Performance Tuning an Application

2 SUnPro

A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
US.A.

Part No.: 801-5093-10
Revision A, December 1993

&
Please
Recycle

00 1993 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

Allrights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc. and the University of California, respectively. Third-party font software in this product is protected by
copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, SunPro, SUnPro logo, Sun-4, OpenWindows, AnswerBook, and Magnify Help are
trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX
System Laboratories, Inc. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

Preface. iX

1. Introduction tothe Analyzer.......................... 1-3
1.1 Solaris2.0and 1.X 1-4

1.2 How the AnalyzerWorks 1-4

1.3 Graphical Overview. 1-6
1.3.1 Collector........... o 1-6

1.3.2 Analyzer..... 1-7

133 Menultems i, 1-9

1.3.4 About..Button................. 1-9

135 DropTargetc .. 1-9

1.3.6 Start Collector... Button 1-10

137 Displays ... 1-10

1.4 TaskSOVEerVIEW.t 1-10

1.5 ExampleProgram 1-12

2. Performance-Tuning Methods 2-13

2.2 Types of Performance Problems.
23 TheModel
2.4 ThEePIrOCESS . ..ot
3. Setting Up for Performance Tuning.
3.1 Building the Application.........................
3.2 Activating the SPARCworks Manager..............
3.3 Activating the Debugger............
3.4 Activating the Collector.
3.5 Loading the Application
3.6 Alternative Methods
4. Getting Started with the Collector.
4.1 Activatingthe Collector..........................
411 Experiment............... ...
412 Sample.....
4.2 Setting Upthe Collector
4.3 Choosing the Typeof Sampling
4.3.1 Continuous Sampling.......................
4.3.2 ManualSampling
4.3.3 NoSampling(None)........................
4.4 Choosing the Data Collection Parameters.
441 OverviewData
442 WorkingSetData
443 PCDataiii i

Performance Tuning an Application—December 1993

2-13
2-14
2-15
2-17
3-21
3-21
3-22
3-22
3-24
3-24
3-25
4-27
4-28
4-29
4-29
4-30
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34

444 PCand Stack ...

45 Storingthe CollectedData.

4.5.1 ExperimentDirectory.......................

452 ExperimentName..........................

4.6 Collecting PerformanceData

4.7 Closing and Quitting the Collector

471 Runlcon.......
4.7.2 Suspend Icon. ..

5. Getting Started with the Analyzer.....................

5.1 Activating the Analyzer..........................

5.2 Loadingan Experiment..........................

5.3 Choosing Data Types .

5.3.1 Process Times. . .
53.2 UserTime......
533 I/O0Time
5.3.4 System Time. ...
535 FaultTime

5.3.6 Program Sizes and Working Set

5.3.7 Execution Statistics...............iiru...

5.4 Deleting an Experiment..........................

6. Overview Display........

6.1 What Is the Overview Display?

Contents

6.1.1 Overview Chart.

6.1.2 Averages Legend

4-34
4-35
4-35
4-35
4-36
4-38
4-38
4-39
5-41
5-41
5-43
5-44
5-46
5-47
5-47
5-48
5-48
5-49
5-50
5-50
6-55
6-55
6-57
6-58

-Vi

6.2 Changing the Width of the Sample Column.........
6.2.1 Fixed-Width Columns
6.2.2 Proportional-Width Columns

6.3 Selecting and Displaying Samples.................

6.4 ExperimentScale

6.5 Sample PropertiesWindow.

6.6 TimeLine........

7.1.1 Histogram by Function Display
7.1.2 Histogram by Module Display
7.1.3 Histogram by Segment Display
7.1.4 Cumulative Histogram Display
7.2 Sorting the Histogram
721 SortbyValue.................
722 SortbyName........
7.3 Searching for Specific Names
7.4 Viewing Segments
7.5 Selecting and Displaying Samples.................
8. AddressSpaceDisplay
8.1 What Is the Address Space Display?
8.2 Selecting and DisplayingPages
8.2.1 ViewingPages.......... ...,
8.2.2 ViewingSegments..........................

Performance Tuning an Application—December 1993

6-59
6-59
6-60
6-61
6-63
6-63
6-66
7-69
7-69
7-70
7-70
7-71
7-71
7-75
7-75
7-76
7-77
7-78
7-79
8-83
8-83
8-86
8-86
8-87

8.3 PropertiesWindows. 8-89

8.4 Selecting and Displaying Samples................. 8-91

9. StatisticsDisplay 9-93
9.1 What Is the Statistics Display? 9-93

9.2 Selecting and Displaying Samples................. 9-96

10. Doing More with the Collector. 10-101
10.1 Setting Breakpoints To Control Data Collection. 10-102
10.2 Setting Data Collection Parameters................ 10-104
10.2.1 WorkingSetData 10-105

1022 PCDatac. i 10-106

10.2.3 PCandStackData. 10-107

10.3 The Profiling Timer 10-107
10.3.1 Displays Requiring Profiling................. 10-108

10.3.2 Setting the Profiling Timer. 10-108

11. Doing More with the Analyzer........................ 11-111
11.1 Viewing Multiple Displays....................... 11-111
11.2 Closing and Quitting Windows 11-114

11.3 Reordering Your Application 11-114

11.4 Comparing the Reordered Application............. 11-117

11.5 Exporting an Experiment 11-117
11.6 Printing Experiment Information.................. 11-118

A. Troubleshooting A-123
A.l Problem Checklist................. A-123

A.2 Reporting Problems A-125

Contents -vii

A3 Error Messagest A-125

B. Data Collection Requirements for the Displays......... B-131
C. ExperimentRecord........... C-133
C.1 Hidden Directory and Pointer File................. C-133

C.2 Hidden Directory Files C-134
C.21 JournalFile....... C-134

C22 DataFormats............... C-136

C.3 FileManagement i C-136

D. Export ExperimentFile............................... D-137
D.1 Contents of the Export ExperimentFile D-137

D.2 Sample Export ExperimentFile D-138

E. PrintFile... E-147
E.l Samplel E-148

E2 Sample2 E-150

E3 Sample3 E-152

F. PrintSummaryFile........... F-157
F.1 Contents of the Print SummaryFile. F-157
Glossary G-159
INdeX Index-165

-viii Performance Tuning an Application—December 1993

Preface

This manual explains how to use the SPARCworks™ Analyzer, a software
performance-tuning tool for software application developers. It is used in
conjunction with the Collector, a Debugger tool that gathers the performance
data that the Analyzer processes. The Analyzer is an integrated component of
the SPARCworks Manager, which also includes:

® Debugger
®* FileMerge
®* MakeTool

® SourceBrowser

Who Should Use this Book

This manual is written for application developers who want to use the
SPARCworks Analyzer on Sun™ workstations running C, C++, Fortran, Pascal,
and ANSI C.

Before You Read this Book

This manual assumes you are familiar with the following:

® Sun operating system commands and concepts

® The OPEN LOOK® graphical user interface (GUI) and the OpenWindows™
environment, particularly the use of the mouse to activate a window, select
text, and click on buttons.

Refer to the manual Managing SPARCworks Tools for detailed information
about the OPEN LOOK GUIL.

Differences Between Solaris 2.0 and 1.x

From a usage point of view, almost all of the aspects of the SPARCworks tools
under Solaris 2.0 and 1.x are the same. This includes functionality, behavior,
usage, and features. For the very few details that are different, the
documentation calls out those differences.

Note — The Analyzer and the Debugger Collector do not run under Solaris 1.x.

From an installation point of view, each SPARCworks release has its own CD-
ROM. Check the CD-ROM label and the Product Notes for release numbers.

About the Operating Environment

With the exception of the Analyzer and the Debugger Collector, which operate
only under the Solaris 2.0 operating environment, SPARCworks tools run
under both the Solaris 2.0 and Solaris 1.x environments.

The Solaris 2.0 environment is composed of the following elements:

® SunOS™ 5.0 operating system
® A SPARC™ computer, either a server or a workstation
® The OpenWindows™ 3.0 application development platform

SunOS 5.0 is based on the System V Release 4 (SVR4) UNIX! operating system,
and the ONC™ family of published networking protocols and distributed
services.

1. UNIXis aregistered trademark of UNIX System Laboratories, Inc.

X Performance Tuning an Application—December 1993

How this Book is Organized

This manual is organized as follows:

Part 1—Overview of the Analyzer

Chapter 1, “Introduction to the Analyzer,” introduces the structure of the
performance-tuning tools to familiarize you with the SPARCworks
Analyzer.

Chapter 2, “Performance-Tuning Methods,” describes performance tuning
and the performance-tuning process.

Part 2 — Basic Performance Tuning

Chapter 3, “Setting Up for Performance Tuning,” explains how to activate
the Debugger and the tasks you must perform before you can begin
collecting performance behavior.

Chapter 4, “Getting Started with the Collector,” describes how to activate
the Collector and how to set it up for data collection.

Chapter 5, “Getting Started with the Analyzer,” describes how to activate
the Analyzer and the displays you can use to view and examine
performance data.

Part 3— Reading the Displays

Chapter 6, “Overview Display,” describes the components of the Overview
display.

Chapter 7, “Histogram Display,” describes the components of the Histogram
display and the Cumulative Histogram display.

Chapter 8, “Address Space Display,” describes the components of the
Address Space display.

Chapter 9, “Statistics Display,” describes the information contained in the
Statistics display.

Part 4 — Advanced Performance Tuning

Chapter 10, “Doing More with the Collector,” describes additional and more
detailed features of the Collector to use for specifying and collecting data.

Contents Xi

Chapter 11, “Doing More with the Analyzer,” describes additional and more
detailed features of the Analyzer to use for viewing and examining the
performance data.

Part 5 — Appendixes

Appendix A, “Troubleshooting,” describes how to overcome problems with
the Collector and the Analyzer. It also lists error messages, the possible
causes for the error message, and solutions to correct the error.

Appendix B, “Data Collection Requirements for the Displays,” contains a
table that lists all the displays and data types of the Analyzer and the type
of performance data that you need to collect to view the displays.

Appendix C, “Experiment Record,” describes the components of the
experiment record. It also describes how to move and delete files.

Appendix D, “Export Experiment File,” describes the contents of this file
and also provides a sample file.

Appendix E, “Print File,” describes the contents of this file and also
provides a sample file.

Appendix F, “Print Summary File,” describes the contents of this file.

What Typographic Changes and Symbols Mean

xii

The following table describes the notational conventions and symbols used in
this book

Table P-1 Typographic Conventions

Typeface or

Symbol Meaning Example

AaBbCc123 The names of commands, files, Edit your .login file.
and directories; on-screen Usels -a to list all files.
computer output system% You have mail.

AaBbCcl123 What you type, contrasted with system% su

on-screen computer output Password:

AaBbCcl123 Command-line placeholder: To delete a file, type rm filename.

replace with a real name or
value

Performance Tuning an Application—December 1993

How to Get Help

Table P-1 Typographic Conventions

Typeface or

¢

%
$

Symbol Meaning Example
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in User’s Guide.
or words to be emphasized These are called class options.
You must be root to do this.
A single-step procedure 4 Click on the Apply button.
Code samples are included in boxes and may display the following:
UNIX C shell prompt system%
UNIX Bourne and Korn shell UNIX Bourne and Korn shell
prompt prompt
Superuser prompt, all shells Superuser prompt, all shells

Four on-line help facilities are available:

AnswerBook Product—is an on-line documentation tool that displays this
manual in full, along with the other SPARCworks tools manuals. You can
read this manual on-line and take advantage of dynamically linked
headings and cross-references.

To start the AnswerBook product, type: answerbook

Magnify Help™ Messages—is a standard feature of the OpenWindows
software environment. To access Magnify Help, place the pointer on the
window, menu, or menu button, and then press the Help key.

Notices— are a standard feature of the OPEN LOOK environment. Notices
serve two functions. Some notices are prompts that inquire about whether
you want to continue with a particular action. Other notices are
precautionary in that they provide information about the end result of a
particular action; they appear only when the end result of an action is
irreversible.

Note — For detailed information about Notices, refer to the OPEN LOOK
documentation listed in the Preface of this manual.

Contents Xiii

® SunOS Manual Pages (man pages)—provide on-line documentation about
the command line utilities of the SunOS operating system. The Analyzer
has the following command line utilities for batch jobs:

er_mv(1)
er_rm(1)
er_print(1)
er_export(1)
er_mapgen(1)
analyzer(1)
To access the man pages, in a command shell type: man utility_name

For example, to access the on-line documentation for er_mapgen(1) ; type:

man er_mapgen

See the man pages dbx(1) for collecting data commands in batch jobs. See
the man pages debugger(1) for collecting data commands using GUI.

Related Books

This manual is part of the SPARCworks document set. Other manuals in this
set include:

Installing SunPro Software on Solaris
SPARCworks Tutorial

Managing SPARCworks Tools
Building Programs with MakeTool
Browsing Source Code

Debugging a Program

Xiv Performance Tuning an Application—December 1993

Part1—Overviewof the Analyzer

Introduction to the Analyzer 1

This chapter describes the Analyzer software performance-tuning tool, its
components, and its graphical user interface (GUI).

This chapter is organized into the following sections:
® “Solaris 2. 0 and 1.x” on page 1-4

* “How the Analyzer Works” on page 1-4

® “Graphical Overview” on page 1-6

® “Tasks Overview” on page 1-10

* “Example Program” on page 1-12

Performance tuning applications is a two-step process that involves 1)
collecting performance data using dbx or the Debugger, and 2) analyzing that
data. The Analyzer is a set of performance-tuning tools that a software
application developer can use for measuring, recording, understanding, and
improving the performance of an application program. It provides a GUI for
collecting and displaying the performance data of a target application. The
Analyzer is designed for use by all software developers, regardless of whether
performance tuning is the developer’s main responsibility.

The Analyzer enhances the task of collecting data because different types of
performance data can be collected and the data collection process can be
controlled during the execution of the application.

1-3

Data analysis is more effective because the Analyzer collects many different
types of performance data and provides displays for viewing the collected data
in the analysis stage. In the data analysis stage, different hypotheses about the
behavior of the application can be examined and focus given to the areas
where performance problems are occurring.

In certain cases, the Analyzer assists in rebuilding a tuned application by
creating a mapfile. The Analyzer provides an analysis feature that identifies an
improved ordering for loading functions into the application address space.
The application can then be relinked, creating an executable that executes with
a reduced text working set size.

1.1 Solaris2.0and 1.x

The Analyzer runs under Solaris 2.0 only; it does not run under Solaris 1.x.
Check the CD-ROM label for release numbers before you install.

1.2 How the Analyzer Works

1-4

The Analyzer is integrated with dbx and the Debugger. Performance data is
collected using the Collector, which is a GUI tool in the Debugger. The
Collector communicates with dbx which in turn collects data from the kernel
under which the application is running. As the program runs, dbx writes the
performance data to a file; this file is called an experiment record. The execution
of the application while data is being collected is called the experiment.

When the experiment is completed, the Analyzer is used to examine the
collected performance data that is contained in the experiment record. The data
can be viewed in graphical displays on screen or as a summary report that can
be sent to a printer. The er_export utility puts the data of the experiment
record into ASCII format; the er_print utility prints the data of the current
display to a file or to a printer. Figure 1-1 illustrates the Analyzer architecture
and all its features.

If profile data is collected, then a mapfile, which has an improved ordering of
functions in the application, can be generated. This mapfile can then be passed
to the linker using the -M option. The linker then relinks the application using
the ordering specified in the mapfile and produces a new executable
application. For more information on mapfiles, see Chapter 11, “Doing More
with the Analyzer.”

Performance Tuning an Application—December 1993

4 Printer

screen
display

4 Printer

TEXTI
File

Source
Files

il

—H—H—

fnalyzer

er_print

Collector

Debugger

Figure 1-1 Analyzer Architecture

Introduction to the Analyzer

[\

Mapfile

er_mapgen

Experiment
Record

4—»| gpx |E——

f

Kernel

L

Compiler |——p» Object
Files

Linker

Application
Process

¢

1.3 Graphical Overview

This section shows the icons, base windows, and menu buttons of the
Analyzer. The Analyzer consists of two tools: the Collector (accessible in the
Debugger) and the Analyzer.

1.3.1 Collector

The Collector is the tool you use to set up an application for
data collection. The Collector gathers performance data
during the execution of that application.

(&

Collector

All data collection parameters are set in the Collector window. The Collector
consists of text fields, settings, and buttons. Figure 1-2 shows the default
settings of the Collector when it is first activated.

1 [x] SPARCworks Debugper Collector b
File) Directors ~fparform//testfmystuff
Management Experimemt st ler
Types of sampling: | continuaus | Manual | Hone |
S
Sampling Interval: 1 [E[¥] sacends
Data Collection Address space: [working set | none |
—
Parameters Profiling: | PC [PC and Stack | Nena |
Besolution; 19 1 G 1 1000 ms
T
1 ml

Figure 1-2 Collector Window

The Collector consists of three areas:

®* File Management—consists of text fields where you type the experiment

name and a directory name in which to store the experiment.

Types of Sampling—consists of settings for specifying the period of time to
collect data.

1-6 Performance Tuning an Application—December 1993

[HEN
i

® Data Collection Parameters—consists of settings for specifying the types of
data to collect:
« Use PC to generate performance data for histogram
e Use PC and Stack to generate performance data for cumulative histograms

1.3.2 Analyzer

The Analyzer is the tool you use to examine the collected data.
= The Analyzer provides a GUI for selecting and displaying the
collected data. The Analyzer processes the collected data into
fnalyzer displays of your choice. You use these displays to examine the

collected performance data.

_“
=

The Analyzer consists of menu buttons, a text field, and a display pane.
Figure 1-3 shows the Analyzer base window with the Overview display.

Introduction to the Analyzer 1-7

]

Analyzer — test 1oy

Menu Buttons ——#»

Display Pane —#»

Text Field———————®»

Figure 1-3

[[Fila v} (View «3 [Props v) (Create Mapfile..] Date: [§] Process Tlnes

Start Coallactsr.,

(Bhout) [

10 11 12 13 19 15 1

= 1
.

1 1 I 1 I I
i 11 12 13 14 15 16 1¢ 1B 13 20

=

fBrages

b Date Fault

3416% Gleep

E 17% Suspand

[lex other

(LT Tvi 1

Display [F] Owerview [E:]

samples: 1-1E

a 1003

(— 1 cf | e

Analyzer Window

Performance Tuning an Application—December 1993

1.3.3 Menu ltems

The menu buttons contain options for selecting and viewing performance data.
The circled item on each menu is the default item. You do not have to open the
menu to choose the default item, just click on the menu button.

& Flla

{ Load..

HETRTEN
Dalata,.,

Brind Surarnaiy

R It R AN S L

GwA

Select &l
Celect Mone

1.3.4 About... Button

The About button displays a pop-up window that gives the version number
and the copyright information about the tool. Clicking SELECT on the
Comments button in this window displays another window in which you can

write any comments you may have about the tool and send the comments
directly to SunPro via email.

1.3.5 Drop Target

You can load an experiment from the FileManager into the Analyzer by

& View & Props i® Data
(Hew Window.. j (Selection... } li Process Times
Version User Time
Column Widths /O Time
Sark b syctem Time

Text Page Fault Time
Diata Page Fault Time
Program Sizes
wWoaorking Set
Execution Statistics

selecting the experiment file, dragging it to the Analyzer’s main window, and

dropping it onto the Drop Target. If the file is not an experiment file, the

Analyzer will not accept it. A message will appear at the bottom of the
window informing you that the file is not an experiment.

Introduction to the Analyzer

1-9

1]l
H

1.3.6 Start Collector... Button

1.3.7 Displays

The Analyzer has four displays in which to view the collected performance
data: Overview, Histogram, Address Space, and Statistics.

1.4 Tasks Overview

1-10

The Start Collector button displays a dialog box, which tells you how to collect
performance data by starting the Debugger and then selecting the Collector
menu item from the Execution menu.

® Overview—is the default display of the Analyzer. It gives an overview of

the performance behavior of the application. You can select individual
samples and view the collected performance data that is specific to those
samples.

Histogram and Cumulative Histogram—provide information about the
functions, modules, and segments of the application. You can alphabetically
or numerically sort the functions, modules and segments, and you can
search for specific functions, modules, and segments. For programs written
in C++, you can display the function with or without its prototype.

Address Space—shows what areas in the address space that the application
occupies. The types of pages interaction shown in the Address Space
display are: Modified, Referenced, and Unreferenced.

Statistics—provides statistical information about the application attributes
that are not displayed in any of the other displays.

Table 1-1 describes performance tuning and the tasks for collecting and
examining the performance data

Performance Tuning an Application—December 1993

[HEN
i

Table 1-1 Performance-tuning Tasks

Task

Description

1. Develop the Model |

Define performance objectives
Define application workload

Define hardware and
software environment

I 2. Build the Application I

Compile application
Link application

3. Collect the Data |

Activate Manager

Activate Debugger

Activate Collector

Load the application

Set data collection parameters
Run application in Debugger

4. Analyze the Data |

Activate Analyzer
Load experiment

View and examine
data in the displays

5. Evaluate Data

Compare data to model

Reorder application

A model is a necessary component to the
performance-tuning process because it
provides a basis on which to compare the
behavior of the target application and also
allows you to set up realistic goals for the
target application to meet.

No specific compilation procedures are required
when compiling an application for performance
analysis.

The Collector works with the Debugger. To
begin data collection, first activate the
Debugger from the Manager, then activate the
Collector. Once the Collector window appears,
load the application into the Debugger.
Choose the data collection parameters in the
Collector and run the application.

Once you have collected performance data,
you can examine the data in the displays
provided by the Analyzer and identify
performance problem areas. Change the
application source code to eliminate the
problems.

Compare the results of the experiment to the
model created in task one. If the results do not
equal or surpass those of the model, then try
reordering your application to reduce text
working set size.

Introduction to the Analyzer

1-11

1.5 Example Program

1-12

This manual uses the Blocks® application in examples for data collection.
Blocks is a C++ implementation of a Lisp application called Blocks World. The
Blocks application defines several types of blocks (bricks, wedges, a ball, and a
table) as subclasses of the basic class block. The Blocks application is used to
move blocks on top of other blocks. The Blocks application installs
automatically when you install SPARCworks.

a1

Elocks waorld K

=

Tahle

B2 L

n| A

Ed BE

To use the Blocks application in the examples of this manual, you need to
compile the application as specified in Section 3.1, “Building the Application,”
on page 3-21.

The Blocks application is in: /opt/SUNspro/SW2.0/examples/Blocks

1. The Blocks application used in this manual is derived from “Blocks World CLOS demo” from Chapter 21 of
“Lisp”, third edition, by Patrick Henry Winston and Berthold K. P. Horn, Copyright (c) 1989, 1984, 1981 by
Addison-Wesley Publishing Company, Inc. and San Marco Associates.

Performance Tuning an Application—December 1993

Performance-Tuning Methods 2

This chapter describes performance tuning and the performance problem areas
about which the Analyzer provides information. It also discusses the specific
parameters to consider when performance tuning an application. This chapter
describes how to set up a model to use for evaluating an application and
introduces a specific process to follow when performance tuning.

This chapter is organized into the following sections:
®* “What Is Performance Tuning?” on page 2-13

* “Types of Performance Problems” on page 2-14

® “The Model” on page 2-15

® “The Process” on page 2-17

2.1 What Is Performance Tuning?

A lot of time and effort goes into designing a program. A good program has
been planned, well thought out, and tested. However, when the program is
completed, many concerns and questions arise:

® Does the program meet its performance expectations?
® Does it perform efficiently?
® Is there any dead code?

® Does the application have good paging behavior?

2-13

An important concern is that the program meet its performance objectives in
the most efficient manner possible. In most cases, the performance of the
software is essential. For example, with a word processing application faster is
better. A word processing application is considered to be inefficient when it
does not immediately respond to keystrokes.

Many variables affect the performance of an application program, for example,
the hardware and software environment on which the application runs. You
may or may not have any influence in this regard, but what you are able to
influence is the design of your program. Whatever the reasons for undertaking
performance tuning, you want your program to be efficient, reliable, and fast.
Performance tuning helps you to achieve these goals.

Note — Performance tuning and runtime checking are mutually exclusive
processes. You can perform one or the other at a time. The information you
receive from tuning your application can be adversely afftected if you
simultaneously perform runtime checking. If you do attempt to run both
processes, a message will appear telling you the action is disallowed.

Using the Analyzer to tune the performance of your application helps you do
the following:

® Estimate the performance of your program.
® Identify the bottlenecks that are limiting performance.

® |dentify where the code spends most of its time.

When you are convinced that performance tuning is a good idea, you may then
ask the question “How do I decide what application to tune?” If a program meets
its performance objectives, then it does not need to be tuned. However, most
programs can benefit from at least one round of performance tuning.

2.2 Types of Performance Problems

2-14

The Analyzer provides data that helps you identify the bottlenecks that are
limiting the performance of your program. The performance data available for
data collection and analysis are:

® User Time—provides information about the time spent executing
instructions in the application.

Performance Tuning an Application—December 1993

2

2.3 The Model

® 1/O Time—provides information about the time spent performing input and
output operations. Also, the locations in the program that are doing input
and output operations are identified.

® System Time—provides information about the time the operating system
spends executing system calls.

® Text Page Fault Time—provides information about the time spent faulting
in text pages.

® Data Page Fault Time—provides information about the time spent faulting
in data pages.

® Program Sizes—describes the application performance activities in bytes of
functions, modules, and segments.

®* Working Set—provides information that allows you to look at the reference
behavior of both text and data page fault time.

Depending on the performance problem, the following are typical parameters
to consider for improving performance. All of these parameters, whether in a
batch application or interactive application, can improve the performance of
the application

* Elapsed Real Time —In a batch application, elapsed real time is the time
spent waiting for the completion of the entire execution of the application,
or for a specific subtask or operation in the application.

® Response time—In an interactive application, response time is the time
spent waiting for the computer to respond to a specific user request or
action.

* Working set—Working Set is the set of pages referenced or modified by the
application during the execution of a specific subtask or operation. When
the working set is too large, you are likely to be paging both text and data

pages.

Any measurement and evaluation that you do on an application is meaningless
unless you establish an ideal that you want the application to attain. This ideal
is called a model. To begin performance tuning any application program you
need to create a model. This model becomes the baseline for evaluating your
application.

Performance-Tuning Methods 2-15

2-16

To create a model:

1.

Develop performance objectives for the application.
To develop performance objectives, outline the function(s) of the application
and define who is using the application.

Critical performance objectives—For the application to be useful and
efficient, it must meet certain critical objectives. One of these objectives
often relates to data acquisition. For example, the purpose of the Blocks
application is to move bricks, wedges, or a ball. A common, everyday task
would be to place one object on top of another object. For the application to
be useful, it should perform this function accurately, and in a short amount
of time.

Non-critical performance objectives—These objectives do not affect the
quality of the program, but are necessary to promote ease of use. For
example, it is convenient to have the Blocks application quickly display a
message stating that the request to move an object is complete. Although
this feature does not affect the qualitative behavior of the application, it is
convenient for the user of the and contributes to the perceived performance
of the application.

When setting performance objectives for any application:

Consider the purpose of the application (what is it used for).
Describe who will use it.

Prioritize the functions that affect the qualitative behavior of the application
and the functions that affect the user’s perception of the application.

Define the program workload.

The workload is the typical amount of time the application is used. For
example, in word processing, responding to typed input is a critical feature
because the application is so heavily used. For this activity, it is essential
that a word processing application provides a good response time. For
infrequently used features, such as converting from the Roman alphabet to
the Cyrillic alphabet, you may not be so concerned with the response time
of the activity.

For a batch application, such as a compiler, you also need to understand its
typical workload. For example, are the programs to be compiled 100, 1,000,
or 1,000,000 lines long? In these cases, the internal behavior and runtime of
the compiler may be very different. In particular, runtime may not be a

Performance Tuning an Application—December 1993

2

2.4 The Process

linear function of the number of lines in the source program that is being
compiled. Consequently, a compiler that is tuned to efficiently compile
1,000 line programs may be poorly tuned to compile 1,000,000 line
programs.

3. Define the hardware and software environment that runs the workload.

Hardware and software environments affect the performance of an
application; a program that runs efficiently on one configuration might
decrease in efficiency when run on a different configuration. When defining
the hardware and software environments, the environment should be
sufficient to run your application at its peak performance level. You need to
consider what other applications are going to run on the workstation on
which you run your application. For example, is the workstation also a
print server, or is it a license server for a CAD/CAM or desktop publishing
application?

After you have established these criteria, decide in what area you want to
concentrate your performance-tuning efforts. The combination of steps 1, 2,
and 3 assist you in deciding what to evaluate and measure when performance
tuning your application.

Performance tuning is an iterative, interactive process. It is a cyclical process,
whereby different performance improvements are hypothesized and tested.
Performance tuning an application should be approached systematically to
avoid the possibility of creating problems at the same time you are fixing
problems. Setting up a systematic approach to performance tuning is easy to
do with the Analyzer because it provides you with a visual means of
examining areas in the application that might be creating problems. Instead of
having to trudge through lines and lines of code, you can view the collected
data in the displays of the Analyzer. Some of the displays provide an overview
of the application, while other displays focus on specific areas.

The Analyzer provides you with the resources to engage in a more systematic
approach when performance tuning. The following performance-tuning
process is recommended. You might do some steps in parallel, others
repeatedly, and others not at all. Figure 2-1 illustrates the performance-tuning
process.

To conduct systematic data analysis:

Performance-Tuning Methods 2-17

2-18

1. Compile source files and create an executable.

2. Set up the application executable file with code for performance data
collection and run the application collecting performance data.

3. Analyze the data to identify the performance problem area and to
hypothesize a change that solves the problem.

4. Rebuild the application with the hypothesized performance-improvement
modifications.

5. Repeat steps 2, 3, and 4. The remainder of the process consists of
repeating steps 2, 3 and 4 until the target application meets its
performance goals.

1. Compile source files and create an executable

2.
Run
Application m

—H—H—

Collector cgllect

Data
repeat performance-
s NO — tuning process
Performance
Analyze = -
Data Objectives Met
e Identify performance-tuning

finalyzer Problems YES— process complete

5.
Modify
4. Code

Rebuild
Application

Figure 2-1 Performance-Tuning Process

Performance Tuning an Application—December 1993

Part2—Basic Performance Tuning

Setting Up for Performance Tuning 3

This chapter describes the tasks you need to perform before you can begin the
performance-tuning process of data collection and performance analysis. It also
describes the preliminary preparation for the target application.

This chapter is organized into the following sections:

® “Building the Application” on page 3-21

* “Activating the SPARCworks Manager” on page 3-22
® “Activating the Debugger” on page 3-22

® “Activating the Collector” on page 3-24

® “Loading the Application” on page 3-24

* “Alternative Methods” on page 3-25

3.1 Building the Application
Compile and link your application using a SPARCcompiler.
To prepare your application for data collection:
¢ Compile and link the application using a SPARCompiler.

The following flags are recommended for building your application:

3-21

i
w

® Use the -g option if you want to view a module histogram. This option
ensures that the data is accurately displayed. See Chapter 7, “Histogram
Display,” for details on module histograms.

® Use -xF, -g options if you want to reorder your application. Reordering is
done using the Create Mapfile feature of the Analyzer. See Chapter 11,
“Doing More with the Analyzer,” for details on reordering.

Note - If you want to collect profile data on an application that is statically
linked (-dn), then you need to link with the libcollector.o module. The
libcollector.o modaule is in /opt/SUNWspro/SW3.0/lib

3.2 Activating the SPARCworks Manager

The SPARCworks Manager is a desktop tool for managing all the SPARCworks
programming tools. It is a visual organizer that provides accessibility for
starting and quitting tools. Figure 3-1 shows the SPARCworks Manager.

FEI SPARCWorks Manager]
[File =) (Wiew =) (Edit) { Properties w) { Session 7)) I:I
N [[, =
MakeTacl Lnalyzar FilakMarga SBrowsar Dabuggar Lpplication

Raqiskrakion

Figure 3-1 SPARCworks Manager

To activate the SPARCworks Manager
¢ Type: sparcworks&

Refer to the manual Managing SPARCworks Tools for detailed information about
using the Manager.

3.3 Activating the Debugger

To access Collector, you must first start the Debugger.

3-22 Performance Tuning an Application—December 1993

w
1]

To start the Debugger, do one of the following:

¢ From the Manager:
Double-click on the Debugger icon.

¢ From the keyboard:
Change to the directory that contains the application that you want to

debug and type: debugger&

The Debugger window appears (see Figure 3-2). You can either select
commands from the Debugger window or type commands from the keyboard.

'zl SPARCworls Dehugger — cno executahlex b
—

{ Proamm <) [Ereakprint &) [[Execution &) [Stack #) [0l 7)) (Props 7 { Abaut.)

Stopped In Fle: Funcilon: Line:

L1400

| |

Stop ALY [Step In) [Clear) contlinue’) (Nent) £ Step’y [where') ¢ Rrint +)
{Frint] {Dewn') [Dlsplap =y [Dlsplap’)

= (dabuggeary N
"
L

Figure 3-2 Debugger Window

e

Skabal REAdy

Setting Up for Performance Tuning 3-23

3

3.4 Activating the Collector

To activate the Collector:.

Execution =

¢ Choose Collector from the Execution button of
the Debugger.

3.5 Loading the Application

Once the Debugger window appears, load the source code of the application to
performance tune. You can load the source code in one of three ways:

¢ In the Debugger window:
Choose Load from the Program menu button; the Program Loader window

is displayed. Double-click on the directory and then double-click on the
application name listed in the scrolling list. You can also type the directory
and application name in the Name field and click on Load or press Return.

"R Febugger: Progran Lvader L
[Program «) Dlrsctary: [T) fusr/srefsw foxam plos Blecks
& Program E o up a lavel p=
— 1 Blocks
Ie Mew Program... C5CCE T
Visit, This Program [testter
E d it [\} ..
Make I
List Modules =
Mlame:!
L =

3-24 Performance Tuning an Application—December 1993

w
1]

¢ In the Debugger command line.
Type debug and the name of the executable of the application.

¢ In the File Manager window:
Select the icon for the application and drag it into the Debugger window.

3.6 Alternative Methods

As an alternative method, you can simultaneously activate the Debugger and
load an application with the following command:

¢ Type:
debugger application_name

Setting Up for Performance Tuning

3-25

i
w

3-26 Performance Tuning an Application—December 1993

Getting Started with the Collector 4=

This chapter describes the components of the Collector and how to activate this
tool. It also describes the types of sampling and the data collection options
offered by the Collector.

This chapter is organized into the following sections:

® “Activating the Collector” on page 4-28

® “Setting Up the Collector” on page 4-30

® “Choosing the Type of Sampling” on page 4-31

® “Choosing the Data Collection Parameters” on page 4-33
® “Storing the Collected Data” on page 4-35

® “Collecting Performance Data” on page 4-36

® “Closing and Quitting the Collector” on page 4-38

Note — You cannot collect profile data on a set user ID or a set group ID
application. To collect data on this application, your user ID and group ID
must match the ID’s of the application.

For example, if you want to collect profile data on Blocks , then your user ID
must match evelynl

-r-sr-xr-x 1 evelynl 52952 Apr 23 10:36 Blocks

4-27

4

4.1 Activating the Collector

4-28

The Collector is the tool you use to prepare an application for
data collection. During the execution of an application, the

m Collector gathers performance data and writes the data to a
] file. The experiment is the execution of the application while
Collector data is being collected. The collected data is called an

experiment record.

A single session can generate multiple experiment records; however, the
experiment record can only contain data from one Collector session. Each
experiment contains one run of an application. You cannot have multiple runs
of an application in the same experiment record.

To activate the Collector:

4 Choose Collector from the Execution button menu in the Debugger
window.
See Chapter 3, “Setting Up for Performance Tuning,” for alternative
methods for activating the Debugger. Note that the Collector is disabled if
you are running a multithreading program.

T T T AT T T
[(Fregrem =7 {Bremhpoint w3 Eroutlon v [Stack w) [(Cmts vy (Fropa_y (RBouE_}

= Emacartiom

Ttap

Muin -
ond nuse

ReElew

Fhe

Froceans Iropector..
Error GhACKnG =
SUEAFAR.

Tk Rhropin
Callmzbar..

ety (SheaIny (dsry [Funy (CSenE) (reety (o) (where) (Bt) (Ermnby (o)
(%) (GEpTey =)y CARplayy

Chatal Aaady

The window opens with default settings for the experiment and samples. You
do not need to change any of the settings or fields in the Collector window in
order to start data collection. You can change any of these settings when the
default settings do not satisfy your requirements. The settings can only be
changed when the application you are debugging is stopped.

Performance Tuning an Application—December 1993

4=
I
|
The Collector window consists of two areas (see Figure 4-1).
® Experiment
® Sample
o] SPARCworks Dehugper Collector b
. File Firectory: ~fperformy sk mystuff
EXpe”ment{Management Experiment boskien
Tvpes of gampling: | continuaus | Manual | Mene
ypesof gL : [more |
Sampling Interval: 1 [5[%] saconds
Sample —
Data Collection Address &pace:
Parameters Profiling: [PC [PC and Stack | Mona |
Resolution; 19 1G —— |-1{I¢'I}m5
1 ml

Figure 4-1 Collector Window

4.1.1 Experiment

An experiment consists of a set of samples taken on an application. In the
experiment, you execute the application, gathering performance data with the
Collector and storing the performance data in an experiment record.
Performance data is collected in one or more samples, each of which is a
measurement of a different period of time during the execution of the
application. The experiment can contain one or more samples.

The experiment area of the Collector concerns itself with routine file
management (Figure 4-1). You must name the experiment and specify a
directory in which it is to be stored. See Section 4.5, “Storing the Collected

Data,” on page 4-35.

4.1.2 Sample

A sample contains data collected over a specified period of time during the
execution of the application. It provides information about the performance
behavior of the application. You can take one sample or multiple samples.

Getting Started with the Collector

4-29

Multiple samples are useful when the performance of the application varies
over time. Instead of examining the aggregate behavior of the entire execution
of the application, you can take multiple samples to examine the performance
behavior at specified intervals of the application execution.

A sample may include data describing:

® System calls
® Resource consumption
® Referenced and modified pages in the address space

The Sample consists of two areas (see Figure 4-1):

* Types of Sampling—consists of settings for specifying the period of time to
collect data. Each sample contains information on the target application
over a specified period of time. See “Choosing the Type of Sampling” on
page 4-31.

® Data Collection Parameters—consists of settings for specifying the types of
data to collect. Overview is the default data collection parameter. See
“Choosing the Data Collection Parameters” on page 4-33.

4.2 Setting Up the Collector

4-30

To collect performance data, you must define the following:

® Type of sampling to perform
®* Type of data to collect (data collection parameters)
® Directory and experiment name

The default settings are shown in Figure 4-1. The default settings are
recommended for the first round of data collection because they provide a
good overview of the application behavior. You can change the default
settings, but you may want to wait until you have examined the collected data
with the Analyzer, when you have more insight as to where the performance
problems are occurring.

When you specify settings other than the default settings, you must click on
the Apply button in the Collector window to complete and apply your settings.

To Apply or Reset the settings:

¢ Click on the Apply button located at the bottom of the Collector window
to apply settings.

Performance Tuning an Application—December 1993

4

If you decide to use the default settings at a later point in the experiment, then
you must reselect the default settings and click on the Apply button. Once the
initial default settings are changed, any selection of them at a later point in the
experiment are treated as new settings and they must be reapplied.

+ Click on the Reset button to restore the settings that existed at the last
apply.

4.3 Choosing the Type of Sampling

Performance data is collected through the process of sampling. Each sample
contains information on the target application over a specified period of time.
You can control the way in which samples are taken by choosing one of the
sampling settings in the Collector window.

sampling: | Continuous | Manual | None | The default setting is Continuous

R samples every one second.
Interval: 1 = caconds

The sampling settings of the Collector are:

® Continuous
®* Manual
®* None

4.3.1 Continuous Sampling

Continuous sampling allows you to specify, in intervals of seconds, when to
take samples. To specify the interval, enter the number of seconds, or use the
increment/decrement buttons in the Interval numeric field. The valid range
for the interval is 1-60 seconds. For example, if you choose a 2-second interval,
and the application executes for 10 seconds, then you end up with a total of
five samples.

Choose Continuous sampling for an overview of the application. This
sampling mode provides a uniform view of the application behavior. Use it
when you are:

® Unfamiliar with the behavior of the application

® Undecided about, or have not defined, specific performance concerns

Getting Started with the Collector 4-31

4-32

® Unsure about what portions of the application execution on which to
concentrate your performance-tuning efforts

After you have collected some samples, use the Analyzer to examine the data.
If you need more information in your sample, then choose Manual sampling.

4.3.2 Manual Sampling

Manual sampling allows you to control the interaction between the execution
of the application and the data collection. You can specify exactly when to
begin a new sample. Use this sampling mode when you want to correlate the
samples with real time events for feedback as to what the application is doing
during that specified time period. This mode is especially useful when the
application provides a visual response, either in the form of graphics or text.

Choose manual samples to collect data on a more specific aspect of a portion of
the application. When you choose Manual sampling, the Take Sample button
on the Debugger menu becomes selectable. Choosing the Take Sample button
automatically terminates one sample and starts a new sample. The Take
Sample button is a choice item located in the Execution button menu of the
Debugger (Figure 4-1).

4.3.3 No Sampling (None)

None stops the data collection process. This mode of sampling is useful when
there is a particular period of time in the application execution about which
you do not want to collect data, and you do not want any of this information in
the samples.

For example, suppose Blocks has a long initialization period and you are not
interested in collecting performance data on this portion of the tool. If you
select None during the initialization period of the application execution, then
data is not collected.

When None is selected, all other panel items are not selectable. The panel
items become a very light shade of gray to indicate that they are inactive.
During this time, you cannot change or set any parameters.

Note — For more information on advanced methods of sampling, refer to
Section 10.1, “Setting Breakpoints To Control Data Collection,” on page 10-102.

Performance Tuning an Application—December 1993

AN
1]

4.4 Choosing the Data Collection Parameters

The Collector window provides choices for different types of performance data
to collect. You control the data to collect for the experiment by choosing one of
the data collection parameters in the Collector.

Address Space: | Waorking Set | Nane | Default settings are None for
Address Space and Profiling.

Profiling: | pc | PC and Stack | None |

The following are the data collection parameter settings:

Overview (default, not a selectable item)
Working Set

PC (program counter)

PC and Stack

Note — Refer to Chapter 10, “Doing More with the Collector,” for detailed
information about data collection parameters.

4.4.1 Overview Data

Overview is the default data collection parameter of the Collector. Although it
is not visible as a selectable item, Overview data is automatically collected.
You can specify additional combinations of performance data to collect.

Overview is composed of resource usage and process real time performance
data, which are useful for quickly identifying performance bottlenecks. It is
useful for understanding time-variant performance behavior and for
understanding the types of performance bottlenecks. Although it generates the
lowest amount of overhead for data collection, it provides the least
information. Use only Overview data when you are:

® Unfamiliar with the behavior of the application
®* Undecided about, or have not defined, specific performance concerns

® Unsure about what portions of the application execution on which to
concentrate your performance-tuning efforts

Getting Started with the Collector 4-33

4-34

Use Overview data for the first round of data collection. This choice provides
a good first-time look at the application performance problem areas. After you
have collected some samples, use the Analyzer to examine the data. Once you
have identified where the performance problems are occurring, you can again
run data collection using one of the other, more detailed modes, such as
Working Set, PC, or PC and Stack. The other data collection parameters obtain
more information in which to isolate the specific performance bugs in the
application design.

4.4.2 Working Set Data

The Working Set data collection parameter collects data that assists you in
answering questions such as:

®* How does the working set change over time?
® |s the application using pages efficiently?
® Which pages are accessed during a particular operation?

Working Set data represents the process state address space as a series of
segments, each of which contains a number of pages. The data collected
describes the status of each page, and whether it was referenced or modified.
If you select None, then Working Set data is not collected.

4.4.3 PC Data

PC (program counter) sets the data selection mode for PC profiling. This mode
provides information with which to do a higher level of analysis. Profiling
data represents a statistical sampling of where the application is during its
execution. The data collected identifies where the application spends most of
its time, and how long it spends on each function. The profiling snapshots use
a default profiling clock rate value of 10 milliseconds. The PC location is
recorded in each profile snapshot. For detailed information about the profiling
timer clock, see “The Profiling Timer” on page 10-107.

4.4.4 PC and Stack

PC and Stack sets the data selection mode to collect return function addresses
on the stack. It provides a more detailed analysis than the PC mode. Use this
mode when the application has a hierarchical (very layered), modular design.

Performance Tuning an Application—December 1993

4

For example, if function aa calls function bb and cc, then collecting only PC
data provides information about the execution time in function aa. Collecting
PC and Stack data provides information about the execution time in the
function aa as well the execution time spent by bb and cc.

4.5 Storing the Collected Data

An experiment consists of a sample or set of samples taken on the application.

Directory: _~/perfqrm/tgxt/mystuf_f

Experiment: test.l.er

To create an experiment, you must do the following:

® Name the experiment
® Specify a directory in which to store the experiment

4.5.1 Experiment Directory

The experiment is saved to the current working directory, which is the
directory from which you activated the Debugger.

You can use the default directory or create your own, more descriptive
directory name in which to save the experiment. To specify a different
directory, enter the new name in the Directory text field. In either case,
whether you use the default directory or specify another directory, when the
Collector is first activated, the default directory is displayed in the Directory
text field.

The experiment must be saved to a directory. If you delete the default
directory name and forget to enter a new name, then you are prompted to type
a directory name in the directory text field. You must enter a name before you
can start data collection.

4.5.2 Experiment Name

The default experiment name is test.1.er . The number 1 is a version
number. The version number is automatically incremented each time you
create a new experiment to give the experiment a unique identifier. If you
choose not to use the default experiment name and assign a different name to

Getting Started with the Collector 4-35

Il
I

the experiment, then a version number is not appended to that name. In this
case, you no longer have the version number to uniquely identify the
experiment, so you must change the experiment name before every time you
create a new experiment. If you do not change the name, then an error
message is displayed.

You can also choose an experiment name that is modeled after the default
name by appending .1.er to the name. If you append .1.er to the name,
then the Collector increments the version number every time a new experiment
is created. When the Collector increments the version number, it never
overwrites an existing file. If there is another file by the same name, then the
version tag is incremented each time you run the application. For example,
suppose you changed the experiment name from the default name of

test.1l.er to blocks.1.er . If you run Blocks a total of three times, then
the three experiments are named blocks.1l.er |, blocks.2.er , and
blocks.3.er

An experiment creates a hidden directory that contains various files. See
Appendix C, “Experiment Record,” for information about the experiment record
files and how to move and delete them.

4.6 Collecting Performance Data

After you set up the Collector (choosing the type of sampling, the data
collection parameters, and specifying a directory and experiment hame) you
can begin collecting performance data.

To collect performance data, you must do the following:
®* Run the application in the Debugger

* Define the portion of the application to measure

To run the application, do one of the following:

4-36 Performance Tuning an Application—December 1993

AN
1]

¢ Type run in the command window of the Debugger.

¢ Click on the Run button in the Debugger window.

(Stop At) (Stop In) (Clear)
(Up) (Down) { Display *) (Display)

| (debugger] ,

Note — Data collection starts after all the shared libraries are loaded.
Performance data is not collected on the part of the application which loads in
the shared libraries. The displays of the Analyzer do not show data for that
part of the application.

After you run the application, define the portion of the application to measure.

For example, suppose you want to measure moving a wedge on top of a brick
in the Blocks application.

To start the data collection process:
1. In the Debugger window, click on Take Sample in the Execution menu.

2. In the Blocks window, Click on the W7 button, followed by the B6 button,
which moves wedge 7 on top of brick 6.

Getting Started with the Collector 4-37

i
I~

3. Click on Take Sample.

You get a sample that provides performance data on the move action of
placing a wedge on top of a brick.

4.7 Closing and Quitting the Collector

You can close the Collector window while it is still performing data collection
on an experiment, or when the data collection process is complete. The
Collector icon has two modes:

®* Run
® Suspend
4.7.1 Run Icon
m When you close the Collector window during data collection,
i the icon displayed is an animated icon. The clock hands rotate
continuously to indicate that data collection is in progress.
Collector

The animation of the icon can be turned off.

To turn off the animation:

4-38 Performance Tuning an Application—December 1993

4

¢ Choose Debugger Props from the Props button of the Debugger window
The Properties window contains a toggle button for Collector Icon
Animation (on/off).

When animation is turned off, the hands of the clock do not rotate; however
the time tick marks and the clock hands will be visible when data is being

collected.

4.7.2 Suspend Icon

2

Collector

When you close the Collector window and the data collection
process has been stopped or suspended, the icon is displayed
as a clock without time tick marks or clock hands to indicate
that data collection is inactive.

If you decide to quit the Collector window while data collection is in progress,
then the Collector stops collecting data at that point.

To quit the Collector, you can use one of the following methods:

¢ From the Collector window, choose Quit.

+ In the Debugger window, type: collector quit

Getting Started with the Collector 4-39

i
I~

4-40 Performance Tuning an Application—December 1993

Getting Started with the Analyzer 5

This chapter describes the components of the Analyzer and how to activate
this tool. It also describes the performance analysis options offered by the
Analyzer.

This chapter is organized into the following sections:
® “Activating the Analyzer” on page 5-41
® “Loading an Experiment” on page 5-43

® “Choosing Data Types” on page 5-44
5.1 Activating the Analyzer

The displays provided by the Analyzer allow you to view the
data during the analysis stage of performance tuning. In the

analysis stage, you have the opportunity to examine different
fnalyzer hypotheses about your application behavior and to focus on

the areas where performance problems are occurring.

The Analyzer provides analysis options such as:
® Viewing the data of interest in a variety of displays

® Exporting the collected data into a format that can be read by other
programs

® Generating a summary report of the collected data

5-41

1]l
o1

To activate the Analyzer:

¢ Double-click on the Analyzer icon located in the SPARCworks Manager.
The Analyzer window is displayed as shown in Figure 5-1.

T[] Analyzer K
[File v} (View #) [Props w) ¢ Civitd Smittie. | Boter [@ Pre-ma: Tiws D
e plays 133 Liss#E E
o los: I -0y 1

v s
Mot en expariment K

Figure 5-1 Analyzer Window

Until an experiment is loaded, some of the buttons of the Analyzer are inactive
and cannot be selected. The buttons are shaded gray to indicate that they are
inactive.

Note - You can also simultaneously activate the Analyzer and load an
experiment. Refer to Section 5.2, “Loading an Experiment,” for details.

5-42 Performance Tuning an Application—December 1993

o1
1]

5.2 Loading an Experiment

You can load an experiment in three ways. One method loads the experiment,
while the other methods simultaneously activate the Analyzer and load the
experiment.

To load an experiment:
1. Choose Load from the File button menu.

2. Double-click on the directory and then double-click on the experiment
name listed in the scrolling list.
Alternately, you can type the directory and experiment name in the Name
field and click on Load or press Return.

| a=1H Load Experlment b

Directury: [4]/examples

" Raot

£ 500S

[sert_new.1.er
) G

7 blEmaps

7 Bilecks..er | ([
[detnia.ar

[ar_axporti.er =
[} parf.1.8¢
] bast

rame: hlocks 1,81,

L o

Other methods for loading an experiment are to simultaneously activate the
Analyzer and load the experiment.

¢ From the keyboard:
Go to the directory that contains the experiment file that you want to
examine; type: analyzer experiment_name

¢ From the File Manager:
Drag the icon of the experiment file and drop it into the Drop Target in the
Analyzer window.

Getting Started with the Analyzer 5-43

1]l
o1

The default display of the Analyzer is the Overview display. Once the
experiment is loaded, the Analyzer automatically displays the Overview
display. The Overview display allows you to quickly identify overall
performance problems in the application.

The other displays of the Analyzer are:

® Histogram and Cumulative Histogram
® Address Space
® Statistics

These displays provide a more detailed analysis. Use the Overview display to
do your initial examination of the data, and then use the other displays after
you have an idea of the performance behavior of your application.

For the other displays of the Analyzer, see the following chapters:

Chapter 6, “Overview Display,” for details about Overview.

Chapter 7, “Histogram Display,” for details about Histograms.
Chapter 8, “Address Space Display,” for details about Address Space.
Chapter 9, “Statistics Display,” for details about Statistics.

To delete an experiment, refer to Deleting an Experiment, in this Chapter.

5.3 Choosing Data Types

The Analyzer supports nine Data types in which to view, display, and analyze
your application.

5-44 Performance Tuning an Application—December 1993

o1
1]

To choose a data type:
Data: Process Times

-—H ¢ Click on the Data button and then
(Process Times y choose a data type from the menu.

User Time

1f0 Tirme

System Time

Text Page Fault Time
Data Page Fault Time
Progratm Sizes
Working set

Execution Statistics

Each data type has specific displays; the data type you choose determines the
display you can view. Some displays can be broken down into units for
viewing performance data. For some displays, certain data must be collected
by the Collector. See Chapter 10, “Doing More with the Collector,” for details.

After you choose a data type to view, choose a display, and when applicable, a
unit to view in the display. When a unit is not available for a particular
display, the Unit button is shaded gray to denote that it is not active or
selectable. In the following example, the data types selected are Process Times,
which displays the Overview display and Execution Statistics, which displays
the Statistics display. Notice that Unit is shaded gray because Unit types are
not available with the Overview or the Statistics displays.

Process Times
Display: [F] Overview EEEE 84 Jata type
Execution Statistics
Display: [7] Statistics Hippdin 84 data ype

Getting Started with the Analyzer 5-45

1]l
o1

Some data types offer more than one display in which to view the experiment
data and those displays offer more than one unit type. In the following
example, the data type selected is User Time; it has several displays and unit
types for viewing experiment data.

Display: Histograrm Unit: | Function | Module |Segment

samples: Histogram

User Time

. : -
Curmulative Histogram data type

The following sections discuss the available data types, their associated
displays, the units that can be viewed in the display, and the required data
collection parameters of the displays.

5.3.1 Process Times

The Process Times data type is the default data type of the Analyzer; it
provides information for the Overview display, which displays the occurrence
of process state transitions made by the application.

When an application executes, it goes through different process states. The
Process Times data type viewed in the Overview display shows the time spent
by the application in process state transitions. When an application executes a
system call, a transition from the user state to the system state occurs. Once
the application is in the system state, it can also undergo other state transitions,
such as suspend, wait, lock, and sleep, before returning to the user state.

During the process of data collection, the system records a time stamp
whenever a state transition occurs. The system also computes the time
difference from one state transition to another state transition and accumulates
the times attributed to each state. The time difference is added to the state that
has just been completed. For detailed information about the process states that
you can examine in the Overview display, see Section 6.5, “Sample Properties
Window,” on page 6-63.

5-46 Performance Tuning an Application—December 1993

o1
1]

5.3.2 User Time

The User Time data type provides information about the time spent in the user
process state that occurs from the execution of instructions in the application.
The displays, the units, and the required data collection parameters for the
displays are shown in Table 5-1.

Table 5-1 User Time Displays

Data Display Unit Data Collection
Type Type Type Parameter
User Histogram Function PC

Module PC
Segment PC

User Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack

5.3.3 1/0O Time

The 1/0 Time data type provides information about the time the operating
system spends waiting on 1/0 operations, such as writing to a disk or tape.
The available displays, the units, and the required data collection parameters
for the displays are shown in Table 5-2.

Table 5-2 1/0 Time Displays

Data Display Unit Data Collection
Type Type Type Parameter
170 Cumulative Histogram Function PC and Stack

Module PC and Stack
Segment PC and Stack

The 1/0 data type does not display a Histogram because a Histogram for 1/0
Time would show all the functions, segments, and modules in the application,
but their value would always be 0.

Getting Started with the Analyzer 5-47

5-48

5.3.4 System Time

The System Time data type provides information about the time the operating
system spends executing system calls. The available displays, the units, and
the required data collection parameters are shown in Table 5-3.

Table 5-3 System Time Displays

Data Display Unit Data Collection
Type Type Type Parameter
System Histogram Function PC
Module PC
Segment PC
System Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack

5.3.5 Fault Time

The Analyzer monitors two fault time data types:

® Text Page Fault Time—provides information about the time spent faulting

in text pages.

® Data Page Fault Time—provides information about the time spent faulting

in data pages.

The available displays, the units, and the required data collection parameters

are shown in Table 5-4.
Table 5-4 Fault Time Displays

Data Display Unit Data Collection
Type Type Type Parameter
Text Page Histogram Function PC
Module PC
Segment PC
Text Page Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack

Performance Tuning an Application—December 1993

o1
1]

Data Page Histogram Function PC
Module PC
Segment PC

Data Page Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack

5.3.6 Program Sizes and Working Set

The Program Sizes and Working Set data types provide information that allows
you to examine the size of your application and helps you to establish the

specific memory requirements of the application.

Program Sizes describes the sizes in bytes of the functions, modules, and

segments of the application.

When the working set is too large, the application might be paging text or data
pages, or it might be paging both text and data pages. The Working Set data
type allows you to look at the reference behavior of both text pages and data
pages. The available displays, the units, and the required data collection

parameters are shown in Table 5-5.

Getting Started with the Analyzer

5-49

Table 5-5 Program Sizes and Working Set Data

Data Display Unit Data Collection
Type Type Type Parameter
Program Sizes Histogram Function Overview (default)
Module Overview (default)
Segment Overview (default)
Working Set Address Space Page Working Set

Segment Working Set

5.3.7 Execution Statistics

The Execution Statistics data type is similar to the Process Times data type in
that it provides an overview of the application behavior. The only data
collection parameter required to view this display is overview data, which is
the default data collection parameter of the Collector. You do not need to
specify a data collection parameter to view this display.

5.4 Deleting an Experiment

5-50

Use the Delete command to delete an experiment. Refer to the illustration on
the next page. To delete an experiment, select the File menu in the Analyzer.

Select Delete which activates a File Chooser window. Then choose from the list
of experiments. When you have selected an experiment , click on the Delete
button in the File Chooser. At this point, the Analyzer asks you to confirm the
deletion of the experiment. If you confirm the deletion, the experiment is
deleted. Deletion of the experiment includes the pointer file, the hidden
directory, and all the files associated with the experiment.

Performance Tuning an Application—December 1993

o1
1]

| =hefanl - 70 Indcs b l
rohrhach® 5
[=1 Analyzar f
S (iew T (Praps Ty o Toime mustis b patie [G) e Tines DI
- File h
Lead... - Delete Experl ment K
Exat Directury: [{] fusrfsroisyefaxamplas
N =
H [Goup & level *
Frln gy ClBlecks
] Freeway hd
SCCE
SRR L TOvErHY O
HEMEE o
L =l
Glepbag i) Liguia: I
Fnpples! T of emparlment
2 T
L A
ﬂ
=

Getting Started with the Analyzer 5-51

5-52

Performance Tuning an Application—December 1993

Part 3—Reading the Displays

Overview Display 6

This chapter describes the components of the Overview display and the
features for selecting and displaying performance data.

This chapter is organized into the following sections:

* “What Is the Overview Display?” on page 6-55

® “Changing the Width of the Sample Column” on page 6-59
® “Selecting and Displaying Samples” on page 6-61

® “Overview Display” on page -55

®* “Sample Properties Window” on page 6-63

® “Time Line” on page 6-66

6.1 What Is the Overview Display?

The default display of the Analyzer is the Overview display. For each sample,
the display shows the amount of time the application spends in different
process states. The information needed to produce this display is always
generated by the Collector during the data collection process.

The Overview display:

® Provides a high-level overview of the performance behavior of the
application.

6-55

1]l
(@)

® Provides data on how the application execution time breaks down into the
different performance areas, allowing you to quickly identify CPU
bottlenecks, 170 bottlenecks, or paging bottlenecks.

® Shows the changes of the application performance behavior during
execution. For example, the beginning part of the execution might be 170
bound and the later part of the execution might be CPU bound.

Begin your analysis with this display. Once you have an understanding of the
performance behavior of your application, you can examine the application in
greater detail using the other displays of the Analyzer:

The Overview display consists of two areas (see Figure 6-1):

® Overview chart, including an execution time line
® Averages legend

Chart
'zl Analyzer - test1.or b
[[Fila v} (View) [Props #) (Creats Mapfile..] Data: [E] Process Times D
E 1 2 5 4 5 & 7 B 8 1o 11 12 13 4 15 1| sverages
- T T | (EEE | (B TF

S1% Usar
io% Data Fault

38416% Gleep

17% Suspand

. . [lex other
Time Line
@l | | lo] lo] | lo] | lo] | lo] |
1 I [t | I I I I I I

3 9 10 11 12 13 14 15 16 1¢¥ 1B 19 20 21 32 23
==

(T Twj [

Displaye [F] Owerview [E:]
samples: 1-1E (—— O] e

a 1003

Figure 6-1 Overview Display

6-56 Performance Tuning an Application—December 1993

(@)}
1]

6.1.1 Overview Chart

6.1.1.1

6.1.1.2

The Overview chart contains numbered sample columns that are made up of
segmented bars.

sample

" 1 - i i
sample < - - segmented
columns | bars
D D
\ L]

Sample Columns

The columns represent the individual samples collected during an experiment.
The columns are located above the Time Line (see Figure 6-1), which represents
real time of the experiment.

Segmented Bars

The bars that make up each column represent the different performance
problem areas. The height of each bar is a proportional representation of the
time spent in one of the performance problem areas.

— A white color bar denotes the Others category.
Performance problems that are too small to display are put
into this category. The Analyzer determines which
problems are too small to display.

To see exactly what performance problems are contained in Others, select the
sample column that contains it and view it in the Sample Properties window.
See Section 6.3, “Selecting and Displaying Samples,” on page 6-61.

The Analyzer uses a fixed shading scheme; the shade that represents a specific
performance area is consistent across all the sample columns in the experiment
and is also the same shade in other experiments.

Overview Display 6-57

6-58

6.1.2 Averages Legend

The Averages legend displays the details of a sample or a combination of
samples. In the Averages legend, you can examine the percentage of time
spent in each of the performance problem areas that are contained in the
samples you select from the Overview chart. You can select one sample, a
combination of samples, or all the samples contained in the experiment. If you
select more than one sample, then the Averages legend shows the average for
the combination of samples you selected.

Note — The percentages listed in the Averages legend are rounded off to the
integer; however, the exact values are shown in the Sample Properties window.
For details about the Sample Properties window see “Sample Properties
Window” on page 6-63.

In the following example, one sample is selected (sample 11). Notice that the
Averages legend shows User as 10%, but the Sample Properties window shows
the exact value, which is 10.2%.

2= sample Fenpertles

fverages Smnples: 11 &
Start Time: 1B.0Z
End Tima: 19.07
Duratinn {secd): 105

Process Timas {sac)

3% User User: 0,35 (33.6%]
Syotem: 010 (0.9%)
10% System Trap: Q01 §1.2%)

Teoxt Fault .19 {16.8%]
Data Fanle ©.21 19.7%
IFQ: Q.00 (003

17% Text Fault Luch Waik .00 00%)
sleep: ©.09 (B.5E)
Suspend: Q05 (3,53
Idle: 005 {5.9%)

20% Data Fault PRrameters:
Oyarelew Daka
8% Sleep Stack Profiling msalutien 10 ms

Warking Set Data

12% Other

Performance Tuning an Application—December 1993

6.2 Changing the Width of the Sample Column

The Overview display provides two column width options, fixed and
proportional, for displaying the individual sample columns.

To set the column width:

Column widths

Fized

Proportional

6.2.1 Fixed-Width Columns

If you choose Fixed, then the width
(see Figure 6-2).

¢ From the View button menu, choose
Column widths (Fixed or
Proportional).

of each sample column is identical in size

'zl Analyzer - test1.or b
[[Fila v} (View) [Props #) (Creats Mapfile..] Data: [E] Process Times D
E 1 2 3% 4 & & 7 B 9 19 11 12 13 14 15 1

= R T R JEEE | T e |

fBrages

1% LUsar
& Daeta Fault

85816% Sleep

'I'r‘!d Sucpand
[les other
@| | | lo] lo] | lo] | lo] | lo]
1 I I | I | I | I It
3 9 10 11 12 13 14 15 15 1¥ 1B 19 20 21 3r 23
==
IGT Tr [

Displaye [F] Owerview

samples: 1-1E

[E:]

(— 1 cf | e

L

a 1003

Figure 6-2 Overview with Fixed Widths

Overview Display

6-59

1]l
(@)

Because the size of the sample columns is identical, Fixed shows more samples
in a given view of the Overview display. Also note that the Time Line is
nonlinear in the fixed-width mode.

6.2.2 Proportional-Width Columns

If you choose Proportional, then the width of each sample column is
proportional to the duration of the sample as it occurred during the data
collection process (see Figure 6-3). The Time Line is more linear in the
proportional-width mode.

= Analyzer — test.1.er "l
[[Fila v} (View) [Props #) (Creats Mapfile..] Data: [E] Process Times D

1E7 1E4 168 170 171 172 173

174 fBrages

:

173 176 177 1TB 17

16 A7 19 20 21 232 a5 227 229 230 331 2az
=
0 [Ir] (
Displaye [F] Owerview [E:]
samples: 173, @ v afexparimant
a 1003
L =

Figure 6-3 Overview with Proportional Widths
Because the size of the sample columns are unequal, proportional-width mode

provides a visual comparison of the duration of the samples in relationship to
each other.

6-60 Performance Tuning an Application—December 1993

(@)}
1]

= Whether you are using Fixed or Proportional column width,
you are not able to view all the samples of an experiment at
E a given time because the experiment can contain numerous

samples. Use the scrollbars to bring the samples that are not

(Ll _I»] displayed into the view.

You can also enlarge the window to the limits of your screen by selecting and
dragging any of its corners; a larger window displays more samples.

6.3 Selecting and Displaying Samples

By selecting samples and viewing them in the Averages legend, you can
examine an individual sample or group of samples in more detail. If you
choose a sample column that contains an Others category, then you also obtain
information about what performance problems are contained in that Others
category.

You can view additional data about the selected samples in the following
places:

® Averages Legend on page 58

® Sample Properties Window on page 63
To select samples, do one of the following:

¢ Use the mouse to select samples from the Overview display.
Point and click on the sample column that you want to select. You can
position the pointer anywhere on the column. The mouse functions for
select and adjust (toggle) operate per the OPEN LOOK GUI.

You can click on more than one column; however, if you click on one that is
already selected, then that column becomes deselected.

Note - You can select one sample, or a combination of samples, but you cannot
select a portion of a sample.

When the experiment is initially loaded, the Overview is displayed with all
samples selected. Once you make your first sample selection, all the other
samples are deselected.

Overview Display 6-61

6-62

¢ Choose Select All or Select None from the View menu to select or deselect
all samples in the experiment.

¢ Use the keyboard to type your sample selection in the Samples text field.
Type the number of the sample in the Samples text field located in the
bottom left corner of the Analyzer window; press the Return key after you
finish typing your sample selection.

Sample selections can be any combination, such as those denoted in the
following examples:
Samples: 2

Samples: 4,7

Samples: 1,3,5-8

In the first example, one sample is selected (sample 2). In the second
example, two samples are selected (samples 4 and 7). In the last example,
six samples are selected (samples 1, 3, 5, 6, 7, and 8).

When you select a sample by clicking on the sample in the Overview display,
the number of that sample also appears in the Samples text field.

When you select a column, either by clicking on it in the Overview display or
by typing its number into the Samples text field, that column moves up and
over to the left of its original position and has a shadow, giving it a
three-dimensional appearance to indicate that it is selected.

selected columns

LI .

Performance Tuning an Application—December 1993

(@)}
1]

6.4 Experiment Scale

When you select a sample, or a group of samples, the Analyzer displays the
time relationship of your sample selection as it relates to the entire experiment.
The amount of time is displayed in the Experiment Scale located in the lower
right corner of the Analyzer window (see Figure 6-1). The following are
examples of sample selections along with their time displays.

Samples: _2 @ of experiment
0 100%

samples: _4:7,11 w0 of experiment
0 100%

Samples: _1,3,5-14,22 (—) of experiment
0 100%

The scale allows you to focus on the details of an experiment. Suppose for
example, you have an experiment with 1000 samples, and each sample is 1
second long. You decide to examine only sample 99 of this experiment and
find that 170 time is 100% of sample 99. From this data, you might conclude
that 170 is a major bottleneck. Next, you select all the samples of the
experiment to examine and find that 1/0 time over the entire experiment is
only 1%. From this data, you decide that 1/0 is not a major bottleneck, but
only a dominant factor in sample 99.

The scale is a concise reminder of the perspective that you have on the data.
When you look at the aggregate data, 1/0 is 1% of the experiment time;

however, when you look only at sample 99, you see that 1/0 is 100% of the
sample time.

6.5 Sample Properties Window

This window allows you to examine a sample or a combination of samples in
more detail. The Sample Properties window provides information only; you
cannot enter information into this window (Figure 6-4).

Overview Display 6-63

1]l
(@)

¢ To activate the Sample Properties window:Click on the Props button in
the Analyzer base window.

2= sample Fenpertles

Sanples: 11 [k

Start Time: 1B.02
End Tlma: 1307
Yersioh Duratlan (sec): 105

Process Timas {sac)

User: 0,35 (33.6%]
Syotem: 010 (0.9%)
Trap: @01 §1.2%
Teoxt Fault .19 {16.8%]
Data Fanle ©.21 19.7%
IFQ: Q.00 (003

Luch Waik .00 00%)
sleep: ©.09 (B.5E)
Suspend: 005 (@.5%)
Idle: 005 {5.9%)

Parameters:
Owarylew Data
Stack Prefiling, msalukivn 10 ms
Warking Set Data

Figure 6-4 Sample Properties Window

The Sample Properties window provides detailed information about the
selected sample(s), such as:

® Current sample selection and the time relationship of the sample selection
as it relates to the entire experiment

Start time of the sample

End time of the sample

Duration of the sample

Process Times (see Figure 6-4). Process Times includes ten process states:

User—the time spent executing program instructions.
System—the time the operating system spent executing system calls.

Trap—the time spent executing traps (automatic exceptions or memory
faults).

Text Fault—the time spent faulting in text pages.
Data Fault—the time spent faulting in data pages.

1/O—the time spent waiting on input and output operations, such as
writing to a disk or tape.

6-64 Performance Tuning an Application—December 1993

6

Lock Wait—the time spent waiting for lightweight process locks to be
released

Sleep—the time the program spent sleeping (due to any cause other than
Text Fault, Data Fault, 170, or Lock Wait).

Suspend—the time spent suspended (includes the time spent in the
Debugger when it encounters breakpoints). A suspended state can be
caused by another process that is running, job control, or execution of the
suspend command, lwp_stop

Idle—the time spent waiting to run while the system is busy.

® Parameters (data collection parameters of the sample)

The Sample Properties window lists the data collection parameters that are
collected for each sample. There are four data collection parameters;
however, the sample example in Figure 6-4 shows three because that
particular sample contains only three data collection parameters.

Overview—(default) collects resource usage and process real time
performance data.

PC—(program counter) collects profiling data.
PC and Stack—collects return addresses on the call stack.
Working Set—collects memory usage data.
See Chapter 4, “Getting Started with the Collector,” and Chapter 10, “Doing

More with the Collector,” for detailed information about the data collection
parameters.

Note — To obtain information about what performance problems are contained
in an Others category, select a sample column that contains an Others category;,
then view the sample data in the Properties window.

You have two ways in which to select samples:

®* Type in the number of the sample or group of samples in the Samples text
field of the Analyzer window.

® Select samples by clicking on the sample column in the Overview display.

The number of the sample or samples you select is displayed in the Samples
text field of the Sample Properties window. You cannot change the sample
selection in the Sample Properties window.

Overview Display 6-65

1]l
(@)

6.6 TimeLine

6-66

For detailed information on selecting samples, see Section 6.3, “Selecting and
Displaying Samples,” on page 6-61.

The Time Line is the x-axis of the window display and is made up of glyphs
and tick marks that specify details about the individual sample columns.

If you have the column width set for fixed width, then the tick marks are also
equal, like fixed column width samples, in size and spacing.

e

£
i
£

L

.@' | | | | | | | | | | | | | | |

0 2 4 2 9 13 15 18 20 21 22 25 29 32 33 37
Figure 6-5 Time Line with Fixed Width

If you have the column width set for proportional width, then the tick marks
are also proportional, like proportional column width samples, in size and
spacing. With proportional column width, the tick marks are a proportional
representation of how long it took to collect the performance data for that
sample (sample duration).

e
P L
R

Figure 6-6 Time Line with Proportional Width

Performance Tuning an Application—December 1993

(@)}
1]

The glyphs and tick marks represent the following:

The time clock glyph is not selectable. It serves as a visual reference
@ that the information present in this area deals with time.

| A thick tick mark indicates the origin of the Time Line.

| A thin tick marks denote sample boundaries, the beginning and end
of a sample.

| > A tick mark with an arrow is placed on the line at the end of the last
sample, which is also the end of the Time Line.

Note — The number that appears at the end of a tick mark is the time that
elapsed since the start of the experiment. The number is rounded-off to the
nearest integer.

Overview Display 6-67

6-68

Performance Tuning an Application—December 1993

Histogram Display 14

This chapter describes the components of the Histogram and the Cumulative
Histogram displays, and the features for selecting and displaying the
performance data.

This chapter is organized into the following sections:
* “What Is the Histogram Display?” on page 7-69

® “Sorting the Histogram” on page 7-75

® “Searching for Specific Names” on page 7-77

* “Viewing Segments” on page 7-78

® “Selecting and Displaying Samples” on page 7-79

7.1 What Is the Histogram Display?

The Histogram provides an overall view that allows you to visually examine
the components of the application to help you detect what might be causing
performance problems. In Chapter 6, “Overview Display we saw how the
Overview display is used to identify the types of bottlenecks that the
application might experience, for example, User Time (CPU) bottlenecks.

By using the Histogram display, you can find where the application is
spending its user time. By examining the performance data of your application
in a Histogram you can relate the CPU execution time to application
components.

7-69

7-70

The following histograms are available in the Analyzer:

® Function
® Module
® Segment
® Cumulative

7.1.1 Histogram by Function Display

This display is the default histogram display. Use this display to find the
amount of time the application spends executing functions. For example,
suppose you want to examine the user time performance area of your
application because you suspect a CPU bottleneck. By viewing the user time
as a Histogram by Function display, you can identify the function or set of
functions in which the application is spending the majority of its time
executing. This function or set of functions is usually the first target to
consider for tuning to increase the performance of your application.

7.1.2 Histogram by Module Display

This display profiles the amount of time spent executing modules in the
application. Sometimes an application has too many functions, so its
performance behavior cannot easily be understood when viewing it as a
Histogram by Function. For this situation, the Analyzer provides higher levels
of data aggregation. One of these levels is a Histogram by Module display. In
this display, all data for a single source file (a module) is aggregated together.
In programming practice, related functions are grouped to a single source file,
so the module level of aggregation usually provides a more concise
representation of the performance activity of the application than does the
Histogram by Function display.

If any part of the executable, including shared libraries, is not compiled with
the -g option, then the Debugger may not have enough information to
attribute what functions are contained in certain modules. The Debugger, by
default, attributes these functions to an unknowm module.

Performance Tuning an Application—December 1993

\I
1]

seconds

00500 hand.o
00700 funknow)
00100 blocko

Note — To ensure that the data in the module histogram is accurately
displayed, we recommend that you build your application using the -g option
See Section 3.1, “Building the Application,” on page 3-21.

7.1.3 Histogram by Segment Display

This display profiles the amount of time spent executing text segments in the
application. The highest level of aggregation displayed in the Histogram is the
segment. SunOS provides a feature for dynamically linking shared libraries
into a process at runtime. A typical C application may have two or more
segments. The first segment is the main application, which consists of
application specific code. The second segment is the C library (called

libc.so), and then any other shared libraries.

For example, the math library (libm.so) and the XView library

(libxview.so) are the remaining libraries. This segment level of aggregation
provides very coarse data and it is helpful and necessary to examine. It is not
unusual for an application to spend the bulk of its execution time in the code
of a shared library. There may be very little you can do to tune an application
when this is the case; however, the information is helpful when applied to your
entire performance-tuning effort.

7.1.4 Cumulative Histogram Display

The Histogram presents a general summary of the amount of time spent
executing functions, modules, and segments in the application. The
Cumulative Histogram shows the total amount of execution time spent by a
function, module, and segment in its relationship to other functions, modules,
and segments.

Cumulative Histograms are provided because a regular histogram based on PC
profile data does not always give you the information you need. For example,
suppose function A calls the strcp y() function 1,000,000 times for a total

Histogram Display 7-71

7-72

execution time of 10 seconds, and function B calls strcpy() one time for a
total execution time of 10 microseconds. In addition, the execution time in A
and B, excluding the time spent in calls to strcpy is one second each. In a
regular histogram, you would see execution times of 10.00001, 1.0, and 1.0
seconds for strcpy() , A() , and B() , respectively.

If you want the application used in this example to take 80 percent of its time
executing in 20 percent of its code, then you would want to tune strcpy() for
performance. However, since this time is a runtime in the standard C library,
you are not able to tune strcpy() because it has already been tuned. If you
were viewing this application in a regular histogram, then you would have no
additional information indicating as to whether you should tune A or B.

In the Cumulative Histogram, all execution time accumulated in a descendant
function is attributed to the parent function. In the example, strcpy time is
attributed to A and to B. If strcpy also calls some other function, such as X,
then the time spent in X is attributed to X, strcpy , A, and B. Assuming
strcpy does not call any other functions, the Cumulative Histogram would
show 11.0 seconds for A (from A itself, and calls to strcpy), 10.00001 seconds
for strcpy , and 1.00001 seconds for B (from B itself, and the call to strcpy).
The Cumulative Histogram value for strcpy is the same as the Histogram
value for strcpy , but the values for A and for B are dramatically different in
the Cumulative Histogram.

This information assists you in your performance-tuning efforts because you
now have enough information to conclude that A is a better target to tune than
is B to increase the performance of this application. You still are not able to
tune strcpy ; however, you may be able to tune the usage of strcpy by
tuning A for performance. You might change A to call strcpy fewer times, or
you might change the parameters of strcpy when you call it from A to
parameter values that take less time to process.

The Histogram and Cumulative Histogram displays are available for
examining the following data types:

® User Time—the time spent executing instructions in the application.

® |/O Time—the time spent performing input and output operations. Also,
the locations in the program that are doing input and output operations are
identified.

® System Time—the time spent by the operating system executing system
calls.

Performance Tuning an Application—December 1993

\I
1]

® Text Page Fault Time—the time spent faulting in text pages.

® Data Page Fault Time—the time spent faulting in data pages.

The data that you need to collect to view Histograms and Cumulative

Histograms is outlined in Table 7-1.

Table 7-1 Histogram and Cumulative Histogram Data Collection Requirements

Display Unit Data Collection
Type Type Parameter
Histogram Function PC

Module PC

Segment PC
Cumulative Histogram Function *PC and Stack

*PC and Stack data must be collected to view a Cumulative Histogram.

The Histogram display is composed of horizontal bars, numbers, and names

(see Figure 7-1).

Histogram Display

7-73

7-74

T f Analyzer — test 1oy 0

[Fils v} (View =) [Props v} { Create Mapfile..) Data: [F] User Time
Start Collachor.,
[
seconds
hd 204700 _ckart
4800 maln
204800 make_windwwlintchar**.chart)
9,BE00 lomd_hearlhg_blocks: put_anibleckE)
81800 aute_raededvold)
B:2EQ00 handianimatelpzint
56200 hendigraspib lockay
An800 button_precfunslgned longh
43600 hand; moveibleckB lvad_bearing_bleckE
31900 get_rld_ofib leckay
25200 leed_bearlhg_blacke:clear _topdeold)
06700 load_bearing_blockigek_s pameib leckEd
QEE0D loed_bearlng_block:make_spacachlocks)
0medn unsafe_astrearn:flus hivold)
0080 dAw_olinderiunsigned lenw peint print]
Qe estraamiflushivald
0nedn endifasreanna)
na eanc s . - J
I[EIE) 0
Display: [2) Cumulativa Hiskagram nit; |Functic|n | Medula |Sngmant |
samples: 1-15, (— s par|FIE At
a TO0%
L n

Figure 7-1 Histogram Display

®* Horizontal Bars—are a visual representation of the time the application
spent executing a function, module, or segment. In all the histograms, the
bars are sorted by value (time spent) starting with the longest bar, which
equals the highest value. You also have the option to display the names
alphabetically. See “Sorting the Histogram” on page 7-75.

®* Numbers—are specific to the histogram that you are viewing. For example,
if you choose to display User Time as a Histogram by Function, then the
numbers represent the amount of time spent executing the functions.

®* Names—are specific to the histogram that you are viewing. For example, if
you choose to display User Time as a Histogram by Function, then the
names are the function names in the source code of the application.

Performance Tuning an Application—December 1993

\I
1]

7.2 Sorting the Histogram

The functions, modules, and segments of the application can be displayed in
the Histogram and Cumulative Histogram either numerically (value) or
alphabetically (name).

To sort the Histogram or Cumulative Histogram:

Sart by |+ Choose Sort by from the View button
menu.

7.2.1 Sort by Value

Sort by Value is the default setting. This sorting order lists the highest value
first, providing a quick visual reference that identifies the functions, modules,
or segments with the largest values (see Figure 7-2). This type of sorting is
useful when you are concerned with execution time.

For example, suppose you are viewing a histogram by function and you want
to know which functions take the most amount of time or the least amount of
time to execute. Sorting by value puts the highest value first, followed by the
second most highest value, and continues to list all the values in decreasing
order.

seconds

204700 _start

204800 main

204600 make_window(int char®=:char+
9.6600 lead_hearing_block:put_onthlocks)
81900 auto_modeivoid

E.2600 handianimate(point)

S.E200 handigrasplhlocks)

40300 bhutten_prociunsigned long)

33600 handimeovelblock®, lead_bearing_blockss)
31900 get_rid_ofiblockss)

2.5300 lcad_hearing_hlock:clear_topivoid)

H oE7o0 lead_hearing_block:get_spaceiblocks)
{ o.EE00 load_bearing_hlock:make_spacelhlockss)

Figure 7-2 Histogram Sorted by Value

Histogram Display 7-75

1]l
\l

7.2.2 Sort by Name

Sort by Name alphabetizes the functions, modules, and segments, providing a
visual reference that you can use when comparing samples within the
experiment, or when comparing two experiments (see Figure 7-3).

For example, suppose you have two experiments and you are examining their
user time performance area in a Histogram by Function. If you use Sort by
Name, then you can easily compare the same functions in the two displays.
Whereas, if you used Sort by Value, then functions may be listed in completely
different orders, making visual comparison difficult.

seconds
é 0,0100 lead_hearing_block:find_spaceiblocks)
06700 lead_hearing_block:get_spaceiblocks)
0,0000 lead_hearing_hlock:is_load_bhearing{veoid)
0,0000 lead_hearing_hlock:is_load_bhearing{veoid)
0,0000 lcad_hearing_hlock:lcad_bearing_blockichars
0,0000 lead_hearing_hlock:lead_bearing_blockiveoid)
H@ o0.5600 lead_hearing_hlock:make_spaceiblocka)
0,0000 lcad_hearing_block:print_supported_blocksiy
9.6600 lead_hearing_block:put_onthlocks)
0,0000 lead_bearing_blockiremeove_supported_block
0,0000 lead_hearing_hlockisupported_blocks{void)
204800 main
204600 make_window(int char®=:char+

Figure 7-3 Histogram Sorted by Name

If your application is written in C++, then you can also display the Histogram
and Cumulative Histogram by function name and its argument (Long) or just
the function name (Short).

To display names for a C++ application:

Narnes E ¢ Choose Names Long from the View
: button menu.

Examples of Names Long and Names Short displays are shown in Figure 7-4
and Figure 7-5.

7-76 Performance Tuning an Application—December 1993

7

When displaying Long names, use the horizontal scroll bar to bring into view
any information that exceeds the borders of the display window.

1.6900 handugrasplblocka)
14900 hand:imoveiblocks, load_bearing_blockss)
06400 lead_bearing_block:clear_top{void)

Figure 7-4 Long Names

1.6900 handugrasp
14900 handimove
06400 load_bearing_bleck:clear_top

Figure 7-5 Short Names

Histograms and Cumulative Histograms, whether they are displayed as Long
names or Short names, can also be sorted by Value or Name.

7.3 Searching for Specific Names

You can scroll through the information in the Histogram and Cumulative
Histogram searching for a specific function, module, or segment by using the
following methods:

¢ Scrollbars—move the information in the Histogram both horizontally and
vertically. The horizontal scrollbar is located at the bottom of the display,
and the vertical scrollbar is located on the right side of the display. See
Figure 7-1 on page 74.

® Find—searches for a text string. Use Find in Histograms and Cumulative
Histograms. The text you enter into this field can be a complete or a partial
text string of a function, module, or segment name. Find searches the
histogram until it finds the first occurrence of the text that you specified.

For example, if you search for bed, then Find identifies every occurrence of the
text string bcd, such as:

bcd
abcd
bcdstd
abcdstd

Histogram Display 7-77

The Find option is case sensitive. If you search for Bed, (upper case B) but all
occurrences of bcd begin with a lower case b, then Find does not recognize or
identify bcd as the text string for which you are searching.

To use Find:

¢ Choose Find from the View button menu. In the Find pop-up window,
type the text string of the function, module, or segment that you want to
search.

—H View a1 Find

MNew window.. sring:

({ FInd Forward § (Flnd Backweard)

Find has two options:

Find Forward
The Find Forward option searches forward for the text string from the line
of the histogram in which you are currently located. It also has a wrap-
around feature so that once it reaches the end of the histogram, it continues
to search for the specified text string.

Find Backward
The Find Backward option searches backward for the text string from the
line of the histogram in which you are currently located. It also has a wrap-
around feature, so that once it reaches the beginning of the histogram, it
continues to search for the specified text string.

For both options, Find repaints the histogram, moving the display so that the
specified function, module, or segment searched for is now at the top of the
histogram display. If the first text string that Find identifies is not the text
string that you want, then click on Forward or Backward to continue the
search. The sorting order (by value, or number) remains the same.

7.4 Viewing Segments

7-78

You can view individual segments or a group of segments. The Segment
Coverage option shows a list of all the text segments that are part of the
application. The text segment of the application is one segment, and there are

Performance Tuning an Application—December 1993

7

additional segments for each shared library that the application links with.
The default Segment Coverage is the text segment of the application and all
the shared libraries.

To change the Segment Coverage:

il Segment Cnverage |+ Choose Segment Coverage from the
Sepmants: File button menu in the Analyzer
g base window.

Aqut
Susrrlibdlibve s .
SusrflibAlibintlse.1 Apply—completes and applies your

Fusrrlibdlibosad : :
ruerfliblibdleo] selection to the display.

Reset—restores the settings that
existed before the last apply.

0

¢ Apply (Reset) ¢ Select Al Select All—selects all the segments
contained in the application code.

Note — The segment selection affects the display in all the windows in which
you are viewing Histograms or Cumulative Histograms.

Once you choose a segment or group of segments, only those functions and
modules contained in those segments are displayed in the Histogram or
Cumulative Histograms. The functions and modules contained in the
segments you are viewing can also be sorted by value or by name using the
Sort option, and you can also search for specific function and module names
using the Find option.

7.5 Selecting and Displaying Samples

You can select a sample or a group of samples to view in a Histogram or a
Cumulative Histogram display. When you select a specific sample or group of
samples, the bars representing functions, modules, and segments (and their
respective values) now represent the values of that particular sample or group
of samples, as opposed to representing the entire experiment.

For example, suppose you have just finished viewing sample 11 in the Selected
Column Legend of the Overview display, and you have also viewed sample 11
in the Sample Properties window. The examination of sample 11 shows that

Histogram Display 7-79

7-80

most of the application time is spent in the 1/0 performance area. To examine
the performance behavior of sample 11 in more detail, select sample 11 and
view the 1/0 performance as a Histogram by Function.

You may also want to view sample 11 as a Histogram by Module and as a
Histogram by Segment, and also in a Cumulative Histogram. Isolating and
examining sample 11 can help identify which functions, modules, or segments
are using 170 time.

To select samples, do one of the following:

¢ Use the mouse to select samples from the Overview display.
Point and click on the sample column that you want to select. You can
position the pointer anywhere on the column. The mouse functions for
select and adjust (toggle) operate per the OPEN LOOK GUI.

You can click on more than one column; however, if you click on one that is
already selected, then that column becomes deselected.

Note — You can select one sample, or a combination of samples, but you cannot
select a portion of a sample.

When the experiment is initially loaded, the Overview is displayed with all
samples selected. Once you make your first sample selection, all the other
samples are deselected.

¢ Choose Select All or Select None from the View menu to select or deselect
all samples in the experiment.

¢ Use the keyboard to type your sample selection in the Samples text field.
Type the number of the sample in the Samples text field located in the
bottom left corner of the Analyzer window; press the Return key after you
finish typing your sample selection.

Sample selections can be any combination, such as those denoted in the
following examples:

Samples: 2

Samples: 4,7

Samples: 1,3,5-8

Performance Tuning an Application—December 1993

\I
1]

In the first example, one sample is selected (sample 2). In the second
example, two samples are selected (samples 4 and 7). In the last example,
six samples are selected, (samples 1, 3, 5, 6, 7, and 8).

When you select a sample or a group of samples, the Analyzer displays the
time relationship of your sample selection as it relates to the entire experiment.
The amount of time is displayed in the experiment scale. See Section 6.4,
“Experiment Scale,” on page 6-61 for detailed information.

Histogram Display 7-81

7-82

Performance Tuning an Application—December 1993

Address Space Display 8

This chapter describes the components of the Address Space display and the
features for selecting and displaying the performance data.

This chapter is organized into the following sections:
* “What Is the Address Space Display?” on page 8-83
® “Selecting and Displaying Pages” on page 8-86

® “Properties Windows” on page 8-89

® “Selecting and Displaying Samples” on page 8-91

8.1 What Is the Address Space Display?

The Address Space display helps you identify memory that is most valuable to
the application (modified and referenced pages). This display also identifies
memory that is unused because the experiment did not exercise all the
application functionality or because the application has dead code or memory
allocation problems. The display shows the following memory usage
categories:

®* Modified—a page that is written on during the execution of the application.
Modified pages may or may not be referenced.

® Referenced—a page that is read by the application or contains instructions
that have been executed by the application.

® Unreferenced—a page that is not modified and not referenced.

8-83

1]l
0]

You must collect Working Set data to view the Address Space display.

The Address Space display consists of columns that are made up of individual
squares (pages) or rectangles (segments), numbers, gaps, and a Legend (see
Figure 8-1). You can view the display in Units of Page or Segment.

Figure 8-1 shows Page unit and Figure 8-2 shows Segment unit.

Columns

T[] Analyzer — test1 .oy K
[File 7)) {View =) [Praps =) (Creats Mapfile..] Data: [F] Werking Set D
Y

A

=
: a0 10 20 30 40 S50 60 F0 80 90 AQ BO C4 DO ED Fo legend
E ooia__oo [EEEEts

ani4__on FEEE EE A Fed o reforencsd || Gaps
an1S__0n -

oG __o0 Unreferanad
Qp17__on i
QRI1E__on

Boia__on
Rows QR1a__Gn FEREEE RS o e s el e B

QR1B__00 |
onde__ano [EEEf
Qn10__oo
QRE__0)
a0t F__on
Qn20__on

1T T
Display: (7] address Space Ul m

samples: 1-250, (— " cof atparlmant

a 1003

%

| |

—

Figure 8-1 Address Space Display (Page)

8-84 Performance Tuning an Application—December 1993

00
1]

[T Analyzer — tastl.er T
[Flle @) { Wlew ¢ [Props) { Create Mapflle..) mate: [7] Werklng Set D
Start Collector...
T
' O 10 20 30 40 S0 60 70 30 30 A0 B0 CO DO EQ FO Legend
| oo1d__on |§ B adiiad
o01S__oo |8 B Referenced
QME__on 3
o017 on [Unraferancad
an1e__on |8
on1a__on 18

Figure 8-2 Address Space Display (Segment)

Individual squares or rectangles—represent pages (squares) or segments
(rectangles) in the address space.

Numbers—represent the address of the space the page occupies.

Sun systems use either 4 Kbyte or 8 Kbyte pages. The address of a page
is a multiple of 0X1000 (4 Kbyte in hexadecimal) or 0X2000 (8 Kbyte in
hexadecimal).

To calculate the number of pages per row divide 64 Kbyte by the page size
of your system.

If the page size is 4 Kbyte, then the number of pages per row is 16. If the
page size is 8 Kbyte, then the number of pages per row is 8.

The address of a page is obtained by combining the hexadecimal values of
the row and column that contains the page. For example, if the page you

are examining is in the fourth row (0004_ _00), third column (20), then the
address of that page is 00042000.

To verify the page size of your system, type: pagesize

The page size is noted in bytes: 4096 (4 Kbyte page) and 8192
(8 Kbyte page). For detailed information about pagesize |,
refer to the man page pagesize

Gaps—(shown as white space) represent a portion or region of the address
space that was not used by the application program.

Address Space Display 8-85

® |egend—is a reference that indicates the shades of the three different
memory usage categories that you can view in the Address Space display.
The Legend provides information only; the information contained in the
Legend cannot be selected.

8.2 Selecting and Displaying Pages

8-86

The Address Space display provides two viewing modes in which you can
examine the performance data: by page or by segment.

To select the viewing mode:

¢ Click on Page or Segment from the Unit

Unit: | Page | seament button

When viewing the Address Space as a Page or Segment, you have the
following options:

®* When viewing pages, you can also view the segment that contains the page.

®* When viewing segments, you can also view the pages contained in that
segment.

8.2.1 Viewing Pages

The pages viewing mode allows you to view an individual page and the
segment that contains that page. When you select a page, the page moves up
and over to the left of its original position and is shadowed, giving it a three-
dimensional appearance to indicate that it is selected.

| (e | | (e
N I I I I
mae | (e

To select a page:

Selected —P»
page

+ Position the pointer anywhere on the page that you want to select and
click the left mouse button.

Performance Tuning an Application—December 1993

00
1]

Note — Only one page can be selected. You cannot select a group of pages.
Once you select a page, the previous page becomes deselected.

You can also view the segment that contains a page.

HEE || | mNN

Selected —#»
page and

the segment
that contains
the page

To show the segment that contains the page:

¢ Keep the pointer on the page and hold down the left mouse button.
The segment containing that page is highlighted and remains highlighted as
long as you hold down the mouse button. When you release the mouse
button, the page remains selected, all the individual pages are again
displayed, and the segment is no longer visible.

8.2.2 Viewing Segments

The segment viewing mode allows you to view individual segments and the
pages that are contained in those segments.

When you select a segment, the segment moves up and over to the left of its
original position and is shadowed, giving it a 3-dimensional appearance to
indicate that it is selected.

Selected —p
segment

To select a segment:

+ Position the pointer anywhere on the segment that you want to select and
click the left mouse button.

Address Space Display 8-87

8-88

Note — Only one segment can be selected. You cannot select a group of
segments. Once you select a segment, the previous segment becomes
deselected.

If a segment starts in one row and continues into the next row and the segment
does not overlap itself, then a dotted line denotes its continuation. To denote
that a segment is being continued into the next row, a dotted line is placed at
the segment and a dotted line is placed at the beginning of the segment in the
next row. The arrows in Figure 8-3 point to where the segment stops and
where the segment is continued.

Segment

Segment
stopped

continued

Figure 8-3 Segment Continuation

You can also view the pages contained in the segment.

contains

To show the pages contained in the segment

¢ Keep the pointer on the segment and hold down the mouse button.
The pages contained in that segment appear and remain visible as long as
you hold down the mouse button. When you release the mouse button, the
segment remains selected and displayed, and the individual pages are no
longer visible.

Performance Tuning an Application—December 1993

oo
1]

8.3 Properties Windows

The Page (Figure 8-4) and Segment (Figure 8-5) Properties windows contain the
following information:

Address of the page or segment in hexadecimal

Size of the page or size range of the segment in bytes
Functions contained in the page or segment

Name of the segment

Note — The windows provide information only; you cannot enter any
information into these windows.

To activate the Page or Segment Properties window:

Address Space Display 8-89

1]l
0]

¢ Choose Selection from the Props button menu.

TS Page Properties

Address: OxEFFAB000
Size (bytes): 4095
Segment Name: Susrfopenwinflib/libttsod text

Functions

_Tt_redirect_table_ptri~_Tt_redirect_table_ptriveoid)
_Tt_redirect_table_ptr:_Tt_redirect_table_ptrivaid)
_Tt_redirect_tahle_makerivoid)
_Tt_redirect_table_xdr(£DR* _Tt_new™
_Tt_redirect_tahle_ptroxsdrixDR*)

| LI X[

If you are viewing pages, then the Page Properties window is displayed.

Figure 8-4 Page Properties Window

© Segment Properties

Address: OxEFSFOO00
Size (bytes): 35163 {min), 36864 (ma:x

Segment Name: Susrfopenwin/libflibolg=.so3 text

Functions

 —

olgs_draw_button

| olgs_draw _varheight_button

7] olgs_draw _menu_mark
olgs_draw_abbrev_button
olgx_stipple_rect

—/

If you are viewing segments, then the Segment Properties window is
displayed.

Figure 8-5 Segment Properties Window

8-90 Performance Tuning an Application—December 1993

oo
1]

8.4 Selecting and Displaying Samples

You can examine an individual sample or a group of samples to view in the
Address Space display. When you select a specific sample or group of samples,
the display shows the memory usage for that particular sample or group of
samples, as opposed to representing the entire experiment.

For example, suppose you have just finished viewing sample 11 in the
Averages legend of the Overview display, and you have also viewed sample 11
in the Sample Properties window. The examination of sample 11 shows that
most of the application time is spent in the 1/0 performance area. You then
select sample 11 and view it in the Address Space display. You might find that
the functions that are heavily used are not located on the same page.
Frequently called functions not located on the same page increase the size of
the working set, which can slow the application. Adjusting the location of
those functions so that they are located on the same page can improve the
performance of the application.

To select samples, do one of the following:

¢ Use the mouse to select samples from the Overview display.
Point and click on the sample column that you want to select. You can
position the pointer anywhere on the column. The mouse functions for
select and adjust (toggle) operate per the OPEN LOOK specification.

You can click on more than one column; however, if you click on one that is
already selected, then that column becomes deselected.

Note — You can select one sample or a group of samples, but you cannot select
a portion of a sample.

When you initially load an experiment, the Overview is displayed with all
samples selected. Once you make your first sample selection, all the other
samples are deselected.

¢ Choose Select All or Select None from the View menu to select or deselect
all samples in the experiment.

Address Space Display 8-91

8-92

¢ Use the keyboard to type your sample selection in the Samples text field.
Type the number of the sample in the Samples text field located in the
bottom left corner of the Analyzer window; press Return after you finish
typing your sample selection.

Sample selections can be any combination, such as those denoted in the
following examples:

Samples: 2

Samples: 4,7

Samples: 1,3,5-8

In the first example, one sample is selected (sample 2). In the second

example, two samples are selected (samples 4 and 7). In the last example,
six samples are selected, (samples 1, 3, 5, 6, 7, and 8).

Note — When viewing multiple samples, segments might overlap other
segments, obscuring them from view. Overlapping segments occur only when
the application code contains function calls to dlopen (3) and diclose (3),
which dynamically link and unlink segments.

The Address Space display does not draw overlapping segments. If an overlap
occurs, then the display draws the first segment only and does not draw the
overlapping segment. If your application dynamically links and unlinks
segments, then view individual samples to avoid overlapping segments.

When you select a sample or a group of samples, the Analyzer displays the
time relationship of your sample selection as it relates to the entire experiment.
The amount of time is displayed in the experiment scale. See Section,
“Overview Display,” on page -55 for detailed information.

Performance Tuning an Application—December 1993

Statistics Display 9

This chapter describes the information contained in the Statistics display. It
also describes the features for selecting and displaying performance data.

This chapter is organized into the following sections:
®* “What Is the Statistics Display?” on page 9-93
® “Selecting and Displaying Samples” on page 9-96

9.1 What Is the Statistics Display?

The Statistics display provides aggregate data about the performance and
system resource usage of the application. The Overview display also provides
aggregate data, but only process times. The other displays, Histogram,
Cumulative Histogram, and Address Space, show how the data is broken
down by program components, such as functions and pages. All other data
that does not appear in the other displays can be examined in the Statistics
display (see Figure 9-1).

This display provides information about the application attributes that are not
obvious or visible in any of the other displays of the Analyzer; it is particularly
useful when you have preconceived ideas about what the numerical value of
these attributes should be. You can compare the actual values to your expected
values. Some questions you might want to ask when comparing the values:

® Are any numbers very high or very low?

* Are any of the numbers out of the range of what you expected to see?

9-93

9-94

Some of the information provided in the Statistics display informs you about
the environment of your workstation that can affect the performance of your
application. However, any changes to improve performance cannot be done at
the application level. For instance, in the case of process swaps , a high
number can indicate that too many other processes are running, or that the
workstation has too little memory:.

These types of situations affect the performance of your application. You may
or may not be able to change any of these circumstances, but you can use the
information as a future reference when you might be able to influence the
environment of your workstation.

?E Analyzer — test.1.er "l

[[Fila v} { View) [Props #) (Creats Mapfile..] Data: [F] EHecutlen statlstles D

=
E Mint Pege Faults:
B Major Page Faults: 1045
Process Swaps: O
Inpuk blocks: @
Oukpuk blecks; O
Messages SEnks: 17
MBssag8s racalved: 48

Signals handled;

Waluntary cantedt sw lbches:

Irnealuntery contaxt cw bchas:

Sustam c@lls:

Characters af 1o

Totel Worklng sak slze (Pagesh

Manimum waorking sek size (Pages Samplak
Kinlmurn warking set clze (Pages/Sarnp)
Avarege werklng set slze [Peges/Sacond)
Tetal tesk Warking sak size (Pagesy;

=l Waelmurn text warking cet clze (PagesSarnb leh:

2E12
4833
13280
40717
2E3ZR3
3243
Er?d

I
184,322
E44
2549

(CaT Twi

samples: 1-250,

Display= (7] Statlstls wnlz E:]

(— 1 cf | e

L

a 1003

Figure 9-1 Statistics Display

The required data collection parameter for the statistics display is overview
data, which is the default data. Overview data is always collected on each
experiment; you do not need to set or change any of the other data collection

parameters.

Performance Tuning an Application—December 1993

(o]
1]

The following are definitions of the labels in the Statistics display:

® Minor Page Faults—the number of page faults serviced that do not require
any physical 1/0 activity.

® Major Page Faults—the number of page faults serviced that require
physical 170 activity. Pages serviced include page ahead operations by the
kernel. If this number is nonzero, then the overview display shows text or
data fault wait time.

For example, reclaiming the page from the free list avoids I/0 and generates a
minor page fault. Minor page faults occur during process startup as references
to pages that are already in memory. For example, if an address space has
faults on some executable or shared library, then the result is a minor page
fault for the address space. Executing a read or write to a file that is in the
page cache also creates a minor page fault.

If input blocks or output blocks are nonzero, then you might see 1/0 wait time
in the Overview display. The operating system kernel does caching of data
files; consequently, it is possible that all read and write system calls are
serviced by data files that are resident in memory. If this situation exists, then
the 1/0 wait time is zero.

® Process swaps—the number of times a process is swapped out of main
memory.

® Input blocks—the number of times a read() system call is performed on a
noncharacter or special file.

® Output blocks—the number of times a write() system call is performed
on a noncharacter or special file.

® Messages sent—the number of messages sent over sockets.
® Messages received—the number of messages received from sockets.

® Signals handled—the number of signals delivered or received.

Although signals are not visible in the other displays, the routines that
handle signals are visible. If for example, the Histogram display for the
routine that handles a certain signal shows a large time measurement, then
you may want to examine the routine more closely and reevaluate how it is
being used.

Statistics Display 9-95

Voluntary context switches—the number of times a context switch occurred
because a process voluntarily gave up the processor before its allotted time
is completed to wait for availability of a resource.

Involuntary context switches—the number of times a context switch
occurred because a higher priority process became runnable or because the
current process exceeded its allotted time.

System calls—the total number of system calls.

Characters of 1/O—the number of characters transferred in or out to a
character device or file by read and write calls.

Working set size (Pages)—the statistics for the total, maximum, minimum,
and average size of the working set.

Text Working set size (Pages)—the statistics for the total, maximum,
minimum, and average size of the text working set.

Non-text Working set size (Pages)—the statistics for the total, maximum,
minimum, and average size of the non-text working set.

9.2 Selecting and Displaying Samples

9-96

You can select a sample or a group of samples to view in the Statistics display.
When you select a specific sample or group of samples, the display now
represents the values of that particular sample or group of samples instead of
the entire experiment.

To select samples, do one of the following:

¢

Use the mouse to select samples from the Overview display.

Point and click on the sample column that you want to select. You can
position the pointer anywhere on the column. The mouse functions for
select and adjust/toggle operate per the OPEN LOOK GUI.

You can click on more than one column; however, if you click on one that is
already selected, then that column becomes deselected.

Note — You can select one sample, or a combination of samples, but you cannot
select a portion of a sample.

Performance Tuning an Application—December 1993

9

When the experiment is initially loaded, the Overview is displayed with all
samples selected. Once you make your first sample selection, all the other
samples are deselected.

¢

Choose Select All or Select None from the View menu to select or deselect
all samples in the experiment.

Use the keyboard to type your sample selection in the Samples text field.
Type the number of the sample in the Samples text field located in the
bottom left corner of the Analyzer window; press Return after you finish
typing your sample selection.

Sample selections can be any combination, such as those denoted in the
following examples:

Samples: 2

Samples: 4,7
Samples: 1,3,5-8
In the first example, one sample is selected (sample 2). In the second

example, two samples are selected (samples 4 and 7). In the last example,
six samples are selected, (samples 1, 3, 5, 6, 7, and 8).

When you select a sample or a group of samples, the Analyzer displays the
time relationship of your sample selection as it relates to the entire experiment.
The amount of time is displayed in the experiment scale. See Section 6.4,
“Experiment Scale,” on page 6-61 for detailed information.

Statistics Display 9-97

9-98

Performance Tuning an Application—December 1993

Part4— Advanced Performance
Tuning

Doing More with the Collector 10

In Chapter 4, “Getting Started with the Collector,” you learned the basics about
using the Collector, such as how to activate it and use the default settings. This
chapter describes the more detailed and advanced features of the Collector that
you can use for specifying and collecting data.

This chapter is organized into the following sections:
® *“Setting Breakpoints To Control Data Collection” on page 10-102
® “Setting Data Collection Parameters” on page 10-104

®* “The Profiling Timer” on page 10-107

Note — You cannot collect profile data on a set user ID or a set group ID
application. To collect data on this application, your user ID and group ID
must match the ID’s of the application.

For example, if you want to collect profile data on Blocks , then your user ID
must match evelynl

-r-sr-xr-x 1 evelynl 52952 Apr 23 10:36 Blocks

10-101

=10

10.1 Setting Breakpoints To Control Data Collection

10-102

Using breakpoints, whether performing continuous sampling or manual
sampling, allows for an even more detailed control of the information the
sample takes. Setting breakpoints is a more exact way of starting and stopping
a sample. This method of sampling requires more time and effort because you
need to set breakpoints in the application code.

In order to use breakpoints effectively, you must be thoroughly familiar with
the application code. When setting breakpoints, keep in mind the following:

® If your application is compiled using the -g option, then you can set
breakpoints in the specific areas of the code that pertain to the information
you want to collect. The breakpoints can be set at the beginning or end of a
function or on any line of code.

* If the application is compiled with the -O option, then you can only set
breakpoints on functions and not on specific source code lines. Refer to the
Debugging a Program manual.

For example, in Blocks, you could place a breakpoint just before the call to the
xv_main_loop f unction. This breakpoint allows you to bypass the
initialization process. When you turn on sampling, you collect performance
data on the interaction with the Blocks application that occurs between the
point after the initialization of the application to the point when you quit the
Blocks application.

T[] SPARCwrls Debugger — Rlochs

{ Program v) [Breakprint v) [Execufion v) [Sack 7)) [Oaf v) | Props) § About.)

Blrectors /home/jo/blocks2/sw_dev/usr/src/swiexamples/Blocks
stopped In Fle: window.co Funcilon: rneke_window Line: 353
Currently in File: [5 windaw.co Function: make_windoy Lines; 250-ZE4

B gz = Klreatell (display. drayable. GCForeground | GCFont | GCArchHode .
Eqc_weld;

=0 vv_wal n_loop (Franel:
LLTRE] (TRUEE
Eif {in_auto_model}
auto_nodef]

notify_skark [i: %

static block* First_block = 0;

‘_ﬂ'ﬂ‘—‘—-.__,_p—-_ﬂ—’_‘_'_

You can set breakpoints when using either the Continuous sampling mode or
the Manual sampling mode.

Performance Tuning an Application—December 1993

10=

® Setting breakpoints with Continuous sampling—provides a uniform view
of the application’s behavior. Using breakpoints with continuous sampling
provides a uniform view of a specific portion of the application behavior
because breakpoints designate specific areas in the code on which to collect
information.

® Setting breakpoints with Manual sampling—measures human interaction,
for example, the time it takes to choose a command from a menu or type a
command from the keyboard. Using breakpoints with manual sampling is a
more exact method of collecting this information.

To collect performance data using breakpoints:

1. Choose a sampling mode: Continuous or Manual.
2. Click on the Apply button.

3. Set breakpoints in the application code.

4. From the Execution menu of the Debugger, select Run.
Every time the Debugger encounters a breakpoint, the application process is
suspended. To continue the process, you must select Continue, Next, or
Step from the Execution menu of the Debugger.

In Manual mode, the data collected between the first breakpoint and the
second breakpoint is a sample. When you select Continue, Next, or Step, a
new sample is started.

In Continuous mode, samples are continuously collected at specified intervals.
For example, suppose you set continuous sampling at an interval of every 5
seconds. The sample contains data for either the entire sample period of 5
seconds or it contains data for the time it takes to encounter the first
breakpoint, even when that breakpoint is encountered before the sampling
interval is completed.

Doing More with the Collector 10-103

10

The following diagram illustrates a continuous 5-second interval.

=P (g = Breakpoints

— sample 1_H— sample 2 ——

1 1
1 1
1 2 3 4
0 5 e

sample 3

-

\1-_—|

(o]
S (O whem
o
=
o

start

Using breakpoints with Continuous sampling limits the scope of the collected
performance data because breakpoints encountered between the time interval
of the sampling period produce small samples. In the diagram, suppose you
are sampling the initialization period of the application. If you choose a
5-second interval and the application takes 10 seconds to initialize, then you
end up with a total of two samples. However, if you set breakpoints and those
breakpoints occur before the 5-second interval is completed, then you end up
with three samples.

In the diagram shown:

® Sample 1 occurs before the 5-second interval is completed because it
encounters a breakpoint.

® Sample 2 occurs during a 5-second interval because no breakpoint is
encountered.

® Sample 3 occurs before the 5-second interval is completed because it
encounters a breakpoint.

10.2 Setting Data Collection Parameters

10-104

Using the additional data collection parameters in the Collector gives you
more control over the performance data you collect. The Histogram,
Cumulative Histogram, and Address Space displays require that this
additional data be collected. These displays cannot be viewed in the Analyzer
unless one of the following performance data is collected:

®* Working Set
® Profiling (PC and PC and Stack)

Performance Tuning an Application—December 1993

10=

You can collect one, or a combination of the data collection parameters.
Choose additional data collection parameters after you have developed more
of an understanding of the performance behavior of your application.

The following sections describe the individual data collection parameters
available in the Collector and also contain a table outlining the data collection
parameter requirements of the displays in the Analyzer.

10.2.1 Working Set Data

The Working Set data collection parameter collects data that assists you in
answering questions such as:

®* How does the working set change over time?
® |s the application using pages efficiently?
® Which pages are accessed during a particular operation?

To collect Working Set data:

¢+ Choose Working Set from the Address Space setting in the Collector
Window.

Address Space: | Working Set | None |

Working Set data represents the process state address space as a series of
segments, each of which contains a number of pages. The data collected
describes the status of each page, and whether it was referenced or modified.
Table 10-1 shows the displays available for analysis when you collect Working
Set data.

If you select None, then Working Set data is not collected.
Table 10-1 Working Set Data Collection Parameter

Collection Display Unit Data

Parameter Type Type Type

Working Set Address Space Page Working Set
Segment Working Set

Doing More with the Collector 10-105

10

10-106

10.2.2 PC Data

The PC profiling data collection parameter is used for collecting data that
assists you in answering questions such as:

®* How much time is spent by the application in its execution of functions,
modules, or segments?

® What functions, modules, or segments are consuming
The most amount of time?
The least amount of time?

To collect PC profiling data:

¢ Choose PC from the Address Space setting in the Collector Window.

Profiling: | pc | PC and Stack | None |

Table 10-2 shows the displays available for analysis when you collect PC
profiling data.
Table 10-2 Profiling Data Collection Parameter

Collection Display Unit Data
Parameter Type Type Type
PC Histogram Function User, System,
Text and Data Page
Module User, System,
Text and Data Page
Segment User, System,

Text and Data Page

Note — You must collect PC profiling data to use the reordering (Create
Mapfile) feature of the Analyzer. For information on reordering you
application, see Section 11.3, “Reordering Your Application,” on page 11-114.

Performance Tuning an Application—December 1993

10=

10.2.3 PC and Stack Data

PC and Stack profiling data is used for a more elaborate analysis of the
application. The PC and Stack profiling data collection parameter collects data
that assists you in answering questions such as “How much time is spent by
functions in the application that call other functions?”

To collect PC and Stack profiling data:

¢ Choose PC and Stack from the Address Space setting in the Collector
Window.

Profiling: | pc | PC and Stack | None |

Table 10-3 shows the displays and performance problems available for analysis
when you collect PC and Stack profiling data.
Table 10-3 PC and Stack Profiling Data Collection Parameter

Collection Display Unit Data
Parameter Type Type Type
PC and Stack Cumulative Histogram Function User, System, 170,
Text and Data Page
Module System, 1/0,

Text and Data Page
Segment System, 1/0,
Text and Data Page

10.3 The Profiling Timer

The profiling timer is displayed when you choose either PC or PC and Stack
profiling data. The default value for the profiling timer is 10 milliseconds. For
example, the PC value (or the set of return addresses on the stack) is recorded
every 10 milliseconds, or 100 times a second. You can either use the default
value or set the value to produce a more detailed sample to meet your analysis
needs. See “Setting the Profiling Timer” on page 10-108. Figure 10-1 shows the
default setting of the profiling time.

Doing More with the Collector 10-107

10

10-108

Resolution: 10 10 [» 1000ms
1 1 1

Figure 10-1 Profiling Timer

10.3.1 Displays Requiring Profiling

Certain displays in the Analyzer are only available when profiling is used
during the data collection process. The following analyzer displays require
profiling:

® User Time as a histogram display by function, module, or segment
® 1/0 Time as a histogram display by function, module, or segment
® System Time as a histogram display by function, module, or segment

® Text Page Fault Time as a histogram display by function, module, or
segment

® Data Page Fault Time as a histogram display by function, module, or
segment

10.3.2 Setting the Profiling Timer

To obtain statistically significant data, you need to collect enough profile
packets. Typically, at least a 1000 packets should be taken, and, depending on
the size and behavior of the application, a larger number may be necessary.
For example, suppose in one sample you have multiple profiling packets that
depend on a 1-second sample period. If the profiling timer is set to 10
milliseconds during the data collection of this sample, then you can expect the
number of profile packets in the sample to be about 100.

You can increase or decrease the number of packets in a sample by increasing
or decreasing the value of the profile timer.

® Increasing the profiling timer provides data that is less accurate, but
decreases the overhead from data collection.

® Decreasing the profiling timer value provides data that is more accurate, but
increases the overhead from data collection.

Performance Tuning an Application—December 1993

10=

Samples that contain profiling data cause overhead in the kernel and in the
application, so it is better to keep the profile timer value as large as possible
while still obtaining sufficient profiling data. Stack profiling gives you more
data and allows additional analysis when compared with PC profiling;
however, it has a higher overhead.

With shorter experiments, you need a smaller profiling timer value. Also, if
you plan to look at the profile data from a single sample or set of samples, then
the number of profile packets must be large enough for that single sample or
set of samples.

Finally, the required number of profile packets is correlated to the number of
program units that are being observed during profiling. The more functions,
modules, or segments that are active during profiling, the more profile packets
you need for statistically significant results.

You can set the profiling timer in one of two ways:
+ Type the value into the Resolution text field.
¢ Use the slide bar on the Profiling Timer.

Whether you type in the value for the profiling timer, or set the value using the
slide bar, the value and the scale always reflect the value located in the
Resolution text field. The range for the value of the profiling timer is between
10 and 1000 milliseconds. The following three examples show profiling timer
settings.

Resolution: 91 10 -l | » 1000ms
- 1 1 1

Resolution: 370 10 e » 1000ms
- 1

Resolution: 718 10 e—— 1000 ms
- 1 1 1 1 1 1 1 1 1 1

Doing More with the Collector 10-109

10

10-110

Performance Tuning an Application—December 1993

Doing More with the Analyzer 1

In Chapter 5, “Getting Started with the Analyzer,” you learned the basics about
using the Analyzer, such as how to activate it, the different displays it supports
for viewing performance data, and how to choose and analyze data types.
This chapter describes the more detailed and advanced features of the
Analyzer that you can use for viewing and examining the performance data.

This chapter is organized into the following sections:

* “Viewing Multiple Displays” on page 11-111

® “Closing and Quitting Windows” on page 11-114

® “Reordering Your Application” on page 11-114

® “Comparing the Reordered Application” on page 11-117
® “Exporting an Experiment” on page 11-117

® “Printing Experiment Information” on page 11-118

11.1 Viewing Multiple Displays

A convenient feature of the Analyzer is that it allows you to view multiple
displays simultaneously. Viewing multiple displays lets you visually compare
the samples contained in the experiment. When you view multiple displays
simultaneously, you can:

11-111

11

11-112

® View different sets of samples in multiple copies in the same type of display.
For example, you can view samples 8 and 9 as Histogram by Function, and
also view samples 11 and 12 as Histogram by Function.

® View the same set of samples, but in different types of displays. For
example, you can view sample 8 in a Histogram display, and also view
sample 8 in the Address Space display.

Note — Viewing multiple displays allows you to examine only those samples
contained in the experiment that you loaded in the Analyzer. If you need to
examine or compare the samples of one experiment with the samples of
another experiment, then activate a second Analyzer and load a different
experiment.

To activate a second Analyzer:
1. Keep the current Analyzer activated.

2. Activate a second Analyzer by double-clicking on the Analyzer icon in the
SPARCworks Manager.

3. Load the experiment you need.

You can use multiple Analyzers to compare the performance behavior of the
original application with the performance of the reordered application. See
Section 11.3, “Reordering Your Application,” on page 11-114.

When viewing multiple displays, you can have several Analyzers activated
and you can also have many subwindows opened. To help keep track of what
experiment is being viewed, the experiment name appears in the header area
of each window.

For example, suppose you have two Analyzers activated; one Analyzer
contains blocks.1.er and the other Analyzer contains test.1.er . You also
open a subwindow from the Analyzer containing blocks.1.er . You now

Performance Tuning an Application—December 1993

11=

have a total of three windows; two of the window headers contain the

experiment name blocks.l.er , and one window contains the experiment
name test.1.er
'z Analyzor — BIOCR_S.I.er
[[Fila v} (View) [Props v} { Create Mapfile..] Date: [] Process Times
_FE Analyzer - DIOCKS. T.€T
{Print..y Wiew) [Props @) pata: [T] Bromss Times
A= ANBIYEEr = (€S, 1O

[[Fila v} (View) [Props v} { Create Mapfile..] Date: [] Process Times

To view multiple displays:

¢ Choose New Window from the View menu.
Another Analyzer window is displayed. Choose
new data types and displays to examine in the
new window. You can activate a new window
from the Analyzer base window or from a new

Note — The original Analyzer window must remain open. If you close or quit
the original window, then you also close or quit all subsequent windows.

The display in the new window does not inherit the settings of the display in
the window from which you choose New Window; the new window contains
the default display. For example, if you are viewing a cumulative histogram
by module and choose New Window, the new window displays a histogram
by function, which is the default Histogram display. In the new window, you
can change the display and data types, and view the same samples or different
samples.

Except for the File, Create Mapfile, and Start Collector buttons, the new
window provides the same functions as the Analyzer base window. See
Figure 11-1 and Figure 11-2.

" =] Anplyzer —test].er 7
(Flla @ [Waw = [(Praps =) (Croata Mapflla..y Pota (7] Process Times D

Figure 11-1 Analyzer Base Window Menu Buttons

Doing More with the Analyzer 11-113

11

(Prink.) [Miew #»] { Props »] Dek: [F) Prescess Tlmes

I'_EQ' Analyzer —tosti er K

Figure 11-2 Analyzer New Window Menu Buttons

11.2 Closing and Quitting Windows

You cannot close a new window into an icon; you can only dismiss the
window. However, once you dismiss the window, all the settings in that
window are also dismissed and cannot be retrieved. If you wish to view the
settings and display them again, then you need to activate a new window and
choose the settings you want to view.

If you close the Analyzer base window, then all new windows also close.
However, the settings in these windows are saved. When you reopen the
Analyzer base window, all its associated windows reappear with their settings
and displays unchanged.

11.3 Reordering Your Application

11-114

You can reorder an application to reduce the text working set size. You must
collect profiling data during the data collection process to reorder your
application. For reordering to work, files must be compiled with the -xF
option.

Note — Reordering is useful only when the application text page fault time is
consuming a large percentage of the application time. If text page fault time is
not consuming a large percentage of the application, then reordering may not
improve the overall performance of the application. Use the Overview display
to view the percentage of text page fault time.

If you get the following warning message:

Id: warning: mapfile: text: .text%function_name:
object_file_name:
Entrance criteria not met

then this message indicates that the named file, function_name , has not been
compiled with the -xF option.

Performance Tuning an Application—December 1993

11=

Check any files that are statically linked, such as unshared object and library
files, because these files may not be compiled with the -xF option. If you
cannot compile a file with the -xF option because it is an unshared object or
library file, then try to use a shared version of that object or library file. If you
are unable either to obtain a shared version of the file or to compile it with the
-XF option to statically link the file, then you can still continue with the
reordering of the application; however, any functions mentioned in the
warning message will not be reordered.

To reorder the application:

1. Compile the application using the -xF option.
The -xF option is required for reordering. This option causes the compiler
to generate functions that can be relocated independently.

For C applications, type:
cc -g -XF -ca.cb.c
cc -0 application_name a.o b.o

For C++ applications, type:
CC -g -xF -c a.cc b.cc
CC -0 application_name a.o b.o

For Fortran applications, type:
f77 -g -xF -c a.f b.f
f77 -0 application_name a.o b.o

For Pascal applications, type:
pc -g -xF -c a.p b.p
pc -0 application_name a.o b.o

2. Load the application in the Debugger.

3. Activate the Collector to collect profiling data.

4. Run the application in the Debugger.

5. Activate the Analyzer and load the specified experiment.

6. Click on the Create Mapfile button and enter the necessary information
into the Mapfile window; click on the Create button.
The mapfile is dependent on the sample selection. For example, if you
choose samples 17 through 31, then the mapfile contains only those
functions contained in samples 17 through 31.

Doing More with the Analyzer 11-115

11

11-116

The mapfile contains names only of functions that have some User CPU time
associated with them. The mapfile specifies a function ordering that reduces
the size of the text working set. The default reordering strategy is based on
profiling data and function sizes sorted in descending order. The strategy of
ordering functions in descending order is to reduce the text working set size.
Reduction occurs because infrequently used functions are grouped on a page
and are rarely part of the text working set. All functions not listed in the
mapfile are placed after the listed functions.

Once you have examined all the data and have a better understanding of what
areas are performance problems, you can reorder your application. You do not
need to manually change the code of your application to reorder it. The
Analyzer creates a mapfile for text reordering that is specific to the experiment
that is currently loaded in the Analyzer.

7. Choose Create Mapfile to create a reordered map.
Create a new executable using the mapfile and linker.

= create Mapflle K
samples:
Dlrector:
Mapfile:
1 ml

You can also use the er_mapgen utility to create a mapfile without using
the Analyzer. See the man page for er_mapgen .

8. Link the application using the new mapfile.
For C applications, type:
cc -WI,-M, mapfile_name a.o b.o

For C++ applications, type:
CC -goption Id -Mmapfile_name a.o b.o

For C applications, the -M causes the compiler to pass -Mmapfile_name to the
linker.

For Fortran applications, type:
f77 -qoption Id -Mmapfile_name a.o b.o

For Pascal applications, type:
pc -qoption Id -Mmapfile_name a.o b.o

Performance Tuning an Application—December 1993

11=

See also the man page for er_mapgen , which is a utility that generates a
mapfile from an experiment that has been generated by the Collector.

11.4 Comparing the Reordered Application

Once you have reordered you application, you can compare the original
application with the reordered application to see if there are any changes or
improvements to the performance of the application.

To compare the performances:

1.

Run the reordered application.
Use the new executable (created in step 7 in the previous section) and collect
the same data that you collected for the first experiment.

Activate another Analyzer and load the new experiment.

Examine the displays.

Use the Overview display to compare the original application with the
reordered application.

Use the Statistics display to see if the major page faults, the average text
working set size, and the total text working set size is reduced.

Use the Address Space display to examine the memory referencing behavior
of the application in more detail.

11.5 Exporting an Experiment

Export writes the data of your experiment into an ASCII format file. The data
generated by Export can be used by other programs. Suppose you want to
view your experiment data in a display that is not provided by the Analyzer,
such as a pie chart. You can write your own application for displaying the
data in a pie chart form, and use the data from the export experiment file in the
pie chart

Doing More with the Analyzer 11-117

11

To export an experiment:

o_u:u File

Load.. ¢ Choose Export from the File button
menu, enter a directory and a file
name, and click on the Export button.

Print...

Print Surmmary...

—H Export experiment

Directory:
File:

See Appendix D, “Export Experiment File,” for detailed information about the
format of the Export Experiment file.

11.6 Printing Experiment Information

The Analyzer has two print options: Print and Print Summary

Print
The Print option prints an ASCII text version of the display you are
currently viewing. You can print the data as a hardcopy or print the data to
a file.

To print the current display:

o= Print R
¢ Choose Print from the File button
Destinatinn: _Prlnter
e | menu and enter the necessary
Primtor: information.
cnples: 1 [&L¥3
)

11-118 Performance Tuning an Application—December 1993

11=

See Appendix E, “Print File,” for detailed information about the format of the
Print file. See also er_print man page.

Print Summary
The Print Summary option prints a textual overview of the experiment.
This option produces an ASCII text file that has information about the
experiment, such as:

® Averages of all sample time for each type of data: Working Set, PC profiling,
and PC and Stack profiling

®* Most frequently used functions, modules, and segments.
® | east frequently used function, modules, and segments.

To get a Print Summary:

2= Print Sum mary
Destination: | Printar | Fils | ¢ Choose Print Summary from the
— File button menu and enter the
roples: 1 [&[3 necessary information.

See Appendix F, “Print Summary File,” for detailed information about the
format of the Print Summary file.

Doing More with the Analyzer 11-119

11

11-120

Performance Tuning an Application—December 1993

Part5— Appendixes

Troubleshooting A

This appendix describes how to overcome problems using the Analyzer.
This appendix is organized into the following sections:

® “Problem Checklist” on page A-123

® “Reporting Problems” on page A-125

® “Error Messages” on page A-125

A.1 Problem Checklist

If you are having problems using the Analyzer, then check for the following:

O Verify that the SPARCworks Manager is installed in the standard location.
If you do not know where the SPARCworks Manager should be installed,
contact your system administrator.

O Verify that analyzer is installed in the standard location. If you do not
know where analyzer should be installed, contact your system
administrator.

O Verify that analyzer can be found in your execution search path (as set by
the PATHvariable).

A-123

A-124

Problems specific to the Collector

O

Collector menu items are disabled (shaded gray) and cannot be selected.
This problem occurs when there is a version mismatch between dbx and the
Debugger. Verify that the versions for dbx and the Debugger are from the
same SPARCworks release.

Cannot select Collector from the Execution button menu in Debugger.
Your window system may be running out of resources. Kill any
unnecessary processes, close or quit any unnecessary tools or windows, and
try again. If you are still unable to select the Collector, then contact your
system administrator. Also, verify that you have ttsession running on your
system.

Problems specific to the Analyzer

O

O

Cannot activate the Analyzer.

Your window system may be running out of resources. Kill any
unnecessary processes, close or quit any unnecessary tools or windows, and
try again. If you are still unable to activate the Analyzer, contact your
system administrator.

Cannot load an experiment.
The data in the experiment file may be corrupted. Redo the experiment and
try again.

If you entered the directory and experiment name from the keyboard, then
verify that you have correctly typed the information.

Verify that the pointer file for the experiment is pointing to the directory
where the experiment is located. The name of the pointer file is the
experiment name without a preceding dot (.). For example, if the
experiment you want to load is .test.1.er , then the pointer file is
test.l.er

Check the pointer file and verify that it contains the correct path for the
experiment.

You have compiled all your files with the -xF option, but when you reorder
your application, you get the following error message:

Id: warning: mapfile: text: .text%function_name:
object_file_name:
Entrance criteria not met

Performance Tuning an Application—December 1993

A=

This message indicates that the named file is not compiled with the -xF
option. Check any files that are statically linked, such as unshared object
and library files, because these files may not be compiled with the -xF
option. If you cannot compile a file with the -xF option because it is an
unshared object or library file, then try to use a shared version of that object
or library file. If you are unable to obtain a shared version of the file to
compile it with the -xF option, then you can still continue with the
reordering of the application; however, any functions mentioned in the error
message are not reordered.

A.2 Reporting Problems

A.3 Error Messages

If you have gone through the checklist and still have problems using the
Analyzer, then call Sun Microsystems at 1-800-USA-4SUN or call your local
service office. You must provide the version number to the dispatcher.

To view the current version of the Analyzer:

¢ Choose Version from the Props button menu.
The version number is displayed in the footer of the Analyzer window.

-=H
Selaction..
Yarsion 4 L SW2.1_alpha Analyzer 93/1/30

Props

The Analyzer displays error messages that provide you with information or
that inform you of an error. Error messages for the Analyzer appear in the
footer of the window. This section lists and describes the error messages and
gives suggestions about how to correct the problem.

Cannot load experiment.

The Analyzer is unable to load the experiment. Verify that the directory that
contains the experiment is specified correctly. If the Analyzer is still unable
to load the experiment, then the data in the experiment may be corrupted.
Redo the experiment.

Troubleshooting A-125

A-126

Export failed.

The Analyzer cannot find the er_export file in the installed bin directory.
Verify that the er_export file is in the bin directory.

The Analyzer is unable to export the data to a file because the data is
corrupted. You must redo the experiment.

Incomplete experiment.

The journal file is not complete or the experiment is corrupted. You need
to recreate the experiment.

Incomplete pointer file.

The pointer file is missing one of the four fields: magic number, version,
hostname, and experiment name. Verify that the pointer file contains the
four fields. If any of the information is missing, then edit the pointer file.
After you edit the file, load the experiment.

Mapfile creation failed: all zero values in profile data.

PC (program counter) profiling data is required for reordering your
application. Verify that the you have collected PC data for this experiment.
If the experiment contains PC data, then verify that the samples selected
contain PC data. If the experiment contains PC data, but your current
sample selection does not contain PC data, then you need to choose samples
that contain PC data.

Mapfile creation failed: no profile data available.

PC (program counter) profiling data is required for reordering your
application. Verify that you have collected PC data for this experiment. If
the experiment contains PC data, then verify that the samples selected
contain PC data. If the experiment contains PC data, but your current
sample selection does not contain PC data, then you need to choose samples
that contain PC data.

Mapfile creation failed: unable to open file.

Your system might not have enough disk space or swap space. Contact
your system administrator. Also, check the permissions of the directory to
which you are writing the mapfile; verify that the directory has write
permissions.

Performance Tuning an Application—December 1993

A

No directory specified.

You did not specify a directory. You must specify the directory name that
contains the experiment.

No file specified.

You did not enter a file name in the Export Experiment pop-up window or
in the Print Summary pop-up window. You must specify a file name to
which Export or Print Summary can write the data.

No mapfile specified.

You did not enter a name in the Create Mapfile pop-up window. You must
specify a name for the mapfile that you are creating.

No sample selected.

You are trying to display either a Histogram, Cumulative Histogram,
Address Space, or Statistics display, and did not specify a sample in the
Sample text field; or, you deselected all the samples in the Overview display.
You must select a sample.

No such directory.

The directory name you specified is either incorrect or does not exist. Verify
that the directory specified exists and that you have correctly typed the
name.

No such pointer file.

A pointer file does not exist for the experiment being loaded. Verify that the
experiment exists and that you have correctly typed the experiment name.
If the experiment does not exist, then you need to create the experiment by
first collecting performance data using the Collector.

Not an experiment.

The Analyzer does not find a pointer file for the experiment. Verify that the
experiment exists and that you have correctly typed the experiment name.

If the experiment does not exist, then you need to create the experiment by
first collecting performance data using the Collector.

Troubleshooting A-127

1]l
>

Overview data not available. Experiment must be
regenerated.

Since Overview data is the default data collection parameter, overview data
is always collected. If you receive this error message, then the data in the
experiment may be corrupted. Redo the experiment.

Print failed.

The Analyzer cannot find the er_export file in the installed bin directory.
Verify that the er_export file is in the bin directory.

The Analyzer is unable to print the data to a file because the data is
corrupted. You must redo the experiment.

Profiling data not available for this sample selection.

You are trying to display a Histogram for an experiment that does not
contain profiling data. Redo the experiment and collect profiling data or
choose another experiment.

You are trying to display a Histogram for a sample or sample group that
does not contain profiling data. Choose another sample or sample group.

Range out of bounds: Please enter new range.

The sample number that you entered in the Sample text field is incorrect, or
does not exist. Verify that the number you typed is a sample number that is
contained in the experiment. For example, the experiment you are
examining contains 53 samples and you accidently typed a sample number
that is greater than 53.

Sample selection unrecognized: Please re-enter.

You have entered a number that is nonnumeric, such as 1a3. Only numbers,
commas, and dashes are allowed for specifying samples. For example: 2,3,4
or 5-8. Correct your entry and try again.

Sizes data not available. Experiment must be regenerated.

To view Program Sizes as a Histogram display, Overview data must be
collected. Since Overview data is the default data collection parameter, it is
always collected. If you receive this error message, then the data in the
experiment may be corrupted. Redo the experiment.

A-128 Performance Tuning an Application—December 1993

>
1]

Statistics data not available. Experiment must be
regenerated.

To view the Statistics display, Overview data must be collected. Since
Overview data is the default data collection parameter, it is always
collected. If you receive this error message, then the data in the experiment
may be corrupted. Redo the experiment.

Unable to create display.

The display cannot be created because of lack of resources. Contact your
system administrator.

Unable to create display. Not enough resources.

The display cannot be created because the system ran out of swap space.
Kill any unnecessary processes and try again to view the display.

Unable to identify display. No data available for this
sample selection.

The variable that identifies the display is corrupted or the required data was
not collected to view the display. Redo the experiment.

Unable to open journal file.

The experiment directory does not contain a journal file or the journal file is
unreadable. You need to recreate the experiment.

Unrecognized version number; expected (current version
number displayed)

The version number of the experiment is not correct. Verify that the
experiment exists and that you have correctly typed the experiment name.
If the experiment does not exist, then you need to create the experiment by
first collecting performance data using the Collector.

Working set data not available for this sample selection.

The sample selection you made does not contain working set data. Choose
another sample or sample group, or redo the experiment, collecting working
set data.

Troubleshooting A-129

1]l
>

A-130 Performance Tuning an Application—December 1993

Data Collection Requirements for
the Displays B

Each display requires the collection of specific data collection parameters. If
the required data is not collected, then you cannot view that display. Table B-1
outlines the displays, and the data collection parameters required to view the
displays.

Table B-1 Collection Requirements for the Analyzer Display

Data Display Unit Data Collection
Type Type Type Parameter
Process Overview Overview (default)
User Histogram Function PC
Module PC
Segment PC
Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack
170 Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack

B-131

1]l
0w

B-132

Data Display Unit Data Collection
Type Type Type Parameter
System Histogram Function PC
Module PC
Segment PC
Cumulative Histogram Function PC and Stack
Module PC and stack
Segment PC and stack
Text Page Histogram Function PC
Module PC
Segment PC
Cumulative Histogram Function PC and Stack
Module PC and Stack
Segment PC and Stack
Data Page Histogram Function PC
Module PC
Segment PC
Cumulative Histogram Function PC
Module PC
Segment PC
Program Sizes Histogram Function Overview (default)
Module Overview (default)
Segment Overview (default)
Working Set Address Space Page Working Set
Segment Working Set
Execution Statistics Overview (default)
Statistics

Performance Tuning an Application—December 1993

Experiment Record C

Each experiment has a pointer file and a hidden directory. The pointer file and
hidden directory are referred to as the experiment record.

This Appendix is organized into the following sections:
® “Hidden Directory and Pointer File”
* “Hidden Directory Files”

® “File Management”

C.1 Hidden Directory and Pointer File

The hidden directory contains a number of files. The directory should be
accessible under a naming structure which is the same on both the monitoring
machine and the machine running the target application. For example, the
directory /performtune/mystuff contains the experiment pointer file
test.l.er , and also contains the hidden directory .test.1.er . The following
information is contained in pointer file test.1.er

MAGIC_NUMBER
VERSION_NUMBER
HOST_NAME
~/perform/text/mystuff/.test.1l.er

Table C-1 lists the files that are contained in the experiment directory.

C-133

=C

C.2 Hidden Directory Files

C-134

The files contained in the hidden directory are written in one of two formats and
these formats can be ported across architectures.

® Binary data
® ASCII text

The following files are contained in the hidden directory:

® Journal file and its records
® Data formats
Table C-1 Hidden Directory Files

Name Format Description

journal Text Contains pointers to data records.
segments Binary Segment information from the Debugger.
modules Binary Module information from the Debugger.
functions Binary Function information from the Debugger.
lines Binary Line information from the Debugger.
strings Binary Contains the string constants for four files.
overview Binary Configuration and sample information.
profile Binary Stack back trace information.

working_set Binary Referenced and modified bits for all pages.

C.2.1 Journal File

The data collection process writes the journal file. When data is collected,
entries are made into a journal file, which is a single straight ASCII text file.
Each entry (journal record) has a time stamp associated with it and begins with
a keyword that describes the entry type. Some records are complete and self-
contained, while others are pointers to data kept in other files. For example, a
journal file can contain the following information:

® System configuration information
® Symbol table information

Performance Tuning an Application—December 1993

C

® Data collection parameters
® Start time and end time of a sample, and the type of sample data collected
® Exit statement (the time that elapsed since beginning data collection)

The following is a sample of a journal file.
hostname

version 1

hostname “name”

username "user”

pagesize 4096

dbxpid 770

architecture "sun4c"

0s "SunOS 5.0 jup-alpha-5.2_[ON-6.3]"
memory O

hirestick 1000000

string 8 19193

segment 8 72

module 8 8608

function 8 52272

line 8 24

stackbase 0xf0000000

run 168585.308159000 779
profile_mode stack
profile_timer 10000
sample_mode continuous
sample_period 1000000
working_set_mode on
sample_on 0.000000000
overview 8 256
sample_new 0.000000000 O
profile 8 1528

overview 264 256
working_set 8 924 852
sample_off 0.440290000

Experiment Record C-135

1]l
o

exit 0.440290000

C.2.2 Data Formats

Data records are written in binary format. The following information is
contained in a data record:

* MAGIC_NUMBER
* VERSION_NUMBER
® A number of data records

The first datum in any record is an integer magic_number that specifies the
record type. This number is used for internal consistency checking and to
determine the parsing of subsequent data.

C.3 File Management

C-136

The files in the experiment record directory can be moved, deleted, and printed.
Refer to the following man pages:

® er_mv is a utility that moves the experiment in the file system.
® er_rm is a utility that removes one or more experiments.

® er_print is a utility that generates an ASCII version of the various
displays of the Analyzer.

Note — Do not use the standard UNIX mvand rm to move and remove
experiments because these commands do not move and remove the pointer file
and hidden directory. Also, you cannot move experiments between file systems,
you can only move experiments within the same file system.

Performance Tuning an Application—December 1993

Export ExperimentFile D

This appendix describes the contents of an export experiment file and provides a
sample of an export experiment file. For detailed information about the format,
see Appendix B.

This appendix is organized into the following sections:
® “Contents of the Export Experiment File”

® “Sample Export Experiment File”
See also:

® Section 11.5, “Exporting an Experiment,” for information about the Export
option.

®* The man page for er_export

D.1 Contents of the Export Experiment File

The Export Experiment option writes the unprocessed data into a file; this data
can be used by other applications. The file contains:

System configuration information

Symbol table information

Data collection parameters

Start time and end time of sample, and the type of sample data collected
Exit statement (the time that elapsed since beginning data collection)

D-137

=D

D.2 Sample Export Experiment File

An experiment contains numerous samples and the export experiment file can be
very lengthy. Because the export experiment file can be lengthy, the following
sample shows the information of only one sample contained in the export
experiment record file.

r Experiment: blocks.1.er

sunperf
version 2

System hostname "dragonfire”

Configuration username "jkchan"
Information pagesize 4096
dbxpid 6639
architecture "sun4c"
\ 0s"SunOS 5.0"
[text_segment
:segment "/set/sqe/sge6/ronnie/sophias/demo-jup/Blocks/Blocks"
0x10034 0x26b1b
:module "hand.o" " cplus fragmented
:function __cl__10oapply_intFi 75 0 0 0x2373c
function __cl__10iapply_intFi 75 0 0 0x235f0
:‘function __cl__10sapply_intFi 75 0 0 O0x234a4
:function type__ 5wedgeFv 43 0 0 0x24438
:function type__ 5brickFv 43 0 0 0x2440c
Symbol) .
Table :function type__ 5StableFv 43 0 0 0x243e0
Information :function type__ 5blockFv 43 0 0 0x240ac

:function rdstate__3iosCFv 43 0 0 Ox21dac

:function get__7istreamFRc 163 0 0 0x22d34
:function setstate _ 3iosFi 83 0 0 0x22008
\ :function peek__7istreamFv 99 0 0 0x22e6¢

D-138 Performance Tuning an Application—December 1993

O
1]

Symbol
Table <
n

Informatio

Data
Collection {
Parameters

\

Start Time— g
of Sample (

Performance
Data

:function stossc__ 9streambufFv 99 0 0 Ox2al19c

function __cl__12ioapply_longFl 75 0 0 0x2b7f4

:function sync__ 7istreamFv 99 0 0 0x2a94c

:function rdbuf__8ofstreamFv 47 0 0 Ox2b91c

:function rdbuf__8ifstreamFv 47 0 0 Ox2b8ec

:function width__ 3iosCFv 43 0 0 0x296f4

function __ct__10sapply_intFPFR3iosi_R3ios 119 0 0 Ox2ae68
:function __ne__FR5pointi 99 0 0 0x2ba58

:function optim_in_avail__9streambufFv 79 0 0 0x2a100

function __ct__1lioapply_intFPFR8iostreami_R8iostream 119 0 0
0x2b24c

function __sti__main_cc_main_ 35 0 0 0x2c25c
function __std__main_cc_main_ 39 0 0 0x2c280
term

stackbase 0xf0000000

run 524143.165212000 6645
profile_mode stack
profile_timer 10000
sample_mode continuous
sample_period 1000000
working_set_mode on
sample_on 0.000000000
overview

‘tstamp 0.001550000
‘tcreate 524140.423966000
‘rtime 2.721064000

:utime 0.103485000

:stime 0.995522000

:dftime 0.040377000

:kftime 0.320031000

:ttime 0.002904000

:slptime 0.570512000

:wtime 0.410022000
:stoptime 0.278211000

Export Experiment File

D-139

1]l
O

D-140

Performance
Data

:majf 9

vetx 75

lictx 67

'sysc 124

‘term

sample_new 0.000000000 O

profile

:packettstamp:524143.451984000 stoptime:4 fault:3faddr:4018110476
:address _start+0

:packet tstamp:524143.462441000 stime:1 fault:11 faddr:4016804808
:address xv_init+176 make_window__FiPPcT2+56 main+808 _start+92
:packet tstamp:524143.470981000 stime:1 fault:11 faddr:4014922844

:address XSetlOErrorHandler+0 make_window__ FiPPcT2+56 main+808
_start+92

:packet tstamp:524143.481247000 utime:1 fault:11 faddr:4015677440

:address ntfy_new_nclient+48 notify_set_destroy_func+68
generic_init+252 xv_create_avlist+496 xv_create+80

:address xv_init+2288 make_window__FiPPcT2+56 main+808 _start+92
:packet tstamp:524143.490827000 stime:1 fault:11 faddr:4014882052

:address _XrminternalStringToQuark+0 XrmGetResource+8
defaults_get_string+48 server_init+248 xv_create_avlist+496

:addressxv_create+80xv_init+2288 make_window__ FiPPcT2+56 main+808
_start+92

:packet tstamp:524143.501484000 stime:1 fault:11 faddr:4014578668

:address fopen+0 setnetconfig+40 __ rpc_getconfip+72
gethostbyname+52 _XConnectDisplay+776

:address XOpenDisplay+304 server_init_x+20 server_init+456
Xv_create_avlist+496 xv_create+80

:address xv_init+2288 make_window__FiPPcT2+56 main+808 _start+92

:packet tstamp:524150.716184000 tftime:5 wtime:10 fault:11
faddr:4016725900

:address 4016725900 server_init+3408 xv_create_avlist+496
XV_create+80 xv_init+2288

Performance Tuning an Application—December 1993

O
1]

Performance
Data

:address make_window__ FiPPcT2+56 main+808 _start+92
:packettstamp:524150.836189000 dftime:12 fault:11 faddr:4016783756

:address xv_set_pkg_avlist+16 xv_set+208 server_init+3408
Xv_create_avlist+496 xv_create+80

:address xv_init+2288 make_window__ FiPPcT2+56 main+808 _start+92
:packet tstamp:524150.905042000 dftime:7 fault:11 faddr:4016773552

:address xv_set_pkg_avlist+88 xv_set+208 server_init+3408
XV_create_avlist+496 xv_create+80

:address xv_init+2288 make_window__ FiPPcT2+56 main+808 _start+92
:packet tstamp:524150.974802000 dftime:7 fault:11 faddr:300840

:address find_node+4 xv_set_pkg_avlist+40 xv_set+208
server_init+3408 xv_create_avlist+496

:address xv_create+80xv_init+2288 make_window__ FiPPcT2+56 main+808
_start+92

‘term

overview

‘tstamp 7.859696000
‘rtime 7.859696000
:utime 0.139702000
:stime 0.290953000
‘tftime 0.149058000
:dftime 0.631454000
:kftime 0.105085000
:ttime 0.014267000
:slptime 0.297467000
‘wtime 0.390037000
:stoptime 5.841673000
:majf 25

:nswap 1

:msnd 4

‘mrcv 9

'sigs 79

VCtx 62

lictx 96

sysc 364

Export Experiment File D-141

1]l
O

D-142

Performance
Data

sioch 7469
‘term
working_set

:segment 0x10000 "/set/sqe/sgeb/ronnie/sophias/demo-
jup/Blocks/Blocks text"

‘map

‘map
:segment 0x46000 "/set/sqe/sge6/ronnie/sophias/demo-
jup/Blocks/Blocks data"

‘map __t

:segment 0x49000 "/set/sqe/sge6/ronnie/sophias/demo-
jup/Blocks/Blocks bss"

‘map rr__t t

‘map
:segment 0xef330000 "/usr/lib/straddr.so text"
‘map

:segment 0xef341000 "/usr/lib/straddr.so data"
‘map _

:segment 0xef360000 "/usr/lib/nswnis.so text"
‘map

:segment 0xef376000 "/ust/lib/nswnis.so data"
‘map _

:segment 0xef390000 "/ust/lib/switch.so text"
‘map __

:segment 0xef3a2000 "/ust/lib/switch.so data”
‘map _

:segment 0xef3c0000 "/usr/lib/libw.so.1 text"
‘map

:segment 0xef3d4000 "/usr/lib/libw.so.1 data"
‘map _

:segment 0xef3f0000 "/usr/lib/libintl.so.1 text"
‘map __

:segment 0xef401000 "/ust/lib/libintl.so.1 data"

‘map __

Performance Tuning an Application—December 1993

O
1]

Performance
Data

:map

‘map

:map
‘map

‘map

‘map

:segment 0xef420000 "/usr/lib/libdl.so.1 text"

‘map _

:segment 0xef430000 "/usr/lib/libdl.so.1 data"

‘map _

:segment 0xef450000 "/usr/lib/libc.so.1 text"

‘map rr_r

‘map rer r

‘map

:segment 0xef4b5000 "/usr/lib/libc.so.1 data”

‘mapr_r_r

:segment Oxef4ba000 "/ust/lib/libc.so.1 bss"

‘map __

:segment 0xef4d0000 "/usr/openwin/lib/libX11.s0.4 text"
‘map r_rr

‘map

:segment 0xef513000 "/usr/openwin/lib/libX11.s0.4 data"
‘map rr

:segment 0xef515000 "/usr/openwin/lib/libX11.s0.4 bss"
‘map _

:segment 0xef530000 "/usr/openwin/lib/libolgx.so.3 text"
‘map

:segment 0xef548000 "/usr/openwin/lib/libolgx.so.3 data"
‘map __

:segment 0xef560000 "/usr/openwin/lib/libxview.so.3 text"

‘map rrr rr

‘map r_rr

‘map m_r

‘map r

Export Experiment File

D-143

1]l
O

D-144

Performance
Data

‘map
:segment 0xef6a3000 "/usr/openwin/lib/libxview.s0.3 data"
:map rrr rr_r

:segment Oxef6b8000 "/usr/openwin/lib/libxview.s0.3 bss"
‘map __

:segment 0xef6d0000 "/usr/lib/libsocket.so.1 text"

‘map

:segment Oxef6eb000 "/usr/lib/libsocket.so.1 data”

‘map __

:segment 0xef700000 "/usr/lib/libnsl.so.1 text"

:map

‘map

‘map
:segment 0xef75c000 "/usr/lib/libnsl.so.1 data"

‘map
:segment 0xef762000 "/ust/lib/libnsl.so.1 bss"
‘map

:segment Oxef780000

"lhomel/tribbles6/jkchan/sparcworks/sunperf/sw_dev/Sw/sunperf/lib/|
ibsunperf/libcollector.so text"

‘mapr_

:segment Oxef791000
"lhomel/tribbles6/jkchan/sparcworks/sunperf/sw_dev/Sw/sunperf/lib/|
ibsunperf/libcollector.so data"

‘map t

:segment 0xef792000
"lhomel/tribbles6/jkchan/sparcworks/sunperf/sw_dev/Sw/sunperf/lib/|
ibsunperf/libcollector.so bss"

‘map __t

:segment Oxef7e0000 "ld.so.1 text"
‘map

:segment Oxef7f8000

‘map _

:segment Oxef7fa000

‘map _

Performance Tuning an Application—December 1993

O
1]

Performance
Data

End Time —pp-

of Sample

:segment Oxef7fc000 "ld.so.1 data"
‘map _

:segment Oxef7fd000

‘map _

:segment Oxefffa000 "stack"

‘map _t_trr

‘term

sample_off 19.839323000
exit 19.839323000

Export Experiment File

D-145

1]l
O

D-146

Performance Tuning an Application—December 1993

PrintFile E

The Print option prints an ASCII text version of the display that you are
currently viewing. You can print a hardcopy or print the data to a file. The
er_print utility also provides the same information as the Print option.

This appendix contains some samples of the Print file.

® Sample 1—User Times data type, viewed in the Overview display with one
sample selected.

® Sample 2—User Times data type, viewed as a Cumulative Histogram
display with all samples selected.

® Sample 3—Working Set data type, viewed in the Address Space display as
pages with one sample selected.

See also:

® Section 11.6, “Printing Experiment Information,” for information about the
Print option.

® The man page for er_print

E-147

E

E.1 Samplel

This sample is the Process Times data type, viewed in the Overview display
with one sample selected.

Experiment; ~/sparc/blocks2/sw_dev/usr/src/sw/examples/Blocks/test.1l.er

Sample selection: 1, 6 (4%)

Averages
Start Time: 2.72

End Time: 223.17
Duration (sec): 30.00
Process Times (sec):
User: 2.42 (8.1%)
System: 1.74 (5.8%)
Trap: 0.12 (0.4%)
Text Fault: 0.00 (0.0%)
Data Fault: 0.00 (0.0%)
I/0: 0.00 (0.0%)
User Lock: 0.00 (0.0%)
Sleep: 18.05 (60.2%)
Idle: 1.17 (3.9%)
Suspend: 6.50 (21.7%)

E-148 Performance Tuning an Application—December 1993

Individual samples

Sample Number: 1
Start: 2.72

End: 8.32
Duration (sec): 5.60
Process Times (sec):
User: 0.18 (3.3%)
System: 0.42 (7.6%)
Trap: 0.02 (0.4%)
Text Fault: 0.00 (0.0%)
Data Fault: 0.00 (0.0%)
1/0: 0.00 (0.0%)
User Lock: 0.00 (0.0%)
Sleep: 0.38 (6.8%)
Idle: 0.13 (2.3%)
Suspend: 4.46 (79.7%)
Sample Number: 6
Start: 198.77
End: 223.17
Duration (sec): 24.40

Print File

E-149

1]l
Il

Process Times (sec):
User: 2.24 (9.2%)

System: 1.32 (5.4%)
Trap: 0.10 (0.4%)

Text Fault: 0.00 (0.0%)

Data Fault: 0.00 (0.0%)
I/0: 0.00 (0.0%)

User Lock: 0.00 (0.0%)

Sleep: 17.67 (72.4%)

Idle: 1.04 (4.2%)

Suspend: 2.03 (8.3%)

E.2 Sample 2

This sample is the User Times data type, viewed in a Cumulative Histogram
display with all samples selected.

Experiment; ~/sparc/blocks2/sw_dev/usr/src/sw/examples/Blocks/test.1l.er
Sample selection: 1-16 (100%)

Segment Coverage: ~/sparc/blocks2/sw_dev/usr/src/sw/examples/ \
Blocks/Blocks text

data = user time

display = Histogram

unit = functions

cumulative = on

sort by = value

names = long

E-150 Performance Tuning an Application—December 1993

M
1]

seconds
THHHPHHEHHE R A A 20.4700 _start
THHHHEHHEH R] 20.4600 main

AR R 20.4600 make_window(int,char**,
char**)

AR 9.6600 load_bearing_block::put_on
(block&)

A 8.1900 auto_mode(void)
] 6.3600 hand::animate(point)
#HHHHHAHE| 5.6200 hand::grasp(block&)

#iHHH#H#] 4.0900 button_proc(unsigned long)

#H##H 3.3600 hand::move(block&,
load_bearing_block&)

#H##H] 3.1900 get_rid_of(block&)

####| 2.5300 load_bearing_block::clear_
top(void)

#| 0.6700 load_bearing_block::get_
space(block&)

#| 0.6600 load_bearing_block::make_
space(block&)

#| 0.0800 unsafe_ostream::flush(void)

#| 0.0800 draw_cylinder(unsigned long,
point,point)

#| 0.0800 ostream::flush(void)
#| 0.0800 endl(ostream&)

#| 0.0800 repaint_proc(unsigned long,
unsigned long,rectlist*)

#| 0.0600 ostream::operator<<
(ostream& (*)(ostreamé&))

#| 0.0600 table::draw(unsigned long)
#| 0.0400 auto_proc(void)
#| 0.0400 filebuf::sync(void)

#| 0.0300 move_frame_onto_screen
(unsigned long)

#| 0.0200 operator<<(ostream&,const
point&)

Print File E-151

1]l
Il

#| 0.0200 resize_proc(unsigned long,
int,int)

#| 0.0200 brick::draw(unsigned long)
#| 0.0200 filebuf::overflow(int)
#| 0.0200 hand::ungrasp(block&)

#| 0.0200 draw_cube(unsigned long,
point,point)

#| 0.0100 load_bearing_block::find_
space(block&)

#| 0.0100 intersections(block&,int,
int,list&)

#| 0.0100 unsafe_ostream::operator<<
(long)

#| 0.0100 ostream::operator<<
(ostream& (*)(ostream&))

#| 0.0100 ostream::operator<<(int)
#| 0.0100 list::value(void)
#| 0.0100 point::convert(int,int)

#| 0.0100 unsafe_ostream::operator<<
(const char*)

E.3 Sample3

This sample is the Working Set data type, viewed in the Address Space display
as pages with one sample selected.

Experiment: test.1.er
Sample selection: 12 (1%)
Unit: PAGE

KEY
W - Modified

E-152 Performance Tuning an Application—December 1993

M
1]

R - Referenced
U - Unreferenced

00 10 20 30 40 50 60 70 80 90 A0 BO C0O DO EO FO

0001_ 00
0002__00
0003__00
0004__00
0005__00
0006__00
0007__00
0008__00
0009__00

EF32_ 00
EF33_00

EF35_ 00
EF36_ 00

EF38_ 00
EF39_ 00

EF3B_ 00

Print File

RRRRRRRRRUURRRRR
UR
RWWRUUWRRRUUWWR
RUURUUUUUUUUUUUuU
vuuvuuvuuvuuvuuvuuvuuvuuvuuvuuvuuvuuuu
UUUUURWURRWUURU

R

U

U
wWuuUuuvuuvuuvuuvuvuvuuvuuvuuvuuvuuu
vuuvuuvuuvuuvuvuvuuvuuvuuvuuvuuvuuvuuuw
W

W W W W

uuuuuuuu

E-153

1]l
Il

E-154

EF3C__00 U

EF3E_00 U U U
EF3F__00 U

EF41_00 U
EF42__ 00 U
EF44 00 R U UUUUUURUUUUUUuU
EF45_00 R U UUUURRRRRUUUU
EF47_00 U U UUUUUUUUUURRU

RRUUUUUUURURR

R
U

EF46_ 00 U U UUUUUUUUUURRRR
U
EF48 00 U U R
U

EF49_ 00 U U URUUUUUUURUU
EF4A__00 R W

EF4B_ 00 W W R W U

EFAD_ O RUUUUUUUUUURRURU
EF4E_ O URRRRUUUUUUURUUU
EFAF_ (O U UUUUUJUVUVUVUUUUUUUU
EF50_00 U U U U
EF51_ 00 RRW

EF58__ 00 R R RU U U U UU
EF54__ 00 R U

Performance Tuning an Application—December 1993

EF56_ 00
EF57__00
EF58_ 00
EF59_ 00
EF5A_ 00
EF5B_ 00
EF5C_ 00
EF5D_ 00
EF5E_ 00
EF5F__ 00
EF60_ 00
EF61_ 00
EF62_ 00
EF63_ 00
EF64_ 00
EF65_ 00
EF66_ 00
EF67_ 00
EF68_ 00
EF69_ 00
EF6A_ 00
EF6B_ 00

EF6D__00

Print File

R
U
U
U
U
U
U
U
R
U
U
U
U
U
U
U
U
U
U
U

C CcCccccccCcc® c cC cCocococ

cC Cc Cc Cc c ® CcCc c cC
C CcC Cccc € cc o

U

UURUU

Uuuuuu

Uuuuuu

Uuuuuu

UURRR

UURRR

URRUR

uuuuuuuuu

RUUUUUUUU

UUURUUUUUuU

uuuuuuuuu

RUURUURUU

RUUUUUUUU

RURRUUUUU

UUUUUUUUURRRRU

RUUUUUUUURRUUU

uu

uu

Cc
Cc

C Cc c cc Cc c c
C Cc c cc CcC c c
C Cc ccc C c c c
CcC c c c ®m C c c
C Cc c c ® C C

c c c c € C

U

Uuuuuuuuuu

RRRUUUUUU

R

]

UWRRRRWWW

uu
uu
uu
uu
uu
uu
uu
uu

U

U
U
U
U
U
U
U

Uuuu
uuu
Uuuu
uuu
uuu
uuu
uuu
uuu

RRRRUUUUUUUUUUR

RUUUUUUUUUUURU

E-155

1]l
Il

EF6E__00 R R

EF7 1. O RURUUUUUUURUUUUUuU
EF72. O URUUUUUUUUUUUUUU
EF7 3 0O U UUUUUVUVUVUVUUUUUUUVU
EF74_ 0O UUUUUUUVUUVUUUUUUUVU
EF75._ 0O UUUUUUVUVUVUVUUUUUUUVU
EF76_00 U U U U U UUU

EF77__00 uuuvuuvuuvuuuuu

EF78_00 U U U U U
EF7TA_00 R R

EF7fB_ 00 WUUWWUUUUUUUUUU
EF7C_00 U U

EFFE_ 00 U U URRURUURRRU

E-156 Performance Tuning an Application—December 1993

Print Summary File F

This appendix describes the contents of the Print Summary file.

See Section 11.6, “Printing Experiment Information,” for information about the
Print Summary option.

F.1 Contents of the Print Summary File

The Print Summary file provides a textual overview of the experiment. Itis an
ASCII text file that has information about the experiment.

The Print Summary file contains the following information:

System configuration information

Data collection parameters

Overview summary (units are in seconds)

Profile summary (units are in ticks). Each tick is the Profiling Timer unit
that you specified in the Collector during the data collection process. See
Chapter 10, “Doing More with the Collector,” for details about the Profiling
Timer.

®* Working set summary

F-157

1]l
-

F-158

The following is a list of labels (and their definitions) that are used in the Print
Summary file.

See Section 6.5, “Sample Properties Window,” for more information about the
following labels:

utime—user time
stime—system time
tftime—text fault time
dftime—data fault time
kftime—I/0 time
ttime—trap time
slptime—sleep time
Itime—Ilock wait time
wtime—idle time
stoptime—suspend time

See Chapter 9, “Statistics Display,” for more information about the following
labels:

minf—minor page fault
majf—major page fault
nswap—process swaps
inblk—input blocks
oublk—output blocks
msnd—message sent
mrcv—message received
sigs—signals handled
vctx—voluntary context switches
ictx—involuntary context switches
sysc—system calls
ioch—characters of 1/0

Performance Tuning an Application—December 1993

Address Space display

Analyzer

Collector

Continuous sampling

Control area

Glossary

The Glossary is a collection of terms specific to the Analyzer. These terms
appear throughout the manual and familiarity with their meanings will help
you in using the Analyzer.

A display that shows the memory usage of the address space of a process. The
information needed to produce this display is collected by choosing Working
Set data in the Collector window. The display shows pages that are: modified,
referenced, and unreferenced.

A SPARCworks tool used to examine performance data collected by the
Collector. The Analyzer processes the collected data into displays of your
choice. You then use these displays to examine the collected performance data.

A SPARCworks tool used to set up an application for performance data
collection. You can collect performance data on an application of your choice.

A data collection mode that gathers performance data at specified intervals of
seconds.

An area at the top of a window in the OPEN LOOK GUI that contains the
buttons and menu buttons.

Glossary-159

Cumulative histogram

Data collection parameters

Execution Statistics display

Experiment

Experiment record

Function histogram

Histogram display

Magnify Help

Manual sampling

Module histogram

Glossary-160

A display that provides a general summary of the amount of time spent by a
function, module, or segment in its relationship to other functions, modules,
and segments.

A specification for sampling data in an experiment. These types of
performance data are specified in the Collector. The data collection parameter
settings of the Collector are: Overview, Working Set, PC (Program Counter),
and PC and Stack.

A display that provides statistical information about the application attributes
that are not obvious or visible in any of the other displays. This display
produces specifications for an application and is particularly useful for
defining numerical values for the attributes.

A set of samples taken on the target application program.

Each experiment has a pointer file and a hidden directory. The pointer file and
hidden directory are referred to as the experiment record.

The default histogram display. This display shows the amount of time the
application spends executing functions.

A display of the Analyzer used to visually compare where the application
units are spending time during execution. The Analyzer supports three types
of application units: function, module, and segment.

On-line help provided for all SPARCworks tools.

A data collection mode that allows you to control the interaction between the
application execution and the data collection by letting you specify exactly
when to begin a new sample.

A display that profiles the amount of time modules are executing in the
application. This display provides higher levels of data aggregation.

Performance Tuning an Application—December 1993

No samples

OPEN LOOK GUI

Overview data

Overview display

Pages Properties window

PC profiling data

PC and stack profiling data

Performance tuning

Performance-tuning model

A data collection mode that stops data collection.

A graphical user interface that standardizes the interfaces of application
programs, therefore making them easier to learn. It has a standard set of
buttons, menus, controls, and operations that make it easy to learn and easy to
apply across applications.

The default data collection parameter of the Collector. It is not visible as a
selectable item; it is always collected. Overview data collects resource usage
and processes real-time performance data.

The default display of the Analyzer. For each sample, the display shows the
amount of time the application spends in different types of performance areas.

A pop-up window displayed from the Props button in the Analyzer. The
Pages Properties window displays the address of a page, the size in bytes, and
the functions associated with the page.

Performance data that shows how much time is spent by the application in its
execution of functions, modules, or segments. It also tells what functions,
modules, or segments are consuming the most amount of time and the least
amount of time.

Performance data that shows how much time is spent by calls in the
application that address other calls. It provides a more detailed analysis than
PC profiling data, yet it does include PC profiling data.

The steps taken to make a program more efficient, reliable, and fast. These
steps estimate the performance of a program, identify the bottlenecks limiting
performance, and identify where the code spends most of its time.

An ideal against which you compare an application when performance tuning.
The model provides a baseline for evaluating your application.

Glossary-161

Performance-tuning process

Profile packet

Profiling timer

Program units

Reordering

Sample

Sample Properties window

Segment histogram

Glossary-162

An iterative, interactive process. It is a repeated process, where performance
improvements are reviewed and tested. The approach should be systematic to
avoid the possibility of creating problems at the same time problems are being
fixed.

A profile packet is a unit of profiling data that is included in a sample that has
collected either PC or PC and Stack data.

An adjustable timer that lets you define the number of profile packets to take.
The default value of the timer is 10 milliseconds. The timer adjusts up to 1000
milliseconds to allow for more detailed samples.

Program units include program and shared libraries that are used by the
application.

An automatically invoked, multistep process that rearranges text to help
reduce text working sets. The reordering strategy is based on profiling data
and function size. The strategy of ordering functions is to reduce the text
working set size.

A sample that contains data collected over a specified period of time during
the execution of the application.

A pop-up window displayed from the Props button in the Analyzer. This
window allows you to examine a sample or combination of samples in more
detail. The Sample Properties window provides detailed information about
selected samples such as start time of the sample, end time of the sample, and
data collection parameters.

A display that profiles the amount of time the application spends executing
segments. The segment is the highest level of data aggregation supported by
the Analyzer.

Performance Tuning an Application—December 1993

Segment Properties window
A pop-up window displayed from the Props button in the Analyzer. The
Segment Properties window is for use with the segments display and shows
the address, size in bytes, segment name, and a list of functions.

Target application
The application which you are tuning for performance.

SPARCworks Manager
A desktop tool for managing the SPARCworks programming tools. Itis a
visual organizer that provides easy accessibility for starting, quitting, and
managing tools.

Working set data
Data that represents the process state address space as a series of segments,
each of which contains a number of pages. The data collected describes the
status of each page, and whether it was referenced, modified, or unreferenced.

Glossary-163

Glossary-164 Performance Tuning an Application—December 1993

Index

A

Activating SPARCworks Tools
Analyzer, 5-42
Collector, 4-28
Debugger, 3-22
SPARCworks Manager, 3-22

Address Space Display
data required, B-131
description, 8-83
displaying pages, 8-86
modified pages, 8-83
overlapping segments, 8-92
page properties, 8-89
properties windows, 8-89
reference pages, 8-83
samples text field, 8-92
segment properties, 8-89
selecting pages, 8-86
selecting samples, 8-91
verifying page size, 8-85
viewing pages, 8-86
viewing samples, 8-91
viewing segments, 8-87

Analyzer, 1-7
activating, 5-42
architecture, 1-4

closing/quitting windows, 11-114
data types, text page fault time, 5-48

description, 1-3,5-41

exporting experiment, 11-117
loading an experiment, 5-43

printing experiment

information, 11-118
reordering application, 11-114
viewing multiple displays, 11-111

Analyzer Buttons
create mapfile, 11-116
file, export, 11-117
Analyzer Data Types
choosing data types, 5-44
data page fault time, 5-48
execution statistics, 5-50
170 time, 5-47
process times, 5-46
program sizes, 5-49
system time, 5-48
user time, 5-47
working set, 5-49
AnswerBook, xiii
Application
comparing reordered
application, 11-117

compiling and linking, 3-21
loading code into Debugger, 3-24

reordering, 11-114
Averages Legend, 6-58

Index-166

B

Breakpoints
to collect data, 10-103
using breakpoints, 10-102
with continuous sampling, 10-103,
10-104
with manual sampling, 10-103

C

Choosing
data collection parameters, 4-33
data types, 5-44
types of sampling, 4-31
Choosing Data Collection Parameters
overview, 4-33
PC, 4-34
PC and Stack, 4-34
Choosing Types of Sampling
continuous, 4-31
manual, 4-32
none, 4-32
Closing/Quitting
analyzer windows, 11-114
Collecting Data, 10-102
displays requiring the timer, 10-108
manual sampling with
breakpoints, 10-103
profiling timer, 10-107
setting the timer value, 10-108, 10-109
using breakpoints, continuous
sampling, 10-103
using breakpoints, manual
sampling, 10-103
Collector, 1-6
activating, 4-28
base window, 4-29
closing and quitting, 4-38
controlling data collection, 10-102
description of, 4-28
profiling timer, 10-107
setting breakpoints, 10-102
setting up for data collection, 4-30

using breakpoints with continuous
sampling, 10-103
using breakpoints with manual
sampling, 10-103
Collector Buttons
apply, 4-30
Collector Icon
animation (on/off), 4-39
run mode, 4-38
suspend mode, 4-39
Collector Settings
Address Space, 4-33
profiling, 4-33
Comparing Experiments, 11-112, 11-117
Create Mapfile Button, 11-116
Cumulative Histogram Data Types
170 time, 7-72
text page fault, 7-73
user time, 7-72
Cumulative Histogram Display, 7-71
data required, 7-73, B-131
data types to view, 7-72
find backward, 7-78
find option, 7-77
how to read, 7-74
samples text field, 7-80
search for names, 7-77
selecting samples, 7-79
sort by long name, 7-76
sort by name, 7-76
sort by short name, 7-76
sort by value, 7-75
viewing samples, 7-79
viewing segments, 7-78

D

Data Collection

displays requiring the timer, 10-108

profiling timer, 10-107

setting the timer value, 10-108, 10-109
Data Collection Parameters

choosing parameters, 4-33

overview data, 4-33

PC, 4-34,10-106

Performance Tuning an Application—December 1993

PC and Stack, 4-34, 10-107
setting parameters, 10-104
storing collected data, 4-35
working set, 4-34, 10-105
Data Types of the Analyzer
choosing data types, 5-44
data page fault time, 5-48
execution statistics, 5-50
1/0 time, 5-47
process times, 5-46
program sizes, 5-49
system time, 5-48
text page fault time, 5-48
user time, 5-47
working set, 5-49
Debugger
activating, 3-22
Displays of the Analyzer
address space, 8-83
cumulative histogram, 7-71
histogram, 7-69
statistics, 9-93
drop target, 1-9

E
er_print, E-147
Error Messages, A-125
Experiment, 4-29
experiment record, C-133
export experiment file, D-137
hidden directory, C-133
journal file, C-134
loading into the Analyzer, 1-9, 5-43
naming, 1-6
pointer file, C-133
storing, 1-6
storing collected data, 4-35
Experiment Directory, 4-35
Experiment Name, 4-35
Experiment Record, C-133
hidden directory, C-133
pointer file, C-133
Experiment Scale, 6-63

Export Experiment File
contents, D-137
sample of, D-138

Exporting an Experiment, 11-117
er_mapgen, 11-117

F

File Button
export, 11-117
segment coverage, 7-78
File Management
er_mv, C-136
er_print, C-136
er_rm, C-136
Function Histogram, 7-70

H

Help Facilities
answerbook, xiii
Hidden Directory, C-133
data formats, C-136
files, C-134
journal file, C-134
Histogram Data Types
170 time, 7-72
text page fault, 7-73
user time, 7-72
Histogram Display
cumulative histogram, 7-71
data required, 7-73, B-131
data types to view, 7-72
description, 7-69
find backward, 7-78
find forward, 7-78
find option, 7-77
function histogram, 7-70
how to read, 7-74
module histogram, 7-70
samples text field, 7-80
search for names, 7-77
segment histogram, 7-71
selecting samples, 7-79
sort by long name, 7-76

Index-167

sort by name, 7-76

sort by short name, 7-76
sort by value, 7-75
viewing samples, 7-79
viewing segments, 7-78

Icon
analyzer, 1-7
collector, run mode, 4-38
collector, suspend mode, 4-39

J
Journal File, C-134

M

Man Page
er_export, D-137
er_mv, C-136
er_print, C-136
er_rm, C-136
Module Histogram, 7-70

@)

On-Line Help
answerbook, xiii
Overview Chart, 6-57
Overview Data, 4-33
Overview Display
averages legend, 6-58
data required, B-131
description, 6-55
experiment scale, 6-63
overview chart, 6-57
sample column, 6-57
sample properties window, 6-63
samples text field, 6-62
segmented bars, 6-57
selecting samples, 6-61
time line, 6-66
viewing samples, 6-61

P

PC and Stack Data, 4-34, 10-107
PC Data, 4-34, 10-106
Performance Tuning, 2-13
creating a model, 2-15
description of, 2-13
the process, 2-17
types of problems, 2-14
Performance-Tuning
the process, 1-11
Pointer File, C-133
Print, E-147
Print Summary, F-157
the file, F-157
Printing Experiment Information, 11-119
Profiling Data
PC, 4-34
PC and Stack, 4-34
Profiling Timer, 10-107
displays requiring timer, 10-108
setting the value, 10-108, 10-109
Props Button
page properties, 8-89
sample properties, 6-64
segment properties, 8-89

R
Reordering the Application, 11-114
S
Sample, 4-29
selecting and displaying, 6-61, 7-79,
8-91, 9-96

Sample Column, 6-57
changing the width, 6-59
fixed-width, 6-59
proportional-width, 6-60

Sample Properties Window
overview display, 6-63

Samples Text Field, 6-62, 8-92, 9-97
cumulative histogram, 7-80
histogram, 7-80

Performance Tuning an Application—December 1993

Sampling
choosing sampling, 4-31
continuous, 4-31
manual, 4-32
no sampling, 4-32
using breakpoints,
continuous, 10-103
using breakpoints, manual, 10-103
Segment Coverage
cumulative histogram, 7-78
histogram, 7-78
Segment Histogram, 7-71
Selecting a Sample
cumulative histogram, 7-79
in address space, 8-91
in histogram, 7-79
in overview display, 6-61
in statistics, 9-96
Selecting Segments
cumulative histogram, 7-78
histogram, 7-78
Setting Breakpoints, 10-102
continuous sampling, 10-103
manual sampling, 10-103
Setting Data Collection
Parameters, 10-104
Solaris, x
Sort by Long Name
cumulative histogram, 7-76
histogram, 7-76
Sort by Name
cumulative histogram, 7-76
histogram, 7-76
Sort by Short Name
cumulative histogram, 7-76
histogram, 7-76
Sort by Value
cumulative histogram, 7-75
histogram, 7-75
SPARCworks Manager
activating, 3-22
Spot Help, xiii
Start Collector button, 1-10

Statistics Display
data required, 9-94, B-131
description, 9-93
samples text field, 9-97
selecting samples, 9-96
viewing samples, 9-96

Storing Collected Data
experiment directory, 4-35
experiment name, 4-35

Sun0OS 5.0, x

System V Release 4 (SVR4), x

T
Time Line, 6-66
Troubleshooting

analyzer, A-124

checklist, A-123

collector, A-124

reporting problems, A-125

\Y

View Button
column widths, 6-59, 6-60
find, 7-77,7-78
new window, 11-113
Viewing a Sample
cumulative histogram, 7-79
histogram, 7-79
in address space, 8-91
in statistics display, 9-96
overview display, 6-61
Viewing Multiple Displays, 11-111

W
Working Set Data, 4-34, 10-105

Index-169

Index-170 Performance Tuning an Application—December 1993

