
FORTRAN 3.0.1 Reference Manual

Part No.: 801-7251-10
Revision A, August 1994

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, SunSoft, the SunSoft logo, Solaris, SunOS,
OpenWindows, DeskSet, ONC, ONC+, and NFS , NFS, ProWorks, ProWorks/TeamWare, ProCompiler, Sun Workstation, and
Sun-4 are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a
registered trademark of Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor
of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks
of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

Some of the material in this manual is based on the Bell Laboratories document entitled “A Portable Fortran 77 Compiler,” by
S.I. Feldman and P.J. Weinberger, dated 1 August 1978.Material on the I/O Library is derived from the paper entitled
“Introduction to the f77 I/O Library”, by David L. Wasley, University of California, Berkeley, California
94720. Further work was done at Sun Microsystems.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii FORTRAN Reference Manual

Contents

Preface . xxiii

1. Elements of FORTRAN . 1

1.1 Operating Environments . 1

1.2 Standards. 2

1.3 Extensions . 2

1.4 Basic Terms . 3

1.5 Character Set . 3

1.6 Symbolic Names . 6

Restrictions . 6

1.7 Program . 8

1.8 Statements . 8

Executable Statements . 8

FORTRAN Statements . 9

iv FORTRAN Reference Manual

1.9 Source Line Formats. 9

Standard Fixed Format. 9

Tab-Format. 10

Mixing Formats . 10

Continuation Lines . 10

Extended Lines . 10

Padding . 10

Comments and Blank Lines. 11

Pragmas . 11

Parallel Pragma. 12

2. Data Types and Data Items . 15

2.1 Types . 15

Rules for Data Typing . 16

Array Elements . 16

Functions . 16

Properties of Data Types . 18

2.2 Constants . 27

Character Constants . 28

Complex Constants . 30

COMPLEX*16 Constants . 31

COMPLEX*32 (Quad Complex) Constants 31

Integer Constants . 32

Logical Constants . 33

Real Constants. 33

Contents v

REAL*8 (Double-Precision Real) Constants 35

REAL*16 (Quad Real) Constants . 36

Typeless Constants (Binary, Octal, Hexadecimal). 37

2.3 Variables . 41

2.4 Arrays . 41

Array Declarators . 42

Array Names with No Subscripts . 45

Array Subscripts . 45

Array Ordering . 47

2.5 Substrings . 48

2.6 Structures. 50

Structure Declaration . 51

Field Declaration . 51

Record Declaration . 53

Record and Field Reference . 54

Substructure Declaration . 55

Unions and Maps . 57

2.7 Pointers . 59

Syntax . 59

Usage of Pointers . 59

Address and Memory . 60

Optimization and Pointers . 62

vi FORTRAN Reference Manual

3. Expressions . 65

3.1 Introduction . 65

3.2 Arithmetic Expressions . 66

Basic Arithmetic Expressions . 67

Mixed Mode . 70

Arithmetic Assignment . 72

3.3 Character Expressions . 73

Character String Assignment . 75

3.4 Logical Expressions . 77

Logical Assignment . 78

3.5 Relational Operator . 79

3.6 Constant Expressions . 80

3.7 Record Assignment . 81

3.8 Evaluation of Expressions . 82

4. Statements . 83

4.1 ACCEPT. 83

4.2 ASSIGN . 84

4.3 Assignment . 85

4.4 AUTOMATIC . 90

4.5 BACKSPACE . 92

4.6 BLOCK DATA. 93

4.7 BYTE. 94

4.8 CALL . 95

4.9 CHARACTER . 99

Contents vii

4.10 CLOSE . 101

4.11 COMMON. 103

4.12 COMPLEX . 105

4.13 CONTINUE. 108

4.14 DATA . 109

4.15 DECODE/ENCODE . 111

4.16 DIMENSION. 114

4.17 DO . 116

4.18 DO WHILE . 121

4.19 DOUBLE COMPLEX . 124

4.20 DOUBLE PRECISION . 125

4.21 ELSE . 127

4.22 ELSE IF. 128

4.23 ENCODE/DECODE . 130

4.24 END . 131

4.25 END DO. 132

4.26 END FILE . 133

4.27 END IF . 135

4.28 END MAP . 136

4.29 END STRUCTURE . 136

4.30 END UNION. 137

4.31 ENTRY . 138

4.32 EQUIVALENCE . 141

4.33 EXTERNAL . 143

viii FORTRAN Reference Manual

4.34 FORMAT . 145

4.35 FUNCTION (External) . 149

4.36 GO TO (Assigned) . 151

4.37 GO TO (Computed) . 152

4.38 GO TO (Unconditional) . 154

4.39 IF (Arithmetic) . 155

4.40 IF (Block) . 156

4.41 IF (Logical) . 159

4.42 IMPLICIT. 160

4.43 INCLUDE . 163

4.44 INQUIRE . 166

4.45 INTEGER. 173

4.46 INTRINSIC . 174

4.47 LOGICAL . 176

4.48 MAP . 177

4.49 NAMELIST . 178

4.50 OPEN . 180

4.51 OPTIONS. 186

4.52 PARAMETER . 187

4.53 PAUSE . 190

4.54 POINTER. 191

4.55 PRINT . 198

4.56 PROGRAM . 200

4.57 READ . 201

Contents ix

4.58 REAL . 207

4.59 RECORD . 209

4.60 RETURN . 211

4.61 REWIND . 213

4.62 SAVE . 215

4.63 Statement Function . 216

4.64 STATIC. 219

4.65 STOP . 220

4.66 STRUCTURE . 221

4.67 SUBROUTINE. 225

4.68 TYPE. 227

4.69 The Type Statement. 228

4.70 UNION and MAP. 231

4.71 VIRTUAL. 234

4.72 VOLATILE. 234

4.73 WRITE . 235

5. Input and Output . 243

5.1 General Concepts of FORTRAN I/O 243

Logical Units . 244

I/O Errors . 244

General Restriction . 245

Kinds of I/O . 245

Combinations of I/O . 245

x FORTRAN Reference Manual

Print Files . 247

Scratch Files . 248

Changing I/O Initialization with IOINIT 248

5.2 Direct Access . 250

Unformatted I/O . 251

Formatted I/O. 251

5.3 Internal Files . 252

Sequential Formatted I/O . 252

Direct Access I/O . 252

5.4 Formatted I/O . 253

Description . 253

Format Specifiers . 255

Runtime Formats . 286

Variable Format Expressions (<e>) . 288

5.5 Unformatted I/O . 288

Sequential Access I/O . 289

Direct Access I/O . 289

5.6 List-Directed I/O . 291

Output Format . 291

Unquoted Strings . 294

Internal I/O . 294

Contents xi

5.7 NAMELIST I/O . 295

Restrictions . 295

NAMELIST Output . 296

NAMELIST Input . 298

NAMELIST Data . 299

Requesting Names . 303

6. Intrinsic Functions . 305

6.1 Arithmetic and Mathematical Functions. 305

Arithmetic . 305

Type Conversion . 307

Trigonometric . 309

Other Mathematical Functions . 311

6.2 Character Functions . 313

6.3 Miscellaneous Functions . 314

Bit Manipulation . 314

Environment . 315

Memory . 316

Remarks for Intrinsic Function Tables 316

Notes on Functions. 317

6.4 VMS Intrinsic Functions . 322

Double-Precision Complex . 322

Degree-Based Trigonometric . 323

Bit-Manipulation. 324

xii FORTRAN Reference Manual

Multiple Integer Types . 325

Functions Coerced to a Particular Type 326

Functions Translated to a Generic Name. 327

Zero Extend . 327

7. FORTRAN Library Routines. 329

7.1 abort : Terminate and Write Memory to Core File 329

7.2 access : Check File for Permissions or Existence . . . 329

7.3 alarm : Execute a Subroutine after a Specified Time . . . 330

7.4 bit : Bit Functions: and , or , …, bit , setbit , … 332

Definitions . 332

and , or , xor , not , rshift , lshift 332

bic , bis , bit , setbit . 333

7.5 chdir : Change Default Directory 334

7.6 chmod: Change the Mode of a File. 335

7.7 date : Get Current System Date as a Character String . . 336

7.8 dtime , etime : Elapsed Execution Time 337

dtime : Elapsed Time Since the Last dtime Call 337

etime : Elapsed Time Since Start of Execution 338

7.9 exit : Terminate a Process and Set the Status 339

7.10 f77_floatingpoint : FORTRAN IEEE Definitions . . . 340

IEEE Rounding Mode. 340

SIGFPE Handling . 340

IEEE Exception Handling . 341

IEEE Classification . 341

Contents xiii

7.11 f77_ieee_environment : IEEE Arithmetic 342

7.12 fdate : Return Date and Time in an ASCII String 344

7.13 flush : Flush Output to a Logical Unit 345

7.14 fork : Create a Copy of the Current Process 345

7.15 free : Deallocate Memory Allocated by Malloc 346

7.16 fseek , ftell : Reposition a File 346

fseek : Reposition a File on a Logical Unit 346

ftell : Return Current Position of File 347

7.17 getarg , iargc : Get Command-line Arguments. 348

getarg : Get the kth Command Line Argument 348

iargc : Get the Count of Command-line Arguments 348

7.18 getc , fgetc : Get Next Character 349

getc : Get Next Character from stdin 349

fgetc : Get Next Character from Specified Logical Unit. . . . 350

7.19 getcwd : Get Path of Current Working Directory 351

7.20 getenv : Get Value of Environment Variables 351

7.21 getfd : Get File Descriptor for External Unit Number 352

7.22 getfilep : Get File Pointer for External Unit Number . 353

7.23 getlog : Get User’s Login Name . 354

7.24 getpid : Get Process ID. 355

7.25 getuid , getgid : Get User or Group ID of Process 355

getuid : Get User ID of the Process . 355

getgid : Get Group ID of the Process 355

7.26 hostnm : Get Name of Current Host 356

xiv FORTRAN Reference Manual

7.27 idate : Return Current System Date 357

7.28 itime : Current System Time . 358

7.29 index : Index or Length of Substring 359

index : First Occurrence of String A2 in String A1 359

rindex : Last Occurrence of String A2 in String A1. 360

lnblnk : Last Nonblank in String A1. 360

len : Declared Length of String A1. 360

7.30 inmax : Return Maximum Positive Integer 361

7.31 ioinit : Initialize I/O: Carriage Control, File Names, … 362

7.32 kill : Send a Signal to a Process 366

7.33 libm_double : libm Double-Precision Functions 367

7.34 libm_quadruple : libm Quad-Precision Functions . . . 370

7.35 libm_single : libm Single-Precision Functions 372

7.36 link , symlnk : Make a Link to an Existing File 375

link: Create a Link to an Existing File 376

symlnk: Create a Symbolic Link to an Existing File 376

7.37 loc : Return the Address of an Object 377

7.38 long , short : Integer Object Conversion 377

long : Convert a Short Integer to a Long Integer 377

short : Convert a Long Integer to a Short Integer 377

7.39 longjmp , isetjmp : Return to location set by isetjmp 379

isetjmp : Set the location for longjmp 379

longjmp : Return to the location set by isetjmp 379

7.40 malloc : Allocate Memory and Get Address 381

Contents xv

7.41 mvbits : Move a Bit Field . 382

7.42 perror , gerror , ierrno : Get System Error Messages . 383

perror : Print Message to Logical Unit 0, Stderr 383

gerror: Get Message for Last Detected System Error. 383

ierrno: Get Number for Last Detected System Error 384

f77 I/O Error Codes and Meanings . 385

7.43 putc , fputc : Write a Character to a Logical Unit. 386

putc : Write to Logical Unit 6 . 386

fputc : Write to Specified Logical Unit 387

7.44 qsort : Sort the Elements of a One-dimensional Array 388

7.45 ran : Generate a Random Number between 0 and 1 389

7.46 rand , drand , irand : Return Random Values 391

7.47 rename : Rename a File . 392

7.48 secnds : Get System Time in Seconds, Minus Argument 393

7.49 sh : Fast Execution of an sh Command 394

7.50 signal : Change the Action for a Signal 395

7.51 sleep : Suspend Execution for an Interval 396

7.52 stat , lstat , fstat : Get File Status 397

stat : Get Status for File, by File Name. 397

fstat Get Status for File, by Logical Unit 398

lstat : Get Status for File, by File Name 398

Detail of Status Array for Files . 399

7.53 system : Execute a System Command. 400

xvi FORTRAN Reference Manual

7.54 time , ctime , ltime , gmtime : Get System Time 401

time : Get System Time . 401

ctime : Convert System Time to Character 402

ltime : Split System Time to Month, Day,… (Local) 403

gmtime : Split System Time to Month, Day, … (GMT) 404

7.55 topen , tclose , tread ,…, tstate : Do Tape I/O 405

topen : Associate a Device with a Tape Logical Unit. 405

tclose : Write Eof, Close Tape Channel, Disconnect tlu . . . 406

twrite : Write Next Physical Record to Tape 407

tread : Read Next Physical Record from Tape 408

trewin : Rewind Tape to Beginning of First Data File. 409

tskipf : Skip Files and Records; Reset EoF Status. 410

tstate : Get Logical State of Tape I/O Channel 411

7.56 ttynam , isatty : Get Name of a Terminal Port 414

ttynam : Get Name of a Terminal Port. 414

isatty : Is this Unit a Terminal? . 415

7.57 unlink : Remove a File . 415

7.58 wait : Wait for a Process to Terminate 416

8. VMS Routines . 417

8.1 VMS Intrinsic Functions . 417

Double-Precision Complex Functions 417

Degree-Based Trigonometric Functions 418

Bit-Manipulation Functions . 419

Multiple Integer Types . 420

Contents xvii

Functions Coerced to a Particular Type 421

Functions Translated to a Generic Name. 422

Zero Extend . 422

8.2 VMS System Routines . 423

Summary . 423

9. VMS Language Extensions . 425

9.1 Background . 425

9.2 VMS Language Features You Get Automatically 426

9.3 VMS Language Features that Require -xl 430

9.4 Unsupported VMS FORTRAN . 433

A. ASCII Character Set . 435

B. Sample Statements . 439

C. Data Representations . 449

C.1 Real, Double, and Quadruple Precision 449

C.2 Extreme Exponents . 450

Zero (signed) . 450

Subnormal Number . 450

Signed Infinity. 450

Not a Number (NaN) . 450

C.3 IEEE Representation of Selected Numbers 451

C.4 Arithmetic Operations on Extreme Values 451

C.5 Bits and Bytes by Architecture . 454

Possible Problem Area . 454

Index . 457

xviii FORTRAN Reference Manual

xix

Tables

Table 1-1 Special Characters . 3

Table 1-2 Special Character Usage . 5

Table 1-3 Items with Symbolic Names . 6

Table 1-4 Sample Symbolic Names . 7

Table 1-5 FORTRAN Statements . 9

Table 2-1 Size and Alignment without -dalign, –f, –i2, or –r8 25

Table 2-2 Size and Alignment Changed by -i2 . 26

Table 2-3 Size and Alignment Changed by -r8 (SPARC only) 26

Table 2-4 Size and Alignment Changed by -dalign or -f (SPARC only) . 27

Table 2-5 Backslash Escape Sequences . 30

Table 3-1 Arithmetic Operators . 66

Table 3-2 Arithmetic Expressions. 67

Table 3-3 Arithmetic Operator Precedence. 68

Table 3-4 Logical Operators . 77

Table 3-5 Logical Operator Precedence . 77

Table 3-6 Operator Precedence. 78

xx FORTRAN Reference Manual

Table 3-7 Logical Expression Meanings . 78

Table 3-8 Relational Operators . 79

Table 4-1 Arithmetic Assignment Conversion Rules 86

Table 4-2 INQUIRE Options Summary . 171

Table 4-3 Intrinsics That Cannot Be Actual Arguments 175

Table 4-4 OPEN Keyword Specifier Summary . 180

Table 4-5 OPEN Keyword Specifier Details . 181

Table 4-6 OPTIONS Statement Qualifiers. 186

Table 5-1 Summary of f77 Input and Output . 246

Table 5-2 Format Specifiers . 255

Table 5-3 Default w, d, e Values in Format Field Descriptors. 257

Table 5-4 Carriage Control with Blank, 0, 1, + . 260

Table 5-5 Maximum Characters in Noncharacter Type Hollerith (nHaaa) 263

Table 5-6 Sample Octal/Hex Input Values. 268

Table 5-7 Sample Octal/Hex Output Value . 269

Table 5-8 Default Formats for List-Directed Output 293

Table 6-1 Arithmetic Functions . 305

Table 6-2 More Arithmetic Functions . 306

Table 6-3 Type Conversion Functions . 307

Table 6-4 Trigonometric Functions . 309

Table 6-5 Other Mathematical Functions . 311

Table 6-6 Functions for Returning IEEE Values. 312

Table 6-7 Other IEEE-Related Functions. 312

Table 6-8 Character Functions . 313

Table 6-9 Bitwise Functions. 314

Tables xxi

Table 6-10 Environmental Inquiry Functions. 315

Table 6-11 Memory Allocation and Deallocation Functions 316

Table 6-12 Double-Precision Complex Functions . 322

Table 6-13 Degree-Based Trigonometric Functions. 323

Table 6-14 Bit-Manipulation Functions . 324

Table 6-15 Integer Functions . 325

Table 6-16 Translated Functions that VMS Coerces to a Particular Type 326

Table 6-17 Other Conversions by f77. 327

Table 6-18 Zero-Extend Functions . 327

Table 7-1 Double-Precision libm Functions . 368

Table 7-2 Quadruple-Precision libm Functions . 371

Table 7-3 Single-Precision libm Functions. 373

Table 8-1 Double-Precision Complex Function . 417

Table 8-2 Degree-based Trigonometric Functions 418

Table 8-3 Bit Manipulation Functions . 419

Table 8-4 Integer Functions . 420

Table 8-5 Translated Functions that VMS Coerces to a Particular Type 421

Table 8-6 Other Conversions by f77. 422

Table 8-7 Zero Extend Functions . 422

Table 8-8 Sumary of VMS FORTRAN System Routines. 423

Table A-1 ASCII Character Set. 435

Table A-2 Control Character Meanings . 437

Table B-1 FORTRAN Statement Samples . 439

Table C-1 Floating-point Representation . 450

Table C-2 IEEE Representation of Selected Numbers 451

xxii FORTRAN Reference Manual

Table C-3 Extreme Value Abbreviations . 451

Table C-4 Extreme Values: Addition and Subtraction. 452

Table C-5 Extreme Values: Multiplication. 452

Table C-6 Extreme Values: Division . 453

Table C-7 Extreme Values: Comparison . 453

Table C-8 Bits and Bytes for Intel and VAX Computers 454

Table C-9 Bits and Bytes for 680x0 and SPARC Computers 454

xxiii

Preface

This preface is organized into the following sections.

Purpose and Audience
This manual describes language and routines of SunPro™ FORTRAN 3.0.1.

This is a reference manual; and though it has many examples, it is in no way a
tutorial. Its function and purpose is solely to help you find features or routines
quickly, not to help you learn FORTRAN, programming, or programming
style.

This book is for scientists and engineers with the following background:

• Thorough knowledge and experience with FORTRAN programming
• General knowledge and understanding of some operating system
• Particular knowledge of SunOS™ or UNIX1 commands cd , pwd, ls , cat .

1. UNIX is a registered trademark of Novell, Inc., in the United States and other countries.

Purpose and Audience page xxiii

How this Book is Organized page xxiv

Related Manuals page xxiv

Conventions in Text page xxv

xxiv FORTRAN Reference Manual

For help using the compiler, linker, debugger, related utilities, or making or
using libraries, refer to the FORTRAN User's Guide.

How this Book is Organized
This book is organized as follows:

Related Manuals
The following documents are provided on-line or in hard copy, as indicated.

Chapter 1, Elements of FORTRAN page 1

Chapter 2, Data Types and Data Items page 15

Chapter 3, Expressions page 65

Chapter 4, Statements page 83

Chapter 5, Input and Output page 243

Chapter 6, Intrinsic Functions page 305

Chapter 7, FORTRAN Library Routines page 329

Chapter 8, VMS Routines page 417

Chapter 9, VMS Language Extensions page 425

Appendix A, ASCII Character Set page 435

Appendix B, Sample Statements page 439

Appendix C, Data Representations page 449

Title Paper AnswerBook

FORTRAN 3.0.1 User’s Guide X X

FORTRAN 3.0.1 Reference Manual X X

Debugging a Program X X

Numerical Computation Guide X X

Installing SunSoft Developer Products Software on Solaris X X

xxv

Conventions in Text
We use the following conventions in this manual to display information.

• We show code listings examples in boxes.

• The plain typewriter font shows prompts and coding.

• In dialogs, the boldface typewriter font shows text the user types in.

• Italics indicate general arguments or parameters that you should replace
with the appropriate input. Italics also indicate emphasis.

• For Solaris 2.x, the default shell is sh and the default prompt is the dollar
sign ($) . Most systems have distinct host names, and you can read some of
our examples more easily if we use a symbol longer than a dollar sign.
Examples generally use “demo$ ” as the system prompt; where the csh shell
is shown, we use “demo%” as the system prompt.

• The small clear triangle ∆ shows a blank space where that is significant.

• We generally tag nonstandard features with a small black diamond (♦).
Wherever we indicate that a feature is nonstandard, that means a program
using it does not conform to the ANSI X3.9-1978 standard, as described in
American National Standard Programming Language FORTRAN, ANSI X3.9-
1978, April 1978, American National Standards Institute, Inc., abbreviated as
the FORTRAN Standard.

• We usually show FORTRAN examples in tab format, not fixed column. See
Section 1.9, “Source Line Formats,” for details.

• We usually abbreviate “FORTRAN” as “f77” .

WRITE(*, *) ’Hello world’

demo$ echo hello
hello
demo$ ■

∆∆36.001

xxvi FORTRAN Reference Manual

1

Elements of FORTRAN 1

This chapter is organized into the following sections.

1.1 Operating Environments
This manual describes FORTRAN 3.0.1 under Solaris® 1.x and 2.x for SPARC,
and under Solaris 2.x for x86 operating environments. Most aspects of
FORTRAN for 1.x, 2.x, and x86 are the same, including functionality, behavior,
and features. Anything unique to one operating environment is tagged “(2.x
only)” or sometimes “(1.x)” or “(x86)”.

Operating Environments page 1

Standards page 2

Extensions page 2

Basic Terms page 3

Character Set page 3

Symbolic Names page 6

Program page 8

Statements page 8

Source Line Formats page 9

2 FORTRAN Reference Manual

1

The previous major release was ported to Intel1 80386-compatible computers
running Solaris 2.x for x86, and some features remain identified as being for
x86 only.

1.2 Standards
This FORTRAN is an enhanced FORTRAN 77 development system.

• It conforms to the ANSI X3.9-1978 FORTRAN standard and the
corresponding International Standards Organization number is ISO 1539-
1980. NIST (formerly GSA and NBS) validates it at appropriate intervals.

• It also conforms to the standards FIPS 69-1, BS 6832, and MIL-STD-1753.
• It provides an IEEE standard 754-1985 floating-point package.
• On SPARC systems it provides support for optimization exploiting features

of SPARC V8, including the SuperSPARC implementation2. These
features are defined in the SPARC Architecture Manual: Version 8.

1.3 Extensions
This FORTRAN compiler provides iMPact™ multiprocessor FORTRAN and
lint-like checking across routines for consistency of arguments, commons,
parameters, and so forth. Other extensions include recursion, pointers, double-
precision complex, quadruple-precision real, quadruple-precision complex, and
many VAX3 VMS FORTRAN 5.0 extensions, including NAMELIST, DO WHILE,
structures, records, unions, maps, and variable formats. Multiprocessor
FORTRAN includes automatic and explicit loop parallelization. You can write
FORTRAN programs with many VMS extensions so that these programs run
with the same source code on both SPARC and VAX systems.

1. Intel is a registered trademark of Intel Corporation.

2. SuperSPARC is a trademarks of Texas Instruments, Inc.

3. VAX and VMS are a trademarks of Digital Equipment Corporation

Elements of FORTRAN 3

1

1.4 Basic Terms
This section introduces the basic terms and concepts.

• A program consists of one or more program units.
• A program unit is a sequence of statements, terminated by an END.
• A statement consists of zero or more key words, symbolic names, literal

constants, statement labels, operators, and special characters.
• Each key word, symbolic name, literal constant, and operator consists of one or

more characters from the FORTRAN character set.
• A character constant can include any valid ASCII character.
• A statement label consists of 1 to 5 digits, with at least one nonzero.

1.5 Character Set
The character set consists of the following.

• Uppercase and lowercase letters A – Z and a – z
• Numerals 0 – 9

• The following special characters

Usage and Restrictions

• Uppercase and lowercase are not significant in the key words of FORTRAN
statements or in symbolic names.

Table 1-1 Special Characters

Character Name Character Name

Space
Tab
=

+

–

*

/

(

)

,

.

 Space
Tab
Equals
Plus
Minus
Asterisk
Slash
Left parenthesis
Right parenthesis
Comma
Period

’

"

$

_

!

:

?

%

&

\

<

>

Apostrophe
Quote ♦

Dollar sign ♦

Underscore ♦

Exclamation point ♦

Colon
Question mark ♦

Percent ♦

Ampersand ♦

Backslash ♦

Left angle bracket ♦

Right angle bracket ♦

4 FORTRAN Reference Manual

1

The –U option of f77 makes case significant in symbolic names. ♦

• Control Characters ♦

Even though they are not in the character set, most control characters are
allowed as data. The exceptions are:

Control A, Control B, Control C

These are not allowed as data.

While entering a character string, you must not hold down the control key
and press the A, or B, or C. Even these characters can be entered other ways,
such as with the char() function.

Elements of FORTRAN 5

1

• Special characters used for punctuation:

Table 1-2 Special Character Usage

Character Usage

Space Ignored in statements, except as part of a character constant

Tab Establish the line as a tab-format source line ♦

= Assignment

+ Add, unary operator

– Subtract, unary operator

* Multiply, alternate returns, comments, exponentiation, stdin ,
stdout , list-directed I/O

/ Divide, delimit data, labeled commons, structures, end-of-record

() Enclose expressions, complex constants, equivalence groups, formats,
argument lists, subscripts

, Separator for data, expressions, complex constants, equivalence
groups, formats, argument lists, subscripts

. Radix point, delimiter for logical constants and operators, record
fields

’ Quoted character literals

" Quoted character literals, octal constants ♦

$ Delimit namelist input, edit descriptor, pragmas ♦

! Comments ♦

: Array declarators, substrings, edit descriptor

% Special functions: %REF, %VAL, %LOC ♦

& Continuation, alternate return, delimit namelist input; in column 1:
establish the line as a tab-format source line ♦

? Request names in namelist group ♦

\ Escape character ♦

< > Enclose variable expressions in formats ♦

6 FORTRAN Reference Manual

1

• Any ASCII character is valid as literal data in a character string. ♦

For Control A, Control B, and Control C, do not hold down the control key
and press the A, or B, or C; use char() , or some other way. For the
backslash (\) character you may need to use an escape sequence or use the
–xl compiler option. The backslash (\) is also called a reverse solidus, and
the slash (/) is also called a solidus. For the newline (\ n) character you
must use an escape sequence. See Table 2-5.

1.6 Symbolic Names
The following items can have symbolic names.

Restrictions

Symbolic names have the following restrictions.

• They can have from 1 to 32 characters. (The standard is 6.) ♦

• They consist of letters, digits, the dollar sign ($), and the underscore
character (_). The $ and the _ are not standard. ♦

• They generally start with a letter—never with a digit or dollar sign ($).
Names that start with an underscore (_) are allowed, ♦

but it is safer to reserve such names for the compiler.

• Uppercase and lowercase are not significant; the compiler converts them all
to lowercase. The –U option on the f77 command line overrides this
default, thereby preserving any uppercase used in your source file. ♦

• Example: These are equivalent with the default in effect.

Table 1-3 Items with Symbolic Names

Symbolic constants
Variables
Arrays
Structures ♦

Records ♦

Record fields ♦

Labeled commons
Namelist groups ♦

Main programs
Subroutines
Functions
Entry points

ATAD = 1.0E-6
Atad = 1.0e-6

Elements of FORTRAN 7

1

• The space character is not significant.

Example: These are equivalent.

• Sample Symbolic Names

• In general, for any single program unit, different entities cannot have the
same symbolic name. Exceptions:
• A variable or array can have the same name as a common block.
• A field of a record can have the same name as a structure. ♦

• A field of a record can have the same name as a field at a different level of
the structure. ♦

• Throughout any program of more than one programming unit, no two of
the following can have the same name.
• Block data subprograms
• Common blocks
• Entry points
• Function subprograms
• Main program
• Subroutines

IF (X .LT. ATAD) GO TO 9
IF (X .LT. A TAD) GO TO 9
IF(X.LT.ATAD)GOTO9

Table 1-4 Sample Symbolic Names

Valid Invalid Reason

X2 2X Starts with a digit

DELTA_TEMP _DELTA_TEMP Starts with an _ (reserved for compiler)

Y$Dot Y|Dot Invalid character |

Consistently separating words by
spaces became a general
custom about the tenth century
A.D., and lasted until about 1957,
when FORTRAN abandoned the
practice.

8 FORTRAN Reference Manual

1

1.7 Program
A program unit is a sequence of statements, terminated by an END statement.
Every program unit is either a main program or a subprogram. If a program is
to be executable, it must have a main program.

There are three types of subprograms: subroutines, functions, and block data
subprograms. The subroutines and functions are called procedures. The
procedures are invoked from other procedures or from the main program. The
block data subprograms are handled by the loader.

1.8 Statements
A statement consists of one or more key words, symbolic names, literal
constants, and operators, with appropriate punctuation. In FORTRAN, no key
words are reserved in all contexts. Most statements begin with a key word; the
exceptions are the statement function and assignment statements.

Executable Statements

Every statement is either executable or nonexecutable. In general, if a
statement specifies an action to be taken at runtime, it is called executable.
Otherwise, it is called nonexecutable.

The nonexecutable statements specify attributes such as type and size;
determine arrangement or order; define initial data values; specify editing
instructions; define statement functions; classify program units; and define
entry points. In general, the nonexecutable statements are completed before
execution of the first executable statement.

Elements of FORTRAN 9

1

FORTRAN Statements

1.9 Source Line Formats
A statement takes one or more lines; the first line is called the initial line, and
the subsequent lines are called the continuation lines.

You can format a source line in either of two ways.

• Standard fixed format
• Tab format ♦

Standard Fixed Format

The standard fixed format source lines are defined as follows.

• The first 72 columns of each line are scanned. See “Extended Lines,” below.
• The first five columns must be blank or contain a numeric label.
• Continuation lines are identified by a nonblank, nonzero in column 6.
• Short lines are padded to 72 characters.
• Long lines are truncated. See “Extended Lines,” below.

Table 1-5 FORTRAN Statements

The asterisk (*)
indicates an
executable
statement.

ACCEPT*
ASSIGN*
Assignment*
AUTOMATIC
BACKSPACE*
BLOCK DATA
BYTE
CALL*
CHARACTER
CLOSE*
COMMON
COMPLEX
CONTINUE*
DATA
DECODE*
DIMENSION
DO*
DO WHILE*

DOUBLE COMPLEX
DOUBLE PRECISION
ELSE*
ELSE IF*
ENCODE*
END*
END DO
END FILE*
END IF*
END MAP
END STRUCTURE
END UNION
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GOTO*

GOTO (Assigned)*
GOTO (Unconditional)*
IF (Arithmetic)*
IF (Block)*
IF (Logical)*
IMPLICIT
INCLUDE
INQUIRE*
INTEGER
INTRINSIC
LOGICAL
MAP
NAMELIST
OPEN*
OPTIONS
PARAMETER
PAUSE*
POINTER

 PRINT*
 PRAGMA
 PROGRAM
 REAL
 RECORD
 RETURN*
 REWIND*
 SAVE

Statement Function
 STATIC*
 STOP*
 STRUCTURE
 SUBROUTINE*
 TYPE
 UNION
 VIRTUAL
 VOLATILE
 WRITE*

10 FORTRAN Reference Manual

1

Tab-Format

The tab-format source lines are defined as follows. ♦

• A tab in any of columns 1 through 6, or an ampersand in column 1,
establishes the line as a tab-format source line.

• If the tab is the first nonblank character, the text following the tab is scanned
as if it started in column 7.

• A comment indicator or a statement number may precede the tab.

• Default maximum line length is 72 columns. See “Extended Lines,” below.

• Continuation lines are identified by an ampersand (&) in column 1, or a
nonzero digit after the first tab.

Mixing Formats

You can format lines both ways in one program unit, but not in the same line.

Continuation Lines

The default maximum number of continuation lines is 99 ♦ (1 initial and 99
continuation). To change this number of lines, use the -Nl n option. ♦

Extended Lines

To extend the source line length to 132 characters, use the –e option.♦
Otherwise, by default, f77 ignores any characters after column 72.
Example: Compile to allow extended lines.

Padding

Padding is significant in lines such as the two in the DATA statement below.

demo$ f77 -e prog.f

C 1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

DATA SIXTYH/60H
1 /

Elements of FORTRAN 11

1

Comments and Blank Lines
• A line with a c , C, * , d, D, or ! in column one is a comment line, except that

if the –xld option is set, then the lines starting with D or d are compiled as
debug lines. The d, D, and ! are nonstandard. ♦

• If you put an exclamation point (!) in any column of the statement field,
except within character literals, then everything after the ! on that line is a
comment. ♦

• A totally blank line is a comment line.

Example: c , C, d, D, * , ! , and blank comments.

Pragmas

A pragma passes information to a compiler in a special form of comment. ♦

Pragmas are also called compiler directives. Currently there is a C pragma, but
see also “Parallel Pragma,” in the next section. The general form is as follows.

The variable id identifies the kind of pragma, and a is an argument.

c Start expression analyzer
CHARACTER S, STACK*80
COMMON /PRMS/ N, S, STACK
…

* Crack the expression:
IF (S .GE. ’0’ .AND. S .LE. ’9’) THEN ! EoL comment

CALL PUSH ! Save on stack. EoL comment
d PRINT *, S! Debug comment & EoL comment

ELSE
CALL TOLOWER ! To lowercase EoL comment

END IF
D PRINT *, N ! Debug comment & EoL comment

…
C Finished
! expression analyzer

c$pragma id
or
c$pragma id (a [, a] …) [, id (a [, a] …)] ,…

12 FORTRAN Reference Manual

1

Syntax

A pragma has the following syntax.

• In column one, any of the comment-indicator characters c , C, d, D, ! , or *
• In any column, the ! comment-indicator character
• The next 7 characters (with no blanks) are $pragma , in any mix of

uppercase and lowercase

Rules and Restrictions for Pragmas
• After the first eight characters, blanks are ignored, and uppercase and

lowercase are equivalent, as in FORTRAN text.
• Because it is a comment, a pragma cannot be continued, but you can have

many c$pragma lines, one after the other, as needed.
• If a comment satisfies the above syntax, it is expected to contain one or more

directives recognized by the compiler; if it does not, a warning is issued.

The C() Directive

The C() directive specifies that its arguments are external functions written in
the C language. It is equivalent to an EXTERNAL declaration with the addition
that the FORTRAN compiler does not append an underscore to such names, as
it ordinarily does with external names.

The C() directive for a particular function must appear before the first
reference to that function in each subprogram that contains such a reference.
The recommended usage is as follows.

Parallel Pragma

A parallel pragma is a special comment that directs the compiler to do some
parallelizing.

The current parallel pragma for explicit parallelizing is the following.

• c$par doall

EXTERNAL ABC, XYZ !$PRAGMA C(ABC, XYZ)

Elements of FORTRAN 13

1

Syntax

A parallel pragma has the following syntax.

• The first character is in column one. Only parallel pragmas require this.
• The first character can be any one of c , C, d, D, * , or ! .
• The next 4 characters are $par , no blanks, any uppercase and lowercase.

For doall , the compiler parallelizes the next loop it finds after the pragma, if
possible.

Before using a parallel pragma, read the FORTRAN User’s Guide, especially the
appendixes on parallelization.

14 FORTRAN Reference Manual

1

15

Data Types and Data Items 2

This chapter is organized into the following sections.

2.1 Types
Any constant or constant expression usually represents typed data (the
exceptions are the typeless constants). Any name of a variable, array, array
element, substring, or function usually represents typed data.

The following items have data types.

Types page 15

Constants page 27

Variables page 41

Arrays page 41

Substrings page 48

Structures page 50

Pointers page 59

Constant Expressions
Variables
Arrays

 External Functions
 Statement Functions

16 FORTRAN Reference Manual

2

These items do not have data types.

Rules for Data Typing

Name determines type; that is, the name of a datum or function determines its
data type, explicitly or implicitly, according to the following rules of data
typing.

• A symbolic name of a constant, variable, array, or function has only one data
type for each program unit, except for generic functions.

• If you explicitly list a name in a type statement, then that determines the
data type.

• If you do not explicitly list a name in a type statement, then the first letter of
the name determines the data type implicitly.

• The default implicit typing rule is that if the first letter of the name is I , J ,
K, L, M, or N, then the data type is integer, otherwise it is real.

• You can change the default implied types by using the IMPLICIT statement,
even to the extent of turning off all implicit typing with the IMPLICIT NONE
statement. You can also turn off all implicit typing by specifying the –u
compiler flag on the command line; this is equivalent to beginning each
program unit with the IMPLICIT NONE statement.

Array Elements

An array element has the same type as the array name.

Functions

Each intrinsic function has a specified type. An intrinsic function does not
require an explicit type statement, but that is allowed. A generic function does
not have a predetermined type; the type is determined by the type of the
arguments, as shown in the chapter on intrinsic functions.

Main Programs
Subroutines
Block Data Subprograms

 Common Blocks
 Namelist Groups ♦
 Structured Records ♦

Data Types and Data Items 17

2

An external function can have its type specified in any of the following ways.

• Explicitly by putting its name in a type statement

• Explicitly in its FUNCTION statement, by preceding the word ‘FUNCTION’
with the name of a data type.

• Implicitly by its name, as with variables.

Example: Explicitly by putting its name in a type statement.

Example: Explicitly in its FUNCTION statement.

 Example: Implicitly by its name, as with variables.

Consistent Typing of Functions

Implicit typing can affect the type of a function, either by default implicit
typing or by an IMPLICIT statement. It is your responsibility to make the data
type of the function be the same within the function subprogram as it is in the
calling program unit. That is, FORTRAN does no type checking between
program units.

FUNCTION F (X)
INTEGER F, X
F = X + 1
RETURN
END

INTEGER FUNCTION F (X)
INTEGER X
F = X + 1
RETURN
END

FUNCTION NXT (X)
INTEGER X
NXT = X + 1
RETURN
END

18 FORTRAN Reference Manual

2

Properties of Data Types

This section describes the data types, what each is for, the way storage is
allocated for each of them, and the alignment of the different types. Storage
and alignment are always given in bytes. Values that can fit into a single byte
are byte-aligned.

BYTE♦

The BYTE data type provides a data type that uses only one byte of storage. It
is a logical data type, and has the synonym LOGICAL*1 .

A variable of type BYTE can hold any of the following.

• One character
• An integer between -128 and 127
• The logical values .TRUE. or .FALSE.

If it is interpreted as a logical value, a value of 0 represents .FALSE. , and any
other value is interpreted as .TRUE.

f77 allows the BYTE type as an array index (just as it allows the REAL type)
but it does not allow BYTE as a DO loop index (where it allows only INTEGER,
REAL, and DOUBLE PRECISION). Wherever FORTRAN makes an explicit check
for INTEGER, it does not allow BYTE.

Examples

Storage— A BYTE item occupies 1 byte of storage.

Alignment— A BYTE item is aligned on 1-byte boundaries.

BYTE Bit3 / 8 /, C1 / ’W’ /,
& Counter / 0 /, Switch / .FALSE. /

Data Types and Data Items 19

2

CHARACTER

• The character data type, CHARACTER, which has the synonym
CHARACTER*1, holds 1 character.

• The character is enclosed in apostrophes (’) or quotes (").♦
Allowing quotes (") is nonstandard, and if you compile with the –xl option,
quotes mean something else, and you must use apostrophes to enclose a
string.

• Data of type CHARACTER is always unsigned.

Storage— A CHARACTER item occupies 1 byte (8 bits) of storage.

Alignment— A CHARACTER item is aligned on 1-byte boundaries.

CHARACTER*n

The character string data type, CHARACTER*n, where n > 0 , holds a string of n
characters.

Storage— A CHARACTER*n item occupies n bytes of storage.

Alignment— A CHARACTER*n variable is aligned on 1-byte boundaries.

Every character string constant is aligned on 2-byte boundaries, and if it does
not appear in a DATA statement, it is followed by a null character to ease
communication with C routines.

COMPLEX

A complex datum is an approximation of a complex number. The complex data
type, COMPLEX, which usually has the synonym COMPLEX*8, is a pair of
REAL*4 values that represent a complex number. The first element represents
the real part and the second represents the imaginary part.

Storage— The usual default size for a COMPLEX item (no size specified) is 8. If
the –r8 compiler option is set, then the default size is 16; otherwise it is 8.

Alignment— It is aligned on 4-byte boundaries; except if compiled on a Sun-4
or SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

20 FORTRAN Reference Manual

2

COMPLEX*8♦

The complex data type COMPLEX*8 is a synonym for COMPLEX, except that it
always has a size of 8 bytes, independent of any compiler options.

COMPLEX*16(Double Complex) ♦

The complex data type COMPLEX*16 is a synonym for DOUBLE COMPLEX,
except that it always has a size of 16 bytes, independent of any compiler
options.

COMPLEX*32 (Quad Complex) ♦

(SPARC only) The complex data type COMPLEX*32 is a quadruple-precision
complex. It is a pair of REAL*16 elements, where each has a sign bit, a 15-bit
exponent, and a 112-bit fraction. These REAL*16 elements in f77 conform to
the IEEE standard.

Storage— The size for a COMPLEX*32 item is 32 bytes.

Alignment— It is aligned on 4-byte boundaries; except if compiled on a Sun-4
or SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

DOUBLE COMPLEX♦

The complex data type, DOUBLE COMPLEX, which usually has the synonym
COMPLEX*16, is a pair of DOUBLE PRECISION (REAL*8) values that represents
a complex number. The first element represents the real part and the second
represents the imaginary part.

Storage— The usual default size for DOUBLE COMPLEX (no size specified) is 16.

• If the –r8 compiler option is set, then the default size is 32, otherwise 16.

Alignment— It is aligned on 4-byte boundaries; except if compiled on a Sun-4
or SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

Data Types and Data Items 21

2

DOUBLE PRECISION

A double-precision datum is an approximation of a real number. The double-
precision data type, DOUBLE PRECISION, which has the synonym REAL*8,
holds one double-precision datum.

Storage— The usual default size for a DOUBLE PRECISION item (no size
specified) is 8.

• If the –r8 compiler option is set, then the default size is 16, otherwise 8.

Alignment— It is aligned on 4-byte boundaries.

A DOUBLE PRECISION element has a sign bit, an 11-bit exponent, and a 52-bit
fraction. These DOUBLE PRECISION elements in f77 conform to the IEEE
standard for double-precision floating-point data. The layout is shown in the
appendix on data representation.

INTEGER

The integer data type, INTEGER, holds a signed integer.

Storage— The usual default size for an INTEGER item (no size specified) is 4.

• If the –i2 compiler option is set, then the default size is 2; otherwise it is 4.
• If the –r8 compiler option is set, then the default size is 8; otherwise it is 4.
• If both the –i2 and –r8 options are set, then the results are unpredictable.

Alignment— It is aligned on 4-byte boundaries, unless the –i2 option is set,
then it is aligned on 2-byte boundaries.

INTEGER*2 ©

The short integer data type, INTEGER*2, holds a signed integer. An expression
involving only objects of type INTEGER*2 is of that type. Using this feature
may have adverse performance implications and we do not recommend it.

Generic functions return short or long integers depending on the default
integer type. If a procedure is compiled using the –i2 flag, all integer
constants that fit and all variables of type INTEGER (no explicit size) are of
type INTEGER*2. If the precision of an integer-valued intrinsic function is not
determined by the generic function rules, one is chosen that returns the

22 FORTRAN Reference Manual

2

prevailing length (INTEGER*2) when the –i2 command flag is in effect).
When the –i2 option is in effect, the default length of LOGICAL quantities is 2
bytes.

Ordinary integers follow the FORTRAN 77 rules about occupying the same
space as a REAL variable. They are assumed to be equivalent to the C type
long int , and 1-byte integers are of C type short int . These short integer
and logical quantities do not obey the standard rules for storage association.

Storage— An INTEGER*2 item occupies 2 bytes.

Alignment— It is aligned on 2-byte boundaries.

INTEGER*4 ♦

The integer data type, INTEGER*4, holds a signed integer.

Storage— An INTEGER*4 item occupies 4 bytes.

Alignment— It is aligned on 4-byte boundaries.

LOGICAL

The logical data type, LOGICAL, holds a logical value .TRUE. or .FALSE. The
value 0 represents .FALSE. ; any other value represents .TRUE.

Storage— The usual default size for an LOGICAL item (no size specified) is 4.

• If the –i2 compiler option is set, then the default size is 2; otherwise it is 4.
• If the –r8 compiler option is set, then the default size is 8; otherwise it is 4.
• If both the –i2 and –r8 options are set, then the results are unpredictable.

Alignment— It is aligned on 4-byte boundaries, unless the –i2 option is set,
then it is aligned on 2-byte boundaries.

If the –i2 compiler flag is set, then LOGICAL (without any size specification) is
the same as LOGICAL*2 ; otherwise it is the same as LOGICAL*4 .

Data Types and Data Items 23

2

LOGICAL*1 ♦

The 1-byte logical data type, LOGICAL*1 , which has the synonym BYTE, can
hold any of the following:

• One character
• An integer between -128 and 127
• The logical values .TRUE. or .FALSE.

The value is as defined for LOGICAL, but it can hold a character or small
integer. Examples

Storage— A LOGICAL*1 item occupies 1 byte of storage.

Alignment— A LOGICAL*1 item is aligned on 1-byte boundaries.

LOGICAL*2 ♦

The data type, LOGICAL*2 , holds logical value .TRUE. or .FALSE. The value
is defined as for LOGICAL.

Storage— A LOGICAL*2 , item occupies 2 bytes.

Alignment— It is aligned on 2-byte boundaries.

If the –i2 compiler flag is set, then LOGICAL (without any size specification) is
the same as LOGICAL*2 .

LOGICAL*4 ♦

The logical data type, LOGICAL*4 holds a logical value .TRUE. or .FALSE.
The value is defined as for LOGICAL.

Storage— A LOGICAL*4 , item occupies 4 bytes.

Alignment— It is aligned on 4-byte boundaries.

LOGICAL*1 Bit3 / 8 /, C1 / ’W’ /,
& Counter / 0 /, Switch / .FALSE. /

24 FORTRAN Reference Manual

2

REAL

A real datum is an approximation of a real number. The real data type, REAL,
which usually has the synonym REAL*4, holds one real datum.

Storage— The usual default size for a REAL item (no size specified) is 4 bytes. If
the –r8 compiler option is set, then the default size is 8 bytes; otherwise it is 4
bytes.

Alignment— It is aligned on 4-byte boundaries; except if compiled on a Sun-4
or SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

A REAL element has a sign bit, an 8-bit exponent, and a 23-bit fraction. These
REAL elements in f77 conform to the IEEE standard.

REAL*4 ♦

The REAL*4 data type is a synonym for REAL, except that it always has a size
of 4 bytes, independent of any compiler options.

REAL*8 (Double-Precision Real) ♦

The REAL*8, data type is a synonym for DOUBLE PRECISION, except that it
always has a size of 8 bytes, independent of any compiler options.

REAL*16 (Quad Real) ♦

(SPARC only) The REAL*16 data type is a quadruple-precision real.

Storage— The size for a REAL*16 item is 16 bytes.

Alignment— It is aligned on 4-byte boundaries; except if compiled on a Sun-4
or SPARC computer with the –f option, in which case it is aligned on 8-byte
boundaries.

A REAL*16 element has a sign bit, a 15-bit exponent, and a 112-bit fraction.
These REAL*16 elements in f77 conform to the IEEE standard for extended
precision.

Data Types and Data Items 25

2

Size and Alignment Summary

Size and alignment of types depends on various compiler options. This table
summarizes size and alignment, ignoring other aspects of types and options.

Note that -dalign triggers the -f option.

Table 2-1 Size and Alignment without -dalign, –f , –i2 , or –r8

FORTRAN Type Size (bytes) Alignment (bytes)

Synonyms
 COMPLEX≡COMPLEX*8
 INTEGER ≡ INTEGER*4
 LOGICAL ≡ LOGICAL*4
 REAL ≡ REAL*4
 DOUBLE COMPLEX≡COMPLEX*16
 DOUBLE PRECISION≡REAL*8

These are synonyms in the sense that
COMPLEX is treated the same as
COMPLEX*8, INTEGER is treated the same
as INTEGER*4, etc.

REAL*16 is sometimes called quad real.
COMPLEX*32 is sometimes called quad
complex

BYTE 1 1

CHARACTER 1 1

CHARACTER*n n 1

COMPLEX 8 4

COMPLEX*8 8 4

COMPLEX*16 16 4

DOUBLE COMPLEX 16 4

COMPLEX*32 (SPARC only) 32 4

REAL 4 4

REAL*4 4 4

REAL*8 8 4

DOUBLE PRECISION 8 4

REAL*16 (SPARC only) 16 4

INTEGER 4 4

INTEGER*4 4 4

INTEGER*2 2 2

LOGICAL 2 4

LOGICAL*4 2 4

LOGICAL*2 2 2

LOGICAL*1 1 1

26 FORTRAN Reference Manual

2

Arrays and structures align according to their elements or fields. An array
aligns the same as the array element. A structure aligns the same as the field
with the widest alignment.

Do not use –i2 with –i4 or –r8 .

Do not use –r8 with –i2 .

In the margin note, types in italics are allocated the larger space indicated. This
is done to maintain the FORTRAN requirement that an integer item and a real
item have the same amount of storage.

Table 2-2 Size and Alignment Changed by -i2

FORTRAN Type Size (bytes) Alignment (bytes)

Changed synonyms:
 INTEGER ≡ INTEGER*2
 LOGICAL ≡ LOGICAL*2

INTEGER 2 2

LOGICAL 2 2

Table 2-3 Size and Alignment Changed by -r8 (SPARC only)

FORTRAN Type Size (bytes) Alignment (bytes)

Changed synonyms:
 COMPLEX≡ COMPLEX*16
 INTEGER ≡ INTEGER*8
 LOGICAL ≡LOGICAL *8
 REAL ≡ REAL*8
 DOUBLE PRECISION ≡ REAL*16
 DOUBLE COMPLEX≡COMPLEX*32

COMPLEX 16 4

DOUBLE COMPLEX 32 4

REAL 8 4

DOUBLE PRECISION 16 4

INTEGER 8 4

LOGICAL 8 4

Data Types and Data Items 27

2

That space is only partially filled, using the largest actual comparable type
available, and the appropriate computation. For example, an integer*8 item gets
8 bytes, but an integer*4 item is stored in those 8 bytes, and only
integer*4 computations are done. These italicized types cannot be explicitly
used by the programmer.

Note that -dalign triggers the -f option.

Types in italics are allocated the larger space indicated, but that space is only
partially filled, using the largest actual comparable type available. For
example, an integer*8 item gets 8 bytes, but an integer*4 is stored in those 8
bytes. This is done to maintain the FORTRAN requirement that an integer item
and a real item have the same amount of storage. These italicized types cannot
be explicitly used by the programmer.

2.2 Constants
A constant is a datum whose value cannot change throughout the program
unit. The form of the string representing a constant determines the value and
data type of the constant.

General kinds of constants:

Blanks— Blank characters within an arithmetic or logical constant do not affect
the value of the constant. Within character constants they do affect the value.

Table 2-4 Size and Alignment Changed by -dalign or -f (SPARC only)

FORTRAN Type Size (bytes) Alignment (bytes)

COMPLEX*8 8 8

COMPLEX*16 16 8

DOUBLE COMPLEX 32 8

COMPLEX*32 (SPARC only) 32 8

REAL*8 8 8

REAL*16 (SPARC only) 16 8

Arithmetic

Logical

Character

28 FORTRAN Reference Manual

2

Kinds of arithmetic constants:

Sign— A signed constant is an arithmetic constant with a leading plus or minus
sign. An unsigned constant is an arithmetic constant without a leading sign.

Zero— For integer, real, and double- precision data, zero is neither positive nor
negative. The value of a signed zero is the same as that of an unsigned zero.

Character Constants

A character-string constant is a string of characters enclosed in apostrophes or
quotes. The apostrophes are standard; the quotes are not. ♦

If you compile with the –xl option, then the quotes mean something else, and
you must use apostrophes to enclose a string.

To include an apostrophe in an apostrophe-delimited string, repeat it. To
include a quote in a quote-delimited string, repeat it. Examples

If a string begins with one kind of delimiter, the other kind can be embedded
within it without using the repeated quote or backslash escapes. See Table 2-5.

Examples: Character constants.

Typed Constants:
 Complex
 Double complex
 Double precision
 Integer
 Real

Typeless Constants:
 Binary
 Octal
 Hexadecimal
 Hollerith

’abc’ "abc"
’ain’’t’ "in vi type ""h9Y"

"abc" "abc"
"ain’t" ’in vi type "h9Y’

Data Types and Data Items 29

2

Null Characters ♦

Each character string constant appearing outside a DATA statement is followed
by a null character to ease communication with C routines. You can make
character string constants consisting of no characters, but only as arguments
being passed to a subprogram. Such zero length character string constants are
not FORTRAN Standard.

Example. Null character string.

However, if you put such a null character constant into a character variable,
the variable will contain a blank, and have a length of at least 1 byte.

Example. Length of null character string.

demo$ cat NulChr.f
write(*,*) ’a’, ’’, ’b’
stop
end

demo$ f77 NulChr.f
NulChr.f:
 MAIN:
demo$ a.out
ab
demo$ ■

demo$ cat NulVar.f
character*1 x / ’a’ /, y / ’’ /, z / ’c’ /
write(*,*) x, y, z
write(*,*) len(y)
end

demo$ f77 NulVar.f
NulVar.f:
 MAIN:
demo$ a.out
a c
 1
demo$ ■

30 FORTRAN Reference Manual

2

Escape Sequences ♦

For compatibility with C usage, the following backslash escapes are
recognized. If you include the escape sequence in a character string, then you
get the indicated character.

If you compile with the –xl option, then the backslash character (\) is treated
as an ordinary character. That is, with the –xl option, you cannot use these
escape sequences to get special characters.

Technically, the escape sequences are not nonstandard but are implementation
defined.

Complex Constants

A complex constant is an ordered pair of real or integer constants. The
constants are separated by a comma, and the pair is enclosed in parentheses.
The first constant is the real part and the second is the imaginary part. A
complex constant, COMPLEX*8, uses 8 bytes of storage.

Table 2-5 Backslash Escape Sequences

Escape Sequence Character

\n Newline

\r Carriage return

\t Tab

\b Backspace

\f Form feed

\v Vertical tab

\0 Null

\’ Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\x x , where x is any other character

Data Types and Data Items 31

2

Examples: Complex constants.

COMPLEX*16Constants

A double-complex constant, COMPLEX*16, is an ordered pair of real or integer
constants where one of the constants is REAL*8, and the other is INTEGER,
REAL*4, or REAL*8. ♦

The constants are separated by a comma, and the pair is enclosed in
parentheses. The first constant is the real part and the second is the imaginary
part. A double-complex constant, COMPLEX*16, uses 16 bytes of storage.

Example: Double-complex constants.

COMPLEX*32(Quad Complex) Constants

(SPARC only) A quad complex constant ♦ is an ordered pair of real or integer
constants where one of the constants is REAL*16 , and the other is INTEGER,
REAL*4, REAL*8, or REAL*16 .♦

The constants are separated by a comma, and the pair is enclosed in
parentheses. The first constant is the real part and the second is the imaginary
part. A quad complex constant, COMPLEX*32♦, uses 32 bytes of storage.

(9.01, .603)
(+1.0, -2.0)
(+1.0, -2)
(1, 2)
(4.51,) Invalid — need second part

(9.01D6, .603)
(+1.0, -2.0D0)
(1D0, 2)
(4.51D6,) Invalid — need second part
(+1.0, -2.0) Not DOUBLE COMPLEX — need a REAL*8

32 FORTRAN Reference Manual

2

Examples: Quad complex constants (SPARC only).

Integer Constants

An integer constant consists of an optional plus or minus sign, followed by a
string of decimal digits.

Restrictions

• No other characters are allowed, except, of course, a space.
• If no sign is present, the constant is assumed to be nonnegative.
• The value must be in the range [-2147483648 , 2147483647].

Examples: Integer constants.

Alternate Octal Notation ♦

You can also specify integer constants with the following alternate octal
notation. Precede an integer string with a double quote (") and compile with
the –xl option. These are octal constants. They are of type INTEGER.
Example: The following two statements are equivalent.

(9.01Q6, .603)
(+1.0, -2.0Q0)
(1Q0, 2)
(3.3Q-4932, 9)
(1, 1.1Q+4932)
(4.51Q6,) Invalid — need second part
(+1.0, -2.0) Not quad complex — need a REAL*16

-2147483648
-2147483649 Invalid — too small, error message
-10
0
+199
29002
2.71828 Not INTEGER — decimal point not allowed
1E6 Not INTEGER — E not allowed
29,002 Invalid — comma not allowed, error message
2147483647
2147483648 Invalid — too large, error message

JCOUNT = ICOUNT + "703
JCOUNT = ICOUNT + 451

Data Types and Data Items 33

2

You can also specify typeless constants as binary, octal, hexadecimal, or
Hollerith. See “Typeless Constants (Binary, Octal, Hexadecimal)” on page 37.

Short Integers ♦

If a constant argument is in the range [-32768, 32767], it is usually widened to
a 4-byte integer, data type INTEGER*4; but if the –i2 option is set, then it is
stored or passed as a 2-byte integer, data type INTEGER*2.

Logical Constants

A logical constant is either the logical value true or false. The only logical
constants are .TRUE. and .FALSE. ; no others are possible. The period
delimiters are necessary.

A logical constant takes 4 bytes of storage. If it is an actual argument, it is
passed as 4 bytes, unless the –i2 option is set, then it is passed as 2.

Real Constants

A real constant is an approximation of a real number. It can be positive,
negative, or zero. It has a decimal point and/or an exponent. If no sign is
present, the constant is assumed to be nonnegative.

Real constants, REAL*4, use 4 bytes of storage.

Basic Real Constant

A basic real constant consists of an optional plus or minus sign, followed by an
integer part, followed by a decimal point, followed by a fractional part.

The integer part and the fractional part are each strings of digits, and you can
omit either of these parts, but not both.

Examples: Basic real constants.

+82.
-32.
90.
98.5

34 FORTRAN Reference Manual

2

Real Exponent

A real exponent consists of the letter E, followed by an optional plus or minus
sign, followed by an integer.

Examples: Real exponents.

Real Constant

A real constant has one of these forms.

• Basic real constant
• Basic real constant followed by a real exponent
• Integer constant followed by a real exponent

A real exponent denotes a power of ten. The value of a real constant is the
product of that power of ten and the constant that precedes the E.

Examples: Real constants.

Restrictions
• Other than the optional plus or minus sign, a decimal point, the digits 0

through 9, and the letter E, no other characters are allowed.

• The magnitude of a normalized single-precision floating-point value must
be in the approximate range [1.175494E-38 , 3.402823E+38].

E+12
E-3
E6

-32.
-32.18
1.6E-9
7E3
1.6E12
$1.0E2.0 Invalid — $ not allowed, error message
82 Not REAL — need decimal point or exponent
29,002.0 Invalid — comma not allowed, error message
1.6E39 Invalid — too large, machine infinity is used
1.6E-39 Invalid — too small, some precision is lost

Data Types and Data Items 35

2

REAL*8 (Double-Precision Real) Constants

A double-precision constant is an approximation of a real number. It can be
positive, negative, or zero. If no sign is present, the constant is assumed to be
nonnegative. A double-precision constant has a double-precision exponent and
an optional decimal point. Double-precision constants, REAL*8, use 8 bytes of
storage. The REAL*8 notation is nonstandard.♦

Double-Precision Exponent

A double-precision exponent consists of the letter D, followed by an optional plus
or minus sign, followed by an integer.

A double-precision exponent denotes a power of 10. The value of a double-
precision constant is the product of that power of 10 and the constant that
precedes the D. The form and interpretation are the same as for a real exponent,
except that a D is used instead of an E.

Examples of double-precision constants

Restrictions

• Other than the optional plus or minus sign, a decimal point, the digits 0
through 9, a blank, and the letter D, no other characters are allowed.

• The magnitude of an IEEE normalized double-precision floating-point value
must be in the approximate range [2.225074D-308 , 1.797693D+308].

1.6D-9
7D3
$1.0D2.0 Invalid — $ not allowed, error message
82 Not DOUBLE PRECISION — need decimal point or
exponent
29,002.0D0 Invalid — comma not allowed, error message
1.8D308 Invalid — too large, machine infinity is used
1.0D-324 Invalid — too small, some precision is lost

36 FORTRAN Reference Manual

2

REAL*16 (Quad Real) Constants

(SPARC only) A quadruple-precision constant is a basic real constant (see the
start of the Section “Real Constants” on page 33) or an integer constant, such
that it is followed by a quadruple-precision exponent. ♦

A quadruple-precision exponent consists of the letter Q, followed by an optional
plus or minus sign, followed by an integer.

A quadruple-precision constant can be positive, negative, or zero. If no sign is
present, the constant is assumed to be nonnegative.

Examples: Quadruple-precision constants (SPARC only).

The form and interpretation are the same as for a real constant, except that a Q
is used instead of an E.

Summary of Restrictions
• Other than the optional plus or minus sign, a decimal point, the digits 0

through 9, a blank, and the letter Q, no other characters are allowed.

• The magnitude of an IEEE normalized quadruple-precision floating-point
value must be in the approximate range [3.362Q-4932 , 1.20Q+4932].

• It occupies 16 bytes of storage.

• Each such datum is aligned on 4-byte boundaries.

1.6Q-9
7Q3
3.3Q-4932
1.1Q+4932
$1.0Q2.0 Invalid — $ not allowed, error message
82 Not quad — need exponent
29,002.0Q0 Invalid — comma not allowed, error message
1.6Q5000 Invalid — too large, machine infinity is used
1.6Q-5000 Invalid — too small, some precision is lost

Data Types and Data Items 37

2

Typeless Constants (Binary, Octal, Hexadecimal)

Typeless numeric constants are so named because their expressions assume
data types based on how they are used. ♦

They are not converted before use. However, in f77 such constants must be
distinguished from character strings.

The general form is to enclose a string of appropriate digits in apostrophes and
prefix it with the letter B, O, X, or Z. The B is for binary, the O is for octal, and
the X or Z are for hexadecimal.

Example. Binary, octal, and hexadecimal constants, DATA and PARAMETER.

Above, note the edit descriptors in FORMAT statements: O for octal and Z for
hexadecimal. Each of the above integer constants has the value 31 decimal.

Example: Binary, octal, and hexadecimal, other than in DATA and PARAMETER.

Above, the context defines B'0001000' and O’777’ as INTEGER*4 and
X’FFF99A’ as REAL*4. For a real number, using IEEE floating-point, a
given bit pattern yields the same value on different architectures.

The above statements are treated as the following.

PARAMETER (P1 = Z'1F')
INTEGER*2 N1, N2, N3, N4
DATA N1 /B’0011111’/, N2/O’37’/, N3/X’1f’/, N4/Z’1f’/
WRITE (*, 1) N1, N2, N3, N4, P1

1 FORMAT (1X, O4, O4, Z4, Z4, Z4)
END

INTEGER*4 M, ICOUNT/1/, JCOUNT
REAL*4 TEMP
M = ICOUNT + B'0001000'
JCOUNT = ICOUNT + O'777'
TEMP = X'FFF99A'
WRITE(*,*) M, JCOUNT, TEMP
END

M = ICOUNT + 8
JCOUNT = ICOUNT + 511
TEMP = 2.35076E-38

38 FORTRAN Reference Manual

2

Control Characters

You can enter control characters with typeless constants, although the CHAR
function is standard and this way is not.

Example: Control characters with typeless constants.

Alternate Notation for Typeless Constants

For compatibility with other versions of FORTRAN, the following alternate
notation is allowed for octal and hexadecimal notation.

This alternate does not work for binary, nor does it work in DATA or
PARAMETER statements.

Octal — Enclose a string of octal digits in apostrophes and append the letter O.

Examples: Octal alternate notation for typeless constants.

• Hexadecimal — Enclose a string of hex digits in apostrophes and append the
letter X.

• Examples: Hex alternate notation for typeless constants.

CHARACTER BELL, ETX / X’03’ /
PARAMETER (BELL = X’07’)

’37’O
37’O Invalid — missing initial apostrophe
’37’ Not numeric — missing letter O
’397’O Invalid — invalid digit

’ab’X
3fff’X
’1f’X
’1fX Invalid — missing trailing apostrophe
’3f’ Not numeric — missing X
’3g7’X Invalid — invalid digit g

Data Types and Data Items 39

2

Rules and Restrictions for Binary, Octal, and Hexadecimal Constants
• These constants are for use anywhere numeric constants are allowed.

• These constants are typeless; they are stored in the variables without any
conversion to match the type of the variable, but they are stored in the
appropriate part of the receiving field — low end, high end.

• If the receiving data type has more digits than are specified in the constant,
zeros are filled on the left.

• If the receiving data type has fewer digits than are specified in the constant,
digits are truncated on the left. If nonzero digits are lost, an error message is
displayed.

• Specified leading zeros are ignored.

• You can specify up to 8 bytes of data for any one constant, at least that’s all
that are used.

• If a typeless constant is an actual argument, it has no data type, but it is
always 4 bytes that are passed.

• For binary constants, each digit must be 0 or 1.

• For octal constants, each digit must be in the range 0 to 7.

• For hexadecimal constants, each digit must be in the range 0 to 9 or in the
range A to F, or a to f .

• Outside of DATA statements, such constants are treated as the type required
by the context. If a typeless constant is used with a binary operator, it gets
the data type of the other operand. (8.0 + ’37’O)

• In DATA statements, such constants are treated as typeless binary,
hexadecimal, or octal constants.

Hollerith Constants ♦

A Hollerith constant consists of an unsigned, nonzero, integer constant,
followed by the letter H, followed by a string of printable characters where the
integer constant designates the number of characters in the string, including
any spaces and tabs.

Storage— A Hollerith constant occupies 1 byte of storage for each character.

Alignment— It is aligned on 2-byte boundaries.

40 FORTRAN Reference Manual

2

The FORTRAN Standard does not have this old Hollerith notation, although
the FORTRAN Standard recommends implementing the Hollerith feature in
order to improve compatibility with old programs.

Hollerith data can be used in place of character-string constants. They can also
be used in IF tests, and to initialize noncharacter variables in DATA statements
and assignment statements, though none of these are recommended, and none
are standard. These are typeless constants.

Example: Typeless constants

Rules and Restrictions on Hollerith Constants

• The number of characters has no practical limit.

• The characters can continue over to a continuation line, but that gets tricky.
Short standard fixed format lines are padded on the right with blanks up to
72 columns, but short tab-format lines stop at the newline.

• If a Hollerith constant is used with a binary operator, it gets the data type of
the other operand.

• If you assign a Hollerith constant to a variable, and the length of the
constant is less than the length of the data type of the variable, then spaces
(ASCII 32) are appended on the right.

If the length of a Hollerith constant or variable is greater than the length of
the data type of the variable, then characters are truncated on the right.

• If a Hollerith constant is used as an actual argument, it is passed as a 4-byte
item.

• If a Hollerith constant is used and the context does not determine the data
type, then INTEGER*4 is used.

CHARACTER C*1, CODE*2
INTEGER TAG*2
DATA TAG / 2Hok /
CODE = 2Hno
IF (C .EQ. 1HZ) CALL PUNT

Data Types and Data Items 41

2

2.3 Variables
A variable is a symbolic name paired with a storage location. A variable has a
name, a value, and a type. Whatever datum is stored in the location is the
value of the variable. Note that this does not include arrays or array elements,
or records, or record fields, so this definition is more restrictive than the usual
usage of the word “variable.”

Type— You can specify the type of a variable in a type statement. If the type is
not explicitly specified in a type statement, it is implied by the first letter of the
variable name: either by the usual default implied typing, or by any implied
typing of IMPLICIT statements. see Section 2.1, “Types,” for more detail on
the rules for data typing.

Defined— At any given time during the execution of a program, a variable is
either defined or undefined. If a variable has a predictable value, it is defined;
otherwise, it is undefined. A previously defined variable may become
undefined, as when a subprogram is exited.

You can define a variable with an assignment statement, an input statement, or
a DATA statement. If a variable is assigned a value in a DATA statement, then it
is initially defined.

Associated— Two variables are associated if each is associated with the same
storage location. You can associate variables by use of EQUIVALENCE, COMMON,
or MAP statements. Actual and dummy arguments can also associate variables.

2.4 Arrays
An array is a named collection of elements of the same type. It is a nonempty
sequence of data and occupies a group of contiguous storage locations. An
array has a name, a set of elements, and a type.

An array name is a symbolic name for the whole sequence of data.

An array element is one member of the sequence of data. Each storage location
holds one element of the array.

An array element name is an array name qualified by a subscript. See “Array
Subscripts,” for details.

42 FORTRAN Reference Manual

2

You can declare an array in any of the following.

• DIMENSION statement
• COMMON statement
• Type statements: BYTE , CHARACTER, INTEGER, REAL, …

Array Declarators

An array declarator specifies the name and properties of an array.

The syntax of an array declarator is as follows.

where:

a is the name of the array, and
d is a dimension declarator.

A dimension declarator has the form

where:

dl is the lower dimension bound.
du is the upper dimension bound.

Dimensions— The number of dimensions in an array is the number of
dimension declarators. The minimum number of dimensions is one, and the
maximum is seven. For an assumed-size array, the last dimension can be an
asterisk.

Bounds— The lower bound indicates the first element of the dimension, and the
upper bound indicates the last element of the dimension. In a one-dimensional
array, these are the first and last elements of the array.

Example: Array declarator, lower and upper bounds.

In the above example, V is an array of real numbers, with 1 dimension and 11
elements. The first element is V(-5) the last element is V(5) .

a (d [, d] …)

[dl:] du

REAL V(-5:5)

Data Types and Data Items 43

2

Example: Default lower bound of 1.

In the above example, V is an array of real numbers, with 1 dimension and
1000 elements. The first element is V(1) the last element is V(1000) .

Example: Arrays can have as many as 7 dimensions.

Example: Lower bounds other than one.

Example: Character arrays

The array M has 12 elements, each of which consists of 7 characters.
The array V has 9 elements, each of which consists of 4 characters.

Restrictions on bounds
• Both upper and lower can be negative, zero, or positive.
• The upper must be greater than or equal to the lower.
• If only one bound is specified, it is the upper, and the lower is one.
• In assumed-size arrays, the upper bound of the last dimension is an asterisk.
• Each bound is an integer expression, and each operand of the expression is

a constant, a dummy argument, or a variable in a common block. No array
references or user-defined functions are allowed.

Adjustable Arrays

An adjustable array is an array which is a dummy argument, and which has one
or more of its dimensions or bounds as integer variables that are either
themselves dummy arguments, or are in a common block.

You can declare adjustable arrays in the usual DIMENSION, COMMON, or type-
statements. In f77 you can also declare adjustable arrays in a RECORD
statement, if that RECORD statement is not inside a structure declaration block.

REAL V(1000)

REAL TAO(2,2,3,4,5,6,10)

REAL A(3:5, 7, 3:5), B(0:2)

CHARACTER M(3,4)*7, V(9)*4

44 FORTRAN Reference Manual

2

Example: Adjustable array bounds with arguments, and variables in common.

Restrictions
• The size of an adjustable array cannot exceed the size of the corresponding

actual argument.

• In the first caller of the call sequence, the corresponding array must be
dimensioned with constants.

Assumed Size Arrays

An assumed size array is an array that is a dummy argument, and which has an
asterisk as the upper bound of the last dimension.

You can declare assumed-size arrays in the usual DIMENSION, COMMON, or
type-statements.

In f77 the following extensions are allowed:

• You can declare assumed-size arrays in a RECORD statement, if that RECORD
statement is not inside a structure declaration block.

• You can use an assumed size array as a unit identifier for an internal file in
an I/O statement.

• You can use an assumed size array as a runtime format specifier in an I/O
statement.

Example: Assumed size with upper bound of last dimension an asterisk.

Restriction
An assumed-size array cannot be used in an I/O list.

SUBROUTINE POPUP (A, B, N)
COMMON / DEFS / M, L, K
REAL A(3:5, 7, M:N), B(N+1:2*N)

SUBROUTINE PULLDOWN (A, B, C)
INTEGER A(5, *), B(*), C(0:1, (mI2:*)

Data Types and Data Items 45

2

Array Names with No Subscripts

An array name with no subscripts indicates the entire array, and it can appear
in any of the following statements.

• COMMON
• DATA
• I/O statements
• NAMELIST
• RECORD statements
• SAVE
• Type statements

In an EQUIVALENCE statement, the array name without subscripts indicates
the first element of the array.

Array Subscripts

An array element name is an array name qualified by a subscript.

Form of a Subscript

A subscript is a parenthesized list of subscript expressions. There must be one
subscript expression for each dimension of the array.

The form of a subscript is as follows:

where s is a subscript expression. The parentheses are part of the subscript.

Example: Declare a two-by-three array with the declarator.

With the above, you can assign a value to a particular element as follows:

The above assigns 0.0 to the element in row 1, column 2, of array M.

(s [, s] …)

REAL M(2,3)

M(1,2) = 0.0

46 FORTRAN Reference Manual

2

Subscript Expressions

Subscript expressions have the following properties and restrictions.

• A subscript expression is an integer, real, or byte expression. (According to
the FORTRAN Standard it must be an integer expression.)

• A subscript expression may contain array element references and function
references.

• Evaluation of a function reference must not alter the value of any other
subscript expression within the same subscript.

• Each subscript expression is an index into the appropriate dimension of the
array.

• Each subscript expression must be within the bounds for the appropriate
dimension of the array.

• A subscript of the form (L1, …, Ln) , where each Li is the lower bound of the
respective dimension, references the first element of the array.

• A subscript of the form (U1, …, Un), where each Ui is the upper bound of the
respective dimension, references the last element of the array.

• Array element A(n) is not necessarily the nth element of array A.

In the above example, the fourth element of V is set to zero.

REAL V(-1:8)
V(2) = 0.0

Data Types and Data Items 47

2

Array Ordering

Array elements are usually mentally arranged with the first subscript as the
row number and the second subscript as the column number. Example:

The elements of A are usually mentally arranged like this in 3 rows and 2
columns.

Array elements are stored in column-major order.

Example: For the array A, they are located in memory as follows:

The inner (leftmost) subscript changes more rapidly.

INTEGER*4 A(3,2)

A(1,1) A(1,2)

A(2,1) A(2,2)

A(3,1) A(3,2)

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

48 FORTRAN Reference Manual

2

2.5 Substrings
A character datum is a sequence of one or more characters. A character
substring is a contiguous portion of a character variable or of a character array
element or of a character field of a structured record.

A substring name can be in either of the following two forms.

where

Both e1 and e2 are integer expressions.

Example. The string with initial character from the Ith character of S and with
the last character from the Lth character of S.

In the above example there are L-I+1 characters in the substring.

The following string has initial character from the Mth character of the array
element A(J,K) and with the last character from the Nth character of that
element.

In the above example there are N-M+1 characters in the substring.

v([e1] : [e2])

a(s [, s] …) ([e1] : [e2])

v Character variable name

a(s [, s] …) Character array element name

e1 Leftmost character position of the substring

e2 Rightmost character position of the substring

S(I:L)

A(J,K)(M:N)

Data Types and Data Items 49

2

Rules and Restrictions for Substrings
• Character positions within a substring are numbered from left to right.
• The first character position is numbered 1 (not 0).
• The initial and last character positions must be integer expressions.
• If the first expression is omitted, it is 1.

• If the second expression is omitted, it is the declared length.

• The result is undefined unless 0 < I ≤ L ≤ the declared length, where I is the
initial position and L is the last position.

• Substrings may be used on the left and right sides of assignments and as
procedure actual arguments.

Examples: Substrings. The value of the element in column 2, row 3 is e23 .

demo$ cat sub.f
character v*8 / ’abcdefgh’ /,

& m(2,3)*3 / ’e11’, ’e21’,
& ’e12’, ’e22’,
& ’e13’, ’e23’ /

print *, v(3:5)
print *, v(1:)
print *, v(:8)
print *, v(:)
print *, m(1,1)
print *, m(2,1)
print *, m(1,2)
print *, m(2,2)
print *, m(1,3)
print *, m(2,3)
print *, m(1,3)(2:3)
end

demo$ ■

50 FORTRAN Reference Manual

2

Substrings example (continued)

2.6 Structures
A structure is a generalization of an array. ♦

Just as an array is a collection of elements of the same type, so a structure is a
collection of elements that are not necessarily of the same type.

As elements of arrays are referenced by using numeric subscripts, so elements
of structures are referenced by using element (or field) names.

The structure declaration defines the form of a record by specifying the name,
type, size, and order of the fields that constitute the record. Once a structure is
defined and named, it can be used in RECORD statements, as explained below.
The structure declaration has the following syntax.

demo$ f77 sub.f
sub.f:
 MAIN:
demo$ a.out
 cde
 abcdefgh
 abcdefgh
 abcdefgh
 e11
 e21
 e12
 e22
 e13
 e23
 13
demo$ ■

Data Types and Data Items 51

2

Structure Declaration

Field Declaration

Each field declaration can be one of the following.

• A substructure (either another structure declaration, or a record that has
been previously defined)

• A union declaration (described below)

• A FORTRAN type declaration

Example: A STRUCTURE declaration.

In the above example, a structure named PRODUCT is defined to consist of the
five fields ID , NAME, MODEL, COST, and PRICE. For an example with a field-list,
see “Structure within a Structure” on page 56.

STRUCTURE [/structure-name/] [field-list]
 field-declaration
[field-declaration]
. . .
[field-declaration]

END STRUCTURE

structure-name Name of the structure

field-list List of fields of the specified structure

field-declaration Defines a field of the record.

field-declaration is defined below.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE

52 FORTRAN Reference Manual

2

Rules and Restrictions for Structures
• The name is enclosed in slashes and is optional only in nested structures.

• If slashes are present, a name must be present.

• You can specify the field-list within nested structures only.

• There must be at least one field-declaration.

• Each structure-name must be unique among structures, although you can use
structure names for fields in other structures or as variable names.

• The only statements allowed between the STRUCTURE statement and the
END STRUCTURE statement are field-declaration statements and PARAMETER
statements. A PARAMETER statement inside a structure declaration block is
equivalent to one outside.

Rules and Restrictions for Fields

Fields that are type declarations use the identical syntax of normal FORTRAN
type statements, and all f77 types are allowed, subject to the following rules
and restrictions:

• Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

• You can specify the pseudo-name %FILL for a field name. The %FILL is
provided for compatibility with other versions of FORTRAN. It is not
needed in f77 because the alignment problems are taken care of for you. It
might be considered a useful feature to anyone who wants to make one or
more fields that you cannot reference in some particular subroutine. The
only thing that %FILL does is provide a field of the specified size and type,
and preclude referencing it.

• You must explicitly type all field names. The IMPLICIT statement does not
apply to statements in a STRUCTURE declaration, nor do the implicit
I,J,K,L,M,N rules apply.

• You cannot use arrays with adjustable or assumed size in field declarations,
nor can you include passed-length CHARACTER declarations.

Data Types and Data Items 53

2

Field offsets — In a structure declaration, the offset of field n is the offset of the
preceding field, plus the length of the preceding field, possibly corrected for
any adjustments made to maintain alignment. See Appendix C, “Data
Representations,” for a summary of storage allocation.

Record Declaration

The RECORD statement declares variables to be records with a specified
structure, or declares arrays to be arrays of such records.

The syntax of a RECORD statement is as follows.

Example: a RECORD using the previous STRUCTURE example.

Each of the three variables CURRENT, PRIOR, and NEXT is a record which has
the PRODUCT structure, and LINE is an array of 10 such records.

Rules and Restrictions for Records
• Each record is allocated separately in memory.

• Initially, records have undefined values, unless explicitly initialized.

• Records, record fields, record arrays, and record-array elements are allowed
as arguments and dummy arguments. When you pass records as arguments,
their fields must match in type, order, and dimension. The record
declarations in the calling and called procedures must match. Within a
union declaration, the order of the map fields is not relevant. See “Unions
and Maps” on page 57.

RECORD /structure-name/ record-list
[,/structure-name/ record-list]
…
[,/structure-name/ record-list]

structure-name Name of a previously declared structure

record-list List of variables, arrays, or arrays with dimensioning and
index ranges, separated by commas.

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

54 FORTRAN Reference Manual

2

• Records and record fields are allowed in COMMON and DIMENSION
statements.

• Records and record fields are not allowed in DATA, EQUIVALENCE,
NAMELIST, or SAVE statements.

Record and Field Reference

You can refer to a whole record, or to an individual field in a record, and since
structures can be nested, a field can itself be a structure, so you can refer to
fields within fields, within fields, and so forth.

The syntax of record and field reference is as follows.

Example: References (based on structure and records of above two examples)

In the above example, the first assignment statement copies one whole record
(all five fields) to another record, the second assignment statement copies a
whole record into the first element of an array of records, the WRITE statement
writes a whole record, and the last statement sets the ID of one record to 82.

record-name[.field-name] … [.field-name]

record-name Name of a previously defined record variable

field-name Name of a field in the record immediately to the left.

…
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT
LINE(1) = CURRENT
WRITE (9) CURRENT
NEXT.ID = 82

Data Types and Data Items 55

2

Example: Structure and record declarations, record and field assignments.

Substructure Declaration

A structure can have a field that is also a structure. Such a field is called a
substructure. You can declare a substructure in either of two ways.

• A RECORD declaration within a structure declaration
• A structure declaration within a structure declaration (nesting)

Record within a Structure

A nested structure declaration is one that is contained within either a structure
declaration or a union declaration. You can use a previously defined record
within a structure declaration.
Example: Define structure SALE using previously defined record PRODUCT.

In the above example, the structure SALE contains three fields. BUYER,
QUANTITY, and ITEM, where ITEM is a record with the structure /PRODUCT/.

demo$ cat str1.f
* str1.f Simple structure

STRUCTURE / S /
INTEGER*4 I
REAL*4 R

END STRUCTURE
RECORD / S / R1, R2
R1.I = 82
R1.R = 2.7182818
R2 = R1
WRITE (*, *) R2.I, R2.R
STOP
END

demo$ f77 -silent str1.f
demo$ a.out
82 2.718280
demo$ ■

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
RECORD /PRODUCT/ ITEM

END STRUCTURE

56 FORTRAN Reference Manual

2

Structure within a Structure

You can nest a declaration within a declaration.

Example: If /PRODUCT/ is not declared previously, then you can declare it
within the declaration of SALE.

Here the structure SALE still contains the same three fields as in the prior
example: BUYER, QUANTITY, and ITEM. The field ITEM is an example of a field-
list (in this case, a single-element list), as defined under “Structure
Declaration.”

The size and complexity of the various structures determine which style of
substructure declaration is best to use in a given situation.

Field Reference in Substructures

You can refer to fields within substructures.

Example: Refer to fields of substructures (PRODUCT and SALE, from previous
examples, are defined in current program unit).

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
STRUCTURE /PRODUCT/ ITEM

INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
END STRUCTURE

…
RECORD /SALE/ JAPAN
…
N = JAPAN.QUANTITY
I = JAPAN.ITEM.ID
…

Data Types and Data Items 57

2

Rules and restrictions for substructures
• You must define at least one field name for any substructure.

• No two fields at the same nesting level can have the same name. Fields at
different levels of a structure can have the same name (although doing so
might be questionable programming practice).

• You can use the pseudo-name %FILL to align fields in a record. This makes
an unnamed empty field.

• You must not include a structure as a substructure of itself, at any level of
nesting.

Unions and Maps

A union declaration defines groups of fields that share memory at runtime.

The syntax of a union declaration is as follows.

The syntax of a map declaration is as follows.

Fields in a Map

Each field-declaration in a map declaration can be one of the following.

• Structure declaration
• Record
• Union declaration
• Declaration of a typed data field

UNION
 map-declaration
 map-declaration
[map-declaration]
…
[map-declaration]

END UNION

MAP
 field-declaration
[field-declaration]
…
[field-declaration]

END MAP

58 FORTRAN Reference Manual

2

A map declaration defines alternate groups of fields in a union. During
execution, one map at a time is associated with a shared storage location.
When you reference a field in a map, the fields in any previous map become
undefined and are succeeded by the fields in the map of the newly referenced
field. The amount of memory used by a union is that of its biggest map.

Example: Declare the structure /STUDENT/ to contain either NAME, CLASS, and
MAJOR — or NAME, CLASS, CREDITS, and GRAD_DATE.

If you define the variable PERSON to have the structure /STUDENT/ from the
above example, then PERSON.MAJOR references a field from the first map, and
PERSON.CREDITS references a field from the second map. If the variables of
the second map field are initialized and then the program references the
variable PERSON.MAJOR, the first map becomes active and the variables of the
second map become undefined.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE

Data Types and Data Items 59

2

2.7 Pointers
The POINTER statement establishes pairs of variables and pointers. ♦

Each pointer contains the address of its paired variable.

Syntax

 The POINTER statement has the following syntax:

where

v1, v2 are pointer-based variables.
p1, p2 are the corresponding pointers.

A pointer-based variable is a variable paired with a pointer in a POINTER
statement. A pointer-based variable is usually called just a based variable. The
pointer is the integer variable that contains the address.
Example: A simple POINTER statement.

Here, V is a pointer-based variable, and P is its associated pointer.

Usage of Pointers

Normal use of pointer-based variables involves the following steps (the first
two steps can be in either order).

1. Define the pairing of the pointer-based variable and the pointer in a
POINTER statement.

2. Define the type of the pointer-based variable. The pointer itself is integer
type, but in general, it is safer if you not list it in an INTEGER statement.

3. Set the pointer to the address of an area of memory that has the appropriate
size and type. You do not normally do anything else explicitly with the
pointer.

4. Reference the pointer-based variable. Just use the pointer-based variable in
normal FORTRAN statements – the address of that variable will always be
taken from its associated pointer.

POINTER (p1, v1) [, (p2, v2) …]

POINTER (P, V)

60 FORTRAN Reference Manual

2

Address and Memory

Note that no storage for the variable is allocated when a pointer-based variable
is defined, so it is your responsibility to provide an address of a variable of the
appropriate type and size, and assign the address to a pointer, usually with the
normal assignment statement or data statement.

Address by LOC() Function

You can obtain the address from the intrinsic function LOC() .

Example: Use the LOC() function to get an address.

In the above example, the CHARACTER statement allocates 12 bytes of storage
for A, but no storage for V; it merely specifies the type of V because V is a
pointer-based variable. Then assign the address of A to P so now any use of V
will refer to A by the pointer P. The program will print an E.

Memory and Address by MALLOC() Function

The function MALLOC() allocates an area of memory and returns the address
of the start of that area. The argument to the function is an integer specifying
the amount of memory to be allocated, in bytes. If successful, it returns a
pointer to the first item of the region, otherwise it returns an integer 0. The
region of memory is not initialized in any way — assume it is garbage.

 Example: Memory allocation for pointers, by MALLOC

* ptr1.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A / ’ABCDEFGHIJKL’ /
P = LOC(A)
PRINT *, V(5:5)
END

COMPLEX Z
REAL X, Y
POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (10000)
…

Data Types and Data Items 61

2

In the above example, we get 10,000 bytes of memory from MALLOC() and
assign the address of that block of memory to the pointer P1.

Deallocate Memory by FREE() Function

The subroutine FREE() deallocates a region of memory previously allocated
by MALLOC(). The argument given to FREE() must be a pointer previously
returned by MALLOC(), but not already given to FREE() . The memory is
returned to the memory manager, making it unavailable to the programmer.

Example: Deallocate via FREE.

Above, after getting memory via MALLOC(), and after some other instructions,
probably using that chunk of memory, we tell FREE() to return those same
10,000 bytes to the memory manager.

Restrictions
• The pointers are of type integer, and are automatically typed that way by

the compiler. You must not type them yourself.

• A pointer-based variable cannot itself be a pointer.

• The pointer-based variables can be of any type, including structures.

• No storage is allocated when such a pointer-based variable is declared, even
if there is a size specification in the type statement.

• You cannot use a pointer-based variable as a dummy argument or in
COMMON, EQUIVALENCE, DATA, or NAMELIST statements.

• The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules
apply for pointer-based array variables as for dummy arguments — the
expression can contain dummy arguments and variables in common. Any
variables in the expressions must be defined with an integer value at the
time the subroutine or function is called.

POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (10000)
…
CALL FREE (P1)
…

62 FORTRAN Reference Manual

2

Optimization and Pointers

Pointers have the annoying side effect of reducing the assumptions that the
global optimizer can make. For one thing, compare the following:

• Without pointers, if you call a subroutine or function, the optimizer knows
that the call will change only variables in common or those passed as
arguments to that call.

• With pointers, this is no longer valid, since a routine can take the address of
an argument and save it in a pointer in common for use in a subsequent call
to itself or to another routine.

Therefore, the optimizer must assume that a variable passed as an argument in
a subroutine or function call can be changed by any other call. Such an
unrestricted use of pointers would degrade optimization for the vast majority
of programs that do not use pointers.

General Guidelines

There are two alternatives for optimization with pointers.

• Do not use pointers with optimization level -O3 or -O4 .

• Use a pointer only to identify the location of the data for calculations and
pass the pointer to a subprogram. Almost anything else you do to the
pointer can yield incorrect results.

The second choice also has a suboption: localize pointers to one routine and
do not optimize it, but do optimize the routines that do the calculations. If
you put the calling the routines on different files, you can optimize one and
not optimize the other.

Data Types and Data Items 63

2

Example: A relatively safe kind of coding with -O3 or -O4 .

If you want to optimize only CALC at level -O3 or -O4 , then use no pointers
in CALC.

Some of the Many things that Cause Trouble

Any of the following coding practices (and many others) could cause problems
with an optimization level of -O3 or -O4 .

• A program unit does arithmetic with the pointer.

• A subprogram saves the address of any of its arguments between calls.

• A function returns the address of any of its arguments. (Although it can
return the value of a pointer argument.)

• A variable is referenced through a pointer, but the address of the variable is
not explicitly taken with the LOC() or MALLOC() functions.

Example: One kind of code that could cause trouble with -O3 or -O4 .

The compiler will assume that a reference through P may change A, but not
B; this assumption could produce incorrect code.

REAL A, B, V(100,100) ! Within this programming unit,
POINTER (P, V) ! do nothing else with P
P = MALLOC(10000) ! other than getting the address and passing it.
…
CALL CALC (P, A)
...
END

SUBROUTINE CALC (ARRAY, X)
...
RETURN
END

COMMON A, B, C
POINTER (P, V)
P = LOC(A) + 4 ! ←possible problems if optimized
…

64 FORTRAN Reference Manual

2

65

Expressions 3

This chapter is organized into the following sections.

3.1 Introduction
An expression is a combination of one or more operands, zero or more
operators, and zero or more pairs of parentheses.

There are four kinds of expressions:

• Arithmetic
• Character
• Relational
• Logical

Introduction page 65

Arithmetic Expressions page 66

Character Expressions page 73

Logical Expressions page 77

Relational Operator page 79

Constant Expressions page 80

Record Assignment page 81

Evaluation of Expressions page 82

66 FORTRAN Reference Manual

3

An arithmetic expression evaluates to a single arithmetic value.
A character expression evaluates to a single value of type character.
A logical or relational expression evaluates to a single logical value.

The operators indicate what action or operation to perform.

The operands indicate what items to apply the action to.
An operand can be any of the following kinds of data items:

• Constant
• Variable
• Array element
• Function
• Substring
• Structured record field (if it evaluates to a scalar data item)

3.2 Arithmetic Expressions
An arithmetic expression evaluates to a single arithmetic value, and its operands
have the following types. The ♦ indicates a nonstandard feature.

• BYTE♦

• COMPLEX
• COMPLEX*32 (SPARC only) ♦

• DOUBLE COMPLEX♦

• DOUBLE PRECISION
• INTEGER
• LOGICAL
• REAL
• REAL*16 (SPARC only) ♦

The operators for an arithmetic expression are any of the following.

Table 3-1 Arithmetic Operators

Operator Meaning

**
*
/
-
+

 Exponentiation
 Multiplication
 Division
 Subtraction or Unary Minus
 Addition or Unary Plus

Expressions 67

3

If BYTE or LOGICAL operands are combined with arithmetic operators, they
are interpreted as integer data.

Each of these operators is a binary operator in an expression of the form

where a and b are operands, and ⊕ is any one of the ** , * , / , - , or + operators.

Examples: Binary operators.

The operators + and - are unary operators in an expression of the form

 where b is an operand, and ⊕ is either of the - or + operators.

Examples: Unary operators.

Basic Arithmetic Expressions

Each arithmetic operator is shown in its basic expression below.

a ⊕ b

A-Z
X*B

⊕ b

-Z
+B

Table 3-2 Arithmetic Expressions

Expression Meaning

a ** z

a / z

a * z

a - z

-z

a + z

+z

 Raise a to the power z

 Divide a by z

 Multiply a by z

 Subtract z from a

 Negate z

 Add z to a

 Same as z

68 FORTRAN Reference Manual

3

In the absence of parentheses, if there is more than one operator in an
expression, then the operators are applied in the order of precedence. With one
exception, if the operators are of equal precedence they are applied left to
right.

For the left-to-right rule, the one exception is shown by the following example.

The above is evaluated as

Two successive operators

f77 allows two successive operators. ♦

Example: Two successive operators.

The above expression is evaluated as follows.

In the above example, the compiler starts to evaluate the ** , but it needs to
know what power to raise X to; so it looks at the rest of the expression and
must choose between - and * ; so it first does the * , then the - , then the ** .
Some early releases of this FORTRAN incorrectly interpreted “X**-A*Z ” as
“(X**(-A))*Z.” Current releases correctly interpret “X**-A*Z ” as
“X**(-(A*Z)),” which is compatible with VMS FORTRAN.

Table 3-3 Arithmetic Operator Precedence

Operator Precedence

**

* /

+ -

 First
 Second
 Last

F ** S ** Z

F ** (S ** Z)

X ** -A * Z

X ** (-(A * Z))

Expressions 69

3

Example: Two successive operators.

demo$ cat twoops.f
REAL X / 2.0 /, A / 1.0 /, Z / -3.0 /
PRINT *, "X**-A*Z = ", X ** -A*Z
PRINT *, "X**(-(A*Z)) = ", X ** (-(A*Z))
PRINT *, "(X**(-A))*Z = ", (X ** (-A))*Z
PRINT *, "X**-2 = ", X ** -2 !{same in both}
END

demo$ f77old twoops.f {Use old}
twoops.f:
 MAIN:
demo$ a.out
X**-A*Z = -1.50000
X**(-(A*Z)) = 8.00000
(X**(-A))*Z = -1.50000
X**-2 = 0.250000
demo$ f77new -silent twoops.f {Use new}
demo$ a.out
X**-A*Z = 8.00000
X**(-(A*Z)) = 8.00000
(X**(-A))*Z = -1.50000
X**-2 = 0.250000
demo$ ■

70 FORTRAN Reference Manual

3

Mixed Mode

If both operands have the same type, then the resulting value has that type. If
operands have different types, then the weaker of two types is promoted to the
stronger type, where the weaker type is the one with less precision or fewer
storage units. This is summarized in the following ranking.

In the above table, REAL*16 and COMPLEX*32 are for SPARC only.

Example of mixed mode: If R is real, and I is integer, then the expression

has the type real, because first I is promoted to real, and then the
multiplication is performed.

Rules for the Data Type of an Expression
• If there is more than one operator in an expression, then the type of the last

operation performed becomes the type of the final value of the expression.

• Integer operators apply to only integer operands.

Example: The expression below evaluates to zero.

There is one extension to this: a logical or byte operand in an arithmetic
context is used as an integer.

Data Type Rank

BYTE or LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4
REAL*4 (REAL)
REAL*8 (DOUBLE PRECISION)
REAL*16 (QUAD PRECISION)
COMPLEX*8 (COMPLEX)
COMPLEX*16 (DOUBLE COMPLEX)
COMPLEX*32 (QUAD COMPLEX)

 1 (Weakest)
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11 (Strongest)

R * I

2/3 + 3/4

Expressions 71

3

• Real operators apply to only real operands, or to combinations of byte,
logical, integer, and real operands. An integer operand mixed with a real
operand is promoted to real; the fractional part of the new real number is
zero. For example, if R is real and I is integer, then R+I is real. But note that
(2/3)*4.0 is 0.

• Double precision operators apply to only double precision operands, and
any operand of lower precision is promoted to double precision. The new
least significant bits of the new double precision number are set to zero.
Promoting a real operand does not increase the accuracy of the operand.

• Complex operators apply to only complex operands. Any integer operands
are promoted to real, and they are then used as the real part of a complex
operand, with the imaginary part set to zero.

• Numeric operations are allowed on logical variables. ♦

You can use a logical value any place where the FORTRAN Standard
requires a numeric value. The numeric can be integer , real , complex ,
double precision , double complex , or real*16 (SPARC only). The
compiler implicitly converts the logical to the appropriate numeric. Logical
operations are allowed on integers, bytes, and characters. If you use these
features, your program may not be portable.

Example: Some combinations of both integer and logical types.

COMPLEX C1 / (1.0, 2.0) /
INTEGER*2 I1, I2, I3
LOGICAL L1, L2, L3, L4, L5
REAL R1 / 1.0 /
DATA I1 / 8 /, I2 / ’W’ /, I3 / 0 /
DATA L1/.TRUE./, L2/.TRUE./, L3/.TRUE./, L4/.TRUE./,

& L5/.TRUE./
L1 = L1 + 1
I2 = .NOT. I2
L2 = I1 .AND. I3
L3 = I1 .OR. I2
L4 = L4 + C1
L5 = L5 + R1

72 FORTRAN Reference Manual

3

Resultant Type
• For integer operands with a logical operator, the operation is done bit-by-

bit. The result is an integer.

• If the operands are mixed integer and logical, then the logicals are converted
to integers and the result is an integer.

Arithmetic Assignment

The arithmetic assignment statement assigns a value to a variable, array
element, record, or record field. The syntax is:

Assigning logicals to numerics is allowed, but nonstandard, and may not be
portable. The resultant data type is, of course, the data type of v. ♦

Execution of an arithmetic assignment statement causes the evaluation of the
expression e, and conversion to the type of v (if types differ), and assignment of
v with the resulting value typed according to the table below.

Character constants can be assigned to variables of type integer or real. Such a
constant can be a Hollerith constant or a string in apostrophes or quotes. The
characters are transferred to the variables without any conversion of data. This
is nonstandard and may not be portable. ♦

v = e

e Arithmetic expression, a character constant, or a logical expression

v Numeric variable, array element, record, or record field

Type of v Type of e

INTEGER*2 or INTEGER*4
REAL
REAL*8
REAL*16 (SPARC only)
DOUBLE PRECISION
COMPLEX*8
COMPLEX*16
COMPLEX*32 (SPARC only)

 INT (e)
 REAL (e)
 DBLE (e)
 QREAL (e) (SPARC only)
 DBLE (e)
 CMPLX (e)
 DCMPLX (e)
 QCMPLX (e) (SPARC only)

Expressions 73

3

Example: Arithmetic assignment.

3.3 Character Expressions
A character expression is an expression whose operands have the character type.
A character expression evaluates to a single value of type character, with a size
of one or more characters. The only character operator is the concatenation
operator // .

The result of concatenating two strings is a third string containing the characters
of the left operand followed immediately by the characters of the right
operand. The value of a concatenation operation a//z is a character string
whose value is the value of a concatenated on the right with the value of z ,
and whose length is the sum of the lengths of a and z .

INTEGER I2*2, J2*2, I4*4
LOGICAL L1, L2
REAL R4*4, R16*16 ! (The *16 is for SPARC only)
DOUBLE PRECISION DP
COMPLEX C8, C16*16
J2 = 29002
I2 = J2
I4 = (I2 * 2) + 1
DP = 6.4D0
QP = 9.8Q1
R4 = DP
R16 = QP
C8 = R1
C8 = (3.0, 5.0)
I2 = C8
C16 = C8
C8 = L1
R4 = L2

Expression Meaning

a // z Concatenate a with z

74 FORTRAN Reference Manual

3

The operands can be any of the following kinds of data items.

• Character constant
• Character variable
• Character array element
• Character function
• Substring
• Structured record field (if it evaluates to a scalar character data item)

Examples: Character expressions (assumes C, S, and R.C are character).

• Control Characters ♦

One way to enter control characters is to hold down the control key and
press another key. Most control characters can be entered this way, but not
control-A, control-B, control-C, or control-J.

Example: A valid way to enter a control-C.

• Multiple Byte Characters ♦

Multiple byte characters (such as Kanji) are allowed in comments and
strings.

’wxy’
’AB’ // ’wxy’
C
C // S
C(4:7)
R.C

CHARACTER etx
etx = CHAR(3)

Expressions 75

3

Character String Assignment

The form of the character string assignment is

The meaning of character assignment is to copy characters from the right to the
left side.

Execution of a character assignment statement causes evaluation of the
character expression and assignment of the resulting value to v.

• If e is longer than v, characters on the right are truncated.
• If e is shorter than v, blank characters are padded on the right.

Example: The program below displays “joined ∆∆”.

 Also, the program below displays the “equal ” string.

Example: Character assignment.

v = e

 e Expression giving the value to be assigned

 v Variable, array element, or substring

CHARACTER A*4, B*2, C*8
A = ’join’
B = ’ed’
C = A // B
PRINT *, C
END

IF ((’ab’ // ’cd’) .EQ. ’abcd’) PRINT *, ’equal’
END

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6
REAL Z
C2 = ’z’
C3 = ’uvwxyz’
C5 = ’vwxyz’
C5(1:2) = ’AB’
C6 = C5 // C2
I = ’abcd’
Z = ’wxyz’
BELL = CHAR(7) ! Control Character (^G)

76 FORTRAN Reference Manual

3

The results of the above are as follows.

Example 4: Hollerith assignment. ♦

Rules for character assignment
• If the left side is longer than the right, it is padded with trailing blanks.
• If the left side is shorter than the right, trailing characters are discarded.
• The left and right sides of a character assignment may share storage. ♦

Example: The following program displays abcefggh .

 C2 gets ’z ∆’ A trailing blank

 C3 gets ’uvw’

 C5 gets ’ABxyz’

 C6 gets ’ABxyzz’ That is, the ’z ’ from C2

 I gets ’abcd’

 Z gets ’wxyz’

BELL gets 07 hex Control-G, a bell

CHARACTER S*4
INTEGER I2*2, I4*4
REAL R
S = 4Hwxyz
I2 = 2Hyz
I4 = 4Hwxyz
R = 4Hwxyz

CHARACTER S*8
S = ’abcdefgh’
S(4:6) = S(5:7)
WRITE(*,*) S
END

Expressions 77

3

3.4 Logical Expressions
A logical expression is a sequence of one or more logical operands and logical
operators. It evaluates to a single logical value.The operators can be any of the
following.

The period delimiters are necessary.

Two logical operators cannot appear consecutively, unless the first one is the
.NOT. operator.

Logical operators are evaluated according to the following precedence.

If they are of equal precedence, they are evaluated left to right.

Table 3-4 Logical Operators

 Operator Standard Name

.AND.

.OR.

.NEQV.

.XOR.

.EQV.

.NOT.

Logical conjunction
Logical disjunction (Inclusive OR)
Logical nonequivalence
Logical exclusive OR
Logical equivalence
Logical negation

Table 3-5 Logical Operator Precedence

Operator Precedence

.NOT.

.AND.

.OR.

.NEQV.,.XOR., .EQV.

First

Last

78 FORTRAN Reference Manual

3

If they appear along with the various other operators in a logical expression,
the precedence is as follows.

 The meaning of simple expressions is as follows.

Logical Assignment

This assigns the value of a logical expression to a logical variable.

where

Execution of a logical assignment statement causes evaluation of the logical
expression e and assignment of the resulting value to v. Note that if e is a
logical expression (rather than an integer between -128 and 127, or a single
character constant), then e must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size.

Table 3-6 Operator Precedence

Operator Precedence

Arithmetic
Character
Relational
Logical

 First
 Second
 Third
 Last

Table 3-7 Logical Expression Meanings

Expression Meaning

X .AND. Y

X .OR. Y

X .NEQV. Y

X .XOR. Y

X .EQV. Y

Both X and Y are true.
Either X or Y, or both, are true.
X and Y are not both true and not both false.
Either X or Y is true, but not both.
X and Y are both true or both false.

v = e

e A logical expression, or an integer between –128 and 127, or a single character
constant

v A logical variable, array element, record, or record field

Expressions 79

3

Assigning numerics to logicals is allowed, but nonstandard, and may not be
portable. ♦

Example: Logical assignment.

3.5 Relational Operator
A relational operator compares two arithmetic expressions, or two character
expressions, and evaluates to a single logical value. The operators can be any
of the following.

The period delimiters are necessary.

All relational operators have equal precedence. Character and arithmetic
operators have higher precedence than relational operators.

For a relational expression, first each of the two operands is evaluated, and
then the two values are compared. If the specified relationship holds, then the
value is true, otherwise it is false.

LOGICAL B1*1, B2*1
LOGICAL L3, L4
B2 = B1
B1 = L3
L4 = .TRUE.

Table 3-8 Relational Operators

Operator Meaning

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

 Less than
 Less than or equal
 Equal
 Not equal
 Greater than
 Greater than or equal

80 FORTRAN Reference Manual

3

Example: Relational operators.

For character relational expressions:

• “Less than” means “precedes in the ASCII collating sequence.”

• If one operand is shorter than the other, the shorter one is padded on the
right with blanks to the length of the longer.

3.6 Constant Expressions
A constant expression is made up of explicit constants and parameters and the
FORTRAN operators. Each operand is either itself another constant expression,
a constant, a symbolic name of a constant, or one of the following intrinsic
functions.

The functions IAND, IOR, IEOR, and ISHFT are also available, or you can use
the corresponding AND, OR, XOR, LSHIFT , or RSHIFT.

Examples: Constant expressions.

NODE .GE. 0
X .LT. Y
U*V .GT. U-V
M+N .GT. U-V Mixed mode: integer M+N is promoted to real
STR1 .LT. STR2 where STR1and STR2are type character
S .EQ. ’a’ where S is type character

LOC, CHAR,
AND, OR, NOT, XOR, LSHIFT, RSHIFT, LGE, LGT, LLE, LLT,
MIN, MAX, ABS, MOD, ICHAR, NINT, DIM,
DPROD, CMPLX, CONJG, AIMAG

PARAMETER (L=29002), (P=3.14159), (C=’along the ’)
PARAMETER (I=L*2, V=4.0*P/3.0, S=C//’riverrun’)
PARAMETER (M=MIN(I,L), IA=ICHAR(’A’))
PARAMETER (Q=6.4Q6, D=2.3D9)
K = 66 * 80
VOLUME = V*10**3
DO I = 1, 20*3

Expressions 81

3

There are few restrictions on constant expressions.

• Constant expressions are permitted wherever a constant is allowed, except
they are not allowed in DATA or standard FORMAT statements.

• Constant expressions are permitted in variable format expressions. ♦

• Exponentiation to a floating-point power is not allowed, and a warning is
issued.

Example: Exponentiation to a floating-point power not allowed.

3.7 Record Assignment
The general form of record assignment is as follows. ♦

where

Both e and v must have the same structure. That is, each must have the same
number of fields, and corresponding fields must be of the same type and size.

demo$ cat ConstExpr.f
parameter (T=2.0*(3.0**2.5))
write(*,*) t
end

demo$ f77 ConstExpr.f
ConstExpr.f:
 MAIN:
"ConstExpr.f", line 1: Warning:

parameter t set to a nonconstant
demo$ a.out
 31.1769
demo$ ■

v = e

e A record or record field

v A record or record field

82 FORTRAN Reference Manual

3

Example: Record assignment and record-field assignment.

In the above example, the first assignment statement copies one whole record
(all five fields) to another record, the second assignment statement copies a
whole record into the first element of an array of records, the WRITE statement
writes a whole record, and the last statement sets the ID of one record to 82.

3.8 Evaluation of Expressions
The following restrictions apply to all arithmetic, character, relational, and
logical expressions.

• If you reference any one of these items in an expression, variable, array
element, character substring, record field, pointer, or function, then that item
must be defined at the time the reference is executed.

• An integer operand must be defined with an integer value, and not with a
statement label value by an ASSIGN statement.

• All the characters of a substring that are referenced must be defined at the
time the reference is executed.

• The execution of a function reference must not alter the value of any other
entity within the same statement.

• The execution of a function reference must not alter the value of any entity
in common that effects the value of any other function reference in the same
statement.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT
LINE(1) = CURRENT
WRITE (9) CURRENT
NEXT.ID = 82

83

Statements 4

This chapter describes the FORTRAN statements. The nonstandard statements
are indicated with a small black diamond (♦).

4.1 ACCEPT
The ACCEPT♦ statement reads from standard input.

Syntax

Description

ACCEPT f [, iolist] is equivalent to READ f [, iolist] and is for
compatibility with older versions of FORTRAN. Example: List-directed input.

ACCEPT f [, iolist]

ACCEPT grname

f Format identifier

iolist List of variables, substrings, arrays, and records

grname Name of the namelist group

REAL VECTOR(10)
ACCEPT *, NODE, VECTOR

84 FORTRAN Reference Manual

4

4.2 ASSIGN
The ASSIGN statement assigns a statement label to a variable.

Syntax

Description

The label s is the label of an executable statement or a FORMAT statement.

The statement label must be the label of a statement that is defined in the same
program unit as the ASSIGN statement.

The integer variable i, once assigned a statement label, can be reassigned the
same statement label, a different label, or an integer.

Once a variable is defined as a statement label, you can reference in:

• An assigned GO TO statement
• An input/output statement, as a format identifier
• A routine call, as a nonstandard return

Restrictions
• Define a variable with a statement label before you reference it as a label.
• While i is defined with a statement label value, do no arithmetic with i.

Examples

Example 1: Assign the statement number of an executable statement.

 ASSIGN s TO i

s Statement label

i Integer variable

ASSIGN 9 TO K
GO TO K
…

9 WRITE (*,*) ’Assigned ’, K, ’ to K’

Statements 85

4

Above, the output shows the address, not 9.

Example 2: Assign the statement number of a format statement.

4.3 Assignment
The assignment statement assigns a value to a variable, substring, array
element, record, or record field.

Syntax

Description

The value can be a constant or the result of an expression. The kinds of
assignment statements are arithmetic, logical, character, and record
assignments.

Arithmetic Assignment
v is of numeric type and is the name of a variable, array element, or record
field.

e is an arithmetic expression, a character constant, or a logical expression.
Assigning logicals to numerics is nonstandard, and may not be portable; the
resultant data type is, of course, the data type of v. ♦

INTEGER PHORMAT
2 FORMAT (A80)

ASSIGN 2 TO PHORMAT
…
WRITE (*, PHORMAT) ’Assigned a FORMAT statement no.’

v = e

e Expression giving the value to be assigned

v Variable, substring, array element, record, or record field

86 FORTRAN Reference Manual

4

Execution of an arithmetic assignment statement causes the evaluation of the
expression e, and conversion to the type of v (if types differ), and assignment of
v with the resulting value typed according to the table below.

Example: Assignment statement

The above code is compiled exactly as if it were the following:

Logical Assignment
v is the name of a variable, array element, or record field of type logical.

e is a logical expression, or an integer between -128 and 127, or a single
character constant.

Execution of a logical assignment statement causes evaluation of the logical
expression e and assignment of the resulting value to v. Note that if e is a
logical expression (rather than an integer between -128 and 127, or a single
character constant), then e must have a value of either true or false.

Logical expressions of any size can be assigned to logical variables of any size.
The section on the LOGICAL statement has more on the size of logical
variables.

Table 4-1 Arithmetic Assignment Conversion Rules

Type of v Type of e

INTEGER*2 or INTEGER*4
REAL
DOUBLE PRECISION
REAL*16 (SPARC only)
COMPLEX*8
COMPLEX*16
COMPLEX*32 (SPARC only)

INT(e)
REAL(e)
DBLE(e)
QREAL(e) (SPARC only)
CMPLX(e)
DCMPLX(e)
QCMPLX(e) (SPARC only)

REAL A, B
DOUBLE PRECISION V
V = A * B

REAL A, B
DOUBLE PRECISION V
V = DBLE(A * B)

Statements 87

4

Character Assignment
Character constants can be assigned to variables of the following type:

• BYTE♦

• CHARACTER
• INTEGER♦

• REAL♦

• DOUBLE PRECISION♦

• quadruple precision ♦

• LOGICAL ♦

The constant can be a Hollerith constant or a string of characters delimited by
apostrophes (’) or quotes ("). The character string cannot include the control
characters control-A, control-B, or control-C; that is, you cannot hold down the
control key and press the A, B, or C keys. If you need those control characters,
use the char() function.

If you use quotes to delimit a character constant, then you cannot compile with
the -xl option, because in that case a quote introduces an octal constant. The
characters are transferred to the variables without any conversion of data. This
may not be portable.

Character expressions which include the // operator can be assigned only to
items of type CHARACTER. Here the v is the name of a variable, substring, array
element, or record field of type CHARACTER. e is a character expression.

Execution of a character assignment statement causes evaluation of the
character expression and assignment of the resulting value to v. If the length of
e is more than that of v, characters on the right are truncated. If the length of e
is less than that of v, blank characters are padded on the right.

Record Assignment
v and e are each a record or record field. ♦

The e and v must have the same structure. They have the same structure if any
of the following occur:

1. Both e and v are fields with the same elementary data type.

2. Both e and v are structures with the same number of fields such that
corresponding fields are the same elementary data type.

88 FORTRAN Reference Manual

4

3. Both e and v are structures with the same number of fields such that
corresponding fields are substructures with the same structure as defined
 in 2, above.

The sections on the RECORD and STRUCTURE statements have more on the
structure of records.

Examples

Example 1: Arithmetic assignment.

Example 2: Logical assignment.

Example 3: Hollerith assignment.

INTEGER I2*2, J2*2, I4*4
REAL R1, QP*16 ! (The *16 is for SPARC only)
DOUBLE PRECISION DP
COMPLEX C8, C16*16, QC*32 ! (The *32 is for SPARC only)
J2 = 29002
I2 = J2
I4 = (I2 * 2) + 1
DP = 6.4D9
QP = 6.4Q9
R1 = DP
C8 = R1
C8 = (3.0, 5.0)
I2 = C8
C16 = C8
C32 = C8

LOGICAL B1*1, B2*1
LOGICAL L3, L4
L4 = .TRUE.
B1 = L4
B2 = B1

CHARACTER S*4
INTEGER I2*2, I4*4
REAL R
S = 4Hwxyz
I2 = 2Hyz
I4 = 4Hwxyz
R = 4Hwxyz

Statements 89

4

Example 4: Character assignment.

The results of the above are

Example 5: Record assignment and record-field assignment.

CHARACTER BELL*1, C2*2, C3*3, C5*5, C6*6
REAL Z
C2 = ’z’
C3 = ’uvwxyz’
C5 = ’vwxyz’
C5(1:2) = ’AB’
C6 = C5 // C2
I = ’abcd’
Z = ’wxyz’
BELL = CHAR(7) ! Control Character (^G)

C2

C3

C5

C6

I

Z

gets ’z ∆’ That is, a trailing blank

gets ’uvw’

gets ’ABxyz’

gets ’ABxyzz’ That is, an extra z left over from C5

gets ’abcd’

gets ’wxyz’

BELL gets 07 hex That is, control-G, a bell

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…
CURRENT = NEXT ! record to record
LINE(1) = CURRENT ! record to array element
WRITE (9) CURRENT ! write whole record
NEXT.ID = 82 ! assign a value to a field

90 FORTRAN Reference Manual

4

4.4 AUTOMATIC
The AUTOMATIC♦ statement makes each recursive invocation of the
subprogram have its own copy of the specified items. It also makes the
specified items become undefined outside the subprogram when the
subprogram exits through a RETURN statement.

Syntax

Description

For automatic variables, there is one copy for each invocation of the procedure.
To avoid local variables becoming undefined between invocations, f77
classifies every variable as either static or automatic with all local variables
being static by default. For other than the default, you can declare variables as
static or automatic in a STATIC, AUTOMATIC, or IMPLICIT statement.
Compare with -stackvar option in the FORTRAN User’s Guide.

One usage of AUTOMATIC is to declare all automatic at the start of a function.

Example: Recursive function with implicit automatic.

Save/Static—Local variables and arrays are static by default, so in general, this
eliminates the need for SAVE. You can still use SAVE to insure portability. Also,
SAVE is safer if you leave a subprogram by some way other than a RETURN.

Restrictions
• Arguments and function values are automatic.
• Automatic variables and arrays cannot appear in DATA, EQUIVALENCE,

NAMELIST, RECORD, or SAVE statements.

AUTOMATIC vlist

vlist List of variables and arrays

INTEGER FUNCTION NFCTRL(I)
IMPLICIT AUTOMATIC (A-Z)
...
RETURN
END

Statements 91

4

Examples

Example: Some other uses of AUTOMATIC.

Example: Structures are unpredictable if AUTOMATIC.

Note – Sometimes an automatic structure works; sometimes it core dumps.

Remark

An AUTOMATIC statement and a type statement cannot be combined to make
an AUTOMATICtype statement. For example, the statement

does not declare the variable X to be both AUTOMATIC and REAL; it declares the
variable REALX to be AUTOMATIC.

AUTOMATIC A, B, C
REAL P, D, Q
AUTOMATIC P, D, Q
IMPLICIT AUTOMATIC (X-Z)

demo$ cat autostru.f
AUTOMATIC X
STRUCTURE /ABC/
 INTEGER I
END STRUCTURE
RECORD /ABC/ X ! X is automatic. It cannot be a structure
X.I = 1
PRINT '(I2)', X.I
END

demo$ f77 -silent autostru.f
demo$ a.out
*** TERMINATING a.out
*** Received signal 10 (SIGBUS)
Bus Error (core dumped)
demo$

AUTOMATIC REAL X

92 FORTRAN Reference Manual

4

4.5 BACKSPACE
The BACKSPACE statement positions the specified file to just before the
preceding record.

Syntax

Description

BACKSPACE in a terminal file has no effect.

u must be connected for sequential access. Execution of a BACKSPACE statement
on a direct-access file is not defined in the FORTRAN Standard, and is
unpredictable. We do not recommend using a BACKSPACE statement on a
direct-access file, nor do we recommend using a BACKSPACE statement on an
append access file.

Execution of the BACKSPACE statement modifies the file position as follows.

BACKSPACEu

BACKSPACE([UNIT=] u [, IOSTAT= ios] [, ERR= s])

u Unit identifier of the external unit connected to the file

ios I/O status specifier, integer variable, or an integer array element

s Error specifier: s must be the label of an executable statement in the
same program unit in which the BACKSPACE statement occurs.
Program control is transferred to the label in case of an error during the
execution of the BACKSPACE statement.

Prior to Execution After Execution

Beginning of the file Remains unchanged

Beyond endfile record Before endfile record

Middle of a record Start of the same record

Statements 93

4

Examples

Example 1: Simple backspace.

Example 2: Backspace with error trap.

4.6 BLOCK DATA
The BLOCK DATA statement identifies a subprogram that initializes variables
and arrays in labeled common blocks.

Syntax

Description

A block data subprogram can contain as many labeled common blocks and
data initializations as desired.

The BLOCK DATA statement must be the first statement in a block data
subprogram.

The only other statements that can appear in a block data subprogram are:

• COMMON
• DATA
• DIMENSION
• END

BACKSPACE 2
LUNIT = 2
BACKSPACE LUNIT

INTEGER CODE
BACKSPACE (2, IOSTAT=CODE, ERR=9)
…

9 WRITE (*,*) ’Error during BACKSPACE’
STOP

BLOCK DATA [name]

name Symbolic name of the block data subprogram in which the BLOCK DATA
statement appears. This parameter is optional. It is a global name.

94 FORTRAN Reference Manual

4

• EQUIVALENCE
• IMPLICIT
• PARAMETER
• RECORD
• SAVE
• STRUCTURE
• type statements

Only an entity defined in a labeled common block can be initially defined in a
block data subprogram.

If an entity in a labeled common block is initially defined, all entities having
storage units in the common block storage sequence must be specified even if
they are not all initially defined.

Restrictions
• Only one unnamed block data subprogram can appear in the executable

program.

• The same labeled common block cannot be specified in more than one block
data subprogram in the same executable program.

• The optional parameter name must not be the same as the name of an
external procedure, main program, common block, or other block data
subprogram in the same executable program. The name must not be the
same as any local name in the subprogram.

Example

4.7 BYTE
The BYTE♦ statement specifies the type to be 1-byte integer.
It optionally specifies array dimensions and initializes with values.

BLOCK DATA INIT
COMMON /RANGE/ X0, X1
DATA X0, X1 / 2.0, 6.0 /
END

Statements 95

4

Syntax

Description

This is a synonym for LOGICAL*1 . A BYTE type item can hold the logical
values .TRUE. , .FALSE. , one character, or an integer between –128 and 127.

Example

4.8 CALL
The CALL statement branches to the specified subroutine, executes the
subroutine, and returns to the calling program after finishing the subroutine.

Syntax

Description

Arguments are separated by commas.

The FORTRAN Standard requires that actual arguments in a CALL statement
must agree in order, number, and type with the corresponding formal
arguments of the referenced subroutine; the compiler does not check this.

BYTE v [/ c /] …

v Name of a symbolic constant, variable, array, array declarator, function,
or dummy function

c List of constants for the immediately preceding name

BYTE BIT3 / 8 /, C1 / ’W’ /,
& COUNTER /0/, M /127/, SWITCH / .FALSE. /

CALL sub [([ar [, ar] …])]

sub Name of the subroutine to be called

ar Actual argument to be passed to the subroutine

96 FORTRAN Reference Manual

4

Recursion is allowed. A subprogram can call itself directly, or indirectly by
calling another subprogram that in turns calls this subroutine. Such recursion
is nonstandard. ♦

An actual argument, ar, must be one of the following:

• An expression
• An intrinsic function permitted to be passed as an argument
• An external function name
• A subroutine name
• An alternate return specifier, “*” or “&” followed by a statement number

The “&” is nonstandard. ♦

The simplest expressions, and most frequently used, include such things as

• Variable name
• Array name
• Formal argument (if the CALL statement is inside a subroutine)
• Record name

If a subroutine has no arguments, then a CALL statement referencing that
subroutine must not have any actual arguments. A pair of empty matching
parentheses can follow the subroutine name.

Execution of the CALL statement proceeds as follows:

1. All expressions (arguments) are evaluated.

2. All actual arguments are associated with the corresponding formal
arguments and the body of the subroutine is executed.

3. Normally the control is transferred back to the statement following the
CALL statement upon executing a RETURN statement or an END statement in
the subroutine. If an alternate return in the form of RETURNn is executed,
then control is transferred to the statement specified by the n alternate
return specifier in the CALL statement.

Statements 97

4

Examples

Example 1: Character string.

Example 2: Alternate return.

Example 3: Another form of alternate return. The “&” is nonstandard. ♦

CHARACTER *25 TEXT
TEXT = ’Some kind of major screwup’
CALL OOPS (TEXT)
SUBROUTINE OOPS (S)
CHARACTER S*(*)
WRITE (*,*) S
END

CALL RANK (N, *8, *9)
WRITE (*,*) ’OK - Normal Return’
STOP

8 WRITE (*,*) ’Minor - 1st alternate return’
STOP

9 WRITE (*,*) ’Major - 2nd alternate return’
STOP
END

SUBROUTINE RANK (N, *, *)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END

CALL RANK (N, &8, &9)

98 FORTRAN Reference Manual

4

Example 4: Array, array element, and variable. In this example, the real array M
matches the real array A, and the real array element Q(1,2) matches the real
variable D.

Example 5: A structured record and field. The record is nonstandard. ♦

In the above example, the record NEW matches the record CURRENT, and the
integer variable K matches the record field PRIOR.OLD.

REAL M(100,100), Q(2,2), Y
CALL SBRX (M, Q(1,2), Y)
…
END
SUBROUTINE SBRX (A, D, E)
REAL A(100,100), D, E
…
RETURN
END

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR
CALL SBRX (CURRENT, PRIOR.ID)
…
END
SUBROUTINE SBRX (NEW, K)
STRUCTURE /PRODUCT/

INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ NEW
…
RETURN
END

Statements 99

4

4.9 CHARACTER
The CHARACTER statement specifies the type of a symbolic constant, variable,
array, function, or dummy function to be character.

Optionally, it initializes any of the items with values and specifies array
dimensions.

Syntax

Description

Each character occupies 8 bits of storage, aligned on a character boundary.
Character arrays and common blocks containing character variables are packed
in an array of character variables. The first character of one element follows the
last character of the preceding element, without holes.

The length, len must be greater than 0.If len is omitted, it is assumed equal to 1.

For local and common character variables, symbolic constants, dummy
arguments, or function names, len can be an integer constant, or a
parenthesized integer constant expression.

For dummy arguments or function names, len can have another form: a
parenthesized asterisk, that is CHARACTER*(*) , which denotes that the
function name, or dummy argument has the length of the actual function or
argument.

For symbolic constants, len can also be a parenthesized asterisk, which
indicates that the name is defined as having the length of the constant. This is
shown below in Example 5.

CHARACTER [* len [,]] v [* len / c /]] …

v Name of a symbolic constant, variable, array, array declarator, or function

len Length in characters of the symbolic constant, variable, array element, or function

c List of constants for the immediately preceding name

100 FORTRAN Reference Manual

4

The list c of constants can be used only for a variable, array, or array declarator.
There can be only one constant for the immediately preceding variable, and
one constant for each element of the immediately preceding array.

Examples

Example 1: Character strings and arrays of character strings.

The above code is exactly equivalent to the following:

Both of the above are equivalent to nonstandard variation: ♦

Example 2: No null character-string variables.

There are no null (zero-length) character-string variables. You might expect
that a one-byte character string assigned a null constant would have length
zero.

During execution of the assignment statement, the variable S is precleared to
blank, and then zero characters are moved into S, so S contains one blank; and
because of the declaration, LEN() will return a length of 1. You cannot declare
a size of less than 1, so this is the smallest length string variable you can get.

Example 3: Dummy argument character string with constant length.

CHARACTER*17 A, B(3,4), V(9)
CHARACTER*(6+3) C

CHARACTER A*17, B(3,4)*17, V(9)*17
CHARACTER C*(6+3)

CHARACTER A*17, B*17(3,4), V*17(9)! nonstandard

CHARACTER S*1
S = ’’

SUBROUTINE SCHLEP (A)
CHARACTER A*32

Statements 101

4

Example 4: Dummy argument character string with length the same as
corresponding actual argument.

Example 5: Symbolic constant with parenthesized asterisk.

Example 6: The LEN function. The intrinsic function LEN that returns the actual
declared length of a character string. This is mainly for use with CHAR*(*)
dummy arguments.

The above program will display 17 , not 3.

4.10 CLOSE
The CLOSE statement disconnects a file from a unit.

Syntax

SUBROUTINE SCHLEP (A)
CHARACTER A*(*)
…

CHARACTER *(*) INODE
PARAMETER (INODE = ’Warning: INODE clobbered!’)

CHARACTER A*17
A = "xyz"
PRINT *, LEN(A)
END

 CLOSE([UNIT=] u [, STATUS= sta] [, IOSTAT= ios] [, ERR= s])

u Unit identifier for an external unit. If ”UNIT= ” is not used, then u must be first.

sta Determines the disposition of the file - sta is a character expression whose value, when
trailing blanks are removed, can be KEEP or DELETE. The default value for the status
specifier is KEEP. For temporary (scratch) files, sta is forced to DELETE always. For other
files besides scratch files, default sta is KEEP.

ios I/O status specifier - ios must be an integer variable or an integer array element.

s Error specifier - s must be the label of an executable statement in the same program
containing the CLOSE statement. The program control is transferred to this statement in
case an error occurs while executing the CLOSE statement.

102 FORTRAN Reference Manual

4

Description

For tape it is more reliable to use the TOPEN() routines.

The options can be specified in any order.

The DISP= and DISPOSE= options are allowable alternates for STATUS=, with
a warning, if the -ansi flag is set.

Execution of CLOSE proceeds as follows.

1. The specified unit is disconnected.

2. If sta is DELETE, the file connected to the specified unit is deleted.

3. If an IOSTAT argument is specified, ios is set to zero if no error was
encountered; otherwise it is set to a positive value.

Comments

All open files are closed with default sta at normal program termination.
Regardless of the specified sta, scratch files, when closed, are always deleted.

Execution of a CLOSE statement specifying a unit that does not exist or a unit
that has no file connected to it, has no effect.

Execution of a CLOSE statement specifying a unit zero (standard error) is not
allowed, but you can reopen it to some other file.

The unit/file disconnected by the execution of a CLOSE statement can be
connected again to the same file/unit or to a different file/unit.

Examples

Example 1: Close and keep.

Example 2: Close and delete.

CLOSE (2, STATUS=’KEEP’)

CLOSE (2, STATUS=’DELETE’, IOSTAT=I)

Statements 103

4

Example 3: Close and delete a scratch file even though status is KEEP.

4.11 COMMON
The COMMON statement defines a block of main memory storage so that
different program units can share the same data without using arguments.

Syntax

Description

Common Block Name
If the common block name is omitted, then blank common block is assumed.

Any common block name including blank common can appear more than once
in COMMON statements in the same program unit. The list nlist following each
successive appearance of the same common block name is treated as a
continuation of the list for that common block name.

Size of a Common Block
The size of a common block is the sum of the sizes of all the entities in the
common block, plus space for alignment.

Within a program, all common blocks in different program units that have the
same name must be of the same size.

OPEN (2, STATUS=’SCRATCH’)
…
CLOSE (2, STATUS=’KEEP’, IOSTAT=I)

COMMON [/[cb]/] nlist [[,]/[cb] / nlist] …

cb Common block name

nlist List of variable names, array names, and array declarators

104 FORTRAN Reference Manual

4

Restrictions
• Formal argument names and function names cannot appear in a COMMON

statement.

• An EQUIVALENCE statement must not cause the storage sequences of two
different common blocks in the same program unit to be associated. This is
shown in example 2.

• An EQUIVALENCE statement must not cause a common block to be
extended on the left-hand side. This is shown in Example 4.

Examples

Example 1: Unlabeled common and labeled common.

Above, V and M are in the unlabeled common block, while I and J are defined
in the named common block, LIMITS .

Example 2: You cannot associate storage of two different common blocks in the
same program unit.

Example 3: An EQUIVALENCE statement can extend a common block on the
right-hand side.

Example 4: An EQUIVALENCE statement must not cause a common block to be
extended on the left-hand side.

DIMENSION V(100)
COMMON V, M
COMMON / LIMITS / I, J
…

COMMON /X/ A
COMMON /Y/ B
EQUIVALENCE (A, B) ! ← not allowed

DIMENSION A(5)
COMMON /X/ B
EQUIVALENCE (B, A)

COMMON /X/ A
REAL B(2)
EQUIVALENCE (A, B(2)) ! ← not allowed

Statements 105

4

4.12 COMPLEX
The COMPLEX statement specifies the type of a symbolic constant, variable,
array, function, or dummy function to be complex, and optionally specifies
array dimensions and size, and initializes with values.

Syntax

Description

COMPLEX
For a declaration such as COMPLEX W, the variable W is usually two REAL*4
elements contiguous in memory, interpreted as a complex number. Details are
in the ”Default Size” section, below.)

COMPLEX*8♦
For a declaration such as COMPLEX*8 W, the variable W is always two REAL*4
elements contiguous in memory, interpreted as a complex number.

COMPLEX*16♦

For a declaration such as COMPLEX*16 W, W is always two REAL*8 elements
contiguous in memory, interpreted as a double-width complex number.

COMPLEX*32♦

(SPARC only) For a declaration such as COMPLEX*32 W, the variable W is
always two REAL*16 elements contiguous in memory, interpreted as a
quadruple-width complex number.

COMPLEX [* len [,]] v [* len [/ c /]] [, v [* len [/ c /]] …

v Name of a symbolic constant, variable, array, array declarator, or function

len Either 8, 16, or 32, the length in bytes of the symbolic constant, variable,
array element, or function (32 is SPARC only)

c List of constants for the immediately preceding name

106 FORTRAN Reference Manual

4

Default Size

If you specify the size as 8, 16, or 32, COMPLEX*8, COMPLEX*16, COMPLEX*32,
you get what you specify; if you do not specify the size, you get the default
size. (The *32 is for SPARC only.)

The default size, for a declaration such as COMPLEX Z, depends on –r8.

• If the –r8 option is on the f77 command line, then the compiler allocates 16
bytes, and does 16-byte arithmetic.

If –r8 is not on the command line, the compiler allocates 8 bytes.

Similarly, the default size, for such a declaration as DOUBLE COMPLEX Z,
depends on the –r8 option.

• If –r8 is on the f77 command line, then the compiler allocates 32 bytes, and
does 32-byte arithmetic (SPARC only).

If –r8 is not on the command line, the compiler allocates 16 bytes.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Comments

Specifying the size is nonstandard. ♦

Double-Complex Functions — There is a double-complex version of each
complex built-in function. Generally the specific function names begin with Z
or CD instead of C, except for the two functions DIMAG and DREAL, which
return a real value.

Quad-Precision Complex Functions (SPARC only) — There are specific complex
functions for quad precision. In general, where there is a specific REAL and a
corresponding COMPLEX with a C prefix, and a corresponding COMPLEX
DOUBLE with a CD prefix, there is also a quad-precision COMPLEX function with
a CQ prefix. Examples: SIN() , CSIN() , CDSIN() , CQSIN() .

Statements 107

4

Examples

Example 1: Complex scalars. Styles.

Each of these statements is equivalent to the others. (Don’t use all three
statements in the same program unit — you cannot declare anything more than
once in the same program unit.)

Example 2: Initialize complex scalars.

Note that a complex constant is a pair of numbers, either integers or reals.

Example 3: Double complex, some initialization.

Note that a double-complex constant is a pair of numbers, and at least one
number of the pair must be double precision.

Example 4: Quadruple complex, some initialization (SPARC only).

Note that a quadruple complex constant is a pair of numbers, and at least one
number of the pair must be quadruple precision.

Example 5: Complex arrays. All of these are nonstandard.

COMPLEX U, V
COMPLEX*8 U, V
COMPLEX U*8, V*8

COMPLEX U / (1, 9.0) /, V / (4.0, 5) /

COMPLEX R*16, V*16
COMPLEX U*16 / (1.0D0, 9) /, V*16 / (4.0, 5.0D0) /
COMPLEX*16 X / (1.0D0, 9.0) /, Y / (4.0D0, 5) /

COMPLEX R*32, V*32
COMPLEX U*32 / (1.0Q0, 9) /, V*32 / (4.0, 5.0Q0) /
COMPLEX*32 X / (1.0Q0, 9.0) /, Y / (4.0Q0, 5) /

COMPLEX R*16(5), S(5)*16 ! (SPARC only)
COMPLEX U*32(5), V(5)*32 ! (SPARC only)
COMPLEX X*8(5), Y(5)*8

108 FORTRAN Reference Manual

4

4.13 CONTINUE
The CONTINUE statement is a do nothing statement.

Syntax

Description

The CONTINUE statement is often used as a place to hang a statement label,
usually it is the end of a DO loop.

Label Definition
The CONTINUE statement is used primarily as a convenient point for placing a
statement label, particularly as the terminal statement in a DO loop.Execution
of a CONTINUE statement has no effect.

If the CONTINUE statement is used as the terminal statement of a DO loop, the
next statement executed depends on the DO loop exit condition.

Example

 [label] CONTINUE

label External statement number

DIMENSION U(100)
S = 0.0
DO 1 J = 1, 100

S = S + U(J)
IF (S .GE. 1000000) GO TO 2

1 CONTINUE
STOP

2 CONTINUE
…

Statements 109

4

4.14 DATA
The DATA statement initializes variables, substrings, arrays, array elements,
records, and record fields.

Syntax

Description

All initially defined items are defined with the specified values when an
executable program begins running.

The r*c is equivalent to r successive occurrences of the constant c.

A DATA statement is a nonexecutable statement and must appear after all
specification statements but can be interspersed with statement functions and
executable statements.

The number of constants (taking into account the repeat factor) in clist must be
equal to the number of items in the nlist. The appearance of an array in nlist is
equivalent to specifying a list of all elements in that array. Array elements can
be indexed by constant subscripts only.

Normal type conversion takes place for each noncharacter member of the clist.

Character Constants in the DATA Statement
If the length of a character item in nlist is greater than the length of the
corresponding constant in clist, it is padded with blank characters on the right.

 DATA nlist / clist / [[,] nlist / clist /] …

nlist List of variables, arrays, array elements, substrings, and implied DO
lists separated by commas

clist List of the form: c [, c] …

c One of the forms: c or r*c, and

c is a constant or the symbolic name of a constant.

r Nonzero, unsigned integer constant or the symbolic name of such
constant

110 FORTRAN Reference Manual

4

If the length of a character item in nlist is less than that of the corresponding
constant in clist, the additional rightmost characters are ignored.

If the constant in clist is of integer type and the item of nlist is of character type,
they must conform to the following rules.

• The character item must have a length of one character.
• The constant must be of type integer and have a value in the range 0

through 255. For ^A, ^B, ^C, do not hold down the control key and press A,
B, or C; use the char() function.

If the constant of clist is a character constant or a Hollerith constant, and the
item of nlist is of type INTEGER, then the number of characters that can be
assigned is 2 or 4 for INTEGER*2 and INTEGER*4 respectively. If the character
constant or the Hollerith constant has fewer characters than the capacity of the
item, the constant is extended on the right with spaces. If the character or the
Hollerith constant contains more characters than can be stored, the constant is
truncated on the right.

Implied DO Lists
An nlist can specify an implied DO list for initialization of array elements.

The form of implied DO list is:

The range of an implied DO loop is dlist. The iteration count for the implied DO
is computed from m1, m2, and m3, and it must be positive.

(dlist, iv=m1, m2 [,m3])

dlist List of array element names and implied DO lists

iv Integer variable, called the implied DO variable

m1 Integer constant expression specifying the initial value of iv

m2 Integer constant expression specifying the limit value of iv

m3 Integer constant expression specifying the increment value of iv. If m3 is
omitted, then a default value of 1 is assumed.

Statements 111

4

Comments

Variables can also be initialized in type statements. This is an extension of the
FORTRAN Standard. Examples are given under each of the individual type
statements and under the general type statement. ♦

Examples

Example 1: Character, integer, and real scalars. Real arrays.

Example 2: Arrays — implied DO.

Example 3: Mixing integer and character.

4.15 DECODE/ENCODE
ENCODEwrites to a character variable, array, or array element. ♦

DECODEreads from a character variable, array, or array element. ♦

Data is edited according to the format identifier.

Similar functionality can be accomplished using internal files with formatted
sequential WRITE statements and READ statements. ENCODE and DECODE are
not in the FORTRAN Standard, and are provided for compatibility with older
versions of FORTRAN.

CHARACTER TTL*16
REAL VEC(5), PAIR(2)
DATA TTL / ’Arbitrary Titles’ /,

& M / 9 /, N / 0 /,
& PAIR(1) / 9.0 /,
& VEC / 3*9.0, 0.1, 0.9 /

…

REAL R(3,2), S(4,4)
DATA (S(I,I), I=1,4) / 4*1.0 /,

& ((R(I,J), J=1,3), I=1,2) / 6*1.0 /
…

CHARACTER CR*1
INTEGER I*2, N*4
DATA I / ’oy’ /, N / 4Hs12t /, CR / 13 /
…

112 FORTRAN Reference Manual

4

Syntax

Description

The entities in the I/O list must be one of the following:

• Variables
• Substrings
• Arrays
• Array elements
• Records
• Record fields

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

Execution proceeds as follows.

1. The ENCODE statement translates the list items to character form according
to the format identifier, and stores the characters in buf. A WRITE operation
on internal files does the same.

ENCODE(size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

DECODE(size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

size Number of characters to be translated, an integer expression

f Format identifier, either the label of a FORMAT statement, or a character
expression specifying the format string, or an asterisk. If f specifies more
than one record, it is an error.

buf Variable, array, or array element

ios I/O status specifier, ios must be an integer variable or an integer array
element.

s Error specifier (statement label) s must be the label of executable
statement in the same program unit in which the ENCODE and DECODE
statement occurs.

iolist List of input/output items.

Statements 113

4

2. The DECODE statement translates the character data in buf to internal
(binary) form according to the format identifier, and stores the items in the
list. A READ statement does the same.

3. If buf is an array, its elements are processed in the order of subscript
progression, with the leftmost subscript increasing more rapidly.

4. The number of characters that an ENCODE or a DECODE statement can
process depends on the data type of buf. For example, an INTEGER*2 array
can contain two characters per element, so that the maximum number of
characters is twice the number of elements in that array. A character variable
or character array element can contain characters equal in number to its
length. A character array can contain characters equal in number to the
length of each element multiplied by the number of elements.

5. The interaction between the format identifier and the I/O list is the same as
for a formatted I/O statement.

Example

Program using DECODE/ENCODE.

The above program has this output.

The DECODE reads the characters of S as 3 integers, and stores them into V(1) ,
V(2) , and V(3) .

The ENCODE statement writes the values V(3) , V(2) , and V(1) into T as
characters; T then contains ’547698’ .

CHARACTER S*6 / ’987654’ /, T*6
INTEGER V(3)*4
DECODE(6, ’(3I2)’, S) V
WRITE(*, ’(3I3)’) V
ENCODE(6, ’(3I2)’, T) V(3), V(2), V(1)
PRINT *, T
END

 98 76 54
 547698

114 FORTRAN Reference Manual

4

4.16 DIMENSION
The DIMENSION statement specifies the number of dimensions for an array,
including the number of elements in each dimension.

Optionally, it initializes items with values.

Syntax

Description

Dimension Declarator
The lower and upper limits of each dimension are designated by a dimension
declarator. The form of a dimension declarator is:

dd1 and dd2 are dimension bound expressions specifying the lower- and upper-
bound values. They can be arithmetic expressions of type integer or real. They
can be formed using constants, symbolic constants, formal arguments, or
variables defined in the COMMON statement. Array references and references to
user-defined functions cannot be used in the dimension bound expression. dd2
can also be an asterisk. If dd1 is not specified, a value of one is assumed. The
value of dd1 must be less than or equal to dd2.

Nonconstant dimension bound expressions can be used in a subprogram to
define adjustable arrays, but not in a main program.

Noninteger dimension bound expressions are converted to integers before use.
Any fractional part is truncated.

DIMENSION a (d) [, a (d)] …

a Name of an array

d Specifies the dimensions of the array. It is a list of 1 to 7 declarators
separated by commas.

[dd1 :] dd2

Statements 115

4

Adjustable Array
If the dimension declarator is an arithmetic expression that contains formal
arguments or variables defined in the COMMON statement, then the array is
called an adjustable array. In such cases the dimension is equal to the initial
value of the argument upon entry into the subprogram.

 Assumed-Size Array
The array is called an assumed-size array when the dimension declarator
contains an asterisk. In such cases the upper bound of that dimension is not
stipulated. An asterisk can only appear for formal arrays and as the upper
bound of the last dimension in an array declarator.

Examples

Example 1: Arrays in a main program.

In the above example, M is specified as an array of dimensions 4 ×4 and V is
specified as an array of dimension 1000.

Example 2: Adjustable array in a subroutine.

In the above example, the formal arguments are an array, M, and a variable N. M
is specified to be a square array of dimensions N× N.

Example 3: Lower and upper bounds.

Above, HELIO is a 3-dimensional array. The first element is HELIO(-3,1,3)
and the last element is HELIO(3,4,9) .

DIMENSION M(4,4), V(1000)
…
END

SUBROUTINE INV(M, N)
DIMENSION M(N, N)
…
END

DIMENSION HELIO (-3:3, 4, 3:9)
…
END

116 FORTRAN Reference Manual

4

Example 4: Dummy array with lower and upper bounds.

Example 5: Noninteger bounds.

In the above example, A is an array of dimension 9×28.
Example 6: Adjustable array with noninteger bounds.

4.17 DO
The DO statement repeatedly executes a set of statements.

Syntax

s is a statement number.
The form of loop-control is:

SUBROUTINE ENHANCE(A, NLO, NHI)
DIMENSION A(NLO : NHI)
…
END

PARAMETER (LO = 1, HI = 9.3)
DIMENSION A(HI, HI*3 + LO)
…
END

SUBROUTINE ENHANCE(A, X, Y)
DIMENSION A(X : Y)
…
END

DO s [,] loop-control

 or
DO loop-control ♦

variable = e1, e2 [, e3]

variable Variable of type integer, real, or double precision.)

e1, e2, e3 Expressions of type integer, real or double precision, specifying
initial, limit, and increment values respectively.

Statements 117

4

Description

Labeled DO Loop
A labeled DO loop consists of the following:

• DO statement
• Set of executable statements called a block
• Terminal statement, usually a CONTINUE statement

Terminal Statement
The statement identified by s is called the terminal statement. It must follow the
DO statement in the sequence of statements within the same program unit as
the DO statement.

The terminal statement should not be one of the following statements:

• Unconditional GO TO
• Assigned GO TO
• Arithmetic
• IF
• Block IF
• ELSE IF
• ELSE
• END IF
• RETURN
• STOP
• END DO

If the terminal statement is a logical IF statement, it can contain any executable
statement except:

• DO
• DO WHILE
• Block IF
• ELSE IF
• ELSE
• END IF
• END
• Logical IF statement

118 FORTRAN Reference Manual

4

DO Loop Range
The range of a DO loop consists of all of the executable statements that appear
following the DO statement, up to and including the terminal statement.

If a DO statement appears within the range of another DO loop, its range must
be entirely contained within the range of the outer DO loop. More than one
labeled DO loop can have the same terminal statement.

If a DO statement appears within an IF , ELSE IF , or ELSE block, the range of
the associated DO loop must be contained entirely within that block.

If a Block IF statement appears within the range of a DO loop, the
corresponding END IF statement must also appear within the range of that DO
loop.

Block DO Loop ♦

A block DO loop consists of:

• DO statement
• Set of executable statements called a block
• Terminal statement, an END DO statement

 This is nonstandard.

Execution proceeds as follows.

1. The expressions e1, e2, and e3 are evaluated. If e3 is not present, its value is
assumed to be one.

2. The DO variable is initialized with the value of e1.

3. The iteration count is established as the value of the expression.

MAX (INT ((e2 -e1 +e3) /e3), 0)

Note that the iteration count is zero if either of the following is true.

e1 > e2 and e3 > zero.

e1 < e2 and e3 < zero.

If the –onetrip compile time option is specified, then the iteration count is
never less than one.

Statements 119

4

4. The iteration count is tested, and, if it is greater than zero, the range of the
DO loop is executed.

Terminal Statement Processing
After the terminal statement of a DO loop is executed, the following steps are
performed.

1. The value of the DO variable, if any, is incremented by the value of e3 that
was computed when the DO statement was executed.

2. The iteration count is decreased by one.

3. The iteration count is tested, and if it is greater than zero, the statements in
the range of the DO loop are executed again.

Restrictions
• The DO variable must not be modified in any way within the range of the DO

loop.

• You must not jump into the range of a DO loop from outside its range.

Comments

In some cases, the DO variable can overflow as a result of an increment that is
performed prior to testing it against the final value. When this happens, your
program has an error, and neither the compiler nor the runtime system detects
it. In this situation, though the DO variable wraps around, the loop can
terminate properly.

120 FORTRAN Reference Manual

4

Examples

Example 1: Nested DO’s.

The inner loop is not executed, and at the WRITE, L is undefined. Here L is
shown as 0, but that is implementation dependent; do not rely on it.

Example 2: The program DoNest2.f (DO variable always defined).

The above program prints out:

N = 0
DO 210 I = 1, 10

J = I
DO 200 K = 5, 1

L = K
N = N + 1

200 CONTINUE
210 CONTINUE

WRITE(*,*)'I =',I, ', J =',J, ', K =',K, ', N =',N, ', L =',L
END

demo % f77 -silent DoNest1.f
"DoNest1.f", line 4: Warning: DO range never executed
demo % a.out
I = 11, J = 10, K = 5, N = 0, L = 0
demo %

INTEGER COUNT, OUTER
COUNT = 0
DO OUTER = 1, 5

NOUT = OUTER
DO INNER = 1, 3

NIN = INNER
COUNT = COUNT+1

END DO
END DO
WRITE(*,*) OUTER, NOUT, INNER, NIN, COUNT
END

6 5 4 3 15

Statements 121

4

4.18 DO WHILE
The DO WHILE♦ statement repeatedly executes a set of statements while the
specified condition is true.

Syntax

Description

Execution proceeds as follows.

1. The specified expression is evaluated.

2. If the value of the expression is true, the statements in the range of the DO
WHILE loop are executed.

3. If the value of the expression is false, control is transferred to the statement
following the DO WHILE loop.

Terminal Statement
If s is specified, the statement identified by it is called the terminal statement
and it must follow the DO WHILE statement. The terminal statement must not
be one of the following statements:
• Unconditional GO TO
• Assigned GO TO
• Arithmetic IF
• Block IF ELSE IF
• ELSE
• END IF
• RETURN
• STOP
• END
• DO
• DO WHILE

DO [s [,]] WHILE (e)

s Label of an executable statement

e Logical expression

122 FORTRAN Reference Manual

4

If the terminal statement is a logical IF statement, it can contain any executable
statement except:

• DO
• DO WHILE
• Block IF
• ELSE IF
• ELSE
• END IF
• END
• Logical IF

If s is not specified, the DO WHILE loop must end with an END DO statement.

DO WHILE Loop Range
The range of a DO WHILE loop consists of all the executable statements that
appear following the DO WHILE statement, up to and including the terminal
statement.

If a DO WHILE statement appears within the range of another DO WHILE loop,
its range must be entirely contained within the range of the outer DO WHILE
loop. More than one DO WHILE loop can have the same terminal statement.

If a DO WHILE statement appears within an IF , ELSE IF, or ELSE block, the
range of the associated DO WHILE loop must be entirely within that block.

If a Block IF statement appears within the range of a DO WHILE loop, the
corresponding END IF statement must also appear within the range of that DO
WHILE loop.

Terminal Statement Processing
After the terminal statement of a DO WHILE loop is executed, control is
transferred back to the corresponding DO WHILE statement.

Restriction
If you jump into the range of a DO WHILE loop from outside its range, then the
results are unpredictable.

Statements 123

4

Comments

The variables used in the e can be modified in any way within the range of the
DO WHILE loop.

Examples

Example 1: A DO WHILEwithout a statement number.

Example 2: A DO WHILEwith a statement number.

INTEGER A(4,4), C, R
…
C = 4
R = 1
DO WHILE (C .GT. R)

A(C,R) = 1
C = C - 1

END DO

INTEGER A(4,4), C, R
…
DO 10 WHILE (C .NE. R)

A(C,R) = A(C,R) + 1
C = C+1

10 CONTINUE

124 FORTRAN Reference Manual

4

4.19 DOUBLE COMPLEX
The DOUBLE COMPLEX♦ statement specifies the type to be double complex.
It optionally specifies array dimensions and size, and initializes with values.

Syntax

Description

DOUBLE COMPLEX♦
For a declaration such as DOUBLE COMPLEX Z, the variable Z is usually two
REAL*8 elements contiguous in memory, interpreted as one double-width
complex number. There is more detail in the Default Size section, below.

COMPLEX*16♦

For a declaration such as COMPLEX*16 Z, the variable Z is always two
REAL*8 elements contiguous in memory, interpreted as one double-width
complex number.

Default Size

If you explicitly specify the size as 16, COMPLEX*16, you get what you specify;
if you do not specify the size, you get the default size. Default size, for such a
declaration as DOUBLE COMPLEX Z, depends on –r8 .
• If –r8 is on the f77 command line, then the compiler allocates 32 bytes, and

does 32-byte arithmetic (SPARC only).
If –r8 is not on the command line, then the compiler allocates 16 bytes, and
does 16-byte arithmetic.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

 DOUBLE COMPLEXv [/ c /] [, v [/ c /] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

c List of constants for the immediately preceding name

Statements 125

4

Comments

Double-Complex Functions
There is a double-complex version of each complex built-in function. Generally
the specific function names begin with Z or CD instead of C, except for the two
functions DIMAG and DREAL, which return a real value. Examples: SIN() ,
CSIN() , CDSIN() .

 Example: Double-complex scalars and arrays.

4.20 DOUBLE PRECISION
The DOUBLE PRECISION statement specifies the type to be double precision,
and optionally specifies array dimensions and initializes with values.

Syntax

Description

DOUBLE PRECISION
For a declaration such as DOUBLE PRECISION X, the variable X is usually a
REAL*8 element in memory, interpreted as one double-width real number.
(There is more detail under Default Size, below.)

DOUBLE COMPLEX U, V
DOUBLE COMPLEX W(3,6)
COMPLEX*16 X, Y(5,5)
COMPLEX U*16(5), V(5)*16

 DOUBLE PRECISION v [/ c /] [, v [/ c /] …

 v Name of a symbolic constant, variable, array, array declarator, function, or dummy function

 c List of constants for the immediately preceding name

126 FORTRAN Reference Manual

4

REAL*8 ♦

For a declaration such as REAL*8 X , the variable X is always an element of
type REAL*8 in memory, interpreted as a double-width real number.

Default Size

If you explicitly specify the size as 8, REAL*8, you get what you specify; if you
do not specify the size, you get the default size.

The default size, for such a declaration as ”DOUBLE PRECISION X” depends
on the –r8 option as follows:

• If –r8 is on the f77 command line, then the compiler allocates 16 bytes, and
does 16-byte arithmetic (SPARC only).

• If –r8 is not on the command line, then the compiler allocates 8 bytes, and
does 8-byte arithmetic.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Example

Example: Double-precision scalars and arrays.

DOUBLE PRECISION R, S
DOUBLE PRECISION T(3,6)
REAL*8 U(3,6)
REAL V*8(6), W(6)*8

Statements 127

4

4.21 ELSE
The ELSE statement indicates the beginning of an ELSE block.

Syntax

Description

Execution of an ELSE statement has no effect on the program.

ELSE Block
An ELSE block consists of all the executable statements following the ELSE
statements, up to but not including the next END IF statement at the same IF
level as the ELSE statement. See Section 4.40, “IF (Block),” for more detail.

 An ELSE block can be empty.

Restrictions
• You cannot jump into an ELSE block from outside the ELSE block.

• The statement label, if any, of an ELSE statement cannot be referenced by
any statement.

• A matching END IF statement of the same IF level as the ELSE must appear
before any ELSE IF or ELSE statement at the same IF level.

IF (e) THEN
...

ELSE
...

END IF

e Logical expression

128 FORTRAN Reference Manual

4

Examples

 Example 1: ELSE.

Example 2: An invalid ELSE IF where an END IF is expected.

4.22 ELSE IF
The ELSE IF provides a multiple alternative decision structure.

Syntax

Description

You can make a series of independent tests, and each test can have its own
sequence of statements.

CHARACTER S
…
IF (S .GE. ’0’ .AND. S .LE. ’9’) THEN

CALL PUSH
ELSE

CALL TOLOWER
END IF
…

IF (K .GT. 5) THEN
N = 1

ELSE
N = 0

ELSE IF (K .EQ. 5) THEN ←incorrect
…

IF (e1) THEN

ELSE IF (e2) THEN

END IF…

e1 and e2 Logical expressions

Statements 129

4

An ELSE IF block consists of all the executable statements following the ELSE
IF statement up to, but not including, the next ELSE IF, ELSE, or END IF
statement at the same IF level as the ELSE IF statement.

An ELSE IF block can be empty.

Restrictions
• You cannot jump into an ELSE IF block from outside the ELSE IF block.

• The statement label, if any, of an ELSE IF statement cannot be referenced by
any statement.

• A matching END IF statement of the same IF level as the ELSE IF must
appear before any ELSE IF or ELSE statement at the same IF level.

Execution of the ELSE IF proceeds as follows:

1. e is evaluated.

2. If e is true, execution continues with the first statement of the ELSE IF
block. If e is true and the ELSE IF block is empty, control is transferred to
the next END IF statement at the same IF level as the ELSE IF statement.

3. If e is false, control is transferred to the next ELSE IF, ELSE, or END IF
statement at the same IF level as the ELSE IF statement.

Example

Example: ELSE IF.

READ (*,*) N
IF (N .LT. 0) THEN

WRITE(*,*) ’N<0’
ELSE IF (N .EQ. 0) THEN

WRITE(*,*) ’N=0’
ELSE

WRITE(*,*) ’N>0’
END IF

130 FORTRAN Reference Manual

4

4.23 ENCODE/DECODE
The ENCODE♦ statement writes data from a list to memory.

Syntax

Description

ENCODE is provided for compatibility with older versions of FORTRAN.
Similar functionality can be accomplished using internal files with a formatted
sequential WRITE statement. ENCODE is not in the FORTRAN Standard.

Data are edited according to the format identifier.

Example

The DECODE reads the characters of S as 3 integers, and stores them into V(1) ,
V(2) , and V(3) . The ENCODE statement writes the values V(3) , V(2) , and
V(1) , into T as characters; T then contains ’547698’ .

See Section 4.15, “DECODE/ENCODE,” for more detail and a full example.

ENCODE(size, f, buf [, IOSTAT= ios] [, ERR= s]) [iolist]

size Number of characters to be translated

f Format identifier

buf Variable, array, or array element

ios I/O status specifier

s Error specifier (statement label)

iolist List of I/O items, each a character variable, array, or array element

CHARACTER S*6, T*6
INTEGER V(3)*4
DATA S / ’987654’ /
DECODE(6, 1, S) V

1 FORMAT(3 I2)
ENCODE(6, 1, T) V(3), V(2), V(1)

Statements 131

4

4.24 END
The END statement indicates the end of a program unit.

Syntax

Description

The END statement:

• Must be the last statement in the program unit.
• Must be the only statement in a line.
• Can have a label.

No other statement such as an END IF statement, can have an initial line that
appears to be an END statement.

In a main program an END statement terminates the execution of the program.

In a function or subroutine, it has the effect of a RETURN. ♦

In the FORTRAN Standard the END statement cannot be continued, but f77
allows this. ♦

 Example

Example: END.

END

PROGRAM MAIN
WRITE(*, *) ’Very little’
END

132 FORTRAN Reference Manual

4

4.25 END DO
The END DO statement terminates a DO loop. ♦

Syntax

Description

The END DO statement is the delimiting statement of a Block DO statement. If
the statement label is not specified in a DO statement, the corresponding
terminating statement must be an END DO statement. You can branch to an END
DO statement only from within the range of the DO loop that it terminates.

Examples

Example 1: A DO with a statement number.

Example 2: A DO without statement number.

END DO

DO 10 N = 1, 100
…

10 END DO

DO N = 1, 100
…

END DO

Statements 133

4

4.26 END FILE
The END FILE statement writes an end-of-file record as the next record of the
file connected to the specified unit.

Syntax

Description

Tape
If you are using the ENDFILE statement and other standard FORTRAN I/O for
tapes, we recommend that you use the TOPEN() routines instead, because they
are more reliable.

Two endfile records signify the end-of-tape mark. When writing to a tape file,
ENDFILE writes two endfile records, then the tape backspaces over the second
one. If the file is closed at this point, both end-of-file and end-of-tape are
marked. If more records are written at this point (either by continued write
statements or by another program if you are using no-rewind magnetic tape),
the first tape mark stands (endfile record), and is followed by another data file,
then by more tape marks, and so on.

END FILE u

END FILE ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

u Unit identifier of an external unit connected to the file, The options can be
specified in any order, but if “UNIT=” is omitted, then u must be first.

ios I/O status specifier, an integer variable or an integer array element.

s Error specifier, s must be the label of an executable statement in the same
program in which the END FILE statement occurs. The program control is
transferred to the label in the event of an error during the execution of the
END FILE statement.

134 FORTRAN Reference Manual

4

Comments

u must be connected for sequential access. Execution of an END FILE statement
on a direct-access file is not defined in the FORTRAN Standard, and is
unpredictable. Do not use an END FILE statement on a direct-access file.

Examples

Example 1: Constants.

Example 2: Variables.

Example 3: Error trap.

END FILE 2
END FILE (2)
END FILE (UNIT=2)

LOGUNIT = 2
END FILE LOGUNIT
END FILE (LOGUNIT)
END FILE (UNIT=LOGUNIT)

NOUT = 2
END FILE (UNIT=NOUT, IOSTAT=KODE, ERR=9)
…

9 WRITE(*,*) ’Error at END FILE, on unit’, NOUT
STOP

Statements 135

4

4.27 END IF
The END IF statement ends the Block IF that the IF began.

Syntax

Description

For each Block IF statement there must be a corresponding END IF statement
in the same program unit. An END IF statement matches if it is at the same IF
level as the Block IF statement.

Examples

Example 1: IF/END IF .

Example 2: IF/ELSE/END IF .

END IF

IF (N .GT. 0)THEN
N = N+1

END IF

IF (N .EQ. 0) THEN
N = N+1

ELSE
N = N-1

END IF

136 FORTRAN Reference Manual

4

4.28 END MAP
The END MAP ♦ statement terminates the MAP declaration.

Syntax

Description

See Section 4.70, “UNION and MAP,” for further information.

Restriction
The MAP statement must be within a UNION statement.

Example

4.29 END STRUCTURE
The END STRUCTURE ♦ statement t erminates the STRUCTURE statement.

Syntax

Description

See Section 4.66, “STRUCTURE,” for further information.

END MAP

…
MAP

CHARACTER *16 MAJOR
END MAP
…

END STRUCTURE

Statements 137

4

Example

4.30 END UNION
The END UNION ♦ statement terminates the UNION statement.

Syntax

Description

For END UNION, see Section 4.70, “UNION and MAP,” for further information.

Example

STRUCTURE /PROD/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL* PRICE

END STRUCTURE

END UNION

UNION
MAP

CHARACTER*16
END MAP
MAP

INTEGER*2 CREDITS
CHARACTER *8 GRAD_DATE

END MAP
END UNION

138 FORTRAN Reference Manual

4

4.31 ENTRY
The ENTRY statement defines an alternate entry point within a subprogram.

Syntax

Description

Referencing Procedures by Entry Names
An ENTRY name used in a subroutine subprogram is treated like a subroutine
and can be referenced with a CALL statement. Similarly, the ENTRY name used
in a function subprogram is treated like a function and can be referenced as a
function reference.

An entry name can be specified in an EXTERNAL statement and used as an
actual argument. It cannot be used as a dummy argument.

Execution of an ENTRY subprogram (subroutine or function) begins with the
first executable statement after the ENTRY statement.

The ENTRY statement is a nonexecutable statement.

The entry name cannot be used in the executable statements that physically
precede the appearance of the entry name in an ENTRY statement.

Parameter Correspondence
The formal arguments of an ENTRY statement need not be the same in order,
number, type, and name as those for FUNCTION, SUBROUTINE, and other
ENTRY statements in the same subprogram. Each reference to a function,
subroutine, or entry must use an actual argument list that agrees in order,
number, type, and name with the dummy argument list in the corresponding
FUNCTION, SUBROUTINE, or ENTRY statement.

ENTRY en [([fa [, fa] …])]

en Symbolic name of an entry point in a function or subroutine subprogram

fa Formal argument. It can be a variable name, array name, formal procedure
name, or an asterisk specifying an alternate return label.

Statements 139

4

Alternate return arguments in ENTRY statements can be specified by placing
asterisks in the dummy argument list. Ampersands are valid alternates. ♦

ENTRY statements that specify alternate return arguments can be used only in
subroutine subprograms, not functions.

Restrictions
• An ENTRY statement cannot be used within a block IF construct or a DO

loop.

• If an ENTRY statement appears in a character function subprogram, it must
be defined as type CHARACTER with the same length as that of a function
subprogram.

Examples

Example 1: Multiple entry points in a subroutine.

In the above example, the subroutine FINAGLE has two alternate entries; the
entry SCHLEP has an argument list; the entry SHMOOZ has no argument list.

SUBROUTINE FINAGLE(A, B, C)
INTEGER A, B
CHARACTER C*4
…
RETURN

ENTRY SCHLEP(A, B, C)
…
RETURN

ENTRY SHMOOZ
…
RETURN
END

140 FORTRAN Reference Manual

4

Example 2: Calling entry points in a subroutine. In the calling routine you can
call the above subroutine and entries as follows.

Above, the order of the call statements need not match the order of the entry
statements.

Example 3: Multiple entry points in a function.

INTEGER A, B
CHARACTER C*4
…
CALL FINAGLE(A, B, C)
…
CALL SHMOOZ
…
CALL SCHLEP(A, B, C)
…

REAL FUNCTION F2 (X)
F2 = 2.0 * X
RETURN

ENTRY F3 (X)
F3 = 3.0 * X
RETURN

ENTRY FHALF (X)
FHALF = X / 2.0
RETURN
END

Statements 141

4

4.32 EQUIVALENCE
The EQUIVALENCE statement specifies that two or more variables or arrays in
a program unit share the same memory.

Syntax

Description

Equivalence Association
An EQUIVALENCE statement stipulates that the storage sequence of the entities
whose names appear in the list nlist must have the same first memory location.

An EQUIVALENCE statement can cause association of entities other than
specified in the nlist.

Array Names and Array Element Names
An array name, if present, refers to the first element of the array.

If an array element name appears in an EQUIVALENCE statement, the number
of subscripts can be different from the number of dimensions specified in the
array declarator for the array name.

Restrictions
• In nlist, names of substrings, dummy arguments and functions are not

permitted.

• Subscripts of array elements must be integer constants greater than the
lower bound and less than or equal to the upper bound.

• An EQUIVALENCE statement can associate an element of type character with
a noncharacter element. ♦

EQUIVALENCE (nlist) [, (nlist)] …

nlist List of variable names, array element names, array names, and character
substring names separated by commas

142 FORTRAN Reference Manual

4

• An EQUIVALENCE statement cannot specify that the same storage unit is to
occur more than once in a storage sequence. For example the following is
not allowed.

• An EQUIVALENCE statement cannot specify that consecutive storage units
are to be nonconsecutive. For example, the following is not allowed.

Comments

When COMMON statements and EQUIVALENCE statements are used together,
several additional rules can apply. For such rules, refer to the notes on the
COMMON statement.

Example

The association of A, B, and C can be graphically illustrated as follows.

DIMENSION A (2)
EQUIVALENCE (A(1),B), (A(2),B)

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A(1), D(1)), (A(2), D(2))

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(1)),(B,C(2))

01 02 03 04 05 06 07

A A(1) A(2) A(3) A(4)

B B(1) B(2) B(3) B(4)

C C(1) C(2)

Statements 143

4

4.33 EXTERNAL
The EXTERNAL statement specifies procedures or dummy procedures as
external, and allows their symbolic names to be used as actual arguments.

Syntax

Description

Subroutine or Function Name
If an external procedure or a dummy procedure is an actual argument, it must
be in an EXTERNAL statement in the same program unit.

If an intrinsic function name appears in an EXTERNAL statement, that name
refers to some external subroutine or function. The corresponding intrinsic
function is not available in the program unit.

Restrictions
• A subroutine or function name can appear in only one of the EXTERNAL

statements of a program unit.

• A statement function name must not appear in an EXTERNAL statement.

EXTERNAL proc [, proc] …

proc Name of external procedure, dummy procedure, or block data routine.

144 FORTRAN Reference Manual

4

Examples

Example 1: Use your own version of TAN.

Example 2: Pass a user-defined function name as an argument.

EXTERNAL TAN
T = TAN(45.0)
…
END
FUNCTION TAN(X)
…
RETURN
END

REAL AREA, LOW, HIGH
EXTERNAL FCN
…
CALL RUNGE (FCN, LOW, HIGH, AREA)
…
END

FUNCTION FCN(X)
…
RETURN
END

SUBROUTINE RUNGE (F, X0, X1, A)
…
RETURN
END

Statements 145

4

4.34 FORMAT
The FORMAT statement specifies the layout of the input or output records.

Syntax

The items in f have the form:

 Repeatable Edit Descriptors

Summary
• I , O, Z are for integers (decimal, octal, hex)
• F, E, D, G are for reals (fixed-point, exponential, double, general)
• A is for characters
• L is for logicals

s FORMAT (f)

s Statement label

f Format specification list

 [r] d

 [r] (f)

r A repeat factor

d An edit descriptor (repeatable or nonrepeatable),
but if r is present, then d must be repeatable.

I
I w
I w.m
O
Ow
Ow.m
Z
Zw
Zw.m

F
Fw
Fw.m
A
Aw
L
Lw

E
Ew
Ew.m
Ew.m.e
Ew.mEe

D
Dw
Dw.m
Dw.m.e
Dw.mEe

G
Gw
Gw.m
Gw.m.e
Gw.mEe

146 FORTRAN Reference Manual

4

See Section 5.4, “Formatted I/O,” for full details of these edit descriptors.

Nonrepeatable Edit Descriptors

Variable Format Expressions ♦

In general, any integer constant in a format can be replaced by an arbitrary
expression enclosed in angle brackets.

Restriction
The “n” in an “nH…” edit descriptor cannot be a variable format expression.

Description

The FORMAT statement includes the explicit editing directives to produce or
use the layout of the record. It is used with formatted input/output statements
and ENCODE/DECODE statements.

’ a1a2 … an ’ [k]R k defaults to 10

" a1a2 … an " [k]P k defaults to 0

nHa1a2 … an S

$ SU

/ SP

: SS

B Tn

BN nT

BZ TL[n] n defaults to 1

TR[n] n defaults to 1

[n]X n defaults to 1

1 FORMAT(… < e > …)

Statements 147

4

Repeat Factor
r must be a nonzero, unsigned, integer constant.

Repeatable Edit Descriptors
The descriptors I , O, Z, F, E, D, G, L, and A indicate the manner of editing and
are repeatable.

w and e are nonzero, unsigned integer constants.

d and m are unsigned integer constants.

Nonrepeatable Edit Descriptors
The descriptors are the following:

(") , ($) , (’) , (/) , (:) , B, BN, BZ, H, P, R, Q, S, SU, SP, SS, T, TL, TR, X

These descriptors indicate the manner of editing and are not repeatable.

• Each ai is any ASCII character.
• n is a nonzero, unsigned integer constant.
• k is an optionally signed integer constant.

Item Separator
Items in the format specification list are separated by commas. A comma can
be omitted before or after the slash and colon edit descriptors, and between a P
edit descriptor, and the immediately following F, E, D, or G edit descriptors.

In some sense, the comma can be omitted anywhere the meaning is clear
without it, but, other than those cases listed above, this is nonstandard. ◆

Restriction
The FORMAT statement label cannot be used in a GO TO or alternate return.

148 FORTRAN Reference Manual

4

Warnings
• For constant formats, invalid format strings cause warnings and/or error

messages at compile time.

• For formats in variables, invalid format strings cause warnings and/or error
messages at runtime.

• For variable format expressions, of the form <e>, invalid format strings
cause warnings and/or error messages at compile time or runtime.

See Chapter 5, “Input and Output,” for more details and more examples.

Examples

Example 1: Some A, I , and F formats.

Example 2: Variable format expressions.

READ(2, 1) PART, ID, HEIGHT, WEIGHT
1 FORMAT(A8, 2X, I4, F8.2, F8.2)

WRITE(9, 2) PART, ID, HEIGHT, WEIGHT
2 FORMAT(’Part:’, A8, ’ Id:’, I4, ’ Height:’, F8.2,
& ’ Weight:’, F8.2)

DO 100 N = 1, 50
 …

1 FORMAT(2X, F<N+1>.2)

Statements 149

4

4.35 FUNCTION (External)
The FUNCTION statement identifies a program unit as a function subprogram.

Syntax

type is one of the following:

An alternate nonstandard syntax for length specifier is as follows. ◆

Description

Type of Function
The function statement involves type, name, and formal parameter(s).

If type is not present in the FUNCTION statement, then the type of the function
is determined by default and by any subsequent IMPLICIT or type statement.
If type is present, then the function name cannot appear in other type
statements.

[type] FUNCTION fun ([ar [, ar] …])

BYTE◆

CHARACTER
CHARACTER*n
CHARACTER*(*)
COMPLEX
COMPLEX*8◆

COMPLEX*16◆

COMPLEX*32 ◆ (SPARC only)
DOUBLE COMPLEX ◆
DOUBLE PRECISION
INTEGER
INTEGER*2 ◆

INTEGER*4 ◆

LOGICAL

LOGICAL*1 ◆

LOGICAL*2 ◆

LOGICAL*4 ◆

REAL
REAL*4 ◆

REAL*8 ◆

REAL*16 ◆(SPARC only)

n (as in CHARACTER* n) Must be greater than zero

fun Symbolic name assigned to function

ar Formal argument name

[type] FUNCTION name [* m]([ar [, ar] …])

m Unsigned, nonzero integer constant specifying length of the data type.

150 FORTRAN Reference Manual

4

Value of Function
The symbolic name of the function must appear as a variable name in the
subprogram. The value of this variable, at the time of execution of the RETURN
or END statement in the function subprogram, is the value of the function.

Formal Arguments
The list of arguments defines the number of formal arguments. The type of
these formal arguments is defined by some combination of default, type
statements, IMPLICIT statements, and DIMENSION statements.

The number of formal arguments must be the same as the number of actual
arguments at the invocation of this function subprogram.

A function can assign values to formal arguments. These values are returned to
the calling program when the RETURN or END statements are executed in the
function subprogram.

Restrictions
Alternate return specifiers are not allowed in FUNCTION statements.

f77 provides recursive calls. A function or subroutine is called recursively if it
calls itself directly. If it calls another function or subroutine which in turn calls
this function or subroutine before returning, then it is also called recursively.

Examples

Example 1: Character function.

In the above example, BOOL is defined as a function of type CHARACTER with a
length of 5 characters. This function when called returns the string “TRUE” or
“FALSE” depending on the value of the variable ARG.

CHARACTER*5 FUNCTION BOOL(ARG)
BOOL = ’TRUE’
IF (ARG .LE. 0) BOOL = ’FALSE’
RETURN
END

Statements 151

4

Example 2: Real function.

In the above example, the function SQR is defined as function of type REAL (by
default) and returns the square of the number passed to it.

Example 3: Size of function, alternate syntax. ♦

The above nonstandard form is treated as:

4.36 GO TO (Assigned)
The assigned GO TO statement branches to a statement label identified by the
assigned label value of a variable.

Syntax

Description

Execution proceeds as follows:

1. At the time an assigned GO TO statement is executed, the variable i must
have been assigned the label value of an executable statement in the same
program unit as the assigned GO TO statement.

2. If an assigned GO TO statement is executed, control transfers to a statement
identified by i.

FUNCTION SQR (A)
SQR = A*A
RETURN
END

INTEGER FUNCTION FCN*2 (A, B, C)

INTEGER*2 FUNCTION FCN (A, B, C)

GO TO i [[,] (s [, s] …)]

i Integer variable name

s Statement label of an executable statement

152 FORTRAN Reference Manual

4

3. If a list of statement labels is present, the statement label assigned to i must
be one of the labels in the list.

Restrictions
• i must be assigned by an ASSIGN statement in the same program unit as the

GO TO statement.

• s must be in the same program unit as the GO TO statement.

• The same statement label can appear more than once in a GO TO statement.

• The statement you jump to must be executable, not DATA, ENTRY, FORMAT, or
INCLUDE.

• You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the
block.

Example

Example: Assigned GO TO.

4.37 GO TO (Computed)
The computed GO TO statement selects one statement label from a list,
depending on the value of an integer or real expression, and transfers control
to the selected one.

ASSIGN 10 TO N
…
GO TO N (10, 20, 30, 40)
…

10 CONTINUE
…

40 STOP

Statements 153

4

Syntax

Description

Execution proceeds as follows

1. e is evaluated first. It is converted to integer, if required.

2. If 1 ≤ e ≤ n, where n is the number of statement labels specified, then the eth

label is selected from the specified list and control is transferred to it.

3. If the value of e is outside the range, that is, e < 1 or e > n, then the
computed GO TO statement serves as a CONTINUE statement.

Restrictions
• s must be in the same program unit as the GO TO statement.

• The same statement label can appear more than once in a GO TO statement.

• The statement you jump to must be executable, not DATA, ENTRY, FORMAT, or
INCLUDE.

• You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the
block.

Example

Example: Computed GO TO.

GO TO (s [, s] …) [,] e

 s Statement label of an executable statement

 e Expression of type integer or real

…
GO TO (10, 20, 30, 40), N

10 CONTINUE
…

20 CONTINUE
…

40 CONTINUE

154 FORTRAN Reference Manual

4

In the above example:

• If N=1 then go to 10.
• If N=2 then go to 20.
• If N=3 then go to 30.
• If N=4 then go to 40.
• If N<1 or N>4 then fall through to 10.

4.38 GO TO (Unconditional)
The unconditional GO TO statement transfers control to a specified statement.

Syntax

Description

Execution of the GO TO statement transfers control to the statement labeled s.

Restrictions
• s must be in the same program unit as the GO TO statement.

• The statement you jump to must be executable, not DATA, ENTRY, FORMAT,
or INCLUDE.

• You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the
block.

Example

GO TO s

s Statement label of an executable statement

A = 100.0
B = 0.01
GO TO 90
…

90 CONTINUE

Statements 155

4

4.39 IF (Arithmetic)
The arithmetic IF statement branches to one of three specified statements,
depending on the value of an arithmetic expression.

Syntax

Description

The IF statement transfers control to the first, second, or third label if the value
of the arithmetic expression is less than zero, equal to zero, or greater than
zero, respectively.

Restrictions
• The s1, s2, s3 must be in the same program unit as the IF statement.

• The same statement label can appear more than once in a IF statement.

• The statement you jump to must be executable, not DATA, ENTRY, FORMAT, or
INCLUDE.

• You cannot jump into a DO, IF , ELSE IF, or ELSE block from outside the
block.

Example

Since the value of N is zero, control is transferred to statement label 20 .

IF (e) s1, s2, s3

e Arithmetic expression (integer, real, double precision, or quadruple
precision)

s1, s2, s3 Labels of executable statements

N = 0
IF (N) 10, 20, 30

156 FORTRAN Reference Manual

4

4.40 IF (Block)
The block IF statement executes one of two or more sequences of statements,
depending on the value of a logical expression.

Syntax

Description

The block IF statement evaluates a logical expression and, if the logical
expression is true, it executes a set of statements called the IF block. If the
logical expression is false, control transfers to the next ELSE, ELSE IF, or END
IF statement at the same IF -level.

IF-level
The IF- level of a statement S is the value n1–n2, where n1 is the number of
block IF statements from the beginning of the program unit up to the end,
including S; and n2 is the number of END IF statements in the program unit up
to but not including S.

Example: In the following program, The IF -level of statement 9 is 2-1, or, 1.

The IF -level of every statement must be zero or positive. The IF -level of each
block IF , ELSE IF, ELSE, and END IF statement must be positive. The if-level
of the END statement of each program unit must be zero.

IF (e) THEN

 …

END IF

e A logical expression

IF (X .LT. 0.0) THEN
MIN = NODE

END IF
…

9 IF (Y .LT. 0.0) THEN
MIN = NODE - 1

END IF

Statements 157

4

IF-block
An IF block consists of all the executable statements following the block IF
statement, up to, but not including, the next ELSE, ELSE IF, or END IF
statement having the same if -level as the block IF statement. An IF block can
be empty. In the following example, the two assignment statements form an IF
block.

Execution proceeds as follows:

1. The logical expression e is evaluated first. If e is true, execution continues
with the first statement of the IF block.

2. If e is true and the IF block is empty, control is transferred to the next END
IF statement with the same if-level as the block IF statement.

3. If e is false, control is transferred to the next ELSE IF, ELSE, or END IF
statement with the same if-level as the Block IF statement.

4. If the last statement of the IF block does not result in a branch to a label,
control is transferred to the next END IF statement that has the same if-level
as the Block IF statement preceding the IF block.

Restrictions
You cannot jump into an IF block from outside the IF block.

Examples

Example 1: If-then-else.

IF (X .LT. Y) THEN
M = 0
N = N+1

END IF

IF (L) THEN
N=N+1
CALL CALC

ELSE
K=K+1
CALL DISP

END IF

158 FORTRAN Reference Manual

4

Example 2: If-then-else-if with else-if.

Example 3: Nested If-then-else.

IF (C .EQ. ’a’) THEN
NA=NA+1
CALL APPEND

ELSE IF (C .EQ. ’b’) THEN
NB=NB+1
CALL BEFORE

ELSE IF (C .EQ. ’c’) THEN
NC=NC+1
CALL CENTER

END IF

IF (PRESSURE .GT 1000.0) THEN
IF (N .LT. 0.0) THEN

X = 0.0
Y = 0.0

ELSE
Z = 0.0

END IF
ELSE IF (TEMPERATURE .GT. 547.0) THEN

Z = 1.0
ELSE

X = 1.0
Y = 1.0

END IF

Statements 159

4

4.41 IF (Logical)
The logical IF statement executes one single statement, or does not execute it,
depending on the value of a logical expression.

Syntax

Description

The logical IF statement evaluates a logical expression and executes the
specified statement if the value of the logical expression is true. The specified
statement is not executed if the value of the logical expression is false and
execution continues as though a CONTINUE statement had been executed.

st can be any executable statement except a DO block, IF , ELSE IF, ELSE,
END IF, END, or another logical IF statement.

Example

IF (e) st

e Logical expression

st Executable statement

IF (VALUE .LE. ATAD) CALL PUNT ! Note that there is no THEN.
IF (TALLY .GE. 1000) RETURN

160 FORTRAN Reference Manual

4

4.42 IMPLICIT
The IMPLICIT statement confirms or changes the default type of names.

Syntax

type is one of the following permitted types:

IMPLICIT type (a [, a] …) [, type (a [, a] …)]

 or

IMPLICIT NONE ♦

 or

IMPLICIT UNDEFINED(A-Z) ♦

BYTE ◆

CHARACTER

CHARACTER*n

CHARACTER*(*)

COMPLEX

COMPLEX*8◆

COMPLEX*16◆

COMPLEX*32 ◆ (SPARC only)

DOUBLE COMPLEX◆

DOUBLE PRECISION

INTEGER

INTEGER*2 ◆

INTEGER*4 ◆

LOGICAL

LOGICAL*1 ◆

LOGICAL*2 ◆

LOGICAL*4 ◆

REAL

REAL*4 ◆

REAL*8 ◆

REAL*16 ◆ (SPARC only)

AUTOMATIC◆

STATIC ◆

n must be greater than 0

a is either a single letter or a range of single letters in alphabetical order.
 A range of letters can be specified by the first and last letters of the range,
 separated by a minus sign.

Statements 161

4

Description

Implicit Typing
The IMPLICIT statement can also indicate that no implicit typing rules apply
in a program unit.

An IMPLICIT statement specifies a type and size for all user-defined names
that begin with any letter, either a single letter or in a range of letters,
appearing in the specification.

An IMPLICIT statement does not change the type of the intrinsic functions.

An IMPLICIT statement applies only to the program unit that contains it.

A program unit can contain more than one IMPLICIT statement.

IMPLICIT types for particular user names are overridden by a type statement.

No Implicit Typing
The second form of IMPLICIT specifies that no implicit typing should be done
for user-defined names, and all user-defined names shall have their types
declared explicitly.

If either IMPLICIT NONE or IMPLICIT UNDEFINED (A-Z) is specified, there
cannot be any other IMPLICIT statement in the program unit.

Restrictions
• IMPLICIT statements must precede all other specification statements.

• The same letter can appear more than once as a single letter, or in a range of
letters in all IMPLICIT statements of a program unit. ♦

The FORTRAN Standard restricts this to only once. But for f77 , if a letter is
used twice, each usage is declared in order. Note example 4.

162 FORTRAN Reference Manual

4

Examples

Example 1: IMPLICIT , everything is integer.

Example 2: Complex if it starts with U, V, or W; character if it starts with C or S.

Example 3: All items must be declared. ♦

In the above example, once IMPLICIT NONE is specified in the beginning, all
the variables must be declared explicitly.

Example 4: A letter used twice. ♦

In the above example, D through Z implies INTEGER, and A through C implies
REAL.

IMPLICIT INTEGER (A-Z)
X = 3
K = 1
STRING = 0

IMPLICIT COMPLEX (U,V,W), CHARACTER*4 (C,S)
U1 = (1.0, 3.0)
STRING = ’abcd’
I = 0
X = 0.0

IMPLICIT NONE
CHARACTER STR*8
INTEGER N
REAL Y
N = 100
Y = 1.0E5
STR = ’Length’

IMPLICIT INTEGER (A-Z)
IMPLICIT REAL (A-C)
C = 1.5E8
D = 9

Statements 163

4

4.43 INCLUDE
The INCLUDE ♦ statement inserts a file into the source program.

Syntax

Description

The contents of the named file replace the INCLUDE statement.

Searchpath
If the name referred to by the INCLUDE statement begins with the character ‘/’,
then it is taken by f77 to mean the absolute path name of the include file.
Otherwise, f77 looks for the file in the following directories, in this order:

1. The directory containing the source file with the INCLUDE statement

2. The current directory in which the f77 command was issued

3. The default list. This is different in Solaris 1.x and 2.x.

Solaris 2.x:

If you installed into the standard directory, the default list is

/opt/SUNWspro/SC3.0.1/include/f77 /usr/include

If you installed into nonstandard directory / mydir/ , then it is

/ mydir/SUNWspro/SC3.0.1/include/f77 /usr/include

Solaris 1.x:

If you installed in the standard directory, then the default list is

/usr/lang/SC3.0.1/include/f77 /usr/include

INCLUDE ’ file ’

or

INCLUDE " file "

file Name of the file to be inserted

164 FORTRAN Reference Manual

4

If you installed into nonstandard directory / mydir/ , then it is

/ mydir/SC3.0.1/include/f77 /usr/include

Remarks:

• The ”SC3.0.1 ” varies with the release of the set of compilers.
• These INCLUDE statements can be nested ten deep.

Preprocessor #include
The paths and order searched for the INCLUDE statement are not the same as
those searched for the preprocessor #include directive, described under -I in
the User’s Guide. Files included by the preprocessor #include directive can
contain #defines and the like, while files included with the compiler
INCLUDE statement must contain only FORTRAN statements.

VMS Logical File Names in the INCLUDE statement
f77 interprets VMS logical file names on the INCLUDE statement if:

1. The -xl[d] compiler option is set

2. The environment variable LOGICALNAMEMAPPING is there to define the
mapping between the logical names and the UNIX path name.

f77 uses the following rules for the interpretation:

• The environment variable should be set to a string with the syntax:

where each lname is a logical name and each path1 , path2 , and so forth.
is the path name of a directory (without a trailing ‘/ ’).

• All blanks are ignored when parsing this string. It strips any trailing
“/[no]list ” from the file name in the INCLUDE statement.

• Logical names in a file name are delimited by the first “:” in the VMS file
name, so f77 converts file names of the “lname1:file ” form to the
“path1/file ” form.

• For logical names, uppercase/lowercase is significant. If a logical name is
encountered on the INCLUDE statement which is not specified in the
LOGICALNAMEMAPPING, the file name is used unchanged.

"lname1=path1; lname2=path2; … "

Statements 165

4

Examples

Example 1: INCLUDE, simple case.

The above line is replaced by the contents of the file stuff .

Example 2: INCLUDE, search paths.

For the following conditions:
• Your source file has the line

• Your current working directory is /usr/ftn
• Your source file is /usr/ftn/projA/myprg.f

In this example, f77 seeks const.h in these directories, in the order shown.

If you installed into the standard directory, then f77 searches these:

If you installed into nonstandard directory /mydir/, it searches these:

If you installed into the standard directory, then f77 searches these:

INCLUDE ’stuff’

INCLUDE ’ver1/const.h’

Solaris 2.x /usr/ftn/projA/ver1/
/usr/ftn/ver1/
/opt/SUNWspro/SC3.0.1/include/ f77 /ver1/
/usr/include

/usr/ftn/projA/ver1/
/usr/ftn/ver1/
/ mydir/SUNWspro/SC3.0.1/include/ f77 /ver1/
/usr/include

Solaris 1.x /usr/ftn/projA/ver1/
/usr/ftn/ver1/
/usr/lang/SC3.0.1/include/f77/ver1/
/usr/include

166 FORTRAN Reference Manual

4

If you installed into nonstandard directory /mydir/, it searches these:

4.44 INQUIRE
The INQUIRE statement returns information about a unit or file.

Syntax

An inquire by unit has the general form:

An inquire by file has the general form:

The INQUIRE slist can include one or more of the following, in any order:

• ERR = s
• EXIST = ex
• OPENED = od
• NAMED = nmd
• ACCESS = acc
• SEQUENTIAL = seq
• DIRECT = dir
• FORM = fm
• FORMATTED = fmt
• UNFORMATTED = unf
• NAME = fn
• BLANK = blnk

/usr/ftn/projA/ver1/
/usr/ftn/ver1/
/ mydir/SC3.0.1/include/f77/ver1/
/usr/include

INQUIRE([UNIT=] u, slist)

INQUIRE(FILE= fn , slist)

fn Name of the file being queried

u Unit of the file being queried

slist Specifier list

Statements 167

4

• OSTAT = ios
• NUMBER = num
• RECL = rcl
• NEXTREC = nr

Description

You can determine such things about a file as whether it exists, is opened, or is
connected for sequential I/O. That is, files have such attributes as name,
existence (or nonexistence), and the ability to be connected in certain
ways (FORMATTED, UNFORMATTED, SEQUENTIAL, or DIRECT).

You can inquire either by unit or by file, but not by both in the same INQUIRE
statement.

In this system environment, the only way to discover what permissions you
have for a file is to use the ACCESS (3F) function. The INQUIRE statement does
not determine permissions.

The specifiers for INQUIRE are described as follows.

FILE = fn

n is a character expression or * with the name of the file. Trailing blanks in
the file name are ignored. If the file name is all blanks, that means the
current directory. The file need not be connected to a unit in the current
program.

UNIT = u

u is an integer expression or * with the value of the unit.

Exactly one of FILE or UNIT must be used.

IOSTAT = ios

ios is as in the OPEN statement.

ERR = s

s is a statement label of a statement to branch to if an error occurs during
the execution of the INQUIRE statement.

EXIST = ex

168 FORTRAN Reference Manual

4

ex is a logical variable that is set to .TRUE. if the file or unit exists and
.FALSE. otherwise.

OPENED = od

od is a logical variable that is set to .TRUE. if the file is connected to a unit
or the unit is connected to a file, and .FALSE. otherwise.

NUMBER = num

num is an integer variable that is assigned the number of the unit connected
to the file, if any. If no file is connected, the variable is unchanged.

NAMED = nmd

nmd is a logical variable that is assigned .TRUE. if the file has a name,
.FALSE. otherwise.

NAME = fn

fn is a character variable that is assigned the name of the file connected to
the unit. If you do an inquire-by-unit, the name parameter is undefined
unless both the values of the OPENED and NAMED variables are both true. If
you do an inquire-by-file, the name parameter is returned, even though the
FORTRAN Standard leaves it undefined.

ACCESS = acc

acc is a character variable that is assigned the value ’SEQUENTIAL’ if the
connection is for sequential I/O and ’DIRECT’ if the connection is for
direct I/O. The value is undefined if there is no connection.

SEQUENTIAL = seq

seq is a character variable that is assigned the value ’YES’ if the file could
be connected for sequential I/O, ’NO’ if the file could not be connected for
sequential I/O, and ’UNKNOWN’ if the system can’t tell.

DIRECT = dir

dir is a character variable that is assigned the value ’YES’ if the file could
be connected for direct I/O, ’NO’ if the file could not be connected for
direct I/O, and ’UNKNOWN’ if the system can’t tell.

FORM = fm

Statements 169

4

fm is a character variable which is assigned the value ’FORMATTED’ if the
file is connected for formatted I/O and ’UNFORMATTED’ if the file is
connected for unformatted I/O.

FORMATTED = fmt

fmt is a character variable that is assigned the value ’YES’ if the file could
be connected for formatted I/O, ’NO’ if the file could not be connected for
formatted I/O, and ’UNKNOWN’ if the system can’t tell.

UNFORMATTED =unf

unf is a character variable that is assigned the value ’YES’ if the file could
be connected for unformatted I/O, ’NO’ if the file could not be connected
for unformatted I/O, and ’UNKNOWN’ if the system can’t tell.

RECL = rcl

rcl is an integer variable that is assigned the record length of the records in
the file if the file is connected for direct access. f77 does not ever adjust the
rcl returned by INQUIRE. The OPEN statement does just such an
adjustment if the -xl[d] option is set.

NEXTREC = nr

nr is an integer variable that is assigned one more than the number of the
last record read from a file connected for direct access.

BLANK = blnk

blnk is a character variable that is assigned the value ’NULL’ if null blank
control is in effect for the file connected for formatted I/O and ’ZERO’ if
blanks are being converted to zeros and the file is connected for formatted
I/O.

Example: An OPEN statement in which declarations are omitted.

For f77 this statement opens the console for formatted sequential I/O. An
INQUIRE for either unit 1 or file /dev/console would reveal that the file has
the following aspects. It has the following aspects:

• Exists
• Is connected to unit 1

OPEN(1, FILE=’/dev/console’)

170 FORTRAN Reference Manual

4

• Has the name /dev/console
• Is opened for sequential I/O
• Could be connected for sequential I/O
• Can’t be connected for direct I/O (can’t seek)
• Is connected for formatted I/O
• Can be connected for formatted I/O
• Can’t be connected for unformatted I/O (can’t seek)
• Has neither a record length nor a next record number
• Is ignoring blanks in numeric fields

Statements 171

4

Table 4-2 INQUIRE Options Summary

 Form: SPECIFIER = Variable

SPECIFIER Value of Variable Data type of Variable

ACCESS ’DIRECT’
’SEQUENTIAL’

CHARACTER

BLANK ’NULL’,’ZERO’ CHARACTER

The asterisk (*)
indicates the
returned value is
undefined for
inquire-by-unit in
the FORTRAN
Standard, but is
defined in f77 .

DIRECT * ’YES’
’NO’
’UNKNOWN’

CHARACTER

ERR Statement number INTEGER

EXIST .TRUE., .FALSE. LOGICAL

FORM ’FORMATTED’
’UNFORMATTED’

CHARACTER

FORMATTED * ’YES’
’NO’
’UNKNOWN’

CHARACTER

IOSTAT Error number INTEGER

The † indicates the
returned value is
undefined for
inquire-by-file in the
FORTRAN
Standard, but is
defined in f77 .

NAME † Name of the file CHARACTER

NAMED † .TRUE., .FALSE. LOGICAL

NEXTREC Next record number INTEGER

NUMBER * Unit number INTEGER

OPENED .TRUE., .FALSE. LOGICAL

RECL Record length INTEGER

SEQUENTIAL * ’YES’
’NO’
’UNKNOWN’

CHARACTER

UNFORMATTED * ’YES’
’NO’
’UNKNOWN’

CHARACTER

172 FORTRAN Reference Manual

4

• If a file is scratch, then NAMED and NUMBER are not returned.

• If there is no file with the specified name, then these are not returned:
DIRECT, FORMATTED, NAME, NAMED, SEQUENTIAL, and UNFORMATTED.

• If OPENED=.FALSE., then these are not returned: ACCESS, BLANK, FORM,
NEXTREC, and RECL.

• If no file is connected to the specified unit, then these are not returned:
ACCESS, BLANK, DIRECT, FORM, FORMATTED, NAME, NAMED, NEXTREC,
NUMBER, RECL, SEQUENTIAL, and UNFORMATTED.

• If ACCESS=’SEQUENTIAL’, then these are not returned: RECL and
NEXTREC.

• If FORM=’UNFORMATTED’, then BLANK is not returned.

Examples

 Example 1: Inquire by unit.

Example 2: Inquire by unit — omit the UNIT= .

Example 3: Inquire by file.

Example 4: More than one answer.

LOGICAL OK
INQUIRE(UNIT=3, OPENED=OK)
IF (OK) CALL GETSTD (3, STDS)

LOGICAL OK
INQUIRE(3, OPENED=OK)
IF (OK) CALL GETSTD (3, STDS)

LOGICAL THERE
INQUIRE(FILE=’.profile’, EXIST=THERE)
IF (THERE) CALL GETPROFILE(FC, PROFILE)

CHARACTER FN*32
LOGICAL HASNAME, OK
INQUIRE (UNIT=3, OPENED=OK, NAMED=HASNAME, NAME=FN)
IF (OK .AND. HASNAME) PRINT *, ’Filename="’, FN, ’"’

Statements 173

4

4.45 INTEGER
The INTEGER statement specifies the type to be integer for a symbolic constant,
variable, array, function, or dummy function.

Optionally, it specifies array dimensions and size and initializes with values.

Syntax

Description

If you specify the size as 2 or 4, you get what you specify; if you do not specify
the size, you get the default size.

Default Size

The default size depends on –i2 and –r8.

• If the –i2 option is on the f77 command line, then the default length is 2;
otherwise, the default is 4.

• If the –r8 option is on the f77 command line, then the compiler allocates 8
bytes, but still does only 4-byte arithmetic. This is done to satisfy the
requirements of the FORTRAN Standard that an integer and a real datum
are allocated the same amount of storage.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

INTEGER [* len [,]] v [* len [/ c/]] [, v [* len [/ c/]] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

len Either 2 or 4, the length in bytes of the symbolic constant, variable, array
element, or function

c List of constants for the immediately preceding name

174 FORTRAN Reference Manual

4

Examples

Example 1: Integer scalars. Each of these is equivalent to the others, if there is
no –i2. (Don’t use all three lines in the same program unit — you cannot
declare anything more than once in the same program unit.)

Example 2: Initialize.

Example 3: Integer arrays. Use any one of these lines; they are equivalent.

4.46 INTRINSIC
The INTRINSIC statement lists intrinsic functions that can be passed as actual
arguments.

Syntax

Description

If the name of an intrinsic function is used as an actual argument, it must
appear in an INTRINSIC statement in the same program unit.
Example.

The following example shows intrinsic functions passed as actual arguments:

INTEGER U, V
INTEGER*4 U, V
INTEGER U*4, V*4

INTEGER U / 1 /, V / 4 /, W*2 / 1 /, X*2 / 4 /

INTEGER U(9), V(9)
INTEGER*4 U(9), V(9)
INTEGER U*4(9), V(9)*4

INTRINSIC fun [, fun] …

fun Function name

INTRINSIC SIN, COS
X = CALC (SIN, COS)

Statements 175

4

Restrictions
• A symbolic name must not appear in both an EXTERNAL and an

INTRINSIC statement in the same program unit.

• The actual argument must be a specific name. Most generic names are also
specific, but a few are not: IMAG, LOG, and LOG10.

• A symbolic name can appear more than once in an INTRINSIC statement.♦ In
the FORTRAN Standard a symbolic name can appear only once in an
INTRINSIC statement.

• Because they are in-line, the following cannot be passed as actual arguments.

Table 4-3 Intrinsics That Cannot Be Actual Arguments

LOC
AND
IAND
IIAND
JIAND
OR
IOR
IIOR
IEOR
IIEOR
JIOR
JIEOR
NOT
INOT
JNOT
XOR
LSHIFT
RSHIFT
INT
IINT
JINT
IQINT

IIQINT
JIQINT
IFIX
IIFIX
JIFIX
IDINT
IIDINT
JIDINT
FLOAT
FLOATI
FLOATJ
DFLOAT
DFLOATI
DFLOATJ
SNGL
SNGLQ
REAL
DREAL
DBLE
DBLEQ
QEXT

QEXTD
QFLOAT
CMPLX
DCMPLX
ICHAR
IACHAR
ACHAR
CHAR
MAX
MAX0
AMAX0
AIMAX0
AJMAX0
IMAX0
JMAX0
MAX1
AMAX1
DMAX1
IMAX1
JMAX1
QMAX1

MIN
MIN0
AMIN0
AIMIN0
AJMIN0
IMIN0
JMIN0
MIN1
AMIN1
DMIN1
IMIN1
JMIN1
QMIN1
IMAG
EPBASE
EPEMAX
EPEMIN
EPHUGE
EPMRSP
EPPREC
EPTINY

LOG
LOG10
QREAL
QCMPLX

176 FORTRAN Reference Manual

4

4.47 LOGICAL
The LOGICAL statement specifies the type to be logical for a symbolic constant,
variable, array, function, or dummy function.

Optionally, it specifies array dimensions and initializes with values.

Syntax

Description

If you specify the size as 1, 2, or 4, then you get what you specify; but if you do
not specify the size, you get the default size.

Default Size

The default size depends on –i2 and –r8 .

• If the –i2 option is on the f77 command line, then the default length is 2;
otherwise, the default is 4.

• If the –r8 option is on the f77 command line, then the compiler allocates 8
bytes, but still does only 4-byte arithmetic. This is done to satisfy the
requirements of the FORTRAN Standard that an integer and a real datum
are allocated the same amount of storage.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

LOGICAL [* len [,]] v[* len [/ c/]] [, v [* len [/ c/]] …

v Name of a symbolic constant, variable, array, array declarator, function, or
dummy function

len Either 1, 2, or 4, the length in bytes of the symbolic constant, variable,
array element, or function

c List of constants for the immediately preceding name

Statements 177

4

Examples

Example 1: Each of these statements is equivalent to the others, if there is no
-i2 . (Don’t use all three statements in the same program unit — you cannot
declare anything more than once in the same program unit.)

Example 2: Initialize.

4.48 MAP
The MAP♦ declaration defines alternate groups of fields in a union.

Syntax

Description

 Each field declaration can be one of the following:

• Type declaration (can include initial values)

• Substructure (either another structure declaration, or a record that has been
previously defined)

• Union declaration (See Section 4.70, “UNION and MAP, ” for more detail.)

LOGICAL U, V
LOGICAL*4 U, V
LOGICAL U*4, V*4

LOGICAL U /.false./, V /0/, W*4 /.true./, X*4 /’z’/

MAP
field-declaration
…
[field-declaration]

END MAP

178 FORTRAN Reference Manual

4

Example

 Example: MAP (See Section 4.70, “UNION and MAP,” for details.)

4.49 NAMELIST
The NAMELIST♦ statement defines a list of variables or array names, and
associates it with a unique group name.

Syntax

Description

Group Name
The group name is used in the namelist-directed I/O statement to identify the
list of variables or arrays that are to be read or written. This name is used by
namelist-directed I/O statements instead of an input/output list. The group
name must be unique and identify a list whose items can be read or written.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE

NAMELIST / grname / namelist [[,] / grname / namelist] …

grname Symbolic name of the group

namelist List of variables and arrays

Statements 179

4

A group of variables can be defined through several NAMELIST statements
with the same group name. Together, these definitions are taken as defining
one NAMELIST group.

Namelist Items
The namelist items can be of any data type. The items in the namelist can be
variables or arrays and can appear in more than one namelist. Only the items
specified in the namelist can be read or written in namelist-directed I/O, but it
is not necessary to specify data in the input record for every item of the
namelist.

The order of the items in the namelist controls the order in which the values
are written in namelist-directed output. The items in the input record can be in
any order.

Restrictions
• Input data can assign values to the elements of arrays or to substrings of

strings that appear in a namelist.

• The following cannot appear in a NAMELIST statement:
• Constants (parameters),
• Array elements
• Records and record fields
• Character substrings
• Dummy arrays (with nonconstant dimension specifiers)
• Automatic variables and arrays

See Chapter 5, “Input and Output,” for more on namelist.

Example

Example: The NAMELIST statement.

In this example, the group CASE has three variables SAMPLE, NEW, and DELTA.

CHARACTER*16 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA

180 FORTRAN Reference Manual

4

4.50 OPEN
The OPEN statement connects an existing external file to a unit, or creates a file
and connects it to a unit, or changes some specifiers of the connection.

Syntax

Description

For tape, it is more reliable to use the TOPEN() routines. The OPEN statement
determines the type of file named, whether the connection specified is legal for
the file type (for instance, DIRECT access is illegal for tape and tty devices),
and allocates buffers for the connection if the file is on tape or if the
subparameter FILEOPT=’BUFFER=n’ is specified. Existing files are never
truncated on opening. The options can be specified in any order.

Table 4-4 OPEN Keyword Specifier Summary

OPEN(KEYWORD1=value1, KEYWORD2=value2, …)

KEYWORDn A valid keyword specifier, as listed below

Standard Form Alternate Form The alternate forms give a
warning if the –ansi flag is set.

[UNIT=] u

FILE = fin NAME =fin

ACCESS = acc

BLANK = blnk

ERR = s

FORM = fm

IOSTAT = ios

RECL = rl RECORDSIZE = rl

STATUS = sta TYPE = sta

FILEOPT = fopt ♦

Statements 181

4

Details of the OPEN keyword specifier are listed in the following table.

Table 4-5 OPEN Keyword Specifier Details

[UNIT=] u

u is an integer expression or an asterisk (*) that specifies the unit number. The u is required. If the u is first in the
parameter list, then the “UNIT=” can be omitted.

FILE= fin

fin is a character expression or * naming the file to open.

An OPEN statement need not specify a file name.

If not specified, a default file name is created.

Reopen

If you open a unit that’s already open without specifying a file name (or with the previous file name),
FORTRAN thinks you are reopening the file to change parameters. The file position is not changed. The only
parameters you are allowed to change are BLANK (NULL or ZERO) and FORM (FORMATTED or PRINT). To change
any other parameters, you must close, then reopen the file.

Switch Files

If you open a unit that’s already open, but you specify a different file name, it is as if you closed with the old file
name before the open.

Switch Units

If you open a file that’s already open, but you specify a different unit, that is an error. This error is not caught by
the ERROR= option, and the program will not terminate abnormally.

Scratch

If a file is opened with STATUS=’SCRATCH’, a temporary file is created and opened. See STATUS=sta

ACCESS=acc

The ACCESS=acc clause is optional. acc is a character expression.

Possible values are: APPEND, DIRECT, or SEQUENTIAL. The default is SEQUENTIAL.

If ACCESS=’APPEND’:

SEQUENTIAL and FILEOPT=’EOF ’ are assumed. This is for opening a file to append records to an existing
sequential-access file. Only WRITE operations are allowed . This is an extension. ♦

182 FORTRAN Reference Manual

4

If ACCESS=’DIRECT’:

RECL must also be given, since all I/O transfers are done in multiples of fixed-size records.

Only directly accessible files are allowed; thus, tty, pipes, and magnetic tape are not allowed. If you build a file
as sequential, then you cannot access it as direct.

If FORM is not specified, unformatted transfer is assumed.

If FORM=’UNFORMATTED’, the size of each transfer depends upon the data transferred.

If ACCESS=’SEQUENTIAL’:

RECL is ignored. ♦

The FORTRAN Standard prohibits RECL for sequential access.

No padding of records is done.

If you build a file as direct, then you cannot access it as sequential.

Files don’t have to be randomly accessible, in the sense that tty , pipes, and tapes can be used. But for tapes we
recommend the TOPEN() routines because they are more reliable.

If FORM is not specified, formatted transfer is assumed.

If FORM=’FORMATTED’, each record is terminated with a newline (\n) character. This means that each record
actually has one extra character.

If FORM=’PRINT’, the file acts like a FORM=’FORMATTED’ file, except for interpretation of column-1 characters
on output (0 = double space, 1 = form feed, and blank = single space).

If FORM=’UNFORMATTED’, each record is preceded and terminated with an INTEGER*4 count, making each
record 8 characters longer than normal. This convention is not shared with other languages, so it is useful only
for communicating between FORTRAN programs.

FORM=fm

The FORM=fm clause is optional. The fm is a character expression.

Possible values are ’FORMATTED’, ’UNFORMATTED’, or ’PRINT’. ♦

The default is ’FORMATTED’.

This option interacts with ACCESS.

The ’PRINT’ makes it a print file. See Chapter 5, “Input and Output,” for details.

Table 4-5 OPEN Keyword Specifier Details (Continued)

Statements 183

4

RECL=rl

The RECL=rl clause is required if ACCESS=’DIRECT’ and ignored otherwise.

The rl is an integer expression for the length in characters of each record of a file. rl must be positive.

If the record length is unknown, you can use RECL=1; see Direct Access I/O on page 289.

If -xl[d] is not set, rl is number of characters, and record length is rl.

If -xl[d] is set, rl is number of words, and record length is rl*4. ♦

There are more details in the ACCESS=’SEQUENTIAL’ section, above.

Each WRITE defines one record and each READ reads one record (unread characters are flushed).

The default buffer size for tape is 64K characters. But for tapes we recommend the TOPEN() routines because
they are more reliable.

ERR=s

The ERR=s clause is optional.

The s is a statement label of a statement to branch to if an error occurs during execution of the OPEN statement.

IOSTAT=ios

The IOSTAT=ios clause is optional.

The ios is an integer variable that receives the error status from an OPEN. After the execution of the OPEN, if no
error condition exists, then ios is zero, otherwise it is some positive number.

If you want to avoid aborting the program when an error occurs on an OPEN, include “ERR=s” o “IOSTAT=ios”.

BLANK=blnk

The BLANK=blnk clause is optional. The blnk is a character expression that indicates how blanks are treated.

Possible values are:

’ZERO’ (blanks are treated as zeroes)

’NULL’ (blanks are ignored during numeric conversion)

Default: ’NULL’

This clause is for formatted input only.

Table 4-5 OPEN Keyword Specifier Details (Continued)

184 FORTRAN Reference Manual

4

STATUS=sta

The STATUS=sta clause is optional. The sta is a character expression.
Possible values are: ’OLD’ , ’NEW’ , ’UNKNOWN’, or ’SCRATCH’ . The default is ’UNKNOWN’.

’OLD’ — The file already exists (nonexistence is an error). For example: STATUS=’OLD’

’NEW’ — The file doesn’t exist (existence is an error).
If ’FILE= name’ is not specified, then a file named ‘fort. n’ is opened, where n is the specified logical unit.

’UNKNOWN’ — Existence is unknown (the default).

’SCRATCH’ — For a file opened with STATUS=’SCRATCH’, a temporary file with a name of the form
tmp.F AAAxnnnnn is opened. Any other STATUS specifier without an associated file name results in
opening a file named ‘fort. n’, where n is the specified logical unit number. By default, a scratch file is
deleted when closed or during normal termination. If the program aborts, then the file may not get deleted.
To prevent deletion, CLOSE with STATUS=’KEEP’.

The FORTRAN Standard prohibits opening a named file as scratch: ifOPEN has a FILE =name option, then it
cannot have a STATUS=’SCRATCH’ option.

This Fortran extends the standard by allowing opening named files as scratch. ♦
Such files are normally deleted when closed or at normal termination.

TMPDIR: Fortran programs normally put scratch files in the current working directory. If the TMPDIR
environment variable is set to a writeable directory, then the program puts scratch files there. ♦

FILEOPT=fopt ♦

The FILEOPT=fopt clause is optional. The fopt is a character expression.
Possible values are:

’NOPAD’ — Don’t extend records with blanks if you read past the end-of-record (formatted input only). That is,
a short record causes an abort with an error message, rather than just filling with trailing blanks and
continuing.

’BUFFER=n’ — This suboption is for either disk or magnetic tape. But for tapes we recommend theTOPEN()
routines because they are more reliable.

 It sets the size in bytes of the I/O buffer to use. It is necessary only when writing to a new file, since the I/O
system defaults to 64K-character buffers for tape, allowing reads to anything smaller than that. For writes,
larger buffers yield faster I/O. For good performance, make the buffer a multiple of the largest record size. This
can be larger than actual physical memory, and probably the very best performance is obtained by making the
record size equal to the entire file size. Larger buffer sizes can cause extra paging. For tape only, it must be at
least 8 characters greater than the largest record you write; this is to avoid spanning tape blocks.

’EOF’ —This opens a file at end-of-file rather than at the beginning (useful for appending data to file).
 Example: FILEOPT=’EOF’ . Unlike ACCESS=’APPEND’, in this case both READ and BACKSPACE are allowed.

Table 4-5 OPEN Keyword Specifier Details (Continued)

Statements 185

4

Examples

Example 1: Open a file and connect it to unit 8. Either of the following forms of
the OPEN statement will open the file projectA/data.test and connect it to
FORTRAN unit 8.

In the above example, the following properties are established by default:
sequential access, formatted file, and (unwisely) no allowance for error during
file open.

Example 2: Explicitly specify properties.

Example 3: Either of these opens file fort.8 and connects it to unit 8.

In the above example, you get sequential access, formatted file, and no
allowance for error during file open. If the file fort.8 does not exist before
execution, it is created. The file remains after termination.

Example 4: Allowing for open errors.

The above statement branches to 99 if an error occurs during the OPEN.

Example 5: Allowing for variable-length records.

For more on variable-length records, see Direct Access I/O on page 289.

Example 6: Scratch file.

This opens a temporary file with a name such as tmp.FAAAa003zU . The file is
usually in the current working directory, or in TMPDIR if that variable is set.

OPEN(UNIT=8, FILE=’projectA/data.test’)
OPEN(8, FILE=’projectA/data.test’)

OPEN(UNIT=8, FILE=’projectA/data.test’,
& ACCESS=’SEQUENTIAL’, FORM=’FORMATTED’)

OPEN(UNIT=8)
OPEN(8)

OPEN(UNIT=8, FILE=’projectA/data.test’, ERR=99)

OPEN(1, ACCESS='DIRECT', recl=1)

OPEN(1, STATUS='SCRATCH')

186 FORTRAN Reference Manual

4

4.51 OPTIONS
The OPTIONS♦ statement overrides compiler command-line options.

Syntax

Description

The OPTIONS statement qualifiers are:

Restrictions
• The OPTIONS statement must be the first statement in a program unit. Note

that this means it must be before the BLOCK DATA, FUNCTION, PROGRAM,
and SUBROUTINE statements.

• Options set by the OPTIONS statement override those of the command line.
• Options set by the OPTIONS statement endure for that program unit only.

OPTIONS / qualifier [/ qualifier …]

Table 4-6 OPTIONS Statement Qualifiers

Qualifier Action Taken

/[NO]G_FLOATING None (not implemented)

/[NO]I4 Enables/Disables the -i2 option

/[NO]F77 None (not implemented)

/CHECK=ALL Enables the -C option

/CHECK=[NO]OVERFLOW None (not implemented)

/CHECK=[NO]BOUNDS Disables/Enables the -C option

/CHECK=[NO]UNDERFLOW None (not implemented)

/CHECK=NONE Disables the -C option

/NOCHECK Disables the -C option

/[NO]EXTEND_SOURCE Disables/enables the -e option

Statements 187

4

• A qualifier can be abbreviated to four or more characters.
• Uppercase or lowercase is not significant.

Example

For the following source, integer variables declared with no explicit size will
occupy 4 bytes rather than 2, with or without the –i2 option on the command
line. This does not change the size of integer constants, only variables.

By way of contrast, if you use /NOI4 , then all integer variables declared with
no explicit size occupy 2 bytes rather than 4, with or without the –i2 option on
the command line. But integer constants occupy 2 bytes with –i2 , and 4 bytes
otherwise.

4.52 PARAMETER
The PARAMETER statement assigns a symbolic name to a constant.

Syntax

An alternate syntax is allowed, if the –xl flag is set. ♦

In this alternate form, the type of the constant expression determines the type
of the name; no conversion is done.

OPTIONS /I4
PROGRAM FFT
…
END

PARAMETER (p=e [, p=e] …)

p Symbolic name

e Constant expression

PARAMETERp=e [, p=e] …

188 FORTRAN Reference Manual

4

Description

e can be of any type and the type of symbolic name and the corresponding
expression must match.

A symbolic name can be used to represent the real part, imaginary part, or
both parts of a complex constant.

A constant expression is made up of explicit constants and parameters and the
FORTRAN operators. See Section 3.6, “Constant Expressions,” for more detail.

No structured records or record fields are allowed in a constant expression.

Exponentiation to a floating-point power is not allowed, and a warning is
issued.

If the type of the data expression does not match the type of the symbolic
name, then the type of the name must be specified by a type statement or
IMPLICIT statement prior to its first appearance in a PARAMETER statement,
otherwise conversion will be performed.

If a CHARACTER statement explicitly specifies the length for a symbolic name,
then the constant in the PARAMETER statement can be no longer than that
length. Longer constants are truncated, and a warning is issued. The
CHARACTER statement must appear before the PARAMETER statement.

If a CHARACTER statement uses *(*) to specify the length for a symbolic
name, then the data in the PARAMETER statement are used to determine the
length of the symbolic constant. The CHARACTER statement must appear before
the PARAMETER statement.

Any symbolic name of a constant that appears in an expression e must have
been defined previously in the same or a different PARAMETER statement in the
same program unit.

Restrictions
• A symbolic constant must not be defined more than once in a program unit.

• If a symbolic name appears in a PARAMETER statement, then it cannot
represent anything else in that program unit.

• A symbolic name cannot be used in a constant format specification, but it
can be used in a variable format specification.

Statements 189

4

• If you pass a parameter as an argument, and the subprogram tries to change
it, you may get a runtime error.

Examples

Example 1: Some real, character, and logical parameters.

Example 2: Let the compiler count the characters.

Example 3: The alternate syntax, if the –xl flag is set.

The above statement is treated as:

Note that an ambiguous statement that could be interpreted as either a
PARAMETER statement or an assignment statement is always taken to be the
former, as long as either the –xl or –xld option is set.

Example: The following statement is ambiguous.

With -xl , the above statement is a PARAMETER statement about variable S.

It is not an assignment statement about the variable PARAMETERS.

CHARACTER HEADING*10
LOGICAL T
PARAMETER (EPSILON=1.0E-6, PI=3.141593,

& HEADING=’IO Error #’,
& T=.TRUE.)

…

CHARACTER HEADING*(*)
PARAMETER (HEADING=’I/O Error Number’)
…

PARAMETER FLAG1 = .TRUE.

LOGICAL FLAG1
PARAMETER (FLAG1 = .TRUE.)

PARAMETER S = .TRUE.

PARAMETER S = .TRUE.

PARAMETERS = .TRUE.

190 FORTRAN Reference Manual

4

4.53 PAUSE
The PAUSE statement suspends execution and waits for you to type go .

Syntax

Description

The PAUSE statement suspends program execution temporarily and waits for
acknowledgment. On acknowledgment, execution continues.

The argument string, if present, is displayed on the screen. Then the following
message is displayed on the screen:

After you type go , execution continues as if a CONTINUE statement is executed.

PAUSE [str]

str String of not more than 5 digits or a character constant

PAUSE. To resume execution, type: go
Any other input will terminate the program.

demo$ cat p.f
PRINT *, "Start"
PAUSE 1
PRINT *, "Ok"
END

demo$ f77 p.f
p.f:
 MAIN:
demo$ a.out
Start
PAUSE: 1
To resume execution, type: go
Any other input will terminate the program.
go
Execution resumed after PAUSE.
Ok
demo$ ■

Statements 191

4

If stdin is not a tty io device, PAUSE displays a message of the form:

where pid is the process ID.

Example: stdin not a tty I/O device.

For the above example, type the following at a shell prompt in some other
window. (The window displaying the message cannot accept command input.)

4.54 POINTER
The POINTER♦ statement establishes pairs of variables and pointers.

Syntax

Description

Each pointer contains the address of its paired variable.

A pointer-based variable is a variable paired with a pointer in a POINTER
statement. A pointer-based variable is usually called just a based variable. The
pointer is the integer variable that contains the address.

PAUSE: To resume execution, type: kill -15 pid

demo$ a.out < mydatafile
PAUSE: To resume execution, type: kill -15 20537
demo$ n

demo$ kill -15 20537

POINTER (p1, v1) [, (p2, v2) …]

v1, v2 Pointer-based variables

p1, p2 Corresponding pointers

192 FORTRAN Reference Manual

4

Usage
Normal use of pointer-based variables involves the following steps (the first
two steps can be in either order).

1. Define the pairing of the pointer-based variable and the pointer in a
POINTER statement.

2. Define the type of the pointer-based variable. The pointer itself is integer
type, but in general, it is safer if you not list it in an INTEGER statement.

3. Set the pointer to the address of an area of memory that has the appropriate
size and type. You do not normally do anything else with the pointer
explicitly.

4. Reference the pointer-based variable. Just use the pointer-based variable in
normal FORTRAN statements – the address of that variable will always be
taken from its associated pointer.

Address and Memory
Note that no storage for the variable is allocated when a pointer-based variable
is defined, so it is your responsibility to provide an address of a variable of the
appropriate type and size, and assign the address to a pointer, usually with the
normal assignment statement or data statement.

There are three procedures used to manage memory with pointers

• LOC — You can obtain the address from the intrinsic function LOC() .

• MALLOC — You can obtain both the area of memory and the address from
the function MALLOC().

• FREE — You can deallocate a region of memory previously allocated by
MALLOC() by using the subroutine FREE() .

Subroutine FREE()
The subroutine FREE() deallocates a region of memory previously allocated
by MALLOC(). The argument given to FREE() must be a pointer previously
returned by MALLOC(), but not already given to FREE() . The memory is
returned to the memory manager, making it unavailable to the programmer.

Statements 193

4

Function MALLOC()
The function MALLOC() allocates an area of memory and returns the address
of the start of that area. The argument to the function is an integer specifying
the amount of memory to be allocated, in bytes. If successful, it returns a
pointer to the first item of the region; otherwise, it returns an integer 0. The
region of memory is not initialized in any way — assume it is garbage.

Restrictions
• The pointers are of type integer and are automatically typed that way by the

compiler. You must not type them yourself.

• A pointer-based variable cannot itself be a pointer.

• The pointer-based variables can be of any type, including structures.

• No storage is allocated when such a pointer-based variable is defined, even
if there is a size specification in the type statement.

• You can’t use a pointer-based variable as a dummy argument or in COMMON,
EQUIVALENCE, DATA, or NAMELIST statements.

• The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules
apply for pointer-based array variables as for dummy arguments — the
expression can contain dummy arguments and variables in common. Any
variables in the expressions must be defined with an integer value at the
time the subroutine or function is called.

• This implementation of POINTER follows more along the line of Cray, and
not Fortran 90, although it does not follow Cray exactly.

Optimization and Pointers
Pointers have the annoying side effect of reducing the assumptions that the
global optimizer can make.

Compare:

• Without pointers, if you call a subroutine or function, the optimizer knows
that the call will change only variables in common or those passed as
arguments to that call.

194 FORTRAN Reference Manual

4

• With pointers, this is no longer valid, since a routine can take the address of
an argument and save it in a pointer in common for use in a subsequent call
to itself or to another routine.

Therefore, the optimizer must assume that a variable passed as an argument in
a subroutine or function call can be changed by any other call. Such an
unrestricted use of pointers would degrade optimization for the vast majority
of programs that don’t use pointers.

Restrictions
If you use an optimization level greater than -O2 , you must write your
programs with the following restrictions on the use of pointers:

• Subroutines and functions are not permitted to save the address of any of
their arguments between calls.

• A function can’t return the address of any of its arguments, although it can
return the value of a pointer argument.

• Only those variables whose addresses are explicitly taken with the LOC() or
MALLOC() functions can be referenced through a pointer.

Example: One kind of code that could cause trouble if you optimize at a level
greater than -O2 .

The compiler will assume that a reference through P can change A, but not B;
this assumption could produce incorrect code.

Examples

Example 1: A simple POINTER statement.

Here, V is a pointer-based variable, and P is its associated pointer.

COMMON A, B, C
POINTER (P, V)
P = LOC(A) + 4 ! ←possible problems if optimized
…

POINTER (P, V)

Statements 195

4

Example 2: Using the LOC() function to get an address.

In the above example, the CHARACTER statement allocates 12 bytes of storage
for A, but no storage for V; it merely specifies the type of V because V is a
pointer-based variable. Then we assign the address of A to P so now any use of
V will refer to A by the pointer P. The program will print an E.

Example 3: Memory allocation for pointers, by MALLOC.

In the above example, you get 36 bytes of memory from MALLOC() and then
after some other instructions, probably using that chunk of memory, we tell
FREE() to return those same 36 bytes to the memory manager.

Example 4: Get the area of memory and its address.

In the above example, you obtain 12 bytes of memory from the function
MALLOC() and assign the address of that block of memory to the pointer P.

* ptr1.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A / ’ABCDEFGHIJKL’ /
P = LOC(A)
PRINT *, V(5:5)
END

POINTER (P1, X), (P2, Y), (P3, Z)
…
P1 = MALLOC (36)
…
CALL FREE (P1)
…

POINTER (P, V)
CHARACTER V*12, Z*1
P = MALLOC(12)
…
END

196 FORTRAN Reference Manual

4

Example 5: Dynamic allocation of arrays. This has the form of a slightly more
realistic example. The size might well be some large number, say, 10000. Once
that’s allocated, the subroutines do their stuff, not knowing (or caring) that the
array was dynamically allocated.

Example 6: One way to use pointers to make a linked list in f77 .

PROGRAM UsePointers
REAL X
POINTER (P, X)
…
READ (*,*) Nsize ! Get the size.
P = MALLOC(Nsize)! Allocate the memory.
…
CALL CALC (X, Nsize)
…
END
SUBROUTINE CALC (A, N)
REAL A(N)
… ! Use the array of whatever size.
RETURN
END

Linked.f STRUCTURE /NodeType/
INTEGER recnum
CHARACTER*3 label
INTEGER next

END STRUCTURE
RECORD /NodeType/ r, b
POINTER (pr,r), (pb,b)
pb = malloc(12) ! Create the base record, b.
pr = pb ! Make pr point to b.
NodeNum = 1
DO WHILE (NodeNum .LE. 4)! Initialize/create records
 IF (NodeNum .NE. 1) pr = r.next
 CALL struct_creat(pr,NodeNum)
 NodeNum = NodeNum + 1
END DO
r.next = 0
pr = pb ! Show all records.
DO WHILE (pr .NE. 0)
 PRINT *, r.recnum, " ", r.label
 pr = r.next
END DO
END

Statements 197

4

Remarks
• Do not optimize programs using pointers like this with -O3 or -O4 .
• The warnings can be ignored.
• This is not the normal usage of pointers described at the start of this section.

Linked.f (continued) SUBROUTINE struct_creat(pr,Num)
STRUCTURE /NodeType/

INTEGER recnum
CHARACTER*3 label
INTEGER next

END STRUCTURE

RECORD /NodeType/ r
POINTER (pr,r), (pb,b)
CHARACTER v*3(4)/'aaa', 'bbb', 'ccc', 'ddd'/

r.recnum = Num ! Initialize current record.
r.label = v(Num)
pb = malloc(12) ! Create next record.
r.next = pb
RETURN
END

demo$ f77 -silent Linked.f
"Linked.f", line 6: Warning: local variable "b" never used
"Linked.f", line 31: Warning: local variable "b" never used
demo$ a.out
 1 aaa
 2 bbb
 3 ccc
 4 ddd
demo$

198 FORTRAN Reference Manual

4

4.55 PRINT
The PRINT statement writes from a list to stdout .

Syntax

Description

Format Identifier
 f is a format identifier and can be

• An asterisk (*), indicating list-directed I/O. See Section 5.6 for details.
• The label of a FORMAT statement that appears in the same program unit.

• An integer variable name that has been assigned the label of a FORMAT
statement that appears in the same program unit.

• A character expression or integer array specifying the format string. The
integer array is nonstandard. ♦

Output List
iolist can be empty or can contain output items and/or implied DO lists. The
output items must be one of the following:
• Variables
• Substrings
• Arrays
• Array elements
• Records
• Record fields
• Any other expression

PRINT f [, iolist]

PRINT grname

f Format identifier

iolist List of variables, substrings, arrays, records, …

grname Name of the namelist group

Statements 199

4

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

Namelist-directed PRINT
The second form of the PRINT statement is used to print the items of the
specified namelist group. Here, grname is the name of a group previously
defined by a NAMELIST statement.

Execution proceeds as follows:

1. The format, if specified, is established.

2. If the output list is not empty, data is transferred from the list to standard
output. If a format is specified, data is edited accordingly.

3. In the second form of the PRINT statement, data is transferred from the
items of the specified namelist group to standard output.

Restrictions
• Output from an Exception Handler is Unpredictable

If you make your own exception handler, do not do any FORTRAN
output from it. If you must do some, then call abort right after the output.
This reduces the relative risk of a system freeze. FORTRAN I/O from an
exception handler amounts to recursive I/O. See next paragraph.

• Recursive I/O Does not Work Reliably

If you list a function in an I/O list, and if that function does I/O, then
during runtime the execution may freeze, or some other unpredictable
problem happens. This risk exists independent of using parallelization.

Example: Recursive I/O fails intermittently.

PRINT *, x, f(x) ! Not allowed, f() does I/O.
END
FUNCTION F(X)
PRINT *, X
RETURN
END

200 FORTRAN Reference Manual

4

Examples

Example 1: Formatted scalars.

Example 2: List-directed array.

Example 3: Formatted array.

Example 4: Namelist.

4.56 PROGRAM
The PROGRAM statement identifies the program unit as a main program.

Syntax

Description

For the loader, the main program is always named MAIN. The PROGRAM
statement serves only the person who reads the program.

CHARACTER TEXT*16
PRINT 1, NODE, TEXT

1 FORMAT (I2, A16)

PRINT *, I, J, (VECTOR(I), I = 1, 5)

INTEGER VECTOR(10)
PRINT ’(12 I2)’, I, J, VECTOR

CHARACTER LABEL*16
REAL QUANTITY
INTEGER NODE
NAMELIST /SUMMARY/ LABEL, QUANTITY, NODE
PRINT SUMMARY

PROGRAMpgm

pgm Symbolic name of the main program

Statements 201

4

Restrictions
• The PROGRAM statement can appear only as the first statement of the main

program.

• The name of the program cannot be:
• The same as that of an external procedure or common block
• MAIN (all caps), or you will get a runtime error.

• The name of the program can be the same as a local name in the main
program.♦ The FORTRAN Standard doesn’t allow this.

Example

Example: PROGRAM statement.

4.57 READ
The READ statement reads data from a file or the keyboard to items in the list.
If you use this for tapes we recommend the TOPEN() routines instead because
they are more reliable.

Syntax

An alternate to the ”UNIT=u, REC=rn” form is as follows. ♦

PROGRAM US_ECONOMY
NVARS = 2
NEQS = 2
…

READ([UNIT=] u [, [FMT=] f] [, IOSTAT= ios] [, REC= rn]
[, END= s] [, ERR= s]) iolist

READ f [, iolist]

READ([UNIT=] u, [NML=] grname [,IOSTAT= ios] [,END= s] [,ERR= s])

READ [NML=] grname

READ(u ’ rn …) iolist

202 FORTRAN Reference Manual

4

The options can be specified in any order.

Description

Unit Identifier
u is either an external unit identifier or an internal file identifier.

An external unit identifier must be one of these:
• Nonnegative integer expression
• Asterisk, identifying stdin , normally connected to the keyboard

If the optional characters “UNIT=” are omitted from the unit specifier, then u
must be the first item in the list of specifiers.

Format Identifier
f is a format identifier and can be:

• Asterisk (*), indicating list-directed I/O. See Section 5.6 for details.

• Label of a FORMAT statement that appears in the same program unit

• Integer variable name that has been assigned the label of a FORMAT
statement that appears in the same program unit

• Character expression or integer array specifying the format string. This is
called a runtime format or a variable format. The integer array is
nonstandard. ♦

u Unit identifier of the unit connected to the file

f Format identifier

ios I/O status specifier

rn Record number to be read

s Statement label for end of file processing

iolist List of variables

grname Name of a namelist group

Statements 203

4

If the optional characters “FMT=” are omitted from the format specifier, then f
must appear as the second argument for a formatted read, otherwise it must
not appear at all.

Unformatted data transfer from internal files and terminal files is not allowed,
hence, f must be present for such files.

List-directed data transfer from direct-access and internal files is allowed,
hence, f can be an asterisk for such files. ♦

If a file is connected for formatted I/O, unformatted data transfer is not
allowed, and vice versa.

I/O Status Specifier
ios must be an integer variable or an integer array element.

Record Number
rn must be a positive integer expression and can be used for direct-access files
only. rn can be specified for internal files. ♦

End-of-File Specifier
s must be the label of an executable statement in the same program unit in
which the READ statement occurs.

The “END=s” and “REC=rn” specifiers can be present in the same READ
statement. ♦

Error Specifier
s must be the label of an executable statement in the same program unit in
which the READ statement occurs.

Input List
iolist can be empty or can contain input items and/or implied DO lists. The
input items can be any of the following.

• Variables
• Substrings

204 FORTRAN Reference Manual

4

• Arrays
• Array elements
• Records
• Record fields

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

Namelist-directed READ
The third and fourth forms of the READ statement are used to read the items of
the specified namelist group, and grname is the name of the group of variables
previously defined in a NAMELIST statement.

Execution Proceeds as Follows:
1. The file associated with the specified unit is determined. The format, if

specified, is established. The file is positioned appropriately prior to the
data transfer.

2. If the input list is not empty, data is transferred from the file to the
corresponding items in the list. The items are processed in order as long as
the input list is not exhausted. The next specified item is determined and the
value read is transmitted to it. Data editing in formatted READ is done
according to the specified format.

3. In the third and fourth forms of namelist-directed READ, the items of the
specified namelist group are processed according to the rules of namelist-
directed input.

4. The file is repositioned appropriately after data transfer.

5. If ios is specified and no error occurred, it is set to zero. It is set to a
positive value, if an error or end of file was encountered.

6. If s is specified and end of file was encountered, control is transferred to s .

7. If s is specified and an error occurs, control is transferred to s .

Statements 205

4

Execution for Keyboard Read
There are two forms of READ.

They above two forms operate the same way as the others except that reading
from the keyboard is implied. Execution has these differences.

1. When the input list is exhausted, the cursor is moved to the start of the line
following the input. For an empty input list, the cursor is moved to the start
of the line following the input.

2. If an end-of-line, CR, or NL is reached before the input list is satisfied, input
continues from the next line.

3. If an end-of-file (Control D) is received before the input list is satisfied, input
stops, and unsatisfied items of the input list remain unchanged.

If u specifies an external unit that is not connected to a file, an implicit OPEN
operation is performed which is equivalent to opening the file with the options
in the following example.

The value of fmt is ’FORMATTED’ or ’UNFORMATTED’ accordingly, as the
read is formatted or unformatted.

An simple unsubscripted array name specifies all of the elements of the array
in memory storage order, with the leftmost subscript increasing more rapidly.

An attempt to read the record of a direct-access file that has not been written
yet causes all items in the input list to become undefined.

The record number count starts from one.

Namelist-directed input is permitted on sequential access files only.

READ f [, iolist]

READ [NML=] grname

 OPEN(u, FILE=’FORT.u’, STATUS=’OLD’,

& ACCESS=’SEQUENTIAL’, FORM=fmt)

206 FORTRAN Reference Manual

4

Examples

Example 1: Formatted read, trap I/O errors, EoF, and I/O status.

Example 2: Direct, unformatted read, trap I/O errors, and I/O status.

Example 3: List-directed read from keyboard.

Example 4: Formatted read from an internal file.

Example 5: Read an entire array.

READ(1, 2, ERR=8, END=9, IOSTAT=N) X, Y
…

8 WRITE(*, *) ’I/O error # ’, N, ’, on 1’
STOP

9 WRITE(*, *) ’EoF on 1’
RETURN
END

…
READ(1, REC=3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) ’I/O error # ’, N, ’, on 1’
END

READ(*, *) A, V
or

READ *, A, V

CHARACTER CA*16 / ’abcdefghijklmnop’ /, L*8, R*8
READ(CA, 1) L, R

1 FORMAT(2 A8)

DIMENSION V(5)
READ(3, ’(5F4.1)’) V

Statements 207

4

Example 6: Namelist-directed read.

4.58 REAL
The REAL statement specifies the type of a symbolic constant, variable, array,
function, or dummy function to be real, and optionally specifies array
dimensions and size, and initializes with values.

Syntax

Description

REAL
For a declaration such as REAL W, the variable W is usually a REAL*4 element
in memory, interpreted as a real number (more details in ”Default Size,”
below.)

CHARACTER SAMPLE*16
LOGICAL NEW*4
REAL DELTA*4
NAMELIST /G/ SAMPLE, NEW, DELTA
…
READ(1, G)

or
READ(UNIT=1, NML=G)

or
READ(1, NML=G)

REAL [* len [,]] v [* len [/ c /]] [, v [* len [/ c /]] …

v Name of a variable, symbolic constant, array, array declarator, function, or
dummy function

len Either 4, 8, or 16 (SPARC only), the length in bytes of the symbolic
constant, variable, array element, or function

c List of constants for the immediately preceding name

208 FORTRAN Reference Manual

4

REAL*4 ♦

For a declaration such as REAL*4 W, the variable W is always a REAL*4
element in memory, interpreted as a single-width real number.

REAL*8 ♦

For a declaration such as REAL*8 W, the variable W is always a REAL*8
element in memory, interpreted as a double-width real number.

REAL*16 ♦

(SPARC only) For a declaration such as REAL*16 W, the variable W is always an
element of type REAL*16 in memory, interpreted as a quadruple-width real.

Default Size

If you specify the size as 4, 8, or 16, you get what you specify; if you do not
specify the size, you get the default size.

The default size for a declaration such as REAL X, depends on the –r8 option.

• If –r8 is on the f77 command line, then for declarations such as REAL X,
the compiler allocates 8 bytes, and does 8-byte arithmetic. If –r8 is not on
the f77 command line, then the compiler allocates 4 bytes.

• If you put both –i2 and –r8 on the f77 command line, the results are
unpredictable.

Examples

Example 1: Simple real scalars. Each of these statements is generally equivalent
to the others, but the first is different if you compile with the -r8 option.

Above, don’t use all three statements in the same program unit.

Example 2: Initialize scalars (The REAL*16 is for SPARC only).

REAL U, V
REAL*4 U, V
REAL U*4, V*4

REAL U/ 1.0 /, V/ 4.3 /, D*8/ 1.0 /, Q*16/ 4.5 /

Statements 209

4

Example 3: Specify dimensions for some real arrays.

Example 4: Initialize some arrays.

Example 5: Double and quadruple precision (The REAL*16 is for SPARC only).

Above, D and R are both double precision. Q is quadruple precision.

4.59 RECORD
The RECORD♦ statement defines variables to have a specified structure, or
defines arrays to be arrays of variables with such structures.

Syntax

Description

A structure is a template for a record. The name of the structure is included in
the STRUCTURE statement, and once a structure is thus defined and named, it
can be used in a RECORD statement. The record is a generalization of the
variable or array: where a variable or array has a type, the record has a
structure. Where all the elements of an array must be of the same type, the
fields of a record can be of different types.

REAL A(10,100), V(10)
REAL X*4(10), Y(10)*4

REAL A(10,100) / 1000 * 0.0 /, B(2,2) / 1.0, 2.0, 3.0, 4.0 /

REAL*8 R
REAL*16 Q
DOUBLE PRECISION D

RECORD /struct-name / record-list [,/ struct-name / record-list] …

struct-name Name of a previously declared structure

record-list List of variables, arrays, or arrays with dimensioning/index ranges

210 FORTRAN Reference Manual

4

The RECORD line is part of an inherently multiline group of statements, and
neither the RECORD line nor the END RECORD line has any indication of
continuation. Do not put a nonblank in column six, nor an & in column one.

Restrictions
• Each record is allocated separately in memory.

• Initially, records have undefined values.

• Records, record fields, record arrays, and record-array elements are allowed
as arguments and dummy arguments. When you pass records as arguments,
their fields must match in type, order, and dimension. The record
declarations in the calling and called procedures must match.

• Within a union declaration, the order of the map fields is not relevant.

• Records and record fields are allowed in COMMON and DIMENSION.

• Records and record fields are not allowed in DATA, EQUIVALENCE,
NAMELIST, PARAMETER, AUTOMATIC, STATIC, or SAVE statements.

Example

Example 1: Declaring some items to be records of a specified structure.

Each of the three variables CURRENT, PRIOR, and NEXT is a record which has
the PRODUCT structure, and LINE is an array of 10 such records.

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
…

Statements 211

4

Example 2: Define some fields of records, then use them.

The above program has the following output:

4.60 RETURN
A RETURN statement returns control to the calling program unit.

Syntax

Description

Execution of a RETURN statement terminates the reference of a function or
subroutine.

Execution of an END statement in a function or a subroutine is equivalent to the
execution of a RETURN statement. ♦

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)
CURRENT.ID = 82
PRIOR.NAME = "CacheBoard"
NEXT.PRICE = 1000.00
LINE(2).MODEL = "96K"
PRINT 1, CURRENT.ID, PRIOR.NAME, NEXT.PRICE, LINE(2).MODEL

1 FORMAT(I5/A16/F8.2/A8)
END

 82
CacheBoard
 1000.00
96K

RETURN [e]

e Expression of type INTEGER or REAL

212 FORTRAN Reference Manual

4

The expression e is evaluated and converted to integer, if required. e defines
the ordinal number of the alternate return label to be used. Alternate return
labels are specified as asterisks (or ampersands ♦) in the SUBROUTINE
statement.

If e is not specified or the value of e is less than one or greater than the
number of asterisks or ampersands in the SUBROUTINE statement containing
the RETURN statement, control is returned normally to the statement following
the CALL statement that invoked the subroutine.

If the value of e is between one and the number of asterisks (or ampersands) in
the SUBROUTINE statement, control is returned to the statement identified by
the eth alternate.A RETURN statement can appear only in a function
subprogram or subroutine.

Examples

Example 1: Standard return.

CHARACTER*25 TEXT
TEXT = "Some kind of minor catastrophe"
…
CALL OOPS (TEXT)
STOP
END
SUBROUTINE OOPS (S)
CHARACTER S* 32
WRITE (*,*) S
RETURN
END

Statements 213

4

Example 2: Alternate return.

4.61 REWIND
REWIND positions the file associated with the specified unit to its initial point.

If you use this for tapes we recommend the TOPEN() routines instead because
they are more reliable.

Syntax

Description

The options can be specified in any order.
Rewinding a unit not associated with any file has no effect.
REWIND in a terminal file has no effect.

CALL RANK (N, *8, *9)
WRITE (*,*) ’OK - Normal Return’
STOP

8 WRITE (*,*) ’Minor - 1st alternate return’
STOP

9 WRITE (*,*) ’Major - 2nd alternate return’
END
SUBROUTINE RANK (N, *,*)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END

REWIND u

REWIND ([UNIT=] u [, IOSTAT= ios] [, ERR= s])

u Unit identifier of an external unit connected to the file
u must be connected for sequential access, or append access.

ios I/O specifier, an integer variable or an integer array element

s Error specifier - s must be the label of an executable statement in the same
program in which this REWIND statement occurs. The program control is
transferred to this label in case of an error during the execution of the
REWIND statement.

214 FORTRAN Reference Manual

4

Execution of a REWIND statement on a direct-access file is not defined in the
FORTRAN Standard and is unpredictable. We do not recommend using a
REWIND statement on a direct-access file.

Examples

Example 1: Simple form of unit specifier.

Example 2: REWIND with the UNIT=u form of unit specifier and error trap.

ENDFILE 3
REWIND 3
READ (3,’(I2)’) I
REWIND 3
READ (3,’(I2)’)I

INTEGER CODE
…
REWIND (UNIT = 3)
REWIND (UNIT = 3, IOSTAT = CODE, ERR = 100)
…

100 WRITE (*,*) ’error in rewinding’
STOP

Statements 215

4

4.62 SAVE
The SAVE statement prevents items in a subprogram from becoming undefined
after the RETURN or END statements are executed.

Syntax

Description

All variables to be saved are placed in an internal static area. All common
blocks are saved by allocating a static area. Therefore, common block names
specified in SAVE statements are just ignored. A SAVE statement is optional in
the main program and has no effect. A SAVE with no list saves everything
savable.

SAVE/STATIC
Local variables and arrays are static by default, so in general, this eliminates
the need for SAVE. You can still use SAVE to ensure portability. Also, SAVE is
safer if you leave a subprogram by some way other than a RETURN.

Restrictions
The following must not appear in a SAVE statement:

• Variables or arrays in a common block
• Dummy argument names
• Record names
• Procedure names
• Automatic variables or arrays

SAVE [v [, v] …]

v Name of an array, variable, or common block (enclosed in slashes), occurring
in a subprogram

216 FORTRAN Reference Manual

4

Example:

Example: SAVE.

4.63 Statement Function
A statement function statement is a function-like declaration, made in a single
statement.

Syntax

Description

If a statement function is referenced, the defined calculations are inserted.

Example: The following statement is a statement function.

The statement function argument list indicates the order, number, and type of
arguments for the statement function.

SUBROUTINE FFT
DIMENSION A(1000,1000), V(1000)
SAVE A
…
RETURN
END

fun ([d [, d] …]) = e

fun Name of statement function being defined

d Statement function dummy argument

e Expression. e can be any of the types arithmetic, logical, or character.

ROOT(A, B, C) = (-B + SQRT(B**2-4.0*A*C))/(2.0*A)

Statements 217

4

Restrictions
• A statement function must appear only after the specification statements

and before the first executable statement of the program unit in which it is
referenced.

• A statement function is not executed at the point where it is specified. It is
executed, as any other, by the execution of a function reference in an
expression.

• The type conformance between fun and e are the same as those for the
assignment statement. Note that the type of fun and e can be different, in
which case e is converted to the type of fun.

• The actual arguments must agree in order, number, and type with
corresponding dummy arguments.

• The same argument cannot be specified more than once in the argument list.

• The statement function must be referenced only in the program unit that
contains it.

• The name of a statement function cannot be an actual argument. Nor can it
appear in an EXTERNAL statement.

• The type of the argument is determined as if the statement function were a
whole program unit in itself.

• Even if the name of a statement function argument is the same as that of
another local variable, the reference is considered as a dummy argument of
the statement function and not the local variable of the same name.

• The length specification of a character statement function or its dummy
argument of type CHARACTER must be an integer constant expression.

• A statement function cannot be invoked recursively.

Referencing a Statement Function
A statement function is referenced by using its name, along with its arguments,
as an operand in an expression.

Execution proceeds as follows:

1. If they are expressions, actual arguments are evaluated.

2. Actual arguments are associated with corresponding dummy arguments.

218 FORTRAN Reference Manual

4

3. The expression e, the body of a statement function, is evaluated.

4. If the type of the above result is different from the type of the function
name, then the result is converted.

5. Return the value.

The resulting value is thus available to the expression that referenced the
function.

Examples

Example 1: Arithmetic statement function.

Example 2: Logical statement function.

Example 3: Character statement function.

PARAMETER (PI=3.14159)
REAL RADIUS, VOLUME
SPHERE (R) = 4.0 * PI * (R**3) / 3.0
READ *, RADIUS
VOLUME = SPHERE(RADIUS)
…

LOGICAL OKFILE
INTEGER STATUS
OKFILE (I) = I .LT. 1
READ(*, *, IOSTAT=STATUS) X, Y
IF (OK FILE(STATUS)) CALL CALC (X, Y, A)
…

CHARACTER FIRST*1, STR*16
FIRST(S) = S(1:1)
READ(*, *) STR
IF (FIRST(STR) .LT. " ") CALL CONTROL (S, A)
…

Statements 219

4

4.64 STATIC
The STATIC ♦ statement insures that the specified items are stored in static
memory.

Syntax

Description

To deal with the problem of local variables becoming undefined between
invocations, f77 classifies every variable as either static or automatic, with all
local variables being static by default.

For static variables, there is exactly one copy of each datum, and its value is
retained between calls. You can also explicitly define variables as static or
automatic in a STATIC or AUTOMATIC statement, or in any type statement or
IMPLICIT statement.

SAVE/STATIC — Local variables and arrays are static by default, so in general,
this eliminates the need for SAVE. You can still use SAVE to insure portability.
Also, SAVE is safer if you leave a subprogram by some way other than a
RETURN.

Example

STATIC list

list List of variables and arrays

STATIC A, B, C
REAL P, D, Q
STATIC P, D, Q
IMPLICIT STATIC (X-Z)

220 FORTRAN Reference Manual

4

Remarks
• Arguments and function values are automatic.

• A STATIC statement and a type statement cannot be combined to make a
STATIC type statement. For example, the statement

does not declare the variable X to be both STATIC and REAL; It declares the
variable REALX to be STATIC.

4.65 STOP
The STOP statement terminates execution of the program.

Syntax

Description

The argument str is displayed when the program stops.

If str is not specified, no message is displayed.

Examples

Example 1: Integer.

The above statement displays:

STATIC REAL X ! Not what you might expect

STOP [[str]

str String of no more that 5 digits or a character constant

stop 9

STOP: 9

Statements 221

4

Example 2: Character.

The above statement displays:

Example 3: Nothing after the stop.

The above statement displays nothing.

4.66 STRUCTURE
The STRUCTURE♦ statement organizes data into structures.

Syntax

stop ’oyvay’

STOP: oyvay

stop

STRUCTURE [/ structure-name /] [field-list]

 field-declaration
[field-declaration]
…
[field-declaration]

END STRUCTURE

structure-name Name of the structure

field-list List of fields of the specified structure

field-declaration Field of the record

222 FORTRAN Reference Manual

4

 Field declaration
 Each field declaration can be one of the following:

• A substructure (either another structure declaration, or a record that has
been previously defined)

• A union declaration

• A type declaration (can include initial values)

Description

It defines a form for a record by specifying the name, type, size, and order of the
fields that constitute the record. Optionally, it can specify the initial values. A
structure is a template for a record. The name of the structure is included in the
STRUCTURE statement, and once a structure is thus defined and named, it can
be used in a RECORD statement. The record is a generalization of the variable or
array — where a variable or array has a type, the record has a structure. Where
all the elements of an array must be of the same type, the fields of a record can
be of different types.

Restrictions
• The name is enclosed in slashes and is optional in nested structures only.

• If slashes are present, a name must be present.

• You can specify the field-list within nested structures only.

• There must be at least one field-declaration.

• Each structure-name must be unique among structures, although you can use
structure names for fields in other structures or as variable names.

• The only statements allowed between the STRUCTURE statement and the
END STRUCTURE statement are field-declaration statements and PARAMETER
statements. A PARAMETER statement inside a structure declaration block is
equivalent to one outside.

Statements 223

4

Restrictions for Fields
Fields that are type declarations use the identical syntax of normal FORTRAN
type statements, and all f77 types are allowed, subject to the following rules
and restrictions.

• Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

• You can specify the pseudonyme %FILL for a field name. The %FILL is
provided for compatibility with other versions of FORTRAN. It is not
needed in f77 because the alignment problems are taken care of for you. It
might be considered a useful feature to anyone who wants to make one or
more fields not referenceable in some particular subroutine. The only thing
that %FILL does is provide a field of the specified size and type, and
preclude referencing it.

• You must explicitly type all field names. The IMPLICIT statement does not
apply to statements in a STRUCTURE declaration, nor do the implicit
I,J,K,L,M,N rules apply.

• You can’t use arrays with adjustable or assumed size in field declarations,
nor can you include passed-length CHARACTER declarations.

Field Offsets
• In a structure declaration, the offset of field n is the offset of the preceding

field, plus the length of the preceding field, possibly corrected for any
adjustments made to maintain alignment.

• You can initialize a field that is a variable, array, substring, substructure, or
union.

224 FORTRAN Reference Manual

4

Examples

Example 1: A structure of five fields.

In the above example, a structure named PRODUCT is defined to consist of the
fields ID , NAME, MODEL, COST, and PRICE. Each of the three variables
CURRENT, PRIOR, and NEXT is a record which has the PRODUCT structure, and
LINE is an array of 10 such records. Every such record has its ID initially set to
99, and its MODEL initially set to Z.

Example 2: A structure of two fields.

The above structure matches the one used by the pc Pascal compiler for
varying length strings. The 25 is arbitrary.

STRUCTURE /PRODUCT/
INTEGER*4 ID / 99 /
CHARACTER*16 NAME
CHARACTER*8 MODEL/ ’Z’ /
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

STRUCTURE /VARLENSTR/
INTEGER*4 NBYTES
CHARACTER A*25

END STRUCTURE
RECORD /VARLENSTR/ VLS
VLS.NBYTES = 0

Statements 225

4

4.67 SUBROUTINE
The SUBROUTINE statement identifies a named program unit as a subroutine,
and specifies arguments for it.

Syntax

Description

A subroutine subprogram must have a SUBROUTINE statement as the first
statement. A subroutine can have any other statements except a BLOCK DATA,
FUNCTION, PROGRAM, or another SUBROUTINE statement.

sub is the name of a subroutine and is a global name and must not be the same
as any other global name such as a common block name or a function name.
Nor can it be the same as any local name in the same subroutine.

d is the dummy argument, and multiple dummy arguments are separated by
commas. d can be one of the following:

• Variable name
• Array name
• Dummy procedure name
• Record name
• Asterisk (*) or an ampersand (&) ♦

SUBROUTINEsub [([fd [, fd] …])]

sub Name of subroutine subprogram

d Variable name, array name, record name, or dummy procedure name, or an
asterisk, or an ampersand

226 FORTRAN Reference Manual

4

The dummy arguments are local to the subroutine and must not appear in any
of the following statements, except as a common block name:

• EQUIVALENCE
• PARAMETER
• SAVE
• STATIC
• AUTOMATIC
• INTRINSIC
• DATA
• COMMON

The actual arguments in the CALL statement that references a subroutine must
agree with the corresponding formal arguments in the SUBROUTINE statement,
in order, number, and type. An asterisk (or an ampersand) in the formal
argument list denotes an alternate return label. A RETURN statement in this
procedure can specify the ordinal number of the alternate return to be taken.

Examples

Example 1: A variable and array as parameters.

SUBROUTINE SHR (A, B)
CHARACTER A*8
REAL B(10,10)
…
RETURN
END

Statements 227

4

Example 2: Standard alternate returns.

Example 3: Nonstandard alternate returns. ♦

is treated as

4.68 TYPE
The TYPE♦ statement writes to stdout .

Syntax

In this example, the
RETURN 1 statement
refers to the first alternate
return label (first *) and
the RETURN 2 statement
refers to the second
alternate return label
(second *) specified in
the SUBROUTINE
statement.

PROGRAM TESTALT
CALL RANK (N, *8, *9)
WRITE (*,*) ’OK - Normal Return [n=0]’
STOP

8 WRITE (*,*) ’Minor - 1st alternate return [n=1]’
STOP

9 WRITE (*,*) ’Major - 2nd alternate return [n=2]’
END
SUBROUTINE RANK (N, *, *)
IF (N .EQ. 0) RETURN
IF (N .EQ. 1) RETURN 1
RETURN 2
END

CALL SUB(…, & label , …)

CALL SUB(…, * label , …)

TYPE f [, iolist]

or

TYPE grname

f Format identifier

iolist List of output variables

grname Name of the namelist group

228 FORTRAN Reference Manual

4

Description

The TYPE statement is equivalent to “PRINT f [, iolist]” or “PRINT grname”
or “WRITE(*, f) [iolist]” or “WRITE(*, grname) ” and is provided for
compatibility with older versions of FORTRAN.

Examples

Example 1: Formatted output.

Example 2: Namelist output.

4.69 The Type Statement
The type statement specifies the data type of items in the list, and optionally
specifies array dimensions and initializes with values.

Syntax

type can be preceded by either AUTOMATIC or STATIC.

INTEGER V(5)
TYPE 1, V

1 FORMAT(5 I3)

CHARACTER S*16
INTEGER N
NAMELIST /G/ N, S
…
TYPE G

type v [/ clist /] [,v [/ clist /]…

v Variable name, array name, array declarator, symbolic name of a constant,
statement function or function subprogram name

clist List of constants (There are more details about clist in the section on the
DATA statement.)

Statements 229

4

type can be one of the following type specifiers.

The n, as in CHARACTER*n, must be greater than 0.

Description

Different Usages of type Statement
A type statement can be used to conform or to override the type established by
default or by the IMPLICIT statement.

A type statement can specify dimension information for an array.

A type statement can be used to confirm the type of an intrinsic function.

A type statement can be used to override the length by one of the acceptable
lengths for that data type.

Initializing in Type Declarations
A type statement can assign initial values to variables, arrays, or record fields
by specifying a list of constants (clist) as in a DATA statement. ♦

BYTE u
CHARACTER
CHARACTER*n
CHARACTER*(*)
COMPLEX
COMPLEX*8 ◆

COMPLEX*16 ◆

COMPLEX*32 (SPARC only) ◆

DOUBLE COMPLEX◆
DOUBLE PRECISION

INTEGER
INTEGER*2 ◆

INTEGER*4 ◆

LOGICAL
LOGICAL*1 ◆

LOGICAL*2 ◆

LOGICAL*4 ◆

REAL
REAL*4 ◆

REAL*8 ◆

REAL*16 (SPARC only) ◆

230 FORTRAN Reference Manual

4

The general form of a type statement is:

Example: Various type statements.

Restrictions for Initializing a Data Type
• For a simple variable, there must be exactly one constant.

• If any element of an array is initialized, all must be.

• You can use an integer as a repeat factor, followed by an asterisk (*), followed
by a constant. (In the example above, six values of 1.0 are stored into array
elements 2, 3, 4, 5, 6, and 7 of LIST .)

• If a variable or array is declared AUTOMATIC, then it cannot be initialized.

• A pointer-based variable or array cannot be initialized.

Example:

You get a compiler warning message, and Z does not get initialized.

• If a variable or array is not initialized, its value(s) are undefined.

• If such initialization statements involve variables in COMMON, and the –ansi
compiler flag is set, then a warning is issued.

type VariableName / constant / …

or

type ArrayName / constant, … /

or

type ArrayName / r*constant /

where r is a repeat factor.

CHARACTER LABEL*12 / ’Standard’ /
COMPLEX STRESSPT / (0.0, 1.0) /
INTEGER COUNT / 99 /, Z / 1 /
REAL PRICE / 0.0 /, COST / 0.0 /
REAL LIST(8) / 0.0, 6*1.0, 0.0 /

INTEGER Z / 4 /
POINTER (x, Z)

Statements 231

4

Restrictions
• A symbolic name can appear only once in type statements in a program unit.
• A type statement must precede all executable statements.

Example

Example: The type statement.

In the above example J is initialized to 0; PI is initialized to 3.141592654 ;
the first five elements of ARRAY are initialized to 0.0 ; the second five elements
of ARRAY are initialized to 1.0, and TITLE is initialized to ’Heading’ .

4.70 UNION and MAP
The UNION♦ statement defines groups of fields that share memory at runtime.

Syntax

The syntax of a union declaration is as follows.

The syntax of a map declaration is as follows.

INTEGER*2 I, J/0/
REAL*4 PI/3.141592654/,ARRAY(10)/5*0.0,5*1.0/
CHARACTER*10 NAME
CHARACTER*10 TITLE/’Heading’/

UNION
map-declaration
map-declaration
[map-declaration]
...

END UNION

MAP
field-declaration
[field-declaration]
...
[field-declaration]
END MAP

232 FORTRAN Reference Manual

4

Description

A MAP statement defines alternate groups of fields in a union. During
execution, one map at a time is associated with a shared storage location.
When you reference a field in a map, the fields in any previous map become
undefined and are succeeded by the fields in the map of the newly referenced
field.

• A UNION declaration can appear only within a STRUCTURE declaration.
• The amount of memory used by a union is that of its biggest map.
• Within a UNION declaration, the order of the MAP statements is not relevant.

The UNION line is part of an inherently multiline group of statements, and
neither the UNION line nor the END UNION line has any special indication of
continuation. You do not put a nonblank in column six, nor an & in column
one.

 Fields in a Map
Each field-declaration in a map declaration can be one of the following.

• Structure declaration
• Record
• Union declaration
• Declaration of a typed data field

Statements 233

4

Example

Declare the structure /STUDENT/ to contain either NAME, CLASS, and
MAJOR — or NAME, CLASS, CREDITS, and GRAD_DATE.

In the above example, the variable PERSON has the structure /STUDENT/ , so:

• PERSON.MAJOR references a field from the first map, and
PERSON.CREDITS references a field from the second map.

• If the variables of the second map field are initialized and then the program
references the variable PERSON.MAJOR, the first map becomes active and
the variables of the second map become undefined.

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD_DATE

END MAP
END UNION

END STRUCTURE
RECORD /STUDENT/ PERSON

234 FORTRAN Reference Manual

4

4.71 VIRTUAL
The VIRTUAL ♦ statement is treated the same as the DIMENSION statement.

Syntax

Description

The VIRTUAL statement has the same form and effect as the DIMENSION
statement. It is included for compatibility with older versions of FORTRAN.

Example

4.72 VOLATILE
The VOLATILE ♦ statement prevents optimization on the specified items.

Syntax

Description

The VOLATILE statement prevents optimization on the items in the list.
Programs relying on it are usually nonportable.

VIRTUAL a (d) [, a (d)] …

a Name of an array

a(d) Specifies the dimension of the array. It is a list of 1 to 7 declarators
separated by commas

VIRTUAL M(4,4), V(1000)
…
END

VOLATILE nlist

nlist List of variables, arrays, or common blocks

Statements 235

4

Example

Example: VOLATILE. ♦

In the above example, the array V, the variable Z, and the common block
/INI/ are explicitly specified as VOLATILE. The variable X is VOLATILE
through an equivalence.

4.73 WRITE
The WRITE statement writes data from the list to a file.

Syntax

The options can be specified in any order.

PROGRAM FFT
INTEGER NODE*2, NSTEPS*2
REAL DELTA, MAT(10,10), V(1000), X, Z
COMMON /INI/ NODE, DELTA, V
…
VOLATILE V, Z, MAT, /INI/
…
EQUIVALENCE (X, V)
…

WRITE([UNIT=] u [, [FMT=] f] [, IOSTAT= ios] [, REC= rn]
[, ERR= s]) iolist

WRITE([UNIT=] u, [NML=] grname [, IOSTAT= ios] [, ERR= s])

u Unit identifier of the unit connected to the file

f Format identifier

ios I/O status specifier

rn Record number

s Error specifier (statement label)

iolist List of variables

grname Name of the namelist group

236 FORTRAN Reference Manual

4

An alternate for “REC=rn” form is allowed, as follows: ♦

Example 3 shows this also.

Description

For tapes we recommend the TOPEN() routines because they are more reliable.

Unit Identifier
u is either an external unit identifier or an internal file identifier.

An external unit identifier must be either:

• A nonnegative integer expression, or

• An asterisk, identifying stdout , which is normally connected to the
console.

If the optional characters “UNIT=” are omitted from the unit specifier, then u
must be the first item in the list of specifiers.

Format Identifier
f is a format identifier and can be:

• An asterisk (*), indicating list-directed I/O. See Section 5.6 for details.

• The label of a FORMAT statement that appears in the same program unit

• An integer variable name that has been assigned the label of a FORMAT
statement that appears in the same program unit

• A character expression or integer array specifying the format string. This is
called a runtime format or a variable format. The integer array is
nonstandard. ♦

If the optional characters “FMT=” are omitted from the format specifier, then f
must appear as the second argument for a formatted write, otherwise it must
not appear at all.

f must not be an asterisk for direct access.

 WRITE(u ’ rn …) iolist ♦

Statements 237

4

f can be an asterisk for internal files. ♦

If a file is connected for formatted I/O, unformatted data transfer is prohibited
and vice versa.

I/O Status Specifier
ios must be an integer variable, integer array element, or integer record field.

Record Number
rn must be a positive integer expression. This argument can appear only for
direct-access files. rn can be specified for internal files. ♦

Error Specifier
s must be the label of an executable statement in the same program unit in
which this WRITE statement occurs.

Output List
iolist can be empty or can contain output items and/or implied DO lists. The
output items must be one of the following.

• Variables
• Substrings
• Arrays
• Array elements
• Records
• Record fields
• Any other expression

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

If the output item is a character expression employing the concatenation
operator, the length specifiers of its operands can be an asterisk (*). This is
nonstandard. ◆

If a function appears in the output list, that function must not cause an
input/output statement to be executed.

238 FORTRAN Reference Manual

4

Namelist Write
The second form of WRITE is used to output the items of the specified namelist
group. Here grname is the name of the list previously defined in a NAMELIST
statement.

Execution proceeds as follows.

1. The file associated with the specified unit is determined. The format, if
specified, is established. The file is positioned appropriately prior to data
transfer.

2. If the output list is not empty, data is transferred from the list to the file.
Data is edited according to the format, if specified.

3. In the second form of namelist-directed WRITE, the data is transferred from
the items of the specified namelist group according to the rules of namelist-
directed output.

4. The file is repositioned appropriately after the data transfer.

5. If ios is specified, and no error occurs, it is set to zero; otherwise it is set to
a positive value.

6. If s is specified and an error occurs, control is transferred to s.

Restrictions
• Output from an Exception Handler is Unpredictable

If you make your own exception handler, do not do any FORTRAN
output from it. If you must do some, then call abort right after the output.
This reduces the relative risk of a system freeze. FORTRAN I/O from an
exception handler amounts to recursive I/O. See next paragraph.

• Recursive I/O Does not Work Reliably

If you list a function in an I/O list, and if that function does I/O, then
during runtime the execution may freeze, or some other unpredictable
problem happens. This risk exists independent of using parallelization.

Statements 239

4

Example: Recursive I/O fails intermittently.

Comments

If u specifies an external unit that is not connected to a file, an implicit OPEN
operation is performed that is equivalent to opening the file with the following
options.

The value of fmt is ’FORMATTED’ if the write is formatted, and
’UNFORMATTED’ otherwise.

A simple unsubscripted array name specifies all of the elements of the array in
memory storage order, with the leftmost subscript increasing more rapidly.

The record number for direct-access files starts from one onwards.

Namelist-directed output is permitted on sequential access files only.

Examples

Example 1: Formatted write with trap I/O errors and I/O status.

WRITE(*,*) x, f(x) ! Not allowed, f() does I/O.
END
FUNCTION F(X)
WRITE(*,*) X
RETURN
END

OPEN(u, FILE=’FORT .u’, STATUS=’UNKNOWN’,
& ACCESS=’SEQUENTIAL’, FORM=fmt)

WRITE(1, 2, ERR=8, IOSTAT=N) X, Y
RETURN
…

8 WRITE(*, *) ’I/O error # ’, N, ’, on 1’
STOP
END

240 FORTRAN Reference Manual

4

Example 2: Direct, unformatted write, trap I/O errors, and I/O status.

Example 3: Direct, alternate syntax (equivalent to above example).

Example 4: List-directed write to screen.

Example 5: Formatted write to an internal file.

Example 6: Write an entire array.

…
WRITE(1, REC=3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) ’I/O error # ’, N, ’, on 1’
END

…
WRITE(1 ’ 3, IOSTAT=N, ERR=8) V
…

4 CONTINUE
RETURN

8 WRITE(*, *) ’I/O error # ’, N, ’, on 1’
END

WRITE(*, *) A, V
or

PRINT *, A, V

CHARACTER CA*16, L*8 /’abcdefgh’/, R*8 /’ijklmnop’/
WRITE(CA, 1) L, R

1 FORMAT(2 A8)

DIMENSION V(5)
WRITE(3, ’(5F4.1)’) V

Statements 241

4

Example 7: Namelist-directed write.

CHARACTER SAMPLE*16
LOGICAL NEW*4
REAL DELTA*4
NAMELIST /G/ SAMPLE, NEW, DELTA
…
WRITE(1, G)

or
WRITE(UNIT=1, NML=G)

or
WRITE(1, NML=G)

242 FORTRAN Reference Manual

4

243

Input and Output 5

This chapter is organized into the following sections.

5.1 General Concepts of FORTRAN I/O
Any operating system based on the UNIX operating system is not as record-
oriented as FORTRAN. This operating system treats files as sequences of
characters instead of collections of records. The FORTRAN runtime system
keeps track of file formats and access mode during runtimes. It also provides
the file facilities, including the FORTRAN libraries and the standard I/O
library.

General Concepts of FORTRAN I/O page 243

Direct Access page 250

Internal Files page 252

Formatted I/O page 253

Unformatted I/O page 288

List-Directed I/O page 291

NAMELIST I/O page 295

244 FORTRAN Reference Manual

5

Logical Units

The FORTRAN default value for the maximum number of logical units that a
program can have open at one time is 64. For current SunOS releases this limit
is 256. A FORTRAN program can increase this limit beyond 64 by calling the
setrlim() function. See the man page setrlim (2). If you are running csh ,
you can also do this with the limit or unlimit command; see csh (1).

The standard logical units 0, 5, and 6 are preconnected to the SunOS system as
stderr , stdin , and stdout , respectively. These are not actual file names and
cannot be used for opening these units. INQUIRE does not return these names
and indicates that the above units are not named unless they have been opened
to real files. However, these units can be redefined with an OPEN statement.

The names stderr , stdin , and stdout are meant to make error reporting
more meaningful. To preserve error reporting, the system makes it is an error
to close logical unit 0, although it can be reopened to another file.

If you want to open a file with the default file name for any preconnected
logical unit, remember to close the unit first. Redefining the standard units can
impair normal console I/O. An alternative is to use shell redirection to
externally redefine the above units.

To redefine default blank control or the format of the standard input or output
files, use the OPEN statement specifying the unit number and no file name, and
use the options for the kind of blank control you want.

I/O Errors

Any error detected during I/O processing will cause the program to abort
unless alternative action has been provided specifically in the program. Any
I/O statement can include an ERR= clause (and IOSTAT= clause) to specify an
alternative branch to be taken on errors (and return the specific error code).
Read statements can include END=n to branch on end-of-file. File position and
the value of I/O list items are undefined following an error. The END= will
catch both EOF and error conditions; the ERR= will catch only error conditions.

If the user’s program does not trap I/O errors, then before aborting, an error
message is written to stderr with an error number in square brackets, [], and
the logical unit and I/O state. The signal that causes the abort is IOT.

Input and Output 245

5

Error numbers less than 1000 refer to operating system errors; see intro (2).
Error numbers greater than or equal to 1000 come from the I/O library.

For external I/O, part of the current record will be displayed if the error was
caused during reading from a file that can backspace. For internal I/O, part of
the string is printed with a vertical bar (|) at the current position in the string.

General Restriction

Do not reference a function in an I/O list if executing that function will cause
an I/O statement to be executed. Example:

Kinds of I/O

The four kinds of I/O are formatted, unformatted, list-directed, and NAMELIST.

The two modes of access to files are sequential and direct. When you open a file,
the access mode is set to either sequential or direct. If you do not set it
explicitly, you get sequential by default.

The two types of files are external and internal. An external file resides on a
physical peripheral device, such as disk or tape. An internal file is a location in
main memory, is of character type, and is either a variable, substring, array,
array element, or field of a structured record.

Combinations of I/O

I/O combinations on external files:

WRITE(1, 10) Y, A + 2.0 * F(X) ! Wrong if F() does I/O

Allowed Sequential unformatted
Sequential formatted
Sequential list-directed
Sequential NAMELIST
Direct unformatted
Direct formatted

Not allowed Direct-access, list-directed I/O
Direct-access, NAMELIST I/O
NAMELIST I/O on internal files
Unformatted, internal I/O

246 FORTRAN Reference Manual

5

The following table shows combinations of I/O form, access mode, and
physical file type.

Avoid list-directed internal writes. The number of lines and items per line
varies with the values of items.

Table 5-1 Summary of f77 Input and Output

 Kind of I/O Access Mode

Form File Type Sequential Direct

Formatted

Internal The file is a character variable,
substring, array, or array element.
♦

The file is a character
array; each record is
one array element.

External Only formatted records of same or
variable length.

Only formatted
records, all the same
length.

Unformatted

Internal (not allowed) (not allowed)

External Contains only unformatted
records.

READ: Gets one logical
record at a time.
WRITE: Unfilled part of
record is undefined.

List-directed

Internal READ: Reads characters until EOF
or I/O list is satisfied;
WRITE: Writes records until list is
satisfied. ♦

(not allowed)

External Uses standard formats based on
type of variable and size of
element. Blanks or commas are
separators. Any columns.

(not allowed)

NAMELIST

Internal (not allowed) (not allowed)

External READ: Reads records until it finds
“ $groupname” in cols 2-80. Then
reads records searching for names
in that group, and stores data in
those variables.
Stops reading on “$” or eof.
WRITE: Writes records showing
groupname and each variable
name with value.

(not allowed)

Input and Output 247

5

Print Files

You get a print file by using the nonstandard FORM=’PRINT’ in OPEN. ♦

This specifier works for sequential access files only.

Definition

A print file has the following features:

• With formatted output you get vertical format control for that logical unit:
• Column one is not printed
• If column one is blank, 0, or 1, then vertical spacing is

one line, two lines, or top of page (respectively).

• With list-directed output you get for that logical unit:
• Column one is not printed.

In general, if you open a file with FORM=’PRINT’ then for that file list-directed
output does not provide the FORTRAN Standard blank in column one,
otherwise it does provide that blank. The FORM=’PRINT’ is for one file per
call.

If you compile with the -oldldo option (old list-directed output), then all files
written by the program do list-directed output without that blank in column
one, otherwise they all get that blank. The -oldldo option is global.

The INQUIRE Statement

The INQUIRE statement returns ’PRINT’ in the FORM variable for logical units
opened as ‘print’ files. It returns -1 for the unit number of an unopened file.

Special Uses of OPEN

If a logical unit is already open, an OPEN statement using the BLANK option
does nothing but redefine that option.

As a nonstandard extension, if a logical unit is already open, an OPEN
statement using the FORM option does nothing but redefine that option. ♦

OPEN (..., FORM=’PRINT’, ...)

248 FORTRAN Reference Manual

5

These forms of the OPEN statement need not include the file name, and must
not include a file name if UNIT refers to standard input, output, or standard
error.

If you connect a unit with OPEN and do not use the file name parameter, then
you get the default file name fort. nn, where nn is the unit number. Therefore,
to redefine the standard output as a print file, use:

Scratch Files

If you create a scratch file, it will normally disappear after execution is
completed.

Example: Create a scratch file.

To prevent a temporary file from disappearing after execution is completed,
you must execute a CLOSE statement with STATUS=’KEEP’ . (KEEP is the
default status for all other files.)

Example: Close a scratch file that you want to get back to later.

Remember to get the real name of the scratch file, using INQUIRE if you want
to reopen it later.

Changing I/O Initialization with IOINIT

Traditional FORTRAN environments usually assume carriage control on all
logical units. They usually interpret blank spaces on input as zeroes and often
provide attachment of global file names to logical units at runtime. The routine
IOINIT (3F) can be called to specify these I/O control parameters.

• Recognize carriage control for all formatted files.
• Ignore trailing and embedded blanks in input files.
• Position files at the beginning or end upon opening.
• Preattach file names of a specified pattern with logical units.

OPEN(UNIT=6, FORM=’PRINT’)

OPEN(UNIT=7, STATUS=’SCRATCH’)

CLOSE(UNIT=7, STATUS=’KEEP’)

Input and Output 249

5

Example: IOINIT and logical unit preattachment.

Consider the following call.

For the above call, the FORTRAN runtime system looks in the environment for
names of the form FORTnn, and then it opens the corresponding logical unit for
sequential formatted I/O.

With the above example, suppose your program opened unit 7 as follows.

For the above OPEN, the FORTRAN runtime system looks in the environment
for the FORT07 file, and connects it to unit 7.

In general, names must be of the form PREFIXnn, where the particular PREFIX
is specified in the call to IOINIT , and nn is the logical unit to be opened. Unit
numbers less than 10 must include the leading ‘0’. For details, see IOINIT (3F).

Example: Attach external files ini1.inp and ini1.out to units 1and 2.

sh :

csh :

CALL IOINIT (.TRUE., .FALSE., .FALSE., ’FORT’, .FALSE.)

OPEN(UNIT=07, FORM=’FORMATTED’)

demo$ TST01=ini1.inp
demo$ TST02=ini1.out
demo$ export TST01 TST02

demo% setenv TST01 ini1.inp
demo% setenv TST02 ini1.out

250 FORTRAN Reference Manual

5

Example: Attach files ini1.inp & ini1.out to units 1 & 2.

IOINIT should prove adequate for most programs as written. However, it is
written in FORTRAN so that it can serve as an example for similar user-
supplied routines. A copy can be retrieved as follows.

Solaris 2.x:

Solaris 1.x:

5.2 Direct Access
A direct-access file contains a number of records that are written to or read
from by referring to the record number. Direct access is also called random
access.

• Records must be all the same length.

• Records are usually all the same type.

• A logical record in a direct access, external file is a string of bytes of a length
specified when the file is opened.

demo$ cat ini1.f
CHARACTER PRFX*8
LOGICAL CCTL, BZRO, APND, VRBOSE
DATA CCTL, BZRO, APND, PRFX, VRBOSE

& /.TRUE., .FALSE., .FALSE., ’TST’, .FALSE. /
C

CALL IOINIT(CCTL, BZRO, APND, PRFX, VRBOSE)
READ(1, *) I, B, N
WRITE(*, *) ’I = ’, I, ’ B = ’, B, ’ N = ’, N
WRITE(2, *) I, B, N
END

demo$ f77 ini1.f
ini1.f:
 MAIN:
demo$ a.out
 I = 12 B = 3.14159012 N = 6
demo$ ■

demo$ cp /opt/SUNWspro/SC3.0.1/src/ioinit.f .

demo% cp /usr/lang/SC3.0.1/src/ioinit.f .

Input and Output 251

5

• Read and write statements must not specify logical records longer than the
original record size definition.

• Shorter logical records are allowed.
• Unformatted direct writes leave the unfilled part of the record undefined.
• Formatted direct writes pass the unfilled record with blanks.

• Each READ operation acts on exactly one record

• In using direct unformatted I/O, you should be careful with the number of
values your program expects to read.

• Direct access READ and WRITE statements have an argument, REC=n, which
gives the record number to be read or written. (An alternate, nonstandard
form is ’ n.)

Unformatted I/O

Example: Direct-access unformatted.

This opens a file for direct-access, unformatted I/O, with a record length of 20
characters, then reads the thirteenth record as is.

Formatted I/O

Example: Direct-access, formatted.

This opens a file for direct-access, formatted I/O, with a record length of 20
characters, then reads the thirteenth record and converts it according to the
“(I10,F10.3) ” format.

OPEN(2, FILE=’data.db’, ACCESS=’DIRECT’, RECL=20,
& FORM=’UNFORMATTED’, ERR=90)

READ(2, REC=13, ERR=30) X, Y
READ(2 ’ 13, ERR=30) X, Y ! ← Alternate form ♦

OPEN(2, FILE=’inven.db’, ACCESS=’DIRECT’, RECL=20,
& FORM=’FORMATTED’, ERR=90)

READ(2, FMT=’(I10,F10.3)’, REC=13, ERR=30) A, B

252 FORTRAN Reference Manual

5

5.3 Internal Files
An internal file is a character-string object such as a constant, variable,
substring, array, element of an array, or field of a structured record — all of
type character. For a variable or substring, there is only a single record in the
file but for an array, each array element is a record.

Sequential Formatted I/O

On internal files, the FORTRAN Standard includes only sequential formatted
I/O. (I/O is not a precise term to use here, but internal files are dealt with
using READ and WRITE statements.) Internal files are used by giving the name
of the character object in place of the unit number. The first read from a
sequential-access internal file always starts at the beginning of the internal file;
and similarly for a write.

Example: Sequential, formatted reads.

The above reads a print-line image into X and then reads two integers from X.

Direct Access I/O

f77 extends direct I/O to internal files.♦

This is like direct I/O on external files, except that the number of records in the
file cannot be changed. In this case, a record is a single element of an array of
character strings.

CHARACTER X*80
READ(5, ’(A)’) X
READ(X, ’(I3,I4)’) N1, N2

Input and Output 253

5

Example: Direct-access read of third record of the internal file LINE .

5.4 Formatted I/O

Description
• The list items are processed in the order they appear in the list.
• Any list item is completely processed before the next item is started.
• Each formatted sequential access reads or writes one or more logical

records.

Input

In general, a formatted read statement does the following:

• Reads character data from the external record (or from an internal file).
• Converts the items of the list from character to binary form.
• Conversion is according to the instructions in the associated format.
• Puts converted data into internal storage for each list item of the list.

Example: Formatted read.

demo$ cat intern.f
CHARACTER LINE(3)*14
DATA LINE(1) / ’ 81 81 ’ /
DATA LINE(2) / ’ 82 82 ’ /
DATA LINE(3) / ’ 83 83 ’ /
READ (LINE, FMT=’(2I4)’, REC=3) M, N
PRINT *, M, N
END

demo$ f77 -silent intern.f
demo$ a.out
 83 83
demo$ ■

READ(6, 10) A, B
10 FORMAT(F8.3, F6.2)

254 FORTRAN Reference Manual

5

Output

In general, a formatted write statement does the following:

• Gets data from internal storage for each list item specified by the list.
• Converts the items from binary to character form.
• Conversion is according to the instructions in the associated format.
• Transfers the items to the external record (or to an internal file).
• Formatted output records are terminated with newline characters.

Example: Formatted write.

• For formatted write statements, logical record length is determined by the
format statement interacting with the list of input or output variables (I/O
list) at execution time.

• For formatted write statements, if the external representation of a datum is
too large for the field width specified, the specified field is filled with
asterisks (*).

• For formatted read statements, if there are fewer items in the list than there
are data fields, the extra fields are ignored.

REAL A / 1.0 /, B / 9.0 /
WRITE(6, 10) A, B

10 FORMAT(F8.3, F6.2)

Input and Output 255

5

Format Specifiers

The w, m, d, e Parameters (as in Gw. dEe)
• w specifies that the field occupies w positions.
• m specifies the insertion of leading zeros to a width of m.
• d specifies the number of digits to the right of the decimal point.
• e specifies the width of the exponent field.

Table 5-2 Format Specifiers

Purpose FORTRAN 77 f77 Extensions

Specifiers can be
uppercase as well as
lowercase characters in
format statements and in
all the alphabetic
arguments to the I/O
library routines.

Blank control BN, BZ B

Carriage control /, space, 0, 1 $

Character edit nH, Aw, ’aaa’ "aaa" , A

Floating-point edit Dw.d Ee,
Ew.d Ee,
Fw.d Ee,
Gw.d Ee

Ew.d.e ,
Dw.d.e ,
Gw.d.e

Hexadecimal edit Zw.m

Integer edit I w.m

Logical edit Lw

Octal edit Ow.m

Position control nX, Tn, TLn, TRn nT, T, X

Radix control nR, R

Remaining characters Q

Scale control nP P

Sign control S, SP, SS SU

Terminate a format :

Variable format expression < e >

256 FORTRAN Reference Manual

5

Defaults for w, d, e

You can write field descriptors A, D, E, F, G, I , L, O, or Z without the w, d, or e
field indicators. ♦ If these are left unspecified, the appropriate defaults will be
used, based on the data type of the I/O list element. See Table 5-3. Typical
format field descriptor forms that use w, d, or e include:

Example: With default w=7 for INTEGER*2, and since 161 decimal = A1 hex.

The above example displays as shown below.

 ↑ column 6

Aw, I w, L w, O w, Z w, D w. d, E w.d , G w.d , E w.d Ee, G w.d Ee

INTEGER*2 M
M = 161
WRITE (*, 8) M

8 FORMAT (Z)
END

demo$ f77 def1.f
def1.f:
 MAIN:
demo$ a.out
∆∆∆∆∆a1
demo$ ■

Input and Output 257

5

The defaults for w, d, and e are summarized below.

For complex items, the value for w is for each real component. Default for the
A descriptor with character data is the declared length of the corresponding
I/O list element. The REAL*16 and COMPLEX*32 are for SPARC only.

Apostrophe Editing (’aaa’)

The apostrophe edit specifier is in the form of a character constant. It causes
characters to be written from the enclosed characters (including blanks) of the
edit specifier itself. An apostrophe edit specifier must not be used on input.
The width of the field is the number of characters contained in, but not
including, the delimiting apostrophes. Within the field, two consecutive
apostrophes with no intervening blanks are counted as a single apostrophe.
You can use quotes in a similar way.

Table 5-3 Default w, d, e Values in Format Field Descriptors

Field Descriptor List Element w d e

I,O,Z BYTE 7 - -

I,O,Z INTEGER*2, LOGICAL*2 7 - -

I,O,Z INTEGER*4, LOGICAL*4 12 - -

O,Z REAL*4 12 - -

O,Z REAL*8 23 - -

O,Z REAL*16, COMPLEX*32 44 - -

L LOGICAL 2 - -

F,E,D,G REAL, COMPLEX*8 15 7 2

F,E,D,G REAL*8, COMPLEX*16 25 16 2

F,E,D,G REAL*16, COMPLEX*32 42 33 3

A LOGICAL*1 1 - -

A LOGICAL*2, INTEGER*2 2 - -

A LOGICAL*4, INTEGER*4 4 - -

A REAL*4, COMPLEX*8 4 - -

A REAL*8, COMPLEX*16 8 - -

A REAL*16, COMPLEX*32 16 - -

A CHARACTER*n n - -

258 FORTRAN Reference Manual

5

Example: apos.f , apostrophe edit (two equivalent ways).

The above writes: This is an apostrophe ’. twice.

Blank Editing (B,BN,BZ)

The B, BN, and BZ edit specifiers control interpretation of imbedded and
trailing blanks for numeric input.

The following blank specifiers are available.

BN

If BN precedes a specification, a nonleading blank in the input data is
considered null, and is ignored.

BZ

If BZ precedes a specification, a nonleading blank in the input data is
considered zero.

B

If B precedes a specification, it returns interpretation to the default mode of
blank interpretation. This is consistent with S, which returns to default sign
control. ♦

Without any specific blank specifiers in the format, nonleading blanks in
numeric input fields are normally interpreted as zeros or ignored, depending
on the value of the “BLANK=” suboption of OPEN currently in effect for the
unit. The default value for that suboption is ignore, so if you use defaults for
both BN/BZ/B and “BLANK=”, you get ignore.

WRITE(*, 1)
1 FORMAT(’This is an apostrophe ’’.’)

WRITE(*, 2)
2 FORMAT("This is an apostrophe ’.")

END

Input and Output 259

5

Example: Read and print the same data once with BZ and once with BN.

 Rules and Restrictions for Blank Control
• Blank control specifiers apply to input only.
• A blank control specifier remains in effect until another blank control

specifier is encountered, or format interpretation is complete.
• The B, BN, and BZ specifiers affect only I , F, E, D, and G editing.

Carriage Control ($, space,0,1)

Dollar $
The special edit descriptor $ suppresses the carriage return. ♦

The action does not depend on the first character of the format. It is used
typically for console prompts. For instance, you can use this to make a typed
response follow the output prompt on the same line. This edit descriptor is
constrained by the same rules as the colon (:).
Example: The $ carriage control.

The above produces a displayed prompt and user input response such as:

demo$ cat bz1.f
* 12341234

CHARACTER LINE*18 / ’ 82 82 ’ /
READ (LINE, ’(I4, BZ, I4) ’) M, N
PRINT *, M, N
READ (LINE, ’(I4, BN, I4) ’) M, N
PRINT *, M, N
END

demo$ f77 -silent bz1.f
demo$ a.out
 82 8200
 82 82
demo$ ■

* dol1.f The $ edit descriptor with space
WRITE (*, 2)

2 FORMAT (’ Enter the node number: ’, $)
READ (*, *) NODENUM
END

Enter the node number: 82

260 FORTRAN Reference Manual

5

The first character of the format is printed out, in this case, a blank. For an
input statement, the $ descriptor is ignored.

space,0 , 1, +

The following first-character slew controls and actions are provided.

If the first character of the format is not space, 0, 1, or +, then it is treated as a
space, and it is not printed.

The behavior of the slew control character + is different for standard output
and for file output. For output directly to a file, the + code for no advance is not
implemented, and, like any other character in the first position of a record
written to a print file, is dropped.

Standard Output: space, 0, 1, and + work for stdout if piped through asa .

Example: First-character formatting, standard output piped through asa .

Table 5-4 Carriage Control with Blank, 0, 1, +

Character Vertical spacing before printing

Blank

0

1

+

One line

Two lines

To first line of next page

No advance (stdout only, not files)

demo$ cat slew1.f
WRITE(*, ’("abcd")’)
WRITE(*, ’(" efg")’) ! The blank single spaces
WRITE(*, ’("0hij")’) ! The "0" double spaces
WRITE(*, ’("1klm")’) ! The "1" starts this on a new page
WRITE(*, ’("+", T5, "nop")’) ! The "+" starts this at col 1 of latest line
END

demo$ f77 -silent slew1.f
demo$ a.out | asa | lpr
demo$

Input and Output 261

5

The program slew1.f produces file slew1.out , as printed by lpr , below.

The results are different on a screen. The tabbing puts in spaces.

See asa (1).

File Output: The space, 0, and 1 (but not +) work for a file opened with:

• Sequential access
• FORM=’PRINT’

Example: First-character formatting, file output.

printer bcd
efg

hij

klmnop ← This starts on a new page. The "+" of "+nop" is obeyed

screen demo$ cat slew1.out
bcd
efg

hij

 nop ← This starts on a new page. The "+" of "+nop" is obeyed
demo$

demo$ cat slew2.f
OPEN(1,FILE=’slew.out’,FORM=’PRINT’)
WRITE(1, ’("abcd")’)
WRITE(1, ’(" efg")’)
WRITE(1, ’("0hij")’)
WRITE(1, ’("1klm")’)
WRITE(1, ’("+", T5, "nop")’)
CLOSE(1, STATUS=’KEEP’)
END

demo$ f77 -silent slew2.f
demo$ a.out

262 FORTRAN Reference Manual

5

 The program slew2.f produces file slew2.out , as printed by lpr , below.

Slew control codes ‘0’ and ‘1’ in column one are in the output file as ‘\n ’
and ‘\f ’, respectively.

Character Editing (A)

The A specifier is used for character type data items. The general form is

• On input, character data is stored in the corresponding list item.

• On output, the corresponding list item is displayed as character data.

• If w is omitted, then:
• For character data type variables, it assumes the size of the variable.
• For noncharacter data type variables, it assumes the maximum number of

characters that fit in a variable of that data type. This is nonstandard.

Each of the following examples read into a size n variable (CHARACTER*n), for
various values of n (for instance, for n = 9).

And for the various values of n, in CHARACTER C*n, you have the following.

The ∆ indicates a blank space.

bcd
efg

hij

klm ← This starts on a new page. The "+" of "+nop" is ignored
 nop

A [w]

CHARACTER C*9
READ ’(A7)’, C

Size n 9 7 4 1

Data Node ∆Id Node ∆Id Node ∆Id Node ∆Id

Format A7 A7 A7 A7

Memory Node ∆Id ∆∆ Node∆Id e ∆Id d

Input and Output 263

5

Example: Output strings of 3, 5, and 7 characters, each in a 5 character field.

The above program displays:

The maximum characters in noncharacter types are summarized below.

In f77 you can use Hollerith constants wherever a character constant can be
used in FORMAT statements, assignment statements, and DATA statements.♦
These constants are not recommended. FORTRAN 77 does not have these old
Hollerith (n H) notations, although the FORTRAN Standard recommends
implementing the Hollerith feature in order to improve compatibility with old

PRINT 1, ’The’, ’whole’, ’shebang’
1 FORMAT(A5 / A5 / A5)

END

∆∆The
whole
sheba

Table 5-5 Maximum Characters in Noncharacter Type Hollerith (nHaaa)

Type of List Item Maximum Number of characters

BYTE
LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4
REAL
REAL*4
REAL*8
REAL*16 (SPARC only)
DOUBLE PRECISION
COMPLEX
COMPLEX*8
COMPLEX*16
COMPLEX*32 (SPARC only)
DOUBLE COMPLEX

 1
 1
 2
 4
 2
 4
 4
 4
 8

 16
 8
 8
 8

 16
 32
 16

264 FORTRAN Reference Manual

5

programs. But such constants cannot be used as input data elements in list-
directed or NAMELIST input. For example, the two formats below are
equivalent.

In f77 , commas between edit descriptors are generally optional.

Read into Hollerith Edit Descriptor

For compatibility with older programs, f77 also allows READs into Hollerith
edit descriptors. ♦

Example. Read into hollerith edit descriptor. Note that there is no list in the
READ statement.

In the above, if the format is a runtime format (variable format), then the above
reading into the actual format does not work, and the format remains
unchanged. That is, the following fails:

But obviously there are better ways to do it anyway.

10 FORMAT(8H Code = , A6)
20 FORMAT(’ Code = ’, A6)

10 FORMAT(5H flex 4Hible)

demo$ cat hol1.f
WRITE(*, 1)

1 FORMAT(6Holder)
READ(*, 1)
WRITE(*, 1)
END

demo$ f77 hol1.f
hol1.f:
 MAIN
demo$ a.out
older
newer
newer
demo$ ■

CHARACTER F*18 / ’(A8)’ /
READ(*,F) ! <- Does not work.
…

Input and Output 265

5

Integer Editing (I)

The I specifier is used for decimal integer data items. The general form is

The I w and I w.m edit specifiers indicate that the field to be edited occupies w
positions. The specified input/output list item must be of type integer. On
input, the specified list item will become defined with an integer datum. On
output, the specified list item must be defined as an integer datum.

On input, an I w.m edit specifier is treated identically to an I w edit specifier.

The output field for the I w edit specifier consists of

• Zero or more leading blanks followed by

• Either a minus if the value is negative, or an optional plus, followed by

• The magnitude of the value in the form on an unsigned integer constant
without leading zeros.

An integer constant always has at least one digit.

The output field for the I w.m edit specifier is the same as for the I w edit
specifier, except that the unsigned integer constant consists of at least m digits,
and, if necessary, has leading zeros. The value of m must not exceed the value
of w. If m is zero and the value of the item is zero, the output field consists of
only blank characters, regardless of the sign control in effect.

Example: int1.f , Integer input.

The program above displays:

I [w [. m]]

CHARACTER LINE*8 / ’12345678’ /
READ(LINE, ’(I2, I3, I2)’) I, J, K
PRINT *, I, J, K
END

 12 345 67

266 FORTRAN Reference Manual

5

Example: int2.f , integer output.

The program above displays:

Logical Editing (L)

The L specifier is used for logical data items. The general form is:

The L w edit specifier indicates that the field occupies w positions. The
specified input-output list item must be of type LOGICAL. On input, the list
item will become defined with a logical datum. On output, the specified list
item must be defined as a logical datum.

The input field consists of optional blanks, optionally followed by a decimal
point, followed by a T for true or F for false. The T or F can be followed by
additional characters in the field. The logical constants .TRUE. and .FALSE.
are acceptable as input. The output field consists of w-1 blanks followed by a T
for true or F for false.

Example: log1.f , logical output.

The program above displays:

N = 1234
PRINT 1, N, N, N, N

1 FORMAT(I6 / I4 / I2 / I6.5)
END

 1234
1234
**
01234

 L w

LOGICAL A*1 /.TRUE./, B*2 /.TRUE./, C*4 /.FALSE./
PRINT ’(L1 / L2 / L4)’, A, B, C
END

T
∆T
∆∆∆F

Input and Output 267

5

Example: log2.f , logical input.

The program above accepts any of these as valid input data.

Octal and Hexadecimal Editing (O,Z)

The O and Z field descriptors for a FORMAT statement are for octal and
hexadecimal integers, respectively, but they can be used with any data type.♦

The general form is

where w is the number of characters in the external field, and for output, m, if
specified, determines the total number of digits in the external field (that is, if
there are fewer than m nonzero digits, the field is zero-filled on the left to a
total of m digits). The m has no effect on input.

Octal and Hex Input
A READ, with the O or Z field descriptors in the FORMAT, reads in w characters
as octal or hexadecimal, respectively, and assigns the value to the
corresponding member of the I/O list.

Example: Octal input, the external data field is as follows.

↑ column 1

LOGICAL*4 A
1 READ ’(L8)’, A

PRINT *, A
GO TO 1
END

t true T TRUE .t .t. .T .T. .TRUE. TooTrue
f false F FALSE .f .F .F. .FALSE. Flakey

Ow[. m]

Zw[.m]

654321

268 FORTRAN Reference Manual

5

The program that does the input is the following.

The above data and program result in the octal value 654321 being loaded into
the variable M Further examples are included in the table below.

General Rules for Octal and Hex Input

• For octal values, the external field can contain only numerals 0 through 7.

• For hexadecimal values, the external field can contain only numerals 0
through 9 and the letters A through F or a through f .

• Signs, decimal points, and exponent fields are not allowed.

• All-blank fields are treated as having a value of zero.

• If a data item is too big for the corresponding variable, an error message is
displayed.

Octal and Hex Output
A WRITE, with the O or Z field descriptors in the FORMAT, writes out values as
octal or hexadecimal integers, respectively. It writes to a field that is w
characters wide, right-justified.

READ (*, 2) M
2 FORMAT (O6)

Table 5-6 Sample Octal/Hex Input Values

Format External Field Internal (Octal or Hex) Value

O4

O4

O3

1234 ∆
16234

97∆∆∆

1234

1623

Error: “9” not allowed

Z5

Z5

Z4

A23DE∆
A23DEF

95.AF2

A23DE

A23DE

Error: “.” not allowed

Input and Output 269

5

Example: Hex Output.

The program above displays A1 (161 decimal = A1 hex).

↑ column 2

Further examples are included in the table below.

General Rules for Octal and Hex Output
• Negative values are written as if unsigned; no negative sign is printed.
• The external field is filled with leading spaces, as needed, up to the width w.
• If the field is too narrow, it is filled with asterisks.
• If m is specified, the field is left-filled with leading zeros, to a width of m.
• In general, do not use these descriptors for printing character strings, but

restrict usage to 4 or 8 byte numeric data only.

M = 161
WRITE (*, 8) M

8 FORMAT (Z3)
END

∆A1

Table 5-7 Sample Octal/Hex Output Value

Format Internal
(Decimal)
Value

External (Octal/Hex)
Representation

O6

O2

O4.3

O4.4

O6

32767

14251

 27

 27

-32767

∆77777

 **

∆033

 0033

100001

Z4

Z3.3

Z6.4

Z5

32767

 2708

 2708

-32767

 7FFF

 A94

∆∆0A94

∆8001

270 FORTRAN Reference Manual

5

Positional Editing (T,nT,TRn,TLn,nX)

For horizontal positioning along the print line, f77 supports the forms

TRn, TLn, Tn, nT, T

where n is a strictly positive integer.The format specifier T can appear by itself,
or be preceded or followed by a positive nonzero number.

Tn — Absolute Columns
This reads from the nth column or writes to the nth column.

TLn — Relative Columns
This reads from the nth column to the left or writes to the nth column to the
left.

TRn — Relative Columns
This reads from the nth column to the right or writes to the nth column to the
right.

nTL — Relative Tab Stop
This tabs to the nth tab stop for both read and write. If n is omitted, this uses
n = 1 and tabs to the next tab stop.

TL — Relative Tab Stop
This tabs to the next tab stop for both read and write. This is the same as the
nTL with n omitted; it tabs to the next tab stop.

Rules and Restrictions for Tabbing

• Tabbing right beyond the end of an input logical record is an error.

• Tabbing left beyond the beginning of an input logical record leaves the
input pointer at the beginning of the record.

• Nondestructive tabbing is implemented for both internal and external
formatted I/O. Nondestructive tabbing means that tabbing left or right on
output does not destroy previously written portions of a record.

Input and Output 271

5

• Tabbing right on output causes unwritten portions of a record to be filled
with blanks.

• Tabbing left requires that the logical unit allows a seek . Therefore, it is not
allowed in I/O to or from a terminal or pipe.

• Likewise, nondestructive tabbing in either direction is possible only on a
unit that can seek. Otherwise tabbing right or spacing with the X edit
specifier writes blanks on the output.

• Tab stops are hard-coded every eight columns.

nX — Positions
The nX edit specifier indicates that the transmission of the next character to
or from a record is to occur at the position n characters forward from the
current position.

On input, the nX edit specifier advances the record pointer by n positions,
skipping n characters.

A position beyond the last character of the record can be specified if no
characters are transmitted from such positions.

On output, the nX specifier writes n blanks.

The n defaults to 1.

Example: Input, Tn (absolute tabs).

demo$ cat rtab.f
CHARACTER C*2, S*2
OPEN(1, FILE=’mytab.data’)
DO I = 1, 2

READ(1, 2) C, S
2 FORMAT(T5, A2, T1, A2)

PRINT *, C, S
END DO
END

demo$ ■

272 FORTRAN Reference Manual

5

The 2-line data file is as follows.

The run and the output are as follows.

The above example first reads columns 5 and 6, then columns 1 and 2.

Example: Output Tn (absolute tabs), this program writes an output file.

The output file is as follows.

The above example wrote 20 characters, then changed columns 10 and 20.

Example: Input, TRn and TL n (relative tabs), the program is as follows.

demo$ cat mytab.data
defguvwx
12345678
demo$ ■

demo$ a.out
uvde
5612
demo$ ■

demo$ cat otab.f
CHARACTER C*20 / "12345678901234567890" /
OPEN(1, FILE=’mytab.rep’)
WRITE(1, 2) C, ":", ":"

2 FORMAT(A20, T10, A1, T20, A1)
END

demo$ ■

demo$ cat mytab.rep
123456789:123456789:
demo$ ■

demo$ cat rtabi.f
CHARACTER C, S, T
OPEN(1, FILE=’mytab.data’)
DO I = 1, 2

READ(1, 2) C, S, T
2 FORMAT(A1, TR5, A1, TL4, A1)

PRINT *, C, S, T
END DO
END

demo$ ■

Input and Output 273

5

The 2-line data file:

The run and the output:

The above example reads column 1, then tabs right 5 to column 7, then tabs left
4 to column 4.

Example: Output TR n and TL n (relative tabs), this program writes an output
file.

The run shows nothing, but you can list the mytab.rep output file.

The above program wrote 20 characters, then tabbed left 11 to column 10, then
tabbed right 9 to column 20.

demo$ cat mytab.data
defguvwx
12345678
demo$ ■

demo$ a.out
dwg
174
demo$ ■

demo$ cat rtabo.f
CHARACTER C*20 / "12345678901234567890" /
OPEN(1, FILE=’rtabo.rep’)
WRITE(1, 2) C, ":", ":"

2 FORMAT(A20, TL11, A1, TR9, A1)
END

demo$ ■

demo$ cat rtabo.rep
123456789:123456789:
demo$ ■

274 FORTRAN Reference Manual

5

Quotes Editing ("aaa")

The quotes edit specifier is in the form of a character constant.♦
It causes characters to be written from the enclosed characters (including
blanks) of the edit specifier itself. A quotes edit specifier must not be used on
input.

The width of the field is the number of characters contained in, but not
including, the delimiting quotes. Within the field, two consecutive quotes with
no intervening blanks are counted as a single quote. You can use apostrophes
in a similar way.
Example: quote.f, (two equivalent ways).

This writes the message “This is a quote ". ” twice.

Radix Control (R)

The format specifier is R or nR, where 2 ≤ n ≤36. ♦

If n is omitted, the default decimal radix is restored.

This lets you specify radixes other than 10 for formatted integer I/O
conversion. The specifier is patterned after P, the scale factor for floating-point
conversion. It remains in effect until another radix is specified or format
interpretation is complete. The I/O item is treated as a 32-bit integer.

Example: Radix 16, the format for an unsigned, hex, integer, 10 places wide,
zero-filled to 8 digits, is (su, 16r, I10.8) , as in the following:

WRITE(*, 1)
1 FORMAT(’This is a quote ".’)

WRITE(*, 2)
2 FORMAT("This is a quote "".")

END

The “SU” is described under
Sign Editing, below.

demo$ cat radix.f
integer i / 110 /
write(*, 1) i

1 format(su, 16r, I10.8)
end

demo$ f77 -silent radix.f
demo$ a.out
∆∆0000006e
demo$ ■

Input and Output 275

5

Real Editing (D,E,F,G)

The D, E, F, and G specifiers are for decimal real data items.

D Editing
The D specifier is for the exponential form of decimal double-precision items.
The general form is

The D w and D w.d edit specifiers indicate that the field to be edited occupies w
positions. The d indicates that the fractional part of the number (the part to the
right of the decimal point) has d digits. However, if the input datum contains a
decimal point, that decimal point overrides the d value.

On input, the specified list item will become defined with a real datum. On
output, the specified list item must be defined as a real datum.

In an output statement, the D edit descriptor does the same thing as the E edit
descriptor, except that a D is used in place of an E. The output field for the D
w.d edit specifier has width w. The value is right-justified in that field. The field
consists of zero or more leading blanks followed by either a minus if the value
is negative, or an optional plus, followed by the magnitude of the value of the
list item rounded to d decimal digits.

The w must allow for a minus sign, at least one digit to the left of the decimal
point, the decimal point, and d digits to the right of the decimal point.
Therefore it must be the case that w ≥ d+3.

Example: Real input with D editing. Program Dinp.f.

The above displays:

D [w [. d]]

CHARACTER LINE*24 / ’12345678 23.5678 .345678’ /
READ(LINE, ’(D8.3, D8.3, D8.3)’) R, S, T
PRINT ’(D10.3, D11.4, D13.6)’, R, S, T
END

0.123D+05 0.2357D+02 0.345678D+00

276 FORTRAN Reference Manual

5

In the above example, the first input data item has no decimal point, so the
D8.3 determines the decimal point. The other input data items have decimal
points, so those decimal points override the D edit descriptor as far as decimal
points are concerned.

Example: Real Output with D editing. The program Dout.f .

The above displays:

In the above example, the second printed line is asterisks because the D8.4
does not allow for the sign; in the third printed line the D13.4 results in three
leading blanks.

E Editing
The E specifier is for the exponential form of decimal real data items. The
general form is

• The w indicates that the field to be edited occupies w positions.

• The d indicates that the fractional part of the number (the part to the right of
the decimal point) has d digits. However, if the input datum contains a
decimal point, that decimal point overrides the d value.

• The e indicates the number of digits in the exponent field. Default: 2.

The specified input/output list item must be of type real. On input, the
specified list item will become defined with a real datum. On output, the
specified list item must be defined as a real datum.

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(D9.3 / D8.4 / D13.4)
END

0.123D+04

∆∆∆0.1235D+04

 E [w [. d] [E e]]

Input and Output 277

5

The output field for the E w.d edit specifier has width w. The value is right-
justified in that field. The field consists of zero or more leading blanks followed
by either a minus if the value is negative, or an optional plus, followed by a
zero, followed by a decimal point, followed by the magnitude of the value of
the list item rounded to d decimal digits, followed by an exponent.

For the form Ew. d

If | exponent | ≤ 99, it has the form E±nn or 0±nn.

If 99 ≤ | exponent | ≤ 999, it has the form ±nnn.

For the form Ew. dEe

If | exponent | ≤ (10e) - 1, then the exponent has the form ±nnn.

For the form Dw. d

If | exponent | ≤ 99, it has the form D±nn or E±nn or 0±nn.

If 99 ≤ | exponent | ≤ 999, it has the form ±nnn.

where n is any digit.

The sign in the exponent is required.

The w need not allow for a minus sign, but must allow for a zero, the decimal
point, and d digits to the right of the decimal point, and an exponent. Therefore
for nonnegative numbers, w ≥ d+6, or if e is present then w ≥ d+e+4. For
negative numbers, w ≥ d+7, or if e is present then w ≥ d+e+5.

Example: Real input with E editing. Program Einp.f .

The above displays:

In the above example, the first input data item has no decimal point, so the
E9.3 determines the decimal point. The other input data items have decimal
points, so those decimal points override the D edit descriptor as far as decimal
points are concerned.

* 123456789 23456789012 23456789012
CHARACTER L*40/’1234567E2 1234.67E-3 12.4567 ’/
READ(L, ’(E9.3, E12.3, E12.6)’) R, S, T
PRINT ’(E15.6, E15.6, E15.7)’, R, S, T
END

∆∆∆0.123457E+06 ∆∆∆0.123467E+01 ∆∆0.1245670E+02

278 FORTRAN Reference Manual

5

Example: Real Output with E editing. The program Eout.f .

The above displays:

In the above example, the E8.4 does not allow for the sign, so we get asterisks.
Also the extra wide field of the E13.4 results in three leading blanks.

Example: Real Output with Ew.dEe editing. The program EwdEe.f .

The above displays:

F Editing
The F specifier is for decimal real data items. The general form is

The Fw and Fw.d edit specifiers indicate that the field to be edited occupies w
positions.

The d indicates that the fractional part of the number (the part to the right of
the decimal point) has d digits. However, if the input datum contains a decimal
point, that decimal point overrides the d value.

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(E9.3 / E8.4 / E13.4)
END

0.123E+04

∆∆∆0.1235E+04

REAL X / 0.000789 /
WRITE(*,'(E13.3)') X
WRITE(*,'(E13.3E4)') X
WRITE(*,'(E13.3E5)') X
END

∆∆∆∆0.789E-03
∆∆0.789E-0003
∆0.789E-00003

 F [w [. d]]

Input and Output 279

5

The specified input/output list item must be of type real. On input, the
specified list item will become defined with a real datum. On output, the
specified list item must be defined as a real datum.

The output field for the F w.d edit specifier has width w. The value is right-
justified in that field. The field consists of zero or more leading blanks followed
by either a minus if the value is negative, or an optional plus, followed by the
magnitude of the value of the list item rounded to d decimal digits.

The w must allow for a minus sign, at least one digit to the left of the decimal
point, the decimal point, and d digits to the right of the decimal point.
Therefore it must be the case that w ≥ d+3.

Example: Real input with F editing. The program Finp.f .

The above displays:

In the above example, the first input data item has no decimal point, so the
F8.3 determines the decimal point. The other input data items have decimal
points, so those decimal points override the F edit descriptor as far as decimal
points are concerned.

Example: Real Output with F editing. The program Fout.f .

The above displays:

In the above example, the F8.4 does not allow for the sign; the F13.4 results
in four leading blanks and one trailing zero.

CHARACTER LINE*24 / ’12345678 23.5678 .345678’ /
READ(LINE, ’(F8.3, F8.3, F8.3)’) R, S, T
PRINT ’(F9.3, F9.4, F9.6)’, R, S, T
END

12345.678DD23.5678D0.345678

R = 1234.678
PRINT 1, R, R, R

1 FORMAT(F9.3 / F8.4 / F13.4)
END

∆1234.678

∆∆∆∆1234.6780

280 FORTRAN Reference Manual

5

G Editing
The G specifier is for decimal real data items. The general form is

The D, E, F, and G edit specifiers interpret data in the same way.

The representation for output by the G edit descriptor depends on the
magnitude of the internal datum. In the following table, N is the magnitude of
the internal datum.

Commas in Formatted Input
If you are entering numeric data that is controlled by a fixed-column format,
then you can use commas to override any exacting column restrictions.

Example: Format.

Using the above format reads the record below correctly.

The I/O system is just being more lenient than described in the FORTRAN
Standard. In general, when doing a formatted read of noncharacter variables,
commas override field lengths. More precisely, for I w, Fw.d, Ew.d[Ee], and Gw.d
input fields, the field ends when w characters have been scanned or a comma
has been scanned, whichever occurs first. If it’s a comma, the field consists of
the characters up to but not including the comma; the next field begins with
the character following the comma.

G [w [.d]]

or

G w.d E e

Range Form

 0.1 ≤ N < 1.0
 1.0 ≤ N < 10.0
…
 10 (d-2) ≤ N ≤ 10(d-1)

 10 (d-1) ≤ N < 10d

F(w-4).d, n(∆)
F(w-4).(d-1), n(∆)

…
F(w-4).1, n(∆)
F(w-4).0, n(∆)

(I10, F20.10, I4)

–345,.05e–3,12

Input and Output 281

5

Remaining Characters (Q)

The Q edit descriptor gets the length of an input record, or of the remaining
portion of it that is unread. ♦

It gets the number of characters remaining to be read from the current record.

Example: From a real and a string, get: real, string length, and string.

The above example reads a field into the variable R, then reads the number of
characters remaining after that field into L, then reads L characters into CVECT.
Q as the nth edit descriptor matches with L as the nth element in the READ list.

demo$ cat qed1.f
* qed1.f Q edit descriptor (real & string)

CHARACTER CVECT(80)*1
OPEN (UNIT=4, FILE=’qed1.data’)
READ (4, 1) R, L, (CVECT(I), I=1,L)

1 FORMAT (F4.2, Q, 80 A1)
WRITE (*, 2) R, L, ’"’, (CVECT(I),I=1,L), ’"’

2 FORMAT (1X, F7.2, 1X, I2, 1X, 80A1)
END

demo$ cat qed1.data
8.10qwerty
demo$ f77 qed1.f -o qed1
qed1.f:
 MAIN:
demo$ qed1
 8.10 6 "qwerty"
demo$ ■

282 FORTRAN Reference Manual

5

Example: Get length of input record; put the Q descriptor first.

The above example gets the length of the input record. With the whole input
string and its length, you can then parse it yourself.

Restrictions on the Q Edit Descriptor
• The list element it corresponds to must be of INTEGER or LOGICAL data

type.

• Q does strictly a character count. It gets the number of characters remaining in
the input record. It does not get the number of integers or reals or anything
else.

• This operates on files and stdin (terminal) input.

• This is ignored for output.

demo$ cat qed2.f
CHARACTER CVECT(80)*1
OPEN (UNIT=4, FILE=’qed2.data’)
READ (4, 1) L, (CVECT(I), I=1,L)

1 FORMAT (Q, 80A1)
WRITE (*, 2) L, ’"’, (CVECT(I),I=1,L), ’"’

2 FORMAT (1X, I2, 1X, 80A1)
END

demo$ cat qed2.data
qwerty
demo$ f77 qed2.f -o qed2
qed2.f:
 MAIN:
demo$ qed2
 6 "qwerty"
demo$ ■

Input and Output 283

5

Scale Factor (P)

The P edit descriptor lets you scale real input values by a power of 10. It also
gives you more control over the significant digit displayed for output values.

The general form is:

k is called the scale factor, and the default value is zero.

Examples: I/O statements with scale factors

P by itself is equivalent to 0P. It resets the scale factor to the default value 0P.
This P by itself is nonstandard.

Scope
The scale factor is reset to zero at the start of execution of each I/O statement.
The scale factor can have an effect on D, E, F, and G edit descriptors.

Input
On input, any external datum that does not have an exponent field will be
divided by 10k before it is stored internally.

Input Examples: Showing data, scale factors, and resulting value stored

Output
On output, with D, and E descriptors, and with G descriptors if the E editing is
required, the internal item will get its basic real constant part multiplied by 10k

and the exponent will be reduced by k before it is written out.

[k] P

k Integer constant, with an optional sign

READ (1, ’(3P E8.2)’) X
WRITE (1, ’(1P E8.2)’) X

Data 18.63 18.63 18.63E2 18.63

Format E8.2 3P E8.2 3P E8.2 -3P E8.2

Memory 18.63 .01863 18.63E2 18630.

284 FORTRAN Reference Manual

5

On output with the F descriptor, and with G descriptors if the F editing is
sufficient, the internal item will get its basic real constant part multiplied by
10k before it is written out.

Output Examples: Showing value stored, scale factors, and resulting output

Sign Editing (SU,SP,SS,S)

The SU, SP, and S edit descriptors control leading signs for output. For normal
output, without any specific sign specifiers, if a value is negative, a minus sign
is printed in the first position to the left of the leftmost digit; and if the value is
positive, printing a plus sign depends on the implementation, but f77 omits
the plus sign.

The following sign specifiers are available:

SP

If SP precedes a specification, a sign is printed.

SS

If SS precedes a specification, plus-sign printing is suppressed.

S

If S precedes a specification, system default is restored. The default is SS.

SU

If SU precedes a specification, integer values are interpreted as unsigned.
This is nonstandard.

For example, the unsigned specifier can be used with the radix specifier to
format a hexadecimal dump, as follows.

Memory 290.0 290.0 290.0 290.0

Format 2P E9.3 1P E9.3 -1P E9.3 F9.3

Display 29.00E+01 2.900E+02 0.029E+04 0.290E+03

2000 FORMAT(SU, 16R, 8I10.8)

Input and Output 285

5

 Rules and Restrictions for Sign Control
• Sign-control specifiers apply to output only.

• A sign-control specifier remains in effect until another sign-control specifier
is encountered, or format interpretation is complete.

• The S, SP, and SS specifiers affect only I , F, E, D, and G editing.

• The SU specifier affects only I editing.

Slash Editing (/)

The slash (/) edit specifier indicates the end of data transfer on the current
record.

Sequential Access
Input— On input, any remaining portion of the current record is skipped,
and the file is positioned at the beginning of the next record. Two successive
slashes (//) skip a whole record.

Output— On output, an end-of-record is written, and a new record is
started. Two successive slashes (//) produce a record of no characters. If
the file is an internal file, that record is filled with blanks.

Direct Access
Input and Output — Each slash increases the record number by one, and the
file is positioned at the start of the record with that record number.

Output — On output, two successive slashes (//) produce a record of no
characters, and that record is filled with blanks.

Termination Control (:)

The colon (:) edit descriptor allows for conditional termination of the format.
If the I/O list is exhausted before the format, then the format terminates at the
colon.

286 FORTRAN Reference Manual

5

Example: Termination control

The above program produces output such as the following

Without the colon, the output is more like this.

Runtime Formats

You can put the format specifier into an object that you can change during
execution. This improves flexibility. There is some increase in execution time
because this kind of format specifier gets parsed every time the I/O statement
is executed. These are also called variable formats.

The object must be one of the following kinds:

• Character expression

The character expression can be a scalar, an array, an element of an array, a
substring, a field of a structured record ♦, the concatenation of any of the
above, and so forth.

• Integer array ♦

The integer array can get its character values by a DATA statement, an
assignment statement, a READ statement, and so forth.

You must provide the delimiting left and right parentheses, but not the word
FORMAT and not a statement number.

You must declare the object so that it is big enough to hold the entire format.
For instance, ’(8X,12I)’ does not fit in an INTEGER*4 or a CHARACTER*4
object.

* col1.f The colon (:) edit descriptor
DATA INIT / 3 /, LAST / 8 /
WRITE (*, 2) INIT
WRITE (*, 2) INIT, LAST

2 FORMAT (1X ’INIT = ’, I2, :, 3X, ’LAST = ’, I2)
END

INIT = 3
INIT = 3 LAST = 8

INIT = 3 LAST =
INIT = 3 LAST = 8

Input and Output 287

5

Examples. Runtime formats in character expressions and integer arrays.

demo$ cat runtim.f
CHARACTER CS*8
CHARACTER CA(1:7)*1 /’(’,’1’,’X’,’,’,’I’,’2’,’)’/
CHARACTER S(1:7)*6
INTEGER*4 IA(2)
STRUCTURE / STR /

CHARACTER*4 A
INTEGER*4 K

END STRUCTURE
CHARACTER*8 LEFT, RIGHT
RECORD /STR/ R
N = 9
CS = ’(I8)’
WRITE(*, CS) N ! Character Scalar
CA(2) = ’6’
WRITE(*, CA) N ! Character Array
S(2) = ’(I8)’
WRITE(*, S(2)) N ! Element Of Character Array
IA(1) = ’(I8)’
WRITE(*, IA) N ! Integer Array
R.A = ’(I8)’
WRITE(*, R.A) N ! Field Of Record
LEFT = ’(I’
RIGHT = ’8)’
WRITE(*, LEFT // RIGHT) N ! Concatenate
END

demo$ f77 -silent runtim.f
demo$ a.out
 9
 9
 9
 9
 9
 9
demo$ ■

288 FORTRAN Reference Manual

5

Variable Format Expressions (<e>)

In general, inside a FORMAT statement, any integer constant can be replaced by
an arbitrary expression.♦

The expression itself must be enclosed in angle brackets.

For example, the “6” in

can be replaced by the variable “N”, as in

or by the slightly more complicated expression “2*N+M”, as in

Similarly, the “3” or “1” can be replaced by any expression.

The single exception is the “n” in an “nH…” edit descriptor.

Rules and Restrictions for Variable Format Expressions
• The expression is reevaluated each time it is encountered in a format scan.
• If necessary, the expression is converted to integer type.
• Any valid FORTRAN expression is allowed, including function calls.
• Variable expressions are not allowed in formats generated at runtime.
• The “n” in an “nH…” edit descriptor cannot be a variable expression.

5.5 Unformatted I/O
Unformatted I/O is used to transfer binary information to or from memory
locations without changing its internal representation. Each execution of an
unformatted I/O statement causes a single logical record to be read or written.
Since internal representation varies with different architectures, unformatted
I/O is limited in its portability.

You can use unformatted I/O to write data out temporarily, or to write data
out quickly for subsequent input to another FORTRAN program running on a
machine with the same architecture.

1 FORMAT(3F6.1)

1 FORMAT(3F<N>.1)

1 FORMAT(3F<2*N+M>.1)

Input and Output 289

5

Sequential Access I/O

Logical record length for unformatted, sequential files is determined by the
number of bytes required by the items in the I/O list. The requirements of this
form of I/O cause the external physical record size to be somewhat larger than
the logical record size.

Example:

The FORTRAN runtime system embeds the record boundaries in the data by
inserting an INTEGER*4 byte count at the beginning and end of each
unformatted sequential record during an unformatted sequential WRITE. The
trailing byte count enables BACKSPACE to operate on records. The result is that
FORTRAN programs can use an unformatted sequential READ only on data
that was written by an unformatted sequential WRITE operation. Any attempt
to read such a record as formatted would have unpredictable results.

Guidelines:

• Avoid using the unformatted sequential READ unless your file was written
that way.

• Because of the extra data at the beginning and end of each unformatted
sequential record, you might want to try using the unformatted direct I/O
whenever that extra data is significant. It is more significant with short
records than with very long ones.

Direct Access I/O

If your I/O lists are different lengths, you can OPEN the file with the “RECL=1”
option. This signals FORTRAN to use the I/O list to determine how many
items to read or write.

For each read, you still must tell it the initial record to start at, in this case
which byte, so you must know the size of each item. ♦

A simple example follows.

WRITE(8) A, B

290 FORTRAN Reference Manual

5

Example: Direct access, write 3 records, 2 integers each.

Example: Direct access, read 3 records, 2 integers each.

Example: Direct-access read, variable-length records, recl=1 .

Above, after reading 3 integers (12 bytes) you start the next read at record 13.

demo$ cat Direct1.f
integer u/4/, v /5/, w /6/, x /7/, y /8/, z /9/
open(1, access='DIRECT', recl=8)
write(1, rec=1) u, v
write(1, rec=2) w, x
write(1, rec=3) y, z
end

demo$ f77 -silent Direct1.f
demo$ a.out
demo$ ■

If you know record length is n,
then you can use the “recl= n”
option.

Here you read it as it was written.

This is simpler, easier, better.

demo$ cat Direct2.f
integer u, v, w, x, y, z
open(1, access='DIRECT', recl=8)
read(1, rec=1) u, v
read(1, rec=2) w, x
read(1, rec=3) y, z
write(*,*) u, v, w, x, y, z
end

demo$ f77 -silent Direct2.f
demo$ a.out
 4 5 6 7 8 9
demo$ ■

If you know the size of each item,
but not the record length, then you
can use the “recl=1 ” option.

Here you can read it using
different record lengths than it
was written with.

This is trickier.

demo$ cat Direct3.f
integer u, v, w, x, y, z
open(1, access='DIRECT', recl=1)
read(1, rec=1) u, v, w
read(1, rec=13) x, y, z
write(*,*) u, v, w, x, y, z
end

demo$ f77 -silent Direct3.f
demo$ a.out
 4 5 6 7 8 9
demo$ ■

Input and Output 291

5

5.6 List-Directed I/O
List-directed I/O is a free-form I/O for sequential access devices. To get it, use
an asterisk as the format identifier, as in:

Rules for List-Directed Input
• On input, values are separated by strings of blanks and (possibly) a comma.

• Values, except for character strings, cannot contain blanks.

• Character strings can be quoted strings, using pairs of quotes ("), or pairs of
apostrophes (’), or unquoted strings (see “Unquoted Strings” on page 294),
but not hollerith (nHxyz) strings.

• End of record counts as a blank, except in character strings, where it is
ignored.

• Complex constants are given as two real constants separated by a comma
and enclosed in parentheses.

• A null input field, such as between two consecutive commas, means that the
corresponding variable in the I/O list is not changed.

• Input data items can be preceded by repetition counts, as in the following.

The above input stands for 4 complex constants, 2 null input fields, and 4
string constants.

• A slash (/) in the input list terminates assignment of values to the input
list during list-directed input, and the remainder of the current input line is
skipped. Text following the slash is ignored and can be used to comment the
data line.

Output Format

List-directed output provides a quick and easy way to print output without
fussing with format details. If you need exact formats, use formatted I/O. A
suitable format is chosen for each item, and where a conflict exists between
complete accuracy and simple output form, the simple form is chosen.

READ(6, *) A, B, C

4*(3.,2.) 2*, 4*’hello’

292 FORTRAN Reference Manual

5

Rules for List-Directed Output
• In general, each record starts with a blank space.

For a print file, that blank is not printed. See “Print Files,” for details.♦

• Character strings are printed as is. They are not enclosed in quotes, so only
certain forms of strings can be read back using list-directed input. These
forms are described in the next section.

• A number with no exact binary representation is rounded off.

Example: No exact binary representation.

Above, if you need accuracy, specify the format.

• Output lines longer than 80 characters are avoided where possible.
• Complex and double complex values include an appropriate comma.
• Real, double and quadruple precision values are formatted differently.
• A backslash-n (\ n) in a character string is output as a carriage return,

unless the –xl option is on, and then it is output as a backslash-n.

Example: List-directed I/O and backslash-n, with and without -xl .

demo$ cat lis5.f
READ (5, *) X
WRITE(6, *) X, ’ beauty’
WRITE(6, 1) X

1 FORMAT(1X, F13.8, ’ truth’)
END

demo$ f77 lis5.f
lis5.f:
 MAIN:
demo$ a.out
1.4
 1.40000000 beauty
 1.39999998 truth
demo$ ■

demo$ cat f77 bslash.f
CHARACTER S*8 / ’12\n3’ /
PRINT *, S
END

demo$ ■

Input and Output 293

5

Without –xl , \ n prints as a carriage return.

With –xl , \ n prints as a character string.

demo$ f77 -silent bslash.f
demo$ a.out
12
3
demo$ ■

demo$ f77 -xl -silent bslash.f
demo$ a.out
12\n3
demo$ ■

Table 5-8 Default Formats for List-Directed Output

Type Format

BYTE

CHARACTER

COMPLEX

COMPLEX*16

COMPLEX*32 (SPARC only)

INTEGER*2

INTEGER*4

LOGICAL*1

LOGICAL*2

LOGICAL*4

REAL

REAL*8

REAL*16 (SPARC only)

Two blanks followed by the number

 A(n+2) {n = length of character expression}

 ’ ∆∆(’, 1PE14.5E2, ’,’, 1PE14.5E2, ’)’

 ’ ∆∆(’, 1PE22.13.E2, ’,’, 1PE22.13.E2, ’)’

 ’ ∆∆(’, 1PE44.34E3, ’,’, 1PE44.34E3, ’)’

Two blanks followed by the number

Two blanks followed by the number

Two blanks followed by the number

 L3

 L3

 1PE14.5E2

 1PE22.13.E2

 1PE44.34E4

294 FORTRAN Reference Manual

5

Unquoted Strings

f77 list-directed I/O allows reading of a string not enclosed in quotes.♦

The string must not start with a digit, and cannot contain separators (commas
or slashes (/)) or whitespace (spaces or tabs). A newline terminates the string
unless escaped with a backslash (\). Any string not meeting the above
restrictions must be enclosed in single or double quotes.

Example: List-directed input of unquoted strings.

 The above program, unquoted.f , reads and displays as follows.

Internal I/O

f77 extends list-directed I/O to allow internal I/O.♦

During internal, list-directed reads, characters are consumed until the input list
is satisfied or the end-of-file is reached. During internal, list-directed writes,
records are filled until the output list is satisfied. The length of an internal
array element should be at least 20 characters to avoid logical record overflow
when writing double-precision values. Internal, list-directed read was
implemented to make command line decoding easier. Internal, list-directed
output should be avoided.

CHARACTER C*6, S*8
READ *, I, C, N, S
PRINT *, I, C, N, S
END

demo$ a.out
23 label 82 locked
 23label 82locked
demo$ ■

Input and Output 295

5

5.7 NAMELIST I/O
NAMELIST I/O lets you do format-free input or output of whole groups of
variables, or input of selected items in a group of variables. ♦

The NAMELIST statement defines a group of variables or arrays. It specifies a
group-name, and it lists the variables and arrays of that group.

The syntax of the NAMELIST statement is

Example: NAMELIST statement.

Restrictions
• The group name can appear in only the NAMELIST, READ, or WRITE

statements, and must be unique for the program.

• The list cannot include any constants, dummy arguments, array elements,
structures, substrings, records, record fields, pointers, or pointer-based
variables.

• The input data can include array elements, strings, and substrings in the
sense that the input constant data string can be shorter than the declared
size of the variable.

• A variable or array can be listed in more than one NAMELIST group.

NAMELIST / group-name / namelist [[,]/ group-name / namelist]…

group-name Identifier

namelist List of variables or arrays, separated by commas

CHARACTER*18 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA

296 FORTRAN Reference Manual

5

Example: A variable in two NAMELIST groups.

In the above example, DELTA is in the group CASE, and in the group GRID.

NAMELIST Output

NAMELIST output uses a special form of WRITE statement. This makes a report
showing the group name, and for each variable of the group, it shows the
name and current value in memory. It formats each value according to the type
of each variable, and it writes the report so that NAMELIST input can read it.

 The syntax of NAMELIST WRITE is:

where namelist-specifier has the form

and group-name has been previously defined in a NAMELIST statement.

The NAMELIST WRITE statement writes values of all variables in the group, in
the same order as in the NAMELIST statement.

REAL ARRAY(4,4)
CHARACTER*18 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
NAMELIST /GRID/ ARRAY, DELTA

WRITE (extu, namelist-specifier [, iostat] [, err])

[NML=] group-name

Input and Output 297

5

Example: NAMELIST output.

↑ column 2

Note that if you do omit the keyword NML then the unit parameter must be
first, namelist-specifier must be second, and there must not be a format
specifier.

Alternate — The WRITE can have the form of the following example.

demo$ cat nam1.f
* nam1.f Namelist output

CHARACTER*8 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
DATA SAMPLE /’Demo’/, NEW /.TRUE./, DELTA /0.1/
WRITE (*, CASE)
END

demo$ f77 nam1.f
f77 nam1.f
nam1.f:
 MAIN:
demo$ a.out
∆&case sample= Demo , new= T, delta= 0.100000
∆&end
demo$ ■

WRITE (UNIT=6, NML=CASE)

298 FORTRAN Reference Manual

5

NAMELIST Input

The NAMELIST input statement reads the next external record, skipping over
column one, and looking for the symbol “$” in column two or beyond,
followed by the group name specified in the READ statement. The records are
input and values assigned by matching names in the data with names in the
group, using the data types of the variables in the group. Variables in the
group that are not found in the input data are unaltered.

 The syntax of NAMELIST READ is:

where namelist-specifier has the form

and group-name has been previously defined in a NAMELIST statement.

Example: NAMELIST input.

In this example, the group CASE consists of the three variables SAMPLE, NEW,
DELTA, and MAT. If you do omit the keyword NML, then you must also omit the
keyword UNIT; and the unit parameter must be first, namelist-specifier
must be second, and there must not be a format specifier.

Alternate — The READ can have the form of the following example.

READ (extu , namelist-specifier [, iostat] [, err] [, end])

[NML=] group-name

CHARACTER*14 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA, MAT(2,2)
NAMELIST /CASE/ SAMPLE, NEW, DELTA, MAT
READ (1, CASE)

READ (UNIT=1, NML=CASE)

Input and Output 299

5

NAMELIST Data

The first record of NAMELIST input data has the special symbol “$” (dollar
sign) in column two or beyond, followed by the NAMELIST group name. This is
followed by a series of assignment statements, starting in or after column two,
on the same or subsequent records, each assigning a value to a variable (or one
or more values to array elements) of the specified group. The input data is
terminated with another “$” in or after column two, as in the pattern

You can alternatively use an ampersand (&) in place of each dollar sign, but the
beginning and ending delimiters must match. The END is an optional part of
the last delimiter.

The input data assignment statements must be in one of the following forms:

If an array is subscripted, it must be subscripted with the appropriate number
of subscripts: 1, 2, 3,…

Use quotes (either " or ’) to delimit character constants. For more on
character constants, see “Syntax Rules for NAMELIST Data” below.

The following is sample data to be read by the program segment above.

 ↑ column 2

∆$group-name variable=value [, variable =value ,…] $[END]

variable=value

array=value1[, value2,]…

array(subscript)=value1[, value2,]…

array(subscript,subscript)=value1[, value2,]…

variable=character constant

variable(index:index)=character constant

∆$case delta=0.05, mat(2, 2) = 2.2, sample=’Demo’ $

300 FORTRAN Reference Manual

5

The data could be on several records.

↑ column 2

Syntax Rules for NAMELIST Data

 The following syntax rules apply for input data to be read by NAMELIST.

• The variables of the named group can be in any order, and any can be
omitted.

• The data must start in or after column two. Column one is totally ignored.

• There must be at least one comma, space, or tab between variables, and one
or more spaces or tabs are the same as a single space. Consecutive commas
are not permitted before a variable name. Spaces before or after a comma
have no effect.

• No spaces or tabs are allowed inside a group name or a variable name, except
around the commas of a subscript, around the colon of a substring, and after
the “(”and before the “) ” marks. No name can be split over two records.

• The end of a record acts like a space character.

Exception: In a character constant, it is ignored, and the character
constant is continued with the next record. The last character of the
current record is immediately followed by the second character of
the next record. The first character of each record is ignored.

• The equal sign of the assignment statement can have zero or more blanks or
tabs on each side of it.

• Only constant values can be used for subscripts, range indicators of
substrings, and the values assigned to variables or arrays. You cannot use a
symbolic constant (parameter) in the actual input data.

Hollerith, octal, and hexadecimal constants are not permitted.

Each constant assigned has the same form as the corresponding FORTRAN
constant.

Here NEW was not input, and
the order is not the same as
in the example NAMELIST
statement.

∆$case
∆delta=0.05
∆mat(2, 2) = 2.2
∆sample=’Demo’
∆$

Input and Output 301

5

There must be at least one comma, space, or tab between constants, and zero
or more spaces or tabs are the same as a single space. You can enter 1,2,3
or 1 2 3 or 1, 2, 3 and so forth.

Inside a character constant, consecutive spaces or tabs are preserved, not
compressed.

A character constant is delimited by apostrophes (’) or quotes ("), but if you
start with one of those, you must finish that character constant with the
same one. If you use the apostrophe as the delimiter, then to get an
apostrophe in a string, use two consecutive apostrophes.

Example: Character constants.

A complex constant is a pair of real or integer constants separated by a comma
and enclosed in parentheses. Spaces can occur only around the punctuation.

A logical constant is any form of true or false value, such as .TRUE. or
.FALSE. , or any value beginning with .T, .F , etc.

A null data item is denoted by two consecutive commas, and it means the
corresponding array element or complex variable value is not to be changed.
Null data item can be used with array elements or complex variables only. One
null data item represents an entire complex constant; you cannot use it for
either part of a complex constant.

∆sample=’use "$" in 2’ {goes in as: use "$" in 2 }
∆sample=’don’’t’ {goes in as: don’t }
∆sample="don’’t" {goes in as: don’’t }
∆sample="don’t" {goes in as: don’t }

302 FORTRAN Reference Manual

5

Example: NAMELIST input with some null data, the program is as follows.

The data for nam2.f is as follows.

 ↑ column 2 ↑ 5 consecutive commas

This loads 9s into row 1, skips 4 elements, and loads 8s into row 3 of ARRAY.

Arrays Only
The forms “r* c” and “r*” can be used only with an array.

• The form” r*c” stores r copies of the constant c into an array, where r is a
nonzero, unsigned integer constant, and c is any constant.

Example: NAMELIST with repeat-factor in data, the program is as follows.

The input for nam3.f is as follows.

↑ column 2

The above program, nam3.f, reads the above input and loads 980.0 into the
first 5 elements of the array PSI .

• The form r* skips r elements of an array (that is, does not change them)
where r is an unsigned integer constant.

* nam2.f Namelist input with consecutive commas
REAL ARRAY(4,4)
NAMELIST /GRID/ ARRAY
WRITE (*, *) ’Input?’
READ (*, GRID)
WRITE (*, GRID)
END

∆$GRID ARRAY = 9,9,9,9,,,,,8,8,8,8 $

* nam3.f Namelist "r*c" and "r* "
REAL PSI(10)
NAMELIST /GRID/ PSI
WRITE (*, *) ’Input?’
READ (*, GRID)
WRITE (*, GRID)
END

∆$GRID PSI = 5*980 $

Input and Output 303

5

Example: NAMELIST input with some skipped data.

Other input.

 ↑ column 2

The program, nam3.f , with the above input, skips the first 3 elements and
loads 980.0 into elements 4,5,6,7,8 of PSI .

Requesting Names

If your program is doing NAMELIST input from the terminal, you can request
the group name and NAMELIST names that it will accept. To do this, enter a
question mark (?) in column two, and press RETURN. The group name and
variable names for that group will be displayed, and then it will wait again for
input.

Example: Requesting names.

 ↑ column 2

∆$GRID PSI = 3* 5*980 $

User input 1 →

User input 2 →

demo$ cat nam4.f
* nam4.f Namelist: requesting names

CHARACTER*14 SAMPLE
LOGICAL*4 NEW
REAL*4 DELTA
NAMELIST /CASE/ SAMPLE, NEW, DELTA
WRITE (*, *) ’Input?’
READ (*, CASE)
END

demo$ f77 -silent nam4.f
demo$ a.out
 Input?
∆?
∆$case
∆sample
∆new
∆delta
D

∆$case sample="Test 2", delta=0.03 $
demo$ ■

304 FORTRAN Reference Manual

5

305

Intrinsic Functions 6

This chapter is organized into the following sections.

6.1 Arithmetic and Mathematical Functions

Arithmetic

Arithmetic and Mathematical Functions page 305

Character Functions page 313

Miscellaneous Functions page 314

VMS Intrinsic Functions page 322

Table 6-1 Arithmetic Functions

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific
Name

 Type of
Argument Function

The REAL*16
and
COMPLEX*32
are SPARC
only.

Truncation int(a)
Read Note 1

1 AINT AINT

DINT

QINT ♦

Real
Double
Real*16

Real
Double
Real*16

Nearest
Whole
Number

int(a+.5) if a ≥ 0
int(a-.5) if a < 0

1 ANINT ANINT

DNINT

QNINT ♦

Real
Double
Real*16

Real
Double
Real*16

Nearest
Integer

int(a+.5) if a ≥ 0
int(a-.5) if a < 0

1 NINT NINT

IDNINT

IQNINT ♦

Real
Double
Real*16

Integer
Integer
Integer

306 FORTRAN Reference Manual

6

Table 6-2 More Arithmetic Functions

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific
Name

 Type of
Argument Function

Absolute
Value

|a|

 Read Note 6.

(ar2 + ai2)**(1/2)

1 ABS IABS

ABS

DABS

CABS

CQABS ♦

QABS ♦

ZABS ♦

CDABS ♦

Integer
Real
Double
Complex
Complex*32
Real*16
Complex*16
Complex*16

Integer
Real
Double
Real
Real*16
Real*16
Double
Double

Remainder a1-int(a1/a2)*a2
Read Note 1

2 MOD MOD

AMOD

DMOD

QMOD♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Transfer
of Sign

 |a1| if a2 ≥ 0
-|a1| if a2 < 0

2 SIGN ISIGN

SIGN

DSIGN

QSIGN ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Positive
Difference

a1-a2 if a1 > a2
0 if a1 ≤ a2

2 DIM IDIM

DIM

DDIM

QDIM ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Double &
Quad Products

a1 * a2 2 DPROD

QPROD♦

Real
Double

Double
Real*16

Choosing
Largest
Value

max(a1, a2, …) 2 MAX MAX0

AMAX1

DMAX1

QMAX1 ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

AMAX0

MAX1

Integer
Real

Real
Integer

Choosing
Smallest
Value

min(a1, a2, …) 2 MIN MIN0

AMIN1

DMIN1

QMIN1 ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

AMIN0

MIN1

Integer
Real

Real
Integer

Intrinsic Functions 307

6

Type Conversion

Table 6-3 Type Conversion Functions

Conversion to No. of

Args

Generic

Name

Specific

Name

 Type of

Argument Function

Integer
 Read Note 1.

1 INT -

INT

IFIX

IDINT

-

-

-

-

IQINT ♦

Integer
Real
Real
Double
Real*16
Complex
Complex*16
Complex*32
Real*16

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Real
 Read Note 2.

1 REAL REAL

FLOAT

-

SNGL

-

-

-

-

SNGLQ ♦

Integer
Integer
Real
Double
Real*16
Complex
Complex*16
Complex*32
Real*16
Double
Complex
Complex*16
Complex*32

Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real

Double
 Read Note 3.

1 DBLE DBLE

DFLOAT

DREAL ♦

DBLEQ

Integer
Integer
Real
Real*16
Double
Complex
Complex*16
Complex*32

Double Precision
Double Precision
Double Precision
Double Precision
Double Precision
Double Precision
Double Precision
Double Precision

Real*16 1 QREAL

QEXT

QREAL ♦

QFLOAT ♦

QEXT ♦

QEXTD ♦

Integer
Integer
Integer
Double

Real*16
Real*16
Real*16
Real*16

308 FORTRAN Reference Manual

6

On an ASCII machine (including Sun systems):

• ACHAR is a nonstandard synonym for CHAR
• IACHAR is a nonstandard synonym for ICHAR

On a non-ASCII machine, ACHAR and IACHAR were intended to provide a way
to deal directly with ASCII.

Complex 1 or 2 CMPLX -

-

-

-

-

-

-

Integer
Real
Double
Real*16
Complex
Complex*16
Complex*32

Complex
Complex
Complex
Complex
Complex
Complex
Complex

Complex*16 1 or 2 DCMPLX -

-

-

-

-

-

-

-

Integer
Real
Double
Real*16
Complex
Complex*16
Complex*32
Real*16

Double Complex
Double Comlex
Double Complex
Double Complex
Double Complex
Double Complex
Double Complex
Double Complex

Complex*32 1 or 2 QCMPLX -

-

-

-

-

-

-

Integer
Real
Double
Real*16
Complex
Complex*16
Complex*32

Complex*32
Complex*32
Complex*32
Complex*32
Complex*32
Complex*32
Complex*32

Integer
 Read Note 5

1 ICHAR

IACHAR ♦

Character Integer

Character
 Read Note 5

1 CHAR

ACHAR ♦

Integer Character

Table 6-3 Type Conversion Functions (Continued)

Conversion to No. of

Args

Generic

Name

Specific

Name

 Type of

Argument Function

Intrinsic Functions 309

6

Trigonometric

Table 6-4 Trigonometric Functions

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific
Name

 Type of

Argument Function

Sine sin(a) 1 SIN SIN

DSIN

QSIN

CSIN

ZSIN ♦

CDSIN ♦

CQSIN ♦

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Sine
(degrees)

sin(a) 1 SIND ♦ SIND ♦

DSIND ♦

QSIND ♦

Real
Double
Real*16

Real
Double
Real*16

Cosine cos(a) 1 COS COS

DCOS

QCOS

CCOS

ZCOS ♦

CDCOS♦

CQCOS♦

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Cosine
(degrees)

cos(a) 1 COSD ♦ COSD ♦

DCOSD♦

QCOSD♦

Real
Double
Real*16

Real
Double
Real*16

Tangent tan(a) 1 TAN TAN

DTAN

QTAN ♦

Real
Double
Real*16

Real
Double
Real*16

Tangent
(degrees)

tan(a) 1 TAND ♦ TAND ♦

DTAND ♦

QTAND ♦

Real
Double
Real*16

Real
Double
Real*16

Arcsine arcsin(a) 1 ASIN ASIN

DASIN

QASIN ♦

Real
Double
Real*16

Real
Double
Real*16

Arcsine
(degrees)

arcsin(a) 1 ASIND ♦ ASIND ♦

DASIND ♦

QASIND ♦

Real
Double
Real*16

Real
Double
Real*16

310 FORTRAN Reference Manual

6

The REAL*16 and COMPLEX*32 are SPARC only.

Arccosine arccos(a) 1 ACOS ACOS

DACOS

QACOS♦

Real
Double
Real*16

Real
Double
Real*16

Arccosine
(degrees)

arccos(a) 1 ACOSD ♦ ACOSD ♦

DACOSD♦

QACOSD♦

Real
Double
Real*16

Real
Double
Real*16

Arctangent arctan(a) 1 ATAN ATAN

DATAN

QATAN ♦

Real
Double
Real*16

Real
Double
Real*16

arctan(a1/a2) 2 ATAN2 ATAN2

DATAN2

QATAN2 ♦

Real
Double
Real*16

Real
Double
Real*16

Arctangent
(degrees)

arctan(a) 1 ATAND ♦ ATAND ♦

DATAND ♦

QATAND ♦

Real
Double
Real*16

Real
Double
Real*16

arctan(a1/a2) 2 ATAN2D ♦ ATAN2D ♦

DATAN2D ♦

QATAN2D ♦

Real
Double
Real*16

Real
Double
Real*16

Hyperbolic
Sine

sinh(a) 1 SINH SINH

DSINH

QSINH ♦

Real
Double
Real*16

Real
Double
Real*16

Hyperbolic
Cosine

cosh(a) 1 COSH COSH

DCOSH

QCOSH♦

Real
Double
Real*16

Real
Double
Real*16

Hyperbolic
Tangent

tanh(a) 1 TANH TANH

DTANH

QTANH ♦

Real
Double
Real*16

Real
Double
Real*16

Table 6-4 Trigonometric Functions (Continued)

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific
Name

 Type of

Argument Function

Intrinsic Functions 311

6

Other Mathematical Functions

The REAL*16 and COMPLEX*32 are SPARC only.

Table 6-5 Other Mathematical Functions

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific
Name

 Type of

Argument Function

Imaginary
Part of a
Complex

ai

Read Note 6.

1 IMAG AIMAG

DIMAG ♦

QIMAG ♦

Complex
Complex*16
Complex*32

Real
Double
Complex*32

Conjugate
of a
Complex

(ar, -ai)
Read Note 6.

1 CONJ CONJG

DCONJG♦

QCONJG♦

Complex
Complex*16
Complex*32

Complex
Complex*16
Complex*32

Square Root a**(1/2) 1 SQRT SQRT

DSQRT

QSQRT

CSQRT

ZSQRT ♦

CDSQRT♦

CQSQRT♦

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Exponential e**a 1 EXP EXP

DEXP

QEXP ♦

CEXP

ZEXP ♦

CDEXP ♦

CQEXP ♦

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Natural
Logarithm

log(a) 1 LOG ALOG

DLOG

QLOG ♦

CLOG

ZLOG ♦

CDLOG ♦

CQLOG♦

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Real
Double
Real*16
Complex
Complex*16
Complex*16
Complex*32

Common
Logarithm

log10(a) 1 LOG10 ALOG10

DLOG10

QLOG10 ♦

Real
Double
Real*16

Real
Double
Real*16

312 FORTRAN Reference Manual

6

For more on standard or nonstandard mode, see standard_arithmetic (3M)
or nonstandard_arithmetic (3M).

For more math functions, see also libm_double (3f), libm_single (3f), and
ieee_values (3m).

For more on IEEE or floating-point usage, refer to the FORTRAN User's Guide
or the Numerical Computation Guide.

Table 6-6 Functions for Returning IEEE Values

IEEE Value Single Precision Double Precision Quadruple Precision

infinity r_infinity() ♦ d_infinity() ♦ q_infinity() ♦

quiet NaN r_quiet_nan() ♦ d_quiet_nan() ♦ q_quiet_nan() ♦

signaling NaN r_signaling_nan() ♦ d_signaling_nan() ♦ q_signaling_nan() ♦

min_normal r_min_normal() ♦ d_min_normal() ♦ q_min_normal() ♦

min_subnormal r_min_subnormal() ♦ d_min_subnormal() ♦ q_min_subnormal() ♦

max_subnormal r_max_subnormal() ♦ d_max_subnormal() ♦ qmax_subnormal() ♦

max_normal r_max_normal() ♦ d_max_normal() ♦ q_max_normal() ♦

Table 6-7 Other IEEE-Related Functions

Name Purpose Call Return
Type

ieee_flags ♦ Rounding and exception
status

i=ieee_flags(act,mode,in,out) Integer

ieee_handler ♦ Exception handler i=ieee_handler(act,except,hand) Integer

ieee_values ♦ Infinity, NaN, etc. x=r_infinity(), etc. Varies

ieee_retrospective ♦ Report exceptions Called automatically before exit None

standard_arithmetic ♦ Enable standard mode call standard_arithmetic() None

nonstandard_arithmetic ♦ Enable nonstandard mode call nonstandard_arithmetic() None

Intrinsic Functions 313

6

6.2 Character Functions

On an ASCII machine (including Sun systems):

• ACHAR is a nonstandard synonym for CHAR
• IACHAR is a nonstandard synonym for ICHAR

On a non-ASCII machine, ACHAR and IACHAR were intended to provide a way
to deal directly with ASCII.

Table 6-8 Character Functions

Intrinsic Definition No. of Generic Specific Type of

Function Args Name Name Argument Function

Conversion

 Read Note 5.

Conversion
to Character

1 CHAR

ACHAR ♦

Integer Character

Conversion
to Integer

1 ICHAR

IACHAR ♦

Character Integer

Index
of a
Substring

Location of
Substring a2
in String a1
 Read Note 10.

2 INDEX Character Integer

Length Length of
Character Entity
 Read Note 11.

1 LEN Character Integer

Lexically
Greater
Than or
Equal

a1 ≥ a2
 Read Note 12.

2 LGE Character Logical

Lexically
Greater
Than

a1 > a2
 Read Note 12.

2 LGT Character Logical

Lexically
Less Than
or Equal

a1 ≤ a2
 Read Note 12.

2 LLE Character Logical

Lexically
Less Than

a1 < a2
 Read Note 12.

2 LLT Character Logical

314 FORTRAN Reference Manual

6

6.3 Miscellaneous Functions

Bit Manipulation

Table 6-9 Bitwise Functions

Bitwise Operations

Read Note 13.

No. of Specific Type of

Args Name Argument Function

Complement 1 NOT ♦ Integer Integer

And 2 AND ♦ Integer Integer

Inclusive Or 2 OR ♦ Integer Integer

Exclusive Or 2 XOR ♦ Integer Integer

Shift
Read Note 14.

2 ISHFT ♦ Integer Integer

Left Shift 2 LSHIFT ♦ Integer Integer

Read Note 14.

Right Shift
Read Note 14.

2 RSHIFT ♦ Integer Integer

Logical Right Shift
Read Note 14.

2 LRSHFT ♦ Integer Integer

Bit Extraction 3 IBITS ♦ Integer Integer

Bit Set 2 IBSET ♦ Integer Integer

Bit Test 2 BTEST ♦ Integer Logical

Bit Clear 2 IBCLR ♦ Integer Integer

Circular Shift 3 ISHFTC ♦ Integer Integer

Intrinsic Functions 315

6

Environment

Table 6-10 Environmental Inquiry Functions

Definition No. of
Args

Generic
Name

Specific
Name

 Type of

Argument Function

Base of

Number System

1 EPBASE ♦ - Integer
Real
Double
Real*16

Integer
Integer
Integer
Integer

Number of

Significant Bits

1 EPPREC ♦ - Integer
Real
Double
Real*16

Integer
Integer
Integer
Integer

Minimum

Exponent

1 EPEMIN ♦ - Real
Double
Real*16

Integer
Integer
Integer

Maximum

Exponent

1 EPEMAX ♦ - Real
Double
Real*16

Integer
Integer
Integer

Least Nonzero

Number

1 EPTINY ♦ - Real
Double
Real*16

Real
Double
Real*16

Largest Number

Representable

1 EPHUGE♦ - Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Epsilon

Read Note 16.

1 EPMRSP♦ - Real
Double
Real*16

Real
Double
Real*16

316 FORTRAN Reference Manual

6

Memory

Remarks for Intrinsic Function Tables

The following remarks apply to all of the intrinsic function tables.

• The abbreviation “Double” stands for Double Precision.

• The abbreviation “DComplex” stands for Double Complex.

• An intrinsic that takes an INTEGER argument accepts either INTEGER*2 or
INTEGER*4.

• An intrinsic that returns an INTEGER value returns the prevailing INTEGER
type: if no -i2 , then INTEGER*4; if -i2 , then INTEGER*2.

The exceptions are LOC and MALLOC, which always return an INTEGER*4.

• (SPARC only) An intrinsic that returns a REAL value returns the prevailing
REAL type:
if no -r8 , then REAL*4; if -r8 , then REAL*8.

• (SPARC only) An intrinsic that returns a DOUBLE PRECISION value returns
the prevailing DOUBLE PRECISION type: if no -r8 then REAL*8; if -r8
then REAL*16 .

• (SPARC only) An intrinsic that returns a COMPLEX value returns the
prevailing COMPLEX type: if no -r8 , then COMPLEX*8; if -r8 , then
COMPLEX*16.

• (SPARC only) An intrinsic that returns a DOUBLE COMPLEX value returns the
prevailing DOUBLE COMPLEX type: if no -r8 , then COMPLEX*16; if -r8 ,
then COMPLEX*32.

Table 6-11 Memory Allocation and Deallocation Functions

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific
Name

 Type of
Argument Function

Location Address-of
(Read Note 17.)

1 LOC ♦ Any Integer

Allocate Allocate memory and
return the address
(Read Note 17.)

1 MALLOC ♦ Integer Integer

Deallocate Deallocate memory
allocated by MALLOC

1 FREE ♦ Any None. This is
a subroutine.

Intrinsic Functions 317

6

• A function with a generic name returns a value with the same type as the
argument — except for type conversion functions, the nearest integer
function, and absolute value of a complex argument. If there is more than
one argument, they must all be of the same type.

• If a function name is used as an actual argument, then it must be a specific
name.

• If a function name is used as a dummy argument, then it does not identify an
intrinsic function in the subprogram, and it has a data type according to the
same rules as for variables and arrays.

Notes on Functions

Tables and notes 1 through 12 are based on the “Table of Intrinsic Functions,”
from ANSI X3.9-1978 Programming Language FORTRAN, with the
SPARCompiler FORTRAN extensions added.

(1) INT

If A is type integer, then INT(A) is A.
If A is type real or double precision then:

if |A| < 1 , then INT(A) is 0
if |A| ≥ 1 , then

INT(A) is the greatest integer that does not exceed the magnitude
of A, and whose sign is the same as the sign of A. (Such a
mathematical integer value may be too large to fit in the computer
integer type.)

If A is type complex or double complex then

 apply the above rule to the real part of A.

If A is type real, then IFIX(A) is the same as INT(A).

318 FORTRAN Reference Manual

6

(2) REAL

If A is type real, then REAL(A) is A.

If A is type integer or double precision, then

REAL(A) is as much precision of the significant part of A as a real
datum can contain.

If A is type complex, then REAL(A) is the real part of A.

If A is type double complex, then

REAL(A) is as much precision of the significant part of the real part
of A as a real datum can contain.

(3) DBLE

If A is type double precision, then DBLE(A) is A.

If A is type integer or real, then DBLE(A) is

as much precision of the significant part of A as a double precision datum
can contain.

If A is type complex, then DBLE(A) is

as much precision of the significant part of the real part of A as a double
precision datum can contain.

If A is type Complex*16, then DBLE(A) is the real part of A.

(3’) QREAL

If A is type REAL*16 , then QREAL(A) is A.

If A is type integer, real, or double precision then QREAL(A) is

as much precision of the significant part of A as a REAL*16 datum can
contain.

If A is type complex or double complex, then QREAL(A) is

as much precision of the significant part of the real part of A as a
REAL*16 datum can contain.

If A is type Complex*16, then QREAL(A) is the real part of A.

Intrinsic Functions 319

6

(4) CMPLX

If A is type complex, then CMPLX(A) is A.

If A is type integer, real, or double precision, then

CMPLX(A) is REAL(A) + 0i .

If A1 and A2 are type integer, real, or double precision, then

CMPLX(A1,A2) is REAL(A1) + REAL(A2)*i

If A is type double complex, then

CMPLX(A) is REAL(DBLE(A)) + i*REAL(DIMAG(A)) .

If CMPLX has two arguments, then

they must be of the same type, and
they may be one of integer, real, or double precision.

If CMPLX has one argument, then

it may be one of integer, real, double precision, complex, or Complex*16.

(4’) DCMPLX

If A is type Complex*16, then DCMPLX(A) is A.

If A is type integer, real, or double precision, then

DCMPLX(A) is DBLE(A) + 0i .

If A1 and A2 are type integer, real, or double precision, then

DCMPLX(A1,A2) is DBLE(A1) + DBLE(A2)*i .

If DCMPLX has two arguments, then

they must be of the same type, and

they may be one of integer, real, or double precision.

If DCMPLX has one argument, then

it may be one of integer, real, double precision, complex, or Complex*16.

320 FORTRAN Reference Manual

6

(5) ICHAR

ICHAR(A) is the position of A in the collating sequence.

The first position is 0, the last is N-1, 0 ≤ICHAR(A) ≤N-1 , where N is the
number of characters in the collating sequence, and A is of type character of
length one.

CHAR and ICHAR are inverses in the following sense:

ICHAR(CHAR(I)) = I , for 0≤I ≤N-1

CHAR(ICHAR(C)) = C , for any character C capable of representation in
the processor.

(6) Complex

A Complex value is expressed as an ordered pair of reals, (ar , ai), where ar
is the real part and ai is the imaginary part.

(7) Radians

All angles are expressed in radians, unless the “Intrinsic Function” column
includes the “(degrees)” remark.

(8) Complex Function

The result of a function of type complex is the principal value.

(9) Argument types

All arguments in an intrinsic function reference must be of the same type.

(10) INDEX

INDEX(X,Y) is the place in X where Y starts. That is, it is the starting
position within character string X of the first occurrence of character string Y

If Y does not occur in X, then INDEX(X,Y) is 0.

If LEN(X) < LEN(Y) , then INDEX(X,Y) is 0.

(11) Argument to LEN

The value of the argument of the LEN function need not be defined at the
time the function reference is executed.

Intrinsic Functions 321

6

(12) Lexical Compare

LGE(X, Y) is true if X=Y or if X follows Y in the collating sequence;
otherwise it is false.

LGT(X, Y) is true if X follows Y in the collating sequence; otherwise it
is false.

LLE(X, Y) is true if X=Y or if X precedes Y in the collating sequence;
otherwise it is false.

LLT(X, Y) is true if X precedes Y in the collating sequence; otherwise it
is false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the
shorter operand is considered as if it were extended on the right with
blanks.

(13) Bit Functions

See Chapter 9, “VMS Language Extensions,” for details on other bitwise
operations. ♦

(14) Shift

LSHIFT shifts a1 logically left by a2 bits (inline code).
LRSHFT shifts a1 logically right by a2 bits (inline code).
RSHIFT shifts a1 arithmetically right by a2 bits.
ISHFT shifts a1 logically left if a2 > 0 and right if a2 < 0.

The LSHIFT and RSHIFT functions are the FORTRAN analogs of C’s “<<”
and “>>” operators. As in C, the semantics depend on the hardware.

(15) Environmental inquiries

Only the type of the argument is significant.

(16) Epsilon

Epsilon is the least e such that 1.0 + e ≠ 1.0 .

(17) LOC and MALLOC

The LOC function returns the 32-bit address of a variable or of an external
procedure. The function call MALLOC(n) allocates a block of at least n
bytes, and returns the 32-bit address of that block.

322 FORTRAN Reference Manual

6

6.4 VMS Intrinsic Functions
This section lists VMS FORTRAN intrinsic routines recognized by f77 . They
are, of course, nonstandard. ◆

Double-Precision Complex

Table 6-12 Double-Precision Complex Functions

Name Gen/Spec Function Arg Type Result Type

CDABS
CDEXP
CDLOG
CDSQRT

Specific
Specific
Specific
Specific

Absolute value
Exponential, ea
Natural log
Square root

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

REAL*8

COMPLEX*16

COMPLEX*16

COMPLEX*16

CDSIN
CDCOS

Specific
Specific

Sine
Cosine

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

DCMPLX
DCONJG
DIMAG
DREAL

Specific
Specific
Specific
Specific

Convert to Dcomplex
Complex conjugate
Imaginary part of complex
Real part of complex

Any numeric
COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

REAL*8

REAL*8

Intrinsic Functions 323

6

Degree-Based Trigonometric

Table 6-13 Degree-Based Trigonometric Functions

Name Gen/Spec Function Arg Type Result Type

SIND
SIND
DSIND
QSIND

Generic
Specific
Specific
Specific

Sine
Sine
Sine
Sine

-

REAL*4

REAL*8

REAL*8

-

REAL*4

REAL*8

REAL*16

COSD
COSD
DCOSD
QCOSD

Generic
Specific
Specific
Specific

Cosine
Cosine
Cosine
Cosine

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

TAND
TAND
DTAND
QTAND

Generic
Specific
Specific
Specific

Tangent
Tangent
Tangent
Tangent

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ASIND
ASIND
DASIND
QASIND

Generic
Specific
Specific
Specific

Arc sine
Arc sine
Arc sine
Arc sine

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ACOSD
ACOSD
DACOSD
QACOSD

Generic
Specific
Specific
Specific

Arc cosine
Arc cosine
Arc cosine
Arc cosine

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ATAND
ATAND
DATAND
QATAND

Generic
Specific
Specific
Specific

Arc tangent
Arc tangent
Arc tangent
Arc tangent

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ATAN2D
ATAN2D
DATAN2D
QATAN2D

Generic
Specific
Specific
Specific

Arc tangent of a1/a2
Arc tangent of a1/a2
Arc tangent of a1/a2
Arc tangent of a1/a2

-
REAL*4
REAL*8
REAL*16

-
REAL*4
REAL*8
REAL*16

324 FORTRAN Reference Manual

6

* ISHFT — If a2 is positive, then shift left; if negative, then shift right.

Bit-Manipulation
Table 6-14 Bit-Manipulation Functions

Name Gen/Spec Function Arg Type Result Type

IBITS
IIBITS
JIBITS

Generic
Specific
Specific

From a1 , initial bit a2 , extract a3 bits
From a1 , initial bit a2 , extract a3 bits
From a1 , initial bit a2 , extract a3 bits

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

ISHFT
ISHFTC
IISHFTC
JISHFTC
IISHFT
JISHFT

Generic
Generic
Specific
Specific
Specific
Specific

Shift a1 logically by a2 bits *
In a1 , circular shift by a2 places, of right a3 bits
In a1 , circular shift by a2 places, of right a3 bits
In a1 , circular shift by a2 places, of right a3 bits
Shift a1 logically left by a2 bits
Shift a1 logically left by a2 bits

-
-
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4

-
-
INTEGER*2
INTEGER*4
INTEGER*2
INTEGER*4

IAND
IIAND
JIAND

Generic
Specific
Specific

Bitwise AND of a1 , a2
Bitwise AND of a1 , a2
Bitwise AND of a1 , a2

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IOR
IIOR
JIOR

Generic
Specific
Specific

Bitwise OR of a1 , a2
Bitwise OR of a1 , a2
Bitwise OR of a1 , a2

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IEOR
IIEOR
JIEOR

Generic
Specific
Specific

Bitwise exclusive OR of a1 , a2
Bitwise exclusive OR of a1 , a2
Bitwise exclusive OR of a1 , a2

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

NOT
INOT
JNOT

Generic
Specific
Specific

Bitwise complement
Bitwise complement
Bitwise complement

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

IBSET
IIBSET
JIBSET

Generic
Specific
Specific

In a1 , set bit a2 to 1
In a1 , set bit a2 to 1; return new a1
In a1 , set bit a2 to 1; return new a1

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

BTEST
BITEST
BJTEST

Generic
Specific
Specific

If bit a2 of a1 is 1, return .TRUE.
If bit a2 of a1 is 1, return .TRUE.
If bit a2 of a1 is 1, return .TRUE.

-
INTEGER*2
INTEGER*4

-
LOGICAL*2
INTEGER*4

IBCLR
IIBCLR
JIBCLR

Generic
Specific
Specific

In a1 , set bit a2 to 0; return new a1
In a1 , set bit a2 to 0; return new a1
In a1 , set bit a2 to 0; return new a1

-
INTEGER*2
INTEGER*4

-
INTEGER*2
INTEGER*4

Intrinsic Functions 325

6

Multiple Integer Types

The possibility of multiple integer types is not addressed by the FORTRAN
Standard. f77 copes with their existence by treating a specific INTEGER→
INTEGER function name (IABS , and so forth) as a special sort of generic. The
argument type is used to select the appropriate runtime routine name, which is
not accessible to the programmer. VMS FORTRAN takes a similar approach
but makes the specific names available.

1. At least two arguments

2. Positive difference: a1-min(a1,a2))

Table 6-15 Integer Functions

Name Gen/Spec Function Arg Type Result Type

IIABS
JIABS

Specific
Specific

Absolute value
Absolute value

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IMAX0
JMAX0

Specific
Specific

Maximum 1

Maximum 1
INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IMIN0
JMIN0

Specific
Specific

Minimum 1

Minimum 1
INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IIDIM
JIDIM

Specific
Specific

Positive difference 2

Positive difference 2
INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IMOD
JMOD

Specific
Specific

Remainder of a1/a2
Remainder of a1/a2

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IISIGN
JISIGN

Specific
Specific

Transfer sign, |a1|* sign(a2)
Transfer sign, |a1|* sign(a2)

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

326 FORTRAN Reference Manual

6

Functions Coerced to a Particular Type

Some VMS FORTRAN functions coerce to a particular INTEGER type.

The REAL*16 is SPARC only.

Table 6-16 Translated Functions that VMS Coerces to a Particular Type

Name Gen/Spec Function Arg Type Result Type

IINT
JINT

Specific
Specific

Truncation toward zero
Truncation toward zero

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IIDINT
JIDINT

Specific
Specific

Truncation toward zero
Truncation toward zero

REAL*8

REAL*8

INTEGER*2

INTEGER*4

IQINT
IIQINT
JIQINT

Generic
Specific
Specific

Truncation toward zero
Truncation toward zero
Truncation toward zero

REAL*16

REAL*16

REAL*16

INTEGER

INTEGER*2

INTEGER*4

ININT
JNINT

Specific
Specific

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IIDNNT
JIDNNT

Specific
Specific

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

REAL*8

REAL*8

INTEGER*2

INTEGER*4

IQNINT
IIQNNT
JIQNNT

Generic
Specific
Specific

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

REAL*16

REAL*16

REAL*16

INTEGER

INTEGER*2

INTEGER*4

IIFIX
JIFIX

Specific
Specific

Fix
Fix

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IMAX1
JMAX1

Specific
Specific

Maximum
Maximum

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IMIN1
JMIN1

Specific
Specific

Minimum
Minimum

READ*4

READ*4

INTEGER*2

INTEGER*4

Intrinsic Functions 327

6

Functions Translated to a Generic Name

In some cases, each VMS specific name is translated into an f77 generic name.

Zero Extend

The following zero-extend functions are recognized by f77 . The first unused
high-order bit is set to zero and extended toward the higher-order end to the
width indicated in the table

Table 6-17 Other Conversions by f77

Name Gen/Spec Function Arg Type Result Type

FLOATI
FLOATJ
DFLOAT
DFLOTI
DFLOTJ

Specific
Specific
Generic
Specific
Specific

Convert to REAL*4

Convert to REAL*4

Convert to REAL*8

Convert to REAL*8

Convert to REAL*8

INTEGER*2

INTEGER*4

INTEGER

INTEGER*2

INTEGER*4

REAL*4

REAL*4

REAL*8

REAL*8

REAL*8

AIMAX0
AJMAX0

Specific
Specific

Maximum
Maximum

INTEGER*2

INTEGER*4

REAL*4

REAL*4

AIMIN0
AJMIN0

Specific
Specific

Minimum
Minimum

INTEGER*2

INTEGER*4

REAL*4

REAL*4

Table 6-18 Zero-Extend Functions

Name Gen/Spec Function Arg Type Result Type

ZEXT Generic Zero-extend - -

IZEXT Specific Zero-extend BYTE

LOGICAL*1

LOGICAL*2
INTEGER*2

INTEGER*2

JZEXT Specific Zero-extend BYTE

LOGICAL*1
LOGICAL*2

LOGICAL*4

INTEGER

INTEGER*2

INTEGER*4

INTEGER*4

328 FORTRAN Reference Manual

6

329

FORTRAN Library Routines 7

See also Chapter 8, “VMS Routines,” for more routines.

7.1 abort : Terminate and Write Memory to Core File
Subroutine

abort cleans up the I/O buffers and then aborts producing a core file in the
current directory. See also abort (3).

7.2 access : Check File for Permissions or Existence
Function

access tells you if you can access the file name with the permissions mode.

call abort

status = access (name, mode)

name character Input File name

mode character Input Permissions

Return value integer Output status =0: OK
status >0: Error code

330 FORTRAN Reference Manual

7

You can set mode to one or more of r, w, or x, in any order, and in any
combination, where r, w, x have the following meanings:

Example 1: Write, and arguments are literals.

Example 2: Test for existence.

See also access (2), perror (3F).

7.3 alarm : Execute a Subroutine after a Specified Time
Function

r
w
x
blank

read
write
execute
existence

integer access, status
status = access ('taccess.data', 'w')
if (status .eq. 0) write(*,*) "ok"
if (status .ne. 0) write(*,*) 'cannot write', status
end

integer access, status
status = access ('taccess.data', ' ')! blank mode
if (status .eq. 0) write(*,*) "ok"
if (status .ne. 0) write(*,*) 'no such file', status
end

n = alarm (time , sbrtn)

time integer Input No. of seconds to wait (0=do not call)

sbrtn Routine
name

Input Subprogram to execute

must be listed in an external statement.

Return value integer Output Time remaining on the last alarm

FORTRAN Library Routines 331

7

Example: alarm – wait 9 seconds then call sbrtn .

See also: alarm (3C), sleep (3F), signal (3F)

Restrictions:

• A subroutine cannot pass its own name to alarm because of restrictions in
the FORTRAN Standard.

• Your subroutine must not do any I/O because the alarm routine generates
signals, and signals interfere with any I/O. I/O is interrupt-driven.

• Do not call alarm() from a FORTRAN MP program—it has unpredictable
behavior in MP mode.

integer alarm, time / 1 /
common / alarmcom / i
external sbrtn
i = 9
write(*,*) i
nseconds = alarm (time, sbrtn)
do n = 1,100000 ! Wait until alarm activates sbrtn.

r = n ! (any calculations that take enough time)
x=sqrt(r)

end do
write(*,*) i
end

subroutine sbrtn
common / alarmcom / i
i = 3 ! Do no I/O in this routine.
return
end

332 FORTRAN Reference Manual

7

7.4 bit : Bit Functions: and , or , …, bit , setbit , …

Definitions

and , or , xor , not , rshift , lshift

• These are generic functions expanded inline by the compiler.
• No test is made for a reasonable value of nbits .

and Computes the bitwise and of its arguments

or Computes the bitwise or of its arguments

xor Computes the bitwise exclusive or of its arguments

not Returns the bitwise complement of its argument

lshift Is a logical left shift with no end around carry

rshift Is an arithmetic right shift with sign extension

bis Sets bit bitnum in word

bic Clears bit bitnum in word

bit Tests bit bitnum in word and returns .true. if the bit is a 1 (one),

and returns .false. if the bit is a 0 (zero)

setbit Sets bit bitnum in word to 1 if state is nonzero and clears it otherwise

x = and(word1 , word2)

x = or(word1 , word2)

x = xor(word1 , word2)

x = not(word)

x = rshift(word , nbits)

x = lshift(word , nbits)

word1 , word2 , word , nbits integer or logical (short or long) Input

FORTRAN Library Routines 333

7

Example: and, or, xor, not .

Example: lshift , rshift .

bic , bis , bit , setbit

Bits are numbered such that bit 0 is the least significant bit, and bit 31 is the
most significant.

print 1, and(7,4), or(7,4), xor(7,4), not(4)
 1 format(4x 'and(7,4)', 5x 'or(7,4)', 4x 'xor(7,4)',
& 6x 'not(4)'/4o12.11)

end
demo$ f77 -silent tandornot.f
demo$ a.out
 and(7,4) or(7,4) xor(7,4) not(4)
 00000000004 00000000007 00000000003 37777777773
demo$

integer lshift, rshift
print 1, lshift(7,1), rshift(4,1)

 1 format(1x 'lshift(7,1)', 1x 'rshift(4,1)'/2o12.11)
end

demo$ f77 -silent tlrshift.f
demo$ a.out
 lshift(7,1) rshift(4,1)
 00000000016 00000000002
demo$

call bic(bitnum , word)

call bis(bitnum , word)

call setbit(bitnum , word , state)

x = bit(bitnum , word)

Return value logical L ogical value.

bitnum integer*4 Input

state integer*4 Input

word integer*4 Input and output (an input that gets changed)

334 FORTRAN Reference Manual

7

bic , bis , and setbit are external subroutines, and bit is an external
function.

Example 3: bic , bis , setbit , bit .

7.5 chdir : Change Default Directory
Function

integer bitnum/2/, state/0/, word/7/
logical bit

print 1, word
 1 format(13x 'word', o12.11)

call bic(bitnum, word)
print 2, word

 2 format('after bic(2,word)', o12.11)

call bis(bitnum, word)
print 3, word

 3 format('after bis(2,word)', o12.11)

call setbit(bitnum, word, state)
print 4, word

 4 format('after setbit(2,word,0)', o12.11)

print 5, bit(bitnum, word)
 5 format('bit(2,word)', L)

end
demo$ f77 -silent tbit.f
demo$ a.out
 word 00000000007
after bic(2,word) 00000000003
after bis(2,word) 00000000007
after setbit(2,word,0) 00000000003
bit(2,word) F
demo$

n = chdir(dirname)

dirname character Input Directory name

Return value integer Output n=0: OK, n>0: Error code

FORTRAN Library Routines 335

7

Example: chdir , change cwd to MyDir .

See also: chdir (2), cd (1), perror (3F)

Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

Use of this function can cause inquire by unit to fail.

Certain FORTRAN file operations reopen files by name. Using chdir while
doing I/O can cause the runtime system to lose track of files created with
relative path names (including files created by open statements without file
names).

7.6 chmod: Change the Mode of a File
Function

Example: chmod – add write permissions to MyFile .

See also: chmod(1). Bugs: Path names can be no longer than MAXPATHLEN as
defined in <sys/param.h> .

integer chdir, n
n = chdir ('MyDir')
if (n .ne. 0) stop 'chdir: error'
end

n = chmod(name, mode)

name character Input Single path name

mode character Input Anything recognized by chmod(1),

such as o-w , 444 , etc.

Return value integer Output n= 0: OK, n>0: System error number

character*18 name, mode
integer chmod, n
name = 'MyFile'
mode = '+w'
n = chmod(name, mode)
if (n .ne. 0) stop ’chmod: error’
end

336 FORTRAN Reference Manual

7

7.7 date : Get Current System Date as a Character String

The form of the returned string c is as follows.

Example: date .

To use this VMS routine you need -lV77 . If you use -lV77 and invoke
idate() or time() , then you get the VMS versions of both.

See also Section 7.27, “idate: Return Current System Date.”

call date(c)

c CHARACTER*9 Output Variable, array, array element, or character
substring

dd-mmm-yy

dd Day of the month, as a 2-digit integer

mmm Month name as a 3-letter abbreviation

yy Year, as a 2-digit integer

demo$ cat dat1.f
* dat1.f -- Get the date as a character string.

character c*9
call date (c)
write(*,"(’ The date today is: ’, A9)") c
end

demo$ f77 -silent dat1.f -lV77
demo$ a.out
 The date today is: 23-Sep-88
demo$

FORTRAN Library Routines 337

7

7.8 dtime , etime : Elapsed Execution Time
Both functions have return values of elapsed time (or -1.0 as error indicator).
The time is in seconds. The resolution is to a nanosecond under Solaris 2.x and
is determined by the system clock frequency under SunOS 4.x..

dtime : Elapsed Time Since the Last dtime Call

For dtime , elapsed time is:

• First call: elapsed time since start of execution
• Subsequent calls: elapsed time since the last call to dtime
• Single Processor: Time used by the CPU
• Multiple Processor: Sum of times for all the CPUs (not useful—use etime)

Note – Do not call dtime from within a parallelized loop.

Function

e = dtime(tarray)

tarray real(2) Output e= -1.0:

e≠ -1.0:

Error: tarray values are undefined

User time in tarray(1) (if no error)
System time in tarray(2) (if no error)

Return value real Output e= -1.0:

e≠ -1.0:

Error

The sum of tarray(1) and tarray(2)

338 FORTRAN Reference Manual

7

Example: dtime() , single processor.

etime : Elapsed Time Since Start of Execution

For etime , elapsed time is:

• Single Processor—CPU time for the calling process
• Multiple Processor—Wallclock time while processing your program

How FORTRAN Decides Single Processor or Multiple Processor
For a FORTRAN MP program (uses an MP option—ultimately, linked with
libF77_mt), if the environment variable PARALLEL is:

• Undefined, the current run is single processor.
• Defined and in the range 1, 2, 3, …, the current run is multiple processor.
• Defined, but some value other than 1, 2, 3, …, the results are unpredictable.

Function

real e, dtime, t(2)
print *, ‘elapsed:’, e, ‘, user:’, t(1), ‘, sys:’, t(2)
do i = 1, 10000

k=k+1
end do
e = dtime(t)
print *, ‘elapsed:’, e, ‘, user:’, t(1), ‘, sys:’, t(2)
end

demo$ f77 -silent tdtime.f
demo$ a.out
elapsed: 0., user: 0., sys: 0.
elapsed: 0.180000, user: 6.00000E-02, sys: 0.120000
demo$

e = etime(tarray)

tarray real(2) Output e= -1.0:

e≠ -1.0:

Error: tarray values are undefined

Single Processor: User time in
 System time in

Multiple Processor: Wall clock time in
 0.0 in

tarray(1)
tarray(2)

tarray(1)
tarray(2)

FORTRAN Library Routines 339

7

Example: etime() , single processor.

See also times (2), f77(1), and the FORTRAN User’s Guide.

7.9 exit : Terminate a Process and Set the Status
Subroutine

Example: exit ().

exit flushes and closes all the process’s files, and notifies the parent process if
it is executing a wait .

The low-order 8 bits of status are available to the parent process. These 8 bits
are shifted left 8 bits, and all other bits are zero. (Therefore status should be
in the range 256 - 65280). This call will never return.

Return value real Output e= -1.0:

e≠ -1.0:

Error

The sum of tarray(1) and
tarray(2)

real e, etime, t(2)
do i = 1, 10000

k=k+1
end do
e = etime(t)
print *, ‘elapsed:’, e, ‘, user:’, t(1), ‘, sys:’, t(2)
end

demo$ f77 -silent tetime.f
demo$ a.out
elapsed: 0.190000, user: 6.00000E-02, sys: 0.130000
demo$

call exit(status)

status integer Input

integer status
status = 7
call exit(status)
end

e = etime(tarray)

340 FORTRAN Reference Manual

7

The C function exit can cause cleanup actions before the final ‘sys exit ’.

If you call exit without an argument, you will get a warning message, and a
zero will be automatically provided as an argument. See also: exit (2),
fork (2), fork (3f), wait (2), wait (3f).

7.10 f77_floatingpoint : FORTRAN IEEE Definitions
The file f77_floatingpoint.h defines constants and types used to
implement standard floating-point according to ANSI/IEEE Std 754-1985.

Include the file in a source program as follows:

The file f77_floatingpoint.h defines constants and types used to
implement standard floating-point according to ANSI/IEEE Std 754-1985. Use
these constants and types to write more easily understood .F source files that
will undergo automatic preprocessing prior to FORTRAN compilation.

IEEE Rounding Mode

SIGFPE Handling

#include <f77/f77_floatingpoint.h>

fp_direction_type The type of the IEEE rounding direction mode. Note that
the order of enumeration varies according to hardware.

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type The type of a user-definable SIGFPE exception
handler called to handle a particular SIGFPE code.

SIGFPE_DEFAULT A macro indicating default SIGFPE exception
handling: IEEE exceptions to continue with a
default result and to abort for other SIGFPE codes.

FORTRAN Library Routines 341

7

IEEE Exception Handling

IEEE Classification

Refer to the Numerical Computation Guide. See also ieee_environment (3M),
and f77_ieee_environment (3F).

SIGFPE_IGNORE A macro indicating an alternate SIGFPE exception
handling, namely to ignore and continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception
handling, namely to abort with a core dump.

N_IEEE_EXCEPTION The number of distinct IEEE floating-point
exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions.
Each exception is given a bit number.

fp_exception_field_type The type intended to hold at least
N_IEEE_EXCEPTION bits corresponding to the
IEEE exceptions numbered by
fp_exception_type . Thus fp_inexact
corresponds to the least significant bit and
fp_invalid to the fifth least significant bit.
Some operations can set more than one exception.

fp_class_type A list of the classes of IEEE floating-point values and symbols.

sigfpe_code_type The type of a SIGFPE code.

342 FORTRAN Reference Manual

7

7.11 f77_ieee_environment : IEEE Arithmetic
Summary

These subprograms provide modes and status required to fully exploit
ANSI/IEEE Std 754-1985 arithmetic in a FORTRAN program. They correspond
closely to the functions ieee_flags(3M) , ieee_handler(3M) , and
sigfpe(3).

If you use sigfpe , you must do your own setting of the corresponding trap-
enable-mask bits in the floating-point status register. The details are in the
SPARC architecture manual. The libm function ieee_handler sets these
trap-enable-mask bits for you.

Example 1: Set rounding direction to round toward zero, unless the hardware
does not support directed rounding modes.

ieee_flags ieeer = ieee_flags(action , mode, in , out)

ieee_handler ieeer = ieee_handler(action , exception , hdl)

sigfpe ieeer = sigfpe(code , hdl)

action character Input

code sigfpe_code_type Input

mode character Input

in character Input

exception character Input

hdl sigfpe_handler_type Input

out character Output

Return value integer Output

integer ieeer
character*1 mode, out, in
ieeer = ieee_flags(’set’, ’direction’, ’tozero’, out)

FORTRAN Library Routines 343

7

Example 2: Clear rounding direction to default (round toward nearest).

Example 3: Clear all accrued exception-occurred bits.

Example 4: If Example 3 generates the overflow exception, detect it as follows.

The above sets out to “overflow ” and ieeer to 25. Similar coding detects
exceptions such as invalid or inexact .

Example 5: hand1.f , write and use a signal handler (Solaris 2.x).

character*1 out, in
ieeer = ieee_flags(’clear’,’direction’, in, out)

character*18 out
ieeer = ieee_flags(’clear’, ’exception’, ’all’, out)

character*18 out
ieeer = ieee_flags(’get’, ’exception’, ’overflow’, out)

external hand
real r / 14.2 /, s / 0.0 /
i = ieee_handler(’set’, ’division’, hand)
t = r/s
end

integer function hand (sig, sip, uap)
integer sig, address
structure /fault/

integer address
end structure
structure /siginfo/

integer si_signo
integer si_code
integer si_errno
record /fault/ fault

end structure
record /siginfo/ sip
address = sip.fault.address
write (*,10) address

 10 format('Exception at hex address ', z8)
end

344 FORTRAN Reference Manual

7

Read the Numerical Computation Guide. See also: floatingpoint (3),
signal (3), sigfpe (3), f77_floatingpoint (3F), ieee_flags (3M),
ieee_handler (3M).

7.12 fdate : Return Date and Time in an ASCII String
Subroutine or function

or

Example 1: fdate as a subroutine.

Output:

Example 2: fdate as a function, same output.

See also: ctime (3), time (3F), idate (3F)

call fdate(string)

string character*30 Output

string = fdate() If you use it as a function, the calling
routine must define the type and
length of fdate .Return value character*30 Output

character*30 string
call fdate(string)
write(*,*) string
end

 Mon Aug 1 09:24:21 PST 1993

character*30 fdate
write(*,*) fdate()
end

FORTRAN Library Routines 345

7

7.13 flush : Flush Output to a Logical Unit
Subroutine

The flush subroutine flushes the contents of the buffer for logical unit lunit
to the associated file. This is most useful for logical units 0 and 6 when they are
both associated with the control terminal.

See also fclose(3S) .

7.14 fork : Create a Copy of the Current Process
Function

The fork function creates a copy of the calling process. The only distinction
between the 2 processes is that the value returned to one of them (referred to as
the parent process) will be the process ID of the copy. The copy is usually
referred to as the child process. The value returned to the child process will
be zero.

All logical units open for writing are flushed before the fork to avoid
duplication of the contents of I/O buffers in the external file(s).

Example: fork() .

A corresponding exec routine has not been provided because there is no
satisfactory way to retain open logical units across the exec routine. However,
the usual function of fork/exec can be performed using system (3F). See
also: fork (2), wait (3F), kill (3F), system (3F), perror (3F).

call flush(lunit)

lunit integer Input Logical unit

n = fork()

Return value integer Output n>0: n=Process ID of copy

n<0, n=-(system error code)

integer fork, pid
pid = fork()
end

346 FORTRAN Reference Manual

7

7.15 free : Deallocate Memory Allocated by Malloc
Subroutine

free deallocates a region of memory previously allocated by malloc . The
region of memory is returned to the memory manager; it is not explicitly
available to the user’s program.

Example: free() .

See Section 7.40, “malloc: Allocate Memory and Get Address,” for details.

7.16 fseek , ftell : Reposition a File

fseek : Reposition a File on a Logical Unit

Function

call free (ptr)

ptr pointer Input

real x
pointer (ptr, x)
ptr = malloc (10000)
call free (ptr)
end

n = fseek(lunit , offset , from)

lunit integer Input Open logical unit

offset integer Input Offset in bytes relative to position specified
by from

from integer Input 0=Beginning of file

1=Current position

2=End of file

Return value integer Output n=0: OK. n>0: System error code.

FORTRAN Library Routines 347

7

Example: fseek() – Reposition MyFile to 2 bytes from beginning

ftell : Return Current Position of File

Function

Example: ftell() .

See also fseek (3S), perror (3F)

integer fseek, lunit/1/, offset/2/, from/0/, n
open(UNIT=lunit, FILE='MyFile')
n = fseek(lunit, offset, from)
if (n .gt. 0) stop 'fseek error'
end

n = ftell(lunit)

lunit integer Input Open logical unit

Return value integer Input n>=0: n=offset in bytes from start of file.

n<0: n=-(system error code).

integer ftell, lunit/1/, n
open(UNIT=lunit, FILE='MyFile')

* …
n = ftell(lunit)
if (n .lt. 0) stop 'ftell error'
end

348 FORTRAN Reference Manual

7

7.17 getarg , iargc : Get Command-line Arguments

getarg : Get the kth Command Line Argument

Subroutine

iargc : Get the Count of Command-line Arguments

Function

Example: iargc and getarg , get argument count and each argument.

Sample run of above source (after compiling):

See also execve (2), getenv (3F).

call getarg(k, arg)

k integer Input Index of argument (0=first=command
name)

arg character* n Output k th argument

n integer Size of arg Large enough to hold longest argument

m= iargc()

Return value integer Output Number of arguments on command line

character argv*10
integer i, iargc, n
n = iargc()
do i = 1, n

call getarg(i, argv)
write(*, '(i2, 1x, a)') i, argv

end do
end

demo$ a.out first second last
1 first
2 second
3 last
demo$

FORTRAN Library Routines 349

7

7.18 getc , fgetc : Get Next Character

getc : Get Next Character from stdin

Function

Example: getc gets each character from keyboard. Note the Control-D (EOF).

Sample run of above source (after compiling):

For any logical unit, do not mix normal FORTRAN input with getc ().

status = getc(char)

char character Output Next character

Return value integer Output status =0: OK

status =-1: End of File

status >0: System error code

 or f77 I/O error code

character char
integer getc, status
status = 0
do while (status .eq. 0)

status = getc(char)
write(*, '(i3, o4.3)') status, char

end do
end

demo$ a.ou t
ab
^D
0 141
0 142
0 012
-1 012
demo$

350 FORTRAN Reference Manual

7

fgetc : Get Next Character from Specified Logical Unit

Function

Example: fgetc gets each character from tfgetc.data . Note linefeeds (Octal
012).

Sample run of above source (after compiling)

For any logical unit, do not mix normal FORTRAN input with fgetc() .

See also: getc (3S), intro (2), perror (3F).

status = fgetc(lunit , char)

lunit integer Input Logical unit

char character Output Next character

Return value integer Output status =-1: End of File

status >0: System error code or

 f77 I/O error code

character char
integer fgetc, status
open(unit=1, file='tfgetc.data')
status = 0
do while (status .eq. 0)

status = fgetc(1, char)
write(*, '(i3, o4.3)') status, char

end do
end

demo$ cat tfgetc.data
ab
yz
demo$ a.out
0 141
0 142
0 012
0 171
0 172
0 012
-1 012
demo$

FORTRAN Library Routines 351

7

7.19 getcwd : Get Path of Current Working Directory
Function

Example: getcwd .

See also: chdir (3F), perror (3F), getwd (3).

Bug: Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

7.20 getenv : Get Value of Environment Variables
Subroutine

status = getcwd(dirname)

dirname character* n Output Path name of the current
working directory

Return value integer Output status =0: OK

status >0: Error code

n integer Size of dirname ,
in bytes

Must be big enough for
longest path name

integer getcwd, status
character*64 dirname
status = getcwd(dirname)
if (status .ne. 0) stop 'getcwd: error'
write(*,*) dirname
end

call getenv(ename, evalue)

ename character* n Input Name of the environment variable
sought

evalue character* n Output Value of the environment variable
found, blanks if not successful

n integer Size of evalue n must be large enough for the
value.

352 FORTRAN Reference Manual

7

The getenv subroutine searches the environment list for a string of the form
ename=evalue and returns the value in evalue if such a string is present;
otherwise it fills evalue with blanks.

Example: getenv()

See also: execve (2), environ (5).

7.21 getfd : Get File Descriptor for External Unit Number
Function

Example: getfd() .

See also open (2).

character*18 evalue
call getenv('SHELL', evalue)
write(*,*) "'", evalue, "'"
end

fildes = getfd(unitn)

unitn integer Input External unit number

Return value integer Output File descriptor if file is connected

-1 if file is not connected

integer fildes, getfd, unitn/1/
open(unitn, file='tgetfd.data')
fildes = getfd(unitn)
if (fildes .eq. -1) stop 'getfd: file not connected'
write(*,*) 'file descriptor = ', fildes
end

FORTRAN Library Routines 353

7

7.22 getfilep : Get File Pointer for External Unit Number
Function

This function is used for mixing standard FORTRAN I/O with C I/O. Such
mixing is nonportable, and is not guaranteed for subsequent releases of the
operating system or FORTRAN. Use of this function is not recommended, and
no direct interface is provided. You must enter your own C routine to use the
value returned by getfilep . A sample C routine is shown below.

Example: FORTRAN uses getfilep by passing it to a C function.

Sample C function actually using getfilep .

irtn = c_read (getfilep(unitn), inbyte , 1)

c_read C function Input You write this C function.
Sample below.

unitn integer Input External unit number

getfilep integer Return value File pointer if file is
connected

-1 if file is not connected

tgetfilepF.f character*1 inbyte
 integer*4 c_read, getfilep, unitn / 5 /
 external getfilep
 write(*,'(a,$)') 'What is the digit? '

 irtn = c_read(getfilep(unitn), inbyte, 1)

 write(*,9) inbyte
 9 format('The digit read by C is ', a)
 end

tgetfilepC.c #include <stdio.h>
int c_read_ (fd, buf, nbytes, buf_len)
FILE **fd ;
char *buf ;
int *nbytes, buf_len ;
{
 return fread(buf, 1, *nbytes, *fd) ;
}

354 FORTRAN Reference Manual

7

Sample compile/build/run.

Read the chapter on the C-FORTRAN interface in the FORTRAN User's Guide.
See also open (2).

7.23 getlog : Get User’s Login Name
Subroutine

Example: getlog.

See also getlogin (3).

demo 11% cc -c tgetfilepC.c
demo 12% f77 tgetfilepC.o tgetfilepF.f
tgetfileF.f:
MAIN:
demo 13% a.out
What is the digit? 3
The digit read by C is 3
demo 14%

call getlog(name)

name character* n Output User’s login name, or all blanks if the
process is running detached from a
terminal.

n integer Size of name Large enough to hold longest name

character*18 name
call getlog(name)
write(*,*) "'", name, "'"
end

FORTRAN Library Routines 355

7

7.24 getpid : Get Process ID
Function

Example: getpid.

See also getpid (2).

7.25 getuid , getgid : Get User or Group ID of Process

getuid : Get User ID of the Process

Function

getgid : Get Group ID of the Process

Function

pid = getpid()

Return value integer Output Process ID of the current process

integer getpid, pid
pid = getpid()
write(*,*) 'process id = ', pid
end

uid = getuid()

Return value integer Output User ID of the process

gid = getgid()

Return value integer Output Group ID of the process

356 FORTRAN Reference Manual

7

Example: getuid() and getpid().

See also: getuid (2).

7.26 hostnm : Get Name of Current Host
Function

Example: hostnm().

See also gethostname (2).

integer getuid, getgid, gid, uid
uid = getuid()
gid = getgid()
write(*,*) uid, gid
end

status = hostnm(name)

name character*n Output Name of current host

Return value integer Output status =0: OK,

status >0: Error

n integer Size of name Big enough to hold host name, or
memory gets clobbered.

integer hostnm, status
character*8 name
status = hostnm(name)
write(*,*) 'host name = "', name, '"'
end

FORTRAN Library Routines 357

7

7.27 idate : Return Current System Date

If you use the -lV77 compiler option to request the VMS library, then you get
the VMS versions of both time() and of idate() ; otherwise, you get the
standard versions.

Standard Version

Subroutine

Put the current system date into one integer array: day, month, and year.

Example: idate (standard version).

Compile and run the above source:

idate Put current system date into an integer array: day, month, and year
(standard version).

idate Put current system date into three integer variables: month, day, and
year (VMS version).

call idate(iarray)

iarray integer Output array(3) , Note the order: day, month, year

integer iarray(3)
call idate(iarray)
write(*, "(' The date is: ',3i5)") iarray
end

demo$ f77 -silent tidate.f
demo$ a.out
 The date is: 10 8 1991
demo$

358 FORTRAN Reference Manual

7

VMS Version

Subroutine

Put the current system date into three integer variables: month, day, and year.

Example: idate (VMS version).

 Compile and run the above source (note the -lV77):

7.28 itime: Current System Time

Subroutine

call idate(m, d, y)

m integer Output Month (1 - 12)

d integer Output Day (1 - 7)

y integer Output Year (1 - 99)

integer m, d, y
call idate (m, d, y)
write (*, "(' The date is: ',3i5)") m, d, y
end

demo$ f77 -silent tidateV.f -lV77
demo$ a.out
 The date is: 8 10 91
demo$

itime Put current system time into an integer array: Hour, minute, second.

call itime(iarray)

iarray integer Output array(3) , Note the order: hour, minute, second

FORTRAN Library Routines 359

7

Example: itime .

Compile and run the above source:

See also time (3f), ctime (3F), fdate (3F).

7.29 index : Index or Length of Substring

index : First Occurrence of String A2 in String A1

Function (intrinsic)

integer iarray(3)
call itime(iarray)
write (*, "(' The time is: ',3i5)") iarray
end

demo$ f77 -silent titime.f
demo$ a.out
 The time is: 15 42 35
demo$

index(a1, a2) Index of first occurrence of string a2 in string a1

rindex(a1, a2) Index of last occurrence of string a2 in string a1

lnblnk(a1) Index of last nonblank in string a1

len(a1) Declared length of string a1

n = index(a1, a2)

a1 character Input Main string

a2 character Input Substring

Return value integer Output n>0: Index of first occurrence of a2 in a1

n=0: a2 does not occur in a1 .

360 FORTRAN Reference Manual

7

rindex : Last Occurrence of String A2 in String A1

Function

lnblnk : Last Nonblank in String A1

Function

len : Declared Length of String A1

Function (intrinsic)

This is useful since all f77 character objects are fixed length, blank padded.

n = rindex(a1, a2)

a1 character Input Main string

a2 character Input Substring

Return value integer Output n>0: Index of last occurrence of a2 in a1

n=0: a2 does not occur in a1 .

n = lnblnk(a1)

a1 character Input String

Return value integer Output n>0: Index of last nonblank in a1

n=0: a1 is all nonblank

declen = len(a1)

a1 character Input String

Return value integer Output Declared length of a1

FORTRAN Library Routines 361

7

Example: len() , index() , rindex (), lnblnk() .

In the above example, declen is 32, not 21.

7.30 inmax : Return Maximum Positive Integer
Function

Example: inmax .

See also libm_single (3f), libm_double (3f).

* 123456789 123456789 1234
character s*24 / 'abcPDQxyz...abcPDQxyz ' /
integer declen, index, first, last, len, lnblnk, rindex
declen = len(s)
first = index(s, 'abc')
last = rindex(s, 'abc')
lastnb = lnblnk(s)
write(*,*) declen, lastnb
write(*,*) first, last
end

demo$ f77 -silent tindex.f
demo$ a.out
32 21
1 13
demo$

m = inmax()

Return value integer Output The maximum positive integer

integer inmax, m
m = inmax()
write(*,*) m
end

demo$ f77 -silent tinmax.f
demo$ a.out
 2147483647
demo$

362 FORTRAN Reference Manual

7

7.31 ioinit : Initialize I/O: Carriage Control, File Names, …

Purpose

The IOINIT routine establishes properties of file I/O for files opened after the
call to IOINIT . The file I/O properties that IOINIT controls are as follows:

Implementation

IOINIT does the following:

• Initializes global parameters specifying f77 file I/O properties
• Opens logical units 0 through 19 with the specified file I/O properties

(attaches externally defined files to logical units at runtime)

Duration of File I/O Properties
The file I/O properties apply as long as the connection exists. If you close the
unit, the properties no longer apply. The exception is the preassigned units 5
and 6, to which Carriage Control and Blanks/Zeroes apply at any time.

Internal Flags
IOINIT uses labeled common to communicate with the runtime I/O system. It
stores internal flags in the equivalent of the following labeled common block.

In releases prior to SC3.0.1, the labeled common block was named IOIFLG . We
changed this to _ _IOIFLG so that a user common block named IOIFLG does
not cause a disaster. This is safer because _ _IOIFLG is not part of the user
name space

Carriage control Recognize carriage control on any logical unit.

Blanks/zeroes Treat blanks in input data fields as blanks or zeroes.

File position Open files at beginning or at EoF.

Prefix Find and open files named prefixNN, 0 ≤ NN ≤ 19.

INTEGER*2 IEOF, ICTL, IBZR
COMMON /_ _IOIFLG/ IEOF, ICTL, IBZR ! Not in user name space.

FORTRAN Library Routines 363

7

Source Code
Some user’s needs are not satisfied with a generic version of IOINIT , so we
provide the source code. It is written in FORTRAN 77 and is located as follows:

• For a standard installation, it is in
/opt/SUNWspro/SC3.0.1/src/ioinit.f

• If you installed in /mydir, it is in / mydir /SC3.0.1/src/ioinit.f

Usage

See also getarg (3F), getenv (3F).

Restrictions
• prefix can be no longer than 30 characters.
• A path name associated with an environment name can be no longer than

255 characters.
• The “+” carriage control does not work.

Details of arguments

cctl
Carriage Control: By default, carriage control is not recognized on any logical
unit. If cctl is .true. , then carriage control will be recognized on formatted
output to all logical units except unit 0, the diagnostic channel. Otherwise the
default will be restored.

call ioinit (cctl , bzro , apnd , prefix , vrbose)

cctl logical Input True: Recognize carriage control, all
 formatted output (except unit 0)

bzro logical Input True: Treat trailing and imbedded blanks
as zeroes.

apnd logical Input True: Open files at EoF. (Append)

prefix character* n Input Nonblank: For unit NN, seek and open file
prefixNN

vrbose logical Input True: Report ioinit activity as it happens

364 FORTRAN Reference Manual

7

bzro
Blanks: By default, trailing and embedded blanks in input data fields are
ignored. If bzro is .true. then such blanks will be treated as zeros.
Otherwise the default will be restored.

apnd
Append: By default, all files opened for sequential access are positioned at their
beginning. It is sometimes necessary or convenient to open at the end-of-file so
that a write will append to the existing data. If apnd is .true. then files
opened subsequently on any logical unit will be positioned at their end upon
opening. A value of .false. restores the default behavior.

prefix
Automatic file connection: If the argument prefix is a nonblank string, then
names of the form prefixNN will be sought in the program environment. The
value associated with each such name found will be used to open logical unit
NN for formatted sequential access.

This search and connection is provided only for NN between 0 and19,
inclusive. For NN > 19, nothing is done, but see “Source Code” on page 363.

vrbose
IOINIT activity: If the argument vrbose is .true. , then ioinit will report
on its own activity.

Example: The program myprogram has the following ioinit call.

You can assign file name in at least two ways.

sh :

call ioinit(.true., .false., .false., ’FORT’, .false.)

demo$ FORT01=mydata
demo$ FORT12=myresults
demo$ export FORT02 FORT12
demo$ myprogram

FORTRAN Library Routines 365

7

csh :

With either shell, the ioinit call in the above example gives these results:

• Open logical unit 1 to file mydata

• Open logical unit 12 to file myresults.

• Both files are positioned at their beginning.

• Any formatted output has column 1 removed and interpreted as carriage
control.

• Embedded and trailing blanks are be ignored on input.

Example: ioinit() – List and compile.

Set environment variables. Use either sh or csh .

ioinit() – sh :

demo% setenv FORT01 mydata
demo% setenv FORT12 myresults
demo% myprogram

demo$ cat tioinit.f
character*3 s
call ioinit(.true., .false., .false., 'FORT', .false.)
do i = 1, 2

read(1, '(a3,i4)') s, n
write(12, 10) s, n

end do
10 format(a3,i4)

end
demo$ cat tioinit.data
abc 123
PDQ 789
demo$ f77 -silent tioinit.f
demo$

demo$ FORT01=tioinit.data
demo$ FORT12=tioinit.au
demo$ export tioinit.data tioinit.au
demo$

366 FORTRAN Reference Manual

7

ioinit() – csh :

ioinit() – Run and test:

7.32 kill : Send a Signal to a Process
Function

Example (fragment): Send a message using kill().

Note that this function just sends a message. It does not necessarily kill the
process. Some users have been known to consider this a UNIX misnomer. If
you really mean to kill a process, use the following example.

demo$ a.out
demo$ cat tioinit.au
abc 123
PDQ 789
demo$

demo$ a.out
demo$ cat tioinit.au
abc 123
PDQ 789
demo$

status = kill(pid , signum)

pid integer Input Process ID of one of the user’s
processes

signum integer Input Valid signal number. See signal (3).

Return value integer Output status =0: OK

status >0: Error code

integer kill, pid, signum
* …

status = kill(pid, signum)
if (status .ne. 0) stop ’kill: error’
write(*,*) ’Sent signal ’, signum, ’ to process ’, pid
end

FORTRAN Library Routines 367

7

Example (fragment): Kill a process using kill() .

See also: kill (2), signal (3), signal (3F), fork (3F), perror (3F)

7.33 libm_double : libm Double-Precision Functions
These subprograms provide access to double-precision libm functions and
subroutines.

Intrinsic Functions
The following FORTRAN intrinsic functions return double-precision values if
they have double-precision arguments. You need not put them in a type
statement. If the function needed is available as an intrinsic function, it is
simpler to use an intrinsic than a non-intrinsic function.

Non-Intrinsic Functions
In general, these functions do not correspond to standard FORTRAN generic
intrinsic functions—data types are determined by the usual data typing rules.

Samples: Subroutine and non-Intrinsic double-precision functions.

status = kill(pid , SIGKILL)

The ♦ indicates it is
nonstandard that this is an
intrinsic function.

sqrt(x) asin(x) cosd(x) ♦

log(x) acos(x) asind(x) ♦

log10(x) atan(x) acosd(x) ♦

exp(x) atan2(x,y) atand(x) ♦

x**y sinh(x) atan2d(x,y) ♦

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) ♦ nint(x)

Note that the DOUBLE
PRECISION functions used are in
a DOUBLE PRECISION
statement.

DOUBLE PRECISION c, d_acosh , d_hypot , d_infinity , s, x, y, z
...
z = d_acosh(x)
i = id_finite(x)
z = d_hypot(x, y)
z = d_infinity()
CALL d_sincos(x, s, c)

368 FORTRAN Reference Manual

7

For meanings of routines and arguments, do a man on the routine name
without the “d_”; it is a C man page, but the meanings are the same.

Table 7-1 Double-Precision libm Functions

Variables c , l , p, s , u, x , and y are
of type DOUBLE PRECISION.

If you use one of these DOUBLE
PRECISION functions, put it into a
DOUBLE PRECISION statement (or
type it by some IMPLICIT
statement).

sin d(x) , asin d(x) , … involve
degrees rather than radians.

d_acos(x)
d_acosd(x)
d_acosh(x)
d_acosp(x)
d_acospi(x)

double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function

arc cosine

arc cosh

d_atan(x)
d_atand(x)
d_atanh(x)
d_atanp(x)
d_atanpi(x)

double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function

arc tangent

arc tanh

d_asin(x)
d_asind(x)
d_asinh(x)
d_asinp(x)
d_asinpi(x)

double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function

arc sine

arc sinh

d_atan2((y, x)
d_atan2d(y, x)
d_atan2pi(y, x)

double precision
double precision
double precision

Function
Function
Function

arc tangent

d_cbrt(x)
d_ceil(x)
d_copysign(x, y)

double precision
double precision
double precision

Function
Function
Function

cube root
ceiling

d_cos(x)
d_cosd(x)
d_cosh(x)
d_cosp(x)
d_cospi(x)

double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function

cosine

hyperbolic cos

d_erf(x)
d_erfc(x)

double precision
double precision

Function
Function

error function

d_expm1(x)
d_floor(x)
d_hypot(x, y)
d_infinity()

double precision
double precision
double precision
double precision

Function
Function
Function
Function

(e**x)-1
floor
hypotenuse

FORTRAN Library Routines 369

7

d_j0(x)
d_j1(x)
d_jn(x)

double precision
double precision
double precision

Function
Function
Function

bessel

id_finite(x)
id_fp_class(x)
id_ilogb(x)
id_irint(x)
id_isinf(x)
id_isnan(x)
id_isnormal(x)
id_issubnormal(x)
id_iszero(x)
id_signbit(x)

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

d_addran()
d_addrans(x, p, l, u)
d_lcran()
d_lcrans(x, p, l, u)
d_shufrans(x, p, l,u)

double precision
n/a
double precision
n/a
n/a

Function
Function
Subroutine
Subroutine
Subroutine

random
number
generators

d_lgamma(x)
d_logb(x)
d_log1p(x)
d_log2(x)

double precision
double precision
double precision
double precision

Function
Function
Function
Function

log gamma

d_max_normal()
d_max_subnormal()
d_min_normal()
d_min_subnormal()
d_nextafter(x, y)
d_quiet_nan(n)
d_remainder(x, y)
d_rint(x)
d_scalb(x, y)
d_scalbn(x, n)
d_signaling_nan(n)
d_significand(x)

double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

d_sin(x)
d_sind(x)
d_sinh(x)
d_sinp(x)
d_sinpi(x)

double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function

sine

hyperbolic sin

Table 7-1 Double-Precision libm Functions (Continued)

370 FORTRAN Reference Manual

7

See also: intro (3M) and the Numerical Computation Guide.

7.34 libm_quadruple : libm Quad-Precision Functions
These subprograms provide access to quadruple-precision (REAL*16) libm
functions and subroutines (SPARC only).

Intrinsic Functions
The following FORTRAN intrinsic functions return quadruple-precision values
if they have quadruple-precision arguments. You need not put them in a type
statement. If the function needed is available as an intrinsic function, it is
simpler to use an intrinsic than a non-intrinsic function.

d_sincos(x, s, c)
d_sincosd(x, s, c)
d_sincosp(x, s, c)
d_sincospi(x, s, c)

n/a
n/a
n/a
n/a

Subroutine
Subroutine
Subroutine
Subroutine

sine & cosine

d_tan(x)
d_tand(x)
d_tanh(x)
d_tanp(x)
d_tanpi(x)

double precision
double precision
double precision
double precision
double precision

Function
Function
Function
Function
Function

tangent

hyperbolic tan

d_y0(x)
d_y1(x)
d_yn(n,x)

double precision
double precision
double precision

Function
Function
Function

bessel

The ♦ indicates it is
nonstandard that this is an
intrinsic function.

sqrt(x) asin(x) cosd(x) ♦

log(x) acos(x) asind(x) ♦

log10(x) atan(x) acosd(x) ♦

exp(x) atan2(x,y) atand(x) ♦

x**y sinh(x) atan2d(x,y) ♦

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) ♦ nint(x)

Table 7-1 Double-Precision libm Functions (Continued)

FORTRAN Library Routines 371

7

Non-Intrinsic Functions
In general, these do not correspond to standard generic intrinsic functions; data
types are determined by the usual data typing rules.

Samples: Quadruple precision functions.

If you need to use any other quadruple-precision libm function, you can call it
using a “$PRAGMA C(fcn) ” before the call. For details, read “The C-FORTRAN
Interface” in the FORTRAN User’s Guide.

Note that the quadruple precision
functions used are in a REAL*16
statement.

REAL*16 c, q_acosh , q_hypot , q_infinity , s, x, y, z
...
z = q_acosh(x)
i = iq_finite(x)
z = q_hypot(x, y)
z = q_infinity()
CALL q_sincos(x, s, c)

Table 7-2 Quadruple-Precision libm Functions

The variables c , l , p, s , u, x , and
y are of type quadruple precision.

If you use one of these quadruple
precision functions, put it into a
REAL*16 statement (or type it by
some IMPLICIT statement).

sin d(x) , asin d(x) , … involve
degrees rather than radians.

For meanings of routines and
arguments, do a man on the
routine name without the “q_”; it is
a C man page for the double
precision function, but the
meanings are the same.

q_copysign(x, y)
q_fabs(x)
q_fmod(x)
q_infinity()

real*16
real*16
real*16
real*16

Function
Function
Function
Function

iq_finite(x)
iq_fp_class(x)
iq_ilogb(x)
iq_isinf(x)
iq_isnan(x)
iq_isnormal(x)
iq_issubnormal(x)
iq_iszero(x)
iq_signbit(x)

integer
integer
integer
integer
integer
integer
integer
integer
integer

Function
Function
Function
Function
Function
Function
Function
Function
Function

q_max_normal()
q_max_subnormal()
q_min_normal()
q_min_subnormal()
q_nextafter(x, y)
q_quiet_nan(n)
q_remainder(x, y)
q_scalbn(x, n)
q_signaling_nan(n)

real*16
real*16
real*16
real*16
real*16
real*16
real*16
real*16
real*16

Function
Function
Function
Function
Function
Function
Function
Function
Function

372 FORTRAN Reference Manual

7

7.35 libm_single : libm Single-Precision Functions
These subprograms provide access to single-precision libm functions and
subroutines.

Intrinsic Functions

The following FORTRAN intrinsic functions return single-precision values if
they have single-precision arguments. If the function needed is available as an
intrinsic function, it may be simpler to use it than a non-intrinsic function.

Non-Intrinsic Functions
In general, the functions below provide access to single-precision libm
functions that do not correspond to standard FORTRAN generic intrinsic
functions—data types are determined by the usual data typing rules.

Samples: Single-precision libm functions.

The ♦ indicates it is
nonstandard that this is an
intrinsic function.

sqrt(x) asin(x) cosd(x) ♦

log(x) acos(x) asind(x) ♦

log10(x) atan(x) acosd(x) ♦

exp(x) atan2(x,y) atand(x) ♦

x**y sinh(x) atan2d(x,y) ♦

sin(x) cosh(x) aint(x)

cos(x) tanh(x) anint(x)

tan(x) sind(x) ♦ nint(x)

Note that the REAL functions
used are not in a REAL statement.
Type is determined by the default
typing rules for the letter “r ”.

REAL c, s, x, y, z
..
z = r_acosh(x)
i = ir_finite(x)
z = r_hypot(x, y)
z = r_infinity()
CALL r_sincos(x, s, c)

FORTRAN Library Routines 373

7

For meanings of routines and arguments, do a man on the routine name
without the “r_ ”; it is a C man page, but the meanings are the same.

Table 7-3 Single-Precision libm Functions

Variables c , l , p, s , u, x , and y
are of type REAL.

If you use one of these REAL
functions, it will get the default
type of REAL, unless you have
some IMPLICIT statement for
variables starting with “r ”.

sin d(x) , asin d(x) , … involve
degrees rather than radians.

r_acos(x)
r_acosd(x)
r_acosh(x)
r_acosp(x)
r_acospi(x)

real
real
real
real
real

Function
Function
Function
Function
Function

arc cosine

arc cosh

r_atan(x)
r_atand(x)
r_atanh(x)
r_atanp(x)
r_atanpi(x)

real
real
real
real
real

Function
Function
Function
Function
Function

arc tangent

arc tanh

r_asin(x)
r_asind(x)
r_asinh(x)
r_asinp(x)
r_asinpi(x)

real
real
real
real
real

Function
Function
Function
Function
Function

arc sine

arc sinh

r_atan2((y, x)
r_atan2d(y, x)
r_atan2pi(y, x)

real
real
real

Function
Function
Function

arc tangent

r_cbrt(x)
r_ceil(x)
r_copysign(x, y)

real
real
real

Function
Function
Function

cube root
ceiling

r_cos(x)
r_cosd(x)
r_cosh(x)
r_cosp(x)
r_cospi(x)

real
real
real
real
real

Function
Function
Function
Function
Function

cosine

hyperbolic cos

r_erf(x)
r_erfc(x)

real
real

Function
Function

error function

r_expm1(x)
r_floor(x)
r_hypot(x, y)
r_infinity()
r_j0(x)
r_j1(x)
r_jn(x)

real
real
real
real
real
real
real

Function
Function
Function
Function
Function
Function
Function

(e**x)-1
floor
hypotenuse
bessel

374 FORTRAN Reference Manual

7

ir_finite(x)
ir_fp_class(x)
ir_ilogb(x)
ir_irint(x)
ir_isinf(x)
ir_isnan(x)
ir_isnormal(x)
ir_issubnormal(x)
ir_iszero(x)
ir_signbit(x)

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

r_addran()
r_addrans(x, p, l, u)
r_lcran()
r_lcrans(x, p, l, u)
r_shufrans(x, p, l, u)

real
n/a
real
n/a
n/a

Function
Function
Subroutine
Subroutine
Subroutine

random number

r_lgamma(x)
r_logb(x)
r_log1p(x)
r_log2(x)

real
real
real
real

Function
Function
Function
Function

log gamma

r_max_normal()
r_max_subnormal()
r_min_normal()
r_min_subnormal()
r_nextafter(x, y)
r_quiet_nan(n)
r_remainder(x, y)
r_rint(x)
r_scalb(x, y)
r_scalbn(x, n)
r_signaling_nan(n)
r_significand(x)

real
real
real
real
real
real
real
real
real
real
real
real

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

r_sin(x)
r_sind(x)
r_sinh(x)
r_sinp(x)
r_sinpi(x)

real
real
real
real
real

Function
Function
Function
Function
Function

sine

hyperbolic sin

r_sincos(x, s, c)
r_sincosd(x, s, c)
r_sincosp(x, s, c)
r_sincospi(x, s, c)

n/a
n/a
n/a
n/a

Subroutine
Subroutine
Subroutine
Subroutine

sine & cosine

Table 7-3 Single-Precision libm Functions (Continued)

FORTRAN Library Routines 375

7

See also: intro (3M) and the Numerical Computation Guide.

7.36 link , symlnk : Make a Link to an Existing File
Summary

Functions

r_tan(x)
r_tand(x)
r_tanh(x)
r_tanp(x)
r_tanpi(x)

real
real
real
real
real

Function
Function
Function
Function
Function

tangent

hyperbolic tan

r_y0(x)
r_y1(x)
r_yn(n, x)

real
real
real

Function
Function
Function

bessel

link Create a link to an existing file.

symlnk Create a symbolic link to an existing file.

status = link(name1, name2)

status = symlnk(name1, name2)

name1 character* n Input Path name of an existing file

name2 character* n Input Path name to be linked to file
name1

name2 must not already exist.

Return value integer Output status =0: OK

status >0: System error code

Table 7-3 Single-Precision libm Functions (Continued)

376 FORTRAN Reference Manual

7

link: Create a Link to an Existing File

Example 1. link : Create a link named “data1 ” to file “tlink.db.data.1 ”

symlnk: Create a Symbolic Link to an Existing File

Example 2. symlnk : Create a symbolic link named “data1 ” to the file
“tlink.db.data.1 ”

See also: link (2), symlink (2), perror (3F), unlink (3F).

Bug: Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

character*34 name1/'tlink.db.data.1'/, name2/'data1'/
integer link, status
status = link(name1, name2)
if (status .ne. 0) stop 'link: error'
end

demo$ f77 -silent tlink.f
demo$ ls -l data1
data1 not found
demo$ a.out
demo$ ls -l data1
-rw-rw-r-- 2 generic 2 Aug 11 08:50 data1
demo$

character*34 name1/'tlink.db.data.1'/, name2/'data1'/
integer status, symlnk
status = symlnk(name1, name2)
if (status .ne. 0) stop 'symlnk: error'
end

demo$ f77 -silent tsymlnk.f
demo$ ls -l data1
data1 not found
demo$ a.out
demo$ ls -l data1
lrwxrwxrwx 1 generic 15 Aug 11 11:09 data1 -> tlink.db.data.1
demo$

FORTRAN Library Routines 377

7

7.37 loc : Return the Address of an Object
Function

Example: loc

7.38 long , short : Integer Object Conversion

long : Convert a Short Integer to a Long Integer

Function

short : Convert a Long Integer to a Short Integer

Function

k = loc(arg)

arg Any type Input Name of any variable, array, or
structure

Return value integer Output Address of arg

integer k, loc
real arg / 9.0 /
k = loc(arg)
write(*,*) k
end

call ExpecLong (long(int2))

int2 integer*2 Input

Return value integer*4 Output

call ExpecShort (short(int4))

int4 integer*4 Input

Return value integer*2 Output

378 FORTRAN Reference Manual

7

Example (fragment): long() and short() .

long is useful if constants are used in calls to library routines and the code is
compiled with the -i2 option.

short is useful in similar context when an otherwise long object must be
passed as a short integer.

integer*4 int4/8/, long
integer*2 int2/8/, short
call ExpecLong(long(int2))
call ExpecShort(short(int4))
…
end

FORTRAN Library Routines 379

7

7.39 longjmp , isetjmp : Return to location set by isetjmp

isetjmp : Set the location for longjmp

Function

longjmp : Return to the location set by isetjmp

Subroutine

Description

The isetjmp and longjmp routines are used to deal with errors and
interrupts encountered in a low-level routine of a program.

These routines should be used only as a last resort. They require discipline.
They are not portable. Read the man page setjmp (3V) for bugs and other
details.

ival = isetjmp(env)

env integer env(12) Output env is a 12 word integer array

Return value integer Output ival = 0 if isetjmp is
 called explicitly

ival ≠ 0 if isetjmp is
 called through

longjmp

call longjmp(env , ival)

env integer env(12) Input env is the 12 word integer
array initialized by isetjmp

ival integer Output ival = 0 if isetjmp is
 called explicitly

ival ≠ 0 if isetjmp is
 called through

longjmp

380 FORTRAN Reference Manual

7

isetjmp saves the stack environment in env. It also saves the register
environment.

longjmp restores the environment saved by the last call to isetjmp and
returns in such a way that execution continues as if the call to isetjmp had
just returned the value ival.

The integer expression ival returned from isetjmp is zero if longjmp is not
called, and it is nonzero if longjmp is called.

Example: Code fragment using isetjmp and longjmp .

Restrictions
• You must invoke isetjmp before calling longjmp() .

• The argument to isetjmp must be a 12 integer array.

• You must pass the env variable from the routine that calls isetjmp to the
routine that calls longjmp , either by common or as an argument.

• longjmp attempts to clean up the stack. longjmp must be called from a
lower call-level than isetjmp .

• Passing isetjmp as an argument that is a procedure name does not work.

See setjmp (3V).

integer env(12)
common /jmpblk/ env
j = isetjmp(env) ! <-- isetjmp
if (j .eq. 0) then

call sbrtnA
else

call error_processor
end if
end
subroutine sbrtnA
integer env(12)
common /jmpblk/ env
call longjmp(env, ival) ! <-- longjmp
return
end

FORTRAN Library Routines 381

7

7.40 malloc : Allocate Memory and Get Address
Function

The function malloc allocates an area of memory and returns the address of
the start of that area. The region of memory is not initialized in any way —
assume it is garbage.

Example (fragment): malloc() .

In the above example, we get 1000 bytes of memory.

See also Section 7.15, “free: Deallocate Memory Allocated by Malloc,” for more
detail.

k = malloc(n)

n integer Input Number of bytes of memory

Return value integer Output k>0: k=address of the start of the block
 of memory allocated

k=0: Error

pointer (p1, X)
…
p1 = malloc(1000)
if (p1 .eq. 0) stop ’malloc: cannot allocate’
…
end

382 FORTRAN Reference Manual

7

7.41 mvbits : Move a Bit Field

Example: mvbits

To get mvbits , use -lV77 . If you use idate or time , you get VMS versions.

Remarks:

• Bits are numbered according to VMS convention: from low-ordered end (as
in the example above).

• MVBITS changes only bits ini2 through ini2 +nbits -1 of the des
location, and no bits of the src location.

• Restrictions
• ini1 + nbits ≤ 32
• ini2 + nbits ≤ 32

call mvbits(src , ini1 , nbits , des , ini2)

src INTEGER Input Source

ini1 INTEGER Input Initial bit position in the source

nbits INTEGER Input Number of bits to move

des INTEGER Output Destination

ini2 INTEGER Input Initial bit position in the destination

demo$ cat mvb1.f
* mvb1.f -- From src, initial bit 0, move 3 bits to des, initial bit 3.
* src des
* 543210 543210 <-- Bit numbers (VMS convention)
* 000111 000001 <-- Values before move
* 000111 111001 <-- Values after move

integer src, ini1, nbits, des, ini2
data src, ini1, nbits, des, ini2

& / 7, 0, 3, 1, 3 /
call mvbits (src, ini1, nbits, des, ini2)
write (*,"(5o3)") src, ini1, nbits, des, ini2
end

demo$ f77 -silent mvb1.f -lV77 ← Note the -lV77
demo$ a.out
 7 0 3 71 3
demo$

FORTRAN Library Routines 383

7

7.42 perror , gerror , ierrno : Get System Error Messages

perror : Print Message to Logical Unit 0, Stderr

Subroutine

Example 1:

gerror: Get Message for Last Detected System Error

Subroutine or function

Example 2: gerror () as a subroutine.

perror Print a message to FORTRAN logical unit 0, stderr .

gerror Get a system error message (of the last detected system error)

ierrno Get the error number of the last detected system error.

call perror(string)

string character* n Input The message. It will be written
preceding the standard error message.
It is for the last detected system error.

…
call perror("file is for formatted I/O")

…

call gerror(string)

string character* n Output Message for the last detected
system error

character string*30
…
call gerror (string)
write(*,*) string
end

384 FORTRAN Reference Manual

7

Example 3: gerror () as a function (In this case, string is not used.)

ierrno: Get Number for Last Detected System Error

Function

This number is updated only when an error actually occurs. Most routines and
I/O statements that might generate such errors return an error code after the
call; that value is a more reliable indicator of what caused the error condition.

Example 4: ierrno() .

See also intro (2), perror (3).

Bugs:

• string in the call to perror can be no longer than 127 characters.

• The length of the string returned by gerror is determined by the calling
program.

character gerror*30, z*30
…
z = gerror()
write(*,*) z
end

n = ierrno()

Return value integer Output Error number of last detected system error

integer ierrno, n
…
n = ierrno()
write(*,*) n
end

FORTRAN Library Routines 385

7

f77 I/O Error Codes and Meanings

If the error number is less than 1000, then it is a system error. See intro (2).

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

‘‘error in format’’
‘‘illegal unit number’’
‘‘formatted io not allowed’’
‘‘unformatted io not allowed’’
‘‘direct io not allowed’’
‘‘sequential io not allowed’’
‘‘can’t backspace file’’
‘‘off beginning of record’’
‘‘can’t stat file’’
‘‘no * after repeat count’’
‘‘off end of record’’

 <not used>
‘‘incomprehensible list input’’
‘‘out of free space’’
‘‘unit not connected’’
‘‘read unexpected character’’
‘‘illegal logical input field’’
‘‘’new’ file exists’’
‘‘can’t find ’old’ file’’
‘‘unknown system error’’
‘‘requires seek ability’’
‘‘illegal argument’’
‘‘negative repeat count’’
‘‘illegal operation for unit’’
 <not used>
‘‘incompatible specifiers in open’’
‘‘illegal input for namelist’’
‘‘error in FILEOPT parameter’’

386 FORTRAN Reference Manual

7

7.43 putc , fputc : Write a Character to a Logical Unit
putc writes to logical unit 6, normally the control terminal output.

fputc writes to a logical unit.

These functions write a character to the file associated with a FORTRAN
logical unit bypassing normal FORTRAN I/O.

For any one unit, do not mix normal FORTRAN output with output by these
functions.

putc : Write to Logical Unit 6

Function

Example: putc() .

status = putc(char)

char character Input The character to write to the unit

Return value integer Output status =0: OK

status >0: System error code

character char, s*10 / 'OK by putc' /
integer putc, status
do i = 1, 10

char = s(i:i)
status = putc(char)

end do
status = putc('\n')
end

demo$ f77 -silent tputc.f
demo$ a.out
OK by putc
demo$

FORTRAN Library Routines 387

7

fputc : Write to Specified Logical Unit

Function

Example: fputc() .

See also putc (3S), intro (2), perror (3F).

status = fputc(lunit , char)

lunit integer Input The unit to write to

char character Input The character to write to the unit

Return value integer Output status =0: OK

status >0: System error code

character char, s*11 / 'OK by fputc' /
integer fputc, status
open(1, file='tfputc.data')
do i = 1, 11

char = s(i:i)
status = fputc(1, char)

end do
status = fputc(1, '\n')
end

demo$ f77 -silent tfputc.f
demo$ a.out
demo$ cat tfputc.data
OK by fputc
demo$

388 FORTRAN Reference Manual

7

7.44 qsort : Sort the Elements of a One-dimensional Array
Subroutine

The function compar(arg1 , arg2) determines the sorting order. The two
arguments are elements of array. The function must return:

call qsort(array , len , isize , compar)

array array Input Contains the elements to be sorted

len integer Input Number of elements in the array.

isize integer Input Size of an element, typically:

 4 for integer or real

 8 for double precision or complex

 16 for double complex

 Length of character object for character
 arrays

compar function name Input Name of a user supplied integer*2
function

Negative If arg1 is considered to precede arg2

Zero If arg1 is equivalent to arg2

Positive If arg1 is considered to follow arg2

FORTRAN Library Routines 389

7

Example: qsort() .

Compile and run of the above source:

See also qsort (3).

7.45 ran : Generate a Random Number between 0 and 1
Repeated calls to ran generate a sequence of random numbers with a uniform
distribution.

To use this VMS routine you need -lV77 . If you use -lV77 and invoke
idate() or time() , then you get the VMS version.

This is an extremely poor algorithm. See lcrans (3m) instead.

external compar
integer*2 compar
integer array(10)/5,1,9,0,8,7,3,4,6,2/, len/10/, isize/4/
call qsort(array, len, isize, compar)
write(*,'(10i3)') array
end

integer*2 function compar(a, b)
integer a, b
if (a .lt. b) compar = -1
if (a .eq. b) compar = 0
if (a .gt. b) compar = 1
return
end

demo$ f77 -silent tqsort.f
demo$ a.out
 0 1 2 3 4 5 6 7 8 9
demo$

r = ran(i)

i INTEGER*4 Input Variable or array element

r REAL Output Variable or array element

390 FORTRAN Reference Manual

7

Example: ran .

Remarks:

• The range includes 0.0 and excludes 1.0.

• The algorithm is a multiplicative, congruential type, general random
number generator.

• In general, the value of i is set once during execution of the calling program.

• The initial value of i should be a large odd integer.

• Each call to RAN gets the next random number in the sequence.

• To get a different sequence of random numbers each time you run the
program, you must set the argument to a different initial value for each run.

• The argument is used by RAN to store a value for the calculation of the next
random number according to the following algorithm:

• SEED contains a 32-bit number, and the high-order 24 bits are converted to
floating point, and that value is returned.

demo$ cat ran1.f
* ran1.f -- Generate random numbers.

integer i, n
real r(10)
i = 760013
do n = 1, 10

r(n) = ran (i)
end do
write (*, "(5 f11.6)") r
end

demo$ f77 -silent ran1.f -lV77
demo$ a.out
 0.222058 0.299851 0.390777 0.607055 0.653188
 0.060174 0.149466 0.444353 0.002982 0.976519
demo$

SEED = 6909 * SEED + 1 (MOD 2**32)

FORTRAN Library Routines 391

7

7.46 rand , drand , irand : Return Random Values
 Summary:

• rand returns real values in the range 0.0 through 1.0.
• drand returns double precision values in the range 0.0 through 1.0.
• irand returns positive integers in the range 0 through 2147483647.

These functions use random (3) to generate sequences of random numbers. The
three functions share the same 256 byte state array. The only advantage of
these functions is that they are widely available on UNIX systems. For better
random number generators, compare lcrans , addrans , and shufrans , read
the Numerical Computation Guide.

Example: irand() .

See also random (3).

i = irand(k)

r = rand(k)

d = drand(k)

k, r, d integer*4 Input k=0: Get next random number in the sequence

k=1: Restart sequence, return first number

k>0: Use as a seed for new sequence, return first number

rand real*4 Output

drand real*8 Output

irand integer*4 Output

integer*4 v(5), iflag/0/
do i = 1, 5

v(i) = irand(iflag)
end do
write(*,*) v
end

demo$ f77 -silent trand.f
demo$ a.out
 2078917053 143302914 1027100827 1953210302 755253631
demo$

392 FORTRAN Reference Manual

7

7.47 rename : Rename a File
Function

If to exists, then both from and to must be the same type of file, and must
reside on the same filesystem.If to exists, it will be removed first.

Example: rename() – Rename file “trename.old ” to “trename.new ”

See also rename (2), perror (3F).

Bug: Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

status = rename(from , to)

from character* n Input Path name of an existing file

to character* n Input New path name for the file

Return value integer Output status =0: OK

status >0: System error code

integer rename, status
character*18 from/'trename.old'/, to/'trename.new'/
status = rename(from, to)
if (status .ne. 0) stop 'rename: error'
end

demo$ f77 - silent trename.f
demo$ ls trename*
trename.f trename.old
demo$ a.out
demo$ ls trename*
trename.f trename.new
demo$

FORTRAN Library Routines 393

7

7.48 secnds : Get System Time in Seconds, Minus Argument

Example: secnds .

To use this VMS routine you need -lV77 . If you use -lV77 and invoke
idate() or time() , then you get the VMS version.

Remarks:

• The returned value from SECNDS is accurate to 0.01 second.

• The value is the system time, as the number of seconds from midnight, and
it correctly spans midnight.

• Some precision may be lost for small time intervals near the end of the day.

t = secnds(t0)

t0 REAL Input Constant, variable, or array element

Return
Value

REAL Output Number of seconds since midnight, minus t0

demo$ cat sec1.f
real elapsed, t0, t1, x, y
t0 = 0.0
t1 = secnds(t0)
y = 0.1
do i = 1, 1000

x = asin(y)
end do
elapsed = secnds(t1)
write (*, 1) elapsed

1 format (’ 1000 arcsines: ’, f12.6, ’ sec’)
end

demo$ f77 -silent sec1.f -lV77
demo$ a.out
 1000 arcsines: 6.699141 sec
demo$

394 FORTRAN Reference Manual

7

7.49 sh : Fast Execution of an sh Command
Function

Example: sh().

The function sh passes string to the sh shell as input, as if the string had been
typed as a command.

The current process waits until the command terminates.

The forked process flushes all open files.

• For output files, the buffer is flushed to the actual file.
• For input files, the position of the pointer is unpredictable.

The sh() function is not mt-safe. Do not call it from multi-threaded programs,
that is do not call it from FORTRAN MP programs.

See also: execve (2), wait (2), system (3).

Bug: string can not be longer than 1024 characters.

status = sh(string)

string character* n Input String containing command to do

Return value integer Output Exit status of the shell executed.
See wait (2) for an explanation of
this value.

character*18 string / 'ls > MyOwnFile.names' /
integer status, sh
status = sh(string)
if (status .ne. 0) stop 'sh: error'
...
end

FORTRAN Library Routines 395

7

7.50 signal : Change the Action for a Signal
Function

If proc is called, it will be passed the signal number as an integer argument.

If a process incurs a signal, the default action is usually to clean up and abort.
You can change the action by writing an alternative signal handling routine,
and then telling the system to use it.

You tell the system to use alternate action by calling signal.

The returned value can be used in subsequent calls to signal in order to
restore a previous action definition.

Note that you can get a negative return value even though there is no error. In
fact, if you pass a valid signal number to signal() and you get a return value
less than -1, then it is OK.

f77 arranges to trap certain signals when a process is started. The only way to
restore the default f77 action is to save the returned value from the first call to
signal.

n = signal(signum , proc , flag)

signum integer Input Signal number. See signal (3)

proc Routine
name

Input Name of user signal handling routine

(must be in an external statement)

flag integer Input flag <0:

flag ≥0:

Use proc as the signal handling routine

Ignore proc ; pass flag as the action

 flag =0: Use the default action

 flag =1: Ignore this signal

Return
value

integer Output n=-1:

n>0:

n>1:

n<-1:

System error

Definition of previous action

n=Address of routine that would have been called

If signum is a valid signal number, then
n=address of routine that would have been called.

If signum is a not a valid signal number, then
 n is an error number.

396 FORTRAN Reference Manual

7

Example (fragment): signal() —If illegal instruction signal, then call MyAct .

See also kill (1), signal (3), kill (3F).

7.51 sleep : Suspend Execution for an Interval
Subroutine

The actual time can be up to 1 second less than itime due to granularity in
system timekeeping.

Example: sleep() .

See also sleep (3).

#include <signal.h>
integer flag/-1/, n, signal
external MyAct
…
n = signal(SIGILL, MyAct, flag)
if (n .eq. -1) stop ’Error from signal()’
if (n .lt. -1) write(*,*) ’From signal: n = ’, -n
…
end

subroutine MyAct(signum)
integer signum
…
return
end

subroutine sleep(itime)

itime integer Input Number of seconds to sleep

integer time / 5 /
write(*,*) 'Start'
call sleep(time)
write(*,*) 'End'
end

FORTRAN Library Routines 397

7

7.52 stat , lstat , fstat : Get File Status
These functions return the following information:

device, inode’s number, protection, number of hard links,
user ID, group ID, device type, size, access time, modify time,
status change time, optimal blocksize, blocks allocated

Both stat and lstat query by file name. fstat queries by logical unit.

stat : Get Status for File, by File Name

Function

Example 1: stat() .

ierr = stat (name, statb)

name character* n Input Name of the file

statb integer Output Status structure for the file,
13-element array

Return value integer Output ierr =0: OK

ierr >0: Error code

character name*18 /'MyFile'/
integer ierr, stat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = stat (name, statb)
if (ierr .ne. 0) stop 'stat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end

398 FORTRAN Reference Manual

7

fstat Get Status for File, by Logical Unit

Function

Example 2: fstat() .

lstat : Get Status for File, by File Name

Function

ierr = fstat (lunit , statb)

lunit integer Input Logical unit number

statb integer Output Status structure for the file, 13-element
array

Return value integer Output ierr =0: OK

ierr >0: Error code

character name*18 /'MyFile'/
integer fstat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = fstat (lunit, statb)
if (ierr .ne. 0) stop 'fstat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end

ierr = lstat (name, statb)

name character* n Input File name

statb integer Output Status array of file, 13 elements

Return value integer Output ierr =0: OK

ierr >0: Error code

FORTRAN Library Routines 399

7

Example 3: lstat() .

Detail of Status Array for Files

The meaning of the information returned in array statb is as described for the
structure stat under stat (2).

Spare values are not included. The order is shown below:

See also stat (2), access (3F), perror (3F), time (3F).

Bug: Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

character name*18 /'MyFile'/
integer lstat, lunit/1/, statb(13)
open(unit=lunit, file=name)
ierr = lstat (name, statb)
if (ierr .ne. 0) stop 'lstat: error'
write(*,*)'UID of owner = ',statb(5),', blocks = ',statb(13)
end

statb(1)
statb(2)
statb(3)
statb(4)
statb(5)
statb(6)
statb(7)
statb(8)
statb(9)
statb(10)
statb(11)
statb(12)
statb(13)

 Device inode resides on
 This inode’s number
 Protection
 Number of hard links to the file
 User ID of owner
 Group ID of owner
 Device type, for inode that is device
 Total size of file
 File last access time
 File last modify time
 File last status change time
 Optimal blocksize for file system I/O ops
 Actual number of blocks allocated

400 FORTRAN Reference Manual

7

7.53 system : Execute a System Command
Function

Example: system().

The function system passes string to your shell as input, as if the string had
been typed as a command.

If system can find the environment variable SHELL, then system uses the
value of SHELL as the command interpreter (shell), otherwise it uses sh (1).

The current process waits until the command terminates.

Historically cc and f77 developed with different assumptions:

• If cc calls system , the shell is always the Bourne shell.
• If f77 calls system, then which shell gets called depends on the

environment variable SHELL.

The system function flushes all open files.

• For output files, the buffer is flushed to the actual file.
• For input files, the position of the pointer is unpredictable.

See also: execve (2), wait (2), system (3).

The system() function is not mt-safe. Do not call it from multi-threaded
programs, that is do not call it from FORTRAN MP programs.

Bug: string can not be longer than 1024 characters.

status = system(string)

string character* n Input String containing command to do

Return value integer Output Exit status of the shell executed.
See wait (2) for an explanation of
this value.

character*8 string / 'ls s*' /
integer status, system
status = system(string)
if (status .ne. 0) stop 'system: error'
end

FORTRAN Library Routines 401

7

7.54 time , ctime , ltime , gmtime : Get System Time

Alternate:

time : Get System Time

For time () there are two versions, a standard version and a VMS version. If
you use the f77 command-line option -lV77, then you get the VMS version
for time() and for idate() ; otherwise you get the standard versions.

time() —Version Standard with Operating System

Function

The function time() returns an integer with the time since 00:00:00 GMT, Jan.
1, 1970, measured in seconds. This is the value of the operating system clock.

Example: time() , version standard with the operating system.

time Get system time as integer (seconds since 0 GMT 1/1/70).

ctime Convert a system time to an ASCII string.

ltime Dissect a system time into month, day, and so forth, local time.

gmtime Dissect a system time into month, day, and so forth, GMT.

time VMS Version: Get the system time as character (hh:mm:ss).

n = time()

Return value integer Output Time, in seconds, since 0:0:0, GMT, 1/1/70

Note: Do not use -lV77 .

integer n, time
n = time()
write(*,*) 'Seconds since 0 1/1/70 GMT = ', n
end

demo$ f77 -silent ttime.f
demo$ a.out
 The time is: 771967850
demo$

402 FORTRAN Reference Manual

7

time() —VMS Version

This function time gets the current system time as a character string.

Function

Example: time(t) , VMS version, ctime, convert System Time to ASCII.

ctime : Convert System Time to Character

The function ctim e converts a system time, stime , and returns it as a 24-
character ASCII string.

Function

call time(t)

t character*8 Output Time, in the form hh:mm:ss
hh , mm, ss are each 2-digits

hh is the hour

mm is the minute

ss is the second

Note: Use -lV77 .

character t*8
call time(t)
write(*, "(' The current time is ', A8)") t
end

demo$ f77 -silent ttimeV.f -lV77
demo$ a.out
 The current time is 08:14:13
demo$

string = ctime(stime)

stime integer*4 Input System time from time ()

(standard version)

Return
value

character*24 Output System time as character string. You
must type ctime and string as
character*24 .

FORTRAN Library Routines 403

7

The format of the ctime returned value is shown in the example below. It is
described in the man page ctime , section 3C in Solaris 2.x, 3V in Solaris 1.x.

Example: ctime() .

ltime : Split System Time to Month, Day,… (Local)

This dissects a system time into month, day, and so forth, for local time zone.

Subroutine

For the meaning of the elements in tarray , see.“tarray() Values,” page 404.

Example: ltime () .

character*24 ctime, string
integer n, time
n = time()
string = ctime(n)
write(*,*) 'ctime: ', string
end

demo$ f77 -silent tctime.f
demo$ a.out
 ctime: Mon Aug 12 10:35:38 1991
demo$

call ltime(stime , tarray)

stime integer*4 Input System time from time()

 (standard version)

tarray integer*4(9) Output System time, local, as day, month, year, …

integer*4 stime, tarray(9), time
stime = time()
call ltime(stime, tarray)
write(*,*) 'ltime: ', tarray
end

demo$ f77 -silent tltime.f
demo$ a.out
 ltime: 25 49 10 12 7 91 1 223 1
demo$

404 FORTRAN Reference Manual

7

gmtime : Split System Time to Month, Day, … (GMT)

This dissects a system time into month, day, etc, for GMT.

Subroutine

For the meaning of the elements in tarray , see.“tarray() Values,” below.

Example: gmtime .

tarray() Values
The tarray() values, from ctime: Index, units, range.

These are described in the man page ctime , section 3C in Solaris 2.x, 3V in
Solaris 1.x. See also: ctime , idate (3F), fdate (3F).

call gmtime(stime , tarray)

stime integer*4 Input System time from time()

(standard version)

tarray integer*4(9) Output System time, GMT, as day, month, year, …

integer*4 stime, tarray(9), time
stime = time()
call gmtime(stime, tarray)
write(*,*) 'gmtime: ', tarray
end

demo$ f77 -silent tgmtime.f
demo$ a.out
 gmtime: 12 44 19 18 5 94 6 168 0
demo$

tarray()

For Solaris1.x, the range for
seconds is (0 - 59)

1
2
3
4
5

Seconds (0 - 61)
Minutes (0 - 59)
Hours (0 - 23)
Day of month (1 - 31)
Months since January (0 - 11)

6
7
8
9

Year - 1900
Day of week (Sunday = 0)
Day of year (0 - 365)
Daylight Saving Time,
 1 if DST in effect

FORTRAN Library Routines 405

7

7.55 topen , tclose , tread ,…, tstate : Do Tape I/O
You can manipulate magnetic tape from FORTRAN using these functions:

On any one unit, do not mix these functions with standard FORTRAN I/O.

You must first use topen () to open a tape logical unit, tlu, for the specified
device. Then you do all other operations on the specified tlu. The tlu has no
relationship at all to any normal FORTRAN logical unit.

Note that before you use one of these functions, its name must be in an
INTEGER type statement.

topen : Associate a Device with a Tape Logical Unit

This does not move tape. See perror (3f) for details.

topen Associate a device name with a tape logical unit.

tclose Write EOF, close tape device channel, and remove association with tlu.

tread Read next physical record from tape into buffer.

twrite Write the next physical record from buffer to tape.

trewin Rewind the tape to the beginning of the first data file.

tskipf Skip forward over files and/or records, and reset EOF status.

tstate Determine the logical state of the tape I/O channel.

n = topen(tlu , devnam, islabeled)

tlu integer Input Tape logical unit. It must be in the range 0 to 7.

islabeled logical Input true=the tape is labeled

Note: a label is the first file on the tape.

Return
value

integer Output n=0: OK

n<0: Error.

406 FORTRAN Reference Manual

7

Example: topen() –Open a 1/4" tape file.

The displayed output is

tclose : Write Eof, Close Tape Channel, Disconnect tlu

Caution: tclose () places an EOF marker immediately after the current
location of the unit pointer and then closes the unit. So if you trewin() a unit
before you use tclose() it, its contents are thrown away.

Example: tclose() –Close an opened 1/4" tape file.

The displayed output is:

CHARACTER devnam*9 / '/dev/rst0' /
INTEGER n / 0 /, tlu / 1 /, topen
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
WRITE(*,'("topen ok:", 2I3, 1X, A10)') n, tlu, devnam
END

topen ok: 0 1 /dev/rst0

n = tclose (tlu)

tlu integer Input Tape logical unit, in range 0 to 7.

n integer Return value n=0: OK

n<0: Error

CHARACTER devnam*9 / '/dev/rst0' /
INTEGER n / 0 /, tlu / 1 /, tclose, topen
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = tclose(tlu)
IF (n .LT. 0) STOP "tclose: cannot close"
WRITE(*, '("tclose ok:", 2I3, 1X, A10)') n, tlu, devnam
END

tclose ok: 0 1 /dev/rst0

FORTRAN Library Routines 407

7

twrite : Write Next Physical Record to Tape

The physical record length will be the size of buffer .

Example: twrite() –Write a 2-record file.

The displayed output is:

n = twrite(tlu , buffer)

tlu integer Input Tape logical unit, in range 0 to 7.

buffer character Input Must be sized at a multiple of 512

n integer Return
value

n>0: OK, and n = the number of bytes written

n=0: End of Tape

n<0: Error

CHARACTER devnam*9 / '/dev/rst0' /, rec1*512 / "abcd" /,
& rec2*512 / "wxyz" /

INTEGER n / 0 /, tlu / 1 /, tclose, topen, twrite
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
n = twrite(tlu, rec1)
IF (n .LT. 0) STOP "twrite: cannot write 1"
n = twrite(tlu, rec2)
IF (n .LT. 0) STOP "twrite: cannot write 2"
WRITE(*, '("twrite ok:", 2I4, 1X, A10)') n, tlu, devnam
END

twrite ok: 512 1 /dev/rst0

408 FORTRAN Reference Manual

7

tread : Read Next Physical Record from Tape

If the tape is at EOF or EOT, then tread does a return; it does not read tape.

Example: tread() –Read the first record of the file written above.

The displayed output is:

n = tread(tlu , buffer)

tlu integer Input Tape logical unit, in range 0 to 7.

buffer character Input Must be sized at a multiple of 512, and must
be large enough to hold the largest physical
record to be read.

n integer Return value n>0: OK, and n is the number of bytes read.

n<0: error.

n=0: EOF

CHARACTER devnam*9 / '/dev/rst0' /, onerec*512 / " " /
INTEGER n / 0 /, tlu / 1 /, topen, tread
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
n = tread(tlu, onerec)
IF (n .LT. 0) STOP "tread: cannot read"
WRITE(*,'("tread ok:", 2I4, 1X, A10)') n, tlu, devnam
WRITE(*,'(A4)') onerec
END

tread ok: 512 1 /dev/rst0
abcd

FORTRAN Library Routines 409

7

trewin : Rewind Tape to Beginning of First Data File

If the tape is labeled then the label is skipped over after rewinding.

Example 1: trewin() –Typical fragment.

Example 2: trewin() –In a 2-record file, try to read 3 records; rewind; read 1
record.

n = trewin (tlu)

tlu integer Input Tape logical unit, in range 0 to 7.

n integer Return
value

n=0: OK

n<0: Error.

CHARACTER devnam*9 / ’/dev/rst0’ /
INTEGER n /0/, tlu /1/, tclose, topen, tread, trewin
…
n = trewin(tlu)
IF (n .LT. 0) STOP "trewin: cannot rewind"
WRITE(*, ’("trewin ok:", 2I4, 1X, A10)’) n, tlu, devnam
…
END

CHARACTER devnam*9 / '/dev/rst0' /, onerec*512 / " " /
INTEGER n / 0 /, r, tlu / 1 /, topen, tread, trewin
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
IF (n .LT. 0) STOP "topen: cannot open"
DO r = 1, 3
 n = tread(tlu, onerec)
 WRITE(*,'(1X, I2, 1X, A4)') r, onerec
END DO
n = trewin(tlu)
IF (n .LT. 0) STOP "trewin: cannot rewind"
WRITE(*, '("trewin ok:" 2I4, 1X, A10)') n, tlu, devnam
n = tread(tlu, onerec)
IF (n .LT. 0) STOP "tread: cannot read after rewind"
WRITE(*,'(A4)') onerec
END

410 FORTRAN Reference Manual

7

The displayed output is:

tskipf : Skip Files and Records; Reset EoF Status

It does not skip backward.

First it skips forward over nf end-of-file marks. Then it skips forward over nr
physical records. If the current file is at EOF, this counts as 1 file to skip. This
also resets the EOF status. Compare tstate below.

Example: tskipf() –Typical fragment, skip 4 files and then skip 1 record.
Compare tstate , second example.

1 abcd
2 wxyz
3 wxyz
trewin ok: 0 1 /dev/rst0
abcd

n = tskipf(tlu , nf , nr)

tlu integer Input Tape logical unit, in range 0 to 7.

nf integer Input Number of end-of-file marks to skip over first

nr integer Input Number of physical records to skip over after
skipping files

n integer Return value n=0: OK

n<0: Error.

INTEGER nfiles / 4 /, nrecords / 1 /, tskipf, tlu / 1 /
…
n = tskipf(tlu, nfiles, nrecords)
IF (n .LT. 0) STOP "tskipf: cannot skip"
…

FORTRAN Library Routines 411

7

tstate : Get Logical State of Tape I/O Channel

For details, see st (4s).

While eoff is true, you cannot read from that tlu . You can set this EOF status
flag to false by using tskipf() to skip one file and zero records:

Then you can read any valid record that follows.

End-Of-Tape (EOT) is indicated by an empty file, often referred to as a double
EOF mark. You cannot read past EOT, but you can write past EOT.

n = tstate(tlu , fileno , recno , errf , eoff , eotf , tcsr)

tlu integer Input Tape logical unit, in range 0 to 7.

fileno integer Output Current file number

recno integer Output Current record number

errf logical Output true=an error occurred

eoff logical Output true=the current file is at EOF

eotf logical Output true=tape has reached logical end-of-tape

tcsr integer Output true=hardware errors on the device. It contains
the tape drive control status register. If the error
is software, then tcsr is returned as zero. The
values returned in this status register vary
grossly with the brand and size of tape drive.

n = tskipf(tlu, 1, 0).

412 FORTRAN Reference Manual

7

Example: Write 3 files of 2 records each. The next example uses tstate() to
trap EOF and get at all files.

CHARACTER devnam*10 / '/dev/nrst0' /,
& f0rec1*512 / "eins" /, f0rec2*512 / "zwei" /,
& f1rec1*512 / "ichi" /, f1rec2*512 / "ni__" /,
& f2rec1*512 / "un__" /, f2rec2*512 / "deux" /

INTEGER n / 0 /, tlu / 1 /, tclose, topen, trewin, twrite
LOGICAL islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = trewin(tlu)
n = twrite(tlu, f0rec1)
n = twrite(tlu, f0rec2)
n = tclose(tlu)
n = topen(tlu, devnam, islabeled)
n = twrite(tlu, f1rec1)
n = twrite(tlu, f1rec2)
n = tclose(tlu)
n = topen(tlu, devnam, islabeled)
n = twrite(tlu, f2rec1)
n = twrite(tlu, f2rec2)
n = tclose(tlu)
END

FORTRAN Library Routines 413

7

Example: Use tstate() in a loop that reads all records of the 3 files written in
the previous example.

The displayed output is:

CHARACTER devnam*10 / '/dev/nrst0' /, onerec*512 / " " /
INTEGER f, n / 0 /, tlu / 1 /, tcsr, topen, tread,

& trewin, tskipf, tstate
LOGICAL errf, eoff, eotf, islabeled / .false. /
n = topen(tlu, devnam, islabeled)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) 'open:', fn, rn, errf, eoff, eotf, tcsr

1 FORMAT(1X, A10, 2I2, 1X, 1L, 1X, 1L,1X, 1L, 1X, I2)
2 FORMAT(1X, A10,1X,A4,1X,2I2,1X,1L,1X,1L,1X,1L,1X,I2)

n = trewin(tlu)
n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
WRITE(*,1) 'rewind:', fn, rn, errf, eoff, eotf, tcsr
DO f = 1, 3
 eoff = .false.
 DO WHILE (.NOT. eoff)
 n = tread(tlu, onerec)
 n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
 IF (.NOT. eoff) WRITE(*,2) 'read:', onerec,

& fn, rn, errf, eoff, eotf, tcsr
 END DO
 n = tskipf(tlu, 1, 0)
 n = tstate(tlu, fn, rn, errf, eoff, eotf, tcsr)
 WRITE(*,1) 'tskip: ', fn, rn, errf, eoff, eotf, tcsr
END DO
END

open: 0 0 F F F 0
rewind: 0 0 F F F 0
read: eins 0 1 F F F 0
read: zwei 0 2 F F F 0
tskip: 1 0 F F F 0
read: ichi 1 1 F F F 0
read: ni__ 1 2 F F F 0
tskip: 2 0 F F F 0
read: un__ 2 1 F F F 0
read: deux 2 2 F F F 0
tskip: 3 0 F F F 0

414 FORTRAN Reference Manual

7

EOF and EOT summary:

• If at either EOF or EOT, then:
• Any tread() will just return; it will not read the tape.
• A successful tskipf(tlu,1,0) resets the EOF status to false, and

returns; it does not advance the tape pointer.

• A successful twrite() resets the EOF and EOT status flags to false.

• A successful tclose() resets all those flags to false.

• tclose() truncates:

tclose() places an EOF marker immediately after the current location of
the unit pointer and then closes the unit. So if you use trewin() to rewind
a unit before you use tclose() to close it, its contents are thrown away.
This behavior of tclose() is inherited from the Berkeley code.

See also: ioctl (2), mtio (4s), perror (3f), read (2), st (4s), write (2).

7.56 ttynam , isatty : Get Name of a Terminal Port

ttynam : Get Name of a Terminal Port
The function ttynam returns a blank padded path name of the terminal device
associated with logical unit lunit .

Function

name = ttynam(lunit)

lunit integer Input Logical unit

Return
value

character* n Output name is nonblank: name=path name of device on lunit .

name is an empty string (all blanks): lunit is not
associated with a terminal device in directory /dev

n integer size of
name

Must be large enough for the longest path name

FORTRAN Library Routines 415

7

isatty : Is this Unit a Terminal?
Function

Example: Determine if lunit is a tty.

The displayed output is:

7.57 unlink : Remove a File
Function

The function unlink removes the file specified by path name patnam .

If this was the last link to the file, the contents of the file are lost.

terminal = isatty(lunit)

lunit integer Input Logical unit

Return value logical Output terminal =true: It is a terminal device

terminal =false: It is not a terminal device.

character*12 name, ttynam
integer lunit /5/
logical isatty, terminal
terminal = isatty(lunit)
name = ttynam(lunit)
write(*,*) 'terminal = ', terminal, ', name = "', name, '"'
end

 terminal = T, name = "/dev/ttyp1 "

n = unlink (patnam)

patnam character* n Input File name

Return value integer Output n=0: OK

n>0: Error

416 FORTRAN Reference Manual

7

Example: unlink() –Remove the tunlink.data file.

See also: unlink (2), link (3F), perror (3F).

Bug: Path names can be no longer than MAXPATHLEN as defined in
<sys/param.h> .

7.58 wait : Wait for a Process to Terminate
Function

wait suspends the caller until a signal is received or one of its child processes
terminates. If any child has terminated since the last wait, return is
immediate. If there are no children, return is immediate with an error code.

Example: (fragment) wait().

See also: wait (2), signal (3F), kill (3F), perror (3F).

call unlink('tunlink.data')
end

demo$ f77 -silent tunlink.f
demo$ ls tunl*
tunlink.f tunlink.data
demo$ a.out
demo$ ls tunl*
tunlink.f
demo$

n = wait(status)

status integer Output Termination status of the child process

Return value integer Output n>0: Process ID of the child process

n<0: n=-(system error code). See
wait (2).

integer n, status, wait
…
n = wait(status)
if (n .lt. 0) stop ’wait: error’
…
end

417

VMS Routines 8

This chapter is organized into the following sections.

These functions are nonstandard. ♦ The quad, REAL*16 , and COMPLEX*32 are
SPARC only.

8.1 VMS Intrinsic Functions

Double-Precision Complex Functions

VMS Intrinsic Functions page 417

VMS System Routines page 423

Table 8-1 Double-Precision Complex Function

Name Gen/Spec Function Arg Type Result Type

CDABS
CDEXP
CDLOG
CDSQRT

Specific
Specific
Specific
Specific

Absolute value
Exponential, ea

Natural log
Square root

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

REAL*8

COMPLEX*16

COMPLEX*16

COMPLEX*16

CDSIN
CDCOS

Specific
Specific

Sine
Cosine

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

DCMPLX
DCONJG
DIMAG
DREAL

Specific
Specific
Specific
Specific

Convert to double complex
Complex conjugate
Imaginary part of complex
Real part of complex

Any numeric
COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

REAL*8

REAL*8

418 FORTRAN Reference Manual

8

Degree-Based Trigonometric Functions

REAL*16 is SPARC only.

Table 8-2 Degree-based Trigonometric Functions

Name Gen/Spec Function Arg Type Result Type

SIND
SIND
DSIND
QSIND

Generic
Specific
Specific
Specific

Sine
Sine
Sine
Sine

-

REAL*4

REAL*8

REAL*8

-

REAL*4

REAL*8

REAL*16

COSD
COSD
DCOSD
QCOSD

Generic
Specific
Specific
Specific

Cosine
Cosine
Cosine
Cosine

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

TAND
TAND
DTAND
QTAND

Generic
Specific
Specific
Specific

Tangent
Tangent
Tangent
Tangent

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ASIND
ASIND
DASIND
QASIND

Generic
Specific
Specific
Specific

Arc sine
Arc sine
Arc sine
Arc sine

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ACOSD
ACOSD
DACOSD
QACOSD

Generic
Specific
Specific
Specific

Arc cosine
Arc cosine
Arc cosine
Arc cosine

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ATAND
ATAND
DATAND
QATAND

Generic
Specific
Specific
Specific

Arc tangent
Arc tangent
Arc tangent
Arc tangent

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

ATAN2D
ATAN2D
DATAN2D
QATAN2D

Generic
Specific
Specific
Specific

Arc tangent of a1/a2

Arc tangent of a1/a2

Arc tangent of a1/a2

Arc tangent of a1/a2

-

REAL*4

REAL*8

REAL*16

-

REAL*4

REAL*8

REAL*16

VMS Routines 419

8

Bit-Manipulation Functions

* ISHFT — If a2 is positive, then shift left; if negative, then shift right.

Table 8-3 Bit Manipulation Functions

Name Gen/Spec Function Arg Type Result Type

IBITS
IIBITS
JIBITS

Generic
Specific
Specific

From a1 , initial bit a2 , extract a3 bits
From a1 , initial bit a2 , extract a3 bits
From a1 , initial bit a2 , extract a3 bits

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

ISHFT
ISHFTC
IISHFTC
JISHFTC
IISHFT
JISHFT

Generic
Generic
Specific
Specific
Specific
Specific

Shift a1 logically by a2 bits *
In a1 , circular shift by a2 places, of right a3 bits
In a1 , circular shift by a2 places, of right a3 bits
In a1 , circular shift by a2 places, of right a3 bits
Shift a1 logically left by a2 bits
Shift a1 logically left by a2 bits

-

-

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

-

-

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IAND
IIAND
JIAND

Generic
Specific
Specific

Bitwise AND of a1 , a2

Bitwise AND of a1 , a2

Bitwise AND of a1 , a2

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

IOR
IIOR
JIOR

Generic
Specific
Specific

Bitwise OR of a1 , a2

Bitwise OR of a1 , a2

Bitwise OR of a1 , a2

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

IEOR
IIEOR
JIEOR

Generic
Specific
Specific

Bitwise exclusive OR of a1 , a2

Bitwise exclusive OR of a1 , a2

Bitwise exclusive OR of a1 , a2

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

NOT
INOT
JNOT

Generic
Specific
Specific

Bitwise complement
Bitwise complement
Bitwise complement

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

IBSET
IIBSET
JIBSET

Generic
Specific
Specific

In a1 , set bit a2 to 1
In a1 , set bit a2 to 1; return new a1

In a1 , set bit a2 to 1; return new a1

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

BTEST
BITEST
BJTEST

Generic
Specific
Specific

If bit a2 of a1 is 1, return .TRUE.

If bit a2 of a1 is 1, return .TRUE.

If bit a2 of a1 is 1, return .TRUE.

-

INTEGER*2

INTEGER*4

-

LOGICAL*2

INTEGER*4

IBCLR
IIBCLR
JIBCLR

Generic
Specific
Specific

In a1 , set bit a2 to 0; return new a1

In a1 , set bit a2 to 0; return new a1

In a1 , set bit a2 to 0; return new a1

-

INTEGER*2

INTEGER*4

-

INTEGER*2

INTEGER*4

420 FORTRAN Reference Manual

8

Multiple Integer Types

The possibility of multiple integer types is not addressed by the FORTRAN
Standard. f77 copes with their existence by treating a specific INTEGER→
INTEGER function name (IABS , and so forth) as a special sort of generic. The
argument type is used to select the appropriate runtime routine name, which is
not accessible to the programmer. VMS FORTRAN takes a similar approach
but makes the specific names available.

1. At least two arguments

2. Positive difference: a1-min(a1,a2)

Table 8-4 Integer Functions

Name Gen/Spec Function Arg Type Result Type

IIABS
JIABS

Specific
Specific

Absolute value
Absolute value

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IMAX0
JMAX0

Specific
Specific

Maximum 1

Maximum 1
INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IMIN0
JMIN0

Specific
Specific

Minimum 1

Minimum 1
INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IIDIM
JIDIM

Specific
Specific

Positive difference 2

Positive difference 2
INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IMOD
JMOD

Specific
Specific

Remainder of a1/a2

Remainder of a1/a2

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

IISIGN
JISIGN

Specific
Specific

Transfer sign, |a1|* sign(a2)

Transfer sign, |a1|* sign(a2)

INTEGER*2

INTEGER*4

INTEGER*2

INTEGER*4

VMS Routines 421

8

Functions Coerced to a Particular Type

Some VMS FORTRAN functions coerce to a particular INTEGER type.

REAL*16 is SPARC only.

Table 8-5 Translated Functions that VMS Coerces to a Particular Type

Name Gen/Spec Function Arg Type Result Type

IINT
JINT

Specific
Specific

Truncation toward zero
Truncation toward zero

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IIDINT
JIDINT

Specific
Specific

Truncation toward zero
Truncation toward zero

REAL*8

REAL*8

INTEGER*2

INTEGER*4

IQINT
IIQINT
JIQINT

Generic
Specific
Specific

Truncation toward zero
Truncation toward zero
Truncation toward zero

REAL*16

REAL*16

REAL*16

INTEGER

INTEGER*2

INTEGER*4

ININT
JNINT

Specific
Specific

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IIDNNT
JIDNNT

Specific
Specific

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

REAL*8

REAL*8

INTEGER*2

INTEGER*4

IQNINT
IIQNNT
JIQNNT

Generic
Specific
Specific

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

Nearest integer, INT(a+.5*sign(a))

REAL*16

REAL*16

REAL*16

INTEGER

INTEGER*2

INTEGER*4

IIFIX
JIFIX

Specific
Specific

Fix
Fix

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IMAX1
JMAX1

Specific
Specific

Maximum
Maximum

REAL*4

REAL*4

INTEGER*2

INTEGER*4

IMIN1
JMIN1

Specific
Specific

Minimum
Minimum

READ*4

READ*4

INTEGER*2

INTEGER*4

422 FORTRAN Reference Manual

8

Functions Translated to a Generic Name

In some cases, each VMS-specific name is translated into an f77 generic name.

Zero Extend

The following zero-extend functions are recognized by f77 . The first unused
high-order bit is set to zero and extended toward the higher-order end to the
width indicated in the table.

Table 8-6 Other Conversions by f77

Name Gen/Spec Function Arg Type Result Type

FLOATI
FLOATJ
DFLOAT
DFLOTI
DFLOTJ

Specific
Specific
Generic
Specific
Specific

Convert to REAL*4

Convert to REAL*4

Convert to REAL*8

Convert to REAL*8

Convert to REAL*8

INTEGER*2

INTEGER*4

INTEGER

INTEGER*2

INTEGER*4

REAL*4

REAL*4

REAL*8

REAL*8

REAL*8

AIMAX0
AJMAX0

Specific
Specific

Maximum
Maximum

INTEGER*2

INTEGER*4

REAL*4

REAL*4

AIMIN0
AJMIN0

Specific
Specific

Minimum
Minimum

INTEGER*2

INTEGER*4

REAL*4

REAL*4

Table 8-7 Zero Extend Functions

Name Gen/Spec Function Arg Type Result Type

ZEXT Generic Zero-extend - -

IZEXT Specific Zero-extend BYTE

LOGICAL*1

LOGICAL*2
INTEGER*2

INTEGER*2

JZEXT Specific Zero-extend BYTE

LOGICAL*1
LOGICAL*2

LOGICAL*4

INTEGER

INTEGER*2

INTEGER*4

INTEGER*4

VMS Routines 423

8

8.2 VMS System Routines
These routines provide compatibility with VMS FORTRAN system routines.

Summary

To use these system routines, you must do the following:

• Include the –lV77 option on the f77 command line.

• Be aware that with –lV77 , you get the VMS versions of DATE, IDATE and
TIME, instead of the standard versions.

Example: Compile using the libV77 library.

The VMS error condition subroutine ERRSNS is not provided on SPARCsystems
because it is totally specific to the VMS operating system. The terminate
program subroutine EXIT was already provided by the operating system.

See Chapter 7, “FORTRAN Library Routines,” where each of the above
routines is described in detail.

demo$ f77 myprog.f -lV77

Table 8-8 Sumary of VMS FORTRAN System Routines

Name Definition Calling Sequence Argument Type Returned
Type

date Date: dd-mmm-yy call date(c) CHARACTER*9 n/a

idate Date: d, m, y call idate(d, m, y) INTEGER n/a

mvbits Move bit field call mvbits(src, ini1, nbits, des, ini2) INTEGER n/a

ran Random number r = ran(s) INTEGER*4 REAL

secnds Elapsed time t = secnds(t0) REAL REAL

time Time: hh:mm:ss call time(t) CHARACTER*8 n/a

424 FORTRAN Reference Manual

8

425

VMS Language Extensions 9

This chapter is organized into the following sections.

These are all, of course, nonstandard. ♦

9.1 Background
This FORTRAN compiler includes the VMS extensions to make it as easy as
possible to port FORTRAN programs from VMS environments to Solaris
environments. The compiler provides almost complete compatibility with VMS
FORTRAN. These extensions are included in two systems.

• Compiler, command: f77
• Debugger, commands: debugger, dbx

Background page 425

VMS Language Features You Get Automatically page 426

VMS Language Features that Require -xl page 430

Unsupported VMS FORTRAN page 433

426 FORTRAN Reference Manual

9

9.2 VMS Language Features You Get Automatically
This list includes the ones you get automatically. This is only a summary.
Details are elsewhere in this manual.

• Namelist I/O
• Unlabeled DO…END DO
• Indefinite DO WHILE…END DO
• BYTE data type
• Logical operations on integers, and arithmetic operations on logicals
• Additional field and edit descriptors for FORMAT statements:

• Remaining characters (Q)
• Carriage Control ($)
• Octal (O)
• Hexadecimal (X)
• Hexadecimal (Z)

• Default field indicators for w, d, and e fields in FORMAT statements
• Reading into Hollerith edit descriptors
• APPEND option for OPEN
• Long names (32 characters)
• “_” and “$” in names
• Long source lines (132-character), if the -e option is on.
• Records, structures, unions, and maps
• Getting addresses by the %LOC function
• Passing arguments by the %VAL function
• End-of-line comments
• OPTIONS statement
• VMS Tab-format source lines are valid.
• Initialize in common

You can initialize variables in common blocks outside of BLOCK DATA
subprograms. You can initialize portions of common blocks, but you cannot
initialize portions of one common block in more than one subprogram.

• Radix-50

Radix-50 constants are implemented as f77 bit-string constants, that is, no
type is assumed.

• IMPLICIT NONE is treated as IMPLICIT UNDEFINED (A-Z)
• VIRTUAL is treated as DIMENSION.
• Initialize in declarations

VMS Language Extensions 427

9

Initialization of variables in declaration statements is allowed. Example.

• Noncharacter format specifiers

If a runtime format specifier is not of type CHARACTER, the compiler accepts
that too, even though the FORTRAN Standard requires the CHARACTER
type.

• Omitted arguments in subprogram calls

The compiler accepts omitted actual argument in a subroutine call, that is,
two consecutive commas compile to a null pointer. Reference to that dummy
argument gives a segmentation fault.

• REAL*16

(SPARC only) The compiler treats variables of type REAL*16 as quadruple
precision.

• Noncharacter variables

The FORTRAN Standard requires the “FILE= ” specifier for OPEN and
INQUIRE to be an expression of type CHARACTER. f77 accepts a numeric
variable or array element reference.

• Consecutive operators

f77 allows two consecutive arithmetic operators when the second operator
is a unary + or - . Example: Two consecutive operators.

The above statement is treated as follows:

CHARACTER*10 NAME /’Nell’/

X = A ** -B

X = A ** (-B)

428 FORTRAN Reference Manual

9

• Illegal real expressions

When the compiler finds a REAL expression where it expects an integer
expression, it makes an explicit type conversion to INTEGER (truncates).

Examples: Contexts for illegal real expressions that f77 converts to integer:
• Alternate RETURN
• Dimension declarators and array subscripts
• Substring selectors
• Computed GO TO
• Logical unit number, record number, and record length

• Typeless numeric constants

Binary, hexadecimal and octal constants are accepted in VMS form.
Example: Constants–Binary (B), Octal (O), Hexadecimal (X or Z).

• Function length on function name, rather than on the word FUNCTION.

The compiler accepts nonstandard length specifiers in function declarations.
Example: Size on function name, rather than on the word FUNCTION.

• TYPE and ACCEPT statements are allowed.

• Alternate return

The nonstandard “&” syntax for alternate-return actual arguments is treated
as the standard FORTRAN “* ” syntax. Example

• The ENCODE and DECODE statements are accepted.

DATA N1 /B’0011111’/, N2/O’37’/, N3/X’1f’/, N4/Z’1f’/

INTEGER FUNCTION FCN*2 (A, B, C)

CALL SUBX (I, *100, Z) ! Standard (OK)
CALL SUBX (I, &100, Z) ! Nonstandard (OK)

VMS Language Extensions 429

9

• Direct I/O with ’N record specifier

The nonstandard record specifier ’N for direct-access I/O statements is OK.

Example: A nonstandard form for record specifier.

The above is treated as:

The logical unit number is K and the number of the record is N.

• NAME, RECORDSIZE, and TYPE options—OPEN has the following alternative
options.
• NAME is treated as FILE .
• RECORDSIZE is treated as RECL.
• TYPE is treated as STATUS.

• DISPOSE=p

The DISPOSE=p clause in the CLOSE statement is treated as STATUS=p.

• Special Intrinsics

The compiler processes certain special intrinsic functions.
• %VAL is ok as is.
• %LOC is treated as LOC.
• %REF(expr) is treated as expr (with a warning if expr is CHARACTER)
• %DESCR is reported as an untranslatable feature.

• Variable Expressions in FORMAT Statements

In general, inside a FORMAT statement, any integer constant can be replaced
by an arbitrary expression; the single exception is the “n” in an “nH…” edit
descriptor. The expression itself must be enclosed in angle brackets.
Example: The “6” in the following statement is a constant.

The “6” can be replaced by the variable “N”, as in:

READ (K ’ N) LIST

READ (UNIT=K, REC=N) LIST

1 FORMAT(3F6.1)

1 FORMAT(3F<N>.1)

430 FORTRAN Reference Manual

9

9.3 VMS Language Features that Require -xl

Although you get most VMS features automatically, without any special
options, for a few VMS features you must use the -xl option on the f77
command line.

In general, you need this -xl option if a source statement can be interpreted
for either a VMS way of behavior or an f77 way of behavior, and you want the
VMS way of behavior. The -xl option forces the compiler to interpret it as
VMS FORTRAN.

Summary of Features that Require -xl[d]

• 1. Unformatted record size in words rather than bytes (-xl)
• 2. VMS style logical file names (-xl)
• 3. Quote (") character introducing octal constants (-xl)
• 4. Backslash (\) as ordinary character within character constants (-xl)
• 5. Nonstandard form of the PARAMETER statement (-xl)
• 6. Debugging lines as comment lines or FORTRAN statements (-xld)
• 7. Align structures as in VMS FORTRAN (-xl)

Details of Features that Require -xl[d]

1. Unformatted record size in words rather than bytes

In f77 , direct-access, unformatted files are always opened with the logical
record size in bytes.

If the –xl[d] option is not set:

then the argument n in the OPEN option “RECL=n” is assumed to be the
number of bytes to use for the record size.

If the –xl[d] option is set:

then the argument n in the OPEN option “RECL=n” is assumed to be the
number of words, so the compiler uses n*4 as the number of bytes for the
record size.

If the –xl[d] option is set, and if the compiler cannot determine if the file
is formatted or unformatted, then it issues a warning message that the
record size may need to be adjusted. This could happen if the information is
passed in variable character strings.

VMS Language Extensions 431

9

The record size returned by an INQUIRE statement is not adjusted by the
compiler; that is, INQUIRE always returns the number of bytes.

Note that these record sizes apply to direct-access, unformatted files only.

2. VMS style logical file names

If the –xl[d] compiler option is set, then the compiler will interpret VMS
logical file names on the INCLUDE statement if it finds the environment
variable LOGICALNAMEMAPPING to define the mapping between the logical
names and the UNIX path name.

You set the environment variable to a string of the form:

Rules: VMS style logical file names
• Each lname is a logical name and each path1, path2, and so forth, is the path

name of a directory (without a trailing ‘/ ’).
• It ignores all blanks when parsing this string.
• It strips any trailing “/[no]list ” from the file name in the INCLUDE

statement.
• Logical names in a file name are delimited by the first “: ” in the VMS file

name.
• It converts file names from “lname1:file” to “path1/file” form.
• For logical names, uppercase/lowercase is significant. If a logical name is

encountered on the INCLUDE statement which is not specified in the
LOGICALNAMEMAPPING, the file name is used unchanged.

3. Quote (") character introducing octal constants

If the –xl[d] compiler option is on, a VMS FORTRAN octal integer constant
is treated as its decimal form.

Example: VMS octal integer constant.

The above statement is treated as:

If the –xl[d] compiler option is not on, then the "703 is an error.

"lname1=path1; lname2=path2; … "

JCOUNT = ICOUNT + "703

JCOUNT = ICOUNT + 451

432 FORTRAN Reference Manual

9

With the –xl[d] compiler option on, the VMS FORTRAN notation "703
signals f77 to convert from the integer octal constant to its integer decimal
equivalent, 451 in this case. Note that in VMS FORTRAN the "703 cannot
be the start of a character constant, because VMS FORTRAN character
constants are delimited by apostrophes, not quotes.

4. Backslash (\) as ordinary character within character constants

If the –xl[d] option is on, a backslash in a character string is treated as an
ordinary character; otherwise, it is treated as an escape character.

5. Nonstandard form of the PARAMETER statement

The alternate PARAMETER statement syntax is allowed, if the –xl [d] option
is on. Example: VMS alternate form of PARAMETER statement omits the
parentheses.

• Debugging lines as comment lines or FORTRAN statements (-xld)

The compiler interprets debugging lines as comment lines or FORTRAN
statements, depending on whether the –xld option is set. If set, they are
compiled; otherwise they are comments.

Example: Debugging lines.

With -xld , this prints I and X. Without -xld , it does not print them.

6. Align structures as in VMS FORTRAN.

Use this if your program has some detailed knowledge of how VMS
structures are implemented. If you use both -oldstruct and -xl , then
you get -oldstruct . If you need to share structures with C, you should
use the default: no -xl and no -oldstruct.

PARAMETER FLAG1 = .TRUE.

REAL A(5) / 5.0, 6.0, 7.0, 8.0, 9.0 /
DO I = 1, 5

X = A(I)**2
D PRINT *, I, X

END DO
PRINT *, ’done’
END

VMS Language Extensions 433

9

9.4 Unsupported VMS FORTRAN
Most VMS FORTRAN extensions are incorporated into the f77 compiler. This
section lists the few VMS statements that are not supported. The compiler
writes messages to standard error for any unsupported statements in the
source file.

The following VMS FORTRAN features are not supported in f77 .

1. DEFINE FILE statement

2. DELETE statement

3. UNLOCK statement

4. FIND statement

5. REWRITE statement

6. KEYID and key specifiers in READ statements

7. Nonstandard INQUIRE specifiers
• CARRIAGECONTROL
• DEFAULTFILE
• KEYED
• ORGANIZATION
• RECORDTYPE

8. Nonstandard OPEN specifiers
• ASSOCIATEVARIABLE
• BLOCKSIZE
• BUFFERCOUNT
• CARRIAGECONTROL
• DEFAULTFILE
• DISP[OSE]
• EXTENDSIZE
• INITIALSIZE
• KEY
• MAXREC
• NOSPANBLOCKS
• ORGANIZATION
• READONLY

434 FORTRAN Reference Manual

9

• RECORDTYPE
• SHARED
• USEROPEN

9. The intrinsic function %DESCR.

10. The following parameters on the OPTIONS statement:
• [NO]G_FLOATING
• [NO]F77
• CHECK=[NO]OVERFLOW
• CHECK=[NO]UNDERFLOW

11. Some of the INCLUDE statement

Some aspects of the INCLUDE statement are converted. The INCLUDE
statement is operating system–dependent, so it cannot be completely
converted automatically. The VMS version allows a module-name and a
LIST control directive that are indistinguishable from a continuation of a
UNIX file name. Also, VMS ignores alphabetic case, so if the programmer is
inconsistent about capitalization, distinctions are made where none are
intended.

12. Getting a long integer — expecting a short

In VMS FORTRAN you can pass a long integer argument to a subroutine
that expects a short integer. This will work if the long integer fits in 16 bits,
because the VAX addresses an integer by its low-order byte. This does not
work on SPARC computers.

13. Those VMS system calls that are directly tied to that operating system.

14. Initializing a common block in more than one subprogram.

15. Alphabetizing common blocks so you can rely/depend on the order in
which blocks are loaded. You can specify the older with the -M mapfile
option to ld .

16. If you use the defaults for both of the following:
• The OPEN option BLANK=

• The BN/BZ/B format edit specifiers

then formatted numeric input ignores imbedded and trailing blanks. The
corresponding VMS defaults treat them as zeros.

435

ASCII Character Set A

Table A-1 ASCII Character Set

Dec Oct Hex Name Dec Oct Hex Name Dec Oct Hex Name Dec Oct Hex Name

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

000

001

002

003

004

005

006

007

010

011

012

013

014

015

016

017

020

021

022

023

024

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

040

041

042

043

044

045

046

047

050

051

052

053

054

055

056

057

060

061

062

063

064

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

SP

!

"

#

$

%

&

’

(

)

*

+

,

–

.

/

0

1

2

3

4

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

‘

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

436 FORTRAN Reference Manual

A

21

22

23

24

25

26

27

28

29

30

31

025

026

027

030

031

032

033

034

035

036

037

15

16

17

18

19

1A

1B

1C

1D

1E

1F

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

53

54

55

56

57

58

59

60

61

62

63

065

066

067

070

071

072

073

074

075

076

077

35

36

37

38

39

3A

3B

3C

3D

3E

3F

5

6

7

8

9

:

;

<

=

>

?

85

86

87

88

89

90

91

92

93

94

95

125

126

127

130

131

132

133

134

135

136

137

55

56

57

58

59

5A

5B

5C

5D

5E

5F

U

V

W

X

Y

Z

[

\

]

^

_

117

118

119

120

121

122

123

124

125

126

127

165

166

167

170

171

172

173

174

175

176

177

75

76

77

78

79

7A

7B

7C

7D

7E

7F

u

v

w

x

y

z

{

|

}

~

DEL

Table A-1 ASCII Character Set

Dec Oct Hex Name Dec Oct Hex Name Dec Oct Hex Name Dec Oct Hex Name

ASCII Character Set 437

A

Table A-2 Control Character Meanings

Dec Oct Hex Name Keys Meaning

^=Control Key
s^=Shift and Control Keys

0

1

2

3

000

001

002

003

00

01

02

03

NUL

SOH

STX

ETX

s^P

^A

^B

^C

Null or time fill character
Start of Heading
Start of Text
End of Text (EOM)

4

5

6

7

004

005

006

007

04

05

06

07

EOT

ENQ

ACK

BEL

^D

^E

^F

^G

End of Transmission
Enquiry (WRU)
Acknowledge (RU)
Bell

8

9

10

11

010

011

012

013

08

09

0A

0B

BS

HT

LF

VT

^H

^I

^J

^K

Backspace
Horizontal Tab
Line Feed (Newline)
Vertical Tab

12

13

14

15

014

015

016

017

0C

0D

0E

0F

FF

CR

SO

SI

^L

^M

^N

^O

Form Feed
Carriage Return
Shift Out
Shift In

16

17

18

19

020

021

022

023

10

11

12

13

DLE

DC1

DC2

DC3

^P

^Q

^R

^S

Data Link Escape
Device Control 1 (X-ON)
Device Control 2 (TAPE)
Device Control 3 (X-OFF)

20

21

22

23

024

025

026

027

14

15

16

17

DC4

NAK

SYN

ETB

^T

^U

^V

^W

Device Control 4 (TAPE)
Negative Acknowledge
Synchronous Idle
End of Transmission Blocks

24

25

26

27

030

031

032

033

18

19

1A

1B

CAN

EM

SS

ESC

^X

^Y

^Z

s^K

Cancel
End Of Medium
Special Sequence
Escape (^ [)

28

29

30

31

034

035

036

037

1C

1D

1E

1F

FS

GS

RS

US

s^L

s^M

s^N

s^O

File Separator (^ \)

Group Separator (^])

Record Separator (^ ‘)

Unit Separator (^ /)

127 177 7F DEL s^0 Delete or Rubout (^ _)

438 FORTRAN Reference Manual

A

439

Sample Statements B

This appendix shows selected samples of all f77 statement types, all in the
following table. The purpose of the table is to provide a quick reference for
syntax details of the more common variations of each statement type.

In this table, the following conventions are used:
C is a character variable R is an real variable
CA is a character array N is a numeric variable
I is an integer variable L is a logical variable
U is an external unit S is a switch variable

♦ indicates nonstandard feature

Table B-1 FORTRAN Statement Samples

Name Examples Comments

Accept ♦ ACCEPT *, A, I Compare Read.

Assign ASSIGN 9 TO I

Assignment C = ’abc’

C = "abc"

C = S // ’abc’

C = S(I:M)

Character
♦

L = L1 .OR. L2

L = I .LE. 80

Logical

N = N+1

X = ’7FF00000’x

Arithmetic
Hex ♦

CURR = NEXT

NEXT.ID = 82

Compare Record.

440 FORTRAN Reference Manual

B

Automatic ♦ AUTOMATIC A, B, C

AUTOMATIC REAL P, D, Q

IMPLICIT AUTOMATIC REAL (X-Z)

Backspace BACKSPACE U

BACKSPACE(UNIT=U, IOSTAT=I, ERR=9)

Block Data BLOCK DATA

BLOCK DATA COEFFS

Byte ♦ BYTE A, B, C

BYTE A, B, C(10)

BYTE A /’x’/, B /255/, C(10) Initialize A and B

Call CALL P(A, B)

CALL P(A, B, *9)

CALL P(A, B, &9)

CALL P

Alternate return
Alternate return ♦

Character CHARACTER C*80, D*1(4)

CHARACTER*18 A, B, C

CHARACTER A, B*3 /’xyz’/, C /’z’/ Initialize B and C ♦

Close CLOSE (UNIT=I)

CLOSE(UNIT=U, ERR=90, IOSTAT=I)

Common COMMON / DELTAS / H, P, T

COMMON X, Y, Z

COMMON P, D, Q(10,100)

Complex COMPLEX U, V, U(3,6)

COMPLEX U*16

COMPLEX U*32

COMPLEX U / (1.0,1.0) /, V /(1.0,10.0) /

Double complex ♦

Quad complex ♦ (SPARC)
Initialize U and V ♦

Continue 100 CONTINUE

Data DATA A, C / 4.01, ’z’ /

DATA (V(I),I=1,3) /.7, .8, .9/

DATA ARRAY(4,4) / 1.0 /

DATA B,O,X,Y /B’0011111’, O’37’, X’1f’, Z’1f’/

♦

Decode ♦ DECODE (4, 1, S) V

Dimension DIMENSION ARRAY(4, 4)

DIMENSION V(1000), W(3)

Table B-1 FORTRAN Statement Samples

Name Examples Comments

Sample Statements 441

B

Do DO 100 I = INIT, LAST, INCR

…

100 CONTINUE

DO I = INIT, LAST

…

END DO

Unlabeled do ♦

DO WHILE (DIFF .LE. DELTA)

…

END DO

Do While ♦

DO 100 WHILE (DIFF .LE. DELTA)

…

100 CONTINUE

♦

Double
Complex ♦

DOUBLE COMPLEX U, V

DOUBLE COMPLEX U, V

COMPLEX U / (1.0,1.0D0) /, V / (1.0,1.0D0) /

Complex*16 ♦

Complex ♦

Initialize U and V

Double
Precision

DOUBLE PRECISION A, D, Y(2)

DOUBLE PRECISION A, D / 1.2D3 /, Y(2)

Real*8 ♦

Initialize D ♦

Else ELSE Compare If (Block).

Else If ELSE IF

Encode ♦ ENCODE(4, 1, T) A, B, C

End END

End Do ♦ END DO Compare Do.

Endfile ENDFILE (UNIT=I)

ENDFILE I

ENDFILE(UNIT=U, IOSTAT=I, ERR=9)

End If END IF

End Map ♦ END MAP Compare Map.

End Structure ♦ END STRUCTURE Compare Structure.

End Union ♦ END UNION Compare Union.

Entry ENTRY SCHLEP(X, Y)

ENTRY SCHLEP(A1, A2, *4)

ENTRY SCHLEP

Table B-1 FORTRAN Statement Samples

Name Examples Comments

442 FORTRAN Reference Manual

B

Equivalence EQUIVALENCE (V(1), A(1,1))

EQUIVALENCE (V, A)

EQUIVALENCE (X,V(10)), (P,D,Q)

External EXTERNAL RNGKTA, FIT

Format 10 FORMAT(// 2X, 2I3, 3F6.1, 4E12.2, 2A6,3L2)

10 FORMAT(// 2D6.1, 3G12.2)

10 FORMAT(2I3.3, 3G6.1E3, 4E12.2E3)

X I F E A L

D G

w

10 FORMAT(’a quoted string’, " another", I2)

10 FORMAT(18Ha hollerith string, I2)

10 FORMAT(1X, T10, A1, T20, A1)

Strings ♦

Hollerith
Tabs

10 FORMAT(5X, TR10, A1, TR10, A1, TL5, A1)

10 FORMAT(" Init=", I2, :, 3X, "Last=", I2)

10 FORMAT(1X, "Enter path name ", $)

Tab right, left
:

$

10 FORMAT(F4.2, Q, 80 A1)

10 FORMAT(’Octal ’, O6, ’, Hex ’ Z6)

10 FORMAT(3F<N>.2)

Q♦

Octal, hex ♦

Variable expression ♦

Function FUNCTION Z(A, B)

FUNCTION W(P,D, *9)

CHARACTER FUNCTION R*4(P,D,*9)

INTEGER*2 FUNCTION M(I, J) Short integer ♦

Go To GO TO 99 Unconditional

GO TO I, (10, 50, 99)

GO TO I

Assigned

GO TO (10, 50, 99), I Computed

If IF (I -K) 10, 50, 90 Arithmetic if

IF (L) RETURN Logical if

IF (L) THEN

 N=N+1

 CALL CALC

ELSE

 K=K+1

 CALL DISP

ENDIF

Block if

Table B-1 FORTRAN Statement Samples

Name Examples Comments

Sample Statements 443

B

IF (C .EQ. ’a’) THEN

 NA=NA+1

 CALL APPEND

ELSE IF (C .EQ. ’b’) THEN

 NB=NB+1

 CALL BEFORE

ELSE IF (C .EQ. ’c’) THEN

 NC=NC+1

 CALL CENTER

END IF

Block if
with else if

Implicit IMPLICIT COMPLEX (U-W,Z)

IMPLICIT UNDEFINED (A-Z)

Include ♦ INCLUDE ’project02/header’

Inquire INQUIRE(UNIT=3, OPENED=OK)

INQUIRE(FILE=’mydata’, EXIST=OK)

INQUIRE(UNIT=3, OPENED=OK, IOSTAT=ERRNO)

Integer INTEGER C, D(4)

INTEGER C*2

INTEGER*4 A, B, C

Short integer ♦

INTEGER A/ 100 /, B, C / 9 / Initialize A and C ♦

Intrinsic INTRINSIC SQRT, EXP

Logical LOGICAL C

LOGICAL B*1, C*1

LOGICAL*1 B, C

LOGICAL*4 A, B, C

♦

♦

♦

LOGICAL B / .FALSE. /, C Initialize B ♦

Map ♦ MAP

 CHARACTER *18 MAJOR

END MAP

MAP

 INTEGER*2 CREDITS

 CHARACTER*8 GRAD_DATE

END MAP

Compare Structure and
Union.

Namelist ♦ NAMELIST /CASE/ S, N, D

Open OPEN(UNIT=3, FILE="data.test")

OPEN(UNIT=3, IOSTAT=ERRNO)

Table B-1 FORTRAN Statement Samples

Name Examples Comments

444 FORTRAN Reference Manual

B

Options ♦ OPTIONS /CHECK /EXTEND_SOURCE

Parameter PARAMETER (A="xyz"), (PI=3.14)

PARAMETER (A="z", PI=3.14)

PARAMETER X=11, Y=X/3 ♦

Pause PAUSE

Pointer ♦ POINTER (P, V), (I, X)

Pragma ♦ EXTERNAL RNGKTA, FIT !$PRAGMA C(RNGKTA, FIT) C() directive

Program PROGRAM FIDDLE

Print PRINT *, A, I List-directed

PRINT 10, A, I Formatted

PRINT 10, M Array M

PRINT 10, (M(I),I=J,K) Implied-DO

PRINT 10, C(I:K) Substring

PRINT ’(A6,I3)’, A, I

PRINT FMT=’(A6,I3)’, A, I

Character constant format

PRINT S, I

PRINT FMT=S, I

Switch variable has format
number

PRINT G Namelist ♦

Read READ *, A, I List-directed

READ 1, A, I Formatted

READ 10, M Array M

READ 10, (M(I),I=J,K) Implied-DO

READ 10, C(I:K) Substring

READ ’(A6,I3)’, A, I Character constant format

READ(1, 2) X, Y

READ(UNIT=1, FMT=2) X,Y

READ(1, 2, ERR=8,END=9) X,Y

READ(UNIT=1, FMT=2, ERR=8,END=9) X,Y

Formatted read from a file

READ(*, 2) X, Y Formatted read from
standard input

READ(*, 10) M Array M

READ(*, 10) (M(I),I=J,K) Implied-DO

Table B-1 FORTRAN Statement Samples

Name Examples Comments

Sample Statements 445

B

READ(*, 10) C(I:K) Substring

READ(1, *) X, Y

READ(*, *) X, Y

List-directed from file
— from standard input

READ(1, ’(A6,I3)’) X, Y

READ(1, FMT=’(A6,I3)’) X, Y

Character constant format

READ(1, C) X, Y

READ(1, FMT=C) X, Y

READ(1, S) X, Y

READ(1, FMT=S) X, Y

Switch variable has format
number

READ(*, G)

READ(1, G)

Namelist read ♦

Namelist read from a file ♦

READ(1, END=8, ERR=9) X, Y Unformatted direct access

READ(1, REC=3) V

READ(1 ’ 3) V

Unformatted direct access

READ(1, 2, REC=3) V Formatted direct access

READ(CA, 1, END=8, ERR=9) X, Y Internal formatted sequential

READ(CA, *, END=8, ERR=9) X, Y Internal list-directed
sequential access ♦

READ(CA, REC=4, END=8, ERR=9) X, Y Internal direct access ♦

Real REAL R, M(4)

REAL R*4

REAL*8 A, B, C

REAL*16 A, B, C

♦

Double Precision ♦

Quad Precision ♦ (SPARC)

REAL A / 3.14 /, B, C / 100.0 / Initialize A and C ♦

Record ♦ RECORD /PROD/ CURR,PRIOR,NEXT

Return RETURN

RETURN 2

Standard return
Alternate return

Rewind REWIND 1

REWIND I

REWIND (UNIT=U, IOSTAT=I, ERR=9)

Save SAVE A, /B/, C

SAVE

Table B-1 FORTRAN Statement Samples

Name Examples Comments

446 FORTRAN Reference Manual

B

Static ♦ STATIC A, B, C

STATIC REAL P, D, Q

IMPLICIT STATIC REAL (X-Z)

Stop STOP

STOP "all gone"

Structure STRUCTURE /PROD/

 INTEGER*4 ID / 99 /

 CHARACTER*18 NAME

 CHARACTER*8 MODEL / ’XL’ /

 REAL*4 COST

 REAL*4 PRICE

END STRUCTURE

Subroutine SUBROUTINE SHR(A, B, *9)

SUBROUTINE SHR(A, B, &9)

SUBROUTINE SHR(A, B)

SUBROUTINE SHR

Alternate Return
♦

Type ♦ TYPE *, A, I Compare PRINT

Union ♦ UNION

 MAP

 CHARACTER*18 MAJOR

 END MAP

 MAP

 INTEGER*2 CREDITS

 CHARACTER*8 GRAD_DATE

 END MAP

END UNION

Compare Structure

Virtual ♦ VIRTUAL M(10,10), Y(100)

Volatile ♦ VOLATILE V, Z, MAT, /INI/

Write WRITE(1, 2) X, Y }

WRITE(UNIT=1, FMT=2) X, Y

WRITE(1, 2, ERR=8, END=9) X, Y

WRITE(UNIT=1, FMT=2, ERR=8, END=9) X, Y

Formatted write to a file

WRITE(*, 2) X, Y

WRITE(*, 10) M

Formatted write to stdout
Array M

WRITE(*, 10) (M(I),I=J,K) Implied-DO

WRITE(*, 10) C(I:K) Substring

Table B-1 FORTRAN Statement Samples

Name Examples Comments

Sample Statements 447

B

WRITE(1, *) X, Y

WRITE(*, *) X, Y

List-directed write to a file
List-directed write to
standard output

WRITE(1, ’(A6,I3)’) X, Y

WRITE(1, FMT=’(A6,I3)’) X, Y

Character constant format

WRITE(1, C) X, Y

WRITE(1, FMT=C) X, Y

Character variable format

WRITE(1, S) X, Y

WRITE(1, FMT=S) X, Y

Switch variable has format
number

WRITE(*, CASE)

WRITE(1, CASE)

Namelist write ♦

Namelist write to a file ♦

WRITE(1, END=8, ERR=9) X, Y Unformatted sequential
access

WRITE(1, REC=3) V

WRITE(1 ’ 3) V

Unformatted direct access

WRITE(1, 2, REC=3) V Formatted direct access

WRITE(CA, 1, END=8, ERR=9) X, Y Internal formatted sequential

WRITE(CA, *, END=8, ERR=9) X, Y Internal list-directed
sequential access ♦

WRITE(CA, REC=4, END=8, ERR=9) X, Y Internal direct access ♦

Table B-1 FORTRAN Statement Samples

Name Examples Comments

448 FORTRAN Reference Manual

B

449

Data Representations C

This appendix is organized into the following sections.

This appendix is a brief introduction to data representation. For some detail
and explanation, read the FORTRAN User's Guide; for even more, read the
Numerical Computation Guide. Whatever the size of the data element in
question, the most significant bit of the data element is always stored in the
lowest-numbered byte of the byte sequence required to represent that object.

C.1 Real, Double, and Quadruple Precision
Real, double precision, and quadruple precision number data elements are
represented according to the IEEE standard by the following form, where f is
the bits in the fraction. The quad is SPARC only.

 (-1)sign * 2exponent-bias *1.f

Real, Double, and Quadruple Precision page 449

Extreme Exponents page 450

IEEE Representation of Selected Numbers page 451

Arithmetic Operations on Extreme Values page 451

Bits and Bytes by Architecture page 454

450 FORTRAN Reference Manual

C

C.2 Extreme Exponents

Zero (signed)

Zero (signed) is represented by an exponent of zero and a fraction of zero.

Subnormal Number

The form of a subnormal number is

 (-1) sign * 2 1-bias *0.f

where f is the bits in the significand.

Signed Infinity

Signed infinity (that is, affine infinity) is represented by the largest value that
the exponent can assume (all ones), and a zero fraction.

Not a Number (NaN)

Not a Number (NaN) is represented by the largest value that the exponent can
assume (all ones), and a nonzero fraction.

Table C-1 Floating-point Representation

 Single Double Quadruple

Sign Bit 31 Bit 63 Bit 127

Exponent Bits 30–23
Bias 127

Bits 62–52
Bias 1023

Bits 126-112
Bias 16583

Fraction Bits 22–0 Bits 51–0 Bits 111-0

Range approx. 3.402823e+38
1.175494e-38

 1.797693e+308
 2.225074e-308

3.362E-4932
1.20E+4932

Data Representations 451

C

Normalized REAL and DOUBLE PRECISION numbers have an implicit leading
bit that provides one more bit of precision than is stored in memory. For
example, IEEE double precision provides 53 bits of precision: 52 bits stored in
the fraction, plus the implicit leading 1.

C.3 IEEE Representation of Selected Numbers
The values here are as shown by dbx , in hexadecimal.

C.4 Arithmetic Operations on Extreme Values
This section describes the results of basic arithmetic operations with extreme
and ordinary values. We assume all inputs are positive, and no traps, overflow,
underflow, or other exceptions happen.

Table C-2 IEEE Representation of Selected Numbers

Value Single-Precision Double-Precision

+0 00000000 0000000000000000

-0 80000000 8000000000000000

+1.0 3F800000 3FF0000000000000

-1.0 BF800000 BFF0000000000000

+2.0 40000000 4000000000000000

+3.0 40400000 4008000000000000

+Infinity 7F800000 7FF0000000000000

-Infinity FF800000 FFF0000000000000

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

Table C-3 Extreme Value Abbreviations

Abbreviation Meaning

Sub Subnormal number

Num Normalized number

Inf Infinity (positive or negative)

NaN Not a Number

Uno Unordered

452 FORTRAN Reference Manual

C

Note: Above, for Inf ± Inf: Inf + Inf = Inf, and Inf - Inf = NaN.

Above, NS means either Num or Sub result possible.

Table C-4 Extreme Values: Addition and Subtraction

Left Operand Right Operand

 0 Sub Num Inf NaN

0 0 Sub Num Inf NaN

Sub Sub Sub Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Read Note NaN

NaN NaN NaN NaN NaN NaN

Table C-5 Extreme Values: Multiplication

Left Operand Right Operand

0 Sub Num Inf NaN

0 0 0 0 NaN NaN

Sub 0 0 NS Inf NaN

Num 0 NS Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Data Representations 453

C

• If either X or Y is NaN, then “X.NE.Y ” is .TRUE. and
the others (.EQ. , .GT. , .GE. , .LT. , .LE.) are .FALSE. .

• +0 compares equal to -0.

• If any argument is NaN, then the results of MAX or MIN are undefined.

Table C-6 Extreme Values: Division

Left Operand Right Operand

0 Sub Num Inf NaN

0 NaN 0 0 0 NaN

Sub Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

Table C-7 Extreme Values: Comparison

Left Operand Right Operand

0 Sub Num Inf NaN

0 = < < < Uno

Sub > < < Uno

Num > > < Uno

Inf > > > = Uno

NaN Uno Uno Uno Uno Uno

454 FORTRAN Reference Manual

C

C.5 Bits and Bytes by Architecture
The order in which the data—the bits and bytes—are arranged differs between
VAX computers on the one hand and SPARC computers on the other.

The bytes in a 32-bit integer, when read from address n, end up in the register
as shown below.

Table C-8 Bits and Bytes for Intel1 and VAX Computers

The bits are numbered the same on these systems, even though the bytes are
numbered differently.

Possible Problem Area
• Passing binary data over the network. Use External Data Representation

(XDR) format, or another standard network format to avoid problems.

• Porting raster graphics images between architectures. If your program uses
graphics images in binary form, and they have byte ordering that is not the
same as for images produced by SPARCsystem routines, you need to
convert them.

• If you convert character-to-integer or integer-to-character between
architectures, you should use XDR.

1. Intel is a trademark of Intel Corporation.

Byte n+3 Byte n+2 Byte n+1 Byte n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Most Significant Least significant

Table C-9 Bits and Bytes for 680x0 and SPARC Computers

Byte n Byte n+1 Byte n+2 Byte n+3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Most Significant Least significant

Data Representations 455

C

• If you read binary data created on an architecture with a different byte
order, then you need to filter it to correct the byte order.

Again, for more detail and explanation, read the Numerical Computation Guide
or the FORTRAN User's Guide. See also the man page xdr (3N).

456 FORTRAN Reference Manual

C

457

Index

Symbols
! , 3, 5

comments, 11
" , 3, 5

in character constants, 28
$, 3, 5, 6

edit descriptor, 259
NAMELIST delimiter, 299

%, 3, 5
%DESCR, 429
%FILL , 52, 223
%LOC, 429
%REF, 429
%VAL, 429
&, 3, 5, 96, 97, 428

NAMELIST delimiter, 299
', 429
(e**x)-1, 368, 373
* , 3, 5, 99, 101, 112, 428

alternate return, 96, 97
comments, 11

+, 3, 5
format control, 260

, , 3, 5
. , 3, 5

field and record reference, 54

/ , 3, 5, 285
in list-directed input, 291

// concatenate string, 73
: , 3, 5

array bounds, 43
character constants, 30
edit descriptor, 285
substring operator, 48

<>, 5
<>, variable format expression, 146, 148
=, 3, 5

statement, 85
?, 3, 5

NAMELIST prompt for names, 303
\ , 3, 5
_, 3, 6, 12

A
A format specifier, 262
abort , 329
ACCEPT, 83 , 428

458 FORTRAN Reference Manual

access, 245
append option in open, 181
direct in open, 182
modes, 245
options in OPEN, 181
SEQUENTIAL in OPEN, 182
time, 397

access , 329
ACHAR, 308
action for signal, change, signal , 395

address
assignment, pointers, 60, 192
loc , 377
malloc , 60, 193

adjustable array bounds, 43
alarm , 330
alignment

data types, 25
structures, as in VMS, 430, 432
summary of, 25
variables, 18

allocation of storage, 18
allowed I/O combinations, 245
alpha editing, 262
alternate

octal notation, 32
return, 212, 428

ampersand
alternate return, 96, 97, 428

and , 332
anonymous field, 52, 223
ANSI, 2
AnswerBook, documents in, xxiv
apostrophe

character constants, 28, 30
direct-access record, 201, 251, 429
format specifier, 257

append on open
ioinit , 362
open , 181

arc cosh, 368, 373
arc cosine, 373
arc sine, 373

arc sinh, 373
arc tangent, 373
arc tanh, 368
arguments

command line, getarg , 348
dummy, not OK in NAMELIST

list, 295
fields, 53, 210
omitted, 427
records, 53, 210

arithmetic
assignment, 72
assignment statement, 88
expression, 66, 67
IF , 155
intrinsic functions, 305, 306
operations on extreme values, 451
operator, 66
right shift, rshift , 332

array
adjustable bounds, 43
assumed size, 44
bounds, 43
character, 43, 100
complex numbers, 107
declarators, 42
definition, 41
dimensions, 42
double-complex, 125
double-precision, 126
elements

data types, 16
not OK in NAMELIST list, 295

input by NAMELIST, 302
integer, 174
names with no subscripts, 45
ordering, 47
real, 209
subscripts, 45

ASCII character set, 435
ask for namelist names, 303
ASSIGN, 84

Index 459

assignment
arithmetic, 72, 88
character, 75
logical, 78
statement, 85

assumed size array, 44
asterisk

alternate return, 96, 428
hex and octal output, 269

audience, xxiii
AUTOMATIC, 90

automatic structure not allowed, 90, 91

B
B

constant indicator, 37
format specifier, 258

backslash, 3, 5, 430, 432
in character constants, 28

BACKSPACE, 92
backspace character, 30
basic terms, 3
bessel, 369, 373, 375
bic , 332
binary

constants, 37
initialization, 37
operator, 67

bis , 332
bit

functions, 332
manipulation functions, 314, 323, 418
move bits, mvbits , 382

bit , 332
bit and byte order, 454
bitwise

and, 332
complement, 332
exclusive or, 332
inclusive or, 332
operators, 71

blank
column one, 247, 292
control, 258
fields in octal or hex input, 268, 269
line comments, 11
not significant in words, 7

BLANK OPEN specifier, 183
BLOCK DATA, 93

initialize, 426
names, 6

block IF , 156

blocks allocated, 397
blocksize, 397
BN format specifier, 258
boldface font conventions, xxv
boundary for variable alignment, 18
bounds on arrays, 43
box

clear, xxv
indicates nonstandard, xxv

BS 6832, 2
BYTE, 94

byte and bit order, 454
BYTE data type, 18
BZ format specifier, 258

C
c

comments, 11
directive, 11
pragma, 11

CALL, 95
carriage control, 247, 260

$, 259
all files, 248
blank, 0, 1, 260
first character, 260
initialize, ioinit , 362
space, 0, 1 , 260

carriage return, $ edit descriptor, 259
ceiling, 373

460 FORTRAN Reference Manual

change
action for signal, signal , 395
default directory, chdir , 334

CHAR, 89 , 308
CHARACTER, 99

data type, 19
character

array, 43
assignment, 75, 76, 89
boundary, 18
concatenate, 73
constant

delimiter, 299
NAMELIST, 300

constants, 28
declared length, 101
declaring the length, 100
dummy argument, 100
expression, 73
format specifier, 427
function, 89, 313
get a character getc, fgetc , 349
join, 73
null constants, 29
operator, 73
packing, 99
put a character, putc , fputc , 386
set, 3
special, 3
string declared length, len , 360
strings, 100
substring, 48
valid characters in names, 6

characters special, 5
chdir , 334
clear

bit, 332
box, xxv

CLOSE, 101
CMPLX, 308
colon :

array bounds, 43
edit descriptor, 285
substring operator, 48

column one formatting, 247
combinations of I/O, 245
command, execute an OS command,

system , 394 , 400

command-line argument, getarg , 348

commas in formatted input, 280
comments, 11

! , 11
* , 11
blank-line, 11
C, 11
embedded, 426
end-of-line, 11, 426

COMMON, 6, 103, 426
complement, 332
complex

array, 107
constant in NAMELIST, 301
constants, 30
data type, 19
statement, 105

COMPLEX*16, 20, 31
COMPLEX*32, 20, 31

data type, 20
COMPLEX*8 data type, 20
computed GO TO, 152

concatenate strings, 73
concatenation operator, 73
conditional termination control, 285
consecutive

commas, NAMELIST, 301
operators, 427

constant
expression, 80
names (symbolic constants), 6
null character constants, 29
octal, 428
radix-50, 426
typeless numeric, 428
values in NAMELIST, 300

Index 461

constants, 27
binary, 37
characters, 28
complex, 30
COMPLEX*16, 31
COMPLEX*32, 31
double complex, 31
double-precision real, 35
hex, 37
integer, 32
logical, 33
octal, 37
quad complex, 31
quad real, 36
real, 33
REAL*16 , 36
REAL*4, 33
REAL*8, 35
typeless, 37

continuation lines, 9
limit, 10

CONTINUE, 108
control characters, 4, 6, 38, 74

in assignment, 76, 89
meanings, 437

conversion by long, short , 377
copy

NAMELIST, 302
process via fork , 345

core file, 329
Courier font, xxv
ctime , 401

convert system time to character, 402
cube root, 373
current working directory, getcwd , 351

D
d comments, 11
D format specifier, 275
d_acos(x) , 368
d_acosd(x) , 368
d_acosh(x) , 368
d_acosp(x) , 368

d_acospi(x) , 368
d_addran() , 369
d_addrans() , 369
d_asin(x) , 368
d_asind(x) , 368
d_asinh(x) , 368
d_asinp(x) , 368
d_asinpi(x) , 368
d_atan(x) , 368
d_atan2(x) , 368
d_atan2d(x) , 368
d_atan2pi(x) , 368
d_atand(x) , 368
d_atanh(x) , 368
d_atanp(x) , 368
d_atanpi(x) , 368
d_cbrt(x) , 368
d_ceil(x) , 368
d_erf(x) , 368
d_erfc(x) , 368
d_expml(x) , 368
d_floor(x) , 368
d_hypot(x) , 368
d_infinity() , 368
d_j0(x) , 369
d_j1(x) , 369
d_jn(n,x) , 369
d_lcran() , 369
d_lcrans() , 369
d_lgamma(x) , 369
d_log1p(x) , 369
d_log2(x) , 369
d_logb(x) , 369
d_max_normal() , 369
d_max_subnormal() , 369
d_min_normal() , 369
d_min_subnormal() , 369
d_nextafter(x,y) , 369
d_quiet_nan(n) , 369
d_remainder(x,y) , 369

462 FORTRAN Reference Manual

d_rint(x) , 369
d_scalbn(x,n) , 369
d_shufrans() , 369
d_signaling_nan(n) , 369
d_significand(x) , 369
d_sin(x) , 369
d_sincos(x,s,c) , 370
d_sincosd(x,s,c) , 370
d_sincosp(x,s,c) , 370
d_sincospi(x,s,c) , 370
d_sind(x) , 369
d_sinh(x) , 369
d_sinp(x) , 369
d_sinpi(x) , 369
d_tan(x) , 370
d_tand(x) , 370
d_tanh(x) , 370
d_tanp(x) , 370
d_tanpi(x) , 370
d_y0(x) , bessel, 370
d_y1(x) , bessel, 370
d_yn(n,x) , 370
DATA, 109
data

namelist syntax, 299, 303
types, 15

data representation
double precision, 449
real number, 449
signed infinity, 450

data type
BYTE, 18
CHARACTER, 19
COMPLEX, 19
COMPLEX*16, 20
COMPLEX*32, 20
COMPLEX*8, 20
DOUBLE COMPLEX, 20
DOUBLE PRECISION, 21
INTEGER, 21
INTEGER*4, 22
LOGICAL, 22

LOGICAL*1 , 18, 23
LOGICAL*2 , 23
LOGICAL*4 , 23
of an expression, 70
properties, 18
quad real , 24
REAL, 24
REAL*16 , 24
REAL*4, 24
REAL*8, 24
short integer, 21

date
and time, as characters, fdate , 344
as integer, idate , 357

DBLE, 307
DBLEQ, 307
DCMPLX, 308
deallocate memory by free , 61, 192, 346
debug statement, 432
decimal points not allowed in octal or hex

input, 268
declaration

field, 51, 177, 222
initialize in, 426
map, 57, 231
record, 53, 209
structure, 50
union, 57

declared length of character string,
len , 360

DECODE, 111

default
directory change, chdir , 334
inquire options, 169

degree-based trigonometric
functions, 322

delay execution, alarm , 330

delimiter
character constant, 299
NAMELIST: $ or &, 299

descriptor, file get, getfd , 352

device, 397
device type, size, 397

Index 463

DFLOAT, 307
diamond indicates nonstandard, xxv
differences

f77 , 425
VMS, 425

DIMENSION, 114
dimension arrays, 42
direct

I/O, 250
I/O record specifier, 203, 251, 429
option for access in open, 182

directive, 11
directory

default change, chdir , 334
get current working directory,

getcwd , 351

DISPOSE option for CLOSE, 429
DO, 116
DO WHILE, 121

doall pragma, 13
documents on-line, xxiv
dollar sign

edit descriptor, 259
in names, 6
NAMELIST delimiter, 299

DOUBLE COMPLEX, 20, 124

DOUBLE PRECISION, 21, 125
double quote, 430, 431

character constants, 28
preceding octal constants, 32

double spacing print, 247
double-complex

arrays, 125
constants, 31
data type, 20

double-precision
arrays, 126
complex, 20
complex functions, 322, 417
data representation, 449
editing, 275
functions, 367
real constants, 35

drand , 391
DREAL, 307
dummy arguments not OK in NAMELIST

list, 295

E
-e , 10
E format specifier, 276
edit descriptor

/ , 285
: , 285
A, 262
D, 275
E, 276
F, 278
G, 280
I , 265
L, 266
P, 283
positional, 270
Q, 281
S, 284
SP, 284
SS, 284
SU, 284
T, 270
X, 270

ELSE, 127
ELSE IF , 128
embedded

blanks, initialize, ioinit , 362
comments, 426

empty spaces in structures, 52, 223
ENCODE, 111 , 130

END, 131
END DO, 132

END FILE , 133
END IF , 135
END MAP, 136

end of text, 74
END STRUCTURE, 136

END UNION, 137

464 FORTRAN Reference Manual

end-of-line comments, 11, 426
ENTRY, 138
environment variables, getenv , 351
environmental inquiry functions, 315
EOF reset status for tapeio, 410
epbase , 315
ephuge , 315
epmax, 315
epmin , 315
epmrsp , 315
epprec , 315
eptiny , 315
equals statement, 85
EQUIVALENCE, 141
ERR

INQUIRE, 167
OPEN specifier, 183
READ, 203
WRITE, 237

error function, 373
error messages, perror , 383

errors and interrupts, longjmp , 379
errors I/O, 244
escape sequences, 30
evaluation of expressions, 82
exclusive or, 332
executable statements, 8
execute an OS command, system , 394 ,

400

existence of file, access , 329

exit , 339
exponential editing, 276
exponents not allowed in octal or hex

input, 268
expression

arithmetic, 66, 67
character, 73
constant, 80
evaluation, 82
logical, 77
variable format, 146

extended source lines, 10

EXTERNAL, 143
external C functions, 12
extract substring, 48
extreme

exponent data representation, 450
values for arithmetic operations, 451

F
F format specifier, 278
f77 , 425
f77_floatingpoint IEEE

definitions, 340
f77_ieee_environment , 342
fdate , 344
fgetc , 350
field, 50

argument that is a field, 53, 210
COMMON with a field, 53, 210
declaration, 51, 177, 222
DIMENSION with a field, 53, 210
dimensioning in type statements, 52,

223
EQUIVALENCE, not allowed in, 53,

210
list, 52
list of a structure, 51, 221, 222
map with a field, 57, 232
name, %FILL , 52, 223
NAMELIST, not allowed in, 53, 210
offset, 53, 223
reference, 54
SAVE, not allowed in, 53, 210
type, 52, 223

Index 465

file, 184
carriage control on all files, 248
connection, automatic, ioinit , 362
descriptor, get, getfd , 352
get file pointer, getfilep , 353
INQUIRE, 166
internal, 252
mode, access , 329
names, VMS logical, 430, 431
permissions, access , 329
preattached, 249
properties, 166
query, 166
remove, unlink , 415
rename, 392
scratch, 248
status, stat , 397
types, 245

FILE , OPEN specifier, 181
FILE= specifier, 427
files open, 244
filling with asterisks or spaces, hex and

octal output, 269
find substring, index , 359

FIPS 69-1, 2
first character carriage control, 260
FLOAT, 307
floating-point IEEE definitions, 340
floor, 373
flush , 345
font

boldface, xxv
conventions, xxv
Courier, xxv
italic, xxv

fork , 345

form feed character, 30
FORM specifier in OPEN, 182
FORM=’PRINT’ , 247

FORMAT, 145

format
$, 259
/ , 285
: , 285
A, 262
B, 258
BN, 258
BZ, 258
D, 275
defaults for field descriptors, 257
E, 276
F, 278
G, 280
I , 265
L, 266
nT, 270
O, 267
of source line, 9
P, 283
Q, 281
R, 274
read into hollerith edit

descriptor, 264
S, 284
SP, 284
specifier, 427
SS, 284
standard fixed, 9
SU, 284
T, 270
tab, 10
TLn, 270
TRn, 270
variable expressions, 146, 148
vertical control, 259, 260
X, 270
Z, 267

format specifier " , 274
formats, 253, 286

runtime, 198, 202, 236, 264, 286
variable format expressions, 288

formatted
I/O, 253
output, 247

forms of I/O, 245

466 FORTRAN Reference Manual

FORTRAN statements, 9
fputc , 386
free , 61, 192, 346
fseek , 346
fstat , 397
ftell , 346
FUNCTION, 149
function

length specifier, 428
malloc , 60, 193
names, 6
types, 16

functions
bit-manipulation, 323, 418
degree-based trigonometric, 322
double-precision, 367
double-precision complex, 322, 417
external C, 12
IEEE-related, 312
integer, 325, 420
intrinsic, 305, 306
quadruple-precision, libm_

quadruple , 371
returning IEEE values, 312
single-precision, libm_single , 373
type coercing, 326, 421
zero-extend, 327

G
G format specifier, 280
general real editing, 280
gerror , 383
get

character getc, fgetc , 349
current working directory,

getcwd , 351
environment variables, getenv , 351
file descriptor, getfd , 352
file pointer, getfilep , 353
group id, getgid , 355
login name, getlog , 354
process id, getpid , 355
user id, getuid , 355

getarg , 348
getc , 349
getcwd , 351
getenv , 351
getfd , 352
getfilep , 353
getgid , 355
getlog , 354
getpid , 355
getuid , 355
gmtime , 401
gmtime() , GMT, 404
GO TO, 151, 154
GO TO assigned, 151
GO TO unconditional, 154
GO TO, computed, 152
Greenwich Mean Time, gmtime , 401

group, 397
group ID, get, getgid , 355
GSA validated, 2

H
hard links, 397
hex and octal

format, 267
format samples, 268
input, 267, 268
output, 268, 269

hexadecimal
constants, 37
initialization, 37

hollerith, 88
read into hollerith edit

descriptor, 264
horizontal positioning, 270
host name, get, hostnm , 356

hostnm , 356
hyperbolic cos, 373
hyperbolic tan, 370, 375
hypotenuse, 373

Index 467

I
I format specifier, 265
I/O, 245

direct, 250
errors, 244
forms, 245
random, 250
summary, 246

-i2 , 21, 25
IACHAR, 308
iargc , 348
ICHAR, 308
id, process, get, getpid , 355

id_finite(x) , 369
id_fp_class(x) , 369
id_irint(x) , 369
id_isinf(x) , 369
id_isnan(x) , 369
id_isnormal(x) , 369
id_issubnormal(x) , 369
id_iszero(x) , 369
id_logb(x) , 369
id_signbit(x) , 369
IDINT , 307
IEEE, 340, 451

754, 2
environment, 342
functions returning IEEE values, 312
related functions, 312

ieee_flags , 342

ieee_handler , 342

ierrno , 383
IF , 155, 156, 159
IFIX , 307
illegal REAL expressions, 428
IMPLICIT , 160
implicit

none data typing, 426
statement, 16
typing, 16

INCLUDE, 163 , 431

inclusive or, 332
index , 359
initial line, 9
initialize

I/O, ioinit , 362
in BLOCK DATA, 426
in COMMON, 426
in declaration, 426

inmax , 361
inode, 397
input commas, 280
INQUIRE, 166, 172
inquire

by file, 172
by unit, 166, 172
options summary, 171

inquire option
ACCESS, 168
BLANK, 169
defaults, 169
ERR, 167
EXIST , 168
FILE , 167
FORM, 169
FORMATTED, 169
IOSTAT, 167
NAMED, 168
NEXTREC, 169
none for permissions, 167
NUMBER, 168
RECL, 169
UNFORMATTED, 169
UNIT, 167

INT , 307
INTEGER, 21, 173
integer

and logical, 71
arrays, 174
conversion by long, short , 377
editing, 265
functions, 325, 420
logical, mixed expressions, 71
operand with logical operator, 71
short, 33

468 FORTRAN Reference Manual

integer constants, 32
INTEGER*2, 21
INTEGER*4, 22
internal files, 252
interrupts and errors, longjmp , 379
INTRINSIC , 174
intrinsic function malloc , 60, 193
intrinsic functions, 321

arithmetic, 305, 306
special VMS, 429
type conversions, 307

invalid characters for data, 6
ioinit , 249, 362
IOSTAT OPEN specifier, 183
iq_finite(x) , 371
iq_fp_class(x) , 371
iq_isinf(x) , 371
iq_isnan(x) , 371
iq_isnormal(x) , 371
iq_issubnormal(x) , 371
iq_iszero(x) , 371
iq_logb(x) , 371
iq_signbit(x) , 371
IQINT , 307
ir_finite(x) , 374
ir_fp_class(x) , 374
ir_irint(x) , 374
ir_isinf(x) , 374
ir_isnan(x) , 374
ir_isnormal(x) , 374
ir_issubnormal(x) , 374
ir_iszero(x) , 374
ir_logb(x) , 374
ir_signbit(x) , 374
irand , 391
isatty , 414
isetjmp , 379
ishift , 321
italic font conventions, xxv

J
join strings, 73
jump, longjmp , isetjmp , 379

K
key word, 3
kill , send signal, 366

L
L format specifier, 266
label of statement, 3
leading spaces or zeros, hex and octal

output, 269
left shift, lshift , 332

left-to-right
exception, 68
precedence, 68

len , declared length, 101, 360
length

character string, len , 360
function length specifier, 149, 151,

428
LEN function, 101
line of source code, 10
names, 6
string, 101
variable length records, 183, 290

libm_double , 367
libm_quadruple , 370
libm_single , 372
line

formats, 9
length, 10
tab-format, 9, 426

line feed, 74
link , 375
link to an existing file, link , 375

linked list, 196

Index 469

list-directed
I/O, 291
input, 291
output, 292
output to a print file, 247

literal constant, 3
literals type REAL*16 , 427
lnblnk , 360
local time zone, lmtime() , 403
location of

an variable loc , 377
scratch files, 184

log gamma, 374
LOGICAL, 22, 176
logical

assignment, 78, 88
constants, 33
editing, 266
expression, 77
expression meaning, 78
file names in the INCLUDE, 164
file names, VMS, 430, 431
IF , 159
integer, mixed, 71
left shift, lshift , 332
LOGICAL*1 data type, 18
operator precedence, 77
unit preattached, 249
units, 244

LOGICAL*1 , 23
LOGICAL*2 , 23
LOGICAL*4 , 23
login name, get getlog , 354
long , 377
long lines in source code, 10
longjmp , 379
lrshft , 321
lshift , 332
lstat , 397
ltime , 401
ltime() , local time zone, 403

M
malloc , 60, 193
MAP, 57, 177 , 231, 232
maximum

number of open files, 244
positive integer, inmax , 361

memory
deallocate by free , 346
get by malloc , 60, 193
release by free , 61, 192

MIL-STD-1753, 2
mixed integer and logical, 71
mixed mode, 70, 71
mixing format of source lines, 10
mode

IEEE, 342
of file, access , 329

modify time, 397
modifying carriage control, 259
mvbits , move bits, 382

N
name

login, get, getlog , 354
of scratch file, 184
terminal port, ttynam , 414

NAME option for OPEN, 429
NAMELIST, 178 , 296, 298, 299, 300

$, 298
&, 299
ask for names, 303
namelist-specifier, 296
NML=, 296
prompt for names, 303
WRITE, 296

namelist
data, 299, 303
data syntax, 300
END, 299
I/O, 295

names, 6
NBS validated, 2

470 FORTRAN Reference Manual

negative values, hex and octal output, 269
nested substructure, 55
newline, 74
newline character, 30
NIST validated, 2
NML=, 297
no advance, carriage control, 260
noncharacter runtime format

specifier, 427
none, implicit data typing, 426
nonexecutable statements, 8
nonstandard indicated by diamond, xxv
nonstandard PARAMETER, 432
nonstandard PARAMETER, 430
not , 332
notation octal alternate, 32
null

character, 30
character constants, 29
data item, NAMELIST, 301

number of
continuation lines, 10
open files, 244

numeric constant, typeless, 428

O
O

constant indicator, 37
edit descriptor, 267

octal
alternate notation, 32
constant, 428
constants, 37
initialization, 37

octal and hex
format, 267
format samples, 268
input, 267, 268
output, 268, 269

off the underscores, 12
offset of fields, 53, 223
omitted arguments, 427

on-line documents, xxiv
open files, 244
OPEN print file , 247
OPEN specifier

ACCESS, 181
BLANK, 183
ERR, 183
FILE , 181
FORM, 182
IOSTAT, 183
RECL, 183
STATUS, 184
UNIT, 181

OPEN statement, 180, 184
operand, 66
operator, 66

** , 66
// concatenate string, 73
: substring, 48
character, 73
concatenation, 73
precedence, 68
relational, 79
two consecutive operators, 68, 427
with extreme values, 451

optimization
problems with pointers, 62, 193

option
DISPOSE for CLOSE, 429
-e , 10
i2 short integer, 21
long lines, 10
NAME for OPEN, 429
number of continuation lines, 10

OPTIONS, 186

options
ACCESS in OPEN, 181

or , 332
order bit and byte, 454
OS command, execute, system , 394 , 400

Index 471

P
P edit descriptor, 283
packing character, 99
padding, 10
parallel pragma, 12
PARAMETER, 52, 187, 222

alternate, 430, 432
parameter name, 6
PAUSE, 190
permissions

access function , 329
ACCESS in INQUIRE, 167

perror , 383
pid , process id, getpid , 355
POINTER, 191

pointer, 59, 191
address assignment, 60, 192
address by LOC, 60, 195
get file pointer, getfilep , 353
linked list, 196
not OK in NAMELIST list, 295
problems with optimization, 62, 193
restrictions, 61, 193

pointer-based variable, 61, 193
not OK in NAMELIST list, 295

position file by fseek, ftell , 346
positional

edit descriptor, 270
format editing, 270

pragma, 11
explicit parallelizing, 12, 13

preattached
files, 249
logical units, 249

precedence
logical operator, 77
operators, 68

prerequisites, xxiii
PRINT, 198
print file, 182, 247, 292
procedures, 8

process
copy via fork , 345
id, get, getpid , 355
send signal to, kill , 366
wait for termination, wait , 416

PROGRAM, 200
program, 3

names, 6
units, 8

promote types, 70
prompt

conventions, xxv
for namelist names, 303

properties, file, 166
protection, 397
purpose of manual, xxiii
put a character, putc , fputc , 386
putc , 386

Q
Q edit descriptor , 281
q_atan2pi(x) , 371
q_fabs(x) , 371
q_fmod(x) , 371
q_infinity() , 371
q_max_normal() , 371
q_max_subnormal() , 371
q_min_normal() , 371
q_min_subnormal() , 371
q_nextafter(x,y) , 371
q_quiet_nan(n) , 371
q_remainder(x,y) , 371
q_scalbn(x,n) , 371
q_signaling_nan(n) , 371
QCMPLX, 308
QEXT, 307
QEXTD, 307
QFLOAT, 307
QREAL, 307
qsort , 388

472 FORTRAN Reference Manual

quad
complex, 20
complex constants, 31
exponent, 36
real constants, 36
real data type, 24
type REAL*16 literals, 427

quadruple precision
see also quad

quadruple-precision
functions, libm_quadruple , 370

quick sort, qsort , 388

quote, 430, 431
character constants, 28
format specifier, 274
preceding octal constants, 32

R
r_acos(x) , 373
r_acosd(x) , 373
r_acosh(x) , 373
r_acosp(x) , 373
r_acospi(x) , 373
r_addran() , 374
r_addrans() , 374
r_asin(x) , 373
r_asind(x) , 373
r_asinh(x) , 373
r_asinp(x) , 373
r_asinpi(x) , 373
r_atan(x) , 373
r_atan2(x) , 373
r_atan2d(x) , 373
r_atan2pi(x) , 373
r_atand(x) , 373
r_atanh(x) , 373
r_atanp(x) , 373
r_atanpi(x) , 373
r_cbrt(x) , 373
r_ceil(x) , 373
r_erf(x) , 373

r_erfc(x) , 373
r_expml(x) , 373
r_floor(x) , 373
r_hypot(x) , 373
r_infinity() , 373
r_j0(x) , 373
r_j1(x) , 373
r_jn(n,x) , 373
r_lcran() , 374
r_lcrans() , 374
r_lgamma(x) , 374
r_log1p(x) , 374
r_log2(x) , 374
r_logb(x) , 374
r_max_normal() , 374
r_max_subnormal() , 374
r_min_normal() , 374
r_min_subnormal() , 374
r_nextafter(x,y) , 374
r_quiet_nan(n) , 374
r_remainder(x,y) , 374
r_rint(x) , 374
r_scalbn(x,n) , 374
r_shufrans() , 374
r_signaling_nan(n) , 374
r_significand(x) , 374
r_sin(x) , 374
r_sincos(x,s,c) , 374
r_sincosd(x,s,c) , 374
r_sincosp(x,s,c) , 374
r_sincospi(x,s,c) , 374
r_sind(x) , 374
r_sinh(x) , 374
r_sinp(x) , 374
r_sinpi(x) , 374
r_tan(x) , 375
r_tand(x) , 375
r_tanh(x) , 375
r_tanp(x) , 375
r_tanpi(x) , 375

Index 473

r_y0(x) , bessel, 375
r_y1(x) , bessel, 375
r_yn(n,x) , bessel, 375
-r4 , 26
radix, 274
radix-50 constant, 426
rand , 391
random

I/O, 250
values, rand , 391

random number, 374
READ, 201
read

character getc, fgetc , 349
into hollerith edit descriptor, 264

REAL, 24, 207
REAL*16 , 427

real
arrays, 209
constants, 33
data representation of reals, 449
editing, 275, 278

REAL expressions, illegal, 428
REAL intrinsic, 307
REAL*16 , 24, 36
REAL*4, 24, 33
REAL*8, 24, 35
RECL specifier in OPEN, 183
recl=1 , variable length records, 183, 290
RECORD, 209

record, 50
argument that is a record, 53, 210
assignment, 89
COMMON with a record, 53, 210
DATA, not allowed in, 53, 210
DIMENSION with a record, 53, 210
EQUIVALENCE, not allowed in, 53,

210
NAMELIST, not allowed in, 53, 210
not OK in NAMELIST list, 295
reference, 54
SAVE, not allowed in, 53, 210
size, unformatted, 430

record (continued)
specifier, direct-access, 202, 251, 429
statement, 53
variable length, 183, 290

recursive, 90, 150, 217
reference

field, 54
record, 54

relational operator, 79
release memory by free , 61, 192
remove a file, unlink , 415

repeat NAMELIST, 302
reposition file by fseek, ftell , 346
representation of data, 449
requesting namelist names, 303
reset EOF status for tapeio, 410
restrictions

fields, 52, 223
hex and octal output, 269
NAMELIST, 295
names, 6
pointers, 61, 193
Q edit descriptor, 282
records, 53, 210
structures, 52, 222
substructures, 57

RETURN, 211
return alternate, 212, 213, 428
reverse solidus, 3, 5
REWIND, 213
right shift, rshift , 332

rindex , 360
rshift , 321, 332
runtime formats, 198, 202, 236, 264, 286,

288

S
S edit descriptor, 284
same line response, 259
sample statements, 439
SAVE, 215

474 FORTRAN Reference Manual

scale
control, 283
factor, 283

scratch files, 184, 248
SCRATCH option for OPEN, 184
secnds , system time, 393
send signal to process, kill , 366
SEQUENTIAL option for ACCESS in

OPEN, 182
set bit, 332
setbit , 332
setjmp , see isetjmp , 379
short

integer data type, 21
integers, 33

short , 377
sign control, 284
signal , 395
signal a process, kill , 366
signals IEEE, 342
signed infinity data representation, 450
signs not allowed in octal or hex

input, 268
sine, 374
single spacing, 247
single-precision functions, libm_

single , 373

size of character string, 101
sizes, summary of, 25
skip NAMELIST, 302
skip tapeio files/records, 410
slash, 3, 5

editing, 285
list-directed input, 291

sleep , 396
slew control, 247, 260
SNGL, 307
SNGLQ, 307
solidus, 3, 5
sort quick, qsort , 388

source
line formats, 9
lines long, 10
tab-format, 426

SP edit descriptor, 284
space, 3, 5

not significant in words, 7
space, 0, 1, + vertical format

control, 260
spaces, leading, hex and octal output, 269
special characters, 3, 5, 30
SS edit descriptor, 284
standard

conformance to standards, 2
fixed format source, 9
units, 244

start of heading, 74
start of text, 74
stat , 397
statement, 3, 8

function, 216
label, 3
list of all statements, 9
samples, 439

STATIC, 219

status
file, stat , 397
IEEE, 342
termination, exit , 339

STATUS OPEN specifier, 184
stderr , 244
stdin , 244
stdout , 244
STOP, 220
storage allocation, 18
string

assignment, 75
concatenate, 73
in list-directed I/O, 294
join, 73
length, len , 360
NAMELIST, 299

stroke, 3, 5

Index 475

STRUCTURE, 221

structure, 50
alignment, VMS, 430, 432
dummy field, 52, 223
empty space, 52, 223
name, 51, 52, 221, 222
nested, 55
not allowed as a substructure of

itself, 57
not OK in NAMELIST list, 295
restrictions, 52
substructure, 55
syntax, 50
union, 57, 232

SU edit descriptor, 284
subprogram names, 6
SUBROUTINE, 225
subroutine

free , 61, 192
subscript

arrays, 45
expressions, 46

substring, 48
NAMELIST, 299
not OK in NAMELIST list, 295

substring, find, index , 359

substructure, 55
map, 57, 231
union, 57, 231

successive operators, 68
summary

data types, 25
I/O, 246
inquire options, 171

suppress carriage return, 259
suspend execution for an interval,

sleep , 396

symbolic
constant name, 6
link to an existing file, symlink , 375
name, 3, 6

symlnk , 375

syntax
field Reference, 54
INQUIRE statement, 166
maps, 57, 231
NAMELIST

input, 298
input data, 299
input data , 303
output, 296
statement, 295

OPEN statement, 180
record reference, 54
records, 53, 209
structure, 50, 221
unions, 57, 231

system , 394, 400
system time

secnds , 393
system time, time , 401

T
T edit descriptor, 270
tab, 3, 5

character, 30
control, 270
format source, 10, 426

tangent, 375
tape I/O, 405
tapeio

close files, 406
open files, 405
read from files, 408
reset EOF status, 410
rewind files, 409
skip files/records, 410
write to files, 407

tarray() values for various time
routines, 404

tclose , 405
temporary files, 184
terminal I/O, 259
terminal port name, ttynam , 414

476 FORTRAN Reference Manual

terminate
wait for process to terminate,

wait , 416
with status, exit , 339
write memory to core file, 329

termination control edit descriptor, 285
terms, 3
time

in numerical form, 357
secnds , 393

time(t) , standard version, 401
time(t) , VMS, 402
time , get system time, 401
TMPDIR environment variable, 184
top of page, 247
topen , 405
trailing blanks, initialize, ioinit , 362

tread , 405
trewin , 405
triangle as blank space, xxv
tskipf , 405
tstate , 405
ttynam , 414
two consecutive operators, 68, 427
twrite , 405
TYPE, 227 , 428

option for OPEN, 429
type

coercing functions, 326, 421
field names, 52, 223
REAL*16 , 427
type, 228

typeless
constants, 37
numeric constant, 428

types, 15, 25
array elements, 16
files, 245
functions, 16
summary of, 25

typewriter font, xxv

U
unary + or -, 427
unary operator, 67
unconditional GO TO, 154

underscore
do not append to external names, 12
external names with, 12
names with, 6

unformatted
I/O, 288
record size, 430

UNION, 231

union declaration, 57, 231
unit, logical unit preattached, 249
UNIT, OPEN specifier, 181
unlink , 415
user, 397
user ID, get, getuid , 355

V
valid

characters for data, 6
characters in character set, 4
characters in names, 6

values
extreme for arithmetic

operations, 451
functions returning IEEE values, 312

variable
alignment, 18
boundary, 18
name, 6

variable format expressions, 146, 148, 255,
288

variable formats, 198, 202, 236, 264, 286,
288

variable-length records, 183, 290
variables, 41
vertical format control, 247

$, 259
space,0,1,+ , 260

vertical tab character, 30

Index 477

VIRTUAL, 234 , 426
VMS, 423, 425, 433

logical file names, 430, 431
VMS features with -xl

backslash, 6, 292, 432
backslash unavailable for special

characters, 30
comment line debug, 432
d-comment lines, 11
logical file names, 164, 431
parameter form, 187, 189, 432
quotes, 87

octal notation, 32, 431
unavailable for strings, 19, 28

record length, 169, 183, 430
VOLATILE, 234

W
wait , 416
width defaults for field descriptors, 257
word boundary, 18
WRITE, 235
write a character putc , fputc , 386

X
X

constant indicator, 37
edit descriptor, 270

X3.9-1978, 2
-xl , 11, 19, 28, 30, 32, 87, 187, 429, 431, 432
-xld , 432
xor , 332

Y
y(0), y1(x), yn(x) , bessel, 370
y0(x), y1(x), y(n) , bessel, 375

Z
Z

constant indicator, 37
edit descriptor, 267

zero, leading, in hex and octal output, 269
zero-extend functions, 327

478 FORTRAN Reference Manual

