
SunLink X.25 8.0.2 Programmer’s Guide

Part No.: 801-6287-11
Revision A, October 1994

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

 1993 Spider Systems Limited

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris and SunLink are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and certain other countries. UNIX is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display
PostScript are trademarks of Adobe Systems, Inc. Spider is a trademark of Spider Systems, Limited. All other product names
mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction to the Network Layer Interface 1-1

1.1 NLI Design . 1-1

1.2 Include Files . 1-2

1.3 Compilers Supported. 1-2

2. Data Structures . 2-1

2.1 Addresses . 2-1

2.2 Quality of Service and X.25 Facilities. 2-4

2.2.1 Standard X.25 Facilities . 2-4

2.2.2 X.25 Facilities for CONS Support 2-8

3. NLI Message Primitives. 3-1

3.1 Connect Request/Indication. 3-2

3.2 Connect Response/Confirmation. 3-4

3.3 Data . 3-5

3.4 Data Acknowledgement Request/Indication 3-5

3.5 Expedited Data . 3-6

iv SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3.6 Expedited Data Acknowledgement 3-7

3.7 Reset Request/Indication . 3-7

3.8 Reset Response/Confirm. 3-8

3.9 Disconnect Request/Indication . 3-9

3.10 Disconnect Confirm . 3-10

3.11 Abort Indication . 3-11

3.12 Listen Command/Response . 3-12

3.13 Listen Cancel Command/Response. 3-13

3.14 PVC Attach . 3-14

3.15 PVC Detach . 3-15

4. Listens. 4-1

4.1 Listening for Incoming Calls. 4-1

4.2 Call User Data Matching . 4-2

4.3 Address Matching . 4-3

4.4 Priority. 4-4

5. Streams Programming Examples . 5-1

5.1 Opening a Connection . 5-2

5.1.1 Standard X.25 Calls. 5-3

5.1.2 CONS/X.25 Calls . 5-5

5.2 Data Transfer. 5-8

5.2.1 Sending Data . 5-9

5.2.2 Receiving Data. 5-9

5.2.3 Expedited Data . 5-11

5.2.4 Resets . 5-13

Contents v

5.3 Closing a Connection . 5-15

5.3.1 Remote Disconnect . 5-15

5.3.2 Local Disconnect . 5-17

5.4 Listening . 5-19

5.4.1 Listening for Incoming Connections 5-19

5.4.2 Constructing the Listen Message 5-19

5.4.3 Handling the Connect Indication 5-22

5.4.4 Reusing the Listen Stream . 5-25

5.5 PVC Operation . 5-26

5.5.1 Attaching a PVC . 5-26

5.5.2 PVC Data Transfer . 5-28

5.5.3 Detaching a PVC . 5-28

6. Support Library. 6-1

7. NLI Management ioctls . 7-1

7.1 Management-related Upper Stream Message Structures 7-1

7.1.1 Management Structures and Interface 7-1

7.1.2 Routing ioctls. 7-18

7.2 Configurable Parameters . 7-20

7.2.1 Link Identifier . 7-22

7.2.2 Network Mode . 7-23

7.2.3 X.25 Version . 7-24

7.2.4 DTE/DCE Mode . 7-24

7.2.5 Channel Ranges. 7-25

7.2.6 Sequence Numbering . 7-26

vi SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7.2.7 Packet Sizes . 7-26

7.2.8 Window Sizes . 7-27

7.2.9 Maximum NSDU Limit . 7-28

7.2.10 Timers . 7-28

7.2.11 Counters . 7-31

7.2.12 Transit Delay . 7-31

7.2.13 Throughput Classes . 7-31

7.2.14 Closed User Groups . 7-33

7.2.15 Subscription Modes . 7-33

7.2.16 PSDN Localization . 7-35

7.2.17 Link Address . 7-41

7.2.18 Timer Relationships . 7-41

A. NLI Events and OSI Error Codes . A-1

A.1 Messages and Related Packets . A-1

A.2 Error Codes . A-2

B. Compatiblity with 7.0—
Sockets-based Packet Level Interface B-1

B.1 Introduction — The AF_X25 Domain B-1

B.2 AF_X25 Domain Addresses. B-2

B.3 Creating Switched Virtual Circuits. B-3

B.3.1 Calling Side — Outgoing Call Setup B-3

B.3.2 Calling Side — Setting the Local Address B-5

B.3.3 Called Side — Incoming Call Acceptance B-6

B.3.4 Address Binding . B-7

Contents vii

B.3.5 Binding by PID/CUDF . B-9

B.3.6 Masking Incoming Protocol Identifiers at the Bit Level
B-10

B.3.7 AEF Matching Considerations B-10

B.3.8 Explicit Link Selection — Calling Side B-11

B.3.9 Explicit Link Selection — Called Side B-13

B.3.10 Accessing the Local and Remote Addresses B-14

B.3.11 Finding the Link Used for a Virtual Circuit. B-15

B.3.12 Determining the Logical Channel Number for a
Connection . B-16

B.4 Sending Data. B-16

B.4.1 Control of the M-, D-, and Q-bits B-17

B.4.2 Sending Interrupt and Reset Packets B-19

B.5 Receiving Data . B-20

B.5.1 In-Band Data . B-20

B.5.2 Reading the M-, D-, and Q-bits B-21

B.5.3 Receiving X.25 Messages in Records B-22

B.5.4 Out-of-Band Data . B-23

B.6 Clearing a Virtual Circuit . B-25

B.7 Advanced Topics . B-26

B.7.1 Facility Specification and Negotiation B-26

B.7.2 The X25_SET_FACILITY and X25_GET_FACILITY ioctl
Commands. B-26

B.7.3 Fast Select User Data . B-41

B.7.4 Permanent Virtual Circuits . B-44

viii SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B.7.5 Call Acceptance by User . B-45

B.7.6 Accessing the Link (X.25) Address B-46

B.7.7 Accessing High Water Marks of Socket B-46

B.7.8 Accessing the Diagnostic Code B-48

B.8 Routing ioctls . B-51

B.9 Miscellaneous ioctls . B-52

B.9.1 Obtaining Statistics . B-53

B.9.2 Obtaining Version Number . B-58

C. Sockets Programming Example . C-1

C.1 Include Files for User Programs . C-1

C.2 Compilation Instructions and Sample Programs C-2

C.3 Structures Used by the X25_SET_FACILITY and
X25_GET_FACILITY ioctl Commands C-2

Index . Index-1

ix

Tables

Table 1-1 Required Include Files . 1-2

Table 2-1 Terminology Mapping Table . 2-2

Table 2-2 Fields in Address Structure . 2-2

Table 2-3 Fields in lsapformat Structure. 2-3

Table 2-4 Standard X.25 Facilities. 2-6

Table 2-5 QOS Parameters. 2-10

Table 3-1 Connect Request/Indication Message . 3-3

Table 3-2 Connect Response/Confirmation Message. 3-4

Table 3-3 Data Message . 3-5

Table 3-4 Disconnect Request/Indication Parameters 3-9

Table 3-5 Disconnect Confirm Parameters . 3-11

Table 3-6 Listen Command/Response Parameters 3-12

Table 3-7 PVC Attach Parameters . 3-14

Table 4-1 Variables for CUD Matching . 4-2

Table 4-2 Variables for Address Matching . 4-3

Table 7-1 NET_MODE Mappings . 7-23

x SunLink X.25 8.0.2 Programmer’s Guide—October 1994

Table 7-2 PSDN Modes . 7-35

Table A-1 Downstream Messages and Associated Outgoing X.25 Packets A-1

Table A-2 Upstream Messages and Associated Incoming X.25 Packets . A-2

Table A-3 Reason when Originator is NS Provider A-3

Table A-4 Reason when Originator is NS User . A-3

xi

Preface

This manual enables programmers using Sun™ workstations and servers to
develop X.25-based applications that can communicate with remote Sun
systems and the systems of other vendors over an X.25 network.

This manual describes two programmatic interfaces:

• A streams-based Network Layer Interface (NLI).

• A sockets-based Layer 3 interface that is provided only for backward
compatibility with the 7.0 release of SunLink (then SunNet) X.25. This
interface may not be supported in future releases of SunLink X.25.

This manual is for experienced C programmers who are familiar with the X.25
recommendation and protocol layering, as well as Unix System V Release 4
(SVR4) streams facilities. (For the socket interface, you need familiarity with
the BSD socket mechanism.)

Use this manual in conjunction with the SunOS 5.0 Streams Programmer’s Guide.
You should be familiar with the material in ISO 8208, X.25 Packet Level Protocol
for Data Terminal Equipment.

xii SunLink X.25 8.0.2 Programmer’s Guide—October 1994

Chapter Summary
Chapter 1, “Introduction to the Network Layer Interface,” gives an overview of
the NLI and presents a list of include files required for NLI programs.

Chapter 2, “Data Structures,” describes the function and use of the data
structures used across the NLI for addressing, quality of service, and facility
negotiation.

Chapter 3, “NLI Message Primitives,” describes the message formats and
parameters supported by the X.25 driver.

Chapter 4, “Listens,” explains how to set up an application to listen for
incoming calls.

Chapter 5, “Streams Programming Examples,” provides examples of programs
that use the NLI.

Chapter 6, “Support Library,” introduces the SunLink X.25 support library,
which includes a number of useful routines for manipulating product-specific
data structures.

Chapter 7, “NLI Management ioctls” describes ioctls that you can use for
managing and collecting statistics on virtual circuits you establish using the
ioctls and data structures described elsewhere in the manual.

Appendix A, “NLI Events and OSI Error Codes,” lists NLI messages with
related X.25 packets and lists error codes as specified in OSI standards
documents.

Appendix B, “Compatiblity with 7.0— Sockets-based Packet Level Interface,”
describes the backward-compatibility interface.

Appendix C, “Sockets Programming Example,” provides example programs
that use the sockets-based interface.

Preface xiii

Conventions Used in this Manual
• The acronym PSDN (Packet-Switched Data Network) refers to any public or

private packet-switched network that makes available to users interfaces
that comply with the X.25 standard.

• The term “Sun workstation” refers to any device running the Solaris™
sytem software.

• Hexadecimal numbers are specified with a prefix of 0x and decimal
numbers without a prefix. For example, hexadecimal 10 is 0x10, while
decimal 10 is 10.

We use the following typographic conventions:

Typewriter font
Represents what the system prints on your workstation screen and is used
for program and file names.

Italic font
Indicates variables or parameters that you replace with an appropriate word
or string. Also used for emphasis.

hostname%
Represents your system’s prompt for a non-privileged user’s account.

hostname#
Represents your system’s prompt for the root (super-user) account.

Boxes

Boxes are also used to represent interactive sessions. In this use, user input is
indicated by boldface typewriter font. For example:

Contain text that represents listings, a part of a
configuration file, or program output.

hostname% df -k /usr
Filesystem kbytes used avail capacity Mounted on
/dev/sd0g 155015 103090 36424 74% /usr

xiv SunLink X.25 8.0.2 Programmer’s Guide—October 1994

Product Documentation
The other documents in this SunLink X.25 document set are:

• SunLink X.25 8.0.2 Reference Manual
Part No.: 801-6285-11

• SunLink X.25 8.0.2 PAD User’s Guide
Part No.: 801-6286-11

• SunLink X.25 8.0.2 Configuration Guide
Part No.: 801-6284-11

1-1

Introduction to the Network Layer
Interface 1

SunLink X.25 supports a Network Layer Interface (NLI) to the X.25 Packet
Layer Protocol (PLP) for use by applications. This NLI is provided not by using
a programming library, but by using the standard streams mechanisms for
communicating with a stream head. In this way, application programs in user
space interact with the in-kernel PLP Driver by exchanging streams messages,
using the getmsg and putmsg system calls.

1.1 NLI Design
The NLI has been designed so that user level library software can be easily
constructed. Messages passed in this way have both a control part and a data
part. Primitives and associated parameters are passed to the X.25 driver by
using the control part of messages. If data is to be passed with a primitive, it is
contained in the data part of the message. This means that the application must
always provide a control part in messages when using the streams routines
getmsg and putmsg , whether data is present in the message or not. Using this
message type, the packet structure and parameters necessary for a general X.25
driver can be mapped into the streams environment very easily.

1-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

1

1.2 Include Files
Applications using the SunLink X.25 NLI need to include several system
header files:

Since only standard system calls are used, no special library needs to be linked
with applications using the NLI.

1.3 Compilers Supported
The SunLink X.25 NLI supports ANSI C compilers.

Table 1-1 Required Include Files

include file Description

errno.h contains standard error codes

sys/types.h contains type definitions used by streams

sys/stropts.h defines the message structures used in streams system calls

netx25/uint.h defines types used by the data stuctures passed across the NLI

netx25/x25_proto.h defines the data structures which must be included

2-1

Data Structures 2

This chapter describes the data structures used by NLI primitives to specify
X.25 addresses and facilities. These data structures are defined in the file
<net/x25/x25_proto.h> .

2.1 Addresses
In call requests and responses, it is usually necessary to specify the X.25
addresses associated with the connection—the called, calling, and responding
addresses. A common structure is used for these addresses. The addressing
format used in this structure provides the following information:

• the link on which outgoing Call Requests are to be sent and on which
Connect Indications arrive;

• NSAP and SNPA addresses (or DTE and LSAP addresses);

• options in the encoding of NSAP addresses.

2-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

2

Table 2-1, below, shows the mapping between the terminology used of services
and of protocols

The addressing format is:

The fields in this structure are:

Table 2-1 Terminology Mapping Table

Services Protocols

Connect Request Call Request Packet

Connect Indication Incoming Call Request

Connect Response/Confirm Call Accept Packet

Disconnect Request Call Clear Packet

#define NSAPMAXSIZE 20

struct xaddrf {
unsigned long link_id;
unsigned char aflags;
struct lsapformat DTE_MAC;
unsigned char nsap_len;
unsigned char NSAP[NSAPMAXSIZE];

}

Table 2-2 Fields in Address Structure

Member Name Description

link_id Link identifier, as specified by system administrator. Identifies the link required for a
Connect Request, or on which a Connect Indication arrived. The link_id field holds the
link number as an unsigned long. By default, link_id has a value of 0xFF. When
link_id is 0xFF, SunLink X.25 attempts to match the called address with an entry in a
routing configuration file. If it cannot find a match, it routes the call over the lowest
numbered WAN link.

Data Structures 2-3

2

The format of the lsapformat structure is as follows:

The fields in this structure are defined as follows:

aflags Specifies the options required (or used) by the subnetwork to encode and interpret
addresses. Takes one of these values:
#define NSAP_ADDR 0x00 /* NSAP field contains OSI-encoded NSAP

address */
#define EXT_ADDR 0x01 /* NSAP field contains non-OSI-encoded

extended address */

DTE_MAC Holds the DTE address or the MAC+DSAP (LSAP) address. The format of the
lsapformat structure is described below.

nsap_len Indicates the length of the NSAP address, if any (and where appropriate), in BCD digits.

NSAP Carries the NSAP address or address extension (see field aflags) when present as
indicated by nsap_len . The address is stored in BCD.

#define LSAPMAXSIZE 9

struct lsapformat {
unsigned char lsap_len;
unsigned char lsap_add[LSAPMAXSIZE];

};

Table 2-3 Fields in lsapformat Structure

Member Name Description

lsap_len Gives the length of the DTE address or the MAC+DSAP (LSAP) address in digits. For example,
for Ethernet the length is always 14 to indicate the MAC address (12) plus DSAP (2). The DSAP
always follows the MAC address. The DTE can be up to 15 decimal digits unless X.25 (88) and
TOA/NPI addressing is used, in which case it can be up to 17 decimal digits.

lsap_add Holds the DTE or MAC+DSAP (LSAP) address. The address is stored as BCD digits, that is, two
decimal digits per byte. The digits are right-justified in the array.

Table 2-2 Fields in Address Structure

Member Name Description

2-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

2

Note – Addresses are stored in Binary-Coded Decimal (BCD) format, in which
each byte holds two BCD digits in packed format (it takes only four bits to
represent a BCD digit). Thus, the X.121 address 4042383106, for example, is
stored as five bytes, with hexadecimal values 0x40, 0x42, 0x38, 0x31, and 0x06,
in that order.

2.2 Quality of Service and X.25 Facilities
Negotiable X.25 facilities are supported by the PLP driver. This section is
concerned with the request and negotiation of these facilities, and describes the
data structures used by the NLI primitives. Refer to the SunLink X.25 8.0.2
Reference Manual for details on the options selected for a particular subnetwork.

The facility set can be broken down into two main groups: those required for
standard X.25 procedures (X.29, for example) and those required for the
support of the OSI Connection-Oriented Network Service (CONS).

2.2.1 Standard X.25 Facilities

For those NLI applications that require them, the supported non-OSI facilities
are:

• Non-OSI extended addressing

• X.25 fast select request/indication with no restriction on response

• X.25 fast select request/indication with restriction on response

• X.25 reverse charging

• X.25 packet size negotiation

• X.25 window size negotiation

• X.25 network user identification

• X.25 Recognized Private Operating Agency selection

• X.25 Closed User Groups

• X.25 programmable facilities

• X.25 call deflection.

Data Structures 2-5

2

Facilities and QOS parameters are defined in the following structure:

Code Example 2-1 Struct that Defines Facilities and QOS Parameters

#define MAX_NUI_LEN 64
#define MAX_RPOA_LEN8
#define MAX_CUG_LEN 2
#define MAX_FAC_LEN 109
#define MAX_TARIFFS 4
#define MAX_CD_LEN MAX_TARIFFS * 4
#define MAX_SC_LEN MAX_TARIFFS * 8
#define MAX_MU_LEN 16

struct extraformat {
/* extraformat structure */
 unsigned char fastselreq;
 unsigned char restrictresponse, reversecharges;
 unsigned char pwoptions;
 unsigned char locpacket, rempacket;
 unsigned char locwsize , remwsize;
 int nsdulimit;
 unsigned char nui_len;
 unsigned char nui_field[MAX_NUI_LEN];
 unsigned char rpoa_len;
 unsigned char rpoa_field[MAX_RPOA_LEN];
 unsigned char cug_type;
 unsigned char cug_field[MAX_CUG_LEN];
 unsigned char reqcharging;
 unsigned char chg_cd_len;
 unsigned char chg_cd_field[MAX_CD_LEN];
 unsigned char chg_sc_len;
 unsigned char chg_sc_field[MAX_SC_LEN];
 unsigned char chg_mu_len;
 unsigned char chg_mu_field[MAX_MU_LEN];
 unsigned char called_add_mod;
 unsigned char call_redirect;
 struct lsapformat called;
 unsigned char call_deflect;
 unsigned char x_fac_len;
 unsigned char cg_fac_len;
 unsigned char cd_fac_len;
 unsigned char fac_field[MAX_FAC_LEN];
};

2-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

2

The fields in this structure are defined as follows:

Table 2-4 Standard X.25 Facilities

Facility Related struct Members and Descriptions

Fast Select For non-OSI applications like X.29, if the X.25 facility fast select is to be requested or
indicated the field fastselreq is non-zero.

Fast Select with Restricted
Response

In this case, the response is a Clear Request

Reverse Charging If reverse charging is requested or indicated for a connection, then the field
reversecharges is non-zero.

Note: See the SunLink X.25 8.0.2 Reference Manual for instructions on enabling
receipt of reverse-charging.

Packet Concatenation, Packet
and Window Size Negotiation

The pwoptions field is used to indicate per virtual-circuit options. The field is a bit
map with the following interpretation:
bit 0:0 - Packet size negotiation NOT permitted.
1 - Packet size negotiation permitted.
bit 1:0 - Window size negotiation NOT permitted.
1 - Window size negotiation permitted.
bit 2:0 - No concatenation limit asserted.
1 - Assert concatenation limit.

This is defined as follows:
#define NEGOT_PKT 0x01 /* packet size is negotiable */
#define NEGOT_WIN 0x02 /* window size is negotiable */
#define ASSERT_HWM 0x04 /* assert concatenation limit */

This field is used for two reasons: 1) The X.25 software will always indicate the
values of the window and packet sizes operating on the virtual circuit. However, the
field pwoptions for an incoming call indicates whether these values are negotiable.
2) In Connect Requests and Connect Responses the NLI user can set a limit value,
nsdulimit , for packet concatenation by the X.25 level that differs from the limit in
the subnetwork configuration database. It is not a negotiable option, so that
whatever the user has requested is used.

Packet Size Negotiation If the fields locpacket and rempacket are non-zero, then they contain indicated
or negotiated encoded packet sizes, for the directions local-to-remote and remote-to-
local, respectively.
Note: actual packet size is 2 to the power of the value specified.
#define DEF_X25_PKT 7 /* std default X.25 packet size */
So, for example if the field locpacket is set to 7, the actual packet size will be 27 or
128.

Data Structures 2-7

2

Window Size Negotiation If the fields locwsize and remwsize are non-zero, then they contain indicated or
negotiated window sizes, for the directions local-to-remote and remote-to-local,
respectively.
#define DEF_X25_WIN 2 /* std default X.25 window size */

Packet Concatenation If the field nsdulimit is non-zero, and the appropriate bit is set in the pwoptions
field described above, then the nsdulimit specified is used as the concatenation
limit.

Network User Identification The Network User Identification (NUI) is used in Connect Requests and Responses.
It is not available on X.25 (80) networks. If the field nui_len is non-zero, then the
Network User Identification is supplied in nui_field of length nui_len octets.

RPOA Selection Recognized Private Operating Agency, used in Connect Requests only. If the field
rpoa_len is non-zero, then the RPOA DNIC information is supplied in
rpoa_field and is of length rpoa_len digits. The RPOA is stored in rpoa_field as
BCD digits, with leading zeroes if necessary to right-justify the value. For example,
the RPOA 198 would be stored as {0x01, 0x98}.

For an X.25 (80) network this is restricted to one RPOA of length 4 BCD digits. The
basic format encoding is used for the RPOA selected.

For an X.25 (84) or X.25 (88) network one or more RPOAs may be selected. The
extended format encoding is used only if the number of RPOAs selected is greater
than 1. The maximum number of RPOAs which may be selected is restricted to 4.
Valid values for rpoa_len are 0, 4, 8, 12 and 16.

Closed User Groups This field is used in Connect Requests and Indications only. If the field cug_type is
non-zero, then the CUG information is supplied right-justified in cug_field . For
example, the CUG 956 is stored as {0x09, 0x56}. Values for cug_type are:
CUG — Closed User Group, up to 4 BCD digits
BCUG — Bilateral CUG (two members only), 4 BCD digits

Note: Incoming Closed User Group facilities are assumed to have been validated by
the network. No further checking is performed.

Table 2-4 Standard X.25 Facilities

Facility Related struct Members and Descriptions

2-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

2

2.2.2 X.25 Facilities for CONS Support

SunLink X.25 supports the following OSI Connection-Oriented Network
Service (CONS) quality of service (QOS) parameters:

• Throughput Class

• Minimum Throughput Class

• Target Transit Delay

Charging Information If the field reqcharging is non-zero in a Connect Request or Connect Accept, call
charging is requested. In a Disconnect Indication or Disconnect Confirm, the
following three fields give the lengths of the charging information:
gives length of chg_cd_field - call duration
gives length of chg_sc_field - segment count
gives length of chg_mu_field - monetary unit

A zero-length field means no charging information is supplied for the relevant
charging category.

Called Address Modification A non-zero called_add_mod field holds the reason for any address modification.

Call Redirection A non-zero call_redirect field holds the reason for the call redirection. The field
called supplies the originally-called DTE address.

Call Deflection A non-zero call_deflect field holds the reason for the call deflection. The
deflected field in the Disconnect Request contains the DTE address, and if
required, the NSAP address that the call is to be deflected to.

Programmable X.25 Facilities This field is used in Connect Requests and Connect Accepts only. Provision is made
for the passing of explicit facility encoded strings for X.25 facilities, and non-X.25
facilities for calling and called networks.
The fields x_fac_len , cg_fac_len , and cd_fac_len denote the lengths of the
facilities in the field fac_field relating to, respectively, X.25 facilities, non-X.25
facilities for the calling network and non-X.25 facilities for the called network.
If a length field is zero this denotes that no facilities are supplied for the
corresponding facility category.
Note: The contents of this field, if supplied, are not validated or acted upon by the
code. The X.25 facilities are inserted at the end of any other X.25 facilities which are
passed in the Connect Request/Accept (for example, packet/window sizes). If any
non-X.25 facilities are supplied the appropriate marker will be inserted before the
supplied facilities. Take care not to duplicate any facilities.

Table 2-4 Standard X.25 Facilities

Facility Related struct Members and Descriptions

Data Structures 2-9

2

• Maximum Acceptable Transit Delay

• Use of Expedited Data

• Protection

• Priority

• Receipt Acknowledgement

CONS-related quality-of-service parameters are defined in the following
structure:

#define MAX_PROT 32
struct qosformat {

unsigned char reqtclass;
unsigned char locthroughput, remthroughput;
unsigned char reqminthruput;
unsigned char locminthru, remminthru;
unsigned char reqtransitdelay;
unsigned short transitdelay;
unsigned char reqmaxtransitdelay;
unsigned short acceptable;
unsigned char reqpriority;
unsigned char reqprtygain;
unsigned char reqprtykeep;
unsigned char prtydata;
unsigned char prtygain;
unsigned char prtykeep;
unsigned char reqlowprtydata;
unsigned char reqlowprtygain;
unsigned char reqlowprtykeep;
unsigned char lowprtydata;
unsigned char lowprtygain;
unsigned char lowprtykeep;
unsigned char protection_type;
unsigned char prot_len;
unsigned char lowprot_len;
unsigned char protection[MAX_PROT];
unsigned char lowprotection[MAX_PROT];
unsigned char reqexpedited;
unsigned char reqackservice;
struct extraformat xtras;

};

2-10 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

2

The fields in this structure are defined as follows:

Table 2-5 QOS Parameters

QOS Parameter Related struct Members and Descriptions

Throughput Class reqtclass is non-zero if the throughput negotiation parameter is selected, in which
case the fields locthroughput and remthroughput contain, respectively, the four-bit
throughput encoding for the directions local-to-remote and remote-to-local.

Minimum Throughput
Class

reqminthruput is non-zero if the minimum throughput negotiation parameter is
selected, in which case the fields locminthru and remminthru contain, respectively,
the four-bit throughput encoding for the directions local-to-remote and remote-to-local.

Target Transit Delay reqtransitdelay is non-zero if the transit delay parameter is selected, in which case
transitdelay contains the 16-bit value—this applies to both Connect Requests and
Indications. In a Connect Confirm, the value of the selected transit delay will be placed in
the transitdelay field and will be non-zero.

Max. Acceptable Transit
Delay

If the calling NLI application specifies a maximum acceptable value for the transit delay
parameter (“Lowest Quality Acceptable”), then the field reqmaxtransitdelay is non-
zero and acceptable contains the 16-bit value of the maximum acceptable.
Note: The transit delay selection relates only to Connect Requests and there is no transit
delay QOS parameter in a Connect Response primitive. The correct response when the
indicated QOS is unattainable is to make a Disconnect Request. Also, in a Connect
Confirm, the value of the selected transit delay will be placed in the transitdelay field
when such negotiation takes place.

Priority The reqpriority field is used to request/indicate priority on a connection. The
mandatory field prty_data , contains the 8-bit value for the priority of data on the
connection. The reqprtygain and reqprtykeep fields can be optionally set to indicate
that the fields prty_gain , and prty_keep contain, respectively, the 8-bit value for the
priority to gain a connection; and priority to keep a connection.
On N-CONNECT requests the calling NS_user may also specify a lowest acceptable value
for priority. The fields reqlowprtydata , reqlowprtygain , reqlowprtykeep , may
be set to indicate that the fields lowprtydata , lowprtygain , and lowprtykeep
contain, respectively, the 8-bit value for the lowest acceptable; priority of data on
connection; priority to gain a connection.

Data Structures 2-11

2

Protection If the protection negotiation parameter is selected, then protection_type is non-zero
and indicates the type of protection required, in which case the mandatory fields
prot_len and protection contain, respectively, the length and value for the target
protection. On N-CONNECT requests the calling NS_user may optionally specify a lowest
acceptable protection, in which case the fields lowprot_len and lowprotection
contain, respectively, the length and value for the lowest acceptable protection. Values for
protection_type are:
PRT_SRC Source address specific
PRT_DST Destination address specific
PRT_GLB Globally unique

Use of Expedited Data If expedited data is required/selected, then the field reqexpedited is non-zero. For
Connect Indications, a value of 1 implies that the expedited data negotiation facility was
present in the Incoming Call packet, and that its use was requested.
Note: Negotiation is a CONS procedure. When the facility is present and indicates non-
use, use cannot be negotiated by Connect responses. See Section 3.1, “Connect
Request/Indication,” on page 3-2 and Section 3.2, “Connect Response/Confirmation,” on
page 3-4 for a description of the use of the CONS_call field in Connect Requests and
Connect Responses.

For incoming or outgoing non-CONS calls (denoted by the CONS_call flag set to 0),
Expedited Data Negotiation is not required—interrupt data is always available in X.25.
This means that this field is ignored on Connect Requests and Responses for non-CONS
calls.

Acknowledgement
Service

If the acknowledgement service is to be used, the field reqackservice is non-zero.
Setting reqackservice to 1 signifies acknowledgement confirmation by the remote
DTE. Setting reqackservice to 2 signifies acknowledgement confirmation by the
remote application. In the case of acknowledgement confirmation by the remote DTE, no
acknowledgements are expected or given over the X.25 interface. In the case of
acknowledgement confirmation by the remote application, there is a one-to-one
correspondence between D-bit data and acknowledgements with one data
acknowledgement being received/sent for each D-bit data packet sent/received over the
X.25 interface. Setting this parameter to a non-zero value causes negotiation in the call
setup phase for use of the D-bit on the connection.

Table 2-5 QOS Parameters

QOS Parameter Related struct Members and Descriptions

2-12 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

2

3-1

NLI Message Primitives 3

The control part of the messages passed across the NLI has a format defined by
structures in the following C union. This is used to convey information to and
from X.25.

union X25_primitives {
struct xcallf xcall; /* Connect Request/Indication */
struct xccnff xccnf; /* Connect Confirm/Response */
struct xdataf xdata; /* Normal, Q-bit, or D-bit data */
struct xdatacf xdatac; /* Data ack */
struct xedataf xedata; /* Expedited data */
struct xedatacf xedatac; /* Expedited data ack */
struct xrstf xrst; /* Reset Request/Indication */
struct xrscf xrscf; /* Reset Confirm/Response */
struct xdiscf xdisc; /* Disconnect Request/Indication */
struct xdcnff xdcnf; /* Disconnect Confirm */
struct xabortf abort; /* Abort Indication */
struct xlistenf xlisten; /* Listen Command/Response */
struct xcanlisf xcanlis; /* Cancel Command/Response */
struct pvcattf pvcatt; /* PVC Attach */
struct pvcdetf pvcdet; /* PVC Detach */

 };

3-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

The above messages have common fields which can be accessed by the
following type:

The messages to and from the application are classified into control and data,
depending on the value of xl_type which is either XL_CTL (control) or
XL_DAT (data). Within each classification, the exact message identity is
determined by the xl_command qualifier, and it is important to ensure that the
combination of xl_type and xl_command is consistent. Each of these cases is
described in the following subsections.

Note – Some of the examples in this chapter mention CONS calls. These are
only relevant to OSI-type applicatations.

3.1 Connect Request/Indication
The control part of a Connect Request or Indication message has a format
defined in the following structure:

typedef struct xhdrf {
unsigned char xl_type; /* XL_CTL/XL_DAT */
unsigned char xl_command; /* Command */

} S_X25_HDR;

struct xcallf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_CI */
int conn_id; /*connection id returned in Connect Response or

Disconnect */
unsigned char CONS_call; /* When set, indicates a CONS call

*/
unsigned char negotiate_qos; /* When set, negotiate

facilities */
/* etc. or else use defaults */

struct xaddrf calledaddr; /* The called and */
struct xaddrf callingaddr; /* calling addresses */
struct qosformat qos; /* Facilities and CONS qos: if

negotiate_qos is set */
};

NLI Message Primitives 3-3

3

This structure is used when calls are requested or indicated across the X.25
interface. The data part of the message contains the call user data (if any).
Other components are listed as follows.

For information on X.25 facilities, refer to Section 2.2, “Quality of Service and
X.25 Facilities,” on page 2-4.

Table 3-1 Connect Request/Indication Message

Member Description

conn_id For incoming calls, an attempt is made to match the called address and call user data with that of
one of the listening applications. If a match is found, then the indication is passed to that
application with a conn_id identifier, which must be returned in the Connect Response or
Disconnect Request to accept or reject the connection. Leave this value as 0.

CONS_call For requests, this field, when set, indicates that CONS procedures should be used for the call.

negotiate_qos A non-zero value shows that facilities and quality of service (QOS) are being negotiated. A zero
value means the initiator is requesting all default values.

calledaddr Holds the called address.

callingaddr Holds the calling address.

qos Holds the facilities requested/indicated. See Section 5.1, “Opening a Connection,” on page 5-2 for
more information on QOS negotiation.

3-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

3.2 Connect Response/Confirmation
The control part of a Connect Response or Confirmation message is defined in
the following structure:

This structure is used when calls are being accepted. The data part of the
message contains the called user data, if any. The components of the structure
are:

For information about X.25 facilities, see Section 2.2, “Quality of Service and
X.25 Facilities,” on page 2-4.

struct xccnff {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_CC */
int conn_id; /* The connection id quoted on the associated

indication. */
unsigned char CONS_call; /* When set, indicates CONS call */
unsigned char negotiate_qos; /* When set, negotiate

facilities */
/* etc. else use indicated values */

struct xaddrf responder; /* Responding address */
struct qosformat rqos; /* Facilities and CONS qos: if

negotiate_qos is set */
};

Table 3-2 Connect Response/Confirmation Message

Member Description

conn_id Connection identifier. conn_id must be returned in the Connect Response so that the procedures
described in Section 5.4, “Listening,” on page 5-19 can be guaranteed to operate properly. Leave
this value as 0.

CONS_call For responses, this field, when set, indicates that CONS procedures should be used for the call. If
you are not using CONS, this value should be 1.

negotiate_qos A non-zero value shows that facilities and quality of service (QOS) are being negotiated. A zero
value means the initiator is requesting all default values.

responder Holds the responding address.

rqos Holds selected facilities and CONS QOS parameters to be passed to the initiator.

NLI Message Primitives 3-5

3

3.3 Data
The control part of a data message is defined in the following structure:

This structure is used when data crosses the X.25 interface. Its components are
as follows.

The data part of the data message contains the user data.

Note – No acknowledgement for this data is given to, or expected from, the
application unless the D-bit is set and Application-to-Application Receipt
Confirmation is being used.

3.4 Data Acknowledgement Request/Indication
This following structure is associated with this message:

struct xdataf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_Data */
unsigned char More; /* Set when more data is required

 to complete the nsdu */
unsigned char setDbit, /* Set when data carries X.25D-bit */
unsigned char setQbit; /* Set when data carries X.25 Q-bit */

};

Table 3-3 Data Message

Member Description

More Shows whether there is more of this network service data unit to be received/sent.

setQbit Used to request or indicate that the Q-bit is set when user data is transmitted/received.

setDbit Used to request or indicate that the D-bit is set when user data is transmitted/received.

struct xdatacf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_DAck */

};

3-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

This structure is used when a Data Acknowledgement Request or a Data
Acknowledgement Indication crosses the X.25 interface.

When receipt confirmation from the remote application is active on a virtual
circuit, this structure is used to acknowledge a previous Data
Acknowledgement Request or Indication which had the D-bit set. There is a
one-to-one correspondence between D-bit data and acknowledgements, with
one Data Acknowledgement being received/sent for each D-bit data packet
sent/received. It is always the oldest outstanding D-bit packet that is being
acknowledged.

For CONS calls, if receipt acknowledgement has been negotiated on the
connection, then the above procedures should apply for any D-bit data sent or
received.

For non-CONS calls, only if the reqackservice field in the qos structure has
been set to the appropriate value will the above procedures apply for any D-bit
data sent or received. Otherwise, no acknowledgement is expected or given.

3.5 Expedited Data
The control part of an expedited data message has a format defined in the
following structure:

This structure is used when expedited data, carried by an X.25 Interrupt
packet, crosses the X.25 interface. No parameters are required.

The data part of the message contains the user data. The expedited data is a
confirmed primitive and must be acknowledged (see below) before another
expedited data unit can be requested or indicated.

struct xedataf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_EData */

};

NLI Message Primitives 3-7

3

3.6 Expedited Data Acknowledgement
The control part of the expedited data acknowledgement message has a format
defined in the following structure:

This structure is used when expedited data needs to be, or is being,
acknowledged. No parameters or user data are required.

3.7 Reset Request/Indication
The control part of a Reset Request or an Indication message has a format
defined in the following structure:

This structure is used when a Reset Request/Indication crosses the X.25
interface. Data is never associated with the primitive.

The X.25 cause and diagnostic bytes, cause and diag , are presented as well as
the CONS originator and reason codes that are mapped from these.

For a Reset Request on a non-CONS call, the user can specify a non-zero cause
code. This has no effect for a CONS call; the value is set to zero by the system.

A Reset Request is a confirmed primitive and must be acknowledged before
another Reset Request can be requested.

struct xedatacf {
unsigned char xl_type; /* Always XL_DAT */
unsigned char xl_command; /* Always N_EAck */

};

struct xrstf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_RI */
unsigned char originator, /* Originator and Reason mapped */

reason, /* from X.25 cause/diag in indications */
cause, /* X.25 cause byte */
diag; /* X.25 diagnostic byte */

};

3-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

Note – A Reset primitive is an acknowledged service (see the associated
structure xrscf). A collision between a Reset Indication and a Reset Request
is taken to acknowledge the Reset—no Reset Confirmation is then required
before another Reset Request can be sent. Normally, Resets are handled by the
appliation.

3.8 Reset Response/Confirm
The control part of a Reset Response or Confirm message has a format defined
in the following structure:

This structure is used when a Reset Confirm or Response to a previous Reset
crosses the X.25 interface. There are no parameters or data associated with the
primitive. The comments above on reset collision also apply here.

struct xrscf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_RC */

};

NLI Message Primitives 3-9

3

3.9 Disconnect Request/Indication
The control part of a Disconnect Request or Indication message has a format
defined in the following structure:

This structure is used when a Disconnect Request/Indication crosses the X.25
interface. The data part of the message contains the Clear User Data, if any.

The X.25 cause and diagnostic bytes, cause and diag , are presented, as well
as the CONS originator and reason codes mapped from these. For a Disconnect
Request on a non-CONS call, the user can specify a non-zero cause code. This
has no effect for a CONS call; the value is set to zero by the system. Other
parameters are listed below.

struct xdiscf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_DI */
unsigned char originator, /* Originator and Reason mapped

from */
reason, /* X.25 cause/diag in indications */
cause, /* X.25 cause byte */
diag; /* X.25 diagnostic byte */

int conn_id; /* The connection id (for reject only) */
unsigned char indicated_qos; /* When set, facilities

indicated */
struct xaddrf responder; /* CONS responder address */
struct xaddrf deflected; /* Deflected address */
struct qosformat qos; /* If indicated_qos is set, holds

facilities and CONS qos */
};

Table 3-4 Disconnect Request/Indication Parameters

Member Description

indicated_qos Non-zero value shows that facilities and QOS are being indicated.

responder Contains the responding address.

deflected Used in conjunction with the call_deflect facility in the qos structure, to convey the address
of the remote DTE that the call is to be deflected to.

3-10 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

The Disconnect Request from an application is confirmed unless it is a rejection
of a previous Connect Indication. When it is not a rejection, the X.25 driver
sends a Disconnect Confirm to the application when the Clear Confirmation is
received. This guarantees that, once the Disconnect Confirm is observed by the
application, no more messages are sent on this stream. For this reason, after
requesting disconnection, the application should read and discard all messages
from the stream until the Disconnect Confirm is received.

For call rejection, no “acknowledgement” is sent. However, the application
must supply the connection identifier presented in the Connect Indication so
that the appropriate circuit is cleared. In the case of a Disconnect Indication, all
messages sent downstream except connect messages are discarded silently.

Note – A disconnect collision can occur. If it does, the “acknowledgement” can
be taken to be complete.

3.10 Disconnect Confirm
The control part of a Disconnect Confirm message has a format defined in the
following structure:

qos Contains the facilities indicated. Currently, this is used with the Charging Information facility and
the Call Deflection facility.

struct xdcnff {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_DC */
unsigned char indicated_qos; /* When set, facilities
 indicated */
struct qosformat rqos; /* If indicated_qos is set, holds

facilities and CONS qos */
};

Table 3-4 Disconnect Request/Indication Parameters

Member Description

NLI Message Primitives 3-11

3

This stucture is used when a Disconnect Confirm crosses the X.25 interface.
There is no data associated with this primitive. The components of the
structure are:

3.11 Abort Indication
The control part of an Abort Indication message has a format defined in the
following structure:

This structure is used when the X.25 driver needs to send a Disconnect to the
application but there is no resource available in the system to construct a full
Disconnect Indication message. For this reason, this message should rarely be
received.

Note – This message is only used in the upstream direction, never
downstream.

Table 3-5 Disconnect Confirm Parameters

Member Description

indicated_qos Non-zero value shows that facilities and QOS are being indicated.

rqos Contains the facilities indicated. Currently, this is only used with the Charging Information facility.

struct xabortf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_Abort */

};

3-12 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

3.12 Listen Command/Response
The control part of a Listen Command or Response message has a format
defined in the following structure:

This structure is used when an NLI application wants to register interest in
incoming calls. The components are listed below.

For more information, refer to Chapter 4, “Listens.”

struct xlistenf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_Xlisten */
int lmax; /* Maximum number of CI’s at a time */
int l_result; /* Result flag */

};

Table 3-6 Listen Command/Response Parameters

Member Description

lmax Maximum number of Connect Indications that the listener is willing to handle at one time. The data
part of the message carries the address(es) in which the listener is interested (refer also to Chapter 4,
“Listens”).

Note: listen requests are cumulative but the lmax value (number of simultaneously handled
Connect Indications) is not. This means that several listen requests can be made on a single stream,
in which case the lmax value contained in the last listen message specifies the number of
simultaneously handled Connect Indications.

l_result The result of the listen request is acknowledged upstream with the same message. An error in the
parameters or a lack of resources to set up the listen causes this flag to be set to a non-zero value.

NLI Message Primitives 3-13

3

3.13 Listen Cancel Command/Response
The control part of a Listen Cancel Command or Response message has a
format defined in the following structure:

This structure is used to cancel an interest in incoming calls. Like the listen
message described above, this request is confirmed. In this case, a non-zero
value of the c_result flag indicates failure of the operation to cancel a Listen.
For example, the Listen was not present or some connect event is outstanding.
Naturally, the closure of a stream on which there is a Listen also cancels the
Listen, but in the case of the cancel command message, the stream remains
open.

Note – The Cancel Request removes all listen addresses from the stream. There
is no way of cancelling a Listen on a particular address, for example, when the
use of the stream is about to be changed by the application.

struct xcanlisf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_Xcanlis */
int c_result; /* Result flag */

};

3-14 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

3.14 PVC Attach
The control part of a PVC Attach message has a format defined in the
following structure:

This structure is used when a PVC Attach crosses the X.25 interface. This
message is used when a user wants to “attach” to a PVC. The components are
listed below.

struct pvcattf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_PVC_ATTACH */
unsigned short lci; /* Logical channel */
unsigned long link_id; /* Link identifier */
unsigned char reqackservice; /* Receipt Acknowledgement */
/* 0 for next parameter implies use of default */
unsigned char reqnsdulimit;
int nsdulimit;
int result_code; /* Non-zero - error */

};

Table 3-7 PVC Attach Parameters

Member Description

lci Contains the logical channel identifier of the required PVC.

link_id Denotes the particular link identifier for the PVC.

reqackservice If non-zero, denotes that the receipt acknowledgement service is requested by use of the D-bit.
Setting reqackservice to 1 signifies receipt confirmation by the remote DTE. Setting
reqackservice to 2 signifies receipt confirmation by the remote application.

In the case of receipt confirmation by the remote DTE, no acknowledgements are expected or given
over the X.25 interface. In the case of receipt confirmation by the remote application, there is a one-
to-one correspondence between D-bit data and acknowledgements with one data acknowledgement
being received/sent for each D-bit data packet sent/received over the X.25 interface.

reqnsdulimit If this is non-zero, use value in nsdulimit .

nsdulimit Specifies the packet concatenation limit for NSDUs. If you want to use this parameter,
reqnsdulimit must be non-zero. (The X.25 driver does not look at reqnsdulimit if nsdulimit
is zero.)

result_code In the attach message sent to the user as acknowledgment, this field denotes whether the attach was
successful.

NLI Message Primitives 3-15

3

3.15 PVC Detach
The control part of a PVC Detach message has a format defined in the
following structure:

This structure is used when a PVC Detach crosses the X.25 interface. This
message is used when a user wants to "detach" from the PVC. This allows the
use of the stream to be changed.

The Detach message is acknowledged to the user by returning a Detach
message, in which the field reason_code denotes whether the Detach was
successful.

This message is also used by the X.25 driver to inform the user of some failure
of the PVC. These include link down, remote end not responding, and so on.
When the message is sent by the X.25 driver, the field reason_code gives the
reason for the Detach.

struct pvcdetf {
unsigned char xl_type; /* Always XL_CTL */
unsigned char xl_command; /* Always N_PVC_DETACH */
int reason_code; /* Reports why */

};

3-16 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

3

4-1

Listens 4

The major features of listening are:

• Any number of processes can listen simultaneously, subject to resource
constraints imposed by the system administrator. Moreover, any number of
these processes can listen at the same (set of) called addresses. Note that there
is no means of listening for a particular calling address.

• An application can elect to listen and handle one or more Connect
Indications at a time. The most likely use of this feature is when the
application wants to make use of the following facility:

• An incoming connection may be accepted on a stream other than the one
which received the Connect Indication (the listening stream).

• An application built on the NLI streams interface can listen on multiple
addresses. This results in a more efficient use of kernel resources than if the
application had to open a separate stream to listen on each address.

4.1 Listening for Incoming Calls
When an application wishes to listen for incoming calls, it must specify the
(called) address(es) and Call User Data (CUD) field values for which it is
prepared to accept calls. These addresses and values are passed as part of a
listen request.

4-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

4

The control part of the message is accompanied by a data part containing the
addresses to be registered for incoming calls. The data portion is treated as a
byte stream of CUD and addresses conforming to the following definition:

It is important to note that, depending on both the value of the “mode” bytes
and the lengths, not all fields need be present. Refer to the individual field
descriptions below for more details.

4.2 Call User Data Matching
The fields l_cumode , l_culength and l_cubytes are used to match the
CUD field of the incoming call, if any, against that specified in the Listen
request.

unsigned char l_cumode;
unsigned char l_culength;
unsigned char l_cubytes [l_culength];
unsigned char l_mode;
unsigned char l_type;
unsigned char l_length;
unsigned char l_add[(l_length+1)>>1];

Table 4-1 Variables for CUD Matching

Variable Name Description

l_cumode Defines the type of matching. Three cases are possible:

X25_DONTCARE

The listener ignores the CUD; l_culength and l_cubytes are omitted.

X25_IDENTITY

The listener match is only made if all bytes of the CUD field are the same as the supplied
l_cubytes .

X25_STARTSWITH

The listener match is only made if the leading bytes of the CUD Field are the same as the
supplied l_cubytes .

The last two are intended to distinguish, for example, X.29, from other higher level protocols.

Listens 4-3

4

4.3 Address Matching
The fields l_mode , l_type , l_length and l_add are used to match the
address field(s) of the incoming call against that specified in the Listen request.

l_culength Length of the CUD in octets for an X25_IDENTITY or X25_STARTSWITH CUD Field match. If
l_culength is zero, the l_cubytes are omitted. Currently, the range for l_culength is zero to
16 inclusive. The application still has to check the full CUD Field.

l_cubytes String of bytes sought in the call user data field when l_cumode is X25_IDENTITY or
X25_STARTSWITH.

Table 4-2 Variables for Address Matching

Variable Name Description

l_mode Defines the type of matching:

X25_DONTCARE

The listener ignores the address; l_type, l_length , and l_add are omitted.

X25_IDENTITY

The listener match is only made if all digits of the address are the same as the supplied
l_add .

X25_STARTSWITH

The listener match is only made if the leading digits of the address are the same as the
supplied l_add .

X25_PATTERN

The listener match is made on partial addresses, allowing the use of wildcard digits.

The last two are intended to distinguish, for example, X.29, from other higher level protocols.

l_type The type of the address entry; l_type can have two values, X25_DTE or X25_NSAP. It denotes the
important addressing quantity. For X.25 (84) and X.25 (88), for example, NSAP addresses (or
extended addresses) are the important addresses, while for X.25 (80), where there is no NSAP
address, the DTE address is the important quantity. Various applications can be distinguished by
X.25 DTE subaddress where necessary.

On many X.25 (84) and X.25 (88) networks, it is possible to listen on either X25_DTE or X25_NSAP
addresses. This is not possible when running X.25 (84) or X.25 (88) over LLC2 on the LAN. In this
case, the DTE address field is NULL and the X25_NSAP field is used.

Table 4-1 Variables for CUD Matching

Variable Name Description

4-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

4

4.4 Priority
The listen request queue is ordered in terms of the amount of listen data
supplied. The more a listen request asks for, the higher its place in the queue.
Connect Indications are sent to the listener whose listening criteria are best
matched.

Privileged users can ask for a request to be placed at the front of the queue,
regardless of the amount of listen data supplied. To do this, the listen request
should be sent as an M_PCPROTO message. This is achieved by setting the
RS_HIPRI flag in putmsg . Such requests are searched in the order in which
they arrive.

The system administrator controls whether listening for incoming calls is a
privileged operation. If listening is privileged, incoming calls will only be sent
on listen streams opened by a user with superuser privilege. This prevents
other users accepting calls that may contain private information, such as
passwords. In systems where privileged and non-privileged listens are
allowed:

• privileged listens have priority

• a matching but busy privileged listen prevents a search of any non-
privileged listens.

l_length Length of the address l_add in BCD digits—the common format for X.25 DTE and NSAP
addresses. If l_length is zero, then l_add is omitted. The maximum values for l_length are 15
for X25_DTE and 40 for X25_NSAP.

l_add Contains the address. l_add is omitted when l_length is zero.

Table 4-2 Variables for Address Matching

Variable Name Description

5-1

Streams Programming Examples 5

Note – See sample programs that use the NLI in:
/opt/SUNWconn/x25/samples.nli .

To perform any of the operations described in this section, the application must
open a stream to the X.25 PLP Driver. Once the stream has been opened it can
be used for initiating, listening for, or accepting a connection. There is a one-to-
one mapping between X.25 virtual circuits and PLP driver streams. Once a
connection has been established on a stream, the stream cannot be used other
than for passing data and protocol messages for that connection. Such a stream
is opened on the /dev/x25 major device as follows:

if ((x25_fd = open("/dev/x25", O_RDWR)) < 0) {
perror("Opening Stream");
exit(1);
}

5-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

5.1 Opening a Connection
To establish a connection on an open stream, an application must do the
following:

1. Allocate a Connect Request structure.

2. Supply the Connect Request with the quality of service and facilities
parameters.

3. Set the called (and optionally calling) addresses.

4. Pass the Connect Request down to the X.25 Driver.

5. Wait for the connect confirmation or rejection.

The following sections describe the procedures for opening a connection for a
standard X.25 call and for a Connection-Oriented Network Service (CONS) call
that uses X.25, respectively.

Streams Programming Examples 5-3

5

5.1.1 Standard X.25 Calls

The following example opens a connection for a non-CONS call:

Note – When negotiate_qos is true (non-zero), setting the QOS fields to zero
means that the connection uses defaults for QOS and Facilities. If required,
these can be set to different values (see Section 2.2, “Quality of Service and
X.25 Facilities,” on page 2-4 and Section 3.1, “Connect Request/Indication,” on
page 3-2 for more details), but it is recommended that the entire QOS structure
be zeroed first, as shown. This is preferable to setting each field individually, as
it allows for any future additions to this structure. Setting the calling address
to null leaves the network to fill this value in.

#define FALSE 0
#define TRUE 1
#include <memory.h>
#include <netx25/x25_proto.h>
struct xaddrf called = { 0, 0, { 14, { 0x23, 0x42, 0x31, 0x56,
0x56, 0x56, 0x56 }}, 0 };
 /* no flags,
 * DTE = "23423156565656", null NSAP
 */
struct xcallf conreq;
/* Convert sn_id to internal format */
called.link_id = 0;
conreq.xl_type = XL_CTL;
conreq.xl_command = N_CI;
conreq.CONS_call = FALSE;
/* This is not a CONS call */
conreq.negotiate_qos = FALSE;
/* Just use default */
memset(&conreq.qos, 0, sizeof(struct qosformat));
memcpy(&conreq.calledaddr, &called, sizeof(struct xaddrf));
memset(&conreq.callingaddr, 0, sizeof(struct xaddrf));

5-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

The message is sent on the stream using the putmsg system call, with any call
user data being passed in the data part of the message:

#define CUDFLEN 4
struct strbufctlblk, datblk;
char cudf[CUDFLEN] = { 1, 0, 0, 0 };
ctlblk.len = sizeof(struct xcallf);
ctlblk.buf = (char *) &conreq;
datblk.len = CUDFLEN;
datblk.buf = cudf;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

perror("Call putmsg");
exit(1);
}

Streams Programming Examples 5-5

5

5.1.2 CONS/X.25 Calls

The following example opens a connection for a CONS call:

Note – When negotiate_qos is true (non-zero), setting the QOS fields to zero
means that the connection uses defaults for QOS and Facilities. If required,
these can be set to different values but it is recommended that the entire QOS
structure be zeroed first as shown. This is preferable to setting each field
individually, as it allows for any future additions to this structure. Setting the
calling address to null leaves the network to fill this value in.

#define FALSE0
#define TRUE1
#include <memory.h>
#include <netx25/x25_proto.h>
struct xaddrf called = { 0, 0, {14, { 0x23, 0x42, 0x31, 0x56,
0x56, 0x56, 0x56 }}, 0};
/* Subnetwork "A" (filled in later), no flags,
 * DTE = "23423156565656", null NSAP */
struct xcallf conreq;
/* Convert sn_id to internal format */
called.link_id = 0;
/*
 * snidtox25 only fails if a
 * NULL string is passed to it
 */
conreq.xl_type = XL_CTL;
conreq.xl_command = N_CI;
conreq.CONS_call = TRUE;
/* This is a CONS call */
conreq.negotiate_qos = TRUE;
/* Negotiate requested */
memset(&conreq.qos, 0, sizeof (struct qosformat));
conreq.qos.reqexpedited = TRUE; /* Expedited requested */
conreq.qos.xtras.locpacket = 8; /* 256 bytes */
conreq.qos.xtras.rempacket = 8; /* 256 bytes */
memcpy(&conreq.calledaddr, &called, sizeof(struct xaddrf));
memset(&conreq.callingaddr, 0, sizeof(struct xaddrf));

5-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

The message is then sent on the stream using the putmsg system call, with any
call user data being passed in the data part of the message:

At this stage, the application should wait for a response to the Call Request.
The response may be either a Connect Confirmation or a Disconnect (rejection)
message.

#define CUDFLEN 4
struct strbuf, ctlblk, datblk;
char cudf[CUDFLEN] = { 1, 0, 0, 0 };
ctlblk.len = sizeof(struct xcallf);
ctlblk.buf = (char *) &conreq;
datblk.len = CUDFLEN;
datblk.buf = cudf;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

perror("Call putmsg");
exit(1);
}

Streams Programming Examples 5-7

5

#define DBUFSIZ 128
#define CBUFSIZ MAX(sizeof(struct xccnff), sizeof(struct xdiscf))
int getflags = 0;
S_X25_HDR*ind_msg;
char ctlbuf[CBUFSIZ], datbuf[DBUFSIZ];
struct xccnff *ccnf;
struct qosformat qos;
ctlblk.maxlen = CBUFSIZ;
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;
for(;;) {

if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Getmsg fail");

exit(1);
}
ind_msg = (S_X25_HDR *) ctlbuf;
if (ind_msg->xl_type != XL_CTL)

continue;
switch (ind_msg->xl_command) {

case N_CC:
/* Process the Connect Confirmation */

ccnf = ((struct xccnff *) ind_msg;
if (ccnf -> negotiate_qos) {

bcopy (&qos, ccuf->qos, sizeof (struct qosformat));
if (qos -> reqexpedited)
printf("Request Expedited set\n");
else
printf("Request Expedited not set\n");
}

else {
/* indicated values have been accepted */

}
return;

case N_DI:
perror("Connection rejected");
exit(1);

default:
continue;

}
}

5-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

In the preceding example, getmsg is used to retrieve the next message from
the stream head. This is done in a loop, until either a Connect Confirm
message, indicating successful completion, is received, or a Disconnect
Indication, showing that the connect attempt was rejected.

Note – The facility and QOS values indicated in the Connect Confirmation are
those that are used for the duration of the connection.

It is possible to abort the connect request before a response is received. The
application can do this by sending a Disconnect Request message (see “Closing
a Connection” on page 5-15). If this is done, the application should read and
discard all messages from the stream until it receives the disconnect
acknowledgement (described inSection 3.9, “Disconnect Request/Indication,”
on page 3-9). After a rejection or connect abort the stream remains open, and
can be used, for example, to make further connection attempts.

5.2 Data Transfer
In the data transfer phase, access is given to:

• the Q-bit, to support X.29-like services

• the M-bit, to signal packet fragmentation

• the D-bit, to request confirmation of data delivery

• Expedited data, to support X.29 and CONS.

Normal and Q-bit data is sent and received using the N_Data message and
may be acknowledged using the N_DAck message. Expedited data uses the
N_EData message, and is acknowledged using an N_EAck message. The
following subsections show examples of code for data transfer:

Streams Programming Examples 5-9

5

5.2.1 Sending Data

Once a connection has been successfully opened on a stream, sending a data
packet is straightforward:

Normally, the call to putmsg blocks if there are flow control conditions in the
connection which lead to either a full queue at the stream head, or a lack of
streams resources. Blocking due to a full queue can be avoided if the stream is
opened with the option O_NDELAY flagged. In this case, putmsg returns
immediately, and the failure is signalled by a return value (retval) of
EAGAIN.

This procedure allows the application to carry out other processing (for
example, receiving data) before trying again. The best method to use depends
on the nature of the application.

5.2.2 Receiving Data

In the same way as sending data, data reception is straightforward. When data
is received with the D-bit set, action may be required by the application. When
the initial Call Request is sent, it may request that data confirmation be at the
application-to-application level. If application-to-application confirmation is
agreed upon, then on receiving a packet with the D-bit set, it must be
acknowledged by sending a Data Acknowledgement (N_DAck) message.

#define DBUFSIZ 128
struct xdataf data;
char datbuf[DBUFSIZ];
int retval;
/* Copy data into datbuf[] here*/
data.xl_type = XL_DAT;
data.xl_command = N_Data;
data.More = data.setQbit = data.setDbit = FALSE;
ctlblk.len = sizeof(struct xdataf);
ctlblk.buf = (char *) &data;
datblk.len = DBUFSIZ;
datblk.buf = datbuf;
retval = putmsg(x25_fd, &ctlblk, &datblk, 0);

5-10 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

This example prints out incoming data as a string, if the Q-bit is not set:

Code Example 5-1 Handling Incoming Data

S_X25_HDR*hdrptr;
struct xdataf *dat_msg;
struct xdatacf *dack;
for(;;) {

if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror(“Getmsg fail”);
exit(1);
}

hdrptr = (S_X25_HDR *) ctlbuf;
if (hdrptr->xl_type == XL_CTL) {
/* Deal with protocol message as required -
 * see below
 */

}
if (hdrptr->xl_type == XL_DAT) {

dat_msg = (struct xdataf *) ctlbuf;
switch (dat_msg->xl_command) {

case N_Data:
if (dat_msg->More)

printf(“M-bit set \n”);
if (dat_msg->setQbit)

printf(“Q-bit set \n”);
else {

if (dat_msg->setDbit)
printf(“D-bit set \n”);

for (i = 1;i<datblk.len; i++)
printf(“%c”, datbuf[i]);

/*
 * If application to application
 * Dbit confirmation was negotiated
 * at call setup time,
 * send an N_DAck
 */

if (app_to_app && dat_msg->setDbit) {
dack = (struct xdatacf *)
malloc(sizeof(struct xdatacf));
bzero((char *)dack, sizeof(struct xdatacf));
dack- >xl_command = N_DAck;
dack->xl_type = XL_DAT;
ctlblk->len = sizeof(struct xdatacf);
ctlblk->buf = (char *)dack;
datblk->len = 0;

Streams Programming Examples 5-11

5

5.2.3 Expedited Data

The preceding example allows for the possibility of receiving expedited data
messages (which are carried in X.25 interrupt packets). These must be dealt
with appropriately. Since only one expedited data packet can be outstanding in
the connection at any time, its sender is prevented from sending any further
such messages until the receiver has acknowledged it. The receiver does this by
sending an Expedited Acknowledgement (EAck) message.

The EAck is sent in much the same way as an ordinary data packet, but with
no data part. If the application does not need to use the expedited data
capability, then other appropriate responses to receiving an EData message are
to reset or close the connection. (See Section 5.2.4, “Resets,” on page 5-13 and
Section 5.3, “Closing a Connection,” on page 5-15.)

When sending expedited data, the application must wait for an
acknowledgement before requesting further expedited transmissions.

datblk->buf = (char *)0;
putmsg(x25_fd, &ctlblk, &datblk, &getflags);
}

} /* end else */
break;

case N_EData:
printf(“***Expedited data received \n”);

/* Must deal with */
break;

case N_DAck:
printf(“***Data Acknowledgement received \n”);
break;

default:
break;

} /* end switch */
} /* end if */

} /* end for */

Code Example 5-1 Handling Incoming Data (Continued)

5-12 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

#include <sys/net/x25_proto.h>
#define EXPLEN 4
struct xed atafexp;
char expdata[]= {1, 2, 3, 4};
exp.xl_type= XL_CTL;
exp.xl_command= N_Edata;
ctlblk.len= sizeof (struct xedataf);
ctlblk.buf= (char *) &exp;
datblk.len= EXPLEN;
datblk.buf= expdata;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

error("Exp putmsg");
exit(1);
}

for (;;) {
if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Getmsg fail");
exit(1);
}

hdrptr = (S_X25_HDR *) ctlbuf;
if (hdrptr->xl_type == XL_CTL) {
/* Deal with protocol message as required */

}
if (hdrptr->xl_type == XL_DAT) {

dat_msg = (struct xdataf *) ctlbuf;
switch (dat_msg->xl_command) {

case N_Data:
/* process more data */

break;
case N_EData:

printf("***Expedited data received \n");
/* Must deal with */
.... send N_EAck

break;
case N_EAck: /* Expedited data received */

/* Further N_Edata can now be sent */
break;

default:
break;

}
}

Streams Programming Examples 5-13

5

5.2.4 Resets

Resets can be dealt with in a similar way to interrupts, except that there is no
data passed with a Reset Request. When a Reset Request is issued, the
application must wait for the acknowledgement, as for an expedited request.
However, until this is received, the only action that can be taken is to issue a
Disconnect Request.

The diagnostic field in a Reset Request should be filled in with the reason for
issuing the reset. Standard values for this are defined in the include file
<netx25/x25_proto.h> , although the application can set any value. See
Section A.2, “Error Codes,” on page A-2 for more details.

When a Reset Indication is received, there are only two valid actions that may
be taken:

• send a Reset Confirmation message to acknowledge the reset

• send a Disconnect Request

In this situation, pending data is flushed from the queue.

5-14 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

Reset Indications can be dealt with as part of the general processing of
incoming messages, as shown in the following disconnect handling example.

Control messages like resets and interrupts take higher priority than normal
data messages, both internally in the PLP driver, and across the network.
However, it is important to note that the NLI does not use the mechanism for
priority processing of streams messages (by setting the RS_HIPRI flag in
putmsg). There are two reasons for this:

#include<netx25/x25_proto.h>
struct xrstf rst;
S_X25_HDR *hdrptr;
rst.xl_type= XL_CTL;
rst.xl_command= N_RI;
rst.cause= 0;
rst.diag= NU_RESYNC;
ctlblk.len= sizeof (struct rstf);
ctlblk.buf= (char *) &rst;
if (putmsg(x25_fd, &ctlblk, 0, 0) < 0) {

perror(" putnmsg");
exit(1);
}
for (;;) {

if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Getmsg fail");
exit(1);
}

hdrptr = (S_X25_HDR *) ctlbuf;
if (hdrptr->xl_type == XL_CTL) {

continue;
}

switch (hdrptr->xl_command) {
case N_RC: /* Reset complete */

/* Enter data transfer */
break;

default:
break;

} /* end switch */
} /* end for */

Streams Programming Examples 5-15

5

• The stream head can only hold one incoming priority message (the first).
This is inappropriate in certain situations where several of these messages
may follow each other in quick succession. For example, a Reset may be
followed immediately by a Disconnect.

• An outgoing priority message would overtake any data which is queued
waiting to be sent. It is possible that data could then be sent after the
priority message (for example, a reset), which would lead to an NLI
protocol violation.

5.3 Closing a Connection
This section covers remote and local disconnects.

5.3.1 Remote Disconnect

If, during a connection, the remote end initiates a Disconnect, then a
Disconnect Indication (N_DI) message (or possibly an N_Abort message, see
Section 3.11, “Abort Indication,” on page 3-11) is received at the NLI. The
application need not acknowledge this message since, after sending a
Disconnect, the X.25 driver silently discards all messages received except for
connect and accept messages. These are the only meaningful X.25 messages on
the stream after disconnection.

The receiver of a Disconnect Indication should ensure that enough room is
available in the getmsg call to receive all parameters and, when present, up to
128 bytes of Clear User Data. Handling such a Disconnect event would

5-16 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

normally be part of the general processing of incoming messages. The example
which follows could be combined with the code from the data transfer example
in the previous section.

Note – It is guaranteed that no X.25 interface messages are sent to the
application once a disconnect message has been passed up to it, wherever the
message came from (that is, it can be a Disconnect Indication or the “response”
described in “Local Disconnect” on page 5-17).

Although at this stage the stream is idle, it is in an open state and remains so
until some user action. This could be to close the stream, or to initiate a new
Listen or Connect request on it.

struct xdiscf *dis_msg;
if (hdrptr->xl_type == XL_CTL) {

switch (hdrptr->xl_command) {
/* Other events/indications dealt with
 * here - e.g. Reset Indication (N_RI)
 */

case N_DI:
dis_msg = (struct xdiscf *) hdrptr;
printf("Remote disconnect, cause = %x, diagnostic = %x \n",
dis_msg->cause, dis_msg->diag);

/* Any other processing needed here -
 * e.g. change connection state
 */

return;
case N_Abort:

printf("***Connection Aborted \n"); /* etc. */
return;

default:
break;

}
}

Streams Programming Examples 5-17

5

5.3.2 Local Disconnect

To initiate a Disconnect on a connection, the application should send a
Disconnect Request (N_DI) message on the stream. Unless this is being used to
reject an incoming call (see “Handling the Connect Indication” on page 5-22),
the X.25 driver signals that it has observed the message. It does this by sending
a Disconnect Confirm upstream when it receives the Clear Confirm. In this
way, the upper components can be certain that no messages will follow the
Disconnect.

In the case of rejection, the connection identifier supplied on the Connect
Indication must be returned in the disconnect message. The disconnect (reject)
is not acknowledged in this case.

As in the case of a remote disconnection, once the response has been received
the stream becomes idle, and remains in this state until the application sends
out another control message. This may be to close the stream, or to initiate a
new Listen or Connect request on it. The application should, however, not send
any of these messages until it receives the Disconnect Response.

5-18 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

As described in Section 3.9, “Disconnect Request/Indication,” on page 3-9, a
disconnect collision may occur. If this happens, no Disconnect Confirm is sent.

/* Coded and sent disconnect request, process response */
struct xdiscf *dis_ind;
struct xdcnff *dis_cnf;
struct extraformat *xqos = (struct extraformat *)0;
if (hdrptr->xl_type == XL_CTL) {

switch(hdrptr->xl_command) {
/* Disconnect Collision */

case N_DI:
dis_ind = (struct xdiscf*)hdrptr;
xqos = &dis_ind->indicatedqos.xtras;
break;

/* Disconnect Confirmation */
case N_DC:

dis_cnf = (struct xdcnff*)hdrptr;
xqos = &dis_cnf->indicatedqos.xtras;
break;

default:
return;

}
if (xqos) {

/*
 * Print any charging information returned
 */

if (xqos->chg_cd_len) {
/* Print out Call Duration from chg_cd_field */

}
if (xqos->chg_mu_len) {

/* Print out Monetary Unit from chg_mu_field */
}

if (xqos->chg_sc_len) {
/* Print out Segment Count from chg_sc_field */

}
} /* end if (xqos) */

} /* end if (hdrptr->xl_type==XL_CTL) */

Streams Programming Examples 5-19

5

5.4 Listening
For more information on listening, see Chapter 4, “Listens.”

5.4.1 Listening for Incoming Connections

Before an incoming call can be received from the X.25 driver, there must be (at
least) one listener. Moreover, as mentioned in Section 4.4, “Priority,” on
page 4-4, listening for incoming connections may be a privileged operation .
That is, the stream must have been opened by a process with superuser
privilege.

To listen for and open an incoming connection, the application should do the
following:

1. Send an N_Xlisten message carrying the called address list in which the
application is interested to the X.25 driver (see Chapter 4, “Listens”). After
this, wait for the response to the Listen Request.

2. When the the listen response is received (and the l_result flag indicates
success), wait for Connect Indication messages from the X.25 driver. If the
l_result flag indicates failure, the application can decide either to close
the stream or to try again later.

3. When a Connect Indication is passed up, the application can decide
whether to accept on this or a different stream.

4. At this point, the facilities and QOS are negotiated if required. A Connect
Confirmation message carrying the appropriate connection identifier is
then passed down on the stream on which the connection is being
accepted.

5.4.2 Constructing the Listen Message

As described in Chapter 4, “Listens,” the listen message has two parts. The
construction of the control part of the message is straightforward:

struct xlistenflisreq;
lisreq.xl_type = XL_CTL;
lisreq.xl_command = N_XListen;
lisreq.lmax = 1;

5-20 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

In this example, lmax has the value of 1, indicating that only one Connect
Indication is to be handled at a time.

The data part of the message should be filled with the sequence of bytes that
specify the Call User Data string and address(es) which are to be listened for.
The simplest case for this would be to set “Don’t Care” values for both the
CUD and address:

Alternatively, to set the CUD to match exactly the (X.29) value defined in the
array cudf[] earlier (0x01000000), and the NSAP to match any sequence
starting 0x80 , 0x00 , the following would be used:

int lislen;
char lisbuf[MAXLIS];
lisbuf[0] = X25_DONTCARE; /* l_cumode*/
lisbuf[1] = X25_DONTCARE; /* l_mode*/
lislen = 2;

lislen = 0;
lisbuf[lislen++] = X25_IDENTITY; /* l_cumode */
lisbuf[lislen++] = CUDFLEN; /* l_culength */
memcpy(&(lisbuf[lislen]), cudf, CUDFLEN); /* l_cubytes */
lislen += CUDFLEN;
lisbuf[lislen++] = X25_STARTSWITH; /* l_mode */
lisbuf[lislen++] = X25_NSAP; /* l_type */
lisbuf[lislen++] = 4; /* l_length */
lisbuf[lislen++] = 0x80; /* l_add */
lisbuf[lislen++] = 0x00;

Streams Programming Examples 5-21

5

Or, to accept any CUD Field, with a DTE of 2342315656565:

Note – The l_add field uses packed hexadecimal digits and the l_length
value is actually the number of semi-octets whereas the l_culength field
specifies the length of the l_cubytes field in octets.

Next, send the Listen Request down the open stream:

#define MY_DTE_LEN 13
#define MY_DTE_OCTETS 7
char my_dte[MY_DTE_OCTETS] =
{0x23,0x42,0x31,0x56,0x56,0x56,0x50};
lislen = 0;
lisbuf[lislen++] = X25_DONTCARE; /* l_cumode */
lisbuf[lislen++] = X25_IDENTITY; /* l_mode */
lisbuf[lislen++] = X25_DTE; /* l_type */
lisbuf[lislen++] = MY_DTE_LEN; /* l_length */
memcpy(&(lisbuf[lislen]), my_dte, MY_DTE_OCTETS); /* l_add */
lislen += MY_DTE_OCTETS;

ctlblk.len = sizeof(struct xlistenf);
ctlblk.buf = (char *) &lisreq;
datblk.len = lislen;
datblk.buf = lisbuf;
if (putmsg(x25_fd, &ctlblk, &datblk, 0) < 0) {

perror("Listen putmsg failure");
return -1;
}

5-22 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

Finally, wait for the listen response; the result flag indicates success or failure:

Cancelling a Listen Request can be done in the same way, except that no data is
passed with the request. It simply cancels all successful Listens that have been
made on that stream.

5.4.3 Handling the Connect Indication

Once the listening application has received a Listen Response indicating
success, it should wait for incoming Connect Indications. When an N_CI
message arrives, the application should inspect its parameters: address, call
user data, facilities, quality of service, and so on, then decide whether to accept
or reject the connection.

#define DBUFSIZ 128
#define CBUFSIZ MAX(sizeof(struct xccnff), sizeof(struct
xdiscf))
struct xlistenf *lis_msg;
ctlblk.maxlen = CBUFSIZ; /* See 4.1 above for declarations */
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;
for(;;) {

if (getmsg (x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror("Listen getmsg failure");
return -1;
}

lis_msg = (struct xlistenf *) ctlbuf;
if ((lis_msg->xl_type == XL_CTL) && (lis_msg->xl_command ==

N_XListen))
if (lis_msg->l_result != 0) {

printf("Listen command failed \n");
return -1;
}

else {
printf("Listen command succeeded \n");
return 0;
}

}

Streams Programming Examples 5-23

5

Acceptance
If accepting, the listening application can do so either on the stream the
indication arrived on, or on some other stream. This other stream can be one
which is already open and free, or it can be newly opened.

Whatever method is used for the accept, the identifier conn_id in the Connect
Indication message must be copied into the accept message for matching by the
X.25 driver. If this identifier in the accept message does not match, a
Disconnect is sent to the accepting application. This causes the resource to
hang on the stream on which the incoming call was sent, since the connection
is never accepted.

Rejection
A listening application can reject the call by sending a N_Disc message down
the stream on which the Connect Indication arrived. A Connect Indication
cannot be rejected on a different stream. Again, the connection identifier must
be quoted in the message for matching, since there may be several Connect
Indications passed to the listening application. If there is no match for the
rejection, the message is silently discarded.

The rejecting listener can request one of two actions in response to the
disconnect:

• Request immediate disconnect. Set the reason field to NU_PERMANENT
(0xF5).

• Search for further matching listeners. Set the reason field to any value
except 0xF5.

5-24 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

The following code example shows how to reject an incoming call:

Note – The application must not accept a connection on a listening stream that
is capable of handling more than one Connect Indication at one time if there
could subsequently be other Connect Indications to be handled on that stream.
For example, the application issues a Listen Request to handle three Connect
Indications at one time. A Connect Indication is received and sent to the
application on the listen stream. The application must not accept this
connection on the listen stream because there could be two more Connect
Indications that can be sent subsequently.

The Connect Indication message passed contains X.25 facility values, and
CONS QOS parameters, if appropriate. The application may want to negotiate
these values. This is done by setting the negotiate_qos flag in the Connect
Response message. The values received should then be copied into the
response, and those facilities and/or parameters (and any related flags) for
which a different value is desired should then be altered (see Section 2.2,
“Quality of Service and X.25 Facilities,” on page 2-4). It is recommended that
the entire QOS structure be copied from the indication to the response. This is
preferable to copying each field individually, as it allows for any future
additions to this structure.

struct xcallf *conind;
struct xdiscf disc_msg;
/* Use getmsg to receive the Connect Indication
 * use conind to point to it
 */
disc_msg.xl_type = XL_CTL;
disc_msg.xl_command = N_DI;
disc_msg.conind = conind->conind;
disc_msg.cause = cause; /* cause to be returned */
disc_msg.diag = diag; /* diagnostic to be returned */
if (disc_immed) /* no more searches */

disc_msg.reason = NU_PERMANENT; /* 0xF5 */
/* Send Rejection down stream with putmsg */

Streams Programming Examples 5-25

5

An example of negotiation is shown below. Here all the values are copied as
indicated, except the packet size, which is negotiated down to 256 if it is
flagged as negotiable, and is greater than 256:

Alternatively, the application may decide to accept (agree with) the indicated
values, in which case the negotiate_qos flag is set to zero.

5.4.4 Reusing the Listen Stream

If a connection is never established on a listening stream (using a matching
accept) then that stream remains listening on the address list supplied. On the
other hand, once an established connection has been disconnected, the stream
does not return to a listening state. Instead, it remains open in an idle state. If
the application needs to listen again, then the listen message must be re-sent.
Rejection does not alter the listening state of the stream.

struct xcallf *conind;
struct xccnff conresp;
/* Do a getmsg etc to receive the Connect Indication,
 * assign conind to point to it.
 */
conresp.xl_type = XL_CTL;
conresp.xl_command = N_CC;
conresp.conn_id = conind->conn_id; /* Connection identifier */
conresp.CONS_call = TRUE /* This is a CONS call */
memset(&conresp.responder, 0, sizeof(struct xaddrf));
/* Let network fill in responding addr */
conresp.negotiate_qos = TRUE;
memcpy (&conresp.rqos, &conind->qos, sizeof (struct qosformat)
);
if (conind->qos.xtras.pwoptions & NEGOT_PKT) {

if (conind->qos.xtras.rempacket > 8)
conresp.rqos.xtras.rempacket = 8; /* 256 = 2v’-.2’8v’+.2’

*/
if (conind->qos.xtras.locpacket > 8)

conresp.rqos.xtras.locpacket = 8;
}

/* Set any other values to be negotiated here,
 * then send the response down with a putmsg.
 */

5-26 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

5.5 PVC Operation
The following subsections describe the procedures necessary for an application
to operate a PVC on the X.25 PLP Driver.

5.5.1 Attaching a PVC

To attach a PVC on an open stream, an application must:

1. Allocate a PVC_attach structure.

2. Supply the structure with the appropriate reqackservice and
reqnsdulimit parameters. These parameters are used for the duration of
the connection.

3. Set the appropriate subnetwork and logical channel identifiers.

4. Pass the attach request down to the X.25 Driver.

5. Wait for the attach accept or rejection.

For example:

The message is then sent on the stream using the putmsg system call:

#include <sys/stropts.h>
#include <netx25/x25_proto.h>
struct pvcattfattach = { XL_CTL, N_PVC_ATTACH, 1, 0, 0, 0, 0 };
/* Logical Channel 1
 * No request for Receipt Ack or nsdulimit
 */
struct strbufctlblk; /* Convert sn_id to internal format */
attach.link_id = 0;
ctlblk.len = sizeof(struct pvcattf);
ctlblk.buf = (char *) &attach;

if (putmsg (x25_fd, &ctlblk, 0, 0) < 0) {
 perror(“Attach putmsg”);
 exit(1);
 }

Streams Programming Examples 5-27

5

At this stage, the application should wait for a response to the attach. The
response may indicate either a successful attachment or a rejection.

In this example, getmsg is used to retrieve the next message from the stream
head. This is done in a loop, until either the attach is confirmed successful or
rejected. Although the processing of the attach is not shown here, it is

#define DBUFSIZ 128
#define CBUFSIZ
sizeof(struct pvcattf)
int getflags;
struct pvcattf *ind_msg;
char ctlbuf[CBUFSIZ], datbuf[DBUFSIZ];
ctlblk.maxlen = CBUFSIZ;
ctlblk.buf = ctlbuf;
datblk.maxlen = DBUFSIZ;
datblk.buf = datbuf;
for(;;) {

if (getmsg(x25_fd, &ctlblk, &datblk, &getflags) < 0) {
perror(“Getmsg fail”);

exit(1);
}

ind_msg = (struct pvcattf *) ctlbuf;
if (ind_msg->xl_type != XL_CTL)

continue;
switch (ind_msg->xl_command) {

case N_PVC_ATTACH:
switch (ind_msg->result_code) {

case PVC_SUCCESS:
/*...... Process the attach */

return(1);
case PVC_NOSUCHSUBNET:
case PVC_CFGERROR:
case PVC_PARERROR:
case PVC_BUSY:

/*...... Process the reject */
return(0);

default:
printf(“Unknown PVC message\n”);
exit(1);

}
}

}

5-28 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

recommended that the application send a Reset Request (see Section 3.7, “Reset
Request/Indication,” on page 3-7) and wait for the Reset Confirm (see
Section 3.8, “Reset Response/Confirm,” on page 3-8) before proceeding with
the data transfer. The example given in “Resets” on page 5-13 shows the code
used to send a Reset and handle the acknowledgement. This synchronizes the
X.25 PLP drivers at each end of the PVC. The example does not illustrate all
possible result_code cases.

It is possible to abort the Attach Request before a response is received. The
application can do this by sending a Detach Request message (see Section 5.5.3,
“Detaching a PVC”). If this is done, the application should read and discard all
messages from the stream until it receives the detach acknowledgement.

After a rejection or an attach abort the stream remains open and can be used,
for example, to make further attach attempts.

5.5.2 PVC Data Transfer

The transfer of data over a Permanent Virtual Circuit is exactly the same, to the
application, as for Virtual Circuits. Section 5.2, “Data Transfer” contains a
description of the procedures involved.

5.5.3 Detaching a PVC

The procedure used to detach a PVC differs for the remote and local cases, so
these are described separately here.

Remote Detach
If, during a connection, the remote end initiates a detach, then a Reset
Indication (seeSection 3.7, “Reset Request/Indication,” on page 3-7) message is
received at the NLI. The application should acknowledge this with a Reset
Response (see Section 3.8, “Reset Response/Confirm,” on page 3-8). Handling
such an event would normally be part of the general processing of incoming
messages.

After sending the Reset Response, the application is still attached to its PVC
and remains so until it initiates a local detach.

Streams Programming Examples 5-29

5

Local Detach
To initiate a detach on a connection, the application should send a Detach
Request (N_PVC_DETACH) message on the stream. The X.25 driver signals that
it has observed the message by sending a Detach upstream. In this way, the
upper component can be certain that no messages follow the Detach. For
example:

As is the case for a Remote Detach, once the response has been received the
stream becomes idle. It enters an open state, in which it remains until the
application commands otherwise. This could be to close the stream, or to
initiate a new Attach Request on it. The application should, however, wait until
it receives the Detach Response.

struct pvcdetfdetach = { XL_CTL, N_PVC_DETACH, 0 };
ctlblk.len = sizeof(struct pvcdetf);
ctlblk.buf = (char *) &detach;
if (putmsg(x25_fd, &ctlblk, 0, 0) < 0) {

perror("Detach putmsg");
exit(1);
}

5-30 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

5

6-1

Support Library 6

There are a number of programming routines which, while not strictly a part of
the X.25 networking code, are invaluable in writing network applications.
There are man pages for each of these routines. With /opt/SUNWconn/man as
part of your MANPATH environment variable, these man pages become available
to you.

The library resides in /opt/SUNWconn/lib/libsx25.a . To link against the
library use a command such as the following:

The support library consists of the following routines:

padtos
Converts a network pad database structure into a string.

stox25
Converts a string containing an X.25 dot format address to an X.25 xaddrf
structure.

x25tos
Converts an X.25 xaddrf structure to a string containing an X.25 dot format
address.

equalx25
Tests if two X.25 xaddrf structures are identical.

hostname% cc -o test test.c -L/opt/SUNWconn/lib -lsx25

6-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

6

linkidtoX25
Converts a string containing a link identifier to the internal format used in
X.25 primitives.

x25tolinkid
Converts a link identifier in the internal format used in X.25 primitives to a
string.

getnettype
Returns type of network (LAN/WAN 1980/84/88) that is configured for a
particular link identifier.

Use the following routines to manipulate the network pad database file
(/etc/SUNWconn/x25/padmapconf):

getpadbyaddr
Searches the network pad database file until an entry containing the given
address is found. A pointer to the entry is returned.

getpadbystr
Searches the network pad database file until an entry containing the given
name is found. A pointer to the entry is returned.

getpadent
Reads the next line of the network pad database, opening the file if
necessary.

setpadent
Opens and rewinds the network pad database file.

endpadent
Closes network pad database file after use.

Use the following routines to manipulate the X.25 host database file
(/etc/SUNWconn/x25/xhosts):

getxhostbyaddr
Searches the X25 host database file until an entry containing the given
address is found. A pointer to the entry is returned.

getxhostbyname
Searches the X25 host database file until an entry containing the given name
is found. A pointer to the entry is returned.

Support Library 6-3

6

getxhostent
Reads the next line of the X25 host database, opening the file if necessary.

setxhostent
Opens and rewinds the X25 host database file.

endxhostent
Closes network X25 hosts file after use.

6-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

6

7-1

NLI Management ioctls 7

Note – For more detailed information on STREAMS in general, and the use of
ioctls in particular, refer to the STREAMS Programmer’s Guide.

7.1 Management-related Upper Stream Message Structures
The following list of message structures describes those messages which can be
used for status and other information. They differ from the other NLI
messages in that they are not concerned directly with the communication
between upper components and the X.25 protocol machine.

7.1.1 Management Structures and Interface

The management of the X.25 multiplexor is performed through the ioctl system
call mechanism on a control stream using the I_STR ioctl of streams. (This use
of the ioctl mechanism is in addition to the normal use in stream operations
like PUSH or LINK .)

The iocblk structure contains a ioctl type field the values of which are
described in the following paragraphs. The M_DATA portion, when present,
supplies any necessary user-provided data.

For security and protection, the initiator of many of these ioctls must be super-
user, that is, the effective user id number in the iocblk must be zero. The ioctl
descriptions specify whether super-user privilege is required.

7-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

As is standard within the streams environment, success or failure of the ioctl
function is indicated by sending, respectively, an M_IOCACK or M_IOCNAK
message upstream.

The wlcfg database which is referenced in the following sections is described
in detail in Section 7.2, “Configurable Parameters,” on page 7-20. For an
example of how a user process makes an I_STR ioctl call, see the example for
the N_linkent ioctl in the following subsection.

7.1.1.1 N_linkent ioctl

This ioctl is sent downstream by the x25netd process to configure a newly
linked driver below the X.25 multiplexor. It supplies the parameters necessary
to identify the link via the identifier and to register the mode of the lower
driver. You must be super-user to make this ioctl.

The data contained in the ioctl is in the format:

The fields are:

lmuxid
This is the unique link index supplied by the streams I_LINK ioctl returned
when the lower driver is linked below the X.25 multiplexor.

struct xll_reg {
 struct ll_reg lreg;
 int lmuxid;
};

NLI Management ioctls 7-3

7

lreg
This is anll_reg structure:

The fields of the registration message structure are used as follows:

ll_type
contains LL_REG;

ll_class
identifies the class of link level required, and has the value LC_LLC1,
LC_LLC2; or one of LC_LAPBDTE, LC_LAPBXDTE, LC_LAPBDCE or
LC_LAPBXDCE for LAPB operation (suffix ’X’ selects extended (modulo 128)
operation); or one of LC_LAPDTE or LC_LAPDCE for LAP operation;

ll_regstatus
is ignored (it is used later to return the registration status);

ll_ppa
identifies the link concerned. (PPA is a DLPI abbreviation for “Physical
Point of Attachment”.)

ll_mymacaddr
is ignored (it is used later [LLC only] to return the MAC address of the local
station).

ll_normalSAP
[LLC only] is the normal SAP for LLC connections on the stream;

ll_loopbackSAP
[LLC only] is the loopback SAP, used only for loopback connections;

struct ll_reg {
 uint8 ll_type;
 uint8 ll_class;
 uint8 ll_regstatus;
 uint8 ll_spare;
 uint32 ll_ppa;
 uint8 ll_mymacaddr;
 uint8 ll_normalSAP;
 uint8 ll_loopbackSAP;
};

7-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

If the link level accepts the registration, it will set ll_regstatus to
LS_SUCCESS, place the local MAC address in ll_mymacaddr [LLC only] and
return the registration message otherwise unchanged.

If the registration is rejected, for example because one of the specified SAP
values has already been registered, the reason for rejection will be set as an
error number into ll_regstatus , and the message returned.

The value of ll_regstatus on return will be one of:
• LS_SUCCESS

• LS_SSAPINUSE

• LS_EXHAUSTED

A user process makes the N_linkent ioctl call as follows:

/*
 * Send an N_linkent ioctl down to the X.25 multiplexor.
 * ’s’ is a stream to the X.25 multiplexor.
 * ’reg’ contains the necessary registration parameters.
 */
int
do_linkent(s, reg)
 int s;
 struct xll_reg *reg;
{
 struct strioctl strioc;

 strioc.ic_cmd = N_linkent;
 strioc.ic_timout = -1;
 strioc.ic_len = sizeof(struct xll_reg);
 strioc.ic_dp = (char *) reg;
 if (ioctl(s, I_STR, &strioc) < 0) {
 return (-1);
 }
 return (0);
}

NLI Management ioctls 7-5

7

7.1.1.2 N_linkconfig ioctl

This ioctl is used to configure the wlcfg database for a link. The wlcfg
database appropriate to a link is carried as the M_DATA part of the ioctl
N_linkconfig . The U_LINK_ID field in the wlcfg structure specifies the link
to be configured. You must be super-user to make this ioctl.

The wlcfg structure is documented in Section 7.2, “Configurable Parameters,”
on page 7-20.

Note – Certain elements in the configuration database, if altered while calls are
active, could result in unpredicatable behavior. Specifically, alteration of the
virtual circuit channel ranges and default window and packet sizes should
only be made with extreme caution.

7.1.1.3 N_linkread ioctl

This ioctl is used to extract the wlcfg database for a link in a running system
for examination. The wlcfg database is returned within the M_DATA part of the
N_linkread ioctl. Care must be taken to ensure that there is enough space in
the data area to receive the copy of the structure. A non-privileged user can
invoke this ioctl.

7.1.1.4 N_linkmode ioctl

This ioctl is used to read or change the SUB_MODES field of a particular wlcfg
database appropriate to a link. This configuration ioctl is used to alter
characteristics of a link’s operation, for example, to temporarily bar incoming
calls. It is therefore recommended that the read ioctl be used before sending
the alter ioctl. This procedure is intended to avoid inadvertent errors which
could cause undesirable effects. The parameters are carried as the M_DATA part
of the N_linkmode ioctl as follows:

struct linkoptformat {
 unsigned short newSUB_MODES;
 unsigned long U_LINK_ID;
 unsigned char rd_wr;
};

7-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

The fields are:

newSUB_MODE
This is the new SUB_MODES value in a write ioctl or the current value in a
read ioctl.

U_LINK_ID
This is the field which identifies the particular link and must match one of
the wlcfg database entries.

rd_wr
This determines read or write mode. A value of zero indicates read while
non-zero indicates write.

In the case of read, the same structure is returned with the current value of
SUB_MODES for the link.

You must be super-user to make this ioctl.

7.1.1.5 N_getstats ioctl

This ioctl is used to read the statistics counts for the X.25 multiplexor since
network startup or since they were last reset by an N_zerostats ioctl (see
below). Statistics are maintained an a multiplexor basis—separate link statistics
are not available. There are no security restrictions on making this ioctl; any user
can do it.

The structure associated with this ioctl is an integer array of size mon_size , and
each array entry is a statistics or error count, with indices as follows:

Code Example 7-1 Indices to Statistics Array

/* ---- SYSTEM ERROR/MONITOR INDICES ---- */
#define BadL2func 0
#define Cantlzap 1
#define L2badcc 2
#define L2baddcnf 3
#define L2badref 4
#define L2report 5
#define L2reset 6
#define L3T25timeouts 7
#define L3timeouts 8
#define L3badAE 9
#define L3badT20 10

NLI Management ioctls 7-7

7

#define L3badT24 11
#define L3badT25 12
#define L3badevent 13
#define L3badgfi 14
#define L3badlstate 15
#define L3badltock2 16
#define L3badrandom 17
#define L3badxtock0 18
#define L3clrbadstate 19
#define L3conlt0 20
#define L3deqfailed 21
#define L3indnodata 23
#define L3matrixcall 24
#define L3nodb 25
#define L3qoscheck 26
#define L3outbad 27
#define L3shortframe 28
#define L3tabfault 29
#define L3usererror 30
#define L3usergone 31
#define LNeednotneeded32
#define NSUbadref 33
#define NSUdtnull 34
#define NSUednull 35
#define NSUrefrange 36
#define NeednotNeeded 37
#define NoNRSrequest 38
#define UDRbad 39
#define Ubadint 40
#define Unoint 41
#define L2badtag 42
#define L3baddiag 43

/* Statistical Information */

#define cll_coll 44 /* Call collision count (not rjc) */
#define cll_uabort 45 /* Calls aborted by user b4 sent */
#define rjc_buflow 46 /* Calls rejd no buffs b4 sent */
#define rjc_coll 47 /* Calls rejd - collision DCE mode */
#define rjc_failNRS 48 /* Calls rejd negative NRS resp */
#define rjc_lstate 49 /* Calls rejd link disconnecting */
#define rjc_nochnl 50 /* Calls rejd no lcns left */
#define rjc_nouser 51 /* In call but no user on NSAP */

Code Example 7-1 Indices to Statistics Array

/* ---- SYSTEM ERROR/MONITOR INDICES ---- */

7-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

#define rjc_remote 52 /* Call rejd by remote responder */
#define rjc_u 53 /* Call rejd by NS user */
#define dg_in 54 /* DIAG packets in */
#define dg_out 55 /* DIAG packets out */
#define p4_ferr 56 /* Format errors in P4 */
#define rem_perr 57 /* Remote protocol errors */
#define res_ferr 58 /* Restart format errors */
#define res_in 59 /* Restarts received (inc DTE/DXE)*/
#define res_out 60 /* Restarts sent (inc DTE/DXE) */
#define vcs_labort 61 /* Circuits aborted via link event*/
#define r23exp 62 /* Circuits hung by r23
expiration */
#define l2conin 63 /* Link level connect established */
#define l2conok 64 /* LLC connections accepted */
 #define l2conrej 65 /* LLC connections rejd */
#define l2refusal 66 /* LLC connnect requests refused */
#define l2lzap 67 /* Oper requests to kill link */
#define l2r20exp 68 /* R20 retransmission
expiration */
#define l2dxeexp 69 /* DXE/connect expiration
*/
#define l2dxebuf 70 /* DXE resolv abort - no buffers */
#define l2noconfig 71 /* No config base - error */
#define xiffnerror 72 /* Upper i/f bad M_PROTO type */
#define xifuserror 73 /* Upper user fn/state error */
#define xintdisc 74 /* Internal disconnect events */
#define xifaborts 75 /* Interface abort_vc called */
#define PVCusergone 76 /* Count of non-user interactions */
#define max_opens 77 /* highest no. simul. opens so far */
#define vcs_est 78 /* VCs established since reset */
#define bytes_in 79 /* Total data bytes received */
#define bytes_out 80 /* Total data bytes sent */
#define pkts_in 81 /* Count of data packets sent */
#define pkts_out 82 /* Count of data packets received */
#define res_conf_in 83 /* Restart Confirms received */
#define res_conf_out 84 /* Restart Confirms sent */

 /* GLOBAL totals for "per-VC" stats */

#define cll_in_g 85 /* Calls rcvd and indicated */
#define cll_out_g 86 /* Calls sent */
#define caa_in_g 87 /* Call established for outgoing */
#define caa_out_g 88 /* Ditto - in call */

Code Example 7-1 Indices to Statistics Array

/* ---- SYSTEM ERROR/MONITOR INDICES ---- */

NLI Management ioctls 7-9

7

#define dt_in_g 89 /* Data packets rcvd */
#define dt_out_g 90 /* Data packets sent */
#define ed_in_g 91 /* Interrupts rcvd */
#define ed_out_g 92 /* Interrupts sent */
#define rnr_in_g 93 /* Receiver not ready rcvd */
#define rnr_out_g 94 /* Receiver not ready sent */
#define rr_in_g 95 /* Receiver ready rvcd */
#define rr_out_g 96 /* Receiver ready sent */
#define rst_in_g 97 /* Resets rcvd */
#define rst_out_g 98 /* Resets sent */
#define rsc_in_g 99 /* Restart confirms rcvd */
#define rsc_out_g 100 /* Restart confirms sent */
#define clr_in_g 101 /* Clears rcvd */
#define clr_out_g 102 /* Clears sent */
#define clc_in_g 103 /* Clear confirms rcvd */
#define clc_out_g 104 /* Clear confirms sent */
#define mon_size 105 /* 1 over last, for length */

Code Example 7-1 Indices to Statistics Array

/* ---- SYSTEM ERROR/MONITOR INDICES ---- */

7-10 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.1.1.6 N_zerostats ioctl

This ioctl is used to reset the statistics counts for the X.25 multiplexor. You must
be super-user to make this ioctl.

7.1.1.7 N_getVCstatus ioctl

The following structure is associated with this ioctl:

This ioctl is used to retrieve per-virtual circuit state and statistics, for all virtual
circuits currently active over all configured links. There are no security
restrictions on making this ioctl; any user can do it.

The vcs field is an array of vcinfo structures, each of which contains the state
and statistics for an individual virtual circuit. The first_ent field is used to
inform the X.25 multiplexor where to start or restart the table read. It should
initially be set to 0, to indicate starting at the beginning of the table. On return,
it will be set to point the next entry to be gotten. The num_ent field is used by
the X.25 multiplexor to indicate the number of virtual circuit entries returned
in the vcs field. It should be set to 0 before making the ioctl.

struct vcstatusf {
 struct vcinfo vcs[MAX_VC_ENTS]; /* Data buffer */
 int first_ent; /* Where to start search */
 unsigned char num_ent; /* Number entries returned
*/
};

NLI Management ioctls 7-11

7

Here are the contents of thevcinfo structure:

The xstate field contains the state of the VC. Possible states are:

struct vcinfo {
 struct xaddrf rem_addr; /* = called for outward calls */
 /* = caller for inward calls */
 unsigned long xu_ident; /* link id */
 unsigned long process_id; /* effective user id */
 unsigned short lci; /* Logical Channel Identifier */
 unsigned char xstate; /* VC state */
 unsigned char xtag; /* VC check record */
 unsigned char ampvc; /* =1 if a PVC */
 unsigned char call_direction; /* in=0, out=1 */
 int perVC_stats[perVCmon_size];
 /* Per-VC statistics array */
};

Code Example 7-2 Possible Contents of xstate Field

/* ---- X25 VIRTUAL CIRCUIT STATES ---- */
#define Idle 0 /* Record is not in use */
#define AskingNRS 1 /* CR is being validated by NRS */
#define P1 2 /* VC state is READY */
#define P2 3 /* VC in DTE CALL REQUEST */
#define P3 4 /* VC in DXE INCOMING CALL */
#define P5 5 /* VC in CALL COLLISION */
#define DataTransfer 6 /* VC in P4 (see xflags) */
#define DXEbusy 7 /* VC in P4, DXE sent RNR*/
#define D2 8 /* VC in DTE RESET REQUEST */
#define D2pending 9 /* Wanting buffer for RESET */
#define WtgRCU 10 /* Waiting U RSC to int.err. */
#define WtgRCN 11 /* Waiting X.25 RSC for user */
#define WtgRCNpending 12 /* Buffer reqd to enter state */
#define P4pending 13 /* Buffer reqd for X.25 RSC */
#define pRESUonly 14 /* Buffer for user rst only */
#define RESUonly 15 /* User only being reset */
#define pDTransfer 16 /* Buffer for RSC to user */
#define WRCUpending 17 /* Buffer reqd internal RST */
#define DXErpending 18 /* Buffer reqd RST indication */
#define DXEresetting 19 /* Waiting U RSC to X.25 RI */
#define P6 20 /* VC in DTE CLEAR REQUEST */
#define P6pending 21 /* Wanting buffer for CLEAR */
#define WUcpending 22 /* Buffer reqd DI no netconn */

7-12 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

The perVC_stats array contains statistics. Each array entry is a statistics count,
with indices as follows:

7.1.1.8 N_getoneVCstats ioctl

The vcinfo structure is associated with this ioctl (see code excerpt on
previous page). This ioctl is used to retrieve per-virtual circuit state and
statistics for the virtual circuit associated with the stream on which the ioctl is
made. There are no security restrictions on making this ioctl; any user can do
it.

#define WUNcpending 23 /* Buffer reqd internal DI */
#define DXEcpending 24 /* Buffer reqd CLR REQ->User */
#define DXEcfpending 25 /* Buffer reqd CLC to User */
#define DXEclearing 26 /* Wanting buffer for CLC */

Code Example 7-3 Virtual Circuit Statistics

/* Per-VC statistics */
#define cll_in 1 /* Calls rcvd and indicated */
#define cll_out 2 /* Calls sent */
#define caa_in 3 /* Call established for outgoing */
#define caa_out 4 /* Ditto - in call */
#define dt_in 5 /* Data packets rcvd */
#define dt_out 6 /* Data packets sent */
#define ed_in 7 /* Interrupts rcvd */
#define ed_out 8 /* Interrupts sent */
#define rnr_in 9 /* Receiver not ready rcvd */
#define rnr_out 10 /* Receiver not ready sent */
#define rr_in 11 /* Receiver ready rvcd */
#define rr_out 12 /* Receiver ready sent */
#define rst_in 13 /* Resets rcvd */
#define rst_out 14 /* Resets sent */
#define rsc_in 15 /* Restart confirms rcvd */
#define rsc_out 16 /* Restart confirms sent */
#define clr_in 17 /* Clears rcvd */
#define clr_out 18 /* Clears sent */
#define clc_in 19 /* Clear confirms rcvd */
#define clc_out 20 /* Clear confirms sent */
#define perVCmon_size 21

Code Example 7-2 Possible Contents of xstate Field

/* ---- X25 VIRTUAL CIRCUIT STATES ---- */

NLI Management ioctls 7-13

7

7.1.1.9 N_putpvcmap ioctl

The following structure is associated with this ioctl:

This ioctl is used to change the packet and window sizes of a PVC from the
defaults configured for the link that the PVC is active on. You must be super-user
to make this ioctl.

7.1.1.10 N_getpvcmap ioctl

The following structure is associated with this ioctl:

This ioctl is used to read the default packet and window sizes of active PVCs.
The entries field contains the structure for the returned mapping entries. The
first_ent field is used to inform the X.25 multiplexor where to start or
restart the table read. It should initially be set to 0, to indicate starting at the
beginning of the table. On return, it will be set to point the next entry to be
gotten. The num_ent field is used by the X.25 multiplexor to indicate the
number of mapping entries returned in the entries field. It should be set to 0
before making the ioctl. A non-privileged user can invoke this ioctl.

struct pvcconff {
 unsigned long link_id; /* Link */
 unsigned short lci; /* Logical channel */
 unsigned char locpacket; /* Loc packet size */
 unsigned char rempacket; /* Rem packet size */
 unsigned char locwsize; /* Loc window size */
 unsigned char remwsize; /* Rem window size */
};

struct pvcmapf {
 struct pvcconff entries[MAX_PVC_ENTS]; /* Data buffer */
 int first_ent; /* Where to start search */
 unsigned char num_ent; /* Number entries returned
*/
};

7-14 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.1.1.11 N_nuiput ioctl

The following structure is associated with this ioctl:

This ioctl is used to store a set of Network User Identifiers and associated
facilities mappings within the X.25 multiplexor. It is used in conjunction with
the NUI override facility option. The nuiformat and facformat structures
are defined as follows:

The fields of the facformat structure are defined in Section 7.2, “Configurable
Parameters,” on page 7-20. You must be super-user to make this ioctl.

struct nui_put {
 struct nuiformat nuid; /* NUI */
 struct facformat nuifacility; /* NUI facilities */
};

#define NUIMAXSIZE 64
#define NUIFACMAXSIZE 32
struct nuiformat {
 unsigned charnui_len;
 unsigned char nui_string[NUIMAXSIZE]; /* Network User Identifier */
};

struct facformat {
 unsigned short SUB_MODES; /* Mode tuning bits for net */
 unsigned char LOCDEFPKTSIZE; /* Local default pkt p */
 unsigned char REMDEFPKTSIZE; /* Local default pkt p */
 unsigned char LOCDEFWSIZE; /* Local default window size */
 unsigned char REMDEFWSIZE; /* Local default window size */
 unsigned char locdefthclass; /* Local default value */
 unsigned char remdefthclass; /* Remote default value */
 unsigned char CUG_CONTROL; /* CUG facilities */
};

NLI Management ioctls 7-15

7

7.1.1.12 N_nuidel ioctl

The following structure is associated with this ioctl:

This ioctl is used to delete the mapping for a specified Network User Identifier.
You must be super-user to make this ioctl.

7.1.1.13 N_nuiget ioctl

The following structure is associated with this ioctl:

This ioctl is used to read the mapping for a specified Network User Identifier. A
non-privileged user can invoke this ioctl.

7.1.1.14 N_nuimget ioctl

The following structure is associated with this ioctl:

This ioctl is used to read all existing mappings for Network User Identifiers.
The buf field contains the structure for the returned mapping entries. The
first_ent field is used to inform the X.25 multiplexor where to start or
restart the table read. It should initially be set to 0, to indicate starting at the

struct nui_del {
 struct nuiformat nuid; /* NUI to delete */
};

struct nui_get {
 struct nuiformat nuid; /* NUI to get */
 struct facformat nuifacility; /* NUI facilities */
};

struct nui_mget {
 unsigned int first_ent; /* First entry required */
 unsigned int last_ent; /* Last entry required */
 unsigned int num_ent; /* No of entries required */
 char buf[MGET_NBUFSIZE]; /* Data Buffer */
};

7-16 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

beginning of the table. The num_ent field is used by the X.25 multiplexor to
indicate the number of mapping entries returned in the buf field. The
last_ent is set on return to point past the last entry returned (that is, a
subsequent N_nuimget ioctl should have first_ent set to the value returned
here). A non-privileged user can invoke this ioctl.

7.1.1.15 N_nuireset ioctl

This ioctl is used to delete all existing mappings for Network User Identifiers.
You must be super-user to make this ioctl.

7.1.1.16 N_traceon ioctl

The following structure is associated with this ioctl:

This ioctl is used to turn on packet level tracing for a particular link or all
configured links. If all_links is set, tracing is turned on for all configured
links. In this case, the linkids of all links for which tracing was activated will
be returned in the active array. The level field is currently ignored by the
X.25 multiplexor, as there is only one tracing level. You must be super-user to
make this ioctl.

Note – You must recompile any programs that use this ioctl when you upgrade
from SunLink X.25 8.0 to 8.0.1, as the MAX_LINKS parameter has changed.

struct trc_regioc {
 uint8 all_links; /* Trace on all links */
 uint8 linkid; /* Link */
 uint8 level; /* Level of tracing required */
 uint8 active[MAX_LINKS+1]; /* tracing actively on */
};

NLI Management ioctls 7-17

7

If tracing is enabled, each incoming and outgoing X.25 packet will be sent up
the stream on which the N_traceon ioctl was made. Each X.25 packet will be
preceded by a trc_ctl structure:

The trc_prim field will always be set to TR_X25_DAT. The trc_mid field
will always be set to the module ID of the X.25 multiplexor (200).

7.1.1.17 N_traceoff ioctl

This ioctl is used to cancel a previously issued N_traceon ioctl. You must be
super-user to make this ioctl.

7.1.1.18 N_getnliversion ioctl

The following structure is associated with this ioctl:

/*
Types of tracing message
*/
#define TR_CTL 100 /* Basic */
#define TR_LLC2_DAT 101 /* Basic + LLC2 parameters */
#define TR_LAPB_DAT TR_CTL /* Basic for now */
#define TR_X25_DAT TR_CTL /* Basic for now */
/*
Format for control part of trace messages
*/
struct trc_ctl {
 uint8 trc_prim; /* Trace msg identifier */
 uint8 trc_mid; /* Id of protocol module */
 uint16 trc_spare; /* for alignment */
 uint32 trc_linkid; /* Link Id */
 uint8 trc_rcv; /* Message tx or rx */
 uint8 trc_spare2[3]; /* for alignment */
 uint32 trc_time; /* Time stamp */
 uint16 trc_seq; /* Message seq number */
};

struct nliformat {
 unsigned char version; /* NLI version number */
};

7-18 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

This ioctl is used to read which version of the Network Layer Interface is
supported by the X.25 multiplexor. In 8.0 X.25, this version number will be 3.
A non-privileged user can invoke this ioctl.

7.1.2 Routing ioctls

In this subsection, we describe the ioctls used to manage the SunLink X.25
routing function in the streams-based interface. The SunLink X.25 routing
function is described in detail in the SunLink X.25 System Administrator’s Guide.
You can also use the Sockets interface for exactly the same purpose, see
Section B.8, “Routing ioctls”, on page B-51. The data structure used for routing
is as follows:

The following declarations will be used in the code segments used for
illustration:

typedef struct x25_route_s {
 caddr_t index;
 u_char r_type;
#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
 CONN_ADR x121;
 u_char pid_len;
#define MAX_PID_LEN 4
 u_char pid[MAX_PID_LEN];
 AEF aef;
 int linkid;
 X25_MACADDR mac;
 int use_count;
 char reserved[16];
} X25_ROUTE;

int s, error;
X25_ROUTE r;

NLI Management ioctls 7-19

7

7.1.2.1 N_X25_ADD_ROUTE ioctl

Sets the fields in the X25_ROUTE structure to the desired values. You must be
superuser to use this ioctl.

7.1.2.2 N_X25_GET_ROUTE ioctl

Obtains the routing information for a given destination address.

7.1.2.3 N_X25_RM_ROUTE ioctl

Removes the route for a given destination address. You must be superuser to
use this ioctl.

7.1.2.4 N_X25_FLUSH_ROUTES ioctl

Flushes all routes out. You must be superuser to use this ioctl.

7.1.2.5 N_X25_GET_NEXT_ROUTE ioctl

Obtains routing information for the next entry in the routing table. When there
are no routes left, error will be -1, and errno will be set to ENOENT.

7-20 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.1.2.6 Routing ioctl Example

The following code segment illustrates the use of the N_X25_ADD_ROUTE ioctl.
The other routing ioctls are used in the same way:

7.2 Configurable Parameters
Configurable parameters (for the N_linkconfig ioctl) are defined by the
following structure:

#include <sys/strupts.h>
struct strioctl ioc ;
int fd ;
X25_ROUTE r;

fd = open(“/dev/x25”, O,RDW);
 /*prepare route*/
 initialize

io.ic_cmd = N_X25_ADD_ROUTE;
io.ic_timeout = 0; /*system default : 15 secs */
io.ic_len = sizeof(X25_route);
io.ic_dp = (char *)&r;

if (ioctl (fd, I_STR, &ioc) <0) {
 perror(“ xxxioctl”);
 }
}

Code Example 7-4 wlcfg Structure

struct wlcfg {
 unsigned long U_LINK_ID; /* Link Identifier */
 unsigned char NET_MODE; /* Prot/net in use e.g. X25(84)/LLC */
 unsigned char X25_VSN; /* Version 80/84/88 for X.25 */
 unsigned char L3PLPMODE; /* Determines the DTE/DCE/DXE mode */

/* X25 PLP virtual circuit ranges */

 short LPC; /* Lowest Permanent VC */
 short HPC; /* Highest Permanent VC */
 short LIC; /* Lowest Incoming channel */
 short HIC; /* Highest Incoming channel */

NLI Management ioctls 7-21

7

 short LTC; /* Lowest Two-way channel */
 short HTC; /* Highest Two-way channel */
 short LOC; /* Lowest Outgoing channel */
 short HOC; /* Highest Outgoing channel */
 short NPCchannels; /* Number PVC channels */
 short NICchannels; /* Number IC channels */
 short NTCchannels; /* Number TC channels */
 short NOCchannels; /* Number OC channels */
 short Nochnls; /* Total number of channels */
 unsigned char THISGFI; /* GFI operating on link */
 unsigned char LOCMAXPKTSIZE; /* Local Max.value for pkt par. */
 unsigned char REMMAXPKTSIZE; /* Remote Max.value for pkt par. */
 unsigned char LOCDEFPKTSIZE; /* Local default pkt par. */
 unsigned char REMDEFPKTSIZE; /* Remote default pkt par. */
 unsigned char LOCMAXWSIZE; /* Local Max value for wsize */
 unsigned char REMMAXWSIZE; /* Remote Max value for wsize */
 unsigned char LOCDEFWSIZE; /* Local default window size */
 unsigned char REMDEFWSIZE; /* Remote default window size */
 unsigned short MAXNSDULEN; /* Max data delivery to N-user */
/* X25 PLP timer and retransmission values */
 short ACKDELAY; /* Ack suppress and buffs low */
 short T20value; /* Restart request */
 short T21value; /* Call request */
 short T22value; /* Reset request */
 short T23value; /* Clear request */
 short Tvalue; /* Ack and busy timer */
 short T25value; /* Window rotation timer */
 short T26value; /* Interrupt response */
 short idlevalue; /* Idle timeout value for link */
 short connectvalue; /* Link connect timer */
 unsigned char R20value; /* Restart request */
 unsigned char R22value; /* Reset request */
 unsigned char R23value; /* Clear request */

 /* Local values for qos checking */

 unsigned short localdelay; /* Internal delay locally */
 unsigned short accessdelay; /* Line access delay locally */

 /* Throughput Classes */

 unsigned char locmaxthclass; /* Local max thruput */
 unsigned char remmaxthclass; /* remote max thruput */
 unsigned char locdefthclass; /* Local default value */

Code Example 7-4 wlcfg Structure

7-22 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.2.1 Link Identifier

U_LINK_ID
This is the upper level link identifier which is quoted by upper level
software in the xaddrf address structure (see Section 2.1, “Addresses,” on
page 2-1) to specify which link a call is to be sent on. It is also used to
identify which link an incoming call arrived on. It is selected by the system
administrator when creating the configuration for the network.

 unsigned char remdefthclass; /* Remote default value */
 unsigned char locminthclass; /* Local minimum for the PSDN */
 unsigned char remminthclass; /* Remote minimum for the PSDN */
 unsigned char CUG_CONTROL; /* CUG control */
 unsigned short SUB_MODES; /* Link subscription info */

 /* PSDN localization record */

struct {
 unsigned short PSDN_MODES; /* Mode tuning for PSDN */
 unsigned char intl_addr_recogn; /* Recognise intnatl */
 unsigned char intl_prioritised; /* Prioritise intnatl */
 unsigned char dnic1; /* 4 BCD digits DNIC */
 unsigned char dnic2; /* Used when required */
 unsigned char prty_encode_control; /* Encode priority */
 unsigned char prty_pkt_forced_value; /* Force pkt size */
 unsigned char src_addr_control; /* Calling addr fixes */
 unsigned char dbit_control; /* Action on Dbit */
 unsigned char thclass_neg_to_def; /* TELENET negn type */
 unsigned char thclass_type; /* Thclass map handle */
 unsigned char thclass_wmap[16]; /* Thclass -> wsize */
 unsigned char thclass_pmap[16]; /* Thclass -> psize */
} psdn_local;

 /* Link level local address or local DTE address */

 struct lsapformat local_address;
};

Code Example 7-4 wlcfg Structure

NLI Management ioctls 7-23

7

7.2.2 Network Mode

NET_MODE
This determines the various characteristics of the network protocol, for
example, a value X25_LLC specifies that X.25 (84) or X.25 (88) over LLC2
procedures should be used. Possible values are:

Table 7-1 NET_MODE Mappings

NET_MODE string Value
Network, X.25

Type, or Country

X25_LLC 1 (X.25(84/88)/LLC2
)

X25_88 2 (X.25(88))

X25_84 3 (X.25(84))

X25_80 4 (X.25(80))

GNS 5 (UK)

AUSTPAC 6 (Australia)

DATAPAC 7 (Canada)

DDN 8 (USA)

TELENET 9 (USA)

TRANSPAC 10 (France)

TYMNET 11 (USA)

DATEX_P 12 (Germany)

DDX_P 13 (Japan)

VENUS_P 14 (Japan)

ACCUNET 15 (USA)

ITAPAC 16 (Italy)

DATAPAK 17 (Sweden)

DATANET 18 (Holland)

DCS 19 (Belgium)

TELEPAC 20 (Switzerland)

F_DATAPAC 21 (Finland)

7-24 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.2.3 X.25 Version

X25_VSN
This determines the version of the X.25 protocol which is being used over
the network, and can take one of three values.

• 0 indicating X.25(80)
• 1 indicating X.25(84)
• 2 indicating X.25(88)

Note that the NET_MODE of X25_LLC overrides an X.25 (80) value in this
field to X.25 (84).

7.2.4 DTE/DCE Mode

L3PLPMODE
This indicates either the DTE/DCE nature of the link’s Packet Level Protocol
or how that nature is to be resolved. A value of 0 indicates DCE, 1 indicates
DTE, while 2 indicates that this is to be resolved by following the
procedures in ISO 8208 for DTE-DTE operation. For example, for a
NET_MODE of X25_LLC, this parameter is set to 2.

DTE/DCE (or DXE) resolution refers to the selection of a DCE when two
DTEs are connected back-to-back or when you are running X.25 over LLC2.
In such a case, it is necessary that one of the two DTEs act as a DCE for two
reasons:

• logical channel selection during Virtual Call setup
• resolution of Virtual Call collision

FINPAC 22 (Finland)

PACNET 23 (New Zealand)

LUXPAC 24 (Luxembourg)

ISO_8882 25 (ISO profile)

Table 7-1 NET_MODE Mappings

NET_MODE string Value
Network, X.25

Type, or Country

The remaining information in this
particular subsection is for
technical background and is not
required for writing X.25-based
programs.

NLI Management ioctls 7-25

7

The determination of which DTE becomes the DCE occurs when a DTE
boots up and goes through the restart procedure (that is, sending a Restart
Request packet, or receiving a Restart Indication packet, whichever comes
first). There are the following four cases:

• If the DTE sends a Restart Request packet, and gets a confirmation (a
Restart Confirmation packet), then it will remain a DTE. This is because
only DCEs confirm Restart Request packets.

• If the DTE receives a Restart Indication packet with a cause code other
than “DTE originated”, then it must have received it from a DCE, so the
DTE remains a DTE.

• If the DTE receives a Restart Indication packet with a cause code of “DTE
originated”, then the DTE will confirm the restart with a Restart
Confirmation packet, and will act as the DCE.

• If the DTE had sent a Restart Request packet and before getting a
confirmation, received a Restart Indication with a cause code of “DTE
originated” (that is, a restart collision), then the DTE will back off and,
after a random amount of time, resend a Restart Request to restart the
procedure. In this case, the first DTE to retransmit the Restart Request
will remain the DTE, because the other DTE will confirm the restart and
thereby become the DCE.

The T20 timer determines how long a DTE will wait for a confirmation to a
Restart Request. The Connectvalue timer specifies a time limit before
which the DTE/DCE resolution phase must be complete, before pending
connections are aborted. See “Timers” on page 7-28 for a description of
these timers.

7.2.5 Channel Ranges

LPC to HPC, LIC to HIC , LTC to HTC, LOC to HOC
These specify the ranges of logical channels which are classed as assigned
respectively to permanent virtual circuits, one-way incoming logical
channels, two-way logical channels, and one-way outgoing logical channels.
In a DTE/DTE environment, one of the interacting pairs views these ranges
as a DCE, for example, LIC to HIC are viewed as one-way outgoing. Note
that HxC = LxC = 0 denotes no channels in that grouping.

NPCchannels , NICchannels , NTCchannels , NOCchannels and Nochnls
These count the number of logical channels assigned—this is calculated
from LIC , HIC , etc. and can be changed only by altering these ranges.

7-26 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.2.6 Sequence Numbering

THISGFI
This indicates whether Modulo 8 or 128 sequence numbering operates on
the network. It takes one of two values:

7.2.7 Packet Sizes

LOCMAXPKTSIZE
As a local option, the system manager selects the maximum size of data
packets (as a power of 2) which are acceptable. That is, on any incoming
X.25 call, a value for the packet size parameter greater than
LOCMAXPKTSIZE is negotiated down to this value when the call is accepted.
According to the ISO specification, the largest value is 12, implying a data
packet size 4096 octets (2 to the power 12), but note that a size of 128 must
always be offered. Thus LOCMAXPKTSIZE is bounded in the range >= 7 and
<= 12. For a NET_MODE of X25_LLC, LOCMAXPKTSIZE is bounded in the
range >= 7 and <= 10 (1024 octets).

REMMAXPKTSIZE
As a local option, the system manager selects the maximum size of data
packets (as a power of 2) which are acceptable. That is, on any incoming
X.25 call, a value for the packet size parameter greater than
REMMAXPKTSIZE is negotiated down to this value when the call is accepted.
According to the ISO specification, the largest value is 12, implying a data
packet size 4096 octets (2 to the power 12), but note that a size of 128 must
always be offered. Thus, REMMAXPKTSIZE is bounded in the range >= 7 and
<= 12. For a NET_MODE of X25_LLC, REMMAXPKTSIZE is bounded in the
range >= 7 and <= 10 (1024 octets).

LOCDEFPKTSIZE
On a particular link, this specifies the value of the default local-to-remote
packet size (as a power of 2), which may be nonstandard, provided the
value is agreed between all communicating parties on the LAN or between
the DTE and DCE. The usual standard value is 7 implying a default data

0x10 Modulo 8
0x20 Modulo 128

NLI Management ioctls 7-27

7

packet size in the local-to-remote direction of transmission of 128 (2 to the
power 7) octets. LOCDEFPKTSIZE is bounded in the range >= 4 and <=
LOCMAXPKTSIZE.

REMDEFPKTSIZE
On a particular link, this specifies the value of the default remote-to-local
packet size (as a power of 2), which may be nonstandard, provided the
value is agreed between all communicating parties on the LAN or between
the DTE and DCE. The usual standard value is 7 implying a default data
packet size in the remote-to-local direction of transmission of 128 (2 to the
power 7) octets. REMDEFPKTSIZE is bounded in the range >= 4 and <=
REMMAXPKTSIZE.

7.2.8 Window Sizes

LOCMAXWSIZE
As a local option, the system manager selects the maximum size of the X.25
window which is acceptable. That is, on any incoming X.25 call, a value for
the window size parameter greater than LOCMAXWSIZE is negotiated down
to this value when the call is accepted. For Modulo 8 networks,
LOCMAXWSIZE is bounded in the range >=2 and <= 7 while for Modulo 128,
the range is >=2 and <= 127.

REMMAXWSIZE
As a local option, the system manager selects the maximum size of the X.25
window which is acceptable. That is, on any incoming X.25 call, a value for
the window size parameter greater than REMMAXWSIZE is negotiated down
to this value when the call is accepted. For Modulo 8 networks,
REMMAXWSIZE is bounded in the range >=2 and <= 7 while for Modulo 128,
the range is >=2 and <= 127.

LOCDEFWSIZE
On a particular link, this specifies the value of the local-to-remote default
window size, which may be nonstandard provided the value is agreed
between all communicating parties on the LAN or between the DTE and
DCE. The usual standard value is 2. Note that the sequence numbering
scheme, Modulo 8 or 128 affects the range of this parameter. LOCDEFWSIZE
is bounded in the range >= 1 and <= LOCMAXWSIZE.

7-28 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

REMDEFWSIZE
On a particular link, this specifies the value of the remote-to-local default
window size, which may be nonstandard provided the value is agreed
between all communicating parties on the LAN or between the DTE and
DCE. The usual standard value is 2. Note that the sequence numbering
scheme, Modulo 8 or 128 affects the range of this parameter. REMDEFWSIZE
is bounded in the range >= 1 and <= REMMAXWSIZE.

7.2.9 Maximum NSDU Limit

MAXNSDULEN
The X.25 code attempts to concatenate data packets marked with the More
Data Mark (M-bit) into a single network service data unit. However, in
order to protect against buffer exhaustion, the system manager can specify a
default maximum length beyond which concatenation is stopped and the
data currently held is passed to the NS-user (with, of course, the More
parameter set). This parameter can be overridden on a per-circuit basis
using the nsdulimit parameter on N-CONNECT requests and N-CONNECT
responses.

7.2.10 Timers

ACKDELAY
The X.25 code attempts to suppress the generation of level 3 Receive Ready
(RR) packets. Acknowledgement carried by data or multiple
acknowledgments is preferred over the case when each data packet is
explicitly and separately acknowledged. Thus, ACKDELAY specifies the
maximum delay in ticks (0.1 second units) over which a pending
acknowledgement will be withheld.

Default Value [5].
Permitted Range [1 - 32000].

NLI Management ioctls 7-29

7

T20value
This specifies, in number of ticks (0.1 second units), the value of DTE timer
parameter T20, the Restart Request Response Timer.

T21value
This specifies, in number of ticks (0.1 second units), the value of DTE timer
parameter T21, the Call Request Response Timer.

T22value
This specifies, in number of ticks (0.1 second units), the value of DTE timer
parameter T22, the Reset Request Response Timer.

T23value
This specifies, in number of ticks (0.1 second units), the value of DTE timer
parameter T23, the Clear Request Response Timer.

Tvalue
This field is related, but does not correspond exactly, to the DTE Window
Status Transmission Timer, T24. It specifies the maximum time interval over
which acknowledgements of data received from the remote transmitter will
be withheld. Moreover, after expiration of this timer, any withheld
acknowledgements will be carried by a Receive Not Ready (RNR) packet.
This timer is implemented to ensure that non-receipt of acknowledgement

Default Value [1800].
Permitted Range [0 - 32000].

Default Value [2000].
Permitted Range [0 - 32000].

Default Value [1800].
Permitted Range [0 - 32000].

Default Value [1800].
Permitted Range [0 - 32000].

7-30 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

by the remote transmitter does not cause resets within the virtual circuit. It
should be emphasized that the implementation of this timer does not imply
transmission of window status every Tvalue ticks (0.1 second units).

T25value
This specifies, in number of ticks (0.1 second units), the value of DTE timer
parameter T25, the Window Rotation Timer.

T26value
This specifies, in number of ticks (0.1 second units), the value of DTE timer
parameter T26, the Interrupt Response Timer.

idlevalue
This is the number of ticks (0.1 second units) over which a link-level
connection associated with no connections is maintained. If the link is to a
WAN then this should be set to zero (that is, infinity). This timer is only
meaningful on a LAN.

Default Value [750].
Permitted Range [0 - 32000].

Default Value [1500].
Permitted Range [0 - 32000].

Default Value [1800].
Permitted Range [0 - 32000].

LAN Default Value [600].
WAN Default Value [0].
Permitted Range [0 - 32000].

NLI Management ioctls 7-31

7

connectvalue
This specifies the number of ticks (0.1 second units) over which the
DTE/DCE resolution phase must be complete. It is implemented in order to
prevent the (unlikely) event that the two packet level entities cannot resolve
their DTE/DCE nature. On expiration of this timer, the link connection is
disconnected and all pending connections aborted.

7.2.11 Counters

R20value , R22value , and R23value
These specify, respectively, the DTE Restart Request Retransmission Count,
the DTE Reset Request Retransmission Count and the DTE Clear Request
Retransmission Count.

7.2.12 Transit Delay

Localdelay and Accessdelay
These are, respectively, in milliseconds, the values of the transit delay
attributed to internal processing and the effect of the line transmission rate.
These values are used to check whether any maximum acceptable end-to-
end transit delay specified in an N-CONNECT request or an N-CONNECT
indication is in fact available.

7.2.13 Throughput Classes

Locmaxthclass
This is the maximum value of the throughput class quality of service
parameter in the local-to-remote direction which is supported. According to
ISO 8208 this parameter is bounded in the range >=3 and <=12
corresponding to a range 75 to 48000 bits/second.

Default Value [2000].
Permitted Range [0 - 32000].

Default Value [1].
Permitted Range [1 - 255].

7-32 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

Remmaxthclass
This is the maximum value of the throughput class quality of service
parameter in the remote-to-local direction which is supported. According to
ISO 8208 this parameter is bounded in the range >=3 and <=12
corresponding to a range 75 to 48000 bits/second.

Locdefthclass
In some networks, for example, TELENET, negotiation of throughput class
is constrained to be towards a configured default throughput class. In such
cases the flag thclass_neg_to_def (see below) is non-zero and
locdefthclass is the default for the local-to-remote direction. In other
PSDNs, locdefthclass should be set equal to the value of
locmaxthclass (see above).

Note that locmaxthclass >= locdefthclass .

Remdefthclass
In some networks, for example, TELENET, negotiation of throughput class
is constrained to be towards a configured default throughput class. In such
cases the flag thclass_neg_to_def (see below) is non-zero and
remdefthclass is the default for the remote-to-local direction. In other
PSDNs, remdefthclass should be set equal to the value of
remmaxthclass (see above).

Note that remmaxthclass >= remdefthclass .

Locminthclass
According to ISO 8208, the throughput class parameter is defined in the
range >= 3 and <= 12. Some PSDNs may provide a different mapping, in
which case locminthclass is the minimum value in the local-to-remote
direction. Note that locmaxthclass >= locdefthclass >=
locminthclass .

Remminthclass
According to ISO 8208, the throughput class parameter is defined in the
range >= 3 and <= 12. Some PSDNs may provide a different mapping, in
which case remminthclass is the minimum value in the remote-to-local
direction. Note that remmaxthclass >= remdefthclass >=
remminthclass .

NLI Management ioctls 7-33

7

7.2.14 Closed User Groups

CUG_CONTROL
This field controls Closed User Group actions in two ways. Firstly, it
describes the type, if any, of Closed User Group facilities subscribed to. This
is used to choose the appropriate encoding for any closed user group
facilities in N-CONNECT requests. Secondly, it specifies the action to be taken
if the Closed User Group optional facility is present in an incoming call. It
is a bit map where each bit, if set, denotes the following:

Bit 0: subscription to CUGs with no Outgoing or Incoming Access

Bit 1: subscription to Preferential CUG

Bit 2: subscription to CUGs with Outgoing Access

Bit 3: subscription to CUGs with Incoming Access (For Information Only)

Bit 4: subscription to Basic Format CUGs

Bit 5: subscription to Extended format CUGs

Bit 6: reject incoming calls containing any Closed User Group facility

Bit 7: reserved

In selecting valid subscriptions, it should be noted that bits 0 and 2 are
mutually exclusive as are bits 4 and 5.

7.2.15 Subscription Modes

SUB_MODES
This field contains information on the various subscription options for a
particular PSDN link. It is a bit map in which the various entries when set
imply:

SUB_EXTENDED
Subscribe to extended call packets.

BAR_EXTENDED
Treat incoming extended call packets as a procedure error.

7-34 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

The use of extended call packets allows window and packet size
negotiation. The SUB_EXTENDED field if set, permits the use of extended
CALL REQUEST and CALL ACCEPT packets. The BAR_EXTENDED field if not
set, permits the use of extended INCOMING CALL and CALL CONFIRM
packets.

SUB_FSELECT
Subscribe to fast select with no restriction on response.

SUB_FSRRESP
Subscribe to fast select with restriction on response.

The SUB_FSELECT field if set permits the use of fast select on INCOMING
CALL packets. The SUB_FSRRESP field if set permits the use of fast select
with restricted response on INCOMING CALL packets.

SUB_REVCHARGE
Subscribe to reverse charging.

SUB_LOC_CHG_PREV
Subscribe to local charging prevention.

The SUB_REVCHARGE field if set permits the use of reverse charges on
INCOMING CALL packets. The SUB_LOC_CHG_PREV field if set has two
effects. It prevents the use of reverse charges on INCOMING CALL packets
regardless of the setting of SUB_REVCHARGE, and any CALL REQUEST
packet will have the reverse charges facility automatically inserted.

SUB_TOA_NPI_FMT
Subscribe to using TOA/NPI address format.

BAR_TOA_NPI_FMT
Treat incoming TOA/NPI address formats as a procedure error

The SUB_TOA_NPI_FMT field if set specifies that all call set-up and clearing
packets transmitted will always use the TOA/NPI address format. The
BAR_TOA_NPI_FMT field if set specifies that any call set-up and clearing
packets received employing the TOA/NPI address format will be treated as
a procedure error.

SUB_NUI_OVERRIDE
Subscribe to NUI override.

NLI Management ioctls 7-35

7

The SUB_NUI_OVERRIDE field if set specifies that when an NUI is provided
in a CALL REQUEST, then any associated subscription time options override
the facilities which apply to the interface, for the duration of that particular
call.

BAR_INCALL
Bar incoming calls.

BAR_OUTCALL
Bar outgoing calls.

These two fields allow the system administrator to bar access either to or
from the local machine. The BAR_INCALL field if set disallows INCOMING
CALL packets. The BAR_OUTCALL field if set disallows CALL REQUEST
packets.

7.2.16 PSDN Localization

Some PSDNs require certain procedures to be followed which are not standard
for all X.25 networks. The structure psdn_local contains the flags used to
tune the actions of the X.25 driver to the requirements of the particular
network to which the configuration refers. The entries and values taken by
the psdn_local structure are described below.

PSDN_MODES
This is used to tune the various options for a particular PSDN link. It is a bit
map in which the various entries when set imply:

Table 7-2 PSDN Modes

Mode Description

ACC_NODIAG Allow the omission of the diagnostic byte in incoming
RESTART, CLEAR and RESET INDICATION.

USE_DIAG Use diagnostic packets.

CCITT_CLEAR_LEN Restrict the length of a CLEAR INDICATION to 5 bytes
and a CLEAR CONFIRM to 3 bytes.

BAR_DIAG Disallow diagnostic packets.

7-36 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

The BAR_DIAG and DISC_NZ_DIAG entries specify the treatment of incoming
diagnostic packets. When BAR_DIAG is set, incoming diagnostic packets are
handled as follows. If USE_DIAG is set, and the link is configured as a DCE,
then a diagnostic packet is sent to the DTE. Otherwise, the incoming
diagnostic packet is simply discarded. When DISC_NZ_DIAG is set, diagnostic
packets will be discarded when received on non-zero logical channel numbers.
If ACC_HEX_ADD is set, DTE addresses are not restricted to containing only
BCD digits.

7.2.16.1 International Call Address Recognition

Intl_addr_recogn
This concerns the means, and whether, outgoing international call requests
are to be recognised. The called DTE address is examined according to the
value in this field.

The main use of this feature is in conjunction with the intl_prioritised
field discussed below.

The values and their interpretation are:

0
International calls are not distinguished.

1
The DNIC of the called DTE address is examined and compared to that
held in psdn_local members dnic1 and dnic2 . A mismatch
implies an international call.

2
International calls are distinguished by having a “1” prefix on the called
DTE address; for example, DATAPAC has this feature.

DISC_NZ_DIAG Discard diagnostic packets on a non-zero LCN.

ACC_HEX_ADD Allow DTE addresses to contain hexadecimal digits.

BAR_NONPRIV_LISTEN Disallow a non-privileged user (that is, one without
superuser privilege) from listening for incoming calls.

Table 7-2 PSDN Modes

Mode Description

NLI Management ioctls 7-37

7

3
International calls are distinguished by having a “0” prefix on the called
DTE address.

Dnic1 , dnic2
This contains the first four BCD digits of the DNIC and is only used when
intl_addr_recogn has the value one.

7.2.16.2 International Call Prioritization

Intl_prioritised
This determines whether some prioritization method is to be used for
international calls (assuming that the PSDN supports such a feature) and is
used in conjunction with prty_encode_control and
prty_pkt_forced_value .

Intl_prioritised has two values: zero implying no priority, while non-
zero implies an attempt to prioritise according to ptry_encode_control .

intl_addr_recogn has the value one.

Prty_encode_control
This describes how the priority request is to be encoded for this PSDN. The
following values are currently valid:

0
The priority is encoded according to section 3.3.3 of Annex G, Blue
Book Volume VIII, Fascicle VIII.3 (CCITT, 1988).

1
Encode the priority request using the DATAPAC Priority Bit (1976
version).

2
Encode the priority request using the DATAPAC Traffic Class (1980
version which uses the Calling Network facility marker).

Prty_pkt_forced_value
If this entry is non-zero then it implies that all priority call requests and
incoming calls should have the associated packet size parameter forced to
this value (note that the actual packet size is two to the power of this
parameter; for example, 7 implies 128 byte packets). A zero value implies
no special action on packet size is required.

7-38 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

7.2.16.3 Calling Address Control

Src_addr_control
This provides the means to override or set the calling address in outgoing
call requests for this PSDN. It takes the following values:

0
No special action. Calling DTE addresses are encoded as and if
provided by the network service user.

1
Force omission of the calling DTE address, even if the network service
user supplied one.

2
If the network service user does not supply a DTE address, use the
configured DTE address (local_address) for this PSDN (which can,
of course, be NULL).

3
Force the calling DTE address to that contained in local_address ,
even if the network service user supplied one.

7.2.16.4 Dbit Operation

Dbit_control
This field specifies the action to be taken:

• during the call setup phase, where both parties do not agree on the use of
the D-bit;

• during the data transfer phase, on receipt of a data packet with the D-bit
set, where the use of the D-bit has not been agreed by both parties.

Actions which may be specified during the call setup phase are:

• Leave the D-bit set and pass the packet on.
• Zero the D-bit and pass the packet on.
• Clear the call.

Actions which may be specified during the data transfer phase are:

• Leave the D-bit set and pass the packet on.
• Zero the D-bit and pass the packet on.

NLI Management ioctls 7-39

7

• Reset the call.

7.2.16.5 Throughput Class Negotiation

Thclass_neg_to_def
This accommodates certain network procedures which dictate that
negotiation of throughput class must be towards the default value (for
example, TELENET), the default value being configured into the member
defthclass . A non-zero value in this field requests use of this option, zero
implies non-use.

Thclass_type
This provides the means by which throughput class encodings can be used
to assign window and packet sizes (according to the arrays thclass_wmap
and thclass_pmap described below). It should be noted that some
implementations of X.25 do not use the X.25 packet and window negotiation
but instead rely on mapping the throughput class to these parameters (see
thclass_type 1,2 and 3). Thclass_type should be used on such PSDNs.
Note also that the values of locmaxthclass and remmaxthclass may
have an effect on what is achieved through the mapping.

The values currently assigned to thclass_type to indicate the mapping
are:

0
No special action is to be taken on throughput class.

1
Use only the low nibble of the throughput class parameter to map
window and packet size for both directions and encode the high nibble
as zero. Note that the window and packet sizes are intended to be
asserted by the throughput class parameter.

2
Use only the high nibble of the throughput class parameter to map
window and packet size for both directions and encode the low nibble
as zero. Note that the window and packet sizes are intended to be
asserted by the throughput class parameter.

7-40 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

3
Use both nibbles of the throughput class to map window and packet
size for the appropriate directions. Note that the window and packet
sizes are intended to be asserted by the throughput class parameter.

Values 1, 2 and 3 are intended for use on non-standard X.25 PSDN
implementations and it is important to note the following restrictions and
advice.

For the special values 1 and 2 the following items should be noted:

• It is not advisable to select these values when window and packet sizes
can appear in call setup packets (that is, subscription to window and
packet size negotiation) since this algorithm is designed for those PSDNs
which support only the mapping procedure.

• In call requests, the network service user should specify equal values for
locthroughput and remthroughput in the qosformat , to ensure that
the correct behavior is obtained (see also high and low nibble usage for
these two values).

• It should also be noted that, for these values, the user will be barred from
negotiating window and packet sizes, and the throughput class will not be
indicated in a connect indication.

For the value 3, window and packet sizes can be negotiated by the network
service user only through the throughput class parameter. Negotiations
through the flow negotiation parameters when subscribing to the extended
facility option are overridden. However, as for values 1 and 2, this value is
intended only for cases where this is the only means of negotiating window
and packet sizes.

Since window and packet sizes can be mapped using these three values
without the use of window and packet negotiation facilities, it is important
that the map (thclass_wmap and thclass_pmap) is correct for the
PSDN, in order to ensure that both called and calling parties agree on the
values associated with a particular throughput class.

Thclass_wmap , Thclass_pmap
These are respectively the mapping between the value of the throughput
class (a number 0 to 15) and a window and packet parameter, respectively.
An entry zero in this table indicates that the currently set or default value be
used.

NLI Management ioctls 7-41

7

7.2.17 Link Address

Local_address
Holds the local DTE address for this X.25 link. It is held in a byte array,
local_address.lsap_add , with an associated length byte
local_address.lsap_len .

7.2.18 Timer Relationships

The above timer defaults are those specified in ISO 8208. The assignment of a
value to T25 requires some comment. The code may be configured to be lenient
in the case of flow control inhibition (see Section 11.2 of ISO 8208). That is, a
decision has to be made in order to cater for the case when the remote station
does not rotate the window fast enough to prevent expiration of T25. ISO 8208
recommends strongly that high level protocols be used to effect recovery and
this should be considered. This effect can be achieved by setting T25 to either
zero (implying infinite) or a very large value.

The timer Tvalue , should be set to a value approximately half the T25 value,
in order to prevent the remote PLP from resetting on T25 expiration. The timer
ACKDELAY should be approximately 0.5 seconds, although this
recommendation may change after evaluation and experience is gained.

Finally, the idlevalue timer may be set according to how quickly the LAN
administration wishes the resource to be reclaimed, while connectvalue
should be about three times the T20 value.

Note also that ISO 8208 recommends that the retry values R20, R22 and R23
should never be set to zero in order to cater for the possibility of collisions (see
footnote to Figure 6, ISO 8208).

7-42 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

7

A-1

NLI Events and OSI Error Codes A

A.1 Messages and Related Packets

Table A-1 Downstream Messages and Associated Outgoing X.25 Packets

NLI Message X.25 Packet

N_CI Call Request

N_CC Call Accept

N_Data Data

N_DAck Data Acknowledgement

N_EData Interrupt

N_EAck Interrupt Confirmation

N_RI Reset Request

N_RC Reset Confirmation

N_DI Clear Request

A-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

A

Note – The NLI PVC messages PVC_Attach and PVC_Detach do not have
corresponding X.25 packets.

A.2 Error Codes
The following tables list the OSI codes defined in <netx25/x25_proto.h>
which may be used by NLI application programmers.

To identify the originator in N_RI and N_DI messages:

N_USER 1

N_PROVIDER 2

Table A-2 Upstream Messages and Associated Incoming X.25 Packets

NLI Message X.25 Packet

N_CI Incoming Call

N_CC Call Connect

N_Data Data

N_DAck Data Acknowledgement

N_EData Interrupt

N_EAck Interrupt Confirmation

N_RI Reset Indication

N_RC Reset Confirmation

N_DI Clear Indication

N_DC Clear Confirmation

NLI Events and OSI Error Codes A-3

A

To specify the reason when the originator is the Network Service provider in
N_DI messages:

To specify the reason when the originator is the Network Service user in N_DI
messages:

Table A-3 Reason when Originator is NS Provider

Code Value

NS_GENERIC 0xE0

NS_DTRANSIENT 0xE1

NS_DPERMANENT 0xE2

NS_TUNSPECIFIED 0xE3

NS_PUNSPECIFIED 0xE4

NS_QOSNATRANSIENT 0xE5

NS_QOSNAPERMANENT 0xE6

NS_NSAPTUNREACHABLE0xE7

NS_NSAPPUNREACHABLE0xE8

NS_NSAPPUNKNOWN 0xEB

Table A-4 Reason when Originator is NS User

Code Value

NU_GENERIC 0xF0

NU_DNORMAL 0xF1

NU_DABNORMAL 0xF2

NU_DINCOMPUSERDATA 0xF3

NU_TRANSIENT 0xF4

NU_PERMANENT 0xF5

NU_QOSNATRANSIENT 0xF6

NU_QOSNAPERMANENT 0xF7

NU_INCOMPUSERDATA 0xF8

NU_BADPROTID 0xF9

A-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

A

To specify the reason when the originator is the Network Service provider in
N_RI messages:

NS_RUNSPECIFIED 0xE9

NS_RCONGESTION 0xEA

To specify the reason when the originator is the Network Service user in N_RI
messages:

NU_RESYNC 0xFA

Note – These codes are found in ISO 8208 and are mapped from X.25 cause and
diagnostic codes as described in ISO 8878.

B-1

Compatiblity with 7.0—
Sockets-based Packet Level Interface B

This chapter describes the sockets-based interface to the SunLink X.25 Packet
Layer interface. In the current release, the sockets-based interface has been
replaced by a streams-based interface. The sockets-based interface is
supported for backward-compatibility with SunNet X.25 7.0 only. We strongly
encourage you modify your existing X.25 applications to run over the streams-
based interface described in the chapters of this manual.

Note – The sockets-based interface is a source-compatible—not a binary-
compatible—interface. Applications that used the socket interface in SunOS
4.x must be recompiled to run on SunOS™ 5.x. See Section C.2, “Compilation
Instructions and Sample Programs” for instructions on compiling programs to
use the sockets-based interface on SunOS 5.x.

8

B.1 Introduction — The AF_X25 Domain
This chapter assumes some familiarity with SunOS sockets and address
domains (families). Briefly, the socket layer of the network system deals with
the interprocess communications provided by the system. A socket is a
descriptor that acts as a bidirectional endpoint for communications and is
“typed” by the semantics of the communications it supports. The type of the
socket is defined at socket creation time and used in selecting those services
which are appropriate to support it. The socket type SOCK_STREAM provides

B-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

sequenced, reliable, two-way, connection-based byte streams with an out-of-
band data transmission mechanism. An address domain specifies an address
format which is used to interpret addresses specified in later operations using
the socket.

SunLink X.25 defines an address domain, AF_X25. Within this domain only the
socket type SOCK_STREAM is supported. Like other SOCK_STREAM sockets, an
AF_X25 domain socket is composed of two byte streams: an in-band stream
and an out-of-band stream. However, unlike other sockets, there are two
different kinds of out-of-band messages: X.25 status and interrupt data.

B.2 AF_X25 Domain Addresses
Addresses in the AF_X25 domain consist of two parts: a DTE address of up to
15 BCD digits and Call User Data of up to 16 bytes. (The leading bytes of
theCall User Data is often a protocol identifier [PID] used to identify a specific
application using X.25.) You can use either subaddressing (part of 15-digit
DTE address) or both subaddressing and Call User Data as part of the binding
mechanism to match Incoming Call packets with a server process.

An AF_X25 domain address is described by a CONN_DB structure:

The constants MAXHOSTADR and MAXDATA are defined in the include file
x25_pk.h . Currently, MAXHOSTADR is 15, so the length of the host field is 8,
and MAXDATA is 102. Use these constants, whenever possible, instead of hard-
coded values.

The 15-digit DTE address comprises three components: a Data Network
Identification Code (DNIC), a Network Terminal Number (NTN), and a
subaddress. A full X.121 address is the concatenation of a DNIC, NTN, and
subaddress, in that order. For example, if the DNIC is 4042, the NTN is 3831,
and subaddress is 06, the full X.121 address is 4042383106.

typedef struct conn_db_s {
u_char hostlen; /*address length in BCD digits */
u_char host[(MAXHOSTADR+1)/2];/* DTE address */
u_char datalen; /* user data length in bytes */
u_char data[MAXDATA]; /* user data */

} CONN_DB;

Compatiblity with 7.0— Sockets-based Packet Level Interface B-3

B

Note that only eight bytes are provided for the X.121 address, which could be
up to 15 digits in length. This is because each byte holds two BCD digits in
packed format (it takes only four bits to represent a BCD digit). Thus the
address 4042383106 will be stored as five bytes, with hexadecimal values 0x40,
0x42, 0x38, 0x31, and 0x06, in that order.

The necessary include files are listed in Appendix C, “Sockets Programming
Example”. For more information on address binding, see “Address Binding”
on page B-7.

B.3 Creating Switched Virtual Circuits
To set up a switched virtual connection between a local and remote system, a
socket in the AF_X25 domain is created using the standard socket call:

If a signal handler routine is to be used, it is necessary to associate a proper
process group ID with the socket. Refer to the section “Out-of-Band Data” on
page B-23 of this chapter to see how this is done. X.25 facility specification and
negotiation may be done after creating a socket. See “Facility Specification and
Negotiation” on page B-26 of this chapter for more information regarding
facility specification.

After a socket has been created, the client executes one of the two sequences
described in the following subsections to set up the virtual circuit.

B.3.1 Calling Side — Outgoing Call Setup

The calling side initiates a virtual circuit connection by calling connect ,
supplying the called (remote) DTE address (including subaddress, if any) and a
user data field as arguments. After connect completes successfully, the socket
may be used for data transfer.

int s; /* socket to be created */
s = socket(AF_X25, SOCK_STREAM, 0);

int s /* socket */, error;
CONN_DB addr;
error = connect(s, &addr, sizeof(addr));

B-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

SunLink X.25supports multiple physical interfaces (or links). A single link
maps to a serial port device, such as zsh0 .

A link is automatically selected for the outgoing call. Among multiple links,
SunLink X.25 routes outgoing calls based on the called address. Calls are
routed according to the full or partial addresses (X.121, or NSAP or non-NSAP
extended addresses) you specify in a routes file, the syntax for which is
described in the SunLink X.25 8.0.2 Reference Manual. The lowest-numbered
link is the default.

If the interface supports 1984 X.25, the user may also specify a Called Address
Extension Facility (AEF). In this case, SunLink X.25 will use the Called AEF to
route the call over a particular link, provided the user has not specified an
X.121 address. If the user wants the call to be routed based on the Called AEF,
the hostlen field should be set to zero:

Where AEFs are used for routing, SunLink X.25 will select the interface to use
and will also supply the X.121 address (if any) for the Call Request packet. In
addition, if it is a LAN interface, SunLink X.25 will supply the necessary LSAP
address.

Called and Calling AEFs are described in the section “Facility Specification and
Negotiation” on page B-26.

Note – error is used in most examples to indicate the return code. A value of
zero indicates a successful operation. A non-zero value indicates an
unsuccessful operation. The cause of the error is stored in a global variable
errno which is used throughout this manual. Values of errno are enumerated
in <errno.h> . These values are listed in intro(2) in the SunOS Reference
Manual . Programmers may access errno by inserting the following line in
their programs: extern int errno; Note that errno indicates the cause
of the very last system call failure and is therefore invalid for operations
returning an error value of zero. To get more information on the meaning of
the error string printed, use the perror function.

addr.hostlen = 0;

Compatiblity with 7.0— Sockets-based Packet Level Interface B-5

B

B.3.2 Calling Side — Setting the Local Address

Often, the receiver of an Incoming Call needs to know the address of the caller
in order to validate the call. By default, the calling address in the Call Request
is set to the address (including the subaddress, if any) specified in the
configuration file of the link over which the Call Request is sent. There are
several parameters in the link configuration file, all described in the preceding
subsection, that determine how SunLink X.25 preprocesses the calling address
to satisfy the requirements of the interface.

You may specify a different address using the X25_WR_LOCAL_ADR ioctl. The
address is specified in a CONN_ADR structure.

Here, as in the CONN_DB structure, hostlen is the length of the address in
BCD digits, and host contains the address in packed BCD format. The
X25_WR_LOCAL_ADR ioctl call is issued as follows:

The setting of the source address—and whether the X25_WR_LOCAL_ADR ioctl
has effect—is controlled by the setting of the Source Address Control
parameter in the Create/Modify configuration files➤X25 Parameters➤Link
Mode Parameters window in x25tool . See the SunLink X.25 8.0.2 Reference
Manual for instructions on setting this parameter.

typedef struct conn_adr_s {
u_char hostlen; /* length of BCDs */
u_char host[(MAXHOSTADR+1)/2];

} CONN_ADR;

CONN_ADR addr;
int s, error;
error = ioctl(s, X25_WR_LOCAL_ADR, &addr);

B-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.3.3 Called Side — Incoming Call Acceptance

The called side initiates listening for incoming calls by calling bind , supplying
the called (local) DTE address (including subaddress, if any) and protocol
identifier to be used for matching with incoming calls:

Here, bind_addr contains the address and protocol identifier of the called
side. The protocol identifier is specified in the data field of the CONN_DB
structure and is matched with the user data in incoming calls. More
information on how to specify the address and protocol identifier for the bind
call, and how incoming calls are matched with bound addresses and protocol
identifiers, follows.

After bind has been called, listen is called to begin waiting for incoming
calls. Incoming calls will be queued until they are accepted by means of the
accept call. backlog specifies the maximum number of incoming calls (no
more than five) to queue (waiting for accept) before clearing additional
incoming calls.

Finally, accept is called to block until an incoming call is received that
matches the address and protocol identifier specified in the bind call. accept
is passed a pointer to a CONN_DB structure (and length), which will be filled
in with the calling DTE ’s (remote) address and user data field. The user data
field in an Incoming Call packet consists of a protocol identifier followed by

int s, error;
CONN_DB bind_addr;
error = bind(s, &bind_addr, sizeof(bind_addr));

int s, backlog, error;
error = listen(s, backlog);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-7

B

any additional user data. After an incoming call matches the binding criteria,
accept returns the socket news, to be used for data transfer. news inherits the
process group ID from s .

The remote address returned in from will be exactly as received (that is, in
exactly the same form as received in the calling address field in the Incoming
Call packet).

Note that on entry into the accept call, from_addr_len should be set to the
size of the CONN_DB structure. On return, it will be set to the length of the
actual address returned in from .

A typical caller of accept would be a server process that forks a new process
(after calling accept) to handle each new socket. The sample programs (see
Appendix C, “Sockets Programming Example”) provided with SunLink X.25
illustrate how this can be done.

B.3.4 Address Binding

When an Incoming Call packet is received by SunLink X.25, the called address
and user data field are matched against all listening sockets. In addition, if the
interface supports 1984 X.25, and if the listener has specified a value for the
Called AEF, the Called AEF field in the Incoming Call (if any) will be matched
with the Called AEF specified by the listener. If a match is found, the call is
accepted and the user process associated with that socket will be notified when
the user process does an accept . This permits incoming calls to be bound to
the correct user process. X.25 supports binding by either address or by both
address and protocol identifier. The method used is determined by the fields of
the CONN_DB structure passed to bind .

The address a socket is bound to is specified in the host field of the CONN_DB
parameter passed to the bind call. The address is specified in packed BCD
format, and the hostlen field contains the length of the address in BCD
digits.

int s, news;
int from_addr_len;
CONN_DB from;
from_addr_len = sizeof(from);
news = accept(s, &from, &from_addr_len);

B-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

You can specify the bound address in a number of ways, depending on
whether you want to accept all calls (from any link, for any subaddress), or all
calls for a specific subaddress (from any link, for a particular subaddress), or
calls from a specific link for any subaddress, or calls for a specific address
(from a specific link, for a specific subaddress).

If you want to accept all calls (from any link, for any subaddress), set the bits
ANY_LINK (0x80) and ANY_SUBADDRESS (0x40) in the hostlen field and do
not specify any address:

If you want to accept calls from any link, but only for a specific subaddress,
specify only the subaddress, and set the ANY_LINK bit in the hostlen field:

If you want to accept calls from a specific link, but for any subaddress, specify
the link address (without the subaddress) and set the ANY_SUBADDRESS bit in
the hostlen field:

If you want to accept calls for a specific address (including subaddress) specify
the exact address in the CONN_DB structure passed to bind . In this case, the
address you specify must exactly match the called address field of the received
Incoming Call packet. The address of a link may be obtained with an
X25_RD_LINKADR ioctl call (see the section “Accessing the Link (X.25)
Address” on page B-46 of this chapter for details).

The sample programs provided with SunLink X.25 illustrate the above
features.

bind_addr.hostlen = ANY_LINK | ANY_SUBADDRESS;

bind_addr.hostlen |= ANY_LINK;

bind_addr.hostlen |= ANY_SUBADDRESS;

Compatiblity with 7.0— Sockets-based Packet Level Interface B-9

B

B.3.5 Binding by PID/CUDF

To bind by protocol identifier (PID), you must specify a protocol identifier in
the data field of the CONN_DB parameter passed to bind . The datalen field
contains the length of the protocol identifier. You can specify up to 102 bytes of
protocol identifier, but only the first 16 bytes will be used for matching with
user data in Incoming Call packets.

The user data field in an Incoming Call may be longer than the protocol
identifier specified in bind . The match will be considered successful if the
protocol identifier specified in bind is an initial sub-string of the user data in
an Incoming Call. Thus, if you specify a zero-length protocol identifier in
bind , it will match the user data in any Incoming Call.

You can enforce exact matching of the protocol identifier with user data in
Incoming Call packets by setting the bit EXACT_MATCH (0x80) in datalen :

In this case, user data in an Incoming Call packet should match the protocol
identifier specified in bind exactly (in content and length) in order for the
match to be considered successful.

See Appendix C, “Sockets Programming Example,” for references to sample
code. A simple example is given below:

bind_addr.datalen |= EXACT_MATCH;

CONN_DB bind_addr;
int s, error;
/*We want to accept calls from any link, for the subaddress 01.
* We must specify the two digit subaddress 01 and set the ANY_LINK
* bit in the hostlen field.
*/
bind_addr.hostlen = 2 | ANY_LINK;/* there are 2 BCD digits */
bind_addr.host[0] = 0x01;
/* We will specify a protocol identifier consisting of a single
byte
* with value 0x02.
*/
bind_addr.datalen = 1;
bind_addr.data[0] = 0x02;
error = bind(s, &bind_addr, sizeof(bind_addr));

B-10 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.3.6 Masking Incoming Protocol Identifiers at the Bit Level

The user data in an Incoming Call may be masked (that is, bitwise ANDed),
using a specified mask value, before it is matched with the protocol identifier
specified in a bind call. The mask is specified in a MASK_DATA_DB structure
using the X25_WR_MASK_DATA ioctl. Here is an example:

MAXMASK is currently 16. masklen holds the length of the mask data in bytes,
and mask is the actual mask value. In the above example, the first three bytes
of user data in an Incoming Call will be masked: the first byte with 0xff, the
second with 0x00, and the third with 0xff. The masked user data will then be
matched with the specified protocol identifier. Note that the specified protocol
identifier will not be masked before matching occurs, so in the above example,
the second byte of the specified protocol identifier must be zero if any match is
to succeed.

B.3.7 AEF Matching Considerations

A listener may specify a Called AEF. In this case, the Incoming Call packet
must have the Called AEF, and it should match the Called AEF specified by the
listener exactly, in order for the match to succeed. If the listener has not
specified a Called AEF, any Called AEF present in the Incoming Call packet
will be accepted, provided the match succeeds in other ways (Called Address
and PID).

typedef struct mask_data_bd_s {
u_char masklen;
u_char mask[MAXMASK];

} MASK_DATA_DB;

MASK_DATA_DB m;
int s, error;

m.masklen = 3;
m.mask[0] = 0xff;
m.mask[1] = 0x00;
m.mask[2] = 0xff;

error = ioctl(s, X25_WR_MASK_DATA, &m);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-11

B

B.3.8 Explicit Link Selection — Calling Side

As discussed in a previous subsection, SunLink X.25 automatically selects a
link for an outgoing call if so requested by the caller. If you do nothing to call
automatic link selection into play, the call is sent over the lowest numbered
WAN link by default. The calling side can override automatic link selection,
and specify a desired link using the X25_SET_LINK ioctl:

Note that a full X.121 address must be specified (and so indicated by setting
the ANY_LINK bit as described earlier) if you want SunLink X.25 to process the
address as required by the PSDN, using the parameters specified in the link
configuration file. Otherwise, the address set in the Call Request packet will be
exactly what you specified, and so you must take care to provide the address
in exactly the form required by the PSDN.

int s, error;
int linkid; /* id of desired link for outgoing call */
CONN_DB addr; /* destination address */
linkid = 3; /* want to send call over link 3 */
error = ioctl(s, X25_SET_LINK, &linkid);

/* check error here */

error = connect(s, &addr, sizeof(addr));

B-12 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

Since setting the link prevents SunLink X.25 from consulting the routing table,
all the information required to establish connection with the remote user must
be provided. For example, if the link selected supports 1984 X.25, Called and
Calling AEFs may be required. If the link selected is a LAN interface, the LSAP
address of the remote user must be provided. This is done as follows:

If the lsel field is set to zero, SunLink X.25 will use the value specified in the
link configuration file. After connection is established, the LSAP address of the
remote user can be read using the X25_RD_MACADDR command:

typedef struct {
u_char lsel;
u_char maclen;

#define MACADDR_LEN6
u_char macaddr[MACADDR_LEN];

} X25_MACADDR;

X25_MACADDR dst_mac; /* LSAP address */
ints; /* socket */

/* set the lsel, maclen and macaddr fields here */

error = ioctl(s, X25_WR_MACADDR, &dst_mac);

X25_MACADDR dst_mac; /* LSAP address */
int s; /*socket */

error = ioctl(s, X25_RD_MACADDR, &dst_mac);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-13

B

B.3.9 Explicit Link Selection — Called Side

The called side may restrict the calls it wishes to examine for a possible match
to a particular link by means of the X25_SET_LINK ioctl.

The ANY_SUBADDRESS and ANY_LINK bits can still be used in the same way as
explained in the section“Address Binding” on page B-7 of this chapter. The
ANY_LINK bit, in this context, serves as an abbreviation for the link address,
and you do not have to specify the link address explicitly. A zero-length
address also works in the same way as described in the “Address Binding
section. Otherwise, you must specify the address in exactly the form it will be
received. That is, it must exactly match the called address field of the received
Incoming Call packet.

int s, linkid, error;
CONN_DB addr; /* address and protocol identifier */

linkid = 2; /* restrict calls to link 2 */
error = ioctl(s, X25_SET_LINK, &linkid);

/* check error here */

error = bind(s, &addr, sizeof(addr));

B-14 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.3.10 Accessing the Local and Remote Addresses

Once a connection is established, the calling and called sides may use the
getsockname and getpeername calls to obtain the local and remote X.121
addresses:

The local and remote addresses can also be obtained using the
X25_RD_LOCAL_ADR and X25_RD_REMOTE_ADR ioctl calls:

Note that for getsockname and getpeername , the CONN_DB structure is
used, and for the ioctl calls, the CONN_ADR structure is used. In both cases, the
host field will contain the address in packed BCD format, and the hostlen
field will contain the address length in BCD digits.

int s, error;
CONN_DB local; /* local address */
int local_len; /* local address length */
CONN_DB remote; /* remote address */
int remote_len; /* remote address length */

/* get local address */
local_len = sizeof(local);
error = getsockname(s, &local, &local_len);

/* get remote address */
remote_len = sizeof(remote);
error = getpeername(s, &remote, &remote_len);

int s, error;
CONN_ADR local; /* local address */
CONN_ADR remote; /* remote address */

/* get local address */
error = ioctl(s, X25_RD_LOCAL_ADR, &local);

/* get remote address */
error = ioctl(s, X25_RD_REMOTE_ADR, &remote);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-15

B

For the called side, the remote address will be defined only after the
connection is complete. The remote address obtained using either of the above
two methods will be exactly as obtained from the Incoming Call packet. After
the call is established, the local address (obtained by either method) will be
exactly as received in the called address field in the Incoming Call packet.

For the calling side, the remote address will be exactly as specified in the
connect call. If the ANY_LINK bit was set in the hostlen field, it will be also
set when it is read by the user using either of the above methods. The source
address for the calling side will be either a zero-length address (indicating that
the appropriate link address was used), or exactly what the user specified
using the X25_WR_LOCAL_ADR ioctl call (including the SUBADR_ONLY bit if it
is used).

B.3.11 Finding the Link Used for a Virtual Circuit

If you let SunLink X.25 select the link for an outgoing call, or make an accept
call that accepts incoming calls from any link, you may use the
X25_GET_LINK ioctl to obtain the identifier of the link used for the call:

If this call is made before connection establishment and you have not explicitly
selected a link, linkid will be set to -1 on return from the call. After
connection establishment, linkid will have a value in the range zero through
one less than the maximum number of links configured.

An important use for this ioctl arises when the called side determines the
remote address in order to call back the remote DTE. In this situation, the
remote address is presented in exactly the form it arrived in the Call Request.
For some PSDNs, this may not contain a DNIC. Hence, the only way you can
call the remote DTE back is by finding out the link id for the call using the
X25_GET_LINK ioctl, and explicitly selecting this link using the
X25_SET_LINK ioctl when calling the remote DTE back. In this situation, you
should not set the ANY_LINK bit in the hostlen field of the CONN_DB
parameter to the connect call.

int s, error;
int linkid; /* link identifier */

error = ioctl(s, X25_GET_LINK, &linkid);

B-16 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.3.12 Determining the Logical Channel Number for a Connection

To find out which logical channel is associated with a connection, do the
following:

Here, s is the socket associated with the connection (or virtual circuit). On
return from the call, lcn is set to the logical channel number associated with
socket s . If the returned value of lcn is 0, there is no connected virtual circuit
associated with the socket.

B.4 Sending Data
The send call is used to send data over a virtual circuit. send is passed the
socket, a pointer to the data to be transmitted, the length of the data, and a flag
indicating the type of data to be sent. Interrupt data is sent by setting flags to
MSG_OOB. Otherwise, flags should be set to zero. The returned count
indicates the number of bytes transmitted by send .

Note that for normal data, you can use the write system call instead of send .
The call:

is equivalent to:

int s, lcn;
error = ioctl(s, X25_RD_LCGN, &lcn);

int count, len, flags, s;
char *msg;
count = send(s, msg, len, flags);

write(s, msg, len)

send(s, msg, len, 0)

Compatiblity with 7.0— Sockets-based Packet Level Interface B-17

B

The X.25 protocol has the concept of an X.25 message. A complete X.25 message
is a sequence of one or more packets with the M-bit (More bit) set in all but the
final packet. Normally, X.25 sends the data specified in a send call as a
complete message. This means that the data will be segmented into packets as
required by the PSDN, and the M-bit will be set in all but the final packet. If
the user wishes to pass the data in a complete X.25 message in pieces (that is,
using multiple send calls), the setting of the M-bit must be controlled using
the X25_SEND_TYPE ioctl as described below.

Note – In the current release of SunLink X.25, send() returns a positive result
after a virtual circuit is closed at the remote end. This behavior is different
from 7.0 SunNet X.25. To be notified when the virtual circuit has been closed,
use the X25_OOB_ON_CLEAR ioctl, as described in Section B.7.8, “Accessing the
Diagnostic Code,” on page B-48.

B.4.1 Control of the M-, D-, and Q-bits

The settings of M-, D- and Q-bits in transmitted packets are changed by means
of the X25_SEND_TYPE ioctl call.

send_type provides the new settings of the M-, D-, and Q-bits. The M-, D-,
and Q-bits are encoded into the send_type field by bit shifting as shown
below.

ints, send_type;
error = ioctl(s, X25_SEND_TYPE, &send_type);

#define M_BIT 0 /* number of bits to shift to set "more"
 * bit */

#define D_BIT 2 /* number of bits to shift to set end-to-end
 * acknowledge bit */

#define Q_BIT 3 /* number of bits to shift to set qualified
 * data bit */

B-18 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

For example, to set the Q-bit in a packet:

M_BIT determines whether or not a packet is the final piece of a complete X.25
message. If M_BIT is set, subsequent send calls are treated as part of a single
X.25 message. If M_BIT is not set, the next send ends the current X.25 message.
For example, the following code allows a complete X.25 message to be sent in
three pieces:

If the M-bit is turned on using the X25_SEND_TYPE ioctl, it will stay turned on
until it is turned off. The X.25 recommendation states that the M-bit shall be
turned on only in packets that are “full”—that is, packets that have the
maximum size for that virtual circuit. So if the M-bit is turned on, and the next
send does not supply a full X.25 packet, X.25 will wait until enough send calls
have been issued to build a full X.25 packet before transmitting the next packet
with the M-bit turned on.

The Q-bit qualifies the data in Data packets. A local DTE sets the Q-bit to
indicate that the data being sent is significant for a device connected to the
remote DTE. It is often used by a remote host when sending control packets to
a PAD, to distinguish the control packets from packets containing user data.

The D-bit allows a local DTE to specify end-to-end acknowlegement of data
packets. Normally, a DTE receives acknowledgement only from its local DCE.
The D-bit is significant only in call setup and data packets.

intsend_type = (1 << Q_BIT), s;
error = ioctl(s, X25_SEND_TYPE, &send_type);

ints, send_type, error;
/* Set M_BIT to indicate multiple pieces */
send_type = (1 << M_BIT);
error = ioctl(s, X25_SEND_TYPE, &send_type);
/* send first piece */
error = send(s, &first_piece, sizeof(first_piece), 0);
/* send next piece */
error = send(s, &second_piece, sizeof(second_piece), 0);
/* Clear M_BIT to indicate end of message */
send_type = 0;
error = ioctl(s, X25_SEND_TYPE, &send_type);
/* send final piece */
error = send(s, &final_piece, sizeof(final_piece), 0);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-19

B

D_BIT and Q_BIT control the settings of those bits in an X.25 packet. These
bits are manipulated in the same manner as the M_BIT was above. Since the
X.25 recommendation states that the D_BIT and Q_BIT bits should remain
constant for each packet in a complete X.25 message, D_BIT and Q_BIT should
only be changed at the beginning of an X.25 message.

Unlike M_BIT, D_BIT and Q_BIT are turned off automatically after a complete
X.25 message has been sent. Hence, to set these bits in a series of complete X.25
messages, you should turn them on at the start of each complete X.25 message.
If the complete X.25 message is a sequence of full packets with the more bit
turned on in all but the last packet in the sequence, the setting of D_BIT and
Q_BIT will be the same for all the packets unless you explicitly change the
setting in between.

B.4.2 Sending Interrupt and Reset Packets

An interrupt packet may be sent in the following manner. The interrupt user
data is contained in intr:

If the link supports 1984 X.25, you may send up to 32 bytes of interrupt data.
On 1980 links, you may send only one byte.

A reset packet may be sent in the following manner:

This will cause a Reset to be sent with the cause code and diagnostic specified
by the user. See “Accessing the Diagnostic Code” on page B-48 of this chapter
for more information.

int s;
char intr = 0; /* set this variable to contain the interrupt

 * user data (in this case 0) */
error = send(s, &intr, 1, MSG_OOB);

X25_CAUSE_DIAG diag;
int error, s;
diag.flags = 0;
diag.datalen = 2;
diag.data[0] = 0; /* cause */
diag.data[1] = 67; /* diagnostic */
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

B-20 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.5 Receiving Data
To read data from an X.25 socket, call recv . Data may be either in-band
(normal data) or out-of-band (interrupt data and status). To receive out-of-
band data, set flags to MSG_OOB. To receive normal data, set flags to 0.

Note that for normal data, you can use the read system call instead of recv .
The call:

is equivalent to:

B.5.1 In-Band Data

Calling recv with flags set to zero reads in-band data. Normally, each recv
returns one complete X.25 message. It is very important to note that if the size
of the receive buffer is not sufficient to hold the entire X.25 message, the excess
is discarded and no error indication is returned. This is a feature of SunOS
sockets, not of SunLink X.25. count returns a count of the number of bytes
returned by recv. If the user wishes to read an X.25 message in pieces smaller
than a complete message, the X25_RECORD_SIZE ioctl should be used as
described in the section “Receiving X.25 Messages in Records” on page B-22 of
this chapter.

Unless non-blocking I/O has been requested, the recv call will block unless
there is some data that can be returned to the user. If the connection is cleared
(due to normal or abnormal reasons) while recv is blocked, recv will return a
count of zero. A return value of zero from recv is an indication that the
connection has been cleared, and the user must close the socket at this point.

int s, len, flags, count;
char *buf;
count = recv(s, buf, len, flags);

read(s, buf, len)

recv(s, buf, len, 0)

Compatiblity with 7.0— Sockets-based Packet Level Interface B-21

B

B.5.2 Reading the M-, D-, and Q-bits

To determine the values of the M-, D-, and Q-bits in received frames, call the
X25_HEADER ioctl before the virtual circuit has been created.

If need_header is set to one, subsequent recvs will return the data preceded
by a one-byte header that contains the values of the M-, Q-, and D-bits encoded
as bit shifts as follows:

For example, to check for the presence of the Q-bit in a packet, the following
sequence might be used:

The X25_HEADER ioctl must be issued either before the connect call (for
outgoing calls), or before the accept call (for incoming calls). For PVCs, the
X25_HEADER ioctl must be issued before the X25_SETUP_PVC ioctl. For the
duration of the call, the X25_HEADER ioctl must not be used to change the
header setting. For example, if a message is received when the header setting is
on and the user turns it off before reading the message, the user will receive a
one-byte header along with the message, even though he is not expecting it.

ints, need_header;
error = ioctl(s, X25_HEADER, &need_header);

#define M_BIT 0 /* number of bits to shift for M-bit */
#define D_BIT 2 /* number of bits to shift for D-bit */
#define Q_BIT 3 /* number of bits to shift for Q-bit */

char buf[1025];
int s, need_header = 1, count, error;
error = ioctl(s, X25_HEADER, &need_header);

. . .
count = recv(s, buf, sizeof(buf), 0);
if (count > 0 && (buf[0] & (1 << Q_BIT)))

/* then Q bit is on */

B-22 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

If the header is requested, X.25 does not wait for a complete X.25 message to be
assembled before returning any data to the user. Rather, partial messages
(indicated by the presence of M_BIT) are returned to the user as they become
available. Note that the buffer supplied in the recv call must be large enough
to accommodate the extra byte of header information.

B.5.3 Receiving X.25 Messages in Records

By default, each recv returns a complete X.25 message. To force recv to
return data before a complete X.25 message has been assembled, issue the
X25_RECORD_SIZE ioctl after the socket is created:

Here, record_size specifies the number of full (maximum size) packets with
M-bit turned on that X.25 will receive before the accumulated data is returned
to the user as a record (or message). Thus, the maximum record size seen by
the user will be record_size times the maximum packet size for the virtual
circuit. If a complete X.25 message comprises less than record_size packets,
it will be returned to the user as in the normal case.

The X25_RECORD_SIZE ioctl is useful when complete X.25 messages are
potentially very long, so that either they cannot be buffered in the socket
receive buffers (limited by the high water mark), or it is too much of a
performance bottleneck for the application to wait for the whole message to be
assembled before processing it, or the application does not wish to dedicate
very large buffers for receiving data. If record boundaries (that is, message
boundaries) are important, this method must not be used. Rather, the
X25_HEADER ioctl must be used, as indicated earlier, to obtain a header byte
for each packet that indicates whether or not the packet is the last one in a
record (that is, message).

int s, record_size, error;
/* Set record_size to n, where n is the number of
 * maximum size packets with more bit turned on that
 * will be received before the accumulated data is
 * returned in a recv call.
 */
error = ioctl(s, X25_RECORD_SIZE, &record_size);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-23

B

B.5.4 Out-of-Band Data

Out-of-band data is managed by a combination of ioctl calls, the passing of the
MSG_OOB flag to recv , and an optional signal, SIGURG. To determine whether
out-of-band data has been received, call the X25_OOB_TYPE ioctl:

If out-of-band data does not exist, oob_type is set to zero. Otherwise,
oob_type is set to a value indicating the type of out-of-band data that has
been received. The types of out-of-band data are:

INT_DATA indicates that interrupt data has been received. The interrupt data is
read by calling recv with flags set to MSG_OOB. In general, the following
sequence occurs upon receipt of an interrupt packet:

1. X.25 receives an interrupt request packet. The interrupt is queued and
causes a SIGURG signal.

2. The user reads the interrupt packet (with recv), automatically causing an
Interrupt Confirmation packet to be sent.

Up to 32 bytes of interrupt data may be received if the interface supports 1984
X.25.

It is not necessary to issue a recv call with flags set to MSG_OOB if the
interrupt type is something other than INT_DATA.

VC_RESET indicates that the virtual circuit associated with the socket has been
reset.

The 7.0 SunLink X.25 interface had an additional type of out-of-band data,
MSG_TOO_LONG, which indicated that a message was discarded because of the
socket buffer limitations. This type of out-of-band data does not exist in the
current release, because an X.25 message will not get discarded when it gets
too long. “Too long” means that too many packets are received with the M-bit
set to 1 and the user has not asked for individual packets with the

ints, oob_type;
error = ioctl(s, X25_OOB_TYPE, &oob_type);

#define INT_DATA 30 /* interrupt data */
#define VC_RESET 32 /* virtual circuit reset */

B-24 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

X25_HEADER ioctl. Instead of getting discarded, the X.25 message will be sent
uptstream as soon as its length goes over MAXNSDULEN, whether or not the end
of the message has been seen (that is, a packet with the M-bit set to 0).
MAXNSDULEN is one of the configurable Layer 3 parameters described in the
SunLink X.25 8.0.2 Reference Manual.

If this happens, there are three possible courses of action that may be taken:

• Increase the socket high water mark using the X25_WR_SBHIWAT ioctl to a
maximum of 32767.

• Request a header on every packet using the X25_HEADER ioctl. This will
result in every packet being returned to the user with an extra header byte.

• Use the X25_RECORD_SIZE ioctl to specify the maximum number of full
packets in a complete X.25 message that X.25 should receive before
returning the accumulated data to the user as a record.

Out-of-band messages are serialized in a FIFO (first in, first out) queue, except
for interrupt data, which preempts all other out-of-band messages. If the ioctl
call X25_OOB_TYPE indicates INT_DATA, then the interrupt packet will be the
next packet read on the out-of-band channel, that is, when recv is called with
flags set to MSG_OOB. The INT_DATA condition remains true until the out-of-
band packet has been read.

The following piece of code may be used to set up the function func as the
signal handler for the SIGURG signal:

The signal SIGURG, which indicates an urgent condition present on a socket,
may be enabled to indicate an abnormal condition or the arrival of abnormal
data at an AF_X25 socket. The signal causes func , the signal handler
procedure, to be called. The signal procedure must be called before connect
on the calling side and listen on the called side.

A process receiving the SIGURG signal must examine all potential causes for
the signal in order to identify the source of the signal. For example, if a process
has multiple AF_X25 sockets open when it receives the SIGURG signal, each

int func();
(void) signal(SIGURG, func);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-25

B

open AF_X25 socket will have to be queried with the X25_OOB_TYPE ioctl to
determine the signal source. It could well be that the signal did not originate
with X.25, but from some other source.

Upon socket creation, the socket is not associated with a process group ID . If a
signal handler routine is used, the user should associate a proper process
group ID with the socket as shown below:

When a signal handler routine is awakened, pending system calls, for example,
recv , accept , connect , select , etc., will be aborted with errno set to
EINTR (interrupted system call). The signal handler routine func may be
disabled at any time by assigning a default action SIG_DFL to SIGURG:

A more general explanation of signals is in the SunOS 4.x documentation on
socket programming.

B.6 Clearing a Virtual Circuit
The close system call is used to discontinue use of a socket and all of the
resources held by the socket, as follows:

The close call closes the virtual circuit associated with a socket and frees the
resources used by the socket. More specifically, close will send a Clear
Request packet and then wait for a Clear Confirmation packet if the socket has
an active virtual circuit associated with it. An active virtual circuit is one that is
either connected, or is in the early stages of connection (that is, Call Request
has been sent, but Call Connected has not been received). In this case, if a Clear
Confirmation packet is not received after the amount of time specified in the

int pgrp, error;
pgrp = getpid(); /* get the current process id */
error = ioctl(s, SIOCSPGRP, &pgrp);

(void) signal(SIGURG, SIG_DFL);

int s, error;
error = close(s);

B-26 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

link configuration file, the socket will be closed and close will return. If the
socket does not have an active virtual circuit associated with it, close will
return immediately.

B.7 Advanced Topics
This section includes material on a variety of advanced topics.

B.7.1 Facility Specification and Negotiation

X.25 user facilities are specified on a per-call basis. The X25_SET_FACILITY
ioctl is used to set facilities one at a time. The X25_GET_FACILITY ioctl is
used to read facilities one at a time. These ioctl commands support all facilities
(1980 and 1984 X.25).

Facilities are set in two places: before issuing a connect call, in order to
request desired facilities in the Call Request packet; and before issuing a
listen call, in order to negotiate the facilities proposed in an Incoming Call
packet.

Facilities are usually read in two places: after a call to connect has succeeded,
and after a call to accept has succeeded. This is done to determine the values
of the facilities in effect for the resulting connection. Facilities can be read at
any time, in general, to determine values which were previously set.

B.7.2 The X25_SET_FACILITY and X25_GET_FACILITY ioctl
Commands

Note – The sockets-based interface provides access only to those facilities that
were supported in 7.0 SunNet X.25. These are a subset of the facilities
supported in 8.0 SunLink X.25.

Compatiblity with 7.0— Sockets-based Packet Level Interface B-27

B

The X25_SET_FACILITY ioctl command is used to set the following facilities:

All of the above facilities can be sent in a Call Request packet. The ones that
can be used with a 1980 X.25 interface are marked with an (*), although only
the basic forms of the closed user group facility and the RPOA selection can be
used in this case. The ones that cannot be sent in a Call Accepted packet are
marked with a (#). SunLink X.25 does not permit users to set facilities in Clear
Request and Clear Confirm packets.

All of the above facilities can be read using the X25_GET_FACILITY ioctl
command. In addition, the following can also be read:

Sample programs provided with SunLink X.25 illustrate the use of these
facilities. Here, we discuss each of the above facilities in more detail and
provide code segments to illustrate their use. For convenience, the variables

reverse charge(*)(#)
fast select(*) (#)
non-default packet size(*)
non-default window size(*)
non-default throughput(*)
minimum throughput class(#)
closed user group(*)(#)
RPOA selection(*)(#)
network transit delay(#)
end-to-end transit delay
network user identification(#)
charging information request
expedited data negotiation
called AEF
calling AEF(#)
non-X.25 facilities

charging information, monetary unit
charging information, segment
charging information, call duration
called line address modified notification
call redirection notification

B-28 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

used in the discussion below are declared here. (Appendix C, “Sockets
Programming Example” has a listing of the relevant data structures used by
the X25_SET_FACILITY and X25_GET_FACILITY ioctl commands.)

For brevity, the value returned by ioctl calls is not checked for error.

In the discussion that follows, we show how the user can send facilities in the
Call Request packet. In order to send a facility in the Call Accepted packet, the
listener should either set the facility before invoking listen , or should set it
before causing the Call Accepted packet to be sent (that is, the listener should
have used the X25_CALL_ACPT_APPROVAL ioctl command, described later, to
cause SunLink X.25 to permit call approval by the user).

The exceptions to this are end-to-end transit delay, expedited data negotiation,
Called AEF, and non-X.25 facilities. To send these in the Call Accepted packet,
the listener must do call approval, and must set these facilities after accept
returns, but before the X25_SEND_CALL_ACPT ioctl command is used to send
the Call Accepted packet.

Reverse Charge
There are two possible values for this facility: 1 indicates reverse charging, and
0 indicates no reverse charging.

This is set as follows:

FACILITY f; /* facility structure */
int s;/* socket */
int error; /* ioctl return value */

u_char reverse_charge;
reverse_charge = 1;
f.type = T_REVERSE_CHARGE;
f.f_reverse_charge = reverse_charge;
error = ioctl(s, X25_SET_FACILITY, &f);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-29

B

This facility is read as follows:

Setting this facility before making the connect call causes this facility to be
sent in the Call Request. Setting this facility before making the listen call
causes Incoming Calls with the reverse charging facility to be accepted. (Calls
that are not reverse-charged are always acceptable.) The listener should read
the value of the facility after the accept call returns to find out if the call is
reverse-charged.

Note – Reverse charging must be allowed for this ioctl to work. You allow for
reverse charging in x25tool . From the x25tool base window, invoke
Create/Modify Configuration files➤X.25➤Working... In the X.25 Parameters
window, click SELECT on Facilities... and in the CUG and Facilities window,
click SELECT on Incoming Reverse Charging. See the SunLink X.25 8.0.2
Reference Manual for further details.

Fast Select
There are three possible values for this facility. FAST_OFF indicates that fast
select is not in effect. FAST_CLR_ONLY indicates fast select with restriction on
response, and FAST_ACPT_CLR indicates fast select with no restriction on
response.

This is set as follows:

f.type = T_REVERSE_CHARGE;
error = ioctl(s, X25_GET_FACILITY, &f);
reverse_charge = f.f_reverse_charge;

u_char fast_select_type;
fast_select_type = FAST_CLR_ONLY;
f.type = T_FAST_SELECT_TYPE;
f.f_fast_select_type = fast_select_type;
error = ioctl(s, X25_SET_FACILITY, &f);

B-30 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

This is read as follows:

If this facility is set before making the connect call, the Call Request packet is
sent out with this facility. If this facility is set before making the listen call,
the behavior that follows will depend on whether or not restriction on
response was indicated, and on whether the Incoming Call has this facility. In
order for an Incoming Call bearing the fast select facility to be acceptable, the
listener should have specified fast select (with or without restriction).
However, an Incoming Call not bearing the fast select facility will still be
acceptable to a listener who has specified fast select with no restriction on
response. The type of fast select in effect will be either the type of fast select in
the Incoming Call, or fast select with restriction on response if either end of the
connection has specified fast select with restriction on response. If the
Incoming Call does not specify fast select, and is accepted by a listener who
has specified fast select with no restriction on response, fast select will not be
in effect for the duration of the call.

A listener that has specified fast select (with or without restriction) must use
the X25_SEND_CALL_ACPT ioctl to accept the call or use close to clear the
call, after successful completion of the accept call, regardless of whether fast
select is in effect for the call. If the type of fast select in effect after accept is
either FAST_OFF or FAST_ACPT_CLR, the user may either accept or clear the
call. If the type of fast select in effect is FAST_CLR_ONLY, the user cannot
accept the call (it can only be cleared). The handling of user data in conjunction
with fast select is described later.

Packet Size
Packet size is set in the Call Request packet as follows:

f.type = T_FAST_SELECT_TYPE;
error = ioctl(s, X25_GET_FACILITY, &f);
fast_select_type = f.f_fast_select_type;

u_short sendpktsize, recvpktsize;
/* set sendpktsize, recvpktsize to desired values */
f.type = T_PACKET_SIZE;
f.f_sendpktsize = sendpktsize;
f.f_recvpktsize = recvpktsize;
error = ioctl(s, X25_SET_FACILITY, &f);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-31

B

It is read as follows:

Setting packet size in the Call Request causes the values set to be proposed for
the call (a zero value indicates the default for the link). Reading the value after
the call is set up yields the result of negotiation.

Packet sizes are set and read in bytes, so that, for example, 128, 256, and 512
are legal values.

Window Size
Window size is set in the Call Request packet as follows:

It is read as follows:

Setting the window size in the Call Request causes the values set to be
proposed for the call (a zero value indicates the default for the link). Reading
the value after the call is set up yields the result of negotiation.

f.type = T_PACKET_SIZE;
error = ioctl(s, X25_GET_FACILITY, &f);
sendpktsize = f.f_sendpktsize;
recvpktsize = f.f_recvpktsize;

u_shortsendwndsize, recvwndsize;
/* set sendwndsize, recvwndsize to desired values */
f.type = T_WINDOW_SIZE;
f.f_sendwndsize = sendwndsize;
f.f_recvwndsize = recvwndsize;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_WINDOW_SIZE;
error = ioctl(s, X25_GET_FACILITY, &f);
sendwndsize = f.f_sendwndsize;
recvwndsize = f.f_recvwndsize;

B-32 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

Throughput
Throughput is set in the Call Request packet as follows:

It is read as follows:

When throughput is set in the Call Request, the values set are proposed for the
call (a zero value indicates the default for the link). Reading the value after the
call is set up yields the result of negotiation.

Minimum Throughput Class
Minimum throughput class is set in the Call Request packet as follows:

It is read as follows:

u_char sendthruput, recvthruput;
/* set sendthruput, recvthruput to desired values */
f.type = T_THROUGHPUT;
f.f_sendthruput = sendthruput;
f.f_recvthruput = recvthruput;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_THROUGHPUT;
error = ioctl(s, X25_GET_FACILITY, &f);
sendthruput = f.f_sendthruput;
recvthruput = f.f_recvthruput;

u_char min_sendthruput, min_recvthruput;
/* set min_sendthruput, min_recvthruput to desired values */
f.type = T_MIN_THRU_CLASS;
f.f_min_sendthruput = min_sendthruput;
f.f_min_recvthruput = min_recvthruput;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_MIN_THRU_CLASS;
error = ioctl(s, X25_GET_FACILITY, &f);
min_sendthruput = f.f_min_sendthruput;
min_recvthruput = f.f_min_recvthruput;

Compatiblity with 7.0— Sockets-based Packet Level Interface B-33

B

This facility may only be set in a Call Request packet, and read from an
Incoming Call packet. The receiver of the Incoming Call packet should clear
the call (with an appropriate diagnostic) if the proposed minimum throughput
values cannot be supported.

Closed User Group
The user may set one of three types of Closed User Group facility: CUG_REQ
(no outgoing access), CUG_REQ_ACS (with outgoing access), and CUG_BI
(bilateral CUG). For CUG_REQ and CUG_REQ_ACS, the CUG is a decimal
integer in the range 0-9999 (for 1980 X.25 interfaces, the valid range is 0-99).
The extended form of the facility is used for CUG indices in the range 100-
9999. This facility is set as follows:

To read this facility:

RPOA Selection
SunLink X.25 supports the setting of up to three (MAX_RPOA) RPOA transit
networks (in the extended form). If only one is specified, the non-extended
form of the facility is used. An RPOA transit network is specified as a decimal
integer in the range 0-9999.

u_short cug_index;
/* set cug_index to appropriate value */
f.type = T_CUG;
f.f_cug_req = CUG_REQ; /* could be CUG_REQ_ACS or CUG_BI */
f.f_cug_index = cug_index;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_CUG;
error = ioctl(s, X25_GET_FACILITY, &f);
cug_req = f.f_cug_req;
cug_index = f.f_cug_index;

B-34 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

This facility is set as follows:

To read this facility:

Network Transit Delay
The Transit Delay Selection and Indication facility (TDSAI) is set in the Call
Request as follows:

This is read as follows:

u_short rpoa0, rpoa1, rpoa2;
/* set rpoa0, rpoa1, rpoa2 */
f.type = T_RPOA;
f.f_nrpoa = 3;
f.f_rpoa_index[0] = rpoa0;
f.f_rpoa_index[1] = rpoa1;
f.f_rpoa_index[2] = rpoa2;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_RPOA;
error = ioctl(s, X25_GET_FACILITY, &f);
rpoa0 = f.f_rpoa_index[0];
rpoa1 = f.f_rpoa_index[1];
rpoa2 = f.f_rpoa_index[2];

u_short tr_delay;/* desired transit delay in milliseconds */
/* set tr_delay */
f.type = T_TR_DELAY;
f.f_tr_delay = tr_delay;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_TR_DELAY;
error = ioctl(s, X25_GET_FACILITY, &f);
tr_delay = f.f_tr_delay;

Compatiblity with 7.0— Sockets-based Packet Level Interface B-35

B

End-to-End Transit Delay
This is set in the Call Request as follows:

This is read as follows:

If f_desired_delay is set, f_req_delay must be non-zero; if
f_max_delay is set, f_desired_delay must be non-zero. Delay is specified
in milliseconds.

Network User Identification
This is set as follows (in the example below, NUI is an ASCII string):

SunLink X.25 permits a maximum length of 64 (MAX_NUI) for Network User
Identification facility.

u_shortreq_delay, desired_delay, max_delay;
/* set the requested, desired, and maximum delays */
f.type = T_ETE_TR_DELAY;
f.f_req_delay = req_delay;
f.f_desired_delay = desired_delay;
f.f_max_delay = max_delay;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_ETE_TR_DELAY;
error = ioctl(s, X25_GET_FACILITY, &f);
req_delay = f.f_req_delay;
desired_delay = f.f_desired_delay;
max_delay = f.f_max_delay;

charnui_str[] = "sunhost";
f.type = T_NUI;
f.f_nui.nui_len = strlen(nui_str);
bcopy(nui_str, f.f_nui.nui_data, strlen(nui_str));
error = ioctl(s, X25_SET_FACILITY, &f);

B-36 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

To read this facility:

Charging Information Request
This write-only facility is set as follows:

Charging Information
By setting f.type to T_CHARGE_REQ as specified above you make available
the following read-only facilities. The facility types are T_CHARGE_MU,
T_CHARGE_SEG, and T_CHARGE_DUR. For example, the Charging Information
(monetary unit) is read as follows:

The T_CHARGE_SEG and T_CHARGE_DUR facilities are read in a way similar to
the T_CHARGE_MU example above; that is, by using T_CHARGE_SEG or
T_CHARGE_DUR for the f.type value, and using f_charge_seg or
f_charge_dur in place of f_charge_mu).

f.type = T_NUI;
error = ioctl(s, X25_GET_FACILITY, &f);
nui_str = f.f_nui.nui_data;

f.type = T_CHARGE_REQ;
f.f_charge_req = 1;
error = ioctl(s, X25_SET_FACILITY, &f);

typedef struct charge_info_s {
u_char charge_len;

#define MAX_CHARGE_INFO64
u_char charge_data[MAX_CHARGE_INFO];

} CHARGE_INFO;

CHARGE_INFO charge_mu;
f.type = T_CHARGE_MU;
error = ioctl(s, X25_GET_FACILITY, &f);
charge_mu = f.f_charge_mu;

Compatiblity with 7.0— Sockets-based Packet Level Interface B-37

B

The maximum length for the charging information facility permitted by
SunLink X.25 is 64 (MAX_CHARGE_INFO). This facility should be read after the
call is cleared, but before the socket is closed, since it is received in the Clear
Request or Clear Confirm packets.

Called Line Address Modified Notification
This is a read-only facility received in either the Call Accepted or Clear
Indication packets. It is read as follows:

Call Redirection Notification
This is a read-only facility received in either the Call Accepted or Clear
Indication packets. It is read as follows:

Expedited Data Negotiation
This facility is set as follows:

u_charline_addr_mod;
f.type = T_LINE_ADDR_MOD;
error = ioctl(s, X25_GET_FACILITY, &f);
line_addr_mod = f.f_line_addr_mod;

typedef struct call_redir_s {
u_char cr_reason;
u_char cr_hostlen;
u_char cr_host[(MAXHOSTADR+1)/2];

} CALL_REDIR;

CALL_REDIR call_redir;
f.type = T_CALL_REDIR;
error = ioctl(s, X25_GET_FACILITY, &f);
call_redir = f.f_call_redir;

u_char expedited = 1;/* 0 indicates non-use of expedited data */
f.type = T_EXPEDITED;
f.f_expedited = expedited;
error = ioctl(s, X25_SET_FACILITY, &f);

B-38 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

It is read as follows:

Called/Calling AEF
There are three types of address extensions: OSI NSAP (AEF_NSAP), Partial
OSI (AEF_PARTIAL_NSAP), and Non-OSI (AEF_NON_OSI). The Calling AEF
may only be present in the Call Request packet.

The SunLink X.25 8.0.2 Reference Manual describes how SunLink X.25 may be
set up to automatically supply the Calling AEF (referred to as address
extension) in a Call Request packet.

The Called AEF is set as follows:

f.type = T_EXPEDITED;
error = ioctl(s, X25_GET_FACILITY, &f);
expedited = f.f_expedited;

typedef struct aef_s {
u_char aef_type;

#define AEF_NONE 0
#define AEF_NSAP 1
#define AEF_PARTIAL_NSAP2
#define AEF_NON_OSI3

u_char aef_len;
#define MAX_AEF40

u_char aef[(MAX_AEF+1)/2];
} AEF;

AEFaef;
aef.aef_type = AEF_NON_OSI;
aef.aef_len = 7; /* length in nibbles */
aef.aef[0] = 0x12;
aef.aef[1] = 0x34;
aef.aef[2] = 0x56;
aef.aef[3] = 0x70;/* Note, unused nibble is zero */
f.type = T_CALLED_AEF;
f_called_aef = aef;
error = ioctl(s, X25_SET_FACILITY, &f);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-39

B

The Called AEF is read as follows:

The Calling AEF is set and read similarly (using T_CALLING_AEF in place of
T_CALLED_AEF and f_calling_aef in place of f_called_aef).

Non-X.25 Facilities
These are for expert use only. SunLink X.25 permits a maximum of 64
(MAX_PRIVATE) bytes of non-X.25 facilities. These are not looked at by
SunLink X.25, but just passed through. Non-X.25 facilities consist of a sequence
of facility blocks, where each block begins with a facility marker indicating
non-X.25 facilities supported by either the local or remote network, or some
arbitrary facility marker. This is set as follows:

It is read as follows:

f.type = T_CALLED_AEF;
error = ioctl(s, X25_GET_FACILITY, &f);
aef = f_called_aef;

typedef struct private_fact_s {
u_char p_len; /* total length of facilities*/

#define MAX_PRIVATE 64
u_char p_fact[MAX_PRIVATE];

/* facilities exactly as they
 * are present in Call Request or
 * Call Accept packets
 */

} PRIVATE_FACT;

PRIVATE_FACT private;
/* set the p_len and p_fact fields */
f.type = T_PRIVATE;
f.f_private = private;
error = ioctl(s, X25_SET_FACILITY, &f);

f.type = T_PRIVATE;
error = ioctl(s, X25_GET_FACILITY, &f);
private = f.f_private;

B-40 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

Determining Which Facilities are Present
Since facilities can be read only one at a time, the user needs a way to
determine which facilities are present. SunLink X.25 provides the following
mechanism for doing this.

The user can read a bit mask that has one bit reserved for each of the facilities
described above. This is read as:

The following mask bits are defined:

u_int fmask;
f.type = T_FACILITIES;
error = ioctl(s, X25_GET_FACILITY, &f);
fmask = f.f_facilities;

F_REVERSE_CHARGE /* reverse charging */
F_FAST_SELECT_TYPE /* fast select */
F_PACKET_SIZE /* packet size */
F_WINDOW_SIZE /* window size */
F_THROUGHPUT /* throughput */
F_MIN_THRU_CLASS /* minimum throughput class */
F_CUG /* closed user group selection */
F_RPOA /* ROPA transit network */
F_TR_DELAY /* network transit delay */
F_ETE_TR_DELAY /* end to end transit delay */
F_NUI /* network user identification */
F_CHARGE_REQ /* charging information request */
F_CHARGE_MU /* charging information, monetary unit */
F_CHARGE_SEG /* charging information, segment */
F_CHARGE_DUR /* charging information, call duration */
F_LINE_ADDR_MOD /* called line address modified notification */
F_CALL_REDIR /* call redirection notification */
F_EXPEDITED /* expedited data negotiation */
F_CALLED_AEF /* called AEF */
F_CALLING_AEF /* calling AEF */
F_PRIVATE /* non-X.25 facilities */

Compatiblity with 7.0— Sockets-based Packet Level Interface B-41

B

For example, to determine if the Call Redirection facility has been received, the
following segment of code could be used:

B.7.3 Fast Select User Data

The fast select facility is handled in the following way.

Calling Side
To send fast select data, fast_select_type must be set to the proper value
(with the X25_SET_FACILITY ioctl) before connect is called (see the section
“Facility Specification and Negotiation” on page B-26 of this chapter for more
information). Using the CONN_DB structure, a calling DTE can specify a user
data field up to 102 bytes (including the optional protocol identifier). If 102
bytes of call user data are not enough for the current fast select message, use
the X25_WR_USER_DATA ioctl before calling connect to pass the additional
user data. The user data specified in connect will precede this additional user
data. To write user data:

Here, MAX_USER_DATA is 124.

if ((fmask & F_CALL_REDIR) != 0) {
/*
 * Read its value.
 */
CALL_REDIR call_redir;
f.type = T_CALL_REDIR;
error = ioctl(s, X25_GET_FACILITY, &f);
call_redir = f.f_call_redir;
}

typedef struct user_data_db_s {
u_char datalen;
u_char data[MAX_USER_DATA];
} USER_DATA_DB;
int s, error;
USER_DATA_DB user_data;
error = ioctl(s, X25_WR_USER_DATA, &user_data)

B-42 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

If connect returns –1 and errno is EFASTDATA, the remote side has cleared
the call by sending a Clear Indication packet with up to 32 bytes (1980) or 128
bytes (1984) of user data. At this time, the user can read the user data in the
Clear Indication packet with calls to the X25_RD_USER_DATA ioctl until the
returned datalen in USER_DATA_DB structure is 0 or less than
MAX_USER_DATA, then close the socket with close .

To read user data:

If connect returns 0, it indicates that the connection has been set up
successfully. If the connection is over an interface that supports 1984 X.25, the
remote user may have sent user data in the Call Accepted packet. (This will
happen only if the initiator of the connection has specified fast select with no
restriction on response.) Thus the initiating user must repeatedly read any user
data using the X25_RD_USER_DATA ioctl until the returned length in the
USER_DATA_DB structure is less than MAX_USER_DATA.

When a call is cleared after being connected, the Clear Indication packet may
contain user data if the interface supports 1984 X.25 and fast select is in effect
for that call. Either the initiator of the connection or the responder can send
user data in the Clear Request packet. Thus when a call with fast select is
cleared by the remote user, user data must be read in the same way as for the
other cases.

For 1980 X.25 interfaces, if the connection was accepted by the remote user, the
Call Accepted and Clear Request packets will not have any user data; the only
time that the Clear Request can have user data is when a fast select call is
cleared immediately (this is detectable by means of the EFASTDATA error
return).

Called Side
To receive a fast select incoming call, the called side must specify either
FAST_ACPT_CLR or FAST_CLR_ONLY as the value for fast_select_type
using the X25_SET_FACILITY ioctl, before issuing the listen call.

USER_DATA_DB user_data;
int s, error;
error = ioctl(s, X25_RD_USER_DATA, &user_data);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-43

B

If the Incoming Call has the fast select facility, it will be accepted only if the
listener has specified fast select. The incoming call will also be accepted if it
does not have the fast select facility and the listener has specified
FAST_ACPT_CLR.

The call will be rejected if there are more than 16 bytes of user data, and the
called side has either not specified the fast select facility at all, or has specified
FAST_OFF (which is equivalent to not specifying fast select).

After accept returns, the called side may use the X25_GET_FACILITY ioctl to
determine the type of fast select in effect. For example, if the called side has
specified FAST_ACPT_CLR and the calling side has specified FAST_CLR_ONLY,
after accept returns, the type of fast select in effect will be FAST_CLR_ONLY.
If fast select is indicated, the called side can read the user data that was
received in the Call Request by looking at the CONN_DB structure returned by
accept. If more than 102 bytes of user data were received, the extra bytes can
be read with the X25_RD_USER_DATA ioctl.

The X25_WR_USER_DATA ioctl can be used to specify user data to be sent
back in the response to the fast select Call Request. To write more than
MAX_USER_DATA bytes of user data, a second X25_WR_USER_DATA ioctl
can be used to append the additional data after that from the first
X25_WR_USER_DATA ioctl (total length of all user data may not exceed 128
bytes).

If the type of fast select in effect is FAST_CLR_ONLY, the called side can only
clear the fast select call by closing the socket (which causes the user data
specified by X25_WR_USER_DATA to be sent in the Clear Request). If the
type of fast select in effect after accept returns is FAST_ACPT_CLR, the called
side has the option, after writing the reply message with the
X25_WR_USER_DATA ioctl, of either sending a Clear Request packet with
close or sending a Call Accepted packet with the X25_SEND_CALL_ACPT
ioctl and thereby entering the normal data transfer state.

When the value in effect is FAST_CLR_ONLY, the called side can only close the
socket with the close system call after writing the reply message.

int news, error;
error = ioctl(news, X25_SEND_CALL_ACPT);

B-44 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

FAST_OFF is the type of fast select that will be in effect when the listener has
specified FAST_ACPT_CLR and the incoming call does not have the fast select
facility. Even in this case, the listener must use the X25_SEND_CALL_ACPT
ioctl to put the connection into normal data transfer state.

Note – In the current release (and not in 7.0 SunNet X.25), the listen socket
should not be closed until after the incoming fast select call has been either
cleared (with close) or accepted (with X25_SEND_CALL_ACPT).

B.7.4 Permanent Virtual Circuits

Since permanent virtual circuits are always in data transfer state, there is no
need to issue a connect on the calling side, or bind , listen , and accept on
the called side. Instead, use an ioctl call to bind the socket to a logical channel
number and to specify other parameters.

In the current release, the sendpktsize , recvpktsize , sendwndsize , and
recvwndsize parameters are ignored. The default value in the link
configuration file is always used. By default, the lowest numbered WAN link
is used for the permanent virtual circuit. If you desire some other link for the
permanent virtual circuit, you must select the desired link using the
X25_SET_LINK ioctl as described earlier, after the socket call, but before the
X25_SETUP_PVC ioctl. Permanent virtual circuits are not supported over LAN
interfaces.

typedef struct pvc_db_s {
u_short lcn; /* lcn of PVC */
u_short sendpktsize; /* Maximum packet size */
u_short recvpktsize; /* Maximum packet size */
u_char sendwndsize; /* Output flow control window */
u_char recvwndsize; /* Input flow control window */
} X25_PVC_DB;
X25_PVC_DB pvc_parms;
int pvc_so;
pvc_so = socket(AF_X25, SOCK_STREAM, 0);
error = ioctl(pvc_so, X25_SETUP_PVC, &pvc_parms);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-45

B

B.7.5 Call Acceptance by User

Normally Incoming Call packets are examined and responded to by X.25. If the
call is accepted, a Call Accepted packet is sent by X.25 directly. In the event a
user process wants to have additional checks before sending a Call Accepted
packet, an X25_CALL_ACPT_APPROVAL ioctl may be used.

where approved_by_user = 0 means the approval is done by X.25, and
approved_by_user = 1 means approval is done by the user process. By
default (that is, if this call is not issued), approval is done by X.25. Note that if
a user wants to do call approval, the X25_CALL_ACPT_APPROVAL ioctl must
be issued before the listen call is issued.

Regardless of the value of approved_by_user , X.25 always performs address
matching and facilities negotiation before notifying accept . If a user process
assumes the final incoming call approval, accept will return without sending
a Call Accepted packet. At this time, the user process should reply as soon as
possible to avoid the Call Request timeout on the remote calling side. To accept
the call, use:

Here, news is the socket descriptor returned by accept .

The X25_SEND_CALL_ACPT ioctl call is also needed for fast select calls, as
described in an earlier section. To reject the call, simply close the socket:

where news is the socket descriptor returned by accept .

int approved_by_user, s, error;
error = ioctl(s, X25_CALL_ACPT_APPROVAL, &approved_by_user);

int news, error;
error = ioctl(news, X25_SEND_CALL_ACPT);

int news;
close(news);

B-46 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.7.6 Accessing the Link (X.25) Address

The X.25 client can set the local link X.121 (X.25) address through an X.25
socket owned by the superuser. (The default value is established in the
Interface Configuration window in x25tool , as described in theSunLink X.25
8.0.2 Reference Manual):

Set linkid to the identifier of the desired link.

The local link X.121 address can be read at any time with:

The returned addr is actually the link address specified in x25tool (for the
link specified in the linkid field of the LINK_ADR structure) unless a new
address has been assigned to the link.

The X25_WR_LINKADR ioctl can be used to assign new X.25 addresses to a
link.

B.7.7 Accessing High Water Marks of Socket

The AF_X25 socket provides a flow control mechanism using high and low
water marks on both the send and receive sides of an X.25 virtual circuit. When
the amount of queued data goes above the high water mark, additional data is
blocked until the queued data falls below the low water mark. Blocking
received data is accomplished by not acknowledging receipt of packets until
the user reads the data. Blocking send data is accomplished by blocking the
user process invoking send or write .

typedef struct link_adr_s {
int linkid; /* id of link */
u_char hostlen; /* length of BCDs */
u_char host[(MAXHOSTADR+1)/2];

} LINK_ADR;
LINK_ADR addr;
int so, error;
error = ioctl(so, X25_WR_LINKADR, &addr);

LINK_ADR addr;
int s;
error = ioctl(s, X25_RD_LINKADR, &addr);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-47

B

The default high water mark for both sending and receiving is 2048 bytes. The
low water mark is always set to half the high water mark. Note that the high
water mark is only an approximation of the maximum amount of data allowed
to be queued up.

A user process may set or read the high water mark as described below. To
read:

To write:

typedef struct so_hiwat_db_s {
short sendhiwat;
short recvhiwat;

} SO_HIWAT_DB;
SO_HIWAT_DB hiwater;
int s, error;
error = ioctl(s, X25_RD_SBHIWAT, &hiwater);

error = ioctl(s, X25_WR_SBHIWAT, &hiwater);

B-48 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

B.7.8 Accessing the Diagnostic Code

The user may read the cause or diagnostic code in a Clear Indication or Reset
Indication packet received from the remote end. The user may also write the
cause or diagnostic code in Clear Request and Reset Request packets to be
transmitted to the remote end.

To read:

To write:

The data field in X25_CAUSE_DIAG contains the cause and diagnostic code.

typedef struct x25_cause_diag_s {
u_charflags;
define RECV_DIAG 0
define DIAG_TYPE1
define WAIT_CONFIRMATION 2
/* bit 0 (RECV_DIAG)=
 * 0: no cause and diagnostic codes
 * 1: receive cause and diagnostic codes.
 * bit 1 (DIAG_TYPE)=
 * 0: reset cause and diagnostic codes in data array
 * 1: clear cause and diagnostic codes in data array
 * bit 2 (WAIT_CONFIRMATION)=
 * 0: no wait after X25_WR_DIAG_CODE ioctl
 * 1: wait returned cause and diagnostic codes after
 * X25_WR_DIAG_CODE ioctl.
 */

u_char datalen; /* byte count of data array */
u_char data[64];

} X25_CAUSE_DIAG;
X25_CAUSE_DIAG diag;
int s, error;

error = ioctl(s, X25_RD_CAUSE_DIAG, &diag);

error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-49

B

Upon receiving a Clear Indication or Reset Indication packet, the
X25_RD_CAUSE_DIAG ioctl may be issued to determine the cause and
diagnostic associated with the packet. The datalen field contains the length
in bytes of the information in data . When reading the diagnostic, if bit
RECV_DIAG (that is, bit 0) is set, it indicates that the information in data is
valid. If bit DIAG_TYPE (that is, bit 1) is set, it indicates that the diagnostic was
received in a Clear Indication; otherwise, it was received in a Reset Indication.

The X25_WR_CAUSE_DIAG ioctl enables the user to send a Clear Request or
Reset Request packet with the desired cause and diagnostic codes. If the user
supplies only one byte in the data field, X.25 will use the cause code
DTE_ORIGINATED, and use the provided byte as the diagnostic.

The X25_WR_CAUSE_DIAG ioctl call will send a Clear Request or Reset
Request. To send a Clear Request, set bit DIAG_TYPE (that is, bit 1) in flags :

To send a Clear Request and wait for confirmation, set bit
WAIT_CONFIRMATION (that is, bit 2) in flags :

X25_CAUSE_DIAG diag;
int s, error;
diag.flags = 1 << DIAG_TYPE; /* Clear Request */
diag.datalen = 2;
diag.data[0] = 0;
diag.data[1] = 67;
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

X25_CAUSE_DIAG diag;
int s, error;
diag.flags = (1 << DIAG_TYPE) | (1 << WAIT_CONFIRMATION);
diag.datalen = 2;
diag.data[0] = 0;
diag.data[1] = 67;
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

B-50 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

To send a Reset Request and wait for confirmation:

A close is still necessary to free all resources held by this socket and the
associated virtual circuit after a Clear Indication or Clear Confirmation packet
is received. After the DTE receives a Clear Indication packet, recv will return
zero bytes after all unread data has been read. Calling send after the Clear
Indication packet is received will not return an error. Note that this behavior is
different from that of 7.0 SunLink X.25, in which send does return an error.

To be notified when a Clear Indication packet is received, so that you can use
the X25_RD_CAUSE_DIAG ioctl, you can use the following mechanism: Enable
a third type of out-of-band data (see “Out-of-Band Data” on page B-23) and
receive the SIGURG signal when this type of out-of-band data arrives. To
enable the signalling of Clear Indication packets, use the following ioctl:

This will enable the reception of the following type of out-of-band data, which
can be read with the X25_OOB_TYPE ioctl:

See “Out-of-Band Data” on page B-23 for a complete description of how to
handle out-of-band data.

Note – If an X25_WR_CAUSE_DIAG ioctl is not issued before close , X.25 fills
an appropriate cause and diagnostic code in any Clear Request packet sent as a
result (this will not happen if the connection is inactive at the time the call is
issued).

X25_CAUSE_DIAG diag;
int s, error;
diag.flags = 1 << WAIT_CONFIRMATION;
diag.datalen = 2;
diag.data[0] = 0;
diag.data[1] = 0;/* can be any valid diagnostic */
error = ioctl(s, X25_WR_CAUSE_DIAG, &diag);

error = ioctl(s, X25_OOB_ON_CLEAR, 0);

#define VC_CLEARED 31 /* virtual circuit cleared */

Compatiblity with 7.0— Sockets-based Packet Level Interface B-51

B

B.8 Routing ioctls
In this section, we describe the ioctls used to manage the SunLink X.25 routing
function in the sockets-based interface. The SunLink X.25 routing function is
described in detail in the SunLink X.25 8.0.2 Reference Manual. The data
structure used for routing is as follows:

The following declarations will be used in the code segments used for
illustration:

To add a route, set the fields in the X25_ROUTE structure to desired values, and
execute the X25_ADD_ROUTE ioctl as follows:

typedef struct x25_route_s {
 caddr_t index;
 u_char r_type;
#define R_NONE 0
#define R_X121_HOST 1
#define R_X121_PREFIX 2
#define R_AEF_HOST 3
#define R_AEF_PREFIX 4
 CONN_ADR x121;
 u_char pid_len;
#define MAX_PID_LEN 4
 u_char pid[MAX_PID_LEN];
 AEF aef;
 int linkid;
 X25_MACADDR mac;
 int use_count;
 char reserved[16];
} X25_ROUTE;

int s, error;
X25_ROUTE r;

error = ioctl(s, X25_ADD_ROUTE, &r);

B-52 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

To obtain the routing information for a given destination address, set the
destination address in the X25_ROUTE structure and execute the
X25_GET_ROUTE ioctl:

To remove a route for a given destination address, set the destination address
in the X25_ROUTE structure and execute the X25_RM_ROUTE ioctl:

To flush all routes out, execute the X25_FLUSH_ROUTES ioctl:

The following code segment illustrates how one may cycle through all the
routes configured in the system and obtain the parameters for each of them:

When there are no routes left, error will be -1, and errno will be set to
ENOENT.

The X25_ADD_ROUTE, X25_RM_ROUTE, and X25_FLUSH_ROUTES ioctls require
superuser privilege; X25_GET_ROUTE and X25_GET_NEXT_ROUTE do not.

B.9 Miscellaneous ioctls
This section describes some miscellaneous ioctl calls that were either not
covered in the previous sections, or are supported from previous releases for
backward compatibility. This does not imply backward compatibility with all
user-written software for previous releases of SunLink X.25.

error = ioctl(s, X25_GET_ROUTE, &r);

error = ioctl(s, N_X25_RM_ROUTE, &r);

error = ioctl(s, X25_FLUSH_ROUTES);

r.index = 0;
do {
 error = ioctl(s, X25_GET_NEXT_ROUTE, &r);
 if (error == 0)
 /* print the route */;
while (error == 0);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-53

B

B.9.1 Obtaining Statistics

Use the X25_GET_NLINKS ioctl to determine the number of links configured:

The X.25 software maintains statistics for levels 1, 2, and 3. The statistics are
made available for any socket at any time (that is, the sockets over which the
calls for reading statistics are issued need not have superuser privilege).

int s, error, nlinks;
error = ioctl(s, X25_GET_NLINKS, &nlinks);

B-54 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

The X25_RD_LINK_STATISTICS ioctl is used to read statistics of levels 1 and
2:

The linkid field in the X25_LINK_STAT_DB structure identifies the interface
whose statistics are to be read.

struct ss_dstats {
long ssd_ipack; /* input packets */
long ssd_opack; /* output packets */
long ssd_ichar; /* input bytes */
long ssd_ochar; /* output bytes */

};

/* error stats */
struct ss_estats {

long sse_abort; /* abort received */
long sse_crc; /* CRC error */
long sse_overrun; /* receiver overrun */
long sse_underrun; /* xmitter underrun */

};
typedef struct x25_link_stat_db_s {

int linkid; /* link identifier */
u_short state;
/* 0: initial state
 * 1: SABM outstanding
 * 2: FRMR outstanding
 * 3: DISC outstanding
 * 4: information transfer state
 */
u_short hs_sentsabms; /* sabms sent */
struct ss_dstats hs_data; /* data stats */
struct ss_estats hs_errors; /* error stats */

} X25_LINK_STAT_DB;

X25_LINK_STAT_DB link_stats;
int s, error;
error = ioctl(s, X25_RD_LINK_STATISTICS, &link_stats);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-55

B

The X25_RD_PKT_STATISTICS ioctl is used for reading packet-level statistics
for a specified logical channel:

typedef struct x25_pkt_stat_db_s {
int linkid; /* link identifier */
u_short lcn; /* logical channel identifier */
u_char state; /* level 3 lcn state */

/* current state of virtual circuit
ST_OFF (0): virtual circuit not active
ST_LISTEN (1): passive wait for incoming call
ST_READY (2): connection in process of being established
 (connection NOT up yet)
ST_SENT_CALL (3): wait for call connected packet
ST_RECV_CALL (4): wait user to send call accepted packet
ST_CALL_COLLISION (5): call collision state
ST_RECV_CLR (6): unused (should indicate reception of a

 clear packet)
ST_SENT_CLR (7): wait for clear confirmation packet
ST_DATA_TRANSFER (8): in normal data transfer
ST_SENT_RES (9): wait reset confirmation packet

*/
u_char sub_state; /* level 3 lcn sub_state */
/* valid only when state is ST_DATA_TRANSFER
 bit 0 (RECV_RNR): remote busy
 bit 1 (RECV_INT): wait user to read interrupt data
 bit 2 (SENT_INT): wait for interrupt confirmation
 bit 3 (SENT_RNR): local busy
*/
u_char intcnt; /* number of received interrupt datum */
u_char resetcnt; /* times of virtual circuit reset */
int sendpkts; /* number of output packets */
int recvpkts; /* number of input packets */
short pgrp; /* process group of socket, if not 0 */
short flags; /* flag bits. If bit 0 is set, it */
/* indicates an incoming call. */
/* Otherwise, it is an outgoing call. */

} X25_PKT_STAT_DB;

X25_PKT_STAT_DB pkt_stats;
int s, error;
error = ioctl(s, X25_RD_PKT_STATISTICS, &pkt_stats);

B-56 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

The linkid field in the X25_PKT_STAT_DB structure identifies a link, and
lcn identifies the logical channel whose statistics are to be read. Note that
pkt_stats.lcn needs to be set to the proper logical channel number before
making the X25_RD_PKT_STATISTICS ioctl call.

 SunLink X.25 also provides ioctl commands to read the status of all of the
links currently active and all the virtual circuits currently active. Use the
X25_GET_NEXT_LINK_STAT ioctl to obtain link status as follows:

/* The following is used to cycle through all the interfaces -
 * static HDLC links as well as links used for LLC2.
 */
typedef struct x25_next_link_stat_s {

u_char opt; /* search option */
#define GET_FIRST 0/* get first one */
#define GET_NEXT 1/* get next one */

u_char specific; /* applies to specified interface */
u_char link_type; /* HDLC_TYPE, LLC_TYPE */
int linkid; /* interface id */
X25_MACADDR mac; /* always null in current release */

/* Level 2 states */
#define LINKSTATE_DOWN 0 /* initial state */
#define LINKSTATE_SABM 1 /* SABM outstanding */
#define LINKSTATE_FRMR 2 /* FRMR outstanding */
#define LINKSTATE_DISC 3 /* DISC outstanding */
#define LINKSTATE_UP 4 /* info transfer state */

u_short state; /* link state--see preceding defines */
u_short hs_sentsabms; /* sabms sent */
struct ss_dstats hs_data; /* data stats */
struct ss_estats hs_errors; /* error stats */

} X25_NEXT_LINK_STAT;

int s;
int error;
X25_NEXT_LINK_STAT lstats;

lstats.opt = GET_FIRST;
lstats.specific = 0;
do {
 error = ioctl(s, X25_GET_NEXT_LINK_STAT, &lstats);
 if (error == 0)
 /* print the statistics */;
 } while (error == 0);

Compatiblity with 7.0— Sockets-based Packet Level Interface B-57

B

If the statistics for a specific link are required, set specific to 1, and linkid
to the id of the interface whose statistics are required. After the first call, the
opt field will automatically be changed to GET_NEXT. When the statistics for
all the links are returned, error will be -1, and errno will be set to ENOENT.

Use the X25_GET_NEXT_VC_STAT ioctl to obtain the status of all the virtual
circuits as follows:

Code Example B-1 Reading Virtual Circuit Status

/* X25_NEXT_VC_STAT is used to cycle through all virtual circuits,
 * over HDLC as well as LLC type links.
 */
typedef struct x25_next_vc_stat_s {

u_char opt; /* search option */
u_char specific; /* applies to specified linkid */
u_char link_type; /* HDLC_TYPE, LLC_TYPE */
int linkid; /* link id */
u_short lcn; /* logical channel to return */
u_char state; /* level 3 lcn state */

#define ST_OFF 0
#define ST_LISTEN 1
#define ST_READY 2
#define ST_SENT_CALL 3
#define ST_RECV_CALL 4
#define ST_CALL_COLLISION 5
#define ST_RECV_CLR 6
#define ST_SENT_CLR 7
#define ST_DATA_TRANSFER 8
#define ST_SENT_RES 9

u_char sub_state; /* level 3 lcn sub_state */
#define RECV_RNR 0
#define RECV_INT 1
#define SENT_INT 2
#define SENT_RNR 3

u_char intcnt; /* number of received interrupts */
u_char resetcnt; /* times of virtual circuit reset */
int sendpkts; /* number of output packets */
int recvpkts; /* number of input packets */
short pgrp; /* process group, if any */
short flags; /* various flags for future */

#define INCOMING_CALL 0x01
#define IS_A_PVC 0x02

struct sockaddr sa; /* Remote X.121/IP address */
AEF aef; /* Remote AEF, if any */
X25_MACADDR mac; /* Remote mac for LLC links */

B-58 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

B

If the statistics of virtual circuits for a specific link are required, set specific
to 1, and linkid to the id of the desired interface. After the first call, the opt
field will automatically be changed to GET_NEXT. When the statistics for all the
virtual circuits are returned, error will be -1, and errno will be set to
ENOENT.

B.9.2 Obtaining Version Number

The X25_VERSION ioctl returns the version number of the SunLink X.25 kernel
code. You can issue this call on any socket. The version number returned for
the current release of SunLink X.25 is 80.

} X25_NEXT_VC_STAT;

int s;
int error;
X25_NEXT_VC_STAT vstats;

vstats.opt = GET_FIRST;
vstats.specific = 0;
do {
 error = ioctl(s, X25_GET_NEXT_VC_STAT, &vstats);
 if (error == 0)
 /* print the statistics */;
 } while (error == 0);

int so, version, error;
error = ioctl(s, X25_VERSION, &version);

Code Example B-1 Reading Virtual Circuit Status

C-1

Sockets Programming Example C

This appendix discusses include files and structures, and provides references to
example code.

Note – The sockets-based interface is a source-compatible—not a binary-
compatible—interface. Applications that used the socket interface in SunOS
4.x must be recompiled (using /usr/ucb/cc)to run on SunOS 5.x. See
Section C.2, “Compilation Instructions and Sample Programs” for instructions
on compiling programs to use the sockets-based interface on SunOS 5.0.

C.1 Include Files for User Programs
Sockets-based SunLink X.25 application programs need to have the following
include statements in addition to any standard SunOS system files that may be
needed:

This is illustrated in the sample programs provided.

#include <sys/iocom.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sundev/syncstat.h>
#include <netx25/x25_pk.h>
#include <netx25/x25_ctl.h>
#include <netx25/x25_ioctl.h>

C-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

C

C.2 Compilation Instructions and Sample Programs
To use the 7.0 socket interface, user programs must be built with the
/usr/ucb/cc compiler, and should be linked against libsockx25.a , stored
in /opt/SUNWconn/lib . Use the -L option to link the /opt/SUNWconn/lib
directory into your program. A program named test can be linked against
the socket library as follows:

You can find sample programs for the 7.0 socket interface in
/opt/SUNWconn/x25/samples.socket .

C.3 Structures Used by the X25_SET_FACILITY and X25_GET_FACILITY
ioctl Commands

The following structures were referenced in the section “The
X25_SET_FACILITY and X25_GET_FACILITY ioctl Commands", on page B-26.:

hostname% /usr/ucb/cc -o test test.c -lsockx25 -L/opt/SUNWconn/lib

Code Example C-1 Structures Used by ioctls that Set and Get X.25 Facilities (1 of 6)

/* Packet sizes allowed are 0 (default), 16, 32, 64,
 * 128, 256, 512, 1024,2048, 4096
 */

typedef struct packet_size_s {
u_short sendpktsize;
u_short recvpktsize;
} PACKET_SIZE;

/* window sizes allowed are 0:
 * (default), 1-7 (normal), 1-127 (extended)
 */

typedef struct window_size_s {
u_char sendwndsize;
u_char recvwndsize;

} WINDOW_SIZE;
/* throughput values allowed are
 * 0 (default), 3 (75) , 4 (150), 5 (300),
 * 6 (600), 7 (1200), 8 (2400), 9 (4800),
 * 10 (9600), 11 (19200), 12 (48000)
 */

Sockets Programming Example C-3

C

typedef struct throughput_s {
u_char sendthruput:4;
u_char recvthruput:4;

} THROUGHPUT;

typedef struct cug_s {
u_char cug_req;

#define CUG_NONE 0 /* no CUG */
#define CUG_REQ 1 /* CUG */
#define CUG_REQ_ACS 2 /* CUG with outgoing access */
#define CUG_BI 3 /* bilateral CUG */

u_short cug_index;
} CUG;

typedef struct rpoa_s {
u_char nrpoa; /* number of RPOAs requested */

#define MAX_RPOA 3
u_short rpoa_index[MAX_RPOA]; /* rpoas;

 nrpoa = 1 => normal format */
} RPOA;
/* Zero value for a field means the field is not specified; if a
 * field has zero value, that and the foll. fields are not sent.
 */

typedef struct ete_tr_delay_s {
u_short req_delay;
u_short desired_delay;
u_short max_delay;

} ETE_TR_DELAY;

typedef struct nui_s {
u_char nui_len; /* NUI length */

#define MAX_NUI 64
u_char nui_data[MAX_NUI] /* NUI */

} NUI;

typedef struct charge_info_s {
u_char charge_len;

#define MAX_CHARGE_INFO 64
u_char charge_data[MAX_CHARGE_INFO];

} CHARGE_INFO;

typedef struct call_redir_s {

Code Example C-1 Structures Used by ioctls that Set and Get X.25 Facilities (2 of 6)

C-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

C

u_char cr_reason;
u_char cr_hostlen;
u_char cr_host[(MAXHOSTADR+1)/2];

} CALL_REDIR;

typedef struct aef_s {
u_char aef_type;

#define AEF_NONE 0
#define AEF_NSAP 1
#define AEF_PARTIAL_NSAP 2
#define AEF_NON_OSI 3

u_char aef_len;
#define MAX_AEF 40

u_char aef[(MAX_AEF+1)/2];
} AEF;

typedef struct precedence_s {
u_char precedence_req;/* no precedence when = 0

 * else precedence level
 */

u_char precedence;/* valid when precedence_req = 1 */
} PRECEDENCE;

typedef struct private_fact_s {
u_char p_len; /* total length of facilities */

#define MAX_PRIVATE 64
u_char p_fact[MAX_PRIVATE];

/* facilities exactly as they
 * are present in Call Request or
 * Call Accept packets
 */
} PRIVATE_FACT;

typedef struct facility_s {
u_int type;

#define T_FACILITIES 0x00000001
#define T_REVERSE_CHARGE 0x00000002
#define T_FAST_SELECT_TYPE 0x00000003
#define T_PACKET_SIZE 0x00000004
#define T_WINDOW_SIZE 0x00000005
#define T_THROUGHPUT 0x00000006
#define T_CUG 0x00000007
#define T_RPOA 0x00000008
#define T_TR_DELAY 0x00000009

Code Example C-1 Structures Used by ioctls that Set and Get X.25 Facilities (3 of 6)

Sockets Programming Example C-5

C

#define T_MIN_THRU_CLASS 0x0000000a
#define T_ETE_TR_DELAY 0x0000000b
#define T_NUI 0x0000000c
#define T_CHARGE_REQ 0x0000000d
#define T_CHARGE_MU 0x0000000e
#define T_CHARGE_SEG 0x0000000f
#define T_CHARGE_DUR 0x00000010
#define T_LINE_ADDR_MOD 0x00000011
#define T_CALL_REDIR 0x00000012
#define T_EXPEDITED 0x00000013
#define T_CALLED_AEF 0x00000014
#define T_CALLING_AEF 0x00000015
#define T_STDSERVICE 0x00000016
#define T_OSISERVICE 0x00000017
#define T_PRECEDENCE 0x00000018
#define T_PRIVATE 0x00000019

union {
u_intfacilities;/* quick way to check

 * if a facility is present
 */

#define F_REVERSE_CHARGE 0x00000001
#define F_FAST_SELECT_TYPE 0x00000002
#define F_PACKET_SIZE 0x00000004
#define F_WINDOW_SIZE 0x00000008
#define F_THROUGHPUT 0x00000010
#define F_MIN_THRU_CLASS 0x00000020
#define F_CUG 0x00000040
#define F_RPOA 0x00000080
#define F_TR_DELAY 0x00000100
#define F_ETE_TR_DELAY 0x00000200
#define F_NUI 0x00000400
#define F_CHARGE_REQ 0x00000800
#define F_CHARGE_MU 0x00001000
#define F_CHARGE_SEG 0x00002000
#define F_CHARGE_DUR 0x00004000
#define F_LINE_ADDR_MOD 0x00008000
#define F_CALL_REDIR 0x00010000
#define F_EXPEDITED 0x00020000
#define F_CALLED_AEF 0x00040000
#define F_CALLING_AEF 0x00080000
#define F_STDSERVICE 0x00100000
#define F_OSISERVICE 0x00200000
#define F_PRECEDENCE 0x00400000

Code Example C-1 Structures Used by ioctls that Set and Get X.25 Facilities (4 of 6)

C-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

C

#define F_PRIVATE 0x00800000
u_char reverse_charge;

/* permit/request reverse charge */
u_char fast_select_type;

#define FAST_OFF 0 /* don't use fast select */
#define FAST_CLR_ONLY 1 /* restricted response */
#define FAST_ACPT_CLR 2 /* unrestricted response */

PACKET_SIZE packet_size; /* packet sizes */
WINDOW_SIZE window_size; /* window sizes */
THROUGHPUT throughput; /* used for throughput

 negotiation */
THROUGHPUT min_thru_class; /* minimum throughput class */
CUG cug; /* closed user group */
RPOA rpoa; /* RPOA specification */
u_short tr_delay; /* network transit delay */
ETE_TR_DELAY ete_tr_delay; /* end-to-end transit delay */
NUI nui; /* network user identification */
u_char charge_req; /* request charging info */
CHARGE_INFO charge_mu; /* charging info, monetary unit */
CHARGE_INFO charge_seg; /* charging info, segment */
CHARGE_INFO charge_dur; /* charging info, call duration */
u_char line_addr_mod; /* called line addr modified */
CALL_REDIR call_redir; /* call redirect notification */
u_char expedited; /* expedited data negotiation */
AEF called_aef; /* called aef */
AEF calling_aef; /* calling aef */
u_char osiservice; /* set when VC carries CLNP data */
u_char stdservice; /* set for DDN services */
PRECEDENCE prec; /* precedence for standard services */
PRIVATE_FACT private; /* non-X.25 local/rem facilities */

} facility;
} FACILITY;

/* Some convenient definitions. */
#define f_facilities facility.facilities
#define f_reverse_chargefacility.reverse_charge
#define f_fast_select_typefacility.fast_select_type
#define f_packet_size facility.packet_size
#define f_recvpktsize facility.packet_size.recvpktsize
#define f_sendpktsize facility.packet_size.sendpktsize
#define f_window_size facility.window_size
#define f_recvwndsize facility.window_size.recvwndsize
#define f_sendwndsize facility.window_size.sendwndsize
#define f_throughput facility.throughput

Code Example C-1 Structures Used by ioctls that Set and Get X.25 Facilities (5 of 6)

Sockets Programming Example C-7

C

#define f_recvthruput facility.throughput.recvthruput
#define f_sendthruput facility.throughput.sendthruput
#define f_min_thru_classfacility.min_thru_class
#define f_min_recvthruputfacility.min_thru_class.recvthruput
#define f_min_sendthruputfacility.min_thru_class.sendthruput
#define f_cug facility.cug
#define f_cug_req facility.cug.cug_req
#define f_cug_index facility.cug.cug_index
#define f_rpoa facility.rpoa
#define f_nrpoa facility.rpoa.nrpoa
#define f_rpoa_req facility.rpoa.rpoa_req
#define f_tr_delay facility.tr_delay
#define f_ete_tr_delay facility.ete_tr_delay
#define f_req_delay facility.ete_tr_delay.req_delay
#define f_desired_delay facility.ete_tr_delay.desired_delay
#define f_max_delay facility.ete_tr_delay.max_delay
#define f_nui facility.nui
#define f_charge_req facility.charge_req
#define f_charge_mu facility.charge_mu
#define f_charge_seg facility.charge_seg
#define f_charge_dur facility.charge_dur
#define f_line_addr_mod facility.line_addr_mod
#define f_call_redir facility.call_redir
#define f_cr_reason facility.call_redir.cr_reason
#define f_cr_hostlen facility.call_redir.cr_hostlen
#define f_cr_host facility.call_redir.cr_host
#define f_expedited facility.expedited
#define f_called_aef facility.called_aef
#define f_cd_aef_type facility.called_aef.aef_type
#define f_cd_aef_len facility.called_aef.aef_len
#define f_cd_aef facility.called_aef.aef
#define f_calling_aef facility.calling_aef
#define f_cg_aef_type facility.calling_aef.aef_type
#define f_cg_aef_len facility.calling_aef.aef_len
#define f_cg_aef facility.calling_aef.aef
#define f_osiservice facility.osiservice
#define f_stdservice facility.stdservice
#define f_prec facility.prec
#define f_precedence_reqfacility.prec.precedence_req
#define f_precedence facility.prec.precedence
#define f_private facility.private

Code Example C-1 Structures Used by ioctls that Set and Get X.25 Facilities (6 of 6)

C-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

C

Index-1

Index

Numerics
1988 support

indicating, 7-23

A
abort indication

data structure for, 3-11
acknowledgement service

field in CONS QOS data
structure, 2-11

address
structure of, 2-2
structure of in sockets-based

interface, B-2
address binding

in sockets-based interface, B-7
address domain

for X.25 addresses in sockets-based
interface, B-2

address length
as stored in address data

structure, 2-3
address matching

options for, 4-3
address types

called, calling, and responding, 2-1
addresses, local and remote

accessing in sockets-based
interface, B-14

as stored in address structure, 2-1
AEF matching considerations

in sockets-based interface, B-10
AF_X25 address domain, B-2
ANSI C compiler

requirement for, 1-2
automatic link selection

overriding .. in sockets-based
interface, B-11

B
backward compatibility

interface description, B-1
restrictions on, with previous versions

of SunLink X.25, B-52
BCD encoding

of address in sockets-based
interface, B-3

Binary-Coded Decimal format
used for encoding addresses, 2-4

binding by protocol identifier/Call User
Data

in sockets-based interface, B-9
binding mechanism

used in sockets-based interface, B-2

Index-2 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

C
call acceptance, 5-23

in sockets-based interface, B-45
call approval by user

in sockets-based interface, B-45
call deflection

field in facilities/QOS data
structure, 2-8

call redirection
field in facilities/QOS data

structure, 2-8
call redirection notification

in sockets-based interface, B-37
call rejection, 3-10, 5-23
Call Request

response to, 5-6
Call Request Response Timer, 7-29
Call User Data

binding incoming calls by, B-9
location in connect/request

indication message, 3-3
matching options for, 4-2
use in binding to process, B-2

called address list, 5-19
called address modification

field in facilities/QOS data
structure, 2-8

called line address modified notification
in sockets-based interface, B-37

called/calling AEF
in sockets-based interface, B-38

calling address
accepting or setting in sockets-based

interface, B-5
control of, 7-38

calling side
outgoing call setup in sockets-based

interface, B-3
cause code

sending in sockets-based
interface, B-49

channel ranges
specifying, 7-25

charging information
field in facilities/QOS data

structure, 2-8
setting/getting in sockets-based

interface, B-36
charging information request

setting in sockets-based
interface, B-36

Clear Confirmation packet, B-26
Clear Indication

notification of reception in sockets-
based interface, B-50

Clear Request Response Timer, 7-29
Closed User Group

field in facilities/QOS data
structure, 2-7

parameters for, 7-33
setting in sockets-based

interface, B-33
compatibility

between sockets- and streams-based
interfaces, C-1

compilation
requirement for SunOS 4.x

applications, B-1
compiler requirement

for sockets-based interface, C-2
compilers supported, 1-2
configurable parameters

as defined in wlcfg structure, 7-20
changing, 7-5
examining, 7-5

CONN_DB structure
in sockets-based interface, B-2

conn_id identifier, 5-23
connect indication

accepting a .., 5-23
handling a .., 5-22
handling multiple, 5-24
rejecting a .., 5-23

connect request/indication
contents of message, 3-3
data structure for, 3-2

Index-3

connect response/confirmation
contents of message, 3-4
data structure for, 3-4

connection
closing a, 5-15
establishing a .. on an open

stream, 5-2
opening for a CONS call, 5-5
opening for standard X.25 call, 5-3

Connectvalue timer, 7-25
control messages

priority of, 5-14
counters

specifying values for, 7-31

D
data

receiving, 5-9
receiving using sockets-based

interface, B-20
sending, 5-9
sending using sockets-based

interface, B-16
data acknowledgement

request/indication
data structure for, 3-5

data message
contents of, 3-5
data structure for, 3-5

data structure
containing facilities and QOS

parameters, 2-5
fields in, for address structure, 2-2

data structures
specified in include file, 1-2
used by NLI primitives, 2-1

data transfer phase
overview of, 5-8

DATAPAC Priority Bit, 7-37
DATAPAC Traffic Class, 7-37
D-bit

access in data transfer phase, 5-8
control of, 7-38

control of in sockets-based
interface, B-17

how to set, B-17
reading using sockets-based

interface, B-21
diagnostic byte

allowing omission of, 7-35
diagnostic code

accessing in sockets-based
interface, B-48

sending in sockets-based
interface, B-49

diagnostic packets
allowing for specialized treatment

of, 7-36
disconnect

local, 5-17
remote, 5-15, 5-17

disconnect behavior
after application receives disconnect

message, 5-16
disconnect collision, 3-10
disconnect confirm

data structure for, 3-10
parameters for, 3-11

Disconnect Indication
requirements for receiver of .., 5-15

Disconnect Request
behavior following a .., 5-15

disconnect request/indication
data structure for, 3-9
parameters for, 3-9

downstream messages, A-1
driver configuration, 7-2
DTE address

as stored in address data
structure, 2-3

as stored in configurable-parameters
structure, 7-41

DTE Clear Request Retransmission
Count, 7-31

DTE Reset Request Retransmission
Count, 7-31

Index-4 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

DTE Restart Request Retransmission
Count, 7-31

DTE Window Status Transmission
Timer, 7-29

DTE/DCE mode, 7-24
DTE/DCE resolution, 7-24, 7-31
DTE-DTE operation, 7-24
DXE resolution, 7-24

E
EAck message

used to respond to expedited
data, 5-11

end-to-end transit delay
in sockets-based interface, B-35

errno
pointer to list of values for, B-4

error codes, A-2
specified in include file, 1-2

error return code
in sockets-based interface, B-4

expedited data
access in data transfer phase, 5-8
data structure for, 3-6
example of handling, 5-11
field in CONS QOS data

structure, 2-11
expedited data acknowledgement

data structure for, 3-7
Expedited Data negotiation

in sockets-based interface, B-37
extended call packets, 7-33
extraformat struct

facilities and QOS definitions, 2-5

F
facilities

categories of (standard X.25 and
CONS), 2-4

determining which are present, in
sockets-based
interface, B-40

for CONS support, 2-8
how to request and negotiate, 2-4
negotiating on incoming call, 5-24
negotiation and specification in

sockets-based
interface, B-26

setting in sockets-based
interface, B-26

standard X.25 .. supported, 2-4
fast select

field in facilities/QOS data
structure, 2-6

setting/getting in sockets-based
interface, B-29

subscription options, 7-34
user data, B-41

fast select incoming call
receiving in sockets-based

interface, B-42
fast select user data

in sockets-based interface, B-41
flags

for address data structure, 2-3
flow control conditions

when sending data, 5-9

G
getmsg

use to retrieve next message from
stream head, 5-8

getmsg system call, 1-1

H
header files

required for sockets-based
interface, C-1

required for streams-based
interface, 1-2

high and low water marks
accessing in sockets-based

interface, B-46
high water mark

for sockets, B-24

Index-5

I
I_STR ioctl

example of use, 7-2
introduction to, 7-1

idle timer, 7-30, 7-41
in-band data

receiving using sockets-based
interface, B-20

include files
required for streams-based

interface, 1-2
user programs for sockets-based

interface, C-1
incoming call

acceptance of in sockets-based
interface, B-6

additional user criteria in sockets-
based interface, B-45

ioctl to temporarily bar, 7-5
selecting link for, B-13
specifying barring of, 7-35

incoming connection
listening for, 5-19
procedure for listening for and

opening, 5-19
international call address

recognition, 7-36
international call prioritization, 7-37
interrupt data

sending using sockets-based
interface, B-16

interrupt packet
sending using sockets-based

interface, B-19
sequence upon receipt in sockets-

based interface, B-23
Interrupt Response Timer, 7-30
iocblk structure, 7-1
ISO 8208, 7-24, 7-41, A-4
ISO 8878, A-4

L
l_result flag, 5-19
L3PLPMODE, 7-24
library of support routines, 6-1
link address, 7-41
link identifier

as defined in wlcfg structure, 7-22
in address data structure, 2-2
obtaining with sockets-based

interface, B-15
link selection, explicit

in sockets-based interface, B-11
in streams-based interface, 7-22

link statistics
ioctl for obtaining, B-53

link status
obtaining in socket-based

interface, B-56
reading, B-56

listen
address matching on, 5-20
how to perform in socket-based

interface, B-6
listen cancel command/response

data structure for, 3-13
listen command/response

data structure for, 3-12
parameters for, 3-12

listen message
construction of, 5-19
contents of data part, 5-20
data structure for, 4-2

Listen Request
cancelling a .., 5-22
sending a .., 5-21

listen request queue
ordering of, 4-4

listen response
how to wait for, 5-22

listen stream
effect of call rejection on, 5-25
reusing, 5-25

listening

Index-6 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

as a privileged operation, 5-19
major features of, 4-1

listening for incoming calls, 4-1
listens

address matching, 4-3
Call User Data matching, 4-2

LLC2
specifying X.25 operation over a

LAN, 7-23
local address

how to set when calling, 7-38
how to set when calling in sockets-

based interface, B-5
setting by X.25 client, B-46

local and remote addresses
obtaining following a

connection, B-14
local detach

of a PVC, 5-29
local disconnect, 5-17
logical channel number

determining .. for a connection in
sockets-based
interface, B-16

obtaining in sockets-based
interface, B-16

specifying ranges, 7-25
LSAP address

as stored in address data
structure, 2-3

lsapformat structure
definition of, 2-3
in address data structure, 2-3

M
management

of X.25 multiplexor, 7-1
management structures and interface, 7-1
maximum acceptable transit delay

field in CONS QOS data
structure, 2-10

maximum NSDU limit, 7-28
M-bit

access in data transfer phase, 5-8
how to set, B-17
reading using sockets-based

interface, B-21
usage in sockets-based interface, B-17

message
control part, definition of, 3-1
correspondence between .. types and

packet types, A-1
list of downstream, A-1
list of upstream, A-2
method of accessing control and data

parts, 3-2
overview of structure, 1-1

minimum throughput class
field in CONS QOS data

structure, 2-10
setting in sockets-based

interface, B-32
modulo 8 or 128

specification of, 7-26
More Data Mark (M-bit)

concatenation procedure, 7-28
multiple addresses

listening on, 4-1
multiple links

obtaining number configured in
sockets-based
interface, B-53

routing among, 7-18, B-4
routing among in sockets-based

interface, B-51
support for in sockets-based

interface, B-4

N
N_Data message

use to send normal and Q-bit
data, 5-8

N_EData message
used for expedited data, 5-8

N_getnliversion ioctl, 7-17
N_getpvcmap ioctl, 7-13

Index-7

N_getstats ioctl, 7-6
N_getVCstatus ioctl, 7-10
N_linkconfig ioctl, 7-5, 7-20
N_linkent ioctl, 7-2
N_linkmode ioctl, 7-5
N_linkread ioctl, 7-5
N_nuidel ioctl, 7-15
N_nuiget ioctl, 7-15
N_nuimget ioctl, 7-15
N_nuiput ioctl, 7-14
N_nuireset ioctl, 7-16
N_putpvcmap ioctl, 7-13
N_traceoff ioctl, 7-17
N_traceon ioctl, 7-16
N_X25_FLUSH_ROUTES ioctl, 7-19
N_Xlisten message, 5-19
N_zerostats ioctl, 7-10
negotiable X.25 facilities

data structures for, 2-4
NET_MODE, 7-23
network characteristics, 7-23
Network Service error codes, A-3
Network User Identification

field in facilities/QOS data
structure, 2-7

setting/getting in sockets-based
interface, B-35

Network User Identifier
ioctl for deleting all existing

mappings for, 7-16
ioctl to delete mapping for, 7-15
ioctl to read all existing mappings

for, 7-15
ioctl to read mapping for, 7-15
ioctl to store set of, 7-14
specifying override, 7-34

NLI management ioctls, 7-1
NLI message primitives, 3-1
non-OSI encoded extended address

in address data structure, 2-3
non-X.25 facilities

in sockets-based interface, B-39

NSAP address
field in address data stucture, 2-3

O
OSI error codes, A-2
OSI-encoded NSAP address

in address data structure, 2-3
outgoing call

selecting a link for in sockets-based
interface, B-11

specifying barring of, 7-35
outgoing call setup

calling side in sockets-based
interface, B-3

out-of-band data
managing in sockets-based

interface, B-23

P
packet

correspondence between types and
message types, A-1

list of incoming, A-2
list of outgoing, A-1

packet concatenation
field in facilities/QOS data

structure, 2-6
setting limits for, 7-28

packet level tracing
ioctl for initiating, 7-16

packet size
changing from link defaults for a

PVC, 7-13
default, local and remote, 7-26
field used for negotiation in

facilities/QOS data
structure, 2-6

reading default for a PVC, 7-13
setting in sockets-based

interface, B-31
specification of, 7-26

packet-level statistics
obtaining in sockets-based

Index-8 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

interface, B-55
Permanent Virtual Circuit

data structure for attach, 3-14
data structure for detach, 3-15
data transfer, 5-28
detaching a .., 5-28
messages, A-2
operation of, 5-26
parameters for attach, 3-14
procedure for attaching to an open

stream, 5-26
use in sockets-based interface, B-44

perVC_stats array, 7-12
PLP driver stream

relationship to a virtual circuit, 5-1
PLP drivers

synchronizing at each end of
PVC, 5-28

priority
field in CONS QOS data

structure, 2-10
in listen requests, 4-4

privileged listens, 4-4
programmable X.25 facilities

field in facilities/QOS data
structure, 2-8

programming examples
for streams programs, 5-1

protection
field in CONS QOS data

structure, 2-11
protocol identifier

binding incoming calls by, B-9
masking bits in, B-10
masking in sockets-based

interface, B-10
use in binding to process, B-2

PSDN localization, 7-35
PSDN-specific modes, 7-23
putmsg system call

as means to send data, 1-1
to establish connection for standard

X.25 call, 5-4
to open connection for CONS call, 5-6

Q
Q-bit

access in data transfer phase, 5-8
control of in sockets-based

interface, B-17
how to set, B-17
reading using sockets-based

interface, B-21
qosformat structure

contains CONS QOS
parameters, 2-10

quality of service parameters
data structures for, 2-4

R
R20 counter, 7-31, 7-41
R22 counter, 7-41
R23 counter, 7-31, 7-41
receiving data

overview of, 5-9
using sockets-based interface, B-20

registration message structure, 7-3
remote detach

of a Permanent Virtual Circuit, 5-28
remote disconnect, 5-15
Reset Indication

possible responses to, 5-13
reset indication/request

collision between, 3-8
reset packet

sending using sockets-based
interface, B-19

Reset Request
use in attaching a PVC, 5-28

Reset Request Response Timer, 7-29
reset request/indication

data structure for, 3-7
reset response/confirm

data structure for, 3-8
resets

handling of, 5-13
restart collision, 7-25

Index-9

Restart Request Response Timer, 7-29
reverse charging

field in facilities/QOS data
structure, 2-6

setting option, 7-34
setting/getting in sockets-based

interface, B-28
route

removing (flushing), 7-19
removing (flushing), in sockets-based

interface, B-52
routing

in sockets-based interface, B-52
of outgoing calls, 7-19, B-4

routing information
ioctl to obtain, 7-19
ioctl to obtain in sockets-based

interface, B-52
routing ioctls, 7-18

in sockets-based interface, B-51
RPOA selection

field in facilities/QOS data
structure, 2-7

in sockets-based interface, B-33

S
send call

in sockets-based interface, B-16
sending data

example of, 5-9
sequence numbering, 7-26
signal handling

in sockets-based interface, B-24
SOCK_STREAM socket type, B-1
socket

definition of, B-1
socket high water mark, B-24
sockets programming example, C-1
sockets-based interface, B-1
source address control, 7-38
standard X.25 call

opening connection for, 5-3

statistics
obtaining for socket-based

interface, B-54
reading count, 7-6
resetting count, 7-10
retrieving per-virtual circuit .., 7-10
structure used for, 7-6

stream
opening on X.25 major device, 5-1

streams programming examples, 5-1
subaddress

binding on specific .. in sockets-based
interface, B-8

setting in sockets-based interface, B-5
subscription options

specifying, 7-33
SunLink X.25 version number

obtaining in sockets-based
interface, B-58

support library, 6-1
switched virtual circuits

creating with sockets-based
interface, B-3

T
T20 timer, 7-25, 7-29, 7-41
T21 timer, 7-29
T22 timer, 7-29
T23 timer, 7-29
T24 timer, 7-29
T25 timer, 7-30, 7-41
T26 timer, 7-30
target transit delay

field in CONS QOS data
structure, 2-10

TELENET
throughput-class-negotiation

requirement, 7-39
throughput

setting in sockets-based
interface, B-32

throughput class

Index-10 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

field in CONS QOS data
structure, 2-10

negotiating toward default, 7-32
throughput class negotiation, 7-39
throughput classes

list of available, 7-31
timers

modifying values for, 7-28
relationships among, 7-41

TOA/NPI address format, 7-34
tracing

packet layer, 7-17
transit delay, 7-31
transit delay selection

in sockets-based interface, B-34

U
U_LINK_ID , 7-22
upstream message, A-2
user data

passing additional in sockets-based
interface, B-41

V
vcinfo structure, 7-11
version

X.25 protocol (80/84/88), 7-24
version number

obtaining .. of X.25 multiplexor, 7-18
obtaining in sockets-based

interface, B-58
virtual circuit

active, in sockets-based
interface, B-26

clearing in sockets-based
interface, B-25

examining possible states, 7-11
reading status of, B-56

virtual circuit status
obtaining in sockets-based

interface, B-57

W
Window Rotation Timer, 7-30
window size

changing from default for a link for a
PVC, 7-13

default, local and remote, 7-27
field used for negotiation in

facilities/QOS data
structure, 2-6

reading default for PVC, 7-13
setting in sockets-based

interface, B-31
specifying, 7-27

wlcfg database
configuring for a specific link, 7-5
introduction to, 7-2
reading for a specific link, 7-5

write call
used to send data in sockets-based

interface, B-16

X
X.121 address

accessing for link in sockets-based
interface, B-46

format in socket-based interface, B-2
X.25 host database file

library routines to manipulate, 6-2
X.25 message

receiving in records in sockets-based
interface, B-22

X.25 packets
list of incoming, A-2
list of outgoing, A-1

X.25 primitives, 3-1
X.25 routing, 7-18, B-4
X25_ADD_ROUTE ioctl

in sockets-based interface, B-51
X25_FLUSH_ROUTES ioctl

in sockets-based interface, B-52
X25_GET_FACILITY ioctl

in sockets-based interface, B-27
X25_GET_LINK ioctl

Index-11

in sockets-based interface, B-15
X25_GET_NEXT_LINK_STAT ioctl

in sockets-based interface, B-56
X25_GET_NEXT_ROUTE ioctl

in sockets-based interface, B-52
X25_GET_NEXT_VC_STAT ioctl

in sockets-based interface, B-57
X25_GET_NLINKS ioctl

in sockets-based interface, B-53
X25_GET_ROUTE ioctl

in sockets-based interface, B-52
X25_HEADER ioctl

in sockets-based interface, B-21
X25_LLC

return for NET_MODE parameter, 7-23
X25_OOB_TYPE ioctl

in sockets-based interface, B-23
X25_RD_LINK_STATISTICS ioctl

in sockets-based interface, B-54
X25_RD_LINKADR ioctl

in sockets-based interface, B-8
X25_RD_LOCAL_ADR ioctl

in sockets-based interface, B-14
X25_RD_PKT_STATISTICS ioctl

in sockets-based interface, B-55
X25_RD_REMOTE_ADR ioctl

in sockets-based interface, B-14
X25_RECORD_SIZE ioctl

in sockets-based interface, B-22
X25_RM_ROUTE ioctl

in sockets-based interface, B-52
X25_ROUTE structure, 7-19

in sockets-based interface, B-51
X25_SEND_TYPE ioctl

in sockets-based interface, B-17
X25_SET_FACILITY ioctl

in sockets-based interface, B-26
X25_SET_LINK ioctl

in sockets-based interface, B-11, B-44
X25_SETUP_PVC ioctl

in sockets-based interface, B-44
X25_VERSION ioctl

in sockets-based interface, B-58

X25_VSN
version number specified in

configurable parameters
structure, 7-24

X25_WR_LOCAL_ADR ioctl
in sockets-based interface, B-5

X25_WR_SBHIWAT ioctl
in sockets-based interface, B-24

Index-12 SunLink X.25 8.0.2 Programmer’s Guide—October 1994

