimal, 3-111

DATES
package, 1-9, 1-18

dates.a , 1-9, 1-18
dates_b.a , 1-9, 1-18
.dbrc , 2-26, 3-78

DEBUG_XREF
INFO directive, 2-46

debugger
address memory directly, 3-7
advance after signal/exception, 3-15
arithmetic expressions, 3-65
assign values, 3-9
breakpoint, 3-26

command blocks, 3-36
number of, A-2

call
parameters limit, A-2
user procedures, 3-112

command
a (advance), 3-5
ai (advance instruction), 3-8
array dimensions with p, A-2
ax , 3-15
b (breakpoint), 3-16
bd (break down), 3-20
bi (break instruction), 3-22
bx (break exception), 3-28
cb (call bottom), 3-33
cd (call down), 3-34
cs (call stack), 3-40
ct (call top), 3-42
cu (call up), 3-43
d (delete), 3-47
e (enter), 3-60
edit , 3-62
exit , 3-64
g (go), 3-68
gw (go while), 3-69
gx (go signal/exception), 3-70
help , 3-71
history, 3-86
immediate, 3-138
lb (list breakpoints), 3-83
li (list instructions), 3-84
lt (list tasks), 3-93
p (print), 3-51, 3-108
quit , 3-118
r (run), 3-119
read , 3-121
read from a file, 3-121

Index-6 SPARCompiler Ada Reference Guide

re-execute, 3-128
reference, 3-1
reg (register), 3-123
return , 3-129
s (step), 3-130
syntax, 3-36
window, 3-132
window control, 3-135
window paging, 3-132

comment syntax, 3-36
configuration, 3-142
current

frame, 3-45
position, 3-46

default
output device pty , 3-143

display
CIFO Pragma Values, 3-100
commands, 3-63
memory at variable location,

3-111
name expressions, 3-55
raw memory, 3-51
stack usage and location, 3-101
user-defined formats, 3-54
variable in decimal, 3-111
variable in hexadecimal, 3-111

display exceptions, 3-110
entering

numbers, 3-37
screen-mode commands, 3-133

error window, 3-132
exit, 3-118
filename restrictions, 3-67
files, 2-28
history buffer, 3-132
home position, 3-73
inline expansions, 3-74
instruction submode, 3-134
Interrupt key, 3-37
invoke

invocation, 2-23, 3-76
invocation arguments, 2-23,

3-76
invocation file, 2-26, 3-67, 3-78
invocation syntax, 3-76

screen mode, 3-132
keywords, 3-1, 3-36
line

editing, 3-87
mode command syntax, 3-36
numbers, 3-91

list
disassembled instructions, 3-84

modify memory, 3-9
number of arguments can

support, A-2
on-line help, 3-71
overloading, 3-106
overview, 2-25, 3-78
redirecting input/output, 2-27, 3-80
reference, 2-23
register variables, 3-125
Return, 3-128
run

parameters limit, A-2
screen interface, 3-139
screen mode, 3-132

help, 3-135
windows, 3-132

search, 3-140
set

output , 3-139
parameters, 3-142

set breakpoint, 3-16
source

submode, 3-134
window, 3-132

space available for program
arguments, A-2

specify
file, 3-67
new position, 3-91

start-up environment, 2-26, 3-79
supported attributes, 3-66
terminal state, 2-24

decimal
display variable in notation, 3-111

decomposition
complex data type, 1-18

Index-7

default
collection size for access type, A-1

DEFAULT_SRC_EXT
INFO directive, 2-47

DEFER_INSTANTIATIONS
INFO directive, 2-47

deficiencies
report, 2-81

define
machine code statements, 1-11
structure used for communication,

1-11
definition

Ada Kernel types, 1-8
current

position, 3-31
GVAS, 1-28
home position, 3-31
link name prefixes and suffixes, 1-11
Solaris Threads specific Ada kernel

definitions, 1-8
STATUS_BUFFER data type, 1-14
unsigned types, 1-14

definitions
CPU specific, 1-11
kernel program’s type, 1-11
services resident in user program,

1-15
delete

directives, 2-42
delimiter

source files, 1-5
dependency

analysis results, 1-30
analyze for, 2-4
unit, 1-2

descriptor
generic, 1-28

diagnostics
SC Ada compiler, 2-9

DIANA
do not trim DIANA tree, 2-5
intermediate representation, 1-29
net cache, 1-28

DIR_IO
implementation, 1-9

dir_io.a , 1-9
dir_io_b.a , 1-9
DIRECT_IO

package, 1-9
directives

add, 2-42
APP, 2-46
CPU_LIMIT , 2-46
DEFER_INSTANTIATIONS, 2-47
delete, 2-42
FLOAT_REGISTER_VARIABLES,

2-47
INFO, 2-44, 2-47
invariant, 2-42
LINK , 2-51
list or change, 2-42
location in file, 1-24
MAX_GVAS_ADDR, 2-47
MAX_INLINE_NESTING, 2-47
MAX_VIRTUAL_ADDR, 2-47
MIN_GVAS_ADDR, 2-47
MIN_TASKING, 2-51
MULTISOURCE_FE, 2-47
PARALLEL_CODE_GEN, 2-48
READ_ONLY_LIBRARY, 2-48
SHARE_BODY, 2-49
STARTUP, 2-51
syntax of LINK directives, 2-51
TARGET, 2-49
TARGET_C_LIBRARY, 2-49
TARGET_C_P_LIBRARY, 2-49
TASKING, 2-51
VERSION, 2-50
WITHn, 2-51

directory
.imports , 1-28
.lines , 1-29
.nets , 1-29
.objects , 1-29
examples , 1-20
in an SC Ada library, 1-22
manipulation utilities interface, 1-13,

1-14

Index-8 SPARCompiler Ada Reference Guide

publiclib , 1-19
verdixlib , 1-18

disassemble
object files, 2-20
units in the source file, 2-3
without target hardware, 2-20

disk usage
improve with SHARED_IO, 1-13
summarize, 2-29

display
call stack, 3-40
command line definitions, 1-13, 1-14
customized objects, 3-112
debugger

commands, 3-63
delimited expression P..P..p ,

3-110
directives, 2-43
input/output in screen mode, 3-139
library

search path, 2-71
memory, 3-51

at variable location, 3-111
in hexadecimal, 1-12

name
expressions, 3-55, 3-110
raised exception, 1-9

object
(Ada) P..P..a , 3-110
(C) P..P..* , 3-110

register
contents, 3-123

release versions, 2-98
stack

location and usage, 3-101
static variables and constants, 2-87
task status, 3-98

all active tasks, 3-93
type, 3-54
user-defined formats, 3-54
value

MAX_GVAS_ADDR directive, 2-5
MIN_GVAS_ADDR directive, 2-5

variable, 3-108
in decimal, 3-111

version information, 2-8
display exceptions, 3-110

E
e

debugger command, 3-60
edit

subprogram or a file, 3-62
edit

debugger command, 3-62
ELABORATE

type field, 1-26
eliminate

unecessary checks in tasking
programs, 2-51

ENDIAN
INFO directive, 2-47

enter
new source file, 3-60

enum_io_s.a , 1-9
ERRNO

package, 1-10
errno.a , 1-10
errno_sup.a , 1-10
ERRNO_SUPPORT

package, 1-10
error

analyze and disperse messages, 2-31
codes enumeration type definition,

1-10
debugger window, 3-132
messages

compiler, 2-9
error messages

a.symtab , 2-90
establish command abbreviations and

history mechanism, 2-100
EUNUMERATION_IO

package, 1-9
example

a.symtab , 2-91
ada.lib , 1-24

Index-9

ADAPATH, 1-24
library search path, 1-24
program, 1-20

examples
directory, 1-20

exception
display name of, 1-9
set breakpoint, 3-28
support services interface, 1-17

exceptions
display, 3-110

executables
create program, 2-6
files, 1-5

execute
continue, 3-68

after signal, 3-70
until a variable changes, 3-69

exhaust
GVAS, 1-28

exit
debugger, 3-118

exit
debugger command, 3-64

expansions
maximum depth of nested inline,

2-47
expressions

debugger, 3-65
arithmetic, 3-65

display, 3-108
extension

Ada source file, 1-4
CALENDAR, 1-17

F
FCNTL

package, 1-10
fcntl.a , 1-10
file_spprt.a , 1-10
file_spprt_b.a , 1-10
FILE_SUPPORT

package, 1-10

filename
restrictions in e (enter) command,

3-61
utilities, 1-10

FILENAMES
package, 1-10

filenames.a , 1-10
filenames_b.a , 1-10
files

a.cleanlib , 2-17
a.du , 2-30
a.help , 2-41
a.info , 2-52
a.ld , 2-55
a.prof , 2-80
a.view , 2-102
archive, 1-6
control packages, 1-10
debugger, 2-28, 3-67

edit, 3-62
executable, 1-5
formats, 1-4
lines, 1-5
nets, 1-5
object file format, 1-5
SC Ada library, 1-22
source file

extensions, 1-4
structure, 1-4

types used by SPARCompiler Ada,
1-4

find
compiled unit with a.which , 2-104

FIXED_IO
package, 1-10

fixed_io_s.a , 1-10
FLOAT_IO

package, 1-10
float_io.a , 1-10
FLOAT_REGISTER_VARIABLES

INFO directive, 2-47
floating point

numbers replace with register
variables, 2-47

Index-10 SPARCompiler Ada Reference Guide

registers display, 3-124
format

files, 1-4
object file, 1-5

formatter
source code, 2-74

front end
invoke with multiple files, 2-47
limit CPU time used, 2-46

G
g

debugger command, 3-68
generic

breakpoint, 3-17
descriptor, 1-28
floating types and functions, 1-18
instantiations

default method, 2-49
entries in ada.lib , 1-27
force analysis of, 2-8

get
errno value for task, 1-10

Global Virtual Address Space
file description, 1-28

gnrx.lib
contents, 1-28
limit attempts to lock, A-2

GVAS
boundary

maximum, 2-47
minimum, 2-47

definition, 1-28
exhausted, 1-28

GVAS_table
description, 1-28
keeps track of virtual addresses, 1-28
limit attempts to lock, A-1

gw
debugger command, 3-69

gx
debugger command, 3-70

H
help

a.help , 2-40
screen-mode debugger, 3-135

HEX
package, 1-10

hex.a , 1-10
hex_b.a , 1-10
hexadecimal

dump in call stack, 3-40
strings, 1-10

history mechanism
establish, 2-100

hoisting
method of optimization, 2-6, 2-62

home position
debugger, 3-73
definition, 3-31

HOST
INFO directive, 2-47

host name
specify, 2-47

I
I/O

control function interface, 1-11
support for standard Ada, 1-10

IFACE_INTR
package, 1-10

iface_intr.a , 1-10
immediate commands, 3-133, 3-138
.imports

directory, 1-28
improve

disk usage, 1-13
INFO directive

DEFER_INSTANTIATIONS, 2-47
READ_ONLY_LIBRARY, 2-48, 2-51

INFO directive
APP, 2-46
character limit, A-1
CPU_LIMIT , 2-46

Index-11

FLOAT_REGISTER_VARIABLES,
2-47

HOST, 2-47
MAX_GVAS_ADDR, 2-47
MAX_INLINE_NESTING, 2-47
MAX_VIRTUAL_ADDR, 2-47
MIN_GVAS_ADDR, 2-47
MULTISOURCE_FE, 2-47
PARALLEL_CODE_GEN, 2-48
SHARE_BODY, 2-49
syntax, 2-44
TARGET, 2-49
TARGET_C_LIBRARY, 2-49
TARGET_C_P_LIBRARY, 2-49
VADS, 2-50
VERSION, 2-50

inline
expansions support in debugger,

3-74
input

redirect to debugger, 2-27
input

debugger parameter, 3-143
insert

library
search list, 2-71

instantiation
default method of use, 2-49
force analysis of, 2-8

instantiations
defer, 2-47

instruction
debugger

submode, 3-134
list, 3-84
set breakpoint at, 3-22, 3-24

INTEGER_IO
package, 1-11

integer_io_s.a , 1-11
interface

ABORT_SAFE mutex services, 1-16
Ada exception services, 1-16
Ada Kernel services, 1-8
cifo type definitions, 1-16

comfiguring the user library, 1-17
counting semaphores, 1-16
directory manipulation utilities,

1-13, 1-14
I/O control functions, 1-11
library services, 1-16
limit commands, 1-13, 1-14
machine-independent to low-level

I/O operations, 1-12
OS signal handling services, 1-10
OS signal services, 1-12
OS time services, 1-12
passive task structures and support,

1-16
process control utilities, 1-14
routines in user program, 1-11
semaphores, 1-17
services

exception support, 1-17
interrupt, 1-16
mailbox, 1-16
program and task callout, 1-16
runtime memory, 1-16
signal, 1-17

Solaris thread services, 1-12
system calls, 1-13, 1-14
time

operator subprograms, 1-17
subprograms, 1-17

UNIX time functions, 1-14, 1-15
intermediate

language file formats, 1-4
interrupt

services interface, 1-16
Interrupt key

debugger, 3-37
Intr, 3-37
invariant directives

list, 2-42
invoke

Ada preprocessor, 2-11, 2-46
compiler

in parallel, 2-48
SC Ada, 2-3

Index-12 SPARCompiler Ada Reference Guide

debugger
invocation, 2-23, 3-76
invocation arguments, 2-23,

3-76
invocation file, 2-26, 3-78
screen mode, 3-132

front end with as many as 20 files,
2-47

io_excpt.a , 1-11
IOCTL

package, 1-11
ioctl.a , 1-11
IOCTL_FMT

package, 1-11
ioctl_fmt.a , 1-11

K
keywords

debugger, 3-1
krn_call.a , 1-11
KRN_CALL_I

package, 1-11
KRN_CPU_DEFS

package, 1-11
KRN_DEFS

package, 1-11
KRN_ENTRIES

package, 1-11

L
LANGUAGE

package, 1-11
language.a , 1-11
lb

debugger command, 3-83
levels

optimization, 2-6, 2-62
lexical

elements, 1-5
error

limits, A-1

li
debugger command, 3-84

LIBC
package, 1-11

libc.a , 1-11
LIBRARY

LINK directive, 2-51
library

contents
directory illustration, 1-22
release libraries, 1-7
SC Ada library, 1-22

copy information, 2-18
create configuration file, 2-98
definition, 1-22
read only, 2-48
search path

example, 1-24
location, 1-24

specify alternate
profiling library, 2-49
to libc , 2-49

library services
interface, 1-16

limit
Ada units/source file, A-2
ADAPATH line length, A-2
attempts to lock

ada.lib , A-2
gnrx.lib , A-2
GVAS_table , A-1

characters
identifiers and literals, A-1
INFO directive, A-1
per line in Ada source file, A-2
rooted name, A-1
WITHn directive, A-1

commands interface, 1-13, 1-14
compiler and tools, A-1
CPU time used by the front-end, 2-46
debugger

array dimensions in a p
command, A-2

call parameters, A-2
run parameters, A-2

Index-13

error
lexical, A-1
syntax, A-1

lines/source file, A-2
maximum size, A-1
nested inlines, A-1
recursive inlines, A-1
size of an array, A-1

line
editing

debugger, 3-86
edit mode, 3-87
insert mode, 3-87

number
debugger, 3-91
reference files, 1-29

.lines
directory, 1-29

lines
files, 1-5

purpose, 1-5
number/source file, A-2

lines
debugger parameter, 3-143

LINK directive
LIBRARY, 2-51
STARTUP, 2-51
supported names, 2-51
syntax, 2-51
TASKING, 2-51
WITH, 2-51

LINK_BLOCK
package, 1-11

link_block.a , 1-11
link_block_b.a , 1-11
.LINK_INFO , 1-30
list

breakpoints, 3-83
compiled units, 2-58
directives

invariant, 2-42
library, 2-42

instructions, 3-84

program
containing no errors, 2-57

tasks, 3-93
location

ADAPATH, 1-24
library search path, 1-24
mapping information, 1-24

log
debugger parameter, 3-143

LOW_LEVEL_IO
package, 1-11

lowlevel_io.a , 1-11
lt

debugger command, 3-93
lt use

display stack usage and location,
3-101

M
m

display memory at a variable
location, 3-111

mach_types.a , 1-11
MACHINE_CODE

package, 1-11
machine_code.a , 1-11
MACHINE_TYPES

package, 1-11
.MAKE_INFO, 1-30
manipulate

dates, 1-9
MATH

package, 1-18
math_body.a , 1-18
math_spec.a , 1-18
mathematical functions

additional, 1-18
verdixlib , 1-18

MAX_GVAS_ADDR
INFO directive, 2-47

MAX_INLINE_NESTING
INFO directive, 2-47

Index-14 SPARCompiler Ada Reference Guide

MAX_VIRTUAL_ADDR
INFO directive, 2-47

maximum
boundary

GVAS, 2-47
virtual memory, 2-47

number of breakpoints, A-2
number of program arguments, A-2
size of an array, A-1

memory
display

at variable location, 3-111
using p command, 3-51

modify with debugger, 3-9
package MEMORY, 1-12

memory.a , 1-12
memory_b.a , 1-12
MIN_GVAS_ADDR

INFO directive, 2-47
MIN_TASKING

LINK directive, 2-51
minimum

boundary of GVAS, 2-47
modify

debugger configuration, 3-142
memory with debugger, 3-9

mon.out , 2-79
monitor file, 2-79
move

unit and library information, 2-69
MULTISOURCE_FE

INFO directive, 2-47

N
names

display name expression, 3-55, 3-108
INFO directives, 2-44
LINK directives, 2-51

nested limit
construct, A-1
inline, A-1

.nets
contents, 1-29

nets files, 1-5
nm tool, 2-88
non-tasking programs

specify runtime system library file,
2-51

normal
in ada.lib file, 1-26

number
debugger parameter, 3-143

NUMBER_IO
package, 1-12

number_io.a , 1-12
number_io_b.a , 1-12

O
obase

debugger parameter, 3-143
object

file
format, 1-5, 2-8
location, 1-29

.objects
directory, 1-29

on-line help
a.help , 2-40
debugger, 3-71

optimization, 2-6, 2-62
levels, 2-6, 2-62

ORDERING
package, 1-18

ordering_b.a , 1-18
ordering_s.a , 1-18
OS time services

interface, 1-12
OS_FILES

package, 1-12
os_files_b.a , 1-12
OS_SIGNAL

package, 1-12
OS_SYNCH

package, 1-12

Index-15

OS_THREAD
package, 1-12

OS_TIME
package, 1-12

os_variant.a , 1-12
os_variant_b.a , 1-12
output

redirect from the debugger, 2-27
output

debugger parameter, 3-143
overloading

debugger, 3-106
disambiguation, 3-106

P
p

debugger command, 3-108
display variable in hexadecimal,

3-111
P..P..*

display object C, 3-110
P..P..a

display object (Ada), 3-110
P..P..p

display delimited expression, 3-110
P..P..y

yank delimited expression, 3-111
package

display static variables and
constants, 2-87

packages
A_STRINGS, 1-8
ADA_DEFS, 1-8
ADA_KRN_DEFS, 1-8
ADA_KRN_I, 1-8
BIT_FLG_FIX , 1-19
C_PRINTF, 1-19
C_TO_A_TYPE, 1-19
CALENDAR, 1-9
CHARACTER_TYPE, 1-19
CLOSE_ALL, 1-9
COMMAND_LINE, 1-18
COMPLEX_ARITH, 1-18

CURRENT_EXCEPTION, 1-9
DATES, 1-9, 1-18
DIRECT_IO, 1-9
ENUMERATION_IO, 1-9
ERRNO_SUPPORT, 1-10
FCNTL, 1-10
FILE_SUPPORT, 1-10
FILENAMES, 1-10
FIXED_IO , 1-10
FLOAT_IO, 1-10
HEX, 1-10
IFACE_INTR , 1-10
INTEGER_IO, 1-11
IOCTL, 1-11
IOCTL_FMT, 1-11
KRN_CALL_I, 1-11
KRN_CPU_DEFS, 1-11
KRN_DEFS, 1-11
KRN_ENTRIES, 1-11
LANGUAGE, 1-11
LIBC , 1-11
LINK_BLOCK, 1-11
LOW_LEVEL_IO, 1-11
MACHINE_CODE, 1-11
MACHINE_TYPES, 1-11
MATH, 1-18
MEMORY, 1-12
NUMBER_IO, 1-12
ORDERING, 1-18
OS_FILES, 1-12
OS_SIGNAL, 1-12
OS_SYNCH, 1-12
OS_THREAD, 1-12
OS_TIME, 1-12
PERROR, 1-12
RAW_DUMP, 1-12
REPORT, 1-18
SAFE_SUPPORT, 1-12
SEQUENTIAL_IO, 1-12
SHARED_IO, 1-13
SIMPLE_IO , 1-13
STATUS, 1-14
STRINGS, 1-13
STRLEN, 1-13, 1-14
STRNCPY, 1-13, 1-14
SYSTEM, 1-13, 1-14

Index-16 SPARCompiler Ada Reference Guide

TEXT_IO, 1-13, 1-14
TEXT_SUPPRT, 1-13, 1-14
TTY, 1-13, 1-14
TTY_SIZE , 1-13, 1-14
U_ENV, 1-13, 1-14
U_RAND, 1-19
UNCHECKED_CONVERSION, 1-13,

1-14
UNCHECKED_DEALLOCATION, 1-13,

1-14
UNIX, 1-13, 1-14
UNIX_CALLS, 1-18
UNIX_DIRS, 1-13, 1-14
UNIX_LIMITS , 1-13, 1-14
UNIX_PRCS, 1-14
UNIX_TIME, 1-14
UNSIGNED_TYPE, 1-14
USER_DEFS, 1-15
UTIMES, 1-15
V_ADA_INFO, 1-15
V_BITS , 1-15
V_I_ALLOC, 1-15
V_I_BITS , 1-16
V_I_CALLOUT, 1-16
V_I_CIFO , 1-16
V_I_CSEMA, 1-16
V_I_EXCEPT, 1-16
V_I_INTR , 1-16
V_I_LIBOP , 1-16
V_I_MBOX, 1-16
V_I_MEM, 1-16
V_I_MUTEX, 1-16
V_I_PASS , 1-16
V_I_RAISE , 1-17
V_I_SEMA, 1-17
V_I_SIG , 1-17
V_I_TASKOP, 1-17
V_I_TASKS, 1-17
V_I_TIME , 1-17
V_I_TIMEOP , 1-17
V_I_TYPES, 1-17
V_SEMA, 1-17
V_TAS, 1-17
V_USER_CONF_I, 1-17
VSTRINGS, 1-19
X_CALENDAR, 1-17

page
debugger parameter, 3-143

paging
turn off/on, 3-143

parallel
invoke compiler, 2-48

PARALLEL_CODE_GEN
INFO directive, 2-48

parameters
debugger

call, A-2
set, 3-142

passing
limit to debugger run

parameters, A-2
parent_ada_library, 2-66
passive

tasks
interface, 1-16

PEEK, 1-12
permutation routines, 1-18
PERROR

package, 1-12
perror.a , 1-12
perror_b.a , 1-12
persist

debugger parameter, 3-144
physical devices

access, 1-11
POKE, 1-12
pragmas

ELABORATE, 1-26
predefined

package SYSTEM, 1-13, 1-14
prelinker

a.ld , 2-53
preprocessor

INFO directive
APP, 2-46

reference, 2-11
procedure

call
to user procedure, 3-112

Index-17

process
compiler

error messages, 2-31
control utilities interface, 1-14
error messages, 2-4

with a.make , 2-60
profiler

statistical, 2-79
program

execution breakpoints, 3-26
run, 3-119

program arguments
maximum number, A-2
space available, A-2

prompt
screen-mode debugging, 3-134

prompt
debugger command, 3-144

pty
default debugger output device,

3-143
public domain packages, 1-19
publiclib

directory, 1-19
put

errno value for task, 1-10

Q
quit

debugger command, 3-118

R
r

debugger command, 3-119
RAW_DUMP

package, 1-12
raw_dump.a , 1-12
read

debugger command, 3-121
read only library, 2-48
READ_ONLY_LIBRARY

INFO directive, 2-48

recompile
source files in dependency order,

2-60
recursive

inline limit, A-1
redirect

debugger input/output, 2-27, 3-80
restrictions, 3-80

re-execute debugger command, 3-128
reference

checking, 1-2
reg

debugger command, 3-123
registers

debugging with variables, 3-125
display

contents, 3-123
floating point, 3-124

use variables for floating-point
numbers, 2-47

variable error messages, 3-126
reinitialize library directory

a.cleanlib , 2-16
release

area base location, 2-50
library contents, 1-7

relocation, 1-28
remove

Ada source file or unit from a library,
2-83

REPORT
package, 1-18

report
deficiencies, 2-81
sample, 2-82
test results, 1-18

report_body.a , 1-18
report_spec.a , 1-18
restrictions

Ada source files, 1-4
Return, 3-128
return

from subprograms, 3-129

Index-18 SPARCompiler Ada Reference Guide

return
debugger command, 3-129

root name
Ada source file, 1-4

run
program, 3-119

S
s

debugger command, 3-130
SAFE_SUPPORT

package, 1-12
sample

report, 2-82
SC Ada library

specialized files and directories, 1-22
SC Ada compiler

diagnostics, 2-9
invoke, 2-3
options, 2-3

SC Ada library
create, 2-66
definition, 1-22
make read only, 2-48

screen for debugger
interface, 3-139

screen-mode debugger, 3-132
alert frequency, 3-134
commands

enter, 3-133
immediate, 3-138

prompt, 3-134
window, 3-132

control commands, 3-135
search

debugger, 3-140
path location, 1-24

semaphore
interface, 1-17

to counting, 1-16
separate

compilation
information, 1-29

information location, 1-29
separators, 1-5
seq_io.a , 1-12
seq_io_b.a , 1-12
SEQUENTIAL_IO

package, 1-12
service entry IDs, 1-11
set

breakpoint, 3-16
set

debugger command, 3-142
input , 3-143
lines , 3-143
log , 3-143
obase , 3-143
output , 3-139
page , 3-143
persist , 3-144

SHARE_BODY
INFO directive, 2-49

shared
generic, 2-49

SHARED_IO
package, 1-13

shared_io.a , 1-13
signal

advance after, 3-15
services interface, 1-17

signal services
interface, 1-12

SIMPLE_IO
package, 1-13

single step, 3-130
SLIGHT_PAUSE procedure

automatic breakpoint, 3-26
Solaris thread services

interface, 1-12
sorting routines, 1-18
source

Ada source file structure, 1-4
code formatter (a.pr), 2-74
debugger

submode, 3-134

Index-19

window, 3-132
file

character set, 1-4
delimiters, 1-5
must be compiled in Ada

directory, 1-4
separator, 1-5

space
available to hold arguments of

program being
debugged, A-2

specify
alternate

library to libc , 2-49
profiling library, 2-49

default method to perform generic
instantiations, 2-49

library file for tasking programs,
2-51

maximum
depth of nested inline subroutine

expansions, 2-47
maximum boundary

GVAS, 2-47
virtual memory, 2-47

minimum boundary of GVAS, 2-47
name

host, 2-47
runtime library for non-tasking

programs, 2-51
new position, 3-91
object file containing the start-up

routine, 2-51
SC Ada library version, 2-50
target

machine, 2-67
processor, 2-49

standard
contents, 1-8

STARTUP
LINK directive, 2-51

start-up
environment in debugger, 2-26, 3-79
routine, 2-51

static variables
display, 2-87

statistical profiler, 2-79
STATUS

package, 1-14
status of active tasks

display, 3-93
status.a , 1-13, 1-14
status_b.a , 1-13, 1-14
step

into subprogram
accidentally, 3-130
single, 3-130

over calls, 3-5
storage

task
default size, A-1

unit limit, A-1
STORAGE_SIZE

default collection size for access
type, A-1

string
variable-length operations, 1-8

STRINGS
package, 1-13

STRLEN
package, 1-13, 1-14

strlen.a , 1-13, 1-14
strlen_b.a , 1-13, 1-14
STRNCPY

package, 1-13, 1-14
strncpy.a , 1-13, 1-14
strncpy_b.a , 1-13, 1-14
structure

source files, 1-4
subprogram

edit from debugger, 3-62
entering by mistake, 3-21
location

bodies, 1-4
specifications, 1-4

return from, 3-129

Index-20 SPARCompiler Ada Reference Guide

summarize
disk usage, 2-29

support
for Ada standard I/O, 1-10

symbol listing, 2-89
symbol table file, 2-87
syntax

error
limit, A-1

SYSTEM
package, 1-13, 1-14

system
call interface, 1-13, 1-14

system.a , 1-13, 1-14

T
TARGET

INFO directive, 2-49
target

specify processor, 2-49
TARGET_C_LIBRARY

INFO directive, 2-49
TARGET_C_P_LIBRARY

INFO directive, 2-49
task

default storage size, A-1
display

status, 3-98
list, 3-93
states, 3-94

TASKING
LINK directive, 2-51

tasking
specify library file, 2-51

tasking programs
reduce size of program, 2-51

terminal
read state in debugger, 2-24

terminate
debugger session, 3-64

test
report results, 1-18

test-and-set capability, 1-17
TEXT_IO

package, 1-13, 1-14
text_io.a , 1-13, 1-14
text_io_b.a , 1-13, 1-14
text_sup.a , 1-13, 1-14
text_sup_b.a , 1-13, 1-14
TEXT_SUPPRT

package, 1-13, 1-14
time

operator subprogram interface, 1-17
subprogram interface, 1-17

tools
a.app , 2-11
a.cleanlib , 2-16
a.cp , 2-18
a.das , 2-20
a.db , 2-23
a.du , 2-29
a.error , 2-31
a.help , 2-40
a.info , 2-42
a.ld , 2-53
a.list , 2-57
a.ls , 2-58
a.make , 2-60
a.mklib , 2-66
a.mv , 2-69
a.path , 2-71
a.prof , 2-79
a.report , 2-81
a.rm , 2-83
a.symtab , 2-87
a.vadsrc , 2-98
a.view , 2-100
a.which , 2-104
limits, A-1
list, 2-1

TTY
package, 1-13, 1-14

tty.a , 1-13, 1-14
tty_b.a , 1-13, 1-14
TTY_SIZES

package, 1-13, 1-14

Index-21

tty_sizes.a , 1-13, 1-14
types

cross reference with a.tags , 2-95
display, 3-54
field

in ada.lib file, 1-25
with pragma ELABORATE, 1-26

U
U_ENV

package, 1-13, 1-14
u_env.a , 1-13, 1-14
U_RAND

package, 1-19
u_rand.a , 1-19
unchecked.a , 1-13, 1-14
UNCHECKED_CONVERSION

package, 1-13, 1-14
UNCHECKED_DEALLOCATION

package, 1-13, 1-14
units

compilation, 1-1
copy information, 2-18
cross reference with a.tags , 2-95
dependencies, 1-2
entry in ada.lib file, 1-25
list compiled, 2-58
move information, 2-69
number/source file, A-2

UNIX
system calls, 1-18
time functions interface, 1-14

UNIX
package, 1-13, 1-14

UNIX time functions
interface, 1-15

unix.a , 1-13, 1-14
unix_b.a , 1-13, 1-14
UNIX_CALLS

package, 1-18
UNIX_DIRS

package, 1-13, 1-14
unix_dirs.a , 1-13, 1-14

unix_dirs_b.a , 1-13, 1-14
UNIX_LIMITS

package, 1-13, 1-14
unix_limits.a , 1-13, 1-14
UNIX_PRCS

package, 1-14
unix_prcs.a , 1-14
UNIX_TIME

package, 1-14
unix_time.a , 1-14
unixcallspec.a , 1-18
unsigned

type
definitions, 1-11

unsigned.a , 1-14
UNSIGNED_TYPES

package, 1-14
untyped memory

functions, 1-12
usage

improve disk, 1-13
summarize disk, 2-29

user procedure calls, 3-109
USER_DEFS

package, 1-15
user-defined

display formats, 3-54
optimization levels

a.make , 2-62
ada , 2-6

UTIMES
package, 1-15

V
V_ADA_INFO

package, 1-15
v_ada_info.a , 1-15
V_BITS

package, 1-15
v_bits.a , 1-15
v_bits_b.a , 1-15

Index-22 SPARCompiler Ada Reference Guide

V_I_ALLOC
package, 1-15

v_i_alloc.a , 1-15
V_I_BITS

package, 1-16
v_i_bits.a , 1-16
V_I_CALLOUT

package, 1-16
v_i_callout.a , 1-16
V_I_CIFO

package, 1-16
v_i_cifo.a , 1-16
V_I_CSEMA

package, 1-16
v_i_csema.a , 1-16
V_I_EXCEPT

package, 1-16
V_I_INTR

package, 1-16
v_i_intr.a , 1-16
V_I_LIBOP

package, 1-16
V_I_MBOX

package, 1-16
v_i_mbox.a , 1-16
V_I_MEM

package, 1-16
v_i_mem.a , 1-16
V_I_MUTEX

package, 1-16
v_i_mutex.a

package, 1-16
V_I_PASS

package, 1-16
v_i_pass.a , 1-16
V_I_RAISE

package, 1-17
v_i_raise.a , 1-17
V_I_SEMA

package, 1-17
v_i_sema.a , 1-17

V_I_SIG
package, 1-17

v_i_sigs.a , 1-17
V_I_TASKOP

package, 1-17
v_i_taskop.a , 1-17
V_I_TASKS

package, 1-17
v_i_tasks.a , 1-17
V_I_TIME

package, 1-17
V_I_TIMEOP

package, 1-17
v_i_timeop.a , 1-17
V_I_TYPES

package, 1-17
v_i_types.a , 1-17
V_SEMA

package, 1-17
v_sema.a , 1-17
V_TAS

package, 1-17
v_tas.a , 1-17
v_tas_b.a , 1-17
V_USER_CONF_I

package, 1-17
VADS

INFO directive, 2-50
.vadsrc

create local configuration file, 2-67
variable

display, 3-108
in decimal, 3-111
memory at location, 3-111

display static, 2-87
length string operations, 1-8

verdixlib
directory, 1-18

VERSION
INFO directive, 2-50

version
display, 2-98
SC Ada library, 2-50

Index-23

virtual
addresses, 1-28
memory maximum boundary, 2-47

vstring_body.a , 1-19
vstring_spec.a , 1-19
VSTRINGS

package, 1-19

W
window

control commands, 3-133, 3-135
screen-mode debugger, 3-132

WITHn directive
a.ld , 2-55
character limit, A-1
LINK directive, 2-51

X
X_CALENDAR

package, 1-17
xcalendar.a , 1-17

Y
yank delimited expression

P..P..y , 3-111

Index-24 SPARCompiler Ada Reference Guide

