
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

XIL Programmer’s Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1994 Sun Microsystems, Inc.—Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, NFS, and XIL are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc. in the United States and other countries;
X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc.
PostScript and Display PostScript are trademarks of Adobe Systems, Inc. Photo CD, the Photo CD logo, PhotoYCC, and Kodak
are trademarks or registered trademarks of Eastman Kodak Company. All other product names mentioned herein are the
trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, SPARCompiler, ProWorks, and
ProCompiler are licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark and product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xxv

New Features . xxxi

1. Introduction to the XIL Library . 1

Functions in the XIL Library . 1

Image-Processing Functions. 1

Digital-Video Functions . 2

Additional XIL Functions . 5

The XIL Library: A Foundation Library 5

The XIL Library is Multithread Unsafe . 7

Verifying Installation and Setting Environment Variables 7

XIL Packages . 8

XIL Directory Structure. 9

Setting Environment Variables. 10

Using the XIL Manual Pages . 10

iv XIL Programmer’s Guide—August 1994

2. Basic XIL Program. 11

Running the Program . 12

Including Header Files . 12

Initializing the Library . 13

Acquiring an Input Image . 13

Step 1: Reading the File’s Header . 14

Step 2: Creating an XIL Image . 16

Step 3: Exporting the Image . 17

Step 4: Copying Data from a File to Your XIL Image 19

Step 5: Importing the Image . 22

Creating an Output Image . 22

Creating an X Window . 23

Creating a Display Image . 24

Processing an Image . 24

Making Source and Destination Images Compatible 25

Additional Processing . 27

Closing the Library . 28

Building an XIL Program . 29

Conditionally Compiling Code for Different XIL Versions . . . 31

3. XIL Images . 33

Basic XIL Image Attributes . 34

Width, Height, and Number of Bands 34

Data Type . 35

Exporting XIL Images . 36

Contents v

Memory Formats for XIL Images. 37

XIL_BYTE and XIL_SHORT Images 37

XIL_BIT Images . 40

Memory Formats for Images of Different Color Spaces . . . 42

Types of XIL Images . 43

Memory Images . 43

Device Images . 43

Display Images. 44

Additional XIL Image Attributes . 46

Origin . 46

Region of Interest. 48

Color Space. 52

Parent . 53

Image Type . 54

Synchronization Flag. 55

Readable and Writable Flags . 55

Name . 56

4. Handling Input and Output . 57

Moving Image Data from a File to an XIL Image. 57

Moving Image Data from an XIL Image to a File. 62

Sending Output to (and Reading Input from) the Display. . . . 64

Possible Complications . 66

Reading a Display Image . 66

Reading and Writing Devices Other than Displays. 67

vi XIL Programmer’s Guide—August 1994

Initializing a Device’s Attributes . 68

Creating a Device Image. 71

Destroying a Device Object . 73

5. Reading Kodak Photo CD Images . 75

The Photo CD Technology . 75

The Photo CD Imaging Workstation 75

How Images Are Stored . 76

Reading Photo CD Images Using the XIL Library. 77

Creating a Device Image. 78

Setting Device-Image Attributes . 79

Capturing an Image from a Photo CD Disk 82

Converting the Image’s Color Space 83

6. Preparing Images for Display. 87

Running the Sample Display Program . 88

Converting a Single-Band Image to a Multiband Image. 88

Passing the Source Image Through a Lookup Table 88

Replicating the Source Image in the Bands of the Destination 90

Converting an XIL_SHORT Image to an XIL_BYTE Image . . . 91

Converting an RGB Image to an Indexed-Color Image and a
Colormap . 92

Converting a 24-Bit Image to a 1-Bit Image 93

Converting an 8-Bit Image to a 1-Bit Image 94

Displaying a 1-Bit Image on a Monochrome Display 94

Types of Images Displayed. 94

Contents vii

7. Presentation Functions. 97

Copying an Image to the Display . 97

Copying All Bit Planes . 98

Copying Only the Planes Defined in a Plane Mask. 99

Rescaling an Image . 102

Casting an Image from One Data Type to Another 103

Dithering an Image . 105

What Is Dithering?. 105

Methods of Dithering . 107

When to Use Each Dithering Function 121

Color-Space Conversion . 122

Black Generation . 125

8. Error Handling . 127

Writing an Error Handler . 128

Functions You Can Call in Your Error Handler 129

An Example . 135

Installing and Chaining Error Handlers 136

Installing Error Handlers . 136

Chaining Error Handlers . 139

9. Arithmetic, Relational, and Logical Functions 141

Arithmetic Functions. 141

Relational Functions . 143

Logical Functions . 144

Operations with Constants . 144

viii XIL Programmer’s Guide—August 1994

Arithmetic and Logical Operations with Bit Images. 147

10. Geometric Functions . 149

Interpolation Options . 150

Nearest Neighbor Interpolation. 150

Bilinear Interpolation . 151

Bicubic Interpolation . 151

General Interpolation . 151

Translating Images. 160

Scaling and Subsampling Images . 161

xil_scale() . 162

xil_subsample_adaptive(). 164

xil_subsample_binary_to_gray() . 165

Rotating Images . 167

Performing General Affine Transforms. 169

Warping Images . 172

Transposing Images . 174

11. Miscellaneous Image Processing Functions. 177

Finding the Minimum and Maximum Values in an Image. . . . 178

Producing a Histogram for an Image . 179

Creating a Histogram . 179

Writing Level Information to the Histogram Structure . . . 180

Reading Data from a Histogram . 181

Destroying a Histogram . 182

Thresholding an Image . 183

Contents ix

Filling an Area in an Image . 183

xil_fill() . 183

xil_soft_fill() . 185

Filtering an Image . 187

Creating a Convolution Kernel . 188

Filtering an Image . 190

Destroying a Convolution Kernel . 191

Additional Kernel-Related Functions 192

Detecting Edges in an Image . 192

Dilating or Eroding an Image. 194

Creating a Structuring Element . 196

Dilating or Eroding an Image. 198

Destroying a Structuring Element . 198

Additional Structuring-Element Functions 199

Passing an Image Through a Lookup Table 199

Creating a Lookup Table. 200

Passing an Image Through the Table 204

Destroying a Lookup Table. 205

Additional Lookup-Table Functions 206

Linear Combination. 207

Performing a Linear Combination. 209

How to Use Linear Combinations . 210

Blending Images. 211

Painting on an Image. 213

x XIL Programmer’s Guide—August 1994

Setting and Getting the Values of Pixels in an Image 215

xil_set_pixel() and xil_get_pixel() . 216

xil_set_value() . 216

Copying a Pattern to an Image. 217

12. Compressing and Decompressing Sequences of Images. . . . 219

Creating a JPEG Datastream. 222

Building and Running the Example 223

Creating a CIS . 223

Compressing Video Frames and Writing Compressed Data to a
File . 224

Performing Any Outstanding Compression Operations . . 229

Playing a JPEG Movie . 230

Running the Movie Player . 231

Memory Mapping the Movie . 232

Creating a CIS . 233

Putting Compressed Data in a CIS . 233

Creating a Display Image . 234

Creating an Image to Hold Decompressed Frames 236

Initializing Parameters to Be Used with the Dither Function 238

Installing an X Colormap . 238

Playing the Movie . 240

Playing Cell Movies. 241

Installing an X Colormap . 242

Creating an Image to Hold Decompressed Frames 245

Contents xi

Playing the Movie . 246

13. Compressed Image Sequences . 249

Basic CIS Management . 249

Creating and Destroying a CIS. 250

Putting Compressed Data into a CIS. 251

Reading Data from a CIS . 254

General CIS Attributes . 257

Compressor and Compression Type 258

Input and Output Image Type . 259

Random Access Flag . 260

Start Frame, Read Frame, Write Frame 260

Maximum Frames and Keep Frames. 262

Error-Recovery Flag . 265

Name . 266

CIS Error Recovery . 267

14. Cell Codec . 271

How the Cell Codec Works. 272

Choosing a Colormap . 274

Cell Compression Ratios. 275

Image Types . 275

Creating a Cell CIS. 275

Cell Codec Attributes . 276

Compression Attributes . 276

Decompression Attributes . 284

xii XIL Programmer’s Guide—August 1994

Cell Molecules . 288

Rules for Calling Decompression Molecules 289

Calling Cell Molecules . 290

15. CellB Codec . 297

How the Codec Works. 298

Cell Codes. 298

Skip Codes . 300

Creating a CellB CIS . 301

CellB Decompression Attributes . 301

CellB Molecules . 303

16. JPEG Baseline Sequential Codec . 305

How the JPEG Baseline Sequential Codec Works 306

Discrete Cosine Transform . 307

Quantization. 308

Entropy Coding . 309

Creating a JPEG Baseline Sequential CIS 310

JPEG Baseline Sequential Codec Attributes 310

Compression Attributes . 310

Decompression Attributes . 324

JPEG Molecules . 326

17. JPEG Lossless Codec . 327

How the JPEG Lossless Codec Works . 328

Prediction . 329

Entropy Coding . 330

Contents xiii

JPEG Lossless Compressor Attributes. 331

18. H.261 Codec . 337

How an H.261 Codec Works. 338

Source Images . 338

Basic Encoding Scheme. 340

Bit-Rate Control . 345

Provisions for Multipoint Conferencing 346

Creating an H.261 CIS . 346

H.261 Codec Attributes . 347

Compression Attributes . 347

Decompression Attributes . 354

H.261 Molecules . 358

19. MPEG-1 Codec . 359

How an MPEG-1 Codec Works . 360

Similarities Between MPEG-1 and H.261 360

Differences Between MPEG-1 and H.261 361

How MPEG-1 Organizes a Video Sequence 364

Creating an MPEG-1 CIS. 365

MPEG-1 Codec Attributes . 365

Compression Attributes . 366

Decompression Attributes . 384

MPEG-1 Molecules . 390

xiv XIL Programmer’s Guide—August 1994

20. CCITT Group 3 and Group 4 Codecs . 391

How CCITT Group 3 and Group 4 Codecs Work 391

CCITT Group 3 and Group 4 Decompressor Attributes 392

21. Acceleration in XIL Programs . 395

What Is Deferred Execution? . 395

XIL Molecules. 398

Rules for Executing Molecules. 398

Video Decompression Molecules. 399

CCITT Group 4 Decompression Molecule 407

Image-Filtering Molecule . 408

SPARC Molecules That Result in a Display 409

Troubleshooting Molecules. 410

Determining Whether Molecules Are Executing 410

Determining Why a Molecule Is Not Executing 411

Side Effects of Executing Molecules . 414

XIL Functions That Relate to Deferred Execution 416

A. XIL Molecules . 417

Key to the Names Used in the Molecule Definitions. 418

Molecule Descriptions. 421

Cell Decompression. 421

CellB Decompression . 421

JPEG Baseline Sequential Decompression 422

H.261 Decompression . 422

MPEG-1 Decompression . 422

Contents xv

FaxG4 Decompression. 422

Image Filtering . 422

SPARC Other . 423

B. XIL Error Messages. 425

C. XIL-XGL Interoperability . 459

D. Cell and CellB Bytestream Definitions 463

Introduction to Cell . 463

Encoding Images for Cell . 464

Cell Bytestream Description . 466

Key-Frame Header and Key Parameters 467

Cell Code . 469

Run Length Code. 470

Escape Codes . 470

Summary of Cell Codes . 473

CellB Bytestream Description. 474

Cell Code . 475

Cb/Cr Quantization Table . 476

Y/Y Quantization Table . 477

Skip Code . 479

New Y/Y Table . 479

Default CellB Quantization Tables . 480

E. Bibliography . 489

Glossary . 493

Index . 509

xvi XIL Programmer’s Guide—August 1994

xvii

Figures

Figure 1-1 Foundation Libraries and Application Programming Interfaces 6

Figure 1-2 Directory Structure of XIL Developer’s Kit. 9

Figure 3-1 Digitized Image . 33

Figure 3-2 Memory Format for a 3-Band Image Containing 8-Bit Data
Elements . 38

Figure 3-3 Memory Format for a 3-Band Image Containing 16-Bit Data
Elements . 38

Figure 3-4 Memory Format for a 3-Band Image Containing 1-Bit Data
Elements . 41

Figure 3-5 Copying Data from a Temporary Image to the Display (Not
Necessary). 44

Figure 3-6 Writing the Output of an Operation to a Display Image. 45

Figure 3-7 Image Origins. 47

Figure 3-8 Regions of Interest . 48

Figure 3-9 Regions of Interest and Origins. 49

Figure 6-1 Lookup Table . 89

Figure 7-1 XIL Lookup Operation . 106

Figure 7-2 Dithering an Image . 107

xviii XIL Programmer’s Guide—August 1994

Figure 7-3 Colorcube for Dithering a True-Color Image to a Pseudocolor
Image . 112

Figure 7-4 Error-Distribution Kernel . 116

Figure 7-5 Using xil_error_diffusion() to Dither an Image 116

Figure 7-6 Error Diffusion. 117

Figure 7-7 Dither Mask Replicated over a Source Image 120

Figure 8-1 List of Error Handlers . 137

Figure 8-2 Adding to the List of Error Handlers . 138

Figure 10-1 Conceptual Model of a General Interpolation. 153

Figure 10-2 Determining the Kernel to Use for a General Interpolation . . 156

Figure 10-3 Zooming the Upper-Left Corner of an Image 163

Figure 10-4 Zooming the Center of an Image . 163

Figure 10-5 Subsampling Bit Images . 166

Figure 10-6 Rotating an Image Around Its Default Origin 168

Figure 10-7 Rotating an Image Around Its Center . 169

Figure 10-8 Shearing an Image Along Its x Axis . 172

Figure 10-9 Flipping and Rotating Images Using xil_transpose() . . . 176

Figure 11-1 Boundary Fill . 184

Figure 11-2 Convolution Operation. 188

Figure 11-3 High-Pass Filters . 189

Figure 11-4 Low-Pass Filters. 190

Figure 11-5 Filters Used by the XIL_EDGE_DETECT_SOBEL Algorithm . 193

Figure 11-6 Dilating and Eroding Images. 194

Figure 11-7 Dilating an Image . 195

Figure 11-8 Eroding an Image . 196

Figure 11-9 Single Lookup Table . 201

Figures xix

Figure 11-10 Interband Linear Combination . 208

Figure 11-11 Linear Combination Matrix . 209

Figure 11-12 RGB-to-CMY Conversion Using xil_band_combine() . . . 210

Figure 11-13 RGB-to-Y Conversion Using xil_band_combine() 210

Figure 11-14 Calculating the Normalized Sum of an Image 211

Figure 11-15 Blending Images . 213

Figure 11-16 Painting on an Image . 214

Figure 11-17 Replicating a Source Image . 218

Figure 12-1 Compressing and Decompressing XIL Images 219

Figure 12-2 Decompressing and Dithering a Frame of Video 237

Figure 14-1 Cell Compression . 273

Figure 15-1 Cell Code. 298

Figure 15-2 Vectors in Chrominance Table . 299

Figure 15-3 Vectors in Luminance Table. 299

Figure 16-1 JPEG Baseline Sequential Compressor . 306

Figure 16-2 Output of the Discrete Cosine Transform 307

Figure 16-3 Quantization in the JPEG Encoder . 308

Figure 16-4 Zigzag Sequencing in JPEG Encoder . 309

Figure 17-1 JPEG Lossless Compressor. 328

Figure 17-2 Predicting Values in the JPEG Lossless Compressor 329

Figure 18-1 Macroblock . 339

Figure 18-2 Flow Diagram for H.261 Encoding . 341

Figure 18-3 Motion Compensation in H.261 . 343

Figure 18-4 Encoding of YCbCr or Difference Values in H.261 344

Figure 19-1 An MPEG-1 Bitstream Containing I and P Pictures 361

xx XIL Programmer’s Guide—August 1994

Figure 19-2 MPEG-1 Display Order Versus Decoding Order 362

Figure 19-3 Bidirectional Prediction in MPEG-1 . 363

Figure 19-4 Zigzag Ordering of Quantization Table Values 373

Figure 19-5 Sample Group of Pictures. 377

Figure 21-1 Stored Atomic Operations . 396

Figure 21-2 Replacing Atomic Functions with a Molecule 397

Figure D-1 Cell . 464

Figure D-2 Encoding a Cell . 466

Figure D-3 Default CellB Chrominance Quantization Table 476

Figure D-4 Default CellB Luminance Quantization Table 478

xxi

Tables

Table 0-1 Typographic Conventions . xxix

Table 1-1 Finding Information About Image-Processing Functions. . . . 2

Table 1-2 Finding Information About Compression Techniques 4

Table 1-3 Finding Information About Additional XIL Functions 5

Table 1-4 Example Programs Provided with the XIL Developer’s Release 8

Table 2-1 Libraries Used in Linking XIL Programs 30

Table 2-2 Examples of Major and Minor Version Numbers. 31

Table 3-1 Functions for Reading an Image’s Width, Height, or Number of
Bands . 35

Table 3-2 Functions for Importing and Exporting Images 37

Table 3-3 Functions for Reading or Setting an Image’s Origin 47

Table 3-4 Functions Used to Build an ROI . 50

Table 3-5 ROI Naming Functions. 51

Table 3-6 Parameters to xil_create_child() 53

Table 3-7 Image Type Utility Functions . 55

Table 3-8 Image Naming Functions . 56

Table 4-1 Cases Handled by the Function load_file() 61

xxii XIL Programmer’s Guide—August 1994

Table 5-1 Resolutions of Photo CD Images. 77

Table 5-2 Photo CD Image Attributes . 79

Table 5-3 Converting PhotoYCC Data to Another Color Space 84

Table 6-1 Source Files for display . 87

Table 6-2 Cases Handled by the display Program. 95

Table 7-1 Matching Source and Display Images . 98

Table 7-2 Plane Masks for an Overlay . 100

Table 7-3 Functions for Managing Colorcubes. 114

Table 7-4 Utility Functions for Dither Masks . 121

Table 7-5 Review of Dithering Operations . 121

Table 7-6 Strings Used to Specify Color Spaces . 123

Table 8-1 XIL Error Categories . 130

Table 9-1 Valid Values for Each XIL Data Type. 142

Table 9-2 Arithmetic Operations Using a Source Image and a Constant 146

Table 9-3 Logical Operations Using a Source Image and a Constant . . . 147

Table 10-1 Types of Interpolation. 150

Table 10-2 Constants in the Enumeration XilFlipType 175

Table 11-1 Parameters to xil_histogram_create() 180

Table 11-2 Additional Histogram Functions . 182

Table 11-3 Parameters to xil_soft_fill() . 186

Table 11-4 Handling Edges in a Convolution Operation 191

Table 11-5 Utility Functions for Convolution Kernels 192

Table 11-6 Utility Functions for Structuring Elements 199

Table 11-7 Parameters to xil_lookup_create() 200

Table 11-8 Additional Functions for Lookup Tables. 206

Tables xxiii

Table 11-9 Parameters to xil_paint() . 215

Table 12-1 Command-Line Options for xilcis_example 232

Table 12-2 Parameters to xil_cis_put_bits_ptr() 234

Table 13-1 Types of Images Supported by XIL Compressors 252

Table 13-2 Compressors and Compressor Types. 259

Table 13-3 CIS Naming Functions . 266

Table 16-1 Image Bands and Huffman Tables . 311

Table 16-2 Default Huffman Tables . 318

Table 17-1 JPEG Lossless Prediction Methods . 335

Table 18-1 Sizes of CIF- and QCIF-Format Images 338

Table 19-1 Two Command Sequences: CIS Pattern = IPBB 368

Table 19-2 Releasing a Frame: CIS Pattern = All I Frames 371

Table 19-3 Releasing a Frame: CIS Pattern = IPB. 372

Table 19-4 Releasing a Frame: CIS Pattern = IPBBPBB 372

Table 19-5 Characters Representing Picture Types 377

Table 21-1 Exceptions to the General Decompression-Molecule Rules . . 405

Table 21-2 Type of Flip Designated on the Call to xil_transpose() . 407

Table 21-3 Functions That Affect Deferred Execution 416

Table A-1 Key to Names Used in Molecule Definitions 418

Table B-1 XIL Library Error Messages . 426

Table C-1 XIL-XGL Interoperability . 460

Table D-1 Cell Bytestream Codes . 473

Table D-2 Default Y/Y Table . 480

Table D-3 Default Cb/Cr Table. 484

xxiv XIL Programmer’s Guide—August 1994

xxv

Preface

The XIL™ Imaging Library provides a set of key functions from the fields of
image processing and digital video. The purpose of this book is to explain how
to use these functions in developing application programming interfaces
(APIs) and end-user applications.

Who Should Use This Book
The XIL library was designed to meet the needs of developers creating APIs
and applications for a number of markets. These markets include:

• Markets that require digital video technology
• Commercial document imaging
• Technical document imaging
• Desktop publishing
• Color prepress
• Graphics arts
• Technical imaging

xxvi XIL Programmer’s Guide—August 1994

How This Book Is Organized
This bulk of this book is divided into three parts. Chapters 1 through 8 explain
how to create the framework for an XIL program. They discuss such things as
input, output, and error handling. Chapters 9 through 11 discuss the XIL
library’s image-processing functions, functions that would be used inside the
framework. Chapters 12 through 20 explain how the XIL library enables you to
compress and decompress sequences of digital images.

A chapter-by-chapter description of the book follows:

Chapter 1, “Introduction to the XIL Library,” provides an overview of the
functions in the XIL library and discusses how the library relates to other Sun,
and to third-party, libraries. It also includes information about verifying the
installation of the XIL software developer’s kit and setting environment
variables.

Chapter 2, “Basic XIL Program,” introduces programming with the XIL library
by looking at a simple XIL program that reads an 8-bit grayscale image from a
file and displays it in an X window.

Chapter 3, “XIL Images,” discusses the different types of XIL images, what
attributes XIL images have, and how images are stored in memory.

Chapter 4, “Handling Input and Output,” takes a systematic look at how you
handle the reading and writing of images in an XIL program, including
input/output (I/O) with files, displays, and other devices.

Chapter 5, “Reading Kodak Photo CD Images,” discusses the library’s device
handler for reading and decoding the Eastman Kodak Company’s Photo CD™

format.

Chapter 6, “Preparing Images for Display,” discusses some of the issues that
arise when you need to display different types of XIL images on different types
of displays.

Chapter 7, “Presentation Functions,” discusses a group of functions that are
useful in preparing images for display. The topics covered in the chapter
include dithering and color-space conversion.

Chapter 8, “Error Handling,” discusses the XIL library’s default error handler
and explains how to write and install a custom error handler.

xxvii

Chapter 9, “Arithmetic, Relational, and Logical Functions,” covers the XIL
library’s arithmetic and logical functions. These functions enable you to add
two images, take the logical AND of two images, multiply an image by a
constant, and so on.

Chapter 10, “Geometric Functions,” discusses the XIL library’s geometric
functions. These functions enable you to do such things as scale images, rotate
images, and transpose images.

Chapter 11, “Miscellaneous Image Processing Functions,” presents the
remaining image-processing functions in the XIL library. Among other things,
these functions give you the ability to filter images, pass images through
lookup tables, and dilate or erode images.

Chapter 12, “Compressing and Decompressing Sequences of Images,”
introduces the subject of compressing and decompressing image sequences by
presenting an example movie maker and an example movie player.

Chapter 13, “Compressed Image Sequences,” discusses the data structure
(called a CIS) in which you store compressed image data. The chapter goes
over basic CIS operations, such as creating a CIS and writing data to it, and
also discusses what attributes CISs have and how you set and read the values
of those attributes.

Chapter 14, “Cell Codec,” deals with the Cell compressor/decompressor. (The
Cell bytestream definition was developed at Sun.) The chapter briefly explains
how the compressor works, discusses attributes that are specific to a Cell
codec, and explains how to call optimized routines to play back Cell-encoded
movies.

Chapter 15, “CellB Codec,” discusses the library’s CellB codec, which was
derived from the Cell codec for use in videoconferencing applications. The
chapter explains how the codec works and what special attributes a CellB CIS
has.

Chapter 16, “JPEG Baseline Sequential Codec,” discusses how the library’s
JPEG baseline sequential codec works and what special attributes a JPEG CIS
has

Chapter 17, “JPEG Lossless Codec,” explains how the JPEG lossless codec
performs its job and presents information about attributes that are specific to a
CIS associated with a JPEG lossless codec.

xxviii XIL Programmer’s Guide—August 1994

Chapter 18, “H.261 Codec,” covers the XIL interface to the codec specified by
the CCITT in Recommendation H.261. The chapter discusses how such a codec
works and lists the CIS attributes that apply specifically to a CIS associated
with an H.261 compressor or decompressor.

Chapter 19, “MPEG-1 Codec,” discusses the XIL interface to the MPEG-1 codec
specified by the Moving Pictures Expert Group. The chapter discusses how an
MPEG-1 codec works and lists the CIS attributes that apply specifically to a
CIS associated with an MPEG-1 compressor or decompressor.

Chapter 20, “CCITT Group 3 and Group 4 Codecs,” discusses how these
document image compressors do their jobs and lists the CIS attributes that
apply only to this class of codec.

Chapter 21, “Acceleration in XIL Programs,” explains how the XIL runtime
system defers the execution of functions called in XIL programs as long as
possible so that it can replace certain sequences of functions with optimized
routines.

Appendix A, “XIL Molecules,” lists the molecules provided with the current
release of the library. These molecules are optimized routines that the library
can execute in lieu of executing a predefined sequence of functions from the
API.

Appendix B, “XIL Error Messages,” provides a list of XIL error messages. For
each message, the appendix specifies an error ID and a list of functions that can
generate the error.

Appendix C, “XIL-XGL Interoperability,” explains how a single program can
use both XIL and XGL™ functions to process an image.

Appendix D, “Cell and CellB Bytestream Definitions,” presents the
information about Cell and CellB bytestreams that you would need to
implement a Cell or CellB compressor or decompressor.

Appendix E, “Bibliography,” lists some books and articles to consult for
further information on such subjects as image-processing operations, JPEG
compression, dithering, and color models.

The book also contains a glossary of terms from the fields of image processing
and digital video.

xxix

Related Books
The primary companion to this book is the XIL Reference Manual. The reference
manual contains man pages for all the functions in the XIL library.

Because programming with the XIL library can be closely tied to programming
with the X library, you may also find it useful to consult the Xlib Programming
Manual and the Xlib Reference Manual.

What Typographic Changes Mean
The following table describes the type faces used in this book.

Table 0-1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands,
functions, files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

system% su
password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xxx XIL Programmer’s Guide—August 1994

xxxi

New Features

This document list the new features in XIL 1.2.

New Imaging Operations
XIL 1.2 contains new imaging operations that let you: store the absolute values
of a source image’s pixels; detect a source image’s edges; and find the larger or
lesser of pixel values in two source images. The new imaging operations are:

• xil_absolute()
• xil_edge_detection()
• xil_max()
• xil_min()

Using a Plane Mask for Copying Images
The xil_copy() function copies a source image to a destination image,
copying all source-image planes (bits) to the destination. XIL 1.2 contains a new
xil_copy_with_planemask() function, which lets you determine which
source-image planes are copied to the destination. Copying with plane-mask
control is typically used for overlaying images. It is also useful for double
buffering on hardware that doesn’t have separate memory buffers; double
buffering is useful for animation because you can render an image in a hidden
memory buffer while you display another image in a second buffer.

xxxii XIL Programmer’s Guide—August 1994

Multiband Lookup Tables
XIL 1.2 supports multiband images as input to xil_lookup() ; earlier releases
supported only single-band input images. With multiband input images, the
XilLookup object contains a separate data array for each band in the input
image; thus, it can be used to convert a multiband image of any data type to a
multiband image of any data type.

The new multiband lookup functions are:

• xil_lookup_create_combined()
• xil_lookup_get_input_nbands()
• xil_lookup_get_band_lookup()

Interpolation Tables
When geometric transformations result in non-integer pixel locations, the XIL
library provides nearest-neighbor, bilinear, and bicubic options for
interpolating pixel values in a destination image; for these options, the
interpolation filter is provided by the library. XIL 1.2 introduces a general
interpolation option, for which your application defines the filter.

To support general interpolation, the XIL library provides a new
XilInterpolationTable object, which is an array of 1xn kernels that
represents the interpolation filter in either the horizontal or vertical direction.
Interpolation tables let an application determine how many pixels are used to
calculate interpolated pixel values, weight the pixels used in the calculations,
and divide the space between adjacent pixels into multiple sub-locations so a
destination pixel’s value can be interpolated differently, depending on which
sub-location it falls in. The interpolation tables are set on an XilSystemState
object, and they affect all general interpolation operations using images created
from this XilSystemState .

The following new functions support general interpolations:

• xil_interpolation_table_create()
• xil_interpolation_table_get_data()
• xil_interpolation_table_get_kernel_size()
• xil_interpolation_table_get_subsamples()
• xil_interpolation_table_destroy()
• xil_state_get_interpolation_tables()
• xil_state_set_interpolation_tables()

xxxiii

Warping an Image
The XIL library now contains three general functions that let you customize a
geometric transformation by creating warp tables that displace pixels
horizontally, vertically, or in both directions. The warp tables are XIL images
whose pixel values define the backward mapping from a pixel in the
destination to a pixel in the source.

Warp tables are typically used to stretch an image according to predefined
rules and are most useful for performing nonlinear transformations. For
example, they might be used to correct distortions that were imposed on an
image by the equipment used to capture it. Or they might be used for
cartographic projection of an image.

The new warping functions are:

• xil_tablewarp()
• xil_tablewarp_horizontal()
• xil_tablewarp_vertical()

XilDevice Objects
Typically when working with device images, an application creates the device
image, then sets its attributes. Some device types, however, require that the
device attributes be defined when the device image is created. For these device
types, XIL 1.2 has a new XilDevice object that you can create and associate
with the device type, then use to store device attributes. After storing all
required attributes on the device object, you pass the object as an argument on
the xil_create_from_device() function that creates the device image,
thereby creating the device image and simultaneously setting its required
attributes.

The device objects have the following new man pages:

• xil_device_create()
• xil_device_destroy()
• xil_device_set_value()

In addition, xil_create_from_device() has been modified to accept the
device object as an argument on its last parameter.

xxxiv XIL Programmer’s Guide—August 1994

Note – Device objects can be used only to initialize attributes before a device
image is created. They cannot be used to modify the attributes of an existing
device image. Devices that don’t require initialized attributes may not
recognize the device object; for these device types, you still pass NULL as the
final argument on xil_create_from_device() .

Reading Kodak Photo CD Images
The XIL library includes a device handler that reads and decodes images
stored in Eastman Kodak Company’s Photo CD™ format. This feature was
previously available as a patch to XIL 1.1.

Conditionally Compiling Code for Different XIL Versions
Beginning with release 1.2, the XIL library lets you conditionally compile code
so you can take advantage of new interfaces in a current release while still
supporting earlier releases of the library. To permit compile-time decisions, the
library uses preprocessor directives to define symbols that identify the current
XIL major and minor version numbers; these
symbols—XIL_API_MAJOR_VERSION and XIL_API_MINOR_VERSION—are
available to your application when you include the xil.h header file.

Shared Memory
XIL 1.2 supports the X Shared Memory Extension for displaying images with a
new I/O device. Given an X window by xil_create_from_window() , the
XIL library searches for an XIL I/O device for the window to associate with the
image.

Previously, the XIL library used DGA to locate a device-specific I/O device,
and if no device-specific I/O device could be loaded, it used an Xlib I/O
device. For XIL 1.2, the XIL library tries to use a device-specific I/O device,
and if no device-specific I/O device can be loaded, it attempts to load an XShm
I/O device. If both the device-specific and the XShm I/O device fail, the Xlib
I/O device is loaded. These changes were implemented to assure you of the
following:

• The XIL library always chooses the fastest available way to display an image
• The display mechanism is network independent

xxxv

Performance Enhancements
In addition to supporting the X Shared Memory Extension for speeding up
image displays, many XIL functions have been optimized to improve the
overall performance of XIL applications.

Installing XIL Packages
As discussed in the Software Developer Kit Installation Guide, the best way to
install XIL packages is to use the pkgadd/pkrm commands. However, if you
prefer, you can still use swmtool . You can no longer use the swm command to
install XIL packages.

xxxvi XIL Programmer’s Guide—August 1994

1

Introduction to the XIL Library 1

This introduction discusses three subjects:

• What functionality the XIL library provides

• How the library is meant to work with other Sun, and third-party libraries

• How to verify that the XIL software developer’s kit (SDK) has been installed
correctly and to set some environment variables that will make using the
library easier

Functions in the XIL Library
The functions in the XIL library, which you call as C subroutines, fall into two
main categories: image processing and image compression. The next two
sections introduce these groups of functions, and a third section summarizes
the remaining library functions.

Image-Processing Functions

The image-processing functions in the XIL library can be broadly grouped
under the following headings: arithmetic, relational, and logical functions,
geometric functions, and some miscellaneous functions. The arithmetic,
relational, and logical functions include functions that enable you to add two
images, take the maximum pixelwise values of two images, take the logical

2 XIL Programmer’s Guide—August 1994

1

AND of two images, multiply an image by a constant, and so on. The
geometric functions include, among others, routines to scale, rotate, and
transpose images. The miscellaneous functions enable you to:

• Find the minimum and maximum values in an image
• Produce a histogram for an image
• Threshold an image
• Fill an area in an image
• Filter an image
• Detect image edges
• Dilate or erode an image
• Pass an image through a lookup table
• Perform an interband linear combination
• Blend images
• Paint on an image
• Set and get the values of pixels in an image
• Copy a pattern to an image

Table 1-1 indicates where in this book to turn to find more information about
the different classes of image-processing functions.

Digital-Video Functions

The digital-video functions in the library enable you to compress and
decompress images and sequences of images. Several compression formats are
supported:

• Cell
• CellB
• JPEG baseline sequential
• JPEG lossless
• H.261

Table 1-1 Finding Information About Image-Processing Functions

Type of Image-Processing Functions Discussed in This Chapter

Arithmetic, relational, and logical
functions

Chapter 9, “Arithmetic, Relational, and
Logical Functions”

Geometric functions Chapter 10, “Geometric Functions”

Other functions Chapter 11, “Miscellaneous Image
Processing Functions”

Introduction to the XIL Library 3

1

• MPEG-1
• CCITT Group 3 and Group 4

The Cell image compression technology, which was developed by Sun, has
been optimized for the rapid decompression and display of images on simple
hardware. Therefore, the Cell codec is able to achieve reasonable display
quality on indexed-color frame buffers. The initial focus of the Cell technology
is on Sun-to-Sun communications, where the benefits of fast decoding
outweigh the benefits of standards. Possible areas of application include media
distributions on CD-ROM and multimedia mail.

The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features greater balance
between the time spent compressing and decompressing images than the Cell
codec. The CellB codec’s strengths include

• Software compression at interactive rates
• Very fast decoding and display, especially on indexed-color frame buffers
• Low rates of CPU use
• Good quality output

The JPEG compression standards were developed by the Joint Photographic
Experts Group to support the compression of still images, both grayscale and
color. Although not specifically designed for the compression of sequences of
images, or movies, JPEG compressors are also used frequently for that
purpose. The JPEG baseline sequential compressor is a lossy compressor, which
means that it compresses an image in such a way that when the compressed
data is decompressed, the decompressed image and the original image may not
match exactly. On the other hand, with a lossless JPEG compressor, the
decompressed image does match the original image pixel for pixel.

The H.261 compression-decompression scheme was developed by the
International Telegraph and Telephone Consultative Committee (CCITT). An
H.261 video codec is intended to be used to compress and decompress video
data sent over Integrated Services Digital Network (ISDN) lines. Thus, the
codec is suitable for use in video telephony and videoconferencing
applications. The current release of the XIL library includes an H.261
decompressor. A compressor can be obtained from a third party.

The MPEG-1 video compression standard was developed by the Moving
Picture Experts Group. The group’s goal was to compress full-motion video
and the associated audio at the rate of about 1.5 Mbits/s. This is approximately
the rate at which data can be read from a CD-ROM, so MPEG-1 compressed

4 XIL Programmer’s Guide—August 1994

1

video is a good choice for use in interactive multimedia applications. The
current release of the XIL library includes an MPEG-1 decompressor. A
compressor can be obtained from a third party.

The CCITT Group 3 and Group 4 compression standards were developed by
the International Telegraph and Telephone Consultative Committee to enable
facsimile machines to compress and decompress digitized documents. Now,
Group 3 and Group 4 compressors and decompressors are also used for
general document storage and retrieval.

Table 1-2 tells you where in this book to look for further information about
compressing and decompressing images.

Table 1-2 Finding Information About Compression Techniques

Compression Type Discussed in This Chapter

Cell Chapter 14, “Cell Codec”

CellB Chapter 15, “CellB Codec”

JPEG baseline sequential Chapter 16, “JPEG Baseline Sequential
Codec”

JPEG lossless Chapter 17, “JPEG Lossless Codec”

H.261 Chapter 18, “H.261 Codec”

MPEG-1 Chapter 19, “MPEG-1 Codec”

CCITT Group 3 and Group 4 Chapter 20, “CCITT Group 3 and Group
4 Codecs”

Introduction to the XIL Library 5

1

Additional XIL Functions

The image-processing and digital-video functions mentioned above are the
heart of the XIL library. However, the library also contains functions that
perform the tasks listed in Table 1-3. Table 1-3 also indicates where in this book
you can look for further information about the functions that perform these
tasks.

As you can see, the XIL library contains a broad range of functions. The next
section explains why the XIL library was designed this way and how it relates
to other Sun, and to third-party, libraries.

The XIL Library: A Foundation Library
The XIL library is what Sun calls a foundation library. Such a library is an
application programming interface (API), but has special characteristics that
distinguish it from other APIs. For example, a foundation library must deal
with hardware dependencies, while most APIs are hardware independent. In
addition, a foundation library is geared toward a broad area of application,
such as imaging and video (the XIL library) or graphics (the XGL library),
while most APIs have a narrower scope. For example, APIs based on the XIL
library might address such areas as document imaging, facsimile applications,
and digital video (see Figure 1-1).

Table 1-3 Finding Information About Additional XIL Functions

Additional Tasks You Can Perform Discussed in This Section or Chapter

Copy an image to the display “Copying an Image to the Display” on
page 97

Rescale an image “Rescaling an Image” on page 102

Cast an image from one data type to
another

“Casting an Image from One Data Type
to Another” on page 103

Dither an image “Dithering an Image” on page 105

Convert an image from one color space
to another

“Color-Space Conversion” on page 122

Perform undercolor removal “Black Generation” on page 125

Handle XIL errors Chapter 8, “Error Handling”

6 XIL Programmer’s Guide—August 1994

1

Figure 1-1 Foundation Libraries and Application Programming Interfaces

Why is this extra layer of software desirable? One reason is that a number of
APIs—developed either by Sun or third parties—may require the same
functionality. For instance, an API directed at the commercial document
imaging market and another directed at the facsimile market both must be able
to compress and decompress image data according to CCITT standards. If the
code that handles this compression is part of a foundation library, the two APIs
don’t have to create two functions that do the same thing.

Second, a foundation library provides a single interface to the hardware with
which the library interacts. For example, the XIL library provides an interface
to video cards, scanners, imaging accelerators, frame buffers, and printers. Any
applications or APIs written on top of the XIL library access these devices
using XIL routines.

End-user
interface

API layer

Foundation library

Hardware layer Sun frame buffers,
accelerators, and so on

Third-party hardware

Video APIFacsimile APIDocument
imaging API

XIL foundation library

Third-party applications

Introduction to the XIL Library 7

1

Third, a foundation library allows multiple APIs to share objects in a simple
way. For instance, because XIL defines memory formats for different types of
images, all APIs whose imaging functionality is based on XIL routines can
operate on these images without having to convert the format of any image
data.

Because an API may also need to provide capabilities that the XIL library does
not support, it is also possible to export data from the XIL domain into
application space. There, an application or API can do whatever processing of
the data it needs to do. When this processing is complete, the data can be
imported so that the program can process the data using only XIL functions.

The XIL Library is Multithread Unsafe
In this release, the XIL library doesn’t support multithread programs and is
therefore multithread-unsafe. Because this is true for all XIL functions, it is not
stated in the man pages.

In the next release, the XIL library will support multithread programs. If you
want to take advantage of that thread-enabled environment, you must link
with the thread library when you compile your current XIL programs.
Linking to the thread library when compiling a current XIL application won’t
provide any thread-enabled capabilities now, but it will ensure full binary
compatibility with the thread-enabled environment later. Applications that
don’t link -lthread will run fine, but they won’t take advantage of any
thread support included in the release. Linking to the thread library now will
not degrade your application’s performance.

Note – “Building an XIL Program” on page 29 shows the Makefile delivered
with one of the XIL example programs; the Makefile shows one way you can
link with the thread library. The section also discusses the considerations you
must make when linking to the library, depending on which compiler and
debugger you use.

Verifying Installation and Setting Environment Variables
This section discusses

• The XIL packages that should have been installed
• What the XIL directory structure should look like

8 XIL Programmer’s Guide—August 1994

1

• The XIL environment variables you should set
• How to use the XIL man pages

XIL Packages

The default installation directory for the XIL SDK software package
(SUNWxilh) is /opt/SUNWits/Graphics-sw/xil ; the default installation
directory for the XIL AnswerBook package (SUNWAxi) is /opt/SUNWAxi. In
the SUNWxilh package, you will find the following subdirectories included at
the top level: examples , include , and man. The content of these directories is
described in the following sections.

examples /

The examples directory contains several examples that are discussed later in
this book.

include/

This directory has one subdirectory, xil , containing the include (*.h) files
required by the XIL library.

Table 1-4 Example Programs Provided with the XIL Developer’s Release

Example Program What It Does

example1 Reads a grayscale image from a file and displays the
image in an Xlib™ window

display Demonstrates how to display images of different data
types and with different numbers of bands in an Xlib
window

encode Demonstrates how to create movies using XIL functions

xilcis_example Demonstrates how to play back movies using XIL
functions

Introduction to the XIL Library 9

1

man/

This directory has one subdirectory, man3, containing the on-line manual pages
(accessible via the man(1) command) for the XIL library. These manual pages
are also part of the XIL AnswerBook on-line documentation.

AnswerBook Package

The SUNWAxi package contains the XIL AnswerBook on-line documentation,
including:

• XIL Programmer’s Guide

• XIL Reference Manual

XIL Directory Structure

Figure 1-2 shows the directory structure of the XIL developer’s kit. Directories
shown in bold print are part of the SDK packages. The lib directory,
containing the XIL Runtime Environment, is released on the Solaris™
CD-ROM disk.

Figure 1-2 Directory Structure of XIL Developer’s Kit.

examples include lib man

example1

display

movie_maker_example

movie_player_example

xil locale runtimes man3

$XILHOME

/opt/SUNWAxi

answerbook

10 XIL Programmer’s Guide—August 1994

1

Setting Environment Variables

You need to set the XILHOME and LD_LIBRARY_PATH environment variables as
follows. (The example instructions assume that the XIL library is installed in
the default directory.)

1. Set the XILHOME environment variable to the directory containing the XIL
libraries:

2. Set LD_LIBRARY_PATH to include $XILHOME/lib :

Using the XIL Manual Pages

To access the XIL reference manual pages, you must modify the MANPATH
environment variable to include the directory where the man pages are located.
The optional catman (1M) command creates preformatted versions of the man
pages and recreates the windex database.

1. Set the MANPATH environment variable.

Assuming you have already set the XILHOME environment variable, set
MANPATH as follows:

2. (Optional) Format the man pages.

% setenv XILHOME /opt/SUNWits/Graphics-sw/xil

% setenv LD_LIBRARY_PATH $XILHOME/lib:$LD_LIBRARY_PATH

% setenv MANPATH $MANPATH:$XILHOME/man

% su root
Password: <enter your root password>
/usr/bin/catman $XILHOME/man 3

11

Basic XIL Program 2

To introduce programming with the XIL library, this chapter takes a look at a
simple XIL program called example1 . This program reads an 8-bit grayscale
image from a file and displays it in an X window. The program also enables
you to take the one’s complement of the image displayed in the window,
which produces a negative of the image.

The source files for this program—example1.c , fileio.c , and
window.c —can be found in the directory $XILHOME/examples/example1 .
This directory also contains an image file that the program should use as input
and a makefile you can use to build the program.

After briefly discussing how to build and run example1 , this chapter walks
you through the program’s code, pointing out some of the features of the
program that will be part of most or all XIL programs. The topics covered are:

• Including header files
• Initializing the library
• Acquiring an input image
• Creating an output image
• Processing the image
• Closing the library

The chapter also talks briefly about building XIL programs.

12 XIL Programmer’s Guide—August 1994

2

Running the Program
If you want to run example1 before reading the discussion of how it is
written, follow these steps:

1. Change your working directory to $XILHOME/examples/example1 . (You
should have set the environment variable $XILHOME when you installed
the XIL software.)

2. Build the program by typing make.

3. Execute the program from the directory in which you built it by typing

% example1 brainscan.header

At this point, you will see an X-ray of a brain displayed in an X window.

4. To take the one’s complement of the image in the window, move your
pointer into the program’s window and press any key on your keyboard.
A second keypress will restore the image to its original state (by causing a
second bitwise negation to be performed).

5. Exit the program by moving your pointer into the program’s window and
clicking any mouse button.

The following sections provide an explanation of the XIL-related code in
example1 ’s source files.

Including Header Files
The first XIL-related item in example1.c is a preprocessor directive that
includes the header file xil.h . All XIL programs must include this header file
and, therefore, must include the line

#include <xil/xil.h>

This header file defines a number of symbolic constants and enumeration
constants and contains function prototypes for all of the functions in the XIL
library.

Basic XIL Program 13

2

Initializing the Library
If you skip down to the main routine in example1.c , you’ll note that after
reading command-line arguments, the example calls the routine xil_open() .

All XIL programs must call this function to initialize the library before using
other functions from the XIL library.

As part of the initialization process, xil_open() returns a data structure of
type XilSystemState called state . The library uses this data structure to
keep track of information such as what XIL images (and other XIL data
structures) have been created during the current session and what the
program’s error-handling routine is. You’ll notice later in the program that
state must be passed to any XIL function that creates an image.

Note – Since someone might want to use XIL routines and routines from an
API built on top of the XIL library in the same program, it is possible to have
multiple XilSystemState structures.

Acquiring an Input Image
All XIL applications process images in some way. As you will see later, these
images can come from a variety of sources, and how you bring an image into
an application depends on its source. The program example1 , however, only
considers the case in which a program gets its input, or source, image from a
disk file. To read such a file, you must perform the series of steps outlined
below:

1. Read the image file’s header (or take whatever steps are appropriate) to
determine the image’s width, height, number of bands, and data type. You
will need this information when you perform the next step.

XilSystemState state;

state = xil_open();
if (state == NULL) {
 /* XIL’s error handler will print an error msg on stderr */
 exit(1);
}

14 XIL Programmer’s Guide—August 1994

2

2. Create an XIL image of the correct dimensions and data type. This image
will serve as an empty container in which you can place the pixel values
from your file.

3. Export the XIL image to obtain information about how the image’s pixel
values will be stored in memory.

At all times, an image is either in XIL space or application space. While it is in
XIL space (or imported), you can operate on the image only by using XIL
functions; you do not know the address of the image or its pixel values. On
the other hand, when the image is exported, you can get a pointer to the
storage allocated to hold the image’s pixel values and write data in that
memory (or modify existing data). You can also change the pointer to the
storage.

4. Read the pixel values from your file, and write them to the storage you
received a pointer to in the preceding step. It may be necessary to convert the
format of this data as you copy it. The XIL library supports images of several
data types, and for each type, it specifies a memory format. These memory
formats are discussed in the section “Exporting XIL Images” on page 36.

5. Import the XIL image so that all subsequent operations on the image must
be performed using XIL functions.

The sections below discuss each of these steps in more detail and show how
the steps are performed in example1 . The code fragments shown are taken
from the source file fileio.c .

Step 1: Reading the File’s Header

As mentioned above, you need to read the header of your image file to
determine the following image attributes:

• Width of the image in pixels
• Height of the image in pixels
• Number of bands, or channels, in the image
• Data type of the image

You need this information to create an XIL image in which to store the file’s
pixel values.

Basic XIL Program 15

2

How you get this information from your file’s header depends on the format of
that header. The function load_file() shows you how this task was handled
in one case. The header for the image file supplied for use with the example is
shown below.

The code the example uses to get the necessary image attributes from the
header looks like this.

512 512 8 1
brainscan.data

XilImage
load_file (XilSystemState state, char *filename)
{
 unsigned int width, height, nbands, bits;
 XilDataType datatype;
 FILE *in_file;
 char datafile[256];

 /* Open the header file */
 if ((in_file = fopen(filename, “r”)) == NULL) {
 fprintf(stderr,“Could not open %s\n”, filename);
 exit(1);
 }

 /* Get header information */
 fscanf(in_file, “%d%d%d%d”, &width, &height, &bits, &nbands);
 fscanf(in_file, “%s”, datafile);
 fclose(in_file);

 if ((bits == 8) && (nbands == 1)) {
 datatype = XIL_BYTE;
 }
 else {
 fprintf(stderr,“Program requires a 1 band, 8 bit image\n”);
 exit(1);
 }

16 XIL Programmer’s Guide—August 1994

2

The routine load_file() is passed the name of the image file, opens the file,
and reads the four integers in the first line of the header. These integers
represent the width of the image, its height, the number of bits used to
represent one band of one pixel, and the number of bands in the image.

You can pass the width, height, and number-of-bands arguments directly when
you call the routine that creates your XIL image (in step 2). However, before
making that call, you must use the number-of-bits value to set a variable of the
enumeration type XilDataType . You set this variable to one of the following
constants: XIL_BIT , XIL_BYTE , or XIL_SHORT. These enumeration constants
correspond to the three types of data the XIL library supports: 1-bit data, 8-bit
unsigned data, and 16-bit signed data. The variable is set in the line

datatype = XIL_BYTE;

Since this program expects a single-band, 8-bit image as input, an error occurs
if bits does not equal 8.

Note – The other item read from the file is the name of the file that contains the
actual pixel values. This file is opened and read in step 4.

Step 2: Creating an XIL Image

Once you have read the appropriate values from your image file’s header, you
can create your XIL image by calling xil_create() .

With the exception of state , the parameters being passed to xil_create()
are the variables set in the preceding step. The state parameter is the data
structure returned by the call to xil_open() earlier in the program.

The return value of xil_create() is a handle to an XIL image (a data
structure of type XilImage). This is the image you export in the next step.

XilImage image;

/* Create the image to read the data into */
image = xil_create(state, width, height, nbands, datatype);
if (image == NULL) {
 /* XIL’s error handler will print an error msg to stderr */
 exit(1);
}

Basic XIL Program 17

2

Step 3: Exporting the Image

You now need to export the image you just created and to get some
information about how the image’s pixel values will be stored in memory. The
example uses the following code to accomplish these tasks:

The call to xil_export() , whose only parameter is a handle to the image,
marks the image as exported. By exporting the image, the application gains
access to information about the image that enables it to modify the image
directly. For example, the application can get a pointer to the location at which
the image’s pixel values will be stored. For further information about exported
images, see the section “Exporting XIL Images” on page 36.

The example program exports the image so that it can find out the address at
which the image’s pixel values will be stored, the number of bytes between
pixels, and the number of bytes between scanlines. To get this information, the
example calls the function xil_get_memory_storage() .

XilImage image;
XilMemoryStorage storage;
Xil_boolean status;

/* Get the pointer to the image data */
if (xil_export(image) == XIL_FAILURE) {
 /* XIL’s error handler will print an error msg to stderr */
 exit(1);
}
status = xil_get_memory_storage(image, &storage);
if (status == FALSE) {
 /* XIL’s error handler will print an error msg to stderr */
 exit(1);
}

18 XIL Programmer’s Guide—August 1994

2

This function takes as its parameters a handle to your XIL image and the
address of a union of structures named storage . This union is of the defined
type XilMemoryStorage .

Note – Xil_unsigned8 is a data-type name created in xil.h . You should use
this name (instead of unsigned char) whenever you need to get the size of a
single pixel value in an 8-bit XIL image. There is a corresponding type name,
Xil_signed16 , for 16-bit data.

typedef struct {
Xil_unsigned8 *data;
unsigned int scanline_stride;
unsigned long band_stride;
unsigned char offset;

} XilMemoryStorageBit;

typedef struct {
Xil_unsigned8 *data;
unsigned long scanline_stride;
unsigned int pixel_stride;

} XilMemoryStorageByte;

typedef struct {
Xil_signed16 *data;
unsigned long scanline_stride;
unsigned int pixel_stride;

} XilMemoryStorageShort;

typedef union {
XilMemoryStorageBit bit;
XilMemoryStorageByte byte;
XilMemoryStorageShort shrt;

} XilMemoryStorage;

Basic XIL Program 19

2

Thus, the example can refer to the address of the pixel values for the exported
image by writing storage.byte.data . Similarly, it can specify the number of
bytes between pixels and the number of bytes between scanlines by writing
storage.byte.pixel_stride and storage.byte.scanline_stride
respectively.

Note – Any time you plan to use an image’s data, you must export the image
by calling xil_export() , then get pointers to its data with
xil_get_memory_storage() . These pointers to the data are valid only until
the image is imported. For more information, see “Exporting XIL Images” on
page 36.

Step 4: Copying Data from a File to Your XIL Image

The example now knows the location of the pixel values it wants to read
(they’re stored in datafile) and the address (storage.byte.data) at which
to write those values. The principal remaining question is whether the format
of the pixel data in the file matches the memory format for the XIL image.
Since this example reads a single-band (grayscale) image, the formats will
match. The XIL image containing 8-bit data requires that data be stored in a

20 XIL Programmer’s Guide—August 1994

2

pixel-sequential format, and the values in the file are stored in a
pixel-sequential format. Given this situation, the example can copy the file data
to the proper location in memory using the code shown below:

Note that if the pixel stride equals the number of bands in the image (that is,
there are no unused bytes between pixels in the XIL image), the data in the file
datafile can be copied to the image in a block. Otherwise, the example must

unsigned int width, height, nbands;
XilMemoryStorage storage;
FILE *in_file;
int size;

/* Open the data file */
if ((in_file = fopen(datafile, “r”)) == NULL) {
 fprintf(stderr, “Could not open %s\n”, datafile);
 exit(1);
}

/* Load the image data */
if ((storage.byte.pixel_stride == nbands) &&
 (storage.byte.scanline_stride == nbands * width)) {
 size = nbands * width * height;
 if (fread((char *)storage.byte.data, sizeof(Xil_unsigned8),
 size, in_file) != size) {
 fprintf(stderr, “Error reading data in %s\n”, datafile);
 exit(1);
 }
} else {
 int h, w, n;
 Xil_unsigned8 *scanline = storage.byte.data;
 for (h = 0; h < height; h++) {
 Xil_unsigned8 *row = scanline;
 for (w = 0; w < width; w++) {
 Xil_unsigned8 *pixel = row;
 for (n = 0; n < nbands; n++) {
 *pixel++ = fgetc(in_file);
 }
 row += storage.byte.pixel_stride;
 }
 scanline += storage.byte.scanline_stride;
 }
}

Basic XIL Program 21

2

use the values of storage.byte.pixel_stride and
storage.byte.scanline_stride to determine where to write each pixel
value it reads from the file.

What if the example were reading an RGB image from a file and the 8-bit RGB
values in the file were stored in band-sequential format? In that case, the
example would need not only to copy the data from the file to an XIL image,
but to convert the format of that data as well. See the example code below.

Note – This code assumes the file contains blue values, followed by green
values, followed by red values. Because this image is being read from a file,
this is a valid assumption. However, you can never make this assumption
about an XilImage in XIL memory space; in memory, an XilImage ’s format
is arbitrary and must be accessed only through
xil_get_memory_storage() .

unsigned int width, height, nbands;
XilMemoryStorage storage;
FILE *infile;
int i, h, w;

/* Load the image data */
for (i = 0; i < nbands; i++) {
 Xil_unsigned8 *scanline = storage.byte.data + i;
 for (h = 0; h < height; h++) {
 Xil_unsigned8 *pixel = scanline;
 for (w = 0; w < width; w++) {
 *pixel = getc(in_file);
 pixel += storage.byte.pixel_stride;
 }
 scanline += storage.byte.scanline_stride;
 }
}

22 XIL Programmer’s Guide—August 1994

2

Step 5: Importing the Image

Once you have read image data from a file into an XIL image, you should
import the image so that all further operations on it must be performed using
XIL functions. You import the image with a call to xil_import() :

Note – Importing an image is the opposite of exporting it. When you import an
image, any pointer to the image’s pixel values you had while the image was
exported becomes invalid, so you can no longer modify the image directly. You
must make all modifications using XIL functions. To access the data again, you
must export the image again, and make another call to
xil_get_memory_storage() to get new pointers to the data. For more
information, see “Exporting XIL Images” on page 36.

The argument image is a handle to the image being imported, and the 1 is a
change flag. This flag indicates that the image was modified while it was
exported; in this case, it was filled with pixel values.

Creating an Output Image
Because example1 displays its output, its output image must be a special type
of image called a display image. This type of image is written to a screen’s frame
buffer and is displayed in an X window.

To create this display image, the example program:

1. Creates an X window the size of the image it wants to display.

2. Uses the function xil_create_from_window() to create a display image
from the X window discussed in step 1. This routine turns the X window
into an XIL image that can be used as a destination for an XIL operation.

The sections below discuss these steps in more detail.

XilImage image;

xil_import(image, 1);

Basic XIL Program 23

2

Creating an X Window

Most of the Xlib code in this example appears in the function open_window() ,
which is defined in the source file window.c . This function:

• Establishes a connection with the X server

• Finds the best X visual to use when displaying a grayscale image on a
particular display

• Creates the X colormap that will be used when the image is displayed

• Creates the X window in which the image will be displayed

To create the X window, the function calls XCreateWindow() .

The return value of XCreateWindow() is an X window ID, which is used in
the creation of the XIL display image.

Display *xdisplay;
Window xwindow;
XVisualInfo *vinfo;

xwindow = XCreateWindow(xdisplay, DefaultRootWindow(xdisplay),
 20, 20, width, height, 0, vinfo->depth, InputOutput,
 vinfo->visual, CWColormap, &setwinattr);
if (xwindow == NULL) {
 fprintf(stderr, “Unable to create window\n”);
 return (0);
}

24 XIL Programmer’s Guide—August 1994

2

Creating a Display Image

Before you can use an XIL function to display an image, you must create a
display image. As mentioned earlier, to do this, you call the XIL function
xil_create_from_window() . This routine turns an X window into a special
type of XIL image so that the window can be used as the source or (as in this
case) the destination image for an operation.

This call returns a handle to the newly created display image. The parameters
you pass to the routine are a handle to the system-state data structure returned
by xil_open() , a pointer to a structure describing your display, and the ID of
your X window.

At this point, the program is ready to do some image processing of the source
image it read earlier.

Processing an Image
Once example1 has obtained handles to a source and a destination image, it is
ready to use XIL functions to process the source image and eventually write
the processed image to the display. The functions used in this part of the
program can be thought of as serving two purposes.

One purpose is to alter the source image so that it can be written to the
destination image. For example, in the sample program, the source image
contains 8-bit data, but the display image may just be 1 bit deep (if the screen
on which the image is to be shown is monochrome). In this case, the source
image must be converted to 1-bit data before it can be copied to the display
image. This kind of conversion may require that you create an intermediate
image.

Display *xdisplay;
Window xwindow;
XilSystemState state;
XilImage display;

display = xil_create_from_window (state, xdisplay, xwindow);

Basic XIL Program 25

2

The second purpose is to change the source image to alter its appearance in
some way. For instance, you might darken the image or enhance the edges in
the image. The example1 program enables you to take the one’s complement
of its source image.

Making Source and Destination Images Compatible

The program example1 handles only one type of source image: an 8-bit
grayscale image. However, it handles several types of display images. It may
write its output to:

• A 3-band XIL_BYTE display image whose X colormap is read only.

• A 1-band XIL_BYTE display image. There are actually two cases here
because the image’s X colormap (grayscale) may be read-write or read only.

• A 1-band XIL_BIT display image whose X colormap is read only.

In only one of the cases mentioned above can the source image be copied to the
display image as is. The following sections briefly describe how each case must
be handled.

26 XIL Programmer’s Guide—August 1994

2

Three-Band, Eight-Bit Destination—Read-Only Colormap

In this case, the source image contains one band, and the display image
contains three. To solve this problem, example1 creates a temporary 3-band
XIL_BYTE image, called retained_image , and copies the source image to
each band of the temporary image.

Note that the example actually creates three band children of the temporary
image and copies the source image to those children. Once this has been done,
retained_image can be copied to the display image.

One-Band, Eight-Bit Destination—Read-Write Colormap

In this case, the program could write the source image directly to the display
image. However, doing that would require that the program create and use a
colormap with 256 entries. If such a colormap were installed, it might cause
other X clients, including the window manager, to display their output in false
colors.

if (vinfo.class == TrueColor) {
 /* Copy the grayscale image into each of the bands */
 retained_image = xil_create(state, width, height, 3,
 XIL_BYTE);
 band0 = xil_create_child(retained_image, 0, 0, width, height,
 0, 1);
 band1 = xil_create_child(retained_image, 0, 0, width, height,
 1, 1);
 band2 = xil_create_child(retained_image, 0, 0, width, height,
 2, 1);
 xil_copy(image, band0);
 xil_copy(image, band1);
 xil_copy(image, band2);
}

Basic XIL Program 27

2

To avoid this problem, the example creates an X colormap of 256 entries, but
writes its grayscale ramp in the last 216 entries. The program then uses a call to
xil_rescale() to ensure that all the values in the image to be displayed fall
between 40 and 255.

One-Band, Eight-Bit Destination—Read-Only Colormap

In this case, the example can write the source image directly to the display
image because the program’s X colormap is a read-only grayscale ramp.

One-Band, One-Bit Destination—Read-Only Colormap

In this case, the example creates a single-bit XIL image (using xil_create())
and then uses the function xil_error_diffusion() to dither the 8-bit
image to a 1-bit image.

Additional Processing

Besides processing the source image so that it can be written to the display,
example1 enables you to take the one’s complement of the brain scan by
pressing any key while your pointer is in the program’s window. The code
used to perform this operation is shown below:

Display *xdisplay;
XilImage retained_image, display;
unsigned int width, height;
XEvent event;

/* Refresh window as necessary till program terminates */
while (1) {
 XNextEvent(xdisplay, &event);
 if (event.xany.type == KeyPress) {
 xil_not(retained_image, retained_image);
 if (vinfo.class == GrayScale)
 xil_add_const(image, offset, image);
 xil_copy(retained_image, display);
 }
 else if (event.xany.type == Expose)
 xil_copy(retained_image, display);

28 XIL Programmer’s Guide—August 1994

2

If the example gets a keypress event, it calls xil_not() to take the one’s
complement of the source image. This single statement works for all cases
except the case where the program is using a GrayScale X visual. In that case,
the values in retained_image before the call to xil_not() fall in the range
40 to 255. After the call to xil_not() , they fall in the range 0 to 215.
Therefore, before the one’s complement is displayed, the example adds 40 to
each value in the image using the function xil_add_const() .

You may want to experiment with removing from the example the code used
to take the one’s complement of the brain scan and replacing it with code that
performs another image-processing operation. You might try any of the
arithmetic and logical operations that work with one source image and a
constant. These operations are discussed in Chapter 9, “Arithmetic, Relational,
and Logical Functions.” Or you might try replacing the logical negation with a
geometric operation. The XIL geometric operations are the subject of
Chapter 10, “Geometric Functions.”

Closing the Library
Before exiting, all XIL programs should deallocate the memory associated with
any XIL data structures that haven’t already been destroyed. Because the
system-state data structure keeps a list of all the data structures XIL has
created (and not destroyed), you can destroy all of these data structures by
calling xil_close() , which takes the system state as its only parameter.

Note – If your program creates a display image and you do not destroy it with
a call to xil_destroy() , you must close the XIL library (xil_close())
before you break your connection with the X server and display
(XCloseDisplay()).

XilSystemState state;

xil_close(state);

Basic XIL Program 29

2

Building an XIL Program
The directory $XILHOME/examples/example1 , which contains the source
files for example1 , also contains the Makefile you use to build the program.
The Makefile’s contents are shown below.

The main thing to note here is the list of libraries being used to link the
program. When you link an XIL program, you must use these libraries (with
the possible exception of the X11 library) in this order in your makefile or on
your command line.

You may get better performance with these 2.0.1 flags
OPTFLAGS = -xcg89 -Wa,-cg92
CFLAGS = $(OPTFLAGS) -I$(XILHOME)/include -I$(OPENWINHOME)/include

LIBS = -L$(XILHOME)/lib -L$(OPENWINHOME)/lib -R/opt/SUNWits/Graphics-
sw/xil/lib:usr/openwin/libs

install := LIBS += -lxil -lX11 -ldl -ldga -lthread
debug_install := LIBS += -lxil -lX11 -ldl -ldga
debug_install := CFLAGS += -g

install: example1 brainscan.header brainscan.data
debug_install: example1 brainscan.header brainscan.data

debug: debug_install

example1: example1.o window.o fileio.o
 $(CC) -o example1 example1.o window.o fileio.o $(LIBS)

clean:
 rm -f a.out core *.o example1
...

30 XIL Programmer’s Guide—August 1994

2

Table 2-1 below provides a brief explanation of what each library is used for.

SPARC – The SPARCompiler™ C 3.0 or later compiler and SPARCworks™ C
3.0 or later debugger are the recommended tools for building XIL applications;
each can be used to build and debug XIL applications that have been linked
with -lthread . However, linking with -lthread doesn’t work with the
SPARCworks C 2.0.1 debugger (it does work with the SPARCompiler C 2.0.1
compiler); see the Note below.

x86 – The ProCompiler™ C 2.0.1 or later compiler and the ProWorks™ C 2.0.1
or later debugger are the recommended tools for building XIL applications.
The ProCompiler C 2.0.1 compiler can compile XIL applications that link with
-lthread , but linking with -lthread doesn’t work with the ProWorks C
2.0.1 debugger; see the Note below.

Table 2-1 Libraries Used in Linking XIL Programs

Library Name Library Referred To

-lxil The XIL library.

-lX11 The X library. If your program doesn’t display any output
in an X window, you can omit this library.

-ldl The dynamic-linking library.

-ldga The Direct Graphics Access library.

-lthread The multithread library. Linking to this library now
ensures full binary compatibility with the next XIL release,
which will be thread-enabled.

Applications that don’t link with -lthread will run fine,
but they won’t take advantage of any thread support
included in the next XIL release (see “The XIL Library is
Multithread Unsafe” on page 7).

Basic XIL Program 31

2

Note – If your debugger doesn’t work with -lthread , you may have to link
without -lthread to debug your application (as shown on page 29), and then
link with -lthread when the application is complete. Be aware, however, that
compiling without -lthread generates a different binary file than compiling
with -lthread . Thus, a feature that works fine in the binary file that isn’t
linked with -lthread may not work in the binary file that is linked with
-lthread ; or, the feature may not work in the binary file that is linked
whereas it does work in the binary file that isn’t linked.

Conditionally Compiling Code for Different XIL Versions
Beginning with release 1.2, the XIL library lets you conditionally compile code
so you can take advantage of new interfaces in a current release while still
supporting earlier releases of the library. To permit compile-time decisions, the
library uses preprocessor directives to define symbols that identify the current
XIL major and minor version numbers; these
symbols—XIL_API_MAJOR_VERSION and XIL_API_MINOR_VERSION—are
available to your application when you include the xil.h header file (see
“Including Header Files” on page 12).

By convention, the major version number is the numeral preceding the decimal
point in the XIL version number, and the minor version number is the numeral
following the decimal point. Table 2-2 shows what the major and minor
version numbers would be for various XIL releases.

By using these symbols, you can maintain a single source-code file that can be
compiled against different versions of the XIL library. For example, version 1.2
of the XIL library introduced XilDevice objects, which can be used to
initialize device attributes before creating the corresponding device image;
earlier versions of the library can’t use this object. The following code fragment

Table 2-2 Examples of Major and Minor Version Numbers

XIL Version Number Major Version Number Minor Version Number

1.2 1 2

1.3 1 3

2.0 2 0

2.1 2 1

32 XIL Programmer’s Guide—August 1994

2

shows how you might use the XIL_API_MAJOR_VERSION and
XIL_API_MINOR_VERSION symbols to write code that uses an XilDevice
object when you compile your application with the 1.2 version of the library,
but that omits the object when you compile with earlier versions:

In this example, a device image with an initialized attribute is created only for
XIL versions 1.2 and later; otherwise, the device image is created without
initialized attributes.

See “New Features” on page xxxi for a discussion of the new features
introduced in the current release of the library.

#if (XIL_API_MAJOR_VERSION == 1 && XIL_API_MINOR_VERSION >= 2) ||
 (XIL_API_MAJOR_VERSION > 1)
{
 /*create a device object */
 XilDevice device;
 device = xil_device_create(state, “SUNWrtvc”);
 /* initialize the DEVICE_NAME attribute */
 xil_device_set_value(device, “DEVICE_NAME”, (void *)devname);
 /* create a device image with the initialized attribute */
 rtvc_image = xil_create_from_device(state, “SUNWrtvc”, device);
 xil_device_destroy(device);
}
#else
 /* create a device image without initialized attributes */
 rtvc_image = xil_create_from_device(state, “SUNWrtvc”,
 (void *) devname);
#endif

33

XIL Images 3

Because all XIL programs work with XIL images, you should not only know
how to create an XIL image, but understand exactly what an XIL image is and
what its chief characteristics are. When you first think about a computer image,
you probably think of a picture or scene that has been digitized and is
represented as a two-dimensional array of numbers or vectors. For example,
the upper-left corner of an 8-bit, single-band image might look like this:

Figure 3-1 Digitized Image

255

255

255

255

255

255

255

255

255

254

254

254

254

254

254

254

255

254

253

253

253

253

253

253

255

254

253

252

252

252

252

252

255

254

253

252

251

251

251

251

255

254

253

252

251

250

250

250

255

254

253

252

251

250

249

249

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

255

254

253

252

251

250

249

248

34 XIL Programmer’s Guide—August 1994

3

One component of an XIL image is a set of pixel values like those shown above.
However, an XIL image is more than that. It is a data structure containing
many members, one of which is a pointer to a set of pixel values.

The upcoming sections explain some of the key things to understand about XIL
images, such as:

• The most basic attributes of an XIL image

• Exporting XIL images so that an application can process pixel values using
non-XIL functions

• The memory formats used for XIL images

• Special types of images, such as display images

You should understand the concepts presented in these sections before you
proceed too far with your XIL programming.

The last section in this chapter completes the discussion of XIL images by
talking about the image attributes that haven’t already been discussed.

Basic XIL Image Attributes
When you use the function xil_create() to create an XIL image, you must
specify four attributes of the image being created: its width, height, number of
bands, and data type.

Width, Height, and Number of Bands

These three attributes define the dimensions of an image. An image’s width
and height are given in pixels. Its number of bands is the number of values
needed to describe a single pixel; for example, in a grayscale image, one value
describes the gray level of each pixel, so the image is said to have one band. In
an RGB image, three values (red, green, and blue) are required to describe a
single pixel, so such an image has three bands. Each band in a multiband
image must have the same width and height.

Each of these image attributes is stored as an unsigned 32-bit integer. In this
release of the XIL library, the possible values for each attribute are 0 to 65,535.

XIL Images 35

3

One other note. These three attributes are set when you create an XIL image
and cannot be changed afterwards. The functions you use to read the values of
these attributes are shown in Table 3-1.

Data Type

This image attribute specifies the type of data used to represent the value of
one band of one pixel. The XIL library supports three data types: 1-bit data,
8-bit unsigned data, and 16-bit signed data. You establish an image’s data type
when you create the image by passing to the xil_create() function one of
the following enumeration constants: XIL_BIT , XIL_BYTE , or XIL_SHORT.
These enumerators are of type XilDataType.

Note – IEEE single-precision floating-point images are defined and may be
created, destroyed, imported, and exported, but image-processing operations
on them are not implemented. To create a floating-point image, you specify a
data type of XIL_FLOAT.

The library enables you to convert an image from one supported data type to
another by providing the function xil_cast() .

To read an image’s data type, you use the function xil_get_datatype() .
The XIL library also includes the function xil_get_info() , which reads an
image’s width, height, number of bands, and data type.

Table 3-1 Functions for Reading an Image’s Width, Height, or Number of Bands

Function Name What the Function Does

xil_get_width Gets the width of an image in pixels

xil_get_height Gets the height of an image in pixels

xil_get_size Gets the width and height of an image in
pixels

xil_get_nbands Gets the number of bands in an image

36 XIL Programmer’s Guide—August 1994

3

Exporting XIL Images
When you first create an XIL image using xil_create() , you receive a
handle to the image, and the image is in a state called imported. While the
image is in this state, you can process it only with XIL functions because you
don’t know, and can’t find out, the address at which the image’s pixel values
are stored. Nor do you know the exact layout of those values in memory.

However, you do have the option of exporting the image, using the function
xil_export() . Once an image is exported, you can obtain a complete
description of how its pixel values are stored in memory using the function
xil_get_memory_storage() . This information enables you to process the
image in ways that the XIL library does not support. You can also continue to
process the image using XIL functions while it is exported; however, you may
lose some acceleration.

While an image is exported, you can also set its memory storage using the
function xil_set_memory_storage() . This involves setting a pointer to the
image’s pixel values and providing other information such as the distance
between pixels and the distances between scanlines. (The exact values you set
depend on the data type of the image. See the section “Memory Formats for
XIL Images” on page 37 for more information on this subject.) Defining a
image’s memory storage in this way would be appropriate, for example, if you
had exported an empty image and wanted to fill it with pixel values by setting
a pointer to some pixel values residing in system memory.

After you’ve finished the work you needed to perform with the image
exported, you should import the image using the function xil_import() . As
mentioned above, while imported, the image must be processed using XIL
functions.

Caution – The description of memory storage that you read using
xil_get_memory_storage() or set using xil_set_memory_storage() is
valid only as long as your image remains exported. Once you import the
image, both the address at which the image’s pixel values are located and their
layout in memory may change. Trying to access pixel values using an invalid
pointer or invalid information about their layout can cause serious problems in
your application.

!

XIL Images 37

3

The XIL functions related to importing and exporting XIL images are shown in
Table 3-2.

Memory Formats for XIL Images
The memory format for an XIL image depends primarily on its data type.
Images containing 8-bit or 16-bit data elements are stored in a pixel-sequential
format, and images containing 1-bit data elements are stored in a
band-sequential format.

XIL_BYTE and XIL_SHORT Images

Figure 3-2 illustrates how a 3-band image with 8-bit data elements might be
stored in memory.

Table 3-2 Functions for Importing and Exporting Images

Function Name What the Function Does

xil_import Imports an image so that it must be
processed using XIL functions

xil_export Exports an image so that you can get or
set the image’s pointer to its pixel values

xil_get_exported Determines whether an image is
currently exported

xil_get_memory_storage Reads information about how an image
is stored in memory (if the image is
exported)

xil_set_memory_storage Defines how an image‘s pixel values will
be stored in memory (if the image is
exported)

38 XIL Programmer’s Guide—August 1994

3

Figure 3-2 Memory Format for a 3-Band Image Containing 8-Bit Data Elements

Similarly, Figure 3-3 shows how a 3-band image with 16-bit data elements
might be stored.

Figure 3-3 Memory Format for a 3-Band Image Containing 16-Bit Data Elements

It is important to realize, however, that there may be unused bytes between
pixels and between scanlines.

As long as you’re processing an image using XIL functions, you don’t need to
know the details about how the image is stored in memory. However, there
may be occasions when you want to process an image directly. To do this, you

Pixel 1 Band 1 Pixel 1 Band 2 Pixel 1 Band 3 Pixel 2 Band 1

Pixel 2 Band 2 Pixel 2 Band 3 Pixel 3 Band 1 Pixel 3 Band 2

Word 1

Word 2

Pixel 1 Band 1 Pixel 1 Band 2

Pixel 1 Band 3 Pixel 2 Band 1

Word 1

Word 2

Pixel 2 Band 2 Pixel 2 Band 3Word 3

Pixel 3 Band 1 Pixel 3 Band 2Word 4

XIL Images 39

3

must export the image and then call xil_get_memory_storage() to obtain
the details about how the pixels values are stored. This function returns a
union of structures of the type defined below.

The structures that contain information about XIL_BYTE and XIL_SHORT
images both contain an element called data . This is a pointer to the beginning
of the pixel data. The structures also contain elements called pixel_stride
and scanline_stride . For an XIL_BYTE image, these elements indicate the
distance in bytes between pixels and between scanlines, and for an XIL_SHORT
image, they indicate the distance in 16-bit units between pixels and between
scanlines.

This information about an image’s memory storage remains valid only as long
as your image is exported. Once you reimport the image, the location of your
image’s pixel values in memory and the layout of those values may change
(except that the pixels will always remain in a pixel-sequential order).

typedef struct {
Xil_unsigned8 *data;
unsigned int scanline_stride;
unsigned long band_stride;
unsigned char offset;

} XilMemoryStorageBit;

typedef struct {
Xil_unsigned8 *data;
unsigned long scanline_stride;
unsigned int pixel_stride;

} XilMemoryStorageByte;

typedef struct {
Xil_signed16 *data;
unsigned long scanline_stride;
unsigned int pixel_stride;

} XilMemoryStorageShort;

typedef union {
XilMemoryStorageBit bit;
XilMemoryStorageByte byte;
XilMemoryStorageShort shrt;

} XilMemoryStorage;

40 XIL Programmer’s Guide—August 1994

3

XIL_BIT Images

Unlike images containing 8- and 16-bit data elements, multiband images
containing 1-bit data elements are stored in a band-sequential format. In
addition, scanlines are padded to the nearest byte boundary if necessary. For
instance, Figure 3-4 shows how a 3-band, 3-by-3 image containing 1-bit data
elements might look in memory.

XIL Images 41

3

Figure 3-4 Memory Format for a 3-Band Image Containing 1-Bit Data Elements

Pixel 1
Line 1

Pixel 2
Line 1

Pixel 3
Line 1

Pixel 1
Line 2

Pixel 2
Line 2

Pixel 3
Line 2

Byte 1

Byte 2

Byte 3
Pixel 1
Line 3

Pixel 2
Line 3

Pixel 3
Line 3

Band 1

Pixel 1
Line 1

Pixel 2
Line 1

Pixel 3
Line 1

Pixel 1
Line 2

Pixel 2
Line 2

Pixel 3
Line 2

Byte 4

Byte 5

Byte 6 Pixel 1
Line 3

Pixel 2
Line 3

Pixel 3
Line 3

Band 2

Pixel 1
Line 1

Pixel 2
Line 1

Pixel 3
Line 1

Pixel 1
Line 2

Pixel 2
Line 2

Pixel 3
Line 2

Byte 7

Byte 8

Byte 9
Pixel 1
Line 3

Pixel 2
Line 3

Pixel 3
Line 3

Band 3

42 XIL Programmer’s Guide—August 1994

3

To obtain a complete description of how an XIL_BIT image is stored in
memory, however, you must export the image and call
xil_get_memory_storage() . The function will give you access to the
structure members shown below.

The member data is a pointer to the first byte of pixel data. The member
scanline_stride indicates the number of bytes from the first byte of one
scanline to the first byte of the next, and band_stride indicates the number
of bytes from the beginning of one band to the beginning of the next. The
member offset specifies the number of bits from the beginning of a scanline
to the first bit that contains a pixel value.

Remember that the values of all these structure members remain valid only as
long as the image is exported.

Memory Formats for Images of Different Color Spaces

Besides an image’s data type, its color space can play a part in how the image
is stored. Consequently, you need to be aware of the ordering of bands for
multiband images of different color spaces, such as RGB, YCbCr, CMY, and
CMYK. For an RGB image, blue values are stored in the first band, green
values in the second, and red values in the third. For YCbCr images, luminance
(Y) values are stored in the first band, Cb values in the second, and Cr values in
the third. For CMY and CMYK images, cyan values are stored in the first band,
magenta values in the second, and yellow values in the third. For CMYK
images, black values are stored in a fourth band.

typedef struct {
Xil_unsigned8 *data;
unsigned int scanline_stride;
unsigned long band_stride;
unsigned char offset;

} XilMemoryStorageBit;
.
.
.
typedef union {

XilMemoryStorageBit bit;
XilMemoryStorageByte byte;
XilMemoryStorageShort shrt;

} XilMemoryStorage;

XIL Images 43

3

Types of XIL Images
There are two basic types of XIL images:

• Memory images
• Device images

As you will see in the upcoming section “Device Images,” device images can
be further subdivided into images that represent displays and images that
represent other devices. Images that represent displays are referred to as
display images. The main difference between these two subtypes of device
image is the way in which they are created.

Memory Images

The memory image is the most common type of XIL image. When you create
this type of image, using the function xil_create() , system memory is
allocated to store both the image structure that describes the image and the
image’s pixel values. All operations that do not read or write a device use
memory images exclusively.

Device Images

XIL device images represent devices such as displays, cameras, frame grabbers,
scanners, and printers. For each device image, the structure describing the
image is stored in system memory, but the image’s pixel values are read from
or written to the device. To create a device image, you generally pass the name
of a device to the function xil_create_from_device() . The exception to
this rule is that to create a display image, you call the function
xil_create_from_window() .

You can use a device image as either a source image or a destination image in
an XIL operation. When you use a device image as a source image, data is read
from the device; similarly, when you use a device image as a destination
image, data is written to the device.

The handler for each device is responsible for moving XIL images to or from
the device. The current release of the XIL Imaging Library includes a group of
these handlers that support standard devices.

44 XIL Programmer’s Guide—August 1994

3

Display Images

Display images are a special subclass of device images. They are very valuable
because they eliminate the need for the scenario shown in Figure 3-5.

Figure 3-5 Copying Data from a Temporary Image to the Display (Not Necessary)

Source
image

Temporary
image

X window

1. Process a source image and
write your output to a
temporary destination image.

2. Call a display routine that
copies the temporary image
to your display.

XIL Images 45

3

Display images enable the XIL library to process a source image and write the
results of the processing directly to an X window by using a display image as
the destination image for the operation. In other words, functions can write
directly to frame-buffer memory, so the need for the temporary image is
eliminated (see Figure 3-6).

Figure 3-6 Writing the Output of an Operation to a Display Image

To create a display image, you first create an X window. Then, you call the
function xil_create_from_window() , passing information to it about
which display and which window to associate with the display image.

Note – A display image cannot be created from an X window associated with
an 8-bit StaticColor , TrueColor , or DirectColor visual.

A display image can also serve as a source image in most cases (if the display
is readable). Any pixels that are obscured by another window when a read
takes place are set to 0.

Source
image

X window

1. Process a source image and
write your output directly to a
display image.

46 XIL Programmer’s Guide—August 1994

3

There are some restrictions on the types of images that can be display images.
The only possibilities are:

• 1-band images containing 1-bit data elements

• 1-band images containing 8-bit data elements

• 3-band images containing 8-bit data elements

Additional XIL Image Attributes
The remainder of this chapter discusses some additional image attributes:

• Origin
• Region of interest
• Color space
• Parent
• Image type
• Synchronization flag
• Readable and writable flags
• Name

Note – It is possible for applications to create additional image attributes. To
create and set an attribute, you use the function xil_set_attribute() and
to retrieve the value of an application-defined attribute, you use the function
xil_get_attribute() .

Origin

An image’s origin is a pair of floating-point numbers that define a point in the
image’s coordinate plane. By default, an image’s origin is in its upper-left
corner (0.0, 0.0), but you can change the origin using the function
xil_set_origin() . When an operation is performed, the origins of the
source image or images and the destination image are aligned. (The
floating-point origin values are rounded to integers for this purpose.) Then, for
all nongeometric operations, the intersection of the source and destination
images determines which pixels in the destination image will be modified. See
Figure 3-7.

XIL Images 47

3

Figure 3-7 Image Origins

Only the shaded area shown in Figure 3-7 is modified in the destination image,
and only the shaded area in the source is used by the operator.

Table 3-3 lists the XIL functions you use to read or set an image’s origin.

Table 3-3 Functions for Reading or Setting an Image’s Origin

Function Name What the Function Does

xil_get_origin Gets both coordinates of an image’s
origin

xil_get_origin_x Gets the x coordinate of an image’s origin

xil_get_origin_y Gets the y coordinate of an image’s origin

xil_set_origin Sets an image’s origin

Source Destination Intersection

S D

S

D

origin

origin origin

48 XIL Programmer’s Guide—August 1994

3

Region of Interest

An XIL region of interest (ROI) is a data structure of type XilRoi that
describes a single-bit mask for an image. If the region of interest is an attribute
of a destination image, it determines which pixels in the destination may be
written. Where there are 0’s in the ROI, the destination image may not be
modified, and where there are 1’s, it may be modified. If the ROI is an attribute
of a source image, it determines which pixels may be used as input to an
operation.

Since an ROI is an attribute of an image, as opposed to a parameter for an
operation, two or three ROIs may be involved in a single operation; for example,
the operation’s source image may have one ROI, and the operation’s destination
image another. In this case, the ROI used for the operation is the intersection of
the ROIs associated with the source and destination images, as shown in
Figure 3-8.

Figure 3-8 Regions of Interest

The dark gray area in the image on the right represents the ROI used for the
operation.

If the origin of the source or destination has been set to something other than
0.0, the origins are first aligned; then, the ROI is determined. See Figure 3-9.

Source ROI Destination ROI ROI used for operation

XIL Images 49

3

Figure 3-9 Regions of Interest and Origins

The dark gray area represents the ROI used for the operation.

Creating and Destroying an ROI

There are several ways to create an ROI.

• You can create a new ROI data structure using the function
xil_roi_create() , which returns a handle to the ROI. When first created,
the ROI is empty. For information on how to set values in the ROI, see the
next section “Building an ROI.”

• You can create a copy of an existing ROI using the function
xil_roi_create_copy() .

• You can get a copy of the ROI associated with a image using the function
xil_get_roi() .

• You can create an ROI by taking the union or intersection of two existing
ROIs. The functions you use for these operations are xil_roi_unite()
and xil_roi_intersect() .

When you are finished with an ROI, you destroy it using the function
xil_roi_destroy() .

Source ROI Destination ROI ROI used for operation

origin origin

50 XIL Programmer’s Guide—August 1994

3

Building an ROI

After creating an empty ROI, you can build a region of interest using the
functions shown in Table 3-4.

Note – It’s also possible to convert an ROI to a single-bit XIL image or an X
region. To perform these jobs, you use the functions
xil_roi_get_as_image() and xil_roi_get_as_region() , respectively.

Setting an Image’s ROI Attribute

Once you have created an ROI and established its contents, you make it an
attribute of an image using the function xil_set_roi() . You can get a copy
of the ROI associated with a particular image by using the function
xil_get_roi() .

Translating an ROI

The library includes a function xil_roi_translate() that moves all the
pixels in an ROI that have been set to 1 left or right and/or up or down. The
prototype for this function is shown below.

Table 3-4 Functions Used to Build an ROI

Function Name What the Function Does

xil_roi_add_rect Adds a rectangle to the ROI. You specify
the width and height of the rectangle and
its coordinates.

xil_roi_subtract_rect Subtracts a rectangle from an ROI.

xil_roi_add_image Adds an XIL_BIT image to the ROI. Bits
that are set in the image are added to the
ROI.

xil_roi_add_region Adds an X region to an ROI.

XilRoi xil_roi_translate(XilRoi roi, int xoffset, int yoffset);

XIL Images 51

3

The parameter roi is the ROI whose pixels you want to translate. The
parameters xoffset and yoffset are integers that represent the number of
pixels the ROI should be moved horizontally and vertically. If xoffset is
positive, the ROI is moved to the right, and if it is negative, the ROI is moved
to the left. If yoffset is positive, the ROI is moved down, and if it is negative,
the ROI is moved up.

The function returns a handle to the translated ROI.

Naming an ROI

The XIL library enables you to specify a string that will serve as the name for
an ROI. This naming is useful because it enables you to later get a handle to an
ROI by using its name. The functions that allow you to perform these tasks are
listed in Table 3-5.

Note – When you call xil_roi_get_by_name() , you are returned a pointer
to the named object, not a copy of it. Therefore, you should not destroy an ROI
obtained in this way.

Table 3-5 ROI Naming Functions

Function Name What the Function Does

xil_roi_set_name Sets the name of an ROI

xil_roi_get_name Returns a copy of an ROI’s name

xil_roi_get_by_name Returns a handle to the ROI that has the
name you specify

52 XIL Programmer’s Guide—August 1994

3

Color Space

A newly created image does not have a color space associated with it, but you
can assign one to it using the function xil_set_colorspace() . The possible
color spaces are:

• CCIR Rec. 709 RGB
• A linear version of CCIR Rec. 709 RGB
• CCIR Rec. 709 YCbCr

• A luminance-only space derived from CCIR Rec. 709 YCbCr

• A linear version of the luminance-only space mentioned above
• CCIR Rec. 601 YCbCr

• A luminance-only space derived from CCIR Rec. 601 YCbCr

• A YCbCr color space defined by Kodak for PhotoCD
• A linear CMY
• A linear CMYK

Images are usually assigned color spaces so that an image can be converted
from one color space to another (using the xil_color_convert() function).
For example, if you had an RGB image and wanted to convert it to the YCbCr

color space, you would follow this procedure:

1. Set the color-space attribute of your RGB image to one of the RGB color
spaces listed above.

2. Create an image whose width, height, number of bands, and data type
match those of the RGB image.

3. Set the new image’s color-space attribute to one of the YCbCr color spaces
listed above.

4. Use the function xil_color_convert() to convert the RGB data from the
first image to its YCbCr counterpart and write the converted data to the
newly created image.

For more information about color-space conversion, see the section
“Color-Space Conversion” on page 122.

XIL Images 53

3

Parent

The XIL library enables you to create a child image (subimage) from an image
(the child’s parent). Such a child image has an attribute that identifies its
parent image. To retrieve this attribute, a handle to the parent image, use the
function xil_get_parent() .

To create the child image, you use the function xil_create_child() , whose
prototype is shown below.

This function returns a handle to the child image. The parameters to the
function are defined in Table 3-6.

Note – A child image does not get a copy of part of the parent’s pixel data, but
a pointer to that data.

XilImage xil_create_child(XilImage src, unsigned int xstart,
 unsigned int ystart, unsigned int width, unsigned int height,
 unsigned int startband, unsigned int numbands);

Table 3-6 Parameters to xil_create_child()

Parameter How It Is Used

src A handle to the parent image

xstart The horizontal offset in pixels from the upper-left corner of the
source image to the upper-left corner of the child

ystart The vertical offset in pixels from the upper-left corner of the
source image to the upper-left corner of the child

width The width of the child image in pixels

height The height of the child image in pixels

startband The offset in bands from the first band in the parent to the first
band in the child

numbands The number of bands in the child image. These bands must
match contiguous bands in the parent.

54 XIL Programmer’s Guide—August 1994

3

If overlapping but not coincident sibling images (children of the same parent)
are specified as the source and destination for an operation, the operation is
performed. However, the library generates a warning message and the results
of the operation are undefined.

Note – An exception to this behavior is xil_copy() , which detects the
overlap and correctly generates the destination image.

In general, you read the attributes of a child image using the same functions
you use to read the attributes of a parent. However, the library does contain a
routine xil_get_child_offsets() that is designed for use only with child
images. This routine returns the values of xstart , ystart , and startband
that were used in creating the child image.

Image Type

For every XIL image, there is a subset of attributes that constitutes its image
type. These attributes are its width, height, number of bands, data type, and
color space. If you call the function xil_get_imagetype() and pass it a
handle to an image, the routine will return a data structure of type
XilImageType that contains only these data elements. You can use this
structure to create an image of the same type as the one whose image type you
just ascertained. To create an image in this way, you use the function
xil_create_from_type() .

void xil_get_child_offsets(XilImage child,
 unsigned int *offset_x, unsigned int *offset_y,
 unsigned int *offset_band);

XIL Images 55

3

The XIL library also contains a number of utility functions that affect image
types. These are listed in Table 3-7.

Synchronization Flag

XIL operations that affect images may be deferred similar to the way in which
Xlib client requests are buffered before being sent to the X server. However, if
an image’s synchronization flag is set, operations on that image will not be
deferred. You set this flag using the function xil_set_synchronize() . You
can determine whether the flag is currently set by calling the function
xil_get_synchronize() .

Readable and Writable Flags

Memory images can always be read and written to; however, certain device
images may be read-only or write-only. To determine whether a device image
is readable, you use the function xil_get_readable() .

Table 3-7 Image Type Utility Functions

Function Name What the Function Does

xil_imagetype_get_width Gets the width of an image type in pixels

xil_imagetype_get_height Gets the height of an image type in pixels

xil_imagetype_get_size Gets the width and height of an image
type in pixels

xil_imagetype_get_nbands Gets the number of bands in an image
type

xil_imagetype_get_datatype Gets the data type of an image type

xil_imagetype_get_info Gets the width, height, number of bands,
and data type of an image type

xil_imagetype_set_name Sets the name of an image type

xil_imagetype_get_name Returns a copy of an image type’s name

xil_imagetype_get_by_name Returns a handle to an image type that
has the name you specify

Xil_boolean xil_get_readable(XilImage device_image);

56 XIL Programmer’s Guide—August 1994

3

This function returns TRUE if the device image is readable.

To determine whether a device image is writable, you use the function
xil_get_writable) .

This function returns TRUE if the device image is writable.

Name

The library enables you to assign a name (char *) to an image. This type of
naming is useful because it enables you to get a handle to an image later in
your program by specifying the name of the image. The functions that allow
for the naming of images are shown in Table 3-8.

Xil_boolean xil_get_writable(XilImage device_image);

Table 3-8 Image Naming Functions

Function Name What the Function Does

xil_set_name Sets the name of an image

xil_get_name Returns a copy of an image’s name

xil_get_by_name Returns a handle to the image that has
the name you specify

57

Handling Input and Output 4

This chapter takes a systematic look at how you handle the reading and
writing of images in an XIL program. Basically, input can come from, and
output can go to, three places:

• A file

• A display

• A device such as a scanner, frame grabber, video card, or printer

The following sections explain the different possibilities.

Note – This chapter deals exclusively with reading and writing single images.
As we’ll discuss in Chapter 12, “Compressing and Decompressing Sequences
of Images,” XIL programs can also read and write data streams that represent
compressed video or multipage documents. These data streams are stored in
an XIL data structure called a compressed image sequence. Moving data into
and out of these structures is discussed in Chapter 12.

Moving Image Data from a File to an XIL Image
The XIL library does not include any single functions that you use to read
image data from a particular type of image file into an XIL image. Instead, the
library provides routines that enable you to use the following general
procedure to load images from files.

58 XIL Programmer’s Guide—August 1994

4

1. Read the image file’s header (or take whatever action is appropriate) to
determine the dimensions and data type of the image.
Specifically, you need to know the image’s width in pixels, its height in
pixels, the number of bands in the image, and the type of data used to
represent the value of one band of one pixel. You need this information to
create an XIL image in which you can store the image’s pixel values.

2. Create an XIL image in which to store the pixel values you will read from
the image file.
To create your XIL image, you use the function xil_create() , whose
function prototype is shown below.

The parameter state is the system-state data structure that was returned
when you called xil_open() to initialize the library. The parameters
width , height , and nbands are integers (unsigned int) representing the
image’s width, height, and number of bands. The final parameter datatype
is an enumeration constant of type XilDataType , whose definition is
shown below.

The constant XIL_BIT indicates that the image contains 1-bit data; the
constant XIL_BYTE indicates that the image contains unsigned 8-bit data;
and the constant XIL_SHORT indicates that the image contains signed 16-bit
data. These are the only data types supported by the XIL library.

When the image has been created, the library returns a handle to the XIL
image.

XilImage xil_create(XilSystemState state, unsigned int width,
 unsigned int height, unsigned int nbands,
 XilDataType datatype);

enum XilDataType { XIL_BIT, XIL_BYTE, XIL_SHORT };

Handling Input and Output 59

4

3. Export the XIL image you just created.
You export the image using the function xil_export() , whose function
prototype is shown below.

You pass this routine the handle to the image you created in the last step.
The return value—XIL_SUCCESS or XIL_FAILURE —indicates whether the
export operation was successful.

The reason for exporting the image is to gain access to information about
how the image is stored in memory. This information is not available to the
application while the image is imported.

4. Get information about how your XIL image’s pixel values are stored in
memory.
To obtain this information, you call the function
xil_get_memory_storage() , whose function prototype is shown below.

int xil_export(XilImage image);

Xil_boolean xil_get_memory_storage(XilImage image,
 XilMemoryStorage *storage);

60 XIL Programmer’s Guide—August 1994

4

The function’s return value indicates whether the routine succeeded (TRUE)
or failed (FALSE). The parameter image is a handle to an XIL image. The
argument &storage is a pointer to a union of structures defined like this:

typedef struct {
 Xil_unsigned8 *data; /* pointer to first byte of image */
 unsigned int scanline_stride; /* number of bytes between scanlines */
 unsigned long band_stride; /* number of bytes between bands */
 unsigned char offset; /* number of bits to the first pixel */
} XilMemoryStorageBit;

typedef struct {
 Xil_unsigned8 *data; /* pointer to first byte of image */
 unsigned long scanline_stride; /* number of bytes between scanlines */
 unsigned int pixel_stride; /* number of bytes between pixels */
} XilMemoryStorageByte;

typedef struct {
 Xil_signed16 *data; /* pointer to first 16-bit word of image */
 unsigned long scanline_stride; /* no of 16-bit words between scanlines */
 unsigned int pixel_stride; /* number of 16-bit words between pixels */
} XilMemoryStorageShort;

typedef union {
 XilMemoryStorageBit bit;
 XilMemoryStorageByte byte;
 XilMemoryStorageShort shrt;
} XilMemoryStorage;

Handling Input and Output 61

4

The structure you should look at for information depends on the data type
of your image. If it is an XIL_BIT image, look at the structure bit ; if it is an
XIL_BYTE image, look at the structure byte ; and if it is an XIL_SHORT
image, look at the structure shrt . The elements in the appropriate structure
will provide you with the information you need to write your image to
memory in the proper location and in the proper format.

5. Read the pixel values stored in your image file and write them to memory
using the information obtained in the preceding step.
How you perform this step depends on several factors:

• The type of data in your image: 1-bit, 8-bit, or 16-bit.
• The organization of the data elements in your image file. For multiband

images, the elements may be arranged in a pixel-sequential or
band-sequential format.

• The organization of the memory allocated to hold your XIL image. The
information you obtained in step 4 describes this organization.

One of the examples supplied with the XIL library contains a function called
load_file() that illustrates how to handle this step for the cases listed in
Table 4-1.

You can find this routine in the directory $XILHOME/examples/display .

Table 4-1 Cases Handled by the Function load_file()

Data Type File Format
Memory Layout
for XIL Image

XIL_BIT Band sequential Any

XIL_BYTE Pixel sequential Any

XIL_SHORT Pixel sequential Any

62 XIL Programmer’s Guide—August 1994

4

6. Import your XIL image.
You import that image using a call to xil_import() , whose function
prototype is shown below.

The parameter image is a handle to an XIL image, and change_flag is a
flag that indicates whether the image was modified while it was exported. If
the image was modified, the flag should be set to 1; otherwise, it should be
set to 0.

Caution – After you import an image you give up control of it, and the
pointers you received for it from a previous xil_export() are invalid. If you
need to use an image’s data after the image has been imported, you must call
xil_export() again to export the image, and then call
xil_get_memory_storage() again to get new pointers to the image data.
After accessing the data, be sure to get the pixel stride and scanline stride
when accessing pixel values.

For example, although an RGB image will always contain blue values,
followed by green values, followed by red values, the data layout in XIL
memory is arbitrary; there may be any number of pixels between the next set
of blue, green, and red values. Access the pixel address of the first blue value,
or the pixel stride to the next blue value, or the scanline stride to the next
scanline, through the values returned by xil_get_memory_storage() . For
more information, see “Exporting XIL Images” on page 36 and “Memory
Formats for XIL Images” on page 37.

Moving Image Data from an XIL Image to a File
Just as the XIL library doesn’t contain single functions that enable you to read
particular types of image files, it does not include single functions that enable
you to write images to files in particular formats. Instead, the XIL library
provides a general mechanism for writing image data to files. The procedure to
follow is discussed below.

void xil_import(XilImage image, Xil_boolean change_flag);

!

Handling Input and Output 63

4

1. Determine the dimensions and data type of your XIL image.
You may already know the following attributes of your XIL image: width,
height, number of bands, and data type. But if you don’t, you should use
the function xil_get_info() to obtain that information. You will need to
know these values to determine how much image data needs to be written
to the file.

The function prototype for xil_get_info() is shown below.

The parameter image is a handle to an XIL image. The remaining
parameters are the addresses of the variables in which you want the
function to return the information you asked for.

You may want to read other attributes of your XIL image depending on
what type of information about the image you must write to your image file.
See the section “Additional XIL Image Attributes” on page 46 for a list of
image attributes you may be interested in.

2. Export the image.
You export the image using the function xil_export() . Again, the reason
for exporting the image is to gain access to information about how the
image is stored in memory. For example, for an XIL_BYTE image, you need
to know the address at which the image data begins, the number of bytes
between pixels, and the number of bytes between scanlines.

3. Get information about how your image’s pixel values are stored in
memory.
You get this information by calling the function
xil_get_memory_storage() . If you haven’t read the section “Moving
Image Data from a File to an XIL Image” on page 57, see that section for an
explanation of what information this function provides.

4. Write the appropriate header information and pixel values to your file.
At this point, you should have all the information that you plan to write to
your file’s header, a pointer to your XIL image’s pixel values, and
information about the layout of those values in memory. So your only
remaining XIL-related concern should be “Do I want to write the pixel

void xil_get_info(XilImage image, unsigned int *width,
 unsigned int *height, unsigned int *nbands,
 XilDataType *datatype);

64 XIL Programmer’s Guide—August 1994

4

values to my file in the format in which they are stored in memory?” To
answer this question, you need to know how pixel values for XIL images are
stored in memory (see the section “Memory Formats for XIL Images” on
page 37) and what kind of organization of data your file format demands.

Sending Output to (and Reading Input from) the Display
If you want to display an image in an XIL program, you must display that
image in an X window. To perform this task, you first create an X window of
the correct size. You then call the function xil_create_from_window() to
create an XIL display image. This function turns an X window into a legitimate
destination image for an XIL operation. You can then call an XIL function such
as xil_rotate() and name the display image as the function’s destination
image. If you do, a rotated image will be written to your display’s frame buffer.

The steps listed below discuss this procedure in a bit more detail:

1. Use the Xlib function XCreateSimpleWindow() or XCreateWindow() to
create your X window.
Before you create this window, you need to know—at a minimum—the
width and height of the image you want to display. If you don’t have this
information, call the function xil_get_info() . It gives you information
about an image’s width, height, number of bands, and data type. You can
then call one of the Xlib functions mentioned above to create the window.

For information about using XCreateSimpleWindow() and
XCreateWindow() , see the Xlib Programming Manual and the Xlib Reference
Manual.

Note – A display image cannot be created from an X window associated with
an 8-bit StaticColor , TrueColor , or DirectColor visual.

Handling Input and Output 65

4

2. Create an XIL display image.
As mentioned above, you create this display image by calling the function
xil_create_from_window() , whose function prototype is shown below:

The parameter state is the system-state data structure that was returned
when you called xil_open() to initialize the XIL library. The parameters
display and window are of data types defined in Xlib. The display
parameter is a pointer to a structure that is returned when you initially
connect to the X server. It contains information about the server and the
screens the server controls. The parameter window is the ID of the X
window you created in the previous step. The return value of
xil_create_from_window() is a handle to your newly created display
image.

Once you have created this display image, you can use it as a destination
image for XIL operations just as you would an XIL memory image. When
you name the display image as your destination image, the operation’s
output is written directly to your display’s frame buffer and displayed in
the X window you created in step 1.

3. Call an XIL function that processes a source image and writes its output to
the display image.
The simplest thing to try out here is to use xil_copy() to copy a source
XIL image to the display. This routine takes two arguments: a handle to the
source image and a handle to the display image.

Note – To see a simple example of a program that displays its output in an X
window, look in the directory $XILHOME/examples/example1 . The relevant
code can be found in the source files example1.c and window.c .

To resize a window that contains an XilImage , destroy the XilImage
attached to the window, resize the window, wait for a ConfigureNotify
event to ensure the XResizeWindow() is complete, then call
xil_create_from_window() to recreate the image in the new window size.

XilImage xil_create_from_window (XilSystemState state,
 Display *display, Window window);

66 XIL Programmer’s Guide—August 1994

4

You cannot use an X window’s backing_store attribute to maintain an
image in the window when the window is obscured or unmapped (see the Xlib
Programming Manual). Thus, your code should always check for an Expose
event and take the appropriate measures for displaying the image again when
the window is exposed.

Possible Complications

One question we ignored in the preceding discussion is “What if the depths of
your source image and your X window are different?” What if you have a
source image that has three bands and contains 8-bit data (24 bits per pixel)
and an X window that is 8 bits deep? The answer to this particular question
might be that you call an XIL function to dither the source image from 24 bits
to 8 bits before writing it to the window. But other types of mismatches can
occur. Chapter 6, “Preparing Images for Display,” discusses an example
program that handles many of these mismatches.

Another concern is “What happens if the currently installed X colormap is not
appropriate for the image you want to display?” The answer this time is that
you must solve this problem using Xlib calls. Specifically, you need to create
and install an X colormap suitable for displaying your image. For complete
information about how to create and install an X colormap, see the Xlib
Programming Manual and the Xlib Reference Manual. For examples of functions
that handle this task, look in the directory $XILHOME/examples , which
contains a number of sample programs. For example, you might be interested
in looking at the following routines:

• window.c , which is located in the subdirectory example1

• window.c (a modified version of the routine mentioned above), which is
located in the subdirectory display

• xilcis_color.c , which is located in the subdirectory
movie_player_example .

Reading a Display Image

Although display images are generally used for output, you can also read a
display image. Assuming that you have created such an image, you can read
the data in the X window associated with it into an XIL image by taking these
steps:

Handling Input and Output 67

4

1. If you don’t already have an XIL image that you can read the image data
in the frame buffer into, you must create one.
You create this image using the function xil_create() . The image you
create must have the proper width, height, number of bands, and data type.

2. Perform an XIL operation using the display image as your source image.
For example, you could use the function xil_copy() to copy an image
from your screen to an XIL memory image. Any pixels in the on-screen
image that are obscured by another window when the read occurs are
cleared to 0.

Reading and Writing Devices Other than Displays
The XIL library enables you to get input from, and write output to, not only
displays, but other devices such as scanners, frame grabbers, video cards, and
printers. The interface to these devices is very simple. You call a single XIL
function to link a device to an XIL device image, which for most practical
purposes is treated like an XIL memory image. The only special thing about
the device image is that when you perform an XIL operation and your source
image is a device image, the operation reads its input from the associated
device. Likewise, if an operation’s destination image is a device image, output
is written to the associated device.

Each device type has attributes associated with it. For example, the Photo CD
reader that comes with the XIL library (see Chapter 5, “Reading Kodak Photo
CD Images”) has a FILEPATH attribute that indicates the Photo CD image you
want to read, and a RESOLUTION attribute that specifies a display resolution.

Depending on the device, you either need to create the device image, then set
its attributes, or initialize the device attributes before creating the device image.
The method to use depends on the device. Typically, devices don’t require
initialized attributes, so you create the device image, then set its attributes.
However, some devices do require initialized attributes; this generally occurs
when:

• The device needs one or more attributes defined at the time the device is
created.

• Multiple attributes are interdependent and need to be set simultaneously for
the device.

68 XIL Programmer’s Guide—August 1994

4

• Setting the attributes requires you to allocate a substantial block of memory
before creating the image.

The group that writes the device handler must indicate whether the device
requires initialized attributes.

Initializing a Device’s Attributes

As mentioned in the previous section, some device types require you to
initialize one or more device attributes before creating an image for the device.
To initialize a device’s attributes in the XIL library, you create an XIL data
structure of type XilDevice . Once this device object exists, you use it to store
the device-initialization values. You then pass the device object as an argument
on the xil_create_from_device() function that creates the device image,
as discussed in “Creating a Device Image” on page 71; this applies to the
device image all the attributes stored by the device object.

Note – Devices that don’t require attribute initialization typically don’t
recognize or support device objects. For these devices, you can’t use a device
object to initialize device attributes, and you pass NULL for the deviceObj
parameter on the xil_create_from_device() function.

After you’re done using the device object, you need to destroy it to release the
memory allocated to it. You can destroy it immediately after using it, or you
can keep the object around for creating other devices of the same type, then
destroy the object when you are finally done with it.

The following steps discuss the device object in more detail. These steps can be
used only for devices that require or can recognize initialized device attributes.

Handling Input and Output 69

4

1. Create the device object.
To create a device object, call the function xil_device_create() , whose
function prototype is shown below.

The parameter state is the system-state data structure that was returned
by xil_open() when you initialized the XIL library. The devicename
parameter is the name of the device to be associated with the device image.
This name must be provided by the group that writes the device handler
that enables the device in the XIL library.

For example, say you plan to write an image to a video card. You might
associate a device object with it as shown in the following code fragment:

In this example, the device’s name is vidCard . This name is provided by
the group the writes the device handler. The object deviceObj is now
associated only with a vidCard device type; the object cannot subsequently
be associated with a different device type.

The device object’s only use is to initialize device attributes when you call
the xil_create_from_device() function that creates the device image. It
cannot be used to adjust a device image’s attributes after the device image is
created; xil_set_device_attribute() does that, as discussed on
page 72. However, after using the device object to create one device image,
you can use the same object to store different initialization attributes, then
use the modified device object when you create another device image of the
same type.

XilDevice xil_device_create(XilSystemState state,
 char *devicename);

XilSystemState state = xil_open();
XilDevice deviceObj;

deviceObj = xil_device_create(state, “vidCard”);

70 XIL Programmer’s Guide—August 1994

4

2. Set the device-initialization values.
To store device-initialization values in a device object, call the function
xil_device_set_value() , whose function prototype is shown below.

The parameter deviceObj is the device object associated with the device
type. The parameter attribute is the name of the attribute you want to
set, and value is the attribute’s value. As with device names, the attribute
names and their possible values are defined by the group that writes the
device handler.

Only attributes the device understands should be set on the device object.
Setting attributes the device doesn’t recognize generates an error. Attributes
and their associated values may reference data in the application’s data
space; therefore, any data associated with an XilDevice object must
remain valid while it is referenced by the device object.

To set multiple attributes, make a separate xil_device_set_value()
function call for each; although the attributes are set individually on the
device object, they are applied simultaneously to the device image when
that device image is actually created (see “Creating a Device Image” on
page 71). You can set as many attributes as you need to derive all required
initialization attributes for the device.

For example, if you created deviceObj for a video card as shown in Step 1
on page 69, you might initialize its volume and speed attributes as shown in
the following code fragment:

3. Create the device image.
Do this only after setting all needed device attributes. The next section tells
you how to create the image.

void xil_device_set_value(XilDevice deviceObj,
 char *attribute, void *value);

int vol_control = 4, speed_control = 5;

xil_device_set_value(deviceObj,
 “VOLUME”, (void*) vol_control);
xil_device_set_value(deviceObj,
 “SPEED”, (void*) speed_control);

Handling Input and Output 71

4

4. Destroy the device object.
You can do this immediately after creating the device image. However, if
you plan to create other devices of the same type, you may want to keep the
device object around to initialize those other devices. If desired, you can set
different initialization values on the object. When you’re done using it,
destroy the object; “Destroying a Device Object” on page 73 tells you how.

Creating a Device Image

As explained in “Initializing a Device’s Attributes” on page 68, some device
types require that one or more device attributes be initialized before the device
image is created; for those devices, initialize the required attributes before
following the steps in this section. For devices that don’t support initialized
attributes, the first step for using the device is to create a device image for it.
Once the device image is created, you can set its required attributes, then use
the image in an XIL operation.

The following steps show you how to create a device image and set its
attributes.

1. Create a device image.
To create a device image, call the function xil_create_from_device() ,
whose function prototype is shown below.

The parameter state is the system-state data structure that was returned to
you when you called xil_open() to initialize the XIL library. The
devicename parameter is the name of the device to be associated with the
device image; the name of the device must be provided by the group that
writes the device handler. If you initialized attributes for this device type,
the device name should be the same name specified on the
xil_device_create() function shown in Step 1 on page 69. The final
parameter, deviceObj , is the device object you created to initialize the
device’s attributes. If you didn’t create a device object for this device type,
pass NULL for this parameter.

XilImage xil_create_from_device(XilSystemState state,
 char *devicename, XilDevice deviceObj);

72 XIL Programmer’s Guide—August 1994

4

Note – Devices that don’t require attribute initialization typically don’t
recognize or support device objects. For these devices, you can’t use a device
object to set attributes and you must pass NULL for the deviceObj argument.

2. Set any required attributes for the device you’re reading or writing.
For instance, say you want to acquire an image from a frame grabber, and
the frame grabber has a brightness control. Before you grab the image, you
might want to adjust that control. The XIL function that enables you to
make this adjustment is called xil_set_device_attribute() . Its
prototype is shown below.

The parameters to this function are a handle to your device image, the name
of an attribute, and a value for the attribute. For example, you might set the
frame grabber’s brightness using the function call

xil_set_device_attribute(device_image, “BRIGHTNESS”, (void *).5);

Like device names, the names of device attributes and their possible values
are defined by the group that writes the handler for the device.

Normally, xil_set_device_attribute() returns the value
XIL_SUCCESS. If the function is unable to set the attribute, it returns
XIL_FAILURE .

The XIL library also provides the xil_get_device_attribute()
function, which reads the value of a device attribute. Its function prototype
is shown below.

3. Perform an XIL operation using your device image as either the source or
destination for the operation.
If the operation’s source image is a device image, the operation will read an
image from the associated device. For example, the operation might read a
document on a scanner or get a frame of video from a video card. If the

int xil_set_device_attribute(XilImage image, char *attribute,
 void *value);

int xil_get_device_attribute(XilImage image,
 char *attribute, void **value);

Handling Input and Output 73

4

operation’s destination image is a device image, the operation will write an
image to the associated device. For instance, the operation might print a
color image on a color printer.

Destroying a Device Object

When you create a device object, you associate it with a particular device type.
You can then use the device object to initialize as many device images as
needed of the same device type. When you are done using the device object,
you must destroy it to release the memory allocated to it.

To destroy a device object, call the xil_device_destroy() function, whose
prototype is shown below.

The only parameter on xil_device_destroy() is the handle to the device
object.

void xil_device_destroy(XilDevice deviceObj);

74 XIL Programmer’s Guide—August 1994

4

75

Reading Kodak Photo CD Images 5

The XIL library includes a device handler that reads and decodes images
stored in Eastman Kodak Company’s Photo CD™ format. This chapter explains
how you use the XIL library to read such images. Before delving into that
subject, however, the chapter briefly discusses Photo CD technology in general:
how images are scanned in, the PhotoYCC™ color space in which image data is
stored, and how the data is stored on the compact disk.

The Photo CD Technology
Today, you can take your 35 mm film or slides to a licensed photofinisher and
have your pictures stored on a Photo CD disk. Each disk can accommodate
over 100 photographs. You can then view your pictures on a television set
using either a Photo CD player or a Philips CD-I system. Or you can view
them on your computer using a CD-ROM player, if you have the necessary
software.

The Photo CD Imaging Workstation

When you take your film or slides to the photofinisher, the photofinisher puts
your pictures on a Photo CD disk using a Photo CD Imaging Workstation. This
workstation includes a scanner, a workstation that serves as a “Data Manager,”
and a CD writer. The scanner scans your 35 mm film or slides and produces
digital images.

The data in these images represents RGB values. The Data Manager then

76 XIL Programmer’s Guide—August 1994

5

• Converts the RGB image data to the PhotoYCC color space

• Subsamples the chrominance values in each PhotoYCC image so that there
is one pair of chrominance values for each two-by-two block of luminance
values

• Produces multiple versions of each image with varying resolutions

• Uses the CD writer to write the multiple versions of each image to a
compact disk

How Images Are Stored

For XIL programming, the two main things to bear in mind about Photo CD
images are

• The images are stored in the PhotoYCC color space

• Each image is stored at multiple resolutions

The PhotoYCC Color Space

Kodak decided to convert images to a YCbCr color space because the data in
the chrominance channels of YCbCr images can be subsampled without greatly
affecting image quality. This ability to subsample the image data was
considered important because a single scanned-in image requires 18 Mbytes of
storage. After subsampling, an image requires only half that amount.

The decision to develop the PhotoYCC color space instead of using an existing
YCbCr color space (such as the one defined in CCIR Recommendation 709)
came about because Kodak wanted a device-independent color space, one with
a broad color gamut. CCIR Rec. 709 YCbCr, for example, limits its color gamut
to colors that can be displayed on a high-definition television. Photo CD
images may be displayed on televisions, but they may also be output to
high-quality printers.

As an XIL programmer, you really only need to know (1) that when you read a
Photo CD image into an XIL image, the image data is PhotoYCC data and (2)
that the XIL library supports the conversion of images to and from the
PhotoYCC color space. You must convert the data to another color space before
you can display or print the image. See “Converting the Image’s Color Space”
on page 83 for more information on this subject.

Reading Kodak Photo CD Images 77

5

Image Resolutions Supported in the XIL Library

As mentioned in “The Photo CD Imaging Workstation” on page 75, Photo CD
images are stored at multiple resolutions. Table 5-1 shows the resolutions
supported by the XIL library and the names Kodak has given to them.

Reading Photo CD Images Using the XIL Library
Chapter 3, “XIL Images,” introduced the idea of a device image—an image that
resides on a device such as a scanner or a printer and can be used as the source
or destination image for an XIL operation. In general, support for these devices
will be provided by third parties. However, the XIL library does include a
loadable device handler that reads Photo CD images. This means that Photo
CD images can be treated as device images.

The section “Reading and Writing Devices Other than Displays” on page 67
covered the general procedure for creating a device image, setting
device-image attributes, and using a device image in an operation. The sections
below detail the specific calls you use to read and operate on a Photo CD
image.

Table 5-1 Resolutions of Photo CD Images

Resolution Name

192 by 128 Base/16

384 by 256 Base/4

768 by 512 Base

1536 by 1024 4Base

3072 by 2048 16Base

6144 by 4096 64Base

78 XIL Programmer’s Guide—August 1994

5

Creating a Device Image

To create a device image that represents a Photo CD image, you use the
function xil_create_from_device() , whose function prototype is shown
below.

The first parameter to this function is a handle to the system state. The second
is a string that identifies the Photo CD device handler: “ioSUNWPhotoCD” .
And the third specifies a device object that has been associated with the device
type for initializing device attributes. The Photo CD reader doesn’t use or
recognize associated device objects, so this parameter must be NULL. Therefore,
the code to create a device image associated with a Photo CD image will look
something like this:

The return value of the function, ycc_photocd_image , is a handle to the
device image.

XilImage xil_create_from_device(XilSystemState state,
char* devicename, XilDevice deviceObj);

XilImage ycc_photocd_image;
XilSystemState state;

ycc_photocd_image = xil_create_from_device(state,
“ioSUNWPhotoCD”, NULL);

Reading Kodak Photo CD Images 79

5

Setting Device-Image Attributes

Before you can read a Photo CD image, you must create the appropriate device
image, then set the necessary attributes for that image. The attributes you may
set for a Photo CD device image are shown in Table 5-2.

A Photo CD device images doesn’t require any attribute values at creation
time; therefore, you cannot associate a device object with it to initialize its
attributes at creation time (see “Initializing a Device’s Attributes” on page 68).

The FILEPATH Attribute

After creating a Photo CD image, you must set a FILEPATH attribute for it that
indicates which image you want to read. To set this attribute, call the function
xil_set_device_attribute() :

Note – The last part of the path to the image usually has the form
.../PHOTO_CD/IMAGES/IMG nnnn .PCD. This part of the pathname reflects
the directory structure on the Photo CD disk.

Table 5-2 Photo CD Image Attributes

Attribute Meaning

FILEPATH The full pathname of the Photo CD image you want to read

RESOLUTION The resolution at which you want to read the image. The
possible resolutions are listed in Table 5-1 on page 77.

MAX_RESOLUTION A read-only attribute indicating the highest resolution at which
an image is stored. (In general, each image is stored at all
possible resolutions, but there are exceptions to this rule.)

ROTATION A read-only attribute indicating the amount of rotation
required to display the image in its proper orientation.

XilImage ycc_photocd_image;
char *pathname = “...”;

xil_set_device_attribute(ycc_photocd_image, “FILEPATH”,
(void *)pathname);

80 XIL Programmer’s Guide—August 1994

5

You can also read the value of the FILEPATH attribute if you need to determine
which image you’ll be reading if you read the device image. You read this
value using the function xil_get_device_attribute() :

The RESOLUTION Attribute

By default, when you read a Photo CD image, you read the Base version of that
image (the one whose resolution is 768 by 512). To read a higher or lower
resolution version of the image, you must set the value of the RESOLUTION
attribute to one of the following enumeration constants:

These constants correspond to the resolutions listed in Table 5-1 on page 77.

For example, to read the 192-by-128 version of an image, you would set the
RESOLUTION attribute as shown below.

XilImage ycc_photocd_image;
char *pathname;

xil_get_device_attribute(ycc_photocd_image, “FILEPATH”,
(void **)pathname;

typedef enum{
XIL_PHOTOCD_16TH_BASE,
XIL_PHOTOCD_4TH_BASE,
XIL_PHOTOCD_BASE,
XIL_PHOTOCD_4X_BASE,
XIL_PHOTOCD_16X_BASE,
XIL_PHOTOCD_64X_BASE

} XilPhotoCDResolution;

XilImage ycc_photocd_image;

xil_set_device_attribute(ycc_photocd_image, “RESOLUTION”,
(void *)XIL_PHOTOCD_16TH_BASE);

Reading Kodak Photo CD Images 81

5

You can also read the value of the attribute using code similar to that shown
below.

The MAX_RESOLUTION Attribute

This is a read-only attribute that enables you to determine the highest
resolution version of an image that is available for a particular Photo CD
image. In general, each image is available at all possible resolutions; however,
on some prerecorded Photo CD disks, this may not be the case.

To read the value of this attribute, you call the function
xil_get_device_attribute() and request that it store the value in a
variable of the enumerated type XilPhotoCDResolution .

The value returned in resolution will be one of the enumeration constants
shown below.

XilImage ycc_photocd_image;
XilPhotoCDResolution resolution;

xil_get_device_attribute(ycc_photocd_image, “RESOLUTION”,
(void **)&resolution);

XilImage ycc_photocd_image;
XilPhotoCDResolution resolution;

xil_get_device_attribute(ycc_photocd_image, “MAX_RESOLUTION”,
(void **)&resolution);

typedef enum{
XIL_PHOTOCD_16TH_BASE,
XIL_PHOTOCD_4TH_BASE,
XIL_PHOTOCD_BASE,
XIL_PHOTOCD_4X_BASE,
XIL_PHOTOCD_16X_BASE,
XIL_PHOTOCD_64X_BASE

} XilPhotoCDResolution;

82 XIL Programmer’s Guide—August 1994

5

The ROTATION Attribute

This is a read-only attribute that enables you to determine the proper
orientation for displaying a particular Photo CD image. The rotation attribute
is analogous to the portrait or landscape modes of printed text: it merely
indicates the orientation of the data.

To read the value of this attribute, you call the function
xil_get_device_attribute() and request that it store the value in a
variable of the enumerated type XilPhotoCDRotate .

The value returned in rotation will be one of the enumeration constants
shown below.

Based upon the constant returned by xil_get_device_attribute() , you
can perform the appropriate rotation on the image (see “Rotating Images” on
page 167). Before performing the rotation, be sure to use xil_set_origin()
to set the image origin to the image’s center; before displaying the image, you
must call xil_set_origin() again to restore the origin to coordinate 0,0.
Example code is shown on page 86.

Capturing an Image from a Photo CD Disk

Once you’ve created a Photo CD device image and set the appropriate device
image attributes, capturing an image from the device is a simple two-step
process. You need to:

XilImage ycc_photocd_image;
XilPhotoCDRotate rotation;

xil_get_device_attribute(ycc_photocd_image, “ROTATION”,
(void **)&rotation);

typedef enum{
XIL_PHOTOCD_CCW0,
XIL_PHOTOCD_CCW90,
XIL_PHOTOCD_CCW180,
XIL_PHOTOCD_CCW270

} XilPhotoCDRotate;

Reading Kodak Photo CD Images 83

5

1. Create an XIL image that has the same dimensions and data type as the
image you’re reading.

The width and height of this image will be determined by the resolution of
the Photo CD image and also by its rotation. The number of bands in the
image should be three, since an image in PhotoYCC format has three
channels. And the data type of the image should be XIL_BYTE , since each Y,
Cb, and Cr value in a Photo CD image is an 8-bit value.

2. Perform an XIL operation using your device image as the source image and
the XIL image mentioned above as the destination.

The code fragment below creates a destination image that will hold a Base
Photo CD image and then copies an image from the Photo CD disk to the
destination.

It is important to note that, after the copy operation, the data in dst_image is
in the PhotoYCC color space. The next section tells you how to convert this
data to another color space.

Converting the Image’s Color Space

Before you can display or print an image you’ve read from a Photo CD image
file, you must convert the data in the image from the PhotoYCC color space to
another color space. For example, if you wanted to display the image on a
24-bit frame buffer, you would convert the data to an RGB space before

XilSystemState state;
XilImage ycc_photocd_image, dst_image;

dst_image = xil_create(state, 768, 512, 3, XIL_BYTE);
xil_copy(ycc_photocd_image, dst_image);

84 XIL Programmer’s Guide—August 1994

5

displaying it. Table 5-3 lists some of the different output devices to which you
might want to send the image and the color-space conversion that is necessary
for each case.

For detailed information about the color spaces that the library supports and
about converting image data from one color space to another, see the section
“Color-Space Conversion” on page 122.

Table 5-3 Converting PhotoYCC Data to Another Color Space

Output Device Color-Space Conversion

True-color display Convert the data to an RGB color space, such as the
one named rgb709 in the XIL library.

Indexed-color display Convert the data to an RGB color space, such as the
one named rgb709 in the XIL library. Then, dither the
RGB image to an 8-bit image. For information about
XIL dithering operations, see section “Dithering an
Image” on page 105.

Grayscale display Convert the data to a luminance-only color space, such
as the XIL color space y709 or ylinear .

Monochrome display Convert the data to a luminance-only color space, such
as the XIL color space y709 or ylinear . Then, dither
the 8-bit luminance data to a 1-bit image. For
information about XIL dithering operations, see the
section “Dithering an Image” on page 105.

Color printer Convert the data to a CMYK color space. The XIL
library supports a linear CMYK space named cmyk.

Reading Kodak Photo CD Images 85

5

The code fragment on this and the following page shows how the ROTATION
attribute from a Photo CD image is read and used, and how the image’s data is
converted to the RGB color space specified in CCIR Recommendation 709.

XilSystemState state;
XilImage ycc_photocd_image; /* image read from disk */
XilImage rgb_photocd_image; /* converted to rgb color space
*/
XilImage photocd_image; /* after rotation */
XilImage display; /* image for display */
XilPhotoCDRotate rotation;

/*
 * This code assumes the photocd image has been created as shown
on
 * page 78, and that its width, height, number of bands, and
 * data type have been retrieved with xil_get_info()
 */

/* Read the Photo CD image’s ROTATION attribute */
xil_get_device_attribute(ycc_photocd_image, "ROTATION",
 (void**)&rotation);

rgb_photocd_image = xil_create(state, width, height, nbands,
 datatype);

/* Set color spaces to prepare for color-space conversion */
xil_set_colorspace(ycc_photocd_image,
 xil_colorspace_get_by_name(state, "photoycc"));
xil_set_colorspace(rgb_photocd_image,
 xil_colorspace_get_by_name(state, "rgb709"));

/* Convert the image’s color space so it can be displayed */
xil_color_convert(ycc_photocd_image, rgb_photocd_image);

/* Set the image origin in preparation for a rotation */
xil_set_origin(rgb_photocd_image, width/2.0, height/2.0);

/* Example continued on next page */

86 XIL Programmer’s Guide—August 1994

5

/* Based upon the Photo CD image’s ROTATION attribute, open a
 * window with appropriate dimensions; for 90 and 270 degree
 * rotation, the image is rotated. Also, set the Photo CD
 * image’s origin to its center. */
if(rotation == XIL_PHOTOCD_CCW90 ||
 rotation == XIL_PHOTOCD_CCW270) {

/* ...code to open a window with dimensions height-by-width ...*/

 display = xil_create_from_window(state, xdisplay, xwindow);
 photocd_image = xil_create(state, height, width, nbands,
 datatype);
 xil_set_origin(photocd_image, height/2.0, width/2.0);
 }
else {

/* ...code to open a window with dimensions width-by-height ...*/

 display = xil_create_from_window(state, xdisplay, xwindow);
 photocd_image = xil_create(state, width, height, nbands,
 datatype);
 xil_set_origin(photocd_image, width/2.0, height/2.0);
 }

/* Set the radians for a rotation. Constant PI has be previously
 * defined and set equal to 3.14159 */
switch (rotation) {
 case XIL_PHOTOCD_CCW0:
 angle = 0; break;
 case XIL_PHOTOCD_CCW90:
 angle = PI * 0.5; break;
 case XIL_PHOTOCD_CCW180:
 angle = PI; break;
 case XIL_PHOTOCD_CCW270:
 angle = PI * 1.5; break;
}

/* Rotate the image, then return its origin to 0,0 */
xil_rotate(rgb_photocd_image, photocd_image, "nearest", angle);
xil_set_origin(photocd_image, 0.0, 0.0);

/* copy the image to the display */
xil_copy(photocd_image, display);

87

Preparing Images for Display 6

To introduce you to programming with the XIL library, Chapter 2, “Basic XIL
Program,” presented an example program that read in an 8-bit grayscale image
and displayed it in an X window created from one of four X visuals. This
chapter looks at a revision of that example called display . The new example
can display images of several data types and images of more than one band
and was designed to illustrate how to handle some of the many display cases
you may encounter.

The source files for the program can be found in the directory
$XILHOME/examples/display. Table 6-1 list these source files and indicates
what the code in each file does.

Table 6-1 Source Files for display

Source File What the Code Does

display.c Contains main() , which prepares different types of source
images to be copied to various types of display images

fileio.c Reads an image from a file and loads the image data into an
XIL image

window.c Creates the program’s X colormap and manages that colormap

88 XIL Programmer’s Guide—August 1994

6

The first part of this chapter explains briefly how to build and run the
display example. The bulk of the chapter then discusses the most important
tasks performed in the example. These include:

• Converting a single-band image to a multiband image
• Converting an XIL_SHORT image to an XIL_BYTE image
• Converting an RGB image to a pseudocolor image and a colormap
• Converting a 24-bit image to a 1-bit image
• Converting an 8-bit image to a 1-bit image
• Displaying a 1-bit image on a monochrome display

The chapter concludes with a list of all the cases handled in the program.

Running the Sample Display Program
To run this example, follow these instructions:

1. Change your working directory to $XILHOME/examples/display .

2. Build the program using the makefile in that directory.

3. Execute the program from the directory in which you built it, using the
command line

% display toys.header

The program will display an RGB image of a group of toys in an X window. To
stop the program, move your pointer into the program’s window, and click
any mouse button.

Converting a Single-Band Image to a Multiband Image
The display program approaches this problem in two ways: by passing the
source image through a lookup table and by replicating the source image in the
multiple bands of the destination image.

Passing the Source Image Through a Lookup Table

If there are only a few different values in the source image—for example, when
the source image is a 1-bit image—passing the source image through a lookup
table is an effective method of performing this conversion. For instance, if all
the values in the source are 0 or 1, you can use a lookup table with only two

Preparing Images for Display 89

6

entries: one that specifies the values to appear in each band of the destination
for pixels that have a value of 0 in the source, and another that specifies the
values to appear in each band of the destination for pixels that have a value of
1.

For example, the program uses this method to prepare a bit image for display
in a 24-bit window. To make the source image compatible with the display
image, the program converts the source image to a 3-band, 8-bit image. To do
this, the example:

1. Creates a temporary image, retained_image , that has the same width and
height as the source image, but is 3 bands deep and will contain XIL_BYTE
data. (This temporary image will later be copied to the display.)

2. Creates the lookup table (a data structure of type XilLookup) shown in
Figure 6-1.

Figure 6-1 Lookup Table

3. For each pixel in the source image, looks up the proper value in the left
column of the table and writes the three values to its right to the first,
second, and third bands of the corresponding pixel in retained_image .

0

1

0 0 0

255 255 255

Lookup
Index
(XIL_BIT)

Values to be written to
temporary image (XIL_BYTE)

90 XIL Programmer’s Guide—August 1994

6

The code that implements these steps is shown below.

Replicating the Source Image in the Bands of the Destination

The second method the example uses to convert a single-band source image to
a multiband destination image is to replicate the source image in each band of
the destination. To perform this task using the XIL library, you must first create
a child image representing each band of the destination and then copy the
source to each child image. Because any changes made to an XIL child image
affect the parent, these copies result in the source being copied to each band of
the destination.

The display program converts a 1-band XIL_BYTE source image to a 3-band
XIL_BYTE image using the code shown below.

#define BITSIZE 0x2

XilImage src_image, retained_image;
XilLookup lookup;
Xil_unsigned8 lookupdata[] = {0, 0, 0, 255, 255, 255};

retained_image = xil_create(state, width, height, 3, XIL_BYTE);
lookup = xil_lookup_create(state, XIL_BIT, XIL_BYTE, 3,
 BITSIZE, 0, lookupdata);
xil_lookup(src_image, retained_image, lookup);

XilImage image, retained_image, band0, band1, band2;

retained_image = xil_create(state, width, height, 3, XIL_BYTE);
band0 = xil_create_child(retained_image, 0, 0, width, height, 0,
 1);
band1 = xil_create_child(retained_image, 0, 0, width, height, 1,
 1);
band2 = xil_create_child(retained_image, 0, 0, width, height, 2,
 1);
xil_copy(image, band0);
xil_copy(image, band1);
xil_copy(image, band2);

Preparing Images for Display 91

6

Converting an XIL_SHORT Image to an XIL_BYTE Image
Converting an XIL_SHORT image to an XIL_BYTE image is a two-step process.
First, you must rescale the values in the source image so that they fall in the
range 0 to 255. Then, you must cast the values in the source image to values of
type XIL_BYTE .

In the rescaling step, you could simply map the lowest possible value in the
source (-32768) to the lowest possible value in the destination (0) and the
highest possible value in the source (32767) to the highest possible value in the
destination (255). However, you’ll generally achieve better results by first
finding the extrema in the source and then mapping the lowest value actually
in the source to 0 and the highest value to 255.

The code that display uses to perform this task (in one instance) is shown
below.

The call to xil_extrema() stores the source image’s highest value in
high[0] and its lowest value in low[0] . Then, the call to xil_rescale()
maps the lowest value in the image to 0 and the highest to 255. Once the values
in image have been brought into the proper range, the example casts them to
values of type XIL_BYTE . When casting a 16-bit value to an 8-bit value,
xil_cast() preserves the 8 least significant bits of each input value, which is
what the program requires.

#define CMAPSIZE 256

float low[1], high[1];
float mult[1], offset[1];

xil_extrema(image, high, low);
mult[0] = (NCOLORS - 1) / (high[0] - low[0]);
offset[0] = -((low[0] * (NCOLORS - 1)) /
 (high[0] - low[0])) + (CMAPSIZE - NCOLORS);
xil_rescale(image, image, mult, offset);
xil_cast(image, retained_image);

92 XIL Programmer’s Guide—August 1994

6

Converting an RGB Image to an Indexed-Color Image and a Colormap
The display program prepares a true-color image to be shown on an
indexed-color display by performing an ordered dither on the source image.
The general procedure the example employs is to create a colorcube and a
dither mask and then to call the function xil_ordered_dither() . After this
operation, the program has a single-band version of the source image and a
colorcube that defines the RGB values to be associated with each value in the
indexed-color image. Before displaying the indexed-color image, the example
creates a virtual X colormap and writes the values in the XIL colorcube to the X
colormap.

Note – For a more detailed explanation of ordered dithering, see the section
“Dithering an Image” on page 105.

The code the example uses to perform the ordered dither is shown below.

The colorcube cc496 and the dither mask dm443 are objects that the library
creates when it is initialized. The colorcube is appropriate for dithering an RGB
image to 216 colors (the indexes will range from 38 to 253), and dm443 is a
4-by-4 dither mask.

Note – These objects could also have been created with the functions
xil_colorcube_create() and xil_dithermask_create() .

Before the indexed-color image can be displayed, the color values in the
colorcube cmap must be stored in colorcells 38 to 253 in the application’s X
colormap. This task is handled by the routine set_colormap() . Note that the
colormap data that is being loaded into the X colormap is taken from the
lookup table that was used as the colorcube for the dithering operation.

XilLookup cmap;
XilDitherMask mask;

cmap = xil_lookup_get_by_name(state, “cc496”);
mask = xil_dithermask_get_by_name(state, “dm443”);
set_colormap(xdisplay, xwindow, cmap);
retained_image = xil_create(state, width, height, 1, datatype);
xil_ordered_dither(image, retained_image, cmap, mask);

Preparing Images for Display 93

6

The XIL library also includes two other types of dithering operations that you
can use in preparing a true-color image to be shown on an indexed-color
display. The functions that perform these dithering operations are called
xil_nearest_color() and xil_error_diffusion() . For further
information about these functions, see the section “xil_nearest_color()” on
page 108 and the section “xil_error_diffusion()” on page 114.

Converting a 24-Bit Image to a 1-Bit Image
The example uses a two-step process to convert an RGB image to a 1-bit image.
The first step is to convert the 24-bit source image to an 8-bit grayscale image
by extracting luminance information from the source image. Using the XIL
library, you perform this task by converting the source image from the RGB
color space to the Y color space. The destination image for this color-space
conversion must be a single-band image.

The code display used to perform this color-space conversion is shown
below.

The second step in the process is to dither the 8-bit image to a 1-bit image
using either the function xil_ordered_dither() or
xil_error_diffusion() . If execution speed is your primary concern, use
the ordered-dither routine. To obtain the best quality image, use the
error-diffusion function. For more information about these functions, see the
sections “xil_ordered_dither()” on page 118 and “xil_error_diffusion()” on
page 114.

image1 = xil_create(state, width, height, 1, XIL_BYTE);
xil_set_colorspace(image, xil_colorspace_get_by_name(state,
 “rgblinear”));
xil_set_colorspace(image1, xil_colorspace_get_by_name(state,
 “ylinear”));
xil_color_convert(image, image1);

94 XIL Programmer’s Guide—August 1994

6

The display example performs this task using xil_error_diffusion() .

Converting an 8-Bit Image to a 1-Bit Image
This task is the same as the second step described in the preceding section. You
should dither the 8-bit image to a 1-bit image using either the function
xil_ordered_dither() or xil_error_diffusion() . As noted above, the
first of these functions is the fastest, but the second generally produces better
looking results.

Displaying a 1-Bit Image on a Monochrome Display
The display program is set up to deal with XIL_BIT images in which 0’s
represent black pixels and 1’s represent white pixels (the normal case). In the X
colormap for monochrome displays supported by the XIL library, however, 0
represents white and a 1 represents black; therefore, the display program
takes the one’s complement of the source image (using xil_not()) before
displaying it.

Types of Images Displayed
This section simply lists the cases handled by the display example so that
you can quickly determine whether a case you’re interested in is covered. In
Table 6-2, the types of images the program can process are shown in the left

#define BITSIZE 0x2

XilKernel distribution;
static int multipliers[1] = {-1};
static unsigned int dimensions[1] = {BITSIZE};

retained_image = xil_create(state, width, height, 1, XIL_BIT);
distribution = xil_kernel_get_by_name(state, “floyd-steinberg”);
colormap = xil_colorcube_create(state, XIL_BIT, XIL_BYTE, 1, 0,
 multipliers, dimensions);
xil_error_diffusion(image1, retained_image, colormap,
 distribution);

Preparing Images for Display 95

6

column, and the supported X visuals are listed in the top row. A check mark
indicates that the program can display a particular type of image in an X
window created using a particular X visual.

Note – For an explanation of X visuals and their uses, see the Xlib Programming
Manual.

Table 6-2 Cases Handled by the display Program

TrueColor
 24 Bits

PseudoColor
8 Bits

GrayScale
8 Bits

StaticGray
8 Bits

StaticGray
1 Bit

XIL_BIT
1 Band

✔ ✔ ✔ ✔

XIL_BYTE
1 Band

✔ ✔ ✔

XIL_BYTE
3 Bands

✔ ✔ ✔ ✔

XIL_SHORT
1 Band

✔ ✔ ✔ ✔

96 XIL Programmer’s Guide—August 1994

6

97

Presentation Functions 7

This chapter covers a group of functions you are likely to use in displaying
images, or printing them. These functions enable you to:

• Copy a source image to a destination image
• Copy specified image planes to a destination image
• Rescale the values in an image
• Cast an image from one data type to another
• Dither an image
• Convert an image from one color space to another
• Prepare CMY images for printing

These tasks are discussed in detail in the sections below.

Copying an Image to the Display
The xil_copy() function lets you copy a source image to a destination image.
xil_copy() copies each plane (bit) in a source-image pixel to the destination
image pixel, replacing the value in each corresponding plane in the destination
pixel. To control the pixel planes copied from the source to the destination, you
can define a plane mask to specify the bit planes to copy, then call
xil_copy_with_planemask() to perform the copy.

The xil_copy() and xil_copy_with_planemask() functions are
discussed separately in the following sections.

98 XIL Programmer’s Guide—August 1994

7

Copying All Bit Planes

The simplest way to display an image is to use xil_copy() to copy your
source image to the display. The xil_copy() function copies each plane (bit)
in a source-image pixel to the destination image pixel, replacing the value in
each corresponding plane in the destination pixel. For example, an eight-bit-
deep frame buffer has eight bit planes; if you use xil_copy() to copy an
XIL_BYTE image to that frame buffer, all eight planes of each source pixel are
copied to all eight planes in the frame buffer’s destination pixel.

For xil_copy() to work, you must have created a display image that will
serve as the destination for the copy. (For information about what display
images are and how you create them, see the section “Display Images” on
page 44.) In addition, the source image—the image to be displayed—and the
display image must use the same number of bits to represent a pixel. Table 7-1
lists the combinations of source and display images that will match in this way.

If your source and destination images match, you can display the source image
using code similar to this.

Besides performing this kind of explicit copy using xil_copy() , you can also
request that an image-processing function (like a rotate function) copy its
output to the display. You do this by specifying a display image as the

Table 7-1 Matching Source and Display Images

Source Image Type Required Display Image Depth

Single-band XIL_BIT image One bit

Single-band XIL_BYTE image Eight bits

Three-band XIL_BYTE image Twenty-four bits

XilImage src, display_image;

xil_copy(src, display_image);

Presentation Functions 99

7

destination for the operation. For example, the following call to
xil_rotate() rotates the source image and copies the rotated image to the
display.

Again, before this type of operation will work, the source and display images
must use the same number of bits to represent a pixel. If your source and
display images do not match in this respect, you must perform one or more of
the tasks discussed in this chapter before displaying your image.

If overlapping but not coincident sibling images (children of the same parent)
are specified as the source and destination, xil_copy() detects the overlap
and correctly generates the destination image. All other operations generate a
warning message under these conditions and have undefined results, as
mentioned on page 54 in the discussion on parent and child images.

Copying Only the Planes Defined in a Plane Mask

The xil_copy() function copies each plane (bit) in a source-image pixel to the
destination image pixel, replacing the value in each corresponding plane in the
destination pixel.To control the pixel planes copied from the source to the
destination, you can define a plane mask to specify the bit planes to copy, then
call the xil_copy_with_planemask() function to perform the copy. The
prototype for xil_copy_with_planemask() is shown below.

A typical reason to copy with plane mask control is to overlay one image over
another. Because you can copy specific planes from each source-image pixel,
the underlying image isn’t visible where the overlay is drawn; however, all
planes from the underlying image are still available and can be refreshed in the
destination by rendering it with another plane mask. Overlays can improve
performance by reducing the amount of graphic information that has to be
redrawn; they can also be used to highlight graphics for selection.

XilImage src, display_image;

xil_rotate(src, display_image, “bilinear”, -0.7854);

void xil_copy_with_planemask(XilImage src, XilImage dst,
 unsigned int planemask[]);

100 XIL Programmer’s Guide—August 1994

7

Note – Because read/write color cells can be allocated only in PseudoColor
and DirectColor visuals, you need to provide an alternative technique to
overlays for other visuals; you may also want to provide an alternative in case
the overlay fails. For more information on overlays and their advantages and
disadvantages, see the Xlib Programming Manual.

When you use xil_copy_with_planemask() , each pixel in the destination
image is defined by the following operation:

dst = (dst & ~mask) | (src & mask)

Here, dst is the destination image, mask is the plane mask, and src is the
source image. Thus, if the plane-mask bit is “on,” the copy overwrites the
corresponding bit in the destination image; otherwise, the bit in the destination
image is unchanged.

As an example, assume you have two single-band XIL_BYTE images you want
to overlay. Table 7-2 shows the plane masks you might use.

In Table 7-2, Mask 1 has only its low order bit turned on; thus, it ensures that
only the source image’s low order bit is copied to the destination. Mask 2, on
the other hand, has its seven high-order bits turned on, so it ensures that the
source image’s seven high-order bits are copied to the destination.

Table 7-2 Plane Masks for an Overlay

Plane Mask Binary Base Hexadecimal Base Decimal Base

Mask 1 00000001 0x1 1

Mask 2 11111110 0xfe 254

Presentation Functions 101

7

The code below shows how you might define and use the plane masks shown
in Table 7-2:

The plane mask must be an array of unsigned integers. The number of array
elements must match the number of image bands; each array element specifies
the plane mask for the corresponding band in the destination image. Both the
source and destination images must have the same type and number of bands,
and in-place operations are supported.

When using a plane mask for copying an image to the display, the depth of the
window is the upper limit on the number of meaningful bits you can set in the
plane mask, and you must manipulate the colormap to get a reasonable
display. For more information on allocating color cells for overlays, see the Xlib
Programming Manual.

In addition to overlays, you can use a plane mask for double buffering on
hardware that doesn’t have separate memory buffers. Double buffering is
useful for animation because you can render an image in a hidden memory
buffer while you display another image in a second buffer. Once rendering is
complete in the hidden buffer, you can display its contents, then hide the
second buffer and render a new image into it. Rendering into the hidden buffer
and quickly switching between buffers smooths the transition between images.
As with overlays, double buffering requires you to toggle between two
colormaps as you change plane masks between images. For more information
on using double-buffering for animation, consult Foley, et al. Computer
Graphics: Principles and Practice (see Appendix E, “Bibliography”).

XilImage src1, src2, dst;
unsigned int planemask1[1], planemask2[1];

planemask1[0] = 0x1;
planemask2[0] = 0xfe;

xil_copy_with_planemask(src1, dst, planemask1);
xil_copy_with_planemask(src2, dst, planemask2);

102 XIL Programmer’s Guide—August 1994

7

Rescaling an Image
The XIL function xil_rescale() maps the values in each band of an image
from one range (for example, 0 to 2047) to another range (for example, 0 to
255). The function performs this mapping by multiplying each value in a band
by one constant and then adding a constant to the result of the multiplication.

The prototype for xil_rescale() is shown below.

The parameters src and dst are handles to the source and destination images.
The parameter scale is an array of floating-point numbers that will serve as
the constants by which values in the bands of the source image are multiplied.
The values in band 0 are multiplied by scale[0] , the values in band 1 are
multiplied by scale[1] , and so on. Therefore, the number of elements in the
array must match the number of bands in the image. The final parameter,
offset , is an array of floating-point numbers, one of which is added to the
scaled values in each band of the source image.

There are many cases in which this function will be useful as you prepare an
image for display. A few of these are mentioned below.

One obvious case is that in which you want to display an image containing
XIL_SHORT values. For example, say that you want to display a single-band
XIL_SHORT image in an X window created using an 8-bit GrayScale visual.
The values in your image may range from -32768 to 32767, but the values you
write to the display image must fall in the range 0 to 255 (or some subset of
that range). To handle this situation, you could perform these steps.

1. Determine the minimum and maximum values in your source image.
You determine the minimum and maximum values using the function
xil_extrema() . Your image will look better when displayed if you map
the minimum value to 0 and the maximum value to 255, as opposed to
mapping -32768 to 0 and 32767 to 255. In the latter case, you might wind up
with very few gray levels in the image to be displayed.

void xil_rescale(XilImage src, XilImage dst, float *scale,
 float *offset);

Presentation Functions 103

7

2. Rescale the values in your XIL_SHORT image so that they fall in the range
0 to 255.
The code you might use to accomplish this step is shown below.

3. Cast the values in the rescaled image to be of type XIL_BYTE .
Although you have rescaled your image so that its values fall in the range 0
to 255, those values are still 16-bit signed values. Before copying your image
to the display, you must use the function xil_cast() to create an
XIL_BYTE version of the image. For more information about xil_cast() ,
see the next section, “Casting an Image from One Data Type to Another.”

Here’s another case in which you may need to rescale an image before
displaying it. Suppose you want to display an 8-bit grayscale image in an 8-bit
GrayScale window, but that you do not want to use the currently installed X
colormap in displaying it. You want to create a new virtual X colormap, store a
grayscale ramp in that colormap, and have it installed when your application
is active. If you write values to all 256 colorcells in the virtual colormap, you’re
almost certainly going to see colormap flashing when the colormap is installed,
so you may decide not to write values to the first 16 colorcells—to write all the
values needed to display your image in colorcells 17 through 255. This strategy
requires that you rescale the values in your image so that they fall in the range
17 to 255.

Casting an Image from One Data Type to Another
The XIL function xil_cast() casts an XIL image from one data type to
another. The function’s prototype is shown below.

XilImage src, dst;
float maximum[1], minimum[1];
float multiplier[1], offset[1];

multiplier[0] = 255 / (maximum[0] - minimum[0]);
offset[0] = -((minimum * 255) / (maximum[0] - minimum[0]));
xil_rescale(src, dst, multiplier, offset);

void xil_cast(XilImage src, XilImage dst);

104 XIL Programmer’s Guide—August 1994

7

The parameter src is a handle to your source image, and dst is a handle to a
destination image. This destination must have the same width, height, and
number of bands as the source image and must have the data type to which
you want to cast the source image.

There are a number of instances in which you may need to use this function as
you prepare an image for display. For example, you may have a single-band
XIL_SHORT image that you want to display in an 8-bit window. To do this you
need to follow these steps.

1. Rescale the image.
Unless the values in your XIL_SHORT image already fall in the range 0 to
255, you must use the function xil_rescale() to map them to that range,
or a subset of that range. For more information about rescaling images, see
“Rescaling an Image” on page 102.

2. Cast the XIL_SHORT image to an XIL_BYTE image.
Before you can display your image in an 8-bit window, you must cast the
16-bit values in the source image to 8-bit values. See the code fragment
below.

Similarly, if you have an XIL_BIT image that you want to display in an 8-bit
window, you must cast the source image to an XIL_BYTE image before
displaying it. In this cast, the values 0 and 1 in the XIL_BIT image are cast to
indices 0 and 1 in the XIL_BYTE image. If you want different indices, convert
the image by passing it through a lookup table rather than by casting its data
type. For information about lookup tables, see “Passing an Image Through a
Lookup Table” on page 199.

XilImage short_image, byte_image;
unsigned int width, height, nbands; /* Dimensions of images */

byte_image = xil_create(state, width, height, nbands,
 XIL_BYTE);
xil_cast(short_image, byte_image);

Presentation Functions 105

7

Note – When casting the image so you can display it, you may want to use a
display image as the destination image for the cast. However, if you intend to
use the converted image again, you can cast the source image to an interim
destination image, then use xil_copy() to copy the interim image to the
display.

Dithering an Image
The XIL library provides several functions you can use to prepare images for
display by dithering them. Before looking at these individual functions,
though, the section explains what it means to dither an image in an XIL
application.

What Is Dithering?

First, you need to know that the XIL library gives you the ability to pass a
single-band image of any data type through a lookup table to produce a
single-band or multiband image of the same or another data type. The lookup
table used for this operation is a data structure of type XilLookup and has
(among others) the following attributes:

• An input data type
• An output data type
• A number of bands on the output side

Figure 7-1 shows a single-band XIL_BIT image being passed through a lookup
table to produce a three-band XIL_BYTE image.

106 XIL Programmer’s Guide—August 1994

7

Figure 7-1 XIL Lookup Operation

A dither operation is an inverse lookup operation. As Figure 7-2 indicates, the
dither operation matches a value (or values) in the source image—the image to
be dithered—with a value from the output side of the lookup table being used,
and then writes the corresponding value from the input side of the lookup table
to a single-band destination image.

Note – Since the values in the source image don’t actually match values in the
output side of the table, each source-image value is paired with the value in
the table closest to it.

0

1 2550

0 0 0 0 0

0

0

0

0

0

1

1 255 255 255

255

255

255

255

255

Source image Lookup table Destination image

Output side: three bands,
XIL_BYTE data

Input side: XIL_BIT data

Presentation Functions 107

7

Figure 7-2 Dithering an Image

The purpose of this dithering operation is to produce an image that when
mapped forward through the lookup table will produce an image as similar as
possible to the original source image. Another way to state this is that the
dithering operation produces an image that when displayed using the lookup
table as its colormap will look as much like the original as possible.

Such dithering operations have many applications, but a couple of them are by
far the most common. One common use of dithering is to convert a true-color
(3-band XIL_BYTE) image to a pseudocolor (1-band XIL_BYTE) image.
Another common use is to convert a grayscale (1-band XIL_BYTE) image to a
monochrome (1-band XIL_BIT) image.

Methods of Dithering

This section contains information about the three functions the XIL library
provides for performing dithering operations: xil_nearest_color() ,
xil_error_diffusion() , and xil_ordered_dither() .

0

1

2

3

4

26

77

128

179

230

96 31 219

187 121 73

255 0 155

1 0 4

3 2 1

4 0 3

Source imageLookup tableDestination image

Output side: one band,
XIL_BYTE data

Input side: XIL_BYTE data

108 XIL Programmer’s Guide—August 1994

7

xil_nearest_color()

The function xil_nearest_color() is the simplest of the dithering
functions in that its algorithm for performing the inverse lookup described
above is the most straightforward. This algorithm includes no provision for
eliminating unwanted contours in the dithered image.

The function prototype for xil_nearest_color() is shown below.

The parameters src and dst are handles to the source image—the image to be
dithered—and the destination image. The parameter lookup is a handle to the
lookup table through which the source image will be passed to produce the
destination. There are actually two types of lookup tables that can be referred
to here. One is the generic lookup table that is used for lookup operations, and
the other is a special type of lookup table called a colorcube. The basic
difference between the two types of lookup tables is this: when you create a
generic lookup table, you specify the dimensions of the table and the data to be
stored in the table; when you create a colorcube, you specify the dimensions of
the colorcube, and the function you use to create the colorcube fills in the data
in the table for you. The sections below provide additional information about
these two types of lookup tables.

Lookup Tables
You can create a generic lookup table in one of two ways: using the function
xil_lookup_create() or using the function xil_choose_colormap() . In
either case, xil_nearest_color() pairs the values in your source image
with values on the output side of the lookup table by searching for nearest
matches. This means that for each pixel in your source image,
xil_nearest_color() must examine each entry in the lookup table. This is
a time-consuming process. However, generic lookup tables do give you the
best control over the contents of your lookup table and, therefore, over the
quality of the dithered image.

void xil_nearest_color(XilImage src, XilImage dst,
 XilLookup lookup);

Presentation Functions 109

7

The function prototype for xil_lookup_create() is shown below.

Here’s an example of a time when you might want to use this function to
create your lookup table. You have a true-color image that you want to dither
to a single-band XIL_BYTE image, and you want to be able to display the
dithered image using the currently installed X colormap. The code you use to
create this lookup table might look like this:

Using this table for your dither operation enables you to produce a dithered
image that contains the maximum number of unique values (256) and to
display the image without having to write anything to the X colormap. You
won’t have to worry about colormap flashing. The disadvantage of this
method is that there may be few or no exact matches between the RGB values
in your source image and the RGB values on the output side of the lookup
table. Clearly, this can affect how accurately the dithered image, when
displayed, will reflect the original source image.

The other function you might use to create a lookup table for dithering the
true-color image mentioned above to a pseudocolor image is
xil_choose_colormap() . This function returns the best lookup table of a
particular size to use in dithering the image. The best lookup table is defined to
be the one that contains as many as possible of the most frequently used colors
in the source image.

XilLookup xil_lookup_create(XilSystemState state,
 XilDataType input_datatype, XilDataType output_datatype,
 unsigned int output_nbands, unsigned int num_entries,
 short first_entry_offset, void *table_data);

/* Read the color values stored in the X colormap and write them
 to an array of Xil_unsigned8. The values should be written
 in the following order: b 0, g 0, r 0, b 1, g 1, r 1, and so on.
 Let’s say the array is called table_data */

xil_lookup_create(state, XIL_BYTE, XIL_BYTE, 3, 256, 0,
 table_data);

110 XIL Programmer’s Guide—August 1994

7

The function prototype for xil_choose_colormap() is shown below.

When you use this function to create your lookup table, there are two basic
approaches you might take to dithering your true-color image. One approach
is to use xil_choose_colormap() to create a lookup table that contains 256
entries. This strategy will produce a dithered image that looks very much like
the original source image when displayed because the 256 most frequently
used colors in the original will be reproduced exactly. However, you also have
to get 256 specific colors into a hardware colormap to display your image. This
will lead to colormap flashing on most displays.

A second approach is to use xil_choose_colormap() to create a lookup
table with fewer than 256 entries, say 240 entries. You will still have most of
the colors you need to display your image, and you can write those colors to
your hardware colormap (if you only have one) without overwriting the first
16 entries in that colormap. This should prevent your application from
contending with the OpenWindows™ tools for colors.

Note – xil_choose_colormap() accepts only 3-banded XIL_BYTE source
images.

Colorcubes
You create a colorcube using the function xil_colorcube_create() . The
prototype for this function is shown below.

Note that the parameters to this function are similar to those for
xil_lookup_create() . However, you don’t specify a number of entries in
the lookup table or the data to be loaded into the table. Instead you provide
arrays called dimensions and multipliers . The number of elements in both
of these arrays must equal the number of bands in the image being dithered.

XilLookup xil_choose_colormap(XilImage src, unsigned int size);

XilLookup xil_colorcube_create(XilSystemState state,
 XilDataType input_type, XilDataType output_type,
 unsigned int nbands, short offset, int multipliers[],
 unsigned int dimensions[]);

Presentation Functions 111

7

To understand the roles of dimensions and multipliers , consider the
situation where you want to dither an XIL_BYTE RGB image to a 1-band
XIL_BYTE image. To handle this case, you might declare and initialize
dimensions and multipliers as follows:

These values would lead to the creation of a colorcube that would dither blue
values in the source image to one of 4 blue levels, green values to one of 9
green levels, and red values to one of 6 red levels. You could picture this
colorcube as a cube with dimensions of 4, 9, and 6, but it’s probably more
helpful to think of it as a lookup table with three bands on the output side.
Figure 7-3 shows what the first 22 elements of the 216-element table would
look like.

unsigned int dimensions[] = {4, 9, 6};
int multipliers[] = {1, 4, 36};

112 XIL Programmer’s Guide—August 1994

7

Figure 7-3 Colorcube for Dithering a True-Color Image to a Pseudocolor Image

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

0 0 0

85

170

255

85

170

255

0 32

0

0

0

32

32

32

85

170

255

0

85

170

255

0

85

170

255

0

85

0

64

64

64

64

96

96

96

96

128

128

128

128

159

159

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Blue
values

Green
values

Red
values

Values to be written
to indexed-color
image.

Presentation Functions 113

7

This illustration should help clarify the significance of the three elements of
multipliers . The element multipliers[0] indicates the distance between
changes in blue levels on the output side of the table, multipliers[1]
indicates the distance between changes in green levels, and multipliers[2]
indicates the distance between changes in red levels. That is, the blue level
changes with each entry, the green level changes every fourth entry, and the
red level changes every thirty-sixth entry.

Note – The elements of multipliers can be negative numbers. Negative
numbers indicate that the values in a color ramp should appear in decreasing
as opposed to increasing order.

The values in the table are calculated by xil_colorcube_create() based on
the dimensions and multipliers you supply. This means that when you dither
an image using a colorcube, the dither function does not need to search the
output side of a lookup table to find a set of values. Instead, it can calculate the
value to be written to the dithered image using the values stored in the
dimensions and multipliers arrays. As a result, dithering operations that
use a colorcube are much faster than those that use a generic lookup table.
What you give up is control over the exact contents of the colorcube.

One other note about colorcubes. Although they are called colorcubes,
colorcubes need not have three dimensions. As mentioned earlier, a colorcube
has a number of dimensions equal to the number of bands in the image to be
dithered. Therefore, to create a colorcube suitable for dithering a grayscale
image to a monochrome image, you might define dimensions and multipliers
as follows.

Note – The XIL library creates two colorcubes when you initialize the library.
One of these has the dimensions 4:9:6 and is useful for dithering RGB images
to 216 colors. The other has the dimensions 8:5:5 and is useful for dithering
YCbCr images to 200 colors. To get a handle to one of these colorcubes, use the
function xil_lookup_get_by_name() .

unsigned int dimensions[] = {2};
int multipliers[] = {-1};

114 XIL Programmer’s Guide—August 1994

7

In addition to xil_colorcube_create() , the XIL library contains the
colorcube-related functions shown in Table 7-3.

xil_error_diffusion()

The function xil_error_diffusion() is similar to
xil_nearest_color() , but in addition to performing an inverse lookup, it
uses a process called error diffusion to deal with any difference between a
source-image pixel value and a value on the output side of a lookup table with
which that pixel value is matched. The difference (or error) is distributed to the
source-image pixels immediately to the right of and below the last pixel
processed.

The function prototype for xil_error_diffusion() is shown below:

The first three parameters are the same as the parameters to
xil_nearest_color() . The parameter src is a handle to your source image,
and dst is a handle to your destination image. The parameter lookup can be
either a generic lookup table or a special type of lookup table called a
colorcube. For information about these lookup tables, see the sections “Lookup
Tables” on page 108 and “Colorcubes” on page 110. The final parameter,
distribution , is an error-distribution kernel.

Table 7-3 Functions for Managing Colorcubes

Function Name What the Function Does

xil_lookup_get_colorcube Determines whether a lookup table is a
colorcube or a generic lookup table

xil_lookup_get_colorcube_info Determines whether a lookup table is a
colorcube and, if it is, returns the
dimensions and multipliers used to
create the colorcube and the colorcube’s
origin

void xil_error_diffusion(XilImage src, XilImage dst,
 XilLookup lookup, XilKernel distribution);

Presentation Functions 115

7

Note – XIL kernels (data structures of type XilKernel) are used primarily for
convolution operations, which are discussed in the section “Filtering an
Image” on page 187. The utility functions that affect kernels are also discussed
in that section.

You create the error-distribution kernel using the function
xil_kernel_create() , whose function prototype is shown below.

The parameters width and height determine the size of the kernel, keyx and
keyy determine the kernel’s origin, and data is a pointer to the floating-point
values to be stored in the kernel. For example, the code below creates a 3-by-3
kernel with an origin of 1,1.

Note – The library provides a special shorthand method of creating the kernel
shown above because it is used so commonly in error-diffusion operations.
This method is to call the function xil_kernel_get_by_name() using a
name of “floyd-steinberg” .

Figure 7-4 shows what this kernel looks like.

XilKernel xil_kernel_create(XilSystemState system_state,
 unsigned int width, unsigned int height, unsigned int keyx,
 unsigned int keyy, float *data);

XilKernel kernel;
float kernel_data[] = {
 0/16.0, 0/16.0, 0/16.0,
 0/16.0, 0/16.0, 7/16.0,
 3/16.0, 5/16.0, 1/16.0
};

kernel = xil_kernel_create(state, 3, 3, 1, 1, kernel_data);

116 XIL Programmer’s Guide—August 1994

7

Figure 7-4 Error-Distribution Kernel

Note – The value of the kernel’s origin and of the elements above and to the
left of the origin must be 0 when you’re calling xil_error_diffusion() .

Here’s how xil_error_diffusion() uses the kernel. Say that you’re
dithering a grayscale image with values in the range 0 to 255 to a grayscale
image with values in the range 0 to 4. This situation is shown in Figure 7-5.

Figure 7-5 Using xil_error_diffusion() to Dither an Image

0/16 0/16 0/16

0/16 0/16 7/16

3/16 5/16 1/16

Origin

0

1

2

3

4

26

77

128

179

230

96 31 219

187 121 73

255 0 155

1 0 4

3 2 1

4 0 3

Source imageLookup tableDestination image

Presentation Functions 117

7

When the pixel in the middle of the top scanline of the source image (31) is
passed through the lookup table, it is matched with a 26, so a 0 is written to the
destination image. When the destination is displayed using the lookup table as
its colormap, this pixel will have the value 26. Thus, in the
dither-and-reconstruction process, there will be an error of 5 (31 - 26). To
counteract the loss of data inherent in this process, xil_error_diffusion()
distributes this error before passing the next pixel (219) through the lookup
table. The way in which the error is distributed depends on the kernel created
earlier. See Figure 7-6 for an example.

Figure 7-6 Error Diffusion

The kernel is laid on top of the source image so that its origin aligns with the
last pixel to be passed through the lookup table. Before the next pixel is passed
through, the following processing will take place:

• The pixel at 0,2 will be set to 219 + (5 * (7 / 16.0))
• The pixel at 1,0 will be set to 187 + (5 * (3 / 16.0))
• The pixel at 1,1 will be set to 121 + (5 * (5 / 16.0))
• The pixel at 1,2 will be set to 73 + (5 * (1 / 16.0))

96 31 219

187 121 73

255 0 155

0/16 0/16 0/16

0/16 0/16 7/16

3/16 5/16 1/16

Source image

Kernel

118 XIL Programmer’s Guide—August 1994

7

This processing is fairly time-consuming, but can greatly reduce contouring in
the dithered image.

xil_ordered_dither()

The XIL library’s third dithering function is xil_ordered_dither() . Like
xil_nearest_color() and xil_error_diffusion() ,
xil_ordered_dither() processes an image by performing an inverse
lookup. However, two characteristics distinguish xil_ordered_dither()
from the other dithering functions. One is that the lookup table the function
uses to do its job must be a colorcube; it cannot be a generic lookup table. (For
information about the differences between colorcubes and generic lookup
tables, see the sections “Lookup Tables” on page 108 and “Colorcubes” on
page 110.) Second, xil_ordered_dither() makes use of an XIL data
structure called a dither mask to help eliminate contouring in the dithered
image.

The function prototype for xil_ordered_dither() is shown below.

The parameters src and dst are handles to the source and destination images,
and lookup is the lookup table to be used for the dither operation. As
mentioned above, this lookup table must be a colorcube; that is, it must have
been created with the function xil_colorcube_create() —or
xil_lookup_get_by_name() . The final parameter, mask, is the dither mask,
a data structure of type XilDitherMask .

You create the dither mask using the function xil_dithermask_create() ,
whose prototype is shown below.

The parameters width and height define the width and height of the dither
mask in pixels. These values are user defined. The next parameter, nbands ,
determines the number of bands in the dither mask. This number must match

void xil_ordered_dither(XilImage src, XilImage dst,
 XilLookup lookup, XilDitherMask mask);

XilDitherMask xil_dithermask_create(XilSystemState state,
 unsigned int width, unsigned int height,
 unsigned int nbands, float *data);

Presentation Functions 119

7

the number of bands in the image being dithered. Finally, data is a pointer to
the data to be stored in the dither mask. All the values in the mask must fall in
the range 0.0 to 1.0. For example, the code below creates a 1-band, 4-by-4 dither
mask.

Note – When you initialize the XIL library, four standard dither masks are
created: 1- and 3-band 4-by-4 masks and 1- and 3-band 8-by-8 masks. To get a
handle to one of these masks, you use the function
xil_dithermask_get_by_name() .

Here’s how the mask is used. Assume that you’re dithering a grayscale image
with values in the range 0 to 255 and that the destination is to contain values in
the range 0 to 15. First, think of the 4-by-4 dither mask as having been
replicated over the entire source image, as depicted in Figure 7-7.

XilDitherMask mask;
float mask_data[] = {
 0/16.0, 8/16.0, 2/16.0,10/16.0,
 12/16.0, 4/16.0,14/16.0, 6/16.0,
 3/16.0,11/16.0, 1/16.0, 9/16.0,
 15/16.0, 7/16.0,13/16.0, 5/16.0
}

mask = xil_dithermask_create(state, 4, 4, 1, mask_data);

120 XIL Programmer’s Guide—August 1994

7

Figure 7-7 Dither Mask Replicated over a Source Image

At this point, each pixel in each 4-by-4 block of the image has been associated
with (in this case) a unique dither-mask value. The xil_ordered_dither()
function then performs the following steps for each pixel in the image:

1. Passes the value through the lookup table.
In this step, the function is actually dividing values in the source image by
17 (the number of values that can be represented in 8 bits divided by the
length of the colorcube minus one). That is, if no further processing were to
take place, a 200 in the source image would map to an 11 since 200 divided
by 17 equals 11.76.

2. Considers the dither-mask value associated with the source-image pixel
value.
The dither function now compares the fractional part of the quotient from
the division operation with the source pixel’s dither-mask value. If the
fractional part is greater than the dither-mask value, the dividend shown
above (11) is incremented by one, so a 12 is written to the destination image.
Otherwise, an 11 is written to the image.

When you use the dither mask in this way, you’re essentially performing
averaging. This averaging helps prevent undesirable contours from appearing
in the dithered image.

8-by-8 source image

Presentation Functions 121

7

Table 7-4 below lists the XIL utility functions that affect dither masks and
indicates what these functions do.

When to Use Each Dithering Function

When you’re trying to decide on the best way to perform a dither operation,
it’s helpful to think of the matrix shown in Table 7-5:

If you look at the right column—labeled “Colorcube”—you’ll see that each of
the dithering functions can perform its inverse lookup using a colorcube. If
you compare the functions used with a colorcube, you’ll see that choosing one
over another involves a trade-off between speed and quality. The function
xil_nearest_color() is the fastest, but produces the poorest quality image,
and xil_error_diffusion() is the slowest, but produces the best quality
image. The function xil_ordered_dither() is somewhat faster than
xil_error_diffusion() , but does not produce quite as nice an image.

Table 7-4 Utility Functions for Dither Masks

Function Name What It Does

xil_dithermask_destroy Deallocates the memory used by a dither mask

xil_dithermask_get_height Returns the height of a dither mask in pixels

xil_dithermask_get_width Returns the width of a dither mask in pixels

xil_dithermask_get_nbands Returns the number of bands in a dither mask

xil_dithermask_create_copy Returns a copy of a dither mask

xil_dithermask_set_name Sets the name of a dither mask

xil_dithermask_get_name Returns a copy of a dither mask’s name

Table 7-5 Review of Dithering Operations

Generic Lookup Colorcube

xil_nearest_color() ✔ ✔

xil_error_diffusion() ✔ ✔

xil_ordered_dither() ✔

122 XIL Programmer’s Guide—August 1994

7

Similarly, if you compare operations that use generic lookup tables, the
trade-off is one between speed and quality. The guidelines mentioned in the
preceding paragraph apply, except that xil_ordered_dither() cannot work
with a generic lookup table.

Now, if you read the table from left to right, you can compare operations that
use generic lookup tables with corresponding operations that use colorcubes.
Operations that use colorcubes are much faster than their counterparts because
operations that use colorcubes do not need to search a lookup table. On the
other hand, when you use a colorcube for dithering, you lose some of your
control over the quality of the dithered image, because you cannot specify the
exact values in the colorcube. You also lose the ability to use the colors in the
currently installed colormap, again because you don’t specify the values to be
written to the lookup table.

Color-Space Conversion
The XIL library enables you to convert an image from any one to any other of
the following color spaces:

• CCIR Rec. 709 RGB
• A linear version of CCIR Rec. 709 RGB
• CCIR Rec. 709 YCbCr

• A luminance-only space derived from CCIR Rec. 709 YCbCr

• A linear version of the luminance-only space mentioned above
• CCIR Rec. 601 YCbCr

• A luminance-only space derived from CCIR Rec. 601 YCbCr

• A YCbCr color space defined by Kodak for PhotoCD
• A linear CMY
• A linear CMYK

The procedure for converting an image from one color space to another is
outlined below.

1. Set the color-space attribute of your source image.
When you create an XIL image, it does not have a color space associated
with it. To associate one with it, you must call the function
xil_colorspace_get_by_name() to get the appropriate color-space data
structure; then, you call xil_set_colorspace() to actually set the
attribute.

Presentation Functions 123

7

The code fragment below shows a program getting a data structure of type
XilColorspace that describes a linear RGB color space.

The parameter state is a handle to the system state, and rgblinear is a
string identifying the color space. The strings you use to identify the various
XIL color spaces are listed in Table 7-6.

After you’ve gotten this color-space data structure, you set an image’s
color-space attribute using the function xil_set_colorspace() .

XilColorspace colorspace;

colorspace = xil_colorspace_get_by_name(state, “rgblinear”);

Table 7-6 Strings Used to Specify Color Spaces

Color Space String

CCIR Rec. 709 RGB rgb709

Linear version of CCIR Rec. 709 RGB rgblinear

CCIR Rec. 709 YCbCr ycc709

Luminance-only space derived from CCIR Rec. 709 YCbCr y709

Linear version of y709 ylinear

CCIR Rec. 601 YCbCr ycc601

Luminance-only space derived from CCIR Rec. 601 YCbCr y601

YCbCr color space defined by Kodak for Photo CD photoycc

Linear CMY cmy

Linear CMYK cmyk

XilImage image;
XilColorspace colorspace;

xil_set_colorspace(image, colorspace);

124 XIL Programmer’s Guide—August 1994

7

2. Create a destination image, and assign it the color space to which you
want to convert your source image.
The destination image must have the same width, height, and data type as
the source image, and it must have a number of bands appropriate to the
color space you will assign it. That is, if you want to assign the destination
image the color space ycc709 , it must have three bands. You assign a color
space to the destination using the same method you used to assign a color
space to the source image.

Note – It is possible to perform an in-place color conversion if the
destination image is a child of the source and has the same width and height
as the source. This procedure is not generally recommended, however,
because the color-conversion operation will overwrite some or all of the
data in the source image.

3. Perform the color conversion.
You perform the color conversion by calling the function
xil_color_convert() . This function takes handles to your source and
destination images as its two parameters.

Note – Regions of interest are ignored when you perform a color
conversion.

There are many applications for this type of color conversion. For example,
you may want to:

• Convert an image from a YCbCr color space to an RGB color space in order
to display the image

• Convert an image from an RGB color space to a YCbCr color space to prepare
it as input to the JPEG or CellB compressor

• Convert an image to the CMY or CMYK color space to prepare it to be
printed on a subtractive color printer

• Convert an RGB or YCbCr image to the y709, ylinear , or y601 color space
as a way of converting a 24-bit image to an 8-bit grayscale image

• Convert an XIL_BYTE image from a linear color space to a gamma-corrected
color space to prevent contouring in low-intensity regions of the image

Presentation Functions 125

7

Black Generation
The XIL library also enables you to perform undercolor removal and black
generation on CMYK images—images to be printed on a four-color printing
system. Normally, the process of undercolor removal and black generation
goes something like this. For each pixel in the image:

• Black (K) equals the minimum of C, M, and Y
• C = C - K
• M = M - K
• Y = Y - K

However, the XIL function that performs undercolor removal and black
generation gives you more control over how much cyan, magenta, and yellow
will be removed from your image and over how much black will be added to
it. This function is called xil_black_generation() , and its function
prototype is shown below.

The parameters src and dst are handles to your source and destination
images. Both images must be CMYK images. Therefore, if you want to process
a CMY image, you must first convert it to a CMYK image. For instructions on
how to do this, see the section “Color-Space Conversion” on page 122. In-place
operations are allowed.

The parameters black and undercolor are used as follows. For each pixel in
your source image:

• K = (black * minimum of C, M, and Y)
• C = C - (undercolor * minimum of C, M, and Y)
• M = M - (undercolor * minimum of C, M, and Y)
• Y = Y - (undercolor * minimum of C, M, and Y)

void xil_black_generation(XilImage src, XilImage dst,
 float black, float undercolor);

126 XIL Programmer’s Guide—August 1994

7

Thus, if both black and undercolor are set to 1.0, you’ll get standard
undercolor removal. You’ll frequently achieve better results, though, if the
percentage of black you add to your image is slightly higher than the
percentage of C, M, and Y you remove from it. For example, you might try
using the following call:

Note – Regions of interest are ignored when you perform undercolor removal.

XilImage src, dst;

xil_black_generation(src, dst, 0.7, 0.5);

127

Error Handling 8

The list below summarizes the most important facts about XIL error handling.

• Error handling is asynchronous. For example, assume that your program
includes a call to xil_copy() that attempts to copy a three-band image to
a single-band image. This is an error, and at some point the library will
report that the source and destination images do not contain the same
number of bands. However, this error may not be reported when the line in
your program containing the xil_copy() is called. This is true because the
XIL library’s deferred execution scheme enables it to store many operations
before executing them. (See Chapter 21, “Acceleration in XIL Programs,” for
more information on this deferred execution feature.) Later, when a set of
stored operations is performed, the error will be reported.

The fact that error reporting is asynchronous does not really affect the way
you handle errors in your XIL programs, but it is something you should be
aware of.

• The amount of error handling that you can do by simply checking the return
values of XIL functions is limited. About half of the functions in the XIL
library return void , and for the remaining functions, while you may be able
to tell from the return value whether an error occurred, you won’t be able to
determine exactly what the error was. To handle errors properly, your
program needs to examine the error data structure (of type XilError) that
the library creates whenever an error occurs. This structure contains such
information as an error ID and a string containing a description of the error.

• Your application can deal with the error structure referred to above in one of
two ways:

128 XIL Programmer’s Guide—August 1994

8

• One option is to do nothing. In this case, the library’s default error
handler will look at the error structure and print a message to stderr . As
shown in “An Example” on page 135, this option isn’t recommended
because the default handler prints information that is intended for
application developers and isn’t useful to an end user.

• Your other option is to write your own error handler and to install it; this
is the recommended option. For information on writing such an error
handler, see the next section “Writing an Error Handler,” and for
information on installing the routine, see the section “Installing and
Chaining Error Handlers” on page 136.

Note – You can actually have more than one error handler installed at a time.
In addition, you can chain these error handlers so that if the first error handler
in the chain does not deal with an error, it can pass the error structure
containing information about the error to a second error handler, and so on.
This subject is explained in “Installing and Chaining Error Handlers” on
page 136.

Writing an Error Handler
Any error handler you write should take one parameter, a handle to the error
structure the library created when the last error occurred. In addition, the
function should return a value of type Xil_boolean . Thus, the header of your
function should look like this:

Xil_boolean function-name(XilError error);

The function should return TRUE if it has handled the error and FALSE if it has
not.

The XIL library contains a number of routines you can use in building the body
of your error handler. These are discussed in the next section, “Functions You
Can Call in Your Error Handler.” The section after that—“An Example” on
page 135—shows how you might use these functions to write an error handler.

Error Handling 129

8

Functions You Can Call in Your Error Handler

This section discusses the XIL functions you can use in writing your own error
handler. These functions fall broadly into two groups: those that get
information from the error structure that the library passes to your error
handler and those that retrieve information from structures of type
XilObject .

Getting Information from an Error Structure

The functions listed in this section all take as their only parameter the name of
the error structure the library has passed to your error handler.

xil_error_get_string()

This function returns an internationalized string (char *) that describes the
error that just occurred. For a complete list of possible messages, see
Appendix B, “XIL Error Messages.”

You should either use this string immediately or make a copy of it because the
pointer to it will become invalid after the next call your program makes to
dgettext(3I) or to one of the XIL error functions that returns a string. Also,
you should not free or modify this string.

xil_error_get_id()

This function returns a string (char *) of the form di- n, where is n is a
unique identifier. For a complete list of possible error IDs, see Appendix B,
“XIL Error Messages.”

You should not free or modify this string.

130 XIL Programmer’s Guide—August 1994

8

xil_error_get_category()

This function returns an enumeration constant of type XilErrorCategory .
The declaration of this enumeration is shown below.

Table 8-1 explains briefly what types of error fall into each category.

enum XilErrorCategory {
 XIL_ERROR_SYSTEM,
 XIL_ERROR_RESOURCE,
 XIL_ERROR_ARITHMETIC,
 XIL_ERROR_CIS_DATA,
 XIL_ERROR_USER,
 XIL_ERROR_CONFIGURATION,
 XIL_ERROR_OTHER};

Table 8-1 XIL Error Categories

Category Explanation

XIL_ERROR_SYSTEM The library cannot perform an operation correctly.
This type of error is usually a secondary error
caused by a user, resource, or configuration error.

XIL_ERROR_RESOURCE Usually means that there is insufficient memory
for the library to create an image or other data
structure.

XIL_ERROR_ARITHMETIC Indicates an arithmetic error such as a divide by 0.

XIL_ERROR_CIS_DATA Means that the datastream being decompressed
does not conform to the appropriate datastream
definition.

Error Handling 131

8

xil_error_get_category_string()

This function returns a string (char *) that indicates which category of error
has occurred. The strings for the possible categories are

• System
• Resource
• Arithmetic
• Cis Data
• User
• Configuration
• Other

As with the string returned by xil_error_get_string() , you should either
use this string immediately or make a copy of it because the pointer to it will
become invalid after the next call your program makes to dgettext(3I) or to
one of the XIL error functions that returns a string. Also, you should not free
this string.

xil_error_get_primary()

This function returns a value of type Xil_boolean , either TRUE or FALSE. A
value of TRUE indicates that the error being processed was the primary cause
of a problem you’re seeing. For example, if you run out of memory and

XIL_ERROR_USER The programmer has specified an invalid
parameter to an XIL function. For example, for a
lookup operation, the data type of the source
image and the input data type of the lookup table
might not match.

XIL_ERROR_CONFIGURATION Usually indicates that the XIL software has not
been installed properly or that an environment
variable has not been set properly. The specific
error may be that the runtime system is unable to
find a loadable driver it needs.

XIL_ERROR_OTHER Miscellaneous errors, such as Xlib and DGA
errors.

Table 8-1 XIL Error Categories

Category Explanation

132 XIL Programmer’s Guide—August 1994

8

xil_create() is unable to create an image, the primary error produced will
be a resource error. The XIL library may also generate secondary errors as the
NULL image is used internally.

xil_error_get_location()

This function returns a string (char *) that indicates where in the XIL library
the error was generated. This location will help Customer Support to resolve
any problems you report to them.

You should not free this string.

xil_error_get_object()

This function returns a handle of type XilObject to the object affected by the
error. This object may be:

• An image
• An image type
• A lookup table
• A compressed image sequence (CIS)
• A dither mask
• A kernel
• A structuring element
• A region of interest
• A histogram

Once you have this handle, you can use the functions discussed in the next
section to obtain further information about the object.

Note – If the error did not affect a particular object, you will receive a NULL
handle.

Getting Information About the Object Affected by the Error

If your error handler uses the function xil_error_get_object() to retrieve
a handle to the object affected by the last error, you can use the functions
discussed below to request further information about the object.

Error Handling 133

8

xil_object_get_error_string()

This function attempts to get from an object a string containing additional
information about the object. For instance, if you query a CIS object, you will
get a string containing information about the values of the start frame, read
frame, and write frame at the time of the error.

The prototype for this function is shown below.

The parameter object is the object handle returned by
xil_error_get_object() ; string is an array of char s in which the string
will be returned; and string_size is the maximum number of characters the
array can contain.

In the code fragment below, an error handler uses
xil_object_get_error_string() to request information about the object
affected by an error and prints any information that is available.

xil_object_get_type()

You use this function to determine what kind of object the last error affected.
The prototype for the function is shown below.

void xil_object_get_error_string(XilObject object,
 char *string, int string_size);

#define MAX 1024

Xil_boolean UserDefinedErrorFunc(XilError error)
{
 XilObject object;
 char buffer[MAX];

 object = xil_error_get_object(error);
 if (object) {
 xil_object_get_error_string(object, buffer, MAX);
 if (buffer[0] != 0)
 fprintf(stderr, “object info: %s\n”, buffer);

XilObjectType xil_object_get_type(XilObject object);

134 XIL Programmer’s Guide—August 1994

8

The parameter to the function is the object handle returned by
xil_get_error_object() . The return value is an enumeration constant of
type XilObjectType . The declaration of this enumeration is written as
follows:

Once you know the type of object that was affected by the last error, you can
cast the object handle returned by xil_get_error_object() to a handle to
the particular type of object you have. For example, if the object is an image,
you can cast the handle of type XilObject to one of type XilImage . Doing so
gives you the ability to write code like the following:

Because the error handler has a handle to the image, it can use any of the XIL
functions that read image attributes to get additional information about the
image. In this case, the error handler is finding out how many bands are in the
image.

enum XilObjectType {
 XIL_IMAGE,
 XIL_IMAGE_TYPE,
 XIL_LOOKUP,
 XIL_CIS,
 XIL_DITHER_MASK,
 XIL_KERNEL,
 XIL_SEL,
 XIL_ROI,
 XIL_ROI_LIST,
 XIL_HISTOGRAM,
};

XilObject object;

object = xil_error_get_object(error);
if (object)
 if (xil_object_get_type(object) == XIL_IMAGE)
 fprintf(stderr, “image bands: %d\n”,
 xil_get_nbands((XilImage)object));

Error Handling 135

8

An Example

The library’s default error handler prints a message like the one shown below
each time an error occurs.

As you can see, it indicates that the XIL default error handler handled the
error, and it prints the category of the error, an error message, an error ID, and
the location at which the error occurred, indicating whether the error was a
primary or secondary error.

This information should be useful to the application developer because it
verifies that the XIL handler handled this error, and also prints the error
location, which is useful when contacting Customer Support. However, you
wouldn’t want your application to identify the error handler and error location
because this information isn’t useful to an end user and, moreover, would be
confusing to that user. The code below shows how you could implement an
error handler that doesn’t identify the error handler and doesn’t print the error
location.

XilDefaultErrorFunc:
 error category: User
 error string: Destination colorspace not specified
 error id: di-203
 primary error detected at location colorConvert79 in XIL

Xil_boolean UserDefinedErrorFunc(XilError error)
{
 if (xil_error_get_primary(error) == TRUE)
 fprintf(stderr, "\nPrimary Error:\n");
 else
 fprintf(stderr, "\nSecondary Error:\n");
 fprintf(stderr, " error category: %s\n",
 xil_error_get_category_string(error));
 fprintf(stderr, " error string: %s\n",
 xil_error_get_string(error));
 fprintf(stderr, " error id: %s\n",
 xil_error_get_id(error));
 return TRUE;
}

136 XIL Programmer’s Guide—August 1994

8

Installing and Chaining Error Handlers
By default, when an XIL error occurs, the library creates an error structure of
type XilError and passes that structure to the default error handler. To
override this behavior, you can write your own error handler and install it.
Once you install your error handler, the library will call it instead of the default
error handler when an error occurs. If you write and install more than one
error handler, the library always calls the most recently installed error routine.
For more information on installing error handlers, see the next section,
“Installing Error Handlers.”

As mentioned above, the XIL library allows you to have more than one
user-defined error routine installed at the same time. At first glance, this seems
a waste because the library can only call the most recently installed routine
when an error occurs. However, having more than one user-defined error
handler installed is often useful because the library allows you to call one error
handler from another, an action referred to as chaining. For an explanation of
why you might want to chain error routines and how you go about chaining
them, see the section “Chaining Error Handlers” on page 139.

Installing Error Handlers

To install an error handler you’ve written, you call the function
xil_install_error_handler() , whose prototype is shown below.

The function’s return value indicates whether the installation was successful. A
value of XIL_SUCCESS means that it was successful, and a value of
XIL_FAILURE means that it wasn’t.

int xil_install_error_handler(XilSystemState state,
 XilErrorFunc func);

Error Handling 137

8

The parameter state is the system-state data structure you received when you
initialized the library, and func is a pointer to your error handler.
(XilErrorFunc is a defined type representing a pointer to a function.) Thus,
the call you would use to install the error handler shown in the section “An
Example” on page 135 would look like this.

When you install an error handler, the library adds it to a list of error handlers
that it recognizes. Figure 8-1 shows what the list would look like at this point.

Figure 8-1 List of Error Handlers

XilSystemState state;

xil_install_error_handler(state, UserDefinedErrorFunc);

DefaultErrorHandler

UserDefinedErrorFunc

138 XIL Programmer’s Guide—August 1994

8

If you then installed a third error handler, called UserDefinedErrorFunc2 , the
list would grow as shown in Figure 8-2.

Figure 8-2 Adding to the List of Error Handlers

When an XIL error occurs, the library always calls the topmost routine (the last
routine to be installed) in the list.

The library also includes a routine for removing error handlers from this list.
Its name is xil_remove_error_handler() .

The parameters to this function are the same as those for
xil_install_error_handler() .

Note – If the same error handler has been installed twice, only the most recent
version of the error handler will be removed.

void xil_remove_error_handler(XilSystemState state,
 XilErrorFunc func);

DefaultErrorHandler

UserDefinedErrorFunc

UserDefinedErrorFunc2

Error Handling 139

8

Chaining Error Handlers

Again, having more than one error handler installed is useful because the
library enables you to call one error handler from another. From the topmost
error handler in a list of handlers, you can call either the next-to-last error
handler to be installed or the default error handler. Thus, in your topmost error
routine, you might handle only resource errors. If the error you’re passed is a
resource error, you take whatever action is appropriate and return TRUE;
otherwise, you call the next error handler in the list. This next error handler
might also check for one special type of error. Like the previous routine, if it is
passed the proper type of error, it handles the error and returns TRUE; if it
receives another type of error, it might call the error handler below it on the
list. This process can continue until the error handler being called is the default
error handler. This routine will handle any XIL error and always returns TRUE.

The functions you use to chain error handlers are
xil_call_next_error_handler() and
xil_default_error_handler() .

The parameter error is the error structure that the library passed to the
topmost error handler in its list of error handlers (the last one to be installed).
The return value of both functions indicates whether the error routine being
called handled the error. A return value of TRUE indicates that the routine did
handle the error, and a return value of FALSE indicates that it didn’t.

Xil_boolean xil_call_next_error_handler(XilError error);

Xil_boolean xil_default_error_handler(XilError error);

140 XIL Programmer’s Guide—August 1994

8

The brief example below shows the routine
xil_call_next_error_handler() being used in an error-handling routine.
This routine simply ensures that if the error is a resource error, the program
will exit after handling the error in the normal way.

Xil_boolean resource_errors(XilError error)
{
 int return_value;

 return_value = xil_call_next_error_handler(error);
 if (xil_error_get_category(error) == XIL_ERROR_RESOURCE)
 exit(1);
 return return_value;
}

141

Arithmetic, Relational, and Logical
Functions 9

This chapter discusses the XIL library’s arithmetic, relational, and logical
functions. These functions can be used to lighten or darken an image, to
increase or decrease contrast in an image, or to produce the “negative” of an
image.

Note – All the functions discussed in this chapter can be performed in place;
that is, the source and destination images can be the same image.

Arithmetic Functions
If you have two source images and a destination image, the XIL library enables
you to:

• Add the two source images and store the results in the destination
(xil_add())

• Subtract one source image from the other and store the results in the
destination (xil_subtract())

• Multiply the two source images and store the results in the destination
(xil_multiply())

• Divide one source image into the other and store the results in the
destination (xil_divide())

For a single source image, the library lets you find the absolute value of pixels
in an image and store the result in a destination image (xil_absolute()).

142 XIL Programmer’s Guide—August 1994

9

For each of these operations to work, its source and destination images must
have the same data type: XIL_BIT , XIL_BYTE , or XIL_SHORT. Also, the
images must have the same number of bands. The images do not have to have
the same width and height. For an explanation of which pixels an operation
will affect if the images have different sizes, see “Region of Interest” on
page 48.

When you add two images, you take the value at location 0,0 in one source
image, add it to the value at location 0,0 in a second source image, and write
the sum at location 0,0 in a destination image. You then follow the same
procedure for all other points in the images. Subtraction, multiplication, and
division are handled similarly. When multiband images are involved, the
arithmetic operation is performed on corresponding bands in the source
images; that is, band 0 in the first source image is added to band 0 in the
second source image, and so on.

This all seems very straightforward. But there are a few points you should bear
in mind when using these functions:

• If the result of an operation is out of range for a particular data type, the
result is not truncated, but is clamped to the minimum or maximum value
for the data type. Thus, if you’re working with XIL_BYTE images, adding a
200 and a 200 gives a result of 255 because 400 cannot be represented in 8
bits and the greatest valid value for an XIL_BYTE image is 255. Likewise, if
you subtract 200 from 100, the result is 0. Table 9-1 indicates the valid range
of values for each XIL data type.

• Division by 0 is permitted. If the image serving as the divisor contains 0’s,
you will receive one error message indicating that division by 0 occurred.
However, the division operation will be performed. If a 0 in an image is
divided by 0, the result is 0, and if any other value is divided by 0, the result
is the greatest valid value for the data type (or possibly the lowest valid
value if the numerator is a negative value of type XIL_SHORT).

Table 9-1Valid Values for Each XIL Data Type

Data Type Lowest Value Greatest Value

XIL_BIT 0 1

XIL_BYTE 0 255

XIL_SHORT -32768 32767

Arithmetic, Relational, and Logical Functions 143

9

• All division is performed using floating-point operands. The
xil_divide() function casts each dividend and divisor to a float before
doing the division. It then rounds off each quotient and casts it to the type
of the images involved in the division.

The xil_absolute() function finds the absolute value of pixels in a source
image and stores the result in a destination image. Since XIL_BIT and
XIL_BYTE images don’t have negative values, xil_absolute() is useful only
for XIL_SHORT images. For each band in the image, the absolute value at
location 0,0 in the source is written to location 0,0 in the destination; the same
procedure is then followed for all other points in the image.

Note – On XIL_BIT and XIL_BYTE images, xil_absolute is effectively
xil_copy .

Relational Functions
If you have two source images and a destination image, the XIL library enables
you to:

• Find the larger of pixels in the two source images and store the results in the
destination (xil_max())

• Find the lesser of pixels in the two source images and store the results in the
destination (xil_min())

As with the arithmetic operations, xil_max() and xil_min() require the
source and destination images to have the same data type and the same
number of bands. The images do not have to have the same width and height.

Taking the maximum or minimum values from two images performs a band by
band comparison. For example, if src1 and src2 images are 4-banded images,
comparing the value at location 0,0 writes to location 0,0 in the destination
image the maximum (or minimum) for each source band; thus, the first band at
0,0 in the destination might receive its value from src1 , whereas the remaining
three bands might receive their values from src2 . This band by band
comparison is repeated for all other points in the source images.

144 XIL Programmer’s Guide—August 1994

9

Note – Don’t confuse these relational functions with finding the maximum or
minimum pixel value within each band of a single image. To find those values,
use xil_extrema() , discussed in “Finding the Minimum and Maximum
Values in an Image” on page 178.

Logical Functions
If you have two source images and a destination image, the XIL library also
enables you to:

• Take the bitwise AND of the two source images and store the results in the
destination (xil_and())

• Take the bitwise OR of the two source images and store the results in the
destination (xil_or())

• Take the bitwise XOR of the two source images and store the results in the
destination (xil_xor())

As with the arithmetic and relational operations, for these operations to work,
all three images must have the same data type and the same number of bands.
The images do not have to have the same width and height.

The XIL library also contains a bitwise NOT operator (xil_not). This function
works on a single source image. It looks at the values in that image as binary
values and changes all the 1’s in those values to 0’s, and all the 0’s to 1’s. The
function then writes this one’s complement version of the source image to the
destination.

Operations with Constants
For each of the arithmetic and logical functions that operate on two source
images—addition and so on—the XIL library includes a similar function that
takes as input one source image and a constant. For instance, the library
contains the function xil_add() , whose prototype is shown below.

void xil_add (XilImage src1, XilImage src2, XilImage dst);

Arithmetic, Relational, and Logical Functions 145

9

It also contains the function xil_add_const() , whose prototype is shown
below.

To add a constant to a single-band image, you declare a one-element array of
type float , assign that element a value, and then call xil_add_const() . For
instance, the code to add 8.0 to each value in a single-band image might look
like this:

This operation is roughly the equivalent of adding to src1 a second source
image, all of whose values are 8. The only difference between these two
operations is that using a constant instead of a second source image enables
you to use noninteger values in the operation. When you add a constant to an
image, each sum is rounded and then cast to the data type of the source and
destination images.

Note – As stated on page 142, if the result of an operation is out of range, the
value is clamped and assigned the minimum or maximum value for the data
type. It’s important to realize that the operation is performed first, then the
result is clamped. For example, if the operation is division and you divide a
negative constant into the values for an XIL_BYTE image, the division is first
performed. Thus, for a pixel value of 10 divided by the constant -2, the result is

 10 / -2 = -5, which is clamped to 0.

Notice that clamping the -2 to 0 before the division is performed would yield
10 / 0, which would result in a value of 255 in the destination image.

void xil_add_const (XilImage src1, float *constants,
 XilImage dst);

XilImage src1, dst;
float constants[1] = {8.0};

xil_add_const(src1, constants, dst);

146 XIL Programmer’s Guide—August 1994

9

In operations that involve a multiband source image and a constant, the
constant must actually be an array of constants, and the number of constants in
the array must equal the number of bands in the image. The following code
adds a different constant to each band of a 3-band image.

This operation adds 8.0 to each value in band 0 of the image, 12.0 to each value
in band 1, and 2.0 to each value in band 2.

For operations that are not associative—subtraction and division—the XIL
library enables you to specify the constant as the first operand or the second.
That is, for a subtraction, the constant can be either the minuend or the
subtrahend, and for a division, it can be either the dividend or the divisor.

Table 9-2 lists the arithmetic functions that can take constants.

You can also perform logical operations using an image and a constant. For
instance, besides the function xil_and() , the library contains the function
xil_and_const() , whose prototype is shown below.

XilImage src1, dst;
float constants[3] = {8.0, 12.0, 2.0};

xil_add_const(src1, constants, dst);

Table 9-2 Arithmetic Operations Using a Source Image and a Constant

Function Name What the Function Does

xil_add_const Adds an image and a constant

xil_subtract_const Subtracts a constant from an image

xil_subtract_from_const Subtracts an image from a constant

xil_multiply_const Multiplies an image by a constant

xil_divide_by_const Divides an image by a constant

xil_divide_into_const Divides an image into a constant

void xil_and_const (XilImage src1, unsigned int *constants,
 XilImage dst);

Arithmetic, Relational, and Logical Functions 147

9

To take the logical AND of a constant and a single-band image, you declare a
one-element array of type unsigned int , assign that element a value, and
then call xil_and_const() . For instance, the code to find the logical AND of
each value in an image and 8 might look like this:

This operation is the equivalent of taking the logical AND of src1 and a
second source image, all of whose values are 8.

Table 9-3 lists the logical functions that can take constants.

Note – The relational operations xil_max() and xil_min() always require
two source images and cannot operate on one source image and one constant.

Arithmetic and Logical Operations with Bit Images
The arithmetic and logical operations discussed in this chapter are defined for
XIL_BIT images. If you bear in mind that the values in the destination image
produced by such an operation cannot fall below 0 or go above 1, the results to
expect are usually obvious. For example, when you add two XIL_BIT images,
the following calculations are used:

• 0 + 0 = 0
• 0 + 1 = 1
• 1 + 0 = 1
• 1 + 1 = 1

XilImage src1, dst;
unsigned int constants[1] = {8};

xil_and_const(src1, constants, dst);

Table 9-3 Logical Operations Using a Source Image and a Constant

Function Name What the Function Does

xil_and_const ANDs an image and a constant

xil_or_const ORs an image and a constant

xil_xor_const XORs an image and a constant

148 XIL Programmer’s Guide—August 1994

9

Note that 1 plus 1 equals 1. Two is not a valid value for a 1-bit data element, so
the result has been clamped at 1. Similarly, when you subtract one XIL_BIT
image from another, 0 minus 1 equals 0 because -1 is not a valid value.

When performing division, bear in mind that 0 divided by 0 equals 0 and that
a positive nonzero value divided by 0 equals the maximum valid value for the
data type, in this case 1.

When you perform an arithmetic or logical operation that involves a bit image
and a constant, similar rules apply. For arithmetic operations, think of the
following sequence of steps taking place:

1. Addition, subtraction, multiplication, or division is performed using a 1-bit
value (0 or 1) and a floating-point value.

2. The result is rounded and clamped to 0 or 1.

3. The 0 or 1 is cast to the data type XIL_BIT .

For logical operations involving a constant, the constant (an unsigned int) is
set to 1 if it is greater than 0; then the operation is performed.

149

Geometric Functions 10

This chapter discusses the XIL library’s geometric functions. These functions
enable you to perform such operations as:

• Translating an image (moving an image up, down, left, or right)

• Scaling an image (changing an image’s width or height)

• Rotating an image

• Warping an image

• Transposing an image (flipping an image across a horizontal or vertical axis,
or across a diagonal)

The following sections discuss the XIL functions that perform the geometric
functions; because you must pass an interpolation option as an argument on
most of them, this chapter begins with a discussion of the available
interpolation options.

Note – The functions discussed in this chapter cannot be performed in place.
That is, the source and destination images for a geometric operation must be
different images.

150 XIL Programmer’s Guide—August 1994

10

Interpolation Options
Geometrically transforming images centers around the notion of point sampling.
In point sampling, each pixel in a destination image is located with integer
coordinates at a distinct point D in the image plane. The geometric transform T
identifies each destination pixel with a corresponding point S in the source
image; thus, S is the point that T maps to D. In general, S doesn’t correspond to
a single source pixel; that is, it doesn’t have integer coordinates. Therefore, the
value assigned to the pixel D must be computed as an interpolated
combination of the pixel values closest to S in the source image.

When performing most geometric transformations, you must specify the
interpolation method to be used in calculating the destination pixel values.
Table 10-1 shows the interpolation options the XIL library provides, and the
strings you use to request them.

To see how the interpolation type can affect the result of a geometric operation,
see Color Plate 1.

Nearest Neighbor Interpolation

Nearest-neighbor interpolation, sometimes called zero-order interpolation, is
the fastest interpolation method because it simply assigns to point D in the
destination image the value of the pixel nearest S in the source image (see
“Interpolation Options” on page 150”). Though it’s a good choice when speed
is important, nearest-neighbor interpolation can produce undesirable artifacts

Table 10-1 Types of Interpolation

Interpolation Type String What it Assigns to D

Nearest neighbor nearest The value of the pixel nearest S

Bilinear bilinear A value that’s a bilinear function of the four
pixels nearest S

Bicubic bicubic A value that’s a bicubic function of the sixteen
pixels nearest S

General general A value that’s a separable user-defined function
of the pixels in a rectangular region surrounding
S

Geometric Functions 151

10

in the destination image, especially near edges where there may be a big
change in color or gray level between two adjacent pixels. For example, smooth
lines in the source image may show up as jagged lines in the destination.

Bilinear Interpolation

A routine that performs bilinear, or first-order, interpolation assigns to point D
in the destination image a value that’s a bilinear function of the four pixels
nearest S in the source image (see “Interpolation Options” on page 150). This
interpolation type yields better results than nearest-neighbor interpolation, but
can itself have an undesirable smoothing effect on an image. To alleviate this
problem, you can use bicubic interpolation.

Bicubic Interpolation

A routine that performs bicubic interpolation assigns to point D in the
destination image a value that’s a bicubic function of the 16 pixels nearest S in
the source image (see “Interpolation Options” on page 150). Using bicubic
interpolation preserves fine detail present in a source image, but it takes more
time than the nearest-neighbor or bilinear interpolation methods.

General Interpolation

The interpolation options discussed so far base the interpolated values on
relatively few pixels: nearest neighbor uses 1 pixel, bilinear uses 4 pixels, and
bicubic uses 16. If these options don’t provide the quality you need, you can
use the general interpolation option. For example, if you’re subsampling by a
factor of four, bicubic interpolation would result in aliasing artifacts that can be
improved by using more source pixels in the interpolation. General
interpolation lets you:

• Determine how many pixels nearest point S in the source image are used to
calculate the interpolated pixel value of point D in the destination image
(see “Interpolation Options” on page 150). If desired, you could use every
pixel in the source image.

152 XIL Programmer’s Guide—August 1994

10

• Weight the pixels used in the calculation. By ensuring that the pixels closest
to point S in the source image have more influence on the value assigned to
D than pixels that are further from S, you can reduce the contrast between
adjacent pixels in the destination image, thus providing smoother line and
color transitions.

• Designate the number of pixel subsamples to use for interpolating pixel
values in the destination. This effectively lets you divide into fractional
locations the space between adjacent source-image pixels so you can
interpolate a destination pixel’s value differently, depending on which
location point S falls in.

To use general interpolation, you must:

1. Create horizontal and vertical interpolation tables; these form the filters or
kernels for the interpolation. The tables determine the kernel sizes, weighted
pixel values, and number of subsamples used for a general interpolation.

2. Set the interpolation tables on the system-state object. The tables affect all
general interpolation operations using images created from this system-state
object.

3. Pass general as the interpolation string on any XIL function that requires
an interpolation argument. This causes the interpolation tables to be used as
the interpolation method.

4. Destroy the interpolation tables when they are no longer needed. This
releases the memory that was allocated for them.

The sections that follow discuss these steps in more detail. Before proceeding
to them, however, it’s useful to consider a conceptual model of a general
interpolation.

Figure 10-1 represents an interpolation kernel as a 5-by-5 matrix of weighted
values; for simplicity, the values are labelled a through y.

Geometric Functions 153

10

Figure 10-1 Conceptual Model of a General Interpolation

During a general interpolation, the kernel’s key value—generally its center
value—is laid over the source-image pixel to be processed; this means the
other kernel values lie over neighboring pixels. Each source-image pixel that is
covered by the kernel is then multiplied by the kernel value that lies over it. In
Figure 10-1, the source-image pixel 2,2 is multiplied by kernel value m; pixel 0,0
is multiplied by kernel value a ; pixel 1,0 is multiplied by b; and so on. The
multiplication products are then summed together, and this sum becomes the
pixel value in the destination.

Though Figure 10-1 provides a useful conceptual model, the general
interpolation method doesn’t actually construct the two-dimensional kernel
shown in the figure because it’s computationally expensive. To improve
efficiency, general interpolation uses separate horizontal and vertical vector
arrays—the kernels in the interpolation tables you create—to calculate the
same values a two-dimensional kernel would calculate. The vector arrays
require you to provide fewer data elements for the kernel values; this
reduction is particularly significant for large tables with many subsamples.
Nonetheless, for a horizontal table with M elements and a vertical table with N
elements, the number of pixels that contribute to the interpolated value is still
given by M * N.

Key value

Source pixel
being processed

Image

Kernel
a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

154 XIL Programmer’s Guide—August 1994

10

Note – To translate the horizontal and vertical kernels into a two-dimensional
matrix as shown in Figure 10-1, the 1xn kernel values would have to be matrix-
multiplied to obtain the corresponding two-dimensional kernel values.

When interpolating pixels that are at, or near, the source image edges, the
general interpolation method temporarily reduces the kernel height and width
so the edges fit within the defined kernel size. This strategy lets the method
interpolate pixels that originally formed the image edges. Pixels outside of the
image don’t contribute to any interpolation values.

Creating Vertical and Horizontal Interpolation Tables

To support general interpolation, XIL has an XilInterpolationTable
object, which is an array of 1xn kernels representing either a horizontal or
vertical interpolation filter. General interpolation can be performed using two
interpolation tables, one to represent the horizontal filter and one to represent
the vertical filter. Or it can be performed using a single interpolation table that
represents either the horizontal or the vertical filter, in which case the missing
matrix dimension is 1. For example, if the horizontal table defines 1-by-7
kernels and the vertical table defines 1-by-5 kernels, the effective matrix is
7-by-5; if only the 1-by-7 horizontal table is defined, the effective matrix is
7-by-1. If both the horizontal and vertical interpolation tables are NULL,
nearest-neighbor interpolation is performed.

To create an XilInterpolationTable object, you call the
xil_interpolation_table_create() function, whose prototype is shown
below.

The table’s data type is XIL_FLOAT. The parameter state is the handle to the
system-state structure created when you initialized the XIL library. The
parameter kernel_size specifies the number of elements in each kernel. The
parameter subsamples indicates the number of subsamples or fractional
locations between source-image pixels; each subsample requires its own kernel
data. The parameter data specifies the data values for each kernel. There is no
limit or restriction on the kernel_size or number of subsamples .

XilInterpolationTable xil_interpolation_table_create(
 XilSystemState state, unsigned int kernel_size,
 unsigned int subsamples, float* data);

Geometric Functions 155

10

The following code fragment creates a horizontal and a vertical interpolation
table. The horizontal table has seven kernel elements, and the vertical table has
three; each table has only one subsample.

Kernel Size
The xil_interpolation_table_create() function’s kernel_size
parameter determines the number of data elements in each subsample of the
kernel defined by the interpolation table. There is no limit on the kernel size.
The horizontal and vertical tables can have different kernel sizes, as well as
different subsampling values.

The key element in a kernel is its center element; for an even-numbered kernel
size, the key element is offset to the next-lowest index element. Thus, the key
element for a 5-element table is the center element, which has array index 2;
the key element for an 8-element table is the fourth element, which has index 3.
The key element’s array index can be computed as an integer calculation:

int array_index = (kernel_size - 1) / 2

Subsamples
The xil_interpolation_table_create() function’s subsamples
parameter determines the number of subsamples used for a general
interpolation. Increasing the number of subsamples lets you specify different
data values to be used for the interpolation kernel, depending on where point

XilSystemState state;
XilInterpolationTable horizTable;
XilInterpolationTable vertTable;

int subsamples = 1,
 horizSize = 7,
 vertSize = 3;

float horizData[] = {.005, .005, .04, .9, .04, .005, .005};
float vertData[] = {.12, .8, .08};

horizTable = xil_interpolation_table_create(state,
 horizSize, subsamples, horizData);

vertTable = xil_interpolation_table_create(state,
 vertSize, subsamples, vertData);

156 XIL Programmer’s Guide—August 1994

10

S in the source image falls between pixels. There is still only one point sample
taken to determine each destination pixel value, but the data used to
interpolate the value depends on which subsample’s kernel is used, and that,
in turn, depends on the exact location of point S.

There is no limit on the number of subsamples you can use. For each
subsample, you must define separate kernel data. Thus, for n subsamples, an
interpolation table must have n * kernel_size data elements. For example, if you
create a 7-element horizontal interpolation table with 4 subsamples, you must
define 28 data elements. The first 7 elements define the first subsample’s
kernel, the second 7 elements define the second subsample’s kernel, and so on.

Figure 10-2 shows how the interpolation tables are used to determine which
kernel applies to a particular subsample location. In the figure, the
subsampling is 4 in both the horizontal and vertical directions.

Figure 10-2 Determining the Kernel to Use for a General Interpolation

Typically, the kernel values for each subsample are weighted according to the
subsample location’s proximity to the pixels used in the calculation: the closer
a pixel is to the subsample location, the more weight it carries in the kernel.

Vertical Interp Table

Subpixel location specifies
which kernel to use

Backward mapping to
point S's location

Horizontal Interp Table
0 1 2 3

0 1 2 3

0

1

2

3

0
1

2
3

Geometric Functions 157

10

Kernel Data
The kernel data for each table is an array of floating point numbers. As
mentioned in “Subsamples” on page 155, for n subsamples, there must be n *
kernel_size data elements. Thus, for a 3-element kernel size with 2 subsamples,
you must define an array of 6 floating point numbers; the first 3 numbers form
the first subsample’s kernel, and the second 3 numbers form the second
subsample’s kernel.

Caution – Providing too few kernel values to complete an interpolation table
results in bad values.

To preserve the source image’s intensity in the destination image, the sum of
the data values in each interpolation kernel should equal one. Kernel values
whose sum is greater than one tend to increase the destination image’s
intensity, and those whose sum is less than one tend to diminish the intensity.
The results of a given kernel depend on the image it is used on.

To sharpen an image, the kernel values should be weighted heavily toward the
center, with approximately 90% of the kernel value being concentrated there.
To blur an image, the kernel values can be weighted away from the center.

Setting the Interpolation Tables on the System-State Object

After creating the vertical and horizontal tables, you must set them on the
system-state object by calling the xil_set_interpolation_tables()
function, whose prototype is shown below.

The parameter state is a system-state data structure; the parameters
horiz_kernel and vertical_kernel are the horizontal and vertical
interpolation tables you created for general interpolation (see “Creating
Vertical and Horizontal Interpolation Tables” on page 154).

void xil_state_set_interpolation_tables(
 XilSystemState state,
 XilInterpolationTable horiz_kernel,
 XilInterpolationTable vertical_kernel);

!

158 XIL Programmer’s Guide—August 1994

10

The following code fragment creates horizontal and vertical interpolation
tables, sets them on the system-state object, and uses them to perform a general
interpolation for translating an image (see “Translating Images” on page 160).

In this example, the general interpolation effectively performs a bilinear
interpolation with 8 subsamples. The kernel values indicate how much
influence the source-image pixels have on the destination value; the kernel
value 1 indicates that a source pixel completely determines the value for the
destination pixel, and 0 indicates a source pixel has no influence on the
destination value. If S is a source-image point that maps to a given destination
pixel D (S and D are described in “Interpolation Options” on page 150), the

XilSystemState state;
XilInterpolationTable horizTable;
XilInterpolationTable vertTable;
XilImage src, dst;

int subsamples = 8, /* subsample and kernel sizes */
 horizSize = 2,
 vertSize = 2;

float kernelData[] = {1.0, 0.0,
 .875, .125, /* 7/8, 1/8 */
 .75, .25, /* 6/8, 2/8 */
 .625, .375, /* 5/8, 3/8 */
 .5, .5, /* 4/8, 4/8 */
 .375, .625, /* 3/8, 5/8 */
 .25, .75, /* 2/8, 6/8 */
 .125, .875 }; /* 1/8, 7/8 */

horizTable = xil_interpolation_table_create(state,
 horizSize, subsamples, kernelData);

vertTable = xil_interpolation_table_create(state,
 vertSize, subsamples, kernelData);

xil_state_set_interpolation_tables(
 state, horizTable, vertTable);

xil_translate(src, dst, “general”, 50.0, 50.0);

Geometric Functions 159

10

closer S is to a source pixel used to interpolate D’s value, the more influence
that source pixel has on the computation. Conversely, the further S is from the
source pixel, the less influence the source pixel has on D’s computed value.

Additional Kernel-Related Functions

The following XIL functions are available for getting an interpolation table’s
kernel and subsample sizes, and for getting the kernel data values.

To retrieve an interpolation table, call the
xil_state_get_interpolation_tables() function, whose prototype is
shown below.

Destroying an Interpolation Table

After performing a general interpolation, you should destroy the vertical and
horizontal interpolation tables if you aren’t going to use them again.
Destroying the tables releases the memory that was allocated to them.

unsigned int xil_interpolation_table_get_kernel_size(
 XilInterpolationTable table);

unsigned int xil_interpolation_table_get_subsamples(
 XilInterpolationTable table);

float* xil_interpolation_table_get_data(
 XilInterpolationTable table);

void xil_state_get_interpolation_tables(
 XilSystemState state,
 XilInterpolationTable* horiz_kernel,
 XilInterpolationTable* vertical_kernel);

160 XIL Programmer’s Guide—August 1994

10

To destroy an interpolation table, call the
xil_interpolation_table_destroy() function, whose prototype is
shown below.

The only parameter to this function is a handle to the kernel you want to
destroy.

Translating Images
Translating an image means moving it up, down, left, or right. The XIL
function you use to translate an image is called xil_translate() . The
prototype for this function is shown below.

The parameters src and dst are handles to the source and destination images.
The parameter interpolation is a string that specifies an interpolation type.
For information on this parameter, see “Interpolation Options” on page 150.
The parameters xoffset and yoffset are floating-point numbers that
represent the number of pixels the image should be moved horizontally and
vertically. If xoffset is positive, the image is moved to the right, and if it is
negative, the image is moved to the left. If yoffset is positive, the image is
moved down, and if it is negative, the image is moved up.

If you have already read the section “Origin” on page 46, which discusses
image origins, you may think that translating an image is the equivalent of
setting the destination image’s origin and then copying the source image to the
destination. For the most part, this is true. That is, the two code fragments
shown below have the same effect.

void xil_interpolation_table_destroy(
 XilInterpolationTable table);

void xil_translate(XilImage src, XilImage dst,
 char *interpolation, float xoffset, float yoffset);

XilImage src, dst;

xil_set_origin(dst, 50.0, 50.0);
xil_copy(src, dst);

Geometric Functions 161

10

Both fragments move the source image 50 pixels to the right and 50 pixels
down.

However, what if the 50.0’s in the fragments above are changed to 49.5’s? In
the first case, the coordinates that make up the destination image’s origin (49.5,
49.5) will be rounded to integers (50, 50) before the copy occurs, so the result
will not change. In the second case, though, xil_translate() actually
moves the image 49.5 pixels down and 49.5 pixels to the right so that pixels in
the destination image map to noninteger coordinates in the source image. Since
there is no longer a one-to-one correspondence between the pixels in the source
and destination images, the values of the pixels in the destination image must
be estimated or interpolated. The different types of interpolation the XIL library
provides are discussed in “Interpolation Options” on page 150.

Scaling and Subsampling Images
The XIL library includes three functions that enable you to change the width
and height of an image:

• xil_scale()
• xil_subsample_adaptive()
• xil_subsample_binary_to_gray()

The first function, xil_scale() , is the most general of the routines: it
increases or decreases either the width or height of an image. The second,
xil_subsample_adaptive() , is useful only for reducing an image’s size; it
is not useful for enlarging an image. It is available for reducing images because
it often produces better results than using xil_scale() to reduce images. The
last function, xil_subsample_binary_to_gray() is a special function used
only for reducing the size of XIL_BIT images.

XilImage src, dst;

xil_translate(src, dst, “nearest”, 50.0, 50.0);

162 XIL Programmer’s Guide—August 1994

10

xil_scale()

The XIL library’s general scaling routine is xil_scale() , whose function
prototype is shown below.

The parameters src and dst are handles to the image to be scaled and the
destination image. The parameter interpolation is a string that specifies the
type of interpolation to be used for the operation: nearest neighbor, bilinear,
bicubic, or general. (For information about these interpolation methods and
how to request one of them, see “Interpolation Options” on page 150.) The
parameters xscale and yscale are the horizontal and vertical scale factors. If
xscale is greater than 1, the width of the source image will be increased, and
if it is between 0 and 1 (exclusive), the width will decrease. Similarly, if
yscale is greater than 1, the height of the source image will be increased, and
if it is between 0 and 1 (exclusive), the height will decrease.

One thing to bear in mind when scaling images is the way image origins can
affect the scaling operation. (For information about image origins, see “Origin”
on page 46.) For instance, assume the source and destination images are the
same size and that you want to scale the source image by a factor of 2 both
horizontally and vertically. Figure 10-3 shows what will happen if, when you
scale the image, the origins of both the source and destination images are set to
0.0, 0.0 (the default).

void xil_scale(XilImage src, XilImage dst, char *interpolation,
 float xscale, float yscale);

Geometric Functions 163

10

Figure 10-3 Zooming the Upper-Left Corner of an Image

The image on the left is the original image, and the image on the right is the
scaled image. Because the origins are in the upper-left corner of the images, the
destination image contains a zoomed version of the upper-left quadrant of the
source image.

If, on the other hand, the origins of the source and destination images are set to
the pixels at the centers of the images, the scale operation will produce the
results shown in Figure 10-4.

Figure 10-4 Zooming the Center of an Image

Source image Destination image

Source image Destination image

164 XIL Programmer’s Guide—August 1994

10

This time the destination image contains a zoomed version of a block taken
from the center of the source image.

Note – The function xil_scale() has been optimized for the case where the
x and y scale factors are .5.

xil_subsample_adaptive()

The xil_scale() function discussed in the last section is the only function
XIL provides for enlarging images. However, you can reduce an image’s size
using either xil_scale() or xil_subsample_adaptive() .

The library includes the second function because when you scale down an
image using xil_scale() , you must request one of the interpolation methods
discussed earlier: nearest neighbor, bilinear, bicubic, or general. The first three
of these interpolation methods look at relatively few source-image pixels when
calculating the value of a destination pixel. Therefore, if you use one of these
options on xil_scale() to reduce the size of an image, there are going to be
many cases where some pixels in the source image make no contribution to the
value of a pixel in the destination. For example, say that you scale down a
512-by-512 image using an x scale factor of .25, a y scale factor of .25, and
bilinear interpolation. The source image contains 262,144 pixels, and the part of
the destination image that represents the scaled-down source image contains
16,384 pixels. Since the operation used bilinear interpolation, the maximum
number of source-image pixels that could have contributed to the scaled-down
image is 4 times 16,384, or 65,536. In other words, at least three-fourths of the
pixels in the source image had no effect on the values in the scaled-down
image.

To increase the number of source-image pixels used in the calculation with
xil_scale() , you could specify the general interpolation method and define
your own interpolation tables. However, the function
xil_subsample_adaptive() circumvents this problem for you because it
guarantees that no matter what scale factors you use, every pixel in the source
image will contribute to the value of one (and only one) pixel in the
scaled-down image. For this reason, scaling down images using
xil_subsample_adaptive() is generally preferable to using xil_scale() .

Geometric Functions 165

10

The function prototype for xil_subsample_adaptive() is shown below.

The parameters to this function look much like those used by the
xil_scale() routine. Note, however, that you don’t specify an interpolation
type. The reason for this is that xil_subsample_adaptive() has an
interpolation scheme built in.

Because xil_subsample_adaptive() is useful only for reducing the size of
images, xscale and yscale must be less than or equal to 1.

xil_subsample_binary_to_gray()

The function xil_subsample_binary_to_gray() is similar to
xil_subsample_adaptive() in that you use it to scale down an image and
it guarantees that all the pixels in the source image will make a contribution to
the value of one pixel in the scaled-down image. However,
xil_subsample_binary_to_gray() is designed specifically for scaling
down XIL_BIT images.

This specialized function is necessary because if you scale down a 1-bit image
using xil_subsample_adaptive() or xil_scale() , no matter how many
source pixels you consider in determining the value of a destination-image
pixel, the destination pixel can only have one of two values: 0 or 1. Obviously,
a great deal of information about the image can be lost in this way.

The function xil_subsample_binary_to_gray() helps solve this problem
by allowing up to 256 gray levels in the destination image, which must have
the data type XIL_BYTE . For defining gray levels, one colormap index is used
for each possible gray level that could result from the x and y scaling factors,
and the indexes are consecutive values, with 0 representing all 0’s in the source
image. You must modify your colormap to define a gray level for each
resulting index.

For example, Figure 10-5 shows a source image being scaled down by a factor
of .5 in both the x and y dimensions. This means that a block of four pixels in
the source image will determine the value of each pixel in the destination.

void xil_subsample_adaptive(XilImage src, XilImage dst,
 float xscale, float yscale);

166 XIL Programmer’s Guide—August 1994

10

Since there are five possible combinations of values that can appear in a 2-by-2
block of pixels in the source, there will be five possible gray levels in the
destination. The equations below indicate how the subsampling is performed.

• Zero 1’s in the source (all 0’s) = 0 in the destination
• One 1 in the source = 1 in the destination
• Two 1’s in the source = 2 in the destination
• Three 1’s in the source = 3 in the destination
• Four 1’s in the source = 4 in the destination

Figure 10-5 Subsampling Bit Images

If the scaling factors require a fractional block of pixels in the source to
determine the destination pixel values, the block size is rounded up. For
example, if a 2.2-by-2.2 block of pixels would be required to determine pixel
values in the destination, a 3-by-3 block is used, resulting in 10 possible gray
levels and therefore 10 colormap indexes whose values are 0 through 9.

The result of this type of operation is much clearer than the image obtained by
scaling down a 1-bit image using xil_subsample_adaptive() or
xil_scale() .

0 10

0 0

0

0 0

0

0

1

1

0 1

1 1

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

00000

4

0 1 2 3

0 2 0

0 2 1 3

0 0 2 3

XIL_BIT source image

XIL_BYTE destination image

Geometric Functions 167

10

Note – The function xil_subsample_binary_to_gray() has been
optimized for the case where the x and y scale factors are .33 and the width of
the destination image is a multiple of 8.

Rotating Images
The XIL library’s rotation function is called xil_rotate() . This function’s
prototype is shown below.

The parameter src is a handle to the image to be rotated, and dst is a handle
to the destination image. The parameter interpolation is a string that
specifies the type of interpolation to be used for the operation: nearest
neighbor, bilinear, bicubic, or general. For information about these
interpolation methods and how to request one of them, see “Interpolation
Options” on page 150. The last parameter, angle , indicates the desired angle
of rotation in radians. (One radian is equal to 57.2958 degrees.) A positive
angle results in a counterclockwise rotation, and a negative angle results in a
clockwise rotation.

One thing to keep in mind when you’re rotating an image is that
xil_rotate() rotates an image around its origin. (For information about
image origins, see “Origin” on page 46.) For example, consider the situation
where you have not set the origin of the source or destination image.
Figure 10-6 shows what will happen when you rotate the source image by 90
degrees counterclockwise.

void xil_rotate(XilImage src, XilImage dst, char *interpolation,
 float angle);

168 XIL Programmer’s Guide—August 1994

10

Figure 10-6 Rotating an Image Around Its Default Origin

Because you’re rotating the image about its default origin, which is in the
upper-left corner, the image is basically rotated out of sight. Only the pixels in
the leftmost column of the source image are written to the destination. They
become part of the topmost scanline in that image.

To rotate the source image in the usual sense, you must first set the origins of
the source and destination images to their centers.

This code produces the results shown in Figure 10-7.

unsigned int width, height;

width = xil_get_width(src);
height = xil_get_height(src);
xil_set_origin(src, width/2.0, height/2.0);
xil_set_origin(dst, width/2.0, height/2.0);
xil_rotate(src, dst, “nearest”, 1.5708);

Source image Destination image

Geometric Functions 169

10

Figure 10-7 Rotating an Image Around Its Center

Performing General Affine Transforms
An affine transform is a transformation of an image in which straight lines
remain straight and parallel lines remain parallel, but the distance between
lines and the angles between lines may change. Thus, translation, scaling, and
rotation are all affine transforms.

The XIL functions that perform one of these transforms are discussed in
“Translating Images,” “Scaling and Subsampling Images,” and “Rotating
Images.” However, the XIL library also contains a function that can perform
any of these transforms, or a combination of them, such as a rotate and a scale.
This function is called xil_affine() , and its prototype is shown below.

The parameter src is a handle to the image to be transformed, and dst is a
handle to the destination image. The parameter interpolation is a string
that specifies the type of interpolation to be used for the operation. For
information about the available methods of interpolation and how to request
one of them, see “Interpolation Options” on page 150. The last parameter,
matrix , must be a six-element array of floating-point numbers.

void xil_affine(XilImage src, XilImage dst, char *interpolation,
 float *matrix);

Source image Destination image

170 XIL Programmer’s Guide—August 1994

10

If we call the six elements in the array a, b, c, d, e, and f, the equations used in
performing the transform look like this:

x‘ = (a * x) + (c * y) + e
y’ = (b * x) + (d * y) + f

Or written as a matrix operation:

To illustrate how these equations relate to particular transforms, look at how
you would perform the translation, scale, and rotation considered earlier in the
chapter using xil_affine() .

The following code fragment illustrates an image being translated 50 pixels to
the right and 50 pixels down:

The fifth value in the matrix is used to control the horizontal translation of the
image, and the sixth is used to control the amount of vertical translation.

The following code fragment shows an image being zoomed by a factor of 2 in
both the x and y directions:

XilImage src, dst;
float matrix[6] = {1.0, 0.0, 0.0, 1.0, 50.0, 50.0};

xil_affine(src, dst, “nearest”, matrix);

XilImage src, dst;
float matrix[6] = {2.0, 0.0, 0.0, 2.0, 0.0, 0.0};

xil_affine(src, dst, “nearest”, matrix);

x'
y'

a c
b d

x
y

e
f

+=

Geometric Functions 171

10

And this code fragment shows an image being rotated 90 degrees
counterclockwise.

You can also use xil_affine() to perform many other affine transforms. For
example, the code below shears a source image along the x axis and then
translates the image to the left so that it is centered in the destination.

Note – In this case, the y coordinate of a pixel in the source image affects the x
coordinate of a pixel in the destination. Figure 10-8 shows an image before and
after this shearing operation.

XilImage src, dst;
float matrix[6];

matrix[0] = (float)cos(1.5708);
matrix[1] = (float)-sin(1.5708);
matrix[2] = (float)sin(1.5708);
matrix[3] = (float)cos(1.5708);
matrix[4] = 0.0;
matrix[5] = 0.0;
xil_affine(src, dst, “nearest”, matrix);

XilImage src, dst;
float matrix[6] = {1.0, 0.0, -0.4, 1.0, 50.0, 0.0};

xil_affine(src, dst, “nearest”, matrix);

172 XIL Programmer’s Guide—August 1994

10

Figure 10-8 Shearing an Image Along Its x Axis

Warping Images
Each of the geometric functions discussed so far in this chapter performs a
specific type of affine transformation: xil_translate() moves an image up,
down, left, or right; xil_scale() changes an image’s width or height; and so
on. The XIL library also contains a set of general functions that let you
customize a transformation to meet an individual set of needs by creating warp
tables that perform pixelwise displacement horizontally, vertically, or in both
directions. The warp tables are XIL images whose pixel values define the
backward mapping from a pixel in the destination to a pixel in the source.

Warp tables are typically used to stretch an image according to predefined
rules and are most useful for performing nonlinear transformations. For
example, they might be used to correct distortions that were imposed on an
image by the equipment used to capture it. Or they might be used for
cartographic projection of an image.

To displace pixels in a single dimension, use either the
xil_tablewarp_horizontal() or xil_tablewarp_vertical() function.

void xil_tablewarp_horizontal(XilImage src, XilImage dst,
 char* interpolation, XilImage warp_table);

Source image Destination image

Geometric Functions 173

10

To displace pixels in two dimensions, use the xil_tablewarp() function.

xil_tablewarp_horizontal() specifies a horizontal displacement,
xil_tablewarp_vertical() specifies a vertical displacement, and
xil_tablewarp() specifies a displacement in both directions. For these
functions, the parameters src and dst are handles to the source and
destination images. The parameter interpolation is a string that specifies an
interpolation type for the operation: nearest neighbor, bilinear, bicubic, or
general (see “Interpolation Options” on page 150). The parameter warp_table
is a handle to a defined warp table. For a one-dimensional displacement, the
warp table is a 1-banded image that specifies the displacement in one direction.
For a two-dimensional displacement, the warp table is a 2-banded image; the
first band specifies the horizontal displacement and the second band specifies
the vertical displacement.

A warp table is applied to the destination image’s origin; the source image’s
origin is then added to the backward mapping position specified by the warp
table. By default, an image’s origin is 0,0; to change the origin, use the
xil_set_origin() function.

A warp table must have the data type XIL_SHORT, though it can be used to
warp images of any data type; the XIL_SHORT value is interpreted as fixed
point data with a 12-bit value and 4 bits of precision. Both the source and
destination images must have the same type and number of bands. Pixels that
map to positions outside the source image are considered zeros. The table
warp operations cannot be performed in place.

Warp tables can be used to perform any type of geometric transformation. For
example, as discussed in “Translating Images” on page 160, you can move a
source image up, down, left, or right with xil_translate() . You can also

void xil_tablewarp_vertical(XilImage src, XilImage dst,
 char* interpolation, XilImage warp_table);

void xil_tablewarp(XilImage src, XilImage dst,
 char* interpolation, XilImage warp_table);

174 XIL Programmer’s Guide—August 1994

10

use a warp table to move the image. The following code fragment shows how
you could define a two-dimensional warp table to move an image to the left
100 pixels and down 500 pixels.

In this example, variable warp_table stores the warp table for the operation;
it is assumed that the source image’s width and height have already been
stored in the width and height variables. The warp_table image has two
bands; the first band is needed to store the horizontal displacement defined by
values[0] , and the second is needed to store the vertical displacement
defined by values[1] . The call to xil_set_values() sets all pixels in the
table-warp image to the values defined by the values array; thus, the
displacement is identical for all pixels. The call to xil_tablewarp() then
applies the warp table to the source image, using a bilinear interpolation.

Of course, you wouldn’t use a warp table to perform a simple translation;
warp tables are better used to define algorithms that implement nonlinear
displacements. The algorithm would typically define a pixelwise displacement
for source-image pixels, in which case you would set the displacements on the
warp table by calling xil_set_pixel() rather than xil_set_value() . For
a discussion of warping transformations, see Gonzalez and Wintz, Digital Image
Processing (see Appendix E, “Bibliography”).

Transposing Images
The XIL library’s transposition function, xil_transpose() , enables you to:

XilSystemState state;
XilImage src, dst, warp_table;
float values[2];
int width, height;

warp_table = xil_create(state, width, height, 2, XIL_SHORT);
/* multiply offsets by 16 because of 12 bit values with
 * 4 bit precision */
values[0] = 100.0 * 16;
values[1] = 500.0 * 16;
xil_set_value(warp_table, values);

xil_tablewarp(src, dst, “bilinear”, warp_table);

Geometric Functions 175

10

• Flip an image across an imaginary horizontal line that runs through the
center of the image

• Flip an image across an imaginary vertical line that runs through the center
of the image

• Flip an image across its main diagonal

• Flip an image across its antidiagonal

• Rotate an image counterclockwise about its center by 90, 180, or 270 degrees

The function’s prototype is shown below:

The parameters src and dst are handles to the source and destination images.
The parameter fliptype is an enumeration constant of type XilFlipType .
The constants in the enumeration and their meanings are shown in Table 10-2.

Note – You don’t specify an interpolation type when you call
xil_transpose() . This is not necessary because xil_transpose() differs
slightly from the other geometric operators in that it maps pixels in the source

void xil_transpose(XilImage src, XilImage dst,
 XilFlipType fliptype);

Table 10-2 Constants in the Enumeration XilFlipType

Constant Meaning

XIL_FLIP_X_AXIS Flips the image across a horizontal line running
through its center

XIL_FLIP_Y_AXIS Flips the image across a vertical line running
through its center

XIL_FLIP_MAIN_DIAGONAL Flips the image across its main diagonal

XIL_FLIP_ANTIDIAGONAL Flips the image across its antidiagonal

XIL_FLIP_90 Rotates the image 90 degrees counterclockwise
about its center

XIL_FLIP_180 Rotates the image 180 degrees counterclockwise
about its center

XIL_FLIP_270 Rotates the image 270 degrees counterclockwise
about its center

176 XIL Programmer’s Guide—August 1994

10

image directly to pixels in the destination. Another important thing to note
about xil_transpose() is that it ignores image origins when it flips or
rotates images. The function always flips an image across a line that passes
through the center of the image and always rotates an image around its center.

Figure 10-9 illustrates several of the operations that xil_transpose() can
perform.

Figure 10-9 Flipping and Rotating Images Using xil_transpose()

Original image Flipped across vertical axis

Flipped across horizontal axis Rotated 180 degrees counterclockwise

177

Miscellaneous Image Processing
Functions 11

Earlier chapters in this book have discussed several classes of XIL
image-processing functions. Chapter 7, “Presentation Functions,” talked about
the XIL functions you’re most likely to use in preparing an image for display.
Chapter 9, “Arithmetic, Relational, and Logical Functions,” considered the XIL
library’s arithmetic and logical functions. And Chapter 10, “Geometric
Functions,” discussed the library’s geometric functions. This chapter covers the
library’s remaining image-processing functions. These functions enable you to:

• Find the minimum and maximum values in an image
• Produce a histogram for an image
• Threshold an image
• Fill an area in an image
• Filter an image
• Detect an image’s edges
• Dilate or erode an image
• Pass an image through a lookup table
• Perform a linear combination of the values in the different bands of an

image
• Blend images
• Paint on an image
• Set and get the values of pixels in an image
• Copy a pattern to an image

These operations are discussed in the sections below.

178 XIL Programmer’s Guide—August 1994

11

Finding the Minimum and Maximum Values in an Image
The function xil_extrema() finds the minimum and maximum values in a
single-band image or the minimum and maximum values in each band of a
multiband image. The prototype for this function is shown below:

The parameter src is a handle to a source image. The parameter max is an
array of floating-point numbers in which the function will return the
maximum value found in each band of the source image. The parameter min is
an array of float s in which the function will return the minimum value found
in each band of the image. The number of elements in the arrays max and min
must match the number of bands in the image.

Consider the following example:

After this call, max[0] will contain the maximum value in band 0 of src ,
max[1] will contain the maximum value in band 1, and max[2] will contain
the maximum value in band 2. Similarly, min will contain the minimum values
in the three bands of the image.

Note – xil_extrema() returns a minimum or maximum value, depending on
which one you specify. Don’t confuse this with finding the larger or lesser of
pixels between two source images and storing the results in a destination
image. To perform that relational function, use xil_max() or xil_min() ,
discussed on page 143.

void xil_extrema(XilImage src, float *max, float *min);

XilImage src;
float max[3], min[3];

xil_extrema(src, max, min);

Miscellaneous Image Processing Functions 179

11

Producing a Histogram for an Image
The XIL library defines a data type called XilHistogram . A data structure of
this type is designed to hold gray-level (or color-level) information about an
image. This section discusses how to produce a histogram for an image and
how to read intensity-level information from an XIL histogram structure. The
primary tasks you will need to perform are listed below:

1. Create a histogram data structure.

2. Write gray- or color-level information about an image to the data structure.

3. Read the histogram data stored in the structure.

4. Destroy the histogram.

These tasks are discussed in detail in the sections that follow.

Creating a Histogram

An XIL histogram structure contains a set of bins for each band of the image
whose histogram you want to take. These bins are used to hold information
about gray or color levels. For instance, if you want to take the histogram of an
8-bit grayscale image, you might create a histogram structure that contains 256
bins. When you actually take the histogram, the number of 0’s in the image
will be stored in bin 0, the number of 1’s in the image will be stored in bin 1,
and so on.

Your histogram need not contain a bin for each possible value in the image.
You can specify the lowest and highest values that will result in a bin count
being incremented. In addition, you can specify that the histogram structure
contain a number of bins less than the number of levels you will be checking
for. In this case, each bin holds a count for a range of values. For example, if
you create a histogram for an 8-bit grayscale image and specify four bins,
occurrences of the values 0 to 63 will be stored in bin 0, occurrences of 64 to
127 will be stored in bin 1, and so on.

180 XIL Programmer’s Guide—August 1994

11

You create a histogram data structure by calling the function
xil_histogram_create() , whose function prototype is shown below.

Table 11-1 discusses the purpose of each of these parameters.

Writing Level Information to the Histogram Structure

Once you have created an appropriate histogram structure, you generate the
histogram for an image using the function xil_histogram() . The prototype
for this function is shown below.

XilHistogram xil_histogram_create(XilSystemState state,
 unsigned int nbands, unsigned int *nbins, float *low_value,
 float *high_value);

Table 11-1 Parameters to xil_histogram_create()

Parameter What It Represents

state The system-state data structure returned when you initialized
the library.

nbands The number of bands in the histogram. This number must
match the number of bands in the image whose histogram you
want to take.

nbins An array of unsigned int s, each element of which specifies
the number of bins to be used for one band of the image. The
number of elements in the array must match the number of
bands in the image.

low_value An array of float s, each element of which specifies the lowest
gray or color level that will be checked for in one band of the
image. The number of elements in the array must match the
number of bands in the image.

high_value An array of float s, each element of which specifies the
highest gray or color level that will be checked for in one band
of the image. The number of elements in the array must match
the number of bands in the image.

void xil_histogram(XilImage src, XilHistogram histogram,
 unsigned int skip_x, unsigned int skip_y);

Miscellaneous Image Processing Functions 181

11

The parameter src is a handle to the image whose histogram you want to take.
The parameter histogram is a handle to the histogram structure you created
earlier. The parameters skip_x and skip_y tell xil_histogram() whether
it should count every pixel in the source image, or whether it can skip some
pixels, either horizontally or vertically.

If skip_x is set to 1, xil_histogram() counts every pixel on a scanline; if it
is set to 2, the function counts every other pixel; and so on. The value of
skip_y has an analogous effect on whether xil_histogram() counts every
pixel in the vertical direction.

Reading Data from a Histogram

Once you’ve generated histogram data for an image, you’ll want to read the
counts stored in the bins of the histogram structure. You read this data using
the function xil_histogram_get_values() , whose prototype is shown
below.

The parameter histogram is a handle to your histogram structure, and data
is a pointer to an array of unsigned int s in which
xil_histogram_get_values() can place the histogram data.

The code fragment below shows how you might retrieve the histogram data
for a 3-band XIL_BYTE image. This code assumes that 32 bins were used for
each band of the image.

void xil_histogram_get_values(XilHistogram histogram,
 unsigned int *data);

#define BINS 32

XilHistogram histogram;
unsigned int *data;

data = (unsigned int *)malloc(BINS * BINS * BINS *
 sizeof(unsigned int));
xil_histogram_get_values(histogram, data);

182 XIL Programmer’s Guide—August 1994

11

The XIL library also contains functions that enable you to retrieve other
information from histogram structures and to name histograms. These are
listed in Table 11-2.

Destroying a Histogram

After reading the histogram data for your image, you should destroy the
histogram structure if you will not be using it again. Destroying the histogram
frees the memory that was allocated to store it.

You destroy a histogram structure by calling the function
xil_histogram_destroy() , whose prototype is shown below.

The only parameter to this function is a handle to the histogram you want to
destroy.

Table 11-2 Additional Histogram Functions

Function Name What The Function Does

xil_histogram_get_nbands Returns the number of bands in the
histogram

xil_histogram_get_nbins Fills a user-supplied array with values
representing the number of histogram
bins for each histogram band

xil_histogram_get_limits Fills one user-supplied array with
floating-point numbers that represent the
low values for the histogram’s bands and
a second array with numbers
representing the high values

xil_histogram_get_info Returns information about the number of
bands, the number of bins, and the low
and high values in the histogram

xil_histogram_set_name Sets the name of a histogram

xil_histogram_get_name Returns a copy of a histogram’s name

xil_histogram_get_by_name Returns a handle to a histogram that has
the name you specify

void xil_histogram_destroy(XilHistogram histogram);

Miscellaneous Image Processing Functions 183

11

Thresholding an Image
The XIL library’s thresholding function, xil_threshold() , provides a simple
mechanism for defining the boundaries of objects that appear on a contrasting
background. The function’s prototype is shown below.

The parameters src and dst are handles to the source and destination images
for the operation. The parameter lowvalue is a pointer to an array of
floating-point numbers that define the lower bound for the threshold operation
for each band of src . That is, the operation will affect only values greater than
or equal to lowvalue[0] in band 0, only values greater than or equal to
lowvalue[1] in band 1, and so on. The parameter highvalue is a pointer to
an array of float s that define the upper bound for the threshold operation for
each band of src . The final parameter, mapvalue , is also a pointer to an array
of float s and is used as follows. For band n of an image, all values in the
range lowvalue[n] to highvalue[n] inclusive are set to mapvalue[n] .

A standard way of arriving at the optimal values for the elements of the arrays
lowvalue and highvalue is to create a histogram for the image. For
information about XIL histograms, see the section “Producing a Histogram for
an Image” on page 179.

Filling an Area in an Image
The XIL library contains two fill functions: xil_fill() and
xil_soft_fill() . The first function performs boundary fills, and the second
performs soft fills.

xil_fill()

The function xil_fill() fills a 4-connected region of pixels with a specified
color. (One pixel is 4-connected to another if it is located directly above, below,
to the left of, or to the right of that pixel.) The region begins at a starting pixel
(the seed) and grows until it encounters a boundary color or the edge of the
image.

void xil_threshold(XilImage src, XilImage dst, float *lowvalue,
 float *highvalue, float *mapvalue);

184 XIL Programmer’s Guide—August 1994

11

Figure 11-1 shows a fill operation in which the boundary color is black, the fill
color is dark gray, and the starting point for the fill is 3,2.

Figure 11-1 Boundary Fill

The function prototype for xil_fill() is shown below.

The parameters src and dst are handles to the source and destination images
for the operation. These images must have the same number of bands and the
same data type. The parameters xseed and yseed represent the x and y
coordinates of the starting point. The parameters boundary and fill_color
are arrays of floating-point numbers. Both arrays must contain a number of

void xil_fill(XilImage src, XilImage dst, float xseed,
 float yseed, float *boundary, float *fill_color);

Source image Destination image

Boundary color

Fill color

Starting point

Miscellaneous Image Processing Functions 185

11

elements equal to the number of bands in the source and destination images.
The elements of boundary represent the boundary color, and those in
fill_color represent the fill color.

xil_soft_fill()

The function xil_soft_fill() is designed to solve the problem of filling a
region that does not have a distinct boundary, usually because the outline of
the region has been antialiased. It also fills regions that are shaded or contain
specular reflections without losing the special effects.

Here’s how xil_soft_fill() works. Assume for the purpose of illustration
that you want to fill a red object that appears on a blue background and that
the object has been antialiased so that there’s a transition at the edge of the
object from red to magenta to blue. You want to fill the object with green. To
get started, you specify:

• The color of the foreground, the region to be filled: red

• The color of the background: blue. (There may be more than one
background color.)

• A fill color: green

• A starting point (seed) known to be inside the region to be filled

The soft-fill function then determines which pixels are inside the region and
sets those pixels appropriately. To be considered part of the region to be filled,
a pixel must be 4-connected to a pixel inside the region and must contain some
fraction of the foreground color. That is, the value of each pixel in the region
can be expressed as:

Pixel value = (fraction * foreground-color) + ((1 - fraction) * background-color)

When setting the values of pixels in the destination image, xil_soft_fill()
uses the equation:

Pixel value = (fraction * fill-color) + ((1 - fraction) * background-color)

As a consequence, where there was a transition from red to magenta to blue in
the source, there will be a transition from green to cyan to blue in the
destination.

186 XIL Programmer’s Guide—August 1994

11

The prototype for xil_soft_fill() is shown below.

Table 11-3 below explains the purpose of each of these parameters.

void xil_soft_fill(XilImage src, XilImage dst, float xseed,
 float yseed, float *fgcolor, unsigned int num_bgcolor,
 float *bgcolor, float *fill_color);

Table 11-3 Parameters to xil_soft_fill()

Parameter What It Is Used For

src A handle to the source image for the operation.

dst A handle to the destination image. This image must have the
same number of bands and the same data type as the source
image.

xseed The x coordinate of the starting point for the operation.

yseed The y coordinate of the starting point for the operation.

fgcolor An array of float s containing a number of elements equal to
the number of bands in the source and destination images.
These elements specify the current color of the region to be
filled.

num_bgcolor The number of background colors in the image.

bgcolor An array of float s containing a number of elements equal to
the number of background colors times the number of bands in
the source and destination images. If your RGB source image
contained two background colors—black and red—your
declaration of bgcolor might look like this:

float bgcolor[6] = {0.0,0.0,0.0,0.0,0.0,255.0};

fill_color An array of float s containing a number of elements equal to
the number of bands in the source and destination images.
These elements specify the color to be used in filling the region
of interest.

Miscellaneous Image Processing Functions 187

11

Filtering an Image
The XIL function for filtering is called xil_convolve() . Depending on the
convolution filter, or kernel, you specify as a parameter to this function, the
routine can perform a variety of tasks, including:

• Sharpening images
• Blurring images
• Highlighting the edges in images

See Color Plate 2 for a few examples of how different kernels can affect a
source image.

Note – To detect edges, you can also use xil_edge_detection() , which
uses the Sobel algorithm. For information about xil_edge_detection() , see
“Detecting Edges in an Image” on page 192.

The kernel you supply as a parameter is a two-dimensional array of weighted
values that the xil_convolve() function uses as follows. To calculate the
value of each pixel in the destination image, the function takes the following
steps:

1. It lays the kernel over the corresponding pixel in the source image.

To be precise, the function lays the key value of the filter—usually the value
at the center of the filter—over this source-image pixel. This means that the
other values in the filter lie on top of neighbors of this pixel. Figure 11-2
shows a 3-by-3 kernel being laid on top of the source-image pixel at 1,1 and
its neighbors.

188 XIL Programmer’s Guide—August 1994

11

Figure 11-2 Convolution Operation

2. The convolution function multiplies each pixel in the neighborhood defined
by the filter by the appropriate value in the filter. Then, it sums the products
of these multiplications. This sum becomes the value of the pixel in the
destination.

Three basic steps are involved in performing this type of convolution operation
using the XIL library. These are:

• Creating the convolution kernel
• Filtering your image
• Destroying the kernel

These tasks are discussed in detail in the next several sections.

Creating a Convolution Kernel

Convolution kernels are XIL data structures of type XilKernel and are
created with the function xil_kernel_create() . The prototype for this
function is shown below.

XilKernel xil_kernel_create(XilSystemState state,
 unsigned int width, unsigned int height, unsigned int keyx,
 unsigned int keyy, float *data);

Image

Kernel

Key value

Pixel being processed
-1

-1

-1

-1 5

0 0

0 0

Miscellaneous Image Processing Functions 189

11

The parameter state is a system-state data structure. You received a handle to
this structure when you initialized the library. The parameters width and
height are the width and height of the kernel in pixels. These values are
usually odd numbers so that the kernel will have a center value, but need not
be. Common sizes for kernels are 3-by-3 and 5-by-5. The parameters keyx and
keyy define the coordinates of the key value in the kernel. These coordinates
are specified with respect to the upper-left value in the kernel (0,0). As
mentioned earlier, the key value is usually in the center of the kernel. The last
parameter, data , is a pointer to the floating-point values that will be written to
the kernel.

The code needed to create the kernel shown in Figure 11-2 would look
something like this.

The kernel created here is a high-pass filter, used for sharpening an image. Two
other common high-pass filters are shown in Figure 11-3.

Figure 11-3 High-Pass Filters

XilKernel high_pass_filter;
XilSystemState state;
unsigned int width, height, keyx, keyy;
float data[] = {0.0, -1.0, 0.0,
 -1.0, 5.0, -1.0,
 0.0, -1.0, 0.0};

width = height = 3;
keyx = keyy = 1;
high_pass_filter = xil_kernel_create(state, width, height, keyx,
 keyy, data);

-1.0

9.0

-1.0 -1.0

-1.0 -1.0

-1.0 -1.0 -1.0

1.0 -2.0

5.0

1.0

1.0

1.0

-2.0 -2.0

-2.0

190 XIL Programmer’s Guide—August 1994

11

Figure 11-4 shows several low-pass filters. These are useful for smoothing or
blurring images.

Figure 11-4 Low-Pass Filters

Filtering an Image

Once you have created the convolution kernel you want to use for your
filtering operation, you perform the actual filtering by calling
xil_convolve() . The prototype for this function is shown below.

The parameters src and dst are handles to a source and destination image.
These two images must have the same number of bands and contain the same
type of data. The parameter kernel is a handle to the convolution kernel you
created earlier. The final parameter, edge_condition , is an enumeration

void xil_convolve(XilImage src, XilImage dst, XilKernel kernel,
 XilEdgeCondition edge_condition);

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1

0.2

0.1 0.1

0.1 0.1

0.1 0.1 0.1

0.2500

0.0625 0.1250

0.12500.1250

0.1250

0.0625

0.0625 0.0625

Miscellaneous Image Processing Functions 191

11

constant that indicates how xil_convolve() should handle pixels at, or near,
the edge of the source image. Table 11-4 lists the three constants you can use
here and explains what effect they have.

Destroying a Convolution Kernel

After filtering your image, you should destroy the convolution kernel you used
for the filtering if you will not be using it again. Destroying this kernel frees
the memory that was allocated to store it.

You destroy a convolution kernel by calling the function
xil_kernel_destroy() , whose prototype is shown below.

The only parameter to this function is a handle to the kernel you want to
destroy.

Table 11-4 Handling Edges in a Convolution Operation

Value for edge_condition Effect on Convolution Operation

XIL_EDGE_NO_WRITE The values of pixels at the edge of the source
image are copied to the corresponding pixels in
the destination. Thus, the edge of the source
image is not filtered.

XIL_EDGE_ZERO_FILL Pixels at the edge of the destination image are set
to zero.

XIL_EDGE_EXTEND The convolution operator temporarily extends the
width and height of the source image by
replicating the pixels at the edge of the image.
This strategy enables the operator to filter the
pixels that were originally at the edge of the
image.

void xil_kernel_destroy(XilKernel kernel);

192 XIL Programmer’s Guide—August 1994

11

Additional Kernel-Related Functions

The preceding sections have discussed the most frequently used XIL functions
that affect kernels. However, the library also contains the kernel-related
functions shown in Table 11-5. These functions enable you to make a copy of a
kernel, read the values of kernel attributes, and assign a name to a kernel,
among other things.

Detecting Edges in an Image
The xil_edge_detection() function detects edges in a source image and
writes the result to a destination image. The prototype for this function is
shown below.

The parameters src and dst are handles to a source and destination image.
The two images must have the same number of bands and contain the same
type of data. The parameter edge_detection_method is an enumeration
constant describing the type of edge detection to perform.

Table 11-5 Utility Functions for Convolution Kernels

Function Name What the Function Does

xil_kernel_create_copy Creates a copy of a kernel

xil_kernel_get_width Gets the width of a kernel in pixels

xil_kernel_get_height Gets the height of a kernel in pixels

xil_kernel_get_key_x Gets the x coordinate of the kernel’s key
value

xil_kernel_get_key_y Gets the y coordinate of the kernel’s key
value

xil_kernel_set_name Assigns a name to a kernel

xil_kernel_get_name Returns a copy of a kernel’s name

xil_kernel_get_by_name Gets a handle to a kernel by specifying
the name of the kernel

void xil_edge_detection(XilImage src, XilImage dst,
 XilEdgeDetection edge_detection_method);

Miscellaneous Image Processing Functions 193

11
Currently, XIL_EDGE_DETECT_SOBEL is the only edge detection method
supported; to detect vertical and horizontal edges in an image, it uses the
filtering kernels shown in Figure 11-5.

Figure 11-5 Filters Used by the XIL_EDGE_DETECT_SOBEL Algorithm

The XIL_EDGE_DETECT_SOBEL method detects edges by finding the gradient
of an image as follows:

• It performs two convolution operations on the source image; one operation
detects vertical edges using the vertical filter shown in Figure 11-5, the other
detects horizontal edges using the horizontal filter. This yields two
intermediate images: a and b.

• It squares all the pixel values in image a and then in image b, yielding the
intermediate images a2 and b2.

• It forms the final destination image by taking the square root of a2 + b2.

Note – The convolution operations duplicate the source-image edges during
convolution, similar to using the XIL_EDGE_EXTEND edge condition on
xil_convolve() . For information on xil_convolve() , see “Filtering an
Image” on page 187.

Note – For a discussion of the Sobel edge condition algorithm, consult
Gonzalez and Wintz, Digital Image Processing (see Appendix E,
“Bibliography”).

Vertical

-0.5 0.0 0.5

-1.0 0.0 1.0

-0.5 0.0 0.5

Horizontal

-0.5 -1.0 -0.5

0.0 0.0 0.0

0.5 1.0 0.5

194 XIL Programmer’s Guide—August 1994

11

Dilating or Eroding an Image
The XIL library includes two functions—xil_dilate() and
xil_erode() —that enable you to dilate and erode regions within images.
One of the main uses of these functions is to perform trapping on color images
that will be printed. This trapping involves creating some overlap where
regions of different colors meet. Once a trap is in place, slight registration
problems during the printing process should not result in gaps appearing
between the edge of an object and its background.

Dilation and erosion are similar to convolution in that both calculate
destination-image pixels by looking at a neighborhood of source-image pixels
and the values in a matrix (called a structuring element). Like a convolution
kernel, this structuring element contains a key value. As each pixel in the
destination is calculated, this key value is laid over the corresponding pixel in
the source. See Figure 11-6.

Figure 11-6 Dilating and Eroding Images

Note that a structuring element contains only 0’s and 1’s.

For each placement of the structuring element, the dilation function calculates
a destination pixel value as follows. It looks at the values of the source-image
pixels that correspond to a 1 in the structuring element and assigns the
maximum of these values to the appropriate destination pixel. In the case of an
XIL_BIT image, this means that if any of the source-image pixels associated

Image

Key value

Pixel being processed
1

1

1

1 1

0 0

0 0

Structuring
element

Miscellaneous Image Processing Functions 195

11

with a 1 in the structuring element is set, the destination pixel will be set.
Figure 11-7 shows a binary image before and after dilation of the image’s white
region. The dilation was performed using the structuring element shown in
Figure 11-6.

Figure 11-7 Dilating an Image

The erosion function does the opposite of this. It looks at the values of the
source-image pixels that correspond to a 1 in the structuring element and
assigns the minimum of these values to the appropriate destination pixel.
Figure 11-8 shows a binary image before and after erosion of the image’s white
region.

Source image Dilated image

196 XIL Programmer’s Guide—August 1994

11

Figure 11-8 Eroding an Image

Performing either a dilation or an erosion in an XIL program is a three-step
process:

1. Create a structuring element.

2. Perform the dilation or erosion.

3. Destroy the structuring element.

These tasks are discussed in detail in the sections below.

Creating a Structuring Element

Structuring elements, which are XIL data structures of type XilSel , are
created with the function xil_sel_create() . The prototype for this function
is shown below.

The parameter state is a system-state data structure. You received a handle to
this structure when you initialized the library. The parameters width and
height are the width and height of the structuring element in pixels. These
values are usually odd numbers so that the structuring element will have a

XilSel xil_sel_create(XilSystemState state,
 unsigned int width, unsigned int height, unsigned int keyx,
 unsigned int keyy, unsigned int *data);

Source image Eroded image

Miscellaneous Image Processing Functions 197

11

center value, but need not always be odd. Common sizes for structuring
elements are 3-by-3 and 5-by-5. The parameters keyx and keyy define the
coordinates of the key value in the kernel. These coordinates are specified with
respect to the upper-left value in the structuring element (0,0). The key value is
usually in the center of the structuring element. The last parameter, data , is a
pointer to the Boolean values that will be written to the kernel.

The code needed to create the structuring element shown in Figure 11-6 would
look something like this.

You can also assign names to structuring elements that you’ve created and then
get handles to those structuring elements using the function
xil_sel_get_by_name() . To assign a name to a custom structuring element,
you use the function xil_sel_set_name() , whose prototype is shown
below.

You can determine whether a structuring element has a name and, if it does,
what that name is using the function xil_sel_get_name() .

XilSel cross_sel;
XilSystemState state;
unsigned int width, height, keyx, keyy;
unsigned int data[] = {0, 1, 0,
 1, 1, 1,
 0, 1, 0};

width = height = 3;
keyx = keyy = 1;
cross_sel = xil_kernel_create(state, width, height, keyx, keyy,
 data);

void xil_sel_set_name(XilSel sel, char *sel_name);

char *xil_sel_get_name(XilSel sel);

198 XIL Programmer’s Guide—August 1994

11

Dilating or Eroding an Image

Once you have created a structuring element, you perform a dilation by calling
xil_dilate() , whose prototype is shown below.

The parameters src and dst are handles to the source and destination images
for the operation. These images must have the same number of bands and the
same data type. The parameter sel is a handle to the structuring element you
created earlier.

To erode a region in an image, you call xil_erode() , which takes the same
parameters as xil_dilate() .

Destroying a Structuring Element

After performing your dilation or erosion, you should destroy your structuring
element if you will not be using it again. Destroying the structuring element
frees the memory that was allocated to store that structure.

You destroy a structuring element by calling xil_sel_destroy() .

The only parameter to this function is a handle to the structuring element you
want to destroy.

void xil_dilate(XilImage src, XilImage dst, XilSel sel);

void xil_erode(XilImage src, XilImage dst, XilSel sel);

void xil_sel_destroy(XilSel sel);

Miscellaneous Image Processing Functions 199

11

Additional Structuring-Element Functions

The preceding sections have discussed the most frequently used XIL functions
that affect structuring elements. However, the library also contains the
structuring-element-related functions shown in Table 11-6. These functions
enable you to make a copy of a structuring element and read the values of
structuring-element attributes.

Passing an Image Through a Lookup Table
XIL lookup tables provide a very general mechanism for modifying images. A
lookup table enables you to 1) convert a single-band image of any data type to
a single-band or multiband image of any data type, or 2) convert a multiband
image of any data type to a multiband image of any data type. Each lookup
table allows you to specify precisely the correlation between the values of
pixels in the source image and values in the destination image.

The general procedure for performing a lookup operation involves three steps:

1. Create a lookup table.

2. Pass a source image through the lookup table.

3. Destroy the table.

These tasks are discussed in detail in the sections that follow.

Table 11-6 Utility Functions for Structuring Elements

Function Name What the Function Does

xil_sel_create_copy Returns a copy of a structuring element

xil_sel_get_width Gets the width of a structuring element

xil_sel_get_height Gets the height of a structuring element

xil_sel_get_key_x Gets the x coordinate of the key value of
a structuring element

xil_sel_get_key_y Gets the y coordinate of the key value of
a structuring element

200 XIL Programmer’s Guide—August 1994

11

Creating a Lookup Table

The steps for creating a lookup table vary slightly, depending on whether the
input image is a single-band or multiband image. For a single-band input
image, you create a single lookup table; for a multiband input image, you
create a single lookup table for each band in the input image, then combine
those tables into a combined lookup table. Regardless of whether you create a
single lookup table or a combined lookup table, you pass the image through
the table the same way.

Lookup tables for single-band and multiband input images are discussed
separately in the following sections.

Creating Lookup Tables for Single-Band Input Images

To create a lookup table for a single-band input image, you make a single call
to the function xil_lookup_create() , whose prototype is shown below.

This function returns a handle to a data structure of type XilLookup , which is
the lookup table. Table 11-7 lists the parameters to xil_lookup_create()
and explains what each parameter represents.

XilLookup xil_lookup_create(XilSystemState state,
 XilDataType input_data_type, XilDataType output_data_type,
 unsigned int output_nbands, unsigned int num_entries,
 short first_entry_offset, void *data);

Table 11-7 Parameters to xil_lookup_create()

Parameter What It Represents

state A handle to the system-state data structure that was
created when you initialized the XIL library.

input_data_type The data type of the pixel values in the source image. The
three possible data types are XIL_BIT , XIL_BYTE , and
XIL_SHORT.

output_data_type The data type of the pixel values in the destination image.

output_nbands The number of bands in the destination image.

Miscellaneous Image Processing Functions 201

11

As an example of how this function might be used, say that you have an
XIL_BIT image that you want to convert to a three-band XIL_BYTE image so
that you can display it on a 24-bit display. Further, you want black pixels in the
source to appear dark gray in the destination image, and white pixels to
appear light blue. The code to create a lookup table for this operation is shown
below.

The lookup table this code would produce is shown in Figure 11-9.

Figure 11-9 Single Lookup Table

num_entries The number of entries in the lookup table. Each entry
specifies the correspondence between a source-image pixel
value and the value, or values, that will define the
corresponding pixel in the destination image.

first_entry_offset The source-image pixel value for the first entry in the table.
The source-image pixel value for the last entry in the table
is first_entry_offset + num_entries - 1.

data A pointer to the data to be stored in the table.

XilLookup lookup_table;
XilSystemState state;
Xil_unsigned8 data[] = {79, 79, 47, 216, 216, 191};

lookup_table = xil_lookup_create(state, XIL_BIT, XIL_BYTE, 3, 2,
 0, data);

Table 11-7 Parameters to xil_lookup_create()

Parameter What It Represents

0

1

79 79 47

216 216 191

202 XIL Programmer’s Guide—August 1994

11

The numbers to the left of the bold line are XIL_BIT values to be looked up in
the source image. The numbers to the right of the line are XIL_BYTE values to
be written to the destination image. Because the destination has three bands,
the table contains three values for each pixel.

A lookup table can also be used to convert an XIL_BIT image to an 8-bit
XIL_BYTE image; however, it may be easier to use xil_cast() to cast the
XIL_BIT data type to XIL_BYTE . Generally, the xil_cast() function casts
the values 0 and 1 in the XIL_BIT image to indices 0 and 1 in the XIL_BYTE
image. If you need different indices, convert the image by passing it through a
lookup table.

After creating the lookup table, you must pass the image through it, as
discussed in “Passing an Image Through the Table” on page 204.

Creating Lookup Tables for Multiband Input Images

To create a lookup table for a multiband input image, you call
xil_lookup_create() once for each band in the input image, then combine
these single lookup tables into a combined lookup table. To create the combined
lookup table, you call the function xil_lookup_create_combined() ,
whose prototype is shown below:

This function returns a handle to a data structure of type XilLookup , which is
the combined lookup table. The parameter state is a handle to the
system-state data structure that was created when you initialized the XIL
library, lookup_list[] is an array of type XilLookup that stores the single
lookup tables created for each of the input image’s bands, and num_lookups
indicates how many lookup tables are stored in the lookup_list[] array.

To create the combined lookup table:

1. Create an array variable of data type XilLookup .
The variable should have as many array elements as there are bands in the
input image so you can store each band’s values in a separate element. Store
the values for band 0 in element 0, those for band 1 in element 1, and so on.

XilLookup xil_lookup_create_combined(XilSystemState state,
 XilLookup lookup_list[], unsigned int num_lookups);

Miscellaneous Image Processing Functions 203

11

2. For each band in the input image, create a single lookup table by calling
xil_lookup_create() , as discussed in “Creating Lookup Tables for
Single-Band Input Images” on page 200.
Each single lookup table defines values for only one band in the destination
image; thus, you must pass a 1 for the xil_lookup_create() function’s
output_nbands argument. The single lookup tables must all have the same
data type, but each can use a different offset.

3. Combine the single tables by calling the
xil_lookup_create_combined() function, passing it the array variable
you created in Step 1.

4. Pass the input image through the combined lookup table, as discussed in
the next section.

204 XIL Programmer’s Guide—August 1994

11

The following code fragment shows how you might alter a 3-band XIL_BYTE
input image whose green band is accented but whose red and blue bands are
subdued:

Passing an Image Through the Table

Once you’ve created a lookup table, you call xil_lookup() to perform the
actual lookup operation. The prototype for this function is shown below.

The parameter src is a handle to your source image. The data type of this
image must match the data type of the values on the input side of your lookup
table. The parameter dst is a handle to your destination image. The data type
of this image must match the data type of the values on the output side of the

XilImage image;
XilLookup lookup_tables[3]; /* var to store 3 lookup components
*/
XilLookup combined_lookup_table;
Xil_unsigned8 red[256]; /* red component of lookup */
Xil_unsigned8 green[256]; /* green component of lookup */
Xil_unsigned8 blue[256]; /* blue component of lookup */
int i;

for(i=0; i<256; i++) {
 green[i] = (i + 20) < 255 ? i + 20 : 255;
 blue[i] = red[i] = (i - 10) < 0 ? 0 : i - 10;
}
/* create single lookup tables for each input band */
lookup_tables[0] = xil_lookup_create(state, XIL_BYTE, XIL_BYTE,
 1, 256, 0, red);
lookup_tables[1] = xil_lookup_create(state, XIL_BYTE, XIL_BYTE,
 1, 256, 0, green);
lookup_tables[2] = xil_lookup_create(state, XIL_BYTE, XIL_BYTE,
 1, 256, 0, blue);
/*combine the tables and pass input image through combined
table*/
combined_lookup_table = xil_lookup_create_combined(state,
 lookup_tables, 3);
xil_lookup(image, image, combined_lookup_table);

void xil_lookup(XilImage src, XilImage dst, XilLookup lookup);

Miscellaneous Image Processing Functions 205

11

table. For a single-band input image, the number of bands in the destination
image must match the number of values per pixel on the output side of the
table; for a multiband input image, the number of bands in the destination
image must match the number of lookup tables that compose the combined
lookup table. The final parameter, lookup , is the handle to the lookup table
you received when you called xil_lookup_create() for a single-band input
image, or xil_lookup_create_combined() for a multiband input image.

Destroying a Lookup Table

After performing your lookup operation, you should destroy your lookup table
if you won’t be using it in a subsequent operation. Destroying the table frees
the memory that was allocated to store it. For multiband input images, be sure
to destroy the tables created for each input band, as well as the combined table.

You destroy a lookup table by calling the function xil_lookup_destroy() ,
whose prototype is shown below.

The only parameter to this function is a handle to the lookup table you want to
destroy.

void xil_lookup_destroy(XilLookup lookup);

206 XIL Programmer’s Guide—August 1994

11

Additional Lookup-Table Functions

The preceding sections have discussed the most frequently used XIL functions
that affect lookup tables. However, the library also contains the
lookup-table-related functions shown in Table 11-8. These functions enable you
to make a copy of a lookup table, read the values of lookup-table attributes,
assign a name to a lookup table, and so on.

Note – Some of the functions cannot be used on a combined lookup table.
However, you can extract a band from a combined lookup table and perform
those functions on the extracted copy. You can then use the altered table for
creating another combined lookup table.

Table 11-8 Additional Functions for Lookup Tables

Function Name What the Function Does

xil_lookup_create_copy Creates and returns a copy of an existing
lookup table (LUT).

xil_lookup_get_input_datatype Gets the data type of an LUT’s input.

xil_lookup_get_output_datatype Gets the data type of an LUT’s output.

xil_lookup_get_input_nbands Gets the number of bands in the LUT’s
input.

xil_lookup_get_output_nbands Gets the number of bands defined for the
LUT’s output.

xil_lookup_get_num_entries Gets the number of entries in the LUT.
Cannot be used on a combined LUT.

xil_lookup_get_offset Gets the input value for the first entry in
the LUT. Cannot be used on a combined
LUT.

xil_lookup_set_offset Sets the input value for the first entry in
the LUT. Cannot be used on a combined
LUT.

xil_lookup_get_band_lookup Gets a particular lookup table out of a
combined LUT.

xil_lookup_get_values Retrieves the values in an LUT. Cannot
be used on a combined LUT.

Miscellaneous Image Processing Functions 207

11

Linear Combination
The function xil_band_combine() calculates each value in a destination
image by performing a linear combination (matrix multiply) of the values of all
the bands of a pixel in the source image. The nonimage values used in this
calculation are stored in a matrix. For example, assume that
xil_band_combine() is operating on the three-band single-pixel image
shown in Figure 11-10 using the matrix shown in the figure and is writing its
output to a one-band single-pixel image.

xil_lookup_set_values Sets the values in an LUT. Cannot be
used on a combined LUT

xil_lookup_get_version Gets a unique identifier associated with
an LUT.

xil_lookup_convert Creates an LUT that includes input data
from one lookup table and output data
from another. Cannot be used on a
combined LUT.

xil_squeeze_range Creates an LUT that will map a
single-band image to a single-band
image with contiguous values. Cannot be
used on a combined LUT.

xil_lookup_get_name Reads the name of an LUT.

xil_lookup_set_name Assigns a name to an LUT.

xil_lookup_get_by_name Gets a handle to an LUT by specifying
the name of the table.

Table 11-8 Additional Functions for Lookup Tables

Function Name What the Function Does

208 XIL Programmer’s Guide—August 1994

11

Figure 11-10 Interband Linear Combination

The equation used to calculate the value of the destination-image pixel would
be

dst = (255 * .25) + (157 * .5) + (28 * .75) + 1.0

As you can see, the number of columns in the matrix is equal to the number of
bands in the source image plus one. This number of columns provides a
multiplier for each band in the source image plus a constant that is to be added
to the sum of the products obtained using the multipliers and the values in the
source image. The number of rows in the matrix must equal the number of
bands in the destination image. If the destination image had three bands, the
values in the second row of the matrix would be used in calculating the values
in the second band of the destination, and the values in the third row would be
used in calculating the values in the third band.

Thus, the matrix shown in Figure 11-11 would operate on a three-band source
image and would produce a three-band image identical to the source.

Source image

.25 .5 .75 1.0255

157

28

Band 0

Band 1

Band 2

Matrix

Miscellaneous Image Processing Functions 209

11

Figure 11-11 Linear Combination Matrix

Performing a Linear Combination

Performing a linear combination is a two-step process. You first create an XIL
kernel (a object of type XilKernel) in which to store a matrix. Then, you call
xil_band_combine() to perform the operation.

To create the kernel that holds the matrix, you call the function
xil_kernel_create() . For instance, to create a kernel that describes the
matrix shown in Figure 11-11, you could use the code shown below.

The values of keyx and keyy , which define the key value of the kernel, are
irrelevant if the kernel will be used in a linear-combination operation because
xil_band_combine() ignores these values. For more information about key
values, see the section “Filtering an Image” on page 187.

Note – When you’ve finished using this kernel, you should destroy it using the
function xil_kernel_destroy() .

XilSystemState state;
XilKernel matrix;
unsigned int width = 4, height = 3, keyx = 0, keyy = 0;
float data[] = {1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0};

matrix = xil_kernel_create(state, width, height, keyx, keyy,
 data);

1.0

1.0

1.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

210 XIL Programmer’s Guide—August 1994

11

Once you’ve created this kernel, you can call xil_band_combine() , whose
function prototype is shown below.

The parameter src is a handle to the source image, dst is a handle to the
destination image, and matrix is a handle to the XIL kernel created earlier.

How to Use Linear Combinations

The function xil_band_combine() is a very general-purpose function, but
let’s look at a couple of ways in which it could be used.

One possibility is to use the function to convert an image from one color space
to another. For example, you could use the matrix shown in Figure 11-12 to
convert a three-band XIL_BYTE image from the RGB to the CMY color space.

Figure 11-12 RGB-to-CMY Conversion Using xil_band_combine()

Similarly, you could use the matrix shown in Figure 11-13 to convert a
three-band XIL_BYTE RGB image to a one-band Y image.

Figure 11-13 RGB-to-Y Conversion Using xil_band_combine()

void xil_band_combine(XilImage src, XilImage dst, XilKernel
 matrix);

0.0

-1.0

0.0

0.0 -1.0 255.0

0.0 0.0 255.0

-1.0 0.0 255.0

0.114 0.587 0.299 0.0

Miscellaneous Image Processing Functions 211

11

Note, however, that in most cases using xil_band_combine() is not the best
way of performing color-space conversions using the XIL library. See the
section “Color-Space Conversion” on page 122 for information about the
preferred method of performing these conversions.

Another possibility would be to use the matrix shown in Figure 11-14 to
convert a three-band source image to a single-band destination of the same
data type.

Figure 11-14 Calculating the Normalized Sum of an Image

Each pixel in the destination would equal the normalized sum of the three
values of the corresponding pixel in the source.

Blending Images
The XIL library’s blending function, xil_blend() , blends two images using
an alpha mask. The function’s prototype is shown below.

The parameters src1 and src2 are handles to the two images to be blended,
and dst is a handle to the destination image. The last parameter, alpha , is a
handle to an XIL image that serves as an alpha mask for the blending
operation. This alpha image must be a single-band image.

The equation below shows how xil_blend() uses the values in the mask as
it calculates the values of pixels in the destination image:

dst = (((1 - normalized-alpha) * src1) + (normalized-alpha * src2))

void xil_blend(XilImage src1, XilImage src2, XilImage dst,
 XilImage alpha);

0.333 0.333 0.333 0.0

212 XIL Programmer’s Guide—August 1994

11

Note – A normalized value is one that has been scaled into the range 0 to 1,
where 0 corresponds to the minimum value for the image’s data type and 1
corresponds to the maximum value. For example, in an XIL_BYTE image, a
value of 127 would be normalized to approximately .5 since it falls about half
way between 0 and 255.

Figure 11-15 illustrates the blending of two XIL_BYTE images, labeled src1
and src2 . The pixels in the dark areas of these images have values of 100, and
the white pixels have values of 255. The alpha mask, alpha , has all its pixels
set to 127, so normalized alpha is approximately .5. Thus, the equation used to
calculate destination-image values in this example is

dst = ((.5 * src1) + (.5 * src2))

There will only be three distinct values in the destination:

• Where src1 and src2 were both white, the destination value is calculated
as follows:

(.5 * 255) + (.5 * 255) = 255

These pixels appear white in the destination.

• Where src1 and src2 were both dark (pixel value of 100), the destination
value is calculated as follows:

(.5 * 100) + (.5 * 100) = 100

These pixels appear dark gray in the destination.

• Where src1 was white and src2 was dark, or vice versa, the destination
value is calculated as follows:

(.5 * 255) + (.5 * 100) = 178

These pixels appear light gray in the destination.

Miscellaneous Image Processing Functions 213

11

Figure 11-15 Blending Images

To see an example of the blending of two color images, see Color Plate 3.

Painting on an Image
The library’s paint operation requires you to provide a list of the pixels in the
source image you want to paint by specifying their coordinates. You also
specify a kernel that the operation will use as a brush. This kernel is like the
kernel you use with xil_convolve() , except that all the values in the kernel
must fall in the range 0.0 to 1.0.

src1 src2

alpha dst

214 XIL Programmer’s Guide—August 1994

11

Note – For information on creating an XIL kernel, see the section “Creating a
Convolution Kernel” on page 188.

Finally, you specify a color that you want to use for your painting.

In one sense, the paint function uses the kernel you supply much as the
convolution operation does. For each pixel that you want to paint, the paint
function lays the key value of the kernel over the pixel. See Figure 11-16.

Figure 11-16 Painting on an Image

In another sense, however, the paint function uses the kernel differently. In a
paint operation, a neighborhood of pixels in the source does not contribute to
the value of a singe pixel in the destination. Instead, for each placement of the
kernel, each source-image pixel that lies under the kernel affects the value of
the corresponding pixel in the destination. This part of the painting operation
is similar to a blending operation. The pixels under the kernel are blended with
the paint color, and the kernel serves as the equivalent of an alpha mask.
Destination-image pixel values are determined by the following formula:

dst = (brush-value * color) + ((1.0 - brush-value) * src)

Image

Kernel

Key value

Pixel being painted
.5

.5

.5

.5 1.0

.5 .5

.5 .5

Miscellaneous Image Processing Functions 215

11

You perform a paint operation in an XIL program by calling xil_paint() ,
whose prototype is shown below.

Table 11-9 explains the purpose of each of the parameters shown above.

Setting and Getting the Values of Pixels in an Image
The XIL library contains three functions that set or retrieve the values of pixels
in an image. Two of these functions—xil_set_pixel() and
xil_get_pixel() —set or get the value of individual pixels. The third,
xil_set_value() , sets all the pixels in an image.

void xil_paint(XilImage src, XilImage dst, float *color,
 XilKernel brush, unsigned int count, float *coord_list);

Table 11-9 Parameters to xil_paint()

Parameter What It Represents

src A handle to the source image for the operation.

dst A handle to the destination image. This image must have the
same number of bands and the same data type as the source
image.

color An array of float s containing a number of elements equal to
the number of bands in the source and destination images. The
elements in this array define the color to be used for painting.

brush A handle to the kernel that will be used as the brush.

count The number of pixels to be painted.

coord_list An array of float s containing 2 * count elements. These
elements represent the x and y coordinates of the pixels to be
painted.

216 XIL Programmer’s Guide—August 1994

11

xil_set_pixel() and xil_get_pixel()

The prototypes for these two functions are shown below.

In both prototypes, the parameter image is a handle to the image you’re
working with. The parameters x and y are the x and y coordinates of the pixel
you want to read or write. These coordinates should describe the location of
the pixel of interest with respect to the image’s origin, which by default is in
the upper-left corner of the image (0,0). The final parameter, values , is an
array of floating-point numbers. The number of elements in this array must
match the number of bands in the image.

When you read a pixel, the value of band 0 of that pixel is written to
values[0] , the value of band 1 is written to values[1] , and so on. Similarly,
when you write a pixel, values[0] is written to band 0 of the pixel, and so
forth. Before the writing actually takes place, the floating-point numbers in
values are converted to integers.

Note – If you attempt to write to a pixel a value that is out of range for the
source image’s data type, the value will be clamped to the low or high limit for
the data type. For example, an XIL_BYTE image can only accommodate values
in the range 0 to 255. If you try to write a 400 to such an image, the function
will actually write a 255.

xil_set_value()

The function xil_set_value() is useful for clearing an image by setting all
the pixels in the image to the same color. The prototype for this function is
shown below.

void xil_set_pixel(XilImage image, unsigned int x,
 unsigned int y, float *values);

void xil_get_pixel(XilImage image, unsigned int x,
 unsigned int y, float *values);

void xil_set_value(XilImage dst, float *values);

Miscellaneous Image Processing Functions 217

11

The parameter dst is a handle to the image you are working with, and values
is an array of floating-point numbers. The number of elements in this array
must match the number of bands in the image dst . The first element in the
array is rounded to an integer and is then written to all of band 0 of your
image; the second element is rounded to an integer and written to band 1 of
the image; and so on.

Note – If you attempt to write to a band a value that is out of range for the
image’s data type, the value will be clamped to the low or high limit for the
data type. For example, an XIL_BYTE image can only accommodate values in
the range 0 to 255. If you try to write a 400 to a band, the function will actually
write a 255.

Copying a Pattern to an Image
Besides xil_copy() , which copies a source image to a destination image, the
XIL library includes a function, xil_copy_pattern() , that writes as many
copies of the source image as possible to the destination image. The function
prototype for xil_copy_pattern() is shown below.

The parameter src is a handle to the source image, and dst is a handle to the
destination.

If your destination image is the same size as, or smaller than, your source
image, using xil_copy() and xil_copy_pattern() will produce the same
result. However, if your destination image is larger than your source,
xil_copy() will write one copy of the source image to the destination, while
xil_copy_pattern() will write as many copies as possible. Some of these
copies will be partial copies if the dimensions of the destination are not
multiples of the dimensions of the source. Figure 11-17 below illustrates the
difference between using xil_copy() and xil_copy_pattern() to copy a
source image to a destination that is twice as high and wide as the source.

void xil_copy_pattern(XilImage src, XilImage dst);

218 XIL Programmer’s Guide—August 1994

11

Figure 11-17 Replicating a Source Image

xil_copy() xil_copy_pattern()

219

Compressing and Decompressing
Sequences of Images 12

Besides enabling you to perform image-processing operations on XIL images,
the XIL library also gives you the ability to compress one or more XIL images
and to store the compressed images in a data structure called a compressed
image sequence (CIS). The XIL images you compress may represent frames of
video from a movie, pages from a document, or any number of things. You can
also decompress the data stored in a CIS and write your output to one or more
XIL images. This compression-decompression process is shown in Figure 12-1.

Figure 12-1 Compressing and Decompressing XIL Images

XIL
image

XIL
image

Compression
Decompression

Compressed image sequence Compressed image data

220 XIL Programmer’s Guide—August 1994

12

As you probably know, uncompressed images can take up a lot of disk space
and take a long time to move over the network. For example, a 512-by-512
3-band image containing XIL_BYTE data takes up .75 Mbytes. A compressed
version of this image might be anywhere from one-half to one-fiftieth this size,
depending on the type of compressor used.

The XIL library contains several compression and decompression modules:

• Cell and CellB codecs
• JPEG baseline sequential and lossless codecs
• An H.261 decompressor
• An MPEG-1 decompressor
• CCITT Group 3 and Group 4 codecs

The Cell image compression technology, which was developed by Sun, has
been optimized for the rapid decompression and display of images on simple
hardware. Therefore, the Cell codec is able to achieve reasonable display
quality on indexed-color frame buffers. The initial focus of the Cell technology
is on Sun-to-Sun communications, where the benefits of fast decoding
outweigh the benefits of standards. Possible areas of application include media
distributions on CD-ROM and multimedia mail.

The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features greater balance
between the time spent compressing and decompressing images than the Cell
codec. The CellB codec’s strengths include

• Software compression at interactive rates
• Very fast decoding and display, especially on indexed-color frame buffers
• Low rates of CPU use
• Good quality output

The JPEG compression standards were developed by the Joint Photographic
Experts Group to support the compression of still images, both grayscale and
color. Although not specifically designed for the compression of sequences of
images, or movies, JPEG compressors are also used frequently for that
purpose. A lossy JPEG compressor compresses an image in such a way that
when the compressed data is decompressed, the decompressed image and the
original image may not match exactly. On the other hand, a lossless JPEG
compressor processes an image so that the decompressed image does match
the original image pixel for pixel.

Compressing and Decompressing Sequences of Images 221

12

The H.261 compression-decompression scheme was developed by the
International Telegraph and Telephone Consultative Committee (CCITT). The
H.261 video encoder is intended to be used to compress video data that will be
sent over Integrated Services Digital Network (ISDN) lines. The H.261 codec is
intended primarily for use in video telephony and videoconferencing
applications.

The MPEG-1 video compression standard was developed by the Moving
Picture Experts Group. The group’s goal was to compress full-motion video
and the associated audio at the rate of about 1.5 Mbits/s. This is approximately
the rate at which data can be read from a CD-ROM, so MPEG-1 compressed
video is a good choice for use in interactive multimedia applications.

The CCITT Group 3 and Group 4 compression standards were developed by
the International Telegraph and Telephone Consultative Committee to enable
facsimile machines to compress and decompress digitized documents. Now,
Group 3 and Group 4 compressors and decompressors are used for general
document storage and retrieval.

The remainder of this chapter introduces you to the subject of XIL compression
and decompression by examining two example programs: encode and
xilcis_example . The first program builds a Cell, CellB, or JPEG movie. It
reads a series of video frames from disk files, compresses each frame, and
writes the compressed image data to a CIS. As frames are compressed, the
program writes the compressed data in the CIS to an output file. This output
file can serve as input to the second example program, a movie player.

The second example program plays back a Cell, CellB, JPEG, H.261, or MPEG-1
datastream on an 8- or 24-bit frame buffer. It reads a datastream from a disk file
and stores the compressed data in a CIS. Then, for each compressed image in
the CIS, it takes the following actions. First, it decompresses a frame of video
from the CIS and stores the resulting image in a 3-band XIL_BYTE image.
Then, it prepares each image for display on a particular frame buffer and
writes the image to a display image. These steps result in a frame of video
being displayed.

222 XIL Programmer’s Guide—August 1994

12

Creating a JPEG Datastream
The source files for the movie-making example—encode.c , load_file.c ,
and image_transform.c —can be found in the directory
$XILHOME/examples/movie_maker_example . This directory also contains
the image files that the program should use as input and a makefile you can
use to build the program.

After briefly discussing how to build and run the example, this section walks
you through the program’s code to clarify how the program produces a JPEG
datastream. (Cell and CellB bytestreams are produced in a very similar way.)
The basic algorithm is shown below:

1. Create a CIS.

2. While all the video frames have not been compressed, perform the following
steps:

a. Load data from an image file into an XIL image.

b. Convert the format of the XIL image if that’s necessary or desirable. It
will be necessary if the image does not contain XIL_BYTE data because
the JPEG compressor expects input of that type. If your image is not a
YCbCr image, it is desirable to convert the image to that color space
because YCbCr images are optimized for compression and
decompression. The JPEG compressor will work with images of any color
space, but it typically produces superior compression with YCbCr images.

c. Compress the image and write the compressed data to the CIS.

d. Destroy the image in order to free the memory allocated to hold the
image structure and the image data.

e. Write any compressed data in the CIS to a disk file.

3. Perform any outstanding compression operations, and write any resulting
compressed data to the output file.

Compressing and Decompressing Sequences of Images 223

12

Building and Running the Example

To build and run the example encode , perform the following steps:

1. Change your working directory to
$XILHOME/examples/movie_maker_example and type make. The
makefile in that directory will build the program.

2. While in the same directory, execute the program using the following
syntax:

% encode [-c | -cb] file-list [output-file]

By default, the program creates a JPEG bitstream. To produce a Cell
bytestream instead, use the -c option, and to produce a CellB bytestream,
use the -cb option.

The argument file-list must be the name of a file that contains a list of files
(images) to be processed. The list of files supplied with this example is
called mifkin.list .

The argument output-file is optional. If you supply a file name here, the
example will write its output to a file of that name; otherwise, it will write
its output to out.jpg , out.cell , or out.cellb , depending on which
compressor you’ve used.

Creating a CIS

Before a program can compress an image or sequence of images, it must create
a CIS in which to store compressed data. The example program creates this
data structure using code similar to this.

XilSystemState state;
XilCis cis;

cis = xil_cis_create(state, “Jpeg”);
xil_cis_set_attribute(cis, “ENCODE_411_INTERLEAVED”,
 (void *)TRUE);
xil_cis_set_max_frames(cis, 100);

224 XIL Programmer’s Guide—August 1994

12

You use the function xil_cis_create() to create the CIS, which is a data
structure of type XilCis . The two arguments to this function are a
system-state structure (this was returned by an earlier call to xil_open())
and the name of a compressor/decompressor. The example requests the JPEG
baseline sequential codec (Jpeg), but could have requested another
compressor/decompressor. (For information about the strings you use to create
CISs associated with other compressors/decompressors, see the section
“Creating and Destroying a CIS” on page 250.)

The next line sets a JPEG-specific attribute called ENCODE_411_INTERLEAVED
to TRUE. If the images being compressed are 3-band YCbCr images, setting this
attribute causes the codec to subsample the data in the color bands so that only
one color value will be encoded for each four color values in the original
(4:1:1). This subsampling enables the compressor to achieve a much higher
level of compression than it could otherwise.

The last line sets a CIS attribute that limits the number of frames the CIS will
buffer. In this case, the CIS will maintain 100 frames in its buffer. If more than
100 frames are compressed, the oldest frames will become inaccessible. This
attribute is set to keep the program from using too much memory in instances
when there are many frames to be compressed.

CIS attributes are discussed further in the section “General CIS Attributes” on
page 257.

Compressing Video Frames and Writing Compressed Data to a File

After creating a CIS, the example begins compressing frames of video. For each
frame, the program performs the steps described in the sections below.

Loading Data from a File into an XIL Image

The example calls a routine called load_file() to read an image from a disk
file into an XIL image. For a complete explanation of what is happening in this
subroutine, see the section “Acquiring an Input Image” on page 13. The only
thing new in this example is that load_file() reads a color space from the

Compressing and Decompressing Sequences of Images 225

12

image file header and, after creating the XIL image into which it will read pixel
values, sets that XIL image’s color-space attribute appropriately. See the code
fragment below.

The reason for checking the color space of the input image is that the JPEG
compressor is optimized for compressing YCbCr images. The images supplied
with the example are RGB images, so the example converts each image to the
YCbCr color space before compressing it. This task is described in the next
section.

Converting an XIL Image to the Proper Format

Compressors have certain requirements for the images they compress. (See the
section “Putting Compressed Data into a CIS” on page 251 for a list of these
requirements.) For example, the JPEG compressor used in this example
requires XIL_BYTE images. In addition, the compressor will produce a
bitstream that can be decompressed most rapidly if the input is YCbCr images.

FILE *in_file;
char colorspace[80];
XilSystemState state;
unsigned int width, height, nbands;
XilDataType datatype;
XilImage image;

fscanf(in_file, “%s”, colorspace);
image = xil_create(state, width, height, nbands, datatype);
xil_set_colorspace(image, xil_colorspace_get_by_name(state,
 colorspace));

226 XIL Programmer’s Guide—August 1994

12

The images provided for you to use as input to the example are RGB
XIL_BYTE images. Thus, the example does not have to convert the images in
any way, but can produce a bitstream that can be played back the fastest if it
converts the color space of the images. This conversion is handled in the
routine image_transform() .

This routine is passed a source image and a desired color space (ycc601).
Given this data, the routine:

• Creates a second XIL image, new_image , that has the same width, height,
and data type as image and a number of bands that fits the desired color
space. Because a YCbCr image must have three bands, new_image is a
3-band image.

• Uses the function xil_set_colorspace() to set new_image ’s color space
attribute to ycc601 .

• Calls xil_color_convert() to convert the data in image from the RGB
color space to the YCbCr color space. The converted data is stored in
new_image .

• Destroys image since it is no longer needed.

XilImage
image_transform(XilSystemState state, XilImage image,
 int desired_nbands, char *desired_colorspace)
{
 XilImage new_image;
 unsigned int width, height, nbands;
 XilDataType datatype;

 xil_get_info(image, &width, &height, &nbands, &datatype);
 new_image = xil_create(state, width, height, desired_nbands,
 datatype);
 if (new_image == NULL) {
 /* XIL sends an error msg to stderr if image create fails */
 return(NULL);
 }
 xil_set_colorspace(new_image,
 xil_colorspace_get_by_name(state, desired_colorspace));
 xil_color_convert(image, new_image);
 xil_destroy(image);
 return(new_image);
}

Compressing and Decompressing Sequences of Images 227

12

A JPEG playback program will also run fastest if the images it decompresses
are multiples of 16 in width and height. For this reason, the example uses the
following code to clip each source image to a multiple of 16 in width and
height before compressing it.

Compressing an XIL Image

Compressing the clipped YCbCr image requires a single function call.

The first argument to this function is the child YCbCr image child_clip , and
the second is a handle to the program’s CIS. The call both compresses the
image and writes the compressed data to the CIS.

Destroying an XIL Image

Once an image has been compressed, the example destroys that image to free
the resources associated with it.

Writing the Compressed Data to a File

After compressing each frame of video, the example calls a routine
write_file() to write any compressed data in the CIS to the program’s
output file. The basic algorithm for this routine is shown below.

XilImage src, child_clip;

child_clip = xil_create_child(src, 0, 0,
 xil_get_width(src) & ~0xf,
 xil_get_height(src) & ~0xf, 0, 3);

XilImage src;
XilCis cis;

xil_compress(child_clip, cis);

xil_destroy(child_clip);
xil_destroy(src);

228 XIL Programmer’s Guide—August 1994

12

• While the CIS contains data that has not been read,

a. Get a pointer to the first byte of compressed data that has not been read
yet. After the first call to the routine that gets this pointer, the pointer
will point to the first byte of data in the CIS.

b. Using the pointer retrieved in the previous step, read data from the CIS
and write it to a file.

Note – The loop is necessary because all of the compressed data in the CIS may
not be in one continuous buffer.

Here is code that implements this algorithm:

The function xil_cis_has_frame() determines whether there is at least one
complete frame’s worth of compressed data in the CIS that has not yet been
read. If there is remaining data, the function returns TRUE, and the statements
inside the loop are executed.

int nbytes, nframes;
XilCis cis;
Xil_unsigned8 *data;
FILE *out;

while (xil_cis_has_frame(cis) == TRUE) {
 data = (Xil_unsigned8 *)xil_cis_get_bits_ptr(cis, &nbytes,
 &nframes);
 fwrite((char *)data, sizeof(Xil_unsigned8), nbytes, out);
}

Compressing and Decompressing Sequences of Images 229

12

Note – The routine must check for more than one frame’s worth of data in the
CIS because compressors are not required to write data to the CIS each time
xil_compress() is called. Instead, they may read a number of frames of
video and store them internally before doing any compression. Then, they may
write a number of frames’ worth of compressed data to the CIS at once. This
type of strategy is necessary, for instance, when a compressor wants to do
interframe compression.

The first call to xil_cis_get_bits_ptr() returns a generic pointer to the
beginning of the compressed data in the CIS. It also returns the number of
bytes the pointer points to (nbytes) and the number of video frames these
bytes represent (nframes). In addition to returning these values, the function
changes an attribute of the CIS called its read frame from 0 to nframes . (Frames
are numbered beginning with 0.) Thus, a second call to
xil_cis_get_bits_ptr() will return a pointer to the first byte of
compressed data that is part of the frame numbered nframes . The arguments
to this function are a handle to your CIS and the addresses of the variables
nbytes and nframes .

The only other action taking place in the loop is that the example is using the
function fwrite() to write the compressed data pointed to by data to the
output file out .

Performing Any Outstanding Compression Operations

When the loop described in the preceding section ends, the compressor may
have read frames of video that it has not yet compressed. To deal with this
possibility, the example makes the following two calls.

XilCis cis;
FILE *out;

xil_cis_flush(cis);
write_file(cis, &total_nbytes, &total_nframes, out);

230 XIL Programmer’s Guide—August 1994

12

The function xil_cis_flush() instructs the compressor to compress any
images it has read but not compressed and to write the last of its output to the
CIS. The call to write_file() is the same as the one used in the loop
discussed in the last section. It writes to the output file any compressed data
written to the CIS as a result of the call to xil_cis_flush() .

Playing a JPEG Movie
This section discusses a movie-player example supplied with the library. This
program can display Cell, CellB, JPEG, H.261, and MPEG-1 movies on 8- and
24-bit displays.

The source files for the movie-player example—xilcis_example.c ,
memmap.c, memmap.h, and xilcis_color.c —can be found in the directory
$XILHOME/examples/movie_player_example . This directory also contains
a one-frame JPEG bitstream that the example can used as input and a makefile
you can use to build the program. In addition, you can use as input to this
program the output of the movie-maker example discussed earlier in this
chapter.

Note – The JPEG code in the program is optimized to handle movies
containing YCbCr images. The JPEG movie supplied with the example contains
this type of image.

After briefly discussing how to build and run the example, the section takes a
look at the code the example uses to play back a JPEG movie on an 8-bit
display. (If you look at the program, you’ll notice that the CellB, H.261, and
MPEG-1 cases are handled very similarly to the JPEG case.) The code specific
to the Cell case for 8-bit displays is covered in the section “Playing Cell
Movies” on page 241.

 The basic algorithm the example uses to play a JPEG movie on an
indexed-color display is shown below.

1. Memory map the contents of the movie file (the compressed data) into your
process’s address space.

2. Create a CIS.

3. Give the CIS a pointer to the compressed data you memory mapped earlier.
At this point, the CIS is all set up.

Compressing and Decompressing Sequences of Images 231

12

4. Create a display image in which to show the movie by following these steps:

a. Determine the dimensions of the frames in the movie.

b. Create an X window that is equal in width and height to the frames in
the movie.

c. Create an XIL display image from the X window.

5. Create an XIL image that will hold frames as they are decompressed. This
image must have the same width, height, number of bands, and data type as
the frames in the movie.

6. Initialize the parameters the example will use when dithering each 24-bit
XIL image (frame of video) so that it can be displayed on an 8-bit frame
buffer.

7. Install an X colormap.

8. Play back the movie. While the CIS contains unread frames of compressed
data:

a. Decompress a frame of video and store the resulting image in the XIL
image created above.

b. Dither the XIL image, and write the dithered image to the display.

Running the Movie Player

To run the movie player, change your working directory to
$XILHOME/examples/movie_player_example , and then build the program
in that directory by typing make. You should execute the example from this
same directory, using a command line of the following form:

% xilcis_example [-i filename] [-c | -cb | -h | -m] [-s width height]

232 XIL Programmer’s Guide—August 1994

12

Table 12-1 describes the example’s command-line options.

When the program runs, it shows the movie you have selected in an X window.
To terminate the program, move your cursor into the program’s window and
press any mouse button.

Memory Mapping the Movie

When you run the example program, you use the -i filename option to pass
it the name of a file containing a movie. Before the example can attach the
compressed image data in the file to a CIS, it must map the contents of the file
to system memory. You can find the code that handles this task in the source
file memmap.c.

As you’ll see in that source file, after opening the movie file, the example uses
the system call fstat(2V) to determine the length of the movie in bytes and
the system call mmap(2) to memory map the file and get a pointer to the
beginning of the datastream. Following these calls, the structure member
memfile->mstart is a pointer to the beginning of the datastream, and
memfile->mlen is the number of bytes in the datastream.

Table 12-1 Command-Line Options for xilcis_example

Option What It Does

-i filename Specifies the name of the movie (a file containing compressed
movie frames) that you want to play back. If you omit this
option, the program will play back a one-frame movie called
earth.jpg .

-c Instructs the movie player to play back a Cell movie. By
default, the player is set up to play a JPEG movie.

-cb Instructs the movie player to play back a CellB bytestream.

-h Instructs the movie player to play back an H.261 bitstream.

-m Instructs the movie player to play back an MPEG-1 bitstream.

-s width height If you’re decoding a CellB bytestream, you must use this
option. The arguments width and height are the width and
height in pixels of the images being decoded.

Compressing and Decompressing Sequences of Images 233

12

Creating a CIS

After mapping the compressed movie data to memory, the example creates a
CIS to hold that data. The code used to create this XilCis data structure is
shown below.

The arguments to xil_cis_create() are a handle to a system-state data
structure returned by an earlier call to xil_open() and the name of the codec
or decompressor that will be used to decompress frames from the datastream,
in this case “Jpeg” . The function returns a handle to the newly created CIS.

Putting Compressed Data in a CIS

Now that the CIS exists and the example has a pointer to the JPEG bitstream,
the example can set the data-pointer member of the CIS to point to the
beginning of the JPEG bitstream. It does this using a call to
xil_cis_put_bits_ptr() :

XilCis cis;
XilSystemState state;
char *cis_type = “Jpeg”;

cis = xil_cis_create(state, cis_type);
if (!cis) {
 /* XIL sends error message to stderr if xil_cis_create fails */
 exit(1);
}

XilCis cis;
int frame_count = -1;

xil_cis_put_bits_ptr(cis, memfile->mlen, frame_count,
 memfile->mstart, NULL);

234 XIL Programmer’s Guide—August 1994

12

Table 12-2 explains what the several arguments to the function represent.

After the call to xil_cis_put_bits_ptr() has been made, the CIS is ready
for use. Before the example can begin decompressing frames of video,
however, it must create two XIL images: an 8-bit display image in which to
display the video and a 24-bit memory image to serve as a destination image
for the decompression function.

Creating a Display Image

There are three steps involved in creating the 8-bit display image in which the
movie will be shown.

Table 12-2 Parameters to xil_cis_put_bits_ptr()

Argument What It Represents

cis A handle to the CIS whose data pointer is being set.

memfile->mlen The length in bytes of the JPEG bitstream.

frame_count Indicates that the number of video frames the JPEG
bitstream represents is unknown (because frame_count is
set to -1). If the number of frames in the movie were
known, frame_count would be set to that number.

memfile->mstart A pointer to the beginning of the JPEG bitstream.

NULL Indicates that the example has assumed responsibility for
freeing the memory in which the JPEG bitstream is stored.
Alternatively, the example could have passed a pointer to a
function to xil_cis_put_bits_ptr() . In the latter case,
the function passed to xil_cis_put_bits_ptr() would
be called if the CIS were destroyed or reset.

Compressing and Decompressing Sequences of Images 235

12

1. Determine the dimensions of the images stored in the CIS.
The code used to get these dimensions is shown below.

The first function called, xil_cis_get_output_type() , takes a handle to
the CIS as its only argument and returns an image type. This image type, a
data structure of type XilImageType , contains information about the
images stored in the CIS, such as their width, height, number of bands, and
data type.

The following call to xil_imagetype_get_info() takes the image type
as its first argument and returns the width, height, number of bands, and
data type of the image type in its remaining arguments. The data type,
stored in cis_datatype , will be one of the following enumeration
constants: XIL_BIT , XIL_BYTE , or XIL_SHORT. (In this case, the value will
be XIL_BYTE because the movie supplied with the XIL release was made
from 3-band XIL_BYTE images.)

2. Create an X window that matches the width and height of the images in
the CIS.
In this example, the X window is created with a call to
XCreateSimpleWindow() . When the example is run on a system with an
8-bit display, this window will be 8 bits deep by default.

XilImageType outputtype;
XilCis cis;
unsigned int cis_xsize, cis_ysize, cis_nbands;
XilDataType cis_datatype;

outputtype = xil_cis_get_output_type(cis);
xil_imagetype_get_info(outputtype, &cis_xsize, &cis_ysize,
 &cis_nbands, &cis_datatype);

int screen_num;
Display *display;
Window window;

screen_num = DefaultScreen(display);
window = XCreateSimpleWindow(display,
 RootWindow(display, screen_num), 0, 0, cis_xsize,
 cis_ysize, 0, BlackPixel(display, screen_num),
 WhitePixel(display, screen_num));

236 XIL Programmer’s Guide—August 1994

12

3. Create a display image based on the X window created above.
This display image will be the destination image to which frames are
written in order to display them. To create the display image, the example
calls xil_create_from_window() .

For a complete discussion of display images, see the section “Display
Images” on page 44.

Creating an Image to Hold Decompressed Frames

If you have loaded the JPEG movie supplied with the XIL release (earth.jpg)
or a JPEG movie you created with the example movie maker into your CIS, the
images in the CIS are YCbCr images (24 bits deep). Because they cannot be
decompressed directly into the program’s display image (8 bits deep), the
example must create an XIL memory image whose purpose is to hold those
decompressed frames. That is, for each frame in the movie, the example must
perform the two-step sequence shown in Figure 12-2.

XilImage displayimage = NULL;
XilSystemState state;
Display *display;
Window window;

displayimage = xil_create_from_window(state, display, window);
if (!displayimage) {
 /* XIL err msg to stderr if xil_create_from_window fails */
 exit(1);
}

Compressing and Decompressing Sequences of Images 237

12

Figure 12-2 Decompressing and Dithering a Frame of Video

The code used to create the XIL memory image is shown below:.

The variables cis_xsize , cis_ysize , cis_nbands , and cis_datatype
were set earlier by a call to xil_imagetype_get_info() , which returned the
width, height, number of bands, and data type of the compressed images in the
CIS. Thus, the image returned here, imageYCC, will be identical to the images
stored in the CIS in both dimensions and data type.

XilSystemState state;
XilImage imageYCC = NULL;
unsigned int cis_xsize, cis_ysize, cis_nbands;
XilDataType cis_datatype;

imageYCC = xil_create(state, cis_xsize, cis_ysize, cis_nbands,
 cis_datatype);

24-Bit Images

Compressed
Image
Sequence

XIL Memory
Image

24-Bit Image

Step 1:Decompress Step 2: Dither 8-Bit Display Image

238 XIL Programmer’s Guide—August 1994

12

Initializing Parameters to Be Used with the Dither Function

Next, the example program produces the colorcube and dither mask that it will
need later to dither images to the display. To get the colorcube, the example
calls xil_lookup_get_by_name() .

This call returns a handle to a special colorcube that the library creates when it
is initialized. This colorcube has dimensions of 8, 5, and 5 and is designed for
dithering the values in a YCbCr image to 200 colors.

The program then creates a dither mask:

This call returns a handle to a special dither mask the library creates when it is
initialized. The mask is 4 pixels high and wide and 3 bands deep.

Installing an X Colormap

At this point, the program calls the function create_cmap() , from the source
file xilcis_color.c , to set up the X colormap that will be used in displaying
the dithered frames. This function contains primarily Xlib code, but does get
some information from the XIL library to get started.

First, the function is passed an XIL lookup table called yuv_to_rgb . This is a
standard lookup table that is useful for converting the values in a dithered
YCbCr image to RGB values.

Note – The YCbCr images must have been dithered using the standard
colorcube cc855 .

This lookup table specifies which color values should be written to which
colorcells in the X colormap.

XilLookup colorcube;

colorcube = xil_lookup_get_by_name(state, “cc855”);

XilDitherMask dmask;

dmask = xil_dithermask_get_by_name(state, “dm443”);

Compressing and Decompressing Sequences of Images 239

12

The function create_cmap() then calls xil_lookup_get_num_entries()
to determine the number of entries in the colormap.

Once the function knows how many colorcells it needs to allocate, it creates an
X colormap and allocates the colorcells it needs to hold the information stored
in yuvtorgb . Note that to avoid colormap flashing, the function avoids
allocating the last two colorcells in the X colormap if possible and also leaves
free as many colorcells as possible at the beginning of the X colormap.

At this point, create_cmap() allocates a buffer called data and then uses the
function xil_lookup_get_values() to copy colormap entries from the
lookup table yuvtorgb to the buffer data .

The second argument to xil_lookup_get_values() enables you to start
copying entries from the lookup table at an entry other than 0, and here is set
to the offset of yuvtorgb .

Once create_cmap() has copied the colormap information from yuvtorgb
to the buffer data , the function has direct access to the color values it needs to
store in the X colormap, and it goes on to store those values. The only
remaining XIL call in the function create_cmap() changes the offset of the
colorcube that main uses to dither decompressed images to match the offset at
which create_cmap() began writing color values to the X colormap.

xil_lookup_set_offset(colorcube, (unsigned int)pixels[0]);

The first argument to xil_lookup_set_offset() is a handle to the
colorcube—main passed this handle to cmap_create() —and the second
represents the pixel value associated with the first colorcell in which

int cmapsize;

cmapsize = xil_lookup_get_num_entries(yuvtorgb);

Xil_unsigned8 *data;

data = (Xil_unsigned8 *)malloc(sizeof(Xil_unsigned8) * cmapsize
 * 3);
xil_lookup_get_values(yuvtorgb,
 xil_lookup_get_offset(yuvtorgb), cmapsize, data);

240 XIL Programmer’s Guide—August 1994

12

cmap_create() stored color values. This call ensures that all the pixel values
in the dithered images created in main will map to the correct spot in the X
colormap.

Playing the Movie

After returning from create_cmap() , the program is ready to play the movie.
The calls it uses to do this are shown below.

The loop is controlled by the return value of xil_cis_has_frame() . As long
as the CIS contains at least one complete frame of video, the function returns 1,
and the statements in the loop are performed.

The call to xil_decompress() decompresses an image from the CIS and
stores it in the intermediate image imageYCC. Since this is a CCIR Rec. 601
YCbCr image, the values in the Y band of the image can range from 16 to 235,
and those in the color bands can range from 16 to 240. Before such an image is
dithered, the values in each band should be scaled to fall in the range 0 to 255.

This rescaling is handled by the call to xil_rescale() . Since imageYCC is
both the source and destination image for the operation, the rescale is
performed in place. The scale and offset arguments were defined earlier in this
way:

while (xil_cis_has_frame(cis)) {
 xil_decompress(cis, imageYCC);
 xil_rescale(imageYCC, imageYCC, scale, offset);
 xil_ordered_dither(imageYCC, displayimage, colorcube,
 dmask);
}

float scale[3], offset[3];

scale[0] = 255.0 / (235.0 - 16.0);
scale[1] = 255.0 / (240.0 - 16.0);
scale[2] = 255.0 / (240.0 - 16.0);
offset[0] = -16.0 * scale[0];
offset[1] = -16.0 * scale[1];
offset[2] = -16.0 * scale[2];

Compressing and Decompressing Sequences of Images 241

12

Finally, xil_ordered_dither() dithers the 3-band YCbCr image in
imageYCC using the colorcube and dither mask created earlier and writes the
result to the display image displayimage . This results in a frame of the
movie being shown in the X window.

Note – When a JPEG movie made from YCbCr images is displayed on an 8-bit
frame buffer, as in this example, the exact sequence of calls you use to play the
movie has a dramatic effect on the speed with which the movie is shown. The
reason for this is that by using the deferred-execution scheme explained in
Chapter 21, “Acceleration in XIL Programs,” the XIL library can look for a
certain sequence of functions at runtime and, if it finds that sequence, replace
all the functions in the sequence with a single, highly optimized routine. In this
example the sequence xil_decompress() , xil_rescale() ,
xil_ordered_dither() is such a sequence. Thus, when you play a JPEG
movie using this program, these functions are not executed, but are replaced
by an optimized function (molecule) that performs the jobs of all three
functions. See the section “Video Decompression Molecules” on page 399 for a
complete list of decompression molecules.

Playing Cell Movies
The example movie player performs the same steps regardless of whether its
input is a JPEG movie or a Cell movie up through the point where it creates a
display image. From that point on, however, it treats the JPEG and Cell cases
differently to get the maximum playback speed for each case. The algorithm
for the Cell case is summarized below:

1. Install an X colormap.

2. Create an XIL image to hold images as they are decompressed.

3. Decompress frames from the movie and display them.

Each of these steps is considered in more detail in the following sections.

242 XIL Programmer’s Guide—August 1994

12

Installing an X Colormap

As you look at this part of the example program, keep in mind that the Cell
playback code may update the X colormap many times as it plays back a
movie. In fact, the decompressor may use a different colormap for each frame
of a movie. This need to modify the X colormap makes colormap handling a bit
more complex than it is in the JPEG case.

The first thing the example does in this section is to call the function
create_cmap() , which is defined in the file xilcis_color.c :

As you’ll see below, this routine returns an XIL lookup table that serves as the
colormap for the Cell decompressor. The argument &x_cmap is the address of
an X Colormap and ilist is a structure that is defined (in an XIL header file)
as follows:

The array pixels can hold up to ncolors colormap index values, and these
values will later determine which X colormap entries the Cell decompressor
can modify.

XilLookup xil_cmap;
Colormap x_cmap;
XilIndexList *ilist;

xil_cmap = create_cmap(state, cis, display, window,
 DefaultScreen(display), &x_cmap, CELL, ilist, NULL, NULL);

typedef struct
{
 Xil_unsigned32 *pixels;
 Xil_unsigned16 ncolors;
} XilIndexList;

Compressing and Decompressing Sequences of Images 243

12

The first thing the create_cmap() function does is to look at the CIS’s
DECOMPRESSOR_MAX_CMAP_SIZE attribute to determine how many colorcells
to allocate in the X colormap.

The function then creates an X colormap and allocates cmapsize colorcells in
that colormap.

The next section of code sets up the ilist structure that will be used to
determine which X colormap entries the Cell decompressor can modify. In this
example, ilist is being set up so that the decompressor can modify any of the
colorcells allocated by create_cmap() .

Next, the cmap_create() function creates the XIL colormap that it will pass
back to main . Because the XIL routine that creates this colormap requires as
one of its arguments an array of bytes containing the color values to be stored

int cmapsize;

xil_cis_get_attribute(cis, “DECOMPRESSOR_MAX_CMAP_SIZE”,
 (void **)&cmapsize);

ilist->pixels = (Xil_unsigned32 *)malloc(sizeof(Xil_unsigned32)
 * cmapsize);
ilist->ncolors = cmapsize;
for (i = 0; i < cmapsize; i++)
 ilist->pixels[i] = (Xil_unsigned32)pixels[i];

244 XIL Programmer’s Guide—August 1994

12

in the colormap, cmap_create() first reads the color values in the default X
colormap into a buffer called data . It then uses xil_lookup_create() to
create the XIL colormap.

The lookup table created contains three bands on the output side and
cmapsize entries. Also, note that color values are entered in the table in BGR
order.

After create_cmap() returns the XIL lookup table to main , the example gets
the version number of this colormap (xil_cmap):

This version number, lu_version , changes whenever the lookup table’s
contents are changed by the Cell decompressor. Therefore, after decompressing
each movie frame, the program can test the version number to determine
whether it needs to update the X colormap.

The example then sets two important attributes of the Cell decompressor:
DECOMPRESSOR_COLORMAP and RDWR_INDICES.

data = (Xil_unsigned8 *)malloc(sizeof(Xil_unsigned8) * cmapsize
 * 3);
for (i = 0; i < cmapsize; i++)
 cdefs[i].pixel = i + pixels[0];
XQueryColors(display, DefaultColormap(display, screen), cdefs,
 cmapsize);
for (i = 0, j = 0; i < cmapsize; i++, j += 3) {
 data[j] = cdefs[i].blue >> 8;
 data[j + 1] = cdefs[i].green >> 8;
 data[j + 2] = cdefs[i].red >> 8;
}
lut = xil_lookup_create(state, XIL_BYTE, XIL_BYTE, 3, cmapsize,
 (int)pixels[0], data);

XilVersionNumber lu_version;

lu_version = xil_lookup_get_version(xil_cmap);

xil_cis_set_attribute(cis, “DECOMPRESSOR_COLORMAP”, xil_cmap);
xil_cis_set_attribute(cis, “RDWR_INDICES”, ilist);

Compressing and Decompressing Sequences of Images 245

12

The DECOMPRESSOR_COLORMAP attribute specifies the XIL lookup table that
will serve as the Cell decompressor’s XIL colormap. Because colormap
information is stored in the Cell bytestream along with pixel values, any time a
frame is decompressed, the contents of the decompressor’s colormap can
change. As you’ll see later, when the contents of the colormap change, a subset
of its entries are written to the X colormap before the next video frame is
displayed.

By default, however, the decompressor’s colormap is read only. To make an
entry writable, you register its index in RDWR_INDICES (in this case,
ilist->pixels). Only the entries whose indexes are stored in this array can
change. For example, in this program, only the entries whose indexes
correspond to those of the X colorcells allocated earlier can be written to.

Note – If you want to play Cell movies using a fixed colormap (for example, to
avoid colormap flashing between windows), don’t set the RDWR_INDICES
attribute. In this case, the Cell compressor will do its best using the colors
stored in the lookup table xil_cmap .

Creating an Image to Hold Decompressed Frames

The program now creates a 3-band XIL_BYTE image to hold frames as they are
decompressed. This task is handled with a call to xil_create() :

Later in the program, these images will be converted to 8-bit images for
display.

XilImage image24 = NULL;

image24 = xil_create(state, cis_xsize, cis_ysize, 3, XIL_BYTE);

246 XIL Programmer’s Guide—August 1994

12

Playing the Movie

Like the JPEG player, the Cell player plays a movie by executing a few
statements in a loop that terminates when the function call
xil_cis_has_frame(cis) returns 0.

First, the example decompresses a frame of data using the function
xil_decompress() and checks the version number of the decompressor’s
XIL colormap:

The version number of the original XIL colormap was stored in lu_version .
If this colormap has changed, then xil_cmap ’s version number will have
changed, and the program calls cell_install_cmap() to update the X
colormap. The program then saves xil_cmap ’s new version number in
lu_version so that it can check again to see if the colormap has changed after
the next call to xil_decompress() .

Finally, the example converts the RGB image stored in image24 to an 8-bit
image and copies the 8-bit image to displayimage . This is done using the
function xil_nearest_color() .

For each set of RGB values in image24 , this routine performs a pixel-by-pixel
search for the nearest matching color in the supplied colormap (xil_cmap)
and sets the destination image pixel value to the appropriate colormap index.

xil_decompress(cis, image24);
if (lu_version != xil_lookup_get_version(xil_cmap))
{
 cell_install_cmap(x_cmap, displayimage, xil_cmap, ilist);
 lu_version = xil_lookup_get_version(xil_cmap);
}

xil_nearest_color(image24, displayimage, xil_cmap);

Compressing and Decompressing Sequences of Images 247

12

Note – When a Cell movie is displayed on an 8-bit frame buffer, as in this
example, the exact sequence of calls you use to play the movie has a dramatic
effect on the speed with which the movie is shown. The reason for this is that
by using the deferred-execution scheme explained in Chapter 21, “Acceleration
in XIL Programs,” the XIL library can look for a certain sequence of functions
and, if it finds that sequence, replace all the functions in the sequence with a
single highly optimized routine. In this example the sequence
xil_decompress() , xil_nearest_color() is such a sequence. Thus, when
you play a Cell movie using this program, these functions are not executed, but
are replaced by an optimized function (molecule) that performs the jobs of both
functions. See the section “Cell Molecules” on page 288 for a complete list of
Cell-related molecules.

248 XIL Programmer’s Guide—August 1994

12

249

Compressed Image Sequences 13

An XIL compressed image sequence (CIS) is a container for compressed
images. These compressed images may represent a series of still images, frames
from a movie, or pages from a document, and they may have been compressed
in one of several formats:

• Cell or CellB
• JPEG baseline sequential or lossless
• H.261
• MPEG-1
• CCITT Group 3 or Group 4

For more information about these compression formats—what a particular
type of compression is useful for, how a certain type of compressor is
implemented, and so on—see chapters 13 through 19.

This chapter has three main sections. The first section discusses basic CIS
operations, such as creating a CIS and writing data to it. The second explains
what attributes CISs have and how you set and read the values of those
attributes. The third talks about recovering from errors in a CIS’s datastream.

Basic CIS Management
This section explains several basic CIS-related tasks:

• Creating and destroying a CIS
• Putting compressed data in a CIS
• Reading data from a CIS

250 XIL Programmer’s Guide—August 1994

13

If you have looked at the example programs presented in Chapter 12,
“Compressing and Decompressing Sequences of Images,” you already know
something about performing these tasks. Don’t skip the following sections,
however, because they introduce a number of functions that were not used in
the examples.

Creating and Destroying a CIS

You create a CIS by calling the function xil_cis_create() . This function
takes two arguments: a handle to the system-state data structure that was
created when you initialized the XIL library and a string that identifies the
compressor/decompressor that will be used to write compressed data to, or
read compressed data from, the CIS. For example, the call to create a CIS might
look like this.

The string you pass to the function—Jpeg in the code fragment above—can be
any one of the following strings:

• Cell (a Cell codec)
• CellB (a CellB codec)
• Jpeg (a JPEG baseline sequential codec)
• JpegLL (a JPEG lossless codec)
• H261 (an H.261 decompressor)
• Mpeg1 (an MPEG-1 decompressor)
• faxG3 (a CCITT Group 3 codec)
• faxG4 (a CCITT Group 4 codec)

The return value of xil_cis_create() is a handle to the newly created CIS.
You use this handle as an argument to all subsequent functions that affect the
CIS.

A function related to xil_cis_create() is xil_cis_reset() . The latter
function takes an existing CIS, which may contain compressed data, and
returns it to its initial state. That is, it clears out all existing compressed data

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Jpeg”);

Compressed Image Sequences 251

13

and frees any memory the CIS has allocated to hold that data. The only
argument to this function is a handle to the CIS whose compressed data you
want to clear.

To destroy a CIS, you call the function xil_cis_destroy() . This function
deallocates any buffers allocated to hold compressed data and frees the
memory used to hold other information about the CIS. The function’s only
argument is a handle to the CIS.

Putting Compressed Data into a CIS

There are two primary ways to get compressed data into a CIS. One way is to
call the function xil_compress() to compress one or more XIL images and
write the compressed data to the CIS. The second way is to move an existing
compressed data stream from system memory to a CIS. This compressed data
may have been compressed originally by an XIL or a non-XIL compressor.

Both of these methods change the value of an internal CIS index so that the
next operation that writes compressed data to the CIS will append its data to
existing data in the CIS. For more information about this index, see the section
“Start Frame, Read Frame, Write Frame” on page 260.

Using xil_compress()

The function xil_compress() reads an XIL image (or possibly more than one
image), compresses it, and writes the compressed data to a CIS. The function
takes two arguments. The first argument is a handle to a source image, and the
second is a handle to a CIS. You do not have to specify a compressor or codec
because each CIS is associated with a single compressor/decompressor when
the CIS is created.

If the image handle passed to xil_compress() is a handle to a memory
image or a display image, the function compresses a single image at a time. If
the handle is a handle to a device image such as a video-capture card,
xil_compress() may compress one or a number of frames per invocation.

Note – This description of what xil_compress() does is somewhat
oversimplified. Some compressors may prefer to compress groups of frames.
Therefore, they read an image each time your application calls
xil_compress() , but they may not actually compress the images and write

252 XIL Programmer’s Guide—August 1994

13

data to the CIS until they have read n frames. If you need to make sure that a
compressor has compressed all the frames it has read so far, call the function
xil_cis_flush() .

Each compressor has certain requirements regarding the type of XIL image you
can compress using xil_compress() . These requirements are summarized in
Table 13-1. An N/A in a table box indicates that there is no requirement in a
particular area.

You can also obtain information about the type of XIL image that can be
written to a particular CIS using the function xil_cis_get_input_type() .
See “Input and Output Image Type” on page 259 for more information about
this function.

Table 13-1 Types of Images Supported by XIL Compressors

 Width and
 Height

 Number
 of Bands Data Type Color Space

 Cell Multiple of 4 3 XIL_BYTE rgb709,
 ycc601,
 ycc709

 CellB Multiple of 4 3 XIL_BYTE ycc601

 JPEG baseline
 sequential

 N/A 1 to 255 XIL_BYTE N/A

 JPEG lossless N/A 1 to 255 XIL_BYTE
 XIL_SHORT

 N/A

 H.261 176 x 144
 (QCIF) or
 352 x 288
 (CIF)

 3 XIL_BYTE ycc601

 MPEG-1 N/A 3 XIL_BYTE ycc601

 CCITT Group 3 N/A 1 XIL_BIT N/A

 CCITT Group 4 N/A 1 XIL_BIT N/A

Compressed Image Sequences 253

13

Putting a Compressed Datastream into a CIS

If you have an existing stream of compressed data in system memory, you can
put that data into a CIS buffer in one of two ways. In both cases, the
compressed data must have been compressed with a compressor of the same
type as the compressor/decompressor associated with the CIS.

First, you can copy the datastream into the CIS buffer using the function
xil_cis_put_bits() , whose function prototype is shown below.

This routine copies nbytes of compressed data representing nframes of
uncompressed data into the CIS cis . The argument data is a generic pointer
to the data to be copied into the CIS.

The argument nframes normally indicates the number of frames represented
by nbytes of compressed data. If you do not know the exact number of frames
in the datastream, but know that there are no partial frames (frames that are
not completely represented in the datastream), you should set nframes to -1.
This value informs the CIS that the data being placed into it contains one or
more complete frames and no partial frames. If you know that the first or last
frame is not represented completely by the data in the stream, or you’re not
sure whether the datastream contains a partial frame, you should set nframes
to 0. This value alerts the compressor that the datastream may contain a partial
frame.

Note – Don’t set nframes to 0 if you know that the datastream contains only
complete frames. Doing so will slow down the copy.

You can also put a compressed datastream into a CIS using the function
xil_cis_put_bits_ptr() . Its function prototype is shown below:

void xil_cis_put_bits(XilCis cis, int nbytes, int nframes,
 void *data);

void xil_cis_put_bits_ptr(XilCis cis, int nbytes, int nframes,
 void *data, XIL_FUNCPTR_DONE_WITH_DATA done_with_data);

254 XIL Programmer’s Guide—August 1994

13

This function does not copy data into the CIS buffer, but gives the CIS a
pointer to the datastream. If you use this function, your application is
responsible for ensuring that the datastream remains valid.

You must also free the memory where the datastream is stored. One way to do
this is to pass xil_cis_put_bits_ptr() a pointer to a function
(done_with_data) that frees the memory. The xil_cis_put_bits_ptr()
routine will call this function if the CIS is destroyed, is reset, or no longer
needs the data. You should define this done_with_data routine to return void
and to take as its only argument a generic pointer to data . Thus, the prototype
for the function should look like this:

void free_memory(void *data)

When you call xil_cis_put_bits_ptr() , put the function’s name in the
spot where done_with_data is shown in the function prototype.

xil_cis_put_bits_ptr(cis, nbytes, nframes, data, free_memory);

If you don’t pass xil_cis_put_bits_ptr() a pointer to a function, pass
NULL as the final argument. In this case, your program must determine when
the memory holding the datastream is no longer needed.

The value of nframes has the same meanings when you’re using
xil_cis_put_bits_ptr() as it does when you’re using
xil_cis_put_bits() .

Reading Data from a CIS

As with putting data into a CIS, there are two basic ways to get data out of a
CIS. First, you can use the function xil_decompress() to read one frame’s
worth of compressed data from the CIS, decompress the data, and write the
decompressed data to an XIL image. Second, you can get a pointer to the
compressed data in the CIS and write the data to a file using a function like
fwrite() .

Both of these methods change the value of an internal CIS index so that the
next operation that reads compressed data from the CIS will begin reading
with the first frame in the CIS following the last frame read during the
just-completed operation. For more information about this index, see the
section “Start Frame, Read Frame, Write Frame” on page 260.

Compressed Image Sequences 255

13

Using xil_decompress()

The function prototype for xil_decompress() is shown below.

The first argument to the function is a handle to your CIS, and the second is a
handle to an XIL image into which a frame of video can be decompressed. The
decompressor used for the operation will be the one you specified when you
created your CIS.

The XIL image into which you decompress a frame of data must have the same
width, height, number of bands, and data type as the images stored in the CIS.
If you do not know these attributes of the images in the CIS, you can determine
them using the function xil_cis_get_output_type() . See the section
“Input and Output Image Type” on page 259 for more information on this
function.

Copying Compressed Data from a CIS

If you want to copy data from a CIS without decompressing it, you should
follow this procedure:

1. Use the function xil_cis_get_bits_ptr() to get a generic pointer to the
compressed data in the CIS.

2. Use a function like fwrite() to copy the data from the CIS buffer to a file.

The function prototype for xil_cis_get_bits_ptr() is shown below.

The first argument to this function is a handle to the CIS. The second argument
is the address of a variable in which the function stores the number of bytes to
which its return value (a pointer to void) points. The third argument is the
address of a variable in which the function stores the number of frames
represented by nbtyes .

void xil_decompress(XilCis cis, XilImage dst);

void *xil_cis_get_bits_ptr(XilCis cis, int *nbytes,
 int *nframes);

256 XIL Programmer’s Guide—August 1994

13

Note that nbytes is frequently not the total number of bytes of compressed
data stored in the CIS. This is true because the CIS’s “buffer” may actually be a
list of buffers. As a result, you may have to call xil_cis_get_bits_ptr()
multiple times to read all the compressed data in a CIS. See the next section for
information about controlling loops in which you’re reading data from a CIS.

Reading Data from a CIS in a Loop

If you want to decompress all the frames in a CIS or copy all the compressed
data in a CIS to a file, you need to decompress data or copy data repeatedly,
until all the data in the CIS has been read. A good way to control the loop that
decompresses or copies data is to use the function xil_cis_has_frame() , as
shown below.

The function xil_cis_has_frame() returns TRUE as long as one complete
frame of compressed data remains in the CIS. Its single argument is a handle to
your CIS.

Note – A loop like the one shown above works because a call to
xil_decompress() or xil_cis_get_bits_ptr() changes an attribute of
the CIS called its read frame. (For complete information about this attribute, see
the section “Start Frame, Read Frame, Write Frame” on page 260.) If you
decompress a frame, the read frame is incremented by 1, and if you copy 50
frames, the read frame is increased by 50.

You can also control this type of loop using the functions
xil_cis_has_data() and xil_cis_number_of_frames() . The first of
these functions returns the number of unread bytes in the CIS, and the second
returns the number of unread frames. Neither function, however, is as effective
as xil_cis_has_frame() for normal loop control: xil_cis_has_data()
can return a nonzero value even after the last complete frame has been read (if
the CIS contains a partial frame), and xil_cis_number_of_frames() may
take longer to execute than xil_cis_has_frame() .

XilCis cis;
XilImage dst;

while (xil_cis_has_frame(cis) == TRUE)
 xil_decompress(cis, dst);

Compressed Image Sequences 257

13

Nonsequential Reads

Normally, when you read data from a CIS, you begin reading at the last frame
read plus 1. However, you can also begin reading at a different point. To do
this, you call the routine xil_cis_seek() to indicate the frame you would
like to read next. The function prototype for this routine is shown below.

The first argument to this function is a handle to your CIS. The second and
third arguments, taken together, determine which frame will become the CIS’s
read frame (the frame that will be read first the next time you read data from
the CIS). The second argument, framenumber , is a number of frames and is to
be construed as an offset from one of three locations. This location is specified
by the value of relative_to . A value of 0 indicates that framenumber is an
offset from the beginning of the CIS (frame 0), a value of 1 that framenumber
is an offset from the current read frame, and a value of 2 that framenumber is
an offset from the last frame in the CIS.

It is an error to seek for a frame prior to the first frame currently in the CIS or
for a frame beyond the end of the CIS. See the section “Start Frame, Read
Frame, Write Frame” on page 260 for information about determining the frame
numbers of the first and last frames in the CIS. It is also an error to seek a
frame prior to the current read frame if the CIS’s random-access attribute is set
to 0. See the section “Random Access Flag” on page 260 for a discussion of this
attribute.

General CIS Attributes
Up to this point, this chapter has presented the CIS as a buffer or database in
which you store compressed data. However, you can also think of a CIS as a
structure with members that contain information about the
compressor/decompressor associated with the CIS, the type of the images in a
CIS, and so on. These members are referred to as attributes of the CIS. The
following list shows you the general CIS attributes:

void xil_cis_seek(XilCis cis, int framenumber, int relative_to);

258 XIL Programmer’s Guide—August 1994

13

Note – The term general attribute is used here because CISs also have
codec-specific attributes. These are covered in chapters 13 to 19, where the
different XIL compressors/decompressors are discussed.

• Compressor (or decompressor) associated with the CIS
• Type of the compressor
• Type of image that can be compressed and stored in the CIS
• Type of image that will result when compressed data in the CIS is

decompressed
• Flag indicating whether the data in the CIS can be accessed randomly
• Index to the first image currently in the CIS
• Index to the image that will be read next
• Index to the image that will be written next
• Maximum number of images the CIS can contain
• Number of already-read images the CIS should try to keep in its buffer
• Flag indicating whether the compressor should automatically recover from

an error it knows how to handle
• Name of the CIS

These attributes are discussed in detail in the following sections.

Compressor and Compression Type

A CIS’s compressor attribute is a string that identifies the
compressor/decompressor that will be used to compress or decompress data
for the CIS. This attribute is set when you create the CIS. For example, if you
create your CIS using the statement

cis = xil_cis_create(state, “Cell”);

the attribute will be set to Cell . You cannot change the value of this attribute
after creating the CIS; however, you can read its value using the function
xil_cis_get_compressor() .

The compression-type attribute is a string that identifies a compressor’s class.
In this release of the XIL library, each class contains only one
compressor/decompressor. However, as Sun and third parties write new XIL
compressors/decompressors, this situation will change. For instance, if a third
party writes a JPEG baseline sequential compressor, that compressor will have
a unique compressor name, but a compression type of JPEG, which is the
compression type of the XIL JPEG baseline sequential codec. Like the

Compressed Image Sequences 259

13

compressor attribute, this attribute is set when you create your CIS and cannot
be changed afterwards. You can retrieve the value, however, using the function
xil_cis_get_compression_type() .

Table 13-2 shows the currently available compressors/decompressors and their
types.

Input and Output Image Type

A CIS’s input-image-type attribute is a data structure of type XilImageType
that defines the type of XIL image that may be compressed and written to the
CIS. This structure contains information about an image’s width, height,
number of bands, and data type.

This information is available as soon as the CIS is created and may be retrieved
with the function xil_cis_get_input_type() . For example, assume you
use the following statement to create a CIS:

cis = xil_cis_create(state, “Cell”);

This statement creates a CIS that will be written to by the Cell compressor. If
you then call xil_cis_get_input_type() to determine the type of image
that can be compressed and written to this CIS, you will find that the image
must have three bands and contain XIL_BYTE data. The Cell compressor can
only work with images that have these characteristics. At this point, the values
of the image type’s width and height members will be 0, which indicates that
there are currently no specific requirements for these characteristics.

Table 13-2 Compressors and Compressor Types

Compressor Compression Type

Jpeg JPEG

JpegLL JPEGLL

Cell CELL

CellB CELLB

H261 H261

Mpeg1 MPEG1

faxG3 FAXG3

faxG4 FAXG4

260 XIL Programmer’s Guide—August 1994

13

After you have used xil_compress() to write compressed data to your CIS,
additional information about the input image type will become available. For
instance, a call to xil_cis_get_input_type() will return nonzero values
for the image type’s width and height. These will correspond to the width and
height of the images that have already been compressed.

A CIS’s output-data-type attribute is also a structure of type XilImageType ,
but indicates the type of image that will be produced when data stored in the
CIS is decompressed. You get this image-type structure by calling
xil_cis_get_output_type() .

It’s an error to call this function before writing data to your CIS. However, once
the CIS contains data, xil_cis_get_output_type() will return information
about the width, height, number of bands, and data type of the images stored
in the CIS. In general, programs that decompress data must call this function
because xil_decompress() expects its second argument to be an XIL image
to which it can write its output. Before you can create this XIL image, you must
know the output image type.

Random Access Flag

You can always seek forward in a CIS using the function xil_cis_seek() .
However, only certain compressors/decompressors allow you to seek
backwards. To determine whether your compressor/decompressor allows this
type of seek, call the function xil_cis_get_random_access() to determine
the value of the CIS’s random-access attribute. A return value of 1 indicates
that backward seeks are supported, and a return value of 0 indicates that such
seeks are not allowed.

Start Frame, Read Frame, Write Frame

These attributes are integer indexes to certain important images or frames
stored in a CIS.

The start-frame attribute is an index to the first frame in the CIS that is
currently accessible. For now, just think of the start frame as the first frame
written to the CIS (frame 0). To obtain the number of the current start frame,
you call the function xil_cis_get_start_frame() .

Compressed Image Sequences 261

13
The read-frame attribute is an index to the frame that will be read the next time
you read data from the CIS. If you use xil_decompress() to decompress a
frame, the function decompresses the current read frame and then increments
the read frame by 1. If you get a pointer to data you want to read using the
function xil_cis_get_bits_ptr() , the read frame is incremented by the
number of frames that you read from the CIS. You can determine the current
read frame using the function xil_cis_get_read_frame() .

The write-frame attribute is an index to the frame that will be written to the
next time you put data into the CIS. (Thus, the index to the last frame currently
in the CIS is the write-frame index minus 1.) When you add data to the CIS
using xil_compress() , xil_cis_put_bits() , or
xil_cis_put_bits_ptr() , this write-frame index is incremented by the
number of frames added to the CIS. To read the current value of the
write-frame attribute, use the function xil_cis_get_write_frame() .

The diagrams below may shed further light on how these indexes relate to one
another. In each diagram, each row of rectangles represents a CIS buffer, and
each rectangle in the row represents a frame of compressed data. Start frames,
read frames, and write frames are labeled S, R, and W respectively.

The first diagram below shows a CIS buffer before and after a call to
xil_compress() .

The diagram below illustrates the buffer before and after a call to
xil_decompress() .

This illustration shows the buffer before and after a call to
xil_cis_get_bits_ptr() that returns a pointer to the data from the read
frame to the write frame minus 1 inclusive. After obtaining this pointer, you
can use a function like fwrite() to write the data to a file.

S

S

R

R

W

W

S

S

R

R

W

W

262 XIL Programmer’s Guide—August 1994

13

Finally, this illustration shows the buffer before and after a seek operation.
Only the read-frame index changes.

Maximum Frames and Keep Frames

The maximum-number-of-frames attribute specifies the maximum number of
frames a CIS should buffer at any one time. You set this attribute using the
function xil_cis_set_max_frames() , and you can read the value of the
attribute using xil_cis_get_max_frames() .

Each CIS has a maximum-frames attribute whether you set it or not. If you
don’t set the value of the attribute, the value is a default value that depends on
the compressor/decompressor that is associated with the CIS. You can set the
value of the attribute by passing an integer greater than 0 to
xil_cis_set_max_frames() . You can also pass a -1 to this function: this
value indicates that there should be no limit on the number of frames that the
CIS can buffer.

Note – In the case where you set the maximum-frames attribute to an integer
greater than 0, this setting is actually a suggestion rather than a requirement.
Some compressors/decompressors cannot function properly if a CIS’s buffer is
too small.

S

S

R

R

W

W

S

S

R

R

W

W

Compressed Image Sequences 263

13

The keep-frames attribute specifies the number of frames prior to the current
read frame that a CIS should try to keep in its buffer. As with the
maximum-frames attribute, the keep-frames attribute will have a
compressor-specific value if you do not set it. It you do set the attribute, you
can pass to xil_cis_set_keep_frames() an integer representing the
number of frames to buffer or a -1, which means that there is no limit on the
number of keep frames. You read the value of the keep-frames attribute using
the function xil_cis_get_keep_frames() .

Note – Like the maximum-frames attribute, the keep-frames attribute is only a
hint to the compressor/decompressor. Some decompression algorithms will
not work if certain already-decompressed frames, such as key frames, aren’t
available.

The diagrams below illustrate how the maximum-frames and keep-frames
attributes affect the state of the CIS buffer.

The first diagram shows how compressing frames affects a buffer that already
contains the maximum number of frames. The first line in the illustration
shows the initial state of the buffer. The second line shows how the buffer
looks after a call to xil_compress() , the third line how the buffer looks after
a second call to xil_compress() , and so on. Note that an error occurs if, in
adding new data to the buffer, you lose the current read frame. An error also
occurs if R minus S becomes less than the value of the keep-frames attribute.
This error is reported only once, after the operation that first causes this
condition.

Note – An error does not occur if you cause R minus S to become less than the
value of the keep-frames attribute by seeking backwards in the buffer.

264 XIL Programmer’s Guide—August 1994

13

In the next two illustrations, R minus S equals the value of the keep-frames
attribute in the initial view of the buffer. The first diagram below shows the
effect of decompressing a frame from the CIS. Note that S is incremented to
prevent R minus S from exceeding the value of the keep-frames attribute.
Frame S - 1 is no longer accessible.

S R W

R

R

R

S

S

S

W

W

W

RS W

S
R W

S
R

W

W

This is an error S
R

S

S

R W

WR

Compressed Image Sequences 265

13

This picture shows the CIS buffer before and after an operation that reads all
the compressed data between the read frame and the write frame minus 1
inclusive. Note that R minus S equals the value of the keep-frames attributes in
both depictions of the buffer.

Error-Recovery Flag

There are two types of XIL datastream errors: those that a codec or
decompressor knows how to recover from and those that it can’t recover from
without help from the programmer. Here’s an example of the former type of
error. Some datastreams contain end-of-line markers. If a decompressor, while
it is decoding data, finds a line that is longer or shorter than expected, it can
(but doesn’t have to) recover from this error by truncating or zero-filling the
line. The value of a CIS’s error-recovery flag determines whether a codec or
decompressor automatically recovers from errors that it knows how to handle
or doesn’t. For information on recovering from errors that the module doesn’t
know how to handle, see “CIS Error Recovery” on page 267”.

By default, a CIS’s error-recovery flag is set to FALSE. This setting indicates
that a codec or decompressor should not automatically recover from the type
of error mentioned above.

Note – The library will generate an error structure when any type of
datastream error occurs and pass that structure to the currently installed error
handler. The error handler can then deal with the error as it sees fit.

To set this flag to TRUE in order to enable automatic error recovery, you call the
function xil_cis_set_autorecover() .

void xil_cis_set_autorecover(XilCis cis, Xil_boolean on_off);

S

S

R W

W
R

266 XIL Programmer’s Guide—August 1994

13

The parameter cis is a handle to the CIS whose datastream is being accessed,
and on_off should be the enumeration constant TRUE. (You would use the
constant FALSE to turn automatic recovery back off.)

The XIL library also includes a function that determines whether the
error-recovery flag is currently set. This function is called
xil_cis_get_autorecover() .

Note – If you set the error-recovery flag for a codec that cannot automatically
recover from any datastream errors—like the Cell compressor—the flag has no
effect.

Name

The library enables you to assign a name (char *) to a CIS. This type of
naming is useful because it enables you to get a handle to a CIS later in your
program by specifying the name of the CIS. The functions that allow for the
naming of CISs are shown in Table 13-3.

Xil_boolean xil_cis_get_autorecover(XilCis cis);

Table 13-3 CIS Naming Functions

Function Name What the Function Does

xil_cis_set_name Sets the name of a CIS

xil_cis_get_name Returns a copy of a CIS’s name

xil_cis_get_by_name Returns a handle to the CIS that has the
name you specify

Compressed Image Sequences 267

13

CIS Error Recovery
This section discusses how you recover from datastream errors that a codec or
decompressor does not know how to handle. For information on handling
errors that such a module can deal with, see the section “Error-Recovery Flag”
on page 265.

When a datastream error occurs that a codec or decompressor cannot recover
from, two things happen:

• The CIS is marked invalid. If the datastream error occurs while data is being
decompressed, the CIS is marked invalid for further reading. If the error
occurs while data is being compressed, the CIS is marked invalid for further
writing. To determine whether a CIS is invalid, you can call either
xil_cis_get_read_invalid() or xil_cis_get_write_invalid() .

• The XIL library generates an error structure and passes it to the currently
installed error handler. If this is a user-installed error handler, it may take
some action to deal with the datastream error.

Once a CIS has been marked invalid, there are three ways to make it valid
again.

• Reset the CIS by calling xil_cis_reset() . This function clears all existing
compressed data from the CIS.

• Seek a valid frame using xil_cis_seek() . If this seek fails, the library will
generate a seek error.

• Ask the library to recover from the error by calling
xil_cis_attempt_recovery() . The remainder of this section explains
how to use this function.

You use the function xil_cis_attempt_recovery() to try to recover from a
datastream error that (1) occurred while you were decompressing a CIS and (2)
made the CIS invalid for further reading. The prototype for this function is
shown below.

void xil_cis_attempt_recovery(XilCis cis, unsigned int nframes,
 unsigned int nbytes);

268 XIL Programmer’s Guide—August 1994

13

The parameter cis is a handle to the CIS you’re working with. The parameter
nframes indicates the maximum number of frames the function should scan
in its attempt to recover from the error. The parameter nbytes is the
maximum number of bytes the function should scan. If both nframes and
nbytes are set to 0, the function can search as far forward as necessary in
order to recover.

If one of the last two parameters is zero and the other is nonzero, the function
behaves as follows. If nframes is nonzero and nbytes is zero, the error
recovery mechanism attempts to search nframes frames ahead, using its best
guess as to exactly how many bytes those frames would contain. If nframes is
zero, and nbytes is nonzero, the recovery routine will scan nbytes bytes,
regardless of how many frames those bytes represent.

When xil_cis_attempt_recovery() returns, you can check to see whether
it was successful by calling the routine xil_cis_get_read_invalid() . If
you asked the recovery routine to scan a relatively few frames or bytes, it may
be necessary to call the routine several times to recover from the error.

The example below shows xil_cis_attempt_recovery() being used
inside a user-defined error handler. (For a complete discussion of writing error
handlers, see Chapter 8, “Error Handling.”)

Xil_boolean cis_error_handler(XilError error)
{
 XilCis cis;
 XilObject object;

 if ((xil_error_get_category(error) == XIL_ERROR_CIS_DATA) &&
 ((object = xil_error_get_object(error)) != NULL) &&
 (xil_object_get_type(object) == XIL_CIS)) {

 cis = (XilCis)object;
 if (xil_cis_get_read_invalid(cis)) {
 xil_cis_attempt_recovery(cis, 0, 0);
 if (!xil_cis_get_read_invalid(cis))
 return TRUE;
 }
 }
 return xil_call_next_error_handler(error);
}

Compressed Image Sequences 269

13

If the error affects a CIS and the CIS has been marked read invalid, the error
handler uses xil_cis_attempt_recovery() to try to recover from the
error. The recovery routine has permission to scan the entire datastream if
necessary. The error handler returns TRUE if the recovery is successful.
Otherwise, it calls the next error handler.

Note – When xil_cis_attempt_recovery() is called from within an error
handler, the call to xil_decompress() that produced the error will fail even
if the recovery is successful. The next call to xil_decompress() will succeed.

270 XIL Programmer’s Guide—August 1994

13

271

Cell Codec 14

The Cell image compression technology, which was developed by Sun, has
been optimized for the rapid decompression and display of images on simple
hardware. Therefore, Cell compression is able to achieve reasonable display
quality on indexed-color frame buffers. The initial focus of the Cell technology
is on Sun-to-Sun communications, where the benefits of fast decoding
outweigh the benefits of standards. Some possible areas of application include
media distributions on CD-ROM and multimedia mail applications.

Note – To get an idea of the quality of an image that has been compressed and
decompressed using the Cell compressor, see Color Plate 4.

This chapter is divided into four sections. First, it explains how the Cell
compressor works and the type of applications it was designed for. Second, it
explains briefly how to create a Cell CIS. Third, it discusses CIS attributes that
apply specifically to the Cell codec (as opposed to the general CIS attributes
covered in the section “General CIS Attributes” on page 257). Fourth, the
chapter discusses some accelerated playback routines (called molecules) that
you may be able to take advantage of when you’re playing back movies.

272 XIL Programmer’s Guide—August 1994

14

How the Cell Codec Works
The Cell encoding process transforms individual video frames into a
bytestream that is displayable with the Cell decompressor. Normally, the
encoder works with RGB images; however, it can also handle XIL images
whose color-space attribute is set to ycc601 or ycc709 . The decompressor
always produces RGB images.

In the first step of the encoding process, video images are analyzed to produce
an appropriate colormap to represent the frames to be encoded (unless the
programmer has already specified one). This step allows the specification of
the colormap size in order to leave colors unused. This strategy enhances
cooperation with the window manager and other applications. Cell also
provides for Adaptive Colormap Selection, in which a new colormap is
generated when the current colormap becomes unsuitable. This colormap can
be used in subsequent frames.

Given the images and the colormap, the second step is to encode the individual
frames into a Cell bytestream. The basic coding scheme used in Cell encoding
is based on an image coding method called Block Truncation Coding. A 4-by-4
region of pixels (a cell) from an image is represented by 2 colors and a 16-bit
mask. See Figure 14-1.

Cell Codec 273

14

Figure 14-1 Cell Compression

The mask indicates which color to place at each of the pixel positions. The
mask and colors may be chosen to maintain certain statistics of the cell, or they
may be chosen to reduce contouring in a manner similar to ordered dithering.

The primary advantage of this coding method lies in the similarity of the
decoding process to the operation of character fonting. The character display
process for a color frame buffer takes as input a foreground color, a
background color, and a mask that specifies which color to use at each pixel.
Because this function is so important to the window system, it is often
implemented as a display primitive in graphics accelerators. The Cell

Color 0: 8-bit index into colormap

Color 1: 8-bit index into colormap

16-bit mask: Each bit represents a pixel in the 4-by-4 block. Each bit value
determines whether a pixel will be represented by color 0 or color 1.

4-by-4 block (cell) of
pixels from a 24-bit
image

384 bits compressed to
32 bits (2 bits per pixel)

8 bits

274 XIL Programmer’s Guide—August 1994

14

compression technique uses this existing capability to provide full-motion
video decoding with no special hardware or modifications to the window
system.

There are actually two different encoding methods used to generate the
encoded bytestream. One encoding method, known as Block Truncation
Coding (BTC), chooses a 4-by-4 binary pixel mask and two colors (a
foreground and a background color), while attempting to maintain the mean
and variance of the luminance within the block. A second method, called the
Dither technique, determines the pair of colors from the colormap that produce
the least error when dithered over the 4-by-4 region. The BTC method is fastest
and usually produces good results; the Dither method is slower, but is less
likely to produce noticeable contours in regions of slow color variation.

Finally, encoded frames are combined into a frame sequence in the interframe
compression step, where the compression ratio can be increased by anywhere
from a factor of two to a factor of five. The colors and mask in each cell are
compared to those used in the previous frames of the movie. If the colors and
mask match to within a certain tolerance, a special skip code is generated.
Runs of skip codes are combined to further reduce the bytestream. If either a
single color changes or the mask changes, special escape codes are sent to
update the changed data. Changes in the colormap are also detected by the
interframe encoder, which causes special codes to be inserted into the stream to
update the colormap.

Note – Details about the makeup of a Cell bytestream can be found in
Appendix D, “Cell and CellB Bytestream Definitions.”

Choosing a Colormap

The compressor chooses which colormap to use in encoding the current image
in one of three ways. If Adaptive Colormap Selection (ACS) is enabled and a
new colormap has not been associated with the compressor since the last call to
xil_compress() , the compressor uses a colormap adapted to the current
frame. When ACS is disabled, the compressor will use the colormap associated
with the COMPRESSOR_COLORMAP attribute, if that attribute has been set. If
ACS is disabled and the COMPRESSOR_COLORMAP attribute has not been set,
the compressor calls xil_choose_colormap() to generate an optimal

Cell Codec 275

14

colormap for the image. When this optimal colormap is created, it is associated
with the COMPRESSOR_COLORMAP attribute and will be used in encoding
subsequent frames.

Cell Compression Ratios

The basic Cell compression technique achieves a compression ratio of 2 bits per
pixel. Additional encodings further reduce the data required per pixel. First,
the compressor can use code words to specify a run of constant intensity cells.
This type of coding is very effective in synthetic imagery, often leading to rates
of less than 1 bit per pixel. The decompressor can also optimize the
decompression of these constant colored cells by using rectangle-fill hardware.
A second coding technique involves the introduction of frame-to-frame
coherence (interframe coding), by instructing the decoder to skip over cells that
are identical to those in the previous frame. These skip codes are implemented
by simply updating the current writing position to skip over the number of
cells specified.

The combination of the basic Cell encoding with run codes and skip codes can
lead to compression ratios of about half a bit per pixel.

Image Types

The Cell compressor is designed to work with 3-band RGB and YCbCr images.
The width and height of these images must be divisible by four. The Cell
decompressor always produces RGB images.

Creating a Cell CIS
Before you can use the Cell codec to compress images or decompress a Cell
bytestream, you must create a Cell CIS. You do this by passing the compressor
name Cell to the function xil_cis_create() . See the code fragment below.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “CellB”);

276 XIL Programmer’s Guide—August 1994

14

Cell Codec Attributes
As discussed in the section “General CIS Attributes” on page 257, there is a
class of attributes that can be set for any CIS. There is also a set of attributes
that are valid only for CISs attached to a Cell codec. You set
compressor-specific attributes using the function
xil_cis_set_attribute() , and you read compressor-specific attributes
using the function xil_cis_get_attribute() .

Note – Some attributes can only be read, others can only be set, and others can
be both read and set. The example, or examples, that conclude the discussion
of each attribute indicate how the attribute can be used.

The Cell attributes can be broadly grouped into those that affect compression
and those that affect decompression. The attributes are discussed under these
headings.

Compression Attributes

Setting any of the following attributes affects how the Cell compressor
compresses images.

BITS_PER_SECOND

The BITS_PER_SECOND attribute controls the size of the bytestream the Cell
compressor produces. You specify the maximum number of bits the
compressor can use to encode one second’s worth of video, and the compressor
guarantees that it will meet this bit-rate requirement on a frame-group basis
(where a frame group is a key frame and all the ensuing frames up to the next
key frame). That is, if every sixth frame is a key frame and your video was
captured at 30 frames per second, the compressor will encode each frame
group in a maximum of BITS_PER_SECOND divided by 5.

Note – You use the attribute COMPRESSOR_FRAME_RATE to indicate the rate at
which your images were captured.

Cell Codec 277

14

Setting BITS_PER_SECOND to 0, the default value, disables bit-rate control. In
addition, if you set BITS_PER_SECOND to a rate lower than the compressor can
achieve, an error is generated, and bit-rate control is disabled.

The code below shows the bit-rate being set to 1152000 bits per second. This is
the rate necessary to encode 30 320-by-240 frames at half a bit per pixel.

This code reads the value of the BITS_PER_SECOND attribute.

COLORMAP_ADAPTION

The value of the COLORMAP_ADAPTION attribute determines whether the Cell
compressor’s Adaptive Colormap Selection (ACS) feature is enabled. When
enabled, ACS generates a colormap for the next image to be compressed by
looking at the colors in the current image. Thus, each frame in a movie may
have its own colormap.

The possible values for this attribute are TRUE and FALSE, which are values of
type Xil_boolean . A setting of TRUE, the default value, enables ACS, and
FALSE disables it.

The code below shows the COLORMAP_ADAPTION attribute being set to FALSE.

XilCis cis;
int bit_rate;

bit_rate = 1152000;
xil_cis_set_attribute(cis, “BITS_PER_SECOND”,
 (void *)bit_rate);

XilCis cis;
int bit_rate;

xil_cis_get_attribute(cis, “BITS_PER_SECOND”,
 (void **)&bit_rate);

XilCis cis;

xil_cis_set_attribute(cis, “COLORMAP_ADAPTION”, (void *)FALSE);

278 XIL Programmer’s Guide—August 1994

14

This code reads the value of the attribute.

COMPRESSOR_COLORMAP

The COMPRESSOR_COLORMAP attribute specifies the colormap the Cell
compressor should use as it encodes images. You set this attribute by passing
to xil_cis_set_attribute() an XIL lookup table (a data structure of type
XilLookup) that contains 8-bit indexes on the input side and 24-bit RGB
values on the output side. The default value of this attribute is NULL.

The code below shows the attribute being set.

COMPRESSOR_FRAME_RATE

Use the COMPRESSOR_FRAME_RATE attribute to let the compressor know the
rate at which the images to be compressed were captured. Express this rate in
microseconds per frame (a microsecond is one millionth of a second). The
default value is 33333, which indicates that the frames were captured at 30
frames per second.

The frame rate you supply, or the default frame rate, is encoded in the Cell
bytestream. When you play your movie back, you can read the value of the
DECOMPRESSOR_FRAME_RATE attribute to determine the rate at which frames
should be decompressed.

Xil_boolean acs_enabled;

xil_cis_get_attribute(cis, “COLORMAP_ADAPTION”,
 (void **)&acs_enabled);

XilCis cis;
XilLookup colormap;

xil_cis_set_attribute(cis, “COMPRESSOR_COLORMAP”,
 (void *)colormap);

Cell Codec 279

14

The code fragment below shows the frame rate being set to 66666
microseconds per frame (15 frames per second).

COMPRESSOR_MAX_CMAP_SIZE

The COMPRESSOR_MAX_CMAP_SIZE attribute is an integer that defines the
maximum number of entries in the colormap, or colormaps, encoded in the
Cell bytestream. If Adaptive Colormap Selection is enabled, this attribute
limits the size of the colormaps produced by the compressor. If ACS is
disabled, the attribute limits the size of the colormap you can pass to the
compressor using the COMPRESSOR_COLORMAP attribute. If you pass a
colormap with more than the maximum number of entries, the colormap will
be truncated.

When you first create a Cell CIS, the COMPRESSOR_MAX_CMAP_SIZE attribute
is set to -1, which indicates that the attribute is settable at this point. To set the
attribute to a value other than 256, you must set it prior to your application’s
first call to xil_compress() . If you have not set the attribute by that point, it
defaults to 256. Also, note that the colormap size can only be set once during
the life of a CIS.

Note – When decompressing a Cell bytestream, you can determine the
maximum colormap size by reading the CIS attribute
DECOMPRESSOR_MAX_CMAP_SIZE. Knowing this maximum will enable you to
allocate the appropriate number of X colorcells to hold the colormap.

XilCis cis;
Xil_unsigned32 microseconds;

microseconds = 66666;
xil_cis_set_attribute(cis, “COMPRESSOR_FRAME_RATE”,
 (void *)microseconds);

280 XIL Programmer’s Guide—August 1994

14

The following code shows the COMPRESSOR_MAX_CMAP_SIZE attribute being
set to 240.

This code reads the value of the attribute.

COMPRESSOR_USER_DATA

This attribute writes user data to a Cell bytestream. This user data can be
anything you choose as long as it does not exceed 8 Kbytes. It can be an XGL
rendering or an executable. The attribute’s main purpose, however, is to enable
you to store audio data in the bytestream.

Before setting this attribute, you must assign values to the members of a
structure of type XilCellUserData . The definition of this structure is shown
below.

The member data is a pointer to the user data, and the member length
specifies the length of the data in bytes.

XilCis cis;
int cmap_size = 240;

xil_cis_set_attribute(cis, “COMPRESSOR_MAX_CMAP_SIZE”,
 (void *)cmap_size);

XilCis cis;
int cmap_size;

xil_cis_get_attribute(cis, “COMPRESSOR_MAX_CMAP_SIZE”,
 (void **)&cmap_size);

typedef struct {
 Xil_unsigned8 *data;
 Xil_unsigned32 length;
} XilCellUserData;

Cell Codec 281

14

Once you’ve set up this structure, you can set the attribute using code similar
to this fragment.

After you set the attribute, the next time your application calls
xil_compress() , the Cell compressor:

1. Writes the user data to the bytestream just before the compressed image
data.

2. Clears the setting of the attribute.

Thus, each time you set COMPRESSOR_USER_DATA, the compressor writes data
to the bytestream only once.

To read user data from a Cell bytestream, you must read the attribute
DECOMPRESSOR_USER_DATA.

ENCODING_TYPE

The ENCODING_TYPE attribute indicates whether a Cell compressor will use
Block Truncation Coding or the Dither method. Block Truncation Coding
chooses a 4-by-4 binary pixel mask and two colors (a foreground and a
background color), while attempting to maintain the mean and variance of the
luminance within the block. The Dither technique determines the pair of colors
from the colormap that produce the least error when dithered over the 4-by-4
region. The BTC method is fastest, and usually produces good results; the
Dither method is slower, but is less likely to produce noticeable contours in
regions of slow color variation.

The value of the attribute can be either of the enumeration constants shown in
the definition below.

XilCis cis;
XilCellUserData user_data;

xil_cis_set_attribute(cis, “COMPRESSOR_USER_DATA”,
 (void *)&user_data);

typedef enum {
 BTC, DITHER
} XilCellEncodingType;

282 XIL Programmer’s Guide—August 1994

14

The default value is BTC.

The call below shows the ENCODING_TYPE attribute being set to DITHER.

This code shows the attribute being read.

KEYFRAME_INTERVAL

A key frame in a Cell bytestream is one that contains a bytestream information
header and a colormap and uses no interframe escape codes. The
KEYFRAME_INTERVAL attribute is an integer (type int) that specifies how
frequently the compressor should encode key frames in the bytestream. That is,
if the value of the attribute is 6, every sixth frame will be a key frame. The
default value of the attribute is 6.

If you set the KEYFRAME_INTERVAL attribute to 0, no key frames are encoded
in the resulting Cell bytestream. In this case, bit-rate control is disabled. (For
further information about bit-rate control, see the section
“BITS_PER_SECOND” on page 276.)

The code below shows KEYFRAME_INTERVAL being set to 10.

XilCis cis;

xil_cis_set_attribute(cis, “ENCODING_TYPE”, (void *)DITHER);

XilCis cis;
XilCellEncodingType encode_type;

xil_cis_get_attribute(cis, “ENCODING_TYPE”,
 (void **)&encode_type);

XilCis cis;
int key_frame = 10;

xil_cis_set_attribute(cis, “KEYFRAME_INTERVAL”,
 (void *)key_frame);

Cell Codec 283

14

This code reads the value of the KEYFRAME_INTERVAL attribute.

TEMPORAL_FILTERING

This attribute turns on or off a form of temporal filtering. When this filtering is
turned on, the compressor does not encode a new value for a pixel in frame n
if the value of that pixel is within a certain tolerance of the same pixel in frame
n - 1. Having the filter on generally reduces noise in an image sequence and
also significantly reduces the size of the bytestream the compressor produces.
The primary reason to turn the filter off would be to eliminate ghosting
artifacts.

By default, the attribute is set to TRUE.

The code below shows TEMPORAL_FILTERING being set to FALSE.

This code reads the value of the TEMPORAL_FILTERING attribute.

XilCis cis;
int key_frame;

xil_cis_get_attribute(cis, “KEYFRAME_INTERVAL”,
 (void **)&key_frame);

XilCis cis;

xil_cis_set_attribute(cis, “TEMPORAL_FILTERING”, (void *)FALSE);

XilCis cis;
Xil_boolean status;

xil_cis_get_attribute(cis, “TEMPORAL_FILTERING”,
 (void **)&status);

284 XIL Programmer’s Guide—August 1994

14

Decompression Attributes

Setting any of the following attributes affects how the Cell compressor
decompresses images.

DECOMPRESSOR_COLORMAP

When playing a Cell movie by decompressing frames and then using
xil_nearest_color() to convert the resulting RGB images to 8-bit images,
you must set this attribute if you want your playback code to be accelerated.
The attribute specifies the XIL lookup table that xil_nearest_color()
should use when doing its 24-bit to 8-bit conversion. Of course, your
application also needs to write the values stored in this lookup table to the X
colormap your application is using.

As the Cell decompressor decompresses frames, it may change the values in
the lookup table. (By default, the lookup table is read-only, but you can make it
writable by setting the attribute RDWR_INDICES, which is discussed in the
section “RDWR_INDICES” on page 287.) Therefore, your application may need
to call the function xil_lookup_get_version() to check the version
number of the lookup table after each call to xil_decompress() . A change in
version number means that the values in the lookup table have changed. If the
values have changed, your application must ensure that corresponding
changes are made in its X colormap before displaying the most recently
decompressed frame.

Note – The section “Playing Cell Movies” on page 241 discusses an example
program that sets this attribute and checks the version number of the lookup
table.

You can also read the value of the DECOMPRESSOR_COLORMAP attribute. If it
has been set, you will get back a handle to an XIL lookup table (the
decompressor’s colormap). If it has not been set, xil_cis_get_attribute()
will return NULL.

Cell Codec 285

14

The code fragment below shows DECOMPRESSOR_COLORMAP being set.

This code reads the value of the attribute.

DECOMPRESSOR_FRAME_RATE

If the COMPRESSOR_FRAME_RATE attribute was set when the Cell compressor
encoded your movie, you can use the DECOMPRESSOR_FRAME_RATE attribute
to determine the rate, in microseconds per frame, at which the frames in the
movie were captured. The attribute may contain different values at different
points in the Cell bytestream.

If the COMPRESSOR_FRAME_RATE attribute was not set when the Cell
compressor encoded your movie, the DECOMPRESSOR_FRAME_RATE attribute
will contain the default value 33333 (30 frames per second).

The code fragment below shows the DECOMPRESSOR_FRAME_RATE attribute
being read.

XilCis cis;
XilLookup colormap;

xil_cis_set_attribute(cis, “DECOMPRESSOR_COLORMAP”,
 (void *)colormap);

XilCis cis;
XilLookup colormap;

xil_cis_get_attribute(cis, “DECOMPRESSOR_COLORMAP”,
 (void **)&colormap);

XilCis cis;
Xil_unsigned32 frame_rate;

xil_cis_get_attribute(cis, “DECOMPRESSOR_FRAME_RATE”,
 (void **)&frame_rate);

286 XIL Programmer’s Guide—August 1994

14

DECOMPRESSOR_MAX_CMAP_SIZE

This is a read-only attribute that indicates the size of the colormap you should
use when playing back your Cell movie. It’s important to use the smallest
colormap possible because your application must create an X colormap that is
the same size as the decompressor’s XIL colormap. If the X colormap is too
large, colormap flashing may occur when it is installed.

Information about a movie’s maximum colormap size is encoded in the Cell
bytestream that represents the movie. Therefore, it an error to read this
attribute of an empty CIS.

The example code below shows the DECOMPRESSOR_MAX_CMAP_SIZE
attribute being read.

DECOMPRESSOR_USER_DATA

This attribute holds a pointer to any user data that was encoded with the most
recently decompressed image. To get this pointer, you might use code similar
to this.

If user data was encoded with the last image that was decompressed,
user_data.data will be a pointer to that data, and user_data.length will
be the length of the data in bytes. If no user data was encoded with that image,
user_data.data will be NULL, and user_data.length will be 0.

Any data pointer you get by using this attribute is only valid until the next call
to xil_decompress() .

XilCis cis;
int cmapsize;

xil_cis_get_attribute(cis, “DECOMPRESSOR_MAX_CMAP_SIZE”,
 (void **)&cmapsize);

XilCis cis;
XilCellUserData user_data;

xil_cis_get_attribute(cis, “DECOMPRESSOR_USER_DATA”,
 (void **)&user_data);

Cell Codec 287

14

RDWR_INDICES

If your Cell movie-playback application uses the function
xil_nearest_color() to convert 24-bit RGB images to 8-bit pseudocolor
images, xil_nearest_color() uses the decompressor’s colormap (XIL
lookup table) to perform this conversion. For your application to display
images using the best colors possible, the Cell decompressor must be able to
alter the color values in this lookup table as the colors in the frames it is
decompressing change. By default, however, the colormap is read only.

The RDWR_INDICES attribute enables you to make the colormap writable for a
subset of its entries. Before you actually set the attribute, you must set up a
structure of type XilIndexList . The definition of this structure is shown
below.

You set the ncolors member of the structure to indicate how many of the
elements in the colormap are being made writable. The array pixels lists the
pixel values in the colormap whose RGB values the decompressor may change.

Note – If you allow the decompressor to alter the contents of its colormap, you
must check the version number of the colormap after each call to
xil_decompress() . You check this version number using the function
xil_lookup_get_version() . If the version number has changed—that is,
the contents of the colormap have changed—you must make corresponding
changes in your application’s X colormap before displaying the most recently
decompressed frame.

Calls to RDWR_INDICES are not cumulative. Only the RGB values associated
with the pixel values specified in your most recent setting of the attribute are
writable.

typedef struct {
 Xil_unsigned32 *pixels;
 Xil_unsigned16 ncolors;
} XilIndexList;

288 XIL Programmer’s Guide—August 1994

14

The code fragment below shows the RDWR_INDICES attribute being set.

To see how the structure indexes might be filled out, see the function
xilcis_color.c in the directory
$XILHOME/examples/movie_player_example .

Cell Molecules
The XIL library includes a series of molecules that accelerate the playback of
Cell movies. These molecules are optimized routines that perform the jobs of
two or more functions from the XIL API. You do not call such an optimized
routine directly; rather, the library calls a molecule when your program calls a
predefined sequence of XIL functions, sometimes with specific arguments.
(These sequences of functions are discussed later in this section.)

For example, if your program calls xil_decompress() to decode an image
stored in a Cell CIS and then calls xil_nearest_color() to convert the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the conversion in an optimized way.

Note – This replacement of two or more atomic functions by a molecule is
made possible by the XIL library’s deferred-execution scheme, which is
discussed in Chapter 21, “Acceleration in XIL Programs.” This chapter also
contains a more detailed definition of molecules than the one presented here
and explains how to determine whether a molecule you want to call is actually
being executed.

The library’s Cell-decompression molecules enable you to accelerate the
playback of a Cell bytestream on

• A one-bit destination image
• A display image associated with a GX frame buffer (available only on local

GX frame buffer screens)
• An 8-bit destination image other than a GX display image

XilCis cis;
XilIndexList indexes;

xil_cis_set_attribute(cis, “RDWR_INDICES”, (void *)&indexes);

Cell Codec 289

14

The procedures you follow to call these molecules are documented later in this
chapter, in the section “Calling Cell Molecules” on page 290. Before moving on
to this subject, however, the chapter lists some general rules you must follow
to execute any decompression molecule.

Rules for Calling Decompression Molecules

This section goes over the global rules for calling decompression molecules.

• As mentioned earlier, you must call a predefined sequence of XIL functions,
sometimes with specific arguments. This sequence will be replaced by the
molecule.

Note - The calls to the functions in the sequence do not necessarily have to
be consecutive statements in your program. For instance, notice how the
example shown in “Other 8-Bit Destination Images,” which begins on
page 294, calls one function in the sequence, xil_decompress() , and then
immediately afterward calls an XIL function that is not part of the sequence
and checks that function’s return value. Depending on this return value, the
example may then call a routine that loads an X colormap before it gets
around to calling the second function in the sequence. The key here is that
between calls to the functions in the sequence, the program cannot call any
XIL functions whose execution the library will defer. For more information
about the XIL library’s deferred-execution scheme, read the section “What Is
Deferred Execution?” on page 395.

• The images being decompressed and the molecule’s destination image must
have the same width and height, except when the molecule performs a
scaling operation. In that case, the destination image must have the same
dimensions as the scaled version of the source image.

• The destination image must not have a region of interest. This image will
not have a region of interest unless you have explicitly set its region-of-
interest attribute.

• The destination image must have an origin of 0.0, 0.0. This is the destination
image’s default origin.

• If a molecule uses an intermediate image, it too must have an origin of 0.0,
0.0 and no region of interest.

290 XIL Programmer’s Guide—August 1994

14

If any of these conditions is not met, the XIL functions in your playback code
will be executed individually, and will not be replaced by a molecule. This will
have a significant impact on the speed at which your movie is played.

Note – There are certain decompression molecules to which some of these
global rules do not apply. These exceptions will be noted as they arise.

Calling Cell Molecules

Cell decompression molecules have been implemented for applications that
play back movies using 1- and 8-bit destination images (usually display
images). These molecules and the series of XIL functions you must call for
these molecules to be executed are discussed below.

One-Bit Destination Image

One molecule has been defined for playing back Cell movies using a 1-bit
destination image. This molecule is appropriate for playing movies on
monochrome displays.

The molecule performs several tasks:

• Decompresses an image

• Converts the RGB image to a 1-band image by extracting the luminance of
the RGB image

• Rescales the values in the 8-bit grayscale image so that they fall in the range
0 to 255

• Optionally zooms the 8-bit image by a factor of 2 in both the x and y
dimensions

• Performs an ordered dither on the 8-bit image to produce a 1-bit image

Cell Codec 291

14

For this molecule to be called, your application must include code similar to
that shown below.

XilColorspace rgblinear, ylinear;
float scale[1], offset[1];
XilLookup colorcube;
int mult[1] = {-1};
unsigned short dims[1] = 2;
XilDitherMask dmask;

rgblinear = xil_colorspace_get_by_name(state, “rgblinear”);
ylinear = xil_colorspace_get_by_name(state, “ylinear”);
xil_set_colorspace(imageRGB_24, rgblinear);
xil_set_colorspace(imageY_8, ylinear);
scale[0] = 255.0 / (235.0 - 16.0);
offset[0] = -16.0 * scale[0];

/* Basically, the colorcube to be used for the ordered dither
 must be defined as shown here. The molecule will still execute
 if mult[0] is 1 instead of -1; however, this change will cause
 images to be displayed in reverse video. */
colorcube = xil_colorcube_create(state, XIL_BIT, XIL_BYTE, 1, 0,
 mult, dims);

/* The dither mask to be used in the ordered dither must be an
 8-by-8 mask. You can change the values in the mask if you
 want to. */
dmask = xil_dithermask_get_by_name(state, “dm881”);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageRGB_24);
xil_color_convert(imageRGB_24, imageY_8);
xil_rescale(imageY_8, imageY_8, scale, offset);
if (ZOOM) {
 xil_scale(imageY_8, zoom_imageY_8, “nearest” , 2.0 , 2.0);
 xil_ordered_dither(zoom_imageY_8, zoom_image_1, colorcube,
 dmask);
}
else
 xil_ordered_dither(imageY_8, image_1, colorcube, dmask);
/* MOLECULE ENDS HERE */

292 XIL Programmer’s Guide—August 1994

14

Note – Arguments shown in boldface must be typed as shown for the molecule
to execute correctly.

SPARC Eight-Bit Display Image (GX)

Another molecule has been defined specifically for playing back Cell movies
on local GX frame-buffer screens. This molecule performs these tasks:

• Decompresses an image

• Converts the RGB image to an 8-bit image by finding the closest match for
the RGB values in the source image in a lookup table

• Optionally zooms the 8-bit image by a factor of 2 in both the x and y
dimensions

Note – Several of the molecule rules presented in the section “Rules for Calling
Decompression Molecules” on page 289 do not apply to the version of this
molecule that does not perform the zooming operation. If no zooming is
requested, the destination image for the molecule does not need to be the same
size as the images stored in the Cell CIS. In addition, the destination image can
have a region of interest and an origin other than 0.0, 0.0.

Cell Codec 293

14

For this molecule to be called, your application must use the code shown
below.

XilLookup cmap;
XilIndexList indexlist;

/* You must set this attribute, or the molecule will not
 execute. cmap is the lookup table that will be passed
 to xil_nearest_color(). */
xil_cis_set_attribute(cis, “DECOMPRESSOR_COLORMAP”,
 (void *)cmap);

/* To get the best results, you should set this attribute
 so that the decompressor can change any of the entries in
 cmap. */
xil_cis_set_attribute(cis, “RDWR_INDICES”, (void *)&indexlist);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageRGB_24);

/* This checking of the lookup table’s version number is
 necessary, but is not part of the molecule */
if (lu_version != xil_lookup_get_version(cmap)) {
 /* Include code to write the appropriate values from cmap to
 the application’s X colormap */
 ...
 lu_version = xil_lookup_get_version(cmap);
}

if (ZOOM) {
 xil_nearest_color(imageRGB_24, image_8, cmap);
 xil_scale(image_8, zoom_image_GX, “nearest” , 2.0 , 2.0);
}
else
 xil_nearest_color(imageRGB_24, image_GX, cmap);
/* MOLECULE ENDS HERE */

294 XIL Programmer’s Guide—August 1994

14

Other 8-Bit Destination Images

If you want to play back your Cell movie using an 8-bit destination image
other than a local GX display image, you can use one of three molecules. The
first two molecules use a nearest-color strategy to convert images from 24 bits
to 8 bits, and the third molecule uses an ordered dither. All three molecules
require that you set the CIS attribute DECOMPRESSOR_COLORMAP before you
execute them.

Nearest-Color Approach
Functionally the first molecule in this class is identical to the basic molecule
(no zoom) designed for playing movies on a local GX frame buffer. (See the
section “Eight-Bit Display Image (GX)” on page 292.) However, it is not as fast
as the GX version, so displaying a movie on an indexed-color frame buffer
other than the GX will not be quite as fast as on a GX.

For this molecule to execute, your application must use the code shown in the
section “Eight-Bit Display Image (GX).” In addition:

• The destination image must be stored on a word boundary. It will be stored
on such a boundary unless it is a child image created with an x offset from
its parent that is not a multiple of four.

• The pixel stride in the destination image must be one. This will always be
true unless the destination image is a single-band child of a multiband
parent.

The second molecule in this class rapidly decompresses Cell images and
displays them in a small window. It performs the following tasks:

• Decompresses an image

• Converts the RGB image to an 8-bit image by finding the closest match for
the RGB values in the source image in a lookup table

• Scales the image down using x and y scale factors of 1 / (4 * n), where n is
a positive integer

The destination image must be at least 4-by-4 pixels in size.

Cell Codec 295

14

For this molecule to be called, your application must use code similar to that
shown below.

Ordered-Dither Approach
This molecule performs the following tasks:

• Decompresses an image

• Optionally zooms the RGB image by a factor of 2 in the x and y dimensions

• Dithers the 3-band image to a 1-band image using a colorcube

For the molecule to execute, the destination image must be word aligned and
must have a pixel stride of one.

/* MOLECULE BEGINS HERE */
xil_decompress(cis, imageRGB_24);
if (lu_version != xil_lookup_get_version(cmap)) {
 /* Include code to write the appropriate values from cmap to
 the application’s X colormap */
 ...
 lu_version = xil_lookup_get_version(cmap);
}
xil_nearest_color(imageRGB_24, image_8, cmap);
xil_scale(image_8, small_image_8, “nearest” , .25, .25);
/* MOLECULE ENDS HERE */

296 XIL Programmer’s Guide—August 1994

14

To call this molecule, your application must use the code similar to that shown
below.

/* Create a colorcube and dither mask. All legal XIL
 colorcubes are supported, including those that have
 decreasing ramps in one or more bands. The dither mask
 must be a 4-by-4 mask, but there are no restrictions
 regarding its contents. */
...

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageRGB_24);
if (ZOOM) {
 xil_scale(imageRGB_24, zoom_imageRGB_24, “nearest” , 2.0 ,
 2.0);
 xil_ordered_dither(zoom_imageRGB_24, zoom_image_8, colorcube,
 dithermask);
}
else
 xil_ordered_dither(imageRGB_24, image_8, colorcube,
 dithermask);
/* MOLECULE ENDS HERE */

297

CellB Codec 15

The Cell codec discussed in the preceding chapter is useful primarily in
authoring applications. Its advantages are its fast decoding and the high
quality of the images it produces, particularly on indexed-color frame buffers.
The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features a greater balance
between the time spent compressing and decompressing images than the Cell
codec and employs a fixed colormap. The CellB codec’s strengths include

• Software compression at interactive rates
• Very fast decoding and display, especially on indexed-color frame buffers
• Low rates of CPU use
• Good quality output

The remainder of this chapter is divided into four sections. First, the chapter
explains how the CellB compressor/decompressor works. Second, it explains
briefly how to create a CellB CIS. Third, it discusses the CIS attributes that
apply specifically to the CellB codec (as opposed to the general CIS attributes
covered in the section “General CIS Attributes” on page 257.) Fourth, the
chapter introduces the subject of accelerating the playback of CellB
bytestreams. For further information on this subject, see Chapter 21,
“Acceleration in XIL Programs.”

298 XIL Programmer’s Guide—August 1994

15

How the Codec Works
The CellB compressor works on YCbCr images that conform to the guidelines
set forth in CCIR Recommendation 601. The compressor performs intraframe
compression by representing 4-by-4 blocks of pixels using cell codes. It
performs interframe encoding using skip codes.

Cell Codes

The images you compress using the CellB compressor must have a width and
height that are multiples of four because the compressor works with 4-by-4
cells of pixels. For each frame, the compressor begins with the cell in the
upper-left corner and then proceeds from left to right. The compressor
processes rows of cells in this way, moving from the top of the frame to the
bottom.

When the compressor encodes a cell without reference to a cell in a preceding
frame, it uses a four-byte cell code to represent the content of that cell. This cell
code specifies two colors and includes a 16-bit bit mask that indicates which of
the two colors should be used to represent each pixel in the cell. See
Figure 15-1.

Figure 15-1 Cell Code

The two colors are encoded as follows. The compressor calculates the average
Cb and Cr values for the 4-by-4 block. Then, it calculates an index into a table of
256 vectors in which each vector looks like the one shown in Figure 15-2.

16-bit mask

CB/CR Y/Y

Index into table of chrominance values

Index into table of luminance values

CellB Codec 299

15

Figure 15-2 Vectors in Chrominance Table

The values in the vector pointed to by the index are the pair of values in the
table nearest to the mean Cb and Cr values for the cell. The compressor writes
the index to this vector to the third byte of the cell code.

The compressor also analyzes the luminance values in the cell. First, it
calculates the mean luminance for the cell. Second, it partitions the 16
luminance values in the cell into those values that fall below the mean and
those that fall above the mean. Then, it calculates the average luminance in the
two partitions.

After arriving at the average luminance values for the two partitions, the
compressor calculates an index into a table of vectors of the form shown in
Figure 15-3.

Figure 15-3 Vectors in Luminance Table

The values in the vector pointed to by the index are the pair of values in the
table closest to the average luminance values for the two partitions. The
compressor then writes the index to this vector to the fourth byte of the cell
code.

The first color for a cell consists of the first byte of the cell’s luminance vector
and the chrominance values in the cell’s chrominance vector. The second color
consists of the second byte of the cell’s luminance vector and the same
chrominance values.

CB value CR value

Byte 0 Byte 1

Y0 value Y1 value

Byte 0 Byte 1

300 XIL Programmer’s Guide—August 1994

15

The bit mask shown in Figure 15-1 is filled out in this way. Each bit in the mask
is associated with a pixel in the cell. If the luminance value for a pixel is below
the mean luminance value for the cell, its bit is set to 0. This pixel will be
represented by the first color when the cell is decompressed. If a pixel’s
luminance value is above the mean, its bit is set to 1.

Because each cell code represents the values of 16 pixels using 32 bits,
compression using cell codes alone leads to a compression rate of 2 bits per
pixel. To better this compression rate, the CellB compressor uses skip codes to
achieve interframe compression.

Skip Codes

The CellB compressor encodes the first image in a sequence using cell codes
exclusively. But after the first image, the compressor begins looking for cells in
the current image that match—within a certain tolerance—the corresponding
cells in the preceding image. Anywhere from 1 to 32 consecutive cells that
match their counterparts in the previous image can be represented by a single
1-byte skip code.

The only restriction on the use of skip codes is that the cell at a particular set of
coordinates can not be skipped indefinitely. There are a couple of reasons for
this restriction. First, a user might join a videoconference that is already in
progress. Cells represented by skip codes in the first image he receives will not
be displayed correctly, and this problem must be corrected within a certain
period of time. Similarly, if the CellB bytestream is being sent over an
unreliable transport and a packet of data is lost, the period of the resulting
error should be limited.

The policy concerning skip codes is that a particular cell must be updated at
least every n frames, where n is an implementation-specific maximum. The
exact value used is selected randomly for each cell each time that cell is
encoded using a cell code. A random number is used to prevent the periodic
bit-rate increase that might result were each cell to be updated at a fixed
interval.

In a typical videoconference, about 80 percent of the cells in the average frame
are represented by skip codes. This ratio leads to an average compression rate
of about .8 bits per pixel.

CellB Codec 301

15

Note – Details about the makeup of a CellB bytestream can be found in
Appendix D, “Cell and CellB Bytestream Definitions.”

Creating a CellB CIS
Before you can use the CellB codec to compress images or decompress a CellB
bytestream, you must create a CellB CIS. You do this by passing the
compressor name CellB to the function xil_cis_create() . See the code
fragment below.

CellB Decompression Attributes
As discussed in the section “General CIS Attributes” on page 219, there is a
class of attributes that can be set for any CIS. There is also a set of attributes
that are valid only for a CIS attached to a CellB codec. You set these
codec-specific attributes using the function xil_cis_set_attribute() and
read them using xil_cis_get_attribute() .

WIDTH and HEIGHT

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the values of these attributes to
the width and height in pixels of the images to be decompressed. If you do not
set these attributes, their values will be 0, and an error will occur if you:

• Create an XIL image into which to decompress the compressed images in
the CIS by calling the functions xil_cis_get_output_type() and
xil_create_from_type()

• Decompress an image stored in the CIS by calling xil_decompress()

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “CellB”);

302 XIL Programmer’s Guide—August 1994

15

The legal values for both attributes are integers in the range 4 to 32764 (short
int). The code fragment below shows the WIDTH attribute being set to 320
and the HEIGHT attribute being set to 240.

IGNORE_HISTORY

The IGNORE_HISTORY attribute affects your ability to seek forward and
backward in a CellB bytestream. These seeks are somewhat problematic in
CellB because the codec relies so heavily on interframe encoding and does not
require periodic key frames.

By default, IGNORE_HISTORY is set to FALSE. In this case, backward seeks are
illegal because no past frame contains all the information necessary to
reproduce an entire image. Forward seeks are possible, but to ensure that it can
decode the frame you seek to properly, the decoder must actually decode all
the frames you “skip.”

If you set IGNORE_HISTORY to TRUE, you’re telling the decoder that it’s
acceptable if, after a seek, it does not produce a correct image. You’re willing to
let it decode only the cells described with cell codes in the frame you seek to,
and to fill in bad cells as it decodes subsequent frames. In this case, backward
seeks are legal, and forward seeks are faster than they would be otherwise. The
drawback to setting IGNORE_HISTORY to TRUE is that you may have to decode
a number of frames after a seek before you get a properly reconstructed
picture. (The exact number of frames is implementation dependent.)

The code below shows IGNORE_HISTORY being set to TRUE.

XilCis cis;
short width = 320;
short height = 240;

xil_cis_set_attribute(cis, “WIDTH”, (void *)width);
xil_cis_set_attribute(cis, “HEIGHT”, (void *)height);

XilCis cis;

xil_cis_set_attribute(cis, “IGNORE_HISTORY”, (void *)TRUE);

CellB Codec 303

15

You can also read the value of this attribute using code similar to that shown
below.

CellB Molecules
The XIL library includes a series of molecules that accelerate the playback of
CellB bytestreams. These molecules are optimized routines that perform the
jobs of two or more functions from the XIL API. You do not call such an
optimized routine directly; rather, the library calls a molecule when your
program calls a predefined sequence of XIL functions, sometimes with specific
arguments.

For example, if your program calls xil_decompress() to decode an image
stored in a CellB CIS and then calls xil_ordered_dither() to convert the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the dithering in an optimized way.

For information about the CellB molecules that are available and information
about how to call those molecules, see the section “XIL Molecules” on
page 398.

XilCis cis;
Xil_boolean history_status;

xil_cis_get_attribute(cis, “IGNORE_HISTORY”,
(void **)&history_status);

304 XIL Programmer’s Guide—August 1994

15

305

JPEG Baseline Sequential Codec 16

The JPEG baseline sequential coder-decoder is one of the digital-image codecs
that has been specified by the Joint Photographic Experts Group, a joint ISO
and CCITT technical committee. The JPEG lossless compressor discussed in
Chapter 17, “JPEG Lossless Codec,” is another of these codecs. Taken together,
the JPEG codecs are meant to provide a standard means of compressing still
continuous-tone (grayscale and color) images.

The JPEG standard was originally developed for use in areas such as desktop
publishing, graphic arts, medical imaging, and document imaging, where the
archiving of still images is important. However, the introduction of
high-performance hardware capable of coding and decoding JPEG images in
real-time has enabled the development of full-motion video applications based
on JPEG.

This chapter is divided into four sections. The first section explains how the
compressor works and the type of applications it was designed for. The second
explains briefly how to create a JPEG baseline sequential CIS. The third
discusses CIS attributes that apply specifically to the baseline sequential codec
(as opposed to the general CIS attributes covered in the section “General CIS
Attributes” on page 257). The fourth introduces the subject of accelerating the
playback of JPEG bitstreams. For further information on this subject, see
Chapter 21, “Acceleration in XIL Programs.”

306 XIL Programmer’s Guide—August 1994

16

How the JPEG Baseline Sequential Codec Works
The JPEG baseline sequential compressor is one of the DCT-based
compressors, which also include the MPEG-1 and H.261 compressors.
Figure 16-1 shows the basic steps the compressor uses to compress an image.

Figure 16-1 JPEG Baseline Sequential Compressor

As the figure indicates, the input to the encoder is an 8-by-8 block of samples
from the image being compressed. The compressor encodes each block of data
in an image by:

• Performing a Discrete Cosine Transform (DCT) on the 8-by-8 block of data
• Quantizing the results of the DCT
• Entropy coding the results of the quantization step

Each of these steps is considered in more detail in the sections below.

DCT Quantizer Entropy coder

0 1 0 0 0 0 0 0 01 1 1 1 1 1 1

8-by-8 block
of data from
input image

Encoder

Output bitstream

JPEG Baseline Sequential Codec 307

16

Discrete Cosine Transform

The Discrete Cosine Transform is a mathematical operation that takes a block
of image samples as its input and converts the information in that input from
the spatial domain to the frequency domain. For example, in JPEG, the input to
the DCT is an 8-by-8 matrix whose values represent brightness levels at
particular x, y coordinates, and the output is an 8-by-8 matrix whose values
represent relative amounts of the 64 spatial frequencies that make up the input
data’s spectrum. In the output matrix, information about the lowest
frequencies is stored in the upper-left corner, and information about the
highest frequencies is stored in the lower-right corner. See Figure 16-2.

Figure 16-2 Output of the Discrete Cosine Transform

Low frequencies

High frequencies

Representation of
the input data in the
frequency domain

308 XIL Programmer’s Guide—August 1994

16

This transformation provides a strong basis for compression because in a
typical block of input, low spatial frequencies far outweigh high spatial
frequencies. As a result, most of the values in the output matrix, outside of
those in the upper-left corner, will have values close to 0 and will end up not
being encoded.

Quantization

Quantization is the simplest step in the encoder’s algorithm. It simply involves
dividing each value in the matrix output by the DCT by the corresponding
value in a quantization table.

Figure 16-3 Quantization in the JPEG Encoder

Figure 16-3 shows part of an 8-by-8 block of values output by the Discrete
Cosine Transform and part of a table to be used in quantizing this data. In this
example, the quantizer will divide 512 by 10 and then round 51.2 off to 51.
Likewise, it will divide 256 by 9 and 0 by 8. During quantization, any value in
the matrix on the left that is divided by a number greater than itself times 2
will go to 0 and will not be encoded in the JPEG bitstream. The quantizer is the
part of the JPEG baseline sequential encoder that causes the encoder to be a
lossy one.

10 9 8512 256 0

Output of DCT Quantization table

JPEG Baseline Sequential Codec 309

16

Entropy Coding

Once a block of data has been quantized, it enters an entropy coder, which
creates the actual JPEG bitstream. The entropy coder first looks at the values in
the quantized block of data in the zigzag sequence shown in Figure 16-4. Using
this sequence ensures that the encoder will encounter all nonzero values in the
block as early as possible.

Figure 16-4 Zigzag Sequencing in JPEG Encoder

As the entropy encoder moves through the values in this order, it records three
pieces of information each time it encounters a nonzero value: the number of
0’s it passed over before finding the nonzero value, the number of bits it will
take to encode the nonzero value, and the value itself. The first two pieces of
information are considered a pair. For example, if the encoder skips over 7
zeros and then finds a 3, the pair will be 7/2 (2 is number of bits required to
encode the value 3). The encoder then consults a Huffman table to find the bit
sequence that represents the pair 7/2 and writes this bit sequence to the JPEG
bitstream. It then encodes the value 3 using a variable-length code. The

310 XIL Programmer’s Guide—August 1994

16

encoder continues this process until all the remaining values in the block are
0’s, at which point, it writes a special end-of-block bit sequence to the
bitstream.

Creating a JPEG Baseline Sequential CIS
Before you can use the JPEG codec to compress images or decompress a JPEG
bitstream, you must create a JPEG CIS. You do this by passing the compressor
name Jpeg to the function xil_cis_create() . See the code fragment below.

JPEG Baseline Sequential Codec Attributes
As discussed in the section “General CIS Attributes” on page 257, there is a
class of attributes that can be set for any CIS. There is also a set of attributes
that are valid only for CISs attached to a JPEG baseline sequential codec. You
set codec-specific attributes using the function xil_cis_set_attribute() ,
and you read them using the function xil_cis_get_attribute() .

The JPEG baseline sequential attributes can be broadly grouped into those that
affect compression and those that affect decompression. The attributes are
discussed under these headings below.

Compression Attributes

Setting any of the following attributes affects how the JPEG baseline sequential
compressor compresses images.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Jpeg”);

JPEG Baseline Sequential Codec 311

16

BAND_HUFFMAN_TABLE

This attribute enables you to associate a particular Huffman table with a
particular band of your image. As shown in Table 16-2 on page 318, the JPEG
compressor supports four tables (0 to 3) for both types of DCT coefficients (DC
and AC). Table 16-1 shows the default relationship between image bands and
Huffman tables.

Note – Tables 2 and 3, for both DC and AC coefficients, can be used for JPEG
extended-baseline-sequential mode encoding. Bear in mind, though, that many
JPEG decompressors will not be able to decompress the extended-mode
bitstream.

Before calling xil_cis_set_attribute() to change one of these
relationships, you must declare and assign values to the members of a
structure of type XilJpegBandHTable .

Table 16-1 Image Bands and Huffman Tables

Table Type Band

 0 DC Used to encode the DC coefficient in band 0

 1 DC Used to encode the DC coefficients in all bands except band 0

 2 DC Not used

 3 DC Not used

 0 AC Used to encode the AC coefficients in band 0

 1 AC Used to encode the AC coefficients in all bands except band 0

 2 AC Not used

 3 AC Not used

typedef struct {
 int band;
 int table;
 XilJpegHTableType type;
} XilJpegBandHTable;

312 XIL Programmer’s Guide—August 1994

16

The member band can have a value in the range 0 to 255 and represents the
image band to be associated with a different Huffman table. (The first band in
an image is band 0.) The member table can be 0 to 3, and the member type
can be set to DC or AC (which are enumeration constants of type
XilJpegHTableType). The setting of type determines whether the table you
specify will be used to encode DC or AC coefficients in the band you selected.

The code fragment below associates table 0 (type DC) with band 1 of the image
to be encoded.

BAND_QUANTIZER

The BAND_QUANTIZER attribute enables you to specify the quantization table
that will be used in encoding a particular band of an image. Before setting this
attribute, you must declare and assign values to the members of a structure of
type XilJpegBandQTable .

The integer band can have a value in the range 0 to 255. In a YCbCr image, the
Y band is band 0, the Cb band is band 1, and the Cr band is band 2.

The integer table can have a value in the range 0 to 3. By default, table 0
contains the values shown in Table K.1 of Annex K of the ISO JPEG
specification, table 1 contains the values shown in Table K.2 of Annex K, and
tables 2 and 3 are not loaded. You can load tables 2 and 3 or change the values
in tables 0 and 1 using the attribute QUANTIZATION_TABLE. See the section
“QUANTIZATION_TABLE” on page 322.

XilCis cis;
XilJpegBandHTable table_for_band = {1, 0, DC};

xil_cis_set_attribute(cis, “BAND_HUFFMAN_TABLE”,
 (void *)&table_for_band);

typedef struct {
 int band;
 int table;
} xilJpegBandQTable;

JPEG Baseline Sequential Codec 313

16

By default, band 0 is associated with table 0, and all other bands are associated
with table 1. The example code below shows band 2 being associated with
table 2.

BYTES_PER_FRAME

BYTES_PER_FRAME is a read-only attribute that tells you the number of bytes
in the last compressed image written to the CIS. The value of this attribute is 0
if no data has been written to the CIS.

BYTES_PER_FRAME is useful for helping you select an appropriate setting for
the COMPRESSION_QUALITY attribute. (See the section
“COMPRESSION_QUALITY” on page 314.) If the number of bytes being used
to store a compressed image is too high, you can lower it by lowering the value
of COMPRESSION_QUALITY, and vice versa.

The code fragment below reads the value of the BYTES_PER_FRAME attribute.

COMPRESSED_DATA_FORMAT

COMPRESSED_DATA_FORMAT is a set-only attribute that defines the format of
the JPEG compressor’s output. It can be set to either INTERCHANGE or
ABBREVIATED_FORMAT.

XilCis cis;
XilJpegBandQTable band_to_table;

band_to_table.band = 2;
band_to_table.table = 2;
xil_cis_set_attribute(cis, “BAND_QUANTIZER”,
 (void *)&band_to_table);

XilCis cis;
int bytes_per_frames;

xil_cis_get_attribute(cis, “BYTES_PER_FRAME”,
 (void **)&bytes_per_frame);

314 XIL Programmer’s Guide—August 1994

16

Setting the attribute to INTERCHANGE causes the compressor to produce output
in JPEG interchange format. In this format, the quantization tables and
Huffman tables required by the decompressor are included in each compressed
frame.

The default value, ABBREVIATED_FORMAT, causes the compressor to produce
output in JPEG abbreviated format. In this format, quantization tables and
Huffman tables are not included in a compressed frame if the tables needed to
decompress that frame have been defined in a previous frame in the sequence.
If a table changes during the course of the sequence, the new table definition is
included in the first compressed frame that uses the new table values.

Note – The compressor does not enable you to produce abbreviated-table
output in which frames contain only table specifications. However, the
decompressor will accept bitstreams in this format.

The code fragment below shows COMPRESSED_DATA_FORMAT being set to
INTERCHANGE.

COMPRESSION_QUALITY

The COMPRESSION_QUALITY attribute tells the compressor how it should
handle the trade-off between image quality and compression ratio. The
attribute can be set to any value between 1 and 100. Setting the attribute to 100
is a request that the compressor produce very high quality images, even
though this will mean a lower compression ratio. A setting of 1 tells the
compressor to increase its compression ratio, even though the result will be
lower image quality. By default, this attribute is set to 50.

Studies by the JPEG committee indicate that for color images of average
complexity, the following relationships exist between level of compression and
image quality:

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSED_DATA_FORMAT”,
 (void *)INTERCHANGE);

JPEG Baseline Sequential Codec 315

16

• 0.25-0.5 bits/pixel: moderate to good quality, sufficient for some
applications;

• 0.5-0.75 bits/pixel: good to very good quality, sufficient for many
applications;

• 0.75-1.5 bits/pixel: excellent quality, sufficient for most applications;

• 1.5-2.0 bits/pixel: usually indistinguishable from the original, sufficient
for the most demanding applications.1

Also, see Color Plate 4. It shows an image compressed at a high quality setting
(95) and one compressed at a low quality setting (5).

The setting of the COMPRESSION_QUALITY attribute controls image quality
and the compression ratio by determining a scaling factor the compressor will
use in creating scaled versions of its quantization tables. These scaled tables are
used during compression. A COMPRESSION_QUALITY value of 50 results in a
scaling factor of 1; that is, the scaled tables are identical to the original tables. A
COMPRESSION_QUALITY value greater than 50 results in a scaling factor that is
less than 1, and a value less than 50 results in a scaling factor greater than 1.

Note – The trade-off between image quality and compression ratio can also be
affected by the values stored in the compressor’s quantization tables. See the
section “QUANTIZATION_TABLE” on page 322.

The code fragment below shows the COMPRESSION_QUALITY attribute being
set to 100.

1. G. K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the ACM, April 1991, p. 35.

XilCis cis
int quality = 100;

xil_cis_set_attribute(cis, “COMPRESSION_QUALITY”,
 (void *)quality);

316 XIL Programmer’s Guide—August 1994

16

ENCODE_INTERLEAVED

ENCODE_INTERLEAVED is a set-only attribute that determines whether the
compressor produces an interleaved bitstream when compressing multiband
images. If the attribute is set to TRUE, the default value, the compressor
produces an interleaved bitstream, and if the attribute is set to FALSE, the
compressor produces a noninterleaved bitstream.

This attribute is ignored if the image being compressed has more than four
bands because the bitstream for such images is never interleaved. Also, note
that the attribute ENCODE_411_INTERLEAVED takes precedence over this
attribute if the image being compressed has three bands.

In the example below, ENCODE_INTERLEAVED is being set to FALSE.

ENCODE_411_INTERLEAVED

ENCODE_411_INTERLEAVED is a set-only attribute that affects how the
compressor handles 3-band images and is intended specifically for use with
YCbCr images (not RGB images). If the input to the compressor is an image of a
different type, this attribute should be set to FALSE (its default value).

Note – If the input images are not 3-band images and this attribute is set to
TRUE, the compressor will operate as if the attribute were set to FALSE.

If the input is a YCbCr image and ENCODE_411_INTERLEAVED is set to TRUE,
the compressor:

• Subsamples the data in the color bands so that only one color value will be
encoded for each four color values in the original (4:1:1)

• Interleaves the data for the three image bands on a macroblock basis, where
a macroblock is defined as a 16-by-16 block of pixels

Note – This is the only method the XIL library provides for producing JPEG
bitstreams with subsampled bands.

XilCis cis;

xil_cis_set_attribute(cis, “ENCODE_INTERLEAVED”, (void *)FALSE);

JPEG Baseline Sequential Codec 317

16

If you are making a movie from YCbCr images, ENCODE_411_INTERLEAVED
should be set to TRUE because the XIL library’s accelerated routines for playing
back JPEG movies require input in the format described above. The
ENCODE_411_INTERLEAVED attribute tells the JPEG compressor to subsample
the u and v data instead of using the evenly sampled bands that the XIL
software hands it. The output of a decompression (and later export) is still an
evenly sampled 3-banded image with the u and v duplicated.

If the attribute is set to FALSE, the setting of the ENCODE_INTERLEAVED
attribute determines the format of the JPEG bitstream.

In the example below, ENCODE_411_INTERLEAVED is being set to TRUE.

HUFFMAN_TABLE

This attribute enables you to supply the compressor with a Huffman table to
use in encoding quantized DC or AC coefficients. Before calling
xil_cis_set_attribute() to set this attribute, you must store information
about the Huffman table in a structure of type XilJpegHTable .

The member table must be set to 0 to 3, and the member type can be set to
DC or AC. In a Huffman table of type DC, the array value contains 16 elements.
In a table of type AC, this array contains 256 elements.

XilCis cis;

xil_cis_set_attribute(cis, “ENCODE_411_INTERLEAVED”,
 (void *)TRUE);

typedef struct {
 int table;
 XilJpegHTableType type;
 XilJpegHTableValue *value;
} XilJpegHTable;

318 XIL Programmer’s Guide—August 1994

16

The default contents of the eight Huffman tables are shown in Table 16-2.

Note – Tables 2 and 3, for both DC and AC coefficients, can be used for JPEG
extended-baseline-sequential mode encoding. Bear in mind, though, that many
JPEG decompressors will not be able to decompress the extended-mode
bitstream.

The final member of the XilJpegHTable structure, value , is an array of
structures of type XilJpegHTableValue .

Table 16-2 Default Huffman Tables

Table Type Default Contents

 0 DC Contains the values specified in Table K.3 of the ISO JPEG
specification. These values are useful for encoding the DC
coefficients of the luminance band of 8-bit YCbCr images.

 1 DC Contains the values specified in Table K.4 of the ISO JPEG
specification. These values are useful for encoding the DC
coefficients of the chrominance bands of 8-bit YCbCr images.

 2 DC Empty.

 3 DC Empty.

 0 AC Contains the values specified in Table K.5 of the ISO JPEG
specification. These values are useful for encoding the AC
coefficients of the luminance band of 8-bit YCbCr images.

 1 AC Contains the values specified in Table K.6 of the ISO JPEG
specification. These values are useful for encoding the AC
coefficients of the chrominance bands of 8-bit YCbCr images.

 2 AC Empty.

 3 AC Empty.

typedef struct {
 int bits;
 int pattern;
} XilJpegHTableValue;

JPEG Baseline Sequential Codec 319

16

Each structure of this type defines a pair of values to be written to the Huffman
table. The member bits is the length of a Huffman code in bits, and pattern
contains the code itself (the bits least significant bits of pattern are the
code).

The examples below indicate how the structures referred to above are used in
setting up a Huffman table. This first example shows table 0 (type DC) being
loaded with values suitable for encoding DC coefficients.

Note that there are only twelve meaningful value pairs being loaded into the
table. The last four are there to fill out huffman_table.value , which is an
array of sixteen structures.

This next example shows table 0 (type AC) being loaded with values suitable
for encoding AC coefficients.

XilCis cis;
XilJpegHTable huffman_table;

XilJpegHTableValue huffman_values[16] = {
 {2, 0x0000}, {3, 0x0002}, {3, 0x0003}, {3, 0x0004},
 {3, 0x0005}, {3, 0x0006}, {4, 0x000e}, {5, 0x001e},
 {6, 0x003e}, {7, 0x007e}, {8, 0x00fe}, {9, 0x01fe},
 {0, 0x0000}, {0, 0x0000}, {0, 0x0000}, {0, 0x0000}
};

huffman_table.table = 0;
huffman_table.type = DC;
huffman_table.value = huffman_values;
xil_cis_set_attribute(cis, “HUFFMAN_TABLE”,
 (void *)&huffman_table);

XilCis cis;
XilJpegHTable huffman_table;

XilJpegHTableValue huffman_values[256] = {
 {4, 0x000a}, {2, 0x0000}, {2, 0x0001}, {3, 0x0004},
 {4, 0x000b}, {5, 0x001a}, {7, 0x0078}, {8, 0x00f8},
 {10, 0x03f6}, {16, 0xff82}, {16, 0xff83}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {4, 0x000c}, {5, 0x001b}, {7, 0x0079},
 {9, 0x01f6}, {11, 0x07f6}, {16, 0xff84}, {16, 0xff85},

320 XIL Programmer’s Guide—August 1994

16

 {16, 0xff86}, {16, 0xff87}, {16, 0xff88}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {5, 0x001c}, {8, 0x00f9}, {10, 0x03f7},
 {12, 0x0ff4}, {16, 0xff89}, {16, 0xff8a}, {16, 0xff8b},
 {16, 0xff8c}, {16, 0xff8d}, {16, 0xff8e}, {0, 0x0000},
 {0, 0x0000},{0, 0x000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {6, 0x003a}, {9, 0x01f7}, {12, 0x0ff5},
 {16, 0xff8f}, {16, 0xff90}, {16, 0xff91}, {16, 0xff92},
 {16, 0xff93}, {16, 0xff94}, {16, 0xff95}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {6, 0x003b}, {10, 0x03f8}, {16, 0xff96},
 {16, 0xff97}, {16, 0xff98}, {16, 0xff99}, {16, 0xff9a},
 {16, 0xff9b}, {16, 0xff9c}, {16, 0xff9d}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {7, 0x007a}, {11, 0x07f7}, {16, 0xff9e},
 {16, 0xff9f}, {16, 0xffa0}, {16, 0xffa1}, {16, 0xffa2},
 {16, 0xffa3}, {16, 0xffa4}, {16, 0xffa5}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {7, 0x007b}, {12, 0x0ff6}, {16, 0xffa6},
 {16, 0xffa7}, {16, 0xffa8}, {16, 0xffa9}, {16, 0xffaa},
 {16, 0xffab}, {16, 0xffac}, {16, 0xffad}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {8, 0x00fa}, {12, 0x0ff7}, {16, 0xffae},
 {16, 0xffaf}, {16, 0xffb0}, {16, 0xffb1}, {16, 0xffb2},
 {16, 0xffb3}, {16, 0xffb4}, {16, 0xffb5}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {9, 0x01f8}, {15, 0x7fc0}, {16, 0xffb6},
 {16, 0xffb7}, {16, 0xffb8}, {16, 0xffb9}, {16, 0xffba},
 {16, 0xffbb}, {16, 0xffbc}, {16, 0xffbd}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {9, 0x01f9}, {16, 0xffbe}, {16, 0xffbf},
 {16, 0xffc0}, {16, 0xffc1}, {16, 0xffc2}, {16, 0xffc3},
 {16, 0xffc4}, {16, 0xffc5}, {16, 0xffc6}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {9, 0x01fa}, {16, 0xffc7}, {16, 0xffc8},

JPEG Baseline Sequential Codec 321

16

Note that huffman_values is an array of 256 structures of type
XilJpegHTableValue , and that the structures are organized as 16 groups of
16 structures. Because there are not 16 bit lengths (bits) for each of the 16 run
lengths, each group of 16 structures contains 5 meaningless structures at the
end.

 {16, 0xffc9}, {16, 0xffca}, {16, 0xffcb}, {16, 0xffcc},
 {16, 0xffcd}, {16, 0xffce}, {16, 0xffcf}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {10, 0x03f9}, {16, 0xffd0}, {16, 0xffd1},
 {16, 0xffd2}, {16, 0xffd3}, {16, 0xffd4}, {16, 0xffd5},
 {16, 0xffd6}, {16, 0xffd7}, {16, 0xffd8}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {10, 0x03fa}, {16, 0xffd9}, {16, 0xffda},
 {16, 0xffdb}, {16, 0xffdc}, {16, 0xffdd}, {16, 0xffde},
 {16, 0xffdf}, {16, 0xffe0}, {16, 0xffe1}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {11, 0x07f8}, {16, 0xffe2}, {16, 0xffe3},
 {16, 0xffe4}, {16, 0xffe5}, {16, 0xffe6}, {16, 0xffe7},
 {16, 0xffe8}, {16, 0xffe9}, {16, 0xffea}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {0, 0x0000}, {16, 0xffeb}, {16, 0xffec}, {16, 0xffed},
 {16, 0xffee}, {16, 0xffef}, {16, 0xfff0}, {16, 0xfff1},
 {16, 0xfff2}, {16, 0xfff3}, {16, 0xfff4}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000},

 {11, 0x07f9}, {16, 0xfff5}, {16, 0xfff6}, {16, 0xfff7},
 {16, 0xfff8}, {16, 0xfff9}, {16, 0xfffa}, {16, 0xfffb},
 {16, 0xfffc}, {16, 0xfffd}, {16, 0xfffe}, {0, 0x0000},
 {0, 0x0000},{0, 0x0000},{0, 0x0000},{0, 0x0000}
};

huffman_table.table = 0;
huffman_table.type = AC;
huffman_table.value = huffman_values;
xil_cis_set_attribute(cis, “HUFFMAN_TABLE”,
 (void *)&huffman_table);

322 XIL Programmer’s Guide—August 1994

16

OPTIMIZE_HUFFMAN_TABLES

You can use this attribute to tell the compressor to generate optimal Huffman
tables instead of using the default tables included in the ISO specification or
tables you loaded earlier. When the compressor creates optimal Huffman
tables, its Huffman tables can vary from image to image, and you should see
higher rates of compression.

If OPTIMIZE_HUFFMAN_TABLES is set to FALSE, its default value, the
compressor uses fixed Huffman tables for each image in a sequence. If the
attribute is set to TRUE, the compressor uses optimal Huffman tables.

Note – If an application sets OPTIMIZE_HUFFMAN_TABLES to TRUE and then
later sets it to FALSE, the compressor loads a default set of tables. It does not
restore the tables it was using when the attribute was first set to TRUE.

The following code fragment shows OPTIMIZE_HUFFMAN_TABLES being set to
TRUE.

QUANTIZATION_TABLE

The QUANTIZATION_TABLE attribute enables you to load values into one of
four quantization tables that the compressor may use to quantize DCT
coefficients. Prior to actually setting the attribute you must declare and assign
values to the members of an XilJpegQTable structure.

The integer table must have a value between 0 and 3. This value indicates
which of the four quantization tables you want to load. By default, table 0
contains the values shown in Table K.1 of Annex K of the ISO JPEG

XilCis cis;

xil_cis_set_attribute(cis, “OPTIMIZE_HUFFMAN_TABLES”,
 (void *)TRUE);

typedef struct {
 int table;
 int (*value)[8];
} XilJpegQTable;

JPEG Baseline Sequential Codec 323

16

specification. These values are designed to be used with the luminance band of
8-bit YCC images. Likewise, table 1 contains the values shown in Table K.2 of
Annex K. The values in this table are designed to be used with the
chrominance bands of 8-bit YCC images. By default, tables 2 and 3 are not
loaded.

You use the pointer value (a pointer to an array of 8 integers) to point to the
64 quantization values that you want to load into the table.

The code fragment below illustrates 64 quantization values being loaded into
table 2.

TEMPORAL_FILTERING

This attribute controls whether the JPEG compressor filters 3-band images
before it encodes them. If the attribute is set to FALSE, its default value, the
compressor does not filter the images, and if it is set to TRUE, the compressor
does filter them. This filtering can help in cases where the images being
encoded contain a lot of noise; however, the filtering can also have the
undesirable side effect of producing ghosting artifacts.

Xilcis cis;
XilJpegQTable quantization;
int quantization_array[8][8] = {
 {16, 11, 10, 16, 24, 40, 51, 61},
 {12, 12, 14, 19, 26, 58, 60, 55),
 {14, 13, 16, 24, 40, 57, 69, 56},
 {14, 17, 22, 29, 51, 87, 80, 62},
 {18, 22, 37, 56, 68, 109, 103, 77},
 {24, 35, 55, 64, 81, 104, 113, 92},
 {49, 64, 78, 87, 103, 121, 120, 101},
 {72, 92, 95, 98, 112, 100, 103, 99}
};

quantization.table = 2;
quantization.value = quantization_array;
xil_cis_set_attribute(cis, “QUANTIZATION_TABLE”,
 (void *)&quantization);

324 XIL Programmer’s Guide—August 1994

16

The example below shows the attribute being set to TRUE.

And this fragment demonstrates how to read the attribute’s value.

Decompression Attributes

Setting the following attribute affects how the JPEG baseline sequential codec
decompresses images.

DECOMPRESSION_QUALITY

You use the DECOMPRESSION_QUALITY attribute to provide a hint to the
compressor concerning how it should handle the trade-off between the quality
of decompressed images and speed of decompression. The decompressor is
free to ignore this hint.

The attribute’s value must be an integer in the range of 1 to 100. A setting of
100 is a request for a high level of image quality, and a setting of 1 is a request
from a high playback speed. By default, the attribute is set to 100.

Note – The JPEG compressor increases playback speed by decreasing the
number of quantized coefficients it uses in reconstructing an image. It drops
high-frequency coefficients first.

XilCis cis;

xil_cis_set_attribute(cis, “TEMPORAL_FILTERING”, (void *)TRUE);

XilCis cis;
Xil_boolean filtering_enabled;

xil_cis_get_attribute(cis, “TEMPORAL_FILTERING”,
 (void **)&filtering_enabled);

JPEG Baseline Sequential Codec 325

16

The example code below shows DECOMPRESSION_QUALITY being set to 75.

IGNORE_HISTORY

The setting of this attribute affects what happens when you seek backward or
forward in a JPEG CIS whose random-access flag is not set. If your CIS’s
random-access flag is set, the value of IGNORE_HISTORY is irrelevant: you can
always seek backward or forward and get correct results. To determine
whether the random-access flag is set, call the function
xil_cis_get_random_access() .

Note – When you create a JPEG CIS, its random-access flag is always set. This
flag will remain set if the quantization and Huffman tables needed to decode
the entire JPEG bitstream are encoded with the first image or if those tables are
encoded with each image in the sequence. Otherwise, the decoder will clear the
flag as soon as it discovers that the bitstream cannot be accessed randomly.

If your CIS’s random-access bit is not set and IGNORE_HISTORY is FALSE (its
default value), the following rules apply:

• Backward seeds are illegal.

• A forward seek will be successful; that is, the image you decode after the
seek will be reconstructed properly. However, a forward seek with
IGNORE_HISTORY set to FALSE may be slower than one with the attribute
set to TRUE.

If your CIS’s random-access bit is not set and IGNORE_HISTORY is TRUE, these
rules apply:

• Backward seeks are legal. However, it is the responsibility of your
application to seek to an image that can be decoded correctly. That is, the
image you seek to must either define its own tables or depend on the tables
that were most recently loaded into the decoder.

XilCis cis;
int quality = 75;

xil_cis_set_attribute(cis, “DECOMPRESSION_QUALITY”,
 (void *)quality);

326 XIL Programmer’s Guide—August 1994

16

• You can also seek forward. However, your application should not seek
forward past images that contain table definitions if those definitions will be
needed to decode the image you’re seeking to. The decoder does not ensure
that these table definitions are loaded.

The code below shows IGNORE_HISTORY being set to TRUE.

JPEG Molecules
The XIL library includes a series of molecules that accelerate the playback of
JPEG baseline sequential bitstreams. These molecules are optimized routines
that perform the jobs of two or more functions from the XIL API. You do not
call such an optimized routine directly; rather, the library calls a molecule
when your program calls a predefined sequence of XIL functions, sometimes
with specific arguments.

For example, if your program calls xil_decompress() to decode an image
stored in a JPEG CIS and then calls xil_ordered_dither() to convert the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the dithering in an optimized way.

For information about the JPEG molecules that are available and information
about how to call those molecules, see the section “XIL Molecules” on
page 398.

XilCis cis;

xil_cis_set_attribute(cis, “IGNORE_HISTORY”, (void *)TRUE);

327

JPEG Lossless Codec 17

Like the JPEG baseline sequential compressor, the JPEG lossless compressor is
designed to compress still continuous-tone images. The difference between the
two is that the baseline sequential compressor is a lossy compressor: once an
image has been compressed, you cannot recover the original image samples.
The JPEG lossless compressor does allow you to recover these samples;
however, the lossless compressor produces much lower compression ratios
than the lossy compressor. The compression ratio for the lossless compressor is
in the neighborhood of 2:1. One other difference between the two compressors
is that while the baseline sequential compressor works only with XIL_BYTE
images, the lossless compressor can work with both XIL_BYTE and
XIL_SHORT images.

The remainder of this chapter is divided into three sections. The first section
provides an overview of how the JPEG lossless compressor works. The second
explains briefly how to create a JPEG lossless CIS. The third discusses a set of
CIS attributes that apply specifically to the JPEG lossless codec (as opposed to
the general CIS attributes covered in the section “General CIS Attributes” on
page 257).

328 XIL Programmer’s Guide—August 1994

17

How the JPEG Lossless Codec Works
The JPEG lossless compressor is not based on the DCT like the baseline
sequential encoder. Instead, it uses a predictive method, as shown in
Figure 17-1.

Figure 17-1 JPEG Lossless Compressor

Each sample in the source image is encoded as follows: The predictor makes a
guess at the sample’s value based on its knowledge of the values of
neighboring samples and then subtracts the predicted value of the sample from
its actual value. The difference calculated by the predictor is then passed on to
the entropy coder, which does a lookup in a Huffman table and writes encoded
data to the bitstream.

The prediction and entropy-coding steps in the encoding process are discussed
in more detail in the following sections.

Entropy coder

1 0 0 0 0 0 0 01 1 1 1 1 1 1

Encoder

Output bitstream

Predictor

Source Image

0

JPEG Lossless Codec 329

17

Note – The XIL library’s JPEG lossless encoder actually lets you perform an
operation called a point transformation on your source image before the
encoding summarized above begins. The point transformation can be done on
a band-by-band basis. What happens is this. If you supply a point-transform
value other than 0 for a band of an image, each sample in the band is divided
by 2 raised to the power x, where x is the point-transform value. This operation
leads to a higher compression ratio because smaller values will need to be
encoded; however, it is not actually part of the lossless-encoding process
because it can result in the loss of some data.

Prediction

As mentioned above, the predictor predicts the value of an image sample
based on its knowledge of the values of neighboring samples. The neighboring
samples it can take into consideration are shown in Figure 17-2 and are labeled
A, B, and C. The sample whose value is being predicted is labeled P.

Figure 17-2 Predicting Values in the JPEG Lossless Compressor

C

A

B

P

330 XIL Programmer’s Guide—August 1994

17

Seven prediction methods are defined. These are shown below.

1. P = A

2. P = B

3. P = C

4. P = A + B - C

5. P = A + ((B - C) / 2)

6. P = B + ((A - C) / 2)

7. P = (A + B) / 2

By default, the compressor uses prediction method 1 for all bands in an image.
However, you can select a different prediction method for a particular band
using the CIS attribute LOSSLESS_BAND_SELECTOR. See the section
“LOSSLESS_BAND_SELECTOR” on page 334.

After the predictor has predicted the value of a sample, it subtracts the
predicted value of the sample from its actual value. It is this difference that is
encoded by the entropy coder.

Entropy Coding

The entropy coder takes as input a difference, the difference between a
predicted and actual sample value. On the output side, the entropy coder
writes a sequence of bits to the JPEG bitstream.

To produce its output, the entropy coder uses the number of bits required to
represent a difference as an index into a Huffman table. At the proper location
in the table, the encoder reads a code word—a sequence of bits—and then
writes this code word to the bitstream. Immediately after the code word, the
encoder writes to the bitstream the difference itself. The encoder performs
these steps for each sample in the image.

JPEG Lossless Codec 331

17

JPEG Lossless Compressor Attributes
The attributes discussed below affect the way that the JPEG lossless
compressor works.

BAND_HUFFMAN_TABLE

This attribute enables you to specify that a particular Huffman table be used in
encoding a particular band of your image. Before calling
xil_cis_set_attribute() to set this attribute, you must declare and
assign values to the members of a structure of type XilJpegBandHTable .

The member band can have a value in the range 0 to 255 and represents the
image band to be associated with a particular Huffman table. The member
table can have a value between 0 and 3 and specifies one of four possible
Huffman tables, and the member type must be set to DC.

The code fragment below associates table 0 (type DC) with band 1 of the image
to be encoded.

By default, table 0 is used in encoding band 0 of an image, and table 1 is used
in encoding all other bands (1 to 255).

typedef struct {
 int band;
 int table;
 XilJpegHTableType type;
} XilJpegBandHTable;

XilCis cis;
XilJpegBandHTable table_for_band = {1, 0, DC};

xil_cis_set_attribute(cis, “BAND_HUFFMAN_TABLE”,
 (void *)&table_for_band);

332 XIL Programmer’s Guide—August 1994

17

COMPRESSED_DATA_FORMAT

COMPRESSED_DATA_FORMAT is a set-only attribute that defines the format of
the JPEG lossless compressor’s output. It can be set to either INTERCHANGE or
ABBREVIATED_IMAGE.

Setting the attribute to INTERCHANGE causes the compressor to produce output
in JPEG interchange format. In this format, the Huffman tables required by the
decompressor are included in each compressed frame.

The default value, ABBREVIATED_IMAGE, causes the compressor to produce
output in JPEG abbreviated format. In this format, Huffman tables are not
included in a compressed frame if the tables needed to decompress that frame
have been defined in a previous frame in the sequence. If a table changes
during the course of the sequence, the new table definition is included in the
first compressed frame that uses the new table values.

The code fragment below shows COMPRESSED_DATA_FORMAT being set to
INTERCHANGE.

ENCODE_INTERLEAVED

ENCODE_INTERLEAVED is a set-only attribute that determines whether the
compressor produces an interleaved bitstream when compressing multiband
images. If the attribute is set to TRUE, the default value, the compressor
produces an interleaved bitstream, and if the attribute is set to FALSE, the
compressor produces a noninterleaved bitstream.

This attribute is ignored if the image being compressed has more than four
bands, or if different point transformations or different predictors are being
used in encoding different bands. In these instances, the compressor never
produces an interleaved bitstream.

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSED_DATA_FORMAT”,
 (void *)INTERCHANGE);

JPEG Lossless Codec 333

17

In the example below, ENCODE_INTERLEAVED is being set to FALSE.

HUFFMAN_TABLE

This attribute enables you to supply the compressor with a Huffman table to
use in encoding difference values. By default, the compressor’s four Huffman
tables are loaded as follows: Tables 0 and 2 contain the values specified in
Table K.3 of the ISO JPEG specification (extended to 17 entries). These values
are useful for encoding pixel differences for the luminance band of 8-bit YCbCr

images. Tables 1 and 3 contain the values specified in Table K.4 of the ISO JPEG
specification (again extended to 17 entries). These values are useful for
encoding pixel differences for the chrominance bands of 8-bit YCbCr images.

Before calling xil_cis_set_attribute() to set this attribute, you must
store information about the Huffman table in a structure of type
XilJpegHTable .

The member table must be set to a value between 0 and 3, and the member
type must be set to DC. The final member of the XilJpegHTable structure,
value , is an array of 17 structures of type XilJpegHTableValue .

XilCis cis;

xil_cis_set_attribute(cis, “ENCODE_INTERLEAVED”, (void *)FALSE);

typedef struct {
 int table;
 XilJpegHTableType type;
 XilJpegHTableValue *value;
} XilJpegHTable;

typedef struct {
 int bits;
 int pattern;
} XilJpegHTableValue;

334 XIL Programmer’s Guide—August 1994

17

Each structure of this type defines a pair of values to be written to the Huffman
table. The member bits is the length of a Huffman code in bits, and pattern
contains the code itself (the bits least significant bits of pattern are the
code).

The example below shows table 0 (type DC) being loaded with values suitable
for encoding difference values.

LOSSLESS_BAND_SELECTOR

As mentioned in the section “Prediction” on page 329, there are seven methods
the predictor can use to predict the values of an image sample. This attribute
enables you to specify which of these methods the compressor should use in
encoding a particular band of an image.

Before calling xil_cis_set_attribute() to set this attribute, you must
declare and assign values to the members of a structure of type
XilJpegLLBandSelector .

XilCis cis;
XilJpegHTable huffman_table;

XilJpegHTableValue huffman_values[17] = {
 {2, 0x0000}, {3, 0x0002}, {3, 0x0003}, {3, 0x0004},
 {3, 0x0005}, {3, 0x0006}, {4, 0x000e}, {5, 0x001e},
 {6, 0x003e}, {7, 0x007e}, {8, 0x00fe}, {9, 0x01fe},
 {10, 0x03fe},{11, 0x07fe}, {12, 0x0ffe}, {13, 0x1ffe},
 {14, 0x3ffe}
};

huffman_table.table = 0;
huffman_table.type = DC;
huffman_table.value = huffman_values;
xil_cis_set_attribute(cis, “HUFFMAN_TABLE”,
 (void *)&huffman_table);

typedef struct {
 int band;
 XilJpegLLBandSelectorType selector;
} XilJpegLLBandSelector;

JPEG Lossless Codec 335

17

The structure member band must be set to a value between 0 and 255 (where
band 0 is the first band in an image). The member selector can have any of
the values shown in the following enumeration.

The correspondence between these enumeration constants and the prediction
methods described earlier is shown in Table 17-1.

The following code fragment shows the prediction formula
P = A + ((B - C) / 2) being selected for band 2 of an image.

typedef enum {
 ONE_D1=1, ONE_D2, ONE_D3, TWO_D1, TWO_D2, TWO_D3, TWO_D4
} XilJpegLLBandSelectorType;

Table 17-1 JPEG Lossless Prediction Methods

Constant Prediction Method

ONE_D1 P = A

ONE_D2 P = B

ONE_D3 P = C

TWO_D1 P = A + B - C

TWO_D2 P = A + ((B - C) / 2)

TWO_D3 P = B + ((A - C) / 2)

TWO_D4 P = (A + B) / 2

XilCis cis;
XilJpegLLBandSelector predictor_band = {2, TWO_D2};

xil_cis_set_attribute(cis, “LOSSLESS_BAND_SELECTOR”,
 (void *)&predictor_band);

336 XIL Programmer’s Guide—August 1994

17

LOSSLESS_BAND_PT_TRANSFORM

This attribute enables you to request that a point transformation be performed
on a particular band of an image before the image is encoded. If you request
this operation, each sample in the band is divided by 2 raised to power of x,
where x is the prediction-transformation value. The default
prediction-transformation value for all bands is 0.

Before calling xil_cis_set_attribute() to set this attribute, you must
declare and assign values to the members of a structure of type
XilJpegLLBandPtTransform .

The structure member band must be set to a value between 0 and 255 (where
band 0 is the first band in an image), and the PtTransform member must be
set to an integer in the range 0 to 15 that represents the power of two by which
you want to divide all the samples in a band.

The code below requests that the samples in band 2 of an image be divided by
16 (24) before the lossless encoding process takes place.

typedef struct {
 int band;
 int PtTransform;
} XilJpegLLBandPtTransform;

XilCis cis;
XilJpegLLBandPtTransform pt_transform = {2, 4};

xil_cis_set_attribute(cis, “LOSSLESS_BAND_PT_TRANSFORM”,
 (void *)&pt_transform);

337

H.261 Codec 18

The H.261 compression-decompression scheme takes its name from the title of
the recommendation in which the H.261 codec is specified: Recommendation
H.261 published by the International Telegraph and Telephone Consultative
Committee (CCITT). This recommendation defines a video encoder that is
intended to be used to compress video data that will be sent over Integrated
Services Digital Network (ISDN) lines.

The H.261 codec is intended primarily for use in video telephony and
videoconferencing applications. Video telephony, in which generally a picture
of the speaker’s face against a stationary background is transmitted, is possible
when only one or two ISDN channels (each capable of carrying 64Kb/s of
information) are available. If more channels are available, more complex
images can be sent.

The remainder of this chapter is divided into four sections. The first section
provides an overview of how an H.261 codec works. The second explains
briefly how to create an H.261 CIS. The third discusses CIS attributes that
apply specifically to a CIS associated with an XIL H.261 compressor or
decompressor (as opposed to the general CIS attributes covered in the section
“General CIS Attributes” on page 257). And the fourth section introduces the
subject of accelerating the playback of H.261 bitstreams. For further
information on this subject, see Chapter 21, “Acceleration in XIL Programs.”.

338 XIL Programmer’s Guide—August 1994

18

Note – This chapter discusses both H.261 compression and decompression.
However, the current release of the XIL library includes only an H.261
decompressor. The compressor interface is defined for third parties who want
to implement XIL H.261 compressors.

How an H.261 Codec Works
This section presents an overview of how an H.261 codec works. It discusses

• The format of the images that can be used as input to the encoder

• The basic encoding scheme

• Methods of controlling the size of the bitstream produced by the encoder

• How the codec supports multipoint conferencing

Source Images

The images supplied as input to an H.261 compressor must meet both color
space and size (width and height) requirements. In terms of color space, the
images must be YCbCr images that conform to the standard set forth in CCIR
Recommendation 601. In terms of size, the images must adhere to either the
Common Interchange Format (CIF) or the Quarter-CIF (QCIF) format.
Table 18-1 below indicates the widths and heights defined by these formats.

All H.261 encoders must be able to compress QCIF images. The ability to
compress CIF images is optional.

Given an image of the appropriate format, the H.261 compressor subsamples
the chrominance values so that there is one Cb value and one Cr value for each
two-by-two block of luminance values. It then processes the image in segments
called macroblocks. Each macroblock consists of a 16-by-16 block of luminance
values and the chrominance values associated with those luminance values.
See Figure 18-1 below.

Table 18-1 Sizes of CIF- and QCIF-Format Images

Width Height

CIF images 352 288

QCIF images 176 144

H.261 Codec 339

18

Figure 18-1 Macroblock

As you’ll see shortly, the encoder performs some operations on 8-by-8 blocks of
values. Each macroblock contains six blocks: four blocks of luminance values,
one block of Cb values, and one block of Cr values.

Luminance value Cb value Cr value

340 XIL Programmer’s Guide—August 1994

18

Basic Encoding Scheme

The flow chart in Figure 18-2 illustrates the procedure the H.261 encoder uses
to encode a macroblock.

H.261 Codec 341

18

Figure 18-2 Flow Diagram for H.261 Encoding

Intraframe or
interframe

Prediction

Motion
compensation

Loop filter

Significant
difference?

No information about
Discrete Cosine
Transform

Quantization

Variable-length
coding

To bitstream

No

Yes

Interframe
In

tr
af

ra
m

e
macroblcck?

pixel values sent
(A motion vector or
loop-filter bit may be
sent)

342 XIL Programmer’s Guide—August 1994

18

Intraframe Versus Interframe Encoding

For each macroblock that it encodes, the H.261 encoder can perform intraframe
or interframe compression. In intraframe mode, the compressor encodes the
actual YCbCr values in the macroblock. In interframe mode, the compressor

1. Looks at the YCbCr values in the macroblock it is encoding

2. Calculates the difference between the predicted values for the macroblock
and the actual values in the macroblock. The predicted values are taken
from the most recently compressed image, which is stored in a history
buffer.

3. Encodes the difference values if they are significant

In general, the H.261 compressor relies very heavily on interframe encoding
because this type of encoding leads to greater rates of compression than
intraframe compression. However, Recommendation H.261 requires that the
encoder intraframe encode each macroblock at least once every 132 frames.
This requirement ensures that if you join a videoconference in progress or your
videoconference is disrupted by data transmission problems, all macroblocks
will be updated properly within a few seconds.

Prediction

As noted in the last section, in interframe-encoding mode, the encoder
calculates the difference between YCbCr values in the macroblock it is encoding
currently and the values in the corresponding macroblock in the preceding
picture. Before performing this calculation, the encoder may perform either a
motion-compensation operation or a motion-compensation operation followed
by a loop-filter operation. Both of these operations are optional.

When the encoder performs motion compensation, it compares the YCbCr

values in the current macroblock not only with those in the spatially
corresponding macroblock in the preceding picture, but also with the values in
macroblocks that neighbor the spatially corresponding macroblock in the
preceding picture. See Figure 18-3.

H.261 Codec 343

18

Figure 18-3 Motion Compensation in H.261

The neighboring macroblocks being examined can be offset from the matching
macroblock by a maximum of ±15 pixels in both the x and y directions. The
macroblock in the history image that best matches the macroblock in the
current image is used in calculating the difference values to encode.

If the macroblock in the history image used to calculate difference values is not
the matching macroblock, the encoder must record the number of pixels by
which the former is offset from the latter. These x and y offsets are written to a
motion vector, which is later variable-length coded and written to the H.261
bitstream along with any encoded difference values.

The second operation that the encoder may perform before calculating the
difference between macroblocks is a filter of the macroblock of interest in the
history image. This filtering operation is designed to remove high-frequency
information from the macroblock. Generally, this filtering leads to smaller
differences between the macroblocks and, thus, to a more compact bitstream.

Preceding picture Current picture

Current macroblock

Matching macroblock

Some of the neighbors of the matching macroblock

344 XIL Programmer’s Guide—August 1994

18

Encoding YCbCr or Difference Values

Whether the encoder is encoding the actual values in a macroblock from the
current picture or difference values calculated during the prediction step, it
uses the procedure depicted in Figure 18-4.

Figure 18-4 Encoding of YCbCr or Difference Values in H.261

Each of the six blocks in a macroblock (four blocks of luminance values and
two blocks of color values) is encoded separately. The values for each block are

1. Transformed from the spatial to the transform domain using a Discrete
Cosine Transform

2. Linearly quantized

3. Encoded with variable length codes or, for less frequently occurring values,
with 20-bit codes

Discrete Cosine
Quantization

Variable-length
codingTransform

Block of Y, Cb, or Cr values or differences

H.261 bitstream

0 1 0 0 0 0 0 0 0 01 1 1 1 1 1 1

H.261 Codec 345

18

This encoding scheme is very similar to the one used in the JPEG still-image
compression standard. For a more detailed discussion of the steps involved in
this type of encoding, see the section “How the JPEG Baseline Sequential
Codec Works” on page 306.

Bit-Rate Control

As mentioned earlier, the H.261 codec is intended primarily for use in
videophone and videoconferencing applications. Because these applications
need to send data at a constant rate over a network, the encoder must use a
constant number of bits to encode, say, a second’s worth of video. The encoder
can achieve this constant bit rate using any combination of the following
techniques.

• Altering the criterion that determines whether a macroblock that is to be
interframe encoded actually needs to be encoded. The macroblock needs to
be encoded only if its luminance values differ from those in the
corresponding macroblock in the preceding picture by a certain amount. By
increasing this amount, the encoder decreases the number of macroblocks it
must compress.

• Changing the values in the quantizer. To produce a lower bit rate, the
encoder can increase the size of the values in the quantizer. This strategy
results in quantized coefficients with relatively low values, which can be
encoded with relatively short code words.

• Using the loop filter operation described in the section “Prediction” on
page 342.

346 XIL Programmer’s Guide—August 1994

18

Provisions for Multipoint Conferencing

The CCITT’s specification of the H.261 codec includes several features
designed to facilitate multipoint conferencing. In a multipoint conference, the
receiver may elect to switch between two or more sources of video. These
features include:

• A freeze-picture request. This request is an external signal that causes the
decoder to stop updating the currently displayed picture. The picture
remains frozen until the decoder sees a freeze-picture-release flag in the
bitstream or until a timeout period of six seconds or more has elapsed.

• A fast-update request. This request is an external signal that causes the
encoder to compress the next picture using intraframe encoding exclusively.
The encoder must compress this frame without overflowing its output
buffer.

• A freeze-picture release. When an encoder receives a fast-update request, it
sets a bit in the header of the next picture it encodes. This bit tells a decoder
that has frozen its display to resume displaying pictures in the normal way.

Creating an H.261 CIS
Before you can use the H.261 decompressor to decompress an H.261 bitstream,
you must create an H.261 CIS (and write an H.261 bitstream to the CIS). You
create this CIS by passing the decompressor name H261 to the function
xil_cis_create() . See the code fragment below.

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “H261”);

H.261 Codec 347

18

H.261 Codec Attributes
As discussed in the section “General CIS Attributes” on page 257, there is a
class of attributes that can be set for any CIS. There is also a set of attributes
that are valid only for CISs attached to an H.261 compressor or decompressor.
You set compressor-specific attributes using the function
xil_cis_set_attribute() , and you read compressor-specific attributes
using the function xil_cis_get_attribute() .

The H.261 attributes can be broadly grouped into those that affect compression
and those that affect decompression. The attributes are discussed under these
headings below.

Compression Attributes

Setting any of the following attributes affects how an H.261 compressor
compresses images.

COMPRESSOR_BITS_PER_IMAGE

This attribute controls the number of bits the encoder uses to encode pictures.
Normally, you arrive at this value by taking the number of bits per second you
can move over a network and dividing that number by the number of pictures
you’re encoding each second. For example, if you have 2 ISDN channels
available for transporting data (2 * 65536 == 131,072 bits per second) and you
want to encode 30 pictures a second, you would set BITS_PER_IMAGE to 4369.
This setting would cause the compressor to encode a QCIF picture using about
0.17 bits per pixel.

The code below shows the bits-per-image attribute being set to 4369.

COMPRESSOR_BITS_PER_IMAGE can be set to any int greater than or equal to
0. Its default value is 5069, the number of bits needed to encode a QCIF picture
at 0.2 bits per pixel.

XilCis cis;
int bits_per_image = 4369;

xil_cis_set_attribute(cis, “COMPRESSOR_BITS_PER_IMAGE”,
(void *)bits_per_image);

348 XIL Programmer’s Guide—August 1994

18

You can read the value of this attribute using code similar to that shown below.

COMPRESSOR_DOC_CAMERA

The setting of this attribute determines whether the encoder sets the
document-camera bit in the picture header of the pictures it encodes. If the
attribute is set to FALSE, the encoder does not set this bit, and if it is set to
TRUE, the encoder does set the bit. By default, the attribute is set to FALSE.

The code fragment below show the attribute being set to TRUE.

You can also read the value of this attribute using code similar to the following.

XilCis cis;
int bits_per_image;

xil_cis_get_attribute(cis, “COMPRESSOR_BITS_PER_IMAGE”,
(void **)&bits_per_image);

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_DOC_CAMERA”,
(void *)TRUE);

XilCis cis;
Xil_boolean doc_camera_status;

xil_cis_get_attribute(cis, “COMPRESSOR_DOC_CAMERA”,
(void **)&doc_camera_status);

H.261 Codec 349

18

COMPRESSOR_ENCODE_INTRA

When this attribute is set, a call to xil_compress() causes the encoder to
compress a whole picture in intraframe mode. The encoder must compress this
picture without causing its output buffer to overflow.

In general, this attribute should be set to FALSE, its default value. An
application should set the attribute to TRUE only upon receiving a fast-update
request and should set the attribute back to FALSE after compressing one
frame.

The code below shows this attribute being set to TRUE.

You can read the value of this attribute using code similar to that shown below.

COMPRESSOR_FREEZE_RELEASE

As was mentioned in the section “Provisions for Multipoint Conferencing” on
page 346, an H.261 decoder can, in response to an external signal, freeze the
picture currently being displayed. This freeze remains in effect until a timeout
period has elapsed or until the decoder sees a freeze-release bit set in the
bitstream.

Setting the encoder’s COMPRESSOR_FREEZE_RELEASE attribute to TRUE causes
the encoder to set the freeze-release bit in the header of the subsequent pictures
it encodes. If a decoder has been in freeze-display mode, it will exit that mode
when it reads the freeze-release bit. By default,
COMPRESSOR_FREEZE_RELEASE is set to FALSE.

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_ENCODE_INTRA”,
(void *)TRUE);

XilCis cis;
Xil_boolean encode_intra_status;

xil_cis_get_attribute(cis, “COMPRESSOR_ENCODE_INTRA”,
(void **)&encode_intra_status);

350 XIL Programmer’s Guide—August 1994

18

The code below shows FREEZE_RELEASE being set to TRUE.

You can also read the value of this attribute, as is done in the code below.

COMPRESSOR_IMAGE_SKIP

This attribute does not control the number of pictures the compressor skips
between compressed pictures: the application controls that. However, if the
application is skipping pictures, the attribute should be set to the number of
pictures being skipped. This value figures in a calculation the compressor
performs before filling in the 5-bit temporal-reference field in the header of
each compressed picture. The compressor sets the value of this field to the
value of the temporal-reference field in the last compressed picture plus the
value of COMPRESSOR_IMAGE_SKIP plus 1.

The attribute can have a value in the range 0 to 31, and its default value is 0.
The code below shows IMAGE_SKIP being set to 1. This would be the
appropriate setting if your application were compressing every other frame of
video input.

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_FREEZE_RELEASE”,
(void *)TRUE);

XilCis cis;
Xil_boolean freeze_release_status;

xil_cis_get_attribute(cis, “COMPRESSOR_FREEZE_RELEASE”,
(void **)&freeze_release_status);

XilCis cis;
int images_skipped = 1;

xil_cis_set_attribute(cis, “COMPRESSOR_IMAGE_SKIP”,
(void *)images_skipped);

H.261 Codec 351

18

You can also read the value of this attribute using code similar to that shown
below.

COMPRESSOR_LOOP_FILTER

When an H.261 encoder is interframe encoding a macroblock and is using
motion compensation, the encoder has the option of filtering the macroblock in
the history image that is being used in the operation. (For more information
about interframe encoding in H.261, see the section “Prediction” on page 342.)
The setting of the COMPRESSOR_LOOP_FILTER attribute provides a hint to the
encoder concerning whether it should filter the macroblock in the history
image or not: a setting of TRUE suggests that the encoder perform the filtering
if necessary, and a setting of FALSE suggests that it not use the filter.

The default value for COMPRESSOR_LOOP_FILTER is TRUE. This setting gives
the encoder the flexibility to produce the most compact bitstream. Use the
FALSE setting when you need to minimize compression and decompression
time.

The code below shows COMPRESSOR_LOOP_FILTER being set to FALSE.

XilCis cis;
int images_skipped;

xil_cis_get_attribute(cis, “COMPRESSOR_IMAGE_SKIP”,
(void **)&images_skipped);

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_LOOP_FILTER”,
(void *)FALSE);

352 XIL Programmer’s Guide—August 1994

18

You can also read the value of this attribute. Use code similar to that shown
below.

COMPRESSOR_MV_SEARCH_RANGE

As discussed in the section “Prediction” on page 342, when an H.261 encoder is
interframe encoding a macroblock, it may use a technique called motion
compensation in determining which macroblock in the history image to use for
the operation. This macroblock in the history image may be offset by up to ±15
pixels in both the x and y directions from the macroblock in the history image
that matches exactly the position of the macroblock that is being encoded. This
means that the encoder may have to look at the contents of 961 (31 * 31)
macroblocks to find the best match for the macroblock it is encoding. The
COMPRESSOR_MV_SEARCH_RANGE attribute enables you limit the extent of this
search and, consequently, to speed up the encoding process.

Before setting the value of this attribute, you must declare and assign values to
the members of an XilH261MVSearchRange structure.

The value of x determines the extent of the search horizontally; that is, if x is
set to 5, the encoder can only search five pixels to the right or left. The value of
y determines the extent of the search vertically. Setting both values to 0 means
that the encoder should not perform motion compensation at all.

Note – The value of this attribute is actually only a hint to the encoder and
could be ignored.

XilCis cis;
Xil_boolean loop_filter_status;

xil_cis_get_attribute(cis, “COMPRESSOR_LOOP_FILTER”,
(void **)&loop_filter_status);

typedef struct {
int x;
int y;

} XilH261MVSearchRange;

H.261 Codec 353

18

The code below shows COMPRESSOR_MV_SEARCH_RANGE being set so that the
encoder will search only 7 pixels horizontally and vertically.

You can also read the value of this attribute. See the code fragment below.

COMPRESSOR_SPLIT_SCREEN

The setting of this attribute determines whether the encoder sets the
split-screen bit in the picture header of the pictures it encodes. If the attribute
is set to FALSE, the encoder does not set this bit, and if it is set to TRUE, the
encoder does set the bit. By default, the attribute is set to FALSE.

The code fragment below shows the attribute being set to TRUE.

XilCis cis;
XilH261MVSearchRange search_range;

search_range.x = 7;
search_range.y = 7;
xil_cis_set_attribute(cis, “COMPRESSOR_MV_SEARCH_RANGE”,

(void *)&search_range);

XilCis cis;
XilH261MVSearchRange search_range;

xil_cis_get_attribute(cis, “COMPRESSOR_MV_SEARCH_RANGE”,
(void **)&search_range);

XilCis cis;

xil_cis_set_attribute(cis, “COMPRESSOR_SPLIT_SCREEN”,
(void *)TRUE);

354 XIL Programmer’s Guide—August 1994

18

You can also read the value of this attribute using code similar to the following.

Decompression Attributes

Of the decompression attributes, only one, IGNORE_HISTORY, affects the
behavior of the decoder. The remaining attributes simply enable you to read
values from the header of the most recently decompressed picture.

IGNORE_HISTORY

The IGNORE_HISTORY attribute affects your ability to seek forward and
backward in an H.261 bitstream. These seeks are somewhat problematic in
H.261 because the codec relies so heavily on interframe encoding and does not
require periodic key frames.

By default, IGNORE_HISTORY is set to FALSE. In this case, backward seeks are
illegal because there is no way to seek backward and still have a valid history
frame to use in decoding a picture. Forward seeks are possible, but to ensure
that it can decode the frame you seek to properly, the decoder must actually
decode all the frames you “skip.” This is the only way the decoder can
maintain the correct data in its history buffer.

If you set IGNORE_HISTORY to TRUE, you’re telling the decoder that it’s OK if,
after a seek, it does not have the correct data in its history buffer to decode the
next picture. In this case, backward seeks are legal, and forward seeks are
faster than they would be otherwise. The drawback to ignoring the history
image is that you may have to decode as many as 132 frames after a seek
before you get a properly reconstructed picture.

Note – There is one exception to what was said in the preceding paragraph. If
IGNORE_HISTORY is set to TRUE and you seek backward by one frame and
then call xil_decompress() , you will get a good picture. The decompressor
can copy this picture from its history buffer.

XilCis cis;
Xil_boolean split_screen_status;

xil_cis_get_attribute(cis, “COMPRESSOR_SPLIT_SCREEN”,
(void **)&split_screen_status);

H.261 Codec 355

18

The code below shows IGNORE_HISTORY being set to TRUE.

You can also read the value of this attribute. To do this, use code similar to that
shown below.

DECOMPRESSOR_DOC_CAMERA

Reading this attribute tells you whether the document-camera bit was set in
the header of the most recently decompressed picture. If the value of the
attribute is TRUE, the bit was set, and if the value is FALSE, it was not set.

The code fragment below illustrates how to read the attribute.

DECOMPRESSOR_FREEZE_RELEASE

This attribute enables you to read the value of the freeze-release bit for the
most recently decompressed picture. If the bit was set, the value of the
attribute will be TRUE; otherwise, it will be FALSE.

Here’s how an application uses this information: If the application has frozen
the display in response to a freeze-picture request and
DECOMPRESSOR_FREEZE_RELEASEis set to FALSE, the application does not

XilCis cis;

xil_cis_set_attribute(cis, “IGNORE_HISTORY”, (void *)TRUE);

XilCis cis;
Xil_boolean ignore_history_status;

xil_cis_get_attribute(cis, “IGNORE_HISTORY”,
(void **)&ignore_history_status);

XilCis cis;
Xil_boolean doc_camera_status;

xil_cis_get_attribute(cis, “DECOMPRESSOR_DOC_CAMERA”,
(void **)&doc_camera_status);

356 XIL Programmer’s Guide—August 1994

18

display the picture it just decoded (unless a timeout period has elapsed). On
the other hand, if the attribute is set to TRUE, it does display that picture, and
all ensuing pictures until it receives another freeze-picture request.

The code below shows how to read the value of
DECOMPRESSOR_FREEZE_RELEASE.

DECOMPRESSOR_SOURCE_FORMAT

This attribute enables you to determine whether the most recently
decompressed picture was in CIF (352 by 288 pixels) or QCIF (176 by 144
pixels) format. The value of the attribute will be one of the enumeration
constants shown below.

The code below shows how you might read the value of
DECOMPRESSOR_SOURCE_FORMAT.

DECOMPRESSOR_SPLIT_SCREEN

Reading this attribute tells you whether the split-screen bit was set in the
header of the most recently decompressed picture. If the value of the attribute
is TRUE, the bit was set, and if the value is FALSE, it was not set.

XilCis cis;
Xil_boolean stop_freeze;

xil_cis_get_attribute(cis, “DECOMPRESSOR_FREEZE_RELEASE”,
(void **)&stop_freeze);

typedef enum {
QCIF, CIF

} XilH261SourceFormat;

XilCis cis;
XilH261SourceFormat source_format;

xil_cis_get_attribute(cis, “DECOMPRESSOR_SOURCE_FORMAT”,
(void **)&source_format);

H.261 Codec 357

18

The code fragment below illustrates how to read the attribute.

DECOMPRESSOR_TEMPORAL_REFERENCE

This attribute enables you to retrieve the value of the temporal-reference field
in the header of the last picture decoded. Since this is a 5-bit field, the value
will be in the range 0 to 31.

By looking at the temporal reference fields of the last two decompressed
frames, an application can determine how many pictures the encoder skipped
between these pictures. In most instances, the number of skipped pictures
equals

temporal reference for picturex - temporal reference for picturex-1 - 1

However, if the temporal reference value for picturex is less than the temporal
reference for picturex-1, the calculation becomes

31 + temporal reference for picturex - temporal reference for picturex-1

The code below shows how to read the value of
DECOMPRESSOR_TEMPORAL_REFERENCE.

XilCis cis;
Xil_boolean split_screen_status;

xil_cis_get_attribute(cis, “DECOMPRESSOR_SPLIT_SCREEN”,
(void **)&split_screen_status);

XilCis cis;
int temp_ref;

xil_cis_get_attribute(cis, “DECOMPRESSOR_TEMPORAL_REFERENCE”,
(void **)&temp_ref);

358 XIL Programmer’s Guide—August 1994

18

H.261 Molecules
The XIL library includes a series of molecules that accelerate the playback of
H.261 bitstreams. These molecules are optimized routines that perform the jobs
of two or more functions from the XIL API. You do not call such an optimized
routine directly; rather, the library calls a molecule when your program calls a
predefined sequence of XIL functions, sometimes with specific arguments.

For example, if your program calls xil_decompress() to decode an image
stored in an H.261 CIS and then calls xil_ordered_dither() to dither the
decoded image from a 24- to an 8-bit image, the library may not call these two
functions. Instead, it may call a molecule that performs the decompression and
the dithering in an optimized way.

For information about the H.261 molecules that are available and information
about how to call those molecules, see the section “XIL Molecules” on
page 398.

359

MPEG-1 Codec 19

This chapter discusses the MPEG-1 video codec specified by the Moving
Picture Experts Group, an ISO working group. This group has produced a
standard that is similar to the H.261 standard developed by the CCITT (see
Chapter 18, “H.261 Codec”), but places less emphasis on low bit rates. By
accepting a higher bit rate—for example, 1.5 Mbits per second—an MPEG-1
codec is able to recreate very high-quality pictures and to produce a bitstream
that is easily editable.

The rate of 1.5 Mbits/s makes the MPEG-1 codec especially viable in
applications that read compressed data from CD-ROMs because even older
CD-ROM readers can read data at this speed. Thus, putting an MPEG-1
bitstream on a CD-ROM is an effective way to distribute movies, business
presentations, and training videos.

The remainder of this chapter is divided into four sections. The first section
provides an overview of how an MPEG-1 codec works. The second explains
briefly how to create an MPEG-1 CIS. The third discusses CIS attributes that
apply specifically to a CIS associated with an XIL MPEG-1 compressor or
decompressor (as opposed to the general CIS attributes covered in the section
“General CIS Attributes” on page 257). And the fourth section introduces the
subject of accelerating the playback of MPEG-1 bitstreams. For further
information on this subject, see Chapter 21, “Acceleration in XIL Programs.”

360 XIL Programmer’s Guide—August 1994

19

Note – This chapter discusses both MPEG-1 compression and decompression.
However, the current release of the XIL library includes only an MPEG-1
decompressor. The compressor interface is defined for third parties who want
to implement XIL MPEG-1 compressors.

How an MPEG-1 Codec Works
Since the work done by the Motion Picture Experts Group grew out of the
work done by the CCITT in developing the H.261 video codec, this section
explains how the MPEG-1 codec works by comparing and contrasting it with
the H.261 codec. (If you’re unfamiliar with how an H.261 codec works, see the
section “How an H.261 Codec Works” on page 338.) The present section also
includes a subsection that describes the organizational structure that MPEG-1
imposes on a video sequence.

Similarities Between MPEG-1 and H.261

The key similarities between MPEG-1 and H.261 are listed below:

• Both compressors work with YCbCr pictures in which the information in the
chroma channels has been subsampled so that there is one Cb and one Cr

value for each 2-by-2 block of luma values.

• Like the H.261 compressor, the MPEG-1 compressor can compress a
macroblock (a 16-by-16 block of pixels in a picture) by encoding the actual Y,
Cb, and Cr values in the macroblock (intraframe encoding) or by encoding
the differences between values in the current block and values in the
corresponding macroblock in the previous picture (forward prediction). In
addition, when using the forward-prediction encoding method, the MPEG-1
compressor, like the H.261 compressor, can employ motion compensation.

• Both compressors encode 8-by-8 blocks of pixel values or difference values
using the same method. The compressors first perform a Discrete Cosine
Transform (DCT) on the 8-by-8 block of values. This operation transforms
the values in the block from the spatial to the transform domain. Second, the
compressors quantize the coefficients produced by the DCT. Finally, the
compressors use entropy coding to encode the quantized coefficients.

MPEG-1 Codec 361

19

Differences Between MPEG-1 and H.261

Although the Moving Picture Experts Group drew heavily on the work of the
CCITT, there are also very significant differences between the MPEG-1 and
H.261 compressors. Most of these differences provide for random access to the
MPEG-1 bitstream and make the bitstream easily editable.

I Pictures and P Pictures

In H.261, the ideas of intraframe encoding and predictive encoding are applied
for the most part at the macroblock level. MPEG-1, on the other hand, includes
the notion of intraframe-encoded pictures and predicted pictures.

In an intraframe-encoded picture, or I picture, all macroblocks are intraframe
encoded. This, of course, means that the decoder needs no information from a
preceding picture to decode an I picture. For this reason, seeks to I frames can
be performed very quickly.

In a predicted picture, or P picture, each macroblock can be intraframe
encoded or encoded using the forward-prediction method. This type of picture
is very similar to an H.261 picture.

Typically, an MPEG-1 bitstream will contain more P pictures than I pictures
because the P picture can be encoded using fewer bits. Encoding difference
values generally requires fewer bits than encoding pixel values. Also, the
encoder does not have to encode macroblocks that are very similar to their
counterparts in the preceding I or P picture.

B Pictures

From what we’ve said so far, you might picture an MPEG-1 bitstream as
containing periodic I pictures followed by a number of P pictures. See
Figure 19-1.

Figure 19-1 An MPEG-1 Bitstream Containing I and P Pictures

I I I IP P P P P P P P P

362 XIL Programmer’s Guide—August 1994

19

This does constitute a legal MPEG-1 bitstream. However, the bitstream may
also contain one or more bidirectionally predicted pictures, or B pictures,
between any pair of I or P pictures. In a B picture, each macroblock may be

• Intraframe encoded

• Forward predicted from the nearest preceding I or P picture

• Backward predicted from the nearest succeeding I or P picture

• Bidirectionally predicted from the nearest preceding I or P picture and the
nearest succeeding I or P picture

We’ve already discussed intraframe encoding and forward prediction.

Backward prediction is strictly analogous to forward prediction. A
backward-predicted macroblock is encoded with respect to the values in the
corresponding macroblock in a picture that follows its own picture in the video
sequence. This option may seem unintuitive at first thought because it results
in a situation where pictures are not transmitted in the order in which they will
be displayed. See Figure 19-2.

Figure 19-2 MPEG-1 Display Order Versus Decoding Order

However, backward prediction is an option because it can lead to a more
compact bitstream in instances where the macroblocks in a B picture match
their counterparts in the closest succeeding I or P picture more closely than
they match their counterparts in the closest preceding I or P picture.

A bidirectionally predicted macroblock is coded with respect to the
corresponding macroblock in both the closest preceding and succeeding I/P
pictures. See Figure 19-3.

Images that are to
be displayed in
this order...

must be transmitted
in this order.

I B P I P B

MPEG-1 Codec 363

19

Figure 19-3 Bidirectional Prediction in MPEG-1

In this case, the encoder averages the values in macroblocks A and C and then
encodes the difference between values in macroblock B and the averaged
macroblock. Bidirectional prediction is effective because the difference
mentioned above is often so small that it does not need to be encoded.

For MPEG-1, the behavior of the xil_cis_get_bits_ptr() function differs
from its usual behavior. For a bitstream with out-of-order frames (that is, a
bitstream with B frames), the actual number of frames in the data returned by
xil_cis_get_bits_ptr() may not equal the value of its nframes
parameter. The value of nframes is the number of frames the CIS read frame
has been advanced by the xil_cis_get_bits_ptr() call. A seek back by
nframes by calling xil_cis_seek() will restore the read position to the
original read frame (before the xil_cis_get_bits_ptr() call). This is
useful for an application that uses a preview mode, where the compress and
write-to-file is followed by a decompress.

Since the number of frames reported may not represent the actual number of
frames, if the chunk is subsequently used for an xil_cis_put_bits() or
xil_cis_put_bits_ptr() call, the nframes parameter must be set to -1,
which indicates an unknown number of frames.

Groups of Pictures

Another concept used in MPEG-1 that does not apply in H.261 is that of a
group of pictures. This is a series of consecutive pictures from a video
sequence. Generally, the group of pictures provides a unit of the bitstream that
can be removed without destroying the integrity of the bitstream and a unit

I/P Picture B Picture I/P Picture

A B C

Corresponding macroblocks

364 XIL Programmer’s Guide—August 1994

19

that can be decoded independently of the rest of the bitstream. As you’ll see in
a moment, however, the group of pictures does not always have these
characteristics.

By definition, a group of pictures (considered in display order) must begin
with an I picture or with one or more B pictures followed by an I picture. It
must end with an I or a P picture. A closed group of pictures can be decoded
without any information from the preceding group of pictures. Thus, a closed
group is one that begins with an I picture or one that begins with one or more
B pictures whose macroblocks have been encoded using only intraframe
encoding and backward prediction. An open group of pictures begins with one
or more B pictures, at least one of which contains macroblocks encoded using
forward or bidirectional prediction. This type of group can be decoded only if
the preceding group of pictures is available. If that group is not available—for
example, if an MPEG-1 bitstream editing program has removed the group—a
broken-link bit must be set in the header for the open group of pictures.

How MPEG-1 Organizes a Video Sequence

We’ve already mentioned some of the organizational units used in MPEG-1,
such as the group of pictures and the macroblock. This section provides a
complete overview of these units. This information should be useful to you as
you read about MPEG-1 CIS attributes later in this chapter because many of
these attributes are associated with a particular unit.

The largest unit MPEG-1 defines is the video sequence. You might think of this
unit as an entire movie or presentation. Each MPEG-1 bitstream includes a
sequence header, which defines several attributes for the entire sequence.
These include the pixel aspect ratio for the sequence, the picture rate for the
sequence in pictures per second, and the bit rate of the data channel over
which the compressed sequence will be moved. An additional sequence header
is written to the bitstream each time one of the encoder’s quantization tables is
changed.

Each sequence is divided into a series of groups of pictures. See the section
“Groups of Pictures” on page 363 for a definition of this unit. If you’re
compressing video using an XIL-compliant MPEG-1 encoder, you can control
the makeup of each group of pictures using the attribute
COMPRESSOR_PATTERN.

MPEG-1 Codec 365

19

Each group of pictures consists of pictures, which are individual frames of
video. The major attributes associated with each picture are a picture type and
a temporal reference. The major picture types are intraframe-encoded pictures,
forward-predicted pictures, and bidirectionally predicted pictures. The
temporal reference is an integer identifying a picture’s place within a group of
pictures.

The largest subdivision of a picture is called a slice, which consists of a series
of consecutive macroblocks. Slices within a picture may vary in size, but each
macroblock in a picture must be part of a slice. This unit is designed primarily
to help a decoder recover from a bitstream error. If a decoder detects an error,
one way to recover is to skip to the next slice header.

Slices, as mentioned in the preceding paragraph, are built from macroblocks.
These are 16-by-16 block of pixels. The macroblock is the level at which motion
compensation is performed. Also, the type of encoding used—intraframe,
forward prediction, backward prediction, or bidirectional prediction—can
change from macroblock to macroblock.

Finally, each macroblock is divided into six 8-by-8 blocks. Four of these blocks
contain luma values, one contains Cb values, and one contains Cr values. This
is the level at which the DCT is performed.

Creating an MPEG-1 CIS
Before you can use the MPEG-1 decompressor to decompress an MPEG-1
bitstream, you must create an MPEG-1 CIS (and write an MPEG-1 bitstream to
the CIS). You create this CIS by passing the decompressor name Mpeg1 to the
function xil_cis_create() . See the code fragment below.

MPEG-1 Codec Attributes
As discussed in the section “General CIS Attributes” on page 257, there is a
class of attributes that can be set for any CIS. There is also a set of attributes
that are valid only for CISs attached to an MPEG-1 compressor or

XilCis cis;
XilSystemState state;

cis = xil_cis_create(state, “Mpeg1”);

366 XIL Programmer’s Guide—August 1994

19

decompressor. You set codec-specific attributes using the function
xil_cis_set_attribute() , and you read codec-specific attributes using the
function xil_cis_get_attribute() .

The MPEG-1 attributes can be broadly grouped into those that affect
compression and those that affect decompression. The attributes are discussed
under these headings below.

Compression Attributes

Setting any of the following attributes affects how an MPEG-1 compressor
compresses images. It is also possible to read the value of each of these
attributes.

COMPRESSOR_BITS_PER_SECOND

You use this attribute to tell the encoder how many bits it can use to encode
one second’s worth of pictures. This value is written to the sequence header for
a picture sequence and is assumed to remain constant for the duration of the
sequence. You cannot change the value of this attribute after the encoder
compresses the first picture in the sequence.

The value you assign to the attribute must fall in the range 1 to 104,856,800.
Before inserting this value in the sequence header, the encoder rounds it up to
the nearest multiple of 400. The default value of the attribute is 1,152,000.

The code below shows how you might set the value of
COMPRESSOR_BITS_PER_SECOND to 1,856,000.

XilCis cis;
int bits_per_second = 1856000;

xil_cis_set_attribute(cis, “COMPRESSOR_BITS_PER_SECOND”,
(void *)bits_per_second);

MPEG-1 Codec 367

19

To read the value of the attribute, you might use code similar to this.

COMPRESSOR_INSERT_VIDEO_SEQUENCE_END

Normally, the value of this attribute is FALSE. If you set it to TRUE, any time a
subsequent call is made to xil_cis_flush() , the encoder writes a video-
sequence-end (eos) code to the last frame in the CIS. This action is added to the
normal actions taken by the flush routine. When set to FALSE, this attribute
doesn’t affect the normal actions of the flush routine.

The code below shows the attribute being set to TRUE.

Note – The library prevents multiple eos codes from being written to the same
frame. Thus, when the write-frame’s number doesn’t change and
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END is TRUE, multiple calls to
xil_cis_flush() result in only one eos code in the frame; this code is
written after the first call to xil_cis_flush() .

You can read the value of this attribute using code similar to the following:

XilCis cis;
int bits_per_second;

xil_cis_get_attribute(cis, “COMPRESSOR_BITS_PER_SECOND”,
(void **)&bits_per_second);

XilCis cis;

xil_cis_set_attribute(cis,
“COMPRESSOR_INSERT_VIDEO_SEQUENCE_END”, (void *)TRUE);

XilCis cis;
Xil_boolean sequence_end_status;

xil_cis_get_attribute(cis,
“COMPRESSOR_INSERT_VIDEO_SEQUENCE_END”,
(void **)&sequence_end_status);

368 XIL Programmer’s Guide—August 1994

19

Table 19-1 shows two command sequences that result in the same CIS pattern;
these sequences assume the call to xil_cis_set_attribute() sets the
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute to TRUE.

Note – On this page and the following pages, the term CIS pattern refers to the
order that frames appear in the bitstream. Don’t confuse this with the
COMPRESSOR_PATTERN attribute (see page 376), which lets you specify the
makeup of a group of pictures. For example, the COMPRESSOR_PATTERN
IBBPBBP will result in the bitstream CIS pattern IPBBPBB.

For the two sequences shown in Table 19-1, the resulting CIS sequence is:

vsh.I0.P3.B1.B2.eos

where vsh represents the video sequence header information, and eos
represents the end-of-sequence code. Between the vsh and the eos code are the
frame types and their display id’s; among the frame types, I = interframe
encoding, P = predicted pictures, and B = bidirectionally predicted pictures.

From the XIL point of view, the vsh is bundled with the first frame, I0, and the
eos is bundled with the last frame, B2.

There may be multiple vsh components associated with one eos, since the vsh
changes as certain CIS attributes change (within the XIL limitations that there
are no width/height changes).

In addition, there may be multiple sequences within a bitstream; thus,

vsh-----eos.vsh----eos.vsh----eos

Table 19-1 Two Command Sequences: CIS Pattern = IPBB

Command Sequence 1 Command Sequence 2

xil_compress xil_cis_set_attribute

xil_compress xil_compress

xil_compress xil_compress

xil_compress xil_compress

xil_cis_flush /* normal */ xil_compress

xil_cis_set_attribute xil_cis_flush /* normal + eos */

xil_cis_flush /* normal + eos */

MPEG-1 Codec 369

19

constitutes three sequences.

If frames are compressed into the CIS after the call to xil_cis_flush() , it’s
the compressor's responsibility to provide the vsh per sequence. Before the
application changes an attribute that would result in a new sequence header, it
must first output an eos for the current sequence by calling xil_cis_flush()
with COMPRESSOR_INSERT_VIDEO_SEQUENCE_END = TRUE. For example,
before you can change the attribute COMPRESSOR_BITS_PER_SECOND (see
page 366), you must first set COMPRESSOR_INSERT_VIDEO_SEQUENCE_END to
TRUE and call xil_cis_flush() to write the eos code to the bitstream.

An MPEG-1 sequence isn’t valid without the eos code; therefore, the last frame
in the sequence must be followed by the eos code. Since it cannot be predicted
when an application will end a sequence, the MPEG-1 codec reserves the last
frame or subgroup of frames in the CIS so that you can write an eos to that
frame or subgroup. The reserved frame or subgroup must be released before it
can be retrieved with xil_cis_get_bits_ptr() or xil_decompress() .

Note – The reserved frame or subgroup affects the logic you need for calling
xil_cis_get_bits_ptr() and xil_decompress() . For example, typically
you call xil_decompress() from within a loop that executes only when
xil_cis_has_frame() returns TRUE. When decompressing an MPEG-1 CIS,
you must first release the reserved frames before you can expect a loop control
condition that depends on the return value of xil_cis_has_frame() to
evaluate to TRUE.

The following paragraphs tell you how to release the reserved frames.
Beginning on page 371, the discussion moves to some example function-call
sequences and shows how these sequences would affect both the return value
of xil_cis_has_frame() and xil_cis_get_bits_ptr() .

A frame or subgroup is released when:

• It is followed by an eos, thus providing a valid sequence. This is done by
setting the COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute to TRUE
and then calling xil_cis_flush() , as described above.

• It is followed by another frame or subgroup. For an all I bitstream or a
mixed I-P bitstream, this just means that another frame is added to the CIS.
Since there are no out-of-order frames, a subgroup for this type of CIS is just
a frame.

370 XIL Programmer’s Guide—August 1994

19

The following sequences release a frame:

I0.I1 I1 releases I0

I0.P1 P1 releases I0

For any bitstream with B frames, releasing a frame or subgroup is more
complicated. B frames have a future-predictive frame that appears in the
bitstream previous to the B frame, and multiple B frames may share the same
predictive frame. So you can get the following (in these examples, any of the I's
can be replaced by a P):

I2.B1

I3.B1.B2

I4.B1.B2.B3

I6.B1.B2.B3.B4.B5

I9.B1.B2.B3.B4.B5.B6.B7.B8

A sequence is considered a complete subgroup when its predictive frame has
the display id N, and the predictive frame is followed by one or more B frames,
the last of whose display id is N-1. Thus, all of the above bitstream fragments
are complete subgroups.

The following are examples of bitstreams with incomplete subgroups:

I3.B1 missing B2

I6.B1.B2.B3 missing B4,B5

When there are incomplete subgroups, the compressor must buffer the
compressed frames until the buffer contains a complete subgroup, at which
point the compressor adds the completed subgroup to the bitstream. In this
manner, the compressor can handle interruptions to the compression-frame
sequence as necessary. For example, if, halfway through the IPBBB group, the
video player’s Stop/Output button is pressed, the compressor must be able to
take the resulting I0.P4.B1 bitstream and rework it into a legal output form.

Once the subgroup is complete, it cannot be released until it is followed by an
eos, or it is followed by another valid subgroup. The following sequences show
a subgroup being released:

I0.I2.B1.eos I2.B1 released by eos

I0.I2.B1.I4.B3 I2.B1 released by I4.B3

I0.I3.B1.B2.P5.B4 I3.B1.B2 released by P5.B4

I0.I3.B1.B2.P5.B4.eos P5.B4 released by eos

MPEG-1 Codec 371

19

The tables below show how subgroups are affected by a particular sequence of
function calls. In each of these tables:

• Column heading WF is an abbreviation for Write Frame

• Column heading has_frame is an abbreviation for the
xil_cis_has_frame() function and the column text shows what the
return value for that function would be

• Column heading get_bits_ptr is an abbreviation for the
xil_cis_get_bits_ptr() function and the column text shows the
frames that would be returned by a call to that function

• Column heading RF is an abbreviation for Read Frame and the column text
shows what the read frame would be after the call to
xil_cis_get_bits_ptr()

• A call to xil_cis_set_attribute() in the sequence sets the
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute to TRUE

In Table 19-2, the CIS pattern is all I frames and the result is that subgroup I2 is
released by an appended eos. Notice that the first xil_cis_flush() call has
no affect on the subgroup since the default setting for the
COMPRESSOR_INSERT_VIDEO_SEQUENCE_END attribute is FALSE.

Table 19-2 Releasing a Frame: CIS Pattern = All I Frames

Function
W
F has_frame get_bits_ptr RF CIS

xil_compress 1 FALSE NULL 0 I0

xil_compress 2 TRUE I0 1 I0.I1

xil_compress 3 TRUE I1 2 I0.I1.I2

xil_cis_flush 3 FALSE NULL 2 I0.I1.I2

xil_cis_set_attribute

xil_cis_flush 3 TRUE I2.eos 3 I0.I1.I2.eos

372 XIL Programmer’s Guide—August 1994

19

In Table 19-3, the CIS pattern is IPB and the result is that subgroup P2.B1 is
released by the appended eos.

Finally, in Table 19-4, the CIS pattern is IPBBPBB and the result is that
subgroup P3.B1.B2 is released by the next subgroup, P6.B4.B5.

Table 19-3 Releasing a Frame: CIS Pattern = IPB

Function
W
F has_frame get_bits_ptr RF CIS

xil_compress 1 FALSE NULL 0 I0

xil_compress 2 FALSE NULL 0 I0

xil_compress 3 TRUE I0 1 I0.P2.B1

xil_cis_set_attribute

xil_cis_flush 3 TRUE P2.B1.eos 3 I0.P2.B1.eos

Table 19-4 Releasing a Frame: CIS Pattern = IPBBPBB

Function
W
F has_frame get_bits_ptr RF CIS

xil_compress 1 FALSE NULL 0 I0

xil_compress 2 FALSE NULL 0 I0

xil_compress 3 FALSE NULL 0 I0

xil_compress 4 TRUE I0 1 I0.P3.B1.B2

xil_compress 5 FALSE NULL 1 I0.P3.B1.B2

xil_compress 6 FALSE NULL 1 I0.P3.B1.B2

xil_compress 7 TRUE P3.B1.B2 4 I0.P3.B1.B2.P6.B4.B5

MPEG-1 Codec 373

19

COMPRESSOR_INTRA_QUANTIZATION_TABLE

This attribute enables you to specify an 8-by-8 matrix of values to be used in
quantizing the DCT coefficients for blocks in intraframe-encoded macroblocks.
If you set this attribute, the table will be written to your bitstream’s sequence
header. If you don’t set it, the encoder will use a default
implementation-specific table.

If you supply your own table, it must meet these requirements:

• The first value in the table must be an 8, the fixed quantization level of the
DC coefficient for the block.

• The remaining values must fall in the range 1 to 255.

• The values must be listed in the zigzag order shown in Figure 19-4.

Figure 19-4 Zigzag Ordering of Quantization Table Values

374 XIL Programmer’s Guide—August 1994

19

The code below shows how to specify a table. This particular table is the one
that is used as an example in the MPEG-1 standard and may well be the
encoder’s default table.

You can read the value of the attribute using code similar to this.

If, after this call, intra_quant_table is a null pointer, the default table is in
use; otherwise, intra_quant_table is a pointer to a user-supplied
quantization matrix. In the latter case, your application must free the matrix
pointed to by intra_quant_table when it is no longer needed.

XilCis cis;
Xil_unsigned8 intra_quant_table[64] = {

8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83 };

xil_cis_set_attribute(cis,
“COMPRESSOR_INTRA_QUANTIZATION_TABLE”,
(void *)intra_quant_table);

XilCis cis;
Xil_unsigned8 *intra_quant_table;

xil_cis_get_attribute(cis,
“COMPRESSOR_INTRA_QUANTIZATION_TABLE”,
(void **)&intra_quant_table);

MPEG-1 Codec 375

19

COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE

This attribute enables you to specify an 8-by-8 matrix of values to be used in
quantizing the DCT coefficients for blocks in nonintraframe-encoded
macroblocks. If you set this attribute, the table will be written to your
bitstream’s sequence header. If you don’t set it, the encoder will use an
implementation-specific default table.

If you supply an alternate table, it must meet these requirements:

• The values in the table must fall in the range 1 to 255.

• The values must be listed in the zigzag order shown in Figure 19-4 on
page 373.

The code below is an example of how you might supply a custom table. This
table, which contains all 16’s, is used as an example in the MPEG-1
specification.

You can read the value of the attribute using code similar to this.

XilCis cis;
Xil_unsigned8 non_intra_quant_table[64];
int i;

for (i = 0; i < 64; i++)
non_intra_quant_table[i] = 16;

xil_cis_set_attribute(cis,
“COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE”,
(void *)non_intra_quant_table);

XilCis cis;
Xil_unsigned8 *non_intra_quant_table;

xil_cis_get_attribute(cis,
“COMPRESSOR_NON_INTRA_QUANTIZATION_TABLE”,
(void **)&non_intra_quant_table);

376 XIL Programmer’s Guide—August 1994

19

COMPRESSOR_PATTERN

This attribute enables you to specify the makeup of each group of pictures. You
dictate the number of pictures in each group, the types of the pictures in the
group, and the display order of those pictures. Your specification must
conform to the following rules:

• A group of pictures may begin with one or more B pictures or an I picture.

• If the group starts with one or more B pictures, those pictures must be
followed by an I picture.

• The first I picture in the group may be followed by any number of I and P
pictures, and any combination of an I and a P picture may have intervening
B pictures.

• The group of pictures must end with an I or a P picture.

Note – A group of pictures can also contain all D pictures. (A D picture
contains only low-frequency information and is meant to be used for fast
visible searches.) However, the XIL library’s MPEG-1 decompressor cannot
decode bitstreams containing D pictures.

You specify the makeup of the group by assigning values to a structure of type
XilMpeg1Pattern :

typedef struct {
char *pattern;
Xil_unsigned32 repeat_count;

} XilMpeg1Pattern;

MPEG-1 Codec 377

19

The string pattern determines the types of the pictures (in display order) that
will appear at the beginning of the group of pictures. This string must contain
a combination of the characters shown in Table 19-5.

For example, suppose you want each group of pictures to begin with the
thirteen pictures shown in Figure 19-5.

Figure 19-5 Sample Group of Pictures

You would set pattern to “IBBPBBPBBPBBP”.

The parameter repeat_count is a number greater than 0 that determines the
total number of pictures in the group of pictures. For example, suppose that
you set repeat_count to 3 as shown in the following example.

This call requests that the pattern shown in Figure 19-5 be repeated 3 times, so
that there will be a total of 39 pictures in the group.

Table 19-5 Characters Representing Picture Types

Character Picture Type

I Intraframe picture

P Forward-predicted picture

B Bidirectionally predicted picture

D DC-coefficient picture

XilCis cis;
XilMpeg1Pattern picture_pattern = {“IBBPBBPBBPBBP”, 3};

xil_cis_set_attribute(cis, “COMPRESSOR_PATTERN”,
(void *)&picture_pattern);

I B P P P PB B B B B B B

378 XIL Programmer’s Guide—August 1994

19

When you set this attribute, the encoder terminates the group of pictures it was
working on immediately. Thus, the next call to xil_compress() causes the
encoder to compress the first picture in a new group of the type you just
specified.

If you do not set this attribute, a default implementation-specific pattern will
be used. To select the default pattern after having selected a custom pattern,
you pass a null pointer to xil_cis_set_attribute() .

You can also read the value of COMPRESSOR_PATTERN. To do this, you might
use code similar to the following.

If, after this call, picture_pattern is a null pointer, the encoder is using the
default picture pattern. Otherwise, picture_pattern points to a structure
containing a pattern string and a repeat count. In the latter case, when you
have finished using the structure, your application should free the storage that
the XIL library allocated to hold the pattern string and then free the storage the
library allocated to hold the structure.

COMPRESSOR_PEL_ASPECT_RATIO

The value of this attribute, along with the width and height of a picture in
pixels, indicates the shape a picture is meant to have when it is displayed.
Basically, the ratio of the width to the height of the displayed picture should
be:

width in pixels / (height in pixels * aspect ratio)

If you supply an aspect ratio, this value is written to the sequence header for
your bitstream and can be read later by an XIL-compliant MPEG-1
decompressor. The default value is implementation specific.

XilCis cis;
XilMpeg1Pattern *picture_pattern;

xil_cis_get_attribute(cis, “COMPRESSOR_PATTERN”,
(void **)&picture_pattern);

MPEG-1 Codec 379

19

The valid values for COMPRESSOR_PEL_ASPECT_RATIO are contained in the
enumeration shown below.

The most important values in the enumeration are Ratio_1_0 ,
Ratio_0_9157 , and Ratio_1_0950 . The value Ratio_1_0 indicates that the
pictures in the sequence can be shown without distortion on a computer
monitor, which has square pixels. Ratio_0_9157 indicates that pictures can
be displayed without distortion on CCIR Rec. 601 625-line televisions. And
Ratio_1_0950 indicates that pictures can be displayed without distortion on
CCIR Rec. 601 525-line televisions.

You can use the value NullDefault to reset the aspect ratio to its default
value.

The code below shows COMPRESSOR_PEL_ASPECT_RATIO being set to
Ratio_1_0 .

typedef enum {
NullDefault,
Ratio_1_0, /* 1.0 */
Ratio_0_6735, /* 0.6735 */
Ratio_0_7031, /* 0.7031 */
Ratio_0_7615, /* 0.7615 */
Ratio_0_8055, /* 0.8055 */
Ratio_0_8437, /* 0.8437 */
Ratio_0_8935, /* 0.8935 */
Ratio_0_9157, /* 0.9157 */
Ratio_0_9815, /* 0.9815 */
Ratio_1_0255, /* 1.0255 */
Ratio_1_0695, /* 1.0695 */
Ratio_1_0950, /* 1.0950 */
Ratio_1_1575, /* 1.1575 */
Ratio_1_2015 /* 1.2015 */

} XilMpeg1PelAspectRatio;

XilCis cis;
XilMpeg1PelAspectRatio aspect_ratio = Ratio_1_0;

xil_cis_set_attribute(cis, “COMPRESSOR_PEL_ASPECT_RATIO”,
(void *)aspect_ratio);

380 XIL Programmer’s Guide—August 1994

19

You can read the current value of this attribute using code similar to that
shown below.

If aspect_ratio equals NullDefault after this call, the aspect ratio for the
sequence is the default aspect ratio defined by the implementors of the
encoder.

COMPRESSOR_PICTURE_RATE

You use this attribute to specify the picture rate of the sequence being encoded
in pictures per second. This value and the value of
COMPRESSOR_BITS_PER_SECOND enable the encoder to determine how many
bits it can use to encode each picture.

The valid values for COMPRESSOR_PICTURE_RATE are the enumeration
constants shown below. These constants correspond to the rates of commonly
available sources of analog and digital video.

XilCis cis;
XilMpeg1PelAspectRatio aspect_ratio;

xil_cis_get_attribute(cis, “COMPRESSOR_PEL_ASPECT_RATIO”,
(void **)&aspect_ratio);

typedef enum {
NullDefault,
Rate_23_976, /* 23.976 */
Rate_24, /* 24.0 */
Rate_25, /* 25.0 */
Rate_29_97, /* 29.97 */
Rate_30, /* 30.0 */
Rate_50, /* 50.0 */
Rate_59_94, /* 59.94 */
Rate_60 /* 60.0 */

} XilMpeg1PictureRate;

MPEG-1 Codec 381

19

The default value of this attribute is implementation specific. The code below
shows the value being set to Rate_29_97 .

You can read the current value of this attribute using code similar to that
shown below.

If picture_rate equals NullDefault after this call, the rate for the sequence
is the default rate defined by the implementors of the encoder.

COMPRESSOR_SLICES_PER_PICTURE

The value of this attribute provides a hint to the encoder concerning the
number of slices into which it should divide the next picture it compresses;
however, an XIL-compliant encoder may ignore this suggested value.

The valid values for this attribute range from 1 to the number of macroblocks
in the picture. (The default value of the attribute is implementation specific.)
Because slices are designed to aid in error recovery from bitstream errors, the
value you choose should be dictated by your assessment of the likelihood that
data will be corrupted. If bitstream errors will be rare, one slice per picture
may be sufficient. On the other hand, if errors will be common, one slice per
row of macroblocks may be needed. Don’t request more slices than you need
because there is a certain amount of overhead—for instance, a 40-bit slice
header—associated with each slice.

XilCis cis;
XilMpeg1PictureRate picture_rate = Rate_29_97;

xil_cis_set_attribute(cis, “COMPRESSOR_PICTURE_RATE”,
(void *)picture rate);

XilCis cis;
XilMpeg1PictureRate picture_rate;

xil_cis_get_attribute(cis, “COMPRESSOR_PICTURE_RATE”,
(void **)&picture_rate);

382 XIL Programmer’s Guide—August 1994

19

The code below shows COMPRESSOR_SLICES_PER_PICTURE being set to 13.

You can also read the value of this attribute. To do this, you might use the code
shown below.

If slices contains 0 after this call, the value of the attribute is set to an
implementation-specific default.

COMPRESSOR_TIME_CODE

This attribute enables you to associate a time stamp with the first picture in the
next group of pictures that is encoded. This time stamp contains the same
information as a SMPTE time stamp.

Before actually setting the attribute, you must declare and assign values to the
members of a structure of type XilMpeg1TimeCode .

XilCis cis;
int slices = 13;

xil_cis_set_attribute(cis, “COMPRESSOR_SLICES_PER_PICTURE”,
(void *)slices);

XilCis cis;
int slices;

xil_cis_get_attribute(cis, “COMPRESSOR_SLICES_PER_PICTURE”,
(void **)&slices);

typedef struct {
Xil_boolean drop_frame_flag;
Xil_unsigned32 hours;
Xil_unsigned32 minutes;
Xil_unsigned32 seconds;
Xil_unsigned32 pictures;

} XilMpeg1TimeCode;

MPEG-1 Codec 383

19

An application would obtain the values for most of the members of this
structure—hours , minutes , seconds , and pictures —by reading a SMPTE
time code in the video being encoded. The member hours can have a value in
the range 0 to 23, and minutes and seconds can have values in the range 0 to
59. The member pictures , where a picture is a subdivision of a second, can
also have a value in the range 0 to 59.

The other member in the structure, drop_frame_flag , should set to 0 unless
the picture rate for the bitstream is 29.97. In this case, the flag can be set to 0 or
1. A setting of 0 indicates that the bitstream should be played back as if the
picture rate were 30 pictures per second. A setting of 1 indicates that a
play-back application should not count certain pictures so that movie time will
not get ahead of wall clock time. Specifically, the application should not count
pictures 0 and 1 at the beginning of each minute except minutes 0, 10, 20, 30,
40, and 50.

The code below sets COMPRESSOR_TIME_CODE so that the time stamp
19:07:34:13 is associated with the next group of pictures encoded. The
drop-frame flag is set to 0.

To read the value of COMPRESSOR_TIME_CODE, you would use code similar to
the following.

After this call, time_code will point to a structure of type
XilMpeg1TimeCode that contains the current time-code information, or it will
be a null pointer, indicating that COMPRESSOR_TIME_CODE has not been set. If
the library successfully creates a time-code structure, your application is
responsible for freeing the structure’s storage.

XilCis cis;
XilMpeg1TimeCode time_code = {0, 19, 7, 34, 13};

xil_cis_set_attribute(cis, “COMPRESSOR_TIME_CODE”,
(void *)&time_code);

XilCis cis;
XilMpeg1TimeCode *time_code;

xil_cis_get_attribute(cis, “COMPRESSOR_TIME_CODE”,
(void **)&time_code);

384 XIL Programmer’s Guide—August 1994

19

Decompression Attributes

Only one of the attributes discussed in this
section—DECOMPRESSOR_QUALITY—affects how the decoder works. The
remaining attributes simply return information from the bitstream being
decoded.

DECOMPRESSOR_QUALITY

The value of this attribute provides a hint to the decompressor concerning how
it should handle the trade-off between the quality of reconstructed pictures
and the speed of decoding those pictures. An XIL-compliant decoder need not
act on this hint.

The valid values for this attribute are integers in the range 1 to 100. A value of
100 is a request that the decoder produce the highest quality pictures possible,
and a value of 1 is a request that the decompressor decode pictures as fast as
possible. By default, DECOMPRESSOR_QUALITY is set to 100.

The code below shows DECOMPRESSOR_QUALITY being set to 90. This setting
usually provides satisfactory quality and may result in a significant increase in
speed (compared to a setting of 100).

To read the value of this attribute, use code similar to that shown below.

XilCis cis;
int quality = 90;

xil_cis_set_attribute(cis, “DECOMPRESSOR_QUALITY”,
(void *)quality);

XilCis cis;
int quality;

xil_cis_get_attribute(cis, “DECOMPRESSOR_QUALITY”,
(void **)&quality);

MPEG-1 Codec 385

19

DECOMPRESSOR_BROKEN_LINK

This is a read-only attribute that indicates whether B pictures at the beginning
of the current group of pictures (before any I pictures) can be decoded
correctly. Generally, of course, these pictures can be decoded correctly.
However, it’s possible that during an editing session, the preceding group of
pictures—or maybe even just the last I or P picture in that group—was
removed. If that type of editing takes place and a B picture at the beginning of
the next group of pictures contains macroblocks that were forward predicted or
bidirectionally predicted, the decoder will not be able to decode the complete
picture. In this case, a broken-link flag should have been set in the
group-of-pictures header at the time of the editing.

To read the value of this attribute, you might use code similar to this.

If the broken-link flag for the group of pictures currently being decoded is set,
the value of broken_link will be TRUE. In this case, any B pictures at the
beginning of the group cannot be decoded correctly. If the flag is not set, the
value will be FALSE.

DECOMPRESSOR_CLOSED_GOP

This is a read-only attribute that indicates whether the group of pictures
currently being decoded is a closed group or an open group. A closed group is
one that begins with an I picture or with one or more B pictures that can be
decoded without reference to the last picture in the preceding group. This type
of group can be decoded independently. An open group, on the other hand,
begins with one or more B pictures, at least one of which contains macroblocks
that are forward or bidirectionally predicted. Such a B picture cannot be
decoded if the preceding group of pictures is not available (for example, if it
has been edited out of the bitstream).

XilCis cis;
Xil_boolean broken_link;

xil_cis_get_attribute(cis, “DECOMPRESSOR_BROKEN_LINK”,
(void **)&broken_link);

386 XIL Programmer’s Guide—August 1994

19

To read the value of this attribute, you might use code similar to this.

If the closed-group-of-pictures flag for the group is set, the value of
closed_gop will be TRUE. In this case, any B pictures at the beginning of the
group can be decoded independently of the preceding group. If the flag is not
set, the value will be FALSE.

DECOMPRESSOR_FRAME_TYPE

This is a read-only attribute whose value describes the type of the last picture
decoded. This type can be any one of the types included in the following
enumeration:

For a description of I, P, and B pictures, see the sections “I Pictures and P
Pictures” on page 361 and “B Pictures” on page 361.

The code below illustrates how you might read the value of
DECOMPRESSOR_FRAME_TYPE.

XilCis cis;
Xil_boolean closed_gop;

xil_cis_get_attribute(cis, “DECOMPRESSOR_CLOSED_GOP”,
(void **)&closed_gop);

typedef enum {
I, /* intraframe picture */
P, /* forward predicted picture */
B, /* bidirectionally predicted picture */
D /* DC picture */

} XilMpeg1FrameType;

XilCis cis;
XilMpeg1FrameType frame_type;

xil_cis_get_attribute(cis, “DECOMPRESSOR_FRAME_TYPE”,
(void **)&frame_type);

MPEG-1 Codec 387

19

DECOMPRESSOR_PEL_ASPECT_RATIO_VALUE

This is a read-only attribute whose value is the pixel aspect ratio stored in the
sequence header for the MPEG-1 sequence you’re decoding. This value, along
with the width and height of the pictures in the sequence, defines the shape of
a decoded picture.

The value stored in this attribute will be one of the following constants.

• 0.6735
• 0.7031
• 0.7615
• 0.8055
• 0.8437
• 0.8935
• 0.9157
• 0.9815
• 1.0
• 1.0255
• 1.0695
• 1.0950
• 1.1575
• 1.2015

The key values in this list are 1.0, 0.9157, and 1.0950. A value of 1.0 indicates
that the pixels are square and that the pictures in the sequence are meant to be
displayed on computer monitors. The value 0.9157 means that decoded
pictures can be displayed without distortion on 625-line 50 Hz televisions, and
the value 1.0950 indicates that decoded pictures can be displayed without
distortion on 525-line 60 Hz televisions.

To read the value of this attribute, use code similar to that shown below.

XilCis cis;
float aspect_ratio;

xil_cis_get_attribute(cis,
“DECOMPRESSOR_PEL_ASPECT_RATIO_VALUE”,
(void **)&aspect_ratio);

388 XIL Programmer’s Guide—August 1994

19

DECOMPRESSOR_PICTURE_RATE_VALUE

The value of this read-only attribute is the picture-rate value from the sequence
header of the MPEG-1 sequence you’re decoding. This picture-rate value is the
number of pictures that should be decoded and displayed each second.

The value will be one of the constants listed below.

• 23.976
• 24.0
• 25.0
• 29.97
• 30.0
• 50.0
• 59.94
• 60.0

You can use code similar to that shown below to read the value of this
attribute.

DECOMPRESSOR_TEMPORAL_REFERENCE

Because the pictures in a group of pictures may need to be decoded in one
order and displayed in another order, each picture contains a
temporal-reference value. This value indicates a picture’s place in the display
order for the group. Picture 0 is meant to be displayed first, picture 1 to be
displayed second, and so on. The maximum value the temporal-reference field
can accommodate is 1023; therefore, if a group of pictures contains more than
1024 pictures, the counter is reset to 0 for picture 1025 (or more generally, for
picture (1024 * n) + 1).

XilCis cis;
float picture_rate;

xil_cis_get_attribute(cis, “DECOMPRESSOR_PICTURE_RATE_VALUE”,
(void **)&picture_rate);

MPEG-1 Codec 389

19

The attribute DECOMPRESSOR_TEMPORAL_REFERENCE contains the
temporal-reference value for the most recently decompressed picture. To read
the value of this attribute, you might use code similar to this.

Note – In a legal MPEG-1 bitstream, the temporal reference values for the
pictures in a group must be consecutive values (except in the case where the
counter resets). However, it is not uncommon for bitstreams that have been
edited to violate this requirement. That is, if the pictures with
temporal-reference values between 12 and 24 have been cut from a group, you
may find that the picture with a temporal of 11 is followed by one with a
temporal reference of 25.

DECOMPRESSOR_TIME_CODE

One field in a group-of-pictures header is a SMPTE time code. This time code
is associated with the first picture (in display order) in the group. When you
read the attribute DECOMPRESSOR_TIME_CODE, the decoder places information
about this time code for the current group of pictures in a structure of type
XilMpeg1TimeCode .

The member hours will have a value in the range 0 to 23; minutes,
seconds , and pictures will have values in the range 0 to 59.

XilCis cis;
int temporal_reference;

xil_cis_get_attribute(cis, “DECOMPRESSOR_TEMPORAL_REFERENCE”,
(void **)&temporal_reference);

typedef struct {
Xil_boolean drop_frame_flag;
Xil_unsigned32 hours;
Xil_unsigned32 minutes;
Xil_unsigned32 seconds;
Xil_unsigned32 pictures;

} XilMpeg1TimeCode;

390 XIL Programmer’s Guide—August 1994

19

You can read the value of this attribute using code similar to this.

Your application is responsible for freeing the storage the library allocates to
hold the time-code structure.

MPEG-1 Molecules
The XIL library includes a series of molecules that accelerate the playback of
MPEG-1 bitstreams. These molecules are optimized routines that perform the
jobs of two or more functions from the XIL API. You do not call such an
optimized routine directly; rather, the library calls a molecule when your
program calls a predefined sequence of XIL functions, sometimes with specific
arguments.

For example, if your program calls xil_decompress() to decode an image
stored in an MPEG-1 CIS and then calls xil_ordered_dither() to dither
the decoded image from a 24- to an 8-bit image, the library may not call these
two functions. Instead, it may call a molecule that performs the decompression
and the dithering in an optimized way.

For information about the MPEG-1 molecules that are available and
information about how to call those molecules, see the section “XIL Molecules”
on page 398.

XilCis cis;
XilMpeg1TimeCode *time_code;

xil_cis_get_attribute(cis, “DECOMPRESSOR_TIME_CODE”,
(void **)&time_code);

391

CCITT Group 3 and Group 4 Codecs 20

The CCITT Group 3 and Group 4 compression methods were developed by the
International Telegraph and Telephone Consultative Committee for the
compression of document images. Like continuous-tone still images, document
images can be stored and transmitted much more inexpensively if they have
been compressed. Originally, the CCITT’s compression techniques were
adopted by the developers of facsimile equipment. Today, however, the
techniques are also used heavily by the makers of general document storage
and retrieval systems.

The remainder of this chapter is divided into two sections. The first section
provides a brief overview of how the Group 3 and Group 4 codecs work. The
second discusses a set of CIS attributes that apply specifically to the these
codecs (as opposed to the general CIS attributes covered in the section
“General CIS Attributes” on page 257).

How CCITT Group 3 and Group 4 Codecs Work
The Group 3 and Group 4 compressors take advantage of a couple of
important characteristics of document images. One of these characteristics is
that document images tend to consist of small amounts of black (letters or
lines) on a white background. Thus, on a given scanline, there are likely to be
long stretches of white pixels interrupted by shorter runs of black pixels.

This characteristic has led to the use of run-length encoding in the CCITT
compressors. This coding method involves translating information about runs
of white and black pixels (within a scanline) into code words stored in a

392 XIL Programmer’s Guide—August 1994

20

Huffman table. Run lengths that occur commonly are represented by short
code words, and run lengths that occur infrequently are represented by longer
code words.

This type of encoding generally produces quite a bit of compression. For
instance, a run of 1024 white pixels (128 bytes) might be represented by a code
word of 9 bits. This translation results in a compression ratio of about 114:1.
However, the compression ratio achievable with run-length encoding is highly
dependent on the image being compressed. For example, a noisy image might
contain many short runs whose code words contain more bits than the runs
themselves.

On standard text, the XIL library’s Group 3 compressor achieves a compression
ratio of about 5:1, and the library’s Group 4 compressor achieves a ratio of
about 10:1.

A second characteristic of document images is that the position of a transition
from a black pixel to a white pixel (or vice versa) on one scanline is usually not
more than a few pixels away from a corresponding transition on the preceding
scanline. This characteristic is sometimes called vertical coherence. Because
document images have this characteristic, once one scanline has been encoded,
subsequent lines can be encoded by specifying the position of a black-to-white
transition relative to the same transition on the preceding line, or relative to the
last transition on the same line.

The XIL library’s CCITT Group 3 compressor uses the run-length encoding
method described above, and the Group 4 compressor relies almost entirely on
the two-dimensional technique.

CCITT Group 3 and Group 4 Decompressor Attributes
Although other compression standards include size information (the image
width, height, and number of bands) within the data bitstream, the fax
standards do not. Thus, before you can decompress a fax CIS, you must set the
decompressor attributes for the width, height, and number of bands. These
attributes are discussed separately in the following sections.

CCITT Group 3 and Group 4 Codecs 393

20

WIDTH

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the value of this attribute to the
width in pixels of the images to be decompressed. If you do not set it, its value
will be 0, and an error will occur when you call xil_decompress() .

The legal values for this attribute are integers in the range 0 to 32,767. The code
fragment below shows the WIDTH attribute being set to 1728.

HEIGHT

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the value of this attribute to the
height in pixels of the images to be decompressed. If you do not set it, its value
will be 0, and an error will occur when you call xil_decompress() .

The legal values for this attribute are integers in the range 0 to 32,767. The code
fragment below shows the HEIGHT attribute being set to 2156.

BANDS

If you have put compressed data into your CIS using xil_cis_put_bits()
or xil_cis_put_bits_ptr() , you must set the value of this attribute to the
number of bands in the images to be decompressed. If you do not set it, its
value will be 0, and an error will occur when you call xil_decompress() .

XilCis cis;
int width = 1728;

xil_cis_set_attribute(cis, “WIDTH”, (void *)width);

XilCis cis;
int height = 2156;

xil_cis_set_attribute(cis, “HEIGHT”, (void *)height);

394 XIL Programmer’s Guide—August 1994

20

The legal values for this attribute are integers in the range 0 to 32,767. The code
fragment below shows the BANDS attribute being set to 1.

XilCis cis;
int bands = 1;

xil_cis_set_attribute(cis, “BANDS”, (void *)bands);

395

Acceleration in XIL Programs 21

Obviously, much of the speed of an XIL program is determined by the speed of
the individual functions that make up the API. However, XIL applications can
also realize big performance improvements when the library is able to replace
the execution of a sequence of API-level functions (or atoms) with the execution
of an optimized function that performs the work of all the atoms in the
sequence. This type of optimized function is called a molecule.

You do not call a molecule directly. Rather, the library itself recognizes
sequences of atoms that can be replaced by a molecule and performs the
replacement automatically. This type of replacement is made possible by the
library’s deferred-execution scheme.

What Is Deferred Execution?
Here’s how deferred execution works. In general, when an atomic function that
affects the state of an image or a compressed image sequence is called, the
function is not executed immediately. Instead, information about the
operation—such as the function called and the arguments to the function—is
stored by the library. This information continues to be stored until the library
must produce a particular destination image—for example, because that image
is to be displayed.

Let’s say that the library has stored the five atomic operations shown in
Figure 21-1 and that by performing these operations, it could decompress an
image from a Cell CIS and prepare that image for display on a monochrome
display.

396 XIL Programmer’s Guide—August 1994

21

Figure 21-1 Stored Atomic Operations

When it must produce the destination of the ordered dither, instead of simply
performing the five atomic functions, the library searches a list of molecules to
see if all or part of this sequence can be replaced by a molecule. If the library
finds a molecule that can perform this entire sequence of operations, the
execution of the program will proceed as shown in Figure 21-2.

xil_decompress()

xil_color_convert()

xil_rescale()

xil_scale()

xil_ordered_dither()

Acceleration in XIL Programs 397

21

Figure 21-2 Replacing Atomic Functions with a Molecule

xil_color_convert()

Molecule

scale

rescale

Flow of execution

xil_decompress()

xil_rescale()

xil_scale()

xil_ordered_dither()

dither

decompress

color
convert

398 XIL Programmer’s Guide—August 1994

21

The molecule shown is executed and performs the jobs of all five atomic
functions. None of the atomic functions is ever executed.

The ability to replace a series of atomic functions with a molecule like this can
lead to dramatic increases in performance. Two reasons for this increase are
that:

• A molecule may need to page an image into memory only once whereas the
equivalent atomic functions would have paged the image into memory
several times

• A molecule may not need to create temporary images that would be
required by the equivalent atomic functions

XIL Molecules
The molecules available in the XIL library can be grouped into two categories:

• Molecules that involve decompressing images stored in a compressed image
sequence. This is the largest category of molecules, and these molecules are
available on all platforms that can run XIL applications.

• SPARC: Molecules that perform a common XIL operation and then display
the results of the operation on a GX frame buffer. These molecules are
available only on local GX frame-buffer screens.

This section first looks at some general rules you must follow to execute XIL
molecules. (Particular molecules may require that you follow other rules as
well.) The section then discusses the molecules that have been implemented in
the categories mentioned in the preceding paragraph.

Rules for Executing Molecules

There are a few general rules you must follow to execute XIL molecules. These
rules are listed below:

• The images that a molecule works with—source, intermediate, and
destination—must have the same width and height. The principal exception
to this rule occurs when a molecule performs a scaling operation. In that
case, the destination image for the scale operation must have the same
dimensions as the scaled source image.

Acceleration in XIL Programs 399

21

• The images the molecule works with must have the same region of interest.
For decompression molecules, this rule dictates that the molecule’s
destination image and any intermediate images have no region of interest
because the images stored in the CIS cannot have a region of interest. In
addition, if a molecule includes a scale operation, the images involved
cannot have a region of interest. These images will not have a region of
interest unless you have explicitly set their region-of-interest attributes.

• The images the molecule works with must have the same origin. For
decompression molecules, this rule dictates that the molecule’s destination
image and any intermediate images have origins of 0.0, 0.0. This is true
because the images stored in a CIS cannot have anything other than the
default origin.

There are one or two exceptions to these rules among the decompression
molecules. These exceptions are covered in the section “Video Decompression
Molecules,” where these molecules are defined.

Video Decompression Molecules

The library’s video decompression molecules decompress an image from a
compressed image sequence, process that image in some way, and write it to a
destination, usually a display image. This destination may have a depth of 1
bit (a monochrome display), 8 bits (an indexed-color display), or 24 bits (a
true-color display). To display video at the best possible speed, it is important
that you use these molecules. They provide much better performance than the
equivalent set of atomic functions.

Note – The molecules discussed in this section can be used to decompress and
display images stored in JPEG baseline sequential, CellB, H.261, and MPEG-1
compressed image sequences. If you’re working with a Cell bytestream, you
should use the molecules discussed in the section “Cell Molecules” on
page 288.

One-Bit Destination

The decompression molecule that displays an image on a 1-bit display works
only with the JPEG decompressor and expects either a three-band YCbCr image
or a one-band Y image as input. The molecule performs the following tasks:

400 XIL Programmer’s Guide—August 1994

21

• Decompresses an image from a CIS

• If necessary, converts a 3-band image to a 1-band image by extracting the
luminance of the YCbCr image

• Optionally rescales the values in the Y image

• Dithers the 8-bit image to a 1-bit image

• Optionally zooms the dithered image by a factor of 2 in both the x and y
dimensions

A requirement for this molecule is that the images in the CIS have a width and
height that are multiples of the bitstream macroblock width and height. For
example, single-band images must be divisible into 8-by-8 blocks, 4:2:2 images
must be divisible into 16-by-8 blocks, and 4:1:1 images must be divisible into
16-by-16 blocks.

Acceleration in XIL Programs 401

21

For this molecule to be called in the case where the source image is a YCbCr

image, your application must include the code shown below.

XilColorspace ycc, y;
float scale_values[1], offset_values[1];
XilLookup cmap;
int mults[1] = {-1};
unsigned short dims[1] = 2;
XilKernel distribution;

scale_values[0] = 255.0 / (235.0 - 16.0);
offset_values[0] = -16.0 * scale_values[0];

/* The lookup table cmap must have two entries, and the values of
 those entries on the output side of the table must be 255 and
 0. One way to create this table is to use the call to
 xil_colorcube_create() shown in the example. You could also
 use xil_lookup_create(). */
cmap = xil_colorcube_create(state, XIL_BIT, XIL_BYTE, 1, 0,
 mults, dims);
distribution = xil_kernel_get_by_name(state,
 “floyd-steinberg”);
ycc = xil_colorspace_get_by_name(state, “ycc601”);
y = xil_colorspace_get_by_name(state, “y601”);
xil_set_colorspace(imageYCC_24, ycc);
xil_set_colorspace(imageGRAY_8, y);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageYCC_24);
xil_color_convert(imageYCC_24, imageGRAY_8);

/* Rescale if the input image has CCIR 601 color space */
if (CCIR601)
 xil_rescale(imageGRAY_8, imageGRAY_8, scale, offset);

xil_error_diffusion(imageGRAY_8, imageMONO_1, cmap,
 distribution);

/* Execute if user has requested zoom */
if (ZOOM)
 xil_scale(imageMONO_1, imageMONO_1_zoom, “nearest” , 2.0 ,

2.0);
/* MOLECULE ENDS HERE */

402 XIL Programmer’s Guide—August 1994

21

Note – Arguments shown in boldface must be typed as shown for the molecule
to execute correctly.

If the source image is a one-band image, the molecule should look like this.

Eight-Bit Destination

This molecule is optimized where the molecule’s destination image is an 8-bit
display image associated with a local GX frame buffer. However, the molecule
will also accelerate the decompression and subsequent processing of images
being written to other 8-bit destinations as well.

The molecule performs the following tasks:

• Decompresses an image from a CIS

• Optionally rescales the values in the three bands of the YCbCr image

• Dithers the 24-bit YCbCr image to an 8-bit pseudocolor image

• Optionally zooms the dithered image by a factor of 2 in both the x and y
dimensions

Note – If you are using the CellB decompressor, the zoom operation (if
requested) must precede the ordered dither.

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageGRAY_8);

/* Rescale if the input image has CCIR 601 color space */
if (CCIR601)
 xil_rescale(imageGRAY_8, imageGRAY_8, scale, offset);
xil_error_diffusion(imageGRAY_8, imageMONO_1, cmap,
 distribution);

/* Execute if user has requested zoom */
if (ZOOM)
 xil_scale(imageMONO_1, imageMONO_1_zoom, “nearest” , 2.0 ,

2.0);
/* MOLECULE ENDS HERE */

Acceleration in XIL Programs 403

21

There are certain restrictions on the use of this molecule. One is that the
molecule can decompress images from a JPEG CIS only if those images are
YCbCr images and the images are 4:1:1 interleaved in the bitstream. (CellB,
H.261, and MPEG-1 CISs always contain YCbCr images.) In addition, in most
cases, JPEG, H.261, and MPEG-1 CISs must contain images whose width and
height are multiples of 16. Exceptions to this rule are noted later.

For this molecule to be executed, your application must include the code
shown below.

float scale_values[3], offset_values[3];
XilLookup colorcube, colormap;
XilDitherMask dmask;

scale_values[0] = 255.0 / (235.0 - 16.0);
scale_values[1] = 255.0 / (240.0 - 16.0);
scale_values[2] = 255.0 / (240.0 - 16.0);
offset_values[0] = -16.0 * scale_values[0];
offset_values[1] = -16.0 * scale_values[1];
offset_values[2] = -16.0 * scale_values[2];
colorcube = xil_lookup_get_by_name(state, “cc855”);
dmask = xil_dithermask_get_by_name(state, “dm443”);

/* The lookup table yuv_to_rgb is matched with the colorcube
 cc855. If you use cc855 when dithering your images, you must
 install the 200 sets of RGB values in yuv_to_rgb in your
 application’s X colormap before executing the molecule.
 Install the first set of RGB values at colorcell 54. */
colormap = xil_lookup_get_by_name(state, “yuv_to_rgb”);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageYCC_24);

/* Perform this rescale if your image’s color space is CCIR Rec.
 601 YCC. The rescale adjusts the range of the values in the
 three bands of the image to 0 to 255. The ordered dither
 operation that takes place later will produce the best results
 if the values are in this range. Note that YCC images produced
 by compressors that use the JFIF format have already been
 rescaled to 0 to 255 and, therefore, should not be rescaled
 here. */
if (CCIR601)
 xil_rescale(imageYCC_24, imageYCC_24, scale_values,
 offset_values);

404 XIL Programmer’s Guide—August 1994

21

Exceptions to the Rules
Table 21-1 shows the exceptions to the general rules for executing this
molecule. The exceptions have been classified on the basis of the decompressor
to which they relate.

if (ZOOM) {
 xil_ordered_dither(imageYCC_24, imageYCC_8, colorcube,
 dmask);
 xil_scale(imageYCC_8, zoom_displayimage, “nearest” , 2.0 ,

2.0);
}
else
 xil_ordered_dither(imageYCC_24, displayimage, colorcube,
 dmask);
/* MOLECULE ENDS HERE */

Acceleration in XIL Programs 405

21

Note – Among these exceptions, the term GX window refers to a local GX
frame-buffer screen.

Table 21-1 Exceptions to the General Decompression-Molecule Rules

Decompressor Exceptions

CellB If you want the molecule to zoom the image it decompresses, the
call to xil_scale() that zooms the image must precede the call to
xil_ordered_dither() .

JPEG If the destination image is a display image associated with a GX
window, the images in the CIS do not have to have a width and
height that are multiples of 16.

If the destination image is not a display image associated with a GX
window, the molecule cannot perform the optional zoom.

If the destination image is not a display image associated with a GX
window, the destination cannot be a single-band child of a
multiband parent image.

H.261 If the destination image is a display image associated with a GX
window, the images in the CIS do not have to have a width and
height that are multiples of 16.

There is one exception to the general rules that a molecule’s
destination image must have the same width and height as the
images in the CIS and that the destination image must have an
origin of 0.0, 0.0. The molecule can execute even though the two
rules mentioned above are not met, if the following conditions are
satisfied: (1) the destination image is a display image associated
with a window on a local GX frame buffer, (2) the coordinates of the
destination image’s origin are less than or equal to 0.0, and (3) all of
the pixels in the display image are written to. This exception allows
for the clipping of letterboxed images.

MPEG-1 If the destination image is a display image associated with a GX
window, the images in the CIS do not have to have a width and
height that are multiples of 16.

406 XIL Programmer’s Guide—August 1994

21

Twenty-Four-Bit Destination

The molecule performs the following tasks:

• Decompresses a YCbCr image from a CIS

• Converts the color space of the YCbCr image to RGB

Obviously, the images in a JPEG CIS must be YCbCr images before you can use
this molecule. (CellB, H.261, and MPEG-1 CISs always contain YCbCr images.)
In addition, the images in a JPEG CIS must be 4:1:1 interleaved in the
bitstream. One other restriction is that JPEG, H.261, and MPEG-1 CISs must
contain images whose width and height are multiples of 16.

For this molecule to be executed, your application must include the code
shown below.

The molecule can only convert images from ycc601 to rgb709 (as shown in
the example).

XilColorspace ycc, rgb;

ycc = xil_colorspace_get_by_name(state, “ycc601”);
rgb = xil_colorspace_get_by_name(state, “rgb709”);
xil_set_colorspace(imageYCC_24, ycc);
xil_set_colorspace(imageRGB_24, rgb);

/* MOLECULE STARTS HERE */
xil_decompress(cis, imageYCC_24);
xil_color_convert(imageYCC_24, imageRGB_24);
/* MOLECULE ENDS HERE */

Acceleration in XIL Programs 407

21

CCITT Group 4 Decompression Molecule

Because it is common to transpose an image immediately after decompressing
it from a CCITT compressed image sequence, there is a molecule for
accelerating the transposition of images that were compressed with the Group
4 compressor. The molecule takes advantage of the fact that, when
decompressing these images, an intermediate representation of the original
image is generated, and it is faster to transpose this representation than it is to
transpose the bits of the actual image. For images that were compressed with
the Group 3 compressor, this intermediate representation is not generated and
so the molecule does not execute.

The xil_transpose() call must immediately follow the image
decompression; otherwise the intermediate representation is lost and the
molecule cannot execute. In this case, the transposition is performed on the bit
image.

The type of flip designated on the xil_transpose() call determines whether
the destination size is checked as

src_x_size == dest_x_size && src_y_size == dest_y_size

or

src_x_size == dest_y_size && src_y_size == dest_x_size

One of the above expressions must be true for the molecule to be called.
Table 21-2 shows the destination image size expected for the source image size
(100, 140).

Table 21-2 Type of Flip Designated on the Call to xil_transpose()

Type of Flip Expected Destination Size

XIL_FLIP_X_AXIS (100, 140)

XIL_FLIP_Y_AXIS (100, 140)

XIL_FLIP_X_180 (100, 140)

XIL_FLIP_MAIN_DIAGONAL (140, 100)

XIL_FLIP_ANTIDIAGONAL (140, 100)

XIL_FLIP_90 (140, 100)

XIL_FLIP_270 (140, 100)

408 XIL Programmer’s Guide—August 1994

21

Image-Filtering Molecule

The XIL library provides a molecule for accelerating image filtering when you
use a 5-by-5 separable kernel. Assuming you observe the normal rules for
executing molecules (see “Rules for Executing Molecules” on page 398), the
molecule is executed when you filter either an XIL_BYTE or XIL_SHORT image
and make two separate xil_convolve() calls, one call using a 1-by-5 kernel
and the other call using a 5-by-1 kernel. It does not matter which kernel is used
first; however, both xil_convolve() calls must use the
XIL_EDGE_ZERO_FILL edge condition. There is no molecule for filtering
XIL_BIT images.

The following code fragment shows an example of how your application code
might execute this molecule.

XilImage src, dst;
XilKernel filter_1, filter_2;
XilSystemState state;
unsigned int width_1, height_1, keyx_1, keyy_1,
 width_2, height_2, keyx_2, keyy_2;
float data_1[] = {0.1117, 0.2365, 0.3036, 0.2365, 0.1117};
float data_2[] = {0.1117, 0.2365, 0.3036, 0.2365, 0.1117};

width_1 = height_2 = 1;
width_2 = height_1 = 5;
keyx_1 = keyx_2 = 2;
keyy_1 = key2_2 = 0;
filter_1 = xil_kernel_create(state, width_1, height_1, keyx_1,
 keyy_1, data_1);
filter_2 = xil_kernel_create(state, width_2, height_2, keyx_2,
 keyy_2, data_2);

/* MOLECULE STARTS HERE */
xil_convolve(src, dst, filter_1, XIL_EDGE_ZERO_FILL);
xil_convolve(src, dst, filter_2, XIL_EDGE_ZERO_FILL);
/* MOLECULE STARTS HERE */

Acceleration in XIL Programs 409

21

SPARC Molecules That Result in a Display

Molecules that combine a common operation and a display are available only
on local GX frame-buffer screens. Before you look over the list of molecules in
this category, you should understand that operations that read from or write to
a device image (including a display image) are treated specially by the XIL
library.

Generally, calling an XIL function results in the library’s storing one operation.
However, operations that read from or write to a device image cause two
operations to be stored. For example, you might call xil_scale() using a
scanner as your source image in order to read an image from the scanner and
zoom it. The two operations stored will be a capture operation, which writes its
output to a temporary image, and a scale operation, which writes its output to
the destination image named in the call to xil_scale() . Likewise, you might
call xil_scale() using a display as your destination image in order to zoom
the image and display it. In this case, the two operations stored will be a scale
and a display operation.

Several molecules are available that replace two-operation sequences in which
the second operation is a display to a GX frame buffer. These molecules are
listed below:

• Copy (xil_copy()) an 8-bit image to a GX display image.

• Cast (xil_cast()) a 1-bit image to an 8-bit image and display the 8-bit
image on a GX frame buffer.

• Pass a 1-bit image through a lookup table (xil_lookup()) to produce an
8-bit image and display the 8-bit image on a GX frame buffer.

• Pass an 8-bit image through a lookup table to produce a different 8-bit
image and display the new image on a GX frame buffer.

• Rescale (xil_rescale()) an 8-bit image and display the result on a GX
frame buffer.

• Set all the values in an 8-bit image to a constant (xil_set_value()) and
display the result on a GX frame buffer.

• Translate (xil_translate()) an 8-bit image using nearest-neighbor
interpolation, and display the result on a GX frame buffer.

410 XIL Programmer’s Guide—August 1994

21

Troubleshooting Molecules
Once you have coded your application with a replaceable sequence of atomic
functions, you may want to make sure a molecule executes when your
program runs. And if the molecule is not called, you will want to determine
why it’s not being called. This section discusses both how to determine
whether a molecule is executing and what to check for if the molecule is not
being called.

Determining Whether Molecules Are Executing

To determine whether a molecule you want to execute is actually executing, set
the environment variable XIL_DEBUG as shown below before executing your
program.

% setenv XIL_DEBUG show_action

Once you’ve done this, the XIL library will print a message to stderr each
time an operation that affects the state of an XIL image or a compressed image
sequence (CIS) is executed. By looking at these messages, you can determine
whether the molecules your application is attempting to call are being
executed.

For example, try setting XIL_DEBUG to show_action and then playing a JPEG
movie using the example program xilcis_example . Instructions for running
the example are presented in the section “Running the Movie Player” on
page 231. As the program runs, you will see one or more pairs of
messages—depending on the length of the movie—displayed on stderr .

The first message indicates that a molecule has been executed. This molecule
performs a decompression, a rescale, and an ordered dither. The second
message indicates that this molecule was followed by an atomic display
operation; this message assumes the display operation uses function calls from
ioxlib .

XIL_ACTION[XilDeviceCompJpegMemory]:ordereddither8to8(rescale8(
decompress_Jpeg()))
XIL_ACTION[XilDeviceIOioxlib]:display_ioxlib()

Acceleration in XIL Programs 411

21

If you were now to edit this program so that it did something that prevented
the molecule from being executed—like setting the origin of the display image
to 1.0, 1.0—you would see the following messages:

As you can see, the molecule would be unable to execute, and the
decompression, rescale, and ordered dither would have to be executed
individually.

Besides the environment variable XIL_DEBUG, there are two XIL functions that
enable you to control whether the messages discussed above are printed. One
of these, xil_state_set_show_action() sets a system-state attribute called
SHOW_ACTION. The setting of this attribute determines whether the library
prints the messages, does not print the messages, or prints the messages only if
XIL_DEBUG is set to show_action . The other function,
xil_state_get_show_action() , reads the value of SHOW_ACTION. See the
man pages for more information about these functions.

Determining Why a Molecule Is Not Executing

Basically, there are two reasons why a molecule might not execute. Either you
didn’t call the proper sequence of atomic functions with the proper arguments,
or you did something that caused the library to flush some operations from
storage before you finished building the molecule. These two situations are
discussed in more detail below.

XIL_ACTION[XilDeviceCompJpegMemory]:ordereddither8to8(rescale8(
decompress_Jpeg()))
XIL_ACTION:FAILED
XIL_ACTION[XilDeviceCompJpegMemory]:decompress_Jpeg()
XIL_ACTION[XilDeviceComputeMemory]:rescale8()
XIL_ACTION[XilDeviceComputeMemory]:ordereddither8to8()
XIL_ACTION[XilDeviceIOioxlib]:display_ioxlib()

412 XIL Programmer’s Guide—August 1994

21

Not Calling a Correct Sequence of Functions

The most likely reason a molecule is not executing is that you haven’t followed
all the rules for calling the molecule. Remember, you must call the correct
functions, in the proper order, sometimes with specific arguments. Any
mistake can cause the molecule not be called or to fail.

For example, let’s say you are decompressing a JPEG movie and displaying
frames on an 8-bit frame buffer, and that you call the code shown below.

If for no other reason, these four functions won’t be replaced by a molecule
because the call to xil_scale() uses an interpolation type of bilinear . For
this molecule to execute, the interpolation type for the scale must be nearest
(nearest neighbor). So, if you expect a molecule to execute and it doesn’t, check
first to make sure that you’ve met all the guidelines presented in the section
“XIL Molecules” on page 398.

A more subtle problem can arise when the calls that make up a molecule are
not consecutive calls in your program. For instance, consider the following
code fragment taken from the Cell movie playback code discussed in “Playing
Cell Movies” on page 241.

xil_decompress(cis, imageYCC);
xil_rescale(imageYCC, imageYCC, scale, offset);
xil_ordered_dither(imageYCC, image8, colorcube, dmask);
xil_scale(image8, zoom_displayimage, “bilinear”, 2.0, 2.0);

xil_decompress(cis, image24);

/* Look at the Lookup version number to see if it is time
 to reinstall the colormap. */
if (lu_version != xil_lookup_get_version(xil_cmap)) {
 cell_install_cmap(x_cmap, displayimage, xil_cmap, ilist);
 lu_version = xil_lookup_get_version(xil_cmap);
}
xil_nearest_color(image24, displayimage, xil_cmap);

Acceleration in XIL Programs 413

21

This code is attempting to call a molecule that replaces the sequence

• xil_decompress()

• xil_nearest_color()

Your first thought may be that this code won’t cause the molecule to be
executed because the calls to xil_decompress() and
xil_nearest_color() are not consecutive. Between these two calls, the
program calls xil_lookup_get_version() at least once and may call a
user-defined function cell_install_cmap() , which doesn’t contain any XIL
functions. Actually, this code will cause the molecule to be called because only
the decompress and nearest-color operations are deferred and become part of
the stored chain of operations that the library tries to replace with a molecule.

Calls to non-XIL functions, like cell_install_cmap() , of course are never
deferred by the library. In addition, there is a class of XIL functions that are
never deferred, and calls that read object attributes fall in this class. Therefore,
the call to xil_lookup_get_version() does not affect the
deferred-operation chain.

On the other hand, if you used the following code, the library would not
execute a molecule.

The add-constant operation would be deferred (because it changes values in
the image) and would prevent the library from finding an
xil_decompress() -xil_nearest_color() sequence.

Flushing Operations Before a Molecule Is Complete

One other subtle problem to guard against is calling a function that causes the
library to execute atomically functions that you intended to be the beginning of
a molecule. For example, let’s say that you want to execute a molecule that
replaces four API-level functions. You call the first three atomic functions, and
information about these deferred operations is stored. Then before you call the
fourth function, you do something that causes the first three operations to be
flushed from storage and executed.

xil_decompress(cis, image24);
xil_add_const(image24, constants, image24);
xil_nearest_color(image24, displayimage, xil_cmap);

414 XIL Programmer’s Guide—August 1994

21

What could you do to cause this to happen? There are a number of things,
some obvious and some not so obvious.

At the obvious end of the spectrum, you could

• Turn deferred execution off using the function
xil_state_set_synchronize() . Once deferred execution is turned off,
of course, no operations are deferred.

• Call xil_sync() on an intermediate image. This call causes the library to
produce that image immediately, which involves flushing all the stored
operations needed to produce it.

• Use an intermediate image whose synchronization flag has been set using
the function xil_set_synchronize() . The operations required to
produce this image cannot be deferred.

You can also flush operations that you meant to be part of a molecule by

• Calling xil_export() to export an intermediate image. The operations
needed to produce the intermediate image must be executed before the
image can be exported.

• Calling a function that returns information about the values in an
intermediate image—like xil_extrema() , xil_histogram() , or
xil_get_pixel() . Such a call causes the operations that will produce the
source image to be executed.

Side Effects of Executing Molecules
When a molecule executes, it may not create one or more temporary images
that would have been created had the set of atomic functions replaced by the
molecule been executed. This section briefly explains the possible side effects
of this behavior and how you can deal with them.

As an example, consider the JPEG decompression code below.

XilImage imageYCC, displayimage;

xil_decompress(cis, imageYCC);
xil_rescale(imageYCC, imageYCC, scale, offset);
xil_ordered_dither(imageYCC, displayimage, colorcube, dmask);

Acceleration in XIL Programs 415

21

If these functions are executed atomically, decompressed data is written to the
24-bit image imageYCC, the data in imageYCC is rescaled, and then the data in
imageYCC is dithered to produce an 8-bit image. However, if a JPEG
decompression molecule is executed, imageYCC is never actually used. This
difference can lead to unexpected results later on.

Say that the decompression molecule executed, and imageYCC was never
written to. If you later ask the library to destroy the CIS (without having first
destroyed imageYCC), the library, before it destroys the CIS, will call
xil_decompress() to decompress data from the CIS and write it to
imageYCC. The library does this because it knows that it never wrote data to
imageYCC, that the contents of imageYCC depend on the CIS, and that the
image may be used again later in the program. If you don’t plan to use the
image later in your program, the call to xil_decompress() is unnecessary
and hurts the performance of your program.

Note – The solution to this particular problem would be to destroy the 24-bit
image before destroying the CIS or to use the function xil_toss() to toss the
contents of the 24-bit image before destroying the CIS. When you toss an
image, you tell the library that you don’t care about the current contents of the
image, but that you might write data to the image later.

You can check for unexpected side effects like the one described above by
setting XIL_DEBUG to show_action and monitoring stderr to see which
functions execute when you run your program.

416 XIL Programmer’s Guide—August 1994

21

XIL Functions That Relate to Deferred Execution
Several XIL functions have a direct effect on the way deferred execution works.
These are listed in Table 21-3.

Table 21-3 Functions That Affect Deferred Execution

Function Name What the Function Does

xil_sync Forces the library to compute the value
of an image when the operations that
will produce the image have been
deferred.

xil_cis_sync Forces any outstanding call to
xil_compress() to complete when it
would otherwise have been deferred.

xil_set_synchronize Set an image’s synchronization attribute.
When an image has this attribute set,
operations on it cannot be deferred.

xil_get_synchronize Determines whether an image’s
synchronization attribute is set.

xil_state_set_synchronize Turns deferred execution on or off.

xil_state_get_synchronize Determines whether deferred execution
is being used or not.

xil_toss Tells the library to “toss,” or throw away,
the contents of an image, but not to
destroy the image.

417

XIL Molecules A

This appendix lists in a shorthand form the molecules that are available in the
current release of the XIL Imaging Library. As an example of the shorthand
used, one of the CellB decompression molecules is listed like this:

decompress_CellB ➛ colorconvert ➛ [scale8nearest] ➛

SPARC

[display_ioSUNWgs | display_ioxlib]

x86

[display_ioxlib]

This notation indicates that part of the molecule is platform independent, and
part of it is platform dependent. The platform independent portion, only the
top line in this example, is performed on all systems. The platform dependent
portion can be performed only on the identified system. This example shows
that the molecule uses different display functions, depending on whether the
application is run on SPARC or on x86 screen hardware. Generally, molecules
that don’t display an image are entirely platform independent, and those that
display an image use platform-dependent display functions.

The generic portion of the molecule performs the following operations:

• Decompresses a compressed image stored in a CellB compressed image
sequence (xil_decompress()).

• Converts the color space of the decompressed image, in this case from YCbCr

to RGB (xil_color_convert()).

418 XIL Programmer’s Guide—August 1994

A

• Optionally, scales the RGB image, which must contain XIL_BYTE data,
using nearest-neighbor interpolation (xil_scale()). The square brackets
around scale8nearest indicate that this function is optional. There is actually
one molecule that performs the scale and a corresponding molecule that
doesn’t.

The platform-dependent portions of the molecule do the following:

• SPARC: The molecule optionally displays the image on a 24-bit display. The
vertical bar indicates the molecule can perform the job of either of two
functions: a display function that uses calls to the Direct Graphics Access
library to display an image on local GS frame-buffer screen or a display
function that uses Xlib calls to display an image on any 24-bit frame buffer.

• x86: The molecule optionally uses Xlib calls to display an image on any 24-
bit frame buffer.

Key to the Names Used in the Molecule Definitions
Table A-1 provides a key to the meaning of the function names used to
describe the XIL molecules.

Table A-1 Key to Names Used in Molecule Definitions

Name Meaning

colorconvert A call to xil_color_convert() , used to convert the
color space of an image

convert1to8 A call xil_cast() with an XIL_BIT source image and an
XIL_BYTE destination

convolve8 A call to xil_convolve() with a source and destination
image of type XIL_BYTE

convolve16 A call to xil_convolve() with a source and destination
image of type XIL_SHORT

copy8 A call to xil_copy() with a source and destination image
of type XIL_BYTE

decompress_Cell A call to xil_decompress() that decompresses an image
from a Cell compressed image sequence (CIS)

decompress_CellB A call to xil_decompress() that decompresses an image
from a CellB CIS

XIL Molecules 419

A

decompress_faxG4 A call to xil_decompress() that decompresses an image
from a faxG4 CIS

decompress_H261 A call to xil_decompress() that decompresses an image
from an H.261 CIS

decompress_Jpeg A call to xil_decompress() that decompresses an image
from a JPEG CIS

decompress_Mpeg1 A call to xil_decompress() that decompresses an image
from an MPEG-1 CIS

display_ioxlib A display function that is called implicitly when the
destination image for an operation is a display image and
no faster display function is available. The display function
uses Xlib calls to do its job.

display_ioSUNWgs A display function that is called implicitly when the
destination image for an operation is a display image
created from a window on a local GS frame buffer. This is
an accelerated display routine. Available only on local GS
frame-buffer screens.

display_ioSUNWgx A display function that is called implicitly when the
destination image for an operation is a display image
created from a window on a local GX frame buffer. This is
an accelerated display routine. Available only on local GX
frame-buffer screens.

error_diffusion8_1 A call to xil_error_diffusion() with an XIL_BYTE
source image and an XIL_BIT destination

lookup1_8 A call to xil_lookup() with an XIL_BIT source image
and an XIL_BYTE destination

lookup8_8 A call to xil_lookup() with a source and destination
image of type XIL_BYTE

nearestcolor8_8 A call to xil_nearest_color() with a source and
destination image of type XIL_BYTE

ordereddither8_1 A call to xil_ordered_dither() with an XIL_BYTE
source image and an XIL_BIT destination

ordereddither8_8 A call to xil_ordered_dither() with a source and
destination image of type XIL_BYTE

Table A-1 Key to Names Used in Molecule Definitions

Name Meaning

420 XIL Programmer’s Guide—August 1994

A

rescale8 A call to xil_rescale() with a source and destination
image of type XIL_BYTE

scale1nearest A call to xil_scale() with a source and destination
image of type XIL_BIT and an interpolation type of
nearest .

scale8nearest A call to xil_scale() with a source and destination
image of type XIL_BYTE and an interpolation type of
nearest .

setvalue8 A call to xil_set_value() with a destination image of
type XIL_BYTE

translate8nearest A call to xil_translate() with a source and destination
image of type XIL_BYTE and an interpolation type of
nearest .

Table A-1 Key to Names Used in Molecule Definitions

Name Meaning

XIL Molecules 421

A

Molecule Descriptions
The molecule descriptions in this section summarize what molecules are
available in the current release of the library. For complete information on how
to execute a molecule, see either Chapter 14, “Cell Codec” (Cell decompression
molecules) or Chapter 21, “Acceleration in XIL Programs” (all other
molecules).

Cell Decompression

decompress_Cell ➛ colorconvert ➛ rescale8 ➛ [scale8nearest] ➛
ordereddither8_1

decompress_Cell ➛ nearestcolor8_8 ➛ [scale8nearest] ➛

SPARC

[[copy8] ➛ display_ioSUNWgx]

decompress_Cell ➛ [scale8nearest] ➛ ordereddither8_8

CellB Decompression

decompress_CellB ➛ [rescale8] ➛ [scale8nearest] ➛ ordereddither8_8 ➛

SPARC

[display_ioSUNWgx]

decompress_CellB ➛ colorconvert ➛ [scale8nearest] ➛

SPARC

[display_ioSUNWgs | display_ioxlib]

x86

[display_ioxlib]

422 XIL Programmer’s Guide—August 1994

A

JPEG Baseline Sequential Decompression

decompress_Jpeg ➛ [colorconvert] ➛ [rescale8] ➛ errordiffusion8_1 ➛
[scale1nearest]

decompress_Jpeg ➛ [rescale8] ➛ ordereddither8_8 ➛

SPARC

[[scale8nearest] ➛ [copy8] ➛ display_ioSUNWgx]

decompress_Jpeg ➛ colorconvert

H.261 Decompression

decompress_H261 ➛ [rescale8] ➛ ordereddither8_8 ➛

SPARC

[[scale8nearest] ➛ [copy8] ➛ display_ioSUNWgx]

decompress_H261 ➛ colorconvert

MPEG-1 Decompression

decompress_Mpeg1 ➛ [rescale8] ➛ ordereddither8_8➛

SPARC

[[scale8nearest] ➛ [copy8] ➛ display_ioSUNWgx]

decompress_Mpeg1 ➛ colorconvert

FaxG4 Decompression

decompress_faxG4 ➛ transpose1

Image Filtering

convolve8 ➛ convolve8

convolve16 ➛ convolve16

XIL Molecules 423

A

SPARC Other

copy8 ➛ display_ioSUNWgx

convert1to8 ➛ display_ioSUNWgx

lookup1_8 ➛ display_ioSUNWgx

lookup8_8 ➛ display_ioSUNWgx

rescale8 ➛ display_ioSUNWgx

setvalue8 ➛ display_ioSUNWgx

translate8nearest ➛ display_ioSUNWgx

424 XIL Programmer’s Guide—August 1994

A

425

XIL Error Messages B

This appendix contains a listing of the error messages that can be generated by
the XIL library. Breaks in the sequential numbering of the errors do not
indicate missing errors. These are merely gaps that occurred as the numbers
were assigned.

426 XIL Programmer’s Guide—August 1994

B

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

di -1 Out Of Memory All functions

di-2 Image source1 bands or type
does not match destination

xil_extrema(), xil_fill(),
xil_add(), xil_add_const(),
xil_and(), xil_and_const(),
xil_threshold(),
xil_black_generation(),
xil_convolve(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(), xil_histogram(),
xil_multiply(),
xil_multiply_const(),
xil_not(), xil_or(),
xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_set_value(),
xil_soft_fill(),
xil_squeeze_range(),
xil_subsample_adaptive(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_transpose(), xil_xor(),
xil_cis_get_output_type() ,
xil_decompress(), xil_absolute(),
xil_edge_detection(), xil_max(), xil_min(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

XIL Error Messages 427

B

di-3 Image source 2 does not
match destination

xil_extrema(), xil_fill(),
xil_add(), xil_add_const(),
xil_and(), xil_and_const(),
xil_threshold(),
xil_black_generation(),
xil_convolve(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(), xil_histogram(),
xil_multiply(),
xil_multiply_const(),
xil_not(), xil_or(),
xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_set_value(),
xil_soft_fill(),
xil_squeeze_range(),
xil_subsample_adaptive(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_transpose(), xil_xor(),
xil_cis_get_output_type() ,
xil_decompress() , xil_absolute(),
xil_edge_detection(), xil_max(), xil_min(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical(),

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

428 XIL Programmer’s Guide—August 1994

B

di-4 Image source 3 does not
match destination

xil_extrema(), xil_fill(),
xil_add(), xil_add_const(),
xil_and(), xil_and_const(),
xil_threshold(),
xil_black_generation(),
xil_convolve(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(), xil_histogram(),
xil_multiply(),
xil_multiply_const(),
xil_not(), xil_or(),
xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_set_value(),
xil_soft_fill(),
xil_squeeze_range(),
xil_subsample_adaptive(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_transpose(), xil_xor(),
xil_cis_get_output_type() ,
xil_decompress()

di-5 Operation not implemented All functions

di-6 Could not get ROI of an
image

Asecondary error caused by an internal
error. Could occur with any function.

di-7 Could not intersect ROIs Asecondary error caused by an internal
error. Could occur with any function.

di-8 Could not get region list
from ROI

Asecondary error caused by an internal
error. Could occur with any function.

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 429

B

di-9 Could not get src1 as
memory

xil_add(), xil_add_const(),
xil_affine(), xil_and(),
xil_and_const(),
xil_black_generation(),
xil_blend(), xil_cast(),
xil_convolve(), xil_copy(),
xil_copy_pattern(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(),
xil_error_diffusion(),
xil_extrema(), xil_fill(),
xil_rotate(), xil_scale(),
xil_translate(),
xil_transpose(),
xil_histogram(), xil_lookup(),
xil_multiply(),
xil_multiply_const()
xil_nearest_color(), ,
xil_not(), xil_or(),
xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_soft_fill(),
xil_subsample_adaptive(),
xil_subsample_binary_to_gray(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_threshold(), xil_xor(),
xil_edge_detection(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

430 XIL Programmer’s Guide—August 1994

B

di-10 Couldn’t get dst1 as memory xil_add(), xil_add_const(),
xil_affine(), xil_and(),
xil_and_const(),
xil_black_generation(),
xil_blend(), xil_cast(),
xil_choose_colormap(),
xil_color_convert(),
xil_convolve(), xil_copy(),
xil_copy_pattern(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(),
xil_error_diffusion(),
xil_extrema(), xil_fill(),
xil_rotate(), xil_scale(),
xil_translate(),
xil_transpose(), xil_lookup(),
xil_multiply(),
xil_multiply_const(),
xil_nearest_color(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_soft_fill(),
xil_subsample_adaptive(),
xil_subsample_binary_to_gray(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_threshold(), xil_xor(),
xil_absolute(),
xil_copy_with_planemask(),
xil_max(), xil_min(),
xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-11 Could not get alpha as
memory

xil_blend()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 431

B

di-12 Could not get combined ROI xil_add(),
xil_add_const(),xil_and(),
xil_and_const(),
xil_black_generation(),
xil_blend(), xil_cast(),
xil_color_convert(), xil_copy(),
xil_dilate(), xil_divide(),
xil_divide_by_const(),
xil_divide_into_const(),
xil_erode(),
xil_error_diffusion(),
xil_lookup(), xil_multiply(),
xil_multiply_const(),
xil_nearest_color(), xil_not(),
xil_or(), xil_or_const(),
xil_ordered_dither(),
xil_paint(), xil_rescale(),
xil_subtract(),
xil_subtract_const(),
xil_subtract_from_const(),
xil_threshold(), xil_xor() ,
xil_absolute(),
xil_copy_with_planemask(), xil_max(),
xil_min()

di-13 Dependent count overflow xil_compress() , xil_decompress()

di-14 Could not copy ROI A secondary error caused by memory
resource limitations. Could occur with any
function.

di-15 Could not get src2 as
memory

A secondary error caused by an internal
error. Could occur with any function.

di-16 ROI translation failed xil_copy_pattern() . Secondary error
probably due to resource problems.

di-17 Attempted to get an
unknown attribute

xil_cis_get_attribute()

di-18 Attempted to get a set-only
attribute

xil_cis_get_attribute()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

432 XIL Programmer’s Guide—August 1994

B

di-19 Attempted to set an
unknown attribute

xil_cis_set_attribute()

di-20 Attempted to set a get-only
attribute

xil_cis_set_attribute()

di-21 Cannot create op A secondary error probably due to
resource problems. Could occur with any
function.

di-22 Image type mismatch Any function

di-23 Unable to perform the
specified function

Should not happen unless an error
occurred during the operation

di-24 Could not get the ROI list xil_transpose()

di-55 XilCis: JPEG attribute error:
cannot have interleaved
bands with different
selector(s) and/or
pt_transform values

Reported by the JPEG lossless compressor

di-56 XilCis: JPEG attribute error:
DECOMPRESSION_
QUALITY value must be >=
1 and <= 100

xil_cis_set_attribute()

di-57 XilCis: JPEG attribute error:
ENCODE_INTERLEAVED
value must be either TRUE
or FALSE

xil_cis_set_attribute()

di-58 XilCis: JPEG attribute error:
ENCODE_VIDEO value
must be either TRUE or
FALSE

xil_cis_set_attribute()

di-59 XilCis: JPEG attribute error:
COMPRESSION_QUALITY
value must be >=1 and
<=100

xil_cis_set_attribute()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 433

B

di-60 XilCis: JPEG attribute error:
TEMPORAL_FILTER value
must be either TRUE or
FALSE

xil_cis_set_attribute()

di-61 XilCis: JPEG attribute error:
OPTIMIZE_HUFFMAN_
TABLES value must be either
TRUE or FALSE

xil_cis_set_attribute()

di-62 XilCis: JPEG attribute error:
COMPRESSED_DATA_
FORMAT value must be
either INTERCHANGE or
ABBREVIATED_FORMAT

xil_cis_set_attribute()

di-63 XilCis: Cell attribute error:
Must set DECOMPRESSOR_
COLORMAP before
RDWR_INDICES

xil_cis_set_attribute() (for Cell)

di-64 XilCis: Cell attribute error:
RDWR_INDICES: Invalid
NULL index list

xil_cis_set_attribute() (for Cell)

di-65 XilCis: Cell attribute error:
RDWR_INDICES: Invalid
index list count

xil_cis_set_attribute() (for Cell)

di-66 XilCis: ROIs not allowed for
compress image

Reported by JPEG lossless compressor

di-67 XilCis: JPEG bytestream
error: Invalid code value
index

xil_decompress() . This error can also
be generated by xil_cis_has_frame() ,
xil_cis_number_of_frames() , and
xil_cis_seek() if user inserts data into
the CIS with
xil_cis_put_bits_[ptr]() with an
unknown or partial number of frames.

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

434 XIL Programmer’s Guide—August 1994

B

di-68 XilCis: JPEG bytestream
error: Invalid symbol table
ID

xil_decompress() . This error can also
be generated by xil_cis_has_frame() ,
xil_cis_number_of_frames() , and
xil_cis_seek() if user inserts data into
the CIS with
xil_cis_put_bits_[ptr]() with an
unknown or partial number of frames.

di-69 XilCis: JPEG bytestream
error: Invalid Huffman code
length

xil_decompress() . This error can also
be generated by xil_cis_has_frame() ,
xil_cis_number_of_frames() , and
xil_cis_seek() if user inserts data into
the CIS with
xil_cis_put_bits_[ptr]() with an
unknown or partial number of frames.

di-70 XilCis: JPEG bitstream error:
Invalid value for prediction
selector

xil_cis_set_attribute()

di-71 XilCis: JPEG bitstream error:
Invalid value for point
transform

xil_cis_set_attribute()

di-72 XilCis: JPEG bitstream error:
Invalid SOF marker for this
decompressor

xil_decompress()

di-73 XilCis: JPEG bitstream error:
Invalid selector in SOF
segment

xil_decompress()

di-74 XilCis: JPEG bitstream error:
Unsupported image
precision in SOF segment

xil_decompress()

di-75 XilCis: JPEG bitstream error:
Invalid image height in SOF
segment

xil_decompress()

di-76 XilCis: JPEG bitstream error:
Invalid image width in SOF
segment

xil_decompress()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 435

B

di-77 XilCis: JPEG bitstream error:
Invalid qtable marker 0

xil_compress()

di-78 XilCis: JPEG bitstream error:
Table not used by any bands

xil_compress()

di-79 XilCis: JPEG bitstream error:
Invalid quantizer precision
identifier

xil_cis_create() , xil_compress() ,
xil_decompress()

di-80 XilCis: JPEG bitstream error:
Number of quantizer tables
too large

xil_cis_create()

di-81 XilCis: JPEG bitstream error:
Table identifier not in use

xil_decompress()

di-82 XilCis: JPEG bitstream error:
Invalid table identifier

xil_decompress()

di-83 XilCis: JPEG bitstream error:
Invalid ac table identifier

xil_decompress()

di-84 XilCis: JPEG bitstream error:
dc table identifier not in use

xil_compress()

di-85 XilCis: JPEG bitstream error:
Invalid dc table identifier

xil_compress()

di-86 XilCis: JPEG bitstream error:
Invalid component identifier

xil_decompress()

di-87 XilCis: JPEG bitstream error:
attempted use of non loaded
ac table

xil_decompress()

di-88 XilCis: JPEG bitstream error:
attempted use of non loaded
dc table

xil_compress()

di-89 XilCis: JPEG bitstream error:
attempted use of non loaded
qtable

xil_compress()

di-90 XilCis: JPEG bitstream error:
invalid htable identifier

xil_decompress()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

436 XIL Programmer’s Guide—August 1994

B

di-91 XilCis: JPEG bitstream error:
invalid qtable identifier

xil_cis_create() , xil_compress()

di-92 XilCis: JPEG bitstream error:
unknown htable type

xil_cis_set_attribute()

di-93 XilCis: JPEG bitstream error:
invalid band number

xil_cis_get_attribute()

di-94 XilCis: JPEG bitstream error:
table index too large

xil_decompress()

di-95 XilCis: internal error xil_cis_create() ,
xil_cis_get_output_type() ,
xil_cis_get_attribute() ,
xil_compress() , xil_decompress() ,
xil_cis_has_data() ,
xil_nearest_color() ,
xil_cis_destroy()

di-96 XilCis: Wrong number of ops
in molecule

xil_nearest_color()

di-97 XilCis: Cell bitstream error xil_nearest_color()

di-98 XilCis: JPEG bitstream error xil_decompress()

di-100 XilCis: No data to
decompress

xil_cis_get_output_type()

di-101 XilCis: Could not create CIS
destination image

xil_decompress() . Secondary error
that occurs when the compressor is unable
to allocate a temporary image to compress
into.

di-102 XilCis: JPEG cannot encode
image as 4:1:1 yuv, using
ENCODE_INTERLEAVED
attribute instead

xil_compress()

di-103 XilCis: JPEG cannot
interleave image, it has 5 or
more bands

xil_compress()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 437

B

di-104 XilCis: Wrote more than
maximum frame size into
buffer space

xil_compress() . Internal error. This
should never happen.

di-105 XilCis: Seek to frame number
not in CIS

xil_cis_seek()

di-106 XilCis: Desired frame
number no longer in CIS

xil_cis_seek()

di-107 XilCis: CIS is empty, cannot
seek to frame number

xil_cis_seek()

di-108 XilCis: No previous desired
frame type to seek backward
to

xil_cis_seek() . Internal error.

di-109 XilCis: Unable to complete
seek by skipping (burning)
frames

xil_nearest_color()

di-110 XilCis: Complete frame does
not exist. No data to
decompress

xil_decompress()

di-111 XilCis: Image width and
height must be a multiple of
4

xil_cis_get_attribute() ,
xil_decompress() ,
xil_cis_get_output_type() ,
xil_cis_has_data()

di-112 XilCis: Could not create
XilLookup for colormap

xil_decompress() (for Cell)

di-113 XilCis: Fax: source not a bit
image

xil_compress()

di-114 XilCis: Incomplete frame in
buffer, cannot copy until
complete

xil_compress(),
xil_cis_put_bits()

di-115 Xilcis: start_frame adjusted
past read_frame. CIS data
lost.

xil_cis_seek() , xil_compress()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

438 XIL Programmer’s Guide—August 1994

B

di-116 XilCis: unsupported or
illegal precision for
compressed image

xil_decompress() . Internal error.

di-117 XilCis: Invalid NULL CIS
specified

xil_cis*() (ny xil_cis* routine)

di-118 XilCis: Partial frame end
adjustment error on frame
position

xil_compress(),
xil_cis_put_bits()

di-119 XilCis: Partial frame end
adjustment error on frame
list

xil_compress(),
xil_cis_put_bits()

di-120 XilCis: Cannot create copy
op

xil_compress() , xil_decompress()

di-121 XilCis: Invalid compression
type or specification

xil_compress() , xil_decompress()

di-122 XilCis: Can’t create
compression op

xil_decompress()

di-123 XilCis: Decompress
destination image’s type or
nbands does not match CIS

xil_decompress()

di-124 XilCis: Illegal relative_to
value in xil_cis_seek()

xil_cis_seek()

di-125 XilCis: Compression device
is unavailable

xil_cis_create()

di-126 XilCis: Couldn’t create
compression device

xil_cis_create()

di-127 Lookup would be too large
for data type

xil_lookup_create() ,
xil_colorcube_create()

di-128 Colorcube multipliers do not
match sizes

xil_colorcube_create()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 439

B

di-129 Object would be too large for
32-bit addressability

xil_create() ,
xil_create_from_type() ,
xil_kernel_create() ,
xil_dithermask_create() ,
xil_sel_create() ,
xil_lookup_create() ,
xil_colorcube_create(),
xil_histogram_create()

di-130 Attempted to read or write
outside the range of a
lookup

xil_lookup_get_values() ,
xil_lookup_set_values()

di-131 Invalid NULL lookup xil_ordered_dither() ,
xil_error_diffusion() ,
xil_nearest_color() ,
xil_lookup_convert() ,
xil_choose_colormap() ,
xil_lookup() ,
xil_lookup_destroy() ,
xil_lookup_get_input_datatype() ,
xil_lookup_get_output_datatype() ,
xil_lookup_get_output_nbands() ,
xil_lookup_get_num_entries() ,
xil_lookup_get_version() ,
xil_lookup_get_offset() ,
xil_lookup_set_offset() ,
xil_lookup_get_colorcube() ,
xil_lookup_get_colorcube_info() ,
xil_lookup_get_values() ,
xil_lookup_set_values() ,
xil_lookup_create_copy()

di-132 Look-up type mismatch xil_lookup_convert()

di-133 Lookup may not have input
type of XIL_FLOAT

xil_lookup_create() ,
xil_colorcube_create()

di-134 Incorrect data type for image xil_create()

di-135 Attempted to set attribute on
a non-device image

xil_set_device_attribute()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

440 XIL Programmer’s Guide—August 1994

B

di-136 Attempted to get attribute of
a non-device image

xil_get_device_attribute()

di-137 Requested pixel outside
range of image

xil_set_pixel() , xil_get_pixel()

di-138 Could not get image as
memory

xil_get_memory_storage()

di-139 Could not propagate image
storage

xil_get_memory_storage() ,
xil_set_memory_storage().
This is probably the result of another error,
such as running out of memory.

di-140 Could not get image storage Internal system error

di-141 Could not create storage
device

xil_get_pixel() , xil_set_pixel() ,
xil_get_memory_storage()

di-142 Cannot get memory storage
on non-exported image

xil_get_memory_storage()

di-143 Could not access storage
device

Internal system error

di-144 Could not copy colormap xil_ordered_dither()

di-145 Could not create ROI A secondary error caused by an internal
error. Could occur with any function.

di-146 Invalid parameters passed to
function

xil_add(), xil_create() ,
xil_create_child(),
xil_create_copy(),
xil_set_origin(),
xil_histogram_create(),
xil_kernel_create(),
xil_lookup_create(),
xil_sel_create()

di-147 Could not create image Secondary error in xil_create() ,
xil_create_child() ,
xil_create_copy()

di-148 Child count exceeded on
parent – could not create
child image

xil_create_child()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 441

B

di-149 Could not create
input/output device

Internal system error

di-150 Could not access
input/output device

Internal system error

di-151 Image already exported xil_export()

di-152 Image is of a type that
cannot be exported

xil_export()

di-153 Cannot import image that
was not previously exported

xil_import()

di-154 Image must be exported to
set memory storage

xil_set_memory_storage()

di-155 Cannot set memory storage
on a child image

xil_set_memory_storage()

di-156 Image band mismatch xil_cast(), xil_copy() ,
xil_affine() , xil_blend() ,
xil_copy_pattern() , xil_rotate() ,
xil_scale() ,
xil_subsample_binary_to_gray() ,
xil_translate(),
xil_absolute(),
xil_edge_detection(),
xil_max(), xil_min()

di-157 Undefined image data type
encountered

Internal error

di-158 Could not load .so file xil_open() ,
xil_create_from_device()

di-159 Could not extract symbols
from .so file

xil_open()

di-160 Could not expand
$XILHOME path

xil_open()

di-161 Could not open
$XILHOME/lib/
xil.compute file

xil_open()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

442 XIL Programmer’s Guide—August 1994

B

di-162 XIL Xlib I/O Driver: could
not get graphics context

xil_create_from_window()

di-163 Could not copy kernel xil_convolve(),
xil_kernel_create() ,
xil_error_diffusion()

di-164 Input and output must be in
CMYK color space

xil_black_generation()

di-165 Alpha channel image must
have only 1 band

xil_blend()

di-166 Invalid size for lookup xil_choose_colormap(),
xil_lookup_create(),
xil_error_diffusion(),
xil_nearest_color()

di-167 Image must have 3 bands xil_choose_colormap()

di-169 SEL must be specified xil_dilate() , xil_erode()

di-170 Could not copy SEL xil_dilate() , xil_erode(),
xil_sel_create_copy()

di-171 Coefficient(s) would cause a
divide by zero

xil_divide()

di-172 Supplied coefficient(s)
contained NaN

xil_divide() , xil_multiply() ,
xil_subtract()

di-173 Number of bands in src
image does not match look-
up table

xil_error_diffusion() ,
xil_nearest_color(),
xil_ordered_dither()

di-174 Data type of dest image does
not match look-up table
input type

xil_error_diffusion() ,
xil_nearest_color()

di-175 Data type of src image does
not match look-up table
output type

xil_error_diffusion() ,
xil_nearest_color(),
xil_ordered_dither()

di-176 Output image must be single
banded

xil_error_diffusion() ,
xil_nearest_color(),
xil_ordered_dither()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 443

B

di-177 Could not copy lookup xil_error_diffusion() ,
xil_nearest_color(),
xil_lookup_create_copy()

di-179 Data type of src image does
not match look-up table
input type

xil_lookup()

di-180 Data type of dest image does
not match look-up table
output type

xil_lookup()

di-181 Input image must be single
banded

xil_lookup()

di-182 Brush must be specified xil_paint()

di-183 Could not copy brush xil_paint()

di-184 XilCis: Error AdjustStart Internal error

di-185 Attempt to insert at illegal
position in linked list

Internal error

di-186 Attempt to delete at illegal
position in linked list

Internal error

di-187 NULL ROI passed to
intersect routine

xil_roi_intersect()

di-188 Could not create imagetype xil_cis_get_output_type() ,
xil_cis_get_input_type() ,
xil_create(),
xil_create_child(),
xil_create_copy(),
xil_create_from_device(),
xil_create_from_type(),
xil_create_from_window()

di-189 Could not create kernel xil_kernel_create()

di-190 Could not create dithermask xil_dithermask_create()

di-191 Could not create SEL xil_sel_create()

di-192 Could not create lookup xil_lookup_create()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

444 XIL Programmer’s Guide—August 1994

B

di-193 Could not branch to op Internal error

di-194 No capture operation
defined for this device

xil_copy()

di-195 No display operation
defined for this device

xil_copy()

di-197 Internal error in getting op
parameters

Internal error

di-198 Internal error in setting op
parameters

Internal error

di-199 Internal error searching for
optimized execution path

Internal error

di-202 Source color space not
specified

xil_color_convert()

di-203 Destination color space not
specified

xil_color_convert()

di-204 Unsupported color
conversion

xil_color_convert()

di-205 Could not get colorcube
information

Internal error

di-206 Lookup must be a colorcube xil_ordered_dither()

di-207 Invalid NULL image
specified

All functions

di-208 Tried to remove an error
handler which was not
installed

xil_remove_error_handler()

di-209 Cannot get system state from
image

Internal error

di-210 Cannot create lookup for
returning data

xil_squeeze_range()

di-211 Cannot squeeze range of
multiband image

xil_squeeze_range()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 445

B

di-212 XIL I/O Driver: could not
open specified frame buffer

xil_create_from_device()

di-213 XIL I/O Driver: could not
perform ioctl on frame buffer

xil_create_from_device()

di-214 XIL I/O Driver: frame buffer
not of expected type

xil_create_from_device()

di-215 XIL I/O Driver: could not
mmap device

xil_create_from_device()

di-216 Could not get FLOAT image
as memory

Internal error

di-217 XIL Memory Driver: Could
not get named storage type

A secondary error that can be seen after
any call that creates or copies images or
CISs

di-218 XIL Memory Driver: Could
not create named storage
device

A secondary error that can be seen after
any call that creates or copies images or
CISs

di-219 XIL I/O Driver: could not
connect to dga

xil_create_from_device()

di-220 XIL I/O Driver: could not
get window geometry

xil_create_from_device()

di-221 Invalid NULL kernel
specified

xil_convolve(),
xil_error_diffusion(),
xil_kernel_get_width(),
xil_kernel_get_height(),
xil_kernel_get_key_x(),
xil_kernel_get_key_y(),
xil_kernel_create_copy()

di-222 Invalid NULL dither mask
specified

xil_dithermask_get_width(),
xil_dithermask_get_height(),
xil_dithermask_get_nbands(),
xil_dithermask_create_copy(),
xil_error_diffusion(),
xil_ordered_dither()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

446 XIL Programmer’s Guide—August 1994

B

di-223 Tried to write to an invalid
CIS

xil_compress()

di-224 Tried to read from an invalid
CIS

xil_decompress()

di-230 XilCis: Cell attribute failed
because too few bytes per
frame group

xil_cis_set_attribute()
(BITS_PER_SECOND)

di-231 XilCis: Cell key frame
interval is too large for bit
rate control

xil_cis_set_attribute()
(KEYFRAME_INTERVAL)

di-232 XilCis: Cell key frame
interval exceeds maximum

xil_cis_set_attribute()
(KEYFRAME_INTERVAL)

di-233 Must specify histogram xil_histogram()

di-234 Number of bands in image
and histogram do not match

xil_histogram()

di-235 Zero bins in histogram not
allowed

xil_create_histogram()

di-236 Cannot create histogram xil_create_histogram()

di-237 Could not initialize
compression type

xil_cis_create()

di-238 Could not initialize
input/output type

xil_create_from_device()

di-239 Could not set image
attribute

xil_set_attribute() . A secondary
error.

di-240 Error opening or parsing
$XILHOME/lib/
xil.modules

xil_open()

di-241 Error loading Xlib display
driver

xil_create_from_window()

di-242 Couldn’t create display
image

xil_create_from_window() . A
secondary error.

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 447

B

di-243 Number of bands cannot be
0

xil_lookup_create()

di-244 Cannot create system state xil_open() . A secondary error.

di-245 Invalid dither mask
dimensions

xil_dithermask_create()

di-246 Cannot create global state xil_open() . A secondary error.

di-247 Cannot initialize
localization information

xil_open()

di-248 Unable to load any compute
device handlers

xil_open() . Probably a secondary error
due to improper configuration.

di-249 XIL Xlib I/O Driver: could
not get window attributes

xil_create_from_window()

di-250 XIL Xlib I/O Driver: could
not create ximage

xil_create_from_window()

di-251 Number of bands in src
image does not match dither
mask

xil_ordered_dither()

di-252 Invalid colorcube
dimensions

xil_colorcube_create()

di-253 XilCis: Cell compress image
width is not an even
multiple of 4

xil_compress()

di-254 XilCis: Cell compress image
height is not an even
multiple of 4

xil_compress()

di-255 Could not copy image xil_create_copy()

di-256 Could not install error
handler

xil_install_error_handler()

di_257 Invalid NULL ROI specified Any of the xil_roi*() functions

di-258 Seed pixel not within fill
region defined by fill color

xil_soft_fill()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

448 XIL Programmer’s Guide—August 1994

B

di-259 Invalid NULL data pointer xil_dithermask_create(),
xil_histogram_create(),
xil_kernel_create(),
xil_lookup_get_values(),
xil_lookup_set_values(),
xil_sel_create(),
xil_device_create(),
xil_interpolation_table_create()

di-260 Invalid NULL system state xil_create(),
xil_create_from_type(),
xil_create_from_device(),
xil_create_from_window(),
xil_cis_create(),
xil_roi_create(),
xil_kernel_create(),
xil_dithermask_create(),
xil_sel_create(),
xil_lookup_create(),
xil_colorcube_create(),
xil_histogram_create(),
xil_close(),
xil_state_get_synchronize(),
xil_state_set_synchronize(),
xil_state_get_show_action(),
xil_state_set_show_action(),
xil_install_error_handler(),
xil_remove_error_handler(),
xil_image_get_by_name(),
xil_lookup_get_by_name(),
xil_imageytpe_get_by_name(),
xil_cis_get_by_name(),
xil_dithermask_get_by_name(),
xil_kernel_get_by_name(),
xil_sel_get_by_name(),
xil_roi_get_by_name(),
xil_histogram_get_by_name(),
xil_colorspace_get_by_name()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 449

B

di-261 XilCis: Attempted to set Cell
encoding type to unknown
value

xil_cis_set_attribute()
(“CELL_ENCODING_TYPE”)

di-262 Invalid NULL SEL specified xil_sel_get_width(),
xil_sel_get_height(),
xil_sel_get_key_x(),
xil_sel_get_key_y,
xil_sel_cretae_copy()

di-263 Invalid kernel value (NaN) xil_kernel_create()

di-264 Invalid kernel value
(infinity or -infinity)

xil_kernel_create()

di-265 Invalid NULL histogram
specified

xil_histogram_get_values(),
xil_histogram_get_limits(),
xil_histogram_get_info(),
xil_histogram_get_nbins(),
xil_histogram_get_nbands(),
xil_histogram_destroy()

di-266 Invalid image dimensions
specified

xil_create(),
xil_create_from_type()

di-267 Could not copy dither mask xil_ordered_dither(),
xil_dithermask_create_copy()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

450 XIL Programmer’s Guide—August 1994

B

di-268 Invalid NULL object pointer xil_lookup_get_version(),
xil_object_get_type(),
xil_cis_get_name(),
xil_cis_set_name(),
xil_dithermask_get_name(),
xil_dithermask_set_name(),
xil_get_name(), xil_set_name(),
xil_histogram_get_name(),
xil_histogram_set_name(),
xil_imagetype_get_name(),
xil_imagetype_set_name(),
xil_kernel_get_name(),
xil_kernel_set_name(),
xil_lookup_get_name(),
xil_lookup_set_name(),
xil_roi_get_name(),
xil_roi_set_name(),
xil_sel_get_name(),
xil_sel_set_name()

di-269 Could not set image ROI Internal error

di-271 Invalid dither mask value
(NaN)

xil_dithermask_create()

di-272 Invalid dither mask value
(greater than 1.0 or less than
0.0)

xil_dithermask_create()

di-273 Invalid SEL value (must be 0
or 1)

xil_sel_create()

di-274 Could not create internal
symbol table

xil_cis_create()

di-275 Could not create internal
Cell compressor object

xil_cis_create()

di-276 Internal error op number not
found

Internal error

di-277 Could not create internal
CisBufferManager object

xil_cis_create()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 451

B

di-278 Could not create internal
base XilDeviceCompression
object

xil_cis_create()

di-279 Could not set object name xil_cis_set_name(),
xil_dithermask_set_name(),
xil_set_name(),
xil_histogram_set_name(),
xil_imagetype_set_name(),
xil_kernel_set_name(),
xil_lookup_set_name(),
xil_roi_set_name(),
xil_sel_set_name() . A secondary
error.

di-280 Could not create JpegLL
compressor object

xil_cis_create()

di-281 Could not create JpegLL
decompressor object

xil_cis_create()

di-282 Could not create XilCis xil_cis_create()

di-283 XilCis: Cell user data size is
too large

xil_cis_set_attribute()
(“CELL_USER_DATA”)

di-284 XilCis: bitstream error:
Invalid SOF marker

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

di-285 XilCis: Invalid bitstream
parameters

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

452 XIL Programmer’s Guide—August 1994

B

di-286 Could not create full set of
standard objects

xil_open() ; a secondary error

di-287 Insert of operation failed xil_error_diffusion (),
xil_nearest_color(),
xil_ordered_dither(),
xil_squeeze_range() . A secondary
error.

di-288 XilCis: image for compress
has ROIs or non-zero origin

xil_compress()

di-289 Invalid data in kernel for use
with error diffusion

xil_error_diffusion ()

di-290 Partial frame start
adjustment error on frame
position

xil_decompress() (with partial frame in
the CIS),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

di-291 Partial frame flag not set on
buffer with partial frame

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

di-292 Partial frame start
adjustment error--mismatch
with buffer start

xil_decompress(),
xil_cis_number_of_frames(),
xil_cis_get_attribute(),
xil_cis_set_attribute(),
xil_cis_get_input_type(),
xil_cis_get_output_type(),
xil_cis_attempt_recovery(),
xil_cis_get_bits_ptr()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 453

B

di-293 Current buffer manager read
frame unknown

Internal error

di-294 XilCis: could not derive
output type from data in CIS

xil_decompress()

di-295 Colorspace and image’s
number of bands mismatch

xil_set_colorspace()

di-296 Invalid NULL colorspace
specified

xil_color_convert() . An internal
error.

di-297 Could not copy colorspace xil_color_convert() . An internal
error.

di-298 Could not create colorspace xil_open() . An internal error, probably
due to running out of memory.

di-299 Number of bands in
destination image does not
match lookup table

xil_lookup()

di-300 Could not create internal fax
compressor

xil_compress()

di-301 Invalid NULL X region
specified

xil_roi_add_region()

di-302 Invalid colorcube multipliers xil_colorcube_create()

di-303 XilCis: Invalid Cell key
frame interval – negative

xil_cis_set_attribute()
(KEYFRAME_INTERVAL)

di-304 XilCis: Illegal seek backward
in a non-random access CIS

xil_cis_seek()

di-305 Bad value for Xil_boolean
type

xil_cis_set_attribute()
(TEMPORAL_FILTERING,
COLORMAP_ADAPTATION)

di-306 XilCis: Cell colormaps must
contain at least 2 colors

xil_cis_set_attribute()
(COMPRESSOR_MAX_CMAP_SIZE,
COMPRESSOR_COLORMAP)

di-307 Cell colormaps cannot
contain more than 256 colors

xil_cis_set_attribute()
(COMPRESSOR_MAX_CMAP_SIZE)

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

454 XIL Programmer’s Guide—August 1994

B

di-308 XilCis: Cell
COMPRESSOR_MAX_
CMAP_SIZE attribute cannot
be changed after first
xil_compress() call

xil_cis_set_attribute()
(COMPRESSOR_MAX_CMAP_SIZE)

di-310 XilCis: Quantizer value out
of range

xil_cis_set_attribute()
(QUANTIZATION_TABLE)

di-311 XilCis: Failure
decompressing Cell header

xil_decompress()

do-312 XilCis: Illegal H.261
bitstream

xil_decompress()

di-313 Compressor for px64 device
compression not yet
implemented

xil_compress()

di-314 XilCis: unable to sync up
with current frame PSC in
H.261 bitstream

xil_decompress()

di-315 XIL I/O Driver: uname
system call failed

xil_create_from_window()

di-316 XIL Xlib I/O Driver: could
not get ximage

xil_get_pixel()

di-317 XilCis: Error in seeking. No
frames to skip/burn

xil_cis_seek()

di-318 XilCis: attribute error: value
must be either TRUE or
FALSE

xil_cis_set_attribute()

di-319 XilCis: no user data
established for already
scanned Mpeg frame

xil_cis_seek()

di-320 XIL I/O Driver: could not
get frame buffer info

xil_create_from_window()

di-321 Cannot resize a child image Internal error

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 455

B

di-322 Cannot resize non-device
images

Internal error

di-323 Compressor for MPEG-1
device compression not yet
implemented

xil_compress()

di-324 XilCis: attribute error: value
out of range

xil_cis_set_attribute()

di-325 XilCis: D (DC intra-coded)
frame type not supported

xil_decompress()

di-326 Because of Bug ID # 1139760,
di-326 prints the error
message for di-325. The
correct error message for di-
326 is: Matrix size does not
match with src or dst
number of bands

xil_band_combine()

di-327 Tried to use an invalid image
in an operation

Any operations with an image that becomes
invalid. An image becomes invalid when an
operation that is supposed to write to it
fails.

di-328 Internal error in ROI scan
conversion

Internal error

di-329 XilCis: Mpeg1 bitstream
error, incomplete frame

Any routine that involves a seek operation
within a CIS

di-330 XIL Xlib I/O Driver: could
not capture image – window
not mapped

xil_copy()

di-331 Null lookup list or zero
number of lookups to
combine

xil_lookup_create_combined()

di-332 Input type of lookups are not
of same type

xil_lookup_create_combined()

di-333 Output type of lookups are
not of same type

xil_lookup_create_combined()

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

456 XIL Programmer’s Guide—August 1994

B

di-334 Not all lookups have a single
band

xil_lookup_create_combined()

di-335 Requested lookup table
doesn't exist -- num_bands
too large

xil_lookup_create_combined()

di-336 Wrong lookup type -- not a
combined lookup object

xil_lookup_create_combined()

di-337 XilCis: wrote more than
max_frame_size bytes into
frame

xil_compress()

di-338 XilCis: moveEndStart error,
read frame must be at end of
buffer

xil_cis_get_bits_ptr()

di-339 XilCis: moveEndStart error,
read frame must have
following frame

xil_cis_get_bits_ptr()

di-340 XilCis: removeStartFrame
error, read frame must be
start of buffer

xil_cis_get_bits_ptr()

di-341 XilCis: mpeg1 seek,
prev_nonbframe_id is frame
which already has valid
display_id

xil_cis_seek(), xil_decompress() for
MPEG-1 CIS

di-342 XilCis: doneBufferSpace
called with negative number
of bytes, illegal

xil_compress()

di-343 Unsupported edge detection
method

xil_edge_detection()

di-344 Invalid NULL attribute
specified

xil_attribute_set_value(),
xil_device_create()

di-347 ROI rectangle width/height
cannot be <= 0

Any function that passes an image as an
argument

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

XIL Error Messages 457

B

di-348 NULL warp table specified xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-349 Warp table datatype
mismatch

xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-350 Warp table nbands mismatch xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical()

di-351 Could not create
Interpolation Table

 xil_affine(),
xil_interpolation_table_create(),
xil_rotate(), xil_scale(), xil_tablewarp(),
xil_tablewarp_horizontal(),
xil_tablewarp_vertical(), xil_translate()

di-352 Invalid NULL Interpolation
Table specified

xil_interpolation_table_create()

di-354 X & Y skip values must have
value greater than 0

xil_histogram(), xil_histogram_create()

di-356 Can not open specified data
file(s)

 Could occur with any function whose
source image is a Photo CD device image.

di-358 width and height must be
defined before parsing XilCis

xil_decompress() of a CellB CIS

di-359 Cannot read from a write-
only device

Could occur with any function that tries to
read from a write-only device

di-360 Cannot write to a read-only
device

Could occur with any function that tries to
write to a read-only device

Table B-1 XIL Library Error Messages

 Error
Number Error Message Function That Generates Error

458 XIL Programmer’s Guide—August 1994

B

459

XIL-XGL Interoperability C

The current release of the XIL imaging library includes two functions that
enable you to process an image using both XIL and XGL 3.x calls in the same
program.

Note – This interface for XIL-XGL interoperability may change or be replaced
by another mechanism in a future release.

One of these functions, xil_to_xgl() , enables you to convert an XIL
memory image to an XGL memory raster or to convert an XIL display image to
an XGL window raster. The prototype for this function is shown below.

The parameter src is a handle to an XIL memory image or display image, and
xgl_state is a handle to an XGL System State object. If the function is
successful, the return value will be a handle to an XGL memory raster or
window raster. If the functions fails, the return value will be NULL.

The other function, xgl_to_xil() , enables you to convert an XGL memory
raster to an XIL memory image or to convert an XGL window raster to an XIL
display image.

Xgl_ras xil_to_xgl(XilImage src, Xgl_sys_state xgl_state);

XilImage xgl_to_xil(Xgl_ras src, XilSystemState xil_state);

460 XIL Programmer’s Guide—August 1994

C

The parameter src is a handle to an XGL memory raster or window raster, and
xil_state is an XIL system state. The function’s return value is a handle to
an XIL memory image or display image. If the function fails, the return value
will be NULL.

Table C-1 below lists the specific conversions that these functions make
possible. Within each row, the XIL image listed in the left column can be
converted to the XGL object in the right column and vice versa.

Note – The conversions shown in the first row of Table C-1 are possible only if
the width of the XIL image is an even number.

Once you have both an XIL and an XGL handle to an object, you can process it
using either XIL functions or XGL functions. The only restriction on combining
these calls is that there cannot be any outstanding deferred operations on the
object at the time you switch from making XIL calls to XGL calls, or vice versa.
This means that if you have been processing an image using XIL functions, you
must call xil_sync() to flush all outstanding operations on the image before
operating on the image using XGL functions. Similarly, if you have been
processing a raster using XGL functions, you must call
xgl_context_flush() before performing any XIL operations on the raster.

Table C-1 XIL-XGL Interoperability

XIL Image XGL Object

A one-band XIL_BYTE memory image A memory raster with the attribute
XGL_COLOR_INDEX

A four-band XIL_BYTE memory image A memory raster with the attribute
XGL_COLOR_RGB

A one-band XIL_BYTE display image A window raster with the attribute
XGL_COLOR_INDEX

A three-band XIL_BYTE display image A window raster with the attribute
XGL_COLOR_RGB

XIL-XGL Interoperability 461

C

One last note. The XIL-XGL conversion functions are not literally part of the
XIL library. Instead, they reside in a separate library called
libxil_to_xgl.a . This means that programs that use the conversion
functions must link with

• -lxil
• -lxgl
• -lxil_to_xgl

462 XIL Programmer’s Guide—August 1994

C

463

Cell and CellB Bytestream
Definitions D

This appendix provides an overview of the Cell technology, then focuses on the
descriptions of the codes that are used in a Cell bytestream. Although we
include some rationale for the existence of the various codes, we do not
provide specific implementation information about Cell encoders or decoders.

Introduction to Cell
The Cell image compression technology, which was developed by Sun
Microsystems, provides high quality, low bit-rate image compression at low
computational cost. Applications where Cell compression can be used include
videoconferencing, media distributions on CD-ROM, and multimedia mail
applications. The bytestream that is produced by a Cell encoder is variable
length and is made up of instructional codes and information about the
compressed video image.

There are two versions of the Cell image compression technology: Cell and
CellB. Cell compression, which is designed for use with movies, is
computationally asymmetric; it takes longer to compress video data than it
does to decompress the data. To provide high-quality images, Cell supports
Adaptive Colormap Selection, which enables an encoder to change colormaps
dynamically. The bytestream of images that are compressed with Cell can be
decompressed in software on any SPARCstation™ workstation. Depending on
compression ratios, 640x480-resolution movies can be played back at 30
frames/second (fps). Multiple smaller movies can be displayed simultaneously
at this rate.

464 XIL Programmer’s Guide—August 1994

D

CellB, which is derived from Cell, is designed for use in videoconferencing
applications. To reduce computational overhead and meet the timing demands
of videoconferencing, CellB compression is more computationally symmetric
than Cell. CellB uses a fixed colormap and is designed to use vector
quantization techniques. The bytestream of a CellB image is simpler (and more
compact) than that of a Cell image, which reduces requirements on network
bandwidth.

Encoding Images for Cell
Cell works with 3-band RGB images, with no subsampling, and requires that
the width and height of the images be divisible by four. CellB takes
industry-standard 3-band YCbCr video as input.

A cell encoder breaks the video into cells. A cell is 16 pixels, arranged in a
4-by-4 group (see Figure D-1). Cells are encoded into the bytestream in scanline
order, from left to right and from top to bottom.

Figure D-1 Cell

The basic encoding scheme used in both versions of Cell is based on an image
coding method called Block Truncation Coding (BTC). The 16 pixels in a cell
are represented by a 16-bit mask and two colors. The values in the mask
specify which color to place at each of the pixel positions. The mask and colors
can be chosen to maintain certain statistics of the cell or to reduce contouring
in a manner similar to ordered dither.

The primary advantage of BTC is that its decoding process is similar to the
operation of character fonting in a color frame buffer. The character display
process for a frame buffer takes as input a foreground color, a background
color, and a mask that specifies whether to use the foreground or background

Cell (four blocks of four pixels)

Cell and CellB Bytestream Definitions 465

D

color at each pixel. Because this function is so important to the window
system, it is often implemented as a display primitive in graphics accelerators.
The Cell compression technique leverages these existing primitives to provide
full-motion video decoding without special hardware or modifications to the
window system.

The basic component of the Cell and CellB bytestreams is the four-byte cell
code. The first two bytes of the cell code are a bitmask (Figure D-2). Each bit in
the mask represents a pixel in a 16-bit cell. The bitmask is normalized so that
the most significant bit is 0. The figure shows the relationship of the bits in the
mask to the location of the pixels in a cell. A value of 0 in a mask bit means
that the pixel is rendered in the background color (color 0). A value of 1 means
that the pixel is rendered in the foreground color (color 1).

The last two bytes of a cell code establish a pixel’s color. Cell and CellB differ
in the way that pixel colors are derived. In Cell, the values in the color 0 and
color 1 bytes are indexes into a colormap. In CellB, the values are indexes into
Y/Y and Cb/Cr vector quantization tables.

466 XIL Programmer’s Guide—August 1994

D

Figure D-2 Encoding a Cell

Cell Bytestream Description
The Cell bytestream can contain the following codes:

• Key-frame headers
• Key parameters
• Cell codes
• Run length codes
• Escape codes

Always 0 ``M14 M13 M12

M11 M10 M09 M08

M07 M06 M05 M04

M03 M02 M01 M00

Cell from a 24-bit image

Cell Encoder

Cell Code (Four Bytes)

Pixel Bitmask Color 0Color 1

M M M M M M M M0 M M M M M M M

015

Normalized
To 0

Cell A

Cell B

BBBBBBBB

Y/Y VectorCb/C r Vector

FFFFFFFF

Cell and CellB Bytestream Definitions 467

D

At a minimum, the Cell bytestream must contain a key-frame header, a key
frame, and cell codes. More compression is provided by using run length codes
for cells. The escape codes enable you to skip frames, load colormaps, change
masks and colors, and include non-video (user) data in the bytestream.

The codes are described in the following sections.

Key-Frame Header and Key Parameters

A Cell bytestream contains periodic “key” frames, which are free of interframe
escape codes. Every key frame is preceded by a key frame header, which is
described below. Immediately after the key frame header, the colormap is
encoded. If the colormap has not changed since the previous frame, it is
repeated anyway. The first frame of a Cell movie is always a key frame.

Key-Frame Header

The key frame header begins with a series of 8 bytes of all 1’s (0xff). This code
is followed by a number of parameters, which are introduced by 1-byte codes.
The end of a key frame header is marked by an all-zero byte.

Start of Key Frame Header

11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111

Parameters

End of Key Frame Header

00000000

. .
 .

. .
 .

468 XIL Programmer’s Guide—August 1994

D

Image Dimensions Key-Frame Code

The following code precedes the 16-bit unsigned width and height of an image.

Frame Rate Key-Frame Code

The following code precedes a 32-bit unsigned number that sets the frame rate
in microseconds per frame.

Size of Colormap Key-Frame Code

The following code precedes a byte that specifies the maximum size (Count+1)
of a colormap in the bytestream.

Reserved Key-Frame Codes

The key frame header codes in the range 00000000 to 11111111 (inclusive) are
reserved.

Code Width Height

00000001 WWWWWWWW WWWWWWWW HHHHHHHH HHHHHHHH

Code Frame Rate

00000010 RRRRRRRR RRRRRRRR RRRRRRRR RRRRRRRR

Code Count

00000011 CCCCCCCC

Cell and CellB Bytestream Definitions 469

D

Example Key-Frame Header

As an example, a key frame header for a 320-by-240 movie with a frame rate of
30 fps and a maximum colormap size of 240 would look like this (in hex):

ff ff ff ff ff ff ff ff Start of key frame header
01 01 40 00 f0 Dimensions 320 (0x140) by 240 (0xf0)
02 00 00 82 35 33,333 (0x8235) usecs per frame
03 ef Max colormap size is 239 (0xef) + 1
00 End of key frame header
c0 ... Escape code for colormap

Cell Code

The four-byte code that describes a 4-by-4 Cell cell is shown below. The values
in the Color1 and Color0 bytes are indexes into the current colormap. If a
pixel’s bit is set, the color that is indexed in the Color1 byte is used. If not set
(0), the pixel is rendered with the color that is indexed by the value of the
Color0 byte.

The relationship of the bitmask bits to the pixels in a cell is shown below.

4x4 Bitmask Color1 Color0

0MMMMMMM MMMMMMMM FFFFFFFF BBBBBBBB

Always 0

0 ``M14 M13 M12
M11 M10 M09 M08

M07 M06 M05 M04

M03 M02 M01 M00

Pixel Bitmask

M M M M M M M M0 M M M M M M M

015

470 XIL Programmer’s Guide—August 1994

D

Run Length Code

Runs of cells that use the same color can be described by a run length code,
which is shown below. The code causes the next Count+1 cells to be rendered
in the color that is specified in the Color0 byte.

Escape Codes

A Cell encoder can use the following escape codes to perform operations such
as loading colormaps, skipping frames, and including user data in the
compressed bytestream. All escape codes start with a 1 in the code’s most
significant bit.

Skip Cells

The following code causes the next N+1 cells to be skipped (to a maximum of
64 cells).

Runlength Code Color0 Count

00000000 00000000 BBBBBBBB CCCCCCCC

Code

10NNNNNN

Cell and CellB Bytestream Definitions 471

D

Load a New Colormap

The following code loads a new colormap. Count+1 byte-triples (red byte,
green byte, and blue byte) follow the Count byte.

Use Same Mask with New Colors

The following code uses the same mask as the previous cell, but with new
colors.

Use Same Mask with Color 0

The following code uses the same mask as the previous cell, but with a new
color as indexed by the value of the Color0 byte.

Code Count

11000000 CCCCCCCC rrrrrrrr gggggggg bbbbbbbb

Code Color0 Color1

11000010 BBBBBBBB FFFFFFFF

Code Color0

11000011 BBBBBBBB

472 XIL Programmer’s Guide—August 1994

D

Use Same Mask with Color 1

The following code uses the same mask as the previous cell, but with a new
color as indexed by the value of the Color1 byte.

Use Same Colors with New Mask

The following code uses the same colors as the previous cell, but with a new
bitmask.

Include User Data

The following code enables you to include your own data in the bytestream.
The next N+1 bytes in the bytestream are user data.

Code Color1

11000100 FFFFFFFF

Code 4x4 Bitmask

110000101 MMMMMMMM MMMMMMMM

Code Byte Count

11000110 NNNNNNNN NNNNNNNN NNNNNNNN uuuuuuuu uuuuuuuu

Cell and CellB Bytestream Definitions 473

D

Skip an Entire Frame

The following code causes the next frame to be skipped.

First Byte of Key-Frame Header

The following code is the first byte of a key-frame header, which was described
earlier.

Reserved Codes

The codes in the range 11001000 to 11111110 (inclusive) are reserved.

Summary of Cell Codes

Table D-1 lists the Cell codes.

Table D-1 Cell Bytestream Codes

Code Description

0MMMMMMM MMMMMMMM FFFFFFFF BBBBBBBBCell code: M=bit mask, F=color 1 index, B=color
0 index

00000000 00000000 BBBBBBBB CCCCCCCC Run length code: B=color 0 index, cell count =
C+1

10NNNNNN Interframe skip: cell count N+1

11000000 CCCCCCCC Load new colormap: count of entries (RGB
triples) that follow = C+1

Code

11000111

Code

11111111

474 XIL Programmer’s Guide—August 1994

D

CellB Bytestream Description
CellB compression is designed for use in videoconferencing applications.
Rather than indexing into a colormap to determine pixel colors (as in Cell),
CellB is designed to be used with vector quantization and dequantization
techniques in the YCbCr color space.

The CellB bytestream contains no information about image size and frame
rates. It’s the responsibility of the videoconferencing application to provide
this information.

The CellB bytestream consists of:

• Cell codes
• Skip codes
• Quantization-table specification codes

11000010 BBBBBBBB FFFFFFFF Same mask, new colors: B=color 0 index, F=color
1 index

11000011 BBBBBBBB Same mask, new color 0: B=color 0 index

11000100 FFFFFFFF Same mask, new color 1: F=color 1 index

11000101 0MMMMMMM MMMMMMMM Same colors, new mask: M=bit mask

11000110 NNNNNNNN NNNNNNNN NNNNNNNNUser data: count of user bytes that follow = C+1

11001000-11111111 Reserved

11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111

Start of key frame header

00000001 WWWWWWWW WWWWWWWW HHHHHHHH
HHHHHHHH

Key frame, image dimensions: W=width,
H=height

00000010 RRRRRRRR RRRRRRRR RRRRRRRR
RRRRRRRR

Key frame, frame rate in usec: R=frame rate

00000011 CCCCCCCC Key frame, maximum colormap size = C+1

00000000 End of key frame header

Table D-1 Cell Bytestream Codes

Code Description

Cell and CellB Bytestream Definitions 475

D

Cell Code

The four-byte code that describes a 4-by-4 CellB cell is shown below. There are
two possible luminance (Y) levels for each cell but only one pair of
chrominance (Cb and Cr) values.

The value in the Cb/Cr byte represents the chrominance component of the cell.
The value in the Y/Y byte represents two luminance values (Y0 and Y1) that
can represent the cell’s luminance.

If a pixel’s bit is set in the 4-by-4 bitmask, the color that is rendered for the
pixel is <Y1,Cb,Cr>. If a pixel’s bit is not set, the pixel is rendered by the color
represented by <Y0,Cb,Cr>.

The relationship of the bitmask bits to a cell’s pixels is shown below.

MMMMMMMMFFFFFFFF 100SSSSS 0MMMMMMM0MMMMMMM BBBBBBBB

Cell Code Skip Code
Quantization Table

Code

1111111T

4x4 Bitmask U/V Code Y/Y Code

0MMMMMMM MMMMMMMM UVUVUVUV YYYYYYYY

Always 0

0 ``M14 M13 M12
M11 M10 M09 M08

M07 M06 M05 M04

M03 M02 M01 M00

Pixel Bitmask

M M M M M M M M0 M M M M M M M

015

476 XIL Programmer’s Guide—August 1994

D

Cb/Cr Quantization Table

The Cb/Cr field of the CellB bytecode represents the chrominance component
of the cell. This Cb/Cr code is an index into a table of vectors that represent two
independent components of chrominance. Figure D-3 on page 476 shows the
default chrominance table. The section “Cb/Cr Table Values” on page 484
contains a list of the values used in the table.

The distribution of values in this default table is based on the observation that,
in videoconferencing applications, a cell’s Cb/Cr vectors are clustered around
the origin (0,0). Therefore, the Cb/Cr codeword is circularly symmetric, with
higher densities near the origin.

Figure D-3 Default CellB Chrominance Quantization Table

v

128

96

64

32

0

-32

-64

-96

-128

u
-128 -96 -64 -32 0 32 64 96 128

Cell and CellB Bytestream Definitions 477

D

Y/Y Quantization Table

The Y/Y field of the CellB bytecode represents two luminance values of a cell
(Y0 and Y1). This Y/Y code is an index into a table of two-component
luminance vectors. Figure D-4 on page 478 shows the default luminance table.
The section “Y/Y Table Values” on page 480 provides the list of values for the
table.

The distribution of values in the default luminance table is statistically
optimized. The quantizer takes advantage of the high correlation of luminance
values within local regions of a cell. This results in a set of representative
vectors that are most densely populated around the diagonal, where y1 equals
y2.

An observer’s sensitivity to contrast is also taken into account, resulting in a
distribution of points that is farther apart in regions where the contrast
between two values is low.

478 XIL Programmer’s Guide—August 1994

D

In this example, the value for the Y/Y code is selected by approximating the
mean luminance for the cell. Then, the pixels within the cell are separated into
groups that are above and below the mean luminance. The mean luminance of
these two groups is used to index a two-dimensional vector quantizer, which
returns a byte value for the Y/Y code.

Figure D-4 Default CellB Luminance Quantization Table

y1

256

224

192

160

128

96

64

32

0
y0

0 32 64 96 128 160 192 224 256

Cell and CellB Bytestream Definitions 479

D

Skip Code

The single-byte CellB skip code is shown below.

The skip code tells the decoder to skip the next S+1 cells in the frame that is
being decoded, which, for CellB, supports a simple form of interframe
encoding. There are five skip bits, so that a maximum of 32 cells can be
skipped with a single-byte skip code.

New Y/Y Table

The single-byte “new Y/Y table” code is shown below.

This code tells the decoder that the next 512 bytes are a new Y/Y quantization
table. The bytes are arranged as:

Y1_000 Y2_000
Y1_001 Y2_001
. .
. .
. .
Y1_255 Y2_255

Note – This code is not implemented in the current CellB compressor and
decompressor.

100SSSSS

11111110

480 XIL Programmer’s Guide—August 1994

D

New U/V Table

The single-byte “new U/V table” code is shown below.

This code tells the decoder that the next 512 bytes are a new U/V quantization
table. The bytes are arranged as:

U_000 V_000
U_001 V_001
. .
. .
. .
U_255 V_255

Note – This code is not implemented in the current CellB compressor and
decompressor.

Default CellB Quantization Tables

Y/Y Table Values

Table D-2 lists the default values for the CellB Y/Y quantization table.

Table D-2 Default Y/Y Table (1 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

0 16 20 87 120 136 174 112 64

1 16 24 88 128 136 175 128 64

2 16 32 89 128 144 176 72 68

3 16 48 90 128 160 177 76 72

4 16 64 91 128 176 178 80 72

5 16 80 92 128 192 179 88 72

11111111

Cell and CellB Bytestream Definitions 481

D

6 16 112 93 136 144 180 80 76

7 16 144 94 136 152 181 84 80

8 16 176 95 144 152 182 88 80

9 16 208 96 144 160 183 96 80

10 16 240 97 144 176 184 112 80

11 20 24 98 144 192 185 128 80

12 24 28 99 144 208 186 144 80

13 24 32 100 144 240 187 176 80

14 24 40 101 152 160 188 208 80

15 28 32 102 152 168 189 240 80

16 32 36 103 160 168 190 88 84

17 32 40 104 160 176 191 92 88

18 32 48 105 160 192 192 96 88

19 32 64 106 160 208 193 104 88

20 32 80 107 160 224 194 96 92

21 32 96 108 168 176 195 100 96

22 36 40 109 168 184 196 104 96

23 40 44 110 176 184 197 112 96

24 40 48 111 176 192 198 128 96

25 40 56 112 176 208 199 144 96

26 44 48 113 176 224 200 160 96

27 48 52 114 176 240 201 104 100

28 48 56 115 184 192 202 108 104

29 48 64 116 184 200 203 112 104

30 48 80 117 192 200 204 120 104

31 48 96 118 192 208 205 112 108

32 48 112 119 192 224 206 116 112

Table D-2 Default Y/Y Table (2 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

482 XIL Programmer’s Guide—August 1994

D

33 48 144 120 192 240 207 120 112

34 48 176 121 200 208 208 128 112

35 48 208 122 200 216 209 144 112

36 48 240 123 208 216 210 160 112

37 52 56 124 208 224 211 176 112

38 56 60 125 208 240 212 208 112

39 56 64 126 216 232 213 240 112

40 56 72 127 224 240 214 128 120

41 60 64 128 20 16 215 136 120

42 64 68 129 24 16 216 136 128

43 64 72 130 32 16 217 144 128

44 64 80 131 48 16 218 160 128

45 64 96 132 64 16 219 176 128

46 64 112 133 80 16 220 192 128

47 64 128 134 112 16 221 144 136

48 68 72 135 144 16 222 152 136

49 72 76 136 176 16 223 152 144

50 72 80 137 208 16 224 160 144

51 72 88 138 240 16 225 176 144

52 76 80 139 24 20 226 192 144

53 80 84 140 28 24 227 208 144

54 80 88 141 32 24 228 240 144

55 80 96 142 40 24 229 160 152

56 80 112 143 32 28 230 168 152

57 80 128 144 36 32 231 168 160

58 80 144 145 40 32 232 176 160

59 80 176 146 48 32 233 192 160

Table D-2 Default Y/Y Table (3 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

Cell and CellB Bytestream Definitions 483

D

60 80 208 147 64 32 234 208 160

61 80 240 148 80 32 235 224 160

62 84 88 149 96 32 236 176 168

63 88 92 150 40 36 237 184 168

64 88 96 151 44 40 238 184 176

65 88 104 152 48 40 239 192 176

66 92 96 153 56 40 240 208 176

67 96 100 154 48 44 241 224 176

68 96 104 155 52 48 242 240 176

69 96 112 156 56 48 243 192 184

70 96 128 157 64 48 244 200 184

71 96 144 158 80 48 245 200 192

72 96 160 159 96 48 246 208 192

73 100 104 160 112 48 247 224 192

74 104 108 161 144 48 248 240 192

75 104 112 162 176 48 249 208 200

76 104 120 163 208 48 250 216 200

77 108 112 164 240 48 251 216 208

78 112 116 165 56 52 252 224 208

79 112 120 166 60 56 253 240 208

80 112 128 167 64 56 254 232 216

81 112 144 168 72 56 255 240 224

82 112 160 169 64 60

83 112 176 170 68 64

84 112 208 171 72 64

85 112 240 172 80 64

86 120 128 173 96 44

Table D-2 Default Y/Y Table (4 of 4)

Index Y1 Y2 Index Y1 Y2 Index Y1 Y2

484 XIL Programmer’s Guide—August 1994

D

Cb/Cr Table Values

Table D-3 lists the default values for the CellB Cb/Cr quantization table.

Table D-3 Default Cb/Cr Table (1 of 4)

Index U V Index U V Index U V

0 16 16 87 128 184 174 160 120

1 16 48 88 128 192 175 160 128

2 16 80 89 128 208 176 160 136

3 16 112 90 128 224 177 160 144

4 16 144 91 132 136 178 160 152

5 16 176 92 132 140 179 160 160

6 16 208 93 132 144 180 160 168

7 16 240 94 132 148 181 160 176

8 48 16 95 132 152 182 160 184

9 48 48 96 136 104 183 160 192

10 48 80 97 136 112 184 160 208

11 48 112 98 136 120 185 160 224

12 48 144 99 136 128 186 168 112

13 48 176 100 136 132 187 168 120

14 48 208 101 136 136 188 168 128

15 48 240 102 136 140 189 168 136

16 64 112 103 136 144 190 168 144

17 64 128 104 136 148 191 168 152

18 64 144 105 136 152 192 168 160

19 64 160 106 136 156 193 168 168

20 64 176 107 136 160 194 168 176

21 80 16 108 136 168 195 176 16

22 80 48 109 136 176 196 176 48

23 80 80 110 136 184 197 176 64

24 80 96 111 140 132 198 176 80

Cell and CellB Bytestream Definitions 485

D

25 80 112 112 140 136 199 176 96

26 80 128 113 140 140 200 176 112

27 80 144 114 140 144 201 176 120

28 80 160 115 140 148 202 176 128

29 80 176 116 140 152 203 176 136

30 80 192 117 140 156 204 176 144

31 80 208 118 144 16 205 176 152

32 80 240 119 144 48 206 176 160

33 96 80 120 144 64 207 176 168

34 96 96 121 144 80 208 176 176

35 96 112 122 144 96 209 176 192

36 96 128 123 144 104 210 176 208

37 96 144 124 144 112 211 176 224

38 96 160 125 144 120 212 176 240

39 96 176 126 144 128 213 184 128

40 96 192 127 144 132 214 184 136

41 96 208 128 144 136 215 184 144

42 104 128 129 144 140 216 184 152

43 104 136 130 144 144 217 184 160

44 104 144 131 144 148 218 192 80

45 104 152 132 144 152 219 192 96

46 104 160 133 144 156 220 192 112

47 112 16 134 144 160 221 192 128

48 112 48 135 144 168 222 192 144

49 112 64 136 144 176 223 192 160

50 112 80 137 144 184 224 192 176

51 112 96 138 144 192 225 192 192

Table D-3 Default Cb/Cr Table (2 of 4)

Index U V Index U V Index U V

486 XIL Programmer’s Guide—August 1994

D

52 112 112 139 144 208 226 192 208

53 112 120 140 144 224 227 208 16

54 112 128 141 144 240 228 208 48

55 112 136 142 148 132 229 208 80

56 112 144 143 148 136 230 208 96

57 112 152 144 148 140 231 208 112

58 112 160 145 148 144 232 208 128

59 112 168 146 148 148 233 208 144

60 112 176 147 148 152 234 208 160

61 112 192 148 148 156 235 208 176

62 112 208 149 152 104 236 208 192

63 112 224 150 152 112 237 208 208

64 112 240 151 152 120 238 208 240

65 120 112 152 152 128 239 224 112

66 120 120 153 152 132 240 224 128

67 120 128 154 152 136 241 224 144

68 120 136 155 152 140 242 224 160

69 120 144 156 152 144 243 224 176

70 120 152 157 152 148 244 240 16

71 120 160 158 152 152 245 240 48

72 120 168 159 152 156 246 240 80

73 120 176 160 152 160 247 240 112

74 128 64 161 152 168 248 240 144

75 128 80 162 152 176 249 240 176

76 128 96 163 152 184 250 240 208

77 128 104 164 156 136 251 240 240

78 128 112 165 156 140 252 0 0

Table D-3 Default Cb/Cr Table (3 of 4)

Index U V Index U V Index U V

Cell and CellB Bytestream Definitions 487

D

79 128 120 166 156 144 253 0 0

80 128 128 167 156 148 254 0 0

81 128 136 168 156 152 255 0 0

82 128 144 169 160 64

83 128 152 170 160 80

84 128 160 171 160 96

85 128 168 172 160 104

86 128 176 173 160 112

Table D-3 Default Cb/Cr Table (4 of 4)

Index U V Index U V Index U V

488 XIL Programmer’s Guide—August 1994

D

489

Bibliography E

Andrews, H. C. Computer Techniques in Image Processing. New York: Academic
Press, 1970.

Baxes, G. A. Digital Image Processing: A Practical Primer. Englewood Cliffs, N.J.:
Prentice-Hall, 1984.

A nonmathematical introduction to image processing.

Castleman, K. R. Digital Image Processing. Englewood Cliffs, N.J.: Prentice-Hall,
1979.

Foley, J. D., et al. Computer Graphics: Principles and Practice. 2nd ed. Reading,
Mass.: Addison-Wesley, 1990.

Discusses dithering, fills, geometric transforms, and color models.

Gonzalez, R. C., and P. Wintz. Digital Image Processing. 2nd ed. Reading, Mass.:
Addison-Wesley, 1987.

Green, W.B. Digital Image Processing: A Systems Approach. New York: Van
Nostrand Reinhold, 1983.

Groff, V. The Power of Color in Design for Desktop Publishing. Portland: MIS Press,
1990.

490 XIL Programmer’s Guide—August 1994

E

Hall, E. L. Computer Image Processing and Recognition. New York: Academic
Press, 1979.

International Organization for Standardization and International
Electrotechnical Commission. Information Technology—Coding of Moving
Pictures and Associated Audio for Digital Storage Media up to About 1.5 Mbits/s.
1992.

The MPEG-1 standard.

International Organization for Standardization and International
Electrotechnical Commission. Information Technology—Digital Compression
and Coding of Continuous-Tone Still Images. 1991.

The JPEG standard.

International Telegraph and Telephone Consultative Committee (CCITT).
“Recommendation H.261 - Video Codec for Audiovisual Services at p x 64
Kbits/s.” Study Group XV - Report R 37. 1990.

The H.261 standard.

Jain, A. Fundamentals of Digital Image Processing. Englewood Cliffs,
N.J.: Prentice-Hall, 1989.

Magnenat-Thalmann, N., and D. Thalmann. Image Synthesis: Theory and Practice.
Tokyo: Springer-Verlag, 1987.

Nye, A. Xlib Programming Manual. O’Reilly & Associates, Inc., 1988.

OpenWindows Version 3.0.1 Programmer’s Guide. Mountain View, Ca.: SunSoft,
1992.

Discusses colormaps in Sun’s implementation of X11.

Pennebaker, W. B., and J. L. Mitchell. JPEG Still Image Data Compression. Van
Nostrand Reinhold, 1991.

A detailed description of the JPEG still-image compression standard.

Bibliography 491

E

PostScript Language Reference Manual. 2nd ed. Reading, Mass.: Addison-Wesley,
1990.

Discusses color models and filtering operations.

Pratt, W. K. Digital Image Processing. 2nd ed. New York: Wiley, 1991.

Raster Graphics Handbook. 2nd ed. New York: Van Nostrand Reinhold, 1985.

Contains a good appendix on color models.

Rogers, D. F. Procedural Elements for Computer Graphics. New York:
McGraw-Hill, 1985.

Provides information about dithering and fills.

Rosenfield, A., and A. C. Kak. Digital Picture Processing. 2nd ed. 2 vols. New
York: Academic Press, 1982.

Scheifler, R. W., and J. Gettys. X Window System. Bedford, Mass.: Digital Press,
1988.

Covers color management in the X Window System.

Thorell, L. G., and W. J. Smith. Using Computer Color Effectively: An Illustrated
Reference. Englewood Cliffs, N.J.: Prentice Hall, 1990.

Ulichney, R. Digital Halftoning. Cambridge, Mass.: MIT Press, 1987.

Contains good discussions of halftoning and dithering.

Wallace, G. K. “The JPEG Still Picture Compression Standard.” Communications
of the ACM. April 1991, p. 31.

A good introduction to JPEG compression.

Wolberg, G. Digital Image Warping. Los Alamitos, Ca.: IEEE Computer Society
Press, 1990.

492 XIL Programmer’s Guide—August 1994

E

493

Glossary

AC coefficient
A DCT coefficient that corresponds to nonconstant data in the original image.

additive color system
A color model in which colors are built by adding together primary colors.
RGB is an example.

affine transform
Affine transforms include such operations as scaling, rotation, translation, and
shearing. What these operations have in common is that they can change the
lengths and angles of lines, but not their parallelism. The XIL library contains a
function xil_affine() that in one operation can scale, rotate, and translate
an image.

atom
A single XIL function. Because of its deferred-execution scheme, the library is
sometimes able to find groups of atoms that it can replace with an optimized
routine that does the jobs of all the atoms in the group. These optimized
routines are called molecules.

attribute
A term from object-oriented programming that refers to a characteristic of an
object.

Baseline sequential codec
A sequential coder-decoder defined by the JPEG standard. It is designed to
handle images with 8-bit samples and uses Huffman coding for its entropy
coding.

494 XIL Programmer’s Guide—August 1994

bicubic interpolation
Bicubic interpolation is the most time consuming of the XIL library’s
interpolation methods, but produces the best results. When this type of
interpolation is requested, the library calculates the value of a pixel in the
destination image by determining the point in the source image to which that
pixel maps and then examining the values of the sixteen pixels closest to that
point.

bilinear interpolation
When the XIL library uses bilinear (or first-order) interpolation to determine
the value of an image at noninteger coordinates, it calculates the value by
looking at the values of the four pixels surrounding the point of interest and
then using a bilinear equation. This type of interpolation yields better results
than nearest neighbor interpolation, but can itself have an undesirable
smoothing effect on an image. To alleviate this problem, you can use bicubic
interpolation.

Block Truncation Coding
The image compression method on which the Cell encoding scheme is based.
In Cell compression, a 4-by-4 region of pixels from an image is represented by
two colors and a 16-bit mask.

CCIR
The Committée International de la Radio. This treaty organization, part of the
International Telecommunications Union (ITU), is responsible for obtaining
international agreement on standards for radio and television transmission and
the international exchange of programs.

CCIR Recommendation 601
An international standard for digitizing PAL, NTSC, and SECAM analog video.

CCITT
International Telegraph and Telephone Consultative Committee, an
international association and standards body composed primarily of
representatives from national telephone agencies. The CCITT promulgates
telephony standards, such as X.25, the Group 3 facsimile standard, and the
H.261 videoconferencing standard (px64).

CCITT Group 3
A standard that specifies how facsimile machines must compress and
decompress image data. The compression method relies heavily on run-length
encoding. Runs of white pixels and runs of black pixels are represented with
codes from a Huffman table.

Glossary 495

CCITT Group 4
A standard for compressing document images. This compression technique
takes advantage of a characteristic of document images called vertical
coherence. This means that transitions from black to white or vice versa
generally occur in almost the same place on adjacent scanlines. The Group 4
encoder compresses an image by recording information about the relative
locations of these transitions.

cell
A 4-by-4 block of pixels. (See also Cell encoding.)

Cell encoding
A video compression algorithm developed by Sun. In Cell encoding, a 4-by-4
region of pixels is represented by two colors and a 16-bit mask that indicates
which of the two colors to place at each of the 16 pixel positions. The colors
and mask are chosen to preserve the mean and variance of the luminance and
the average chrominance for the 4-by-4 block.
Cell decoding takes advantage of the fonting hardware commonly found in
bitmapped displays.

CellB encoding
A video-compression algorithm derived from the Cell algorithm. As with a
Cell compressor, the most fundamental task of a CellB compressor is to encode
4-by-4 cells of pixels in four bytes. The first two bytes of each cell code are a
16-bit mask that indicates which of two colors will represent each pixel in the
cell. The third and fourth bytes contain indexes into tables of luminance and
chrominance values and define the two colors to be used in encoding the cell.
CellB coders and decoders are intended primarily for use in videoconferencing
applications.

chrominance
The portion of a composite signal that carries color information. For example,
the Cb or Cr component of a YCbCr signal represents part of a pixel’s
chrominance. (See also luminance.)

CIF
Commmon Interchange Format. CIF format images contain YCbCr data and are
352 pixels wide and 288 pixels high. Images in this format are one of the two
types of images that may be supported by H.261 codecs.

496 XIL Programmer’s Guide—August 1994

CIS
Compressed image sequence. The XIL library’s compressors store (generally
related) compressed images in structures called CIS buffers. The images may
represent frames in a movie, pages in a document, and so on.

CMY color model
In the CMY color model, the subtractive primaries cyan, magenta, and yellow
are used to filter their complements (red, green, and blue) from white light.
You use this color model when working with devices like color printers that
put colored ink on paper. For example, to create the color red on a color
printer, you put down a mixture of magenta and yellow ink. The magenta
filters out its complement green; the yellow filters out its complement blue;
and you see only red.

CMYK color model
Similar to the CMY color model, but uses a fourth color: black. Black is used to
replace equal amounts of cyan, magenta, and yellow. This color model is used
in offset color printing.

codec
A coder-decoder.

colormap
A color lookup table that stores a set of RGB values. Applications index into
the colormap to get the values to drive the red, blue, and green guns of an RGB
monitor.

compressed image sequence
See CIS.

compression
The process of converting data from its original format to a format that
requires fewer bits. Compressed data uses less storage than uncompressed data
and can be transmitted over a network more quickly. Some compressors, such
as the CCITT Group 3 compressor, are called lossless compressors because
they compress data in a way such that a decompressor can regenerate the
original data exactly. Other compressors are called lossy compressors because
they compress data in a way that prevents the original data set from being
regenerated exactly.

Glossary 497

convolution
An image-processing operation frequently used to sharpen an image, blur an
image, or highlight the edges in an image. The operation calculates the values
of pixels in the destination image using the values of a neighborhood of pixels
in the source image and the values in a special filter called a convolution
kernel.

convolution kernel
A two-dimensional array of weighted values used in a convolution operation.
In the XIL library, a kernel is a data structure of data type XilKernel .

DC coefficient
A DCT coefficient that corresponds to the average level of the input image.

DCT
Discrete Cosine Transform. Many encoders, including those that conform to the
JPEG, MPEG-1, and H.261 standards, perform a DCT on an 8-by-8 block of
image data as part of the image-compression process. The DCT converts the
video data from the spatial domain to the frequency domain. The DCT takes an
8-by-8 matrix, whose values represent brightness levels at particular x,y
coordinates, and produces an 8-by-8 matrix whose values represent relative
amounts of the 64 spatial frequencies that make up the input data’s spectrum.
The DCT provides a basis for compression because most of the frequency
levels for a block will be zero or close to zero and do not need to be encoded.

decoder
A program that takes data that has been encoded, or compressed, by an
encoder and decompresses it. A decoder can be implemented in hardware,
software, or a combination of both. The decompressed data may or may not
match the original data set exactly, depending on how the data was encoded.
(See also lossless compression and lossy compression.)

decompression
The restoring of data that has undergone compression to its original state, or to
something close to its original state. How closely the decompressed data
matches the original data depends on the compression algorithm used. (See also
lossless compression and lossy compression.)

display image
The XIL library treats displays as special images, and operations allow display
images to serve as destinations. This strategy enables an operation to draw on
a screen directly, without requiring an intermediate copy. In some cases,
display images can also serve as source images.

498 XIL Programmer’s Guide—August 1994

dithering
The XIL library includes a table-lookup function that enables you to convert a
single-band image of any data type to a single-band or multiband image of any
data type. Dithering can be thought of as an inverse lookup operation; that is,
dithering enables you to convert a single-band or multiband image of any data
type to a single-band image of any data type. The most common dithering
operations convert 3-band, 8-bit images to 1-band, 8-bit images and 1-band,
8-bit images to 1-band, 1-bit images.

encoder
An encoder is a program that encodes data for the purpose of achieving data
compression. The encoders included with the XIL library are designed to
compress images.

entropy coding
Entropy coding is the final step in the compression process in DCT-based
encoders (such as the JPEG baseline sequential encoder). In this step, the
encoder compresses quantized DCT coefficients using Huffman coding.
Therefore, values that occur frequently are encoded with fewer bits than are
values that occur infrequently.

error diffusion
A technique for removing some of the artifacts produced during the dithering
process. In its most common form, Floyd-Steinberg error diffusion, this
technique involves (1) determining the amount of error produced in dithering
a particular pixel and (2) distributing fractions of that error to the pixels to the
right of and below the pixel just dithered.

frame
A single image taken from a movie.

full-motion video
The showing of a series of related digital images at a rate sufficient to give the
illusion that objects in the images are moving naturally.

gamma correction
In a linear color space, color levels are equally spaced throughout a gamut. The
problem with this type of color space is that level-to-level changes at the low
end of the gamut seem greater to the eye than equal changes at the high end.
In a gamma-corrected color space, color levels are spaced logarithmically so
that level-to-level changes seems consistent throughout the range.

Glossary 499

geometric operation
An image-processing operation that changes the size, shape, or orientation of
objects in an image. XIL geometric operations include scaling, rotation, and
general affine transforms.

H.261
A video compression standard developed by the CCITT for use in encoding
video to be transferred over an ISDN (Integrated Service Digital Network). In
this compression method, data is compressed so that the output bit rate is
p x 64 Kbits per second, where p can range from 1 to 30 depending on the
number of ISDN channels used. This standard was developed primarily to
support video phone and videoconferencing applications.

handle
An identifier that refers to a unique object. In the XIL library, for example, an
identifier of type XilImage is a handle to an actual image.

histogram
A collection of information about how frequently certain gray levels or colors
appear in an image. The XIL library contains a data structure of type
XilHistogram to hold this type of information.

Huffman encoding
A method of compressing a given set of data based on the relative frequency of
the individual elements: the more often an element occurs, the shorter (in bits)
its corresponding code. Huffman encoding is often used to compress text files,
with the coding based on letter frequency. Huffman encoding is also used in
many DCT-based video-compression algorithms.

image
A two-dimensional array of pixels that represents an object.

indexed color
See pseudocolor.

in-place operations
Operations that require both a source and a destination image but that allow
them to be the same image. If a function doesn’t support in-place operations,
the source and destination images must be different images.

500 XIL Programmer’s Guide—August 1994

interframe compression
In image sequences, consecutive frames generally have more similarities than
differences. These similarities, or shared elements, are sometimes referred to as
being temporally redundant. This redundancy is important because it allows
groups of individually compressed frames to be compressed further. That is, if
five frames in a group look the same in the upper-left corner, that area needs to
be encoded only once; then the encoder can simply note that the same data
appears in the next four frames. This type of encoding is called interframe
compression.

interpolation
A way of calculating a value that falls between other, known values. In image
processing, interpolation frequently plays a part in geometric operations such
as rotation. After that type of spatial transformation, pixel locations in the
output image will correspond to noninteger coordinates in the input image.
Therefore, the pixel values in the output must be calculated by looking at the
values of the pixels surrounding the point of interest in the input. The XIL
library supports several types of interpolation, including nearest neighbor,
bilinear, and bicubic interpolation.

intraframe compression
The compression that can take place within a single image. Contrast with
interframe compression.

ISDN
Integrated Service Digital Network. A worldwide public telecommunications
network designed to handle many types of data, including voice, text,
graphics, and video. The CCITT designed the H.261 video encoder to produce
compact bitstreams that can be sent over ISDN lines.

JPEG
Joint Photographic Experts Group. A joint venture of the CCITT and ISO that
has developed a standard for compressing grayscale or color still images.
Actually, the standard defines a number of methods for compressing images.
Several of these are lossy methods based on the Discrete Cosine Transform
(DCT), but one method is lossless and is based on a predictive coding
technique.

key frame
If the video portion of a movie has been compressed using both intraframe
compression and interframe compression, a decoder cannot decompress the
majority of the video frames without referring to preceding—and sometimes

Glossary 501

succeeding—frames. However, the first frame in the movie, and usually other
frames as well, do not have interframe dependencies and can be decoded in
isolation. These frames are called key frames. Key frames, besides the one that
starts the movie, enable the decoder to decompress other frames without
playing the movie from the beginning.

linear remapping
See rescaling.

local operation
An image-processing operation in which more than one pixel in a source image
is used in calculating the value of a single pixel in the destination image.
Generally, the source-image pixels used include the pixel corresponding to the
destination pixel being calculated and some set of pixels surrounding that
source pixel.

lookup table
In XIL applications, lookup tables are used for general image modification.
Each entry in an XIL lookup table contains an index—a value that may appear
in the source image—and a value or set of values to be written to the
destination image. For each pixel in the source, a table-lookup function finds
the pixel’s value on the index side of the table and then writes the output value
or values for that entry to the corresponding pixel in the destination.

lossless compression
The compression of data in such a way that the original data can be restored
exactly. Huffman encoding is an example of a lossless compression technique.
Some compressors, such as the JPEG baseline sequential compressor, combine
lossy and lossless compression algorithms. (See also lossy compression.)

lossy compression
A type of compression that results in the loss of some of the original data.
Lossy compression trades the potential loss of some image quality for the
opportunity for greater compression. The JPEG baseline sequential and Cell
methods are examples of lossy compression techniques. (See also lossless
compression.)

luminance
The portion of a composite signal that carries brightness information. For
example, luminance information is contained in the Y component of a YCbCr

signal. Video compression techniques take advantage of the fact that the
human eye is more sensitive to variations in luminance than it is to variations

502 XIL Programmer’s Guide—August 1994

in color (chrominance). Therefore, chrominance values can be compressed
(with lossy techniques) more than luminance values, resulting in greater
overall compression.

macroblock
Both the H.261 and the MPEG-1 specifications define a unit within an image
called a macroblock. This unit is a 16-by-16 blocks of pixels. Both H.261 and
MPEG-1 encoders can switch from intraframe encoding to interframe encoding
on a macroblock basis.

molecule
The XIL term for an optimized routine that performs the work of two or more
XIL functions (atoms). You don’t call a molecule directly. Instead, the XIL
runtime system executes a molecule whenever your program calls a sequence
of XIL functions that the molecule can replace. This type of substitution is
possible because of the library’s deferred-execution scheme.

motion compensation
Both H.261 and MPEG-1 encoders can perform interframe compression by
encoding the differences between the values in a macroblock in the picture
being encoded and the values in the corresponding macroblock in the
preceding image. Sometimes, however, it’s desirable to encode the differences
between the values in a macroblock in the current image and the values in a
macroblock in the preceding image that is slightly offset from the one that
corresponds spatially with the macroblock being encoded. This approach is
desirable because it enables the encoder to track the movement of objects from
image to image and, thus, to encode smaller differences. If an encoder uses this
approach, it must of course record the extent of the offset mentioned above.
This offset is recorded in a motion vector.

movie
A contiguous series of video frames (and optionally synchronized audio) that
are displayed fast enough to provide the illusion of motion. A frame rate of 30
frames/second is a typical target for a smooth-running movie.

MPEG
Moving Picture Experts Group. This group has developed standards for
compressing moving pictures and audio data and for synchronizing video and
audio datastreams. The XIL library includes a decompression module that can
decode MPEG-1 video bitstreams.

Glossary 503

The MPEG-1 video-compression standard is similar to the H.261 standard
developed by the CCITT, but places less emphasis on low bit rates. By
accepting a higher bit rate—up to 1.5 Mbits per second—an MPEG-1 codec is
able to recreate very high-quality pictures and to produce a bitstream that is
easily editable.

The rate of 1.5 Mbits/s makes the MPEG-1 codec especially viable in
applications that read compressed data from CD-ROMs. For example, putting
an MPEG-1 bitstream on a CD-ROM is an effective way to distribute movies,
business presentations, and training videos.

nearest neighbor interpolation
One of the methods that the XIL library uses to determine the value of an input
image at noninteger coordinates. When using this method, the XIL library
takes the value it is looking for to be the value of the pixel closest to the point
of interest. This type of interpolation is the fastest type, but can introduce
artifacts in the output image; for example, smooth lines in the input image may
show up as jagged lines in the output.
Nearest neighbor interpolation is sometimes called zero-order interpolation.

origin
In the XIL library, each image object has an attribute called its origin. This
origin is a pair of floating-point numbers that represent x,y coordinates in the
image. (The point 0.0,0.0 is in the upper-left corner.) When an image-processing
operation is performed, the origins of the input and output images are aligned,
and the rectangle formed by the intersection of these images serves as an
implicit region of interest (ROI).

pixel
Picture element. In a raster grid, a pixel is the smallest unit that can be
addressed and given a color or intensity.

point operation
An image-processing operation in which the value of a point (or pixel) in the
destination image depends only on the corresponding point in the source
image or images. For example, if you want to add two source images to
produce a destination image, the value of the pixel in the upper-left corner of
the destination image depends solely on the values of the pixels in the
upper-left corner of the two source images.

504 XIL Programmer’s Guide—August 1994

predictive encoding
In predictive encoding, an encoder uses the values of neighboring samples to
predict the value of the sample being encoded. The encoder then subtracts this
predicted value from the actual value of the sample and encodes the difference.
This mode of compression is lossless. The XIL library supports a JPEG lossless
compressor that uses this method.

pseudocolor
The distinction between true color and pseudocolor has to do with the design
of a monitor’s frame buffer. If the frame buffer uses 8 bits per pixel to store
color information, the monitor can display 256 colors simultaneously. What
you see on such a monitor is called pseudocolor because the colors that can be
shown at any one time are a small subset of the colors the eye can distinguish.
If the frame buffer uses 24 bits per pixel to store color information, your
monitor can display over 16 million colors (true color).
Pseudocolor is sometimes called indexed color because the values stored in the
frame buffer on a pseudocolor system are not the RGB values needed to drive
the red, green, and blue electron guns in a monitor. Rather, they are indexes
into a colormap, or color lookup table, which stores 256 sets of RGB values.

QCIF
Quarter Common Interchange Format. QCIF images contain YCbCr data and
are 176 pixels wide and 144 pixels high (one-fourth the size of CIF images).
H.261 codecs are required to support images in this format.

quantization
The technique of scaling down a set of values. In Discrete Cosine Transform
(DCT)-based encoders, like those that conform to the JPEG, MPEG-1, and
H.261 standards, quantization is used to ensure that DCT coefficients are
represented by the smallest range of numbers needed to produce the desired
level of image quality. To bring the coefficients into this range, the quantizer
divides each coefficient by the appropriate value from a quantization table and
rounds the result to the nearest integer.

rescaling
Sometimes called linear remapping, rescaling involves changing the values in
an image using a linear equation. Each value in the image is multiplied by a
constant; then a second constant is added to the product. Rescaling is useful for
mapping the values in an image from one range to another.

Glossary 505

RGB color model
A color model in which colors are built by mixing the three additive primary
colors red, green, and blue. In this model, you construct grays by including
equal amounts of each primary: (0,0,0) is black and (1,1,1) is white. The RGB
color model is closely associated with color CRT monitors because they use
this model to produce their colors.

ROI
A region of interest. In the XIL scheme, an ROI is a 1-bit mask that can be
specified as an attribute of an image. This mask determines what part of a
source image can be read or what part of a destination image can modified
during an image-processing operation. The ROI for a given operation is the
intersection of the ROIs of all the images involved in the operation.

run-length encoding
A compression technique that stores counts of the number of consecutive
identical pixels or blocks of pixels in an image.

sequential encoding
The encoding of a still image in a single pass through the image data. The
sequential encoder first processes a block of pixels in the upper-left corner of
the image and then proceeds from left to right and top to bottom until it has
processed the entire image.

skip codes
Skip codes are employed during the interframe compression process. They
instruct the decoder to skip over blocks of pixels in the current frame that are
identical to, or very similar to, those in the preceding frame.

slice
MPEG-1 terminology for a group of consecutive macroblocks. Each
macroblock in a picture (or image) must be part of a slice. The slice was
designed primarily to help a decoder recover from bitstream errors. If a
decoder detects an error, one way to recover is to skip to the next slice header.

spatial redundancy
The occurrence of two or more consecutive pixels or blocks of pixels that have
the same, or similar, contents. A high level of spatial redundancy in an image
can lead to a high rate of compression because only the first pixel or block of
pixels in a sequence needs to be encoded fully. A shorthand method can be
used to encode succeeding pixels or blocks.

506 XIL Programmer’s Guide—August 1994

still-image coding
The encoding of a single image.

structuring element
A two-dimensional array of Boolean values used as a parameter to the XIL
dilation and erosion functions.

subsampling
A way of mathematically reducing a data set to a subset of its original
components. For example, if you have captured a 512-by-512 image, but want
to encode it at a resolution of 256-by-256, you can subsample the data before
encoding it by discarding every other pixel in both and x and y directions. On
systems that work with YCbCr data, it is common to subsample the Cb and Cr
chrominance information so that each pixel has a unique luminance value, but
shares chrominance information with one or more nearby pixels.

subtractive color system
In a subtractive color system, primary colors are used as filters to subtract their
complements from white light. For example, in the CMY color model, the
primaries cyan, magenta, and yellow subtract red, green, and blue respectively.
That is, if light is reflected from a piece of paper coated with cyan ink, no red
is reflected, so you see the color cyan.

temporal redundancy
See interframe compression.

thresholding
The XIL library’s thresholding function sets all the values (in a band) that fall
between a low threshold and a high threshold to a value (called a map value)
that the programmer specifies.

transcoding
The conversion of data in one compressed format to another compressed
format. For instance, converting a JPEG-compressed image to its Cell-encoded
counterpart is called transcoding. Transcoding an image usually involves
decoding it and then reencoding it.

translation
A geometric operation in which an image is moved up or down and/or left or
right.

Glossary 507

transposition
A quasi-geometric transformation that involves rotating an image by a
multiple of 90 degrees or flipping pixels in an image across a line that passes
through the center of the image. The XIL library’s transposition function allows
for flips across a horizontal or vertical line passing through an image’s center
and across the main diagonal or antidiagonal.

XIL library
The XIL library is a foundation library for imaging and video support. It
provides an implementation of imaging functionality that is common to
multiple higher-level interfaces, provides imaging capabilities that are not
currently available, and provides a way for ISVs to access low-level and
hardware functionality.

YCbCr color model
When data is stored in YCbCr format, each pixel is described by a luminance
value (Y) and two color values. This color model is used in the PAL (European)
television format. Also, video analog-to-digital converters often produce data
in this format.
Frequently, the color bands of YCbCr images are subsampled to produce what
are called YCbCr 4:2:2 or YCbCr 4:1:1 images. In these images, pairs of pixels, or
blocks of 4 pixels, share color values; that is, each pixel has its own luminance
information, but shares color values with a neighboring pixel or pixels. This
subsampling in the color dimension has a very minor impact on image quality.

508 XIL Programmer’s Guide—August 1994

509

Index

A
absolute value of images, 143
acceleration in XIL programs, 395
adding images, 141
affine transforms, general, 169
alpha masks, 211
AND of images, 144
arithmetic operations

involving an image and a
constant, 144

involving bit images, 147
involving two images, 141

attributes, see device attributes

B
backing_store attribute, 66
BAND_HUFFMAN_TABLE attribute, 311,

331
BAND_QUANTIZER attribute, 312
BANDS attribute, 393
bibliography, 489
bicubic interpolation, 151
bilinear interpolation, 151
bins, histogram, 179
BITS_PER_SECOND attribute, 276
bitwise logical operations

involving an image and a
constant, 144

involving bit images, 147
involving two images, 144

black generation, 125
blending images, 211
blurring images, 190
boundary fills, 183
BYTES_PER_FRAME attribute, 313

C
casting images from one data type to

another, 103
CCITT Group 3 and Group 4 codecs

applications, 391
decompression attributes of

BANDS, 393
HEIGHT, 393
WIDTH, 393

how they work, 391
transposition molecule, 407

Cell codec
applications, 271
compression attributes of

BITS_PER_SECOND, 276
COLORMAP_ADAPTION, 277
COMPRESSOR_COLORMAP, 278

510 XIL Programmer’s Guide—August 1994

COMPRESSOR_FRAME_
RATE, 278

COMPRESSOR_MAX_CMAP_
SIZE , 279

COMPRESSOR_USER_DATA, 280
ENCODING_TYPE, 281
KEYFRAME_INTERVAL, 282
TEMPORAL_FILTERING, 283

creating a CIS associated with a, 275
decompression attributes of

DECOMPRESSOR_
COLORMAP, 244, 284

DECOMPRESSOR_FRAME_
RATE, 285

DECOMPRESSOR_MAX_CMAP_
SIZE , 243, 286

DECOMPRESSOR_USER_
DATA, 286

RDWR_INDICES, 244, 287
how it works, 272
playback molecules, 288

CellB codec
applications, 297
compression rate, 300
creating a CIS associated with a, 301
decompression attributes

HEIGHT, 301
IGNORE_HISTORY, 302
WIDTH, 301

how it works, 298
playback molecules, 303, 399
restriction on size of images to be

compressed, 298
child images, creating, 53
CIF images, see Common Interchange

Format images
clearing images, 216
closing the library, 28
color spaces, 52

conversion, 52, 122
identifiers, 123
PhotoYCC, 76

colorcubes
creating, 110
XIL-supplied, 113, 238

COLORMAP_ADAPTION attribute, 277
Common Interchange Format (CIF)

images, 338, 356
compiling code, conditional, 31
compressed image sequences

attributes of
compression type, 258
compressor, 258
error recovery flag, 265
input image type, 259
keep frames, 262
maximum frames, 262
name, 266
output image type, 260
random access flag, 260
read frame, 260
start frame, 260
write frame, 260

checking for unread data, 228, 240,
256

creating, 223, 233, 250
decompressing images from, 240,

246, 255
defined, 249
destroying, 251
determining the dimensions of

images stored in, 235
error recovery, 267
flushing compressed data from, 230,

252
getting a pointer to the compressed

data in, 228, 255
putting compressed data into, 233,

251
resetting, 250
seeking an image in, 257, 260

COMPRESSED_DATA_FORMAT
attribute, 313, 332

compressing fax images, 391
compressing images, 227, 251
COMPRESSION_QUALITY attribute, 314
COMPRESSOR_BITS_PER_IMAGE

attribute, 347

Index 511

COMPRESSOR_BITS_PER_SECOND
attribute, 366

COMPRESSOR_COLORMAP attribute, 278
COMPRESSOR_DOC_CAMERA

attribute, 348
COMPRESSOR_ENCODE_INTRA

attribute, 349
COMPRESSOR_FRAME_RATE

attribute, 278
COMPRESSOR_FREEZE_RELEASE

attribute, 349
COMPRESSOR_IMAGE_SKIP

attribute, 350
COMPRESSOR_INSERT_VIDEO_

SEQUENCE_END attribute, 367
COMPRESSOR_INTRA_QUANTIZATION_

TABLE attribute, 373
COMPRESSOR_LOOP_FILTER

attribute, 351
COMPRESSOR_MAX_CMAP_SIZE

attribute, 279
COMPRESSOR_MV_SEARCH_RANGE

attribute, 352
COMPRESSOR_NON_INTRA_

QUANTIZATION_TABLE
attribute, 375

COMPRESSOR_PATTERN attribute, 376
COMPRESSOR_PEL_ASPECT_RATIO

attribute, 378
COMPRESSOR_PICTURE_RATE

attribute, 380
COMPRESSOR_SLICES_PER_PICTURE

attribute, 381
COMPRESSOR_SPLIT_SCREEN

attribute, 353
COMPRESSOR_TIME_CODE attribute, 382
COMPRESSOR_USER_DATA attribute, 280
compressors/decompressors

reading attributes of, 243, 276
setting attributes of, 244, 276
types of images supported, 252
See also individual compressors

conditionally compiling code, 31

ConfigureNotify event, 65
converting

a 16-bit image to an 8-bit image, 91
a 24-bit image to a 1-bit image, 93
a grayscale image to a 1-bit image, 94
a single-band image to a multiband

image, 88
a true-color image to a pseudocolor

image, 92
convolution, 187
convolution filters, See kernels
copying

images to displays, 97
patterns to images, 217
plane mask control, 99

creating
child images, 53
colorcubes, 110
compressed image sequences, 223,

233, 250
device images, 71, 78
device objects, 68
display images, 65
dither masks, 118
histograms, 179
images, 16, 58
kernels, 188
lookup tables, 89, 108
Photo CD image, 78
plane mask, 100
regions of interest, 49

D
data types of images, 35
decompressing fax images, 391
decompressing images, 240, 246, 255
DECOMPRESSION_QUALITY

attribute, 324
DECOMPRESSOR_BROKEN_LINK

attribute, 385
DECOMPRESSOR_CLOSED_GOP

attribute, 385

512 XIL Programmer’s Guide—August 1994

DECOMPRESSOR_COLORMAP
attribute, 244, 284

DECOMPRESSOR_DOC_CAMERA
attribute, 355

DECOMPRESSOR_FRAME_RATE
attribute, 285

DECOMPRESSOR_FRAME_TYPE
attribute, 386

DECOMPRESSOR_FREEZE_RELEASE
attribute, 355

DECOMPRESSOR_MAX_CMAP_SIZE
attribute, 243, 286

DECOMPRESSOR_PEL_ASPECT_RATIO_
VALUE attribute, 387

DECOMPRESSOR_PICTURE_RATE_
VALUE attribute, 388

DECOMPRESSOR_QUALITY attribute, 384
DECOMPRESSOR_SOURCE_FORMAT

attribute, 356
DECOMPRESSOR_SPLIT_SCREEN

attribute, 356
DECOMPRESSOR_TEMPORAL_

REFERENCE attribute, 357, 388
DECOMPRESSOR_TIME_CODE

attribute, 389
DECOMPRESSOR_USER_DATA

attribute, 286
deferred execution, 395
detecting edges, 187, 192
device attributes

initializing, 68
Photo CD, 79
reading, 72
setting, 72

device images, 43, 71
Photo CD, 77

device object
creating, 68
destroying, 73

devices
initializing attributes of, 68
partial list of, 84
reading images from, 67

writing images to, 67
dilating images, 194
Discrete Cosine Transforms, 307
display images, 22, 24, 44, 65, 236
displays

monochrome, 94
reading images from, 66
writing images to, 64

dither masks
creating, 118
used by xil_ordered_

dither() , 120
XIL-supplied, 119, 238

dithering operations
defined, 105
error diffusion, 114
nearest color, 108, 246
ordered dither, 118
when to use the different dithering

functions, 121
dividing images, 141

E
edge detection, 187, 192
ENCODE_411_INTERLEAVED

attribute, 316
ENCODE_INTERLEAVED attribute, 316,

332
ENCODING_TYPE attribute, 281
entropy coding, 309, 330
eroding images, 194
error categories, 130
error diffusion, 114
error handling

installing error handlers, 136
linking error handlers, 136
using the default error handler, 128
writing a custom error handler, 128

error IDs, 425
error messages, 129, 425
events

ConfigureNotify , 65

Index 513

Expose , 66
example programs

making a movie, 222
playing a Cell movie, 241
playing a JPEG movie, 230
simple display program, 11
more complete display program, 87

exclusive OR of images, 144
exporting images, 17, 36, 59
Expose event, 66
extrema, finding an image’s, 178

F
faxG3, faxG4, see CCITT Group 3 and

Group 4 Codecs
files

reading images from, 13, 57
writing compressed data to, 227
writing images to, 62

filling regions
boundary fills, 183
soft fills, 185

filtering images, 187
Floyd-Steinberg error-distribution

kernel, 115
foundation libraries, 5
frame groups, 276

G
general interpolation, 151

creating kernels, 154
destroying kernels, 159
edge conditions, 154
kernel data, 157
kernel size, 155
key element, 155
key values, 153
setting on system-state object, 157
subsamples, 155

geometric operations, 149
glossary, 493

H
H.261 codec

applications, 337
bit-rate control, 345
compression attributes of

COMPRESSOR_BITS_PER_
IMAGE, 347

COMPRESSOR_DOC_
CAMERA, 348

COMPRESSOR_ENCODE_
INTRA, 349

COMPRESSOR_FREEZE_
RELEASE, 349

COMPRESSOR_IMAGE_
SKIP , 350

COMPRESSOR_LOOP_
FILTER , 351

COMPRESSOR_MV_SEARCH_
RANGE, 352

COMPRESSOR_SPLIT_
SCREEN, 353

compressor not supplied with XIL
library, 338

creating a CIS associated with an
H.261 decompressor, 346,
347

decompression attributes of
DECOMPRESSOR_DOC_

CAMERA, 355
DECOMPRESSOR_FREEZE_

RELEASE, 355
DECOMPRESSOR_SOURCE_

FORMAT, 356
DECOMPRESSOR_SPLIT_

SCREEN, 356
DECOMPRESSOR_TEMPORAL_

REFERENCE, 357
IGNORE_HISTORY, 354

how it works, 338
loop filtering, 343, 351
motion compensation, 342, 352
multipoint conferencing, 346
playback molecules, 358, 399

header file, xil.h , 12
HEIGHT attribute, 301, 393

514 XIL Programmer’s Guide—August 1994

histograms
creating, 179
destroying, 182
reading data from, 181

Huffman tables, 309, 317, 330, 333, 392
HUFFMAN_TABLE attribute, 317, 333

I
IGNORE_HISTORY attribute, 302, 325, 354
image types, 54, 235
images

attributes of
color space, 52
data type, 35
height, 34
image type, 54
name, 56
number of bands, 34
origin, 46
parent, 53
readable flag, 55
region of interest, 48
width, 34
writable flag, 55

creating, 16, 58
data types supported, 16
determining the dimensions of, 63
exporting, 17, 36, 59
getting information about storage in

memory, 17, 59
importing, 22, 36, 62
memory formats of, 37
naming, 56
overlaying, 99
Photo CD, 75
reading from devices other than

displays, 67
reading from displays, 66
reading from files, 13, 57
types of

device images, 43
display images, 44
memory images, 43

warping, 172

writing to devices other than
displays, 67

writing to displays, 64
writing to files, 62

importing images, 22, 36, 62
initializing the library, 13
in-place operations, 499
input/output, 57
interpolation

bicubic, 151
bilinear, 151
general, 151
kernels, 153
nearest neighbor, 150

J
JPEG baseline sequential codec

applications, 305
compression attributes of

BAND_HUFFMAN_TABLE, 311
BAND_QUANTIZER, 312
COMPRESSED_DATA_

FORMAT, 313
COMPRESSION_QUALITY, 314
ENCODE_411_

INTERLEAVED, 316
ENCODE_INTERLEAVED, 316
HUFFMAN_TABLE, 317
OPTIMIZE_HUFFMAN_

TABLES, 322
QUANTIZATION_TABLE, 322
TEMPORAL_FILTERING, 323

creating a CIS associated with a, 310
decompression attributes of

BYTES_PER_FRAME, 313
DECOMPRESSION_

QUALITY, 324
IGNORE_HISTORY, 325

how it works, 306
playback molecules, 326, 399

JPEG lossless codec
attributes of

BAND_HUFFMAN_TABLE, 331

Index 515

COMPRESSED_DATA_
FORMAT, 332

ENCODE_INTERLEAVED, 332
HUFFMAN_TABLE, 333
LOSSLESS_BAND_PT_

TRANSFORM, 336
LOSSLESS_BAND_

SELECTOR, 334
how it works, 328

K
keep frames, 262
kernels

convolution, 187
creating, 115, 188
destroying, 191
error-distribution, 115
Floyd-Steinberg, 115
interpolation, 153
key values of, 153
keys values of, 187
used for painting, 213

key frames (Cell), 282
KEYFRAME_INTERVAL attribute, 282
Kodak’s Photo CD format, see Photo CD

images

L
libraries to link with, 29, 461
linear remapping of images, 102
linking XIL programs, 29, 461
logical operations

involving an image and a
constant, 144

involving bit images, 147
involving two images, 144

lookup tables
creating, 89, 108, 200
destroying, 205
determining the number of entries

in, 239
passing images through, 89, 199
reading values from, 239

setting the value of the first
index, 239

version numbers, 244
XIL-supplied, 238

LOSSLESS_BAND_PT_TRANSFORM
attribute, 336

LOSSLESS_BAND_SELECTOR
attribute, 334

M
macroblocks, 338, 365
maximum value

pixel by pixel, 143
memory format of images, 37
memory images, 43
minimum and maximum values, finding

an image’s, 178
minimum value

pixel by pixel, 143
molecules

CCITT Group 4 transposition, 407
Cell playback, 288
CellB playback, 303, 399
determining whether they’re

executing, 410
H.261 playback, 358, 399
involving a copy to a GX display, 409
JPEG baseline sequential

playback, 326, 399
MPEG-1 playback, 390, 399
side effects of, 414

monochrome displays, 94
MPEG-1 codec

applications, 359
broken links, 364, 385
compression attributes of

COMPRESSOR_BITS_PER_
SECOND, 366

COMPRESSOR_INSERT_VIDEO_
SEQUENCE_END, 367

COMPRESSOR_INTRA_
QUANTIZATION_
TABLE, 373

516 XIL Programmer’s Guide—August 1994

COMPRESSOR_NON_INTRA_
QUANTIZATION_
TABLE, 375

COMPRESSOR_PATTERN, 376
COMPRESSOR_PEL_ASPECT_

RATIO, 378
COMPRESSOR_PICTURE_

RATE, 380
COMPRESSOR_SLICES_PER_

PICTURE, 381
COMPRESSOR_TIME_CODE, 382

compressor not supplied with XIL
library, 360

creating a CIS associated with an
MPEG-1 decompressor, 365

decompression attributes of
DECOMPRESSOR_BROKEN_

LINK , 385
DECOMPRESSOR_CLOSED_

GOP, 385
DECOMPRESSOR_FRAME_

TYPE, 386
DECOMPRESSOR_PEL_ASPECT_

RATIO_VALUE, 387
DECOMPRESSOR_PICTURE_

RATE_VALUE, 388
DECOMPRESSOR_QUALITY, 384
DECOMPRESSOR_TEMPORAL_

REFERENCE, 388
DECOMPRESSOR_TIME_

CODE, 389
groups of pictures, 363, 385
how it works, 360
playback molecules, 390, 399
releasing reserved frames, 369
reserved frames, 369
sequences, 364
slices, 365, 381
subgroups, 370

multiplying images, 141
multithread programs, 7

N
nearest-neighbor interpolation, 150

NOT of an image, 144
notational conventions, xxix

O
opening the library, 13
operations, in-place, 499
OPTIMIZE_HUFFMAN_TABLES

attribute, 322
OR of images, 144
ordered dither, 118
origin of an image, 46
overlaying images, 99

P
painting images, 213
Photo CD images, 75

capturing from disk, 82
creating, 78
FILEPATH attribute, 79
how stored, 76
MAX_RESOLUTION attribute, 81
RESOLUTION attribute, 80
resolutions, 77
ROTATION attribute, 82
setting device attributes, 79

PhotoYCC color space, 76
pixels

reading the values of, 215
setting the values of, 215

plane mask control, 99
predictive encoding, 328
primary errors, 131
px64, SeeH.261 codec

Q
QCIF images, see Quarter Common

Interchange Format images
quantization, 308
quantization tables, 322
QUANTIZATION_TABLE attribute, 322

Index 517

Quarter Common Interchange Format
(QCIF) images, 338, 356

R
RDWR_INDICES attribute, 244, 287
read frame, 260
reading

images from devices other than
displays, 67

images from displays, 66
images from files, 13, 57

regions of interest
associating with images, 50
building, 50
creating, 49
defined, 48
destroying, 49
naming, 51
performing geometric operations

on, 50
related books, xxix
relational operations

involving two images, 143
rescaling images, 102
resizing a window, 65
rotating images, 167, 175

S
scaling images, 161
secondary errors, 131
seeking images in compressed image

sequences, 257
CellB, 302
H.261, 354
JPEG baseline sequential, 325

sharpening images, 189
shearing images, 171
smoothing images, 190
soft fills, 185
start frame, 260
structuring elements

creating, 196

defined, 194
destroying, 198
key values of, 194
naming, 197

subimages, creating, 53
subsampling images, 161
subtracting images, 141
system state, 13

T
TEMPORAL_FILTERING attribute, 283,

323
thread library, 7
thresholding images, 183
translating images, 160
transposing images, 174
trapping, 194
typographic changes, xxix

U
undercolor removal, 125

V
version control, 31
version number

major, 31
minor, 31

W
warping images, 172
WIDTH attribute, 301, 393
window

exposing, 66
resizing, 65

write frame, 260
writing

compressed data to files, 227
images to devices other than

displays, 67
images to displays, 64

518 XIL Programmer’s Guide—August 1994

images to files, 62

X
X colormaps, 66, 238, 242
XGL functions, using in XIL

programs, 459
xgl_to_xil() , 459
XIL data types

Xil_signed16 , 18
Xil_unsigned8 , 18
XilVersionNumber , 244

XIL enumerations
XilCellEncodingType , 281
XilDataType , 16, 58
XilEdgeCondition , 190
XilEdgeDetection , 192
XilErrorCategory , 130
XilFlipType , 175
XilJpegHTableType , 312
XilJpegLLBandSelectorType , 33

5
XilMpeg1FrameType , 386
XilMpeg1PelAspectRatio , 379
XilMpeg1PictureRate , 380
XilObjectType , 134
XilPhotoCDResolution , 81
XilPhotoCDRotate , 82

XIL objects
XilCis , 223, 250
XilColorspace , 123
XilDevice , 68
XilDitherMask , 119
XilError , 127
XilHistogram , 179
XilImage , 16
XilImageType , 235
XilInterpolationTable , 154
XilKernel , 188
XilLookup , 89, 200, 202
XilSel , 196
XilSystemState , 13

XIL structures
XilCellUserData , 280
XilH261MVSearchRange , 352

XilIndexList , 242, 287
XilJpegBandHTable , 311, 331
XilJpegBandQTable , 312
XilJpegHTable , 317, 333
XilJpegHTableValue , 318, 333
XilJpegLLBandPtTransform , 336
XilJpegLLBandSelector , 334
XilJpegQTable , 322
XilMpeg1Pattern , 376
XilMpeg1TimeCode , 382, 389

xil.h , 12
xil_absolute() , 143
xil_add() , 144
xil_add_const() , 145
xil_affine() , 169
xil_and_const() , 146
xil_black_generation() , 125
xil_blend() , 211
xil_call_next_error_

handler() , 139
xil_cast() , 103
xil_choose_colormap() , 109
xil_cis_attempt_recovery() , 267
xil_cis_create() , 223, 233, 250
xil_cis_destroy() , 251
xil_cis_flush() , 230, 252, 367
xil_cis_get_attribute() , 243
xil_cis_get_autorecover() , 266
xil_cis_get_bits_ptr() , 229, 255,

363, 369
xil_cis_get_input_type() , 252
xil_cis_get_output_type() , 235
xil_cis_get_read_invalid() , 268
xil_cis_has_frame() , 228, 240, 256,

369
xil_cis_put_bits() , 253
xil_cis_put_bits_ptr() , 233, 253
xil_cis_reset() , 250
xil_cis_seek() , 257
xil_cis_set_autorecover() , 265
xil_close() , 28
xil_color_convert() , 93, 124

Index 519

xil_colorcube_create() , 110
xil_compress() , 251
xil_convolve() , 190
xil_copy() , 98
xil_copy_pattern() , 217
xil_copy_with_planemask() , 99

xil_create() , 16, 58
xil_create_child() , 53
xil_create_from_device() , 71, 78
xil_create_from_window() , 24, 65,

236
XIL_DEBUG environment variable, 410
xil_decompress() , 240, 246, 255, 369
xil_default_error_handler() , 139
xil_device_create() , 69

xil_device_destroy() , 73

xil_device_set_value() , 70

xil_dilate() , 194
xil_dithermask_create() , 118
xil_dithermask_get_by_

name() , 119, 238
xil_divide() , 141
xil_edge_detection() , 192
xil_erode() , 194
xil_error_diffusion() , 114
xil_error_get_category() , 130
xil_error_get_category_

string() , 131
xil_error_get_id() , 129
xil_error_get_location() , 132
xil_error_get_object() , 132
xil_error_get_primary() , 131
xil_error_get_string() , 129
xil_export() , 59
xil_extrema() , 91, 178
xil_fill() , 183
xil_get_device_attribute() , 72,

80, 81, 82
xil_get_info() , 63
xil_get_memory_storage() , 17, 59
xil_get_pixel() , 216

xil_get_readable() , 55
xil_get_writeable() , 56
xil_histogram() , 180
xil_histogram_create() , 180
xil_histogram_destroy() , 182
xil_histogram_get_values() , 181
xil_imagetype_get_info() , 235
xil_import() , 22, 62
xil_install_error_handler() , 136
xil_interpolation_table_

create() , 154
xil_kernel_create() , 115
xil_kernel_destroy() , 191
xil_kernel_get_by_name() , 115
xil_lookup() , 204
xil_lookup_create() , 109, 200, 244
xil_lookup_create_

combined() , 202
xil_lookup_destroy() , 205
xil_lookup_get_by_name() , 238
xil_lookup_get_num_

entries() , 239
xil_lookup_get_values() , 239
xil_lookup_set_offset() , 239
xil_max() , 143
xil_min() , 143
xil_multiply() , 141
xil_nearest_color() , 108, 246
xil_object_get_error_

string() , 133
xil_object_get_type() , 133
xil_open() , 13
xil_ordered_dither() , 118
xil_paint() , 215
xil_remove_error_handler() , 138
xil_rescale() , 102
xil_rotate() , 167
xil_scale() , 162
xil_sel_create() , 196
xil_sel_destroy() , 198
xil_sel_get_by_name() , 197

520 XIL Programmer’s Guide—August 1994

xil_sel_get_name() , 197
xil_sel_set_name() , 197
xil_set_colorspace() , 123
xil_set_device_attribute() , 72,

79
xil_set_interpolation_

tables() , 157
xil_set_pixel() , 216
xil_set_value() , 216
Xil_signed16 data type, 18
xil_soft_fill() , 185
xil_subsample_adaptive() , 164
xil_subsample_binary_to_

gray() , 165
xil_subtract() , 141
xil_tablewarp() , 173
xil_tablewarp_horizontal() , 172
xil_tablewarp_vertical() , 172
xil_threshold() , 183
xil_to_xgl() , 459
xil_translate() , 160
xil_transpose() , 174, 407
Xil_unsigned8 data type, 18
XilCellEncodingType

enumeration, 281
XilCellUserData structure, 280
XilCis data structure, 223, 250
XilColorspace data structure, 123
XilDataType enumeration, 16, 58
XilDevice data structure , 68
XilDitherMask data structure, 119
XilEdgeCondition enumeration, 190
XilError data structure, 127
XilErrorCategory enumeration, 130
XilFlipType enumeration, 175
XilH261MVSearchRange structure, 352
XilHistogram data structure, 179
XilImage data structure, 16
XilImageType data structure, 235
XilIndexList structure, 242, 287
XilJpegBandHTable structure, 311, 331

XilJpegBandQTable structure, 312
XilJpegHTable structure, 317, 333
XilJpegHTableType enumeration, 312
XilJpegHTableValue structure, 318,

333
XilJpegLLBandPtTransform

structure, 336
XilJpegLLBandSelector

structure, 334
XilJpegLLBandSelectorType

enumeration, 335
XilJpegQTable structure, 322
XilKernel data structure, 188
XilLookup data structure, 89, 200, 202
XilMemoryStorage union, 18
XilMpeg1FrameType enumeration, 386
XilMpeg1Pattern structure, 376
XilMpeg1PelAspectRatio

enumeration, 379
XilMpeg1PictureRate

enumeration, 380
XilMpeg1TimeCode structure, 382, 389
XilObjectType enumeration, 134
XilSel data structure, 196
XilSystemState data structure, 13
XilVersionNumber data type, 244
XOR of images, 144
XResizeWindow() , 65

Z
zooming images, 161

