
C 4.0 Transition Guide for SPARC Systems

Part No.: 802-2124-10
Revision A, November 1995

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Solaris, SunSoft, the SunSoft logo, and SunOS are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript
and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. ix

1. Making the Transition to ANSI C . 1

Basic Modes . 1

A Mixture of Old- and New-Style Functions 2

Writing New Code. 3

Updating Existing Code . 3

Mixing Considerations . 4

Functions with Varying Arguments . 6

Promotions: Unsigned Versus Value Preserving 10

Background. 10

Compilation Behavior . 10

First Example: The Use of a Cast . 11

Bit-fields . 12

Second Example: Same Result . 12

Integral Constants . 12

iv C 4.0 Transition Guide for SPARC Systems

Third Example: Integral Constants . 13

Tokenization and Preprocessing . 14

ANSI C Translation Phases . 14

Old C Translation Phases . 15

Logical Source Lines . 16

Macro Replacement . 16

Using Strings . 17

Token Pasting . 18

const and volatile . 18

Types, Only for lvalues . 18

Type Qualifiers in Derived Types . 19

const Means readonly . 20

Examples of const Usage . 20

volatile Means Exact Semantics . 21

Examples of volatile Usage. 21

Multibyte Characters and Wide Characters 22

Asian Languages Require Multibyte Characters 22

Encoding Variations . 23

Wide Characters . 23

Conversion Functions . 24

C Language Features . 24

Standard Headers and Reserved Names. 26

Balancing Process. 26

Standard Headers . 27

Contents v

Names Reserved for Implementation Use 27

Names Reserved for Expansion . 28

Names Safe to Use . 29

Internationalization . 29

Locales. 30

The setlocale() Function . 30

Changed Functions . 31

New Functions . 32

Grouping and Evaluation in Expressions 33

Definitions . 33

The K&R C Rearrangement License 34

The ANSI C Rules . 35

The Parentheses . 35

The As If Rule. 35

Incomplete Types . 36

Types . 36

Completing Incomplete Types . 37

Declarations . 37

Expressions . 38

Justification . 38

Examples. 39

Compatible and Composite Types . 39

Multiple Declarations . 40

Separate Compilation Compatibility. 40

vi C 4.0 Transition Guide for SPARC Systems

Single Compilation Compatibility . 40

Compatible Pointer Types. 41

Compatible Array Types . 41

Compatible Function Types . 41

Special Cases . 42

Composite Types . 42

A. K&R Sun C / Sun ANSI C Differences 43

Index . 53

vii

Tables

Table P-1 Typographic Conventions . x

Table 1-1 Trigraph Sequences . 14

Table 1-2 Multibyte Character Conversion Functions 24

Table 1-3 Standard Headers . 27

Table 1-4 Names Reserved for Expansion. 28

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C 44

Table A-2 ANSI C Standard Keywords . 51

Table A-3 Sun C (K&R) Keywords . 52

viii C 4.0 Transition Guide for SPARC Systems

ix

Preface

This manual, the C 4.0 Transition Guide for SPARC Systems, describes:

• Features of ANSI C, such as internationalization and prototyping

• Differences between ANSI standard-conformant C and other versions of C

• Techniques for writing new and upgrading existing C code to comply with
the ANSI C language specification.

The information is presented as a series of articles, each covering a specific
transition topic. These articles were originally written for an in-house AT&T
newsletter by David Prosser, Distinguished Member of Technical Staff, AT&T
Bell Laboratories. Comments by Vijay Tatkar and Walter Nielsen of Sun
Microsystems, Inc. have also been incorporated.

Appendix A, “K&R Sun C / Sun ANSI C Differences,” contains much of the
information from these articles in tabular form.

For more information on programming in ANSI C, refer to the following
manuals:

• C 4.0 User’s Guide
This manual describes the C language and how to use the ANSI C
compiler.

• Profiling Tools
This manual contains information on many helpful programming tools,
such as prof (1), gprof (1), and various profiling tools.

x C 4.0 Transition Guide for SPARC Systems

We recommend two texts for programmers new to the C language: Kernighan
and Ritchie (hereinafter referred to as K&R), The C Language, Second Edition,
1988, Prentice-Hall; Harbison and Steele, C: A Reference Manual, Second
Edition, 1987, Prentice-Hall. For implementation-specific details not covered in
this book, refer to the Application Binary Interface for your machine.

Typographic Conventions
The following table describes the typographic conventions and symbols used
in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 Names of commands, files, and
directories; on-screen computer
output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 User input, contrasted with on-
screen computer output

system% su
password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Code samples are included in boxes and may display the following:

% C shell prompt system%

$ Bourne shell prompt system$

Superuser prompt, either shell system#

1

Making the Transition to ANSI C 1

This chapter contains the following sections:

Basic Modes
The ANSI C compiler allows both old-style and new-style C code. The
following -X (note case) options provide varying degrees of compliance to the
ANSI C standard. -Xa is the default mode.

Basic Modes page 1

A Mixture of Old- and New-Style Functions page 2

Functions with Varying Arguments page 6

Promotions: Unsigned Versus Value Preserving page 10

Tokenization and Preprocessing page 14

const and volatile page 18

Multibyte Characters and Wide Characters page 22

Standard Headers and Reserved Names page 26

Internationalization page 29

Grouping and Evaluation in Expressions page 33

Incomplete Types page 36

Compatible and Composite Types page 39

2 C 4.0 Transition Guide for SPARC Systems

1

-Xa

(a = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler issues warnings about the
conflict and uses the ANSI C interpretation. This is the default mode.

-Xc

(c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler issues errors and warnings for
programs that use non-ANSI C constructs.

-Xs

(s = K&R C) The compiled language includes all features compatible with
pre-ANSI K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler issues warnings
about the conflict and uses the K&R C interpretation.

A Mixture of Old- and New-Style Functions
ANSI C’s most sweeping change to the language is the function prototype
borrowed from the C++ language. By specifying for each function the number
and types of its parameters, not only does every regular compile get the
benefits of argument and parameter checks (similar to those of lint) for each
function call, but arguments are automatically converted (just as with an
assignment) to the type expected by the function. ANSI C includes rules that
govern the mixing of old- and new-style function declarations since there are
many, many lines of existing C code that could and should be converted to use
prototypes.

Making the Transition to ANSI C 3

1

Writing New Code

When you write an entirely new program, use new-style function declarations
(function prototypes) in headers and new-style function declarations and
definitions in other C source files. However, if there is a possibility that
someone will port the code to a machine with a pre-ANSI C compiler, we
suggest you use the macro __STDC__ (which is defined only for ANSI C
compilation systems) in both header and source files. Refer to page 5 for an
example.

An ANSI C-conforming compiler must issue a diagnostic whenever two
incompatible declarations for the same object or function are in the same scope.
If all functions are declared and defined with prototypes, and the appropriate
headers are included by the correct source files, all calls should agree with the
definition of the functions. This protocol eliminates one of the most common C
programming mistakes.

Updating Existing Code

If you have an existing application and want the benefits of function
prototypes, there are a number of possibilities for updating, depending on how
much of the code you would like to change:

1. Recompile without making any changes.

Even with no coding changes, the compiler warns you about mismatches in
parameter type and number when invoked with the –v option.

2. Add function prototypes just to the headers.

All calls to global functions are covered.

3. Add function prototypes to the headers and start each source file with
function prototypes for its local (static) functions.

All calls to functions are covered, but doing this requires typing the
interface for each local function twice in the source file.

4. Change all function declarations and definitions to use function
prototypes.

4 C 4.0 Transition Guide for SPARC Systems

1

For most programmers, choices 2 and 3 are probably the best cost/benefit
compromise. Unfortunately, these options are precisely the ones that require
detailed knowledge of the rules for mixing old and new styles.

Mixing Considerations

For function prototype declarations to work with old-style function definitions,
both must specify functionally identical interfaces or have compatible types
using ANSI C’s terminology.

For functions with varying arguments, there can be no mixing of ANSI C’s
ellipsis notation and the old-style varargs() function definition. For
functions with a fixed number of parameters, the situation is fairly
straightforward: just specify the types of the parameters as they were passed in
previous implementations.

In K&R C, each argument was converted just before it was passed to the called
function according to the default argument promotions. These promotions
specified that all integral types narrower than int were promoted to int size,
and any float argument was promoted to double , hence simplifying both
the compiler and libraries. Function prototypes are more expressive—the
specified parameter type is what is passed to the function.

Thus, if a function prototype is written for an existing (old-style) function
definition, there should be no parameters in the function prototype with any of
the following types:

There still remain two complications with writing prototypes: typedef names
and the promotion rules for narrow unsigned types.

If parameters in old-style functions were declared using typedef names, such
as off_t and ino_t , it is important to know whether or not the typedef
name designates a type that is affected by the default argument promotions.
For these two, off_t is a long , so it is appropriate to use in a function
prototype; ino_t used to be an unsigned short , so if it were used in a
prototype, the compiler issues a diagnostic because the old-style definition and
the prototype specify different and incompatible interfaces.

char signed char unsigned char float

short signed short unsigned short

Making the Transition to ANSI C 5

1

Just what should be used instead of an unsigned short leads us into the
final complication. The one biggest incompatibility between K&R C and the
ANSI C compiler is the promotion rule for the widening of unsigned char
and unsigned short to an int value. (See “Promotions: Unsigned Versus
Value Preserving” on page 10.) The parameter type that matches such an old-
style parameter depends on the compilation mode used when you compile:

• -Xs and –Xt should use unsigned int
• –Xa and –Xc should use int

The best approach is to change the old-style definition to specify either int or
unsigned int and use the matching type in the function prototype. You can
always assign its value to a local variable with the narrower type, if necessary,
after you enter the function.

Watch out for the use of id’s in prototypes that may be affected by
preprocessing. Consider the following example:

Do not mix function prototypes with old-style function declarations that
contain narrow types.

Appropriate use of __STDC__ produces a header file that can be used for both
the old and new compilers:

#define status 23
void my_exit(int status); /* Normally, scope begins */

/* and ends with prototype */

void foo(unsigned char, unsigned short);
void foo(i, j) unsigned char i; unsigned short j; {...}

header.h:

struct s { /* . . . */ };

#ifdef __STDC__
void errmsg(int, ...);
struct s *f(const char *);
int g(void);

#else
void errmsg();
struct s *f();
int g();

#endif

6 C 4.0 Transition Guide for SPARC Systems

1

The following function uses prototypes and can still be compiled on an older
system:

Here is an updated source file (as with choice 3 above, on page 3). The local
function still uses an old-style definition, but a prototype is included for newer
compilers:

Functions with Varying Arguments
In previous implementations, you could not specify the parameter types that a
function expected, but ANSI C encourages you to use prototypes to do just
that. To support functions such as printf() , the syntax for prototypes
includes a special ellipsis (...) terminator. Because an implementation might
need to do unusual things to handle a varying number of arguments, ANSI C
requires that all declarations and the definition of such a function include the
ellipsis terminator.

struct s *
#ifdef __STDC__
f(const char *p)
#else
f(p) char *p;
#endif
{

/* . . . */
}

source.c:

#include header.h
typedef /* . . . */ MyType;
#ifdef __STDC__

static void del(MyType *);
/* . . . */

#endif
static void
del(p)

MyType *p;
{

/* . . . */
}

/* . . . */

Making the Transition to ANSI C 7

1

Since there are no names for the “... ” part of the parameters, a special set of
macros contained in stdarg.h gives the function access to these arguments.
Earlier versions of such functions had to use similar macros contained in
varargs.h .

Let us assume that the function we wish to write is an error handler called
errmsg() that returns void , and whose only fixed parameter is an int that
specifies details about the error message. This parameter can be followed by a
file name, a line number, or both, and these are followed by format and
arguments, similar to those of printf() , that specify the text of the error
message.

To allow our example to compile with earlier compilers, we make extensive use
of the macro __STDC__ which is defined only for ANSI C compilation
systems. Thus, the function’s declaration in the appropriate header file is:

The file that contains the definition of errmsg() is where the old and new
styles can get complex. First, the header to include depends on the
compilation system:

stdio.h is included because we call fprintf() and vfprintf() later.

#ifdef __STDC__
void errmsg(int code, ...);

#else
void errmsg();

#endif

#ifdef __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
#include <stdio.h>

8 C 4.0 Transition Guide for SPARC Systems

1

Next comes the definition for the function. The identifiers va_alist and
va_dcl are part of the old-style varargs.h interface.

Since the old-style variable argument mechanism did not allow us to specify
any fixed parameters, we must arrange for them to be accessed before the
varying portion. Also, due to the lack of a name for the “... ” part of the
parameters, the new va_start() macro has a second argument—the name of
the parameter that comes just before the “... ” terminator.

As an extension, Sun ANSI C allows functions to be declared and defined with
no fixed parameters, as in:

int f(...);

For such functions, va_start() should be invoked with an empty second
argument, as in:

va_start(ap,)

void
#ifdef __STDC__
errmsg(int code, ...)
#else
errmsg(va_alist) va_dcl /* Note: no semicolon! */
#endif
{

/* more detail below */
}

Making the Transition to ANSI C 9

1

The following is the body of the function:

Both the va_arg() and va_end() macros work the same for the old-style
and ANSI C versions. Because va_arg() changes the value of ap , the call to
vfprintf() cannot be:

The definitions for the macros FILENAME, LINENUMBER, and WARNING are
presumably contained in the same header as the declaration of errmsg() .

A sample call to errmsg() could be:

{
va_list ap;
char *fmt;

#ifdef __STDC__
va_start(ap, code);

#else
int code;

va_start(ap);
/* extract the fixed argument */
code = va_arg(ap, int);

#endif
if (code & FILENAME)

(void)fprintf(stderr, "\"%s\": ", va_arg(ap, char *));
if (code & LINENUMBER)

(void)fprintf(stderr, "%d: ", va_arg(ap, int));
if (code & WARNING)

(void)fputs("warning: ", stderr);
fmt = va_arg(ap, char *);
(void)vfprintf(stderr, fmt, ap);
va_end(ap);

}

(void)vfprintf(stderr, va_arg(ap, char *), ap);

errmsg(FILENAME, "<command line>", "cannot open: %s\n",
argv[optind]);

10 C 4.0 Transition Guide for SPARC Systems

1

Promotions: Unsigned Versus Value Preserving
The following information appears in the Rationale section that accompanies
the draft C Standard:

QUIET CHANGE

A program that depends on unsigned preserving arithmetic
conversions will behave differently, probably without complaint.
This is considered to be the most serious change made by the
Committee to a widespread current practice.

This section explores how this change affects our code.

Background

According to K&R, The C Programming Language (First Edition), unsigned
specified exactly one type; there were no unsigned char s, unsigned
short s, or unsigned long s, but most C compilers added these very soon
thereafter. Some compilers did not implement unsigned long but included
the other two. Naturally, implementations chose different rules for type
promotions when these new types mixed with others in expressions.

In most C compilers, the simpler rule, “unsigned preserving,” is used: when an
unsigned type needs to be widened, it is widened to an unsigned type; when
an unsigned type mixes with a signed type, the result is an unsigned type.

The other rule, specified by ANSI C, is known as “value preserving,” in which
the result type depends on the relative sizes of the operand types. When an
unsigned char or unsigned short is widened, the result type is int if an
int is large enough to represent all the values of the smaller type. Otherwise,
the result type is unsigned int . The value preserving rule produces the
least surprise arithmetic result for most expressions.

Compilation Behavior

Only in the transition or pre-ANSI modes (-Xt or -Xs) does the ANSI C
compiler use the unsigned preserving promotions; in the other two modes,
conforming (–Xc) and ANSI (–Xa), the value preserving promotion rules are
used.

Making the Transition to ANSI C 11

1

First Example: The Use of a Cast

In the following code, assume that an unsigned char is smaller than an int .

The code above causes the compiler to issue the following warning when you
use the -xtransition option:

line 6: warning: semantics of "<" change in ANSI C;
use explicit cast

The result of the addition has type int (value preserving) or unsigned int
(unsigned preserving), but the bit pattern does not change between these two.
On a two’s-complement machine, we have:

This bit representation corresponds to -1 for int and UINT_MAX for
unsigned int . Thus, if the result has type int , a signed comparison is used
and the less-than test is true; if the result has type unsigned int , an unsigned
comparison is used and the less-than test is false.

The addition of a cast serves to specify which of the two behaviors is desired:

Since differing compilers chose different meanings for the same code, this
expression can be ambiguous. The addition of a cast is as much to help the
reader as it is to eliminate the warning message.

int f(void)
{

int i = -2;
unsigned char uc = 1;

return (i + uc) < 17;
}

i: 111...110 (-2)
+ uc: 000...001 (1)
===================

111...111 (-1 or UINT_MAX)

value preserving:
(i + (int)uc) < 17

unsigned preserving:
(i + (unsigned int)uc) < 17

12 C 4.0 Transition Guide for SPARC Systems

1

Bit-fields

The same situation applies to the promotion of bit-field values. In ANSI C, if
the number of bits in an int or unsigned int bit-field is less than the
number of bits in an int , the promoted type is int ; otherwise, the promoted
type is unsigned int . In most older C compilers, the promoted type is
unsigned int for explicitly unsigned bit-fields, and int otherwise.

Similar use of casts can eliminate situations that are ambiguous.

Second Example: Same Result

In the following code, assume that both unsigned short and unsigned
char are narrower than int .

In this example, both automatics are either promoted to int or to unsigned
int , so the comparison is sometimes unsigned and sometimes signed.
However, the C compiler does not warn you because the result is the same for
the two choices.

Integral Constants

As with expressions, the rules for the types of certain integral constants have
changed. In K&R C, an unsuffixed decimal constant had type int only if its
value fit in an int ; an unsuffixed octal or hexadecimal constant had type int
only if its value fit in an unsigned int . Otherwise, an integral constant had
type long . At times, the value did not fit in the resulting type. In ANSI C, the
constant type is the first type encountered in the following list that
corresponds to the value:

unsuffixed decimal:
int, long, unsigned long

int f(void)
{

unsigned short us;
unsigned char uc;

return uc < us;
}

Making the Transition to ANSI C 13

1

unsuffixed octal or hexadecimal:
int, unsigned int, long, unsigned long

U suffixed:
unsigned int, unsigned long

L suffixed:
long, unsigned long

UL suffixed:
unsigned long

The ANSI C compiler warns you, when you use the -xtransition option,
about any expression whose behavior might change according to the typing
rules of the constants involved. The old integral constant typing rules are used
only in the transition mode; the ANSI and conforming modes use the new
rules.

Third Example: Integral Constants

In the following code, assume int s are 16 bits.

Because the hexadecimal constant’s type is either int (with a value of –1 on a
two’s-complement machine) or an unsigned int (with a value of 65535), the
comparison is true in –Xs and -Xt modes, and false in –Xa and –Xc modes.

Again, an appropriate cast clarifies the code and suppresses a warning:

int f(void)
{

int i = 0;

return i > 0xffff;
}

-Xt, -Xs modes:
i > (int)0xffff

-Xa, -Xc modes:
i > (unsigned int)0xffff

or
i > 0xffffU

14 C 4.0 Transition Guide for SPARC Systems

1

The U suffix character is a new feature of ANSI C and probably produces an
error message with older compilers.

Tokenization and Preprocessing
Probably the least specified part of previous versions of C concerned the
operations that transformed each source file from a bunch of characters into a
sequence of tokens, ready to parse. These operations included recognition of
white space (including comments), bundling consecutive characters into
tokens, handling preprocessing directive lines, and macro replacement.
However, their respective ordering was never guaranteed.

ANSI C Translation Phases

The order of these translation phases is specified by ANSI C:

1. Every trigraph sequence in the source file is replaced. ANSI C has exactly
nine trigraph sequences that were invented solely as a concession to
deficient character sets, and are three-character sequences that name a
character not in the ISO 646-1983 character set:

These sequences must be understood by ANSI C compilers, but we do not
recommend their use. The ANSI C compiler warns you, when you use the
-xtransition option, whenever it replaces a trigraph while in transition
(–Xt) mode, even in comments. For example, consider the following:

Table 1-1 Trigraph Sequences

Trigraph
Sequence Converts to

Trigraph
Sequence Converts to

??= # ??< {

??- ~ ??> }

??([??/ \

??)] ??’ ^

??! |

/* comment *??/
/* still comment? */

Making the Transition to ANSI C 15

1

The ??/ becomes a backslash. This character and the following newline are
removed. The resulting characters are:

The first / from the second line is the end of the comment. The next token
is the * .

2. Every backslash/new-line character pair is deleted.

3. The source file is converted into preprocessing tokens and sequences of
white space. Each comment is effectively replaced by a space character.

4. Every preprocessing directive is handled and all macro invocations are
replaced. Each #include d source file is run through the earlier phases
before its contents replace the directive line.

5. Every escape sequence (in character constants and string literals) is
interpreted.

6. Adjacent string literals are concatenated.

7. Every preprocessing token is converted into a regular token; the compiler
properly parses these and generates code.

8. All external object and function references are resolved, resulting in the final
program.

Old C Translation Phases

Previous C compilers did not follow such a simple sequence of phases, nor
were there any guarantees for when these steps were applied. A separate
preprocessor recognized tokens and white space at essentially the same time as
it replaced macros and handled directive lines. The output was then
completely retokenized by the compiler proper, which then parsed the
language and generated code.

Because the tokenization process within the preprocessor was a moment-by-
moment operation and macro replacement was done as a character-based, not
token-based, operation, the tokens and white space could have a great deal of
variation during preprocessing.

/* comment */* still comment? */

16 C 4.0 Transition Guide for SPARC Systems

1

There are a number of differences that arise from these two approaches. The
rest of this section discusses how code behavior may change due to line
splicing, macro replacement, stringizing, and token pasting, which occur
during macro replacement.

Logical Source Lines

In K&R C, backslash/new-line pairs were allowed only as a means to continue
a directive, a string literal, or a character constant to the next line. ANSI C
extended the notion so that a backslash/new-line pair can continue anything to
the next line. The result is a logical source line. Therefore, any code that relied
on the separate recognition of tokens on either side of a backslash/new-line
pair does not behave as expected.

Macro Replacement

The macro replacement process has never been described in detail prior to
ANSI C. This vagueness spawned a great many divergent implementations.
Any code that relied on anything fancier than manifest constant replacement
and simple function–like macros was probably not truly portable. This manual
cannot uncover all the differences between the old C macro replacement
implementation and the ANSI C version. Nearly all uses of macro replacement
with the exception of token pasting and stringizing produce exactly the same
series of tokens as before. Furthermore, the ANSI C macro replacement
algorithm can do things not possible in the old C version. For example,

causes any use of name to be replaced with an indirect reference through name.
The old C preprocessor would produce a huge number of parentheses and
stars and eventually produce an error about macro recursion.

The major change in the macro replacement approach taken by ANSI C is to
require macro arguments, other than those that are operands of the macro
substitution operators # and ## , to be expanded recursively prior to their
substitution in the replacement token list. However, this change seldom
produces an actual difference in the resulting tokens.

#define name (*name)

Making the Transition to ANSI C 17

1

Using Strings

In K&R C, the following code produced the string literal "x y!" :

Thus, the preprocessor searched inside string literals and character constants
for characters that looked like macro parameters. ANSI C recognized the
importance of this feature, but could not condone operations on parts of
tokens. In ANSI C, all invocations of the above macro produce the string
literal "a!" . To achieve the old effect in ANSI C, we make use of the # macro
substitution operator and the concatenation of string literals.

The above code produces the two string literals "x y" and "!" which, after
concatenation, produces the identical "x y!" .

There is no direct replacement for the analogous operation for character
constants. The major use of this feature was similar to the following:

which produced

which evaluates to the ASCII control-L character. The best solution we know
of is to change all uses of this macro to:

This code is more readable and more useful, as it can also be applied to
expressions.

#define str(a) "a!" ‡
str(x y)

#define str(a) #a "!"
str(x y)

#define CNTL(ch) (037 & ’ch’) ‡
CNTL(L)

(037 & 'L')

#define CNTL(ch) (037 & (ch))
CNTL(’L’)

In ANSI C, the examples below
marked with a ‡ produce a
warning about use of old
features, when you use the
-xtransition option. Only in
the transition mode (–Xt and
-Xs) is the result the same as in
previous versions of C.

18 C 4.0 Transition Guide for SPARC Systems

1

Token Pasting

In K&R C, there were at least two ways to combine two tokens. Both
invocations in the following produced a single identifier x1 out of the two
tokens x and 1.

Again, ANSI C could not sanction either approach. In ANSI C, both the above
invocations would produce the two separate tokens x and 1. The second of the
above two methods can be rewritten for ANSI C by using the ## macro
substitution operator:

and ## should be used as macro substitution operators only when __STDC__
is defined. Since ## is an actual operator, the invocation can be much freer with
respect to white space in both the definition and invocation.

There is no direct approach to effect the first of the two old-style pasting
schemes, but since it put the burden of the pasting at the invocation, it was
used less frequently than the other form.

const and volatile

The keyword const was one of the C++ features that found its way into ANSI
C. When an analogous keyword, volatile , was invented by the ANSI C
Committee, the “type qualifier” category was created. This category still
remains one of the more nebulous parts of ANSI C.

Types, Only for lvalue s

const and volatile are part of an identifier’s type, not its storage class.
However, they are often removed from the topmost part of the type when an
object’s value is fetched in the evaluation of an expression—exactly at the point
when an lvalue becomes an rvalue . These terms arise from the prototypical

#define self(a) a
#define glue(a,b) a/**/b ‡
self(x)1
glue(x,1)

#define glue(a,b) a ## b
glue(x, 1)

Making the Transition to ANSI C 19

1

assignment “L=R”; in which the left side must still refer directly to an object
(an lvalue) and the right side need only be a value (an rvalue). Thus, only
expressions that are lvalues can be qualified by const or volatile or both.

Type Qualifiers in Derived Types

The type qualifiers may modify type names and derived types. Derived types
are those parts of C’s declarations that can be applied over and over to build
more and more complex types: pointers, arrays, functions, structures, and
unions. Except for functions, one or both type qualifiers can be used to change
the behavior of a derived type.

For example,

declares and initializes an object with type const int whose value is not
changed by a correct program. The order of the keywords is not significant to
C. For example, the declarations:

and

are identical to the above declaration in its effect.

The declaration

declares an object with type pointer to const int , which initially points to the
previously declared object. The pointer itself does not have a qualified
type—it points to a qualified type, and can be changed to point to essentially
any int during program execution. pci cannot be used to modify the object to
which it points unless a cast is used, as in the following:

If pci actually points to a const object, the behavior of this code is undefined.

const int five = 5;

int const five = 5;

const five = 5;

const int *pci = &five;

*(int *)pci = 17;

20 C 4.0 Transition Guide for SPARC Systems

1

The declaration

says that somewhere in the program there exists a definition of a global object
with type const pointer to int . In this case, cpi ’s value will not be changed
by a correct program, but it can be used to modify the object to which it points.
Notice that const comes after the * in the above declaration. The following
pair of declarations produces the same effect:

These declarations can be combined as in the following declaration in which an
object is declared to have type const pointer to const int :

const Means readonly

In hindsight, readonly would have been a better choice for a keyword than
const . If one reads const in this manner, declarations such as

are easily understood to mean that the second parameter is only used to read
character values, while the first parameter overwrites the characters to which it
points. Furthermore, despite the fact that in the above example, the type of
cpi is a pointer to a const int , you can still change the value of the object to
which it points through some other means, unless it actually points to an object
declared with const int type.

Examples of const Usage

The two main uses for const are to declare large compile-time initialized
tables of information as unchanging, and to specify that pointer parameters do
not modify the objects to which they point.

extern int *const cpi;

typedef int *INT_PTR;
extern const INT_PTR cpi;

const int *const cpci;

char *strcpy(char *, const char *);

Making the Transition to ANSI C 21

1

The first use potentially allows portions of the data for a program to be shared
by other concurrent invocations of the same program. It may cause attempts to
modify this invariant data to be detected immediately by means of some sort
of memory protection fault, since the data resides in a read-only portion of
memory.

The second use helps locate potential errors before generating a memory fault
during that demo. For example, functions that temporarily place a null
character into the middle of a string are detected at compile time, if passed a
pointer to a string that cannot be so modified.

volatile Means Exact Semantics

So far, the examples have all used const because it’s conceptually simpler.
But what does volatile really mean? To a compiler writer, it has one
meaning: take no code generation shortcuts when accessing such an object. In
ANSI C, it is a programmer’s responsibility to declare every object that has the
appropriate special properties with a volatile qualified type.

Examples of volatile Usage

The usual four examples of volatile objects are:

• An object that is a memory-mapped I/O port

• An object that is shared between multiple concurrent processes

• An object that is modified by an asynchronous signal handler

• An automatic storage duration object declared in a function that calls
setjmp , and whose value is changed between the call to setjmp and a
corresponding call to longjmp

The first three examples are all instances of an object with a particular
behavior: its value can be modified at any point during the execution of the
program. Thus, the seemingly infinite loop:

flag = 1;
while (flag)

;

22 C 4.0 Transition Guide for SPARC Systems

1

is valid as long as flag has a volatile qualified type. Presumably, some
asynchronous event sets flag to zero in the future. Otherwise, because the
value of flag is unchanged within the body of the loop, the compilation
system is free to change the above loop into a truly infinite loop that
completely ignores the value of flag .

The fourth example, involving variables local to functions that call setjmp , is
more involved. The fine print about the behavior of setjmp and longjmp
notes that there are no guarantees about the values for objects matching the
fourth case. For the most desirable behavior, it is necessary for longjmp to
examine every stack frame between the function calling setjmp and the
function calling longjmp for saved register values. The possibility of
asynchronously created stack frames makes this job even harder.

When an automatic object is declared with a volatile qualified type, the
compilation system knows that it has to produce code that exactly matches
what the programmer wrote. Therefore, the most recent value for such an
automatic object is always in memory and not just in a register, and is
guaranteed to be up-to-date when longjmp is called.

Multibyte Characters and Wide Characters
At first, the internationalization of ANSI C affected only library functions.
However, the final stage of internationalization—multibyte characters and
wide characters—also affected the language proper.

Asian Languages Require Multibyte Characters

The basic difficulty in an Asian-language computer environment is the huge
number of ideograms needed for I/O. To work within the constraints of usual
computer architectures, these ideograms are encoded as sequences of bytes.
The associated operating systems, application programs, and terminals
understand these byte sequences as individual ideograms. Moreover, all of
these encodings allow intermixing of regular single-byte characters with the
ideogram byte sequences. Just how difficult it is to recognize distinct
ideograms depends on the encoding scheme used.

The term “multibyte character” is defined by ANSI C to denote a byte
sequence that encodes an ideogram, no matter what encoding scheme is
employed. All multibyte characters are members of the “extended character

Making the Transition to ANSI C 23

1

set.” A regular single-byte character is just a special case of a multibyte
character. The only requirement placed on the encoding is that no multibyte
character can use a null character as part of its encoding.

ANSI C specifies that program comments, string literals, character constants,
and header names are all sequences of multibyte characters.

Encoding Variations

The encoding schemes fall into two camps. The first is one in which each
multibyte character is self-identifying, that is, any multibyte character can
simply be inserted between any pair of multibyte characters.

The second scheme is one in which the presence of special shift bytes changes
the interpretation of subsequent bytes. An example is the method used by
some character terminals to get in and out of line-drawing mode. For
programs written in multibyte characters with a shift-state-dependent
encoding, ANSI C requires that each comment, string literal, character
constant, and header name must both begin and end in the unshifted state.

Wide Characters

Some of the inconvenience of handling multibyte characters would be
eliminated if all characters were of a uniform number of bytes or bits. Since
there can be thousands or tens of thousands of ideograms in such a character
set, a 16-bit or 32-bit sized integral value should be used to hold all members.
(The full Chinese alphabet includes more than 65,000 ideograms!) ANSI C
includes the typedef name wchar_t as the implementation-defined integral
type large enough to hold all members of the extended character set.

For each wide character, there is a corresponding multibyte character, and vice
versa; the wide character that corresponds to a regular single-byte character is
required to have the same value as its single-byte value, including the null
character. However, there is no guarantee that the value of the macro EOF can
be stored in a wchar_t , just as EOF might not be representable as a char .

24 C 4.0 Transition Guide for SPARC Systems

1

Conversion Functions

ANSI C provides five library functions that manage multibyte characters and
wide characters:

The behavior of all of these functions depends on the current locale. (See “The
setlocale() Function” on page 30.)

It is expected that vendors providing compilation systems targeted to this
market supply many more string-like functions to simplify the handling of
wide character strings. However, for most application programs, there is no
need to convert any multibyte characters to or from wide characters. Programs
such as diff , for example, read in and write out multibyte characters, needing
only to check for an exact byte-for-byte match. More complicated programs,
such as grep , that use regular expression pattern matching, may need to
understand multibyte characters, but only the common set of functions that
manages the regular expression needs this knowledge. The program grep
itself requires no other special multibyte character handling.

C Language Features

To give even more flexibility to the programmer in an Asian-language
environment, ANSI C provides wide character constants and wide string
literals. These have the same form as their non-wide versions, except that they
are immediately prefixed by the letter L:

'x ' regular character constant

'¥' regular character constant

L'x ' wide character constant

L'¥' wide character constant

Table 1-2 Multibyte Character Conversion Functions

mblen() length of next multibyte character

mbtowc() convert multibyte character to wide character

wctomb() convert wide character to multibyte character

mbstowcs() convert multibyte character string to wide character string

wcstombs() convert wide character string to multibyte character string

Making the Transition to ANSI C 25

1

"abc¥xyz " regular string literal

L"abcxyz " wide string literal

Multibyte characters are valid in both the regular and wide versions. The
sequence of bytes necessary to produce the ideogram ¥ is encoding-specific,
but if it consists of more than one byte, the value of the character constant '¥ '
is implementation-defined, just as the value of 'ab ' is implementation-defined.
Except for escape sequences, a regular string literal contains exactly the bytes
specified between the quotes, including the bytes of each specified multibyte
character.

When the compilation system encounters a wide character constant or wide
string literal, each multibyte character is converted into a wide character, as if
by calling the mbtowc() function. Thus, the type of L'¥ ' is wchar_t ; the type
of abc¥xyz is array of wchar_t with length eight. Just as with regular string
literals, each wide string literal has an extra zero-valued element appended,
but in these cases, it is a wchar_t with value zero.

Just as regular string literals can be used as a shorthand method for character
array initialization, wide string literals can be used to initialize wchar_t
arrays:

In the above example, the three arrays x , y, and z , and the array pointed to by
wp, have the same length. All are initialized with identical values.

Finally, adjacent wide string literals are concatenated, just as with regular
string literals. However, adjacent regular and wide string literals produce
undefined behavior. A compiler is not required to produce an error if it does
not accept such concatenations.

wchar_t *wp = L"a¥z";
wchar_t x[] = L"a¥z";
wchar_t y[] = {L'a', L'¥', L'z', 0};
wchar_t z[] = {'a', L'¥', 'z', '\0'};

26 C 4.0 Transition Guide for SPARC Systems

1

Standard Headers and Reserved Names
Early in the standardization process, the ANSI Standards Committee chose to
include library functions, macros, and header files as part of ANSI C. While
this decision was necessary for the writing of truly portable C programs, a side
effect is the basis of some of the most negative comments about ANSI C from
the public—a large set of reserved names.

This section presents the various categories of reserved names and some
rationale for their reservations. At the end is a set of rules to follow that can
steer your programs clear of any reserved names.

Balancing Process

To match existing implementations, the ANSI C committee chose names like
printf and NULL. However, each such name reduced the set of names
available for free use in C programs.

On the other hand, before standardization, implementors felt free to add both
new keywords to their compilers and names to headers. No program could be
guaranteed to compile from one release to another, let alone port from one
vendor’s implementation to another.

As a result, the Committee made a hard decision: to restrict all conforming
implementations from including any extra names, except those with certain
forms. It is this decision that causes most C compilation systems to be almost
conforming. Nevertheless, the Standard contains 32 keywords and almost 250
names in its headers, none of which necessarily follow any particular naming
pattern.

Making the Transition to ANSI C 27

1

Standard Headers

The standard headers are:

Most implementations provide more headers, but a strictly conforming ANSI C
program can only use these.

Other standards disagree slightly regarding the contents of some of these
headers. For example, POSIX (IEEE 1003.1) specifies that fdopen is declared
in stdio.h . To allow these two standards to coexist, POSIX requires the
macro _POSIX_SOURCE to be #define d prior to the inclusion of any header
to guarantee that these additional names exist. In its Portability Guide, X/Open
has also used this macro scheme for its extensions. X/Open’s macro is
_XOPEN_SOURCE.

ANSI C requires the standard headers to be both self-sufficient and
idempotent. No standard header needs any other header to be #include d
before or after it, and each standard header can be #include d more than once
without causing problems. The Standard also requires that its headers be
#include d only in safe contexts, so that the names used in the headers are
guaranteed to remain unchanged.

Names Reserved for Implementation Use

The Standard places further restrictions on implementations regarding their
libraries. In the past, most programmers learned not to use names like read
and write for their own functions on UNIX Systems. ANSI C requires that
only names reserved by the Standard be introduced by references within the
implementation.

Table 1-3 Standard Headers

assert.h locale.h stddef.h

ctype.h math.h stdio.h

errno.h setjmp.h stdlib.h

float.h signal.h string.h

limits.h stdarg.h time.h

28 C 4.0 Transition Guide for SPARC Systems

1

Thus, the Standard reserves a subset of all possible names for implementations
to use. This class of names consists of identifiers that begin with an underscore
and continue with either another underscore or a capital letter. The class of
names contains all names matching the following regular expression:

Strictly speaking, if your program uses such an identifier, its behavior is
undefined. Thus, programs using _POSIX_SOURCE (or _XOPEN_SOURCE)
have undefined behavior.

However, undefined behavior comes in different degrees. If, in a POSIX-
conforming implementation you use _POSIX_SOURCE, you know that your
program’s undefined behavior consists of certain additional names in certain
headers, and your program still conforms to an accepted standard. This
deliberate loophole in the ANSI C standard allows implementations to
conform to seemingly incompatible specifications. On the other hand, an
implementation that does not conform to the POSIX standard is free to behave
in any manner when encountering a name such as _POSIX_SOURCE.

The Standard also reserves all other names that begin with an underscore for
use in header files as regular file scope identifiers and as tags for structures
and unions, but not in local scopes. The common practice of having functions
named _filbuf and _doprnt to implement hidden parts of the library is
allowed.

Names Reserved for Expansion

In addition to all the names explicitly reserved, the Standard also reserves (for
implementations and future standards) names matching certain patterns:

_[_A-Z][0-9_a-zA-Z]*

Table 1-4 Names Reserved for Expansion

File Reserved Name Pattern

errno.h E[0-9A-Z].*

ctype.h (to|is)[a-z].*

locale.h LC_[A-Z].*

math.h current function names[fl]

Making the Transition to ANSI C 29

1

In the above lists, names that begin with a capital letter are macros and are
reserved only when the associated header is included. The rest of the names
designate functions and cannot be used to name any global objects or
functions.

Names Safe to Use

There are four simple rules you can follow to keep from colliding with any
ANSI C reserved names:

• #include all system headers at the top of your source files (except possibly
after a #define of _POSIX_SOURCE or _XOPEN_SOURCE, or both).

• Do not define or declare any names that begin with an underscore.

• Use an underscore or a capital letter somewhere within the first few
characters of all file scope tags and regular names. Beware of the va_ prefix
found in stdarg.h or varargs.h .

• Use a digit or a non-capital letter somewhere within the first few characters
of all macro names. Almost all names beginning with an E are reserved if
errno.h is #include d.

These rules are just a general guideline to follow, as most implementations will
continue to add names to the standard headers by default.

Internationalization
The section “Multibyte Characters and Wide Characters” on page 22
introduced the internationalization of the standard libraries. This section
discusses the affected library functions and gives some hints on how programs
should be written to take advantage of these features.

signal.h (SIG|SIG_)[A-Z].*

stdlib.h str[a-z].*

string.h (str|mem|wcs)[a-z].*

Table 1-4 Names Reserved for Expansion (Continued)

File Reserved Name Pattern

30 C 4.0 Transition Guide for SPARC Systems

1

Locales

At any time, a C program has a current locale—a collection of information that
describes the conventions appropriate to some nationality, culture, and
language. Locales have names that are strings. The only two standardized
locale names are "C" and "" . Each program begins in the "C" locale, which
causes all library functions to behave just like they have historically. The ""
locale is the implementation’s best guess at the correct set of conventions
appropriate to the program’s invocation. "C" and "" can cause identical
behavior. Other locales may be provided by implementations.

For the purposes of practicality and expediency, locales are partitioned into a
set of categories. A program can change the complete locale, or just one or
more categories. Generally, each category affects a set of functions disjoint
from the functions affected by other categories, so temporarily changing one
category for a little while can make sense.

The setlocale() Function

The setlocale() function is the interface to the program’s locale. In general,
any program that uses the invocation country’s conventions should place a call
such as:

early in the program’s execution path. This call causes the program’s current
locale to change to the appropriate local version, since LC_ALL is the macro
that specifies the entire locale instead of one category. The following are the
standard categories:

#include <locale.h>
/*...*/
setlocale(LC_ALL, "");

LC_COLLATE sorting information

LC_CTYPE character classification information

LC_MONETARY currency printing information

LC_NUMERIC numeric printing information

LC_TIME date and time printing information

Making the Transition to ANSI C 31

1

Any of these macros can be passed as the first argument to setlocale() to
specify that category.

The setlocale() function returns the name of the current locale for a given
category (or LC_ALL) and serves in an inquiry-only capacity when its second
argument is a null pointer. Thus, code similar to the following can be used to
change the locale or a portion thereof for a limited duration:

Most programs do not need this capability.

Changed Functions

Wherever possible and appropriate, existing library functions were extended to
include locale-dependent behavior. These functions came in two groups:

• Those declared by the ctype.h header (character classification and
conversion), and

• Those that convert to and from printable and internal forms of numeric
values, such as printf() and strtod() .

All ctype.h predicate functions, except isdigit() and isxdigit() , can
return nonzero (true) for additional characters when the LC_CTYPE category of
the current locale is other than "C" . In a Spanish locale, isalpha(’ñ’)
should be true. Similarly, the character conversion functions, tolower() and
toupper() , should appropriately handle any extra alphabetic characters
identified by the isalpha() function. The ctype.h functions are almost
always macros that are implemented using table lookups indexed by the
character argument. Their behavior is changed by resetting the table(s) to the
new locale’s values, and therefore there is no performance impact.

#include <locale.h>
/*...*/
char *oloc;
/*...*/
oloc = setlocale(LC_ category, NULL);
if (setlocale(LC_ category, "new") != 0)
{

/* use temporarily changed locale */
(void)setlocale(LC_ category, oloc);

}

32 C 4.0 Transition Guide for SPARC Systems

1

Those functions that write or interpret printable floating values can change to
use a decimal-point character other than period (.) when the LC_NUMERIC
category of the current locale is other than "C" . There is no provision for
converting any numeric values to printable form with thousands separator-
type characters. When converting from a printable form to an internal form,
implementations are allowed to accept such additional forms, again in other
than the "C" locale. Those functions that make use of the decimal-point
character are the printf() and scanf() families, atof() , and strtod() .
Those functions that are allowed implementation-defined extensions are
atof() , atoi() , atol() , strtod() , strtol() , strtoul() , and the
scanf() family.

New Functions

Certain locale-dependent capabilities were added as new standard functions.
Besides setlocale() , which allows control over the locale itself, the
Standard includes the following new functions:

In addition, there are the multibyte functions mblen() , mbtowc() ,
mbstowcs() , wctomb() , and wcstombs() .

The localeconv() function returns a pointer to a structure containing
information useful for formatting numeric and monetary information
appropriate to the current locale’s LC_NUMERIC and LC_MONETARY categories.
This is the only function whose behavior depends on more than one category.
For numeric values, the structure describes the decimal-point character, the
thousands separator, and where the separator(s) should be located. There are
fifteen other structure members that describe how to format a monetary value.

The strcoll() function is analogous to the strcmp() function, except that
the two strings are compared according to the LC_COLLATE category of the
current locale. The strxfrm() function can also be used to transform a string

localeconv() numeric/monetary conventions

strcoll() collation order of two strings

strxfrm() translate string for collation

strftime() formatted date/time conversion

Making the Transition to ANSI C 33

1

into another, such that any two such after-translation strings can be passed to
strcmp() , and get an ordering analogous to what strcoll() would have
returned if passed the two pre-translation strings.

The strftime() function provides formatting similar to that used with
sprintf() of the values in a struct tm , along with some date and time
representations that depend on the LC_TIME category of the current locale.
This function is based on the ascftime() function released as part of UNIX
System V Release 3.2.

Grouping and Evaluation in Expressions
One of the choices made by Dennis Ritchie in the design of C was to give
compilers a license to rearrange expressions involving adjacent operators that
are mathematically commutative and associative, even in the presence of
parentheses. This is explicitly noted in the appendix in the The C Programming
Language by Kernighan and Ritchie. However, ANSI C does not grant
compilers this same freedom.

This section discusses the differences between these two definitions of C and
clarifies the distinctions between an expression’s side effects, grouping, and
evaluation by considering the expression statement from the following code
fragment.

Definitions

The side effects of an expression are its modifications to memory and its
accesses to volatile qualified objects. The side effects in the above
expression are the updating of i and p and any side effects contained within
the functions f() and g() .

An expression’s grouping is the way values are combined with other values
and operators. The above expression’s grouping is primarily the order in
which the additions are performed.

int i, *p, f(void), g(void);
/*...*/
i = *++p + f() + g();

34 C 4.0 Transition Guide for SPARC Systems

1

An expression’s evaluation includes everything necessary to produce its
resulting value. To evaluate an expression, all specified side effects must occur
anywhere between the previous and next sequence point, and the specified
operations are performed with a particular grouping. For the above
expression, the updating of i and p must occur after the previous statement
and by the ; of this expression statement; the calls to the functions can occur in
either order, any time after the previous statement, but before their return
values are used. In particular, the operators that cause memory to be updated
have no requirement to assign the new value before the value of the operation
is used.

The K&R C Rearrangement License

The K&R C rearrangement license applies to the above expression because
addition is mathematically commutative and associative. To distinguish
between regular parentheses and the actual grouping of an expression, the left
and right curly braces designate grouping. The three possible groupings for
the expression are:

All of these are valid given K&R C rules. Moreover, all of these groupings are
valid even if the expression were written instead, for example, in either of
these ways:

If this expression is evaluated on an architecture for which either overflows
cause an exception, or addition and subtraction are not inverses across an
overflow, these three groupings behave differently if one of the additions
overflows.

For such expressions on these architectures, the only recourse available in K&R
C was to split the expression to force a particular grouping. The following are
possible rewrites that respectively enforce the above three groupings:

i = { {*++p + f()} + g() };
i = { *++p + {f() + g()} };
i = { {*++p + g()} + f() };

i = *++p + (f() + g());
i = (g() + *++p) + f();

i = *++p; i += f(); i += g();
i = f(); i += g(); i += *++p;
i = *++p; i += g(); i += f();

Making the Transition to ANSI C 35

1

The ANSI C Rules

ANSI C does not allow operations to be rearranged that are mathematically
commutative and associative, but that are not actually so on the target
architecture. Thus, the precedence and associativity of the ANSI C grammar
completely describes the grouping for all expressions; all expressions must be
grouped as they are parsed. The expression under consideration is grouped in
this manner:

This code still does not mean that f() must be called before g() , or that p
must be incremented before g() is called.

In ANSI C, expressions need not be split to guard against unintended
overflows.

The Parentheses

ANSI C is often erroneously described as honoring parentheses or evaluating
according to parentheses due to an incomplete understanding or an inaccurate
presentation.

Since ANSI C expressions simply have the grouping specified by their parsing,
parentheses still only serve as a way of controlling how an expression is
parsed; the natural precedence and associativity of expressions carry exactly
the same weight as parentheses.

The above expression could have been written as:

with no different effect on its grouping or evaluation.

The As If Rule

There were several reasons for the K&R C rearrangement rules:

• The rearrangements provide many more opportunities for optimizations,
such as compile-time constant folding.

i = { {*++p + f()} + g() };

i = (((*(++p)) + f()) + g());

36 C 4.0 Transition Guide for SPARC Systems

1

• The rearrangements do not change the result of integral-typed expressions
on most machines.

• Some of the operations are both mathematically and computationally
commutative and associative on all machines.

The ANSI C Committee eventually became convinced that the rearrangement
rules were intended to be an instance of the as if rule when applied to the
described target architectures. ANSI C’s as if rule is a general license that
permits an implementation to deviate arbitrarily from the abstract machine
description as long as the deviations do not change the behavior of a valid C
program.

Thus, all the binary bitwise operators (other than shifting) are allowed to be
rearranged on any machine because there is no way to notice such
regroupings. On typical two’s-complement machines in which overflow wraps
around, integer expressions involving multiplication or addition can be
rearranged for the same reason.

Therefore, this change in C does not have a significant impact on most C
programmers.

Incomplete Types
The ANSI C standard introduced the term “incomplete type” to formalize a
fundamental, yet misunderstood, portion of C, implicit from its beginnings.
This section describes incomplete types, where they are permitted, and why
they are useful.

Types

ANSI separates C’s types into three distinct sets: function, object, and
incomplete. Function types are obvious; object types cover everything else,
except when the size of the object is not known. The Standard uses the term
“object type” to specify that the designated object must have a known size, but
it is important to know that incomplete types other than void also refer to an
object.

Making the Transition to ANSI C 37

1

There are only three variations of incomplete types: void , arrays of
unspecified length, and structures and unions with unspecified content. The
type void differs from the other two in that it is an incomplete type that
cannot be completed, and it serves as a special function return and parameter
type.

Completing Incomplete Types

An array type is completed by specifying the array size in a following
declaration in the same scope that denotes the same object. When an array
without a size is declared and initialized in the same declaration, the array has
an incomplete type only between the end of its declarator and the end of its
initializer.

An incomplete structure or union type is completed by specifying the content
in a following declaration in the same scope for the same tag.

Declarations

Certain declarations can use incomplete types, but others require complete
object types. Those declarations that require object types are array elements,
members of structures or unions, and objects local to a function. All other
declarations permit incomplete types. In particular, the following constructs
are permitted:

• Pointers to incomplete types
• Functions returning incomplete types
• Incomplete function parameter types
• typedef names for incomplete types

The function return and parameter types are special. Except for void , an
incomplete type used in such a manner must be completed by the time the
function is defined or called. A return type of void specifies a function that
returns no value, and a single parameter type of void specifies a function that
accepts no arguments.

Since array and function parameter types are rewritten to be pointer types, a
seemingly incomplete array parameter type is not actually incomplete. The
typical declaration of main ’s argv , namely, char *argv[] , as an unspecified
length array of character pointers, is rewritten to be a pointer to character
pointers.

38 C 4.0 Transition Guide for SPARC Systems

1

Expressions

Most expression operators require complete object types. The only three
exceptions are the unary & operator, the first operand of the comma operator,
and the second and third operands of the ?: operator. Most operators that
accept pointer operands also permit pointers to incomplete types, unless
pointer arithmetic is required. The list includes the unary * operator. For
example, given:

&*p is a valid subexpression that makes use of this.

Justification

Why are incomplete types necessary? Ignoring void , there is only one feature
provided by incomplete types that C has no other way to handle, and that has
to do with forward references to structures and unions. If one has two
structures that need pointers to each other, the only way to do so is with
incomplete types:

All strongly typed programming languages that have some form of pointer
and heterogeneous data types provide some method of handling this case.

void *p

struct a { struct b *bp; };
struct b { struct a *ap; };

Making the Transition to ANSI C 39

1

Examples

Defining typedef names for incomplete structure and union types is
frequently useful. If you have a complicated bunch of data structures that
contain many pointers to each other, having a list of typedef s to the
structures up front, possibly in a central header, can simplify the declarations.

Moreover, for those structures and unions whose contents should not be
available to the rest of the program, a header can declare the tag without the
content. Other parts of the program can use pointers to the incomplete
structure or union without any problems, unless they attempt to use any of its
members.

A frequently used incomplete type is an external array of unspecified length.
Generally, it is not necessary to know the extent of an array to make use of its
contents.

Compatible and Composite Types
With K&R C, and even more so with ANSI C, it is possible for two declarations
that refer to the same entity to be other than identical. The term “compatible
type” is used in ANSI C to denote those types that are “close enough”. This
section describes compatible types as well as “composite types”—the result of
combining two compatible types.

typedef struct item_tag Item;
typedef union note_tag Note;
typedef struct list_tag List;

. . .
struct item_tag { . . . };

. . .
struct list_tag {

List *next; . . .
};

40 C 4.0 Transition Guide for SPARC Systems

1

Multiple Declarations

If a C program were only allowed to declare each object or function once, there
would be no need for compatible types. Linkage, which allows two or more
declarations to refer to the same entity, function prototypes, and separate
compilation all need such a capability. Separate translation units (source files)
have different rules for type compatibility from within a single translation unit.

Separate Compilation Compatibility

Since each compilation probably looks at different source files, most of the
rules for compatible types across separate compiles are structural in nature:

• Matching scalar (integral, floating, and pointer) types must be compatible,
as if they were in the same source file.

• Matching structures, unions, and enums must have the same number of
members. Each matching member must have a compatible type (in the
separate compilation sense), including bit-field widths.

• Matching structures must have the members in the same order. The order of
union and enum members does not matter.

• Matching enum members must have the same value.

An additional requirement is that the names of members, including the lack
of names for unnamed members, match for structures, unions, and enums,
but not necessarily their respective tags.

Single Compilation Compatibility

When two declarations in the same scope describe the same object or function,
the two declarations must specify compatible types. These two types are then
combined into a single composite type that is compatible with the first two.
More about composite types later.

The compatible types are defined recursively. At the bottom are type specifier
keywords. These are the rules that say that unsigned short is the same as
unsigned short int , and that a type without type specifiers is the same as
one with int . All other types are compatible only if the types from which they

Making the Transition to ANSI C 41

1

are derived are compatible. For example, two qualified types are compatible if
the qualifiers, const and volatile , are identical, and the unqualified base
types are compatible.

Compatible Pointer Types

For two pointer types to be compatible, the types they point to must be
compatible and the two pointers must be identically qualified. Recall that the
qualifiers for a pointer are specified after the * , so that these two declarations

declare two differently qualified pointers to the same type, int .

Compatible Array Types

For two array types to be compatible, their element types must be compatible.
If both array types have a specified size, they must match, that is, an
incomplete array type (see “Incomplete Types” on page 36) is compatible both
with another incomplete array type and an array type with a specified size.

Compatible Function Types

To make functions compatible, follow these rules:

• For two function types to be compatible, their return types must be
compatible. If either or both function types have prototypes, the rules are
more complicated.

• For two function types with prototypes to be compatible, they also must
have the same number of parameters, including use of the ellipsis (...)
notation, and the corresponding parameters must be parameter-compatible.

• For an old-style function definition to be compatible with a function type
with a prototype, the prototype parameters must not end with an ellipsis
(...). Each of the prototype parameters must be parameter-compatible with
the corresponding old-style parameter, after application of the default
argument promotions.

int *const cpi;
int *volatile vpi;

42 C 4.0 Transition Guide for SPARC Systems

1

• For an old-style function declaration (not a definition) to be compatible with
a function type with a prototype, the prototype parameters must not end
with an ellipsis (...). All of the prototype parameters must have types that
would be unaffected by the default argument promotions.

• For two types to be parameter-compatible, the types must be compatible
after the top-level qualifiers, if any, have been removed, and after a function
or array type has been converted to the appropriate pointer type.

Special Cases

signed int behaves the same as int , except possibly for bit-fields, in which a
plain int may denote an unsigned-behaving quantity.

Another interesting note is that each enumeration type must be compatible
with some integral type. For portable programs, this means that enumeration
types are separate types. In general, the ANSI C standard views them in that
manner.

Composite Types

The construction of a composite type from two compatible types is also
recursively defined. The ways compatible types can differ from each other are
due either to incomplete arrays or to old-style function types. As such, the
simplest description of the composite type is that it is the type compatible with
both of the original types, including every available array size and every
available parameter list from the original types.

43

K&R Sun C / Sun ANSI C
Differences A

Introduction
This appendix describes the differences between the previous K&R Sun C and
Sun ANSI C, as implemented on Solaris 2.x.

“K&R Sun C Incompatibilities with Sun ANSI C” on page 44 describes
previous Sun C features that are incompatible with Sun ANSI C. These
differences should be addressed when porting source code written for the Sun
C compiler to Sun ANSI C.

“Keywords” on page 51 lists reserved words used by the ANSI C standard,
Sun ANSI C, Sun C, and those defined by the Sun ANSI and Sun C
preprocessors.

44 C 4.0 Transition Guide for SPARC Systems

A

K&R Sun C Incompatibilities with Sun ANSI C

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C

Topic Sun C Sun ANSI C

envp argument
to main()

Allows envp as third argument to main() . Allows this third argument; however, this usage is
not strictly conforming to the ANSI C standard.

Keywords Treats the identifiers const, volatile , and
signed as ordinary identifiers.

const , volatile , and signed are keywords.

extern and
static
functions
declarations
inside a block

Promotes these function declarations to file scope. The ANSI standard does not guarantee that block
scope function declarations are promoted to file
scope.

Identifiers Allows dollar signs ($) in identifiers. $ not allowed.

long float
types

Accepts long float declarations and treats
these as double (s).

Does not accept these declarations.

Multi-byte
character
constants

int mc = 'abcd';
yields:
abcd

int mc = 'abcd';
yields:
dcba

Integer
constants

Accepts 8 or 9 in octal escape sequences. Does not accept 8 or 9 in octal escape sequences.

Assignment
operators

Treats the following operator pairs as two tokens,
and as a consequence, permits white space
between them:

*=, /=, %=, +=, -=, <<=, >>=, &=, ̂ =,
|=

Treats them as single tokens, and therefore
disallows white space in between.

Unsigned
preserving
semantics for
expressions

Supports unsigned preserving, that is, unsigned
char/shorts are converted into unsigned
int (s).

Supports value-preserving, that is, unsigned
char /short (s) are converted into int (s).

K&R Sun C / Sun ANSI C Differences 45

A

Single/double
precision
calculations

Promotes the operands of floating point
expressions to double .

Functions which are declared to return float s
always promote their return values to double s.

Allows operations on float s to be performed in
single precision calculations.

Allows float return types for these functions.

Name spaces of
struct/union
members

Allows struct , union , and arithmetic types
using member selection operators ('. ', '-> ') to
work on members of other struct (s) or unions .

Requires that every unique struct /union have
its own unique name space.

A cast as an
lvalue

Supports casts as lvalue (s). For example:

(char *)ip = &char;

Does not support this feature.

Implied int
declarations

Supports declarations without an explicit type
specifier. A declaration such as num; is treated as
implied int . For example:

num; /* num implied as an int */
int num2; /* num2 explicitly

 declared an int */

The num; declaration (without the explicit type
specifier int) is not supported, and generates a
syntax error.

Empty
declarations

Allows empty declarations, such as:
int;

Except for tags, disallows empty declarations.

Type specifiers
on type
definitions

Allows type specifiers such as unsigned,
short, long on typedef s declarations. For
example:

typedef short small;
unsigned small x;

Does not allow type specifiers to modify typedef
declarations.

Types allowed
on bit fields

Allows bit fields of all integral types, including
unnamed bit fields.

The ABI requires support of unnamed bit fields
and the other integral types.

Supports bitfields only of the type int , unsigned
int and signed int . Other types are
undefined.

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

46 C 4.0 Transition Guide for SPARC Systems

A

Treatment of
tags in
incomplete
declarations

Ignores the incomplete type declaration. In the
following example, f1 refers to the outer
struct :

struct x { . . . } s1;
{

struct x;
struct y {struct x f1; } s2;
struct x { . . . };

}

In an ANSI-conforming implementation, an
incomplete struct or union type specifier hides
an enclosing declaration with the same tag.

Mismatch on
struct/union
/enum
declarations

Allows a mismatch on the struct/enum/union
type of a tag in nested struct/union
declarations. In the following example, the
second declaration is treated as a struct :

struct x { . . . } s1;
{

union x s2;
. . .

}

Treats the inner declaration as a new declaration,
hiding the outer tag.

Labels in
expressions

Treats labels as (void *) lvalue s. Does not allow labels in expressions.

switch
condition type

Allows float (s) and double (s) by converting
them to int (s).

Evaluates only integral types (int, char , and
enumerated) for the switch condition type.

Syntax of
conditional
inclusion
directives

The preprocessor ignores trailing tokens after an
#else or #endif directive.

Disallows such constructs.

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

K&R Sun C / Sun ANSI C Differences 47

A

Token-pasting
and the ##
preprocessor
operator

Does not recognize the ## operator. Token-
pasting is accomplished by placing a comment
between the two tokens being pasted:

#define PASTE(A,B) A/*any comment*/B

Defines ## as the preprocessor operator that
performs token-pasting, as shown in this example:

#define PASTE(A,B) A##B

Furthermore, the Sun ANSI C preprocessor
doesn’t recognize the Sun C method. Instead, it
treats the comment between the two tokens as
white space.

Preprocessor
rescanning

The preprocessor recursively substitutes:

#define F(X) X(arg)
F(F)

yields

arg(arg)

A macro is not replaced if it is found in the
replacement list during the rescan:

#define F(X) X(arg)
F(F)

yields:

F (arg)

typedef names
in formal
parameter lists

You can use typedef names as formal parameter
names in a function declaration. “Hides” the
typedef declaration.

Disallows the use of an identifier declared as a
typedef name as a formal parameter.

Implementa-
tion-specific
initializations of
aggregates

Uses a bottom-up algorithm when parsing and
processing partially elided initializers within
braces:

struct { int a[3]; int b; } \
w[] = { {1}, 2};

yields

sizeof(w) = 16
w[0].a = 1, 0, 0
w[0].b = 2

Uses a top-down parsing algorithm. For example:

struct { int a[3]; int b; } \
w[] = { {1}, 2};

yields

sizeof(w) = 32
w[0].a = 1, 0, 0
w[0].b = 0
w[1].a = 2, 0, 0
w[1].b = 0

Comments
spanning
include files

Allows comments which start in an #include
file to be terminated by the file that includes the
first file.

Comments are replaced by a white-space character
in the translation phase of the compilation, which
occurs before the #include directive is
processed.

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

48 C 4.0 Transition Guide for SPARC Systems

A

Formal
parameter
substitution
within a
character
constant

Substitutes characters within a character constant
when it matches the replacement list macro:

#define charize(c) 'c'
charize(Z)

yields:

'Z'

The character is not replaced:

#define charize(c) 'c'
charize(Z)

yields:

'c'

Formal
parameter
substitution
within a string
constant

The preprocessor substitutes a formal parameter
when enclosed within a string constant:

#define stringize(str) 'str'
stringize(foo)

yields:

”foo”

The # preprocessor operator should be used:

#define stringize(str) 'str'
stringize(foo)

yields:

”str”

Preprocessor
built into the
compiler “front-
end”

Compiler calls cpp (1).

Components used in the compiling are:

cpp
ccom
iropt
cg
inline
as
ld

Note: iropt and cg are invoked only with the
following options:

-O -xO2 -xO3 -xO4 -xa -fast

inline is invoked only if an inline template file
(file.il) is provided.

Preprocessor (cpp) is built directly into acomp, so
cpp is not directly involved, except in -Xs mode.

Components used in the compiling are:

cpp (-Xs mode only)
acomp
iropt
cg
ld

Note: iropt and cg are invoked only with the
following options:

-O -xO2 -xO3 -xO4 -xa -fast

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

K&R Sun C / Sun ANSI C Differences 49

A

Line
concatenation
with backslash

Does not recognize the backslash character in this
context.

Requires that a newline character immediately
preceded by a backslash character be spliced
together.

Trigraphs in
string literals

Does not support this ANSI C feature.

asm keyword asm is a keyword. asm is treated as an ordinary identifier.

Linkage of
identifiers

Does not treat uninitialized static declarations
as tentative declarations. As a consequence, the
second declaration will generate a 'redeclaration'
error, as in:

static int i = 1;

static int i;

Treats uninitialized static declarations as
tentative declarations.

Name spaces Distinguishes only three : struct/union/enum
tags, members of struct/union/enum , and
everything else.

Recognizes four distinct name spaces: label names,
tags (the names that follow the keywords
struct, union or enum), members of
struct/union/enum , and ordinary identifiers.

long double
type

Not supported. Allows long double type declaration.

Floating point
constants

The floating point suffixes, f , l , F, and L, are not
supported.

Unsuffixed
integer
constants can
have different
types

The integer constant suffixes u and U are not
supported.

Wide character
constants

Does not accept the ANSI C syntax for wide
character constants, as in:

wchar_t wc = L’x’;

Supports this syntax.

'\a' and '\x' Treats them as the characters 'a' and 'x '. Treats '\a' and '\x' as special escape
sequences.

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

50 C 4.0 Transition Guide for SPARC Systems

A

Concatenation
of string literals

Does not support the ANSI C concatenation of
adjacent string literals.

Wide character
string literal
syntax

Does not support the ANSI C wide character,
string literal syntax shown in this example:

wchar_t *ws = L"hello";

Supports this syntax.

Pointers:
void * versus
char *

Supports the ANSI C void * feature.

Unary plus
operator

Does not support this ANSI C feature.

Function
prototypes—
ellipses

Not supported. ANSI C defines the use of ellipses "..." to denote a
variable argument parameter list.

Type definitions Disallows typedef s to be redeclared in an inner
block by another declaration with the same type
name.

Allows typedef s to be redeclared in an inner
block by another declaration with the same type
name.

Initialization of
extern
variables

Does not support the initialization of variables
explicitly declared as extern .

Treats the initialization of variables explicitly
declared as extern , as definitions.

Initialization of
aggregates

Does not support the ANSI C initialization of
unions or automatic structures.

Prototypes Does not support this ANSI C feature.

Syntax of
preprocessing
directive

Recognizes only those directives with a # in the
first column.

ANSI C allows leading white-space characters
before a # directive.

The #
preprocessor
operator

Does not support the ANSI C # preprocessor
operator.

#error
directive

Does not support this ANSI C feature.

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

K&R Sun C / Sun ANSI C Differences 51

A

Keywords
The following tables list the keywords for the ANSI C Standard, the Sun ANSI
C compiler, and the Sun C compiler.

The first table lists the keywords defined by the ANSI C standard.

Sun ANSI defines one additional keyword, asm. However, asm is not
supported in -Xc mode.

Preprocessor
directives

Supports two pragmas,
unknown_control_flow and
makes_regs_inconsistent along with the
#ident directive. The preprocessor issues
warnings when it finds unrecognized pragmas.

Does not specify its behavior for unrecognized
pragmas.

Predefined
macro names

These ANSI C-defined macro names are not
defined:

__STDC__ __DATE__
__TIME__ __LINE__

Table A-2 ANSI C Standard Keywords

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

Table A-1 K&R Sun C Incompatibilities with Sun ANSI C (Continued)

Topic Sun C Sun ANSI C

52 C 4.0 Transition Guide for SPARC Systems

A

Keywords in Sun C are listed below.

Table A-3 Sun C (K&R) Keywords

asm auto break case

char continue default do

double else enum extern

float for fortran goto

if int long register

return short sizeof static

struct switch typedef union

unsigned void while

53

Index

B
bit-fields, 42
bit-fields, promotion of, 12

C
const, 18 to 21, 41
constants, promotion of integral, 12

E
ellipsis notation, 4, 6, 41
expressions, grouping and evaluation

in, 33 to 36

F
function prototypes, 2 to 6
functions with varying argument lists, 6

to 9

I
incomplete types, 36 to 39
integral constants, promotion of, 12
internationalization, 22 to 25, 29 to 33

L
locale, 30, 32

M
macro expansion, 16
multibyte characters and wide

characters, 22 to 25

P
preprocessing, 14 to 18

stringizing, 17
token pasting, 18

promotion, 10 to 14
bit-fields, 12
default arguments, 4
integral constants, 12
value preserving, 10

R
reserved names, 26 to 29

for expansion, 28
for implementation use, 27
guidelines for choosing, 29

54 C 4.0 Transition Guide for SPARC Systems

S
setlocale (3C), 30, 32

T
tokens, 14 to 18
trigraph sequences, 14
type qualifiers, 18 to 22
types, compatible and composite, 39 to 42
types, incomplete, 36 to 39

V
varargs (5), 4
volatile, 18 to 20, 21 to 22, 41

W
wide character constants, 24 to 25
wide characters, 23 to 25
wide string literals, 24 to 25

Index 55

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par un ou
plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et exclusivement
licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc. PostScript et Display PostScript
sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

