SunLink FTAM 8.0.2 Programmer’s Guide

¥ SunSoft

un Micros) 3

2550 Garcia Avenue
Mountain View, CA 94043
US.A.

Part No: 801-4962-12
Revision A, October 1994

00 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

Allrights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., awholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Solaris and SunLink are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and certain other countries. UNIXis a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display
PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their
respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARCB811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

or
e]

Contents

1. Architecture Overview

FTAM Specifications

FTAM Initiator External Interfaces

Compiling and Linking FTAM Initiator Applications
FTAM Responder Stubs File..........

Generating a Customized Responder..................

Starting a Customized Responder. .

2. FTAM Initiator

External Interface Definitions.

Initiator Common Data Structures

Initiator Execution Status Report.

Initiator External Interface Definitions Summary

FTAM Initiator (FTI) Interface Definitions.................

fti_connect()
fti_create()
fti_delete()

—open association
—create remote file

—delete remote file

g A W NN DN P

© 0 ~N

10
10
12
15

fti_dir() —Ilist remote directory

fti_disconnect() —close association...............
fti_exit() —exXit initiator process
fti_get() —getremotefile,
fti_getid() —aqet transfer identifier.................
fti_init() —initialize initiator process.
fti_lcd() —change local working directory...........
fti_put() —putlocalfile...........................
fti_ pwd() —return remote working directory
fti_ratt() —tread remote attributes
fti_rcd() —change remote working directory.........
fti_read() —tread remotefile................
fti_recover() —recover interrupted transfer.........
fti_rename() @ —renameremotefile..................

FTAM Remote Database (RDB) Interface Definitions........

fti_rdbdel() —delete entry fromRDB.
fti_rdbget() —getentry fromRDB
fti_rdbput() —putentryinRDB
FTAM Shadow File (SHF) Interface Definitions.
fti_shfget() —aget attributes from local shadow file . . .
fti_shfput() —put attributes in local shadow file

FTAM Transfer (TRF) Interface Definitions . . .

fti_trf_del() —delete docket information...........

fti_trf_list() —Ilist transfer identifiers

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

16
21
22
23
26
27
28
29
32
33
37
38
40
43
45
45
46
47
49
49

fti_trf_show()

—show docket information

Initiator Error and Status Codes

APIEventCodes

Execution Status.

Error TYPeS . . o

Error Connexion Status.

Error codes

Local (Non-UNIX) Errors..........

Warningcodes

3. FTAM Responder
Stubs File Definitions

Responder Common Data Structures . . .

Responder Execution Status Report

Responder Stubs File Definitions Summary................

Responder Stubs File Definitions.

Contents

ftr_connect()
ftr_create()
ftr_delete()

ftr_deselect()

ftr_disconnect()

ftr_ratt()
ftr_read()
ftr_recover()

ftr_rename()

—association connect request

—file create request.

—file delete request

—Tfile deselectrequest

—association disconnect request. ..

—tread attributesrequest

—file read request. . ..

—transfer recoverrequest............

—file rename request

56
58
58
58
58
58
59
60
61

63
63
64
65
66
66
67
69
69

70
70
71
72

Vi

ftr_select() —file selectrequest...................
ftr_transfer_end() —end of transfer indication
ftr_write() —file writerequest

4. FTAM DiagnosticCodes ...,
General FTAM Diagnostics.
Protocol and Supporting Service Diagnostics
Association-Related Diagnostics
Selection Regime-Related Diagnostics
File Management-Related Diagnostics
Access-Related Diagnostics,
Recovery-Related Diagnostics

A. Program Examples
FTAM Initiator ApplicationExample

ex client.c. e

Makefile

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

Preface

Purpose and Audience

This manual describes five external programming interfaces that are used to
develop FTAM applications such as the SunLink FTAM initiator (osiftam)
and responder (osiftr). It is intended for programmers and system designers
who are familiar with the SunOS™ operating system and C programming
interfaces.

Refer to Using SunLink FTAM 8.0.2 for a detailed description of the SunLink
FTAM initiator and responder applications.

Before You Read This Book

You must install and configure the SunLink OSI Communications Platform
(Stack) in order to use SunLink FTAM. Before reading this manual you should
refer to the following related documentation:

® SunLink OSI 8.0.2 Communication Platform Administrator’s Guide
(Part No. 801-4975)

Vii

How This Book Is Organized

Chapter 1, “Architecture Overview,” provides a overview of the FTAM
initiator and responder modules and and introduces the five programming
interfaces used to access the services that these modules provide.

Chapter 2, “FTAM Initiator External Interface Definitions,” provides a
detailed description of the programming interfaces to the FTAM initiator
modules. These interfaces are used to develop FTAM client applications such
the SunLink FTAM initiator (osiftam).

Chapter 3, “FTAM Responder Stubs File Definitions,” provides a detailed
description of the programming interface to the FTAM responder module. This
interface is used to develop FTAM server applications such the SunLink FTAM
responder (osiftr).

Chapter 4, “FTAM Diagnostic Codes,” lists the diagnostic codes returned by
the FTAM initiator and responder modules.

Appendix A, “Program Examples,” contains an example of an FTAM client
application developed using the interfaces described in this manual, and
listings for the C header files ftiuser.h and ftruser.h . The example
program is also provided as part the SunLink FTAM application software.

Conventions Used in this Manual

viii

The following typographic conventions are used in this manual:

Typewriter font
Represents what appears on your workstation screen and is used for
program names, file names, and UNIX commands.

Boldface typewriter font
Indicates user input, commands and responses to prompts that you type in
exactly as they appear in the manual.

Italic font
Indicates variables or parameters that you replace with an appropriate word
or string; also used for emphasis.

hostname% or %
Represents the system’s prompt for a non-privileged user’s account.

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

hostname# or #

Represents the system’s prompt for the root (superuser) account.

Boxes

Contain text that represents listings, part of a file, or program
output.

Boxes are also used to represent interactive sessions. For example::

% df -k /usr
Filesystem kbytes used avail capacity Mounted on
/dev/sd0g 155015 103090 36424 74% /|usr

Product Documentation

The documents in the SunLink FTAM 8.0.2 release document set are:

® Using SunLink FTAM 8.0.2
(Part No. 801-4961)

® Managing SunLink FTAM 8.0.2
(Part No. 802-1573)

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

FTAM Specifications

Architecture Overview 1

FTAM Specifications page 1
FTAM Initiator External Interfaces page 2
FTAM Responder Stubs File page 3

This chapter provides an overview of the external interfaces to the File Transfer
Access and Management (FTAM) protocols provided by SunLink FTAM. It lists
the relevant ISO specifications, and describes the external interfaces (APIs) and
stubs file used to develop FTAM clients and servers similar to the SunLink
FTAM applications osiftam and osiftr . Refer to the Managing SunLink
FTAM 8.0.2 for a detailed description of the SunLink FTAM applications.

The ISO FTAM specification (8571) describes a method of handling the transfer,
access, and mangement of files between two communicating systems based on
the concept of a virtual file store, which provides a mapping of diverse file

systems to a common model. The FTAM specification is divided into five parts:

ISO 8571/1 Introduction to FTAM concepts

ISO 8571/2 Explains the terms, concepts, and vocabulary used by FTAM
ISO 8571/3 Describes the two file transfer entities

ISO 8571/4 Defines the rules applied to the transfer of files

ISO 8571/1 Describes the conformance statement

FTAM Initiator External Interfaces

SunLink FTAM provides four external interfaces that can be used to develop
customized FTAM clients similar to the SunLink FTAM initiator
application(osiftam):

® The FTAM Initiator (FTI) interface provides a set of functions that are used
to access the main FTAM initiator services. These services handle file
transfer, access, and management between peer entities—that is, between an
FTAM initiator (client application) and an FTAM responder (server
application).

® The FTAM Remote Database (RDB) interface provides a set of functions
that are used to access the FTAM services which handle the OSI addresses
required to establish an associations with remote hosts.

® The FTAM Shadow File (SHF) interface provides a set of functions that are
used to access the FTAM shadow file services which handle the virtual file
attributes that are not supported by the local file system—for example,
document type or universal class humber.

® The FTAM Transfer (TRF) interface provides a set of functions that are used
to access the FTAM file recovery services which handle the recovery of
interrupted file transfers based on information contained in special FTAM
files called dockets.

Compiling and Linking FTAM Initiator Applications

To compile and link FTAM initiator applications developed using the functions
defined within this chapter, you must specify the following entries in your
Makefile:

CFLAGS += -l /opt/SUNWconn/include
LDFLAGS += -L /opt/SUNWconn/lib_ftam
-lintl

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

[HEN
i

FTAM Responder Stubs File

The external interface to the SunLink FTAM responder takes the form of a
stubs file that can be used to customize the SunLink FTAM responder
application (osiftr).

The following elements are delivered as part of Sunlink FTAM:

® A stubs file (ftr_stub.c) that contains skeleton C functions called by the
reponder process.

® A C header file (ftruser.h) that contains the variable definitions for
inclusion in the responder program.

* A relocatable file (osiftrapi.o) that must be linked with the stubs file to
generate the responder executable.

The functions contained in the stubs file are called by the responder process in
response to FTAM activity.

For example,

When the responder receives an F-INITIALIZE request (remote request
for FTAM regime establishment), it calls the function ftr_connect to
pass information regarding the connection (for example, remote user
name, password, account).

In general, the FTAM responder interface is used to collect information about
FTAM activity (for statistical or accounting purposes) or to prevent the
execution of certain FTAM operations by returning an non-zero code that
causes the responder to reject the request.

For example,

The function ftr_connect is called by passing it a C data structure that
contains information regarding the remote user that requested the FTAM
regime establishment. A programmer can include code in the body of the
function ftr_connect to perform strict checking on the remote user
information and return an non-zero code for certain values.

Note — Note that the return codes of some functions are ignored by the
responder (for example, ftr_write) and cannot be used in this way.

Architecture Overview 3

1]l
H

The following code example shows how the ftr_connect stub can be
modified to reject an FTAM regime establishment request based on the remote
user name.

int ftr_connect(ftrbndT*fbndp, ftresrT*fesrp)
{
if(strcemp(fondp->username, “REFUSE”))
return(1); /* FTAM connection REFUSED */
else return(0); /* FTAM connection ACCEPTED */

Generating a Customized Responder

To generate a customized FTAM responder process (called osiftr_cust in
this example) based on the stubs file ftr_stubs.c

1. Create your own code to fill the skeleton functions contained in the stubs
file ftr_stubs.c
If you do not use the template stubs file provided with SunLink FTAM, you
must remember to include the header files ftiuser.h and ftruser.h
using the compiler directives:

#include “ftam/ftiuser.h”
#include “ftam/ftruser.h”

2. Compile the customized stubs file and link it with the relocatable file
lopt/SUNWconn/ftam/lib/osiftrapi.o

cc [flags ...] -c -llopt/SUNWconn/ftam/include ftr_stubs.c
cc [flags ...] -o osiftr_cust /opt/SUNWconn/lib/osiftrapi.o
ftr_stubs.o [libs ...] -lintl

Note that you must also link with the standard internationalization library
libintl.a . Use the —cflag when compiling to avoid automatic linking
which will generate an error message because of the missing main() .

4 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

[HEN
i

Starting a Customized Responder

The customized responder is started by the SunLink responder daemon
(osiftrd) in the same way as the standard SunLink responder (osiftr);
therefore, for a given network type (CONS, CNLP, or TCP/IP) you can only
use either a standard SunLink responder or a customized responder.

To use a customized responder:

1. Log in as root , or become superuser

hostname% su
Password: <enter your password>
hostname#

2. Make a backup copy of the standard responder application (osiftr).

hostname# cd /opt/SUNWconn/ftam/bin
hostname# mv osiftr osiftr. BAK

3. Create a symbolic link between the standard responder name and the
customized responder application (where osiftr_cust is the full pathname
in this example)

hostname# In-s <osiftr_cust> /opt/SUNWconn/ftam/bin/osiftr

Architecture Overview 5

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

FTAM Initiator
External Interface Definitions

Initiator Common Data Structures page 7
Initiator Execution Status Report page 8
Initiator External Interface Definitions Summary page 9
FTAM Initiator (FTI) Interface Definitions page 10
FTAM Remote Database (RDB) Interface Definitions page 45
FTAM Shadow File (SHF) Interface Definitions page 49
FTAM Transfer (TRF) Interface Definitions page 54
Initiator Error and Status Codes page 58

This chapter describes the external interfaces to the FTAM initiator modules,

which are used to develop FTAM initiators similar to the SunLink FTAM

application osiftam

Initiator Common Data Structures

All data structures, types, and constants are defined in the C header file

lopt/SUNWconn/include/ftam/ftiuser.h . An FTAM client developed
using the FTAM initiator interface must include this C header file, by using the

following compiler directive:

#include “ftam/ftiuser.h”

2

Initiator Execution Status Report

Most FTAM initiator functions require the provision of a pointer to a structure
of type ftiesrT . This output parameter contains the Execution Status Report
of the operation. The structure is filled out as shown in Table 2-1:

Table 2-1 Execution Status Report

status Execution Status. This field is set to one of the following values:
FTISTNER Execution was successful, no error.
FTISTLOC A local or user error was detected.
FTISTSYS A local system error occurred.
FTISTFTM An FTAM service or protocol error occurred.
FTISTWAR A local warning was detected.

errcode Error Code. Significant only when status is set to FTISTLOC, FTISTSYS,
FTISTFTM or FTISTWAR It specifies the type of error that occurred
during the operation, as defined in the C header file ftiuser.h

errtype Error Type. Significant only with recovery. It specifies if recovery is
possible after the failure. This field is set to one of the following values:
FTITYNRC Error not recoverable.
FTITYRCO Error recoverable.

errcnxs Connection Status. It specifies the connection status after the failure.
This field is set to one of the following values:
FTICNXON Connection on.
FTICNXOF Connection off.

diag Diagnostic Code. It gives additional information about the error:

When status is set to FTISTLOC, it is set to one of the local
error diagnostic values listed in the C header file
ftiuser.h

When status is set to FTISTSYS, it contains the value of the
system variable errno as set by the system call that failed.

When status is set to FTISTFTM, it is set to one of the values
listed in Chapter 4, “FTAM Diagnostic Codes”.

When status is set to FTISTWAR it is set to one or more of the
local warning values listed in the C header file ftiuser.h

ftamdfd FTAM Diagnostic Further Details. Significant only when status is set to
FTISTFTM. (Reserved for future extensions.)

8 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2=
Initiator External Interface Definitions Summary
The interfaces to the FTAM initiator modules are summarized in Table 2-2
Table 2-2 FTAM Initiator External Interface Definitions
Function Page
fti_connect() —opens an association with a remote host . page 10
fti_create() —creates a file on a remote host. page 12
fti_delete() —deletes a file on a remote host. page 15
fti_dir() —Ilists a remote directory using NBS-9 document type. page 16
fti_disconnect() — closes an association with a remote host. page 21
fti_exit() —terminates and exits the initiator process. page 22
fti_get() —qgets (or receives) a file from a remote host . page 23
fti_getid() —returns a new transfer identifier. page 26
fti_init() —initializes the initiator process. page 27
fti_led() —changes the local directory path. page 28
fti_ratt() —reads the attributes of a remote file. page 33
fti_rcd() —changes the remote directory path. page 37
fti_read() —reads part of an FTAM-2 file from a remote host. page 38
fti_recover() —recovers an interrupted transfer. page 40
fti_rename() = —renames a file on a remote host system. page 43
fti_put() —puts a file on (or sends a file to) a remote host. page 29
fti_pwd() —gets the current remote directory path. page 32
fti_rdbdel() —deletes an entry from the FTAM RDB. page 45
fti_rdbget() —reads an entry from the FTAM RDB. page 46
fti_rdbput() —adds a new entry to the FTAM RDB. page 47
fti_shfget() —reads a shadow file. page 49
fti_shfput() —creates or modifies a shadow file. page 51
fti_trf_del() —deletes recovery information. page 54
fti_trf_list() —returns a list of current interrupted transfers. page 55
fti_trf_show() —reads recovery information. page 56
FTAM Initiator External Interface Definitions 9

2

FTAM Initiator (FTI) Interface Definitions

The FTAM Initiator (FTI) interface provides a set of functions that are used to
access the main FTAM initiator services. These services handle file transfer,
access, and management between peer entities—that is, between an FTAM
initiator (client application) and an FTAM responder (server application).

fti_connect() —O0pen association

The fti_connect function is used to establish an association between the
FTAM initiator and the FTAM responder running on a remote system.

The function fti_connect returns zero if successful and a non-zero value if
unsuccessful.

int fti_connect(flaip,fondp,frecp,fmode,fesrp)

ftilaiT *flaip;
ftibndT *fbndp;
int *frecp;
int fmode;

ftiesrT *fesrp;

flaip Local Association Identifier. This output parameter identifies the
FTAM association to be established. Its value is returned by the FTI
API and must be provided by the initiator for all subsequent calls to
FTI API functions that are related to this association.

fbndp Pointer to a structure of type ftiondT . This input parameter
identifies the remote host system with which the association is to be
established.

The structure is filled out as follows:

hostname Remote Host Name (null-terminated string). This
parameter is used to retrieve the OSI addressing
information required to establish the association. The
remote host must be registered in the remote systems
database (RSDB). See also fti_rdbput()

username User Name (null terminated string). Corresponds to
the initiator identifier in the F-Initialize-Request

10 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

frecp

fmode

fesrp

password User Password. Corresponds to the filestore password in
the F-Initialize-Request. The password format
is: <type><length><value>. The <length> may be zero
and the <type> takes one of the following values:

FTIGraStr graphic string
FTIOctStr general string

account Account Name. Corresponds to the account in the
F-Initialize-Request. May take a null value.

Recovery Indicator. Significant only when recovery is enabled. This
output parameter specifies the state of the recovery negotiation. The
returned values are:

FTIRCAVA recovery available
FTIRCNAV recovery not available
Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report by the function fti_connect , as appropriate:

FTIERIPA invalid parameter

FTIERHIC host is closed

FTIERHNR host name required
FTIERNRH no response from host
FTIERECH error connecting to host
FTIERCAE connection already established

FTIERRHI error reading host information

FTAM Initiator External Interface Definitions 11

12

fti_create()

—create remote file

The function fti_create

is used to create a new file on the remote system

with which an association has been established using the function
. If a file of the same name exists on the remote system, the
action is determined by the override parameter.

fti_connect

The function fti_create

returns zero if successful and a non-zero value if

unsuccessful.
int fti_create(flaip,fcrep,fmode,fesrp)
ftilaiT *flaip;
fticreT *fcrep;
int fmode;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association to be established. Its value is recovered by the
function fti_connect when the associaton is first established.
fcrep Pointer to a structure of type fticreT . Identifies the local file to be

transferred to the remote system.

The structure is filled out as follows:

doctype

Document Type. Specifies the type of file to be created.
If the document type is specified, the function uses the
corresponding shadow file template. If the document
type is not specified, the document type is determined
by the document type defined in the shadow file
template specified by the shfname parameter.

FTMDTFT1 FTAM-1 (unstructured text file)
FTMDTFT2 FTAM-2 (sequential text file)
FTMDTFT3 FTAM-3 (unstructured binary file)
FTMDTIN1 INTAP-1 (INTAP record file)
FTMDTUNO Unknown document type

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

filsize Specifies the size of the new file in bytes. The -z option
is only valid if it is supported by the remote FTAM
responder (for example, the SunLink FTAM local
responder does not recognize this option).

override Override Parameter. Specifies the action to be taken if
the file exists.

FTMOVNOCNOo creation. Transaction fails.
FTMOVDOA Creation with old attributes.
FTMOVDNA Creation with new attributes.
FTMOVSOF Select old file.

peract Permitted Actions. This parameter consists of two
bytes. The second byte is reserved for future
extensions. The first byte is the result of a logical ORof
the following values:

FTMPAREA read permission

FTMPAINS insert permission
FTMPAEXT extend permission
FTMPAREP replace permission
FTMPAERA erase permission
FTMPADEL delete permission
FTMPARAT read attributes permission
FTMPACAT change attributes permission

accnt Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

filpssd Password. Specifies a password for the creation of the
remote file, if required by the remote system.The
password format is: <type><length><value>. The
<length> may be zero and the <type> takes one of the
following values:

FTAM Initiator External Interface Definitions 13

1]l
N

fti_create() continued...
filname
shfname
avail
fmode

fesrp

FTIGraStr graphic string

FTIOctStr general string

Remote File Name. Specifies the name of the file to be
created. The syntax must obey the rules imposed by
the remote system. The complete path name is a
concatenation of the internal variable set using the
function fti_rcd and the filename specified by this
parameter.

Shadow File Template. Used to specify the name of a
local file from which the initial attributes will be
derived.

Availability. Always set to the constant FTMFAIMM

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA
FTIERCNE
FTIERNRH
FTIERRFR
FTIERIDT
FTIERFNA

invalid parameter
connection not established
no response from host
remote file name required
invalid document type

function not available (on this host)

FTIERRCTF error creating remote file

FTIERRDSF error deselecting remote file

14 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_delete()

—delete remote file

The function fti_delete

is used to delete a file on a remote system with

which an association has been established using the function fti_connect

The function fti_delete

unsuccessful.

returns zero if successful and a non-zero value if

int fti_delete(flaip,fdelp,fmode,fesrp)

ftilaiT *flaip;
ftidelT *fdelp;
int fmode;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association to be established. Its value is recovered by the
function fti_connect when the associaton is first established.
fdelp Pointer to a structure of type ftidelT . Identifies the remote file to
be deleted.

The structure is filled out as follows:

filname

accnt

filpssd

Remote File Name. Specifies the name of the file to be
deleted. The syntax must obey the rules imposed by
the remote system. The complete path name is a
concatenation of the internal variable set using the
function fti_rcd and the filename specified by this
parameter.

Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

Password. Specifies a password for deleting the remote
file, if required by the remote system.The password

format is: <type><length><value>. The <length> may be
zero and the <type> takes one of the following values:

FTIGraStr graphic string

FTIOctStr general string

FTAM Initiator External Interface Definitions 15

fti_delete() continued...
fmode Execution Mode. Must be set to FTIEXBLK (blocking mode).

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter

FTIERCNE connection not established
FTIERNRH no response from host

FTIERRFR remote file name required
FTIERFNA function not available (on this host)
FTIERRSRF error selecting remote file
FTIERRDREF error deleting remote file

fti_dir() —Ilist remote directory

The function fti_dir is used to generate a listing of the contents of a
directory on a remote system with which an association has been established
using the function fti_connect

The function fti_dir returns zero if successful and a non-zero value if
unsuccessful.

int fti_dir (flaip,ftrfp,fmode,fesrp)

ftilaiT *flaip;
ftitrfT *ftrfp;
int fmode;

ftiesrT *fesrp;

flaip Local Association Identifier. This input parameter identifies the
FTAM association to be established. Its value is recovered by the
function fti_connect when the associaton is first established.

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

ftrfp Pointer to a structure of type ftitrfT . Identifies the remote file to
be transferred.

The structure is filled out as follows:

doctype

accnt

locname

remname

filpssd

dform

reqattri

Document type. Must be set to FTMDTNBYNBS-9
directory).

Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

Local File Name (null terminated string). Specifies a
local file into which the directory listing will be
written. If null, the listing will be displayed on the
standard output device. The syntax must obey the
rules imposed by the local system.

Remote Directory Name (null terminated string).
Specifies the name of the remote directory. The syntax
must obey the rules imposed by the remote system.
The complete path name is a concatenation of the
internal variable set using the function fti_rcd and
the filename specified by this parameter.

Password. Specifies a password, if required by the
remote system.The password format is:
<type><length><value>. The <length> may be zero and
the <type> takes one of the following values:

FTIGraStr graphic string
FTIOctStr general string

Attribute List Format. Takes the values 0 (short), 1
(long), 2 (extended).

Requested Attributes (three-byte array). Takes the
following values if dform=0 :

regattrif0]=FTMAGKERO
reqattrif1]J=FTMAGKER1 | FTMAFNAME
regattrif2]=FTMAGKER2

FTAM Initiator External Interface Definitions 17

1]l
N

fti_dir() continued...

trfid

Takes the following values if dform=1 or 2:
regattrif0]=FTMAGSTGO
regattrif1]l=FTMAGSTG1
regattrif2]=FTMAGSTG2

Transfer Identifier. Significant only when recovery is
enabled. Must be set to the value returned previously
by the function fti_getid . Unpredicatble results can
occur if trfid is not initialized correctly.

The following fields are returned; the remaining fields are not used:

result
elapse
speed
fmode
fesrp

number of bytes received
elapsed time (in seconds) for transfer

transfer speed (in Kbytes/second)

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU
FTIERIPA

FTIERCNE
FTIERNRH
FTIERRFR
FTIERIDT

FTIERCDK
FTIEROLF
FTIERORF

function not supported (on local system)
invalid parameter

connection not established

no response from host

remote file name required

invalid document type

error creating docket

error opening local file

error opening remote file

18 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_dir()

continued...
FTIERWDK error writing docket
FTIERWLF error writing local file
FTIERCLF error closing local file
FTIERCRF error closing remote file
The attribute list format defined by the parameter dform is defined as follows:

short format (0):

<type><perm><class><de_size><f_size><f_name>

long format (1):

<type><perm><class><de_size><de_type><owner><f_size><Imo_dt><f_name>

extended format (2):

<type><perm><class><de_size><de_type><owner><f size><f name><cre_dt><Imo_dt>
<lac_dt><lam_dt>

<cre_dt> Date and time of creation

<de_size> Data element size

<de_type> Data element type

<f_size> Actual file size

<lac_dt> Date and time of last read access

<lam_dt> Date and time of last attribute modification
<Imo_dt> Date and time of last modification

FTAM Initiator External Interface Definitions 19

1]l
N

fti_dir() continued...

<type>

<owner>

<perm>

<class>

Specifies the FTAM document type.

F1: Unstructured text file (FTAM-1)

F2: Sequential text file (FTAM-2)

F2: Unstructured binary file (FTAM-3)

11 : INTAP record file (INTAP-1)

N9: Directory (NBS-9)

Identity of owner of FTAM creator of file

The initial permissions assigned to the new file, which take
precedence over the default permissions assigned in the
shadow file. The permissions are:

r: read permission

i : insert permission

p: replace permission

x: extend permission

e: erase permission

t: read attributes permission

c: change attributes permission
d: delete permission

Integer value specifying character set:
4. octet string

19: printable string

20: teletex string

21 videotex string

22: 1A5 string (default value)

25: graphic string

20 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_dir() continued...

fti_disconnect()

26: visible string

27: general string

—close association

The function fti_disconnect is used to close (or terminate) an association
which has been established using the function fti_connect

The function fti_disconnect returns zero if successful and a non-zero value
unsuccessful.
int fti_disconnect(flaip,fmode,fesrp)
ftilaiT *flaip;
int fmode;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.
fmode Execution Mode. Must be set to FTIEXBLK (blocking mode).
fesrp Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERCNE connection not established

FTIERCRH error closing remote host

FTAM Initiator External Interface Definitions 21

22

fti_exit()

—eXit initiator process

The function fti_exit is used to close (or terminate) an association which has
been established using the function fti_connect and to exit the initiator
process

int fti_exit()

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_get()

—qet remote file

The function fti_get

is used to transfer a file from a remote system with

which an association has been established using the function fti_connect . If
a document type is specified, it must match the actual type of the remote file
otherwise the transfer will fail.

The function fti_get

unsuccessful.

returns zero if successful and a non-zero value if

int fti_get(flaip,ftrfp,fmode,fesrp)

ftilaiT *flaip;
ftitrfT *trfp;
int fmode;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.
ftrfp Pointer to a structure of type ftitrfT . Identifies the remote file to

be transferred to the local system.

The structure is filled out as follows:

doctype

Document Type. Specifies the type of file to be
transfered. If the document type is specified, the
function uses the corresponding shadow file template.
If the document type is not specified, the document
type is determined by the document type defined in
the shadow file template specified by the shfname
parameter.

FTMDTFT1 FTAM-1 (unstructured text file)
FTMDTFT2 FTAM-2 (sequential text file)
FTMDTFT3 FTAM-3 (unstructured binary file)
FTMDTIN1 INTAP-1 (INTAP record file)

FTMDTUNO Unknown document type

FTAM Initiator External Interface Definitions 23

1]l
N

mode

accnt

locname

remname

filpssd

recmode

Extend Mode. It is set to one of the following values:

FTMTMEXT The content of the local file will be
extended with the content of the remote
file.

FTMTMREP The content of the local file will be
replaced by the content of the remote file.

Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

Local File Name (null terminated string). Specifies a
local file into which the contents of the remote file will
be written. If null, the listing will be displayed on the
standard output device. The syntax must obey the
rules imposed by the local system.

Remote File Name (null terminated string). Specifies
the name of the remote file to be transfered. The syntax
must obey the rules imposed by the remote system.
The complete path name is a concatenation of the
internal variable set using the function fti_rcd and
the filename specified by this parameter.

Password. Specifies a password, if one is required by
the remote system.The password format is:
<type><length><value>. The <length> may be zero and
the <type> takes one of the following values:

FTIGraStr graphic string
FTIOctStr general string

Recovery Mode. Significant only if recovery is enabled.
Used to activate the chackpoint mechanisms for a
single transfer. Must be set to one of the following
values:

FTIRMRON Recovery mode ON
FTIRMNOR Recovery mode OFF

24 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

trfid Transfer Identifier. Significant only when recovery is
enabled. Must be set to the value returned previously
by the function fti_getid . Unpredicatble results can
occur if trfid is not initialized correctly.

The following fields are returned; the remaining fields are not used:

fmode

fesrp

result number of bytes received
elapse elapsed time (in seconds) for transfer
speed transfer speed (in Kbytes/second)

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERCNE connection not established
FTIERNRH no response from host
FTIERLFR local file name required
FTIERRFR remote file name required
FTIERIDT invalid document type
FTIERCDK error creating docket
FTIEROLF error opening local file
FTIERORF error opening remote file
FTIERWDK error writing docket
FTIERRRF error receiving remote file
FTIERWLF error writing local file
FTIERCLF error closing local file

FTIERCRF error closing remote file

FTAM Initiator External Interface Definitions 25

26

fti_getid()

—qet transfer identifier

The function fti_getid is used to allocate a unique transfer identifier to the
transaction. Used for recovery puposes. It is available only if the recovery
functional unit is supported.

The function fti_getid returns zero if successful and a non-zero value if
unsuccessful.

int fti_getid(flaip,trfidp,fesrp)

ftilaiT *flaip;
int *trfidp;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.
trfidp Transfer Identifier. Output parameter used to allocate a unique
transfer identfier that will be used to recover an interrupted transfer
if an error occurs.
fesrp Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU function not supported on local system
FTIERIPA invalid parameter
FTIERCNE connection not established

FTIERGID error getting transfer identifier

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_init()

—initialize initiator process

The function fti_init
parameters associated with the initiator API. It must be called before any of the
other initiator functions.

The function fti_init
unsuccessful.

is used to initialize some of the environment

returns zero if successful and a non-zero value if

ftiadmT
ftiesrT

int fti_init(fadmp,fesrp)

*fadmp;
*fesrp;

fadmp

Pointer to structure of type ftiadmT . This structure is used to set
some of the environment parameters associated with the initiator

API.

The structure is filled out as follows:

ftiinid

ftilogd

ftishfd

ftirdbd

ftitrfd

Initialization Directory (null terminated string). Set to
var/[SUNWconn/OSIROOT/ftam/conf by default.

Log Files Directory (null terminated string). Set to
Ivar/SUNWconn/OSIROOT/ftam/log by default.

Shadow Files Directory (null terminated string). Set to
/var/SUNWconn/OSIROOT/ftam/shf by default.

Remote Systems Database Directory (null terminated
string). Set to /var/SUNWconn/OSIROOT/ftam/rdb
by default.

Transfers Database Directory (null terminated string).
Set to /var/'SUNWconn/OSIROOT/ftam/doc by
default.

The following field is returned by the initiator process:

fesrp

log

Log File Identifier. Returned if the file fti <log>.log
has been created in the log files directory.

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

FTAM Initiator External Interface Definitions 27

1]l
N

fti_lcd() continued...

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter

FTIWRINI initialization warning

fti_lcd() —change local working directory

The function fti_lcd is used to change the current working directory on the
local system. All subsequent local files names are relative to the new directory.

The function fti_lcd returns zero if successful and a non-zero value if not.

int fti_lcd(flaip,flcdp,fmode,fesrp)

ftilaiT *flaip;
ftilcdT *flcdp;
int fmode;

ftiesrT *fesrp;

flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.

fledp Pointer to a structure of type ftilcdT . The structure is filled out as
follows:
dirname Local Directory Name (null terminated string).

fmode Execution Mode. Must be set to FTIEXBLK (blocking mode).

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8. The status cannot be
FTISTFTM.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERIPN invalid path name

28 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_put()

—put local file

The function fti_put

is used to transfer a file from the local system to a

remote system with which an association has been established using the

function fti_connect

. If the remote file exists, the action is determined by

the override and mode parameters.

The function fti_put

unsuccessful.

returns zero if successful and a non-zero value if

int fti_put(flaip,ftrfp,fmode,fesrp)

ftilaiT *flaip;
ftitrfTi *ftrfp;
int fmode;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.
ftrfp Pointer to a structure of type ftitrfT . Identifies the remote file to

be transferred to the local system.

The structure is filled out as follows:

doctype

Document Type. Specifies the type of file to be
transfered. If the document type is specified, the
function uses the corresponding shadow file template.
If the document type is not specified, the document
type is determined by the document type defined in
the shadow file template specified by the shfname
parameter.

FTMDTFT1 FTAM-1 (unstructured text file)
FTMDTFT2 FTAM-2 (sequential text file)
FTMDTFT3 FTAM-3 (unstructured binary file)
FTMDTIN1 INTAP-1 (INTAP record file)

FTMDTUNO Unknown document type

FTAM Initiator External Interface Definitions 29

30

fti_put() continued...

override

mode

accnt

locname

remname

filpssd

Override Parameter. Specifies the action to be taken if
the remote file exists.

FTMOVNOCNOo creation. Transaction fails.
FTMOVDOA Creation with old attributes.
FTMOVDNA Creation with new attributes.
FTMOVSOF Select old file.

Extend Mode. It is set to one of the following values:

FTMTMEXT The content of the local file will be
extended with the content of the remote
file.

FTMTMREP The content of the local file will be
replaced by the content of the remote file.

Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

Local File Name (null terminated string). Specifies a
local file to be transfered to the remote system. The
syntax must obey the rules imposed by the local
system.

Remote File Name (null terminated string). Specifies
the name of the remote file. The syntax must obey the
rules imposed by the remote system.

Password. Specifies a password, if one is required by
the remote system.The password format is:
<type><length><value>. The <length> may be zero and
the <type> takes one of the following values:

FTIGraStr graphic string

FTIOctStr general string

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_put()

continued...

recmode

filsize

trfid

Recovery Mode. Significant only if recovery is enabled.
Used to activate the chackpoint mechanisms for a
single transfer. Must be set to one of the following
values:

FTIRMRON Recovery mode ON
FTIRMNOR Recovery mode OFF

Size of the new file in bytes. The -z option is only
valid if it is supported by the remote FTAM responder
(for example, the SunLink FTAM local responder does
not recognize this option).

Transfer Identifier. Significant only when recovery is
enabled. Must be set to the value returned previously
by the function fti_getid . Unpredicatble results can
occur if trfid is not initialized correctly.

The following fields are returned; the remaining fields are not used:

fmode

fesrp

result
elapse

speed

number of bytes received
elapsed time (in seconds) for transfer

transfer speed (in Kbytes/second)

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA
FTIERCNE
FTIERNRH
FTIERLFR
FTIERRFR

invalid parameter
connection not established
no response from host
local file name required

remote file name required

FTAM Initiator External Interface Definitions 31

1]l
N

FTIERIDT invalid document type
FTIERRDS error reading default shadow file
FTIEROLF error opening local file
FTIERORF error opening remote file
FTIERRLF error reading local file

fti_pwd() —return remote working directory

The function fti_pwd is used to return the current working directory on the
remote system. It returns zero if successful and a non-zero value if
unsuccessful.

ftilaiT
ftipwdT
int
ftiesrT

int fti_pwd(flaip,fpwdp,fmode,fesrp)

*flaip;
*fpwdp;
fmode;
*fesrp;

flaip

fpwdp

fmode

fesrp

Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.

Pointer to a structure of type ftipwdT . The structure is filled out as
follows:

dirname Remote Directory Name (null terminated string).
Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter

32 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_ratt()

—read remote attributes

The function fti_ratt is used to read the attributes of a file on a remote
system with which an association has been established using the function
fti_connect

The function fti_ratt returns zero if successful and a non-zero value if
unsuccessful.

int fti_ratt(flaip,fratp,fmode,frarp,fesrp)

ftilaiT *flaip;
ftiratT *fratp;
int fmode;
ftiesrT *fesrp;
flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.
fratp Pointer to a structure of type ftiratT . Identifies the remote file to

be transferred.
The structure is filled out as follows:

accnt Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

filname Remote File Name (null terminated string). Specifies a
remote file for which the attributes will be read. The
syntax must obey the rules imposed by the remote
system.

filpssd Password. Specifies a password, if one is required by
the remote system.The password format is:
<type><length><value>. The <length> may be zero and
the <type> takes one of the following values:

FTIGraStr graphic string
FTIOctStr general string

reqattri Requested Attributes (three-byte array).

FTAM Initiator External Interface Definitions 33

The first byte (index 0) is a logical ORof the following
values:

FTMAFNAMEile name

FTMAPERA®ermitted actions
FTMACOTYRontent type

FTMASTACGtorage account (*)
FTMADTCRIEElate and time created (*)
FTMADTLM®@ate and time of last modification
FTMADTLRAdate and time of last read access

FTMADTLAMiate and time of last attribute
modification

The second byte (index 1) is a logical ORof the
following values:

FTMAIDLCRidentity of creator
FTMAIDLMOQidentity of last modifier (*)
FTMAIDLRE identity of last reader (*)
FTMAIDLAMidentity of last attribute modifier (*)
FTMAFAVAIfile availability (*)

FTMAFSIZE file size

FTMAFFSIZ future file size (*)
FTMAACCTlaccess control (*)

The third byte (index 2) is a logical ORof the following
values:

FTMALQUALUegal qualification (*)
FTMAPRUSBrivate use (*)

The remaining fields are not used.

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_ratt() continued...

fmode

(*) indicates that the attribute is not available or not
supported on UNIX systems.

Execution Mode. Must be set to FTIEXBLK (blocking mode).

The following fields are returned; the remaining fields are not used:

fmode

frarp

result number of bytes received
elapse elapsed time (in seconds) for transfer
speed transfer speed (in Kbytes/second)

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to a structure of type ftirasT . This output parameter will
contain the read attribute response of the read-attribute operation.
This structure is described in the C header file ftiuser.h

special formats
<length><type><value>
<length> specifies the length of the <value> field (one octet)

<type> specifies whether the value of the attribute is available
or not (one octet):

0 no value available

1 value not supported

2 value available
<value> value field of length <length>
dates and times

<length><avail><year><month><day><hour><minutes>

<length> length of value (one octet)
<avail> availability of value (one octet)
<year> year (zero to four octets)

FTAM Initiator External Interface Definitions 35

36

fti_ratt()

continued...

fesrp

<month> month (zero to two octets)
<day> day (zero to two octets)
<hour> hour (zero to two octets)
<minutes> minutes (zero to two octets)
identities

<length><avail><identity>

<length> length of value (one octet)
<avail> availability of value (one octet)
<identity> value of length <length>

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter

FTIERCNE connection not established
FTIERNRH no response from host

FTIERRFR remote file name required
FTIERFNA function not available on this system

FTIERDSF error deselecting remote file

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_rcd()

—change remote working directory

The function fti_rcd is used to change the current working directory on the
remote system. All subsequent remote files names are relative to the new
directory.

The function fti_rcd returns zero if successful and a non-zero value if
unsuccessful.

int fti_rcd(flaip,frcdp,fmode,fesrp)

ftilaiT *flaip;
ftircdT *frcdp;
int fmode;

ftiesrT *fesrp;

flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.

frcdp Pointer to a structure of type ftircdT . The structure is filled out as
follows:
dirname Local Directory Name (null terminated string).

fmode Execution Mode. Must be set to FTIEXBLK (blocking mode).

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8. The status cannot be
FTISTFTM.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter

FTAM Initiator External Interface Definitions 37

38

fti_read()

—read remote file

The function fti_read is used to read all or part of a file from a remote
system with which an association has been established using the function
fti_connect . Itis only available if the file access functional unit is supported.

Because the function fti_read is typically used for small file transfers, the
recovery mode is automatically set to OFF

The function fti_read returns zero if successful and a non-zero value if
unsuccessful.

int fti_read(flaip,ftrfp,f/mode,fesrp)

ftilaiT *flaip;
ftitrfT *trfp;
int fmode;

ftiesrT *fesrp;

flaip Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.

ftrfp Pointer to a structure of type ftitrfT . Identifies the remote file to
be transferred to the local system.

The structure is filled out as follows:

doctype Document Type. Specifies the type of file to be created.
FTMDTFT2 FTAM-2 (sequential text file)

mode Extend Mode. It is set to one of the following values:

FTMTMEXT The content of the local file will be
extended with the content of the remote
file.

FTMTMREP The content of the local file will be
replaced by the content of the remote file.

accnt Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_read()

continued...

locname

remname

filpssd

frfadu

tofadu

trfid

Local File Name (null terminated string). Specifies a
local file into which the content of the remote file will
be written. The syntax must obey the rules imposed by
the local system.

Local File Name (null terminated string). Specifies the
name of the remote file. The syntax must obey the rules
imposed by the remote system. The complete path
name is a concatenation of the internal variable set
using the function fti_rcd and the filename specified
by this parameter.

Password. Specifies a password, if one is required by
the remote system.The password format is:
<type><length><value>. The <length> may be zero and
the <type> takes one of the following values:

FTIGraStr graphic string
FTIOctStr general string

From FADU (integer). Specifies the start of the block to
be read. The first FADU (first text line) is number 1.

To FADU (integer). Specifies the end of the block to be
read. The last FADU (last text line) is number -1.

Transfer Identifier. Significant only when recovery is
enabled. Must be set to the value returned previously
by the function fti_getid . Unpredicatble results can
occur if trfid is not initialized correctly.

The following fields are returned; the remaining fields are not used:

result
elapse

speed

number of bytes received
elapsed time (in seconds) for transfer

transfer speed (in Kbytes/second)

fmode Execution Mode. Must be set to FTIEXBLK (blocking mode).

FTAM Initiator External Interface Definitions 39

40

fesrp

fti_recover()

The function fti_recover

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU
FTIERIPA
FTIERCNE
FTIERNRH
FTIERRFR
FTIERIDT
FTIERCDK
FTIEROLF
FTIERORF
FTIERWDK
FTIERRRF
FTIERWLF
FTIERRDF
FTIERCLF
FTIERCRF

function not supported on local system
invalid parameter
connection not established
no response from host
remote file name required
invalid document type
error creating docket
error opening local file
error opening remote file
error writing docket

error receiving remote file
error writing local file
error reading local file
error closing local file

error closing remote file

—recover interrupted transfer

is used to recover a file transfer that has been

interrupted by an error or by request. It is only available if the recovery
functional unit is supported.

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

The function fti_recover returns zero if successful and a non-zero value if
unsuccessful.

int fti_recover(flaip,docketp,fmode,fesrp)

ftilaiT *flaip;
ftidockT *docketp;
int fmode;

ftiesrT *fesrp;

FTAM Initiator External Interface Definitions

41

42

fti_recover()

continued...

flaip

docketp

Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function
fti_connect when the associaton is first established.

Pointer to a structure of type ftidockT . Identifies the interrupted

file transfer to be recovered.
The structure is filled out as follows:

id Transfer Identifier. Specifies the transfer to be
recovered.

The following fields are returned; the remaining fields are not used:

fmode

fesrp

result number of bytes received
elapse elapsed time (in seconds) for transfer
speed transfer speed (in Kbytes/second)

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU function not supported on local system
FTIERIPA invalid parameter

FTIERCNE connection not established

FTIERNRH no response from host

FTIERFNA function not available on this host
FTIERRDK error reading docket

FTIERWDK error writing docket

FTIEROLF error opening local file

FTIERWLF error writing local file

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_recover() continued...

FTIERRDF
FTIERRTR
FTIERSLF
FTIERRRF
FTIERCLF
FTIERCRF

error reading local file
error recovering transfer
error sending local file
error receiving remote file
error closing local file

error closing remote file

fti_ rename() = —rename remote file

The function fti_rename is used to rename a file on a remote system with
which an association has been established using the function fti_connect . If
a file named newname exists the file is not overwritten and the operation fails.

The function fti_rename returns zero if successful and a non-zero value if
unsuccessful.

ftilaiT
ftirenT
int
ftiesrT

int fti_rename(flaip,frenp,fmode,fesrp)

*flaip;
*frenp;
fmode;
*fesrp;

flaip

frenp

Local Association Identifier. This input parameter identifies the
FTAM association. Its value is recovered by the function

fti_connect

when the associaton is first established.

Pointer to a structure of type ftirenT . Identifies the remote file to
be transferred to the local system.

accnt

filname

Account Name. Specifies the name of the account to
which access to the remote file is charged. Only
significant to the remote system. May be null.

Old File Name (null terminated string). Specifies a
remote file to be renamed. The syntax must obey the
rules imposed by the remote system.

FTAM Initiator External Interface Definitions 43

1]l
N

fti_rename() continued...

filpssd

newname

fmode

fesrp

Password. Specifies a password, if one is required by
the remote system.The password format is:
<type><length><value>. The <length> may be zero and
the <type> takes one of the following values:

FTIGraStr graphic string

FTIOctStr general string

New File Name (null terminated string). Specifies a
new name for the remote file. The syntax must obey
the rules imposed by the remote system. The full name
is a concatenation of the internal variable set using the
function fti_rcd and the filename specified by this
parameter.

Execution Mode. Must be set to FTIEXBLK (blocking mode).

Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA

FTIERCNE
FTIERNRH
FTIERRFR
FTIERSRF
FTIERDSF
FTIERRNF

invalid parameter
connection not established
no response from host
remote file name required
error selecting remote file
error deselecting remote file

error renaming remote file

44 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

FTAM Remote Database (RDB) Interface Definitions

The FTAM Remote Database (RDB) interface provides a set of functions that
are used to access the FTAM services which handle the OSI addresses required
to establish an associations with remote hosts.

fti_rdbdel() —delete entry from RDB

The function fti_rdbdel is used to delete an entry from the remote systems
database that contains a list of the remote systems recognized by the FTAM
initiator application.

The function fti_rdbdel returns zero if successful and a non-zero value if
unsuccessful.

int fti_rdbdel(frhnp,localonly,fesrp)
X *frhnp;

int localonly;

ftiesrT ~ *fesrp;

frhnp Remote Host Name (null terminated string). Specifies the entry to be
deleted. Maximum number of characters is given by FTIMXHRN

localonly Must be set to 1.

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERUDN unknown host name

FTIERUDH unable to delete host

FTAM Initiator External Interface Definitions 45

1]l
N

fti_rdbget() —qgetentry from RDB

The function fti_rdbget is used to read the OSI address elements for an
entry in the remote systems database that contains a list of the remote systems
recognized by the FTAM initiator application.

The function fti_rdbget returns zero if successful and a non-zero value if
unsuccessful.

int fti_rdbget(frdbp,localonly,fesrp)
ftirdbT *frdbp;

intr localonly;

ftiesrT *fesrp;

frdbp Pointer to a structure of type ftirdbT . The host name must be
provided by the user in the hostname field. The structure is filled out
as follows:

pstlen Presentation Selector Length. When set to 0 (zero) the
presentation selector should be ignored.

pstsel Presentation Selector Value.

seslen Session Selector Length. When set to 0 (zero) the
session selector should be ignored.

sessel Session Selector Value.

trslen Transport Selector Length. When set to 0 (zero) the
transport selector should be ignored.

trssel Transport Selector Value.

netlen Network Address Length. When set to 0 (zero) the
network address should be ignored.

netsel Network Address Value.

aetlen Application Entity Title (AET) Length. When set to 0
(zero) the presentation selector should be ignored.

pstsel Application Entity Title (AET) Value.

subnet Subnetwork Number.

46 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

state Current State. Specifies whether the remote host can be
reached or not. It is set to one of the following values:

FTIHSOPE remote host is OPEN
FTIHSCLO remote host is CLOSED
localonly Must be set to 1.

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERUDN unknown host name

FTIERRHI error reading host information

fti_rdbput() —putentry in RDB

The function fti_rdbget is used to add an entry in the remote systems
database that contains a list of the remote systems recognized by the FTAM
initiator application.

The function fti_rdbput returns zero if successful and a non-zero value if
unsuccessful.

int fti_rdbput(frdbp,localonly,fesrp)
ftirdbT *frdbp;

int rlocalonly;

ftiesrT *fesrp;

frdbp Pointer to a structure of type ftirdbT . The host name must be
provided by the user in the hostname field.

The structure is filled out as follows:

pstlen Presentation Selector Length. When set to 0 (zero) the
presentation selector is ignored.

FTAM Initiator External Interface Definitions 47

1]l
N

fti_rdbput() continued...

pstsel Presentation Selector Value.

seslen Session Selector Length. When set to 0 (zero) the
session selector is ignored.

sessel Session Selector Value.

trslen Transport Selector Length. When set to 0 (zero) the
transport selector is ignored.

trssel Transport Selector Value.

netlen Network Address Length. When set to 0 (zero) the
network address is ignored.

netsel Network Address Value.

aetlen Application Entity Title (AET) Length. When set to 0
(zero) the presentation selector is ignored.

pstsel Application Entity Title (AET) Value.

subnet Subnetwork Number. Takes a value between 0 and
FTIMXSBN-1

state Current State. Specifies whether the remote host can be
reached or not. It is set to one of the following values:
FTIHSOPE remote host is OPEN
FTIHSCLO remote host is CLOSED

localonly Must be set to 1.
fesrp Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA

invalid parameter

FTIERUDN unknown host name

FTIERWHI

error writing host information

48 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

FTAM Shadow File (SHF) Interface Definitions

fti_shfget()

The FTAM Shadow File (SHF) interface provides a set of functions that are
used to access the FTAM shadow file services which handle the virtual file
attributes that are not supported by the local file system—for example,
document type or universal class number.

—qet attributes from local shadow file

The function fti_shfget is used to read the attributes from a shadow file
associated with a local file.

The function fti_shfget returns zero if successful and a non-zero value if
unsuccessful.

int fti_shfget(filename,fshfp,fesrp)
char *filename;

ftishfT *fshfp;

ftiesrT ~ *fesrp;

filname Pointer to the local file name, a null terminated string of FTIMXSTR
characters maximum length.

fshfp Pointer to a structure of type ftishfT . Returns the attributes
recovered from the shadow file.

The structure is filled out as follows:

doctype Document Type. Specifies the type of file. It is set to
one of the following values:

FTMDTFT1 FTAM-1 (unstructured text file)
FTMDTFT2 FTAM-2 (sequential text file)
FTMDTFT3 FTAM-3 (unstructured binary file)

FTMDTIN1 INTAP-1 (INTAP record file)

FTAM Initiator External Interface Definitions 49

50

fti_shfget() continued...

peract

keypos
parm.choice

parm.class

Permitted Actions. This parameter consists of two
bytes. The second byte is reserved for future
extensions. The first byte is the result of a logical ORof
the following values:

FTMAREA read permission

FTMAINS insert permission

FTMAEXT extend permission
FTMAREP replace permission
FTMAERA erase permission

FTMADEL delete permission

FTMARAT read attributes permission
FTMACAT change attributes permission
Not Used

Not Used

Universal Class Number. It is set to one of the
following values:

FTMUCPRT printable string
FTMUCTXT teletext string
FTMUCVXT videotext string
FTMUCIA5 A5 string
FTMUCGRPgraphic string
FTMUCVIS visible string
FTMUCGENgeneral string

For FTAM-3 files, the only possible value is:

FTMUCOCT octet string

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_shfput()

parm.lengthl Maximum String Length.

parm.length?2 String Significance. It is set to one of the following
values:

FTMPDFIX fixed
FTMPDVARvariable
FTMPDNOTnot significant

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERRSF error reading shadow file

—put attributes in local shadow file

The function fti_shfput is used to create a new shadow file or modify an
existing shadow file.

The function fti_shfput returns zero if successful and a non-zero value if
unsuccessful.

int fti_shfput(filename,fshfp,fesrp)
char *filename;

ftishfT *fshfp;

ftiesrT *fesrp;

filname Pointer to the local file name, a null terminated string of FTIMXSTR
characters maximum length.

fshfp Pointer to a structure of type ftishfT . Defines the attributes to be
put in the shadow file. The structure is filled out as follows:

doctype Document Type. Specifies the type of file. It is set to
one of the following values:

FTAM Initiator External Interface Definitions 51

52

fti_shfput() continued...

peract

keypos
parm.choice

parm.class

FTMDTFT1 FTAM-1 (unstructured text file)
FTMDTFT2 FTAM-2 (sequential text file)
FTMDTFT3 FTAM-3 (unstructured binary file)
FTMDTIN1 INTAP-1 (INTAP record file)

Permitted Actions. This parameter consists of two
bytes. The second byte is reserved for future
extensions. The first byte is the result of a logical ORof
the following values:

FTMAREA read permission

FTMAINS insert permission

FTMAEXT extend permission
FTMAREP replace permission
FTMAERA erase permission

FTMADEL delete permission

FTMARAT read attributes permission
FTMACAT change attributes permission
Not Used

Not Used

Universal Class Number. It is set to one of the
following values:

FTMUCPRT printable string
FTMUCTXT teletext string
FTMUCVXT videotext string
FTMUCIA5 A5 string
FTMUCGRPgraphic string

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

FTMUCVIS visible string
FTMUCGENGgeneral string
For FTAM-3 files, the only possible value is:
FTMUCOCT octet string
parm.lengthl Maximum String Length.

parm.length?2 String Significance. It is set to one of the following
values:

FTMPDFIX fixed
FTMPDVARvariable
FTMPDNOTnot significant

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERIPA invalid parameter
FTIERWSF error writing shadow file

FTAM Initiator External Interface Definitions 53

2

FTAM Transfer (TRF) Interface Definitions

fi_trf_del()

54

The FTAM Transfer (TRF) interface provides a set of functions that are used to
access the FTAM file recovery services which handle the recovery of
interrupted file transfers based on information contained in special FTAM files
called dockets.

—delete docket information

The function fti_trf_del is used to delete the recovery information (docket)
associated with an interrupted transfer. It is only available if the recovery
functional unit is supported.

The function fti_trf_del returns zero if successful and a non-zero value if
unsuccessful.

int fti_trf_del(trfid,fesrp)
int trfid;
ftiesrT *fesrp;

trfid Transfer Identifier. Identifies the interrupted transfer for which the
associated recovery information is to be deleted.

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU function not supported on local system
FTIERIPA invalid parameter
FTIERDDK error deleting docket

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

fti_trf_list()

—list transfer identifiers

The function fti_trf_list is used to list the transfer identifiers for the
current interrupted transfers. It is only available if the recovery functional unit
is supported.

The function fti_trf _list returns zero if successful and a non-zero value if
unsuccessful.

int fti_trf_list(trfidp,morep,fesrp)

int *trfidp;
char *morep;
ftiesrT *fesrp;
trfidp Transfer Identifier. The value of this field is significant only if
fti_trf list returns successfully.
morep More Indicator. If the value of this field is FTIMORE then another
call to fti_trf_list will return the next available transfer
identifier.
fesrp Pointer to an area to receive the Execution Status Report. See

“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU function not supported on local system
FTIERIPA invalid parameter
FTIWRTRL transfer list warning

FTAM Initiator External Interface Definitions 55

1]l
N

fti_trf_show() —show docket information

The function fti_trf_show
associated with an interrupted transfer. It is only available if the recovery

functional unit is supported.

The function fti_trf_show

unsuccessful.

is used to read the recovery information (docket)

returns zero if successful and a non-zero value if

int trfid;
ftidockT *docketp;
ftiesrT *fesrp;

int fti_trf_show(trfid,docketp,fesrp)

trfid Transfer Identifier. Identifies the interrupted transfer for which the
associated recovery information is to be read.

docketp Pointer to a structure of type ftidocT . Returns the information read
from the docket. The structure is filled out as follows:

ir

id
hostname
username
locname
cpi

acpi

act_state

Docket Owner. The docket may be owned by the
initiator (i) or the responder (r).

Transfer Identifier.

Remote Host Name (null terminated string).

User Name (null terminated string).

Local File Name (null terminated string).

Last Checkpoint received.

Last Checkpoint Acknowledged.

Activity State. It can take the following values:

0

2
3
4

data transfer starting
data transfer in progress
data transfer finishing

data transfer finished

56 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

2

doctype Document Type. Specifies the type of file. It is set to
one of the following values:

FTMDTFT1 FTAM-1 (unstructured text file)
FTMDTFT2 FTAM-2 (sequential text file)
FTMDTFT3 FTAM-3 (unstructured binary file)
FTMDTINL1 INTAP-1 (INTAP record file)

The remianing fields are reserved for future extensions.

fesrp Pointer to an area to receive the Execution Status Report. See
“Initiator Execution Status Report” on page 8.

The following error codes are returned in the Execution Status
Report as appropriate:

FTIERNSU function not supported on local system

FTIERIPA invalid parameter

FTAM Initiator External Interface Definitions 57

2

Initiator Error and Status Codes

API Event Codes

FTINOEVT
FTIEVABO
FTIEVOPE
FTIEVCLO
FTIEVPUT
FTIEVGET
FTIEVCRE
FTIEVDEL
FTIEVREN
FTIEVRAT

Execution Status

FTISTNER
FTISTLOC
FTISTSYS
FTISTFTM
FTISTUFE
FTISTWAR

Error Types

FTITYNRC
FTITYRCO

0 FTI NO EVenT received

1 FTI EVent code, ABOrt

2 FTI EVent code, OPEn

3 FTI EVent code, CLOse

4 FTI EVent code, PUT

5 FTI EVent code, GET

6 FTI EVent code, CREate

7 FTI EVent code, DELete

8 FTI EVent code, REName

9 FTI EVent code, Read ATtribute

0 No ERror

1 LOCal or user error

2 local SYStem error

3 FTaM service or protocol error
4 Unexpected Ftam event

5 local WARning

0 Not ReCoverable error
1 RECoverable error

Error Connexion Status

FTICNXON
FTICNXOF

1 CoNneXion ON
0 CoNneXion OFf

58 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

Error codes

FTIERIEV 1 FTI ERror, Incorrect Environment Variabl
FTIERNSU 2 FTI ERror, function Not SUpported
FTIERIPA 3 FTI ERror, Invalid PArameter

4 Not used
FTIERCNE 5 FTI ERror, Connection Not Established
FTIERCAE 6 FTI ERror, Connection Already Establishe
FTIERLFR 7 FTI ERror, Local file name required
FTIERRFR 8 FTI ERror, Remote file name required
FTIERUHN 11 FTI ERror, Unknown host name
FTIEROLF 12 FTI ERror, Opening Local File
FTIERORF 13 FTI ERror, Opening Remote File
FTIERFCH 14 FTI ERror, Failed to Connect to remote Host
FTIERCLF 15 FTI ERror, Closing Local File
FTIERCRF 16 FTI ERror, Closing Remote File
FTIERSLF 17 FTI ERror, Sending Local File
FTIERRRF 18 FTI ERror, Receiving Remote File
FTIERFNA 19 FTI ERror, Function Not Available
FTIERCRH 23 FTI ERror, Closing Remote Host
FTIERWHI 24 FTI ERror, Writing Host Information
FTIERRSF 25 FTI ERror, Reading Shadow File
FTIERRDS 26 FTI ERror, Reading Default Shadow File
FTIERIPN 29 FTI ERror, Invalid Path Name
FTIERRHI 30 FTI ERror, Reading Host Information
FTIERWSF 33 FTI ERror, Writing Shadow File
FTIERRLF 31 FTI ERror, Reading Local File
FTIERWLF 32 FTI ERror, Writing Local File
FTIERDRF 35 FTI ERror, Deleting Remote File
FTIERCTF 36 FTI ERror, Creating Remote File
FTIERRNF 37 FTI ERror, Renaming Remote File
FTIERRRA 38 FTI ERror, Reading Remote File Attribute
FTIERIDT 40 FTI ERror, Invalid Document Type
FTIERHNR 42 FTI ERror, Host name required

FTAM Initiator External Interface Definitions 59

60

FTIERUDH 51 FTI ERror, Unable to Delete Host
FTIERHIC 55 FTI ERror, Host is closed
FTIERRDF 63 FTI ERror, Reading Remote File
FTIERSRF 66 FTI ERror, Selecting Remote File
FTIERDSF 67 FTI ERror, Deselecting Remote File
FTIERGID 68 FTI ERror, Getting transfer IDentifier
FTIERRTR 69 FTI ERror, Recovering TRansfer
FTIERCDK 70 FTI ERRor, Creating DocKet
FTIERWDK 71 FTI ERRor, Writing DocKet
FTIERRDK 72 FTI ERror, Reading Docket
FTIERDDK 73 FTI ERror, Deleting Docket

Local (Non-UNIX) Errors

ERRDTYP 1 lllegal document type parameters

ERRMODE 2 Invalid mode in F-Open-ind

ERRSUBSQ 3 Subsequent error

ERRFNAME 4 No file name in F-Create-ind

ERRCFNAME 5 No file name in F-ChAtt-ind

ERRDTPABS 6 No composite attributes in F-Create-ind

ERRIOI 7 Unknown user (F-Init-ind)

ERRUID 8 No user identity or cannot set groupe id
or user id. or cannot change directory

ERRSRC 9 Invalid service class in F-Init-ind

ERRPSWD 10 Invalid password in F-Init-ind

ERRDTTYP 11 Invalid Data Element type

ERRDTINV 12 Invalid Universal Class

ERRDTSZ 13 Invalid Data Element size

ERRTIMEOUT 14 Time-out

ERRRECLG 15 Invalid INTAP_1 record length

ERRRDEOF 16 Cannot read at end of file

ERRFADUI 17 FADU id. error in F-Read-ind

ERRLFADU 18 Cannot locate FADU

ERRTRFIL 19 Cannot truncate file

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

N
1]

ERRSFNLG 20 File name too long

ERRDCTYP 21 Invalid document type

ERROVERW 22 Invalid overwrite parameter
ERRNODTY 23 No document type in F-Open-cnf
ERRFTYPE 24 Unsupported Special local file type
ERRSTRLG 25 Invalid FTAM_1 or FTAM_2 string length
ERRCHECK 26 Recovery error - Bad checkpoint
ERRDOCK 27 Recovery error - Corrupted docket
ERRNODOCK 28 Recovery error - No docket
ERRRECPT 29 Recovery error - No recovery point
ERRCONTYP 30 Recovery error - Content type inconsist.
ERRUNSPEC 31 Recovery error - Unspecific

Warning codes

FTIWRINI 1 WaRning on INItialisation

FTIWRTRL 30 WaRning on Transfer List

WARINID 0x000000001 Init directory not found
WARLOGD 0x000000002 Log directory not found
WARSHFD 0x000000004 Shf directory not found
WARRDBD 0x000000008 Rdb directory not found
WARTRFD 0x000000010 Trf directory not found
WARINIF 0x000000020 Init file not found

WARTRFF 0x000000040 Transfer Identifier file not found
WARNODA 0x000000021 No Docket Available

FTAM Initiator External Interface Definitions 61

62

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

FTAM Responder
StubsFile Definitions 3

Responder Common Data Structures page 63
Responder Execution Status Report page 64
Responder Stubs File Definitions Summary page 65
Responder Stubs File Definitions page 66

This chapter describes the functions contained in the FTAM responder stubs
file, which is used to develop FTAM servers similar to the SunLink FTAM
application osiftr

Note that throughout this chapter the term remote system is used to denote the
system on which the FTAM responder is running.

Responder Common Data Structures

All data structures, types, and constants are defined in the C header file
/opt/'SUNWconn/include/ftam/ftruser.h , which is delivered as part of
the SunLink FTAM application. A customized FTAM server developed using
the FTAM responder stubs file must include this C header file, by using the
following compiler directive:

#include “ftam/ftruser.h”

63

3

Responder Execution Status Report

Some FTAM responder functions return an Execution Status Report (of type
ftresrT) . This output parameter is used for operations that can be refused by

the customized

responder application. The responder behavior will be

determined according the return of the function call:

® |If the function returns successfully, the Execution Status Report will be
ignored and responder will complete the operation.

® Otherwise, the Execution Status Report will be used to generate an
appropriate diagnostic for the failure, and a negative response will be sent
to the remote host.

The structure must be filled by the API user as follows:

status

diag :

ftamdfd

Execution status.
This field is set to one of the following values:

FTRSTNERExecution was successful. No error.
FTRSTFTMExecution was unsuccessful. FTAM service error.

Diagnostic code.

Gives information about the error. Used by the responder
function to generate the appropriate FTAM diagnostic. It must
be set to one of the values listed in Chapter 4, “FTAM
Diagnostic Codes.”

FTAM diagnostic further details.
Contains the graphic string referred to in the FTAM protocols
as “diagnostic further details”.

64 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

w
1]

Responder Stubs File Definitions Summary

The interfaces to the FTAM responder module are summarized in Table 3-1

Table 3-1 FTAM Initiator External Interface Definitions

Function Page

ftr_connect() —association connect request page 66
ftr_create() —file create request page 67
ftr_delete() —file delete request page 69
ftr_deselect() —file deselect request page 69
ftr_disconnect() —association disconnect request page 70
ftr_ratt() —read attributes request page 70
ftr_read() —file read request page 70
ftr_recover() —transfer recover request page 71
ftr_rename() —file rename request page 72
ftr_select() —file select request page 73
ftr_transfer_end() —end of transfer indication page 74
ftr_write() —file write request page 75

FTAM Responder Stubs File Definitions

65

3

Responder Stubs File Definitions

The following definitions are used to develop customized FTAM responder
processes based on the SunLink FTAM responder (osiftr).

ftr_connect() —association connect request

The function ftr_connect is called when the responder receives an
association open request from an FTAM initiator. The responder performs
several protocol (functional units, service classes) and security checks (user
identity, password) before calling ftr_connect

The function ftr_connect returns zero if successful and a non-zero value if
unsuccessful.

int ftr_connect(fondp,fesrp)
ftrondT *fbndp;
ftresrT *fesrp;

fbndp Pointer to a structure of type ftrondT . This input parameter
identifies the remote host system which requested the association.

The structure is filled out by the responder as follows:

username User Name. Corresponds to the initiator identifier in the
F-Initialize-Indication

password User Password. Corresponds to the filestore password in
the F-Initialize-Indication. The password
format is: <type><length><value>. The <length> may be
zero and the <type> takes one of the following values:

FTRgraStr graphic string

FTROcCtStr octet string

account Account Name. Corresponds to the account in the
F-Initialize-Indication. May take a null value.
fesrp Pointer to an area to receive the Execution Status Report. See

“Responder Execution Status Report” on page 64.

66 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

w
1]

ftr_create()

The function ftr_create

—file create request

is called when an FTAM initiator attemptes to

create a file on the remote system. The file creation attempt can be refused by
the responder.

The function ftr_create

unsuccessful.

returns zero if successful and a non-zero value if

int ftr_create(fcrep,fesrp)
ftrcreT *fcrep;
ftresrT *fesrp;

fcrep

Pointer to a structure of type ftrcrT ~ that identifies the local file to
be created. The structure is filled out by the reponder as follows:

filname

doctype

filsize

override

Remote File Name. Specifies the name of the file to be
created.

Document Type. Specifies the type of file to be created.
FTMTFT1 FTAM-1 (unstructured text file)

FTMTFT2 FTAM-2 (sequential text file)

FTMTFT3 FTAM-3 (unstructured binary file)
FTMTIN1 INTAP-1 (INTAP record file)

Specifies the size of the new file in bytes. The -z option
is only valid if it is supported by the remote FTAM
responder (for example, the SunLink FTAM local
responder does not recognize this option).

Override Parameter. Specifies the action to be taken if
the file exists.

FTMOVNOCNOo creation. Transaction fails.
FTMOVDOA Creation with old attributes.
FTMOVDNA Creation with new attributes.
FTMOVSOF Select old file.

FTAM Responder Stubs File Definitions 67

68

ftr_create() continued...

account

peract

regaccess

cfilpssd
reafilpssd

infilpssd

Account Name. Specifies the name of the account to
which access to the remote file is charged.

Permitted Actions. This parameter consists of two
bytes. The second byte is reserved for future
extensions. The first byte is the result of a logical ORof
the following values:

FTMAREA read permission

FTMAINS insert permission

FTMAEXT extend permission
FTMAREP replace permission
FTMAERA erase permission

FTMADEL delete permission

FTMARAT read attributes permission
FTMACAT change attributes permission

Requested Access. This parameter is the result of a
logical OR of the following values:

FTMACREA read access requested

FTMACINS insert access requested

FTMACREP replace access requested

FTMACERA erase access requested

FTMACDEL delete access requested

FTMACRAT read attribute access requested
FTMACCAT change attribute access requested

Create File Password. Reserved for future extensions.
Read File Password. Reserved for future extensions.

Insert File Password. Reserved for future extensions.

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

3

exfilpssd Extend File Password. Reserved for future extensions.

refilpssd Replace File Password. Reserved for future extensions.

erfilpssd Erase File Password. Reserved for future extensions.

defilpssd Delete File Password. Reserved for future extensions.

rafilpssd Read File Attributes Password. Reserved for future
extensions.

cafilpssd Change File Attributes Password. Reserved for future
extensions.

fesrp Pointer to an area to receive the Execution Status Report. See

“Responder Execution Status Report” on page 64.

ftr_delete() —file delete request

The function ftr_delete is called when an FTAM initiator attempts to delete
a file on the remote system.

This function is always successful and returns are ignored by the responder.

int ftr_delete()

ftr_deselect() —file deselect request

The function ftr_deselect is called when an FTAM initiator attempts to
deselect a file on the remote system.

This function is always successful and returns are ignored by the responder.

int ftr_deselect()

FTAM Responder Stubs File Definitions 69

70

ftr_disconnect() —association disconnect request

ftr_ratt()

ftr_read()

The function ftr_disconnect is called when the responder receives an
association close request from an FTAM initiator.

This function is always successful and returns are ignored by the responder.

int ftr_disconnect(status)
int status;

status Association End Status. This paramter is set to the following values:
FTRASNER association closed successfully

FTRASABT association aborted.

—read attributes request

The function ftr_ratt is called when an FTAM initiator attempts to read the
attributes of the selected file on the remote system.

This function is always successful and returns are ignored by the responder.

int ftr_ratt()

—file read request

The function ftr_read is called when an FTAM initiator attempts to read data
from the selected file on the remote system.

This function is always successful and returns are ignored by the responder.

int ftr_read(freap)
ftrtrfT *freap;

freap Pointer to a structure of type ftrtrfT that identifies the transfer in
progress. The structure is filled out by the responder as follows:

trfid local transfer identifier (of the transfer in progress)

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

w
1]

ftr_recover() —transfer recover request

The function ftr_r

ecover is called when an FTAM initiator attempts to

recover an interrupted file transfer. The responder can refuse file recovery.

The function ftr_recover returns zero if successful and a non-zero value if

unsuccessful.

ftrrcoT *frcop;
ftresrT *fesrp;

int ftr_recover(frcop,fesrp)

frcop Pointer to a structure of type ftrrcoT that identifies the interrupted
transfer. The structure is filled out by the reponder as follows:

trfid

filname

doctype

account

regaccess

Local Transfer Identifier. Specifies the interrupted file
transfer.

Remote File Name. Specifies the name of the file being
transferred.

Document Type. Specifies the type of file being
transferred

FTMTFT1 FTAM-1 (unstructured text file)
FTMTFT2 FTAM-2 (sequential text file)
FTMTFT3 FTAM-3 (unstructured binary file)
FTMTIN1 INTAP-1 (INTAP record file)
FTMTNB9 NBS-9 (file directory listing)

Account Name. Specifies the name of the account to
which access to the remote file is to be charged.

Requested Access. This parameter is the result of a
logical OR of the following values:

FTMACREA read access requested
FTMACINS insert access requested

FTMACREP replace access requested

FTAM Responder Stubs File Definitions 71

72

ftr_recover() continued...
FTMACERA erase access requested
FTMACDEL delete access requested
FTMACRAT read attribute access requested
FTMACCAT change attribute access requested
reafilpssd Read File Password. Reserved for future extensions.
infilpssd Insert File Password. Reserved for future extensions.
exfilpssd Extend File Password. Reserved for future extensions.
refilpssd Replace File Password. Reserved for future extensions.
erfilpssd Erase File Password. Reserved for future extensions.
defilpssd Delete File Password. Reserved for future extensions.
rafilpssd Read File Attributes Password. Reserved for future
extensions.
cafilpssd Change File Attributes Password. Reserved for future
extensions.
fesrp Pointer to an area to receive the Execution Status Report. See

“Responder Execution Status Report” on page 64.

ftr_rename() —file rename request

The function ftr_rename is called when an FTAM initiator attempts to
rename the selected file on the remote system.

This function is always successful and returns are ignored by the responder.

int ftr_rename()

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

w
1]

ftr_select()

—file select request

The function ftr_select

is called when an FTAM initiator attempts to select

a file on the remote system.

The function ftr_select
unsuccessful.

returns zero if successful and a non-zero value if

int ftr_select(fselp,fesrp)
ftrselT *fselp;
ftresrT *fesrp;

fselp : Pointer to a structure of type ftrselT ~ that identifies the file to be
selected. The structure is filled out by the reponder as follows:

filname

doctype

account

reqaccess

Remote File Name. Specifies the name of the file to be
selected.

Document Type. Specifies the type of file to be selected.
FTMTFT1 FTAM-1 (unstructured text file)

FTMTFT2 FTAM-2 (sequential text file)

FTMTFT3 FTAM-3 (unstructured binary file)
FTMTIN1 INTAP-1 (INTAP record file)

FTMTNB9 NBS-9 (file directory listing)

Account Name. Specifies the name of the account to
which access to the remote file is to be charged.

Requested Access. This parameter is the result of a
logical OR of the following values:

FTMACREA read access requested
FTMACINS insert access requested
FTMACREP replace access requested
FTMACERA erase access requested
FTMACDEL delete access requested

FTAM Responder Stubs File Definitions 73

74

ftr_select() continued...
FTMACRAT read attribute access requested
FTMACCAT change attribute access requested
reafilpssd Read File Password. Reserved for future use.
infilpssd Insert File Password. Reserved for future use.
exfilpssd Extend File Password. Reserved for future use.
refilpssd Replace File Password. Reserved for future use.
erfilpssd Erase File Password. Reserved for future use.
defilpssd Delete File Password. Reserved for future use.
rafilpssd Read File Attributes Password. Reserved for future use.
cafilpssd Change File Attributes Password. Reserved for future
use.
fesrp Pointer to an area to receive the Execution Status Report. See
“Responder Execution Status Report” on page 64.
ftr_transfer_end() —end of transfer indication
The function ftr_transfer_end is called when the responder is notified that

the transfer has ended.

This function is always successful and returns are ignored by the responder.

int ftr_transfer_end(fstat,status)
long fstat;
int status;
fstat Number of bytes actually transmitted.

status Transfer End Status. This parameter is set to one of the following:

FTRTRNER transfer ended successfully.

FTRTRCAN transfer cancelled

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

w
1]

ftr_write()

—file write request

The function ftr_write is called when an FTAM initiator attempts to write
data into the selected file on the remote system.

This function is always successful and returns are ignored by the responder.

int ftr_write(fwrip)
ftrtrfT *fwrip;

fwrip Pointer to a structure of type ftrtrfT that identifies the transfer in
progress. The structure is filled out by the responder as follows:

trfid local transfer identifier (of the transfer in progress)

FTAM Responder Stubs File Definitions 75

76

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

FTAM Diagnostic Codes

General FTAM Diagnostics page 78
Protocol and Supporting Service Diagnostics page 79
Association-Related Diagnostics page 80
Selection Regime-Related Diagnostics page 81
File Management-Related Diagnostics page 83
Access-Related Diagnostics page 84
Recovery-Related Diagnostics page 86

This chapter lists the diagnostic codes returned by the functions used to

develop FTAM client and FTAM server applications.

77

A

General FTAM Diagnostics

Codes 0000 to 0011 are used to return general diagnostic information as
shown in Table 4-1:

Table 4-1 General FTAM Diagnostics

0000 No reason

0001 Responder error (unspecific)

0002 System shutdown

0003 FTAM management problem (unspecific)
0004 FTAM management, bad account

0005 FTAM management, security not passed
0006 Delay may be encountered

0007 Initiator error (unspecific)

0008 Subsequent error

0009 Temporal insufficiency of resources
0010 Access request violates VFS security
0011 Access request violates local security

78 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

AN
1]

Protocol and Supporting Service Diagnostics

Codes 1000 to 1017 are used to return diagnostic information regarding
FTAM protocols and services as shown in Table 4-2;

Table 4-2 Protocol and Supporting Service Diagnostics

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

Conflicting parameter value
Unsupported parameter value
Mandatory parameter not set
Unsupported parameter

Duplicated parameter

Illegal parameter type

Unsupported parameter type

FTAM protocol error (unspecific)
FTAM protocol error, procedure error
FTAM protocol error, functional unit error
FTAM protocol error, corruption error
Lower layer failure

Lower layer addressing error
Timeout

System shutdown

Illegal grouping sequence

Grouping threshold violation

Specific PDU request inconsistent with the current requested access

FTAM Diagnostic Codes 79

A

Association-Related Diagnostics

Codes 2000 to 2021 are used to return diagnostic information associations
between the a client and a server as shown in Table 4-3:

Table 4-3 Association-Related Diagnostics

2000 Association with user not allowed
2001 (not assigned)

2002 Unsupported service class

2003 Unsupported functional unit

2004 Attribute group error (unspecific)
2005 Attribute group not supported

2006 Attribute group not allowed

2007 Bad account

2008 Association management (unspecific)
2009 Association management, bad address
2010 Association management, bad account
2011 Checkpoint window error, too large
2012 Checkpoint window error, too small
2013 Checkpoint window error, unsupported
2014 Communications QoS nor supported
2015 Initiator identity unacceptable

2016 Context management refused

2017 Rollback not available

2018 Contents type list cut by responder
2019 Contents type list cut by Presentation service
2020 Invalid filestore password

2021 Incompatible service class

80 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

Selection Regime-Related Diagnostics

Codes 3000 to 3030 are used to return diagnostic information regarding the
file selection regime as shown in Table 4-4;

Table 4-4 Selection Regime-Related Diagnostics

3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

Filename not found

Selection attributes not matched
Initial attributes not possible

Bad attribute name

Non-existent file

File already exists

File cannot be created

File cannot be deleted
Concurrency control not available
Concurrency control not supported
Concurrency control not possible
More restrictive lock

File busy

File not available

Access control not available
Access control not supported
Access control inconsistent
Filename truncated

Initial attributes altered

Bad account

Override selected existing file
Override deleted and recreated file with old attributes
Override deleted and recreated file with new attributes
Create override, not possible

Ambiguous file specification

FTAM Diagnostic Codes

81

82

Table 4-4 Selection Regime-Related Diagnostics

3025
3026
3027
3028
3029
3030

Invalid create password

Invalid delete password on override

Bad attribute value

Requested access violates permitted actions
Functional unit not available for requested access

File created but not selected

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

File Management-Related Diagnostics

Codes 4000 to 4007 are used to return diagnostic information regarding file
management as shown in Table 4-5;

Table 4-5 File Management-Related Diagnostics

4000
4001
4002
4003
4004
4005
4006
4007

Attribute non existent
Attribute cannot be read
Attribute cannot be changed
Attribute not supported

Bad attribute name

Bad attribute value
Attribute partially supported

Additional set attribute value not distinct

FTAM Diagnostic Codes

83

A

Access-Related Diagnostics

84

Codes 5000 to 5041 are used to return diagnostic information regarding file
access as shown in Table 4-6:

Table 4-6 Access Related Diagnostics

5000 Bad FADU (unspecific)

5001 Bad FADU - size error

5002 Bad FADU - type error

5003 Bad FADU - poorly specified
5004 Bad FADU - bad location

5005 FADU does not exist

5006 FADU not available (unspecific)
5007 FADU not available for reading
5008 FADU not available for writing
5009 FADU not available for location
5010 FADU not available for erasure
5011 FADU cannot be insterted

5012 FADU cannot be replaced

5013 FADU cannot be located

5014 Bad data element type

5015 Operation not available

5016 Operation not supported

5017 Operation inconsistent

5018 Concurrency control not available
5019 Concurrency control not supported
5020 Concurrency control inconsistent
5021 Processing mode not available
5022 Processing mode not supported
5023 Processing mode inconsistent
5024 Access context not available

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

AN
1]

Table 4-6 Access Related Diagnostics

5025
5026
5027
5028
5029
5030
5031
5032
5034
5035
5036
5037
5038
5039
5040
5041

Access context not supported

Bad write (unspecific)

Bad read (unspecific)

Local failure (unspecific)

Local failure - filespace exhausted
Local failure - data corrupted
Local failure - device failure
Future file size exceeded

Future file size increased
Functional unit invalid in processing mode
Contents type inconsistent
Contents type simplified
Duplicate FADU name

Damage to select/open regime
FADU locking not available on file
FADU locked by another user

FTAM Diagnostic Codes 85

A

Recovery-Related Diagnostics

Codes 6000 to 6017 are used to return diagnostic information regarding the
recovery of interrupted files as shown in Table 4-7:

Table 4-7 Recovery-Related Diagnostics

6000 Bad checkpoint (unspecific)
6001 Activity not unique

6002 Checkpoint outside window
6003 Activity no longer exists
6004 Activity not recognized

6005 No docket

6006 Corrupt docket

6007 File waiting restart

6008 Bad recovery point

6009 Non-existent recovery point
6010 Recovery mode not available
6011 Recovery mode inconsistent
6012 Recovery mode reduced
6013 Access control not available
6014 Access control not supported
6015 Access control inconsistent
6016 Contents type inconsistent
6017 Contents type simplified

86 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

|
Program Examples A=
FTAM Initiator Application Example page 88
FTAM Initiator Header (ftiuser.h) page 105
FTAM Responder Header (ftruser.h) page 120

This appendix includes listings for the example headers and example initiator
application that are delivered as part of the SunLink FTAM application
software.

87

=A

FTAM Initiator Application Example

The following example is included in the SunLink FTAM product in the file
lopt/SUNWconn/ftam/examples/ex_client.c . The Makefile and
READMHiles associated with this example are also shown.

ex_client.c
#ident "@(#)ex_client.c 1.11 94/01/25 SMI”
/*
* Copyright 1994 Sun Microsystems, Inc. All Rights Reserved
*/
[*** Name . ex_client.c Frx]
/*** ***/
[*** Descritpion : FTAM Initiator API Programming use Example =~ ***/
/*** ***/
[*** Date . February 1993 *rk|
/ * HhkkRRkkkokok * HhkkRkkkkokok whkk|
[F** STANDARD INCLUDE k]

/
#include <stdio.h>
#include <string.h>
#include <sys/systeminfo.h>

/ Fkk * Fkkkkkkk

[Fx* FTAM USER INCLUDE k|

/
#include “ftiuser.h”

JrFHFdkkkRk * Fkkkkkkk

[Fx* GENERAL CONSTANTS x|

/

#define MAXSTRLEN 64

#define RDBTEST “APITEST”
[* for API test

#define RDB_FILE_NAME “SUN_lIc1”

/* name of .rdb file created
*/

[* name of .rdb file to use for*/
[* loopback FTAM connection */

*/

88 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”

[xrx GLOBAL VARIABLES rxk|
static char user[FTIMXSTRY]; /* Input parm: user_name */
static char pass[FTIMXSTR]; [* Input parm: password ~ */

static char remfile[]] = {“FTAM_CREATE"}; /* Name of created file */
static char renamedfile[] = {“FTAM_RENAME"}; /* Name of renamed file ~ */

static char hostname[FTIMXRHN]; /* temporary rdb file name */
[k Hekkkkk Fkkkkkek |

[EXTERN DECLARATIONS i)
[riRRRckikkkkk Hxkkkk Ferkkkkkkk Hkkkkk Foxckkk |

extern char *optarg;

[FrFEFI KISk KKKk Kkkkkkkkkkkkkkkkkkk xxxxx/

[rx* LOCAL FUNCTIONS k|
[rRRRkdkkk Fekkkok Hekkkkk Ferkkkkkkk woxkk
void print_error ();

void usage (char*);

int Ascii_Hex (‘unsigned char *, unsigned char *);

main(int argc, char *argv[])

{
ftiadmT adm; /* Administrative structure */
ftirdbT rdb; /* Rdb operations structure */
ftibndT bnd; /* Bind structure */
fticreT crefile; /* Create file structure */
ftidelT delfile; /* Delete file structure */
ftitrfT trf; /* File transfert structure */
ftirenT renfile; /* Rename file structure */
ftidockT dock; /* Docket structure */
ftilaiT lai =0; /*Local identifier */
ftiesrT esr; [* Status report */
int recneg; [* Recovery negociation result */
int trfid; /* Transfer identifier number */
char *dir; /* Environment variable */
int i /* General counter */
int netlen; /* Network Address length */
char netadd[MAXSTRLEN]; /* Store Network Address*/
long n_bytes; /* To get Network Address info */
char host_info[256]; /* “ * o

/% */

/* GET INPUT Parameters and Checking */

Program Examples

89

90

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
I* */

iftargc!=5)
usage(argv[0]);

[* Get arguments */
while((i = getopt(argc, argv, “u:p:")) !I= EOF) {
switch(i) {
case ‘u’
[* Username */
if((int) strlen(&optarg[0]) > FTIMXSTR) {
printf(“Invalid username length\n”);
exit(1);
}
strepy(&user[0], &optarg[0]);
break;
case ‘p’:
[* Password */
if((int) strlen(&optarg[0]) > FTIMXSTR) {
printf(“Invalid password length\n");
exit(1);
}
strepy(&pass|0], &optarg[0]);
break;
default :
usage(argv[0]);
break;

}

/* */
/* ENVIRONMENT VARIABLES Initialization */
[* */

/* FTIINID: looks first into environment, if already defined */
dir = (char *)getenv(“FTIINID") ;
if (dir) {
/* if yes, copy its value into fti_init structure */
strcpy(adm.ftiinid,dir);
printf(“FTIINID : %s\n”,dir);
}

/* else use default installation value */

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
else strcpy(adm.ftiinid,"\0");

[* FTILOGD: same as above */

dir = (char *)getenv(“FTILOGD") ;

if (dir) { /*yes, itis defined */
strcpy(adm.ftilogd,dir);
printf(“FTILOGD : %s\n”,dir);

}
else strcpy(adm.ftilogd,”\0");

[* FTISHFD */

dir = (char *)getenv(“FTISHFD") ;

if (dir) { /*yes, defined */
strcpy(adm.ftishfd,dir);
printf(“FTISHFD : %s\n”,dir);

}
else strcpy(adm.ftishfd,”\0");

I* FTITRF */

dir = (char *)getenv(“FTITRFD");

if (dir){ /*yes, defined */
strepy(adm. ftitrfd, dir);
printf(“FTITRFD : %s\n",dir);

else strcpy(adm.ftitrfd,\0");

/* NOTE: FTIRDBD take default installation value */
strepy(adm.ftirdbd, “\0");

I* */
/* Call FTAM Library Initialization function
I* */
printf(“fti INITIALIZATION\N\t------------------ >,
if (fti_init(&adm,&esr)) {
[* error */

printf(“fti_init FAILED\n");
print_error(&esr);
exit(1);
}
else
printf(“fti_init SUCCEEDED\n");

I* */

*/

Program Examples

91

92

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”

I*E
/*

nter into Remote Systems Database input network address
*/

#ifd

/* Name of “rdb” file to use: SUN_lIc1 for loopback */

strcpy(&rdb.hostname[0], RDB_FILE_NAME);

I* Network Address assignement */

ef HOSTNAME

/* Use hostname as NSAP suffix -> TO CHANGE */
n_bytes = sysinfo(SI_HOSTNAME, host_info, 256);
if(n_bytes 1= -1)

strepy(netadd, host_info);

#else

/* Network address: for loopback use 49-hostid-01 */
n_bytes = sysinfo(SI_HW_SERIAL, host_info, 256);
if(n_bytes !=-1) {
sprintf(host_info, “49%x01", atoi(host_info));
[* Convert from ASCII to Hexadecimal */
Ascii_Hex(&host_info[0], &netadd[0]);

}

#endif

else{ /*errorin sysinfo */
printf(“Cannot build Network Address for loopback. Exit\n");
exit(1);
}

/* Get info already stored for selectors we wont change */
printf(“Getting RDB file %s\n\t------------------ > “ rdb.hostname);
if (fti_rdbget(&rdb, 1, &esr)) {

[* error */

printf(“fti_rdbget FAILED. Exit\n");

print_error(&esr);

exit(1);
}
else

printf(“Rdb file read SUCCESSFULLY\n");

strcpy(&rdb.netadd[0], &netadd[0]);

/* Change rdb file name */

strepy(&rdb.hostname[0], RDBTEST);
rdb.netlen = (int) strlen(&rdb.netadd[0]);

/* Now try to update “.rdb” file in database */

printf(“Creating RDB file %s for loopabck connection\n\t------------

> “ rdb.hostname);

*/

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
if (fti_rdbput(&rdb, 1, &esr)) {
[* error */
printf(“fti_rdbput FAILED. Exit\n");
print_error(&esr);

exit(1);
}
else
printf(*“Rdb file created SUCCESSFULLY\n");
I* */
/* ESTABLISH A CONNECTION with a remote host system
I* */

/* Enter host and username */
strcpy(bnd.hostname, rdb.hostname);
strcpy(bnd.username,user);

/* Init password parameter */

/* NOTE: 1st char *must* be zero */
bnd.password[0] = O;
bnd.password[1] = (int) strlen(pass);
strepy(&bnd.password[2], pass);
bnd.account[0] = \0’;

printf(“Try to connect with %s\n\t------------------ >*“ bnd.hostname);

if (fti_connect(&lai,&bnd,&recneg,FTIEXBLK,&esr)) {
[* error */
printf(“fti_connect FAILED\n");
/* Remove “.rdb” file created for test */
strepy(hostname, RDBTEST);
if (fti_rdbdel(hostname, 1, &esr)) {
[* error */
printf(“fti_rdbdel FAILED. Exit\n");
print_error(&esr);
exit(1);
}
print_error(&esr);
exit(1);

else /* OK */
printf(“fti_connect SUCCEEDED\n");

[* Check RECOVERY Negotiation Result */
if (recneg != FTIRCAVA) /* Failed */

*/

Program Examples

93

94

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
printf(“\twtRECOVERY NEGOTIATION FAILED\n");

I* */

/* CREATE a file on remote host *

I* */
printf(“Try to CREATE %s file on %s host\n\t------------------ >

remfile, bnd.hostname);

strepy(crefile.filname,remfile);

crefile.doctyp = FTMDTUNO; /* type unknown */

crefile.filsize =100; /* max size */

crefile.override = FTMOVDNA; /* del + create with new att */

crefile.peract[0] = FTMPAREA | FTMPAINS | FTMPAREP | FTMPAEXT;

crefile.peract[0] |= FTMPAERA | FTMPARAT | FTMPACAT | FTMPADEL,; /* all

permitted */

crefile.avail = FTMFAIMM;

crefile.acent[0] =10’;

crefile.filpssd[1] = 0x00;

crefile.acctrl[0] = 10’;

crefile.shfname[0] = \0’;

if (fti_create(&lai,&crefile, FTIEXBLK,&esr)){
[* Error */
printf(“fti_create FAILED\n");
print_error(&esr);

}
else /*OK*
printf(“fti_create SUCCEEDED\n");
I* */
/* RENAME a file on remote host */
I* *
printf(“Try to RENAME %s file with %s\n\t------------------ >*“ remfile,

renamedfile);

strepy(renfile.filname, remfile);
strcpy(renfile.newname, renamedfile);
renfile.accnt[0] = \0’;

renfile.filpssd[1] = 0x00;

if (fti_rename(&lai,&renfile, FTIEXBLK,&esr)){
[* Error */

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
printf(“fti_rename FAILED\n");
print_error(&esr);

}
else /*OK*
printf(“fti_rename SUCCEEDED\n");
I* */
[* PUT a file from the local system to remote host */
I* */
trf.doctyp = FTMDTFTS; /* type FTAM-3 */

trf.override = FTMOVDNA,; /* del + create with new att */
trf.mode =FTMTMEXT; /* extend content of remote */
sprintf(trf.locname, “%s.0", argv[0]);

strepy(trf.remname, remfile);

if (recneg == FTIRCAVA) { I* Recovery was negotiated */
if (fti_getid(&lai,&trfid,&esr)) { /* Error */
printf(“fti_getid FAILED\n");
print_error(&esr);
printf(“Cannot put %s on %s\n”, argv[0], remfile);
goto exit_ex_client;
}
trf.trfid = trfid; /* get transfer idf. no. */

}
trf.recmode = FTIRMNOR; /* recovery mode off */

printf(“Try to PUT file %s.0 in file %s\n\t------------------ >
argv[0], remfile);

if (fti_put(&lai,&trf, FTIEXBLK,&esr)) {
[* Error */
printf(“fti_put FAILED\n");

if ((esr.errtype == FTITYRCO) && (esr.errcnxs == FTICNXON)) {

dock.id = trfid;
if (Ifti_recover(&lai,&dock,FTIEXBLK,&esr)) {
printf(“fti_recover FAILED\n");
print_error(&esr);
exit(1);
}
}

else print_error(&esr);

}
else { /* OK */

Program Examples

95

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
printf(“fti_put SUCCEEDED\n");
printf(“\tBytes sent : %d\n” trf.result);
printf(“\tTime elapsed : %f seconds\n” trf.elapse);

}
I* *
/* DELETE all created/put files on remote host */
I* */
printf(“Try to DELETE %s file on %s host\n\t------------------ >

“,renamedfile,bnd.hostname);

strepy(delfile.filname,renamedfile);
delfile.filpssd[1] = 0x00;
delfile.accnt[0] =10’

if (fti_delete(&lai,&delfile, FTIEXBLK,&esr)){
[* Error */
printf(“fti_delete FAILED\n");
print_error(&esr);

}

else /*OK*
printf(“fti_delete SUCCEEDED\n");

printf(“Try to DELETE %s file on %s host\n\t------------------ >
“,remfile,bnd.hostname);

strcpy(delfile.filname,remfile);
delffile.filpssd[1] = 0x00;
delfile.accnt[0] =\0’;

if (fti_delete(&lai,&delfile, FTIEXBLK,&esr)){
[* Error */
printf(“fti_delete FAILED\n");
print_error(&esr);

}
else /*OK?*
printf(“fti_delete SUCCEEDED\n");
I* *
/* CLOSE the CONNECTION AND EXIT */
/* *
exit_ex_client: printf(“Try to DISCONNECT\n\t------------------ >);

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”

if (fti_disconnect(&lai,FTIEXBLK,&esr))}{
* Error */
printf(“fti_disconnect FAILED\n");
print_error(&esr);
}
else [*OK?*
printf(“fti_disconnect SUCCEEDED\n");

/* Remove “.rdb” file created for test */
strcpy(hostname, RDBTEST);
if (fti_rdbdel(hostname, 1, &esr)) {
[* error */
printf(“fti_rdbdel FAILED. Exit\n");
print_error(&esr);

exit(1);
}
else
printf(“Rdb file %s deleted SUCCESSFULLY\n”, hostname);
fti_exit();
printf(“END OF EXAMPLE.....\n");
}
/*

* PRINT_ERROR:

* oo

* prints out the error status report structure in case an API function

* returns an error code.

* PARAMETERS: -> pointer to Execution Status Report structure to print

void print_error(
ftiesrTp err_ptr
)

char st_statusf]MAXSTRLEN];

fprintf(stderr, “Execution Status Report:\n”);
switch(err_ptr->status) {
case FTISTLOC: /* Local Error */
strepy(st_status, “LOCAL Error”);
break;
case FTISTSYS: /* System Error */

Program Examples

97

98

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”

strepy(st_status, “SYSTEM Error”);
break;

case FTISTFTM: /* FTAM Error */
strcpy(st_status, “FTAM Error”);
break;

case FTISTUFE: /* Unexpected FTAM Event Error */
strepy(st_status, “Unexpected FTAM Event”);
break;

case FTISTWAR: /* Local Warning */
strepy(st_status, “LOCAL WARNING");
break;

default : I* Should not be possible */
strepy(st_status, “NO ERROR!");

} I* switch status */

fprintf(stderr, “Status\t\t= %s\n”, st_status);

fprintf(stderr, “Error Code\t= %d\n”, err_ptr->errcode);
fprintf(stderr, “Error Type\t= %s\n”, (err_ptr->errtype) ?
“RECOVERABLE”"
:“NOT RECOVERABLE");
fprintf(stderr, “Cnx Status\t= %s\n”, (err_ptr->errcnxs) ? “ON": “OFF”
)i
if(err_ptr->status == FTISTFTM)
fprintf(stderr, “Diagnostic\t= %.4d\n”, err_ptr->diag);
else if(err_ptr->status == FTISTSYS)
fprintf(stderr, “Diagnostic\t= %s\n”, strerror(err_ptr->diag));
else fprintf(stderr, “Diagnostic\t= %.8x\n", err_ptr->diag);

} /* print_error end */

/*

AL

* ASCII_HEX:

* o

* convert an ASCII string of hexadecimal digits into its hexadecimal
* corresponding format.

* INPUT PARAMETERS:

* from ---> input ASCII string

* to ---> result of conversion (OUT string)
* RETURNS:

* 0 (OK) or 1 (error)

*

int

Ascii_Hex(

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ex_client.c 1.11 94/01/25 SMI”
unsigned char *from,
unsigned char *to

)
intl;

for (I=0; (*from)!="\0";) {
if(lisxdigit(*from))
return(1); /**not* hexa character */
*to = (*from<'A’) ? ((*from++)-'0") << 4 : (toupper(*from++)-
'A'+10) << 4 ;
if (*from){
if (lisxdigit(*from))
return(1);
*to++ |= (*from<'A’) ? ((*from++)-'0’) : (toupper(*from++)-
A +10);

}
else *to++ |= OxOF; /* pads even bytes no. with “OxOF” byte */
[++;
} [* for | */
*to = 0x00;
return(0);

} /* Ascii_Hex end */

* print example usage.

*/

void usage(char *prog_n)

{
fprintf(stderr, “Usage: %s -u User_name -p Password\n”, prog_n);
exit(1);

} I* usage end */

Program Examples

99

100

Makefile

#

#ident “@(#)Makefile 1.8 93/07/20 SMI”

H*H oH H H R

Copyright 1994 Sun Microsystems, Inc. All Rights Reserved

Makefile for generation of FTAM HL API programming example

PROGRAM = ex_client

FTAM example sources, library, includes home directory
FTAM_HOME = /opt/SUNWconn/ftam

FTAM Library path
LIB_PATH = ${FTAM_HOME}/lib

FTAM User include path

INCL =

${FTAM_HOMEY/include

SOURCES = ex_client.c

OBJECTS =\

#

$(SOURCES:%.c=%.0)

Compiler flags.

#

MYDEFS =

CFLAGS +=-g -w

CPPFLAGS += -I$(INCL) $(MYDEFS)
LDFLAGS += -L$(LIB_PATH)
LDLIBS += -Insl -lintl -Iftam

#

Standard targets.

#

all:

clean:

$(PROGRAM)

rm -f $(OBJECTS) $(PROGRAM)

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#

$(PROGRAM): $(OBJECTS)

@echo -------------- $@ link begins --------------
@$(CC) $(LDFLAGS) $(OBJECTS) $(LDLIBS) -0 $@
@echo -------------- $@ linkend --------------

.c.o:
@echo -------------- $@ compilation begins -------
@$(CC) $(CFLAGS) $(CPPFLAGS) -c $<
@echo -------------- $@ compilation end -------

Dependencies

ex_client.c: ${INCL}/ftiuser.h
@touch $@

Program Examples

101

102

README

#ident “@(#)README 1.8 94/01/18 SMI”
Copyright 1994 Sun Microsystems, Inc. All Rights Reserved

README file for generation of an example of FTAM HL APl use

H*H H H HH

The current directory contains :

A -- a programming example using the FTAM High Level API (Initiator).
B -- a stubs for generating customized FTAM Reponders, using the FTAM HL API
(Responder).

- o -

A) FTAM HL API Initiator Programming Example
The example implements an FTAM Client (or Initiator) performing a given set
of file access, management and transfer operations (see below).
The example will open a connection in loopback on the same machine where
it is executed. Therefore, to run it the SunLink 8.0.1 FTAM Responder Daemon
osiftrd on clnp (LAN) must be runnning on the machine.
Follow these steps to build and run the “ex_client” program:
a) type “make” to compile and generate the executable
b) start on the local machine the FTAM daemon (osiftrd) over “clnp” (if not

already started) :

either

as root, type: “/etc/rc.3/S147osiftrd start” (start all osiftrd daemons)

or

as root, type “/opt/SUNWconn/ftam/bin/osiftrd_start clnp”.

The following message will be displayed:
FTAM Responder Daemon (osiftrd) on network <clnp> started.

c) at last, to execute the ex_client program, type
ex_client -u User_name -p Password

where:

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)README 1.8 94/01/18 SMI”
- “User_name” is the login name of a user which is present
into “passwd” file on the local machine

- “Password” is his/her password

The example will perform the following operations (suited status messages
will be displayed on std. output):

1) In order to establish an FTAM connection in loopback on the local machine,
a temporary rdb file is created, by copying all the OSI address elements in
the template “SUN_lIc1", which is automatically installed under
“ivar/fSUNWconn/OSIROOT/ftam/rdb” directory.

2) Establish a connection in loopback, by using the “APITEST” rdb file.

3) Create an empty file (called FTAM_CREATE, type F3)

4) Rename this file (from FTAM_CREATE to FTAM_RENAME)

6) Put a file from the local to the remote system (put ex_client.o to
FTAM_CREATE)

5) Delete all created files (FTAM_CREATE and FTAM_RENAME)
7) Close the connection
8) Remove the APITEST rdb file
In case of error during one of these operations a suited message is displayed
on standard output along with the “Execution Status Report”, data structure
passed as parameter to each API function and containing different information
about possible error conditions during the function execution
(e.g., connection status, error code, etc.)
It should be noted that the remote directory where the test files are
created/deleted/etc. is the ‘home’ directory of the user “User_name” on the
local machine.

- o -

B) FTAM HL API Responder Use

The file “ftr_stubs.c” is a stubs file for generating customized FTAM
Responders.

Program Examples

103

104

#ident “@(#)README 1.8 94/01/18 SMI”

It contains the skeleton of all customizable Responder functions.

Some of these functions, depending on their return code, may inhibit the
successfull completion of the corresponding FTAM operations.

So, if the programmer wants to prevent the execution of a given FTAM operation,
(s)he has to made the corresponding function returning a non-zero value.

To generate a ‘customized Reponder’ do the following steps
(see also “SunLink FTAM 8.0.1 Programmer’s Guide”, Chapt. 1, pag. 3)

1) Edit the file ‘ftr_stubs.c’ and customize the FTAM functions as wanted.

2) Compile and link it to the relocatable file ‘osiftrapi.o’, which is
installed under ‘/fopt/SUNWconn/lib’.

3) To use the customized Responder, you must perform a symbolic link (or do a
copy) of your Responder ‘s executable, say ‘my_osiftr’ :

as root, type
mv /opt/SUNWconn/ftam/bin/osiftr /opt/SUNWconn/ftam/bin/osiftr.BAK
- this will make a copy of the standard Responder -

In -s /opt/SUNWconn/ftam/examples/my_osiftr /opt/SUNWconn/ftam/bin/osiftr
- the customized responder program’s name must be ‘osiftr’ (as the std. one)
and itmust be installed in the same directory then all the ftam executables
(by default ‘/opt/SUNWconn/ftam/bin’)

NOTE:
you do not need to stop and restart the osiftrd daemon, *but* on a given
network, once performed the above step #3, your customized Responder will
be used instead of the standard one on *every* network (cons, clnp and
tep/ip).

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

FTAM Initiator Header (ftiuser.h)

The content of the C header file ftiuser.h

applications developed using the FTAM Initiator interfaces is listed on the

following pages:

which must be included in all

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”

#ifdef __ cplusplus

extern “C" {

#endif

/* **

* General Constants
*% */
#include <sys/param.h>/* used for MAXPATHLEN*/

#define FTIMXDIR MAXPATHLEN/* MaXimum DIRectory Length
#define FTIMXSTR 128/* MaX General Purpose Length*/

#define FTIMXDAT 20 /* MaXimum Date and Time Length*/
#define FTIMXDFD 128/* MaXimum FTAM Diagnostic */

/* *%

*%

*k should not be changed!

*%

*/

#define FTIMXRHN 9 /* MaXimum Host Name Length

#define FTIMXPSL 33 /* MaXimum Presentation Selector Length*/
#define FTIMXSSL 33 /* MaXimum Session Selector Length
#define FTIMXTSL 33 /* MaXimum Transport Selector Length
#define FTIMXNAL 41 /* MaXimum Network Address Length
#define FTIMXATL 21 /* MaXimum AET Length */

#define FTIMXSBN 32 /* MaXimum SuBnet Number

*%

/*

/*
Copyright 1993 Sun Microsystems, Inc. All Rights Reserved
(c) Copyright 1991 Marben Produit. All rights reserved

*/

#ifndef _FTIUSER_H

#define _FTIUSER_H

%

*/

Remote Host Database Constants**

*%

*/

*
*/

*/

*/

Program Examples

105

106

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”
*%

Document Types
*% */

#define FTMDTUNO 0 /* Document Type - UNknOwn*/
#define FTMDTFT1 1 /* FTAM_1 Document Type*/
#define FTMDTFT2 2 /* FTAM_1 Document Type*/
#define FTMDTFT3 3 /* FTAM_1 Document Type*/
#define FTMDTNB9 9 /* NBS_9 Document Type*/
#define FTMDTINL 10 /* INTAP_1 Document Type*/

**

/* *%
xk Override Parameters xx
*%, */

#define FTMOVNOC 0 /* NO Creation, Create Failure*/
#define FTMOVSOF 1 /* Select Old File */

#define FTMOVDOA 2 /* Deleted and created OLD attr.*/
#define FTMOVDNA 3 /* Deleted and created NEW attr.*/

/* **
*x Processing Mode
*%, */

#define FTMTMREP 0x20/* REPLACE mode
#define FTMTMEXT 0x10/* EXTEND mode

/* *k

*k Permitted Actions

*% */

#define FTMPAREA 0x80/* READ

#define FTMPAINS 0x40/* INSERT

#define FTMPAREP 0x20/* REPLACE

#define FTMPAEXT 0x10/* EXTEND

#define FTMPAERA 0x08/* ERASE

#define FTMPARAT 0x04/* READ-ATTRIBUTE */
#define FTMPACAT 0x02/* CHANGE ATTRIBUTE*/
#define FTMPADEL 0x01/* DELETE file

**

*/
*

*%

*
*
*/
*
*/

*/

/* *%

xk Universal Class Numbers xx
*%, */

#define FTMUCOCT 04 /* OctetString */

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

>
1]

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”
#define FTMUCPRT 19 /* PrintableString */
#define FTMUCTXT 20 /* TeletexString */
#define FTMUCVXT 21 /* VideotexString */
#define FTMUCIAS 22 /* |IA5String */
#define FTMUCGRP 25 /* GraphicString */
#define FTMUCVIS 26 /* VisibleString */
#define FTMUCGEN 27 /* GeneralString */

/* *%

*x String Significance *x
*% */

#define FTMPDVAR 0 /* variable */

#define FTMPDFIX 1 /* fixed */

#define FTMPDNOT 2 /* not significant */

/* *%
*x Passwords Types
*% */

#define FTIGraStr 0x00/* Graphic String */

#define FTIOctStr 0x01/* Octet String */

/* **%

*x Requested Attributes *x
*% */

#define FTMAFNAME 0x80/* read-filename */

#define FTMAPERAC 0x40/* “ permitted-actions*/
#define FTMACOTYP 0x20/* “ contents_type*/

#define FTMASTACC 0x10/* “ storage-account*/

#define FTMADTCRE 0x08/* “ date and time of creation */
#define FTMADTLMO 0x04/* “ date and time of last *

* modification */
#define FTMADTLRA 0x02/* “ date and time of last *

* read access */
#define FTMADTLAM 0x01/* “ date and time of last*

* attribute modification*/
#define FTMAIDLCR 0x80/* “identity of last creator*/
#define FTMAIDLMO 0x40/* “ identity of last modifier*/
#define FTMAIDLRE 0x20/* “ identity of last reader*/
#define FTMAIDLAM 0x10/* “ identity of last *

* attribute modifier*/

#define FTMAFAVAI 0x08/* “ file availability*/

**

Program Examples

107

108

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”

#define FTMAFSIZE 0x04/* “ filesize */
#define FTMAFFSIZ 0x02/* “ future file size*/

#define FTMAACCTL 0x01/* “ access-control*/

/* *%
* Kernel Group Attributes (Masks)**
*% */

#define FTMAGKERO (unsigned char)0xe0/* kernel group byte 0*/
#define FTMAGKER1 (unsigned char)0x00/* byte 1*/
#define FTMAGKER?2 (unsigned char)Ox00/* byte 2*/

/* *x
* Storage Group Attributes (Masks)**
*% */

#define FTMAGSTGO (unsigned char)Ox1f/* storage group byte 0*/
#define FTMAGSTG1 (unsigned char)Oxfe/* byte 1*/
#define FTMAGSTG2 (unsigned char)Ox00/* byte 2*/

/ K%
*k File Availability
Kk */

#define FTMFAIMM 0x00/* IMMEDIATE availability*/

/* *%
*x Execution Mode
*%, */

#define FTIEXNBL O /* Execution mode: NON Blocking */
#define FTIEXBLK 1 /* Execution mode: BLOCKING */

/* *%
*k Host State
*%, */

#define FTIHSOPE 1 /* Host State: OPEN */
#define FTIHSCLO 0 /* Host State: CLOSED*/

/* *%
*x Recovery Mode
*% */

*%

*%

*%

*%

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”
/* Recovery Mode: Recovery ON*/
/* Recovery Mode: NO Recovery*/

#define FTIRMRON 1
#define FTIRMNOR 0

/*

*k

*%

*%

Recovery Availability **
*/

#define FTIRCAVA 1
#define FTIRCNAV 0

/*

/* Recovery A

VAILABLE*/

/* Recovery NOT Available*/

*%

*%

*%

More Indicator

#define FTINOMO 0
#define FTIMORE 1

I* NO MORE
/* MORE

*/

*/
*/

*%

/*
*%

*%

API Event Codes (multi-connections)**
*

#define FTINOEVT 0
#define FTIEVABO 1
#define FTIEVOPE 2
#define FTIEVCLO 3
#define FTIEVPUT 4
#define FTIEVGET 5
#define FTIEVCRE 6
#define FTIEVDEL 7
#define FTIEVREN 8
#define FTIEVRAT 9

/*

/*NO EVENT

received*/

/* Event code: Abort*/

/* EVent code
/* EVent code
/* EVent code
/* EVent code
/* EVent code

:Open */
: Close*/
cPut ¥
:Get */
: Create*/

/* EVent code: Delete*/

/* EVent code
/* EVent code

: Rename?*/
: Read Attribute*/

*k

*%

*%

Execution Status *x
*/

#define FTISTNER O
#define FTISTLOC 1
#define FTISTSYS 2
#define FTISTFTM 3
#define FTISTUFE 4
#define FTISTWAR 5

/* NO Error
/* LOCAL oru

*/
ser error*/

/* local SYSTEM error*/
/* FTAM service or protocol err*/

/* Unexpected

FtAM event*/

[* local WARNING */

*k

/*

*%

Program Examples

109

110

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”
*x Error Types

*% */

#define FTITYNRC O /* NOT Recoverable error*/
#define FTITYRCO 1 /* RECOVERABLE error*/

/* *%
** Error Connexion Status
*%, */
#define FTICNXON 1 /* CoNneXion ON */

#define FTICNXOF O /* CoNneXion OFF */

/* *%
*x Error Codes
*% */

#define FTIERIEV 1 /* FTI ERror, Incorrect Environment Variable */
#define FTIERNSU 2 /* FTI ERror, function Not SUpported */

[* on local host */
#define FTIERIPA 3 /* FTI ERror, Invalid PArameter */
[* 4 not used */

#define FTIERCNE 5 /* FTI ERror, Connection Not Established */

#define FTIERCAE 6 /* FTI ERror, Connection Already Established */

#define FTIERLFR 7 /* FTI ERror, Local file name required */

#define FTIERRFR 8 /* FTI ERror, Remote file name required */

1* 9 not used

* 10 notused

#define FTIERUHN 11 /* FTI ERror, Unknown host name */

#define FTIEROLF 12 /* FTI ERror, Opening Local File */

#define FTIERORF 13 /* FTI ERror, Opening Remote File */

#define FTIERFCH 14 /* FTI ERror, Failed to Connect to remote */
I* host. Error connecting to host */

#define FTIERCLF 15 /* FTI ERror, Closing Local File */

#define FTIERCRF 16 /* FTI ERror, Closing Remote File */

#define FTIERSLF 17 /* FTI ERror, Sending Local File */

#define FTIERRRF 18 /* FTI ERror, Receiving Remote File */

#define FTIERFNA 19 /* FTI ERror, Function Not Available */
/* on remote host */

[* 20 not used

* 21 not used

* 22 not used

#define FTIERCRH 23 /* FTI ERror, Closing Remote Host */

#define FTIERWHI 24 /* FTI ERror, Writing Host Information */

*%

*/

*%

*k

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”

#define FTIERRSF 25 /* FTI ERror, Reading Shadow File */

#define FTIERRDS 26 /* FTI ERror, Reading Default Shadow File */

1* 27 not used *
* 28 not used */
#define FTIERIPN 29 /* FTI ERror, Invalid Path Name */

#define FTIERRHI 30 /* FTI ERror, Reading Host Information */

#define FTIERRLF 31 /* FTI ERror, Reading Local File */

#define FTIERWLF 32 /* FTI ERror, Writing Local File */

#define FTIERWSF 33 /* FTI ERror, Writing Shadow File */

* 34 not used */
#define FTIERDRF 35 /* FTI ERror, Deleting Remote File */

#define FTIERCTF 36 /* FTI ERror, Creating Remote File */

#define FTIERRNF 37 /* FTI ERror, Renaming Remote File */

#define FTIERRRA 38 /* FTI ERror, Reading Remote File Attributes */

1* 39 not used */
#define FTIERIDT 40 /* FTI ERror, Invalid Document Type */

I* 41 not used */
#define FTIERHNR 42 /* FTI ERror, Host name required */

1* 43 - 50 not used */

#define FTIERUDH 51 /* FTI ERror, Unable to Delete Host */

1* 52 not used *
* 53 not used *
* 54 not used */
#define FTIERHIC 55 /* FTI ERror, Host is closed */

1* 56 - 62 not used */

#define FTIERRDF 63 /* FTI ERror, Reading Remote File */

1* 64 not used *
* 65 not used */
#define FTIERSRF 66 /* FTI ERror, Selecting Remote File */

#define FTIERDSF 67 /* FTI ERror, Deselecting Remote File */

#define FTIERGID 68 /* FTI ERror, Getting transfer IDentifier */

#define FTIERRTR 69 /* FTI ERror, Recovering TRansfer */

#define FTIERCDK 70 /* FTI ERRor, Creating DocKet */

#define FTIERWDK 71 /* FTI ERRor, Writing DocKet */

#define FTIERRDK 72 /* FTI ERror, Reading Docket */

#define FTIERDDK 73 /* FTI ERror, Deleting Docket */

/* *%

* Local (non-Unix) Errors ok
*% */

#define ERRDTYP 1 /* lllegal document type parameters*/
#define ERRMODE 2 /* Invalid mode in F-Open-ind*/
#define ERRSUBSQ3 /* Subsequent error ~ */

Program Examples

111

112

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”

#define ERRFNAME4 /* No file name in F-Create-ind*/

#define ERRCFNAMES /* No file name in F-ChAtt-ind*/

#define ERRDTPABS 6 /* No composite attributes in*
*

F-Create-ind
#define ERRIOI 7 I* Unknown user (F-Init-ind)*/
#define ERRUID 8 /* No user identity or cannot set*
group id. or user id. or*

* cannot change directory*/
#define ERRSRC 9 /* Invalid service class in F-Init-ind*/
#define ERRPSWD 10 /* Invalid password in F-Init-ind*/
#define ERRDTTYP 11 /* Invalid Data Element type*/
#define ERRDTINV 12 /* Invalid Universal Class*/
#define ERRDTSZ 13 /* Invalid Data Element size*/
#define ERRTIMEOUT 14 /* Time-out */
#define ERRRECLG 15 /* Invalid INTAP_1 record length*/
#define ERRRDEOF 16 /* Cannot read at end of file*/
#define ERRFADUI 17 /* FADU id. error in F-Read-ind */
#define ERRLFADU 18 /* Cannot locate FADU */
#define ERRTRFIL 19 /* Cannot truncate file */
#define ERRSFNLG 20 /* File name too long */
#define ERRDCTYP 21 /* Invalid document type */

#define ERROVERW 22 /* Invalid overwrite parameter */
#define ERRNODTY 23 /* No document type in F-Open-cnf*/
#define ERRFTYPE 24 [* Unsupported Special local file type*/
#define ERRSTRLG 25 /* Invalid FTAM_1 or FTAM_2*
* string length
#define ERRCHECK 26 /* Recovery error - Bad checkpoint*/
#define ERRDOCK 27 I* Recovery error - Corrupted docket*/
#define ERRNODOCK 28 /* Recovery error - No docket*/
#define ERRRECPT 29 /* Recovery error - No recovery point */
#define ERRCONTYP 30 /* Recovery error - Content type*

*/

* inconsistent*/

#define ERRUNSPEC 31 /* Recovery error - Unspecifict/

/* *%

*x Warning Codes

*% */

#define FTIWRINI 1 /* WaRning on INltialisation */
#define FTIWRTRL 30 /* WaRning on Transfer List */

[* local warnings */
[* Initialisation warnings */
#define WARINID 0x00000001 /* Init directory*/

*/

*%

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”

#define WARLOGD 0x00000002 /* Log directory */
#define WARSHFD 0x00000004 /* Shf directory */
#define WARRDBD 0x00000008 /* Rdb directory */
#define WARTRFD 0x00000010 /* Trf directory */
#define WARINIF 0x00000020 /* Init file */
#define WARTRFF 0x00000040 /* Transfer identifiers file */

[* Tranfer List warnings */

#define WARNODA 0x00000001 /* NO Docket Available */
/* *%

*x Administrative Variables Structure**
*%, */

typedef struct

{

unsigned charftiinid[FTIMXDIR];/* INIT Directory*/

unsigned charftilogd[FTIMXDIR];/* LOG Files Directory*/

unsigned charftishfd[FTIMXDIR];/* SHADOW Files Database*/

unsigned charftirdbd[FTIMXDIR];/* REMOTE HOSTS Database*/

unsigned charftitrfd[FTIMXDIR];/* Transfers Database*/

long logid; /* Log File Identifier*/
} ftiadmT, *ftiadmTp;

/* **
*x Local Association Identifier Type **
*% */

typedef long ftilaiT;
typedef ftilaiT *ftilaiTp;

/* **
*x Execution Status Report Structure**
*%, */

typedef struct

{
int status; /* Execution Status*/
int errcode; /* Error Code */
int errtype; [* Error Type */
int errcnxs; /* Err Connexion Status */
int diag; /* Diagnostic Code*/

unsigned charftamdfd[FTIMXDFD];/* FTAM Diagnostic:*
* Further Details
*/

Program Examples

113

114

#ident “@#)ftiuser.h 1.14 94/01/11 SMI”
} ftiesrT, *ftiesrTp;

/* **
** Document Type Parameters Structure**
*%, */

typedef struct

{
unsigned charchoice; [* Qualifier */
short class; /* Universal Class Number*/
long lengthl; [* Maximum String Length */
long length2; [* String Length Signific*/

} ftidtpT, *ftidtpTp;

typedef ftidtpT dtparmT;/* for upward compatib.*/
typedef ftidtpTp dtparmTp;/* for upward compatib.*/

/* *%
*k Shadow Files Structure *x
*% */
typedef struct
{
int doctyp ; /* document type number*/
unsigned charperact[2] ; [* permitted actions*/
long keypos ; /* key position (NBS6/7)*/
ftidtpT parm; /* document type param.*/

} ftishfT, *ftishfTp ;

typedef ftishfT shfT; [* for upward compatib.*/

typedef ftishfTp shfTp; [* for upward compatib.*/

/* *k

** Remote Host DataBase Structure**

*% */

typedef struct

{
unsigned charhostname[FTIMXRHN];/* Remote host name*/
int pstlen; I* Pres. sel. length */
unsigned char pstsel[FTIMXPSL];/* Pres. sel. value */
int seslen; [* Session sel. length */
unsigned charsessel[FTIMXSSL];/* Session sel. value*/
int trslen; [* Transport sel. length*/

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@#)ftiuser.h 1.14 94/01/11 SMI”
unsigned chartrssel[FTIMXTSL];/* Transport sel. value*/
int netlen; /* Network addr. length*/
unsigned char netadd[FTIMXNAL];/* Network addr. value*/
int aetlen; [* Appl.Ent.Title length*/
unsigned char aetitle[FTIMXATL];/* Appl.Ent.Title value */
unsigned char subnet; [* Subnet number*/
unsigned char state; /* Remote host state*/
} ftirdb T, *ftirdbTp;

typedef ftirdbT rdbT; [* for upward compatib.*/

typedef ftirdbTp rdbTp; [* for upward compatib.*/

/* *x

* Bind (Connection) Structure**
*% */

typedef struct

{

unsigned char hostname[FTIMXRHN];/* Remote Host Name*/
unsigned char username[FTIMXSTR];/* User Name*

* (on remote host)*/
unsigned char password[FTIMXSTR];/* User Password*

* (on remote host)*/
unsigned char account[FTIMXSTR];/* Account to be charged*

* (on remote host)*/

} ftibndT, *ftibndTp;

typedef ftibndT bndT; /* for upward compatib.*/

typedef ftibndTp bndTp; [* for upward compatib.*/

/* **

* File Transfer Structure **
*%, */

typedef struct

{
int doctyp; [* Document Type */
int override; /* Creation Override */
int mode; /* Transfer Mode */

unsigned characcnt[FTIMXSTR];/* Account Name */
unsigned charlocname[FTIMXDIR];/* Local File Name */
unsigned charremname[FTIMXDIR];/* Remote File Name */
unsigned charfilpssd[FTIMXSTR];/* File Password */
unsigned charreqattri[3]; /* Requested Attributes*/

Program Examples

115

116

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”
/* docparm of NBS_9 */
unsigned chardform; [* display format*

* (temporary for NBS-9)*/

int frfadu; /* Start from FADU no.*
(FTAM-2) */

int tofadu; /* Ending at FADU no.*

* (FTAM-2)*/
unsigned charfadui; /* FADU Id. */
int fadun; /* FADU No. */
unsigned characsctx; * Access Context*/
long result; /* No. of bytes *

* (sent/received)*/
double elapse; /* Elapsed Time */
double speed; /* Speed */
int recmode; [* Recovery Mode*/
int trfid; [* Transfer Identifier*/
long filsize; [* Future file size*/

} fitrfT, *ftitrfTp;

/* *k

*x Create Structure *x

*%, */

typedef struct

{

long filsize; [* Future file size*/

int override; [* Override parameter*/

int doctyp; [* Document type*/
int avail; /* File availability*/

unsigned charperact[2]; [* Permitted actions (2)*/
unsigned characcnt[FTIMXSTR];/* Account Name*/
unsigned charfiiname[FTIMXDIR];/* Remote File Name*/
unsigned charfilpssd[FTIMXSTR];/* Create password*/
unsigned characctrl[FTIMXSTR];/* Access ctrl elt. attr*/
unsigned charshfname[FTIMXDIR];/* Create Shadow File*/
} fticreT, *fticreTp;

typedef fticreT creT; [* for upward compatib.*/
typedef fticreTp creTp; [* for upward compatib.*/

/* *%
xk Delete Structure xk
*%, */

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

>
1]

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”

typedef struct

{

unsigned characcnt[FTIMXSTR];/* Account*/
unsigned charfilname[FTIMXDIR];/* File name*/
unsigned charfilpssd[FTIMXSTR];/* Delete password*/
} ftidelT, *ftidelTp ;

typedef ftidelT delT; /* for upward compatib.*/

typedef ftidelTp delTp; [* for upward compatib.*/

/* *%

*x Rename Structure **
*% */

typedef struct

{

unsigned characcnt[FTIMXSTR];/* Account */

unsigned charfilname[FTIMXDIR];/* File name */

unsigned charfilpssd[FTIMXSTR];/* Change attr. password*/
unsigned charnewname[FTIMXDIR];/* New File name */
} ftirenT, *ftirenTp ;

typedef ftirenT renT,; [* for upward compatib.*/

typedef ftirenTp renTp; /* for upward compatib.*/

/* *k

> File Read Attribute Structure**
*% */

typedef struct

{

unsigned characcnt[FTIMXSTR]; [* Account*/

unsigned charfilname[FTIMXDIR]; /* File name*/

unsigned charfilpssd[FTIMXSTR]; /* Read attr. password*/
unsigned charreqattri[3]; /* Requested attributes*/

} ftiratT, *ftiratTp ;

typedef ftiratT ratT; [* for upward compatib.*/
typedef ftiratTp ratTp; [* for upward compatib.*/

/* **
*x File Read Attribute Response Structure**
*% */

Program Examples 117

118

#ident “@#)ftiuser.h 1.14 94/01/11 SMI”

typedef struct

{

unsigned charfiiname[FTIMXDIR];/* File name*/

unsigned charperact[2]; [* Permitted actions (2)*/

int doctyp; /* Document type*/
ftidtpT parmdoc; /* Document type param.*/

unsigned characcnt[FTIMXSTR];/* Storage account*/

unsigned chardtcreat[FTIMXDAT];/* Date and Time of *

* CREATION*/
unsigned chardtimodi[FTIMXDAT];/* of LAST MODIFICATION */
unsigned chardtlracc[FTIMXDAT];/* of LAST READ ACCESS*/
unsigned chardtlatmo[FTIMXDAT];/* of LAST ATTR. MODIF.*/
unsigned charidcreat[FTIMXSTRY];/* Identity of CREATOR*/
unsigned charidimodi[FTIMXSTR];/* of LAST MODIFIER*/
unsigned charidlread[FTIMXSTR];/* of LAST READER*/
unsigned charidlatmo[FTIMXSTR];/* of LAST ATTR.MODIFIER*/
int avail; /* File availability */
long filsize; /* File size */
long futfsize; /* Future file size */
unsigned characctrl[FTIMXSTR];/* Access ctrl elt.attr.*/
unsigned charlegqua[FTIMXSTR];/* Legal Qualification*/
unsigned charpriuse[FTIMXSTR];/* Private use */
} ftirasT, *ftirasTp ;
/* *x
*x Change Local Directory Name Structure**
*% */
typedef struct
{
unsigned chardirname[FTIMXDIR];/* directory to change to

(input)*/

} ftiledT, *tiledTp ;
/* *%
*k Change Remote Directory Name Structure**
*% */
typedef struct
{

unsigned chardirname[FTIMXDIR];/* directory to change to*/
} ftircdT, *ftircdTp ;

/* *%

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftiuser.h 1.14 94/01/11 SMI”
*%

Get Remote Directory Name Structure**
*% */

typedef struct

{

unsigned chardirname[FTIMXDIR];/* directory name (OUT)*/
} ftipwdT, *ftipwdTp ;

/* *k
*x Docket Structure (Recovery)**
*% */

typedef struct
{ [* Structure docket*/
unsigned charir ; Falr */
int id ; /* Unique id */
unsigned charusername[FTIMXSTR];/* User name *

* (on remote host)*/
unsigned charlocname[FTIMXDIR] ;/* Local File Name*/
unsigned charhostname[FTIMXRHN];/* Remote hostname*/

long cpi; [* Last NOT ack checkpt*/
long acpi ; [* Last ack checkpt*/
unsigned charact_state ; /* Activity state :*

* starting, in progress*
* data transfer end,*

* finished */
unsigned chardoctyp ; /* Document type*/
long result; /* No. of bytes *

* (sent/ received)*/
double elapse; /* Elapsed Time */
double speed; [* Speed */

} ftidockT, *ftidockTp ;
#ifdef __ cplusplus

}

#endif

#endif /* _FTIUSER_H*

Program Examples

119

=A

FTAM Responder Header (ftruser.h)

The content of the C header file ftruser.h , which must be included in all
applications developed using the FTAM Responder interface is listed on the
following pages:

#ident “@ (#)ftruser.h 1.8 93/10/22 SMI”
/*
Copyright 1993 Sun Microsystems, Inc. All Rights Reserved

(c) Copyright 1991 Marben Produit. All rights reserved
*/

#ifndef _FTRUSER_H
#define _FTRUSER_H

#ifdef __ cplusplus

extern “C" {

#endif

/* *%

*x General Constants xx
*%, */

#include <sys/param.h>/* used for MAXPATHLEN*/
#define FTRMXDIR MAXPATHLEN/* MaXimum DIRectory Length */
#define FTRMXSTR 128/* MaX General String Length */
#define FTRMXDFD 128/* MaX FTAM Diagnostic*
* Further Details */

/* *%
xk FTR Execution Status xk
*%, */
#define FTRSTNER 0/* No ERror */

#define FTRSTFTM 3/* FTaM service or protocol err */

/* *%
*x Association defines - For Connect and Disconnect**
*%, */

#define FTRASNER 1/* Association closed success. */
#define FTRASABT 2/* Association ABorTed */

/* *%

120 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftruser.h 1.8 93/10/22 SMI”

xk Transfer defines - For Transfer End function**
*%, */

#define FTRTRNER 1/* TRansfer ended successfully, *

* No ERrors
#define FTRTRCAN 2/* TRansfer CANcelled */
/* *x
*x Passwords types
*% */
#define FTRGraStr 0x00/* GraphicString */
#define FTROctStr 0x01/* OctetString */
/* *k
xx Document types
*% */
#define FTMDTFT1 1 /* FTAM_1 Document Type*/
#define FTMDTFT2 2 /* FTAM_1 Document Type*/
#define FTMDTFT3 3 /* FTAM_1 Document Type*/
#define FTMDTNB9 9 /* NBS_9 Document Type*/
#define FTMDTIN1 10 /* INTAP_1 Document Type*/
/* *k
* Override Parameters
*%, */

#define FTMOVNOC 0 /* NO Creation, Create Failure*/
#define FTMOVSOF 1 /* Select Old File */

#define FTMOVDOA 2 /* Deleted and created OLD attr.*/
#define FTMOVDNA 3 /* Deleted and created NEW attr.*/

/* *%
*x FTAM Requested Access - For Select and Create**
*% */

#define FTMACREA 0x80/* Required Access: READ*/

#define FTMACCINS 0x40/* “ T INSERT*/
#define FTMACREP 0x20/* * “ REPLACE*/
#define FTMACEXT O0Ox10/* * “ EXTEND?*/
#define FTMACERA 0x08/* “ “ : ERASE*/
#define FTMACRAT 0x04/* * “ : READ ATTRIB.*

*/

*%

*%

K%k

Program Examples

121

122

#ident “@(#)ftruser.h 1.8 93/10/22 SMI”

#define FTMACCAT 0x02/* * “ : CHANGE ATTR.*/

#define FTMACDEL 0x01/* *“ “ : DELETE*

/* *%

*x Permitted Actions *x
*%, */

#define FTMPAREA 0x80/* READ */

#define FTMPAINS 0x40/* INSERT */

#define FTMPAREP 0x20/* REPLACE */

#define FTMPAEXT 0x10/* EXTEND */

#define FTMPAERA 0x08/* ERASE */

#define FTMPARAT 0x04/* READ-ATTRIBUTE */
#define FTMPACAT 0x02/* CHANGE ATTRIBUTE?*/

#define FTMPADEL 0x01/* DELETE file */
/* *%
*x Execution Status Report Structure**
*k - for NEGATIVE Reponder’s APl answer -**
*% */
typedef struct
{
int status; /* Execution status*/
int diag; /* FTAM diagnostic code*/

unsigned charftamdfd[FTRMXDFD];/* FTAM Diagnostic *
* - Further Details*/
} ftresrT, *ftresrTp ;

/* *k

*k Bind (Connection) Structure**
*% */

typedef struct

{

unsigned char username[FTRMXSTR];/* User Name*
* (on remote host)*/
unsigned char password[FTRMXSTR];/* User Password*
* (on remote host)*/
unsigned char account[FTRMXSTRY];/* Account to be charged*
* (on remote host)*/
} ftrondT, *ftrbndTp;

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftruser.h 1.8 93/10/22 SMI”

/* *%

** Select Structure **

*% */

typedef struct

{
int doctyp; /* Document Type*/
int regaccess; /* Requested Access*/

unsigned char filname[FTRMXDIR];/* File name*/
unsigned char account[FTRMXSTR];/* Account to be charged*
* (on remote host)*/

/* The following passwords are reserved for future extensions*/
unsigned char reafilpssd[FTRMXSTR];/* Passw for READ Access*/
unsigned char insfilpssd[FTRMXSTR];/* Passw for INSERT*/
unsigned char refilpssd[FTRMXSTR];/* Passw for REPLACE*/
unsigned char exfilpssd[FTRMXSTRY];/* Passw for EXTEND?*/
unsigned char erfilpssd[FTRMXSTR];/* Passw for ERASE*/
unsigned char rafilpssd[FTRMXSTR];/* Passw for READ ATTR */
unsigned char cafilpssd[FTRMXSTR];/* Passw for CHANGE ATTR*/
unsigned char defilpssd[FTRMXSTR];/* Passw for DELETE*/

} ftrselT, *ftrselTp ;

/* *%
*k Create Structure *k
*%, */
typedef struct
{
int doctyp; [* Document Type*/
int regaccess; /* Requested Access*/
long filsize; /* Future File Size*/
int override; /* Override Parameter*/

unsigned char peract[2];/* Permitted Actions*/
unsigned char filname[FTRMXDIR];/* File Name*/
unsigned char account[FTRMXSTR];/* Account to be charged*

* (on remote host)*/
/* The following passwords are reserved for future extensions*/
unsigned char cfilpssd[FTRMXSTR];/* Passw for CREATE Acc*/
unsigned char reafilpssd[FTRMXSTRY];/* Passw for READ Access*/
unsigned char insfilpssd[FTRMXSTR];/* Passw for INSERT */
unsigned char refilpssd[FTRMXSTR];/* Passw for REPLACE */
unsigned char exfilpssd[FTRMXSTR];/* Passw for EXTEND */
unsigned char erfilpssd[FTRMXSTR];/* Passw for ERASE ~ */
unsigned char rafilpssd[FTRMXSTR];/* Passw for READ ATTR */

Program Examples

123

124

#ident “@(#)ftruser.h 1.8 93/10/22 SMI”
unsigned char cafilpssd[FTRMXSTR];/* Passw for CHANGE ATTR*/
unsigned char defilpssd[FTRMXSTR];/* Passw for DELETE */

} ftrereT, *ftrcreTp ;

/* *%

bl Recover Structure *

*% */

typedef struct

{
int trfid ; /* Transfer Identifier*/
int doctyp ; [* Document Type*/
int regaccess ; /* Requested Access*/

unsigned char filname[FTRMXDIR];/* File Name*/
unsigned char account[FTRMXSTR];/* Account to be charged*
* (on remote host)*/

/* The following passwords are reserved for future extensions*/
unsigned char reafilpssd[FTRMXSTR];/* Passw for READ access*/
unsigned char insfilpssd[FTRMXSTR];/* Passw for INSERT*/
unsigned char refilpssd[FTRMXSTR];/* Passw for REPLACE*/
unsigned char exfilpssd[FTRMXSTR];/* Passw for EXTEND*/
unsigned char erfilpssd[FTRMXSTR];/* Passw for ERASE*/
unsigned char rafilpssd[FTRMXSTR];/* Passw for READ ATTR*/
unsigned char cafilpssd[FTRMXSTR];/* Passw for CHANGE ATTR*/
unsigned char defilpssd[FTRMXSTR];/* Passw for DELETE*/

} ftrrcoT, *ftrrcoTp ;

/* *%
*k Read - Write Structure *k
*%, */
typedef struct
{
int trfid ; /* Transfer identifier*/

} frtef T, *ftrtrfTp ;

/* *k
*x Responder API Global Structure**
*% */

/* Union of all structures */
typedef union

ftrondT open; [* Bind Structure*/

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

#ident “@(#)ftruser.h 1.8 93/10/22 SMI”

ftrselT sel; /* Select Structure*/
ftrcreT cre; /* Create Structure*/
ftrrcoT reco ; /* Recovery Structure*/
ftrtrfT trf; /* Transfer Structure*/

} ftrapiT, *ftrapiTp ;
#ifdef __ cplusplus
}

#endif

#endif /* _FTRUSER_H */

Program Examples

125

126

SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

Index

A

application entity title (AET), 46, 48
association

connect request, 66

disconect request, 70

C

change
local working directory, 28
remote working directory, 37
client, vii, 1
close association, 21
CNLP, 5
common data structures, 7, 63
compilation, 2,7
compiler directives, 4,7
CONS, 5
constants, 7,63
create
file create request, 67
remote file, 12
shadow file, 51

customized responder, 4,63

D

data structures, 7, 63
definitions

FTI interface, 10

RDB interface, 45

SHF interface, 49

stubs file, 65, 66

summary, 9, 65

TRF interface, 54
delete

docket information, 54

entry from RDB, 45

file delete request, 69

remote file, 15
deselect file request, 69
diagnostic codes, viii, 3, 64
dockets, 2,54

E

end of transfer indication, 74
error codes, 8, 58

error recovery, 2,54,55,71
execution status report, 8, 64
exit initiator process, 22
external interfaces, 2

127

F SHF interface, 2, 49
TRF interface, 2, 54

file recovery, 2 .
interfaces, 2

file store, 1 . . o .
F-INITIALIZE request, 3 !nternatlonal_lzatlon library, 4
FTAM interrupted file transfers, 2, 40, 54

initiator, vii, 1,7 introduction, 1

protocols, 1 ISO specifications, 1

regime, 4

responder, vii, 1 L
FTAM initiator, 2 library file, 4
FTAM responder, 3, 66 linking, 2
FTI interface, 2, 10 list
ftiuserh, viii, 4,7 remote directory, 16
ftr_connect, 3 transfer identifiers, 55
ftr_stub.c, 3 local shadow file, 49
ftr_stubs.c, 4
ftr_write, 3 M
ftruser.h, viii, 3, 4, 63 .

main(), 4
modify

G remote systems database, 47
get shadow file, 51

attributes from local shadowv file, 49

entry from RDB, 46 N

remote file, 23
remote working directory, 32
transfer identifier, 26

non-zero codes, 3

O
H open association, 10
header files, viii, 7, 63 operating system, vii
osiftam, vii, 1,2,7
| osiftr, vii, 1, 3, 66
o osiftr_cust, 5
initialize initiator process, 27 . .
L . osiftrapi.o, 3,4
initiator, vii, 1,2,7 ifird 5
common data structures, 7 0sl r.,
compilation, 2 overview, 1
execution status report, 8
FTI interface, 2, 10 P
initialize, 27 .
interface summary, 9 peer entities, 10 . .
RDB interface. 45 product documentation, ix
services, 10 programming interfaces, 2

128 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

put T
entry in RDB, 47

local file, 29 TCP/IP, 5
shadow file, 51 template file, 4
transfer recover request, 71
R TRF interface, 2,54
RDB interface, 2, 45
U
read
docket information, 56 universal class number, 2
read attributes request, 70
read file request, 70 \V/

remote attributes, 33
remote file, 38
recover interrupted transfer, 40

virtual file store, 1

recovery, 2, 26, 40, 54, 55, 71 W
rename remote file, 43 warning codes, 61
request write file request, 75

association, 66
association closure, 70
create file, 67
responder, vii, 1, 3, 66
common data structures, 63
custom, 4,63
daemon, 5
execution status report, 64
stubs file, 3,4, 63
return remote working directory, 32
RFC 1006, 5

S

select file request, 73
server, vii, 1
shadow file, 2,49
SHF interface, 2, 49
status

codes, 58
status report, 8, 64
stubs file, 3,4, 63, 65
summary, 1,9

Index 129

130 SunLink FTAM 8.0.2 Programmer’s Guide—October 1994

