
i

Tools.h++ Class Library
Introduction and Reference Manual

Part No.: 802-3046-10
Revision A, November, 1995

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.
The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are
trademarks of Adobe Systems, Inc. All other product, service, or company names mentioned herein are claimed as trademarks
and trade names by their respective companies.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN. THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Introduction . 1

Overview and Features . 1

Supported C++ compilers . 3

Philosophy . 3

Conventions . 4

Reading this manual . 5

2. Getting Started with Tools.h++ . 7

Compiling a program using make . 7

Compiling a program from the command line 8

Pointer based classes vs. value base classes 8

Strings . 8

Vectors . 9

Hash tables . 10

Linked lists . 11

iv Tools.h++ Class Library

3. Compiling and Debugging . 13

Compiling a program . 13

Specialized compilation and linking options 14

Debugging a Program . 15

Debugging with the SPARCworks Debugger or dbx 15

4. Class Overview. 19

Concrete classes . 20

Simple classes . 20

Template classes . 20

Generic collection classes . 21

Abstract data types . 21

Smalltalk-like collection classes . 21

Common member functions . 22

Persistence . 22

Store size . 23

Stream I/O . 23

Comparisons. 24

Memory allocation . 24

Information flow . 25

Multi-thread safe . 26

Eight-bit clean. 26

Embedded nulls . 26

Indexing . 26

Contents v

Version. 26

Public Class Hierarchy . 28

5. Internationalization . 31

RWLocale and RWZone . 33

Dates . 34

Time . 36

Numbers . 39

Currency . 40

Wrap up. 41

6. Strings . 43

Example. 43

Collation . 45

Substrings . 46

Pattern matching . 47

Regular expressions. 47

String I/O . 48

iostreams . 48

Virtual streams . 50

Tokenizer. 50

Multibyte strings . 51

Wide character strings . 52

7. Using Class RWDate. 55

vi Tools.h++ Class Library

Example. 56

Constructors . 56

8. Using Class RWTime . 59

Setting the time zone . 59

Constructors . 60

Member functions . 60

9. Virtual Streams . 61

Specializing virtual streams . 64

Simple example . 65

Recap . 66

10. Using Class RWFile . 69

Example. 70

11. Using Class RWFileManager . 71

Construction . 71

Member functions . 72

12. Using Class RWBTreeOnDisk . 77

Construction . 78

Example. 79

13. Introduction to Collection Classes. 83

Concepts . 83

Contents vii

Storage methods. 84

Shallow versus deep copies . 85

Reference-based collections . 85

Value-based collections . 87

Retrieving objects. 88

Properties of objects. 88

Retrieval methods . 88

Iterators . 90

14. Templates . 93

Introduction . 93

Enter templates . 94

What's the catch? . 94

Factoring out commonality . 95

Naming scheme . 95

Types of templates . 96

Intrusive lists . 96

Value-based collections . 96

Pointer-based collections . 97

An example. 97

A more complicated example . 99

15. “Generic” Collection Classes . 103

Example. 104

Declaring generic collection classes. 105

viii Tools.h++ Class Library

User-defined functions . 106

Tester functions . 106

Apply functions . 110

16. Smalltalk-like Collection Classes . 113

Introduction . 113

Example. 116

Overview. 118

Bags versus Sets versus Hash Tables. 118

Sequenceable classes . 119

Dictionaries. 119

Virtual functions inherited from RWCollection 120

insert() . 120

find() and friends . 120

remove() functions. 123

apply() functions . 123

Functions clear() and clearAndDestroy() 124

Other functions shared by all RWCollections. 125

Class conversions. 125

Inserting and removing other collections 125

Selection . 125

Virtual functions inherited from RWSequenceable 126

A note on how objects are found . 128

Hashing. 128

Contents ix

17. Persistence . 129

Operators . 129

Example. 130

Summary. 134

18. Designing an RWCollectable Class . 137

Virtual functions inherited from RWCollectable 137

Example. 138

Steps to making an RWCollectable object 139

Add a default constructor . 140

RWDECLARE_/RWDEFINE_COLLECTABLE() 141

Virtual function isA() . 141

Virtual function newSpecies() . 141

An aside: the RWFactory . 142

Object destruction . 142

Virtual function compareTo() . 143

Virtual function isEqual() . 145

Virtual function hash() . 146

How to add persistence. 146

Virtual functions saveGuts(RWFile&) and
saveGuts(RWvostream&) . 146

Multiply-referenced objects . 148

Virtual functions restoreGuts(RWFile&) and
restoreGuts(RWvistream&) . 149

x Tools.h++ Class Library

Virtual function binaryStoreSize() . 150

Persisting custom collections . 150

Summary. 151

19. Errors . 157

Internal errors. 157

Non-recoverable internal errors. 158

Recoverable internal errors. 160

External errors . 162

Exception architecture . 163

Error handlers . 164

Debug version of the library. 164

20. Implementation Notes . 167

Copy on write. 167

A more comprehensive example . 168

More on storing and retrieving RWCollectables 169

Multiple inheritance . 173

Localizing messages . 174

21. Common Mistakes . 177

Redefinition of virtual functions . 177

Iterators . 178

Return type of operator>>() . 179

Include path . 179

Contents xi

Match library version with your application’s compiler options 180

Use the capabilities of the library! . 180

22. Class Reference . 185

RWBag . 187

RWBagIterator . 191

RWBench. 193

RWBinaryTree. 198

RWBinaryTreeIterator . 201

RWbistream . 203

RWBitVec. 208

RWbostream . 214

RWBTree . 219

RWBTreeDictionary . 223

RWBTreeOnDisk . 227

RWBufferedPageHeap. 232

RRWCacheManager. 234

RWCollectable . 236

RWCollectableDate . 240

RWCollectableInt . 242

RWCollectableString . 244

RWCollectableTime . 246

RWCollection . 248

RWCRegexp . 252

xii Tools.h++ Class Library

RWCString . 256

RWCSubString . 269

RWCTokenizer . 272

RWDate . 274

RWDiskPageHeap . 282

RWDlistCollectables . 285

RWDlistCollectablesIterator . 289

RWFactory . 292

RWFile . 294

RWFileManager . 298

RWHashDictionary . 300

RWHashDictionaryIterator. 304

RWHashTable . 306

RWHashTableIterator . 311

RWIdentityDictionary . 313

RWIdentitySet . 314

RWInteger . 315

RWIterator . 317

RWLocale . 318

RWLocaleSnapshot . 323

RWModel . 326

RWModelClient . 328

RWOrdered. 329

RWOrderedIterator . 333

Contents xiii

RWpistream . 334

RWpostream . 339

RWSequenceable . 344

RWSet . 346

RWSetIterator . 350

RWSlistCollectables . 352

RWSlistCollectablesIterator . 356

RWSlistCollectablesQueue . 359

RWSlistCollectablesStack . 362

RWSortedVector . 365

RWTime. 370

RWTimer . 376

RWVirtualPageHeap . 378

RWvistream . 381

RWvostream . 386

RWWString . 390

RWWSubString . 403

RWWTokenizer. 407

RWXDRistream . 409

RWXDRostream . 415

RWZone. 420

RWZoneSimple. 424

23. Templates . 431

xiv Tools.h++ Class Library

RWTBitVec<size>. 431

RWTIsvDlist<T> . 435

RWTIsvDlistIterator<T> . 441

RWTIsvSlist<T> . 443

RWTIsvSlistIterator<T> . 449

RWTPtrDlist<T> . 451

RWTPtrDlistIterator<T> . 458

RWTPtrHashDictionary<K,V>. 461

RWTPtrHashDictionaryIterator<K,V> . 466

RWTPtrHashSet<T> . 468

RWTPtrHashTable<T> . 471

RWTPtrHashTableIterator<T> . 475

RWTPtrOrderedVector<T> . 477

RWTPtrSlist<T> . 482

RWTPtrSlistIterator<T> . 488

RWTPtrSortedVector<T> . 491

RWTPtrVector<T> . 496

RWTQueue<T,C>. 499

RWTStack<T,C> . 502

RWTValDlist<T> . 505

RWTValDlistIterator<T> . 512

RWTValHashDictionary<K,V> . 515

RWTValHashDictionaryIterator<K,V> . 520

RWTValHashSet<T> . 522

Contents xv

RWTValHashTable<T> . 525

RWTValHashTableIterator<T> . 529

RWTValOrderedVector<T>. 530

RWTValSlist<T> . 535

RWTValSlistIterator<T> . 542

RWTValSortedVector<T> . 545

RWTValVector<T> . 550

RWTValVirtualArray<T> . 553

24. <generic.h> Classes . 559

RWGBitVec(size) . 559

RWGDlist(type) . 563

RWGDlistIterator(type) . 567

RWGOrderedVector(val) . 570

RWGQueue(type). 574

RWGSlist(type). 577

RWGSlistIterator(type) . 581

RWGSortedVector(val) . 584

RWGStack(type) . 588

RWGVector(val) . 590

A. Summary of typedefs and macros . 593

Constants: . 593

Typedefs: . 593

Pointers to Functions: . 594

xvi Tools.h++ Class Library

Enumerations: . 594

Standard Smalltalk Interface: . 594

B. Header file compiler.h . 597

C. Messages. 599

D. Bibliography . 603

Part 1— User’s Guide

1

Introduction 1

Overview and Features
Tools.h++ is a rich, robust, and versatile C++ foundation class library. By
“foundation” we mean a set of classes useful for virtually any programming
chore.

Tools.h++ is an industry standard. It has been chosen by a wide variety of
compiler vendors to be the standard library they include with every copy of
their compiler. It has been ported to dozens of compilers, many operating
systems, and is in use by thousands of users world wide. You can count on
Tools.h++ being available on whatever platform you might chose to program.

The package includes:

• Powerful single, multibyte, and wide character support
Class RWCString offers a full suite of operators and functions to
manipulate single- and multibyte character strings. Class RWWString offers
wide character string manipulation. Both classes make it easy to do
concatenation, comparison, indexing (with optional bounds checking), I/O,
case changes, stripping, and many other functions. Classes RWCSubString
and RWWSubString allow extraction and assignment to substrings. Class
RWCRegexp supports regular expression pattern searches. Classes
RWCTokenizer and RWWTokenizer can be used to break single and wide
character strings, respectively, into separate tokens.

2 Tools.h++ Class Library

1

• Time and date handling classes
Calculate the number of days between two dates, or the day of the week a
date represents; read and write days or times in arbitrary formats; etc.

• Internationalization support
Class RWLocale provides a convenient and easy-to-use framework for
internationalizing your software. Class RWTimeZone makes manipulating
time zones and daylight savings time easy.

• Persistent store
A powerful and sophisticated persistent store facility that allows complex
objects inheriting from class RWCollectable to be stored to disk or even
exchanged through a heterogeneous network. The object’s morphology
(e.g., multiple pointers to the same object, or a circularly linked list) is
maintained.

• Template based classes
A complete set of collection classes based on C++ templates. These include
singly- and doubly-linked lists, stacks, queues, ordered collections, hash
tables, sets, dictionaries, etc.

• Generic collection classes
For compilers that do not support templates yet, Tools.h++ includes a set of
template-like classes that use the C++ preprocessor and <generic.h> , a
header file included with most compilers. The interface to these “generic”
classes is similar enough to the template-based classes that if you decide to
make the transition, it will be easy.

• Smalltalk-like collection classes
A complete library of collection classes, modeled after the Smalltalk-80
programming environment: Set, Bag, OrderedCollection,
SortedCollection, Dictionary, Stack, Queue , etc. All of these
classes can be saved to disk and restored in a new address space, even on a
different operating system! An object need only inherit the abstract base
class RWCollectable to have full access to all of the functionality of the
collection classes. The interface to the Smalltalk names is done as
typedefs, allowing the actual implementation of, say, a Dictionary to be
changed from its default of a hash table of associations, to, say, a B-Tree.

• RWFile class
Encapsulates standard file operations.

• B-Tree disk retrieval
Efficient keyed access of disk records, using B-Trees.

Introduction 3

1

• File Space Manager
Allocates, deallocates and coalesces free space within a file.

• Still more classes...
Bit vectors, virtual I/O streams, caching managers, virtual arrays, etc.

• A complete error handling facility
Including a facility for handling exceptions.

• Online Examples
The source code for examples used in the chapter “Examples” is typically
found in /opt/SUNWspro/examples/Tools.h++ , depending on where
you installed C++. Also included are sample input and output files, if
needed, and makefiles.

Supported C++ compilers
Tools.h++ can be compiled without modification by a wide variety of C++
compilers. Contact Rogue Wave Software for further information.

Philosophy
The C++ language has several design goals that set it apart from most other
object-oriented languages. The first and foremost is efficiency: it is possible to
write production quality code that is every bit as efficient and small as code
that has been written in C, yet more maintainable. A second is a "less is more"
philosophy: no feature has been included in the language that will make non-
users of the feature suffer. For example, you will not find built-in garbage
collection. The result is a skeletal, lean-and-mean language (at least as far as
object-oriented languages go) that compiles fast and results in small, efficient,
but not terribly general, code.

Towards getting the best out of the language, the Tools.h++ class library has
adopted similar goals: Efficiency, simplicity, compactness, and predictability.

Efficiency. In general, you will find no feature that will slow things down for
the non-user of the feature. As many decisions as possible are made at compile
time, consistent with the C++ philosophy of static type checking. In most
cases, we offer a choice between classes with extreme simplicity, but little
generality, and classes that are a little more complex, but more general. We
have chosen not to require that all classes inherit a secular base class (such as

4 Tools.h++ Class Library

1

the class Object used by Smalltalk and The NIH Classes). Instead, only objects
that are to be collected using the Smalltalk-like collection classes need inherit a
base class RWCollectable . The advantage of this is that virtual base classes
are not necessary, simplifying the inheritance tree and the difficult problem of
casting from a base class back to its derived class.

Simplicity. There is a temptation to keep adding subclasses to add power or
convenience for the user or to demonstrate one's prowess with the language.
We have avoided this. Although the overall architecture is sophisticated and
integrated, each class usually plays just one well-defined, pivotal role. Most
functions are extraordinarily simple: a few lines of code.

Compactness. An important goal was to make sure that programs compiled
small. This was to insure that they can be used in embedded systems.

Predictability. Many new users of C++ become so giddy with the power of
being able to overload esoteric operators like "&=" that they forget about tried-
and-true function calls and start redefining everything in sight. Again, we
have avoided this and have tried hard to make all of the familiar operators
work just as you might expect—there are no surprises. This approach gives
great symmetry to the class library, making it possible to do such things as, say,
change the implementation of a Dictionary from a hash table to a B-Tree
with impunity.

In general, whenever we considered a new feature, we tried to think as
Stroustrup would: if there was already a way to do it, we left it out!

Conventions
All class names start with the letters "RW". All function names start with a
lower case letter, but subsequent words are capitalized. There are no underline
characters used in names. An example of a class name is RWHashDictionary ,
of a function compareTo() . Generally, abbreviations are not used in function
names, making them easy to remember.

Some of the class names may seem unnecessarily tedious (for example, a
singly-linked list of collectables, accessible as a stack, is a
RWSlistCollectablesStack). There are two reasons for this. First, using
generic names like "Stack" invites a name collision with someone else's stack
class, should you write a large program that combines many class libraries. We

Introduction 5

1

have tried very hard to avoid polluting the global name space with generic
names like "String", "Vector", "Stack", etc. It is also for this reason that class
names and many of the potentially generic names have an "RW" prepended
(e.g., "RWBoolean"). We have worked hard to make sure that Tools.h++ is
compatible with other class libraries. Secondly, the names are intended to
convey as precisely as possible what the class does.

Nevertheless, there is a set of typedefs that give these various classes generic
names like Stack or OrderedCollection that are consistent with the
Smalltalk-80 names.

Reading this manual
This manual is intended to serve two purposes: to be an introduction to using
the Tools.h++ Class Library and to be an intermediate-level tutorial on the
language C++, using the Class Library as an aid to discussing some of the more
subtle aspects of C++. It assumes that you are familiar with the basics of C++,
but not yet an expert. The discussion is generally more detailed than what is
necessary to actually use the library—if you find yourself getting overwhelmed
by details, by all means, abandon the coming chapters and rely on the many
examples provided with the library.

If you are not familiar with C++ at all, we do not recommend trying to learn it
from the three definitive reference books available: Stroustrup (1991), Lippman
(1989), and Ellis and Stroustrup (1990; sometimes ominously referred to as "The
ARM"—Annotated Reference Manual). Their terse (but precise) style make
them better suited as references to the language.

In what follows, there are several references to Stroustrup and Lippman's
books—it may be helpful to have a copy available.

Occasionally there will be a highlighted paragraph explaining either a key
point, or "An Aside". The latter can be ignored safely without losing the
essential thread of the discussion.

Throughout this manual, Class names, examples, operating system commands,
and code fragments are shown in a courier font. Vertical ellipses are used to
indicate that some part of the code is missing:

6 Tools.h++ Class Library

1

main()
{
.
. // Something happens
.
}

7

Getting Started with Tools.h++ 2

This chapter will get you started using some commonly used Tools.h++ classes.
For complete information on the classes discussed, read the appropriate section
in this manual.

Compiling a program using make

To compile any of the programs in this chapter using make, create a file in your
test directory, named Makefile , and insert these lines:

Then compile any of the programs in this chapter with:

where test.cc is the name of your program.

LDLIBS += -lrwtool
.KEEP_STATE:

%make test

8 Tools.h++ Class Library

2

Compiling a program from the command line
To compile test.cc from the command line type:

The resulting file, a.out , is executable.

Pointer based classes vs. value base classes

Tools.h++ has both pointer based and value based container templates. A
pointer based container class RWTPtrCont<MyClass> , stores a pointer to
MyClass . A value based container class RWTValCont<MyClass> physically
contains objects of MyClass . Using Ptr classes will typically reduce the size of
the object code of your application. The Val classes are generally better for
containing objects for built-in types such as int , char , or float . For more on
collections, see Section , “Types of templates,” on page 96.

Strings

Class: RWCString

This class is cleaner and easier to use than the C char* type. You can
efficiently pass RWCStrings by value as well as by reference. Here’s an
example:

%CC test.cc -lrwtool

#include <rw/cstring.h>
#include <rw/rstream.h>

void main () {
 RWCString ss("Cheer = ");
 for (int i=1; i<=10; i++) {
 ss += "Go! ";
 }
 cout << ss << endl;
}

Getting Started with Tools.h++ 9

2

prints:

For a full discussion of RWCString , see Chapter 6, “Strings”.

See also:

RWCSubString , RWCRegexp, RWWString , RWCTokenizer , RWWSubString ,
and RWWTokenizer .

Vectors

Classes: RWValOrderedVector<T>, RWTPtrVector<T>

These classes provide you with vectors with insertion and deletion.
RWValOrderedVector is value-based, while RWTPtrVector is pointer-based.
Here’s an example:

prints:

For more on vector classes, see Chapter 23, “Templates”.

See also:

RWT*Vector , RWT*SortedVector , RWTBitVec , RWTValVirtualArray,
and related Smalltalk-like classes.

Cheer = Go! Go! Go! Go! Go! Go! Go! Go! Go! Go!

#include <rw/tvordvec.h>
#include <rw/rstream.h>

void main () {
 RWTValOrderedVector<int> sv;
 for (int i=0; i<10; i++) {
 sv.insert(10-i);
 }
 cout << "Found 3 at " << sv.index(3) << endl;
}

Found 3 at 7

10 Tools.h++ Class Library

2

Hash tables

Classes: RWTValHashDictionary<K,V> , RWTPtrHashDictionary<K,V>

These classes provide hash tables with both a key and value. The following
example illustrates how to set up a hash table of names and associated
birthdays, using the name as the key:

prints:

For more on hash table classes, see Chapter 23, “Templates”.

See also:

RWT*HashSet , RWT*HashTable , their iterators, and related Smalltalk-like
classes.

#include <rw/tvhdict.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

unsigned hashString(const RWCString& str){return str.hash();}

main()
{
 RWTValHashDictionary<RWCString, RWDate> birthdays(hashString);

 birthdays.insertKeyAndValue("John", RWDate(12, "April",
1975));
 birthdays.insertKeyAndValue("Ivan", RWDate(2, "Nov", 1980));

 // Alternative syntax:
 birthdays["Susan"] = RWDate(30, "June", 1955);
 birthdays["Gene"] = RWDate(5, "Jan", 1981);

 // Print a birthday:
 cout << birthdays["John"] << endl;
 return 0;
}

April 12, 1975

Getting Started with Tools.h++ 11

2

Linked lists

Classes: RWTValSlist<T> , RWTValSlistIterator<T> , RWTPtrSlist<T> ,
RWTPtrSlistIterator<T>

These classes provide singly-linked lists. You manage storage belonging to
your objects. Tools.h++ manages the storage it uses to store the lists and list
nodes. Unless you use the "intrusive" list classes, use the iterator classes to
move incrementally through the lists rather than trying to access the list nodes
directly.

In this example notice the use of new and *it.key even though the template
parameter is plain RWCString with no * .

#include <rw/cstring.h>
#include <rw/rstream.h>
#include <rw/tpslist.h>

void main()
{
 RWTPtrSlist<RWCString> strings;

 RWCString ss("+");
 for (int i=0; i<10; i++) {
 strings.insert(new RWCString(ss));
 ss += "+";
 }

 RWTPtrSlistIterator<RWCString>it(strings);
 while (++it) cout << *it.key() << endl;
}

12 Tools.h++ Class Library

2

prints:

For more on lists, see Chapter 23, “Templates”.

See also:

RWTIsvSlist (an "intrusive" list type), RWT*Dlist , their iterator classes, and
similar list classes in the Smalltalk-like classes. RWT*HashSet ,
RWT*HashTable , their iterators, and related Smalltalk-like classes.

+
++
+++
++++
+++++
++++++
+++++++
++++++++
+++++++++
++++++++++

13

Compiling and Debugging 3

This section will tell you how to compile and debug programs using the
Tools.h++ class library.

Compiling a program
Consider the following simple program called test.cc (C++ and make both
recognize this suffix for C++ source files.):

Suppose the directory also contains a Makefile that looks like:

#include <rw/rwdate.h>
#include <rw/rstream.h>
main()
{

// Construct a date with today’s date:
RWDate date;

// Print it out:
cout << date << endl;
return 0;

}

For smarter tracking of dependencies
.KEEP_STATE:

Link definitions from Tools.h++ as needed:
LDLIBS=-lrwtool

14 Tools.h++ Class Library

3

You could do:

The header files for Tools.h++ are installed in a default location for header files
and the library librwtool.a is in a default location for libraries so the
compiler needs no further directions to find them.

All header files are specified as (using rwdate.h as an example):

<rw/rwdate.h>

with a leading rw. This is done to avoid potential naming conflicts with header
files from other libraries.

You may want to look at header files from Tools.h++ or some other library. The
C++ compiler will print out the name of every header file it reads if you pass it
the -H option on the command line, for example:

Specialized compilation and linking options

Tools.h++ uses Solaris to support you in writing applications that are sensitive
to different international locales, including Japanese and other wide character
sets. CC automatically links with system library -lw (w for wide). Use CC -v
to see detailed information about compilation and linking.

You can also use the Tools.h++ library to use in multithreaded applications. If
your application is multithreaded, compile and link it with the -mt option.
Tools.h++ uses safe system facilities, and has enough internal locking to
maintain its own integrity. For example, strings work correctly even though
they are implemented with hidden internal sharing of data. If you wish to
share Tools.h++ objects among threads in your address space, you must put
locks in your application. Your locks should prevent the same object from
being operated on by more than one thread (or lwp) at the same time.

% ls
Makefile test.cc
% make test
CC -o test test.cc -lrwtool
% test
May 7, 1993

% CC -H -c test.cc

Compiling and Debugging 15

3

The librwtool.a library can be used by both single-threaded and multi-
threaded applications. When linked with -mt certain entry points are resolved
by libthread . libC supplies adequate entry points for single-threaded
applications. A profiling version of librwtool.a is supplied with this release,
supporting both prof and gprof .

Debugging a Program
While your project is in development mode you may wish to use the
debugging and runtime chacking features of Tools.h+. By compiling with
RWDEBUG=1 and linking with -lrwtool_dbg rather than -lrwtool you turn
on runtime checks including validity of arguments you pass to many of the
Tools.h++ library functions. See Chapter 20, “Implementation Notes” for more
information.

Definitions of member functions in template classes are encrypted to protect
Tools.h++ source code in the binary distribution. If you have the full Tools.h++
source code you may compile the entire library with -g and debug with full
source available.

Debugging with the SPARCworks Debugger or dbx

To debug your program with the SPARCworks debugger or dbx, compile your
application with the -g option, and run it under the debugger. Both the
SPARCworks debugger and dbx provide high-level debugging to your source
code and they support C++. See Debugging a Program in the SPARCworks
documentation for more information.

The print and display commands give high-level access to Tools.h++ objects.
These commands let you execute a C++ expression and see the value of it. The
expression can include calls to C++ functions that are visible in the current
scope.

Suppose you are debugging a program dirpart that consists of two files:

16 Tools.h++ Class Library

3

This program is supposed to print just the “directory part” of the path used to
run it.

Suppose you set a breakpoint in the function dirPart and want to examine its
argument arg . You can simply call non-inline member functions compiled
with -g . An inline function is not considerd part of the global scope in C++ so

 dirpart1.cc: #include <iostream.h>
#include <rw/cstring.h>
RWCString dirPart(RWCString);
main(int argc, char** argv) {
 cout << dirPart(argv[0]) << endl;
 return 0;
}

void db() {
 RWCString s("foo");
 s[0];
 s.length();
 s.data();
}

 dirpart2.cc: #include <rw/cstring.h>
#include <rw/regexp.h>
RWCString dirPart(RWCString arg) {
 RWCRegexp tail("/[^/]*$");
 RWCString dir(arg);
 dir(tail) = "";
 return dir;
}

Compiling and Debugging 17

3

it may not be visible if the current file contains no use of it. Member functions
in a library not compiled with -g such as Tools.h++ may also require the same
special technique:

In class RWCString the function data returns a const char* pointing to the
actual characters in the string. Notice that the function db in dirpart1 uses
data . To access the data of arg , you could do this:

or if your version of the debugger supports it:

The function db in dirpart1 contains calls to some member functions you
might want to use in debugging.

(debugger) stop in dirPart
(2) stop in dirPart(RWCString)
(debugger) run
Running: dirpart
(process id 19954)

(debugger) file dirpart1.cc
(debugger) print ‘dirPart‘arg.data()
arg.data() = "dirpart"

(debugger) print arg.‘dirpart1.cc‘RWCString::data()
arg.data() = "dirpart"

18 Tools.h++ Class Library

3

19

 Class Overview 4

This section gives an overview of the library and highlights some of the points
of commonality between the classes.

Tools.h++ provides implementation, not policy. Hence, it consists mostly of a
large and rich set of concrete classes that are usable in isolation and do
not depend on other classes for their implementation or semantics: they can be
pulled out and used just one or two at a time. In addition, the library also
includes a rich set of abstract classes that define an interface for persistence,
internationalization, and other issues, and a set of implementation classes that
implement these interfaces.

Various kinds of collection classes are also a central feature of Tools.h++.
These fall into three groups:

• Template collection classes;

• Generic collection classes;

• Smalltalk-like collection classes.

Regardless of their implementation, all collection classes generally follow the
Smalltalk naming conventions and semantical model: SortedCollection ,
Dictionaries , Bags , Sets , etc. They all use similar interfaces, allowing for
them to be interchanged easily. The first two kinds of classes (Template and
Generic) will work with any kind of object. The last (“Smalltalk-like collection
classes”) requires that all collected items inherit from a cosmic object.

20 Tools.h++ Class Library

4

“Information flow” on page 25 lists the hierarchy of all the public Tools.h++
classes. In addition, there are some other classes that are used internally by the
library.

Concrete classes
The concrete classes consist of

• A set of simple classes (such as dates, times, strings, etc.), discussed in
Chapter 6, “Strings;” Chapter 7, “Using Class RWDate;” and Chapter 8,
“Using Class RWTime.”

• A set of collection classes based on templates, discussed in Chapter 14,
“Templates;”

• A set of collection classes that use the preprocessor <generic.h> facilities,
discussed in Chapter 15, ““Generic” Collection Classes.”

Simple classes

Tools.h++ provides a rich set of lightweight simple classes. By “lightweight”
we mean classes with low-cost initializers and copy constructors. Examples
include RWDate (dates, following the Gregorian calendar), RWTime (times,
including support for various time zones and locales), RWCString (single- and
multi-byte strings), RWWString (wide character strings), and RWCRegexp
(regular expressions). Most of these classes are four bytes or less, with very
simple copy constructors (usually just a bit copy) and no virtual functions.

Template classes

Template classes offer the advantages of speed and type safe usage. Their code
size can also be quite small when used sparingly. Their disadvantage is that
when used with many different types, code size can become large because each
type effectively generates a whole new class.

Class Overview 21

4

Generic collection classes

“Generic collection classes” are so called because they use the <generic.h>
preprocessor macros supplied with your C++ compiler. They can approximate
templates for those compilers that do not support them. As such, they are
highly portable. However, because they depend heavily on the preprocessor,
they can be difficult to debug.

Abstract data types
The library also includes a set of abstract data types (ADTs), and
corresponding specializing classes, that provide a framework for persistence,
localization, and other issues.

• Locale, discussed in Chapter 5, “Internationalization;”

• Time zones, discussed in Chapter 5, “Internationalization;”

• Virtual streams, discussed in Chapter 9, “Virtual Streams;”

• A comprehensive Smalltalk hierarchy, discussed in Chapter 16, “Smalltalk-
like Collection Classes;”

• Isomorphic persistence, discussed in Chapter 17, “Persistence;”

• Virtual page heaps, discussed in Chapter 22, “Class Reference;”

• Model-View-Controller abstraction, discussed in Chapter 22, “Class
Reference.”

Smalltalk-like collection classes

The “Smalltalk-like collection classes” are so called because they offer much of
the functionality of their Smalltalk namesakes, such as Bag,
SortedCollection , etc. However, they are not slavish imitations and
instead pay homage to the strengths and weaknesses of C++. Their greatest
advantages are their simple programming interface, powerful I/O abilities,
and high code reuse. Their biggest disadvantages are their relatively high
object code size when used in only small doses (because of an initially high
overhead in code machinery) and their relative lack of type safeness. All
objects to be used by the Smalltalk-like collection classes must also inherit from
the abstract base class RWCollectable .

22 Tools.h++ Class Library

4

Common member functions
Whatever category a class might fall into, they all have very similar
programming interfaces. This section highlights functionality shared by a
number of classes.

Persistence

The following functions are used to store an object of type ClassName to and
from an RWFile and to and from the Tools.h++ virtual streams facility and
then to restore it later:

Class RWFile encapsulates ANSI-C file I/O and is discussed in detail in
Chapter 10, “Using Class RWFile” as well as in Chapter 22, “Class Reference.”
Objects saved using RWFile are saved using a binary format, resulting in
efficient storage and retrieval to files.

Classes RWvistream and RWvostream are abstract base classes used by the
Tools.h++ virtual streams facility. The final output format is determined by the
specializing class. For example, RWpistream and RWpostream are two classes
that derive from RWvistream and RWvostream , respectively, that store and
retrieve objects using a “portable ASCII format”. The results can be transferred
between different operating systems. These classes are discussed in more
detail in Chapter 9, “Virtual Streams,” as well as in Chapter 22, “Class
Reference.”

It is up to the user to decide whether to store to RWFile ’s or virtual streams.
The former offers the advantage of speed, but limits portability of the results to
the host machine. The latter is not as fast, but there are specializing classes
(RWpistream , RWpostream , RWXDRistream , and RWXDRostream) that allow
the results to be moved to other types of machines.

RWFile& operator<<(RWFile& file, const ClassName&);
RWFile& operator>>(RWFile& file, ClassName&);
RWvostream& operator<<(RWvostream& vstream, const ClassName&);
RWvistream& operator>>(RWvistream& vstream, ClassName&);

Class Overview 23

4

Store size

These functions return the number of bytes of secondary storage necessary to
store an object of type ClassName to an RWFile using function

They are useful for storing objects using classes RWFileManager and
RWBTreeOnDisk . The second variant, recursiveStoreSize() , is used for
objects that inherit from RWCollectable and can calculate the number bytes
used in a recursive store, using function

Stream I/O

The overloaded l-shift operator (<<) taking an ostream object as its first
argument will print the contents of an object in a human-readable form.
Conversely, the overloaded r-shift operator (>>) taking an istream object as
its first argument will read and parse an object from the stream, using a
human-understandable format.

Note – this contrasts with the persistence operators

RWspace ClassName::binaryStoreSize() const;
RWspace ClassName::recursiveStoreSize() const;

RWFile& operator<<(RWFile& file, const ClassName&);

RWFile& operator<<(RWFile& file, const RWCollectable&)

ostream& operator<<(ostream& ostr, const ClassName& x);
istream& operator>>(istream& istr, const ClassName& x);

RWvostream&
operator<<(RWvostream& vstream, const ClassName&);
RWvistream&
operator>>(RWvistream& vstream, ClassName&);

24 Tools.h++ Class Library

4

(see “Persistence” on page 22) which, although they may store and restore to a
stream, will not necessarily do so in a form that could be called “human-
readable”.

Comparisons

Finally, most classes have comparison and equality member functions:

and their logical operator counterparts:

Memory allocation
When an object is allocated off the heap, ownership can be a problem: who is
responsible for deleting it?

All of the Tools.h++ classes take a very simple approach: if you allocated
something off the heap, then you are responsible for deallocating it. If the
Tools.h++ library allocated something off the heap, then it is responsible for
deallocating it.

There are two exceptions. The first are the operators

These operators restore an object inheriting from RWCollectable from an
RWFile or RWvistream , respectively. They return a pointer to an object
allocated off the heap: you are responsible for deleting it.

int compareTo(ClassName*) const;
RWBoolean equalTo(ClassName*) const;

RWBoolean operator==(const ClassName&) const;
RWBoolean operator!=(const ClassName&) const;
RWBoolean operator<=(const ClassName&) const;
RWBoolean operator>=(const ClassName&) const;
RWBoolean operator<(const ClassName&) const;
RWBoolean operator>(const ClassName&) const;

RWFile& operator>>(RWFile& file,RWCollectable*&);
RWvistream& operator>>(RWvistream& vstream,RWCollectable*&);

Class Overview 25

4

The second exception is member function

that returns a pointer to a collection allocated off the heap with members
satisfying some selection criterion. Again, you are responsible for deleting this
collection when you are done with it.

Both of these exceptions are documented in detail in Chapter 22, “Class
Reference.”

Information flow
Generally, with the Tools.h++ libraries, information flows into a function via its
arguments and out through a return value. Most functions do not modify their
arguments. Indeed, if you see an argument being passed as a “const
reference”, i.e., as follows:

or (of course) by value, then you can be confident that the argument will not be
modified. However, if an argument is passed as a non-const reference (this is
rare) then there is the possibility that the function will modify it.

If an argument is being passed in as a pointer, then there is the strong
possibility that the function will retain a copy of the pointer. This is typical of
the collection classes:

This is to remind you that the collection will be retaining a pointer to the object
after the function returns1.

1. An alternative design strategy would have been to pass objects that are to be inserted into a collection by
reference (as done by The NIH Classes). We rejected this approach for two reasons: it looks too similar to
pass-by-value (making it easy for the programmer to forget about the retained reference) and it becomes too
easy to store a reference to a stack-based variable.

RWCollection*
RWCollection::select(RWtestCollectable,void*) const;

void foo(const RWCString& a)

RWOrdered::insert(RWCollectable*);

26 Tools.h++ Class Library

4

Multi-thread safe
Almost all Tools.h++ functions behave in a multi-threaded environment as in
a single-threaded environment, provided that the application program either
takes care to avoid sharing of individual objects between threads or takes care
to perform locking around operations on objects shared across threads.
Tools.h++ does enough internal locking to maintain its own internal integrity
and uses appropriate multithread-safe systems calls. The few exceptions are
noted in the manual.

Eight-bit clean
All classes in Tools.h++ are eight-bit clean. This means that they can be used
with eight-bit code sets such as ISO Latin-1.

Embedded nulls
All classes in Tools.h++, including RWCString and RWWString , support
character sets with embedded nulls. This allows them to be used with
multibyte character sets.

Indexing
Indexes have type size_t , an unsigned integral type defined by your
compiler, usually in <stddef.h> . Because it is unsigned , this allows indexes
up to 64k minus one on systems where unsinged has only 16 bits.

Invalid indexes are signified by the special value RW_NPOS, defined in
<rw/defs.h> .

Version
The version of Tools.h++ is given by the macro RWTOOLS, expressed as a
hexadecimal number. For example, version 6.0.1 would be 0x601. This can be
used for conditional compilations.

If the version is needed at run time, it can be obtained via the function
rwToolsVersion() , declared in header file <rw/tooldefs.h> .

Class Overview 27

4

The following list is the public class hierarchy of the Tools.h++ classes. Classes
which use multiple inheritance are shown in italics. Classes listed in italics use
multiple inheritance.

Note – this is the public class hierarchy—the class implementations may use
private inheritance.

28 Tools.h++ Class Library

4

Public Class Hierarchy

RWBench
RWBitVec
RWBTreeOnDisk
RWCacheManager
RWCollectable

RWCollection
RWBag
RWBinaryTree
RWBTree

RWBTreeDictionary
RWSequenceable

RWDlistCollectables
RWOrdered

RWSortedVector
RWSlistCollectables

RWSlistCollectablesQueue
RWSlistCollectablesStack

RWHashTable
RWSet

RWHashDictionary
RWIdentityDictionary

RWIdentitySet
RWCollectableDate
RWCollectableInt
RWCollectableString
RWCollectableTime
RWModelClient

RWCRegexp
RWCString
RWCSubString
RWCTokenizer
RWDate
RWFactory
RWFile

RWFileManager
RWGBitVec(size)
RWGDlist(type)
RWGDlistIterator(type)
RWGOrderedVector(val)
RWGQueue(type)
RWGSlist(type)
RWGSlistIterator(type)

Class Overview 29

4

RWGSortedVector(val)
RWGStack(type)
RWGVector(val)
RWInteger
RWIsvDlink<T>
RWIsvSlink<T>
RWIterator

RWBagIterator
RWBinaryTreeIterator
RWDlistCollectablesIterator
RWSetIterator

RWHashDictionaryIterator
RWOrderedIterator
RWSlistCollectablesIterator

RWLocale
RWLocaleDefault
RWLocaleSnapshot

RWModel
RWTime
RWTimer
RWTBitVec<size>
RWTIsvDlist<T>
RWTIsvSlist<T>
RWTPtrDlist<T>
RWTPtrDlistIterator<T>
RWTPtrHashTable<T>

RWTPtrHashSet<T>
RWTPtrHashTableIterator<T>
RWTPtrHashDictionary<K,V>
RWTPtrHashDictionaryIterator<K,V>
RWTPtrOrderedVector<T>
RWTPtrSlist<T>
RWTPtrSlistIterator<T>
RWTPtrSlistDictionary<K,V>
RWTPtrSlistDictionaryIterator<K,V>
RWTPtrSortedVector<T>
RWTPtrVector<T>
RWTStack<T,C>
RWTQueue<T,C>
RWTValDlist<T>
RWTValDlistIterator<T>
RWTValHashTable<T>

RWTValHashSet<T>
RWTValHashTableIterator<T>

30 Tools.h++ Class Library

4

RWTValHashDictionary<K,V>
RWTValHashDictionaryIterator<K,V>
RWTValOrderedVector<T>

RWTValSortedVector<T>
RWTValSlist<T>
RWTValSlistIterator<T>
RWTValSlistDictionary<K,V>
RWTValSlistDictionaryIterator<K,V>
RWTValVector<T>
RWTValVirtualArray<T>
RWvios

RWvistream
RWbistream
RWpistream
RWXDRistream

RWvostream
RWbostream
RWpostream
RWXDRostream

RWVirtualPageHeap
RWBufferedPageHeap

RWDiskPageHeap
RWWString
RWWSubString
RWWTokenizer
RWZone

RWZoneSimple

31

Internationalization 5

Gone are the days when we could ignore our neighbors across the sea (or over
the fence), writing software only for local consumption. Professional software
development today demands not only awareness of the needs of users in other
cultures, but accommodation of those needs. This accommodation is called
localization; making software easily localized is called internationalization1

Internationalization actually involves many different activities, potentially as
many as the ways in which cultures differ from one another. In practice, it
usually means accommodating differences in alphabets, languages, currencies,
numbers, and date- and time-keeping notations. Let us consider each of these
in turn.

Accommodation of different alphabets begins with allowing them to be
represented. A first step in this direction is making code “8-bit clean”, which
lets it tolerate extensions. Still, eight bits just isn’t enough to represent all the
character glyphs we use, even in English. Some extension beyond 8 bits is
required, and in fact several are in use, falling into two families: multibyte and
wide-character encodings.

Multibyte encodings use a sequence of one or more bytes to represent a single
character. (Typically the ASCII characters are still one byte long.) This gives a
compact encoding, but is inconvenient for indexing and substring operations.

1. “Internationalization” is a horrendous word, widely abbreviated “i18n”; 18 is the number of letters elided.

32 Tools.h++ Class Library

5

Wide character encodings, in contrast, place each character in a 16- or 32-bit
integral type called a wchar_t , and represent a string as an array of wchar_t .
Usually it is possible to translate a string encoded in one form into the other.

Given any of these representations for strings, there remains much to do. Is a
character upper case, lower case, or neither? In a sorted list, where do you put
the names that begin with accented letters? What about the Cyrillic names?
How are wide-character strings represented on byte streams? These issues are
being addressed, in standards bodies and in corporate labs, but the results are
not very portable yet. Tools.h++ has no crystal ball, so we simply pass through
the semantics your system vendor has provided.

Tools.h++ includes two efficient string types, RWCString and RWWString .
RWCString represents 8-bit strings, with some support for multibyte strings.
RWWString represents “wide strings”, strings of wchar_t . Both provide
access to Standard C Library support for local collation conventions with the
member function collate() and the global function strXForm() . In
addition, the library provides conversions between wide and multibyte
representations, via both streams and 8-bit strings. The wide- and multibyte-
character encodings used are those of the host system.

To accommodate a user’s choice of languages, a program must display titles,
menu choices, and status messages in that language. Usually such texts are
stored in a “message catalog” or “resource file”, separate from program code,
so they may be easily edited or replaced. Tools.h++ issues no messages;
though it does not yet offer much help in this area, it also imposes no policy.

While accounting principles are the same everywhere, the currencies used vary
among cultures not only in unit value, but in notation. Indeed, even raw
numbers are written differently in different places; in the U.S.A, we would say
that 2.345 is less than 2,345; but in much of Europe the reverse is true. In many
cases a program must be able to display values in the notations customary to
both the vendor and the customer.

Scheduling, which appears in many kinds of software, involves time and
calendar calculations. Local versions of the Gregorian calendar vary in their
names for the months and the days of the week, and in the order in which the
components of a date are written. Notations for the time of day vary as well.
Time representations are complicated by time zone conventions, including
Daylight Savings Time (DST) rules that vary wildly from place to place, and
from year to year in some places.

Internationalization 33

5

The Standard C Library provides, with <locale.h> , some facilities to
accommodate differences in currency, number, date, and time formats, but it is
maddeningly incomplete. It offers no help for conversion from strings to these
types, and is practically impossible to use if you must do conversions
involving two or more locales. Common time zone facilities (such as those
defined in POSIX.1) are similarly limited, usually offering no way to compute
wall clock time for other locations, or even for the following year in the same
location.

RWLocale and RWZone
Tools.h++ addresses these problems with the abstract classes RWLocale and
RWZone. If you have used RWDate you have used RWLocale already, perhaps
unknowingly. Every time you convert a date or time to or from a string, a
default argument carries along a RWLocale reference. This is a reference to a
global instance of the class RWLocaleDefault (derived from RWLocale)
which was created at program startup. To use RWLocale explicitly, construct
your own instance and pass it in place of the default. Similarly, when you
manipulate times, a default RWZone reference is passed along, but you can
substitute your own.

You can also install your own instance of RWLocale or RWZone as the global
default. You can even install your RWLocale instance in a stream (this is
called “imbuing the stream”) so that dates and times inserted on (or extracted
from) that stream are formatted (or parsed) accordingly, without any special
arguments.

Let us look at how all this works, with some examples. Here are the header
files we will use:

#incluce <assert.h>
#include <rw/rstream.h>
#include <rw/cstring.h>
#include <rw/locale.h>
#include <rw/rwdate.h>
#include <rw/rwtime.h>

34 Tools.h++ Class Library

5

Begin by constructing a date, today’s date:
RWDate today = RWDate::now();

We can display it using ordinary “C”-locale conventions, the usual way:
cout << today << endl;

But what if you are in some other locale? Perhaps you have set your
environment variable LANG to "fr ", because you want French formatting1. We
would like the date to be displayed in your preferred local format. First, let’s
construct an RWLocale object:
RWLocale& here = *new RWLocaleSnapshot("");

Class RWLocaleSnapshot is the main implementation of the interface defined
by RWLocale . It extracts the information it needs from the global environment
during construction with the help of such Standard C Library functions as
strftime() and localeconv() . The most straight-forward way to use this
is to pass it directly to the RWDate member function asString() 2:
cout << today.asString('x', here) << endl;

but there are more convenient ways. We can install here as the global default
locale so the insertion operator will use it:
RWLocale::global(&here);
cout << today << endl;

Dates

Now, suppose you also want to format a date in German, but don’t want that
to be the default. Let us construct a German locale:
RWLocale& german = *new RWLocaleSnapshot(“de”);

Now we can format the same date for both local and German readers:
cout << today << endl
<< today.asString(‘x’, german) << endl;

Let us now suppose you want to read in a German date string. The straight-
forward way, again, is to call everything explicitly:

1. Because of operating system limitations, you cannot change the locale under Solaris 1.x.

2. The function asString()’s first argument is a character, which may be any of the format options
supported by the Standard C Library function strftime() .

Internationalization 35

5

Sometimes you would prefer to use the extraction operator ">>". It must know
to expect and parse a German-formatted date. We can pass this information
along by imbuing a stream with the German locale.

The following code snippet imbues the stream cin with the German locale,
reads in and converts a date string from German, then displays it in the local
format.

Imbuing is useful when many values must be inserted or extracted according
to a particular locale, or when there is no way to pass a locale argument to the
point where it will be needed. By using the static member function
RWLocale::of(ios&) , your code can discover the locale imbued in a stream.
If the stream has not yet been imbued, of() returns the current global locale.1

The interface defined by RWLocale handles more than dates. It can also
convert times, numbers, and monetary values to and from strings. Each has its
complications. Time conversions are complicated by the need to identify the
time zone of the person who entered, or who will read, the time string. The
mishmash of Daylight Savings Time jurisdictions can make this annoyingly
difficult. Numbers are somewhat messy to format because the insertion and
extraction operators ("<<" and ">>") for them are already defined by

1. You can restore a stream to its unimbued condition with the static member function
RWLocale::unimbue(ios&) ; note that this is not the same as imbuing it with the current global locale.

RWCString str;
cout << "enter a date in German: " << flush;
str.readLine(cin);
today = RWDate(str, german);
if (today.isValid())

cout << today << endl;

german.imbue(cin);
cout << "enter a date in German: " << flush;
cin >> today; // read a German date!
if (today.isValid())

cout << today << endl;

36 Tools.h++ Class Library

5

<iostream.h> . For money, the main problem is that there is no standard
internal representation for monetary values. Fortunately, none of these
problems is overwhelming.

Time

Let us consider the time zone problem. Our first observation is that there is no
simple relationship between time zones and locales. All of Switzerland shares
a single time zone, including DST rules, but has four official languages (French,
German, Italian, and Romansch). Hawaii and New York, on the other hand,
share a common language but occupy time zones five hours apart; or
sometimes six hours apart, because Hawaii does not observe DST.
Furthermore, time zone formulas have little to do with cultural formatting
preferences. Thus, we use a separate time zone object, rather than letting
RWLocale subsume time zone responsibilities.

In Tools.h++, the class RWZone encapsulates knowledge about time zones. It is
an abstract class; we have implemented its interface in the class
RWZoneSimple . Three instances of RWZoneSimple are constructed at startup,
to represent local wall clock time, local Standard time, and Universal time
(GMT). Local wall clock time includes any Daylight Savings Time in use.
Whenever you convert an absolute time (as in the class RWTime) to or from a
string, an instance of RWZone is involved. By default, the local time is
assumed, but you can pass a reference to any RWZone instance.

It’s time for some examples. Imagine you have scheduled a trip from New
York to Paris. You will leave New York on December 20, 1993, at 11:00 PM, and
return on March 30, 1994, leaving Paris at 5:00 AM, Paris time. What will the
clocks show at your destination when you arrive?

First, let’s construct the time zones and the departure times:

RWZoneSimple newYorkZone(RWZone::USEastern, RWZone::NoAm);
RWZoneSimple parisZone (RWZone::Europe, RWZone::WeEu);
RWTime leaveNewYork(RWDate(20, 12, 1993), 23,00,00,
newYorkZone);
RWTime leaveParis (RWDate(30, 3, 1994), 05,00,00, parisZone);

Internationalization 37

5

The flight is about seven hours long, each way:
RWTime arriveParis (leaveNewYork + long(7 * 3600));
RWTime arriveNewYork(leaveParis + long(7 * 3600));

Let’s display the Paris arrival time and date in French, and the New York
arrival time and date according to local convention:

This works even though your flight crosses several time zones and arrives on a
different day than it departed. Furthermore, on the day of the return trip (in
the following year), France has already begun observing Daylight Savings
Time, but the U.S. has not. None of these details is visible in the example code
above—they are handled silently and invisibly by RWTime and RWZone.

All this is easy for places that follow those DST rules Tools.h++ has built in.
(Thus far, these are North America, Western Europe, and “noDST”.) What
about places that follow other rules, such as Argentina, where spring begins in
September and summer ends in March? RWZoneSimple is table-driven; if the
rule is simple enough, you can construct your own table (of type
RWDaylightRule) and specify it as you construct an RWZoneSimple . For
example, imagine that DST begins at 2 AM on the last Sunday in September,
and ends the first Sunday in March. Simply create a static instance of
RWDaylightRule :
static RWDaylightRule sudAmerica =
 { 0, 0, TRUE, {8, 4, 0, 120}, {2, 0, 0, 120}};

(See the RWZoneSimple documentation, and <rw/zone.h>, for details on what
the numbers mean.) Then construct an RWZone object:
RWZoneSimple ciudadSud(RWZone::Atlantic, &sudAmerica);

Now you can use ciudadSud identically as paris or newYork above.

But what about places where the DST rules are too complicated to describe
with a simple table, such as Great Britain? There, DST begins on the morning
after the third Saturday in April, unless that is Easter, in which case it begins

RWLocaleSnapshot french("fr");
cout << "Arrive' au Paris a' "
 << arriveParis.asString('c', parisZone, french)
 << ", heure local." << endl;
cout << "Arrive in New York at "
 << arriveNewYork.asString('c', newYorkZone)
 << ", local time." << endl;

38 Tools.h++ Class Library

5

the week prior! For such jurisdictions you might best use Standard time,
properly labeled: they are probably used to it. If that just won’t do, you can
derive from RWZone and implement its interface for Britain alone. This is
much easier than trying to make something general enough to handle all
possibilities including Britain, and it’s smaller and faster besides.

The remaining problem is that there is no standard way to discover what DST
rules are in force for any particular place. In this the Standard C Library is no
help. Often, however, you can get the user in question to provide the
necessary information. One manifestation of this problem is that the local wall
clock time RWZone instance is constructed to use North American DST rules, if
DST is observed at all. If the user is not in North America, the default local
time zone probably performs DST conversions wrong, and you must replace it.
For example, for a user in Paris you could say:
RWZone::local(new RWZoneSimple(RWZone::Europe, RWZone::WeEu));

If you look closely into <rw/locale.h> , you will find that RWDate and
RWTime are never mentioned. Instead, RWLocale operates on the Standard C
Library type struct tm. RWDate and RWTime both provide conversions to this
type. In some cases you may find using it directly is preferable to using
RWTime::asString() .

For example, suppose you must write out a time string containing only hours
and minutes (e.g. 12:33). The standard formats defined for strftime() (and
implemented by RWLocale as well) don’t include that option, but you can fake
it. Here’s one way:
RWTime now = RWTime::now();
cout << now.hour() << “:” << now.minute() << endl;

Without using various manipulators, this might produce a string like "9:5 ".
Here’s another way:
RWTime now = RWTime::now();
cout << now.asString(‘H’) << “:” << now.asString(‘M’) << endl;

This produces "09:05 ".

Internationalization 39

5

In each of the previous examples, now is disassembled into component parts
twice, once to extract the hour and again for the minute. This is an expensive
operation. If you expect to work with the components of a time or date much,
you may be better off disassembling the time only once:

If you work with times before 1901 or after 2037, RWTime cannot be used,
because it does not have the range needed. struct tm operations with
RWLocale are not so restricted; you can use RWLocale to perform conversions
for any time or date.

Numbers

Abstract class RWLocale provides an interface for conversions between strings
and numbers—both integers and floating point values. RWLocaleSnapshot
implements this interface, providing the full range of capabilities defined by
the Standard C Library type struct lconv . This includes using appropriate
digit group separators, decimal “point”, and currency notation. On conversion
from strings it allows, and checks, the same digit group separators.
Unfortunately, the standard iostream library provides definitions for number
insertion and extraction operators which cannot be overridden, so stream
operations are clumsier than we might like.

Instead, we use RWCString functions directly:

RWTime now = RWTime::now();
struct tm tmbuf; now.extract(&tmbuf);
const RWLocale& here = RWLocale::global(); // the default global
locale
cout << here.asString(&tmbuf, 'H') << ":"
 << here.asString(&tmbuf, 'M'); << endl;

RWLocaleSnapshot french("fr");
double f = 1234567.89;
long i = 987654;
RWCString fs = french.asString(f, 2);
RWCString is = french.asString(i);
if (french.stringToNum(fs, &f) &&
 french.stringToNum(is, &i)) // verify conversion
 cout << f << “\t” << i << endl
 << fs << “\t” << is << endl;

40 Tools.h++ Class Library

5

The French use “,” for the decimal point, and “.” for the digit group separator,
so this might display:
1.234567e+07987654
1.234.567,89987.654

Numbers with digit group separators are certainly easier to read.

Currency

Currency conversions are trickier, mainly because there is no standard way to
represent monetary values in a computer. We have adopted the convention
that such values represent an integral number of the smallest unit of currency
in use. For example, in the U.S, to represent the balance “$10.00”, you might
say
double sawbuck = 1000.;

This representation has the advantages of wide range, exactness, and
portability. By wide range, we mean that it can exactly represent values from
$0.00 up to (and beyond) $10,000,000,000,000.00. This is larger than any likely
budget. By exactness, we mean that representing monetary values without
fractional parts, you can perform arithmetic on them and compare the results
for equality:

This would not be possible if the values were naively represented, as for
instance "price = 9.99; ".

By portability, we mean simply that double is a standard type, unlike
common 64-bit integer or BCD representations. Of course, financial
calculations may still be performed on such other representations, but because
it is always possible to convert between them and double , this supports
everyone. In the future RWLocale may directly support some other common
representations as well.

double price = 999.;// $9.99
double penny = 1.;// $.01
assert(price + penny == sawbuck);

Internationalization 41

5

Let us consider some examples of currency conversions:

In a U.S. locale, this displays:
1000.00000 10.00 $10.00 USD 10.00

Wrap up
We have covered lots of territory—alphabets, languages, dates, times, time
zones, numbers, money—and yet have only scratched the surface of what can
be done by combining these facilities. Internationalization is a brave new
world for software engineering, but with the proper tools it can be more
exciting than distressing.

const RWLocale& here = RWLocale::global();
double sawbuck = 1000.;
RWCString tenNone = here.moneyAsString(sawbuck,
RWLocale::NONE);
RWCString tenLocal = here.moneyAsString(sawbuck,
RWLocale::LOCAL);
RWCString tenIntl = here.moneyAsString(sawbuck,
RWLocale::INTL);
if (here.stringToMoney(tenNone, &sawbuck) &&
 here.stringToMoney(tenLocal, &sawbuck) &&
 here.stringToMoney(tenIntl, &sawbuck)) // verify conversion
 cout << sawbuck << " " << tenNone << " "
 << tenLocal << " " << tenIntl << " " << endl;

42 Tools.h++ Class Library

5

43

 Strings 6

Manipulating strings is one of the most common and error prone tasks that a
programmer does. It's a perfect opportunity for C++ to show its advantages.

Class RWCString has many powerful string processing features that are just as
efficient as C, but far less prone to errors. For example, the class automatically
takes care of memory management. It's just about impossible to delete
something twice or not delete it at all.

Class RWWString offers support for wide character strings. These are strings of
type wchar_t which, in general, may consist of more than one byte. The
interface of RWWString is extremely similar to RWCString , allowing them to
be interchanged easily.

Example
Here is a short example that exercises the RWCString class:

Code Example 6-1

#include <rw/cstring.h>
#include <rw/regexp.h>
#include <rw/rstream.h>

main()
{

44 Tools.h++ Class Library

6

Program input:

This text describes V1.2. For more
information see the file install.doc.
The current version V1.2 implements...

Program output:

This text describes V4.0. For more
information see the file install.doc.
The current version V4.0 implements...

This example reads lines from standard input and searches them for a pattern
matching the regular expression "V[0–9]\.[0–9]+ " (the extra backslash in
the program is to escape the special character '\ '. This expression matches
"version numbers" between V0 and V9: V1.2, V1.22, but not V12.3. If a match
is found, then the pattern is replaced with the string "V4.0 ." The magic here is
in the expression;

a(re) = "V4.0";

The function call operator (i.e., RWCString::operator()) has been
overloaded to take an argument of type RWRegexp—the regular expression. It
returns a "substring" that delimits the regular expression, or a null substring if
a matching expression could not be found. The substring assignment operator
is then called and replaces the delimited string with the contents of the right
hand side, or does nothing if this is the null substring.

Here is another example that reads in two RWCStrings , concatenates them,
converts to upper case, and then sends the results to cout :

 RWCString a;

 RWRegexp re("V[0-9]\\.[0-9]+");
 while(a.readLine(cin)){
 a(re) = "V4.0";
 cout << a << endl;
 }
 return 0;
}

Code Example 6-1 (Continued)

Strings 45

6

RWCString s1, s2;
cin >> s1 >> s2;
cout << toUpper(s1+s2);

Class RWCString has member functions to read, compare, store, restore,
concatenate, prepend, and append RWCStrings and char *’s. Operators allow
access to individual characters, with or without bounds checking. The details
of the RWCString class capabilities are summarized in the Class Reference,
Part 2.

Collation
The various comparison operators involving RWCString use case sensitive
lexicographic comparisons:

RWBoolean operator==(const RWCString&, const RWCString&);
RWBoolean operator!=(const RWCString&, const RWCString&);
RWBoolean operator< (const RWCString&, const RWCString&);
RWBoolean operator<=(const RWCString&, const RWCString&);
RWBoolean operator> (const RWCString&, const RWCString&);
RWBoolean operator>=(const RWCString&, const RWCString&);

If you wish to make case insensitive comparisons, then you use should use
member function:

int RWCString::compareTo(const RWCString& str,
caseCompare cmp = exact)
const;

which returns an integer -1, 0, or 1, depending on whether str is
lexicographically less than, equal to, or greater than self, respectively. The type
caseCompare is an enum with values

exact Case sensitive
ignoreCaseCase insensitive

Its default setting is "exact " which gives the same result as the logical
operators ==, !=, etc.

For locale-specific string collations, use member function

int RWCString::collate(const RWCString& str) const;

46 Tools.h++ Class Library

6

which is an encapsulation of the Standard C library function strcoll() . This
function will return results computed according to the locale-specific collating
conventions set by category LC_COLLATE of the Standard C library function
setlocale() . Because this is a relatively expensive calculation, you may
want to pretransform one or more strings using the global function

RWCString strXForm(const RWCString&);

and then use compareTo() or one of the logical operators (==, !=, etc.) on the
results.

Substrings
A separate RWCSubString class supports substring extraction and
modification. There are no public constructors, so no variables of type
RWCSubStrings in your application are constructed indirectly by various
member functions of RWCString , and then destroyed at the first opportunity.
The resulting substring can be used in a variety of situations.

For example, a substring can be created by an overloaded version of
operator()() This can then be used to initialize an RWCString :

RWCString s("this is a string");
// Construct an RWCString from a substring:
RWCString s2 = s(0, 4);// "this"

The result is a string s2 that contains a copy of the first four characters of s .

RWSubStrings may also be used as lvalues in an assignment, either to a
character string, or to an RWCString or RWCSubString :

// Construct an RWCString:
RWCString article("the");
RWCString s("this is a string");
s(0, 4) = "that";// "that is a string"
s(8, 1) = article;// "that is the string"

Note – Assignment is not a conformal operation: the two sides of the
assignment operator need not have the same number of characters.

Strings 47

6

Pattern matching
Class RWCString supports a convenient interface for string searches. Here is
an example. The code fragment:

RWCString s("curiouser and curiouser.");
int i = s.index("curious");

will find the start of the first occurrence of "curious " in s . The comparison
will be case sensitive. The result is that i will be set to “0”. To find the index
of the next occurrence use:

i = s.index("curious", ++i);

which will result in i being set to “14”. To make a case-insensitive comparison
use:

RWCString s("Curiouser and curiouser.");
int i = s.index("curious", 0, RWCString::ignoreCase);

which will also result in i being set to “0”.

If the pattern does not occur in the string, then index() will return the special
value RW_NPOS.

Regular expressions

The Tools.h++ Class Library supports regular expression searches. See Part 2:
Class Reference, under RWCRegexp, for details of the regular expression syntax.
A regular expression can be used to return a substring. Here's an example that
might be used to match all mail headers identifying the subject:

#include <rw/cstring.h>
#include <rw/regexp.h>
#include <rw/rstream.h>

main()
{
 RWCString a("Subject: Roses");

 // Construct a Regular Expression to match Subject: Roses:
 RWCRegexp re("Subject: .*");
 cout << a(re) << endl;

 return 0;
}

48 Tools.h++ Class Library

6

Program output:

Subject: Roses

The function call operator for RWCString has been overloaded to take an
argument of type RWCRegexp. It returns an RWCSubString matching the
expression, or the null substring if there is no such expression.

String I/O
Class RWCString offers a rich I/O facility to and from both iostreams and
Tools.h++ virtual streams.

iostreams

The standard l- and r-shift operators have been overloaded to work with
iostreams and RWCStrings :

The semantics parallel the operators

which are defined by the C++ standard library that comes with your compiler.
That is, the l-shift (<<) operator writes a null-terminated string to the given
output stream. The r-shift (>>) operator reads a single token, delimited by
white space, from the input stream into the RWCString , replacing the previous
contents.

Other functions allow finer tuning of RWCString input. Function
readline() allows strings separated by newlines. It has an optional
parameter controlling whether whitespace is skipped before storing characters.
Here’s an example showing the difference:

ostream&operator<<(ostream& stream, const RWCString& cstr);
istream&operator>>(istream& stream, RWCString& cstr);

ostream&operator<<(ostream& stream, const char*);
istream&operator>>(istream& stream, char* p);

Strings 49

6

Program input:

line 1

line 5

Program output:

2 lines, skipping whitespace.

5 lines, not skipping whitespace.

#include <rw/cstring.h>
#include <iostream.h>
#include <fstream.h>

main()
{

RWCString line;

{
int count = 0;
ifstream istr(“testfile”);

while (line.readLine(istr)
// Use default value: skipwhitespace

count++;
cout << count << “ lines, skipping whitespace.\n”;
}

{
int count = 0;
ifstream istr(“testfile”);
while (line.readLine(istr, FALSE)
// NB: Do not skip whitespace

count++;
cout << count << “ lines, not skipping whitespace.\n”;
}

return 0;
}

50 Tools.h++ Class Library

6

Virtual streams

String operators to and from virtual streams are also supported:

RWvistream&operator>>(RWvistream& vstream, RWCString&
cstr);
RWvostream&operator<<(RWvostream& vstream, const
 RWCString& cstr);

This allows a string to be saved and restored without knowing the formatting
that is to be used. See Chapter 17, “Persistence” for details on virtual streams.

Tokenizer
Class RWCTokenizer can be used to break a string up into tokens, separated
by an arbitrary "white space". See Part 2: Class Reference, under
RWCTokenizer , for additional details. Here's an example:

Program output:

5

#include <rw/ctoken.h>
#include<rw/cstring.h>
#include <rw/rstream.h>

main()
{

 RWCString a("a string with five tokens");

 RWCTokenizer next(a);

 int i = 0;

 // Advance until the null string is returned:
 while(!next().isNull()) i++;

 cout << i << endl;
 return 0;
}

Strings 51

6

This program counts the number of tokens in the string. The function call
operator for class RWCTokenizer has been overloaded to mean "advance to
the next token and return it as an RWCSubString ", much like any other
iterator. When there are no more tokens, it returns the null substring. Class
RWCSubString has a member function isNull() which returns TRUE if the
substring is the null substring. Hence, the loop is broken.

Multibyte strings
Class RWCString provides limited support for multibyte strings. Because a
multibyte character can consist of two more more bytes, the length of a string
in bytes may be greater than or equal to the number of actual characters in the
string. If the RWCString may contain multibyte characters, then you should
use member function mbLength() to return the number of characters. On the
other hand, if you know that the RWCString does not contain any multibyte
characters, then the results of length() and mbLength() will be the same,
and you may want to use length() because it is much faster. Here’s an
example:

RWCString Sun(“\306\374\315\313\306\374”);
cout << Sun.length();// Prints “6”
cout << Sun.mbLength();// Prints “3”

The string in Sun is the day of the week Sunday in Kanji, using the EUC
(Extended Unix Code) multibyte code set. With EUC, a single character may
be one to four bytes long. In this example, the string Sun consists of 6 bytes,
but only 3 characters.

In general, the second or later byte of a multibyte character may be null. This
means the length in bytes of a character string may or may not match the
length given by strlen() . Internally, RWCString makes no assumptions
about embedded nulls and hence can be used safely with character sets that
use null bytes. You should also keep in mind that while RWCString::data()
always returns a null-terminated string, there may be earlier nulls in the string.
All of these effects can be summarized by the following program:

RWCString a(“abc”); // 1
RWCString b(“abc\0def”); // 2
RWCString c(“abc\0def”, 7); // 3

cout << a.length();// Prints “3”
cout << strlen(a.data());// Prints “3”

52 Tools.h++ Class Library

6

cout << b.length();// Prints “3”
cout << strlen(b.data());// Prints “3”

cout << c.length();// Prints “7”
cout << strlen(c.data());// Prints “3”

Note that two different constructors were used above. The constructor in lines
1 and 2 take a single argument of "const char* ", a null-terminated string.
Because it takes a single argument, it may be used in type conversion (ARM
12.3.1). The length of the results is determined in the usual manner: the
number of bytes before the null. The constructor in line 3 takes a "const
char *" and a run length. The constructor will copy this many bytes, including
any embedded nulls.

The length of an RWCString (in bytes) is always given by
RWCString::length() . Because the string may include embedded nulls,
this length may not match the results given by strlen() .

Note that indexing and other operators (basically, all functions using an
argument of type size_t) work in bytes. Hence, these operators will not
work for RWCStrings containing multibyte strings.

Wide character strings

Note – Wide character strings are supported under Solaris 2.x only.

Class RWWString is extremely similar to RWCString , except that it works with
wide characters. These are much easier to manipulate than multibyte
characters because they are all the same size: the size of a wchar_t .

Tools.h++ makes it easy to convert back and forth between multibyte and wide
character strings. Here’s an example that builds on the previous section:

RWCString Sun(“\306\374\315\313\306\374”);
RWWString wSun(Sun, RWWString::multiByte);

// MBCS to wide string

RWCString check = wSun.toMultiByte();
assert(Sun==check);// OK

You convert from a multibyte string to a wide string by using the special
RWWString constructor

RWWString(const char*, multiByte_);

Strings 53

6

The parameter multiByte_ is an enum with a single possible value:
multiByte , as shown in the example above.

This is a relatively expensive conversion and the multiByte argument
ensures that it is not done inadvertently. The conversion from a wide character
string back to a multibyte string is done using function toMultiByte() .
Again, this is a relatively expensive operation.

If you know that your RWCString consists entirely of Ascii characters then the
cost of the conversion in both direction can be greatly reduced. This is because
the conversion involves a simple manipulation of high-order bits:

RWCString EnglishSun(“Sunday”);// Ascii string
assert(EnglishSun.isAscii());// OK

// Now convert from Ascii to wide characters:
RWWString wEnglishSun(EnglishSun, RWWString::ascii);

assert(wEnglishSun.isAscii());// OK
RWCString check = wEnglishSun.toAscii();
assert(check==EnglishSun);// OK

Note how member functions RWCString::isAscii() and
RWWString::isAscii() were used in ensure that the strings, in fact,
consisted entirely of Ascii characters. The RWWString constructor

RWWString(const char*, ascii_);

was used to convert from Ascii to wide characters. The parameter ascii_ is
an enum with a single possible value: ascii , as shown in the example above.

Member function RWWString::toAscii() was used to convert back.

54 Tools.h++ Class Library

6

55

Using Class RWDate 7

Class RWDate represents a date, stored as a Julian day number. It serves as a
compact representation for calendar calculations, shields you from details such
as leap years, and performs conversions to and from conventional calendar
formats.

The algorithm to convert a Gregorian calendar date (for example January 10,
1990) to a Julian day number is given in: Algorithm 199 from Communications
of the ACM, Volume 6, No. 8, Aug. 1963, p. 444.

The Gregorian calendar was introduced by Pope Gregory XIII in 1582, and was
adopted by England on September 14, 1752. Class RWDate will not provide
valid dates before 1582.

56 Tools.h++ Class Library

7

Example
This example prints out the date 6 January 1990 and then calculates and prints
the date of the previous Sunday, using the global locale:

Program output:

01/06/90, a Saturday
The previous Sunday is: 12/31/89

Constructors
An RWDate may be constructed in several ways. For example:

1. Construct a RWDate with the current date1:

RWDate d;

2. Construct a RWDate for a given day of the year (1–365) and a given year
(e.g., 1989 or 89)

RWDate d1(24, 1990);// 1/24/1990
RWDate d2(24, 90);// 1/24/1990

1. Because the default constructor for RWDate fills in todays’s date, constructing a large array of RWDate may
be slow. If this is an issue, declare your arrays with a class derived from RWDate that provides a faster
constructor.

#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{
 RWDate dd(6, "January", 1990);

 cout << dd << ", a " << dd.weekDayName() << endl;

 RWDate prev = dd.previous("Sunday");

 cout << "The previous Sunday is: " << prev << endl;
 return 0;
}

Using Class RWDate 57

7

3. Construct a RWDate for a given day of the month (1–31), month number
(1–12) and year:

RWDate d(10, 3, 90);// 3/10/1990

4. Construct a RWDate from a RWTime:

RWTime t; // Current time.
RWDate d(t);

In addition, you can construct a date using locale-specific strings. If you do
nothing, a “default locale” will be used. This locale uses US conventions and
names:

RWDate d1(10, "June", 90);// 6/10/1990
RWDate d2(10, "JUN", 90);// 6/10/1990

Suppose you wished to use French month names and your system supported a
French locale. Here’s how you might do it:

Here’s a line-by-line description:

#include <rw/rwdate.h>
#include <rw/rstream.h>
#include <rw/locale.h>
#include <rw/cstring.h>
#include <assert.h>

main()
{
 RWLocaleSnapshot french("fr"); // 1

 RWDate d(10, "Juin", 90, french);// OK// 2
 assert(RWDate(10, "Juin", 90).isValid() == FALSE);//
3
 assert(RWDate(10, "June", 90, french).isValid() == FALSE);//
4

 cout << d << endl;// 5
 cout << d.asString() << endl;// 6
 cout << d.asString('x', french) << endl;// 7

 return 0;
}

58 Tools.h++ Class Library

7

1. A “snapshot” is taken of locale "fr ". This assumes that your system
supports this locale.

2. A date is constructed using the constructor

RWDate(unsigned day,
const char* month,
unsigned year,
const RWLocale& locale = RWLocale::global());

Note – the second argument "month " is meaningful only within the context of
a locale. In this case, we are using the locale constructed at line 1. The result
is the date (as known in English) of June 10, 1990.

3. Here we attempt to construct the same date using the default locale, an
instance of class RWLocaleDefault . This locale recognizes US formatting
conventions only. Hence, the date 10 Juin 1990 is meaningless.

4. For the same reason, constructing a date using US names, but with a French
locale, also fails.

5. The date constructed at line 2 is printed using the default locale, i.e., US
formatting conventions. The results are:

June 10, 1990

6. The date is converted to a string, then printed. Again, the default locale is
used. The results are the same:

June 10, 1990

7. The date is converted to a string, this time using the locale constructed at
line 1. The results are now:

10 Juin 1990

59

Using Class RWTime 8

Class RWTime represents a time, stored as the number of seconds since 1
January 1901 UTC. While UTC is a widely accepted time standard, it is not the
usual time reference that most people use in their day-to-day lives. We tell
time with a “local” time which may or may not observe daylight savings time
(DST). In addition, DST may or may not actually be in effect.

Hence, when we create an RWTime object, we are unlikely to do so with UTC.
More likely, the time we give it will be with respect to some other time zone.
For RWTime to do the job properly, it must know which time zone you mean.
By default, it uses a global “local” time, set by RWZone::local() . The same
issue arises when you get the time back out to be printed: in which time zone
do you want it to be printed? Again, the default is the global local time.

Setting the time zone
The question naturally arises, how does the library determine this local time?

The UNIX operating system provides for setting the local time zone and for
establishing whether daylight savings time is locally observed. Class RWTime
uses various system calls to determine these values and sets itself accordingly.
Class RWTime should function properly in North America, or if daylight
savings time is not observed in your area. In places not governed by U.S.
daylight savings time rules, you may need to re-initialize the local time
zone—see “RWZone” on page 420 in Chapter 22, “Class Reference.”

60 Tools.h++ Class Library

8

Constructors
A RWTime may be constructed in several ways:

1. Construct a RWTime with the local time:

RWTime t;

2. Construct a RWTime with today's date, at the specified local hour (0–23),
minute (0–59) and second (0–59):

RWTime t(16, 45, 0);//today 16:45:00

3. Construct a RWTime for a given date and local time:

RWDate d(2, "June", 1952);
RWTime t(d, 16, 45, 0);// 6/2/52 16:45:003.

4. Construct a RWTime for a given date and time zone:

RWDate d(2, “June”, 1952);
RWTime t(d, 16, 45, 0, RWZone::utc());// 6/2/52
 16:45:00

Member functions
Class RWTime has member functions to compare, store, restore, add and
subtract RWTimes. An RWTime may return hour, minute or second, or fill a
struct tm for any time zone. A complete list of member functions is included
in Class Reference, Part 2

For example, a code fragment to output the hour in local and Universal (GMT)
zones, and then the complete local time and date, is:

RWTime t;
cout << t.hour() << endl;
cout << t.hour(RWZone::utc()) << endl;
cout << t.asString(‘c’) << endl;

Here is how you find out when daylight savings time starts for the current year
and local time zone:

RWDate today;// Current date
RWTime dstStart = RWTime::beginDST(today.year(),
 RWZone::local());

61

Virtual Streams 9

The “iostream” facility that comes with every C++ compiler is a resource that
is familiar to every C++ programmer. Among its advantages are type safe
insertion and extraction into and out of streams and extensibility to new types.
Furthermore, the source and sink of the bytes of the stream are set by another
class (streambuf) and are completely transparent to the user of the streams.

But it suffers from a number of limitations. The biggest is its limited
formatting abilities: if you insert, say, a double into an ostream , you have very
little say over what format is to be used. For example, there is no type-safe
way to insert it as binary.

Another limitation of iostreams is their assumption that all byte sources and
sinks can fit into the streambuf model. For many protocols (for example,
XDR), the format is intrinsically wedded to the byte stream and cannot be
separated.

62 Tools.h++ Class Library

9

The Tools.h++ “virtual streams” overcomes these limitations by offering an
idealized model of a stream. No assumptions are made about formatting, or
stream models. At the bottom of the virtual streams class hierarchy is class
RWvios . This is an abstract base class with an interface very similar to the
standard library class ios :

Specializing versions of RWvios will supply definitions for these functions.

class RWvios
{
public:
 virtual inteof()= 0;
 virtual intfail()= 0;
 virtual intbad()= 0;
 virtual intgood()= 0;
 virtual intrdstate()= 0;
 virtual intclear(int v = 0)= 0;
};

Virtual Streams 63

9

Inheriting from RWvios are abstract base classes RWvistream and
RWvostream . These classes declare a suite of pure virtual functions such as
operator<<(), put(), get() , and the like, for all of the basic built in
types and arrays of built in types:

Streams that inherit from RWvistream and RWvostream are intended to store
builtins to specialized streams in a format that is transparent to the user of the
classes.

The basic abstraction of the virtual streams facility is that builtins are
“inserted” into a virtual output stream, “extracted” from a virtual input
stream, without any regard for formatting. That is, there is no need to pad output

class RWvistream : public RWvios {
public:
 virtual RWvistream&operator>>(char&)= 0;
 virtual RWvistream&operator>>(double&)= 0;
 virtual intget()= 0;
 virtual RWvistream&get(char&)= 0;
 virtual RWvistream&get(double&)= 0;
 virtual RWvistream&get(char*, size_t N)= 0;
 virtual RWvistream&get(double*, size_t N)= 0;
 .
 .
 .
};

class RWvostream : public RWvios {
public:
 virtual RWvostream&operator<<(char)= 0;
 virtual RWvostream&operator<<(double)= 0;
 virtual RWvostream&put(char)= 0;
 virtual RWvostream&put(double)= 0;
 virtual RWvostream&put(const char*, size_t N)= 0;
 virtual RWvostream&put(const double*, size_t N)= 0;
 .
 .
 .
};

64 Tools.h++ Class Library

9

with whitespace, commas, or any other kind of formatting. You are effectively
telling RWvostream , “Here is a double. Please store it for me in whatever
format is convenient and give it back to me in good shape when I ask for it”.

The results are extremely powerful. You can not only use, but also write,
streaming operators without knowing anything about the final output medium
or formatting that is to be used. For example, the output medium could be a
disk, memory allocation, or even a network. The formatting could be in binary,
ASCII, or network packet. In all of these cases, the same streaming operators
can be used.

Specializing virtual streams
The Tools.h++ classes come with three types of classes that specialize
RWvistream and RWvostream . The first uses a “portable ASCII” formatting,
the second a binary formatting, and the third an XDR (eXternal Data
Representation; a Sun Microsytems standard) formatting:

The “portable ASCII” versions store their inserted items in an ASCII format
that escapes special characters such as tabs, newlines, etc., in such a manner
that they will be restored properly, even under a new operating system. The
“binary” versions do not reformat inserted items and, instead, store them in
their native format. The XDR streams send their items to an XDR stream, to be
transmitted remotely over a network.

None of these versions retain any state: they can be freely interchanged with
regular streams (including XDR)—using them does not lock you into doing all
your file I/O with them. For more information, see the respective entries in
Part II: Class Reference.

Table 9-1

Input class Output class

Abstract base class RWvistream RWvostream

Portable ASCII RWpistream RWpostream

Binary RWbistream RWbostream

XDR RWXDRistream RWXDRostream

Virtual Streams 65

9

Simple example
Here's a simple example that exercises RWbostream and RWbistream through
their respective abstract base classes, RWvostream and RWvistream :

#include <rw/bstream.h>
#include <rw/cstring.h>
#include <fstream.h>

void save(const RWCString& a, RWvostream& v)
{
 v << a;// Save to the virtual output stream
}

RWCString recover(RWvistream& v)
{
 RWCString dupe;
 v >> dupe;//Restore from the virtual input stream
 return dupe;
}

main()
{
 RWCString a("A string with\ttabs and a\nnewline.");

 {
 ofstream f("junk.dat", ios::out);// 1
 RWbostream bostr(f);// 3
 save(a, bostr);
 } // 4

 ifstream f("junk.dat", ios::in);// 5
 RWbistream bistr(f);// 6
 RWCString b = recover(bistr);// 7

 cout << a << endl; // Compare the two strings// 8
 cout << b << endl;
 return 0;
}

66 Tools.h++ Class Library

9

Program output:

A string with tabs and a
newline.
A string with tabs and a
newline.

The job of function save(RWCString& a, RWvostream& v) is to save the
string a to the virtual output stream v. Function recover(RWvistream&)
restores the results. These functions do not know the ultimate format with
which the string will be stored. Some additional comments on particular lines:

1 On this line, a file output stream f is created for the file "junk.dat ".

3 On this line, a RWbostream is created from f .

4 Because this clause in enclosed in braces { ... }, the destructor for f will
be called here. This will cause the file to be closed.

5 The file is reopened, this time for input.

6 Now a RWbistream is created from it.

7 The string is recovered from the file.

8 Finally, both the original and recovered strings are printed for
comparison.

This program could be simplified by using class fstream , which multiply
inherits ofstream and ifstream , for both output and input. A seek to
beginning-of-file would occur before reading the results back in.

Recap
We have seen how an object can be stored and recovered from streams without
regard to the final destination of the bytes of that stream. They could reside in
memory, or on disk. We have also seen how we need not be concerned with
the final formatting of the stream. It could be in ASCII or binary.

It is also quite possible to write your own specializing "virtual stream" class,
much like RWpostream and RWpistream . The great advantage of the virtual
streams facility is that if you do write your own specialized virtual stream,
there is no need to modify any of the code of the client classes—you just use
your stream class as an argument to

Virtual Streams 67

9

RWvostream& operator<<(RWvostream&, const ClassName&);
RWvistream& operator<<(RWvistream&, ClassName&);

In addition to storing and retrieving an object to and from virtual streams, all
of the classes can store and retrieve themselves in binary to and from an
RWFile . This encapsulates ANSI-C style file I/O. Although more limited in
its abilities than stream I/O, this form of storage and retrieval is faster to and
from disk because the virtual dispatching machinery is not needed.

68 Tools.h++ Class Library

9

69

Using Class RWFile 10

Class RWFile encapsulates the standard C file operations for binary read and
write, using the ANSI-C function fopen() , fwrite() , fread() , etc. This
class is patterned on class PFile of the Interviews Class Library (1987, Stanford
University), but has been modified (and modernized) by Tools.h++ to use
"const " modifiers. The member function names begin with upper case letters
in order to maintain compatibility with class PFile .

The constructor for class RWFile has prototype:

RWFile(const char* filename, const char* mode = 0);

This constructor will open a binary file called filename with mode mode (as
defined by the Standard C function fopen() ; for example "r+ "). If mode is
zero (the default) then an existing file will be opened for update (mode “r+”
for Unix, “rb+” for DOS), while non existing files will be created (modes “w+”
and “wb+”). The destructor for this class closes the file.

There are member functions for flushing the file, and for testing whether the
file is empty, has had an error, or is at the end-of-file

70 Tools.h++ Class Library

10

Example
Class RWFile has member functions to determine the status of a file, and to
read and write a wide variety of built in types, either one at a time, or as
arrays. The file pointer may be repositioned with functions SeekTo() ,
SeekToBegin() , and SeekToEnd() . The details of the RWFile class
capabilities are summarized in Part 2: Class Reference.

For example, to create a RWFile with filename "test.dat ", read an int (if the
file is not empty), increment it, and write it back to the file:

#include <rw/rwfile.h>
main()
{

RWFile file("test.dat");// Construct the RWFile.
// Check that the file exists, and that it has
// read/write permission:
if (file.Exists()) {
int i = 0;
// Read the int if the file is not empty:
if (!file.IsEmpty()) file.Read(i);
i++;
file.SeekToBegin();
file.Write(i);// Rewrite the int.
}
return 0;

}

71

Using Class RWFileManager 11

Class RWFileManager allocates, deallocates and coalesces free space in a disk
file. This is done internally by maintaining on disk a linked-list of free space
blocks.

Two typedefs are used:

typedef long RWoffset;
typedef unsigned longRWspace;

The type RWoffset is used for the offset within the file to the start of a storage
space; RWspace is the amount of storage space required. The actual typedef
may vary depending on the system you are using.

Class RWFile is a public base class of class RWFileManager , therefore the
public member functions of class RWFile are available to class
RWFileManager .

Construction
The RWFileManager constructor has prototype:

RWFileManager(const char* filename);

The argument is the name of the file that the RWFileManager is to manage. If
it exists, it must contain a valid RWFileManager . Otherwise, one will be
created.

72 Tools.h++ Class Library

11

Member functions
The class RWFileManager adds four additional member functions to those of
class RWFile . They are:

1. RWoffset allocate(RWspace s);
Allocate s bytes of storage in the file, returning the offset to the start of the
allocation.

2. void deallocate(RWoffset t);
Deallocate (free) the storage space starting at offset t . This space must have
been previously allocated by the function allocate() :

3. RWOffset endData();
Return the offset to the last data in the file.

4. RWoffset start();
Return the offset from the start of the file to the first space ever allocated by
this RWFileManager , or return RWNIL1 if no space has been allocated,
implying that this is a "new file".

The statement

RWoffset a = F.allocate(sizeof(double));

uses RWFileManager F to allocate the space required to store an object with
the size of a double and returns the offset to that space. To write the object to
the disk file, you should seek to the allocated location and then use Write() .
It is an error to read or write to an unallocated location in the file. It is also
your responsibility to maintain a record of the offsets necessary to read the
stored object.

To help you do this, the first allocation ever made by a RWFileManager is
considered "special" and can be returned by member function start() at any
time. The RWFileManager will not allow you to deallocate it. This first block
will typically hold information necessary to read the remaining data, perhaps
the offset of a root node, or the head of a linked-list.

1. RWNIL is a macro whose actual value is system dependent. Typically, it is -1L .

Using Class RWFileManager 73

11

The following example shows the use of class RWFileManager to construct a
linked-list of ints on disk: The source code is included in the toolexam
subdirectory as example7.cc and example8.cc .

Code Example 11-1

#include <rw/filemgr.h> // 1
#include <rw/rstream.h>

struct DiskNode { // 2
int data; // 3
RWoffset nextNode; // 4

};

main()
{

RWFileManager fm("linklist.dat"); // 5
// Allocate space for offset to start of the linked list:
fm.allocate(sizeof(RWoffset)); // 6
// Allocate space for the first link:
RWoffset thisNode = fm.allocate(sizeof(DiskNode)); // 7

fm.SeekTo(fm.start()); // 8
fm.Write(thisNode); // 9

DiskNode n;
int temp;
RWoffset lastNode;
cout << “Input a series of integers, “;
cout << “then EOF to end:\n”;

while (cin >> temp) { // 10
n.data = temp;
n.nextNode = fm.allocate(sizeof(DiskNode)); // 11
fm.SeekTo(thisNode); // 12
fm.Write(n.data); // 13
fm.Write(n.nextNode);
lastNode = thisNode; // 14
thisNode = n.nextNode;

}

fm.deallocate(n.nextNode); // 15
n.nextNode = RWNIL; // 16
fm.SeekTo(lastNode);
fm.Write(n.data);

74 Tools.h++ Class Library

11

Here's a line-by-line description of the program:

1. Include the declarations for the class RWFileManager .

2. Struct DiskNode is a link in the linked-list. It contains:

3. The data (an int), and

4. The offset to the next link. RWoffset is typically "typedef'd" to a long
int.

5. This is the constructor for an RWFileManager . It will create a new file,
called "linklist.dat ."

6. Allocate space on the file to store the offset to the first link. This first
allocation is considered "special" and will be saved by the
RWFileManager . It can be retrieved at any time by using the member
function start() .

7. Allocate space to store the first link. The member function allocate()
returns the offset to this space. Since each DiskNode needs the offset to
the next DiskNode , space for the next link must be allocated before the
current link is written.

8. Seek to the position to write the offset to the first link. Note that the
offset to this position is returned by the member function start() .
Note also that fm has access to public member functions of class RWFile ,
since class RWFileManager is derived from class RWFile .

9. Write the offset to the first link.

10. A loop to read integers and store them in a linked-list.

11. Allocate space for the next link, storing the offset to it in the nextNode
field of this link.

12. Seek to the proper offset to store this link

13 Write this link.

fm.Write(n.nextNode);
return 0;

} // 17

Code Example 11-1

Using Class RWFileManager 75

11

14. Since we allocate the next link before we write the current link, the final
link in the list will have an offset to an allocated block that is not used. It
must be handled as a special case.

15. First, deallocate the final unused block.

16. Next, reassign the offset of the final link to be RWNIL. When the list is
read, this will indicate the end of the linked list. Finally, re-write the
final link, with the correct information.

17. The destructor for class RWFileManager , which closes the file, will be
called here.

Having created the linked-list on disk, how might we read it? Here is a
program that reads the list and prints the stored integer field.

#include <rw/filemgr.h>
#include <w/rstream.h>
struct DiskNode {

int data;
RWoffsetnextNode;

};

main()
{

RWFileManager fm("linklist.dat");// 1
fm.SeekTo(fm.start());// 2
RWoffset next;
fm.Read(next);// 3

DiskNode n;
while (next != RWNIL) {// 4
fm.SeekTo(next);// 5
fm.Read(n.data);// 6
fm.Read(n.nextNode);
cout << n.data << "\n";// 7
next = n.nextNode;// 8
}
return 0;

} // 9

76 Tools.h++ Class Library

11

Here's a line-by-line description of the program:

1. The RWFileManager has been constructed with an old File.

2. The member function start() returns the offset to the first space ever
allocated in the file. In this case, that space will contain an offset to the
start of the linked-list.

3. Read the offset to the first link.

4. A loop to read through the linked-list and print each entry.

5. Seek to the next link.

6. Read the next link.

7. Print the integer.

8. Get the offset to the next link.

9. The destructor for class RWFileManager , which closes the file, will be
called here.

77

Using Class RWBTreeOnDisk 12

Class RWBTreeOnDisk has been designed to manage a B-Tree in a disk file.
The class represents an ordered collection of associations of keys and values,
where the ordering is determined internally by comparing keys. Given a key, a
value can be retrieved. Duplicate keys are not allowed.

Keys are arrays of chars . The key length is set by the constructor. The
ordering in the B-Tree is determined by comparing keys with an external
function. You can change this function.

The type of the values is set by a typedef. This is:

typedef long RWstoredValue;

Typically, the values represent an offset to a location in a file where an object is
stored. Hence, given a key, one can find where an object is stored and retrieve
it. However, as far as class RWBTreeOnDisk is concerned, the value has no
special meaning—it is up to you to interpret it.

This class uses class RWFileManager to manage the allocation and
deallocation of space for the nodes of the B-Tree. The same RWFileManager
can also be used to manage the space for the objects themselves if the B-Tree
and data are to be in the same file. Alternatively, a different RWFileManager ,
managing a different file, could be used if it is desirable to store the B-Tree and
data in separate files.

The member functions associated with class RWBTreeOnDisk are identical to
those of class RWBTree, which manages a B-Tree in memory, except that keys
are arrays of chars rather than RWCollectable* 's. There are member

78 Tools.h++ Class Library

12

functions to add a key-value pair, find a key, remove a key, operate on all key-
value pairs in order, return the number of entries in the tree, and determine if
a key is contained in the tree.

Construction
A RWBTreeOnDisk is always constructed from a RWFileManager . If the
RWFileManager is managing a new file, then the RWBTreeOnDisk will
initialize it with an empty root node. For example, the following code
fragment constructs a RWFileManager for a new file called "filename.dat "
and then constructs a RWBTreeOnDisk from it:

#include <rw/disktree.h>
#include <rw/filemgr.h>

main()
{

RWFileManager fm("filename.dat");

// Initializes filename.dat with an empty root:
RWBTreeOnDisk bt(fm);

}

Using Class RWBTreeOnDisk 79

12

Example
In this example, key-value pairs of character strings and offsets to RWDates,
representing birthdays, are stored. Given a name, a birthdate can be retrieved
from disk.

Here's the line-by-line description:

1. Construct a BTree. The default constructor is used, resulting in a key
length of 16 characters (the default).

2. Read the name from standard input. This loop will exit when EOF is
reached.

3. Read the corresponding birthday.

4. Allocate enough space from the RWFileManager to store the birthday.
Member function binaryStoreSize() is a member function that most
Tools.h++ classes have. It returns the number of bytes necessary to store
an object in a binary file.

#include <rw/disktree.h>
#include <rw/filemgr.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{

RWCString name;
RWDate birthday;

RWFileManager fm(“birthday.dat”);
RWBTreeOnDisk btree(fm); // 1

while (cin >> name) // 2
{

cin >> birthday; // 3
RWoffset loc = fm.allocate(birthday.binaryStoreSize());// 4
fm.SeekTo(loc); // 5
fm << birthday; // 6
btree.insertKeyAndValue(name, loc);// 7

 }
 return 0;
}

80 Tools.h++ Class Library

12

5. Seek to the location where the RWDate will be stored.

6. Store the date at that location. Most Tools.h++ classes have an
overloaded version of the streaming (<< and >>) operators.

7. Insert the key and offset to the object in the B-Tree.

Having stored the names and birthdates on a file, here's how you might
retrieve them:

Program description:

1. The program accepts names until encountering an EOF.

#include <rw/disktree.h>
#include <rw/filemgr.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{

RWCString name;
RWDate birthday;

RWFileManager fm(“birthday.dat”);
RWBTreeOnDisk btree(fm);

while(1)
{

cout << “Give name: “;
if (!(cin >> name)) break;// 1
RWoffset loc = btree.findValue(name);// 2
if (loc==RWNIL) // 3
cerr << “Not found.\n”;
else
{
fm.SeekTo(loc); // 4
fm >> birthday; // 5
cout << “Birthday is “ << birthday << endl;// 6
}

}
return 0;

}

Using Class RWBTreeOnDisk 81

12

2.The name is used as a key to the RWBTreeOnDisk , which returns the
associated value, an offset into the file.

3. Check to see whether the name was found.

4. If the name was valid, use the value to seek to the spot where the
associated birthday is stored.

5. Read the birthdate from the file.

6. Print it out.

With a little effort it is easy to have more than one B-Tree active in the same
file. This allows you to maintain indexes on more than one key. Here’s how
you would create three B-Trees in the same file:

#include <rw/disktree.h>
#include <rw/filemgr.h>

main()
{

RWoffset rootArray[3];

RWFileManager fm(“index.dat”);
RWoffset rootArrayOffset = fm.allocate(sizeof(rootArray));

for (int itree=0; itree<3; itree++)
{

RWBTreeOnDisk btree(fm, 10, RWBTreeOnDisk::create);
rootArray[itree] = btree.rootLocation();

}
fm.SeekTo(fm.start());
fm.Write(rootArray, 3);
return 0;

}

82 Tools.h++ Class Library

12

And here is how you could open the three B-Trees:

#include <rw/disktree.h>
#include <rw/filemgr.h>

main()
{

RWoffset rootArray[3];// Location of the tree roots
RWBTreeOnDisk* treeArray[3];// Pointers to the RWBTreeOnDisks

RWFileManager fm(“index.dat”);
fm.SeekTo(fm.start());// Recover locations of root nodes
fm.Read(rootArray, 3);

for (int itree=0; itree<3; itree++)
{

// Initialize the three trees:
treeArray[itree] = new RWBTreeOnDisk(fm,
autoCreate,// Will read old tree
16, // Key length
FALSE, // Do not ignore nulls
rootArray[itree] // Location of root
);

}
return 0;

}

83

Introduction to Collection Classes 13

The Tools.h++ class library includes three different types of collection classes:

• A set of template-based collection classes;

• A set of "generic" collection classes, modeled after Stroustrup (1986),
Chapter 7.3.5;

• A set of Smalltalk-like collection classes.

Despite their very different implementations, their functionality, as well as
their user-interfaces (member function names, etc.), is very similar.

The objective of this chapter is to discuss a few basic concepts about objects
and collection classes in general and to expose some of the jargon that you're
likely to encounter both here and in the literature.

Concepts
The general objective of collection classes is to store and retrieve objects. What
makes them different from one another is how they store the object and how
they do a lookup.

84 Tools.h++ Class Library

13

Storage methods

There are two different ways to store an object in a collection: either store the
object itself (value-based collections) or store a pointer or reference to the object
(reference-based collections). The difference can have important consequences.

Value-based collections are simpler to understand and manipulate. You create,
say, a linked list of integers or doubles. Or a hash table of shorts. The stored
type can be more complicated: for example, RWCStrings . The important
point is that, even though the stored type may contain pointers to other objects
(as does RWCString), they act as if they are values. When an object is inserted
into a value-based collection, a copy is made. An analogy is C's pass-by-value
semantics in function calls.

In a reference-based collection, you store and retrieve pointers to other objects.
For example, you could create a linked list of pointers to ints or doubles. Or a
hash table of pointers to RWCStrings . This type of collection can be very
efficient because pointers are small and inexpensive to manipulate, but you
must be aware of the lifetime of the pointed-to objects, lest you create two
pointers to the same object and then prematurely delete the object, leaving the
second pointer pointing into nonsense.

In general, with a reference-based collection you are responsible for the
creation, maintenance and destruction of the actual objects themselves,
although the Tools.h++ classes have a few member function to help you do
this.

Having said this, reference-based collections shouldn't scare you. In the vast
majority of the cases, the "ownership" of the contained objects is perfectly
obvious. Furthermore, reference-based collections enjoy certain performance
and size advantages because the size of all pointers is the same, allowing a
large degree of code reuse. You may also want to simply point to an object
rather than contain it (a set of selected objects in a dialog list is an example that
comes to mind). Finally, for some kinds of heterogeneous collections, they may
be the only viable approach.

It is important to note that there is a transition between the two types: one
person's value is another person's pointer! You can always use a value-based
collection class to create a reference-based collection by using addresses (i.e.,
pointers) as the inserted type. But, the resulting programming interface may
well be unpleasant and clumsy.

Introduction to Collection Classes 85

13

Shallow versus deep copies

Reference-based collections

What happens when you make a copy of a reference-based collection? It turns
out that this is a more general issue: it doesn't just affect collection classes, but
any class that references another object. Hence, if the type of object that a
value-based collection is collecting is an address, then this issue will arise there
too.

There are two general approaches: shallow copying and deep copying.

1. A shallow copy of an object is a new object whose instance variables are
identical to the old object. For example, a shallow copy of a Set will have
the same members as the old set. The new Set will share objects with the
old Set (through pointers). Shallow copies are sometimes referred to as
using reference semantics.

2. A deep copy of an object will make a copy with entirely new instance
variables. The new object will not share objects with the old object. For
example, a deep copy of a Set would not only make a new set, but the items
inserted into it would also be copies of the old items. In a true deep copy,
this copying is done recursively. Deep copies are sometimes referred to as
using value semantics.

Note – The copy constructors of all reference-based Tools.h++ collection classes
make shallow copies.

Some reference-based collection classes have a copy() member function that
will return a new object with entirely new instance variables, although this
copying is not done recursively (that is, the new instance variables are shallow
copies of the old instance variables).

Here are graphical examples. Imagine a Bag (an unordered collection of
objects with duplicates allowed) that looks like Figure 13-1 on page 86 before a
copy :

86 Tools.h++ Class Library

13

Figure 13-1 Bag before a copy

A shallow and deep copy of this collection would look like (respectively):

Figure 13-2 Shallow and deep copy of collection

Note – The deep copy not only made a copy of the bag itself, but also,
recursively, any objects within it.

Peggy

Fred

Lee

Nell

Bag 1

Before

Peggy

Fred

Lee

Nell

Bag 1

Shallow Copy

Bag 2

Peggy

Fred

Lee

Nell

Bag 1

Deep Copy

Peggy

Fred

Lee

Nell

Bag 2

Introduction to Collection Classes 87

13

Although shallow copies can be useful (and fast, because less copying is done),
one must be careful because two collections now reference the same object. If
you delete all the items in one collection, you will leave the other collection
pointing into nonsense.

The issue of shallow versus deep copies can also arise when an object is
written to disk. If an object includes two or more pointers or references to the
same object, then when it is restored it is important that this morphology be
preserved. Classes which inherit from RWCollectable inherit algorithms
which guarantee to preserve an object's morphology. More on this later.

Value-based collections

Now contrast this situation with a value-based collection. For the sake of
definiteness, consider the class RWTValOrderedVector<RWCString> , that is,
an ordered vector template, instantiated for RWCString 's. In this case, each
string is embedded within the collection. When a copy of the collection is
made, not only is the collection itself copied, but also the objects in it. This
results in distinct new copies of the collected objects:

Figure 13-3 Coping a value-based collection

Indian

Pacific

Arctic

Southern

Copy

Indian

Pacific

Arctic

Southern

Indian

Pacific

Arctic

Southern

88 Tools.h++ Class Library

13

Retrieving objects

Properties of objects

Every object that you create has three properties associated with it:

1. Its "type" (e.g., a RWCString or a "double"). In C++, an object's type is set
at creation. It cannot change.

2. Its "state" (i.e., the value of the string). The values of all the instance
variables or attributes of an object determine its state. These can change.

3. Its "identity" (i.e., identifies an object uniquely and for all time). In C++, an
object's identity is determined by its address. Each object is associated with
one and only one address. Note that the reverse is not always true because
of inheritance. Generally, an address and a type1 is necessary to
disambiguate which object you mean within an inheritance hierarchy.

Note – Different languages use different methods for establishing an object's
identity. For example, an object-oriented data base could use an "object ID" to
identify a particular object. It is just a property of C++ that an object's address
is used.

Retrieval methods

How an object is "found" within a collection class depends on how you use
these three properties.

Note – A key point is that there are two general methods for "finding" an object
and you will have to keep in mind which you mean. Some collection classes
can support either method, some can support only one.

1. Because of multiple inheritance it may be necessary to know not only the object’s type, but also its location
within an inheritance tree inorder to disambiguate which object you mean.

Introduction to Collection Classes 89

13

1. Find an object with a particular state. An example is testing two strings for
the same value. In the literature, this is frequently referred to as two objects
testing "isEqual", having "equality", "compares equal", having the same
"value", or testing true for the "=" operator. Here, we will refer to the two
objects as testing equal ("isEqual"). In general, it is necessary to have some
knowledge of the two object's type (or subtype, in the case of inheritance) in
order to find the appropriate instance variables to test for equality.1

2. Finding a particular object (that is, one with the same identity). In the
literature, this is referred to as two objects testing "isSame", or having the
same "identity", or testing true for the "==" operator. We will refer to this as
two objects having the same identity. Note that because value-based
collection classes make a copy of an inserted object, finding an object in a
value-based collection class with a particular identity is meaningless.

In C++, to test for identity (that is, whether two objects are, in fact, the same
object) you must test to see if they have the same address.

Note – In C++, because of multiple inheritance, the address of a base class and
its associated derived class may not be the same. Because of this, if you
compare two pointers (i.e., two addresses) to test for identity, the types of the
two pointers should be the same.

Smalltalk uses the operator "=" to test for equality, the operator "==" to test for
identity. However, in the C++ world, operator"=" has become firmly attached
to meaning assignment, operator "==" to generally meaning equality of values.
This is the approach we have taken.

Note – In the Tools.h++ Classes, the operator "==", when applied to two
classes, generally means test for equality of values ("isEqual"). Of course,
when applied to two pointers, it means test for identity.

Whether to test for equality or identity will depend on the context of your
problem. Here are some examples that might help.

1. The Tools.h++ collection classes allow a generalized test of equality. It is up to you to define what it means
for two objects to “be equal.” That is, a bit-by-bit comparison of the two objects is not done. You could define
“equality” to mean that a panda is the same as a deer because, in your context, both are mammals.

90 Tools.h++ Class Library

13

Suppose you were maintaining a mailing list. Given a person's name, you
want to find his or her address. In this case, you would want to search for a
name that is equal to the name at hand. A Dictionary would be appropriate.
The key to the Dictionary would be the name, the value would be the
address.

Suppose you are writing a hypertext application. You need to know in which
document a particular graphic occurs. This might be done by keeping a
Dictionary of graphics and their corresponding document. In this case
however, you would want an IdentityDictionary because you need to
know in which document a particular graphic occurs. The graphic acts as the
key, the document as the value.

Suppose you were maintaining a disk cache. You might want to know whether
a particular object is resident in memory. In this case, an IdentitySet might
be appropriate. Given an object, you can check to see whether it exists in
memory.

Iterators
Many of the collection classes have an associated iterator.

The advantage of an iterator is that it maintains an internal state, allowing two
important benefits: more than one iterator can be constructed from the same
collection, and all of the items need not be visited in a single sweep.

Iterators are always constructed from the collection itself. For example:

RWBinaryTree bt;
.
.
.
RWBinaryTreeIterator bti (bt);

Caution – Immediately after construction (or after calling reset()), the state
of the iterator is undefined. You must either advance it or position it before
using its current state (i.e., position).!

Introduction to Collection Classes 91

13

The rule is "advance and then return." All Tools.h++ iterators work this way.1

If you change the collection by adding or deleting objects while an iterator is
active, the state of the iterator also becomes undefined—using it could bring
unpredictable results. The member function reset() will restart the iterator,
as if it had just been constructed.

At any given moment the iterator "marks" an object in the collection. You can
think of it as the "current" object. There are various methods for moving this
"mark."

Most of the time you will probably be using member function operator() . It
is designed to always advance to the next object, then either return TRUE or a
pointer to the next object, depending on whether the associated collection is
value-based or reference-based, respectively. It always returns FALSE (i.e.,
zero) when the end of the collection has been reached. Hence, a simple,
canonical form for using an iterator is:

As an alternative, you can also use the prefix increment operator (++X). Some
iterators have other member functions for manipulating the mark, such as
findNext() or removeNext() .

Member function key() always returns either the current object or a pointer to
the current object, again depending on whether the collection is value-based or
reference-based, respectively.

1. This is actually patterned after Stroustrup (1986, Section 7.3.2).

RWSlistCollectable list;
.
.
.
RWSlistCollectableIterator iterator(list);
RWCollectable* next;
while (next = iterator()) {
 .
 . // (use next)
 .
}

92 Tools.h++ Class Library

13

For most collections, using member function apply() to access every member
is much faster than using an iterator. This is particularly true for the sorted
collections—usually a tree has to be traversed, requiring that the parent of a
node be stored on a stack. Function apply() uses the program's stack, while
the sorted collection iterator must maintain its own. The former is much faster.

93

Templates 14

Introduction
Ever since Version 2.0, Tools.h++ has traditionally offered two types of
collection classes: the so-called "generic" collection classes and the Smalltalk-
like collection classes. Each had its advantages and disadvantages. The
Smalltalk-like classes offer a pleasant programming interface, code reuse, and a
consistent interface. However, they actually collect pointers to a common base
class (RWCollectable), requiring that all collected objects inherit from this
class—the actual type of the class is unknown at runtime. This requires the
programmer to rely on some other kind of information, either the isA()
function or some logical inference, to decide whether it is safe to "downcast"
the pointer to an RWCollectable to a pointer to the derived class. A recent
language extension1 holds the promise that such downcasting will at least be
standardized by the language. However, the programmer will always have to
remember to perform the check. The check may also fail: an object's
inheritance hierarchy may make the type cast impossible and the prudent
programmer must be prepared for this.

1. See, for example, Josée Lajoie’s article “The new language extensions” in the July-August 1993 issue of The C++
Report.

94 Tools.h++ Class Library

14

Enter templates

Templates, or parameterized types, offer an elegant solution. Over the next
few years they promise to revolutionize the way we approach C++
programming. Indeed, 5 years from now the polymorphic collection approach
may be just a footnote in the history of C++ design.

Templates are extremely similar to the "generic.h" approach, described in the
following section, which relies on preprocessor macros to define a family of
classes parameterized on a type. However, a macro does a lexical substitution
in situ, that is at the site of invocation, making them extremely hard to debug (a
single line may be expanded into thousands of tokens!). They are also nasty to
write, requiring as they do that all newlines be escaped with a backslash.

Templates are logically a class declaration parameterized on a type. They are a
prescription for how a particular type of collection should behave. For
example, a Vector template would describe such things as how to index an
element, how long it is, how to resize, etc. The actual type of the elements is
independent of these larger, more general issues.

Now if you procede to request a vector of a particular type, say a
Vector<double> , that is, a vector of doubles, then the compiler goes back to
the template declaration and fills it in for the type double. The effect is as if
you had hand written a class "VectorOfDoubles ". But, of course, you didn't.
Instead, the compiler automatically generated the logical equivalent of such a
class. The result is extreme source code reuse.

What's the catch?

Which brings us to the one disadvantage of templates. It is the source code that
is being reused, not the object code. A declaration for Vector<double> gets
compiled separately from Vector<int> . Unless some provisions have been
made by the class designer, the two declarations will generate totally
independent object code, with the potential for bloat of the executable.

Indeed, to some extent, this is unavoidable. Still, the careful class designer will
recognize points of commonality that do not depend on the actual type and
factor them out. These are put in a separate "type-independent" class which
can be compiled once, resulting in more compact code. A trivial example, one
that builds on our discussion of vectors, might be the vector length. We might

Templates 95

14

want to declare a BaseVector class that holds the length of any vector. We
would then derive the template-based vectors Vector from this. Of course, the
code required to return the length of a vector is trivial, and so it turns out that
in practice it isn't worth doing this.

Factoring out commonality

For a more substantial example, take a look at the intrusive linked-list class
RWTIsvSlist<T> . This is a linked list of types T which are required to inherit
from class RWIsvSlink . This class contains a "next" field, consisting of a
pointer to the next link. A few moments reflection will convince you that we
don't really need to know the derived type of the link to actually walk the list.
We need only know that it inherits from RWIsvSlink . Furthermore, given an
existing link, we don't even need to know its type to add or remove it from the
list!

Hence, all this code can be factored out, compiled once, and forgotten.

Naming scheme
All of the template class names start with "RWT", followed by a three letter
code:

Isv Intrusive lists
Val Value-based
Ptr Pointer-based

Hence, RWTValOrderedVector<T> is a value-based template for an ordered
vector of type T.

96 Tools.h++ Class Library

14

Types of templates

Intrusive lists

For a collection of type T, intrusive lists are lists where type T inherits directly
from the link type itself1. The results are optimal in space and time, but
require you to honor the inheritance hierarchy.

Value-based collections

Value-based collections copy the object in and out of the collection. A very
familiar example of a value-based "collection" is the C array:

int v[100];/* A 100 element array of ints */
int i = 7;
v[2] = i;

The statement "v[2] = i " copies the value of i into the array at index 2. What
resides within the array is a distinct copy, separate from the original object i .

Value-based collections can contain more complicated objects too. Here's an
example of a vector of RWCStrings :

/* A 100 element array of RWCStrings: */
RWTValVector<RWCString> v(100);
RWCString s("A string");
v[2] = s;

Just as with the array of ints, the statement "v[2] = s " copies the value of s
into the vector at index 2. The object that lies within the vector is distinct and
separate from the original object s .

1. See Stroustrup, The C++ Programming Language, Second Edition, Addison-Westley, 1991, for a description
of intrusive lists.

Templates 97

14

Pointer-based collections

The final type of collection, pointer-based, is similar to the Smalltalk-like
collection classes. The data that gets inserted into the collection is not the
object itself, but rather its address. That is, a pointer to the data is inserted.
Now the collection class refers to the original object:

/* A 100 element array of pointers to RWCStrings: */
RWTPtrVector<RWCString> v(100);
RWCString s("A string");
v[2] = &s;

Both the object s and the array element v[2] refer to the same object.
Naturally, this approach requires some care: should the string be deleted the
array element will be left pointing into nonsense. You must take care that you
are aware of who is responsible for the allocation and deallocation of objects
collected this way.

Neverthless, this type of collection can be appropriate for many situations.
You may need to have the same group of objects referred to in many ways,
requiring that each collection point to the target objects, rather than wholly
contain them. For example, a collection may refer to a set of "picked" objects
that your graphical program has obtained from a user. You need to know
which ones must be highlighted.

An example
It's time to look at an example. Let's start with a simple one: a vector of
doubles.

Code Example 14-1

#include <rw/tvvector.h>// 1

main() {

RWTValVector<double> vec(20, 0.0);// 2

int i;
for (i=0; i<10; i++)vec[i] = 1.0;// 3
for (i=11; i<20; i++)vec(i) = 2.0;// 4

98 Tools.h++ Class Library

14

Each program line is detailed below.

1. This is where the template for RWTValVector<T> is defined.

2. A vector of doubles, 20 elements long and initialized to 0.0 is declared
and defined.

3. The first 10 elements of the vector are set to 1.0. Here,
RWValVector<double>::operator[](int) has been used. This
operator always performs a bounds check on its argument.

4. The next 10 elements of the vector are set to 2.0. In this case
RWValVector<double>::operator()(int) has been used. This
operator generally does not perform a bounds check.

Note – For all Tools.h++ classes, operator[](int) always performs a
bounds check on its argument.
Some classes also support operator()(int) . Bounds checking is generally
not performed for this operator unless you define RWBOUNDS_CHECK before
including the header file.

5. Member function reshape(int) changes the length of the vector.

Note – If a vector is lengthened using reshape(int) , then the values of the
new elements are undefined.
If a vector is lengthened using resize(int) , then the new values are
initialized to something sensible, generally zero or blanks, depending on the
vector type.

All Tools.h++ vectors work this way.

6. Finally, the last 10 elements are initialized to 3.0.

vec.reshape(30);// 5
for (i=21; i<30; i++)vec[i] = 3.0;// 6
return 0;

}

Code Example 14-1 (Continued)

Templates 99

14

A more complicated example
Here's another example, this one involving a hashing dictionary.

Program input:

How much wood could a woodchuck chuck if a woodchuck

could chuck wood ?

#include <rw/tvhdict.h>
#include <rw/cstring.h>
#include <rstream.h>
#include <iomanip.h>

class Count {// 1
int N;

public:
Count() : N(0){ }// 2
int operator++() { return ++N; }// 3
operatorint() { return N; }// 4

};

unsigned hashString (const RWCString& str)// 5
{ return str.hash(); }

main() {

RWTValHashDictionary<RWCString,Count> map(hashString);// 6

RWCString token;
while (cin >> token)// 7
++map[token];// 8

RWTValHashDictionaryIterator<RWCString,Count> next(map);// 9

cout.setf(ios::left, ios::adjustfield);//10
while (++next)//11
cout << setw(20) << next.key()
<< " " << setw(10) << next.value() << endl;//12

return 0;
}

100 Tools.h++ Class Library

14

Program output:

much 1
wood 2
a 2
if 1
woodchuck 2
could 2
chuck 2
How 1
? 1

The problem is to read an input file, break it up into tokens separated by
whitespace, count the number of occurences of each token, and then print the
results. The general approach is to use a dictionary to map each token to its
respective count. Here's a line-by-line description:

1. This is a class used as the value part of the dictionary.

2. A default constructor is supplied that zeroes out the count.

3. We supply a prefix increment operator. This will be used to increment
the count in a convenient and pleasant way.

4. A conversion operator is supplied that allows Count to be converted to
an int . This will be used to print the results. Alternatively, we could
have supplied an overloaded operator<<() to teach a Count how to
print itself, but this is easier.

5. This is a function that must be supplied to the dictionary constructor. Its
job is to return a hash value given an argument of the type of the key.

6. Here the dictionary is constructed. Given a key, the dictionary will be
used to look up a value. In this case, the key will be of type RWCString ,
the value of type Count . The constructor requires a single argument: a
pointer to a function that will return a hash value, given a key. This
function was defined on line 5 above.

7. Tokens are read from the input stream into a RWCString . This will
continue until an EOF is encountered. How does this work? The
expression "cin >> token " reads a single token and returns an
ostream& . Class ostream has a type conversion operator to void*
which is what the while loop will actually be testing. Operator void*
returns "this " if the stream state is "good", otherwise zero. Because an
EOF causes the stream state to turn to "not good", the while loop will be

Templates 101

14

broken when an EOF is encountered. See the RWCString entry in the
class reference guide and the ios entry in the class reference guide that
comes with your compiler for more details.

8. Here's where all the magic occurs. Object map is the dictionary. It has an
overloaded operator[] that takes an argument of the type of the key
and returns a reference to its associated value. Recall that the type of the
value is a Count . Hence, map[token] will be of type Count . As we
saw on line 3, Count has an overloaded prefix increment operator. This
is invoked on the Count , thereby increasing its value.

What if the key isn't in the dictionary? Then the overloaded
operator[] will insert it, along with a brand new value built using the
default constructor of the value's class. This was defined on line 2 to
initialize the count to zero.

9. Now it comes time to print the results. We start by defining an iterator
that will sweep over the dictionary, returning each key and value.

10. The "field width" of the output stream is adjusted to make things pretty.

11. The iterator is advanced until it reaches the end of the collection. For all
template iterators, the prefix increment operator advances the iterator
then tests whether it has gone past the end of the collection.

12. The key and value at the position of the iterator are printed.

102 Tools.h++ Class Library

14

103

“Generic” Collection Classes 15

This chapter describes the second kind of collection classes included in the
Tools.h++ Class Library: generic collection classes. They are so-called because
they use the macros defined in <generic.h> , an early approximation to
parameterized types, first described in Stroustrup (1986, p. 209). While they
can be more unwieldy than true templates1, they do offer the advantage of
being portable to any C++ compiler, even older compilers.

Most of the "generic" collection classes use reference-based semantics (that is,
they store and retrieve pointers to other objects). Like the other reference-
based Tools.h++ collection classes, you are responsible for the allocation and
deallocation of the objects themselves. However, the three vector-based
collection classes, RWGVector(val), RWGOrderedVector (val), and
RWGSortedVector (val) use value-based semantics and store the type itself
(which could be a pointer to an object).

The storage and retrieval methods and criteria differ from class to class.

1. Actually, the generic macros are very easy to use, they are just difficult to write. Because they are
preprocessor macros, they must be “all on one line,” making them very difficult to debug.

104 Tools.h++ Class Library

15

Example
Here is an example of using a RWGStack (generic stack) to store a set of
pointers to ints in a last-in, first-out (LIFO) stack. We will go through it line-
by-line and explain what is happening:

Program output:

Stack now has 4 entries
4
3
2
1

Each program line is detailed below.

1. This #include defines the preprocessor macro
RWGStackdeclare (type). This macro is an elaborate and ugly looking
thing that continues for many lines and describes how a "generic stack"
of objects of type type should behave. Mostly, it serves as a restricted
interface to the underlying implementation, which is a singly-linked list
(class RWSlist). It is restricted because only certain member functions
of RWSlist can be used (those appropriate to stacks) and because the
items to be inserted into the stack must be of type type.

#include <rw/gstack.h>// 1
#include <rw/rstream.h>// 2

declare(RWGStack, int)// 3
main()
{

RWGStack(int) gs;// 4
gs.push(new int(1));// 5
gs.push(new int(2));// 6
gs.push(new int(3));// 7
gs.push(new int(4));// 8
cout << "Stack now has " << gs.entries()
<< " entries\n";// 9

int* ip; // 10
while(ip = gs.pop())// 11
cout << *ip << "\n";// 12
return 0;

}

“Generic” Collection Classes 105

15

2. <rw/rstream.h> is a special Tools.h++ supplied header file that
includes <iostream.h> with the appropriate suffix, depending on your
compiler.

3. This line invokes the macro declare which is defined in the header file
<generic.h> , supplied with your compiler. If called with arguments
declare (Class, type), it calls the macro Classdeclare with argument
type. Hence, in this case, the macro RWGStackdeclare will be called
(which was defined in <rw/gstack.h>) with argument int .

Note – To summarize, the result of calling the declare(RWGStack, int) macro
is that a new class has been created, especially for your program. It will be a
stack of pointers to ints. Its name, for all practical purposes, is
RWGStack(int) .

4. At this line an instance gs of the new class RWGStack(int) is created.

5–8. Four ints were created off the heap and inserted into the stack. After
statement 8 executes, a pointer to the int "4" will be at the top of the
stack, a pointer to the int "1" will be at the bottom.

9. The member function entries() of class RWGStack(int) is called to
verify how many items are on the stack.

10. A pointer to an int is declared and defined.

11. The stack is popped until empty. The member function pop() will
return and remove a pointer to the item on the top of the stack. If there
are no more items on the stack it will return zero, causing the while
loop to terminate.

12. Each item is dereferenced and printed.

Declaring generic collection classes
All of the Tools.h++ generic collection classes are declared using the declare
macro, defined in the header file <generic.h> , in a manner similar to the
example above. However, there is one important difference in how the
Tools.h++ classes are declared versus the pattern set by Stroustrup (1986,
Section 7.3.5). This is summarized below:

106 Tools.h++ Class Library

15

typedef int* intP;
declare(RWGStack, intP)// Wrong!
declare(RWGStack, int)// Correct.

In Stroustrup, the class is declared using a typedef for a pointer to the collected
item. The Tools.h++ generic classes are all declared using the item name itself.
This is true for both the reference- and value-semantics classes.

User-defined functions
Some of the member functions of the generic collection classes require a
pointer to a user-defined function. There are two kinds, discussed in the
following two sub-headings.

Tester functions

The first kind of user-defined function is a "tester function". It has the form:

RWBoolean tester(const type* ty, const void* a)

where tester is the name of the function, type is the type of the members of the
collection class, and RWBoolean is a typedef for an int (whose only possible
values are TRUE or FALSE). The job of the tester function is to signal when a
certain member of the collection has been identified. The decision of how this
is done, or what it means to have "identified" an object, is left to the user. The
user can choose to compare addresses (test for two objects being "identical"), or
look for certain values within the object (test for "isEqual"). The first variable
ty will point to a member of the collection and can be thought of as a
"candidate". The second variable a is available for your use to be tested against
ty for a match. It can be thought of as "client data", used to make the decision
of whether there is a match.

Here is an example that expands on the Example in “Example” on page 104.
The problem is to push some values onto a stack and then to see if a certain
value exists on the stack (test for "isEqual").

The member function contains() of class RWGStack(type) has prototype:

“Generic” Collection Classes 107

15

RWBoolean contains
(

RWBoolean (*t)(const type*, const void*),
const void* a

) const;

The first argument is RWBoolean (*t)(const type*, const void*) . This
is a pointer to the tester function, for which we will have to provide an
appropriate definition:

#include <rw/gstack.h>
#include <rw/rstream.h>

declare(RWGStack, int)

RWBoolean myTesterFunction(const int* jp, const void* a)// 1
{

return *jp == *(const int*)a;//2
}

main()
{

RWGStack(int) gs;// 3
gs.push(new int(1));// 4
gs.push(new int(2));// 5
gs.push(new int(3));// 6
gs.push(new int(4));// 7

int aValue = 2;// 8
if (gs.contains(myTesterFunction, &aValue))// 9
cout << "Yup.\n";
else
cout << "Nope.\n";
return 0;

}

108 Tools.h++ Class Library

15

Program output:

Yup.

A description of each program line follows.

1. This is the tester function. The first argument is a pointer to the type of
objects in the collection, ints in this case. The second argument points
to an object that can be of any type. In this example, it also points to an
int . Both arguments are declared const pointers — in general the tester
function should not change the value of the objects being pointed to.

2. The second argument is converted from a const void* to a const int* ,
then dereferenced. The result is a const int . This is then compared to
the dereferenced first argument, which is also a const int . The net
result is that this tester function considers a match to have occurred
when the two ints have the same values (i.e., they are equal).

Note – We could have chosen to have identified a particular int (i.e., test for
identity).

3–7. These lines are the same as in “Example” on page 104. A generic stack of
(pointers to) ints is declared and defined, then 4 values are pushed onto
it.

8. This is the value (i.e., "2") that we will look for in the stack.

9. Here the member function contains() is called, using the tester
function. The second argument of contains() (a pointer to the variable
aValue) will appear as the second argument of the tester function. The
function contains() traverses the entire stack, calling the tester
function for each item in turn, waiting for the tester function to signal a
match. If it does, contains() returns TRUE, otherwise FALSE.

Note – The second argument of the tester function does not necessarily have to
be of the same type as the members of the collection (although it is in the
example above).

“Generic” Collection Classes 109

15

The following is an example where they are not of the same type:

Here, a stack of (pointers to) Foos is declared and used, while the variable
being passed as the second argument to the tester function is still a const
int* . The tester function must take this into account.

#include <rw/gstack.h>
#include <rw/rstream.h>
class Foo {
public:

int data;
Foo(int i) {data = i;}

};

declare(RWGStack, Foo) // A stack of pointers to Foos

RWBoolean anotherTesterFunction(const Foo* fp, const void* a)
{

return fp->data == *(const int*)a;
}

main()
{

RWGStack(Foo) gs;
gs.push(new Foo(1));
gs.push(new Foo(2));
gs.push(new Foo(3));
gs.push(new Foo(4));

int aValue = 2;
if (gs.contains(anotherTesterFunction, &aValue))
cout << "Yup.\n";
else
cout << "Nope.\n";
return 0;

}

110 Tools.h++ Class Library

15

Apply functions

The second kind of user-defined function is an "apply function". Its general
form is:

void yourApplyFunction(type* ty, void* a)

where yourApplyFunction is the name of the function and type is the type of the
members of the collection. Apply functions give you the opportunity to
perform some operation on each member of a collection (perhaps print it out or
draw it on a screen). The second argument is designed to hold "client data" to
be used by the function (perhaps the handle of a window on which the object
is to be drawn).

Here is an example, using class RWGDlist (type)—a generic doubly-linked list:

#include <rw/gdlist.h>
#include <rw/rstream.h>
class Foo {
public:

int val;
Foo(int i) { val = i;}

};

declare(RWGDlist, Foo)

void printAFoo(Foo* ty, void* sp)
{

ostream* s = (ostream*)sp;
(*s) << ty-> val << "\n";}

main()
{

RWGDlist(Foo) gd;
gd.append(new Foo(1));
gd.append(new Foo(2));
gd.append(new Foo(3));
gd.append(new Foo(4));
gd.apply(printAFoo, &cout);
return 0;

}

“Generic” Collection Classes 111

15

Program output:

1
2
3
4

The items are appended at the tail of the list (see Part 2: Class Reference). For
each item, the apply() function calls the user-defined function printAFoo()
with the address of the item as the first argument and the address of an
ostream (an output stream) as the second argument. The job of printAFoo()
is to print out the value of member data val. Because apply() scans the list
from beginning to end, the items will come out in the same order in which they
were inserted.

With some care, apply functions can be used to change the objects in a
collection. For example, you could use an apply function to change the value
of member data val in the example above, or to delete all member objects. But,
in the latter case, you must be careful not to use the collection again.

112 Tools.h++ Class Library

15

113

Smalltalk-likeCollection Classes 16

Introduction
The third general type of collection classes provided with the Tools.h++ Class
Library is a set of "Smalltalk-80-like Collection Classes". In this approach,
objects to be collected must inherit the abstract base class "RWCollectable ",
using either single or multiple inheritance. The principal advantage of this
approach is that the programming-interface is much cleaner and the collection
classes are far more powerful. The disadvantage is that the objects are slightly
larger, the collection classes slightly slower, and (as we shall see) not as
typesafe..

Many of these classes have a typedef to either the corresponding Smalltalk
names, or to a generic name. This typedef is activated by defining the
preprocessor macro RW_STD_TYPEDEFS. Table 16-1 summarizes.

Table 16-1 Smalltalk-like classes, iterators, and implementations.

Class Iterator
"Smalltalk"
typedef Implemented as

RWBag RWBagIterato r Bag Dictionary of
occurrences

RWBinaryTree RWBinaryTree-
Iterator

SortedCollect-
ion

Binary tree

RWBTree B-Tree in memory

114 Tools.h++ Class Library

16

RWBTreeDict-
ionary

B-Tree of
associations

RWCollection RWIterator Collection Abstract base class

RWDlistCollec-
tables

RWDlistCollec-
tablesIterator

Doubly-linked list

RWHashTable RWHashTable-
Iterator

Hash table

RWHashDiction-
ary

RWHashDiction-
aryIterator

Dictionary Hash table of
associations

RWIdentityDic-
tionary

RWHashDiction-
aryIterator

IdentityDict-
ionary

Hash table of
associations

RWIdentitySet RWSetIterator IdentitySet Hash table

RWOrdered RWOrderedIter-
ator

OrderedCollec-
tion

Vector of pointers

RWSequenceable RWIterator Sequenceable Abstract base class

RWSet RWSetIterator Set Hash table

RWSlistCollect
ables

RWSlistCollect
ablesIterator

LinkedList Singly-linked list

RWSlistCollec-
tablesQueue

(n/a) Queue Singly-linked list

RWSlistCollec-
tablesStack

(n/a) Stack Singly-linked list

RWSortedVector RWSortedVector
Iterator

Vector of pointers,
using insertion
sort

Table 16-1 Smalltalk-like classes, iterators, and implementations. (Continued)

Class Iterator
"Smalltalk"
typedef Implemented as

Smalltalk-like Collection Classes 115

16

Table 16-2 lists the class hierarchy of the Smalltalk-like collection classes.

Note – Some of these classes use multiple-inheritance: this hierarchy is shown
relative to the RWCollectable base class.

Table 16-2 The class hierarchy of the Smalltalk-like collection classes

RWCollectable

RWCollection (abstract base class)

RWBinaryTree

RWBTree

RWBTreeDictionary

RWBag

RWSequenceable (abstract base class)

RWDlistCollectables (Doubly-linked lists)

RWOrdered

RWSortedVector

RWSlistCollectables (Singly-linked lists)

RWSlistCollectablesQueue

RWSlistCollectablesStack

RWHashTable

RWSet

RWIdentitySet

RWHashDictionary

RWIdentityDictionary

116 Tools.h++ Class Library

16

Example
To get us oriented, it is always good to look at an example. This code uses a
SortedCollection to store and order a set of RWCollectableStrings . We
will go through it line-by-line and explain what is happening:

Program output:

Bill
George
Mary
Throkmorton

SortedCollection is actually a typedef for a RWBinaryTree . Objects
inserted into it are stored in order according to relative values returned by the
virtual function compareTo() (see “Virtual function compareTo()” on
page 143 in Chapter 18, “Designing an RWCollectable Class”).

#define RW_STD_TYPEDEFS 1 // 1
#include <rw/bintree.h>
#include <rw/collstr.h> // 2
#include <rw/rstream.h>

main()
{

// Construct an empty SortedCollection
SortedCollection sc; // 3

// Insert some RWCollectableStrings:
sc.insert(new RWCollectableString("George")); // 4
sc.insert(new RWCollectableString("Mary")); // 5
sc.insert(new RWCollectableString("Bill")); // 6
sc.insert(new RWCollectableString("Throkmorton")); // 7

// Now iterate through the collection,
// printing all members:

RWCollectableString* str; // 8
SortedCollectionIterator sci(sc); // 9
while(str = (RWCollectableString*)sci()) // 10

cout << *str << endl; // 11
return 0;

}

Smalltalk-like Collection Classes 117

16

1. By defining the preprocessor macro RW_STD_TYPEDEFS we enable the
set of Smalltalk-like typedefs. This enables us to use the generic name
"SortedCollection " instead of RWBinaryTree , its true identity.

2. The second #include declares class RWCollectableString which is a
derived class with classes RWCString and RWCollectable as base
classes. Multiple inheritance was used to create this class. Most of its
functionality is inherited from class RWCString . Its ability to be
"collected" was inherited from class RWCollectable .

3. An empty SortedCollection was created at this line.

4–7. Four RWCollectableStrings were created off the heap and inserted
into the collection. See Part 2: Class Reference for details on constructors
for RWCollectableStrings . The insertions were not done in any
particular order.

8. A pointer to a RWCollectableString was declared and defined here.

9. An iterator was constructed from the SortedCollection sc .

10. The iterator is then used to step through the entire collection, retrieving
each value in order. The function call operator (i.e., operator()) has
been overloaded for the iterator to mean "step to the next item and
return a pointer to it". All Tools.h++ iterators work this way. See
Stroustrup (1986, Section 7.3.2) for an example and discussion of
iterators, as well as “Iterators” on page 90 in Chapter 13, “Introduction to
Collection Classes,” of this manual. The typecast

str = (RWCollectableString*)sci()

is necessary because the iterator returns a RWCollectable* (that is, a
pointer to a RWCollectable) which must then be cast into its actual
identity.

11. Finally, the pointer str is dereferenced and printed. The ability of a
RWCollectableString to be printed is inherited from its base class
RWCString .

When run, the program prints out the four collected strings "in order". For
class RWCollectableString , this means in lexicographical order.

118 Tools.h++ Class Library

16

Overview
This section gives a general overview of the various Smalltalk-like collection
classes to help you chose an appropriate one for your problem.

Bags versus Sets versus Hash Tables

Class RWHashTable is the simplest to understand. It uses a simple hashed
lookup to find the "bucket" that a particular object occurs in, then does a linear
search of the bucket to find the object. A key concept is that more than one
object with the same value (that is, that tests "isEqual") can be inserted into a
Hash Table.

Class RWBag is similar to RWHashTable except that it counts occurrences of
multiple objects with the same value. That is, it retains only the first
occurrence. Subsequent occurrences merely increment an "occurrence" count.
It is implemented as a dictionary where the key is the inserted object and the
value is the occurrence count. This is how the Smalltalk "Bag" object is
implemented. Note that this implementation differs significantly from many
other C++ "Bag" classes which are closer to the RWHashTable class and are not
true Bags.

Class RWSet inherits from RWHashTable . It is similar except that duplicates
are not allowed. That is, if you try to insert more than one object with a given
value, duplicates are rejected.

Class RWIdentitySet inherits from RWSet. It retrieves objects on the basis of
identity instead of value. Because it is a Set, only one instance of a given object
can be inserted.

Note – The ordering of objects in any of these hash-table based classes is not
meaningful. If ordering is important, then you should chose a sequenceable
class.

Smalltalk-like Collection Classes 119

16

Sequenceable classes

Classes inheriting from RWSequenceable have an innate ordering. That is, it
is meaningful to speak of the "6'th object", or the "first" or "last" object.

These classes are generally implemented either as a vector or as a singly- or
doubly-linked list. You should be aware of the differences: vector based classes
make good stacks and queues, but are poor at insertions in the middle. If you
exceed the capacity of a vector-based collection class it will automatically
resize, but there may be a very significant performance penalty for it to do so.

Note – The binary and B-Tree classes could be considered "sequenceable" in the
sense that they are sorted and, therefore, have an innate ordering. However,
the ordering is determined internally, by the relative value of the collected
objects, rather than by an insertion order. That is, you cannot arbitrarily insert
an object into a sorted collection in any position you wish: it might not remain
sorted. Hence, these classes are subclassed separately.

Dictionaries

Dictionaries (sometimes called “maps”) use an external key to find a value. The
key and value may be (and usually are) of different types. You can think of
them as associating a given key with a given value. For example, if you were
building a symbol table in a compiler, you might use the symbol name as the
key, and its relocation address as the value. This contrasts with the approach
one might make using a Set, where the name and address would have to be
encapsulated into one object.

Tools.h++ provides two dictionary classes: RWHashDictionary (implemented
as a hash table) and RWBTreeDictionary (implemented as a B-Tree). Both
keys and values must inherit from the abstract base class RWCollectable .

120 Tools.h++ Class Library

16

Virtual functions inherited from RWCollection
The Smalltalk-like collection classes inherited from the abstract base class
RWCollection which, in turn, inherits from the abstract base class
RWCollectable , described in Chapter 18, “Designing an RWCollectable
Class” (making it is possible to have collections of collections).

An "abstract base class" is a class that is not intended to be used per se, but
rather to be inherited by some other class. Its virtual functions provide a
template of functionality that act as a surrogate for the derived class. The class
RWCollection is such a class. It provides a template for "collection" classes
by declaring various virtual functions such as insert() , remove() ,
entries() , etc.

This section describes the virtual functions inherited by all of the Smalltalk-like
collections. Any collection can be expected to understand them.

insert()
virtual RWCollectable*insert(RWCollectable*);

A pointer to an object is put into a collection by using insert() . It inserts in
the "most natural way" for the collection. For a stack, this means it is pushed
onto the stack. For a queue, the item is appended to the queue. For a sorted
collection, the item is inserted such that items before it compare less than (or
equal to if duplicates are allowed) itself, items after it compare greater than
itself. See the example in “Example” on page 116 for an example of insert() .

find() and friends
virtual RWBoolean contains(const RWCollectable*)

 const;
virtual unsigned entries() const;
virtual RWCollectable*find(const RWCollectable*)

const;
virtual RWBoolean isEmpty() const;
virtual unsigned occurrencesOf(const

 RWCollectable*) const;

Smalltalk-like Collection Classes 121

16

These functions test how many objects the collection contains and whether it
contains a particular object. The function isEmpty() returns true if the
collection contains no objects. The function entries() returns the total
number of objects that the collection contains.

The function contains() returns TRUE if the argument is equal to an item
within the collection. The meaning of "is equal to" depends on the collection
and the type of object being tested. Hashing collections use the virtual
function isEqual() to test for equality (with the hash() function used to
narrow the choices). Sorted collections search for an item that "compares
equal" (i.e. compareTo() returns zero) to the argument.

The virtual function occurrencesOf() is similar to contains() , but returns
the number of items that are equal to the argument.

The virtual function find() returns a pointer to an item that is equal to its
argument.

Here is an example that builds on the example in “Example” on page 116 and
uses some of these functions:

Code Example 16-1

#define RW_STD_TYPEDEFS 1
#include <rw/bintree.h> // 1
#include <rw/collstr.h> // 2
#include <rw/rstream.h>

main()
{

// Construct an empty SortedCollection
SortedCollection sc; // 3
// Insert some RWCollectableStrings:
sc.insert(new RWCollectableString("George")); // 4
sc.insert(new RWCollectableString("Mary")); // 5
sc.insert(new RWCollectableString("Bill")); // 6
sc.insert(new RWCollectableString("Throkmorton")); // 7
sc.insert(new RWCollectableString("Mary")); // 8

cout << sc.entries() << "\n"; // 9

RWCollectableString dummy("Mary"); // 10
RWCollectable* t = sc.find(&dummy); // 11

122 Tools.h++ Class Library

16

Program output:

5
Mary
2

Here's the line-by-line description:

1–7. These lines are as in “Example” on page 116.

8. Insert another instance with the value "Mary".

9. This statement prints out the total number of entries in the sorted
collection: 5.

10. A throwaway variable "dummy" is constructed, to be used to test for the
occurrences of strings containing "Mary".

11. The collection is asked to return a pointer to the first object encountered
that compares equal to the argument. A nil pointer (zero) is returned if
there is no such object.

12. The pointer is tested to make sure it is not nil.

13. Paranoid check. In this example, it is obvious that the items in the
collection must be of type RWCollectableString . In general, it may
not be obvious.

14. Because of the results of step 13, the cast to a RWCollectableString
pointer is safe. The pointer is then dereferenced and printed.

if(t){ // 12
 if(t-isA() == dummy.isA()) // 13
 cout << *(RWCollectableString*)t << "\n"; // 14
}
else
 cout << "Object not found.\n"; // 15

cout << sc.occurrencesOf(&dummy) << "\n"; // 16
return 0;

}

Code Example 16-1 (Continued)

Smalltalk-like Collection Classes 123

16

15. If the pointer t was nil, then an error message would have been printed
here.

16. The call to occurrencesOf() returns the number of items that compare
equal to its argument. In this case, two items are found (the two
occurrences of "Mary").

remove() functions
virtual RWCollectable*remove(const RWCollectable*);

v irtual void removeAndDestroy(const RWCollectable*);

The function remove() looks for an item that is equal to its argument and
removes it from the collection, returning a pointer to it. It returns nil if no item
was found.

The function removeAndDestroy() is similar except that rather than return
the item, it deletes it, using the virtual destructor inherited by all
RWCollectable items. You must be careful when using this function that the
item was actually allocated off the heap (i.e. not the stack) and that it is not
shared with another collection.

Expanding on the example above:

RWCollectable* oust = sc.remove(&dummy);/ 17
delete oust; // 18

sc.removeAndDestroy(&dummy); // 19

17. Removes the first occurrence of the string containing "Mary" and returns
a pointer to it. This pointer will be nil if there was no such item.

18. Delete the item (which was originally allocated off the heap). There is no
need to check the pointer against nil because the language guarantees
that it is always OK to delete a nil pointer.

19. In this statement, the remaining occurrence of "Mary" is not only
removed, but also deleted.

apply() functions
virtual void apply(RWapplyCollectable ap, void* x);

124 Tools.h++ Class Library

16

An efficient method for examining the members of a Smalltalk-like collection is
member function apply() . The first argument (RWapplyCollectable) is a
typedef:

typedef void(*RWapplyCollectable)(RWCollectable*, void*);

that is, a pointer to a function with prototype:

void yourApplyFunction(RWCollectable* item, void* x)

where yourApplyFunction is the name of the function. You must supply this
function. It will be called for each item in the collection, in whatever order is
appropriate for the collection, and passed a pointer to the item as its first
argument. The second argument (x) is passed through from the call to
apply() and is available for your use. It could be used, for example, to hold
a handle to a window on which the object is to be drawn, etc.

Note – Notice the similarity to the apply() function of the generic collection
classes (see “Apply functions” on page 110 in Chapter 15, ““Generic”
Collection Classes”). The difference is in the type of the first argument of the
user-supplied function (RWCollectable * rather than type*). As with the
generic classes, you must be careful that you cast the pointer item to the proper
derived class.

The apply functions generally employ the "most efficient method" for
examining all members of the collection. This is their great advantage. Their
disadvantage is that they are slightly clumsy to use, requiring the user to
supply a separate function.1

Functions clear() and clearAndDestroy()
virtual void clear();
virtual void clearAndDestroy();

The function clear() removes all items from the collection.

1. The functional equivalent to apply() in the Smalltalk world is “do”. It takes just one argument—a piece of
code to be evaluated for each item in the collection. This keeps the method and the block to be evaluated
together in one place, resulting in cleaner code. As usual, the C++ approach is messier.

Smalltalk-like Collection Classes 125

16

The function clearAndDestroy() not only removes the items, but also
deletes each one. Although it does check to see if the same item occurs more
than once in a collection (by building an IdentitySet internally) and thereby
deletes each item only once, it must still be used with care. It cannot check to
see whether an item is shared between two different collections. You must also
be certain that all possible members of the collection were allocated off the
heap.

Other functions shared by all RWCollections
There are several other functions that are shared by all classes that inherit from
RWCollection . Note that these are not virtual functions.

Class conversions
RWBagasBag() const;
RWSetasSet() const;
RWOrderedasOrderedCollection() const;
RWBinaryTreeasSortedCollection() const

These functions allow any collection class to be converted into a RWBag,
RWSet, RWOrdered, or a SortedCollection (i.e., a RWBinaryTree).

Inserting and removing other collections
voidoperator+=(const RWCollection&);
voidoperator-=(const RWCollection&);

These functions insert or remove (respectively) the contents of their argument.

Selection
typedef RWBoolean

(*RWtestCollectable)(const RWCollectable*, const void*);
RWCollection*select(RWtestCollectable tst, void*);

126 Tools.h++ Class Library

16

The function select() evaluates the function pointed to by tst for each item
in the collection. It inserts those items for which the function returns TRUE into
a new collection of the same type as self and returns a pointer to it. This new
collection is allocated off the heap, hence you are responsible for deleting it
when done.

Virtual functions inherited from RWSequenceable
The abstract base class RWSequenceable is derived from RWCollection .
Collections that inherit from it have an innate ordering. That is, the ordering is
meaningful (unlike, say, a hash table).

virtual RWCollectable*& at(size_t i);
virtual const RWCollectable* at(size_t i) const;

These virtual functions allow access to the i'th item in the collection, similar to
subscripting an array. The compiler choses which function to use on the basis
of whether or not your collection has been declared "const". If it has, the
second variant is used, otherwise the first. The first can be used as an lvalue:

RWOrdered od;
od.insert(new RWCollectableInt(0));// 0
od.insert(new RWCollectableInt(1));// 0 1
od.insert(new RWCollectableInt(2));// 0 1 2

delete od(1);// Use variant available for RWOrdered
od.at(1) = new RWCollectableInt(3);// 0 3 2

These operation are very efficient for the class RWOrdered (which is
implemented as a vector) but, as you might expect, relatively inefficient for
classes implemented as a linked-list (the entire list must be traversed in order
to find a particular index).

virtual RWCollectable*first() const;
virtual RWCollectable*last() const;

These functions return the first or last item in the collection, respectively, or nil
if the collection is empty.

virtual size_tindex(const RWCollectable*) const;

This function returns the index of the first object that is equal to the argument
or the special value "RW_NPOS" if there is no such object:

Smalltalk-like Collection Classes 127

16

RWOrdered od;
od.insert(new RWCollectableInt(6));// 6
od.insert(new RWCollectableInt(2));// 6 2
od.insert(new RWCollectableInt(4));// 6 2 4

RWCollectableInt dummy(2);
size_t inx = od.index(&dummy);
if (inx == RW_NPOS)
cout << "Not found.\n";
else
 cout << “Found at index “ << inx << endl;

Program output:

1

Use the following function to insert an item at a particular index:

virtual RWCollectable* insertAt(size_t, i,
 RWCollectable* c);

RWOrdered od;
od.insert(new RWCollectableInt(6));// 6
od.insert(new RWCollectableInt(2));// 6 2
od.insertAt(1, new RWCollectableInt(4));// 6 4 2

128 Tools.h++ Class Library

16

A note on how objects are found

Caution – It is important to note that it is the virtual functions of the object
within the collection that gets called when comparing or testing a target for
equality, not that of the target.

For example, consider the following code fragment:

SortedCollection sc;
RWCollectableString member;

sc.insert(&member);

RWCollectableString target;
RWCollectableString* p =
(RWCollectableString*)sc.find(&target);

It is the virtual functions of the objects within the collection, such as member,
that will get called, not the virtual functions of target :

member.compareTo(&target);// This will get called.
target.compareTo(&member);// Not this.

Hashing

Hashing is an efficient method for finding an object within a collection. All of
the collection classes that use it use the same general strategy. First, member
function hash() of the target is called to find the proper bucket within the
hash table. Buckets are implemented as a singly-linked list. Because all of the
members of a bucket have the same hash value, the bucket must be linearly
searched to find the exact match. This is done by calling member function
isEqual() of the candidate (see above) with each member of the bucket as the
argument. The first argument that returns TRUE is the chosen object.

In general, because of this combination of hashing and linear searching, as well
as the complexity of most hashing algorithms, the ordering of the objects
within a hash collection will not make a lot of sense. Hence, when the
apply() function or an iterator scans through the hashing table, the objects
will not be visited in any particular order.

!

129

Persistence 17

All of the examples of persistence that we have looked at so far involve simple
objects that do not reference other objects. It is time to look at some more
complicated cases.

Operators
The storage and retrieval of objects that inherit from RWCollectable is a
powerful and adaptable feature of the Tools.h++ Class Library. It is done
through the following eight functions:

// Storage of a RWCollectable reference:
RWvostream&operator<<(RWvostream&, const RWCollectable&);// 1
RWFile&operator<<(RWFile&, const RWCollectable&);// 2

// Storage of a RWCollectable pointer:
RWvostream&operator<<(RWvostream&, const RWCollectable*);// 3
RWFile&operator<<(RWFile&, const RWCollectable*);// 4

// Retrieval into an existing RWCollectable:
RWvistream&operator>>(RWvistream&, RWCollectable&);// 5
RWFile&operator>>(RWFile&, RWCollectable&);// 6

//Retrieval into an RWCollectable to be allocated off the heap:
RWvistream&operator>>(RWvistream&, RWCollectable*&);// 7
RWFile&operator>>(RWFile&, RWCollectable*&);// 8

130 Tools.h++ Class Library

17

These function not only allow the storage and retrieval of collections and their
inserted objects, but also their morphology. For example, a collection with
multiple pointers to the same object could be be saved and restored. Or a
circularly linked list.

Note – this ability to restore the morphology of an object is a property of the
base class RWCollectable . It can be used by any object that inherits from
RWCollectable , not just the “Smalltalk-like” collection classes (which inherit
from RWCollection , a derived class of RWCollectable). We will see how to
do this in folowing chapter.

Example
Here’s an example of the use of these functions that builds on “Example” on
page 116 in Chapter 16, “Smalltalk-like Collection Classes.”

#define RW_STD_TYPEDEFS 1
#include <rw/bintree.h>
#include <rw/collstr.h>
#include <rw/pstream.h>

main()
{

 // Construct an empty collection:
 SortedCollection sc;

 // Insert, but to make things interesting,
 // add an object twice.

 RWCollectableString* george = new
RWCollectableString("George");

 sc.insert(george);// Insert once
 sc.insert(new RWCollectableString("Mary"));
 sc.insert(george);// Insert twice
 sc.insert(new RWCollectableString("Bill"));
 sc.insert(new RWCollectableString("Throkmorton"));

Persistence 131

17

Note – we have inserted one item into the collection twice. That is, two items
in the collection are identical.

RWvostream&operator<<(RWvostream&, const RWCollectable&);

which stored a shallow copy of the collection. That is, only only one copy of
“George” was stored.

As a side note, the expression on line 3 deletes all the members of the binary
tree. The function clearAndDestroy() has been written so that it deletes
each object only once, so that you do not have to worry about deleting the
same object too many times.

The resulting image can be read back in and faithfully restored using the
companion member function

RWvistream&operator>>(RWvistream&, RWCollectable&);

Here is how to do this:

 // Store in ascii to standard output:
 RWpostream ostr(cout); // 1
 ostr << sc; // 2

 sc.clearAndDestroy(); // 3

 return 0;
}

#define RW_STD_TYPEDEFS
#include <rw/bintree.h>
#include <rw/collstr.h>
#include <rw/pstream.h>

main()
{
 RWpistream istr(cin);
 SortedCollection sc2;

 // Read the collection back in:
 istr >> sc2;// 4

 RWCollectableString temp("George");// 5

132 Tools.h++ Class Library

17

Program output:

2

Here’s the line-by-line description:

4 On this line, the function

RWvistream& operator>>(RWvistream&, RWCollectable&);
restores the contents of the SortedCollection from the input virtual
stream istr .

5 A temporary string with value “George” is created in order to search for
a string within the newly created SortedCollection with the same
value.

6 The SortedCollection is searched for an occurrence of a string with
value “George”. The pointer "g" points to such a string.

7 Here’s how we can prove that there are actually two entries in the
collection that point to the same George. Initialize a counter to zero.

8 As before, create an iterator from the collection.

 // Find a "George":
 RWCollectableString* g =

(RWCollectableString*)sc2.find(&temp);// 6

 // "g" now points to a string with the value "George"
 // How many occurrences of g are there in the collection?

 unsigned count = 0;// 7
 SortedCollectionIterator sci(sc2);// 8
 RWCollectableString* item;
 while (item = (RWCollectableString*)sci())// 9
 if (item==g)//10
 count++;

 cout << count;

 sc2.clearAndDestroy();//11

 return 0;
}

Persistence 133

17

9 Iterate through the collection, item by item, returning a pointer for each
item.

10 Test whether this pointer equals g. That is, test for identity, not just
equality.

11 Delete the objects created in line 4.

The program’s output is “2”, indicating that there are actually two pointers to
the same object “George”.

It is worth looking at what happened in line 4 in more detail. The expression

istr >> sc2;

calls the function

RWvistream& operator>>(RWvistream& str, RWCollectable&
 obj);

This function has been written to call the object obj ’s virtual function
restoreGuts() . In this case, obj is a binary tree and its version of
restoreGuts() has been written to repeatedly call

RWvistream& operator>>(RWvistream&, RWCollectable*&);

once for each member of the collection1. Notice that its second argument is a
reference to a pointer, rather than just a reference. This version of the
overloaded r-shift operator looks at the stream, figures out the kind of object
on the stream, allocates an object of that type off the heap, restores it from the
stream, and finally returns a pointer to it. If this function encounters a
reference to a previous object, it just returns the old address. These pointers
are inserted into the collection by the binary tree’s restoreGuts() .

This is why only one instance of “George” was returned.

However, you do not have to know these details until you write your own
class RWCollectable class, something we will do in the following chapter.
However, at this point, you should note that when Smalltalk-like collection
classes are restored they necessarily do not know the types of objects they will

1. Actually, the Smalltalk collection classes are so similar that they all share the same version of
restoreGuts() , inherited from RWCollection .

134 Tools.h++ Class Library

17

be restoring. Hence, they must allocate them off the heap. This means that
you are responsible for deleting the restored contents. This happened in line 11
of the example.

Summary
In the example in the previous section we saw the use of two operators for
storage and retrieval, respectively, into virtual streams:

RWvostream&operator<<(RWvostream&, const
 RWCollectable&);// 1

RWvistream&operator>>(RWvistream&,
 RWCollectable&);// 2

There are two similar operators for storage and retrieval into RWFile ’s:

RWFile&operator<<(RWFile&, const
 RWCollectable&);// 3

RWFile&operator>>(RWFile&,
 RWCollectable&);// 4

In addition to these operators, there are also two operators for storage of
pointers to RWCollectables . These operators have nearly identical
semantics to their “const reference” counterparts (functions 1 and 3,
respectively). The only difference is that they can detect and restore nil
pointers.

RWvostream&operator<<(RWvostream&, const
 RWCollectable*);// 5

RWFile&operator<<(RWFile&, const
 RWCollectable*);// 6

Persistence 135

17

Finally, there are two operators for retrieval into a reference to a
RWCollectable pointer:

RWvistream&operator>>(RWvistream&, RWCollectable*&
 obj);// 7

RWFile&operator>>(RWFile&, RWCollectable*&
 obj);// 8

As mentioned in the previous section, these last two operators allocate an object
off the heap, restore into it, then return a reference to the resultant pointer. You
are responsible for deleting this object when done. In “Example” on page 130,
why did we chose to use function 2, instead of 7? That is, why say

RWpistream istr(cin);
RWBinaryTree bt2;

istr >> bt2;

...

bt2.clearAndDestroy();

instead of

RWpistream istr(cin);
RWBinaryTree* pTree;

istr >> pTree;

...

pTree->clearAndDestroy();
delete pTree;

The answer is that we could have done it either way. However, if you know
the type of the object, then you are usually better off allocating it yourself, then
restoring via function 2. The reason is that it takes time for the persistence
machinery to figure out the type of object and have the factory (see “An aside:
the RWFactory” on page 142 in Chapter 18, “Designing an RWCollectable
Class”) allocate one. Furthermore, you can tailor the allocation to suite your
needs. For example, you might decide to set an initial capacity for a collection
class.

136 Tools.h++ Class Library

17

137

Designing an RWCollectable Class 18

Up until now we have been persisting classes that come with Tools.h++. In
this section we will look at how to create our own subclass of
RWCollectable . This will allow it to use the persistence machinery or to be
used by the Smalltalk-like collection classes.

Virtual functions inherited from RWCollectable
Class RWCollectable declares the following virtual functions (See Part II:
Class Reference for a complete description of class RWCollectable):

virtual ~RWCollectable();

virtual RWspace binaryStoreSize() const;
virtual int compareTo(const RWCollectable*)

 const;
virtual unsigned hash() const;
virtual RWClassID isA() const;
virtual RWBoolean isEqual(const RWCollectable*)

 const;
virtual RWCollectable*newSpecies() const;
virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;

138 Tools.h++ Class Library

18

(RWBoolean is a typedef for an int , RWspace is a typedef for unsigned
long , and RWClassID is a typedef for an unsigned short .) Any class that
derives from class RWCollectable should be able to understand any of these
methods. Although default definitions are given for all of them in the base
class RWCollectable , it is best for the class designer to provide definitions
that are tailored to the class at hand.

Example
Suppose we are running a bus company. We want to write a class that
represents a bus, its set of potential customers, and its set of actual passengers.
In order to be a passenger, you must be a customer. Hence, the set of
customers is a superset of the set of passengers. Because a person can
physically be on the bus only once, and there is no point in putting the same
person on the customer list more than once, we want to make sure there are no
duplicates in either list.

We must be careful when it comes time to persist the bus. If we naïvely iterate
over the set of customers and then over the set of passengers, saving each one,
then if a person is both a customer and a passenger we will save him twice.
When the bus is restored, instead of the list of passengers referring to people
already in the customer list, it will have its own separate instances.

We need some way of recognizing when a person has already been saved to
the stream and, instead of saving him or her again, merely save a reference to
the previous instance.

This is the job of class RWCollectable . Objects inheriting from
RWCollectable have the ability to save not only their contents, but also their
relationships with other objects inheriting from RWCollectable . We call this
isomorphic persistence.

Here’s how we might declare our class Bus:

class Bus : public RWCollectable
{

 RWDECLARE_COLLECTABLE(Bus)

public:

Designing an RWCollectable Class 139

18

Note – how class Bus inherits from RWCollectable . We have chosen to
implement the set of customers by using class RWSet. This will guarantee that
the same person is not entered into the customer list more than once. For the
same reason, we have also chosen to implement the set of passengers using
class RWSet. However, for novelty, we have chosen to have this set live on the
heap. This will serve to illustrate some points in the coming discussion.

Steps to making an RWCollectable object
Here are the general steps to making your object inherit from
RWCollectable . Specific details are given below.

 Bus();
 Bus(int busno, const RWCString& driver);
 ~Bus();

 // Inherited from class "RWCollectable":
 RWspacebinaryStoreSize() const;
 int compareTo(const RWCollectable*) const;
 RWBooleanisEqual(const RWCollectable*) const;
 unsignedhash() const;
 void restoreGuts(RWFile&);
 void restoreGuts(RWvistream&);
 void saveGuts(RWFile&) const;
 void saveGuts(RWvostream&) const;

 void addPassenger(const char* name);
 void addCustomer(const char* name);
 size_tcustomers() const;
 size_tpassengers() const;
 RWCStringdriver() const{return driver_;}
 intnumber() const{return busNumber_;}

private:

 RWSet customers_;
 RWSet*passengers_;
 int busNumber_;
 RWCStringdriver_;
};

140 Tools.h++ Class Library

18

• Define a default constructor;

• Add the macro RWDECLARE_COLLECTABLE to your class declaration;

• Add the macro RWDEFINE_COLLECTABLE to a .cc file, to be compiled;

• Add definitions for the following inherited virtual functions as necessary
(you may be able to use inherited definitions):

RWspace binaryStoreSize() const;
int compareTo(const RWCollectable*) const;
RWBoolean isEqual(const RWCollectable*) const;
unsigned hash() const;
void restoreGuts(RWFile&);
void restoreGuts(RWvistream&);
void saveGuts(RWFile&) const;
void saveGuts(RWvostream&) const;

Add a default constructor
All collectable classes are required to have a default constructor (i.e., one that
takes no arguments). This constructor will be used by the persistence
mechanism: first an “empty” object is created, then it will be “restored” with
its contents.

Because default constructors are necessary in order to create vectors of objects
in C++, providing a default constructor is a good habit to get into anyway.
Here’s a possible definition for our Bus class.

Bus::Bus() :
 busNumber_ (0),
driver_ (“Unknown”),
 passengers_ (rwnil)
{
}

Designing an RWCollectable Class 141

18

RWDECLARE_/RWDEFINE_COLLECTABLE()

Note – the macro invocation “RWDECLARE_COLLECTABLE(className)” in the
declaration for Bus . You must put this macro in your class declaration1, using
the class name as the argument. This macro automatically inserts declarations
for functions isA() and newSpecies() .

A corresponding macro “RWDEFINE_COLLECTABLE(className, classID)” must
be put in your .cc file, using the class name as the first argument, and its
chosen class ID as the second number (see below). It will automatically supply
the definitions for isA() and newSpecies() .

Virtual function isA()
virtual RWClassIDisA() const;

The virtual function isA() returns a “class ID”, a unique number that
identifies an object’s class. It can be used to determine the class to which an
object belongs. The name "RWClassID " is actually a typedef to an unsigned
short . Numbers from 0x8000 (hex) and up are reserved for use by Tools.h++.
There is a set of class symbols defined in <rw/tooldefs.h> for the Tools.h++
Class Library . Generally, these follow the pattern of a double underscore
followed by the class name with all letters in upper case. For example:

RWCollectableString yogi;
yogi.isA() == __RWCOLLECTABLESTRING;// Evaluates TRUE

The macro RWDECLARE_COLLECTABLE(className) will automatically provide a
declaration for isA() . The macro RWDEFINE_COLLECTABLE(className,
classID) will supply the definition.

Virtual function newSpecies()

The job of this function is to return a pointer to a brand new object of the same
type as self. The declaration of this function is automatically provided by the
macro RWDECLARE_COLLECTABLE(className). The definition is automatically
provided by the macro RWDEFINE_COLLECTABLE(className,classID).

1. At the time of this writing, this requirement is not being enforced to insure backwards compatibility with
earlier versions of Tools.h++. However, it will be in the future.

142 Tools.h++ Class Library

18

An aside: the RWFactory

As mentioned, you must include the macro RWDEFINE_COLLECTABLE
somewhere in a .cc file where it will be compiled. For our example, the
macro might look like this:

RWDEFINE_COLLECTABLE(Bus, 200)

This magic incantation will allow a new instance of your class to be created
given only its RWClassID :

Bus* newBus = (Bus*)theFactory->create(200);

This is used internally by the persistence machinery to create a new instance of
your persisted object where its type is not known at runtime. You will not
normally use this capability in your own source code. The pointer
theFactory is a global pointer that points to a one-of-a-kind global instance
of class RWFactory , used to create new instances of any class, given its
RWClassID . The use of RWFactory is generally transparent to the user. See
Part II: Class Reference for more details on RWFactory .

Object destruction
All objects inheriting from class RWCollectable inherit a virtual destructor.
Hence, the actual type of the object need not be known until runtime in order
to delete the object. This allows all items in a collection to be deleted without
knowing their actual type.

As with any C++ class, objects inheriting from RWCollectable may need a
destructor to release any resources that they hold. In the case of Bus, the
names of passengers and customers are RWCollectableStrings that were
allocated off the heap. Hence, they must be reclaimed. Because these strings
never appear outside the scope of the class, we do not have to worry about the
user having access to them. Hence, we can confidently delete them in the
destructor, knowing that no dangling pointers will be left.

Furthermore, because the set pointed to by customers_ is a superset of the set
pointed to by passengers_, it is only necessary, indeed, it is essential, that we
only delete the contents of customers_ .

Here’s a possible definition:

Designing an RWCollectable Class 143

18

Bus::~Bus()
{
 customers_.clearAndDestroy();
 delete passengers_;
}

Note – the language guarantees that it is okay to call delete on the pointer
passengers_ even if it is nil.

Virtual function compareTo()
virtual intcompareTo(const RWCollectable*) const;

The virtual function compareTo() is used to order objects relative to each
other in the collection classes that depend on such ordering, such as
RWBinaryTree or RWBTree.

Note – The function "int compareTo(const RWCollectable*) const "
should return a number greater than zero if self is “greater than” the argument,
a number less than zero if self is “less than” the argument, and zero if self is
“equal to” the argument. This last case is sometimes referred to as “comparing
equal”, not be be confused with “is equal” (see “Virtual function isEqual()” on
page 145).

The definition (and meaning) of whether one object is greater than, less than,
or equal to another object is left to the class designer. The default definition, as
defined in class RWCollectable , is to compare the two addresses of the
objects.

The default definition (comparing the addresses of the two objects) should
really be thought of as a placeholder—in practice, it is not very useful and
could vary from run-to-run of a program.

Here is an example that uses compareTo() as well as isEqual() and
hash() .

RWCollectableString a(“a”);
RWCollectableString b(“b”);
RWCollectableString a2(“a”);

a.compareTo(&b);// Returns -1

144 Tools.h++ Class Library

18

a.compareTo(&a2);// Returns 0 (“compares equal”)
b.compareTo(&a);// Returns 1

a.isEqual(&a2);// Returns TRUE
a.isEqual(&b);// Returns FALSE

a.hash()// Returns 96 (operating system
 dependent)

Note – the compareTo() function for RWCollectableStrings has been
defined to compare strings lexicographically in a case sensitive manner. See
“RWCString” on page 256 in Chapter 22, “Class Reference” for details.

Here is a possible definition of compareTo() for our example:

int Bus::compareTo(const RWCollectable* c) const
{
 const Bus* b = (const Bus*)c;
 if (busNumber_ == b->busNumber_) return 0;
 return busNumber_ > b->busNumber_ ? 1 : -1;
}

Here, we are using the bus number as a measure of the ordering of busses.
Hence, were a group of busses to be inserted into a RWBinaryTree , they
would be sorted by their bus number.

Note – there are many other possible choices—we could have used the driver
name, in which case they would have been sorted by that. Which choice you
use will depend on your particular problem.

Of course, there is a hazard here. We have been glib in assuming that the
actual type of the RWCollectable which c points to is always a Bus . If a
careless user inserted, say, a RWCollectableString into the collection, then
the results of the cast (const Bus*)c would be invalid and dereferencing it
could bring disaster. This is a glaring deficiency in C++ that the user must
constantly be aware of. The necessity for all virtual functions to have all the
same signatures requires that they return the lowest common denominator, in
this case, class RWCollectable . The result is that all compile-time type
checking breaks down.

Designing an RWCollectable Class 145

18

One must be careful that the members of a collection are either homogeneous
(i.e., all of the same type), or that there is some way of telling them apart. The
member function isA() can be used for this.

Virtual function isEqual()
RWBooleanisEqual(const RWCollectable* c) const;

The virtual function isEqual() plays a similar role to the “tester function” of
the generic collection classes (see “Tester functions” on page 106 in Chapter 15,
““Generic” Collection Classes”).

Note – The function "RWBoolean isEqual(const RWCollectable*) "
should return TRUE if the object and its argument are considered “equal”,
FALSE otherwise. The definition of “equal” is left to the class designer. The
default definition, as defined in class RWCollectable , is to test the two
addresses for equality, that is to test for identity.

“isEqual ” need not necessarily be defined as “being identical”, that is, having
the same address (although this is the default), but rather, that they are
equivalent in some sense. In fact, the two objects need not even be of the same
type. The only requirement is that the object passed as an argument inherit
type RWCollectable . However, you are responsible for making sure that any
typecasts you do are appropriate.

There is no formal requirement that two objects which “compare equal” (i.e.,
compareTo() returns zero) must also return TRUE from isEqual() , although
it is hard to imagine a situation where this wouldn’t be the case.

For our example above, an appropriate definition might be:

RWBoolean Bus::isEqual(const RWCollectable* c) const
{
 const Bus* b = (const Bus*)c;
 return busNumber_ == b->busNumber_;
}

Here we are considering busses to be “equal” if their bus numbers are the
same. Again, other choices are possible.

146 Tools.h++ Class Library

18

Virtual function hash()
unsigned hash() const;

Note – The function hash() should return an appropriate hashing value for
the object.

A possible definition for hash() for our example might be:

unsigned Bus::hash() const
{
 return (unsigned)busNumber_;
}

Here, we have just returned the bus number as a hash value. Alternatively, we
could have hashed the driver’s name:

unsigned Bus::hash() const
{
 return driver_.hash();
}

How to add persistence
To add persistence to your RWCollectable class, you must override the
saveGuts() and restoreGuts() virtual member functions so they write out
enough information to recreate the state of your object.

Virtual functions saveGuts(RWFile&) and saveGuts(RWvostream&)

These virtual functions are responsible for storing the internal state of an
RWCollectable object on either a binary file (using class RWFile) or on a
virtual output stream (an RWvostream). This allows the object to be recovered
at some later time.

Start by saving the state of your base class by calling its version of
saveGuts() .

Then, for each type of member data, save its state.

How to do this will depend on the type of the member data:

Designing an RWCollectable Class 147

18

• For primitives, save the data directly. This means when storing to RWFiles
use RWFile::Write() ; for virtual streams, use the l-shift operator
RWvostream::operator<<() .

• For Tools.h++ classes, most offer an overloaded version of the l-shift
operator. For example, for RWCStrings :

RWvostream& operator<<(RWvostream&, const
RWCString& str);

Hence, these can simply be shifted onto the stream.

• For objects inheriting from RWCollectable this means using the global
function

RWvostream& operator<<(RWvostream&, const
RWCollectable& obj);

This function will call saveGuts() recursively for the object.

With these rules in mind, here is a possible definition for our Bus example:

void Bus::saveGuts(RWFile& f) const
{
 RWCollectable::saveGuts(f);// Save base class
 f.Write(busNumber_);// Write primitive directly
 f << driver_ << customers_;// Use Tools.h++ provided

 versions
 f << passengers_;// Will detect nil pointer

 automatically
}

void Bus::saveGuts(RWvostream& strm) const
{
 RWCollectable::saveGuts(strm);// Save base class
 strm << busNumber_;// Write primitives directly
 strm << driver_ << customers_;// Use Tools.h++ provided

 versions
 strm << passengers_;// Will detect nil pointer

 automatically
}

148 Tools.h++ Class Library

18

Member data busNumber_ is a C++ primitive, that is, an int . It is stored
directly using RWFile::Write(int) in the case of RWFiles , or
RWvostream::operator<<(int) in the case of virtual streams.

Member data driver_ is a RWCString . It does not inherit from
RWCollectable . It is stored using

RWvostream& operator<<(RWvostream&, const RWCString&);

Member data customers_ is a RWSet. It does inherit from RWCollectable .
It is stored using

RWvostream& operator<<(RWvostream&, const
RWCollectable&);

Finally, member data passengers_ is a little tricky. It is a pointer to an RWSet
which inherits from RWCollectable . However, there is the possibility that
the pointer is nil. If it were, then passing it to

RWvostream& operator<<(RWvostream&, const
RWCollectable&);

would be disastrous as we would have to dereference passengers_ :

strm << *passengers_;

Instead, we pass it to

RWvostream& operator<<(RWvostream&, const
RWCollectable*);

which automatically detects the nil pointer and stores a record of it.

Multiply-referenced objects

Note – a passenger name can exist in the set pointed to by customers_ and in
the set pointed to by passengers_ . That is, both collections contain the same
string. When the Bus is restored, we want to make sure that this relationship
is maintained.

We don’t have to do anything! Consider the call:

Bus aBus;
RWFile aFile(“busdata.dat”);

aBus.addPassenger(“John”);
aFile << aBus;

Designing an RWCollectable Class 149

18

Note – the name “John” will be on both the customer list and the passenger
list. Note that both lists will be saved in this single call: first the customer list,
then the passenger list. The persistence machinery will save the first reference
to “John”, but for the second reference it will merely store a reference to the
first copy. During the restore (see below), both references will resolve to the
same object, replicating the original morphology of the collection.

Virtual functions restoreGuts(RWFile&) and restoreGuts(RWvistream&)

In a similar manner to saveGuts() , these virtual functions are used to restore
the internal state of an RWCollectable from a file or stream. Here is a
definition for Bus :

Note how the pointer passengers_ is restored using

RWvistream& operator>>(RWvistream&, RWCollectable*&);

If the original passengers_ was non-nil, then this function will restore a new
RWSet off the heap and return a pointer to it. Otherwise, it will return a nil
pointer. Either way, the old contents of passengers_ will be replaced.
Hence, we must call "delete passengers_ " first.

void Bus::restoreGuts(RWFile& f)
{
 RWCollectable::restoreGuts(f);// Restore base class
 f.Read(busNumber_);// Restore primitive
 f >> driver_ >> customers_;// Uses Tools.h++ provided

 versions

 delete passengers_;// Delete old RWSet
 f >> passengers_;// Replace with a new one
}

void Bus::restoreGuts(RWvistream& strm)
{
 RWCollectable::restoreGuts(strm);// Restore base class
 strm >> busNumber_ >> driver_ >> customers_;

 delete passengers_;// Delete old RWSet
 strm >> passengers_;// Replace with a new one
}

150 Tools.h++ Class Library

18

Virtual function binaryStoreSize()

The virtual function

virtual RWspacebinaryStoreSize() const;

is used to calculate the number of bytes necessary to store an object using
RWFile . This is useful for classes RWFileManager and RWBTreeOnDisk
which require space to be allocated for an object before it can be stored.

Writing a version of binaryStoreSize() is usually very straightforward.
Just follow the pattern set by saveGuts(RWFile&) , except that instead of
saving member data, add up their sizes. The only real difference is a syntactic
one: instead of l-shift operators, you use member functions and sizeof() :

• For primitives, use sizeof() ;

• For objects that inherit from RWCollectable , use member function

RWspace RWCollectable::recursiveStoreSize();

• For other objects, use member function binaryStoreSize() .

Here’s a sample definition for class Bus :

Persisting custom collections

Class RWCollection has versions of saveGuts() and restoreGuts() built
into it that are sufficient for most collection classes.

RWCollection::saveGuts() works by repeatedly calling

RWspace Bus::binaryStoreSize() const
{
 RWspace count = RWCollectable::binaryStoreSize() +
 customers_.recursiveStoreSize() +
 sizeof(busNumber_) +
 driver_.binaryStoreSize();

 if (passengers_)
 count += passengers_->recursiveStoreSize();

 return count;
}

Designing an RWCollectable Class 151

18

RWvostream& operator<<(RWvostream&, const
RWCollectable&);

for each item in the collection. Similarly, RWCollection::restoreGuts()
works by repeatedly calling

RWvistream& operator>>(RWvistream&, RWCollectable*&);

which will allocate a new object of the proper type off the heap, followed by
insert() . Because all of the Tools.h++ Smalltalk-like collection classes inherit
from RWCollection , they all use this mechanism.

If you decide to write your own collection classes and inherit from class
RWCollection , you will rarely have to define your own saveGuts() or
restoreGuts() .

There are exceptions. For example, class RWBinaryTree has its own version
of saveGuts() . This is necessary because the default version of saveGuts()
stores items “in order”. For a binary tree this would result in a severely
unbalanced tree (essentially, you would get the degenerate case of a linked list)
when the tree was read back in. Hence, RWBinaryTree ’s version of
saveGuts() stores the tree level-by-level.

Summary
In general, you may not have to supply definitions for all of these virtual
functions. For example, if you know that your class will never be used in
sorted collections, then you do not need a definition for compareTo() .
Nevertheless, it is a good idea to do it anyway: that’s the best way to
encourage code reuse!

Here then, is the complete listing for our class Bus :

BUS.H:

#ifndef __BUS_H__
#define __BUS_H__

#include <rw/rwset.h>
#include <rw/collstr.h>

class Bus : public RWCollectable
{

152 Tools.h++ Class Library

18

BUS.CC:

 RWDECLARE_COLLECTABLE(Bus)

public:

 Bus();
 Bus(int busno, const RWCString& driver);
 ~Bus();

 // Inherited from class "RWCollectable":
 RWspacebinaryStoreSize() const;
 int compareTo(const RWCollectable*) const;
 RWBooleanisEqual(const RWCollectable*) const;
 unsignedhash() const;
 void restoreGuts(RWFile&);
 void restoreGuts(RWvistream&);
 void saveGuts(RWFile&) const;
 void saveGuts(RWvostream&) const;

 void addPassenger(const char* name);
 void addCustomer(const char* name);
 size_tcustomers() const;
 size_tpassengers() const;
 RWCStringdriver() const{return driver_;}
 int number() const{return busNumber_;}

private:

 RWSet customers_;
 RWSet*passengers_;
 int busNumber_;
 RWCStringdriver_;
};

#endif

#include "bus.h"
#include <rw/pstream.h>
#include <rw/rwfile.h>
#ifdef __ZTC__
include <fstream.hpp>
#else

Designing an RWCollectable Class 153

18

ifdef __GLOCK__
include <fstream.hxx>
else
include <fstream.h>
endif
#endif

RWDEFINE_COLLECTABLE(Bus, 200)

Bus::Bus() :
 busNumber_ (0),
 driver_ ("Unknown"),
 passengers_ (rwnil)
{
}

Bus::Bus(int busno, const RWCString& driver) :
 busNumber_ (busno),
 driver_ (driver),
 passengers_ (rwnil)
{
}

Bus::~Bus()
{
 customers_.clearAndDestroy();
 delete passengers_;
}

RWspace
Bus::binaryStoreSize() const
{
 RWspace count = RWCollectable::binaryStoreSize() +
 customers_.recursiveStoreSize() +
 sizeof(busNumber_) +
 driver_.binaryStoreSize();

 if (passengers_)
 count += passengers_->recursiveStoreSize();

 return count;
}

int

154 Tools.h++ Class Library

18

Bus::compareTo(const RWCollectable* c) const
{
 const Bus* b = (const Bus*)c;
 if (busNumber_ == b->busNumber_) return 0;
 return busNumber_ > b->busNumber_ ? 1 : -1;
}

RWBoolean
Bus::isEqual(const RWCollectable* c) const
{
 const Bus* b = (const Bus*)c;
 return busNumber_ == b->busNumber_;
}

unsigned
Bus::hash() const
{
 return (unsigned)busNumber_;
}

size_t
Bus::customers() const
{
 return customers_.entries();
}

size_t
Bus::passengers() const
{
 return passengers_ ? passengers_->entries() : 0;
}

void Bus::saveGuts(RWFile& f) const
{
 RWCollectable::saveGuts(f);// Save base class
 f.Write(busNumber_);// Write primitive directly
 f << driver_ << customers_;// Use Tools.h++ provided

 versions
 f << passengers_;// Will detect nil pointer

 automatically
}

void Bus::saveGuts(RWvostream& strm) const
{

Designing an RWCollectable Class 155

18

 RWCollectable::saveGuts(strm);// Save base class
 strm << busNumber_;// Write primitives directly
 strm << driver_ << customers_;// Use Tools.h++ provided

 versions
 strm << passengers_;// Will detect nil pointer

 automatically
}

void Bus::restoreGuts(RWFile& f)
{
 RWCollectable::restoreGuts(f);// Restore base class
 f.Read(busNumber_);// Restore primitive
 f >> driver_ >> customers_;// Uses Tools.h++ provided

 versions

 delete passengers_;// Delete old RWSet
 f >> passengers_;// Replace with a new one
}

void Bus::restoreGuts(RWvistream& strm)
{
 RWCollectable::restoreGuts(strm);// Restore base class
 strm >> busNumber_ >> driver_ >> customers_;

 delete passengers_;// Delete old RWSet
 strm >> passengers_;// Replace with a new one
}

void
Bus::addPassenger(const char* name)
{
 RWCollectableString* s = new RWCollectableString(name);
 customers_.insert(s);

 if (!passengers_)
 passengers_ = new RWSet;

 passengers_->insert(s);
}

void
Bus::addCustomer(const char* name)
{

156 Tools.h++ Class Library

18

Program output:

Bus number 1 has been restored; its driver is Kesey.
It has 4 customers and 2 passengers.

 customers_.insert(new RWCollectableString(name));
}

main()
{
 Bus theBus(1, "Kesey");
 theBus.addPassenger("Frank");
 theBus.addPassenger("Paula");
 theBus.addCustomer("Dan");
 theBus.addCustomer("Chris");

 {
 ofstream f("bus.str");
 RWpostream stream(f);
 stream << theBus;// Persist theBus to an ASCII

 stream
 }

 {
 ifstream f("bus.str");
 RWpistream stream(f);
 Bus* newBus;
 stream >> newBus;// Restore it from an ASCII

 stream

 cout << "Bus number " << newBus->number()
 << " has been restored; its driver is " << newBus->driver()

 << ".\n";
 cout << "It has " << newBus->customers() << " customers and "
 << newBus->passengers() << " passengers.\n\n";

 delete newBus;
 }

 return 0;
}

157

Errors 19

Thinking about error handling is like thinking about where the garbage man
hauls your trash—it’s a messy, unpredicatable, and sour topic, one that we
don’t like to think about. Yet, to write robust code, think about it we must.

The Tools.h++ class libraries use an extensive and complete error handling
facility, all based on the same model. Errors are divided into two broad
categories: internal errors and external errors. The distinguishing
characteristic of internal errors is that they are due to errors in the internal logic
of the program. As you might expect, they can be difficult to recover from and,
indeed, the default response is commonly to abort the program. External errors
are due to events beyond the scope of the program. Any non-trivial program
should be prepared to recover from an external error.

The following sections describe the error model in detail.

Internal errors
Internal errors are due to faulty logic or coding in the program. Examples are

• Bounds errors;

• Inserting a null pointer into a collection;

• Attempting to use a bad date.

158 Tools.h++ Class Library

19

In theory, all of these errors are preventable. For example, the permissible
range of indices for an array is always known, and so a bounds error should be
avoidable. As another example, while your program may not know that a date
is bad, once it has found this out, to use it would be an obvious logic error.

Internal errors are further divided into two categories, dependent on the cost
of error detection and whether or not the error will be detected at runtime:

• Non-recoverable internal errors

• Recoverable internal errors

Non-recoverable internal errors

Detecting errors costs time. For performance reasons, a library may have to
demand some minimal level of correctness on the part of your program.
Anything that falls short we term a non-recoverable internal error. They are
“non-recoverable” because in the production version of the library there is no
attempt to detect such errors and, hence, no opportunity to recover from one.

Distinguishing characteristics:

• Easily predictable in advance.

• Usually occur at a relatively low level.

• Cost of detection is high.

• Detected only in the “debug” version of the library.

Examples:

• Bounds error

• Inserting a nil pointer into a collection

Response:

• No recovery mechanism.

Errors 159

19

An example is bounds checking: the cost of checking to make sure an index is
in range can well exceed the cost of the array access itself. If a program does a
lot of array accesses, checking every one may result in a slow program. To
avoid this, the library may require that the user always use a valid index.

Because a minimum level of correctness is being demanded, non-recoverable
errors must be relatively easy to avoid and simple in concept.

Non-recoverable errors are best discovered and eliminated by compiling and
linking your application with the debug version of the library. See Section ,
“Debug version of the library” for details. The debug version includes lots of
extra checks designed to uncover coding errors. Some of these checks may
take extra time, or even cause debug messages to be printed out, so you want
to compile and link with the production version for an efficient final product.

If the debug version of the library discovers an error it typically aborts the
program.

160 Tools.h++ Class Library

19

Recoverable internal errors

If the cost of error detection is relatively low, then it starts to make sense to
detect an error even in a production version of the library. An example is a
bounds error in a linked list: the cost of walking the list will far exceed the cost
of detecting whether the index is in bounds. Hence, you can afford to check
for a bounds error on every access.

If an error is discovered, then the library will throw an exception inheriting
from RWInternalErr . Here’s an example from Tools.h++:

Distinguishing characteristics:

• Similar to “Non-recoverable internal errors” (see above) except:

• Cost of detection is low.

• Detected in the debug and production version of the library.

Examples:

• Attempt to use an invalid date

• Bounds error in a linked list

Response:

• Throw an exception inheriting from RWInternalErr .

// Find link “i”; the index must be in range:
RWIsvSlink* RWIsvSlist::at(size_t i) const
{
 if (i >= entries())
 RWTHROW(RWBoundsErr(RWMessage(RWTOOL_INDEX,

(unsigned)i,
(unsigned)entries()-1)));

 register RWIsvSlink* link = head_.next_;
 while (i--) link = link->next_;
 return link;
}

Errors 161

19

Note – Note how the function always attempts to detect a bounds error. If it
finds one, then it throws an instance of RWBoundsErr , a class that inherits
from RWInternalErr . This instance contains an (internationalized) message
(discussed in “Localizing messages” on page 174” in Chapter 20,
“Implementation Notes”). The RWTHROW macro is discussed in “Error
handlers” on page 164.

Throwing an exception gives you the opportunity to catch the exception and,
possibly, recover. However, because the internal logic of the program has been
compromised, most likely you will want to attempt to save whatever
document is being worked on then abort the program.

162 Tools.h++ Class Library

19

External errors

The distinguishing characteristic of external errors is that they are caused by
external conditions and, hence, cannot reasonably be predicted in advance. In
an object-oriented environment, runtime errors frequently show up as an
attempt to set an object into an invalid state, perhaps as a result of invalid user
input. An example is initializing a date object with a bad date (e.g., 31 June
1992, a date that doesn’t exist).

Distinguishing characteristics:

• Cannot reasonably predict them in advance.

• Usually occur at a more abstract level.

• Hence, cost of detection is relatively low.

• Detected in all versions of the library.

Examples:

• Attempt to set a bad date (E.g., “31 June 1992”).

• Attempt to invert a singular matrix.

• Stream write error.

• Out of memory.

Response:

• Throw an exception inheriting from RWInternalErr;

• Or provide a test for object validity.

Errors 163

19

Note – Note that the line between an internal and external error can sometimes
be fuzzy. For example, the rules could say “don’t give me an invalid date” and
then the programmer would be responsible for detecting a bad date before
using a Tools.h++ routines. Of course, this is a lot of work and probably the
reason why you bought the library in the first case: the RWDate object is
probably in a much better position than you to detect invalid dates.

In theory, the response to an external error is either to throw an exception or to
provide a test for object validity. It should never abort the program. However,
in practice, exceptions have not been widely adopted by compilers and so
Tools.h++ provides an opportunity to either test for a status value or to recover
in an error handler.

Here’s an example:

Exception architecture
When an exception is thrown a throw operand is passed. The type of the throw
operand determines which handlers can catch it. Tools.h++ uses the following
hierarchy for throw operands:

RWDate date;

while (1)
{
 cout << “Give a date: “;
 cin >> date;
 if (date.isValid()) break;
 cout << “You entered a bad date; try again\n”;
}

xmsg
RWxmsg

RWInternalErr
RWBoundsErr

RWExternalErr
RWFileErr
RWStreamErr

xalloc
RWxalloc

164 Tools.h++ Class Library

19

As you can see, the hierarchy parallels the error model outlined in previous
sections. This hierarchy assumes the presence of class xmsg, nominally
provided by your compiler vendor. This is a class that is being considered for
standardization by the Library Working Group of the C++ Standardization
Committee X3J16 (document 92-0116). If your compiler does not come with
versions of xmsg and xalloc , then the Tools.h++ classes RWxmsg and
RWxalloc emulate them.

Class xmsg carries a string that can be printed out at the catch site to give the
user some idea of what went wrong. This string is formatted and
internationalized by the specializing versions of xmsg as described in
“Localizing messages” on page 174 in Chapter 20, “Implementation Notes.”

Error handlers

When Tools.h++ throws an exception it does so using the macro RWTHROW. If
your compiler supports exceptions then this macro is defined as follows:

#define RWTHROW(a) throw a

and a true exception will be thrown. Otherwise, if your compiler does not
support exceptions, then it will call an error handler with prototype:

void errHandler(const RWxmsg&);

The default error handler aborts the program. You can change the default
handler with the function

typedef void (*rwErrHandler)(const RWxmsg&);
rwErrHandler rwSetErrHandler(rwErrHandler);

Debug version of the library
Tools.h++ can be built in a “debug” mode. This is a very powerful tool for
uncovering and correcting internal errors in your code.

To build a debug version of the library, the entire library must be compiled
with the preprocessor flag "RWDEBUG" defined. The entire library must be
compiled with a single setting of the flag—either defined or not defined. The
resultant library will be slightly larger and slightly slower. See the appropriate
makefile for additional directions.

The flag RWDEBUG activates a set of PRECONDITION and POSTCONDITION
clauses at the beginning and end of critical functions.

Errors 165

19

The pre- and postconditions are implemented with “asserts”—a failure will
cause the offending condition to be printed out, along with the file and line
number where it occurred.

RWPRECONDITION
RWPOSTCONDITION

Bertrand Meyer, in his landmark book “Object-oriented Software
Construction”1, suggests regarding functions as a “contract” between a caller
and a callee. If the caller agrees to abide by a set of “preconditions”, then the
callee guarantees to return results that satisfy a set of “postconditions”. Here’s
an example with a bounds error in C:

char buff[20];
char j = buff[20];// Bounds error!

Such bounds error are extremely tough to detect in C, but easy in C++:

RWCString buff(20);
char j = buff[20];// Detectable bounds error

The reason why is that operator[] can be overloaded to perform an explicit
bounds check in the debug version of the library:

char& RWCString::operator[](size_t i)
{
 RWPRECONDITION(i < length();
 return rep[i];
}

1. Prentice Hall International, ISBN 0-13-629049-3.

166 Tools.h++ Class Library

19

Here’s a slightly more complicated example:

template <class T> void List::insert(T* obj)
{
 RWPRECONDITION(obj!= 0);
 head = new Link(head, obj);
 RWPOSTCONDITION(this->contains(obj));
}

The job of this function is to insert the object pointed to by the argument into a
linked list of pointers to objects of type T. The only precondition for the
function to work is that the pointer "obj" not be nil. If this condition is
satisfied, then the function guarantees to successfully insert the object. This is
checked by the postcondition clause.

The macros RWPRECONDITION and RWPOSTCONDITION are defined in
<rw/defs.h> and compile out to no-ops unless the preprocessor macro
RWDEBUG has been defined:

#ifdef RWDEBUG
define RWPRECONDITION(a)assert(a)
define RWPOSTCONDITION(a)assert(a)
#else
define RWPRECONDITION(a)((void*)0)
define RWPOSTCONDITION(a)((void*)0)
#endif

167

Implementation Notes 20

Copy on write
Classes RWCString , RWWString , and RWTValVirtualArray use a technique
called copy on write to minimize copying. This technique offers the advantage
of easy-to-understand value semantics with the speed of reference counting.

When a RWCString is initialized with another RWCString via the copy
constructor

RWCString(const RWCString&);

then the two strings will share the same data until one of them tries to write to
it. At this point, a copy of the data is made and the two strings go their
separate ways. This makes copies, particularly read-only copies, of strings
very inexpensive. Consider the following example:

#include <rw/cstring.h>

RWCString g;// Global object

void setGlobal(RWCString x) { g = x; }

main()
{
 RWCString a("kernel");// 1
 RWCString b(a);// 2
 RWCString c(a);// 3

168 Tools.h++ Class Library

20

1. The RWCString object "a" is where the actual allocation and
initialization of the memory to hold the string "kernel " happens.

2–3 When objects "b" and "c" are created from it, they merely increment a
reference count in the original data and return. At this point, there are
three objects looking at the same piece of data.

4 The function setGlobal() sets the value of the global RWCString g to
the same value. Now the reference count is up to four, and there is still
only one copy of the string "kernel ."

5 Finally, object "b" tries to change the value of the string. It looks at the
reference count and sees that it is greater than one, implying that the
string is being shared by more than one object. It is at this point that a
clone of the string is made and modified. The reference count of the
original string drops back down to three, while the reference count of the
newly cloned string is one.

A more comprehensive example

Because copies of RWCStrings are so inexpensive, you are encouraged to store
them by value inside your objects, rather than storing a pointer. This will
greatly simplify their management. Here's an example. Suppose you have a
window whose background and foreground colors can be set. A simple
minded approach to do this would be:

 setGlobal(a);// Still only one copy of "kernel"! // 4

 b += "s";// Now b has its own data: "kernels"// 5
}

class SimpleMinded {
 const RWCString* foreground;
 const RWCString* background;
public:
 setForeground(const RWCString* c) {foreground=c;}
 setBackground(const RWCString* c) {background=c;}
};

#include <rw/cstring.h>

Implementation Notes 169

20

On the surface, this approach is appealing because only one copy of the string
need be made. Hence, calling setForeground() is efficient. But, the
resulting semantics can be muddled: what if the string pointed to by
foreground changes? Should the foreground color change? If so, how will
class Simple know of the change? There is also a maintenance problem:
before you can delete a "color" string, you must know if anyone is still pointing
to it.

Here's a much easier approach:

Now the assignment "foreground=c " will use value semantics. The color that
class Smart should use is completely unambiguous. It's efficient too, because
a copy of the data will not be made unless the string should change:

More on storing and retrieving RWCollectables
In Chapter 17, “Persistence” we saw how to use the global functions

RWvostream&operator<<(RWvostream&,const
 RWCollectable&);

RWFile&operator<<(RWFile&,const
 RWCollectable&);

RWvostream&operator<<(RWvostream&,const
 RWCollectable*);

RWFile&operator<<(RWFile&,const
 RWCollectable*);

RWvistream&operator>>(RWvistream&,RWCollectable&);
RWFile&operator>>(RWFile&,RWCollectable&);
RWvistream&operator>>(RWvistream&,RWCollectable*&);
RWFile&operator>>(RWFile&,RWCollectable*&);

class Smart {
 RWCString foreground;
 RWCString background;
public:
 setForeground(const RWCString& c) {foreground=c;}
 setBackground(const RWCString& c) {background=c;}

Smart window;
RWCString color("white");

window.setForeground(color);// Two references to white

color = "Blue";// One reference to white, one to blue

170 Tools.h++ Class Library

20

to save and restore the morphology of a class (i.e., the correct relationship
between pointers).

When working with RWCollectables , it is useful to understand how these
functions work. Here is a brief description.

When you call one of the l-shift (<<) operators for the first time for any
collectable object, an IdentityDictionary is created internally. The object’s
address (i.e., "this ") is put in the table, along with its ordinal position in the
output file (the first, the second, etc.). Once this has been done, a call is made
to the object’s virtual function saveGuts() . Because this is a virtual function,
the call will go to the derived class’s definition of saveGuts() . As we have
seen, the job of saveGuts() is to store the internals of the object. If the object
contains other objects inheriting from RWCollectable (as all of the collection
classes do, as well as many other classes), then the object’s saveGuts() , if it
has been written correctly, will call operator<<() recursively for each of
these objects. Subsequent invocations of operator<<() do not create a new
IdentityDictionary , but do store the object’s address in the already
existing dictionary. If an address is encountered which is identical to a
previously written object’s address, then saveGuts() is not called. Instead, a
reference is written that this object is identical to some previous object (say, the
sixth).

When the entire collection has been traversed and the initial call to
saveGuts() returns, then the IdentityDictionary is deleted and the
initial call to operator<<() returns.

The function operator>>() essentially reverses this process and, when
encountering a reference to an object that has already been created, merely
returns the address of the old object rather than asking the RWFactory to
create a new one.

Here is a more sophisticated example of a class that uses these feature:

#include <rw/collect.h>
#include <rw/rwfile.h>
#include <assert.h>

class Tangle : public RWCollectable
{

public:

Implementation Notes 171

20

 RWDECLARE_COLLECTABLE(Tangle)

 Tangle* nextTangle;
 int someData;

 Tangle(Tangle* t = 0, int dat = 0) {nextTangle=t; someData=dat;}

 virtual void saveGuts(RWFile&) const;
 virtual void restoreGuts(RWFile&);

};

void Tangle::saveGuts(RWFile& file) const
{
 RWCollectable::saveGuts(file);// Save the base class

 file.Write(someData);// Save internals

 file << nextTangle;// Save the next link
}

void Tangle::restoreGuts(RWFile& file)
{
 RWCollectable::restoreGuts(file);// Restore the base class

 file.Read(someData);// Restore internals

 file >> nextTangle;// Restore the next link
}

// Checks the integrity of a null terminated list with head "p":
void checkList(Tangle* p)
{
 int i=0;
 while (p)
 {
 assert(p->someData==i);
 p = p->nextTangle;
 i++;
 }
}

RWDEFINE_COLLECTABLE(Tangle, 100)

172 Tools.h++ Class Library

20

The class Tangle implements a (potentially) circularly linked list. What
happens? When function operator<<() is called for the first time for an
instance of Tangle , it sets up the IdentityDictionary , as described above,
and then calls the Tangle ’s saveGuts() whose definition is shown above.
This definition stores any member data of Tangle , then calls operator<<()
for the next link. This recursion continues on around the chain.

If the chain ends with a nil object (i.e., nextTangle is zero), then
operator<<() notes this internally and stops the recursion.

On the other hand, if the list is circular, then a call to operator<<() will
eventually be made for the first instance of Tangle again, the one that started
this whole chain. When this happens, operator<<() will recognize that it
has already seen this instance before and, rather than call saveGuts() again,
will just make a reference to the previously written link. This stops the series
of recursive calls and the stack unwinds.

Restoration of the chain is done in a similar manner. A call to

RWFile& operator>>(RWFile&, RWCollectable*&);

main()
{
 Tangle *head = 0, *head2 = 0;

 for (int i=0; i<10; i++)
 head = new Tangle(head,i);

 checkList(head);// Check the original list

 {
 RWFile file("junk.dat");
 file << head;
 }

 RWFile file2("junk.dat");
 file2 >> head2;

 checkList(head2);// Check the restored list
 return 0;
}

Implementation Notes 173

20

will either create a new object off the heap and return a pointer to it, return the
address of a previously read object, or return the null pointer. In the case of
the last two choices, the recursion stops and the stack unwinds.

Multiple inheritance
In Chapter 18, “Designing an RWCollectable Class,” we built a Bus class by
inheriting from RWCollectable . If we had an existing Bus class at hand, we
might have been able to use multiple inheritance to create a new class with the
functionality of both Bus and RWCollectable , perhaps saving ourselves some
work:

class CollectableBus : public RWCollectable, public Bus {
.
.
.

};

This is the approach taken by many of the Tools.h++ collectable classes (e.g.,
class RWCollectableString , which inherits both class RWCollectable and
class RWCString). The general idea is to create your object first, and then tack
on the RWCollectable class, making the whole thing collectable. This way,
you will be able to use your objects for other things, in other situations, where
you might not want to inherit from class RWCollectable .

There is another good reason for using this approach: avoiding ambiguous
base classes. Here's an example:

There are two approaches to disambiguating the call to fun() . Either change
it to:

fun((B)d);// We mean B's occurrence of A

class A { };
class B : public A { };
class C : public A { };
class D : public B, public C { };
void fun(A&);

main () {
D d;
fun(d);// Which A ?

}

174 Tools.h++ Class Library

20

or make A a virtual base class.

The first approach is error prone — the user must know the details of the
inheritance tree in order to make the proper cast.

The second approach, making A a virtual base class, solves this problem, but
introduces another: it becomes nearly impossible to make a cast back to the
derived class! This is because there are now two or more paths back through
the inheritance hierarchy or, if you prefer a more physical reason, the compiler
implements virtual base classes as pointers to the base class and you can't
follow a pointer backwards. The only solution is to exhaustively search all
possible paths in the object's inheritance hierarchy, looking for a match. (This
is the approach of the NIH Classes.) Such a solution is slow (it must be done
for every cast, although the search can be speeded up by "memoizing" the
resulting addresses), bulky and always complicated. We decided that this was
unacceptable.

Hence, we chose the first route. This can be made acceptable by keeping the
inheritance trees simple by not making everything derive from the same base
class. Hence, rather than using a large secular base class (sometimes dubbed
the "cosmic object"; an example is Smalltalk's "Object ") with lots of
functionality, we have chosen to tease out the separate bits of functionality into
separate, smaller base classes.

The idea is to first build your object, then tack on the base class that will supply
the functionality that you need (such as collectability), thus avoiding multiple
base classes of the same type and the resulting ambiguous calls.

Localizing messages
Tools.h++ includes a facility for localizing messages, that is, formatting them in
the native language of the user. This facility is used to localize exception
messages, to be passed to xmsg (see Section , “Exception architecture,” on
page 163 in Chapter 19, “Errors”). The facility can be used in one of four
modes:

Mode Define

No messaging RW_NOMSG

Use catgets() RW_CATGETS

Use gettext() RW_GETTEXT

Use dgettext() RW_DGETTEXT

Implementation Notes 175

20

The Sun version of Tools.h++ is delivered to you using catgets().

Function catgets() uses a message number to look up a localized version of
a message.

176 Tools.h++ Class Library

20

177

Common Mistakes 21

We have made every effort to "tune" our libraries so as to minimize the chance
of a programming error. Nevertheless, C++ is an extremely complex language
with countless opportunities for making some very subtle mistakes.

In writing this chapter, we went though our technical support documents to
uncover the most common mistakes that our users were making. For those
that could be prevented, we tried to rewrite the library to make them
impossible. This is always the best approach, but may not always be possible.
For example, unacceptable performance degradations may result. Or the
language may not let you make the change.

This chapter summarized the most common mistakes that are left over. Take a
look through this list and, of course, make sure you have read the manual, if
you are having a problem.

Redefinition of virtual functions
If you subclass off an existing class and override a virtual function, make sure
that the overriding function has exactly the same signature as the overridden
function. This includes any "const " modifiers!

This problem arises particulary when creating new RWCollectable classes.

178 Tools.h++ Class Library

21

For example:

The compiler will treat this definition of isEqual() as completely
independent of the isEqual() in the base class RWCollectable because it is
missing a "const " modifier. Hence, if called through a pointer:

Iterators
Immediately after construction, the position of a Tools.h++ iterator is formally
undefined. You must advance it or position it before it has a well-defined
position. The rule of thumb is "advance and then return". The return value
after advancing will be "special", either FALSE or nil, depending on the type of
iterator, if the end of the collection has been reached.

Hence, the proper idiom is:

class MyObject : public RWCollectable {
public:
 RWBooleanisEqual();// No "const" !
};

 MyObject obj;
 RWCollectable* c = &obj;
 c->isEqual();// RWCollectable::isEqual() will get called!

RWSlistCollectables ct;
RWSlistCollectablesIterator it(ct);

.

.

.

RWCollectable* c;
while (c=it()) {
 // Use c
}

Common Mistakes 179

21

Return type of operator>>()
An extremely common mistake is to forget that the functions

RWvistream&operator>>(RWvistream&,RWCollectable*&);
RWFile& operator>>(RWFile&, RWCollectable*&);

return their results off the heap. This can result in a memory leak:

Include path
Make sure that when you specify an include path to the Tools.h++ header files
that it does not include a final "rw ":

main()
{
 RWCString* string = new RWCString;;
 RWFile file(“mydata.dat”);

 // WRONG:
 file >> string;// Memory leak!

 // RIGHT:
 delete string;
 file >> string;

}

Use this:
CC -I/usr/local/include -c myprog.C

not this:
CC -I/usr/local/include/rw -c myprog.C

180 Tools.h++ Class Library

21

Match library version with your application’s compiler options
If you compile with -DRWDEBUG, use librwtool_dbg.a , otherwise don’t use
it.

Use the capabilities of the library!
By far the most common mistake is not to use the full power of the library. If
you find yourself writing a little "helper" class, consider why you are doing it.
Or, if what you are writing is looking a little clumsy, then maybe there's a more
elegant approach. A bit of searching through the Tools.h++ manual may
uncover just the thing you're looking for!

Here's a surprisingly common example:

main(int argc, char* argv[])
{

char buffer[120];
ifstream fstr(argv[1]);
RWCString line;

while (fstr.readline(buf,sizeof(buf)) {
line = buf;
cout << line;

}
}

Common Mistakes 181

21

This program reads lines from a file specified on the command line and prints
them to standard output. By using the full abilities of the RWCString class it
could be greatly simplified:

There are countless other such examples. The point is, if it's looking awkward
to you, it probably did to us. Most likely there's a better way!

main(int argc, char* argv[])
{

ifstream fstr(argv[1]);
RWCString line;

while (line.readLine(fstr)) {
cout << line;

}
}

182 Tools.h++ Class Library

21

183

Part 2— Class Reference

184 Tools.h++ Class Librarry

185

Class Reference 22

C++ is still a young language; therefore there is no standard way to structure a
reference manual for a class or group of classes. The reference is presented here
as an alphabetical listing of classes with their member and global functions
grouped in categories according to their general use. The categories are not a
part of the C++ language, but do provide a way of organizing the many
functions.

Each class includes a brief description, an illustration showing its inheritance
hierarchy, and a synopsis, indicating the header file(s) and Smalltalk typedef
(if appropriate) associated with the class. The synopsis also shows a
declaration and definition of a class object, and any typedefs that are used.

Member functions for each class are listed alphabetically. Member functions
fall into three general types:

1. Functions that are unique to a class. The complete documentation for these
functions is presented in the class where they occur. An example is
balance() , a member of the class BinaryTree .

2. Functions that are inherited from a base class without being redefined. The
complete documentation for these functions is presented in the defining base
class. An example is clearAndDestroy() , for class RWBinaryTree ,
which is inherited from class RWCollection .

186 Tools.h++ Class Library

22

3. Functions that are redefined in a derived class. These are usually virtual
functions. The documentation for these functions usually directs you to the
base class, but may also mention peculiarities that are relevant to the
derived class. An example is apply() , for class RWBinaryTree .

Throughout this chapter, there are frequent references to "self." This should be
understood to mean "*this ."

Class Reference 187

22

RWBag
RWBag

|
RWCollection

|
RWCollectable

Synopsis typedef RWBag Bag; // Smalltalk typedef.

#include <rw/rwbag.h>
RWBag h;

Description Class RWBag corresponds to the Smalltalk class Bag. It represents a group of
unordered elements, not accessible by an external key. Duplicates are allowed.

An object stored by RWBag must inherit abstract base class RWCollectable ,
with suitable definition for virtual functions hash() and isEqual() (see class
RWCollectable). The function hash() is used to find objects with the same
hash value, then isEqual() is used to confirm the match.

Class RWBag is implemented by using an internal hashed dictionary
(RWHashDictionary) which keeps track of the number of occurrences of an
item. If an item is added to the collection that compares equal (isEqual) to an
existing item in the collection, then the count is incremented.

Note – This means that only the first instance of a value is actually inserted:
subsequent instances cause the occurrence count to be incremented. This
behavior parallels the Smalltalk implementation of Bag.

Member function apply() and the iterator are called repeatedly according to
the count for an item.

See class RWHashTable if you want duplicates to be stored, rather than merely
counted.

Public constructors RWBag(size_t n = RWDEFAULT_CAPACITY);
Construct an empty bag with n buckets.

RWBag(const RWBag& b);
Copy constructor. A shallow copy of b will be made.

188 Tools.h++ Class Library

22

Public member operators void operator=(const RWBag& b);
Assignment operator. A shallow copy of b will be made.

RWBoolean operator==(const RWBag& b)
const;

Returns TRUE if self and bag b have the same number of total entries and if for
every key in self there is a corresponding key in b which isEqual and which
has the same number of entries.

Public member functions virtual void apply(RWapplyCollectable ap,
 void*)

Redefined from class RWCollection . This function has been redefined to
apply the user-supplied function pointed to by ap to each member of the
collection in a (generally) unpredictable order. If an item has been inserted
more than once (i.e., more than one item isEqual), then apply() will be called
that many times. The user-supplied function should not do anything that could
change the hash value of the items.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Redefined from class RWCollection .

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . The first item that was inserted into the
Bag and which equals target is returned or nil if no item is found. Hashing is
used to narrow the search.

Class Reference 189

22

virtual unsigned hash() const;
Inherited from class RWCollectable .

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWCollection . Inserts the item c into the collection and
returns it, or if an item was already in the collection that isEqual to c, then
returns the old item and increments its count.

RWCollectable* insertWithOccurrences
 (RWCollectable*c,size_t n);

Inserts the item c into the collection with count n and returns it, or if an item
was already in the collection that isEqual to c , then returns the old item and
increments its count by n.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWBAG.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

virtual RWBoolean isEqual(const RWCollectable*
 a)const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of items that are
equal to the item pointed to by target .

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes and returns the item that
isEqual to the item pointed to by target . Returns nil if no item was found.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

void resize(size_t n = 0);
Resizes the internal hash table to have n buckets. This will require rehashing
all the members of the collection. If n is zero, then an appropriate size will be
picked automatically.

190 Tools.h++ Class Library

22

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

Class Reference 191

22

RWBagIterator
RWBagIterator

|
RWIterator

Synopsis #include <rw/rwbag.h>
RWBag b;
RWBagIterator it(b);

Description Iterator for class RWBag, which allows sequential access to all the elements of
RWBag.

Note – Because a RWBag is unordered, elements are not accessed in any
particular order. If an item was inserted N times into the collection, then it will
be visited N times.

Like all Tools.h++ iterators, the “current item” is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWBagIterator(const RWBag&);
Construct an iterator for RWBag. After construction, the position of the iterator
is undefined.

Public member operator virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances the iterator to the next line item
and returns it. Returns nil when the end of the collection has been reached.

192 Tools.h++ Class Library

22

Public member functions Virtual RWCollectable* findNext (const RWCollectable*
 target);

Redefined from class RWIterator . Moves iterator to the next item which
isEqual to the object pointed to by target and returns it. Hashing is used to
find the target. If no item is found, returns nil and the position of the iterator
will be undefined.

Virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the item at the current iterator
position.

virtual void reset();
Redefined from class RWIterator . Resets the iterator to its starting state.

Class Reference 193

22

RWBench
Synopsis #include <rw/bench.h>

(Abstract base class)

Description This is an abstract class that can automate the process of benchmarking a piece
of code. To use it, derive a class from RWBench, including a definition for the
virtual function doLoop(unsigned long N) . This function should perform
N operations of the type that you are trying to benchmark. RWBench will call
doLoop() over and over again until a preset amount of time has elapsed. It
will then sum the total number of operations performed.

To run, construct an instance of your derived class and then call go() . Then
call report() to get a standard summary. For many compilers, this summary
will automatically include the compiler type and memory model. You can call
ops() , outerLoops() , etc. for more detail.

If you wish to correct for overhead, then provide an idleLoop() function
which should do non-benchmark related calculations.

Example This example benchmarks the time required to return a hash value for a
Tools.h++ string versus a Borland string.

Code Example 22-1 (1 of 3)

#include <rw/bench.h>/* Benchmark software */
#include <rw/cstring.h>/* Tools.h++ string class */
#include <strng.h>/* Borland string class */
#include <stdlib.h>

// The string to be hashed:
const char* cs = "A 22 character string.";

class TestBCCString : public RWBench {
public:
 TestBCCString() { }
 virtual voiddoLoop(unsigned long n);
 virtual voididleLoop(unsigned long n);
 virtual voidwhat(ostream& s) const
 { s << "Borland hashing string \"" << cs << "\"\n"; }
};

class TestRWCString : public RWBench {
public:

194 Tools.h++ Class Library

22

 TestRWCString() { }
 virtual void doLoop(unsigned long n);
 virtual void idleLoop(unsigned long n);
 virtual void what(ostream& s) const
 { s << "Tools.h++ hashing string \"" << cs << "\"\n"; }
};

main(int argc, char* argv[])
{
 cout << "Testing string \"" << cs << "\"\n\n";

 // Test Borland strings:
 TestBCCString bccstring;
 bccstring.parse(argc, argv);
 bccstring.go();
 bccstring.report(cout);

 // Test RW Strings:
 TestRWCString rwstring;
 rwstring.parse(argc, argv);
 rwstring.go();
 rwstring.report(cout);

 return 0;
}

void TestBCCString::doLoop(unsigned long n){
 String string(cs);
 hashValueType h;
 while(n--){
 h = string.hashValue();
 }
}

void TestRWCString::doLoop(unsigned long n){
 RWCString string(cs);
 unsigned h;
 while(n--){
 h = string.hash();
 }
}

void TestBCCString::idleLoop(unsigned long n){

Code Example 22-1 (2 of 3)

Class Reference 195

22

Program output:
Testing string "A 22 character string."

Borland C++ V3.0 Large memory model.

Borland hashing string "A 22 character string."

Iterations:163
Inner loop operations:1000
Total operations:163000
Elapsed (user) time:4.945055
Kilo-operations per second:32.962222

Borland C++ V3.0 Large memory model.

Tools.h++ hashing string "A 22 character string."

Iterations:417
Inner loop operations:1000
Total operations:417000
Elapsed (user) time:4.835165
Kilo-operations per second:86.243182

 String string(cs);// Subtract out constructor time
 hashValueType h;
 while(n--){ /* No-op */ }
}

void TestRWCString::idleLoop(unsigned long n){
 RWCString string(cs);// Subtract out constructor time
 unsigned h;
 while(n--){ /* No-op */ }
}

Code Example 22-1 (3 of 3)

196 Tools.h++ Class Library

22

Public constructors RWBench(double duration = 5, unsigned long ILO=1000,
 const char* machine = 0);

The parameter duration is the nominal amount of time that the benchmark
should take in seconds. The virtual function doLoop(unsigned long) will
be called over and over again until at least this amount of time has elapsed.
The parameter ILO is the number of "inner loop operations" that should be
performed. This parameter will be passed in as parameter N to doLoop(N) .
Parameter machine is an optional zero terminated string that should describe
the test environment (perhaps the hardware the benchmark is being run on).

Public member functions virtual void doLoop(unsigned long N)=0;
A pure virtual function whose actual definition should be supplied by the
specializing class. This function will be repeatedly called until a time duration
has elapsed. It should perform the operation to be benchmarked N times. See
the example.

double duration() const;
Return the current current setting for the benchmark test duration. This
should not be confused with function time() which returns the actual test
time.

virtual void go();
Call this function to actually run the benchmark.

virtual void idleLoop(unsigned long N);
This function can help to correct the benchmark for overhead. The default
definition merely executes a "for()" loop N times. See the example.

virtual void parse(int argc, char* argv[]);
This function allows an easy way to change the test duration, number of inner
loops and machine description from the command line:

Table 22-1

Argument Type Description

argv[1] double Duration (sec.)

argv[2] unsigned long No. of inner loops

argv[3] const char* Machine

Class Reference 197

22

virtual void report(ostream&) const;
Calling this function provides an easy and convenient way of getting an
overall summary of the results of a benchmark.

double setDuration(double t);
Change the test duration to time t .

unsigned long setInnerLoops(unsigned long N);
Change the number of "inner loop operations" to N.

virtual void what(ostream&) const;
You can supply a specializing version of this virtual function that provides
some detail of what is being benchmarked. It is called by report() when
generating a standard report.

void where(ostream&) const;
This function will print information to the stream about the compiler and
memory model that the code was compiled under.

unsigned long innerLoops() const;
Returns the current setting for the number of inner loop operations that will be
passed into function doLoop(unsigned long N) as parameter N.

double time() const;
Returns the amount of time the benchmark took, corrected for overhead.

unsigned long outerLoops() const;
Returns the number of times the function doLoop() was called.

double ops() const;
Returns the total number of inner loop operations that were performed (the
product of the number of times outerLoop() was called times the number of
inner loop operations performed per call).

double opsRate() const;
Returns the number of inner loop operations per second.

198 Tools.h++ Class Library

22

RWBinaryTree
RWBinaryTree

|
RWCollection

|
RWCollectable

Synopsis typedef RWBinaryTree SortedCollection; // Smalltalk
 typedef.

#include <rw/bintree.h>
RWBinaryTree bt;

Description Class RWBinaryTree represents a group of ordered elements, internally sorted
by the compareTo() function. Duplicates are allowed. An object stored by a
RWBinaryTree must inherit abstract base class RWCollectable .

Public constructors RWBinaryTree();
Construct an empty sorted collection.

RWBinaryTree(const RWBinaryTree& t);
Copy constructor. Constructs a shallow copy from t . Member function
balance() (see below), is called before returning.

virtual ~RWBinaryTree();
Redefined from RWCollection . Calls clear() .

Public member operators void operator=(const RWBinaryTree&
 bt);

Sets self to a shallow copy of bt .

RWBoolean operator<=(const RWBinaryTree&
 bt) const;

Returns TRUE if self is a subset of the collection bt . That is, every item in self
must compare equal to an item in bt .

RWBoolean operator==(const RWBinaryTree&
 bt) const;

Returns TRUE if self and bt are equivalent. That is, they must have the same
number of items and every item in self must compare equal to an item in bt .

Class Reference 199

22

Public member functions virtual void apply(RWapplyCollectable ap,
 void*)

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection, in order, from smallest to
largest. This supplied function should not do anything to the items that could
change the ordering of the collection.

void balance();
Special function to balances the tree. In a perfectly balanced binary tree with
no duplicate elements, the number of nodes from the root to any external (leaf)
node differs by at most 1 node. Since this collection allows duplicate elements,
a perfectly balanced tree is not always possible.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a)const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target)const;

Inherited from class RWCollection .

virtual size_t entries() const;
Redefined from class RWCollection .

virtual RWCollectable* find(const RWCollectable*
 target)const;

Redefined from class RWCollection . Returns the first item that compares
equal to the item pointed to by target , or nil if no item was found.

virtual unsigned hash() const;
Inherited from class RWCollectable .

200 Tools.h++ Class Library

22

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWCollection . Inserts the item c into the collection and
returns it. Returns nil if the insertion was unsuccessful. The item c is inserted
according to the value returned by compareTo() .

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWBINARYTREE.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of items that
compare equal to the item pointed to by target .

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes the first item that compares
equal to the object pointed to by target and returns it. Returns nil if no item
was found.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
Inherited from class RWCollection .

virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Redefined from class RWCollection to store objects by level, rather than in
order. This results in the tree maintaining its morphology.

Class Reference 201

22

RWBinaryTreeIterator
RWBinaryTreeIterator

|
RWIterator

Synopsis // Smalltalk typedef:
typedef RWBinaryTreeIterator SortedCollectionIterator;

#include <rw/bintree.h>
RWBinaryTree bt;
RWBinaryTreeIterator iterate(bt);

Description Iterator for class RWBinaryTree . Traverses the tree from the "smallest" to
"largest" element, where "smallest" and "largest" are defined by the virtual
function compareTo() .

Note – This approach is generally less efficient than using the member function
RWBinaryTree::apply() .

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWBinaryTreeIterator(const RWBinaryTree&);
Constructs an iterator for a RWBinaryTree . Immediately after construction,
the position of the iterator is undefined until positioned.

Public member operator virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances iterator to the next "largest"
element and returns a pointer to it. Returns nil when the end of the collection
is reached.

202 Tools.h++ Class Library

22

Public member functions virtual RWCollectable* findNext(const RWCollectable*
 target);

Redefined from class RWIterator . Moves iterator to the next item which
compares equal to the object pointed to by target and returns it. If no item is
found, returns nil and the position of the iterator will be undefined.

virtual void reset();
Redefined from class RWIterator . Resets iterator to its state at construction.

virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the item at the current iterator
position.

Class Reference 203

22

RWbistream
 RWbistream

| \
RWvistream ios

|
 RWvios

Synopsis #include <rw/bstream.h>

RWbistream bstr(cin); // Construct a RWbistream,
// using cin's streambuf

Description Class RWbistream specializes the abstract base class RWvistream to restore
variables stored in binary format by RWbostream .

You can think of it as a binary veneer over an associated streambuf. Because
the RWbistream retains no information about the state of its associated
streambuf , its use can be freely exchanged with other users of the streambuf
(such as an istream or ifstream).

RWbistream can be interrogated as to the stream state using member
functions good(), bad(), eof(), etc.

Example See RWbostream for an example of how the file "data.dat" might be
created.

Public constructors RWbistream(streambuf* s);
Construct a RWbistream from the streambuf s .

#include <rw/bstream.h>
#include <rw/fstream.h>
main()
{
 ifstream fstr("data.dat"); // Open an input file
 RWbistream bstr(fstr); // Construct RWbistream from it
 int i;
 float f;
 double d;
 bstr >> i; // Restore an int that was stored in binary
 bstr >> f >> d; // Restore a float & double}

204 Tools.h++ Class Library

22

RWbistream(istream& str);
Construct a RWbistream using the streambuf associated with the istream
str .

Public member functions virtual int get();
Redefined from class RWvistream . Get and return the next char from the
input stream. Returns EOF if end of file is encountered.

virtual RWvistream& get(char& c);
Redefined from class RWvistream . Get the next char and store it in c .

virtual RWvistream& get(wchar_t& wc);
Redefined from class RWvistream . Get the next wide char and store it in wc.

virtual RWvistream& get(unsigned char& c);
Redefined from class RWvistream . Get the next unsigned char and store it
in c .

virtual RWvistream& get(char* v, size_t N);
Redefined from class RWvistream . Get a vector of char's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(wchar_t* v, size_t N);
Redefined from class RWvistream . Get a vector of wide char’s and store then
in the array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(double* v, size_t N);
Redefined from class RWvistream . Get a vector of double's and store then in
the array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(float* v, size_t N);
Redefined from class RWvistream . Get a vector of float's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(int* v, size_t N);
Redefined from class RWvistream . Get a vector of int's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

Class Reference 205

22

virtual RWvistream& get(long* v, size_t N);
Redefined from class RWvistream . Get a vector of long's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(short* v, size_t N);
Redefined from class RWvistream . Get a vector of short's and store then in
the array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned char* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned char's and store
then in the array beginning at v. If the restore is stopped prematurely, get
stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned short* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned short's and
store then in the array beginning at v. If the restore is stopped prematurely,
get stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned int* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned int's and
store then in the array beginning at v. If the restore is stopped prematurely,
get stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned long* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned long's and store
then in the array beginning at v. If the restore is stopped prematurely, get
stores whatever it can in v, and sets the failbit.

virtual RWvistream& getString(char* s, size_t N);
Redefined from class RWvistream . Restores a character string from the input
stream and stores it in the array beginning at s . The function stops reading at
the end of the string or after N–1 characters, whichever comes first. If the
latter, then the failbit of the stream will be set. In either case, the string will be
terminated with a null byte.

206 Tools.h++ Class Library

22

virtual RWvistream& getString(wchar_t* ws, size_t
 N);

Redefined from class RWvistream . Restores a wide character string from the
input stream and stores it in the array beginning at ws. The function stops
reading at the end of the string or after N-1 characters, whichever comes first.
If the latter, then the failbit of the stream will be set. In either case, the string
will be terminated with a null byte.

virtual RWvistream& operator>>(char& c);
Redefined from class RWvistream . Get the next char from the input stream
and store it in c .

virtual RWvistream& operator>>(double& d);
Redefined from class RWvistream . Get the next double from the input
stream and store it in d.

virtual RWvistream& operator>>(float& f);
Redefined from class RWvistream . Get the next float from the input stream
and store it in f .

virtual RWvistream& operator>>(int& i);
Redefined from class RWvistream . Get the next int from the input stream
and store it in i .

virtual RWvistream& operator>>(long& l);
Redefined from class RWvistream . Get the next long from the input stream
and store it in l .

virtual RWvistream& operator>>(short& s);
Redefined from class RWvistream . Get the next short from the input stream
and store it in s .

virtual RWvistream& operator>>(unsigned char& c);
Redefined from class RWvistream . Get the next unsigned char from the
input stream and store it in c .

virtual RWvistream& operator>>(unsigned short& s);
Redefined from class RWvistream . Get the next unsigned short from the
input stream and store it in s .

virtual RWvistream& operator>>(unsigned int& i);
Redefined from class RWvistream . Get the next unsigned int from the
input stream and store it in i .

Class Reference 207

22

virtual RWvistream& operator>>(unsigned long& l);
Redefined from class RWvistream . Get the next unsigned long from the
input stream and store it in l .

208 Tools.h++ Class Library

22

RWBitVec

Synopsis #include <rw/bitvec.h>

RWBitVec v;

Description Class RWBitVec is a bitvector whose length can be changed at run time.
Because this requires an extra level of indirection, this makes it slightly less
efficient than classes RWGBitVec(size) or RWTBitVec <size>, whose lengths are
fixed at compile time.

Example

Program output:
[
1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1
]

#include <rw/bitvec.h>
#include <rw/rstream.h>
main()
{

// Allocate a vector with 20 bits, set to TRUE:
RWBitVec av(20, TRUE);

av(2) = FALSE; // Turn bit 2 off
av.clearBit(7); // Turn bit 7 off
av.setBit(2); // Turn bit 2 back on

for(int i=11; i<=14; i++) av(i) = FALSE;

cout << av << endl; // Print the vector out}
}

Class Reference 209

22

Public constructors RWBitVec();
Construct a zero lengthed (null) vector.

RWBitVec(size_t N);
Construct a vector with N bits. The initial value of the bits is undefined.

RWBitVec(size_t N, RWBoolean initVal);
Construct a vector with N bits, each set to the Boolean value initVal .

RWBitVec(const RWByte* bp, size_t N);
Construct a vector with N bits, initialized to the data in the array of bytes
pointed to by bp . This array must be at least long enough to contain N bits.
The identifier RWByte is a typedef for an unsigned char.

RWBitVec(const RWBitVec& v);
Copy constructor. Uses value semantics—the constructed vector will be a copy
of v.

~RWBitVec();
The destructor. Releases any allocated memory.

Assignment operators RWBitVec& operator=(const RWBitVec& v);
Assignment operator. Value semantics are used—self will be a copy of v.

RWBitVec& operator=(RWBoolean b);
Assignment operator. Sets every bit in self to the boolean value b.

RWBitVec& operator&=(const RWBitVec& v);
RWBitVec& operator^=(const RWBitVec& v);
RWBitVec& operator|=(const RWBitVec& v);
Logical assignments. Set each element of self to the logical AND, XOR, or OR,
respectively, of self and the corresponding bit in v. Self and v must have the
same number of elements (i.e., be conformal) or an exception of type
RWInternalErr will occur.

Indexing operators RWBitRef operator[](size_t i);
Returns a reference to bit i of self. A helper class, RWBitRef , is used. The
result can be used as an lvalue. The index i must be between 0 and the length
of the vector less one. Bounds checking is performed. If the index is out of
range, then an exception of type RWBoundsErr will occur.

210 Tools.h++ Class Library

22

RWBitRef operator()(size_t i);
Returns a reference to bit i of self. A helper class, RWBitRef , is used. The
result can be used as an lvalue. The index i must be between 0 and the length
of the vector less one. Bounds checking is performed only if the preprocessor
macro RWBOUNDS_CHECK has been defined before including the header file
bitvec.h . If so, and if the index is out of range, then an exception of type
RWBoundsErr will occur.

RWBoolean operator[](size_t i) const;
Returns the boolean value of bit i . The result cannot be used as an lvalue. The
index i must be between 0 and the length of the vector less one. Bounds
checking is performed. If the index is out of range, then an exception of type
RWBoundsErr will occur.

RWBoolean operator()(size_t i) const;
Returns the boolean value of bit i . The result cannot be used as an lvalue. The
index i must be between 0 and the length of the vector less one. Bounds
checking is performed only if the preprocessor macro RWBOUNDS_CHECK has
been defined before including the header file <rw/bitvec.h> . If so, and if
the index is out of range, then an exception of type RWBoundsErr will occur.

Logical operators RWBoolean operator==(const RWBitVec& u)
 const;

Returns TRUE if self and v have the same length and if each bit of self is set to
the same value as the corresponding bit in v. Otherwise, returns FALSE.

RWBoolean operator!=(const RWBitVec& u)
 const;

Returns FALSE if self and v have the same length and if each bit of self is set to
the same value as the corresponding bit in v. Otherwise, returns TRUE.

RWBoolean operator==(RWBoolean b) const;
Returns TRUE if every bit of self is set to the boolean value b. Otherwise
FALSE.

RWBoolean operator!=(RWBoolean b) const;
Returns FALSE if every bit of self is set to the boolean value b. Otherwise
TRUE.

Class Reference 211

22

Public member functions void clearBit(size_t i);
Clears (i.e., sets to FALSE) the bit with index i . The index i must be between
0 and the length of the vector less one. No bounds checking is performed. The
following are equivalent, although clearBit(size_t) is slightly smaller and
faster than using operator()(size_t) :

a(i) = FALSE;
a.clearBit(i);

const RWByte* data() const;
Returns a const pointer to the raw data of self. Should be used with care.

size_t firstFalse() const;
Returns the index of the first OFF (False) bit in self. Returns RW_NPOS if there
is no OFF bit.

size_t firstTrue() const;
Returns the index of the first ON (True) bit in self. Returns RW_NPOS if there is
no ON bit.

unsigned hash() const;
Returns a value suitable for hashing.

RWBoolean isEqual(const RWBitVec& v)
 const;

Returns TRUE if self and v have the same length and if each bit of self is set to
the same value as the corresponding bit in v. Otherwise, returns FALSE.

size_t length() const;
Returns the number of bits in the vector.

ostream& printOn(ostream& s) const;
Print the vector v on the output stream s . See the example above for a sample
of the format.

void resize(size_t N);
Resizes the vector to have length N. If this results in a lengthening of the
vector, the additional bits will be set to FALSE.

istream& scanFrom(istream&);
Read the bit vector from the input stream s . The vector will dynamically be
resized as necessary. The vector should be in the same format printed by
member function printOn(ostream&) .

212 Tools.h++ Class Library

22

void setBit(size_t i);// Set bit i
Sets (i.e., sets to TRUE) the bit with index i . The index i must be between 0
and size–1. No bounds checking is performed. The following are equivalent,
although setBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

a(i) = TRUE;
a.setBit(i);

RWBoolean testBit(size_t i) const;
Tests the bit with index i . The index i must be between 0 and size–1. No
bounds checking is performed. The following are equivalent, although
testBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

if(a(i)) doSomething();
if(a.testBit(i)) doSomething();

Related global functions RWBitVec operator!(const RWBitVec& v);
Unary operator that returns the logical negation of vector v.

RWBitVec operator&(const RWBitVec&,const RWBitVec&);
RWBitVec operator^(const RWBitVec&,const RWBitVec&);
RWBitVec operator|(const RWBitVec&,const RWBitVec&);
Returns a vector that is the logical AND, XOR, or OR of the vectors v1 and v2 .
The two vectors must have the same length or an exception of type
RWInternalErr will occur.

ostream& operator<<(ostream& s, const RWBitVec& v);
Calls v.printOn(s) .

istream& operator>>(istream& s, RWBitVec& v);
Calls v.scanFrom(s) .

RWvostream& operator<<(RWvostream&, const
 RWBitVec& vec);

RWFile& operator<<(RWFile&, const
 RWBitVec& vec);

Saves the RWBitVec vec to a virtual stream or RWFile , respectively.

Class Reference 213

22

RWvistream& operator>>(RWvistream&, RWBitVec& vec);
RWFile& operator>>(RWFile&, RWBitVec& vec) ;
Restores an RWBitVec into vec from a virtual stream or RWFile , respectively,
replacing the previous contents of vec .

size_t sum(const RWBitVec& v);
Returns the total number of bits set in the vector v.

214 Tools.h++ Class Library

22

RWbostream
 RWbostream

| \
RWvostream ios

|
RWvios

Synopsis #include <rw/bstream.h>

// Construct a RWbostream, using cout's streambuf:
RWbostream bstr(cout);

Description Class RWbostream specializes the abstract base class RWvostream to store
variables in binary format. The results can be restored by using its counterpart
RWbistream .

You can think of it as a binary veneer over an associated streambuf . Because
the RWbostream retains no information about the state of its associated
streambuf , its use can be freely exchanged with other users of the streambuf
(such as ostream or ofstream).

Note – Variables should not be separated with whitespace. Such whitespace
would be interpreted literally and would have to be read back in as a character
string.

RWbostream can be interrogated as to the stream state using member
functions good(), bad(), eof() , etc.

Class Reference 215

22

Example See RWbistream for an example of how the file "data.dat" might be read back
in.

Public constructors RWbostream(streambuf* s);
Construct a RWbostream from the streambuf s .

RWbostream(ostream& str);
Construct a RWbostream from the streambuf associated with the output
stream str .

Public member functions virtual RWvostream& operator<<(const char* s);
Redefined from class RWvostream . Store the character string starting at s to
the output stream in binary. The character string is expected to be null
terminated.

virtual RWvostream& operator<<(const wchar_t* ws);
Redefined from class RWvostream . Store the wide character string starting at
ws to the output stream in binary. The character string is expected to be null
terminated.

virtual RWvostream& operator<<(char c);
Redefined from class RWvostream . Store the char c to the output stream in
binary.

virtual RWvostream& operator<<(wchar_t wc);
Redefined from class RWvostream . Store the wide char wc to the output
stream in binary.

#include <rw/bstream.h>
#include <fstream.h>
main()
{
 ofstream fstr("data.dat"); // Open an output file
 RWbostream bstr(fstr); // Construct an RWbostream from it
 int i = 5;
 float f = 22.1;
 double d = -0.05;

 bstr << i; // Store an int in binary
 bstr << f << d; // Store a float & double}

216 Tools.h++ Class Library

22

virtual RWvostream& operator<<(unsigned char c);
Redefined from class RWvostream . Store the unsigned char c to the output
stream in binary.

virtual RWvostream& operator<<(double d);
Redefined from class RWvostream . Store the double d to the output stream in
binary.

virtual RWvostream& operator<<(float f);
Redefined from class RWvostream . Store the float f to the output stream in
binary

virtual RWvostream& operator<<(int i);
Redefined from class RWvostream . Store the int i to the output stream in
binary.

virtual RWvostream& operator<<(unsigned int i);
Redefined from class RWvostream . Store the unsigned int i to the output
stream in binary.

virtual RWvostream& operator<<(long l);
Redefined from class RWvostream . Store the long l to the output stream in
binary.

virtual RWvostream& operator<<(unsigned long l);
Redefined from class RWvostream . Store the unsigned long l to the output
stream in binary.

virtual RWvostream& operator<<(short s);
Redefined from class RWvostream . Store the short s to the output stream in
binary.

virtual RWvostream& operator<<(unsigned short s);
Redefined from class RWvostream . Store the unsigned short s to the output
stream in binary.

virtual RWvostream& put(char c);
Redefined from class RWvostream . Store the char c to the output stream.

virtual RWvostream& put(unsigned char c);
Redefined from class RWvostream . Store the unsigned char c to the output
stream.

Class Reference 217

22

virtual RWvostream& put(const char* p, size_t N);
Redefined from class RWvostream . Store the vector of chars starting at p to
the output stream in binary.

virtual RWvostream& put(const wchar_t* p, size_t N);
Redefined from class RWvostream . Store the vector of wide chars starting at
p to the output stream in binary.

virtual RWvostream& put(const unsigned char* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned chars
starting at p to the output stream in binary.

virtual RWvostream& put(const short* p, size_t N);
Redefined from class RWvostream . Store the vector of shorts starting at p to
the output stream in binary.

virtual RWvostream& put(const unsigned short* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned shorts
starting at p to the output stream in binary.

virtual RWvostream& put(const int* p, size_t N);
Redefined from class RWvostream . Store the vector of ints starting at p to
the output stream in binary.

virtual RWvostream& put(const unsigned int* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned ints
starting at p to the output stream in binary.

virtual RWvostream& put(const long* p, size_t N);
Redefined from class RWvostream . Store the vector of longs starting at p to
the output stream in binary.

virtual RWvostream& put(const unsigned long* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned longs
starting at p to the output stream in binary.

virtual RWvostream& put(const float* p, size_t N);
Redefined from class RWvostream . Store the vector of floats starting at p to
the output stream in binary.

218 Tools.h++ Class Library

22

virtual RWvostream& put(const double* p, size_t
 N);

Redefined from class RWvostream . Store the vector of doubles starting at p
to the output stream in binary.

Class Reference 219

22

RWBTree
RWBTree

|
RWCollection

|
RWCollectable

Synopsis #include <rw/btree.h>
RWBTree a;

Description Class RWBTree represents a group of ordered elements, not accessible by an
external key. Duplicates are not allowed. An object stored by class RWBTree
must inherit abstract base class RWCollectable —the elements are ordered
internally according to the value returned by virtual function compareTo()
(see class RWCollectable).

This class has certain advantages over class RWBinaryTree . First, the B-Tree
is automatically balanced. (With class RWBinaryTree , you must call member
function balance() explicitly to balance the tree.) Nodes are never allowed
to have less than a certain number of items (called the order). The default order
is 50, but may be changed by resetting the value of the static constant "order"
in the header file <btree.h> and recompiling. Larger values will result in
shallower trees, but less efficient use of memory.

Because many keys are held in a single node, class RWBTree also tends to
fragment memory less.

Public constructor RWBTree();
Construct an empty B-Tree .

RWBTree(const RWBTree& btr);
Construct self as a shallow copy of btr .

virtual ~RWBTree();
Redefined from RWCollection . Calls clear() .

220 Tools.h++ Class Library

22

Public member operators void operator=(const RWBTree& btr);
Set self to a shallow copy of btr .

RWBoolean operator<=(const RWBTree& btr)
 const;

Returns TRUE if self is a subset of btr . That is, for every item in self, there
must be an item in btr that compares equal.

RWBoolean operator==(const RWBTree& btr)
 const;

Returns TRUE if self and btr are equivalent. That is, they must have the same
number of items and for every item in self, there must be an item in btr that
compares equal.

Public member functions virtual void apply(RWapplyCollectable ap,
 void*)

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection, in order, from smallest to
largest. This supplied function should not do anything to the items that could
change the ordering of the collection.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Redefined from class RWCollection .

Class Reference 221

22

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . The first item that compares equal to
the object pointed to by target is returned or nil if no item is found.

virtual unsigned hash() const;
Inherited from class RWCollectable .

unsigned height() const;
Special member function of this class. Returns the height of the tree, defined as
the number of nodes traversed while descending from the root node to an
external (leaf) node.

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWCollection . Inserts the item c into the collection and
returns it. Returns nil if the insertion was unsuccessful. The item c is inserted
according to the value returned by compareTo() .

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWBTREE.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of items that
compare equal to target . Since duplicates are not allowed, this function can
only return 0 or 1.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes and returns the first item that
compares equal to the object pointed to by target . Returns nil if no item was
found.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

222 Tools.h++ Class Library

22

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

Class Reference 223

22

RWBTreeDictionary
RWBTreeDictionary

|
RWBTree

|
RWCollection

|
RWCollectable

Synopsis #include <rw/btrdict.h>

RWBTreeDictionary a;

Description Dictionary class implemented as a B-Tree , for the storage and retrieval of key-
value pairs. Both the keys and values must inherit abstract base class
RWCollectable —the elements are ordered internally according to the value
returned by virtual function compareTo() of the key (see class
RWCollectable). Duplicate keys are not allowed.

The B-Tree is balanced. That is, nodes are never allowed to have less than a
certain number of items (called the order). The default order is 50, but may be
changed by resetting the value of the static constant "order" in the header file
<btree..h> and recompiling. Larger values will result in shallower trees, but
less efficient use of memory.

Public constructors RWBTreeDictionary();
Constructs an empty B-Tree dictionary.

Public member functions void applyToKeyAndValue(RWapplyKeyAndValue
ap,void*)

Applies the user-supplied function pointed to by ap to each key-value pair of
the collection, in order, from smallest to largest.

virtual RWspace binaryStoreSize() const
Inherited from class RWCollection .

224 Tools.h++ Class Library

22

virtual void clear();
Redefined from class RWCollection . Removes all key-value pairs from the
collection.

virtual void clearAndDestroy();
Redefined from class RWCollection . Removes all key-value pairs in the
collection, and deletes both the key and the value.

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Redefined from class RWCollection .

virtual RWCollectable* find(const RWCollectable* key)
 const;

Redefined from class RWCollection . Returns the key in the collection which
compares equal to the object pointed to by target , or nil if no key is found.

RWCollectable* findKeyAndValue(const
 RWCollectable* target,
 RWCollectable*& v) const;

Returns the key in the collection which compares equal to the object pointed to
by target , or nil if no key was found. The value is put in v. You are
responsible for defining v before calling this function.

RWCollectable* findValue(const RWCollectable*
 target) const;

Returns the value associated with the key which compares equal to the object
pointed to by target , or nil if no key was found.

RWCollectable* findValue(const RWCollectable*
 target,RWCollectable*
 newValue);

Returns the value associated with the key which compares equal to the object
pointed to by target , or nil if no key was found. Replaces the value with
newValue (if a key was found).

Class Reference 225

22

virtual unsigned hash() const;
Inherited from class RWCollectable .

unsigned height() const;
Inherited from class RWBTree.

RWCollectable* insertKeyAndValue(RWCollectable*
 key,RWCollectable* value);

Adds a key-value pair to the collection and returns the key if successful, nil if
the key is already in the collection.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWBTREEDICTIONARY.

virtual RWBoolean isEmpty() const;
Inherited from class RWBTree.

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of keys that
compare equal with target . Because duplicates are not allowed, this function
can only return 0 or 1.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes the key and value pair for
which the key compares equal to the object pointed to by target . Returns the
key, or nil if no match was found.

virtual void removeAndDestroy(const
 RWCollectable* target);

Redefined from class RWCollection . Removes and deletes the key and value
pair for which the key compares equal to the object pointed to by target .

Note – Both the key and the value are deleted. Does nothing if the key is not
found.

226 Tools.h++ Class Library

22

RWCollectable* removeKeyAndValue(const
 RWCollectable* target,
 RWCollectable*& v);

Removes the key and value pair for which the key compares equal to the object
pointed to by target . Returns the key, or nil if no match was found. The
value is put in v. You are responsible for defining v before calling this
function.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

Class Reference 227

22

RWBTreeOnDisk

Synopsis typedef long RWstoredValue;
typedef int (*RWdiskTreeCompare)(const char*,

const char*,
size_t);

#include <rw/disktree.h>
#include <rw/filemgr.h>
RWFileManager fm(”filename.dat”);
RWBTreeOnDisk bt(fm);

Description Class RWBTreeOnDisk represents an ordered collection of associations of keys
and values, where the ordering is determined by comparing keys using an
external function. The user can set this function. Duplicate keys are not
allowed. Given a key, the corresponding value can be found.

This class is specifically designed for managing a B-Tree in a disk file. Keys,
defined to be arrays of chars , and values, defined by the typedef
RWstoredValue , are stored and retrieved from a B-Tree. The values can
represent offsets to locations in a file where objects are stored.

The key length is set by the constructor. By default, this value is 16 characters.
By default, keys are null-terminated. However, the tree can be used with
embedded nulls, allowing multibyte and binary data to be used as keys. To do
so you must:

• Specify TRUE for parameter ignoreNull in the constructor (see below);

• Make sure all buffers used for keys are at least as long as the key length
(remember, storage and comparison will not stop with a null value);

• Use a comparison function (such as memcmp()) that ignores nulls.

This class is meant to be used with class RWFileManager which manages the
allocation and deallocation of space in a disk file.

When you construct an RWBTreeOnDisk you give the location of the root node
in the constructor as argument start . If this value is RWNIL (the default) then
the location will be retrieved from the RWFileManager using function
start() (see class RWFileManager). You can also use the enumeration

228 Tools.h++ Class Library

22

createMode to set whether to use an existing tree (creating one if one doesn’t
exist) or to force the creation of a new tree. The location of the resultant root
node can be retrieved using member function rootLocation() .

More than one B-Tree can exist in a disk file. Each must have its own separate
root node. This can be done by constructing more than one RWBTreeOnDisk ,
each with createMode set to create .

The order of the B-Tree can also be set in the constructor. Larger values will
result in shallower trees, but less efficient use of disk space. The minimum
number of entries in a node can also be set. Smaller values will result in less
time spent balancing the tree, but less efficient use of disk space.

Enumeration enum styleMode {V6Style, V5Style};
This enumeration is used by the constructor to allow backwards compatibility
with older V5.X style trees, which supported only 16 byte key lengths. It is
used only when creating a new tree. If opening a tree for update, its type is
determined automatically at runtime.

V6Style Initialize a new tree using V6.X style trees. This is
the default.

V5Style Initialize a new tree using V5.X style trees. In this
case, the key length is fixed at 16 bytes.

enum createMode {autoCreate, create};
This enumeration is used by the constructor to determine whether to force the
creation of a new tree.

autoCreate Look in the location given by the constructor
argument start for the root node. If valid, use it.
Otherwise, allocate a new tree. This is the default.

create Forces the creation of a new tree. The argument
start is ignored.

Public constructor RWBTreeOnDisk(RWFileManager& f,
unsigned nbuf = 10,
createMode omode = autoCreate,
unsigned keylen = 16,
RWBoolean ignoreNull = FALSE,
RWoffset start = RWNIL,
styleMode smode = V6Style,
unsigned halfOrder = 10,
unsigned minFill = 10);

Class Reference 229

22

Construct a B-Tree on disk. The parameters are as follows:
f The file in which the B-Tree is to be managed. This

is the only required parameter.
nbuf The maximum number of nodes that can be cached

in memory.
omode Determines whether to force the creation of a new

tree or whether to attempt to open an existing tree
for update (the default).

keylen The length of a key in bytes. Ignored when
opening an existing tree.

ignoreNull Controls whether to allow embedded nulls in keys.
If FALSE (the default), then keys end with a
terminating null. If TRUE, then all keylen bytes
are significant. Ignored when opening an existing
tree.

start Where to find the root node. If set to RWNIL (the
default), then uses the value returned by the
RWFileManager ’s start() member function.
Ignored when creating a new tree.

smode Sets the type of B-Tree to create, allowing
backwards compatibility (see above). The default
specifies new V6.X style B-Trees. Ignored when
opening an existing tree.

halfOrder One half the order of the B-Tree (that is, one half
the number of entries in a node). Ignored when
opening an existing tree.

minFill The minimum number of entries allowed in a node
(must be less than or equal to halfOrder).
Ignored when opening an existing tree.

Public member functions void applyToKeyAndValue(
(*ap)(const char*,
RWstoredValue), void* x);

Visits all items in the collection in order, from smallest to largest, calling the
user-provided function pointed to by ap with the key and value as arguments.
This function should have prototype:

void yourApplyFunction(const char* ky,
RWstoredValue val,
void* x);

230 Tools.h++ Class Library

22

The function yourApplyFunction cannot change the key. The value x can be
anything and is passed through from the call to applyToKeyAndValue() . A
possible exception that could occur is RWFileErr .

void clear();
Removes all items from the collection. A possible exception that could occur is
RWFileErr .

RWBoolean contains(const char* ky) const;
Returns TRUE if the tree contains a key that is equal to the string pointed to by
ky, FALSE otherwise. A possible exception that could occur is RWFileErr .

size_t entries();
Returns the number of items in the RWBTreeOnDisk . A possible exception that
could occur is RWFileErr .

RWstoredValue findValue(const char* ky);
Returns the value for the key that compares equal to the string pointed to by
ky . Returns RWNIL if no key is found. A possible exception that could occur is
RWFileErr .

int height();
Returns the height of the RWBTreeOnDisk . A possible exception that could
occur is RWFileErr .

int insertKeyAndValue(const char*
 ky, RWstoredValue v);

Adds a key-value pair to the B-Tree . Returns TRUE for successful insertion,
FALSE otherwise. A possible exception that could occur is RWFileErr .

RWBoolean isEmpty() const;
Returns TRUE if the RWBTreeOnDisk is empty, otherwise FALSE.

void remove(const char* ky);
Removes the key and value pair that has a key which matches ky . A possible
exception that could occur is RWFileErr .

RWoffset rootLocation() const;
Returns the offset of the root node.

RWdiskTreeCompare setComparison(RWdiskTreeCompare
 fun);

Changes the comparison function to fun and returns the old function. This
function must have prototype:

Class Reference 231

22

int yourFun(const char* key1, const char* key2, size_t N);

It should return a number less than zero, equal to zero, or greater than zero
depending on whether the first argument is less than, equal to or greater than
the second argument, respectively. The third argument is the key length.
Possible choices (among others) are strncmp() (the default), or strnicmp()
(for case-independent comparisons).

232 Tools.h++ Class Library

22

RWBufferedPageHeap
RWBufferedPageHeap

|
RWVirtualPageHeap

Synopsis #include <rw/bufpage.h>

(Abstract base class)

Description This is an abstract base class that represents an abstract page heap buffered
through a set of memory buffers. It inherits from the abstract base class
RWVirtualPageHeap which represents an abstract page heap.

RWBufferedPageHeap will supply and maintain a set of memory buffers.
Specializing classes should supply the actual physical mechanism to swap
pages in and out of these buffers by supplying definitions for the pure virtual
functions swapIn(RWHandle, void*) and swapOut(RWHandle,
void*) .

The specializing class should also supply appropriate definitions for the public
functions allocate() and deallocate(RWHandle) .

For a sample implementation of a specializing class, see class
RWDiskPageHeap.

Public constructor RWBufferedPageHeap(unsigned pgsize, unsigned nbufs=10);
Constructs a buffered page heap with page size pgsize . The number of
buffers (each of size pgsize) that will be allocated on the heap will be nbufs .
If there is insufficient memory to satisfy the request, then the state of the
resultant object as returned by member function isValid() will be FALSE,
otherwise, TRUE.

Protected member functions virtual RWBoolean swapIn(RWHandle h, void* buf) = 0;
virtual RWBoolean swapOut(RWHandle, h void* buf) = 0;
It is the responsibility of the specializing class to supply definitions for these
two pure virtual functions. Function swapOut() should copy the page with
handle h from the buffer pointed to by buf to the swapping medium. Function
swapIn() should copy the page with handle h into the buffer pointed to by
buf .

Class Reference 233

22

Public member functions virtual RWHandle allocate() = 0;
It is the responsibility of the specializing class to supply a definition for this
pure virtual function. The specializing class should allocate a page and return
a unique handle for it. It should return zero if it cannot satisfy the request.
The size of the page is set by the constructor.

virtual ~RWBufferedPageHeap();
Deallocates all internal buffers.

RWBoolean isValid();
Returns TRUE if self is in a valid state. A possible reason why the object might
not be valid is insufficient memory to allocate the internal buffers.

virtual void deallocate(RWHandle h);
Redefined from class RWVirtualPageHeap . It is never an error to call this
function with argument zero. Even though this is not a pure virtual function,
it is the responsibility of the specializing class to supply an appropriate
definition for this function. All this definition does is release any buffers
associated with the handle h. Just as the actual page allocation is done by the
specializing class through virtual function allocate() , so must the actual
deallocation be done by overriding deallocate() .

virtual void dirty(RWHandle h);
Redefined from class RWVirtualPageHeap .

virtual void* lock(RWHandle h);
Redefined from class RWVirtualPageHeap .

virtual void unlock(RWHandle h);
Redefined from class RWVirtualPageHeap .

234 Tools.h++ Class Library

22

RRWCacheManager

Synopsis #include <rw/cacheman.h>

RWFile f("file.dat"); // Construct a file
RWCacheManager(&f, 100); // Cache 100 byte blocks to

 file.dat

Description Class RWCacheManager caches fixed length blocks to and from an associated
RWFile . The block size can be of any length and is set at construction time.
The number of cached blocks can also be set at construction time.

Writes to the file may be deferred. Use member function flush() to have any
pending writes performed.

Example

#include <rw/cacheman.h>
#include <rw/rwfile.h>

struct Record {
 int i;
 float f;
 char str[15];
};

main()
{
 RWoffset loc;
 RWFile file("file.dat"); // Construct a file

 // Construct a cache, using 20 slots for struct Record:
 RWCacheManager cache(&file, sizeof(Record), 20);

 Record r;
 // ...
 cache.write(loc, &r);
 // ...
 cache.read(loc, &r);
}

Class Reference 235

22

Public constructor RWCacheManager(RWFile* file, unsigned blocksz, unsigned
mxblks = 10);
Construct a cache for the RWFile pointed to by file . The length of the fixed-
size blocks is given by blocksz . The number of cached blocks is given by
mxblks .

~RWCacheManager();
Performs any pending I/O operations (i.e., calls flush()) and deallocates any
allocated memory.

Public member functions RWBoolean flush();
Perform any pending I/O operations. Returns TRUE if the flush was
successful, FALSE otherwise.

void invalidate();
Invalidate the cache.

RWBoolean read(RWoffset locn, void* dat);
Return the data located at offset locn of the associated RWFile . The data is
put in the buffer pointed to by dat . This buffer must be at least as long as the
block size specified when the cache was constructed. Returns TRUE if the
operation was successful, otherwise FALSE.

RWBoolean write(RWoffset locn, void* dat);
Write the block of data pointed to by dat to the offset locn of the associated
RWFile . The number of bytes written is given by the block size specified
when the cache was constructed. The actual write to disk may be deferred.
Use member function flush() to perform any pending output. Returns TRUE
if the operation was successful, otherwise FALSE.

236 Tools.h++ Class Library

22

RWCollectable

Synopsis typedef RWCollectable Object; // Smalltalk typedef

#include <rw/collect.h>

Description Class RWCollectable is an abstract base class for collectable objects. This
class contains virtual functions for identifying, hashing, comparing, storing
and retrieving collectable objects. While these virtual functions have simple
default definitions, objects that inherit this base class will typically redefine
one or more of them.

Virtual functions virtual ~RWCollectable()
All functions that inherit class RWCollectable have virtual destructors. This
allows them to be deleted by such member functions as
removeAndDestroy() without knowing their type.

virtual RWspace binaryStoreSize() const;
Returns the number of bytes used by the virtual function saveGuts
(RWFile&) to store an object. Typically, this involves adding up the space
required to store all primitives, plus the results of calling
recursiveStoreSize() for all objects inheriting from RWCollectable . See
Chapter 17, “Persistence” for details.

virtual int compareTo(const RWCollectable*)
 const;

The function compareTo() is necessary to sort the items in a collection. If p1
and p2 are pointers to RWCollectable objects, the statement

p1-compareTo(p2);

should return:

0 if *p1 "is equal to" *p2;
>0 if *p1 is "larger" than *p2;
<0 if *p1 is "smaller" than *p2.

Class Reference 237

22

Note – The meaning of "is equal to", "larger" and "smaller" is left to the user.
The default definition provided by the base class is based on the addresses, i.e.,
return this == p2 ? 0 : (this p2 ? 1 : -1);
and is probably not very useful.

virtual unsigned hash() const;
Returns a hash value. This function is necessary for collection classes that use
hash table look-up. The default definition provided by the base class hashes
the object's address:

return (unsigned)this;

virtual RWClassID isA() const;
Returns a class identification number (typedef'd to be an unsigned short).
The default definition returns __RWCOLLECTABLE. Identification numbers
greater than or equal to 0x8000 (hex) are reserved for Tools.h++ objects. User
defined classes should define isA() to return a number between 0 and 0x7FFF.

virtual RWBoolean isEqual(const RWCollectable* t)
 const;

Returns TRUE if collectable object "matches" object at address t . The default
definition is:

return this == t;

i.e., both objects have the same address (a test for identity). The definition may
be redefined in any consistent way.

virtual RWCollectable* newSpecies() const;
Allocates a new object off the heap of the same type as self and returns a
pointer to it. You are responsible for deleting the object when done with it.

virtual void restoreGuts(RWFile&);
Read an object's state from a binary file, using class RWFile , replacing the
previous state.

virtual void restoreGuts(RWvistream&);
Read an object's state from an input stream, replacing the previous state.

virtual void saveGuts(RWFile&) const;
Write an object's state to a binary file, using class RWFile .

238 Tools.h++ Class Library

22

virtual void saveGuts(RWvostream&) const;
Write an object's state to an output stream.

RWspace recursiveStoreSize() const;
Returns the number of bytes required to store the object using the global
operator

RWFile& operator<<(RWFile&,
const RWCollectables&);
Recursively calls binaryStoreSize() , taking duplicate objects into account.

Related global operators RWvostream& operator<<(RWvostream&, const
 RWCollectable& obj);

RWFile& operator<<(RWFile&, const
 RWCollectable& obj);

Saves the object obj to a virtual stream or RWFile , respectively. Recursively
calls the virtual function saveGuts() , taking duplicate objects into account.
See Chapter 17, “Persistence,” and “Multiple inheritance” on page 173 in
Chapter 20, “Implementation Notes.”

RWvistream& operator>>(RWvistream&,
 RWCollectable& obj);

RWFile& operator>>(RWFile&,
 RWCollectable& obj);

Restores an object inheriting from RWCollectable into obj from a virtual
stream or RWFile , respectively, replacing the previous contents of obj .
Recursively calls the virtual function restoreGuts() , taking duplicate objects
into account. See Chapter 17, “Persistence” and “Multiple inheritance” on
page 173 in Chapter 20, “Implementation Notes,” for a complete description.
Various exceptions that could be thrown are RWInternalErr (if the
RWFactory does not know how to make the object), and RWExternalErr
(corrupted stream or file).

RWvistream& operator>>(RWvistream&,
 RWCollectable*& obj);

RWFile& operator>>(RWFile&,
 RWCollectable*& obj);

Looks at the next object on the input stream or RWFile , respectively, and either
creates a new object of the proper type off the heap and returns a pointer to it,
or else returns a pointer to a previously read instance. Recursively calls the
virtual function restoreGuts() , taking duplicate objects into account. If an
object is created off the heap, then you are responsible for deleting it. See
Chapter 17, “Persistence” and “Multiple inheritance” on page 173 in

Class Reference 239

22

Chapter 20, “Implementation Notes,” for a complete description. Various
exceptions that could be thrown are RWInternalErr (if the RWFactory does
not know how to make the object), and RWExternalErr (corrupted stream or
file).

240 Tools.h++ Class Library

22

RWCollectableDate
RWCollectableDate

| |
RWCollectable RWDate

Synopsis typedef RWCollectableDate Date; // Smalltalk typedef

#include <rw/colldate.h>

RWCollectableDate d;

Description Collectable Dates. Inherits classes RWDate and RWCollectable . This class is
useful when dates are used as keys in the "dictionary" collection classes, or if
dates are stored and retrieved as RWCollectables . The virtual functions of
the base class RWCollectable have been redefined.

Public constructors RWCollectableDate();
RWCollectableDate(unsigned day, unsigned year);
RWCollectableDate(unsigned day, unsigned month, unsigned

year);
RWCollectableDate(unsigned day, const char* mon, unsigned

year, const RWLocale& locale =
RWLocale::global());

RWCollectableDate(istream& s, const RWLocale& locale =
RWLocale::global());

RWCollectableDate(const RWCString& str,
const RWLocale& locale =
RWLocale::global());

RWCollectableDate(const RWTime& t, const RWZone& zone
=RWZone::local());

RWCollectableDate(const struct tm* tmb);
RWCollectableDate(const RWDate& d);
Calls the corresponding constructor of the base class RWDate.

Public member functions virtual RWspace binaryStoreSize() const;
Redefined from class RWCollectable .

Class Reference 241

22

virtual int compareTo(const RWCollectable*
 c) const;

Redefined from class RWCollectable . Returns the results of calling
RWDate::compareTo(c) .

virtual unsigned hash() const;
Redefined from class RWCollectable . Returns the results of calling
RWDate::hash() .

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWCOLLECTABLEDATE.

virtual RWBoolean isEqual(const RWCollectable* t)
 const;

Redefined from class RWCollectable . Returns the results of calling
operator==() for the base class RWDate by using appropriate casts.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Redefined from class RWCollectable .

242 Tools.h++ Class Library

22

RWCollectableInt
 RWCollectableInt

| |
RWCollectable RWInteger

Synopsis typedef RWCollectableInt Integer; // Smalltalk typedef

#include <rw/collint.h>

RWCollectableInt i;

Description Collectable integers. Inherits classes RWInteger and RWCollectable . This
class is useful when integers are used as keys in the "dictionary" collection
classes, or if integers are stored and retrieved as RWCollectables . The
virtual functions of the base class RWCollectable have been redefined.

Public constructors RWCollectableInt();
Calls the appropriate base class constructor. See RWInteger::RWInteger() .

RWCollectableInt(int i);
Calls the appropriate base class constructor. See
RWInteger::RWInteger(int) .

Public member functions virtual RWspace binaryStoreSize() const;
Redefined from class RWCollectable .

virtual int compareTo(const RWCollectable*
 c) const;

Redefined from class RWCollectable . Returns the difference between self
and the RWCollectableInt pointed to by c .

virtual unsigned hash() const;
Redefined from class RWCollectable . Returns the RWCollectableInt 's
value as an unsigned, to be used as a hash value.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWCOLLECTABLEINT.

Class Reference 243

22

virtual RWBoolean isEqual(const RWCollectable* c)
 const;

Redefined from class RWCollectable . Returns TRUE if self has the same
value as the RWCollectableInt at address c .

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Redefined from class RWCollectable .

244 Tools.h++ Class Library

22

RWCollectableString
 RWCollectableString

| |
RWCollectable RWCString

Synopsis typedef RWCollectableString String; // Smalltalk typedef

#include <rw>/collstr.h

RWCollectableString c ;

Description Collectable strings. This class is useful when strings are stored and retrieved
as RWCollectables , or when they are used as keys in the "dictionary"
collection classes. Class RWCollectableString inherits from both class
RWCString and class RWCollectable . The virtual functions of the base class
RWCollectable have been redefined.

Public constructors RWCollectableString();
Construct an RWCollectableString with zero characters.

RWCollectableString(const RWCString& s);
Construct an RWCollectableString from the RWCString s .

RWCollectableString(const char* c);
Conversion from character string.

RWCollectableString(const RWCSubString&);
Conversion from sub-string.

RWCollectableString(char c, size_t N);
Construct an RWCollectableString with N characters (default blanks).

Class Reference 245

22

Public member functions virtual RWspace binaryStoreSize() const;
Redefined from class RWCollectable .

virtual int compareTo(const RWCollectable*
 c) const;

Redefined from class RWCollectable . Calls RWCString::compareTo()
with c as the argument and returns the results. This compares strings
lexicographically.

virtual unsigned hash() const;
Redefined from class RWCollectable . Calls RWCString::hash() and
returns the results.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWCOLLECTABLESTRING.

virtual RWBoolean isEqual(const RWCollectable* c)
 const;

Redefined from class RWCollectable . Calls RWCString::operator==()
(i.e., the equivalence operator) with c as the argument and returns the results.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Redefined from class RWCollectable .

246 Tools.h++ Class Library

22

RWCollectableTime
 RWCollectableTime

| |
RWCollectable RWTime

Synopsis typedef RWCollectableTime Time; // Smalltalk typedef

#include <rw/colltime.h>

RWCollectableTime t;

Description Inherits classes RWTime and RWCollectable . This class is useful when times
are used as keys in the "dictionary" collection classes, or if times are stored and
retrieved as RWCollectables . The virtual functions of the base class
RWCollectable have been redefined.

Public constructors RWCollectableTime();
RWCollectableTime(unsigned long s);
RWCollectableTime(unsigned hour, unsigned minute, unsigned

sec = 0, const RWZone& zone =
RWZone::local());

RWCollectableTime(const RWDate& day, unsigned hour=0,
unsigned minute=0, unsigned sec = 0,
const RWZone& zone = RWZone::local());

RWCollectableTime(const RWDate& day, const RWCString& str,
const RWZone& zone = RWZone::local(),
const RWLocale& locale =
RWLocale::global());

RWCollectableTime(const struct tm* tmb, const RWZone&
zone = RWZone::local());

Calls the corresponding constructor of RWTime.

Class Reference 247

22

Public member functions virtual RWspace binaryStoreSize() const;
Redefined from class RWCollectable .

virtual int compareTo(const RWCollectable*
c) const;

Redefined from class RWCollectable . Returns the results of calling
RWTime::compareTo(c) .

virtual unsigned hash() const;
Redefined from class RWCollectable . Returns the results of calling
RWTime::hash() .

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWCOLLECTABLETIME.

virtual RWBoolean isEqual(const RWCollectable* c)
const;

Redefined from class RWCollectable . Returns the results of calling
operator==() for the base class RWTime by using appropriate casts.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Redefined from class RWCollectable .

248 Tools.h++ Class Library

22

RWCollection
RWCollection

|
RWCollectable

Synopsis #include <rw/colclass.h>

typedef RWCollection Collection; // Smalltalk typedef

Description Class RWCollection is an abstract base class for the Smalltalk -like
collection classes. The class contains virtual functions for inserting and
retrieving pointers to RWCollectable objects into the collection classes.
Virtual functions are also provided for storing and reading the collections to
files and streams. Collections that inherit this base class will typically redefine
one or more of these functions.

In the documentation below, pure virtual functions are indicated by "= 0" in
their declaration. These functions must be defined in derived classes. For these
functions the description is intended to be generic—all inheriting collection
classes generally follow the described pattern. Exceptions are noted in the
documentation for the particular class.

For many other functions, a suitable definition is provided by RWCollection
and a deriving class may not need to redefine the function. Examples are
contains() or restoreGuts() .

Public member operators void operator+=(const RWCollection&);
void operator-=(const RWCollection&);
Adds or removes, respectively, each item in the argument to or from self.

Class Reference 249

22

Public member functions virtual ~RWCollection();
Null definition (does nothing).

virtual void apply(RWapplyCollectable ap,
 void*) = 0;

This function applies the user-supplied function pointed to by ap to each
member of the collection. This function should have prototype

void yourApplyFunction(RWCollectable* c, void*);

The function yourApplyFunction() can perform any operation on the item at
address c that does not change the ordering of the collection. Client data may be
passed to this function by using the second argument.

RWBag asBag() const;
RWSet asSet() const;
RWOrdered asOrderedCollection() const;
RWBinaryTree asSortedCollection() const
Allows any collection to be converted to a RWBag, RWSet, RWOrdered, or a
RWBinaryTree .

virtual RWspace binaryStoreSize() const;
Redefined from class RWCollectable .

virtual void clear() = 0;
Removes all objects from the collection. Does not delete the objects
themselves.

virtual void clearAndDestroy();
Removes all objects from the collection and deletes them. Takes into account
duplicate objects within a collection and only deletes them once. However, it
does not take into account objects shared between different collections. Either
do not use this function if you will be sharing objects between separate
collections, or put all collections that could be sharing objects into one single
"super-collection" and call clearAndDestroy() on that.

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Returns TRUE if the collection contains an item where the virtual function
find() returns non-nil.

250 Tools.h++ Class Library

22

virtual size_t entries() const = 0;
Returns the total number of items in the collection.

virtual RWCollectable* find(const RWCollectable*
 target) const = 0;

Returns a pointer to the first item in the collection which "matches" the object
pointed to by target or nil if no item was found. For most collections, an
item "matches" the target if either isEqual() or compareTo() find
equivalence, whichever is appropriate for the actual collection type. However,
the "identity collections" (i.e., RWIdentitySet and RWIdentityDictionary)
look for an item with the same address (i.e., "is identical to").

virtual unsigned hash() const;
Inherited from class RWCollectable.

virtual RWCollectable* insert(RWCollectable* e) = 0;
Adds an item to the collection and returns a pointer to it. If the item is already
in the collection, some items return the old instance, others return nil.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWCOLLECTION.

virtual RWBoolean isEmpty() const = 0;
Returns TRUE if the collection is empty, otherwise returns FALSE.

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Inherited from class RWCollectable .

virtual size_t occurrencesOf(const
 RWCollectable* t) const = 0;

Returns the number of items in the collection which are "matches" t . See
function find() for a definition of matches.

virtual voidrestoreGuts(RWFile&);
Redefined to repeatedly call the global operator

RWvistream& operator>>(RWvistream&, RWCollectable*&);
followed by insert (RWCollectable*) for each item in the collection.

virtual voidrestoreGuts(RWvistream&);
Redefined to repeatedly call the global operator

RWvistream& operator>>(RWvistream&, RWCollectable*&);
followed by insert(RWCollectable*) for each item in the collection.

Class Reference 251

22

RWCollectable* remove(const RWCollectable*
 target) = 0;

Removes and returns a pointer to the first item in the collection which
"matches" the object pointed to by target . Returns nil if no object was found.
Does not delete the object.

virtual void removeAndDestroy(const
 RWCollectable* target);

Removes and deletes the first item in the collection which "matches" the object
pointed to by target .

RWCollection* select(testCollectable tst,
 void* x) const;

Evaluates the function pointed to by tst for each item in the collection. It
inserts those items for which the function returns TRUE into a new collection
allocated off the heap of the same type as self and returns a pointer to this new
collection. Because the new collection is allocated off the heap, you are
responsible for deleting it when done.

virtual void saveGuts(RWFile&);
Redefined to call the global operator

RWFiles& operator<<(RWFile&, const RWCollectables&);
for each object in the collection.

virtual void saveGuts(RWvostream&);
RWvostream& operator<<(RWvostream&, const RWCollectable&);

for each object in the collection.

252 Tools.h++ Class Library

22

RWCRegexp

Synopsis #include <rw/regexp.h>

RWCRegexp re(".*\.doc"); // Matches filename with suffix
".doc"

Description Class RWCRegexp represents a regular expression. The constructor "compiles"
the expression into a form that can be used more efficiently. The results can
then be used for string searches using class RWCString .

The regular expression (RE) is constucted as follows:

The following rules determine one-character REs that match a single character:

1.1 Any character that is not a special character (to be defined) matches
itself.

1.2 A backslash (\) followed by any special character matches the literal
character itself (i.e., this "escapes" the special character).

1.3 The "special characters" are:

+ * ? . [] ^ $

1.4 The period (.) matches any character except the newline. For example,
".umpty" matches either "Humpty" or "Dumpty".

1.5 A set of characters enclosed in brackets ([]) is a one-character RE that
matches any of the characters in that set. For example, "[akm]" matches
either an "a", "k", or "m". A range of characters can be indicated with a
dash. E.g., "[a–z]" matches any lower-case letter. However, if the first
character of the set is the caret (^), then the RE matches any character
except those in the set. It does not match the empty string. Example:
[^akm] matches any character except "a", "k", or "m". The caret loses its
special meaning if it is not the first character of the set.

The following rules can be used to build a multicharacter RE.

2.1 A one-character RE followed by an asterisk (*) matches zero or more
occurrences of the RE. Hence, [a–z]* matches zero or more lower-case
characters.

Class Reference 253

22

2.2 A one-character RE followed by a plus (+) matches one or more
occurrences of the RE. Hence, [a–z]+ matches one or more lower-case
characters.

2.3 A question mark (?) is an optional element. The preceeding RE can occur
zero or once in the string—no more. For example, xy?z matches either
xyz or xz.

2.4 The concatenation of REs is a RE that matches the corresponding
concatenation of strings. For example, [A–Z][a–z]* matches any
capitalized word.

Finally, the entire regular expression can be anchored to match only the
beginning or end of a line:

3.1 If the caret (^) is at the beginning of the RE, then the matched string
must be at the beginning of a line.

3.2 If the dollar sign ($) is at the end of the RE, then the matched string must
be at the end of the line.

The following escape codes can be used to match control characters:

\b backspace
\e ESC (escape)
\f formfeed
\n newline
\r carriage return
\t tab
\xddd the literal hex number 0xddd
\^C Control code. For example \^D is "control-D"

254 Tools.h++ Class Library

22

Example

Public constructors RWCRegexp(RWCS);
Construct a regular expression from the pattern given by pat . The status of
the results can be found by using member function status() .

RWCRegexp(const RWCRegexp& r);
Copy constructor. Uses value semantics—self will be a copy of r .

~RWCRegexp();
Destructor. Releases any allocated memory.

Assignment operators RWCRegexp& operator=(const RWCRegexp&);
Uses value semantics—sets self to a copy of r .

RWCRegexp& operator=(const char* pat);
Recompiles self to the pattern given by pat . The status of the results can be
found by using member function status() .

#include <rw/regexp.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

main()
{
 RWCString aString("Hark! Hark! the lark");

 // A regular expression matching any lower-case word
 // starting with "l":
 RWCRegexp reg("l[a-z]*");

 cout << aString(reg) << endl;// Prints "lark"
}

Class Reference 255

22

Public member functions size_t index(const RWCString& str, size_t* len, size_t
start=0) const;
Returns the index of the first instance in the string str that matches the
regular expression compiled in self, or RW_NPOS if there is no such match. The
search starts at index start . The length of the matching pattern is returned in
the variable pointed to by len . If an invalid regular expression is used for the
search, an exception of type RWInternalErr will be thrown.

Note – This member function is relatively clumsy to use—class RWCString
offers a better interface to regular expression searches.

statVal status();
Returns the status of the regular expression:

statVal Meaning

RWCRegexp::OK No errors
RWCRegexp::ILLEGAL Pattern was illegal
RWCRegexp::TOOLONG Pattern exceeded maximum length

256 Tools.h++ Class Library

22

RWCString

Synopsis #include <rw/cstring.h>

RWCString a;

Description Class RWCString offers very powerful and convenient facilities for
manipulating strings that are just as efficient as the familiar standard C
<string.h> functions.

Although the class is primarily intended to be used to handle single-byte
character sets (SBCS; such as ASCII or ISO Latin-1), with care it can be used to
handle multibyte character sets (MBCS). There are two things that must be
kept in mind when working with MBCS:

• Because characters can be more than one byte long, the number of bytes in a
string can, in general, be greater than the number of characters in the string.
Use function RWCString::length() to get the number of bytes in a string,
function RWCString::mbLength() to get the number of characters. Note
that the latter is much slower because it must determine the number of
bytes in every character. Hence, if the string is known to be nothing but
SBCS, then RWCString::length() is much to be preferred.

• In general, one or more bytes of a multibyte character can be zero. Hence,
MBCS cannot be counted on being null terminated. In practice, it is a rare
MBCS that uses embedded nulls (Sun uses EUC encoding, which has no
null). Nevertheless, for portability, you should be aware of this and
program defensively.

Note – Parameters of type "const char *" must not be passed a value of zero.
This is detected in the debug version of the library.

The class is implemented using a technique called copy on write. With this
technique, the copy constructor and assignment operators still reference the
old object and hence are very fast. An actual copy is made only when a
“write” is performed, that is if the object is about to be changed. The net result
is excellent performance, but with easy-to-understand copy semantics.

Class Reference 257

22

A separate class RWCSubString supports substring extraction and
modification operations.

Examples

Program output:

There is no joy in Redmond.

Enumerations enum RWCString::caseCompare { exact, ignoreCase }
Used to specify whether comparisons, searches, and hashing functions should
use case sensitive (exact) or case-insensitive (ignoreCase) semantics.

Public constructors RWCString();
Creates a string of length zero (the null string).

RWCString(const char* cs);
Conversion from the null-terminated character string cs . The created string
will copy the data pointed to by cs , up to the first terminating null.

RWCString(const char* cs, size_t N);
Constructs a string from the character string cs . The created string will copy
the data pointed to by cs . Exactly N characters are copied, including any
embedded nulls. Hence, the buffer pointed to by cs must be at least N bytes
long.

#include <rw/cstring.h>
#include <rw/regexp.h>
#include <rw/rstream.h>
main()
{
 RWCString a("There is no joy in Beantown.");

 RWCRegexp re("[A-Z][a-z]*town");// Any capitalized "town"
 a(re) = "Redmond";
 cout << a << endl;
}

258 Tools.h++ Class Library

22

RWCString(RWSize_T ic);
Creates a string of length zero (the null string). The strings capacity (that is, the
size it can grow to without resizing) is given by the parameter ic .

RWCString(const RWCString& str);
Copy constructor. The created string will copy str's data.

RWCString(const RWCSubString& ss);
Conversion from sub-string. The created string will copy the substring
represented by ss .

RWCString(char c);
Constructs a string containing the single character c .

RWCString(char c, size_t N);
Constructs a string containing the character c repeated N times.

Type conversion operator const char*() const;
Access to the RWCString ’s data as a null terminated string. This datum is
owned by the RWCString and may not be deleted or changed. If the
RWCString object itself changes or goes out of scope, the pointer value
previously returned may (will!) become invalid. While the string is null-
terminated, note that its length is still given by the member function length() .
That is, it may contain embedded nulls.

Assignment operators RWCString& operator=(const char* cs);
Assignment operator. Copies the null-terminated character string pointed to
by cs into self. Returns a reference to self.

RWCString& operator=(const RWCString& str);
Assignment operator. The string will copy str's data. Returns a reference to
self.

RWCString& operator+=(const char* cs);
Append the null-terminated character string pointed to by cs to self. Returns
a reference to self.

RWCString& operator+=(const RWCString& str);
Append the string str to self. Returns a reference to self.

Class Reference 259

22

Indexing operators char& operator[](size_t i);
char operator[](size_t i) const;
Return the i ’th character. The first variant can be used as an lvalue. The index
i must be between 0 and the length of the string less one. Bounds checking is
performed—if the index is out of range then an exception of type
RWBoundsErr will occur.

char& operator()(size_t i);
char operator()(size_t i) const;
Return the i’th character. The first variant can be used as an lvalue. The index
i must be between 0 and the length of the string less one. Bounds checking is
performed if the pre-processor macro RWBOUNDS_CHECK has been defined
before including <rw/cstring.h> . In this case, if the index is out of range,
then an exception of type RWBoundsErr will occur.

RWCSubString operator()(size_t start,
 size_t len);

const RWCSubString operator()(size_t start,
 size_t len) const;

Substring operator. Returns a RWCSubString of self with length len , starting
at index start . The first variant can be used as an lvalue. The sum of start
plus len must be less than or equal to the string length. If the library was built
using the RWDEBUG flag, and start and len are out of range, then an
exception of type RWBoundsErr will occur.

RWCSubString operator()(const RWCRegexp& re,
 size_t start=0);

const RWCSubString operator()(const RWCRegexp& re,
 size_t start=0) const;

Returns the first substring starting after index start that matches the regular
expression re . If there is no such substring, then the null substring is returned.
The first variant can be used as an lvalue.

Public member functions RWCString& append(const char* cs);
Append a copy of the null-terminated character string pointed to by cs to self.
Returns a reference to self.

260 Tools.h++ Class Library

22

RWCString& append(const char* cs, size_t N);
Append a copy of the character string cs to self. Exactly N characters are
copied, including any embedded nulls. Hence, the buffer pointed to by cs must
be at least N bytes long. Returns a reference to self.

RWCString& append(const RWCString& cstr);
Append a copy of the string cstr to self. Returns a reference to self.

RWCString& append(const RWCString& cstr,
 size_t N);

Append the first N characters or the length of cstr (whichever is less) of
cstr to self. Returns a reference to self.

size_t binaryStoreSize() const;
Returns the number of bytes necessary to store the object using the global
function

RWFile& operator<<(RWFile&, const RWCString&);

size_t capacity() const;
Return the current capacity of self. This is the number of characters the string
can hold without resizing.

size_t capacity(size_t capac);
Hint to the implementation to change the capacity of self to capac . Returns
the actual capacity.

int collate(const RWCString& str)
 const;

int collate(const char* str)
 const;

Returns an int less then, greater than, or equal to zero, according to the result
of calling the standard C library function ::strcoll() on self and the
argument str . This supports locale-dependent collation.

int compareTo(const RWCString& str,
 caseCompare = exact) const;

int compareTo(const char* str,
 caseCompare = exact) const;

Returns an int less than, greater than, or equal to zero, according to the result
of calling the standard C library function memcmp() on self and the argument
str . Case sensitivity is according to the caseCompare argument, and may be
RWCString::exact or RWCString::ignoreCase .

Class Reference 261

22

RWBoolean contains(const RWCString& cs,
 caseCompare = exact) const;

RWBoolean contains(const char* str,
 caseCompare = exact) const;

Pattern matching. Returns TRUE if str occurs in self. Case sensitivity is
according to the caseCompare argument, and may be RWCString::exact or
RWCString::ignoreCase .

const char* data() const;
Access to the RWCString ’s data as a null terminated string. This datum is
owned by the RWCString and may not be deleted or changed. If the
RWCString object itself changes or goes out of scope, the pointer value
previously returned may (will!) become invalid. While the string is null-
terminated, note that its length is still given by the member function
length() . That is, it may contain embedded nulls.

size_t first(char c) const;
Returns the index of the first occurence of the character c in self. Returns
RW_NPOS if there is no such character.

unsigned hash(caseCompare = exact) const;
Returns a suitable hash value.

size_t index(const char* pat, size_t
 i=0, caseCompare = exact) const;

size_t index(const RWCString& pat, size_t
 i=0, caseCompare = exact) const;

Pattern matching. Starting with index i , searches for the first occurrence of
pat in self and returns the index of the start of the match. Returns RW_NPOS if
there is no such pattern. Case sensitivity is according to the caseCompare
argument; it defaults to RWCString::exact .

size_t index(const char* pat, size_t
 patlen,size_t i,
 caseCompare) const;

size_t index(const RWCString& pat, size_t
 patlen size_t i,
 caseCompare) const;

Pattern matching. Starting with index i , searches for the first occurrence of the
first patlen characters from pat in self and returns the index of the start of
the match. Returns RW_NPOS if there is no such pattern. Case sensitivity is
according to the caseCompare argument.

262 Tools.h++ Class Library

22

size_t index(const RWCRegexp& re, size_t
 i=0) const;

Regular expression matching. Returns the index greater than or equal to i of
the start of the first pattern that matches the regular expression re . Returns
RW_NPOS if there is no such pattern.

size_t index(const RWCRegexp& re,size_t*
 ext, size_t i=0) const;

Regular expression matching. Returns the index greater than or equal to i of
the start of the first pattern that matches the regular expression re . Returns
RW_NPOS if there is no such pattern. The length of the matching pattern is
returned in the variable pointed to by ext .

RWCString& insert(size_t pos, const char* cs);
Insert a copy of the null-terminated string cs into self at position pos , thus
expanding the string. Returns a reference to self.

RWCString& insert(size_t pos, const char* cs,
 size_t N);

Insert a copy of the first N characters of cs into self at position pos . Exactly N
characters are copied, including any embedded nulls. Hence, the buffer pointed to
by cs must be at least N bytes long. Returns a reference to self.

Returns a reference to self.

RWCString& insert(size_t pos, const RWCString&
 str) ;

Insert a copy of the string str into self at position pos . Returns a reference to
self.

RWCString& insert(size_t pos, const RWCString&
 str, size_t N);

Insert a copy of the first N characters or the length of str (whichever is less) of
str into self at position pos . Returns a reference to self.

RWBoolean isAscii() const;
Returns TRUE if self contains no characters with the high bit set.

RWBoolean isNull() const;
Returns TRUE if this is a zero lengthed string (i.e., the null string).

size_t last(char c) const;
Returns the index of the last occurrence in the string of the character c .
Returns RW_NPOS if there is no such character.

Class Reference 263

22

size_t length() const;
Return the number of bytes in self. Note that if self contains multibyte
characters, then this will not be the number of characters.

size_t mbLength() const;
Return the number of multibyte characters in self, according to the Standard C
function :: mblen() . Returns RW_NPOS if a bad character is encountered.
Note that, in general, mbLength() < length() .

RWCString& prepend(const char* cs);
Prepend a copy of the null-terminated character string pointed to by cs to self.
Returns a reference to self.

RWCString& prepend(const char* cs, size_t N,
Prepend a copy of the character string cs to self. Exactly N characters are
copied, including any embedded nulls. Hence, the buffer pointed to by cs must
be at least N bytes long. Returns a reference to self.

RWCString& prepend(const RWCString& str);
Prepends a copy of the string str to self. Returns a reference to self.

RWCString& prepend(const RWCString& cstr,
 size_t N);

Prepend the first N characters or the length of cstr (whichever is less) of cstr
to self. Returns a reference to self.

istream& readFile(istream& s);
Reads characters from the input stream s , replacing the previous contents of
self, until EOF is reached. Null characters are treated the same as other
characters.

istream& readLine(istream& s, RWBoolean
 skipWhite = TRUE);

Reads characters from the input stream s, replacing the previous contents of
self, until a newline (or an EOF) is encountered. The newline is removed from
the input stream but is not stored. Null characters are treated the same as
other characters. If the skipWhite argument is TRUE, then whitespace is
skipped (using the iostream library manipulator ws) before saving characters.

istream& readString(istream& s);
Reads characters from the input stream s , replacing the previous contents of
self, until an EOF or null terminator is encountered.

264 Tools.h++ Class Library

22

istream& readToDelim(istream& s, char
 delim='\n');

Reads characters from the input stream s , replacing the previous contents of
self, until an EOF or the delimiting character delim is encountered. The
delimiter is removed from the input stream but is not stored. Null characters
are treated the same as other characters.

istream& readToken(istream& s);
Whitespace is skipped before saving characters. Characters are then read from
the input stream s , replacing previous contents of self, until trailing whitespace
or an EOF is encountered. The whitespace is left on the input stream. Null
characters are treated the same as other characters. Whitespace is identified by
the standard C library function isspace() .

RWCString& remove(size_t pos);
Removes the characters from the position pos to the end of string. Returns a
reference to self.

RWCString& remove(size_t pos, size_t N);
Removes N characters or to the end of string (whichever comes first) starting at
the position pos . Returns a reference to self.

RWCString& replace(size_t pos, size_t N, const
 char* cs);

Replaces N characters or to the end of string (whichever comes first) starting at
position pos with a copy of the null-terminated string cs . Returns a reference
to self.

RWCString& replace(size_t pos, size_t N1,
 const char* cs, size_t N2);

Replaces N1 characters or to the end of string (whichever comes first) starting
at position pos with a copy of the string cs . Exactly N2 characters are copied,
including any embedded nulls. Hence, the buffer pointed to by cs must be at least
N2 bytes long. Returns a reference to self.

RWCString& replace(size_t pos, size_t N, const
 RWCString& str);

Replaces N characters or to the end of string (whichever comes first) starting at
position pos with a copy of the string str . Returns a reference to self.

Class Reference 265

22

RWCString& replace(size_t pos, size_t N1,
 const RWCString& str, size_t N2);

Replaces N1 characters or to the end of string (whichever comes first) starting
at position pos with a copy of the first N2 characters, or the length of str
(whichever is less), from str . Returns a reference to self.

void resize(size_t n);
Changes the length of self to n, adding blanks or truncating as necessary.

RWCSubString strip(stripType s = trailing,
 char c = ' ');

Returns a substring of self where the character c has been stripped off the
beginning, end, or both ends of the string. The enum stripType can take
values:

stripType Meaning
leading Remove characters at beginning
trailing Remove characters at end
both Remove characters at both ends

RWCSubString subString(const char* cs, size_t
 start=0, caseCompare=exact);

const RWCSubString subString(const char* cs, size_t
 start=0, caseCompare=exact) const;

Returns a substring representing the first occurence of the null-terminated
string pointed to by “cs ”. The first variant can be used as an lvalue. Case
sensitivity is according to the caseCompare argument; it defaults to
RWCString::exact .

void toLower();
Changes all upper-case letters in self to lower-case, using the standard C
library facilities declared in <ctype.h> .

void toUpper();
Changes all lower-case letters in self to upper-case, using the standard C
library facilities declared in <ctype.h> .

Static public

266 Tools.h++ Class Library

22

member functions static size_t initialCapacity(size_t ic = 15);
Sets the minimum initial capacity of an RWCString , and returns the old value.
The initial setting is 15 characters. Larger values will use more memory, but
result in fewer resizes when concatenating or reading strings. Smaller values
will waste less memory, but result in more resizes.

static size_t maxWaste(size_t mw = 15);
Sets the maximum amount of unused space allowed in a string should it
shrink, and returns the old value. The initial setting is 15 characters. If more
than mw characters are wasted, then excess space will be reclaimed.

static size_t resizeIncrement(size_t ri = 16);
Sets the resize increment when more memory is needed to grow a string.
Returns the old value. The initial setting is 16 characters.

Note – It is not safe to change initialCapacity , maxWaste , or
resizeIncrement when more than one thread is present.

Related global operators RWBoolean operator==(const RWCString&,
 const char*);

RWBoolean operator==(const char*,
 const RWCString&);

RWBoolean operator==(const RWCString&,
 const RWCString&);

RWBoolean operator!=(const RWCString&,
 const char*);

RWBoolean operator!=(const char*,
 const RWCString&);

RWBoolean operator!=(const RWCString&,
 const RWCString&);

Logical equality and inequality. Case sensitivity is exact.

RWBoolean operator< (const RWCString&,
 const char*);

RWBoolean operator< (const char*,
 const RWCString&);

RWBoolean operator< (const RWCString&,
 const RWCString&);

RWBoolean operator> (const RWCString&,

Class Reference 267

22

 const char*);
RWBoolean operator> (const char*,

 const RWCString&);
RWBoolean operator> (const RWCString&,

 const RWCString&);
RWBoolean operator<=(const RWCString&,

 const char*);
RWBoolean operator<=(const char*,

 const RWCString&);
RWBoolean operator<=(const RWCString&,

 const RWCString&);
RWBoolean operator>=(const RWCString&,

 const char*);
RWBoolean operator>=(const char*,

 const RWCString&);
RWBoolean operator>=(const RWCString&,

 const RWCString&);
Comparisons are done lexicographically, byte by byte. Case sensitivity is exact.
Use member collate() or strxfrm() for locale sensitivity.

RWCString operator+(const RWCString&,
 const RWCString&);

RWCString operator+(const char*,
 const RWCString&);

RWCString operator+(const RWCString&,
 const char*);

Concatenation operators.

ostream& operator<<(ostream& s,
 const RWCString&);

Output a RWCString on ostream s .

istream& operator>>(istream& s,
 RWCString& str);

Calls str.readToken(s) . That is, a token is read from the input stream s .

RWvostream& operator<<(RWvostream&, const
 RWCString& str);

RWFile& operator<<(RWFile&, const
 RWCString& str);

Saves string str to a virtual stream or RWFile , respectively.

268 Tools.h++ Class Library

22

RWvistream& operator>>(RWvistream&,
 RWCString& str);

RWFile& operator>>(RWFile&,
 RWCString& str);

Restores a string into str from a virtual stream or RWFile , respectively,
replacing the previous contents of str .

Related global functions RWCString strXForm(const RWCString&);
Returns the result of applying ::strxfrm() to the argument string, to allow
quicker collation than RWCString::collate() .

RWCString toLower(const RWCString& str);
Returns a copy of st r where all upper-case characters have been replaced with
lower-case characters. Uses the standard C library function tolower() .

RWCString toUpper(const RWCString& str);
Returns a copy of str where all lower-case characters have been replaced with
upper-case characters. Uses the standard C library function toupper() .

Class Reference 269

22

RWCSubString

Synopsis #include <rw/cstring.h>
RWCString s("test string");
s(6,3); // "tri"

Description The class RWCSubString allows some subsection of a RWCString to be
addressed by defining a starting position and an extent. For example the 7'th
through the 11'th elements, inclusive, would have a starting position of 7 and
an extent of 5. The specification of a starting position and extent can also be
done in your behalf by such functions as RWCString::strip() or the
overloaded function call operator taking a regular expression as an argument.
There are no public constructors—RWCSubStrings are constructed by various
functions of the RWCString class and then destroyed immediately.

A zero lengthed substring is one with a defined starting position and an extent
of zero. It can be thought of as starting just before the indicated character, but
not including it. It can be used as an lvalue. A null substring is also legal and
is frequently used to indicate that a requested substring, perhaps through a
search, does not exist. A null substring can be detected with member function
isNull() . However, it cannot be used as an lvalue

Example

Program output:

What I tell you is three times true.

#include <rw/cstring.h>
#include <rw/rstream.h>
main() {
 RWCString s("What I tell you is true.");
 // Create a substring and use it as an lvalue:
 s(19, 0) = "three times ";
 cout << s << endl;
}

270 Tools.h++ Class Library

22

Assignment operators void operator=(const RWCString&);
Assignment to a RWCString . The statements:

RWCString a;
RWCString b;
...
b(2, 3) = a;

will copy a’s data into the substring b(2,3) . The number of elements need
not match: if they differ, b will be resized appropriately. If self is the null
substring, then the statement has no effect.

void operator=(const char*) ;
Assignment from a character string. Example:

RWCString a("Mary had a lamb");
char dat[] = "Perrier"; a(11,4) = dat;
// "Mary had a Perrier"

Note – the number of characters selected need not match: if they differ, a will
be resized appropriately. If self is the null substring, then the statement has no
effect.

Indexing operators char operator[](size_t i);
char& operator[](size_t i) const;
Returns the i’th character of the substring. The first variant can be used as an
lvalue, the second cannot. The index i must be between zero and the length of
the substring, less one. Bounds checking is performed: if the index is out of
range, then an exception of type RWBoundsErr will occur.

char operator()(size_t i);
char& operator()(size_t i) const;
Returns the i’th character of the substring. The first variant can be used as an
lvalue, the second cannot. The index i must be between zero and the length of
the substring, less one. Bounds checking is enabled by defining the pre-
processor macro RWBOUNDS_CHECK before including <rw/cstring.h> . In
this case, if the index is out of range, then an exception of type RWBoundsErr
will occur.

Public member functions RWBoolean isNull() const;
Returns TRUE if this is a null substring.

Class Reference 271

22

size_t length() const;
Returns the extent (i.e., length) of the RWCSubString .

RWBoolean operator!() const;
Returns TRUE if this is a null substring.

size_t start() const;
Returns the starting element of the RWCSubString .

void toLower();
Changes all upper-case letters in self to lower-case. Uses the standard C
library function tolower() .

void toUpper();
Changes all lower-case letters in self to upper-case. Uses the standard C
library function toupper() .

Global logical operators RWBoolean operator==(const RWCSubString&,
 const RWCSubString&);

RWBoolean operator==(const RWCString&,
 const RWCSubString&);

RWBoolean operator==(const RWCSubString&,
 const RWCString&);

RWBoolean operator==(const char*,
 const RWCSubString&);

RWBoolean operator==(const RWCSubString&,
 const char*);

Returns TRUE if the substring is lexicographically equal to the character string
or RWCString argument. Case sensitivity is exact.

RWBoolean operator!=(const RWCString&,
 const RWCString&);

RWBoolean operator!=(const RWCString&,
 const RWCSubString&);

RWBoolean operator!=(const RWCSubString&,
 const RWCString&);

RWBoolean operator!=(const char*,
 const RWCString&);

RWBoolean operator!=(const RWCString&,
 const char*);

Returns the negation of the respective operator==() .

272 Tools.h++ Class Library

22

RWCTokenizer

Synopsis #include <rw/ctoken.h>
RWCString str("a string of tokens");
RWCTokenizer(str); // Lex the above string

Description Class RWCTokenizer is designed to break a string up into separate tokens,
delimited by an arbitrary "white space". It can be thought of as an iterator for
strings and as an alternative to the ANSI C function strtok() which has the
unfortunate side effect of changing the string being tokenized.

Example

Program output:

Something
is
rotten
in
the
state
of
Denmark

#include <rw/ctoken.h>
#include <rw/rstream.h>
main()
{
 RWCString a("Something is rotten in the state of Denmark");

 RWCTokenizer next(a); // Tokenize the string a

 RWCString token; // Will receive each token

 // Advance until the null string is returned:
 while (!(token=next()).isNull())
 cout << token << "\n";
}

Class Reference 273

22

Public constructor RWCTokenizer(const RWCString& s);
Construct a tokenizer to lex the string s .

Public member function RWCSubString operator()(const char* s ="
 \t\n");

Advance to the next token and return it as a substring. The token are
considered to be deliminated by any of the characters in s .

274 Tools.h++ Class Library

22

RWDate

Synopsis #include <rw/rwdate.h>
RWDate a; // Construct today's date

Description Class RWDate represents a date, stored as a Julian day number. The member
function isValid() can be used to determine whether an RWDate is a valid
date. For example, isValid() would return FALSE for the date 29 February
1991 because 1991 is not a leap year.

RWDate's can be converted to and from RWTime's, and to and from the
Standard C library type struct tm defined in <time.h> .

Note that because the default constructor for this class creates an instance
holding the current date, constructing a large array of RWDate may be slow. If
this is an issue, declare your arrays with a class derived from RWDate that
provides a faster constructor.

class FastDate : public RWDate
{
public:
FastDate() : RWDate(0) {;}
 //Constructs an “invalid” date by default
};

Example

#include <rw/rwdate.h>
#include <rw/rstream.h>

 main()
{
 // Today's date
 RWDate d;

 // Last Sunday's date:
 RWDate lastSunday = d.previous("Sunday");

 cout << d << endl << lastSunday << endl;
}

Class Reference 275

22

Program output:

03/22/91
03/17/91

Public constructors RWDate();
Default constructor. Constructs an RWDate with the present date.

RWDate(const RWDate&);
Copy constructor.

RWDate(unsigned day, unsigned year);
Constructs an RWDate with a given day of the year and a given year. The
member function isValid() can be used to test whether the results are a
valid date.

RWDate(unsigned day, unsigned month, unsigned year);
Constructs an RWDate with the given day of the month, month of the year, and
year. Days should be 1-31, months should be 1–12, and the year may be
specified as (for example) 1990, or 90. The member function isValid() can
be used to test whether the results are a valid date.

RWDate(unsigned day, const char* mon, unsigned year,
const RWLocale& locale = RWLocale::global());

Constructs an RWDate with the given day of the month, month and year. The
locale argument is used to convert the month name. Days should be 1-31,
months may be specified as (for example): January, JAN, or Jan, and the year
may be specified as (for example) 1990, or 90. Leading blanks and case in mon
are ignored. The member function isValid() can be used to test whether the
results are a valid date.

RWDate(istream& s, const RWLocale& locale =
RWLocale::global());

A full line is read, and converted to a date by the locale argument. The
member function isValid() must be used to test whether the results are a
valid date. Because RWLocale cannot rigorously check date input, dates
created in this way should also be reconfirmed by the user.

RWDate(const RWCString& str, const RWLocale& locale =
RWLocale::global());

The string str is converted to a date. The member function isValid() must

276 Tools.h++ Class Library

22

be used to test whether the results are a valid date. Because RWLocale cannot
rigorously check date input, dates created in this way should also be
reconfirmed by the user.

RWDate(const RWTime& t, const RWZone& zone =
RWZone::local());

Constructs an RWDate from an RWTime. The time zone used defaults to local.
The member function isValid() must be used to test whether the results are
a valid date.

RWDate(const struct tm*);
Constructs an RWDate from the contents of the struct tm argument members
tm_year, tm_mon, and tm_mday. Note that the numbering of months and
years used in struct tm differs from that used for RWDate and RWTime
operations. struct tm is declared in the standard include file <time.h> .

RWDate(unsigned long jd);
Construct a date from the Julian Day number jd .

Public member operators RWDate& operator=(const RWDate&);
Assignment operator, generated by the compiler.

RWDate operator++();
Prefix increment operator. Add one day to self, then return the results.

RWDate operator--();
Prefix decrement operator. Subtract one day from self, then return the results.

RWDate operator++(int);
Postfix increment operator. Add one day to self, returning the initial value.

RWDate operator--(int);
Postfix decrement operator. Subtract one day from self, returning the initial
value.

RWDate& operator+=(int s);
Add s days to self, returning self.

RWDate& operator-=(int s);
Substract s days from self, returning self.

Class Reference 277

22

Public member functions RWCString asString(char format = 'x',
 const RWLocale& =
 RWLocale::global()) const;

Returns the date as a string, formatted by the RWLocale argument. Formats
are as defined the standard C library function strftime() .

RWBoolean between(const RWDate& a, const
 RWDate& b) const;

Returns TRUE if this RWDate is between a and b, inclusive.

size_t binaryStoreSize() const;
Returns the number of bytes necessary to store the object using the global
function

RWFile& operator<<(RWFile&, const RWDate&);

int compareTo(const RWDate* d)
 const;

Compares self to the RWDate pointed to by d and returns:
0 if self == *d;
1 if self > *d;

–1 if self < *d.

unsigned day() const;
Returns the day of the year (1-366) for this date.

unsigned dayOfMonth() const;
Returns the day of the month (1-31) for this date.

void extract(struct tm*) const;
Returns with the struct tm argument filled out completely, with the time
members set to 0 and tm_isdst set to -1.

Note – the encoding for months and days of the week used in struct tm
differs from that used elsewhere in RWDate. If the date is invalid, all fields are
set to -1.

unsigned firstDayOfMonth() const;
Returns the day of the year (1-336) corresponding to the first day of this
RWDate’s month and year.

278 Tools.h++ Class Library

22

unsigned firstDayOfMonth(unsigned month)
 const;

Returns the day of the year (1-336) corresponding to the first day of the month
month (1–12) in this RWDate’s year.

unsigned hash() const;
Returns a suitable hashing value.

RWBoolean isValid() const;
Returns TRUE if this is a valid date, FALSE otherwise.

RWBoolean leap() const;
Returns TRUE if the year of this RWDate is a leap year.

RWDate max(const RWDate& t) const;
Returns the later date of self or t .

RWDate min(const RWDate& t) const;
Returns the earlier date of self or t .

unsigned month() const;
Returns the month (1–12) for this date.

RWCString monthName(const RWLocale& =
 RWLocale::global()) const;

Returns the name of the month for this date, according to the optional
RWLocale argument.

static RWDate now();
Returns today’s date.

RWDate previous(unsigned dayNum) const;
Returns the date of the previous numbered day of the week, where Monday = 1,
..., Sunday = 7. The variable dayNum must be between 1 and 7, inclusive.

RWDate previous(const char* dayName,
 const RWLocale& =
 RWLocale::global()) const;

Returns the date of the previous dayName (for example, the date of the
previous Monday) The weekday name is interpreted according to the
RWLocale argument.

Class Reference 279

22

RWCString weekDayName(const RWLocale& =
 RWLocale::global());

Returns the name of the day of the week for this date, according to the optional
RWLocale argument.

unsigned weekDay() const;
Returns the number of the day of the week for this date, where Monday = 1, ...,
Sunday = 7.

unsigned year() const;
Returns the year of this date.

Static member functions static unsigned dayOfWeek(const char* dayName,
 const RWLocale& =
 RWLocale::global());

Returns the number of the day of the week corresponding to the given
dayName. “Monday” = 1, ..., “Sunday” = 7. Names are interpreted by the
RWLocale argument. Returns 0 if no match is found.

static unsigned daysInYear(unsigned year);
Returns the number of days in a given year.

static RWBoolean dayWithinMonth(unsigned
 monthNum, unsigned dayNum,
 unsigned year);

Returns TRUE if a day (1-31) is within a given month in a given year.

static unsigned indexOfMonth(const char*
 monthName, const RWLocale& =
 RWLocale::global());

Returns the number of the month (1–12) corresponding to the given
monthName. Returns 0 for no match.

static unsigned long jday(unsigned mon, unsigned day,
 unsigned year);

Returns the Julian day corresponding to the given month (1–12), day (1-31) and
year. Returns zero (0) if the date is invalid.

280 Tools.h++ Class Library

22

static RWCString nameOfMonth(unsigned monNum,
 const RWLocale& =
 RWLocale::global());

Returns the name of month monNum (January = 1, ..., December = 12),
formatted for the given locale.

static RWBoolean leapYear(unsigned year);
Returns TRUE if a given year is a leap year.

static RWCString weekDayName(unsigned dayNum,
 const RWLocale& =
 RWLocale::global());

Returns the name of the day of the week dayNum (Monday = 1, ..., Sunday = 7),
formatted for the given locale

Related global operators RWBoolean operator<(const RWDate& d1,
 const RWDate& d2);

Returns TRUE if the date d1 is before d2 .

RWBoolean operator<=(const RWDate& d1,
 const RWDate& d2);

Returns TRUE if the date d1 is before or the same as d2 .

RWBoolean operator>(const RWDate& d1,
 const RWDate& d2);

Returns TRUE if the date d1 is after d2 .

RWBoolean operator>=(const RWDate& d1,
 const RWDate& d2);

Returns TRUE if the date d1 is after or the same as d2 .

RWBoolean operator==(const RWDate& d1,
 const RWDate& d2);

Returns TRUE if the date d1 is the same as t2 .

RWBoolean operator!=(const RWDate& d1,
 const RWDate& d2);

Returns TRUE if the date d1 is not the same as d2 .

Class Reference 281

22

RWDate operator+(const RWDate& d,
 int s);

RWDate operator+(int s, const
 RWDate& d);

Returns the date s days in the future from the date d.

unsigned long operator-(const RWDate& d1,
 const RWDate& d2);

Returns the number of days between d1 and d2 .

RWDate operator-(const RWDate& d,
 int s);

Returns the date s days in the past from d.

ostream& operator<<(ostream& s, const
 RWDate& d);

Outputs the date d on ostream s , according to the locale imbued in the stream
(see class RWLocale), or by RWLocale::global() if none.

istream& operator>>(istream& s,
 RWDate& t);

Reads t from istream s . One full line is read, and the string contained is
converted according to the locale imbued in the stream (see class RWLocale),
or by RWLocale::global() if none. The function RWDate::isValid()
must be used to test whether the results are a valid date.

RWvostream& operator<<(RWvostream&, const
 RWDate& date);

RWFile& operator<<(RWFile&, const
 RWDate& date);

Saves the date date to a virtual stream or RWFile , respectively.

RWvistream& operator>>(RWvistream&,
 RWDate& date);

RWFile& operator>>(RWFile&, RWDate&
 date);

Restores the date into date from a virtual stream or RWFile , respectively,
replacing the previous contents of date .

282 Tools.h++ Class Library

22

RWDiskPageHeap
RWDiskPageHeap

|
RWBufferedPageHeap

|
RWVirtualPageHeap

Synopsis #include <rw/diskpage.h>
unsigned nbufs;
unsigned pagesize;
RWDiskPageHeap heap("filename", nbufs, pagesize);

Description Class RWDiskPageHeap is a specializing type of buffered page heap. It swaps
its pages to disk as necessary.

Example In this example, 100 nodes of a linked list are created and strung together. The
list is then walked, confirming that it contains 100 nodes. Each node is a single
page. The "pointer" to the next node is actually the handle for the next page.

Code Example 22-2

#include <rw/diskpage.h>
#include <rw/rstream.h>

struct Node {
 int key;
 RWHandlenext;
};

RWHandle head = 0;

const int N = 100; // Exercise 100 Nodes

main() {

 // Construct a disk-based page heap with page size equal
 // to the size of Node and with 10 buffers:
 RWDiskPageHeap heap(0, 10, sizeof(Node));

 // Build the linked list:
 for (int i=0; i; i++){

Class Reference 283

22

Program output:

List with 100 nodes walked.

 RWHandle h = heap.allocate();
 Node* newNode = (Node*)heap.lock(h);
 newNode->key = i;
 newNode->next = head;
 head = h;
 heap.dirty(h);
 heap.unlock(h);
 }

 // Now walk the list:
 unsigned count = 0;
 RWHandle nodeHandle = head;
 while(nodeHandle){
 Node* node = (Node*)heap.lock(nodeHandle);

 RWHandle nextHandle = node->next;
 heap.unlock(nodeHandle);
 heap.deallocate(nodeHandle);
 nodeHandle = nextHandle;
 count++;
 }

 cout << "List with " << count << " nodes walked.\n";
 return 0;
}

Code Example 22-2 (Continued)

284 Tools.h++ Class Library

22

Public constructor RWDiskPageHeap(const char* filename=0,
unsigned nbufs=10,
unsigned pgsize=512);

Constructs a new disk-based page heap. The heap will use a file with filename
filename , otherwise it will negotiate with the operating system for a
temporary filename. The number of buffers, each the size of the page size, will
be nbufs . No more than this many pages can be locked at any one time. The
size of each page is given by pgsize . To see whether a valid
RWDiskPageHeap has been constructed, call member function isValid() .

virtual ~RWDiskPageHeap();
Returns any resources used by the disk page heap back to the operating
system. All pages should have been deallocated before the destructor is called.

Public member functions virtual RWHandle allocate();
Redefined from class RWVirtualPageHeap . Allocates a page off the disk page
heap and returns a handle for it. If there is no more space (for example, the
disk is full) then returns zero.

virtual void deallocate(RWHandle h);
Redefined from class RWBufferedPageHeap . Deallocate the page associated
with handle h. It is not an error to deallocate a zero handle.

virtual void dirty(RWHandle h);
Inherited from RWBufferedPageHeap .

RWBoolean isValid() const;
Returns TRUE if this is a valid RWDiskPageHeap.

virtual void* lock(RWHandle h);
Inherited from RWBufferedPageHeap .

virtual void unlock(RWHandle h);
Inherited from RWBufferedPageHeap .

Class Reference 285

22

RWDlistCollectables
 RWDlistCollectables

| |
RWSequenceable RWDlist

| |
RWCollection RWSlist

|
RWCollectable

Synopsis #include <rw/dlistcol.h>
RWDlistCollectables a;

Description Class RWDlistCollectables represents a group of ordered items, not
accessible by an external key. Duplicates are allowed. The ordering of
elements is determined externally, generally by the order of insertion and
removal. An object stored by RWDlistCollectables must inherit abstract
base class RWCollectable .

Class RWDlistCollectables is implemented as a doubly-linked list, which
allows for efficient insertion and removal, as well as for movement in either
direction.

Public constructors RWDlistCollectables();
Constructs an empty doubly-linked list.

RWDlistCollectables (const RWCollectable* a);
Constructs a linked-list with a single item a.

Public member operators RWBoolean operator==(const
 RWDlistCollectables& d) const;

Returns TRUE if self and d have the same number of items and if for every item
in self, the corresponding item in the same position in d isEqual to it.

286 Tools.h++ Class Library

22

Public member functions virtual Collectable* append(RWCollectable*);
Redefined from RWSequenceable . Inserts the item at the end of the collection
and returns it. Returns nil if the insertion was unsuccesful.

virtual void apply(RWapplyCollectable ap,
 void*)

Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection, in order, from first to last.

virtual RWCollectable*& at(size_t i);
virtual const RWCollectable*at(size_t i) const;
Redefined from class RWSequenceable . The index must be between zero and
the number of items in the collection less one, or an exception of type
RWBoundsErr will occur.

Note – For a linked-list, these functions must traverse all the links, making
them not particularly efficient.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

RWBoolean containsReference(const
 RWCollectable* e) const;

Returns true if the list contains an item that is identical to the item pointed to by
e (that is, that has the address e).

virtual size_t entries() const;
Redefined from class RWCollection .

Class Reference 287

22

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . The first item that isEqual to the item
pointed to by target is returned, or nil if no item is found.

RWCollectable* findReference(const
 RWCollectable* e) const;

Returns the first item that is identical to the item pointed to by e (that is, that
has the address e), or nil if none is found.

virtual RWCollectable* first() const;
Redefined from class RWSequenceable . Returns the item at the beginning of
the list.

RWCollectable* get();
Returns and removes the item at the beginning of the list.

virtual unsigned hash() const;
Inherited from class RWCollectable .

virtual size_t index(const RWCollectable* c)
 const;

Redefined from class RWSequenceable . Returns the index of the first item
that isEqual to the item pointed to by c , or RW_NPOS if there is no such index.

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWCollection . Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void insertAt(size_t indx,
 RWCollectable* e);

Redefined from class RWSequenceable . Adds a new item to the collection at
position indx . The item previously at position i is moved to i+1 , etc. The
index indx must be between 0 and the number of items in the collection, or an
exception of type RWBoundsErr will occur.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWDLISTCOLLECTABLES.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

288 Tools.h++ Class Library

22

virtual RWCollectable* last() const;
Redefined from class RWSequenceable . Returns the item at the end of the
list.

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of items that
isEqual to the item pointed to by target .

size_t occurrencesOfReference(const
 RWCollectable* e) const;

Returns the number of items that are identical to the item pointed to by e (that
is, that have the address e).

virtual RWCollectable* prepend(RWCollectable*);
Redefined from class RWSequenceable . Adds the item to the beginning of the
collection and returns it. Returns nil if the insertion was unsuccessful.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes and returns the first item that
isEqual to the item pointed to by target . Returns nil if there is no such item.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

RWCollectable* removeReference(const
 RWCollectable* e);

Removes and returns the first item that is identical to the item pointed to by e
(that is, that has the address e). Returns nil if there is no such item.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

Class Reference 289

22

RWDlistCollectablesIterator
RWDlistCollectablesIterator

| |
RWIterator RWDlistIterator

|
RWSlistIterator

Synopsis #include <rw/dlistcol.h>
RWDlistCollectables d;
RWDlistCollectablesIterator it(d);

Description Iterator for class RWDlistCollectables . Traverses the linked-list from the
first (head) to the last (tail) item. Functions are provided for moving in either
direction.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWDlistCollectablesIterator (RWDlistCollectables& d);
Construct a RWDlistCollectablesIterator from a
RWDlistCollectables . Immediately after construction, the position of the
iterator is undefined.

Public member operators virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances the iterator to the next item and
returns it. Returns nil when the end of the list is reached.

void operator++();
Advances the iterator one item.

void operator--();
Moves the iterator back one item.

void operator+=(size_t n);
Advances the iterator n items.

290 Tools.h++ Class Library

22

void operator-=(size_t n);
Moves the iterator back n items.

Public member functions RWBoolean atFirst() const;
Returns TRUE if the iterator is at the beginning of the list, otherwise FALSE;

RWBoolean atLast() const;
Returns TRUE if the iterator is at the end of the list, otherwise FALSE;

virtual RWCollectable* findNext(const RWCollectable*
 target);

Redefined from class RWIterator . Moves iterator to the next item which
isEqual to the item pointed to by target and returns it. If no item is found,
returns nil and the position of the iterator will be undefined.

RWCollectable* findNextReference(const
 RWCollectable* e);

Moves iterator to the next item which is identical to the item pointed to by e
(that is, that has address e) and returns it. If no item is found, returns nil and
the position of the iterator will be undefined.

RWCollectable* insertAfterPoint(RWCollectable*
 a);

Insert item a after the current cursor position and return the item. The cursor's
position will be unchanged.

virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the item at the current iterator
position.

RWCollectable* remove();
Removes and returns the item at the current cursor position. Afterwards, the
iterator will be positioned at the previous item in the list.

Class Reference 291

22

RWCollectable* removeNext(const RWCollectable*
 target);

Moves iterator to the next item in the list which isEqual to the item pointed to
by target, removes it from the list and returns it. Afterwards, the iterator will
be positioned at the previous item in the list. If no item is found, returns nil
and the position of the iterator will be undefined.

RWCollectable* removeNextReference(const
 RWCollectable* e);

Moves iterator to the next item in the list which is identical to the item pointed
to by e (that is, that has address e), removes it from the list and returns it.
Afterwards, the iterator will be positioned at the previous item in the list. If no
item is found, returns nil and the position of the iterator will be undefined.

virtual void reset();
Redefined from class RWIterator . Resets the iterator. Afterwards, the
position of the iterator will be undefined.

void toFirst();
Moves the iterator to the beginning of the list.

void toLast();
Moves the iterator to the end of the list.

292 Tools.h++ Class Library

22

RWFactory

Synopsis typedef unsigned short RWClassID;
typedef RWCollectable* (*sRWuserCreator)();
#include <rw/factory.h>

RWFactory* theFactory ;

Description Class RWFactory can create an instance of a RWCollectable object, given a
class ID. It does this by maintaining a table of class ID's and associated
"creator function". A creator function has prototype:

RWCollectable* aCreatorFunction();

This function should create an instance of a particular class. For a given
RWClassID tag, the appropriate function is selected, invoked and the resultant
pointer returned. Because any object created this way is created off the heap,
you are responsible for deleting it when done.

There is a one-of-a-kind global RWFactory pointed to by the pointer
theFactory . It is guaranteed to have creator functions in it for all of the
classes referenced by your program. See “An aside: the RWFactory” on
page 142 in Chapter 18, “Designing an RWCollectable Class,” for more
information.

Example

#include <rw/factory.h>
#include <rw/rstream.h>

main()
{
 // Create a new RWBag off the heap, using the Class ID __RWBAG.
 // "theFactory" points to the predefined global factory:

 RWBag* b = (RWBag*)theFactory-create(__RWBAG);

 b->insert(new (CollectableDate);// Insert today’s date
 // ...
 b->clearAndDestroy();// Cleanup: first delete members,

Class Reference 293

22

Public constructors RWFactory();
Construct an RWFactory .

Public member functions void addFunction(RWuserCreator uc,
 RWClassID id);

Adds to the RWFactory the global function pointed to by uc , which creates an
instance of an object with RWClassID id .

RWCollectable* create(RWClassID id) const;
Allocates a new instance of the class with RWClassID id off the heap and
returns a pointer to it. Returns nil if id does not exist. Because this instance is
allocated off the heap, you are responsible for deleting it when done.

RWuserCreator getFunction(RWClassID id) const;
Returns from the RWFactory a pointer to the global function associated with
RWClassID id . Returns nil if id does not exist.

void removeFunction(RWClassID id);
Removes from the RWFactory the global function associated with RWClassID
id . If id does not exist in the factory, no action is taken.

 delete b;// then the bag itself
}

294 Tools.h++ Class Library

22

RWFile

Synopsis #include <rw/rwfile.h>

RWFile f("filename");

Description Class RWFile encapsulates binary file operations using the Standard C stream
library (functions fopen(), fread(), fwrite(), etc.). This class is based
on class PFile of the Interviews Class Library (1987, Stanford University). The
member function names begin with upper case letters in order to maintain
compatibility with class PFile .

Because this class is intended to encapsulate binary operations, it is important
that it be opened using a binary mode. This is particularly important under
MS-DOS—otherwise bytes that happen to match a newline will be expanded to
(carriage return, line feed).

Public constructors RWFile(const char* filename, const char* mode = 0);
Construct an RWFile to be used with the file of name filename and with
mode mode. The mode is as given by the Standard C library function
fopen() . If mode is zero (the default) then the constructor will attempt to
open an existing file with the given filename for update (mode "rb+ "). If this
is not possible, then it will attempt to create a new file with the given filename
(mode "wb+"). The resultant object should be checked for validity using
function isValid() .

~RWFile();
Performs any pending I/O operations and closes the file.

Public member functions long CurOffset();
Returns the current position, in bytes from the start of the file, of the file
pointer.

RWBoolean Eof();
Returns TRUE if an end-of-file has been encountered.

RWBoolean Erase();
Erases the contents but does not close the file. Returns TRUE if the operation
was successful.

Class Reference 295

22

RWBoolean Error();
Returns TRUE if a file I/O error has occurred.

RWBoolean Exists();
Returns TRUE if the file exists and has read/write permission.

RWBoolean Flush();
Perform any pending I/O operations. Returns TRUE if successful.

const char* GetName();
Returns the file name.

RWBoolean IsEmpty();
Returns TRUE if the file contains no data, FALSE otherwise.

RWBoolean isValid() const
Returns TRUE if the file was successfully opened, FALSE otherwise.

RWBoolean Read(char& c);
RWBoolean Read(wchar_t& wc);
RWBoolean Read(short& i);
RWBoolean Read(int& i);
RWBoolean Read(long& i);
RWBoolean Read(unsigned char& c);
RWBoolean Read(unsigned short& i);
RWBoolean Read(unsigned int& i);
RWBoolean Read(unsigned long& i);
RWBoolean Read(float& f);
RWBoolean Read(double& d);
Reads the indicated built-in type. Returns TRUE if the read is successful.

RWBoolean Read(char* i, size_t count);
RWBoolean Read(wchar_t* i, size_t count);
RWBoolean Read(short* i, size_t count);
RWBoolean Read(int* i, size_t count);
RWBoolean Read(long* i, size_t count);
RWBoolean Read(unsigned char* i, size_t

 count);
RWBoolean Read(unsigned int* i, size_t

 count);
RWBoolean Read(float* i, size_t count);

296 Tools.h++ Class Library

22

RWBoolean Read(double* i, size_t count);
Reads count instances of the indicated built-in type into a block pointed to
 by i . Returns TRUE if the read is successful.

Note – You are responsible for declaring i and for allocating the necessary
storage before calling this function.

RWBoolean Read(char* string);
Reads a character string, including the terminating null character, into a block
pointed to by string . Returns TRUE if the read is successful.

Note – You are responsible for declaring string and for allocating the necessary
storage before calling this function.

Caution – Beware of overflow when using this function.

RWBoolean SeekTo(long offset);
Repositions the file pointer to offset bytes from the start of the file. Returns
TRUE if the operation is successful.

RWBoolean SeekToBegin();
Repositions the file pointer to the start of the file. Returns TRUE if the
operation is successful.

RWBoolean SeekToEnd();
Repositions the file pointer to the end of the file. Returns TRUE if the operation
is successful.

RWBoolean Write(char i);
RWBoolean Write(wchar_t i);
RWBoolean Write(short i);
RWBoolean Write(int i);
RWBoolean Write(long i);
RWBoolean Write(unsigned char i);
RWBoolean Write(unsigned short i);
RWBoolean Write(unsigned int i);
RWBoolean Write(unsigned long i);

!

Class Reference 297

22

RWBoolean Write(float f);
RWBoolean Write(double d);
Writes the appropriate built-in type. Returns TRUE if the write is successful.

RWBoolean Write(const char* i, size_t
 count);

RWBoolean Write(const wchar_t* i, size_t
 count);

RWBoolean Write(const short* i, size_t
 count);

RWBoolean Write(const int* i, size_t
 count);

RWBoolean Write(const long* i, size_t
 count);

RWBoolean Write(const unsigned char* i,
 size_t count);

RWBoolean Write(const unsigned int* i,
 size_t count);

RWBoolean Write(const float* i, size_t
 count);

RWBoolean Write(const double* i, size_t
 count);

Writes count instances of the indicated built-in type from a block pointed to
by i . Returns TRUE if the write is successful.

RWBoolean Write(const char* string);
Writes a character string, including the terminating null character, from a block
pointed to by string . Returns TRUE if the write is successful.

Caution – Beware of non-terminated strings when using this function.

Static public

member functions static RWBoolean Exists(const char* filename);
Returns TRUE if an RWFile with name filename exists, with read/write
permission.

!

298 Tools.h++ Class Library

22

RWFileManager
RWFileManager

|
RWFile

Synopsis typedef long RWoffset;
typedef unsigned long RWspace; // (typically)

#include <rw/filemgr.h>
RWFileManager f("file.dat");

Description Class RWFileManager allocates and deallocates storage in a disk file, much
like a “freestore” manager. It does this by maintaining a linked list of free
space within the file.

Note – Class RWFileManager inherits class RWFile as a public base class,
hence all the public member functions of RWFile are visible to
RWFileManager . They are not listed here.

If a file is managed by an RWFileManager then the results are undefined to
read or write to an unallocated space in the file.

Public constructor RWFileManager(const char* filename);
Construct a RWFileManager for the file with path name filename . The
RWFileManager can be constructed with an old file or it can create a new file.
If it is constructed with an old file, then the file must have been originally
created by a RWFileManager . A possible exception that could occur is
RWFileErr . The resulting object should be checked for validity using function
isValid() .

Public member functions RWoffset allocate(RWspace s);
Allocates s bytes of storage in the file. Returns the offset to the start of the
storage location. The very first allocation for the file is considered "special"
and can be returned at any later time by the function start() . A possible
exception that could occur is RWFileErr .

Class Reference 299

22

void deallocate(RWoffset t);
Deallocates (frees) the storage space starting at offset t . This space must have
been previously allocated by a call to allocate() . The very first allocation
ever made in the file is considered "special" and cannot be deallocated. A
possible exception that could occur is RWFileErr .

RWoffset endData();
Returns the offset of the last space allocated on this file. If no space has every
been allocated, returns RWNIL.

RWoffset start();
Returns the offset of the first space ever allocated for this file. If no space has
every been allocated, returns RWNIL. This is typically used to "get started" and
find the rest of the data in the file.

300 Tools.h++ Class Library

22

RWHashDictionary
RWHashDictionary

|
RWSet

|
RWHashTable

|
RWCollection

|
RWCollectable

Synopsis typedef RWHashDictionary Dictionary; // Smalltalk typedef.

#include <rw/hashdict.h>
RWHashDictionary a;

Description A RWHashDictionary represents a group of unordered values, accessible by
external keys. Duplicate keys are not allowed. Class RWHashDictionary is
implemented as a hash table of associations of keys and values. Both the key
and the value must inherit from abstract the base class RWCollectable , with
a suitable definition of the virtual function hash() and isEqual() for the
key.

This class corresponds to the Smalltalk class Dictionary .

Public constructors RWHashDictionary(size_t n = RWDEFAULT_CAPACITY);
Construct an empty hashed dictionary using n hashing buckets.

RWHashDictionary(const RWHashDictionary& hd);
Copy constructor. A shallow copy of the collection hd is made.

Class Reference 301

22

Public member operators void operator=(const
 RWHashDictionary& hd);

Assignment operator. A shallow copy of the collection hd is made.

RWBoolean operator<=(const
 RWHashDictionary& hd) const;

Returns TRUE if for every key-value pair in self, there is a corresponding key in
hd that isEqual . Their corresponding values must also be equal.

RWBoolean operator==(const
 RWHashDictionary& hd) const;

Returns TRUE if self and hd have the same number of entries and if for every
key-value pair in self, there is a corresponding key in hd that isEqual . Their
corresponding values must also be equal.

void applyToKeyAndValue(RWapplyKeyAndValue
 ap, void*)

Applies the user-supplied function pointed to by ap to each key-value pair of
the collection. Items are not visited in any particular order.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection . Removes all key-value pairs in the
collection.

virtual void clearAndDestroy();
Redefined from class RWCollection . Removes all key-value pairs in the
collection, and deletes the key and the value.

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Inherited from class RWSet.

302 Tools.h++ Class Library

22

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . Returns the key which isEqual to the
object pointed to by target , or nil if no key was found.

RWCollectable* findKeyAndValue(const
 RWCollectable* target,
 RWCollectable*& v) const;

Returns the key which isEqual to the item pointed to by target , or nil if no
key was found. The value is put in v. You are responsible for defining v before
calling this function.

RWCollectable* findValue(const RWCollectable*
 target) const;

Returns the value associated with the key which isEqual to the item pointed to
by target , or nil if no key was found.

RWCollectable* findValue(const RWCollectable*
 target, RWCollectable*
 newValue);

Returns the value associated with the key which isEqual to the item pointed to
by target , or nil if no key was found. Replaces the value with newValue (if
a key was found).

virtual unsigned hash() const;
Inherited from class RWCollectable .

RWCollectable* insertKeyAndValue(RWCollectable*
 key,RWCollectable* value);

Adds a key-value pair to the collection and returns the key if successful, nil if
the key is already in the collection.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWHASHDICTIONARY.

virtual RWBoolean isEmpty() const;
Inherited from class RWSet.

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

Class Reference 303

22

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Inherited from class RWSet. Returns the number of keys which isEqual to the
item pointed to by target . Because duplicates are not allowed, this function
can only return 0 or 1.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes the key and value pair where
the key isEqual to the item pointed to by target . Returns the key, or nil if no
match was found.

virtual void removeAndDestroy(const
 RWCollectable* target);

Redefined from class RWCollection . Removes and deletes the key and value
pair where the key isEqual to the item pointed to by target .

Note – Both the key and the value are deleted. Does nothing if the key is not
found.

RWCollectable* removeKeyAndValue(const
 RWCollectable* target,
 RWCollectable*& v);

Removes the key and value pair where the key isEqual to the item pointed to by
target . Returns the key, or nil if no match was found. The value is put in v.
You are responsible for defining v before calling this function.

void resize(size_t n = 0);
Inherited from class RWSet.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

304 Tools.h++ Class Library

22

RWHashDictionaryIterator
RWHashDictionaryIterator

|
RWSetIterator

|
RWIterator

Synopsis #include <rw/hashdict.h>

RWHashDictionary hd;
RWHashDictionaryIterator iter(hd);

Description Iterator for class RWHashDictionary , allowing sequential access to all the
elements of RWHashDictionary . Since RWHashDictionary is unordered,
elements are not accessed in any particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWHashDictionaryIterator(RWHashDictionary&);
Construct an iterator for a RWHashDictionary collection. Immediately after
construction, the position of the iterator is undefined until positioned.

Public member operator virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances the iterator to the next key-
value pair and returns the key. Returns nil if the cursor is at the end of the
collection. Use member function value() to recover the value.

Class Reference 305

22

Public member functions virtual RWCollectable* findNext(const RWCollectable*
 target);

Redefined from class RWIterator . Moves the iterator to the next key-value
pair where the key isEqual to the object pointed to by target . Returns the key
or nil if no key was found.

virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the key at the current iterator
position.

RWCollectable* remove();
Removes the key-value pair at the current iterator position. Returns the key, or
nil if there was no key-value pair.

RWCollectable* removeNext(const RWCollectable*
 target);

Moves the iterator to the next key-value pair where the key isEqual to the
object pointed to by target . Removes the key-value pair, returning the key or
nil if there was no match.

virtual void reset();
Redefined from class RWIterator . Inherited from class RWSetIterator .
Resets the iterator to its initial state.

RWCollectable* value() const;
Returns the value at the current iterator position.

RWCollectable* value(RWCollectable* newValue)
 const;

Replaces the value at the current iterator position and returns the old value.

306 Tools.h++ Class Library

22

RWHashTable
RWHashTable

|
RWCollection

|
RWCollectable

Synopsis #include <rw/hashtab.h>
RWHashTable h;

Description This class is a simple hash table for objects inheriting from RWCollectable .
It uses chaining (as implemented by class RWSlistCollectables) to resolve
hash collisions. Duplicate objects are allowed.

An object stored by RWHashTable must inherit from the abstract base class
RWCollectable , with suitable definition for virtual functions hash() and
isEqual() (see class RWCollectable).

To find an object that matches a key, the key's virtual function hash() is first
called to determine in which bucket the object occurs. The bucket is then
searched linearly by calling the virtual function isEqual() for each
candidate, with the key as the argument. The first object to return TRUE is the
returned object.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of items in the collection greatly exceeds the
number of buckets then efficiency will sag because each bucket must be
searched linearly. The number of buckets can be changed by calling member
function resize() . This will require that all objects be rehashed.

The iterator for this class is RWHashTableIterator .

Class Reference 307

22

Example

Program output:

Table contains 4 entries.
It does contain the key February 22, 1983

Public constructors RWHashTable(size_t N = RWCollection::DEFAULT_CAPACITY);
Construct an empty hash table with N buckets.

RWHashTable(const RWHashTable& t);
Copy constructor. Create a new hash table as a shallow copy of the table t .
The new table will have the same number of buckets as the old table. Hence,
the members need not be and will not be rehashed.

#include <rw/hashtab.h>
#include <rw/colldate.h>
#include <rw/rstream.h>

main()
{
 RWHashTable table;
 table.insert(new Date(7, "July", 1990));
 table.insert(new Date(1, "May", 1977));
 table.insert(new Date(22, "Feb", 1983));
 table.insert(new Date(2, "Aug", 1966));

 cout << "Table contains " << table.entries() << " entries.\n";
 Date key(22, "Feb", 1983);
 cout << "It does ";
 if (!table.contains(&key)) cout << "not ";
 cout << "contain the key " << key << endl;
 return 0;
}

308 Tools.h++ Class Library

22

Public operators void operator=(const RWHashTable& t);
Assignment operator. Sets self as a shallow copy of t . Afterwards, the two
tables will have the same number of buckets. Hence, the members need not be
and will not be rehashed.

RWBoolean operator==(const RWHashTable&
 t) const;

Returns TRUE if self and t have the same number of elements and if for every
key in self there is a corresponding key in t which isEqual.

RWBoolean operator<=(const RWHashTable&
 t) const;

Returns TRUE if self is a subset of t , that is, every element of self has a
counterpart in t which isEqual.

RWBoolean operator!=(const RWHashTable&)
 const;

Returns the negation of operator==() , above.

Member functions virtual void apply(RWapplyCollectable ap,
void*);

Redefined from RWCollection. The function pointed to by ap will be called for
each member in the collection. Because of the nature of hashing collections,
this will not be done in any particular order. The function should not do
anything that could change the hash value or equality properties of the objects.

virtual RWspace binaryStoreSize() const;
Inherited from RWCollection .

virtual void clear();
Redefined from RWCollection .

virtual void clearAndDestroy();
Inherited from RWCollection .

virtual int compareTo(const RWCollectable*)
 const;

Inherited from RWCollection .

virtual RWBoolean contains(const RWCollectable*)
 const;

Inherited from RWCollection .

Class Reference 309

22

virtual size_t entries() const
Redefined from RWCollection .

virtual RWCollectable* find(const RWCollectable*)
const;

Redefined from RWCollection .

virtual unsigned hash() const;
Inherited from RWCollection .

virtual RWCollectable* insert(RWCollectable* a);
Redefined from RWCollection . Returns a if successful, nil otherwise.

virtual RWClassID isA() const;
Redefined from RWCollection to return __RWHASHTABLE.

virtual RWBoolean isEmpty() const;
Redefined from RWCollection .

virtual RWBoolean isEqual(const RWCollectable*)
 const;

Redefined from RWCollection .

virtual RWCollectable* newSpecies() const;
Redefined from RWCollection .

virtual size_t occurrencesOf(const
 RWCollectable*) const;

Redefined from RWCollection .

virtual RWCollectable* remove(const RWCollectable*);
Redefined from RWCollection .

virtual void removeAndDestroy(const
 RWCollectable*);

Inherited from RWCollection .

virtual void resize(size_t n = 0);
Resizes the internal hash table to have n buckets. This will require rehashing
all the members of the collection. If n is zero, then an appropriate size will be
picked automatically.

310 Tools.h++ Class Library

22

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

Class Reference 311

22

RWHashTableIterator
RWHashTableIterator

|
RWIterator

Synopsis #include <rw/hashtab.h>
RWHashTable h;
RWHashTableIterator it(h);

Description Iterator for class RWHashTable , which allows sequential access to all the
elements of RWHashTable .

Note – Because a RWHashTable is unordered, elements are not accessed in any
particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWHashTableIterator(RWHashTable&);
Construct an iterator for an RWHashTable . After construction, the position of
the iterator is undefined.

Public member operator virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances the iterator to the next item and
returns it. Returns nil when the end of the collection is reached.

312 Tools.h++ Class Library

22

Public member functions virtual RWCollectable* findNext(const RWCollectable*
target);

Redefined from class RWIterator . Moves iterator to the next item which
isEqual to the item pointed to by target and returns it.

virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the item at the current iterator
position.

RWCollectable* remove();
Remove the item at the current iterator position from the collection.

RWCollectable* removeNext(const
 RWCollectable*);

Moves the iterator to the next item which isEqual to the item pointed to by
target , removes it from the collection and returns it. If no item is found,
returns nil and the position of the iterator will be undefined.

virtual void reset();
Redefined from class RWIterator . Resets the iterator to its starting state.

Class Reference 313

22

RWIdentityDictionary
RWIdentityDictionary

|
RWHashDictionary

|
RWSet

|
RWCollection

|
RWCollectable

Synopsis #include <rw/idendict.h>
typedef RWIdentityDictionary IdentityDictionary;
 // Smalltalk typedef

RWIdentityDictionary a;

Description The class RWIdentityDictionary is implemented as a hash table, for the
storage and retrieval of key-value pairs. Class RWIdentityDictionary is
similar to class RWHashDictionary except that items are found by requiring
that they be identical (i.e., have the same address) as the key, rather than being
equal (i.e., test true for isEqual()).

Both keys and values must inherit from the abstract base class
RWCollectable .

The iterator for this class is RWHashDictionaryIterator .

Public constructor RWIdentityDictionary(size_t n = RWDEFAULT_CAPACITY);
Construct an empty identity dictionary with n hashing buckets.

Public member functions The user interface to this class is identical to class RWHashDictionary and is
not reproduced here. The only difference between the classes is that keys are
found on the basis of identity rather than equality, and that the virtual function
isA() returns __RWIDENTITYDICTIONARY, the ClassId for
RWIdentityDictionary .

314 Tools.h++ Class Library

22

RWIdentitySet
RWIdentitySet

|
RWSet

|
RWCollection

|
RWCollectable

Synopsis #include <rw/idenset.h>
typedef RWIdentitySet IdentitySet; // Smalltalk typedef
RWIdentitySet a;

Description The class RWIdentitySet is similar to class RWSet except that items are
found by requiring that they be identical (i.e., have the same address) as the key,
rather than being equal (i.e., test true for isEqual()).

The iterator for this class is RWSetIterator .

Public constructor RWIdentitySet(size_t n = RWDEFAULT_CAPACITY);
Construct an empty identity set with n hashing buckets.

Public member functions The user interface to this class is identical to class RWSet and is not reproduced
here. The only difference between the classes is that keys are found on the
basis of identity rather than equality, and that the virtual function isA() returns
__RWIDENTITYSET, the ClassId for RWIdentitySet .

Class Reference 315

22

RWInteger

Synopsis #include <rw/rwint.h>

RWInteger i;

Description Integer class. This class is useful as a base class for classes that use integers as
keys in dictionaries, etc.

Public constructors RWInteger();
Construct a RWInteger with value zero (0).

RWInteger(int i);
Construct a RWInteger with value i . Serves as a type conversion from int.

Type conversion operator int();
Type conversion to int.

Public member functions RWspace binaryStoreSize() const;
Returns the number of bytes necessary to store the object using the global
function

RWFiles& operator<<(RWFile&, const RWInteger&)

int value() const;
Returns the value of the RWInteger .

int value(int newval);
Changes the value of the RWInteger to newval and returns the old value.

Related Global Operators ostream& operator<<(ostream& o, const
 RWInteger& x);

Output x to ostream o.

istream& operator>>(istream& i,
 RWInteger& x);

Input x from istream i .

316 Tools.h++ Class Library

22

RWvostream& operator<<(RWvostream&, const
 RWInteger& x);

RWFile& operator<<(RWFile&, const
 RWInteger& x);

Saves the RWInteger x to a virtual stream or RWFile , respectively.

RWvistream& operator>>(RWvistream&,
 RWInteger& x);

RWFile& operator>>(RWFile&,
 RWInteger& x);

Restores an RWInteger into x from a virtual stream or RWFile , respectively,
replacing the previous contents of x .

Class Reference 317

22

RWIterator

Synopsis #include <rw/iterator.h>

typedef RWIterator Iterator;// "Smalltalk" typedef

Description Class RWIterator is an abstract base class for iterators used by the Smalltalk-
like collection classes. The class contains virtual functions for positioning and
resetting the iterator. They are all pure virtual functions, meaning that deriving
classes must supply a definition. The descriptions below are intended to be
generic—all inheriting iterators generally follow the described pattern.

Public virtual functions virtual RWCollectable* findNext(const RWCollectable*
 target) = 0;

Moves the iterator forward to the next item which "matches" the object pointed
to by target and returns it or nil if no item was found. For most collections,
an item "matches" the target if either isEqual() or compareTo() find
equivalence, whichever is appropriate for the actual collection type. However,
when an iterator is used with an "identity collection" (i.e., RWIdentitySet
and RWIdentityDictionary), it looks for an item with the same address (i.e.,
"is identical to").

virtual RWCollectable* key() const = 0;
Returns the item at the current iterator position.

virtual RWCollectable* operator()() = 0;
Advances the iterator and returns the next item, or nil if the end of the
collection has been reached.

virtual void reset() = 0;
Resets the iterator to the state it had immediately after construction.

318 Tools.h++ Class Library

22

RWLocale

Synopsis #include <locale.h>

#include <rw/locale.h>

(Abstract base class)

Description RWLocale is an abstract base class. It defines an interface for formatting dates
(including day and month names), times, numbers (including digit grouping),
and currency, to and from strings.

Note that because it is an abstract base class, there is no way to actually enforce
these goals—the description here is merely the model of how a class derived
from RWLocale should act.

There are three ways to use an RWLocale object:

• By passing it to functions which expect one, such as
RWDate::asString() .

• By specifying a “global” locale by using the static member function
RWLocale::global() . This locale is passed as the default argument to
functions that use a locale.

• By “imbuing” a stream with one so that when an RWDate or RWTime is
written to a stream using operator<<() , the appropriate formatting will
be used automatically.

Two implementations of RWLocale are provided with the library:
RWLocaleSnapshot and RWLocaleDefault .

• Class RWLocaleSnapshot encapsulates the Standard C library locale
facility, with two additional advantages: more than one locale can be active
at the same time; and it supports conversions from strings to other types.

• Class RWLocaleDefault implements only the “C” locale. It is small and
cheap to construct: one is constructed automatically at program startup to
be used as the default value of RWLocale::global() .

Enumeration enum CurrSymbol { NONE, LOCAL, INTL };
Controls whether no currency symbol, the local currency symbol, or the
international currency symbol should be used to format currency.

Class Reference 319

22

Public member functions virtual RWCString asString(long) const = 0;
virtual RWCString asString(unsigned long) const = 0;
Converts the number to a string (e.g., "3,456").

virtual RWCString asString(double f, int precision = 6,
RWBoolean showpoint = 0) const = 0;

Converts the double f to a string. The variable precision is the number of
digits to place after the decimal separator. If showpoint is TRUE, the decimal
separator will appear regardless of the precision.

virtual RWCString asString(struct tm* tmbuf,
char format, const RWZone& zone) const = 0 ;

Converts components of the struct tm object to a string, according to the
format character. The meanings assigned to the format character are identical
to those used in the Standard C Library function strftime() . The members
of struct tm are assumed to be set consistently. See Table 22-2 for a summary of
strftime() formatting characters.

virtual int monthIndex(const RWCString&) const = 0;

Interprets the RWCString as a month, and returns an integer in the range of 1
to 12. Returns 0 if there is an error.

virtual int weekdayIndex(const RWCString&) const=0;

Interprets the RWCString as a weekday, and returns an integer in the range of
1 to 7, with Monday corresponding to 1. Returns 0 if there is an error.

virtual RWCString moneyAsString(double value,
enum CurrSymbol = LOCAL) const = 0 ;

Returns a string containing the value argument formatted according to
monetary conventions for the locale. The value argument is assumed to
contain an integer representing the number of units of currency (e.g.,
moneyAsString(1000., RWLocale::LOCAL) in a US locale would yield
"$10.00"). The CurrSymbol argument determines whether the local (e.g.,
"$") or international (e.g., "USD ") currency symbol is applied, or none.

virtual RWBoolean stringToNum(const RWCString&, double* fp)
const = 0 ;
Interprets the RWCString argument as a floating point number. Spaces are
allowed before and after the (optional) sign, and at the end. Digit group
separators are allowed in the integer portion. Returns TRUE for a valid
number, FALSE for an error. If it returns FALSE, the double* argument is

320 Tools.h++ Class Library

22

untouched. All valid numeric strings are accepted; all others are rejected. The
following are examples of valid numeric strings in an English-speaking locale:

"1" " -02. " ".3"
"1234.56" "1e10" "+ 19,876.2E+20"

virtual RWBooleanstringToNum(const RWCString&, long* ip)
const = 0 ;
Interprets the RWCString argument as an integer. Spaces are allowed before
and after the (optional) sign, and at the end. Digit group separators are
allowed. Returns TRUE for a valid integer, FALSE for an error. If it returns
FALSE, the long* argument is untouched. All valid numeric strings are
accepted; all others are rejected. The following are examples of valid integral
strings in an English-speaking locale:

“1” “ -02. “ “+ 1,234”
“1234545” “1,234,567”

Table 22-2 lists formatting characters used by strftime() . Examples are
given (in parenthesis). For those formats that do not use all members of the
struct tm, only those members that are actually used are noted [in brackets].

Table 22-2

Format
character Meaning Example

a Abbreviated weekday name [from tm::tm_wday] Sun

A Full weekday name [from tm::tm_wday] Sunday

b Abbreviated month name Feb

B Full month name February

c Date and time [may use all members] Feb 29 14:34:56 1984

C Long date and time. Available only in implementations where
“%C” is permitted as a strftime() format argument.

Sunday, February 29
14:34:56 1984

d Day of the month 29

H Hour of the 24-hour day 14

I Hour of the 12-hour day 02

j Day of the year, from 001 [from tm::tm_yday] 60

m Month of the year, from 01 02

M Minutes after the hour 34

Class Reference 321

22

virtual RWBoolean stringToDate(const RWCString&, struct
tm*) const = 0 ;
Interprets the RWCString as a date, and extracts the month, day, and year
components to the tm argument. It returns TRUE for a valid date, FALSE
otherwise. If it returns FALSE, the struct tm argument is untouched;
otherwise it sets the tm_mday, tm_mon , and tm_year members. If the date is
entered as three numbers, the order expected is the same as that produced by
strftime() .

Note – This function cannot reject all invalid date strings.

The following are examples of valid date strings in an English-speaking locale:
"Jan 9, 62" "1/9/62" "January 9 1962"
"09Jan62" "010962"

virtual RWBooleanstringToTime(const RWCString&, struct tm*)
const = 0;
Interprets the RWCString argument as a time, with hour, minute, and optional

p AM/PM indicator, if any AM

S Seconds after the minute 56

U Sunday week of the year, from 00 [from tm::tm_yday and
tm::tm_wday]

w Day of the week, with 0 for Sunday 0

W Monday week of the year, from 00 [from tm::tm_yday and
tm::tm_wday]

x Date [uses tm::tm_yday in some locales] Feb 29 1984

X Time 14:34:56

y Year of the century, from 00 84

Y Year 1984

Z Time zone name [from tm::tm_isdst] PST or PDT

Table 22-2 (Continued)

Format
character Meaning Example

322 Tools.h++ Class Library

22

second. If the hour is in the range [1..12], the local equivalent of “AM” or
“PM” is allowed. Returns TRUE for a valid time string, FALSE for an error. If
it returns FALSE, the tm argument is untouched; otherwise it sets the tm_hour,
tm_min, and tm_sec members. Note that this function cannot reject all invalid
time strings. The following are examples of valid time strings in an English-
speaking locale:

"1:10 AM" "13:45:30" "12.30.45pm"
"PM 3:15" "1430"

virtual RWBoolean stringToMoney(const RWCString&,
 double*, RWLocale::CurrSymbol=LOCAL)
 const = 0 ;

Interprets the RWCString argument as a monetary value. The currency
symbol, if any, is ignored. Negative values may be specified by the negation
symbol or by enclosing parentheses. Digit group separators are optional; if
present they are checked. Returns TRUE for a valid monetary value, FALSE for
an error. If it returns FALSE, the double* argument is untouched; otherwise it
is set to the integral number of monetary units entered (e.g. cents, in a U.S.
locale).

const RWLocale* imbue(ios& stream) const ;
Installs self in the stream argument, for later use by the operators << and >>
(e.g. in RWDate or RWTime). The pointer may be retrieved from the stream
with the static member RWLocale::of() . In this way a locale may be passed
transparently through many levels of control to be available where needed,
without intruding elsewhere.

Static member functions static const RWLocale& of(ios&);
Returns the locale installed in the stream argument by a previous call to
RWLocale::imbue() or, if no locale was installed, the result from
RWLocale::global() .

static const RWLocale* global(const RWLocale* loc) ;
Sets the global “default” locale object to loc , returning the old object. This
object is used by RWDate and RWTime string conversion functions as a default
locale. It is set initially to refer to an instance of RWLocaleDefault .

static const RWLocale& global() ;
Returns a reference to the present global “default” locale.

Class Reference 323

22

RWLocaleSnapshot
RWLocaleSnapshot

|
RWLocale

Synopsis #include <locale.h>

#include /locale.h

RWLocaleSnapshot ourLocale(""); // encapsulate user's
formats

Description The class RWLocaleSnapshot implements the RWLocale
interface using Standard C library facilities. To use it, the program creates an
RWLocaleSnapshot instance. The constructor of the instance queries the
program’s environment (using standard C library functions such as
localeconv(), strftime() , and, if available , vendor specific library
functions) to learn everything it can about formatting conventions in effect at
the moment of instantiation. When done, the locale can then be switched and
another instance of RWLocaleSnapshot created. By creating multiple
instances of RWLocaleSnapshot , your program can have more than one
locale active at the same time, something that is difficult to do with the
Standard C library facilities.

Note – RWLocaleSnapshot does not encapsulate character set, collation, or
message information.

Class RWLocaleSnapshot has a set of public data members initialized by its
constructor with information extracted from its execution environment.

Example Try this program with the environmental variable LANG set to various locales:

Code Example 22-3

#include <locale.h>
#include <rw/locale.h>

main()
{

RWLocale::global(new RWLocaleSnapshot(""));

// Print a number using the global locale:

324 Tools.h++ Class Library

22

Enumerations enum RWDateOrder { DMY, MDY, YDM, YMD } ;

Public constructor RWLocaleSnapshot(const char* localeName = 0) ;
Constructs an RWLocale object by extracting formats from the global locale
environment. It uses the Standard C Library function setlocale() to set the
named locale, and then restores the previous global locale after formats have
been extracted. If localeName is 0, it simply uses the current locale. The
most useful locale name is the empty string, ““, which is a synonym for the
user’s chosen locale (usually specified by the environment variable LANG).

Public member functions virtual RWCString asString(long) const;
virtual RWCString asString(unsigned long) const;
virtual RWCString asString(double f, int precision = 6,

RWBoolean showpoint = 0) const;
virtual RWCString asString(struct tm* tmbuf,

char format,
const RWZone& zone) const;

virtual RWCString moneyAsString(double value,
enum CurrSymbol = LOCAL) const;

virtual RWBoolean stringToNum (const RWCString&,
double* fp) const;

virtual RWBoolean stringToNum (const RWCString&,
long* ip) const;

virtual RWBoolean stringToDate (const RWCString&,
struct tm*) const;

virtual RWBoolean stringToTime (const RWCString&, struct
tm*) const;

cout << locale.asString(1234567.6543) << endl;

// Now get and print a date:
cout << "enter a date: " << flush;
RWDate date;
cin >> date;
if (date.isValid())

cout << date << endl;
else

cout << "bad date" << endl;
return 0; }

}

Code Example 22-3 (Continued)

Class Reference 325

22

virtual RWBoolean stringToMoney(const RWCString&,
 double* ,
 RWLocale::CurrSymbol=LOCAL) const;

Redefined from class RWLocale . These virtual functions follow the interface
described under class RWLocale . They generally work by converting values to
and from strings using the rules specified by the struct lconv values (see
<locale.h>) encapsulated in self.

Public data members RWCString decimal_point_;
RWCString thousands_sep_;
RWCString grouping_;
RWCString int_curr_symbol_;
RWCString currency_symbol_;
RWCString mon_decimal_point_;
RWCString mon_thousands_sep_;
RWCString mon_grouping_;
RWCString positive_sign_;
RWCString negative_sign_;
char int_frac_digits_;
char frac_digits_;
char p_cs_precedes_;
char p_sep_by_space_;
char n_cs_precedes_;
char n_sep_by_space_;
char p_sign_posn_;
char n_sign_posn_;
These are defined identically as the correspondingly-named members of the
standard C library type lconv , from <locale.h> .

326 Tools.h++ Class Library

22

RWModel

Synopsis #include <rw/model.h>

(abstract base class)

Description This abstract base class has been designed to implement the “Model” leg of a
Model-View-Controller architecture. A companion class, RWModelClient ,
supplies the “View” leg.

It maintains a list of dependent RWModelClient objects. When member
function changed(void*) is called, the list of dependents will be traversed,
calling updateFrom(RWModel*, void*) for each one, with itself as the first
argument. Classes subclassing off RWModelClient should be prepared to
accept such a call.

Example This is an incomplete and somewhat contrived example in that it does not
completely define the classes involved. "Dial" is assumed to be a graphical
representation of the internal settings of "Thermostat". The essential point is
that there is a dependency relationship between the "Thermostat" and the
"Dial": when the setting of the thermostat is changed, the dial must be notified
so that it can update itself to reflect the new setting of the thermostat.

Code Example 22-4

#include <rw/model.h>

class Dial : public RWModelClient {
public:
 virtual voidupdateFrom(RWModel* m, void d);
};

class Thermostat : public RWModel {
 doublesetting;
public:
 Thermostat(Dial* d)
 { addDependent(d); }
 doubletemperature() const
 { return setting; }

Class Reference 327

22

Public constructor RWModel();
When called by the specializing class, sets up the internal ordered list of
dependents.

Public member functions void addDependent(RWModelClient* m);
Adds the object pointed to by m to the list of dependents of self.

void removeDependent(RWModelClient* m);
Removes the object pointed to by m from the list of dependents of self.

virtual void changed(void* d);
Traverse the internal list of dependents, calling member function
updateFrom(RWModel*, void*) for each one, with self as the first
argument and d as the second argument.

 voidsetTemperature(double t)
 { setting = t; changed(); }
};

void Dial::updateFrom(RWModel* m, void*){
 Thermostat* t = (Thermostat*)m;
 double temp = t-temperature();
 // Redraw graphic.
}

Code Example 22-4 (Continued)

328 Tools.h++ Class Library

22

RWModelClient
Synopsis #include <rw/model.h>

(abstract base class)

Description This abstract base class has been designed to implement the “View” leg of a
Model-View-Controller architecture. Class RWModel, supplies the “Model” leg.
See class RWModel for details.

Public member function virtual void updateFrom(RWModel* p, void* d) = 0;
Deriving classes should supply an appropriate definition for this pure virtual
function. The overall semantics of the definition should be to update self from
the data presented by the object pointed to by p. That is, self is considered a
dependent of the object pointed to by p. The pointer d is available to pass
client data.

Class Reference 329

22

RWOrdered
RWOrdered

|
RWSequenceable

|
RWCollection

|
RWCollectable

Synopsis #include <rw/ordcltn.h>

RWOrdered a;

Description Class RWOrdered represents a group of ordered items, accessible by an index
number, but not accessible by an external key. Duplicates are allowed. The
ordering of elements is determined externally, generally by the order of
insertion and removal. An object stored by RWOrdered must inherit from the
abstract base class RWCollectable .

Class RWOrdered is implemented as a vector of pointers, allowing for more
efficient traversing of the collection than the linked list classes
RWSlistCollectables and RWDlistCollectables , but slower insertion in
the center of the collection.

Public constructors RWOrdered(size_t size = RWDEFAULT_CAPACITY);
Construct an RWOrdered with an initial capacity of size.

Public member operators RWBoolean operator==(const RWOrdered& od)
 const;

Returns TRUE if for every item in self, the corresponding item in od at the same
index isEqual. The two collections must also have the same number of
members.

RWCollectable*& operator[](size_t i);
Returns the i 'th element in the collection. If i is out of range, an exception of
type RWBoundsErr will occur. The results of this function can be used as an
lvalue.

330 Tools.h++ Class Library

22

RWCollectable*& operator()(size_t i);
Returns the i 'th element in the collection. Bounds checking is enabled by
defining the preprocessor directive RWBOUNDS_CHECK before including the
header file ordcltn.h . In this case, if i is out of range, an exception of type
RWBoundsErr will occur. The results of this function can be used as an lvalue.

Public member functions virtual RWCollectable* append(RWCollectable*);
Redefined from class RWSequenceable . Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

virtual void apply(RWapplyCollectable ap,
 void* x);

Redefined from class RWCollection . This function has been redefined to
apply the user-supplied function pointed to by ap to each member of the
collection, in order, from first to last.

virtual RWCollectable*& at(size_t i);
virtual const RWCollectable* at(size_t i) const;
Redefined from class RWSequenceable .

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Redefined from class RWCollection .

Class Reference 331

22

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . Returns the first item that isEqual to the
item pointed to by target , or nil if no item was found.

virtual RWCollectable* first() const;
Redefined from class RWSequenceable . Returns the first item in the
collection.

virtual unsigned hash() const;
Inherited from class RWCollectable .

virtual size_t index(const RWCollectable*)
 const;

Refined from class RWSequenceable .

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWCollection . Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void insertAt(size_t indx,
 RWCollectable* e);

Redefined from class RWSequenceable . Adds a new item to the collection at
position indx . The item previously at positition i is moved to i+1 , etc. The
index indx must be between 0 and the number of items in the collection, or
an exception of type RWBoundsErr will be thrown.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWORDERED.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Inherited from class RWCollectable .

virtual RWCollectable* last() const;
Refined from class RWSequenceable . Returns the last item in the collection.

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of items that
compare isEqual to the item pointed to by target .

332 Tools.h++ Class Library

22

RWCollectable* prepend(RWCollectable*);
Redefined from class RWSequenceable . Adds the item to the beginning of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void push(RWCollectable* c);
This is an alternative implementation of a stack to class
RWSlistCollectablesStack . The item pointed to by c is put at the end of
the collection.

RWCollectable* pop();
This is an alternative implementation of a stack to class
RWSlistCollectablesStack . The last item in the collection is removed and
returned. If there are no items in the collection, nil is returned.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes the first item that isEqual to
the item pointed to by target and returns it. Returns nil if no item was
found.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

RWCollectable* top() const;
This is an alternative implementation of a stack to class
RWSlistCollectablesStack . The last item in the collection is returned. If
there are no items in the collection, nil is returned.

Class Reference 333

22

RWOrderedIterator
RWOrderedIterator

|
RWIterator

Synopsis #include <rw/ordcltn.h>

RWOrdered a;
RWOrderedIterator iter(a);

Description Iterator for class RWOrdered. Traverses the collection from the first to the last
item.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructors RWOrderedIterator(const RWOrdered& a);
Construct a RWOrderedIterator from a RWOrdered. Immediately after
construction the position of the iterator is undefined.

Public member operator virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances the iterator to the next item and
returns it. Returns nil when the end of the collection is reached.

Public member functions virtual RWCollectable* findNext(const RWCollectable*);
Redefined from class RWIterator . Moves iterator to the next item which
isEqual to the item pointed to by target and returns it. If no item is found,
returns nil and the position of the iterator will be undefined.

virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the item at the current iterator
position.

virtual void reset();
Redefined from class RWIterator . Resets the iterator to its starting state.

334 Tools.h++ Class Library

22

RWpistream
RWpistream

| |
RWvistream istream

|
 RWvios

Synopsis #include <rw/pstream.h>

RWpistream pstr(cin); // Construct a RWpistream, using
cin's streambuf

Description Class RWpistream specializes the abstract base class RWvistream to restore
variables stored in a portable ASCII format by RWpostream .

You can think of RWpistream and RWpostream as an ASCII veneer over an
associated streambuf which are responsibile for formatting variables and
escaping characters such that the results can be interchanged between any
machines. As such, they are slower than their binary counterparts
RWbistream and RWbostream which are more machine dependent. Because
RWpistream and RWpostream retain no information about the state of their
associated streambufs , their use can be freely exchanged with other users of
the streambuf (such as istream or ifstream).

RWpistream can be interrogated as to the stream state using member
functions good() , bad() , eof() , etc.

Class Reference 335

22

Example See RWpostream for an example of how to create an input stream for this
program.

Public constructors RWpistream(streambuf* s);
Initialize a RWpistream from the streambuf s .

RWpistream(istream& str);
Initialize a RWpistream using the streambuf associated with the istream
str .

Public member functions virtual int get();
Redefined from class RWvistream . Get and return the next character from the
input stream. Returns EOF if end of file is encountered.

virtual RWvistream& get(char& c);
Redefined from class RWvistream . Get the next char and store it in c .

virtual RWvistream& get(wchar_t& wc);
Redefined from class RWvistream . Get the next wide char and store it in wc.

virtual RWvistream& get(unsigned char& c);
Redefined from class RWvistream . Get the next unsigned char and store it in
c .

#include <rw/pstream.h>
main()
{
 // Construct a RWpistream to use standard input
 RWpistream pstr(cin);
 int i;
 float f;
 double d;
 char string[80];
 pstr >> i;// Restore an int that was stored in binary
 pstr >> f >> d; // Restore a float & double
 pstr.getString(string, 80); // Restore a character string
}

336 Tools.h++ Class Library

22

virtual RWvistream& get(char* v, size_t N);
Redefined from class RWvistream . Get a vector of char's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

Note – The vector is treated as a vector of numbers, not characters. If you wish
to restore a character string, use function getString(char*, size_t) .

virtual RWvistream& get(wchar_t* v, size_t N);
Redefined from class RWvistream . Get a vector of wide char ’s and store then
in the array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

Note – The vector is treated as a vector of numbers, not characters. If you wish
to restore a character string, use function getString(wchar_t*, size_t) .

virtual RWvistream& get(double* v, size_t N);
Redefined from class RWvistream . Get a vector of double's and store then in
the array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(float* v, size_t N);
Redefined from class RWvistream . Get a vector of float's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(int* v, size_t N);
Redefined from class RWvistream . Get a vector of int's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(long* v, size_t N);
Redefined from class RWvistream . Get a vector of long's and store then in the
array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

virtual RWvistream& get(short* v, size_t N);
Redefined from class RWvistream . Get a vector of short's and store then in
the array beginning at v. If the restore is stopped prematurely, get stores
whatever it can in v, and sets the failbit.

Class Reference 337

22

virtual RWvistream& get(unsigned char* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned char's and store
then in the array beginning at v. If the restore is stopped prematurely, get
stores whatever it can in v, and sets the failbit.

Note – The vector is treated as a vector of numbers, not characters. If you wish
to restore a character string, use function getString(char*, size_t) .

virtual RWvistream& get(unsigned short* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned short's and store
then in the array beginning at v. If the restore is stopped prematurely, get
stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned int* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned int's and store
then in the array beginning at v. If the restore is stopped prematurely, get
stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned long* v, size_t
 N);

Redefined from class RWvistream . Get a vector of unsigned long's and store
then in the array beginning at v. If the restore is stopped prematurely, get
stores whatever it can in v, and sets the failbit.

virtual RWvistream& getString(char* s, size_t N);
Redefined from class RWvistream . Restores a character string from the input
stream and stores it in the array beginning at s . The function stops reading at
the end of the string or after N–1 characters, whichever comes first. If the
latter, then the failbit of the stream will be set. In either case, the string will be
terminated with a null byte. If the input stream has been corrupted, then an
exception of type RWExternalErr will be thrown.

virtual RWvistream& getString(wchar_t* ws, size_t N) ;
Redefined from class RWvistream . Restores a character string from the input
stream and stores it in the array beginning at ws. The function stops reading at
the end of the string or after N-1 characters, whichever comes first. If the

338 Tools.h++ Class Library

22

latter, then the failbit of the stream will be set. In either case, the string will be
terminated with a null byte. If the input stream has been corrupted, then an
exception of type RWExternalErr will be thrown.

virtual RWvistream& operator>>(char& c);
Redefined from class RWvistream . Get the next character from the input
stream and store it in c .

virtual RWvistream& operator>>(double& d);
Redefined from class RWvistream . Get the next double from the input stream
and store it in d.

virtual RWvistream& operator>>(float& f);
Redefined from class RWvistream . Get the next float from the input stream
and store it in f .

virtual RWvistream& operator>>(int& i);
Redefined from class RWvistream . Get the next int from the input stream and
store it in i .

virtual RWvistream& operator>>(long& l);
Redefined from class RWvistream . Get the next long from the input stream
and store it in l .

virtual RWvistream& operator>>(short& s);
Redefined from class RWvistream . Get the next short from the input stream
and store it in s .

virtual RWvistream& operator>>(unsigned char& c);
Redefined from class RWvistream . Get the next unsigned char from the input
stream and store it in c .

virtual RWvistream& operator>>(unsigned short& s);
Redefined from class RWvistream . Get the next unsigned short from the input
stream and store it in s .

virtual RWvistream& operator>>(unsigned int& i);
Redefined from class RWvistream . Get the next unsigned int from the input
stream and store it in i .

virtual RWvistream& operator>>(unsigned long& l);
Redefined from class RWvistream . Get the next unsigned long from the input
stream and store it in l .

Class Reference 339

22

RWpostream
RWpostream

| |
RWvostream ostream

|
 RWvios

Synopsis #include <rw/pstream.h>

// Construct a RWpostream, using cout's streambuf:
RWBostream pstr(cout);

Description Class RWpostream specializes the abstract base class RWvostream to store
variables in a portable (printable) ASCII format. The results can be restored by
using its counterpart RWpistream .

You can think of RWpistream and RWpostream as an ASCII veneer over an
associated streambuf which are responsbile for formatting variables and
escaping characters such that the results can be interchanged between any
machines. As such, they are slower than their binary counterparts
RWbistream and RWbostream which are more machine dependent. Because
RWpistream and RWpostream retain no information about the state of their
associated streambufs , their use can be freely exchanged with other users of
the streambuf (such as istream or ifstream).

The goal of class RWpostream and RWpistream is to store variables using
nothing but printable ASCII characters. Hence, nonprintable characters must
be converted into an external representation where they can be recognized.
Furthermore, other characters may be merely bit values (a bit image, for
example), having nothing to do with characters as symbols. For example,

RWpostream pstrm(cout);
char c = '\n';

pstr << c; // Stores "newline"
pstr.put(c); // Stores the number 10 .

The expression "pstr << c" treats c as a symbol for a newline, an
unprintable character. The expression "pstr.put(c)" treats c as the literal
number “10”.

340 Tools.h++ Class Library

22

Note – Variables should not be separated with whitespace. Such whitespace
would be interpreted literally and would have to be read back in as a character
string.

RWpostream can be interrogated as to the stream state using member
functions good() , bad() , eof() , etc.

Example See RWpistream for an example of how to read back in the results of this
program. The symbol " o " is intended to represent a control-G, or bell.

Program output:

5
22.1
-0.05
"A string with\ttabs,\nnewlines and a \x07 bell."

Public constructors RWpostream(streambuf* s);
Initialize a RWpostream from the streambuf s .

RWpostream(ostream& str);
Initialize a RWpostream from the streambuf associated with the output
stream str .

#include <rw/pstream.h>

main()
{
 // Construct a RWpostream to use standard output:
 RWpostream pstr(cout);

 int i = 5;
 float f = 22.1;
 double d = -0.05;
 char string[]
 = "A string with\ttabs,\nnewlines and a o bell.";

 pstr << i;// Store an int in binary
 pstr << f << d;// Store a float & double
 pstr << string;// Store a string
}

Class Reference 341

22

Public member functions virtual RWvostream& operator<<(const char* s);
Redefined from class RWvostream . Store the character string starting at s to
the output stream using a portable format. The character string is expected to
be null terminated.

virtual RWvostream& operator<<(const wchar_t* ws);
Redefined from class RWvostream . Store the wide character string starting at
ws to the output stream using a portable format. The character string is
expected to be null terminated.

virtual RWvostream& operator<<(char c);
Redefined from class RWvostream . Store the char c to the output stream using
a portable format.

Note – c is treated as a character, not a number.

virtual RWvostream& operator<<(wchar_t wc);
Redefined from class RWvostream . Store the wide char wc to the output
stream using a portable format.

Note – wc is treated as a character, not a number.

virtual RWvostream& operator<<(unsigned char c);
Redefined from class RWvostream . Store the unsigned char c to the output
stream using a portable format.

Note – c is treated as a character, not a number.

virtual RWvostream& operator<<(double d);
Redefined from class RWvostream . Store the double d to the output stream
using a portable format.

virtual RWvostream& operator<<(float f);
Redefined from class RWvostream . Store the float f to the output stream
using a portable format.

virtual RWvostream& operator<<(int i);
Redefined from class RWvostream . Store the int i to the output stream using
a portable format.

342 Tools.h++ Class Library

22

virtual RWvostream& operator<<(unsigned int i);
Redefined from class RWvostream . Store the unsigned int i to the output
stream using a portable format.

virtual RWvostream& operator<<(long l);
Redefined from class RWvostream . Store the long l to the output stream using
a portable format.

virtual RWvostream& operator<<(unsigned long l);
Redefined from class RWvostream . Store the unsigned long l to the output
stream using a portable format.

virtual RWvostream& operator<<(short s);
Redefined from class RWvostream . Store the short s to the output stream
using a portable format.

virtual RWvostream& operator<<(unsigned short s);
Redefined from class RWvostream . Store the unsigned short s to the output
stream using a portable format.

virtual RWvostream& put(char c);
Redefined from class RWvostream . Store the char c to the output stream,
preserving its value using a portable format.

virtual RWvostream& put(unsigned char c);
Redefined from class RWvostream . Store the unsigned char c to the output
stream, preserving its value using a portable format.

virtual RWvostream& put(const char* p, size_t N);
Redefined from class RWvostream . Store the vector of chars starting at p to
the output stream, preserving their values using a portable format.

Note – the characters will be treated as literal numbers (i.e., not as a character
string).

virtual RWvostream& put(const wchar_t* p, size_t N);
Redefined from class RWvostream . Store the vector of wide chars starting at
p to the output stream, preserving their values using a portable format.

Note – the characters will be treated as literal numbers (i.e., not as a character
string).

Class Reference 343

22

virtual RWvostream& put(const unsigned char* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned chars starting
at p to the output stream using a portable format. The characters should be
treated as literal numbers (i.e., not as a character string).

virtual RWvostream& put(const short* p, size_t N);
Redefined from class RWvostream . Store the vector of shorts starting at p to
the output stream using a portable format.

virtual RWvostream& put(const unsigned short* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned shorts
starting at p to the output stream using a portable format.

virtual RWvostream& put(const int* p, size_t N);
Redefined from class RWvostream . Store the vector of ints starting at p to the
output stream using a portable format.

virtual RWvostream& put(const unsigned int* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned ints starting
at p to the output stream using a portable format.

virtual RWvostream& put(const long* p, size_t N);
Redefined from class RWvostream . Store the vector of longs starting at p to
the output stream using a portable format.

virtual RWvostream& put(const unsigned long* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned longs starting
at p to the output stream using a portable format.

virtual RWvostream& put(const float* p, size_t N);
Redefined from class RWvostream . Store the vector of floats starting at p to
the output stream using a portable format.

virtual RWvostream& put(const double* p, size_t
 N);

Redefined from class RWvostream . Store the vector of doubles starting at p to
the output stream using a portable format.

344 Tools.h++ Class Library

22

RWSequenceable
RWSequenceable

|
RWCollection

|
RWCollectable

Synopsis #include <rw/seqcltn.h>

typedef RWSequenceable SequenceableCollection; // Smalltalk
typedef

Description Class RWSequenceable is an abstract base class for collections that can be
accessed via an index. It inherits class RWCollection as a public base class
and adds a few extra virtual functions. This documentation only describes
these extra functions.

Public member functions RWCollectable* append(RWCollectable*) = 0;
Adds the item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

virtual RWCollectable*& at(size_t i);
virtual const RWCollectable* at(size_t i) const;
Allows access to the i 'th element of the collection. The first variant can be
used as an lvalue, the second cannot. The index i must be between zero and
the number of items in the collection less one, or an exception of type
RWBoundsErr will be thrown.

virtual RWCollectable* first() const = 0;
Returns the first item in the collection.

virtual size_t index(const RWCollectable* c)
 const = 0;

Returns the index number of the first item that "matches" the item pointed to
by c . If there is no such item, returns RW_NPOS. For most collections, an item
"matches" the target if either isEqual() or compareTo() find equivalence,
whichever is appropriate for the actual collection type.

Class Reference 345

22

virtual void insertAt(size_t indx,
 RWCollectable* e);

Adds a new item to the collection at position indx . The item previously at
position i is moved to i+1 , etc. The index indx must be between 0 and the
number of items in the collection, or an exception of type RWBoundsErr will
be thrown.

virtual RWCollectable* last() const = 0;
Returns the last item in the collection.

RWCollectable* prepend(RWCollectable*) = 0;
Adds the item to the beginning of the collection and returns it. Returns nil if
the insertion was unsuccessful.

346 Tools.h++ Class Library

22

RWSet
RWSet

|
RWHashTable

|
RWCollection

|
RWCollectable

Synopsis typedef RWSet Set; // Smalltalk typedef.
#include <rw/rwset.h>

RWSet h;

Description Class RWSet represents a group of unordered elements, not accessible by an
external key, where duplicates are not allowed. It corresponds to the
Smalltalk class Set .

An object stored by RWSet must inherit abstract base class RWCollectable ,
with suitable definition for virtual functions hash() and isEqual() (see class
RWCollectable). The function hash() is used to find objects with the same
hash value, then isEqual() is used to confirm the match.

An item c is considered to be "already in the collection" if there is a member of
the collection for which isEqual(c) returns TRUE. In this case, the message
insert(c) will not add it, thus insuring that there are no duplicates.

The iterator for this class is RWSetIterator .

Public constructors RWSet (size_t n = RWDEFAULT_CAPACITY);
Constructs an empty set with n hashing buckets.

RWSet (const RWSet & h);
Copy constructor. Makes a shallow copy of the collection h.

virtual ~RWSet();
Calls clear() .

Class Reference 347

22

Public member operators void operator=(const RWSet& h);
Assignment operator. Makes a shallow copy of the collection h.

RWBoolean operator==(const RWSet& h);
Returns TRUE if self and h have the same number of elements and if for every
key in self there is a corresponding key in h which isEqual.

RWBoolean operator!=(const RWSet& h);
Returns the negation of operator==() , above.

RWBoolean operator<=(const RWSet& h);
Returns TRUE if self is a subset of h, that is, every element of self has a
counterpart in h which isEqual.

Public member functions virtual voidapply(RWapplyCollectable ap,
 void*)
Redefined from class RWCollection to apply the user-supplied function
pointed to by ap to each member of the collection in a (generally)
unpredictable order. This supplied function should not do anything to the
items that could change the ordering of the collection.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Redefined from class RWCollection .

348 Tools.h++ Class Library

22

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . Returns the item in self which isEqual to
the item pointed to by target or nil if no item is found. Hashing is used to
narrow the search.

virtual unsigned hash() const;
Inherited from class RWCollectable .

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWCollection . Adds c to the collection and returns it.
If an item is already in the collection which isEqual to c , then the old item is
returned and the new item is not inserted.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWSET.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of entries that
isEqual to the item pointed to by target . Because duplicates are not allowed
for this collection, only 0 or 1 can be returned.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Returns and removes the item that
isEqual to the item pointed to by target , or nil if there is no item.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

void resize(size_t n = 0);
Resizes the internal hashing table to the next highest prime number that is
greater than or equal to n. If n==0 , then the next highest prime number greater
than or equal to the present size.

Class Reference 349

22

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

350 Tools.h++ Class Library

22

RWSetIterator
RWSetIterator

|
RWHashTableIterator

|
RWIterator

Synopsis #include <rw/rwset.h>
RWSet h;
RWSetIterator it(h);

Description Iterator for class RWSet, which allows sequential access to all the elements of
RWSet.

Note – Because a RWSet is unordered, elements are not accessed in any
particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWSetIterator(RWSet&);
Construct an iterator for an RWSet. After construction, the position of the
iterator will be undefined.

Public member operator virtual RWCollectable* operator()();
Inherited from RWHashTableIterator .

Class Reference 351

22

Public member functions virtual RWCollectable* findNext(const RWCollectable*
 target);

Inherited from RWHashTableIterator .

virtual RWCollectable* key() const;
Inherited from RWHashTableIterator .

RWCollectable* remove();
Inherited from RWHashTableIterator .

RWCollectable* removeNext(const
 RWCollectable*);

Inherited from RWHashTableIterator .

virtual void reset();
Inherited from RWHashTableIterator .

352 Tools.h++ Class Library

22

RWSlistCollectables
 RWSlistCollectables

| |
RWSequenceable RWSlist

|
RWCollection

|
RWCollectable

Synopsis // Smalltalk typedef:
typedef RWSlistCollectables LinkedList;

#include <rw/slistcol.h>
RWSlistCollectables a;

Description Class RWSlistCollectables represents a group of ordered elements,
without keyed access. Duplicates are allowed. The ordering of elements is
determined externally, by the order of insertion and removal. An object stored
by RWSlistCollectables must inherit abstract base class RWCollectable .

The virtual function isEqual() (see class RWCollectable) is required to
find a match between a target and an item in the collection

Class RWSlistCollectables is implemented as a singly-linked list, which
allows for efficient insertion and removal, but efficient movement in only one
direction. This class corresponds to the Smalltalk class LinkedList .

Public constructors RWSlistCollectables();
Constructs an empty linked list.

RWSlistCollectables(const RWCollectable* a);
Constructs an ordered collection with single item a.

Public member operators RWBoolean operator==(const
 RWSlistCollectables& s) const;

Returns TRUE if self and s have the same number of members and if for every
item in self, the corresponding item at the same index in s isEqual to it.

Class Reference 353

22

Public member functions virtual RWCollectable* append(RWCollectable*);
Redefined from RWSequenceable . Inserts the item at the end of the collection
and returns it. Returns nil if the insertion was unsuccessful.

virtual void apply(RWapplyCollectable ap,
 void*)

Redefined from class RWCollection . This function has been redefined to
apply the user-defined function pointed to by ap to each member of the
collection, in order, from first to last.

virtual RWCollectable*& at(size_t i);
virtual const RWCollectable* at(size_t i) const;
Redefined from class RWSequenceable . The index i must be between 0 and
the number of items in the collection less one, or an exception of type
RWBoundsErr will be thrown.

Note – For a linked-list, these functions must traverse all the links, making
them not particularly efficient.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Redefined from class RWCollection .

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

RWBoolean containsReference(const
 RWCollectable* e) const;

Returns true if the list contains an item that is identical to the item pointed to by
e (that is, that has the address e).

virtual size_t entries() const;
Redefined from class RWCollection .

354 Tools.h++ Class Library

22

virtual RWCollectable* find(const RWCollectable*
 target) const;

Redefined from class RWCollection . The first item that matches target is
returned, or nil if no item was found.

RWCollectable* findReference(const
 RWCollectable* e) const;

Returns the first item that is identical to the item pointed to by e (that is, that
has the address e), or nil if none is found.

virtual RWCollectable* first() const;
Redefined from class RWSequenceable . Returns the item at the beginning of
the list.

RWCollectable* get();
Returns and removes the item at the beginning of the list.

virtual unsigned hash() const;
Inherited from class RWCollectable .

virtual size_t index(const RWCollectable* c)
 const = 0;

Redefined from class RWSequenceable . Returns the index of the first item
that isEqual to the item pointed to by c .

virtual RWCollectable* insert (RWCollectable* c);
Redefined from class RWCollection . Adds the item to the end of the
collection and returns it. Returns nil if the insertion was unsuccessful.

void insertAt(size_t indx,
 RWCollectable* e);

Redefined from class RWSequenceable . Adds a new item to the collection at
position indx . The item previously at positition i is moved to i+1 , etc. The
index indx must be between 0 and the number of items in the collection, or
an exception of type RWBoundsErr will be thrown.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWSLISTCOLLECTABLES.

virtual RWBoolean isEmpty() const;
Redefined from class RWCollection .

Class Reference 355

22

virtual RWCollectable* last() const;
Redefined from class RWSequenceable . Returns the value at the end of the
collection.

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWCollection . Returns the number of items that
isEqual to the item pointed to by target .

size_t occurrencesOfReference(const
 RWCollectable* e) const;

Returns the number of items that are identical to the item pointed to by e (that
is, that have the address e).

virtual RWCollectable* prepend(RWCollectable*);
Redefined from class RWSequenceable . Adds the item to the beginning of the
collection and returns it. Returns nil if the insertion was unsuccessful.

virtual RWCollectable* remove(const RWCollectable*
 target);

Redefined from class RWCollection . Removes and returns the first item that
isEqual to the item pointed to by target . Returns nil if there is no such item.

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

RWCollectable* removeReference(const
 RWCollectable* e);

Removes and returns the first item that is identical to the item pointed to by e
(that is, that has the address e). Returns nil if there is no such item.

virtual void restoreGuts(RWvistream&);
virtual void restoreGuts(RWFile&);
virtual void saveGuts(RWvostream&) const;
virtual void saveGuts(RWFile&) const;
Inherited from class RWCollection .

356 Tools.h++ Class Library

22

RWSlistCollectablesIterator
RWSlistCollectablesIterator

| |
RWIterator RWSlistIterator

Synopsis // Smalltalk typedef.
typedef RWSlistCollectablesIterator LinkedListIterator;

#include <rw/slistcol.h>
RWSlistCollectables sc;
RWSlistCollectablesIterator sci(sc);

Description Iterator for class RWSlistCollectables . Traverses the linked-list from the
first to last item.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWSlistCollectablesIterator (RWSlistCollectables&);
Constructs an iterator from a singly-linked list. Immediately after
construction, the position of the iterator will be undefined.

Public member operators virtual RWCollectable* operator()();
Redefined from class RWIterator . Advances the iterator to the next element
and returns it. Returns nil when the end of the collection is reached.

void operator++();
Advances the iterator one item.

void operator+=(size_t n);
Advances the iterator n items.

Public member functions RWBoolean atFirst() const;
Returns TRUE if the iterator is at the beginning of the list, otherwise FALSE;

Class Reference 357

22

RWBoolean atLast() const;
Returns TRUE if the iterator is at the end of the list, otherwise FALSE;

virtual RWCollectable* findNext(const RWCollectable*
 target);

Redefined from class RWIterator . Moves iterator to the next item which
isEqual to the item pointed to by target and returns it. If no item is found,
returns nil and the position of the iterator will be undefined.

RWCollectable* findNextReference(const
 RWCollectable* e);

Moves iterator to the next item which is identical to the item pointed to by e
(that is, that has address e) and returns it. If no item is found, returns nil and
the position of the iterator will be undefined.

RWCollectable* insertAfterPoint(RWCollectable*
 a);

Insert item a after the current cursor position and return the item. The cursor's
position will be unchanged.

virtual RWCollectable* key() const;
Redefined from class RWIterator . Returns the item at the current iterator
position.

RWCollectable* remove();
Removes and returns the item at the current cursor position. Afterwards, the
iterator will be positioned at the previous item in the list.

Note – This function is not very efficient in a singly-linked list.

RWCollectable* removeNext(const RWCollectable*
 target);

Moves iterator to the next item in the list which isEqual to the item pointed to
by target , removes it from the list and returns it. Afterwards, the iterator
will be positioned at the previous item in the list. If no item is found, returns
nil and the position of the iterator will be undefined.

RWCollectable* removeNextReference(const
 RWCollectable* e);

Moves iterator to the next item in the list which is identical to the item pointed

358 Tools.h++ Class Library

22

to by e (that is, that has address e), removes it from the list and returns it.
Afterwards, the iterator will be positioned at the previous item in the list. If no
item is found, returns nil and the position of the iterator will be undefined.

virtual void reset();
Redefined from class RWIterator . Resets the iterator. Afterwards, the
position of the iterator will be undefined.

void toFirst();
Moves the iterator to the beginning of the list.

void toLast();
Moves the iterator to the end of the list.

Class Reference 359

22

RWSlistCollectablesQueue
RWSlistCollectablesQueue

|
 RWSlistCollectables

| |
RWSequenceable RWSlist

|
RWCollection

|
RWCollectable

Synopsis // Smalltalk typedef:
typedef RWSlistCollectablesQueue Queue;

#include <rw/queuecol.h>
RWSlistCollectablesQueue a;

Description Class RWSlistCollectablesQueue represents a restricted interface to class
RWSlistCollectables to implement a first in first out (FIFO) queue. A
Queue is a sequential list for which all insertions are made at one end (the
"tail"), but all removals are made at the other end (the "head"). Hence, the
ordering is determined externally by the ordering of the insertions. Duplicates
are allowed.

An object stored by RWSlistCollectablesQueue must inherit abstract base
class RWCollectable . The virtual function isEqual() (see class
RWCollectable) is required to find a match between a target and an item in
the queue.

This class corresponds to the Smalltalk class Queue.

Public constructors RWSlistCollectablesQueue();
Construct an empty queue.

RWSlistCollectablesQueue(RWCollectable* a);
Construct an queue with single item a.

360 Tools.h++ Class Library

22

RWSlistCollectablesQueue(const RWSlistCollectablesQueue &
q);
Copy constructor. A shallow copy of the queue q is made.

Public member operators void operator=(const
 RWSlistCollectablesQueue & q);

Assignment operator. A shallow copy of the queue q is made.

Public member functions virtual void apply(RWapplyCollectable ap,
 void*)

Inherited from class RWSlistCollectables .

virtual RWCollectable* append(RWCollectable*);
Inherited from class RWSlistCollectables . Adds an element to the end of
the queue.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Inherited from class RWSlistCollectables .

virtual void clearAndDestroy();
virtual RWBoolean contains(const RWCollectable*

 target) const;
Inherited from class RWCollection .

RWBoolean containsReference(const
 RWCollectable* e) const;

virtual size_t entries() const;
Inherited from class RWSlistCollectables .

virtual RWCollectable* first() const;
Inherited from class RWSlistCollectables . Returns the item at the
beginning of the queue (i.e., the least recently inserted item). Returns nil if the
queue is empty.

RWCollectable* get();
Inherited from class RWSlistCollectables . Returns and removes the item at
the beginning of the queue (i.e., the least recently inserted item). Returns nil if
the queue is empty.

Class Reference 361

22

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWSlistCollectables to call append() .

virtual RWClassID isA() const;
Redefined from class RWCollectable to return
__RWSLISTCOLLECTABLESQUEUE.

virtual RWBoolean isEmpty() const;
Inherited from class RWSlistCollectables .

virtual RWCollectable* last() const;
Inherited from class RWSlistCollectables . Returns the last item in the
queue (the most recently inserted item).

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

size_t occurrencesOfReference(const
 RWCollectable* e) const;

Inherited from class RWSlistCollectables .

virtual RWCollectable* remove(const RWCollectable*);
Redefined from class RWSlistCollectables . Calls get() . The argument is
ignored.

362 Tools.h++ Class Library

22

RWSlistCollectablesStack
RWSlistCollectablesStack

|
 RWSlistCollectables

| |
RWSequenceable RWSlist

|
RWCollection

|
RWCollectable

Synopsis // Smalltalk typedef:
typedef RWSlistCollectablesStackStack;

#include <rw/stackcol.h>
RWSlistCollectablesStack a ;

Description Class RWSlistCollectablesStack represents a restricted interface to class
RWSlistCollectables to implement a last in first out (LIFO) stack. A Stack
is a sequential list for which all insertions and deletions are made at one end
(the beginning of the list). Hence, the ordering is determined externally by the
ordering of the insertions. Duplicates are allowed.

An object stored by RWSlistCollectablesStack must inherit abstract base
class RWCollectable . The virtual function isEqual() (see class
RWCollectable) is required to find a match between a target and an item in
the stack.

This class corresponds to the Smalltalk class Stack .

Public constructors RWSlistCollectablesStack();
Construct an empty stack.

RWSlistCollectablesStack(RWCollectable* a);
Construct a stack with one entry a.

RWSlistCollectablesStack(const RWSlistCollectablesStack&
s);
Copy constructor. A shallow copy of the stack s is made.

Class Reference 363

22

Assignment operator void operator=(const
 RWSlistCollectablesStack& s);

Assignment operator. A shallow copy of the stack s is made.

Public member functions virtual void apply(RWapplyCollectable ap,
void*)
virtual RWspace binaryStoreSize() const;
virtual void clear();
Inherited from class RWSlistCollectables .

virtual void clearAndDestroy();
virtual RWBoolean contains(const RWCollectable*

 target) const;
Inherited from class RWCollection .

RWBoolean containsReference(const
 RWCollectable* e) const;

virtual size_t entries() const;
Inherited from class RWSlistCollectables .

virtual RWCollectable* first() const;
Inherited from class RWSlistCollectables . Same as top() .

virtual RWCollectable* insert(RWCollectable* c);
Inherited from class RWSlistCollectables . Same as push() .

virtual RWClassID isA() const;
Redefined from class RWCollectable to return
__RWSLISTCOLLECTABLESSTACK.

virtual RWBoolean isEmpty()const;
Inherited from class RWSlistCollectables .

virtual RWCollectable* last() const;
Inherited from class RWSlistCollectables . Returns the item at the bottom
of the stack.

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

size_t occurrencesOfReference(const
 RWCollectable* e) const;

Inherited from class RWSlistCollectables .

364 Tools.h++ Class Library

22

virtual RWCollectable* remove(const RWCollectable*);
Redefined from class RWSlistCollectables . Calls pop() . The argument is
ignored.

RWCollectable* pop();
Removes and returns the item at the top of the stack, or returns nil if the stack
is empty.

void push(RWCollectable*);
Adds an item to the top of the stack.

RWCollectable* top() const;
Returns the item at the top of the stack or nil if the stack is empty.

Class Reference 365

22

RWSortedVector
RWSortedVector

|
RWOrdered

|
RWSequenceable

|
RWCollection

|
RWCollectable

Synopsis #include <rw/sortvec.h>

RWSortedVector a;

Description Class RWSortedVector represents a group of ordered items, internally sorted
by the compareTo() function and accessible by an index number. Duplicates
are allowed. An object stored by RWSortedVector must inherit from the
abstract base class RWCollectable . An insertion sort is used to maintain the
vector in sorted order.

Because class RWSortedVector is implemented as a vector of pointers,
traversing the collection is more efficient than with class RWBinaryTree .
However, insertions are slower in the center of the collection.

366 Tools.h++ Class Library

22

Example

Program output:

cat
dog
fish

Public constructors RWSortedVector(size_t size = RWDEFAULT_CAPACITY);
Construct an empty RWSortedVector that has an initial capacity of size items.
The capacity will be increased automatically if excess items are inserted into
the collection.

Public member operators RWBoolean operator==(const
 RWSortedVector& sv) const;

Returns TRUE if for every item in self, the corresponding item in sv at the same
index is equal. The two collections must also have the same number of
members.

const RWCollectable* operator[](size_t i);
Returns the i 'th element in the collection. If i is out of range, an exception of
type RWBoundsErr will be thrown. This function cannot be used as an lvalue.

#include <rw/sortvec.h>
#include <rw/collstr.h>
#include <rw/rstream.h>
main()
{
 RWSortedVector sv;
 sv.insert(new RWCollectableString("dog"));
 sv.insert(new RWCollectableString("cat"));
 sv.insert(new RWCollectableString("fish"));
 RWSortedVectorIterator next(sv);
 RWCollectableString* item;
 while(item = (RWCollectableString*)next())
 cout << *item << endl;
 sv.clearAndDestroy();
}

Class Reference 367

22

const RWCollectable* operator()(size_t i);
Returns the i 'th element in the collection. Bounds checking is enabled by
defining the preprocessor directive RWBOUNDS_CHECK before including the
header file sortvec.h . In this case, if i is out of range, an exception of type
RWBoundsErr will be thrown. This function cannot be used as an lvalue.

Public member functions virtual void apply(RWapplyCollectable ap,
 void* x);

Inherited from class RWOrdered.

virtual const RWCollectable* at(size_t i) const;
Inherited from class RWOrdered.

virtual RWspace binaryStoreSize() const;
Inherited from class RWCollection .

virtual void clear();
Inherited from class RWOrdered.

virtual void clearAndDestroy();
Inherited from class RWCollection .

virtual int compareTo(const RWCollectable*
 a) const;

Inherited from class RWCollectable .

virtual RWBoolean contains(const RWCollectable*
 target) const;

Inherited from class RWCollection .

virtual size_t entries() const;
Inherited from class RWOrdered.

virtual RWCollectable* find(const RWCollectable*
 target) const;

Inherited from class RWOrdered.

Note – RWOrdered::find() uses the virtual function index() to perform its
search. Hence, a binary search will be used.

virtual RWCollectable* first() const;
Inherited from class RWOrdered.

368 Tools.h++ Class Library

22

virtual unsigned hash() const;
Inherited from class RWCollectable .

virtual size_t index(const RWCollectable*)
 const;

Redefined from class RWOrdered. Performs a binary search to return the
index of the first item that compares equal to the target item, or RW_NPOS if no
such item can be found.

virtual RWCollectable* insert(RWCollectable* c);
Redefined from class RWOrdered. Performs a binary search to insert the item
pointed to by c after all items that compare less than or equal to it, but before
all items that compare greater than it. Returns nil if the insertion was
unsuccessful, c otherwise.

virtual RWClassID isA() const;
Redefined from class RWCollectable to return __RWSORTEDVECTOR.

virtual RWBoolean isEmpty() const;
Inherited from class RWOrdered.

virtual RWBoolean isEqual(const RWCollectable* a)
 const;

Redefined to return TRUE is the object pointed to by a is of the same type as
self, and self == t .

virtual RWCollectable* last() const;
Inherited from class RWOrdered.

virtual size_t occurrencesOf(const
 RWCollectable* target) const;

Redefined from class RWOrdered. Returns the number of items that compare
equal to the item pointed to by target .

virtual RWCollectable* remove(const RWCollectable*
 target);

Inherited from class RWOrdered.

Note – RWOrdered::remove() uses the virtual function index() to perform
its search. Hence, a binary search will be used.

Class Reference 369

22

virtual void removeAndDestroy(const
 RWCollectable* target);

Inherited from class RWCollection .

370 Tools.h++ Class Library

22

RWTime

Synopsis #include <rw/rwtime.h>
RWTime a; // Construct with current time

Description Class RWTime represents a time, stored as the number of seconds since 00:00:00
January 1901 UTC. See “Setting the time zone” on page 59 in Chapter 8,
“Using Class RWTime,” for how to set the time zone.

Caution – Failure to do this may result in UTC (GMT) times being wrong.

Output formatting is now done using an RWLocale object. The default locale
formats according to U.S. conventions.

Example

Program output

Current time: 03/22/91 15:01:40
Start of DST, 1990: 05/01/90 02:00:00

Public constructors RWTime();
Default constructor. Constructs a time with the present time.

RWTime(const RWTime&);
Copy constructor, generated by the compiler.

RWTime(unsigned long s);
Constructs a time with s seconds since 00:00:00 January 1, 1901 UTC.

#include <rw/rwtime.h>
#include <rw/rstream.h>

main()
{
 RWTime t; // Current time
 RWTime d(RWTime::beginDST(1990, RWZone::local()));
 cout << "Current time: " << RWDate(t) << " " << t << endl;
 cout << "Start of DST, 1990: " << RWDate(d) << " " << d << endl;
}

!

Class Reference 371

22

RWTime(unsigned hour, unsigned minute, unsigned second = 0,
const RWZone& zone =
RWZone::local());

Constructs a time with today’s date, and the specified hour, minute, and
second, relative to the time zone zone , which defaults to local time.

RWTime(const RWDate& date, unsigned hour = 0, unsigned
minute = 0, unsigned second = 0,
const RWZone& =
RWZone::local());

Constructs a time for a given date, hour, minute, and second, relative to the
time zone zone , which defaults to local time.

RWTime(const struct tm*, const RWZone& = RWZone::local());
Constructs a time from the tm_year, tm_mon, tm_mday, tm_hour,
tm_min, and tm_sec components of the struct tm argument. These
components are understood to be relative to the time zone zone , which
defaults to local time.

Note – the numbering of months and years in a struct tm differs from that
used in RWTime arguments.

RWTime(const RWDate& date, const RWCString& str, const
RWZone& zone = RWZone::local(),
const RWLocale& locale =
RWLocale::global());

Constructs a time for the given date, extracting the time from the string str .
The time is understood to be relative to the time zone zone , which defaults to
local time. The specified locale is used for formatting information . Use
function isValid() to check the results.

Note – not all time string errors can be detected by this function.

Public member operators RWTime& operator=(const RWTime&);
Assignment operator, generated by the compiler.

RWTime operator++();
Prefix increment operator. Add one second to self, then return the results.

372 Tools.h++ Class Library

22

RWTime operator--();
Prefix decrement operator. Subtract one second from self, then return the
results.

RWTime operator++(int);
Postfix increment operator. Add one second to self, returning the initial value.

RWTime operator--(int);
Postfix decrement operator. Subtract one second from self, returning the initial
value.

RWTime& operator+=(long s);
Add s seconds to self, returning self.

RWTime& operator-=(long s);
Subtract s seconds from self, returning self.

Public member functions RWCString asString(char format = '\0',
 const RWZone& =
 RWZone::local(), const
 RWLocale& = RWLocale::global())
 const;

Returns self as a string, formatted by the RWLocale argument, with the time
zone adjusted according to the RWZone argument. Formats are as defined by
the standard C library function strftime() . The default format is the date
followed by the time: "%x %X" .

RWBooleanbetween(const RWTime& a, const RWTime& b) const;
Returns TRUE if RWTime is between a and b, inclusive.

size_t binaryStoreSize() const;
Returns the number of bytes necessary to store the object using the global
function

RWFile& operator<<(RWFile&, const RWTime&);

int compareTo(const RWTime* t)
 const;

Comparison function, useful for sorting times. Compares self to the RWTime
pointed to by t and returns:

0 if self == *t ;
1 if self > *t ;

–1 if self < *t .

Class Reference 373

22

void extract(struct tm*, const
 RWZone& = RWZone::local())
 const;

Fills all members of the struct tm argument, adjusted to the time zone
specified by the RWZone argument. If the time is invalid, the struct tm
members are all set to -1.

Note – the encoding of struct tm members is different from that used in
RWTime and RWDate functions.

unsigned hash() const;
Returns a suitable hashing value.

unsigned hour(const RWZone& zone =
 RWZone::local()) const;

Returns the hour, adjusted to the time zone specified.

unsigned hourGMT() const;
Returns the hour in UTC (GMT).

RWBoolean isDST(const RWZone& zone =
 RWZone::local()) const;

Returns TRUE if self is during Daylight Savings Time in the time zone given by
zone, FALSE otherwise.

RWBoolean isValid() const;
Returns TRUE if this is a valid time, FALSE otherwise.

RWTime max(const RWTime& t) const;
Returns the later time of self or t .

RWTime min(const RWTime& t) const;
Returns the earlier time of self or t .

unsigned minute(const RWZone& zone =
 RWZone::local()) const;

Returns the minute, adjusted to the time zone specified.

unsigned minuteGMT() const;
Returns the minute in UTC (GMT).

static RWTime now();
Returns the current time.

374 Tools.h++ Class Library

22

unsigned second() const;
Returns the second; local time or UTC (GMT).

unsigned long seconds() const;
Returns the number of seconds since 00:00:00 January 1, 1901 UTC.

Static public

member functions static RWTime beginDST(unsigned year,
 const RWZone& zone =
 RWZone::local());

Return the start of Daylight Savings Time (DST) for the given year , in the
given time zone. Returns an “invalid time” if DST is not observed in that year
and zone.

static RWTime endDST(unsigned year, const
 RWZone& = RWZone::local());

Return the end of Daylight Savings Time for the given year , in the given time
zone. Returns an “invalid time” if DST is not observed in that year and zone.

Related global operators RWTime operator+(const RWTime& t,
 long s);

RWTime operator+(long s, const
 RWTime& t);

Returns a RWTime s seconds greater than t .

RWTime operator-(const RWTime& t,
 long s);

Returns a RWTime s seconds less than t .

RWBoolean operator<(const RWTime& t1,
 const RWTime& t2);

Returns TRUE if t1 is less than t2 .

RWBoolean operator<=(const RWTime& t1,
 const RWTime& t2);

Returns TRUE if t1 is less than or equal to t2 .

Class Reference 375

22

RWBoolean operator>(const RWTime& t1,
 const RWTime& t2);

Returns TRUE if t1 is greater than t2 .

RWBoolean operator>=(const RWTime& t1,
 const RWTime& t2);

Returns TRUE if t1 is greater than or equal to t2 .

RWBoolean operator==(const RWTime& t1,
 const RWTime& t2);

Returns TRUE if t1 is equal to t2 .

RWBoolean operator!=(const RWTime& t1,
 const RWTime& t2);

Returns TRUE if t1 is not equal to t2 .

ostream& operator<<(ostream& s, const
 RWTime& t);

Outputs the time t on ostream s , according to the locale imbued in the stream
(see class RWLocale), or by RWLocale::global() if none.

RWvostream& operator<<(RWvostream&, const
 RWTime& t);

RWFile& operator<<(RWFile&, const
 RWTime& t);

Saves RWTime t to a virtual stream or RWFile , respectively.

RWvistream& operator>>(RWvistream&,
 RWTime& t);

RWFile& operator>>(RWFile&,
 RWTime& t);

Restores an RWTime into t from a virtual stream or RWFile , respectively,
replacing the previous contents of t .

376 Tools.h++ Class Library

22

RWTimer
Synopsis #include <rw/timer.h>

RWTimer timer;

Description This class can measure elapsed CPU (user) time. The timer has two states:
running and stopped. The timer measures the total amount of time spent in
the "running" state since it was either constructed or reset.

The timer is put into the "running" state by calling member function start() .
It is put into the "stopped" state by calling stop() .

Example This example prints out the amount of CPU time used while looping for 5
seconds (as measured using class RWTime).

#include <rw/timer.h>
#include <rw/rwtime.h>
#include <rw/rstream.h>

main()
{
 RWTimer t;
 t.start();// Start the timer

 RWTime start;
 start.now()// Record starting time

 // Loop for 5 seconds;
 for (RWTime current; current.seconds() - start.seconds() < 5;

current.now())
 {;}

 t.stop()Stop the timer

 cout << t.elapsedTime() << endl;
 return 0;
}

Class Reference 377

22

Program output:

5.054945

Public constructor RWTimer();
Constructs a new timer. The timer will not start running until start() is
called.

double elapsedTime() const;
Returns the amount of (CPU) time that has accumulated while the timer was in
the running state.

void reset();
Resets (and stops) the timer.

void start();
Puts the timer in the "running" state. Time accumulates while in this state.

void stop();
Puts the timer in the "stopped" state. Time will not accumulate while in this
state.

378 Tools.h++ Class Library

22

RWVirtualPageHeap

Synopsis #include <rw/vpage.h>

(Abstract base class)

Description This is an abstract base class representing an abstract page heap of fixed sized
pages. The following describes the model by which specializing classes of this
class are expected to work.

You allocate a page off the abstract heap by calling member function
allocate() which will return a memory "handle", an object of type
RWHandle. This handle logically represents the page.

In order to use the page it must first be "locked" by calling member function
lock() with the handle as an argument. It is the job of the specializing class
of RWVirtualPageHeap to make whatever arrangements are necessary to
swap in the page associated with the handle and bring it into physical memory.
The actual swapping medium could be disk, expanded or extended memory, or
a machine someplace on a network. Upon return, lock() returns a pointer to
the page, now residing in memory.

Once a page is in memory, you are free to do anything you want with it
although if you change the contents, you must call member function dirty()
before unlocking the page.

Locked pages use up memory. In fact, some specializing classes may have only
a fixed number of buffers in which to do their swapping. If you are not using
the page, you should call unlock() . After calling unlock() the original
address returned by lock() is no longer valid—to use the page again, it must
be locked again with lock() .

When you are completely done with the page then call deallocate() to
return it to the abstract heap.

In practice, managing this locking and unlocking and the inevitable type casts
can be difficult. It is usually easier to design a class than can work with an
abstract heap to bring things in and out of memory automatically. Indeed, this
is what has been done with class RWTValVirtualArray<T> , which represents
a virtual array of elements of type T. Elements are automatically swapped in
as necessary as they are addressed.

Class Reference 379

22

Example This example illustrates adding N nodes to a linked list. In this linked list, a
"pointer" to the next node is actually a handle.

Public constructor RWVirtualPageHeap(unsigned pgsize);
Sets the size of a page.

Public destructor virtual ~RWVirtualPageHeap();
The destructor has been made virtual to give specializing classes a chance to
deallocate any resources that they may have allocated.

Public member functions unsigned pageSize() const;
Returns the page size for this abstract page heap.

#include <rw/vpage.h>

struct Node {
 int key;
 RWHandlenext;
};

RWHandle head = 0;

void addNodes(RWVirtualPageHeap& heap, unsigned N) {
 for (unsigned i=0; i<N; i++){

RWHandle h = heap.allocate();
Node* newNode = (Node*)heap.lock(h);
newNode->key = i;
newNode->next = head;
head = h;
heap.dirty(h);
heap.unlock(h);

 }
}

380 Tools.h++ Class Library

22

Public pure virtual functions virtual RWHandle allocate() = 0
Allocates a page off the abstract heap and returns a handle for it. If the
specializing class is unable to honor the request, then it should return a zero
handle.

virtual void deallocate(RWHandle h) = 0;
Dallocate the page associated with handle h. It is not an error to deallocate a
zero handle.

virtual void dirty(RWHandle h) = 0;
Declare the page associated with handle h to be "dirty". That is, it has changed
since it was last locked. The page must be locked before calling this function.

virtual void* lock(RWHandle h) = 0;
Lock the page, swapping it into physical memory, and return an address for it.
A nil pointer will be returned if the specializing class is unable to honor the
lock. The returned pointer should be regarded as pointing to a buffer of the
page size.

virtual void unlock(RWHandle h) = 0;
Unlock a page. A page must be locked before calling this function. After
calling this function the address returned by lock() is no longer valid.

Class Reference 381

22

RWvistream
RWvistream

|
 RWvios

Synopsis #include <rw/vstream.h>

Description Class RWvistream is an abstract base class. It provides an interface for
format-independent retrieval of primitives and arrays of primitives. Its
counterpart, RWvostream , provides a complementary interface for the storage
of these variables.

Because the interface of RWvistream and RWvostream is independent of
formatting, the user of these classes need not be concerned with how variables
will actually be stored or restored. That will be up to the derived class to
decide. It might be done using an operating-system independent ASCII format
(classes RWpistream and RWpostream), a binary format (classes RWbistream
and RWbostream), or the user could define his or her own format (e.g., an
interface to a network). Note that because it is an abstract base class, there is no
way to actually enforce these goals—the description here is merely the model
of how a class derived from RWvistream and RWvostream should act.

See class RWvostream for additional explanations and examples of format-
independent stream storage.

382 Tools.h++ Class Library

22

Example

Public member functions virtual int get() = 0;
Get and return the next char from the input stream, returning its value.
Returns EOF if end of file is encountered.

virtual RWvistream& get(char& c) = 0;
Get the next char from the input stream, returning its value in c .

virtual RWvistream& get(wchar_t& wc) = 0;
Get the next wide char from the input stream, returning its value in wc.

virtual RWvistream& get(unsigned char& c) = 0;
Get the next char from the input stream, returning its value in c .

virtual RWvistream& get(char* v, size_t N) = 0;
Get a vector of char's and store then in the array beginning at v. If the restore
is stopped prematurely, get stores whatever it can in v, and sets the failbit.

Note – The vector is treated as a vector of numbers, not characters. If you wish
to restore a character string, use function getString(char*, size_t) .

virtual RWvistream& get(wchar_t* v, size_t N) = 0;
Get a vector of wide char’s and store then in the array beginning at v. If the
restore is stopped prematurely, get stores whatever it can in v, and sets the
failbit.

#include <rw/vstream.h>
void restoreStuff(RWvistream& str)
{
 int i;
 double d;
 char string[80];
 str >> i; // Restore an int
 str >> d; // Restore a double
 // Restore a character string, up to 80 characters long:
 str.getString(string, sizeof(string));

 if(str.fail()) cerr << "Oh, oh, bad news.\n";
}

Class Reference 383

22

Note – The vector is treated as a vector of numbers, not characters. If you wish
to restore a character string, use function getString(wchar_t*, size_t) .

virtual RWvistream& get(double* v, size_t N) = 0;
Get a vector of double's and store then in the array beginning at v. If the
restore is stopped prematurely, get stores whatever it can in v, and sets the
failbit.

virtual RWvistream& get(float* v, size_t N) = 0;
Get a vector of float's and store then in the array beginning at v. If the restore
is stopped prematurely, get stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(int* v, size_t N) = 0;
Get a vector of int's and store then in the array beginning at v. If the restore is
stopped prematurely, get stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(long* v, size_t N) = 0;
Get a vector of long's and store then in the array beginning at v. If the restore
is stopped prematurely, get stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(short* v, size_t N) = 0;
Get a vector of short's and store then in the array beginning at v. If the restore
is stopped prematurely, get stores whatever it can in v, and sets the failbit.

virtual RWvistream& get(unsigned char* v, size_t
 N) = 0;

Get a vector of unsigned char's and store then in the array beginning at v. If
the restore is stopped prematurely, get stores whatever it can in v, and sets the
failbit.

Note – The vector is treated as a vector of numbers, not characters. If you wish
to restore a character string, use function getString(char*, size_t) .

virtual RWvistream& get(unsigned short* v, size_t
 N) = 0;

Get a vector of unsigned short's and store then in the array beginning at v. If
the restore is stopped prematurely, get stores whatever it can in v, and sets the
failbit.

384 Tools.h++ Class Library

22

virtual RWvistream& get(unsigned int* v, size_t N)
 = 0;

Get a vector of unsigned int's and store then in the array beginning at v. If the
restore is stopped prematurely, get stores whatever it can in v, and sets the
failbit.

virtual RWvistream& get(unsigned long* v, size_t
 N) = 0 ;

Get a vector of unsigned long's and store then in the array beginning at v. If
the restore is stopped prematurely, get stores whatever it can in v, and sets the
failbit.

virtual RWvistream& getString(char* s, size_t N)
 = 0;

Restores a character string from the input stream and stores it in the array
beginning at s . The function stops reading at the end of the string or after N–
1 characters, whichever comes first. If the latter, then the failbit of the stream
will be set. In either case, the string will be terminated with a null byte.

virtual RWvistream& getString(wchar_t* ws, size_t N)
 = 0;

Restores a wide character string from the input stream and stores it in the array
beginning at ws. The function stops reading at the end of the string or after N-
1 characters, whichever comes first. If the latter, then the failbit of the stream
will be set. In either case, the string will be terminated with a null byte.

virtual RWvistream& operator>>(char& c) = 0;
Get the next character from the input stream and store it in c .

virtual RWvistream& operator>>(wchar_t& wc) = 0;
Get the next wide character from the input stream and store it in wc.

virtual RWvistream& operator>>(double& d) = 0;
Get the next double from the input stream and store it in d.

virtual RWvistream& operator>>(float& f) = 0;
Get the next float from the input stream and store it in f .

virtual RWvistream& operator>>(int& i) = 0;
Get the next int from the input stream and store it in i .

virtual RWvistream& operator>>(long& l) = 0;
Get the next long from the input stream and store it in l .

Class Reference 385

22

virtual RWvistream& operator>>(short& s) = 0;
Get the next short from the input stream and store it in s .

virtual RWvistream& operator>>(unsigned char& c) = 0;
Get the next unsigned char from the input stream and store it in c .

virtual RWvistream& operator>>(unsigned short& s) = 0;
Get the next unsigned short from the input stream and store it in s .

virtual RWvistream& operator>>(unsigned int& i) = 0;
Get the next unsigned int from the input stream and store it in i .

virtual RWvistream& operator>>(unsigned long& l) = 0;
Get the next unsigned long from the input stream and store it in l .

386 Tools.h++ Class Library

22

RWvostream
RWvostream

|
 RWv ios

Synopsis #include <rw/vstream.h>

Description Class RWvostream is an abstract base class. It provides an interface for
format-independent storage of primitives and arrays of primitives. Its
counterpart, RWvistream , provides a complementary interface for the
retrieval of these variables.

Because the interface of RWvistream and RWvostream is independent of
formatting, the user of these classes need not be concerned with how variables
will actually be stored or restored. That will be up to the derived class to
decide. It might be done using an operating-system independent ASCII format
(classes RWpistream and RWpostream), a binary format (classes RWbistream
and RWbostream), or the user could define his or her own format (e.g., an
interface to a network).

Note – Because it is an abstract base class, there is no way to actually enforce
these goals—the description here is merely the model of how a class derived
from RWvistream and RWvostream should act.

Note – There is no need to separate variables with whitespace. It is the
responsibility of the derived class to delineate variables with whitespace,
packet breaks, or whatever might be appropriate for the final output sink.

The model is one where variables are inserted into the output stream, either
individually or as homogeneous vectors, to be restored in the same order using
RWvistream .

Storage and retrieval of characters requires some explanation. Characters can
be thought of as either representing some alphanumeric or control character, or
as the literal number. Generally, the overloaded lshift (<<) and rshift (>>)
operators seek to store and restore characters preserving their symbolic
meaning. I.e., storage of a newline should be restored as a newline, regardless

Class Reference 387

22

of its representation on the target machine. By contrast, member functions
get() and put() should treat the character as a literal number, whose value is
to be preserved. See also class RWpostream .

Example

Public operators virtual RWvostream& operator<<(const char* s) = 0;
Store the character string starting at s to the output stream. The character
string is expected to be null terminated.

virtual RWvostream& operator<<(const wchar_t* ws) =
 0;

Store the wide character string starting at ws to the output stream. The
character string is expected to be null terminated.

virtual RWvostream& operator<<(char c) = 0;
Store the char c to the output stream.

Note – c is treated as a character, not a number.

virtual RWvostream& operator<<(wchar_t wc) = 0;
Store the wide char wc to the output stream.

Note – wc is treated as a character, not a number.

#include <rw/vstream.h>
void storeStuff(RWvostream& str)
{
 int i = 5;
 double d = 22.5;
 char string[] = "A string with \t tabs and a newline\n";
 str << i;// Store an int
 str << d;// Store a double
 str << string;// Store a string

 if(str.fail()) cerr << "Oh, oh, bad news.\n";
}

388 Tools.h++ Class Library

22

virtual RWvostream& operator<<(unsigned char c) = 0;
Store the unsigned char c to the output stream.

Note – c is treated as a character, not a number.

virtual RWvostream& operator<<(double d) = 0;
Store the double d to the output stream.

virtual RWvostream& operator<<(float f) = 0;
Store the float f to the output stream.

virtual RWvostream& operator<<(int i) = 0;
Store the int i to the output stream.

virtual RWvostream& operator<<(unsigned int i) = 0;
Store the unsigned int i to the output stream.

virtual RWvostream& operator<<(long l) = 0;
Store the long l to the output stream.

virtual RWvostream& operator<<(unsigned long l) = 0;
Store the unsigned long l to the output stream.

virtual RWvostream& operator<<(short s) = 0;
Store the short s to the output stream.

virtual RWvostream& operator<<(unsigned short s)
 = 0;

Store the unsigned short s to the output stream.

Public member functions virtual RWvostream&put(char c) = 0;
Store the char c to the output stream, preserving its value.

virtual RWvostream& put(wchar_t wc) = 0;
Store the wide char wc to the output stream, preserving its value.

virtual RWvostream& put(unsigned char c) = 0;
Store the char c to the output stream, preserving its value.

virtual RWvostream& put(const char* p, size_t N)
 = 0;

Store the vector of chars starting at p to the output stream. The chars should
be treated as literal numbers (i.e., not as a character string).

Class Reference 389

22

virtual RWvostream& put(const wchar_t* p, size_t N)
 = 0;

Store the vector of wide chars starting at p to the output stream. The chars
should be treated as literal numbers (i.e., not as a character string).

virtual RWvostream& put(const unsigned char* p,
 size_t N) = 0;

Store the vector of unsigned chars starting at p to the output stream. The chars
should be treated as literal numbers (i.e., not as a character string).

virtual RWvostream& put(const short* p, size_t N)
 = 0;

Store the vector of shorts starting at p to the output stream.

virtual RWvostream& put(const unsigned short* p,
 size_t N) = 0;

Store the vector of unsigned shorts starting at p to the output stream.

virtual RWvostream& put(const int* p, size_t N)
 = 0;

Store the vector of ints starting at p to the output stream.

virtual RWvostream& put(const unsigned int* p,
 size_t N) = 0;

Store the vector of unsigned ints starting at p to the output stream.

virtual RWvostream& put(const long* p, size_t N)
 = 0;

Store the vector of longs starting at p to the output stream.

virtual RWvostream& put(const unsigned long* p,
 size_t N) = 0;

Store the vector of unsigned longs starting at p to the output stream.

virtual RWvostream& put(const float* p, size_t N)
 = 0;

Store the vector of floats starting at p to the output stream.

virtual RWvostream& put(const double* p, size_t N)
 = 0;

Store the vector of doubles starting at p to the output stream.

390 Tools.h++ Class Library

22

RWWString

Note Solaris 2.x systems only.

Synopsis #include <rw/wstring.h>

RWWString a;

Description Class RWWString offers very powerful and convenient facilities for
manipulating wide character strings.

This string class manipulates wide characters of the Standard C type wchar_t .
These characters are generally two or four bytes, and can be used to encode
richer code sets than the classic "char" type. Because wchar_t characters are
all the same size, indexing is fast.

Conversion to and from multibyte and ASCII forms are provided by the
RWWString constructors, and by the RWWString member functions
isAscii(), toAscii(), and toMultiByte() .

Stream operations implicitly translate to and from the multibyte stream
representation. That is, on output, wide character strings are converted into
multibyte strings, while on input they are converted back into wide character
strings. Hence, the external representation of wide character strings is usually
as multibyte character strings, saving storage space and making interfaces with
devices (which usually expect multibyte strings) easier.

Class RWWString tolerates embedded nulls.

Note – Parameters of type const wchar_t* must not be passed a value of
zero. This is detected in the debug version of the library.

The class is implemented using a technique called copy on write. With this
technique, the copy constructor and assignment operators still reference the
old object and hence are very fast. An actual copy is made only when a
“write” is performed, that is if the object is about to be changed. The net result
is excellent performance, but with easy-to-understand copy semantics.

Class Reference 391

22

A separate RWWSubString class supports substring extraction and
modification operations.

Example

Program output:

There is no joy in Redmond.

Enumerations enum RWWString::caseCompare { exact, ignoreCase } ;
Used to specify whether comparisons, searches, and hashing functions should
use case sensitive (exact) or case-insensitive (ignoreCase) semantics.

enum RWWString::multiByte_ { multiByte };
Allows conversion from multibyte character strings to wide character strings.
See constructor below.

enum RWWString::ascii_ {ascii };
Allows conversion from Ascii character strings to wide character strings. See
constructor below.

Public constructors RWWString() ;
Creates a string of length zero (the null string).

RWWString(const wchar_t* cs) ;
Conversion from the null-terminated character string cs . The created string
will copy the data pointed to by cs , up to the first terminating null.

#include <rw/rstream.h>
#include <rw/wstring.h>

main()
{
 RWWString a(L"There is no joy in Beantown.");
 a.subString(L"Beantown") = L"Redmond";
 cout << a << endl;
 return 0;
}

392 Tools.h++ Class Library

22

RWWString(const wchar_t* cs, size_t N) ;
Constructs a string from the character string cs . The created string will copy
the data pointed to by cs . Exactly N characters are copied, including any
embedded nulls. Hence, the buffer pointed to by cs must be at least N bytes
long.

RWWString(RWSize_T ic)
Creates a string of length zero (the null string). The strings capacity (that is, the
size it can grow to without resizing) is given by the parameter ic .

RWWString(const RWWString& str) ;
Copy constructor. The created string will copy str ’s data.

RWWString(const RWWSubString& ss) ;
Conversion from sub-string. The created string will copy the substring
represented by ss .

RWWString(wchar_c c);
Constructs a string containing the single character c .

RWWString(wchar_c c, size_t N) ;
Constructs a string containing the character c repeated N times.

RWWString(const char* mbcs, multiByte_ mb);
Construct a wide character string from the multibyte character string contained
in mbcs. The conversion is done using the Standard C library function
::mbstowcs() . This constructor can be used as follows:

RWWString a(“\306\374\315\313\306\374”, multiByte);

RWWString(const char* acs, ascii_ asc);
Construct a wide character string from the ASCII character string contained in
acs . The conversion is done with the assumption that the given string
contains only ASCII characters, so it is much faster than the more general
constructor given above. For this conversion to be successful, you must be
certain that the string contains only ASCII characters. This can be confirmed
(if necessary) using RWCString::isAscii() . This constructor can be used as
follows:

RWWString a(“An ASCII charater string”, ascii);

Class Reference 393

22

RWWString(const char* cs, size_t N, multiByte_ mb);
RWWString(const char* cs, size_t N, ascii__ asc);
These two constructors are similar to the two constructors immediately above
except that they copy exactly N characters, including any embedded nulls. Hence,
the buffer pointed to by cs must be at least N bytes long.

RWWString(const RWCString& cs, multiByte_ mb);
Construct a wide character string from the multibyte string contained in cs .

RWWString(const RWCString& cs, ascii_ asc);
Construct a wide character string from the ASCII string contained in cs . The
conversion is done with the assumption that the given string contains only
ASCII characters, so it is much faster than the more general constructor above.

Type conversion operator const wchar_t*() const ;
Access to the RWWString ’s data as a null terminated string. This datum is
owned by the RWWString and may not be deleted or changed. If the
RWWString object itself changes or goes out of scope, the pointer value
previously returned may (will!) become invalid. While the string is null-
terminated, note that its length is still given by the member function length() .
That is, it may contain embedded nulls.

Assignment operators RWWString& operator=(const wchar_t* cs);
Assignment operator. Copies the null-terminated character string pointed to
by cs into self. Returns a reference to self.

RWWString& operator=(const RWWString& str) ;
Assignment operator. The string will copy str ’s data. Returns a reference to
self.

RWWString& operator+=(const wchar_t* cs) ;
Append the null-terminated character string pointed to by cs to self. Returns
a reference to self.

RWWString& operator+=(const RWWString& str) ;
Append the string str to self. Returns a reference to self.

Indexing operators wchar_t& operator[](size_t i);
wchar_t operator[](size_t i) const ;
Return the i ’th character. The first variant can be used as an lvalue. The index

394 Tools.h++ Class Library

22

i must be between 0 and the length of the string less one. Bounds checking is
performed—if the index is out of range then an exception of type
RWBoundsErr will be thrown.

wchar_t& operator()(size_t i);
wchar_t operator()(size_t i) const ;
Return the i’th character. The first variant can be used as an lvalue. The index
i must be between 0 and the length of the string less one. Bounds checking is
performed if the pre-processor macro RWBOUNDS_CHECK has been defined
before including <rw/wstring.h> . In this case, if the index is out of range,
then an exception of type RWBoundsErr will be thrown.

RWWSubString operator()(size_t start, size_t len);
const RWWSubString operator()(size_t start, size_t len)

 const ;
Substring operator. Returns an RWWSubString of self with length len ,
starting at index start . The first variant can be used as an lvalue. The sum of
start plus len must be less than or equal to the string length. If the library
was built using the RWDEBUG flag, and start and len are out of range, then
an exception of type RWBoundsErr will be thrown.

Public member functions RWWString& append(const wchar_t* cs);
Append a copy of the null-terminated character string pointed to by cs to self.
Returns a reference to self.

RWWString& append(const wchar_t* cs, size_t N) ;
Append a copy of the character string cs to self. Exactly N characters are
copied, including any embedded nulls. Hence, the buffer pointed to by cs must
be at least N bytes long. Returns a reference to self.

RWWString& append(const RWWString& cstr) ;
Append a copy of the string cstr to self. Returns a reference to self.

RWWString& append(const RWWString& cstr, size_t
 N);

Append the first N characters or the length of cstr (whichever is less) of cstr
to self. Returns a reference to self.

size_t binaryStoreSize() const ;
Returns the number of bytes necessary to store the object using the global
function

RWFile& operator<<(RWFile&, const RWWString&) ;

Class Reference 395

22

size_t capacity() const;
Return the current capacity of self. This is the number of characters the string
can hold without resizing.

size_t capacity(size_t capac);
Hint to the implementation to change the capacity of self to capac . Returns
the actual capacity.

int collate(const RWWString& str) const;
int collate(const wchar_t* str) const;
Returns an int less then, greater than, or equal to zero, according to the result
of calling the POSIX function ::wscoll() on self and the argument str . This
supports locale-dependent collation.

int compareTo(const RWWString& str,
caseCompare = exact) const;

int compareTo(const wchar_t* str,
caseCompare = exact) const;

Returns an int less than, greater than, or equal to zero, according to the result
of calling the Standard C library function ::memcmp() on self and the
argument str . Case sensitivity is according to the caseCompare argument,
and may be RWWString::exact or RWCString::ignoreCase .

RWBoolean contains(const RWWString& cs,
caseCompare = exact) const;

RWBoolean contains(const wchar_t* str,
caseCompare = exact) const ;

Pattern matching. Returns TRUE if cs occurs in self. Case sensitivity is
according to the caseCompare argument, and may be RWWString::exact
or RWWString::ignoreCase .

const wchar_t* data() const ;
Access to the RWWString ’s data as a null terminated string. This datum is
owned by the RWWString and may not be deleted or changed. If the
RWWString object itself changes or goes out of scope, the pointer value
previously returned may (will!) become invalid. While the string is null-
terminated, note that its length is still given by the member function
length() . That is, it may contain embedded nulls. .

size_t first(wchar_t c) const;
Returns the index of the first occurence of the character c in self. Returns
RW_NPOS if there is no such character.

396 Tools.h++ Class Library

22

unsigned hash(caseCompare = exact) const;
Returns a suitable hash value.

size_t index(const wchar_t* pat, size_t
i=0, caseCompare = exact) const;

size_t index(const RWWString& pat, size_t
i=0, caseCompare = exact) const;

Pattern matching. Starting with index i, searches for the first occurrence of pat
in self and returns the index of the start of the match. Returns RW_NPOS if
there is no such pattern. Case sensitivity is according to the caseCompare
argument; it defaults to RWWString::exact .

size_t index(const wchar_t* pat, size_t
patlen, size_t i, caseCompare)
const;

size_t index(const RWWString& pat, size_t
patlen, size_t i, caseCompare)
const;

Pattern matching. Starting with index i , searches for the first occurrence of the
first patlen characters from pat in self and returns the index of the start of
the match. Returns RW_NPOS if there is no such pattern. Case sensitivity is
according to the caseCompare argument.

RWWString& insert(size_t pos, const wchar_t* cs);
Insert a copy of the null-terminated string cs into self at position pos . Returns
a reference to self.

RWWString& insert(size_t pos, const wchar_t* cs,
size_t N);

Insert a copy of the first N characters of cs into self at position pos . Exactly N
characters are copied, including any embedded nulls. Hence, the buffer pointed
to by cs must be at least N bytes long. Returns a reference to self.

RWWString& insert(size_t pos, const RWWString&
str);

Insert a copy of the string str into self at position pos . Returns a reference to
self.

RWWString& insert(size_t pos, const RWWString&
str, size_t N);

Insert a copy of the first N characters or the length of str (whichever is less) of
str into self at position pos . Returns a reference to self.

Class Reference 397

22

RWBoolean isAscii() const;
Returns TRUE if it is safe to perform the conversion toAscii() (that is, if all
characters of self are ASCII characters).

RWBoolean isNull() const;
Returns TRUE if this is a zero lengthed string (i.e., the null string).

size_t last(wchar_t c) const ;
Returns the index of the last occurrence in the string of the character c .
Returns RW_NPOS if there is no such character.

size_t length() const ;
Return the number of characters in self.

RWWString& prepend(const wchar_t* cs);
Prepend a copy of the null-terminated character string pointed to by cs to self.
Returns a reference to self.

RWWString& prepend(const wchar_t* cs, size_t N,);
Prepend a copy of the character string cs to self. Exactly N characters are
copied, including any embedded nulls. Hence, the buffer pointed to by cs must
be at least N bytes long. Returns a reference to self.

RWWString& prepend(const RWWString& str);
Prepends a copy of the string str to self. Returns a reference to self.

RWWString& prepend(const RWWString& cstr, size_t
N);

Prepend the first N characters or the length of cstr (whichever is less) of cstr
to self. Returns a reference to self.

istream& readFile(istream& s);
Reads characters from the input stream s , replacing the previous contents of
self, until EOF is reached. The input stream is treated as a sequence of
multibyte characters, each of which is converted to a wide character (using the
Standard C library function mbtowc()) before storing. Null characters are
treated the same as other characters.

istream& readLine(istream& s, RWBoolean
skipWhite = TRUE) ;

Reads characters from the input stream s , replacing the previous contents of
self, until a newline (or an EOF) is encountered. The newline is removed from
the input stream but is not stored. The input stream is treated as a sequence of
multibyte characters, each of which is converted to a wide character (using the

398 Tools.h++ Class Library

22

Standard C library function mbtowc()) before storing. Null characters are
treated the same as other characters. If the skipWhite argument is TRUE, then
whitespace is skipped (using the iostream library manipulator ws) before
saving characters.

istream& readString(istream& s) ;
Reads characters from the input stream s , replacing the previous contents of
self, until an EOF or null terminator is encountered. The input stream is
treated as a sequence of multibyte characters, each of which is converted to a
wide character (using the Standard C library function mbtowc()) before
storing.

istream& readToDelim(istream&, wchar_t
delim=(wchar_t)'\n') ;

Reads characters from the input stream s , replacing the previous contents of
self, until an EOF or the delimiting character delim is encountered. The
delimiter is removed from the input stream but is not stored. The input stream
is treated as a sequence of multibyte characters, each of which is converted to a
wide character (using the Standard C library function mbtowc()) before
storing. Null characters are treated the same as other characters.

istream& readToken(istream& s);
Whitespace is skipped before saving characters. Characters are then read from
the input stream s , replacing previous contents of self, until trailing whitespace
or an EOF is encountered. The whitespace is left on the input stream. Only
ASCII whitespace characters are recognized, as defined by the standard C
library function isspace() . The input stream is treated as a sequence of
multibyte characters, each of which is converted to a wide character (using the
Standard C library function mbtowc()) before storing.

RWWString& remove(size_t pos);
Removes the characters from the position pos to the end of string. Returns a
reference to self.

RWWString& remove(size_t pos, size_t N);
Removes N characters or to the end of string (whichever comes first) starting at
the position pos . Returns a reference to self.

Class Reference 399

22

RWWString& replace(size_t pos, size_t N, const
wchar_t* cs);

Replaces N characters or to the end of string (whichever comes first) starting at
position pos with a copy of the null-terminated string cs . Returns a reference
to self.

RWWString& replace(size_t pos, size_t N1,
const wchar_t* cs, size_t N2);

Replaces N1 characters or to the end of string (whichever comes first) starting
at position pos with a copy of the string cs . Exactly N2 characters are copied,
including any embedded nulls. Hence, the buffer pointed to by cs must be at
least N2 bytes long. Returns a reference to self.

RWWString& replace(size_t pos, size_t N, const
RWWString& str);

Replaces N characters or to the end of string (whichever comes first) starting at
position pos with a copy of the string str . Returns a reference to self.

RWWString& replace(size_t pos, size_t N1,
const RWWString& str, size_t N2);

Replaces N1 characters or to the end of string (whichever comes first) starting
at position pos with a copy of the first N2 characters, or the length of str
(whichever is less), from str . Returns a reference to self.

void resize(size_t n);
Changes the length of self, adding blanks (i.e., W' ') or truncating as
necessary.

RWWSubString strip(stripType s = trailing,
wchar_t c=L’ ’) ;

Returns a substring of self where the character c has been stripped off the
beginning, end, or both ends of the string. The enum stripType can take
values:

stripType Meaning
leading Remove characters at beginning
trailing Remove characters at end
both Remove characters at both ends

RWWSubString subString(const wchar_t* cs,size_t
start=0, caseCompare=exact);

const RWWSubString subString(const wchar_t* cs, size_t
start=0, caseCompare=exact) const;

400 Tools.h++ Class Library

22

Returns a substring representing the first occurence of the null-terminated
string pointed to by "cs ". Case sensitivity is according to the caseCompare
argument; it defaults to RWWString::exact .

RWCString toAscii() const;
Returns an RWCString object of the same length as self, containing only ASCII
characters. Any non-ASCII characters in self simply have the high bits
stripped off. Use isAscii() to determine whether this function is safe to use.

RWCString toMultiByte() const;
Returns an RWCString containing the result of applying the standard C library
function wcstombs() to self. This function is always safe to use.

void toLower() ;
Changes all upper-case letters in self to lower-case. Uses the C library function
towlower() .

void toUpper() ;
Changes all lower-case letters in self to upper-case. Uses the C library function
towupper() .

Static public

member functions static size_t initialCapacity(size_t ic = 15);
Sets the minimum initial capacity of an RWWString , and returns the old value.
The initial setting is 15 characters. Larger values will use more memory, but
result in fewer resizes when concatenating or reading strings. Smaller values
will waste less memory, but result in more resizes.

static size_t maxWaste(size_t mw = 15);
Sets the maximum amount of unused space allowed in a string should it
shrink, and returns the old value. The initial setting is 15 characters. If more
than mw characters are wasted, then excess space will be reclaimed.

static size_t resizeIncrement(size_t ri = 16);
Sets the resize increment when more memory is needed to grow a string.
Returns the old value. The initial setting is 16 characters.

It’s not safe to modify initialCapacity , maxWaste , or resizeIncrement
when more than one thread is present.

Related global operators RWBoolean operator==(const RWWString&, const
wchar_t*);

RWBoolean operator==(const wchar_t*, const

Class Reference 401

22

RWWString&);
RWBoolean operator==(const RWWString&, const

RWWString&);
RWBoolean operator!=(const RWWString&, const

wchar_t*);
RWBoolean operator!=(const wchar_t*, const

RWWString&);
RWBoolean operator!=(const RWWString&, const

RWWString&);
Logical equality and inequality. Case sensitivity is exact.

RWBoolean operator< (const RWWString&, const
wchar_t*);

RWBoolean operator< (const wchar_t*, const
RWWString&);

RWBoolean operator< (const RWWString&, const
RWWString&);

RWBoolean operator> (const RWWString&, const
wchar_t*);

RWBoolean operator> (const wchar_t*, const
RWWString&);

RWBoolean operator> (const RWWString&, const
RWWString&);

RWBoolean operator<= (const RWWString&, const
wchar_t*);

RWBoolean operator<= (const wchar_t*, const
RWWString&);

RWBoolean operator<= (const RWWString&, const
RWWString&);

RWBoolean operator>= (const RWWString&, const
wchar_t*);

RWBoolean operator>= (const wchar_t*, const
RWWString&);

RWBoolean operator>= (const RWWString&, const
RWWString&);

Comparisons are done lexicographically, byte by byte. Case sensitivity is exact.
Use member collate() or strxfrm() for locale sensitivity.

RWWString operator+(const RWWString&, const
RWWString&);

RWWString operator+(const wchar_t*, const

402 Tools.h++ Class Library

22

RWWString&);
RWWString operator+(const RWWString&, const

wchar_t*);
Concatenation operators.

ostream& operator<<(ostream& s, const
RWWString& str);

Output an RWWString on ostream s . Each character of str is first converted
to a multibyte character before being shifted out to s .

istream& operator>>(istream& s, RWWString&
str);

Calls str.readToken(s) . That is, a token is read from the input stream s .

RWvostream& operator<<(RWvostream&, const
RWWString& str);

RWFile& operator<<(RWFile&, const
RWWString& str);

Saves string str to a virtual stream or RWFile , respectively.

RWvistream& operator>>(RWvistream&, RWWString&
str);

RWFile& operator>>(RWFile&, RWWString&
str);

Restores a wide character string into str from a virtual stream or RWFile ,
respectively, replacing the previous contents of str .

Related global functions RWWString strXForm(const RWWString&);
Returns a string transformed by ::wsxfrm() , to allow quicker collation than
RWWString::collate() .

RWWString toLower(const RWWString& str);
Returns a version of str where all upper-case characters have been replaced
with lower-case characters. Uses the C library function towlower() .

RWWString toUpper(const RWWString& str);
Returns a version of str where all lower-case characters have been replaced
with upper-case characters. Uses the C library function towupper() .

Class Reference 403

22

RWWSubString

Note Solaris 2.x systems only.

Synopsis #include <rw/wstring.h>
RWWString s(L"test string");
s(6,3); // "tri"

Description The class RWWSubString allows some subsection of a RWWString to be
addressed by defining a starting position and an extent. For example the 7'th
through the 11'th elements, inclusive, would have a starting position of 7 and
an extent of 5. The specification of a starting position and extent can also be
done in your behalf by such functions as RWWString::strip() or the
overloaded function call operator taking a regular expression as an argument.
There are no public constructors—RWWSubStrings are constructed by various
functions of the RWWString class and then destroyed immediately.

A zero lengthed substring is one with a defined starting position and an extent
of zero. It can be thought of as starting just before the indicated character, but
not including it. It can be used as an lvalue. A null substring is also legal and
is frequently used to indicate that a requested substring, perhaps through a
search, does not exist. A null substring can be detected with member function
isNull() . However, it cannot be used as an lvalue.

Example

Program output:

#include <rw/rstream.h>
#include <rw/wstring.h>
main()
{
 RWWString s(L"What I tell you is true.");
 // Create a substring and use it as an lvalue:
 s(19,0) = RWWString(L"three times");
 cout << s << endl;
 return 0;
}

404 Tools.h++ Class Library

22

What I tell you is three times true.

Assignment operators void operator=(const RWWString&);
Assignment to a RWWString . The statements:

RWWString a;
RWWString b;
...
b(2, 3) = a;

will copy a’s data into the substring b(2,3). The number of elements need not
match: if they differ, b will be resized appropriately. If self is the null
substring, then the statement has no effect.

void operator=(const wchar_t*);
Assignment from a wide character string. Example:

RWWString a(L"Mary had a little lamb");
wchar_t dat[] = L"Perrier";
a(11,4) = dat; // "Mary had a Perrier"

Note – the number of characters selected need not match: if they differ, a will
be resized appropriately. If self is the null substring, then the statement has no
effect.

Indexing operators wchar_t operator[](size_t i);
cchar_t& operator[](size_t i) const;
Returns the i’th character of the substring. The first variant can be used as an
lvalue, the second cannot. The index i must be between zero and the length of
the substring, less one. Bounds checking is performed: if the index is out of
range, then an exception of type RWBoundsErr will be thrown.

wchar_t operator()(size_t i);
wchar_t& operator()(size_t i) const;
Returns the i’th character of the substring. The first variant can be used as an
lvalue, the second cannot. The index i must be between zero and the length of
the substring, less one. Bounds checking is enabled by defining the pre-
processor macro RWBOUNDS_CHECK before including <rw/wstring.h >. In
this case, if the index is out of range, then an exception of type RWBoundsErr
will be thrown.

Class Reference 405

22

Public member functions RWBoolean isNull() const;
Returns TRUE if this is a null substring.

size_t length() const;
Returns the extent (i.e., length) of the RWWSubString .

RWBoolean operator!() const;
Returns TRUE if this is a null substring.

size_t start() const;
Returns the starting element of the RWWSubString .

void toLower();
Changes all upper-case letters in self to lower-case. Uses the C library function
towlower() .

void toUpper();
Changes all lower-case letters in self to upper-case. Uses the C library function
towupper() .

Global logical operators RWBoolean operator==(const RWWSubString&, const
RWWSubString&);

RWBoolean operator==(const RWWString&, const
RWWSubString&);

RWBoolean operator==(const RWWSubString&, const
RWWString&);

RWBoolean operator==(const wchar_t*, const
RWWSubString&);

RWBoolean operator==(const RWWSubString&, const
wchar_t*);

Returns TRUE if the substring is lexicographically equal to the character string
or RWWString argument. Case sensitivity is exact.

RWBoolean operator!=(const RWWString& const
RWWString&);

RWBoolean operator!=(const RWWString&, const
RWWSubString&);

RWBoolean operator!=(const RWWSubString&, const
RWWString&);

RWBoolean operator!=(const wchar_t*, const
RWWString&);

406 Tools.h++ Class Library

22

RWBoolean operator!=(const RWWString&, const
wchar_t*);

Returns the negation of the respective operator==() .

Class Reference 407

22

RWWTokenizer

Note Solaris 2.x systems only.

Synopsis #include <rw/wtoken.h>
RWWString str("a string of tokens", RWWString::ascii);
RWWTokenizer(str); // Lex the above string

Description Class RWWTokenizer is designed to break a string up into separate tokens,
delimited by an arbitrary “white space”. It can be thought of as an iterator for
strings and as an alternative to the C library function wstok () which has the
unfortunate side effect of changing the string being tokenized.

Example

Program output:

Something
is
rotten
in
the

#include <rw/wtoken.h>
#include <rw/rstream.h>

main()
{

RWWString a(L"Something is rotten in the state of Denmark");

RWWTokenizer next(a); // Tokenize the string a

RWWString token; // Will receive each token

// Advance until the null string is returned:
while (!(token=next()).isNull())

cout << token << "\n";
}

408 Tools.h++ Class Library

22

state
of
Denmark

Public constructor RWWTokenizer(const RWWString& s);
Construct a tokenizer to lex the string s .

Public member function RWWSubString operator()(const wchar_t* s =L" \t\n");
Advance to the next token and return it as a substring. The tokens are
considered to be deliminated by any of the characters in s .

Class Reference 409

22

RWXDRistream
RWXDRistream

| |
RWvistream RWios

 |
 RWvios

Synopsis #include <rw/xdrstrea.h>

XDR xdr;
xdrstdio_create(&xdr, stdin, XDR_DECODE);
RWXDRistream rw_xdr(&xdr);

Description Class RWXDRistream is a portable input stream based on XDR routines. Class
RWXDRistream encapsulates a portion of the XDR library routines that are
used for external data representation. XDR routines allow programmers to
describe arbitrary data structures in a machine-independent fashion. Data for
remote procedure calls (RPC) are transmitted using XDR routines.

Class RWXDRistream enables one to decode an XDR structure to a machine
representation. Class RWXDRistream provides the capability to decode all the
standard data types and vectors of those data types.

An XDR stream must first be created by calling the appropriate creation
routine. XDR streams currently exist for encoding/decoding of data to or from
standard I/O FILE streams, TCP/IP connections and Unix files, and memory.
These creation routines take arguments that are tailored to the specific
properties of the stream. After the XDR stream has been created, it can then be
used as the argument to the constructor for a RWXDRistream object.

RWXDRistream can be interrogated as to the status of the stream using
member functions bad() , clear() , eof() , fail() , good() , and
rdstate() . See RWvistream for more information on the semantics of
individual member functions.

Example The example that follows is a “reader” program that decodes an XDR structure
from a FILE stream. The example for class RWXDRostream is the “writer”
program that encodes the XDR structures onto the FILE stream.

410 Tools.h++ Class Library

22

Applications using XDR must link (on SunOS 5.x) with libnsl ..

Public constructors RWXDRistream(XDR* xp);
Initialize an RWXDRistream from the XDR structure xp.

Public member functions virtual int get();
Redefined from class RWvistream . Gets and return the next character from the
XDR input stream. If the operation fails, it sets the failbit and returns EOF.

virtual RWvistream& get(char& c);
Redefined from class RWvistream . Gets the next character from the XDR input
stream and stores it in c . If the operation fails, it sets the failbit.

virtual RWvistream& get(wchar_t& wc);
Redefined from class RWvistream . Gets the next wide character from the XDR
input stream and stores it in wc. If the operation fails, it sets the failbit.

#include “rw/xdrstrea.h”
#include “rw/rstream.h”
#include <stdio.h>

main()
{
 XDR xdr;
 FILE* fp = fopen(“test”,”r+”);
 xdrstdio_create(&xdr, fp, XDR_DECODE);

 RWXDRistream rw_xdr(&xdr);

 int data;
 for(int i=0; i<10; ++i)
 {
 rw_xdr >> data; // decode integer data
 if(data == i)
 cout << data << endl;
 else
 cout << “Bad input value” << endl;
 }
 fclose(fp);
}

Class Reference 411

22

virtual RWvistream& get(unsigned char& c);
Redefined from class RWvistream . Gets the next unsigned character from the
XDR input stream and stores it in c . If the operation fails, it sets the failbit.

virtual RWvistream& get(char* v, size_t N);
Redefined from class RWvistream . Gets a vector of characters from the XDR
input stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(unsigned char* v, size_t N);
Redefined from class RWvistream . Gets a vector of unsigned characters from
the XDR input stream and stores them in v. If the operation fails, it sets the
failbit.

virtual RWvistream& get(double* v, size_t N);
Redefined from class RWvistream . Gets a vector of doubles from the XDR
input stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(float* v, size_t N);
Redefined from class RWvistream . Gets a vector of floats from the XDR input
stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(int* v, size_t N);
Redefined from class RWvistream . Gets a vector of integers from the XDR
input stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(unsigned int* v, size_t N);
Redefined from class RWvistream . Gets a vector of unsigned integers from the
XDR input stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(long* v, size_t N);
Redefined from class RWvistream . Gets a vector of longs from the XDR input
stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(unsigned long* v, size_t N);
Redefined from class RWvistream . Gets a vector of unsigned longs from the
XDR input stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(short* v, size_t N);
Redefined from class RWvistream . Gets a vector of shorts from the XDR input
stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& get(unsigned short* v, size_t N) ;
Redefined from class RWvistream . Gets a vector of unsigned shorts from the
XDR input stream and stores them in v. If the operation fails, it sets the failbit.

412 Tools.h++ Class Library

22

virtual RWvistream& get(wchar_t* v, size_t N);
Redefined from class RWvistream . Gets a vector of wide characters from the
XDR input stream and stores them in v. If the operation fails, it sets the failbit.

virtual RWvistream& getString(char* s, size_t
 maxlen);

Redefined from class RWvistream . Restores a character string from the XDR
input stream and stores them in the array starting at s . The function stops
reading at the end of the string or after maxlen-1 characters, whichever comes
first. If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(char& c);
Redefined from class RWvistream . Gets the next character from the XDR input
stream and stores it in c . If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(double& d);
Redefined from class RWvistream . Gets the next double from the XDR input
stream and stores it in d. If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(float& f);
Redefined from class RWvistream . Gets the next float from the XDR input
stream and stores it in f . If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(int& i);
Redefined from class RWvistream . Gets the next integer from the XDR input
stream and stores it in i . If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(long& l);
Redefined from class RWvistream . Gets the next long from the XDR input
stream and stores it in l . If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(short& s);
Redefined from class RWvistream . Gets the next short from the XDR input
stream and stores it in s . If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(wchar_t& wc);
Redefined from class RWvistream . Gets the next wide character from the XDR
input stream and stores it in wc. If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(unsigned char& c);
Redefined from class RWvistream . Gets the next unsigned character from the
XDR input stream and stores it in c . If the operation fails, it sets the failbit.

Class Reference 413

22

virtual RWvistream& operator>>(unsigned int& i);
Redefined from class RWvistream . Gets the next unsigned integer from the
XDR input stream and stores it in i . If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(unsigned long& l);
Redefined from class RWvistream. Gets the next unsigned long from the XDR
input stream and stores it in l. If the operation fails, it sets the failbit.

virtual RWvistream& operator>>(unsigned short& s);
Redefined from class RWvistream . Gets the next unsigned short from the XDR
input stream and stores it in s . If the operation fails, it sets the failbit.

Related Global Functions int xdr(XDR* xp, RWCollectable*& cp);
This can be passed to functions that expect an “XDR function”. The behavior
depends on the direction of the XDR stream argument. For direction
XDR_ENCODE, cp is transmitted via xp by recursiveSaveOn . For direction
XDR_DECODE, an object or family of objects is allocated by calling
RWCollectable::recursiveRestoreFrom , and a pointer to the object(s) is
stored into cp. Direction XDR_FREE does nothing.

When restoring objects, this function allocates storage that the caller must free.
You should cp to the null pointer before using this to restore objects. If built
with RWDEBUG, the function will check this condition to help remind you to
free the storage.

Example This example shows how you might write an RPC server program using the
function xdr. This receives and prints the string passed to it by an RPC client
program.

#include <unistd.h>
#include <iostream.h>
#include <rpc/rpc.h>
#include <rw/xdrstream.h>
#include <rw/collstr.h>

const unsigned long DEMOPROG = 0x20000dad;
const unsigned long DEMOVERS = 1;
const unsigned long DEMOPROC = 1;
typedef void *(*rpcproc_t)(XDR*, void*);

extern “C” {
bool_t rpc_reg(const unsigned long, const unsigned
 long, const unsigned long,
 const rpcproc_t, const xdrproc_t,

414 Tools.h++ Class Library

22

 const xdrproc_t,
 const char *);
};

static RWCollectableString dummy(
 “Starting the object RPC server”);

int& demo(RWCollectable*& xp, svc_req&) {
 static int value;
 if (xp->isA() == __RWCOLLECTABLESTRING) {
 cout << (RWCollectableString&)*xp << endl;
 free xp; xp = 0;
 value = 1;
 }
 value = 0;
 return value;
}

main() {
 if (rpc_reg(DEMOPROG, DEMOVERS, DEMOPROC,
 (rpcproc_t)demo, (xdrproc_t)xdr,
 (xdrproc_t)xdr_int, “visible”) == -1) {
 cerr << “Couldn’t register\n”;
 exit(1);
 }

 cout << dummy << endl;

 svc_run();
 cerr << “Error: svc_run returned!\n”;
 exit(1);
 return 0;
}

Class Reference 415

22

RWXDRostream
RWXDRostream

| |
RWvostream RWios

|
 RWv ios

Synopsis #include <rw/xdrstrea.h>

XDR xdr;
xdrstdio_create(&xdr, stdout, XDR_ENCODE);
RWXDRostream rw_xdr(&xdr);

Description Class RWXDRostream is a portable output stream based on XDR routines.
Class RWXDRostream encapsulates a portion of the XDR library routines that
are used for external data representation. XDR routines allow programmers to
describe arbitrary data structures in a machine-independent fashion. Data for
remote procedure calls (RPC) are transmitted using XDR routines.

Class RWXDRostream enables one to output from a stream and encode an XDR
structure from a machine representation. Class RWXDRostream provides the
capability to encode the standard data types and vectors of those data types.

An XDR stream must first be created by calling the appropriate creation
routine. XDR streams currently exist for encoding/decoding of data to or from
standard I/O FILE streams, TCP/IP connections and Unix files, and memory.
These creation routines take arguments that are tailored to the specific
properties of the stream. After the XDR stream has been created, it can then be
used as an argument to the constructor for a RWXDRostream object.

RWXDRostream can be interrogated as to the status of the stream using
member functions bad() , clear() , eof() , fail() , good() , and
rdstate() . See the documentation of RWostream for further information on
the semantics of individual functions. Applications that use XDR on SunOS
must link with libnsl .

416 Tools.h++ Class Library

22

Example The example that follows is a “writer” program that encodes an XDR structure
onto a FILE stream. The example for class RWXDRistream is the “reader”
program that decodes the XDR structures into a machine representation for a
data type. The library that supports XDR routines must be linked in. The name
of this library is not standard.

Public constructors RWXDRostream(XDR* xp);
Initialize an RWXDRostream from the XDR structure xp.

Public member functions virtual RWvostream& operator<<(const char* s);
Redefined from class RWvostream . Store the character string starting at s to
the output stream using the XDR format. The character string is expected to be
null terminated.

virtual RWvostream& operator<<(char c);
Redefined from class RWvostream . Store the character c to the output stream
using the XDR format. Note that c is treated as a character, not a number.

virtual RWvostream& operator<<(wchar_t wc);
Redefined from class RWvostream . Store the wide character wc to the output
stream using the XDR format. Note that wc is treated as a character, not a
number.

#include “rw/xdrstrea.h”
#include “rw/rstream.h”
#include <stdio.h>

main()
{
 XDR xdr;
 FILE* fp = fopen(“test”,”w+”);
 xdrstdio_create(&xdr, fp, XDR_ENCODE);

 RWXDRostream rw_xdr(&xdr);

 for(int i=0; i<10; ++i)
 rw_xdr << i;// encode integer data

 fclose(fp);
}

Class Reference 417

22

virtual RWvostream& operator<<(unsigned char c);
Redefined from class RWvostream . Store the unsigned character c to the
output stream using the XDR format. Note that c is treated as a character, not
a number.

virtual RWvostream& operator<<(double d);
Redefined from class RWvostream . Store the double d to the output stream
using the XDR format.

virtual RWvostream& operator<<(float f);
Redefined from class RWvostream . Store the float f to the output stream using
the XDR format.

virtual RWvostream& operator<<(int i);
Redefined from class RWvostream . Store the integer i to the output stream
using the XDR format.

virtual RWvostream& operator<<(unsigned int i);
Redefined from class RWvostream . Store the unsigned integer i to the output
stream using the XDR format.

virtual RWvostream& operator<<(long l);
Redefined from class RWvostream . Store the long l to the output stream using
the XDR format.

virtual RWvostream& operator<<(unsigned long l);
Redefined from class RWvostream . Store the unsigned long l to the output
stream using the XDR format.

virtual RWvostream& operator<<(short s);
Redefined from class RWvostream . Store the short s to the output stream
using the XDR format.

virtual RWvostream& operator<<(unsigned short);
Redefined from class RWvostream . Store the unsigned short s to the output
stream using the XDR format.

virtual RWvostream& put(char c);
Redefined from class RWvostream . Store the character c to the output stream
using the XDR format. If the operation fails, it sets the failbit.

virtual RWvostream& put(unsigned char c);
Redefined from class RWvostream . Store the unsigned character c to the
output stream using the XDR format. If the operation fails, it sets the failbit.

418 Tools.h++ Class Library

22

virtual RWvostream& put(wchar_t wc);
Redefined from class RWvostream . Store the wide character wc to the output
stream using the XDR format. If the operation fails, it sets the failbit.

virtual RWvostream& put(const char* p, size_t N);
Redefined from class RWvostream . Store the vector of characters starting at p
to the output stream using the XDR format. If the operation fails, it sets the
failbit.

virtual RWvostream& put(const wchar_t* p, size_t N);
Redefined from class RWvostream . Store the vector of wide characters starting
at p to the output stream using the XDR format. If the operation fails, it sets the
failbit.

virtual RWvostream& put(const short* p, size_t N);
Redefined from class RWvostream . Store the vector of shorts starting at p to
the output stream using the XDR format. If the operation fails, it sets the failbit.

virtual RWvostream& put(const unsigned short* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned shorts starting
at p to the output stream using the XDR format. If the operation fails, it sets the
failbit.

virtual RWvostream& put(const int* p, size_t N);
Redefined from class RWvostream . Store the vector of integers starting at p to
the output stream using the XDR format. If the operation fails, it sets the failbit.

virtual RWvostream& put(const unsigned int* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned integers
starting at p to the output stream using the XDR format. If the operation fails,
it sets the failbit.

virtual RWvostream& put(const long* p, size_t N);
Redefined from class RWvostream . Store the vector of longs starting at p to the
output stream using the XDR format. If the operation fails, it sets the failbit.

virtual RWvostream& put(const unsigned long* p,
 size_t N);

Redefined from class RWvostream . Store the vector of unsigned longs starting
at p to the output stream using the XDR format. If the operation fails, it sets the
failbit.

Class Reference 419

22

virtual RWvostream& put(const float* p, size_t N);
Redefined from class RWvostream . Store the vector of floats starting at p to the
output stream using the XDR format. If the operation fails, it sets the failbit.

virtual RWvostream& put(const double* p, size_t N);
Redefined from class RWvostream . Store the vector of doubles starting at p to
the output stream using the XDR format. If the operation fails, it sets the
failbit.

Related Global Functions See class RWXDRistream for the function xdr .

Example This example shows how you might write an RPC client program using the
function xdr for output. This sends the string passed it on the command line
to an RPC server.

#include <unistd.h>
#include <iostream.h>
#include <rpc/rpc.h>
#include <rw/collstr.h>
#include <rw/xdrstream.h>

const unsigned long DEMOPROG = 0x20000dad;
const unsigned long DEMOVERS = 1;
const unsigned long DEMOPROC = 1;
typedef void *(*rpcproc_t)(XDR*, void*);

main(int argc, char **argv) {
 clnt_stat status;
 static int value;
 static RWCollectable* arg;

 if (argc != 3) {
 fprintf(stderr, “Usage: rpcexam hostname msg”);
 exit(1);
 }

 arg = new RWCollectableString(argv[2]);

 if(rpc_call(argv[1], DEMOPROG, DEMOVERS, DEMOPROC,
 (xdrproc_t)xdr, (char*)&arg,
 (xdrproc_t)xdr_int, (char*)&value,
 “visible”) != RPC_SUCCESS) {
 clnt_perrno(status);
 return 1;
 }

420 Tools.h++ Class Library

22

RWZone
Synopsis #include <time.h>

#include <rw/zone.h>

(abstract base class)

Description RWZone is an abstract base class. It defines an interface for time zone issues
such as whether or not daylight savings time is in use, the names and offsets
from UTC (also known as GMT) for both standard and daylight savings times,
and the start and stop dates for daylight savings time, if used.

Note – that because it is an abstract base class, there is no way to actually
enforce these goals—the description here is merely the model of how a class
derived from RWZone should act.

Most programs interact with RWZone only by passing an RWZone reference to
an RWTime or RWDate member function that expects one.

RWZoneSimple is an implementation of the abstract RWZone interface
sufficient to represent U.S.A. daylight savings time rules. Three instances of
RWZoneSimple are initialized from the global environment at program startup
to represent local, standard, and universal time. They are available via calls to
the static member functions RWZone::local(), RWZone::standard() ,
and RWZone::utc() , respectively. See the class RWZoneSimple for details.

Example

 return 0;
}

#include <rw/zone.h>
#include <rw/rwtime.h>
#include <rw/rstream.h>

main() {
RWTime now;
cout << now.asString(RWZone::local()) << endl;
cout << now.asString(RWZone::utc()) << endl;
return 0;

}

Class Reference 421

22

Enumerations enum RWZone::DstRule { NoDST, NoAm, WeEu };
Used by the static member function dstRule() , described below, and by
constructors for classes derived from RWZone.

StdZone is provided to name the standard time zones. Its values are intended
to be passed to constructors of classes derived from RWZone.

Public member functions virtual int timeZoneOffset() const = 0;
Returns the number of seconds west of UTC for standard time in this zone.
The number is negative for zones east of Greenwich, England.

virtual int altZoneOffset() const = 0;
Returns the number of seconds west of UTC for daylight savings time in this
zone.

virtual RWBoolean daylightObserved() const = 0;
Returns TRUE if daylight savings time is observed for this zone.

virtual RWBoolean isDaylight(const struct tm* tspec)
const = 0 ;
Returns TRUE if the time and date represented in the struct tm argument is
in the range of daylight savings time for this zone. The elements of the
struct tm argument must all be self-consistent; in particular, the tm_wday
member must agree with the tm_year, tm_mon , and tm_day members.

enum RWZone::StdZone {
NewZealand = -12,CarolineIslands,MarianaIslands,
Japan,China,Java,
Kazakh,Pakistan,CaspianSea,
Ukraine,Nile,Europe,
Greenwich,Azores,Oscar,
Greenland,Atlantic,USEastern,
USCentral,USMountain,USPacific,
Yukon,Hawaii,Bering

};

422 Tools.h++ Class Library

22

virtual void getBeginDaylight(struct tm*) const = 0;
virtual void getEndDaylight (struct tm*) const = 0;
Return with the struct tm argument set to the (local) time that daylight
savings time begins, or ends, for the year indicated by the tm_year member
passed in. If daylight savings time is not observed, the struct tm members
are all set to a negative value.

Note – that in the southern hemisphere, daylight savings time ends at an
earlier date than it begins.

virtual RWCString timeZoneName() const = 0;
virtual RWCString altZoneName() const = 0;
Return the name of (respectively) the standard and daylight savings time zones
represented, such as “PST” and “PDT”.

Static public

member functions static const RWZone& local();
Returns a reference to an RWZone representing local time, with daylight
savings time if observed. This is used as the default argument value for
RWDate and RWTime functions that take an RWZone.

static const RWZone& standard();
Returns a reference to an RWZone representing standard local time, with no
daylight savings time corrections.

static const RWZone& utc() ;
Returns a reference to an RWZone representing UTC (GMT) universal time.

static const RWZone* local(const RWZone*)
static const RWZone* standard(const RWZone*)
These functions allow the values returned by the other functions above to be
set. Each returns the previous value. The local and standard time zones are
global per-thread. They are inteded to represent the acutal time zone. It is
particularly important in a multithreaded application to set the values once
before doing any other operation that depends on the time zone.

static constRWDaylightRule* dstRule(DstRule = NoAm) ;
Function dstRule() is provided for convenience in constructing
RWZoneSimple instances for time zones in which common daylight savings

Class Reference 423

22

time rules are obeyed. Currently two such rule systems are provided, NoAm for
the U.S.A. and Canada, and WeEu for most of Western Europe. The result of
calling dstRule() is normally passed to the RWZoneSimple constructor.

424 Tools.h++ Class Library

22

RWZoneSimple
RWZoneSimple

|
RWZone

Synopsis #include <time.h>
#include <rw/zone.h>

RWZoneSimple myZone(USCentral) ;

Description RWZoneSimple is an implementation of the abstract interface defined by class
RWZone. It implements a simple daylight savings time rule sufficient to
represent all historical U.S. conventions and many European and Asian
conventions. It is table-driven and depends on parameters given by class
RWDaylightRule .

Direct use of RWDaylightRule affords the most general interface to
RWZoneSimple . However, a much simpler programmatic interface is offered,
as illustrated by the examples below.

Three instances of RWZoneSimple are automatically constructed at program
startup, to represent UTC, Standard, and local time. They are
available via calls to the static member functions RWZone::utc(),
RWZone::standard() , and RWZone::local() , respectively. These are set
up according to the time zone facilities provided in the execution environment
(defined by the environment variable TZ). By default, if DST is observed at all,
then the local zone instance will use U.S. (RWZone::NoAm) daylight savings
time rules.

Other instances of RWZoneSimple may be constructed to represent other time
zones, and may be installed globally using RWZone static member functions
RWZone::local(const RWZone*) and RWZone::standard(const
RWZone*) .

Examples To install US Central time as your global “local” time use:

RWZone::local(new RWZoneSimple(RWZone::USCentral)) ;

To install Hawaiian time (where daylight savings time is not observed) one
would say,

RWZone::local(new RWZoneSimple(RWZone::Hawaii,
RWZone::NoDST)) ;

Class Reference 425

22

Likewise for Japan:

RWZone::local(new RWZoneSimple(RWZone::Japan,
RWZone::NoDST)) ;

For France:

RWZone::local(new RWZoneSimple(RWZone::Europe,
RWZone::WeEu)) ;

Here are the rules used internally for the RWZone::NoAm and RWZone::WeEu
values of RWZone::DstRule:

// last Sun in Apr to last in Oct:
const RWDaylightRuleusRuleAuld =

 {0, 0000, 1, { 3, 4, 0, 120 }, { 9, 4,
0, 120 } };

// first Sun in Apr to last in Oct
const RWDaylightRuleusRule67 =

 { &usRuleAuld, 1967, 1, { 3, 0, 0, 120 }, { 9, 4, 0,
120 } };

// first Sun in Jan to last in Oct:
const RWDaylightRuleusRule74 =

 {&usRule67, 1974, 1, { 0, 0, 0, 120 }, { 9, 4, 0,
120 } };

// last Sun in Feb to last in Oct
const RWDaylightRuleusRule75 =

 {&usRule74, 1975, 1, { 1, 4, 0, 120 }, { 9, 4, 0,
120 } };

// last Sun in Apr to last in Oct
const RWDaylightRuleusRule76 =

 {&usRule75, 1976, 1, { 3, 4, 0, 120 }, { 9, 4, 0,
120 } };

// first Sun in Apr to last in Oct
const RWDaylightRuleusRuleLate =

 {&usRule76, 1987, 1, { 3, 0, 0, 120 }, { 9, 4, 0,
120 } };

// last Sun in Mar to last in Sep
const RWDaylightRuleeuRuleLate =

 {0, 0000, 1, { 2, 4, 0, 120 }, { 8, 4, 0,
120 } };

426 Tools.h++ Class Library

22

Given these definitions,

RWZone::local(new RWZoneSimple(RWZone::USCentral,
&usRuleLate)) ;

is equivalent to the first example given above and repeated here:

RWZone::local(new RWZoneSimple(RWZone::USCentral)) ;

Daylight savings time systems that cannot be represented with
RWDaylightRule and RWZoneSimple must be modeled by deriving from
RWZone and implementing its virtual functions.

For example, under Britain’s madcap Summer Time rules, alternate
timekeeping begins the morning after the third Saturday in April, unless that is
Easter (in which case it begins the week before) or unless the Council decides
on some other time for that year. In some years Summer Time has been two
hours ahead, or has extended through winter without a break. British Summer
Time clearly deserves a RWZone class all its own.

Constructors RWZoneSimple(RWZone::StdZone zone, RWZone::DstRule =
RWZone::NoAm) ;
Constructs an RWZoneSimple instance using internally held
RWDaylightRules . This is the simplest interface to RWZoneSimple . The first
argument is the time zone for which an RWZoneSimple is to be constructed.
The second argument is the daylight savings time rule which is to be followed.

RWZoneSimple(const RWDaylightRule* rule,
long tzoff, const RWCString& tzname,
long altoff, const RWCString& altname) ;

Constructs an RWZoneSimple instance which Daylight Savings Time is
computed according to the rule specified. Variables tzoff and tzname are the
offset from UTC (in seconds, positive if west of 0 degrees longitude) and the
name of standard time. Arguments altoff and altname are the offset
(typically equal to tzoff - 3600) and name when daylight savings time is in
effect. If rule is zero, daylight savings time is not observed.

RWZoneSimple(long tzoff, const RWCString& tzname) ;
Constructs an RWZoneSimple instance in which Daylight Savings Time is not
observed. Argument tzoff is the offset from UTC (in seconds, positive if west
of 0 degrees longitude) and tzname is the name of the zone.

Class Reference 427

22

RWZoneSimple(RWZone::StdZone zone, const RWDaylightRule*
rule);
Constructs an RWZoneSimple instance in which offsets and names are
specified by the StdZone argument. Daylight Savings Time is computed
according to the rule argument, if non-zero; otherwise, DST is not observed.

428 Tools.h++ Class Library

22

Part 3— Templates

431

Templates 23

RWTBitVec<size>

Synopsis #include <rw/tbitvec.h>
RWTBitVec<22> // A 22 bit long vector

RWTBitVec <size> is a parameterized bit vector of fixed length size. Unlike
class RWBitVec , its length cannot be changed at run time. Its advantage of
RWBitVec is its smaller size, and one less level of indirection, resulting in a
slight speed advantage.

Bits are numbered from 0 through size–1, inclusive.

The copy constructor and assignment operator use copy semantics.

Example In this example, a bit vector 24 bits long is exercised:

#include <rw/tbitvec.h>

main()
{
 RWTBitVec<24> a, b; // Allocate two vectors.
 a(2) = TRUE; // Set bit 2 (the third bit) of a on.
 b(3) = TRUE; // Set bit 3 (the fourth bit) of b on.
 RWTBitVec<24> c = a ^ b; // Set c to the XOR of a and b.
}

432 Tools.h++ Class Library

23

Public constructor RWTBitVec< size>();
Constructs an instance with all bits set to FALSE.

RWTBitVec< size>(RWBoolean val);
Constructs an instance with all bits set to val .

Assignment operators RWTBitVec<size>& operator=(const
 RWTBitVec<size>& v);

Sets self to a copy of v.

RWTBitVec&operator=(RWBoolean val);
Sets all bits in self to the value val .

RWTBitVec&operator&=(const RWTBitVec& v);
RWTBitVec&operator^=(const RWTBitVec& v)
RWTBitVec&operator|=(const RWTBitVec& v)
Logical assignments. Sets each bit of self to the logical AND, XOR, or OR,
respectively, of self and the corresponding bit in v.

RWBitRefoperator[](size_t i);
Returns a reference to the i 'th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size–1, inclusive. Bounds checking
will occur.

RWBitRefoperator()(size_t i);
Returns a reference to the i 'th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size–1, inclusive. No bounds
checking is done.

Logical operators RWBoolean operator==(RWBoolean b) const;
Returns TRUE if every bit of self is set to the value b. Otherwise, returns
FALSE.

RWBooleanoperator!=(RWBoolean b) const;
Returns TRUE if any bit of self is not set to the value b. Otherwise, returns
FALSE.

RWBooleanoperator==(const RWTBitVec& v)
 const;
Returns TRUE if each bit of self is set to the same value as the corresponding bit
in v. Otherwise, returns FALSE.

Templates 433

23

RWBooleanoperator!=(const RWTBitVec& v)
 const;
Returns TRUE if any bit of self is not set to the same value as the corresponding
bit in v. Otherwise, returns FALSE.

voidclearBit(size_t i);
Clears (i.e., sets to FALSE) the bit with index i . The index i must be between
0 and size–1. No bounds checking is performed. The following two lines are
equivalent, although clearBit(size_t) is slightly smaller and faster than
using operator()(size_t) :

a(i) = FALSE;
a.clearBit(i);

const RWByte*data() const;
Returns a const pointer to the raw data of self. Should be used with care.

size_tfirstFalse() const;
Returns the index of the first OFF (False) bit in self. Returns RW_NPOS if there
is no OFF bit.

size_tfirstTrue() const;
Returns the index of the first ON (True) bit in self. Returns RW_NPOS if there is
no ON bit.

voidsetBit(size_t i);
Sets (i.e., sets to TRUE) the bit with index i . The index i must be between 0
and size–1. No bounds checking is performed. The following two lines are
equivalent, although setBit(size_t) is slightly smaller and faster than
using operator()(size_t) :

a(i) = TRUE;
a.setBit(i);

RWBooleantestBit(size_t i) const;
Tests the bit with index i . The index i must be between 0 and size–1. No
bounds checking is performed. The following are equivalent, although
testBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

if(a(i)) doSomething();
if(a.testBit(i)) doSomething() ;

434 Tools.h++ Class Library

23

Related global functions RWTBitVec operator&(const RWTBitVec& v1, const RWTBitVec&
v2);
RWTBitVec operator^(const RWTBitVec& v1, const RWTBitVec&
v2);
RWTBitVec operator|(const RWTBitVec& v1, const RWTBitVec&
v2);
Return the logical AND, XOR, and OR, respectively, of vectors v1 and v2 .

Templates 435

23

RWTIsvDlist<T>

Synopsis #include <rw/tidlist.h>

RWTIsvDlist list;

Descripton Class RWTIsvDlist<T> is a class that implements intrusive doubly-linked
lists.

An intrusive list is one where the member of the list must inherit from a
common base class, in this case RWIsvDlink . The advantage of such a list is
that memory and space requirements are kept to a minimum. The
disadvantage is that the inheritance hierarchy is inflexible, making it slightly
more difficult to use with an existing class. Class RWTValDlist<T> is offered
as an alternative, non-intrusive, linked list.

See Stroustrup (1991; Section 8.3.1) for more information about intrusive lists.

Caution – When you insert an item into an intrusive list, the actual item (not a
copy) is inserted. Because each item carries only one link field, the same item
cannot be inserted into more than one list, nor can it be inserted into the same
list more than once.

!

436 Tools.h++ Class Library

23

Example

Program Output:

zero
one
two

Public constructors RWTIsvDlist();
Constructs an empty list.

RWTIsvDlist(T* a);
Constructs a list with the single item pointed to by a in it.

Public Members Functions void append(T* a);
Appends the item pointed to by a to the end of the list.

#include <rw/tidlist.h>
#include <rw/rstream.h>
#include <string.h>

struct Symbol : public RWIsvDlink {
 char name[10];
 Symbol(const char* cs)
 { strncpy(name, cs, sizeof(name)); name[9] = '\0'; }
};

void printem(Symbol* s, void*) { cout << s->name << endl; }

main(){
 RWTIsvDlist<Symbol> list;
 list.insert(new Symbol("one"));
 list.insert(new Symbol("two"));
 list.prepend(new Symbol("zero"));

 list.apply(printem, 0);
 list.clearAndDestroy(); // Deletes the items inserted into the
list
 return 0;
}

Templates 437

23

voidapply(void (*applyFun)(T*,
 void*), void* d);
Calls the function pointed to by applyFun to every item in the collection. This
must have the prototype:

void yourFun(T* item, void* d);

The item will be passed in as argument item. Client data may be passed
through as parameter d.

T*at(size_t i) const;
Returns the item at index i . The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

voidclear();
Removes all items from the list.

voidclearAndDestroy();
Removes and calls delete for each item in the list.

Note – This assumes that each item was allocated off the heap.

RWBooleancontains(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const;
Returns TRUE if the list contains an item for which the user-defined "tester"
function pointed to by testFun returns TRUE . The tester function must have
the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

RWBooleancontainsReference(const T* a)
 const;
Returns TRUE if the list contains an item with the address a.

size_tentries() const;
Returns the number of items currently in the list.

438 Tools.h++ Class Library

23

T*find(RWBoolean (*testFun)(const
 T*, void*), void* d) const;
Returns the first item in the list for which the user-defined "tester" function
pointed to by testFun returns TRUE. If there is no such item, then returns nil.
The tester function must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

T*first() const;
Returns (but does not remove) the first item in the list, or nil if the list is empty.

T*get();
Returns and removes the first item in the list, or nil if the list is empty.

size_tindex(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const ;
Returns the index of the first item in the list for which the user-defined "tester"
function pointed to by testFun returns TRUE. If there is no such item, then
returns RW_NPOS. The tester function must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

voidinsert(T* a);
Appends the item pointed to by a to the end of the list. This item cannot be
inserted into more than one list, nor can it be inserted into the same list more
than once.

voidinsertAt(size_t i, T* a);
Insert the item pointed to by a at the index position i . This position must be
between zero and the number of items in the list, or an exception of type
TOOL_INDEX will be thrown. The item cannot be inserted into more than one
list, nor can it be inserted into the same list more than once.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the list, FALSE otherwise.

T*last() const;
Returns (but does not remove) the last item in the list, or nil if the list is empty.

Templates 439

23

size_toccurrencesOf(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const;
Traverses the list and returns the number of times for which the user-defined
"tester" function pointed to by testFun returned TRUE . The tester function
must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

size_toccurrencesOfReference(const T*
 a) const;
Returns the number of times which the item pointed to by a occurs in the list.
Because items cannot be inserted into a list more than once, this function can
only return zero or one.

voidprepend(T* a);
Prepends the item pointed to by a to the beginning of the list.

T*remove(RWBoolean
 (*testFun)(const T*, void*),
 void* d);
Removes and returns the first item for which the user-defined tester function
pointed to by testFun returns TRUE, or nil if there is no such item. The tester
function must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

T*removeAt(size_t i);
Removes and returns the item at index i. The index i must be between zero
and the number of items in the collection less one or an exception of type
TOOL_INDEX will be thrown.

T*removeFirst();
Removes and returns the first item in the list, or nil if there are no items in the
list.

440 Tools.h++ Class Library

23

T*removeLast();
Removes and returns the last item in the list, or nil if there are no items in the
list.

T*removeReference(T* a);
Removes and returns the item with address a, or nil if there is no such item.

Templates 441

23

RWTIsvDlistIterator<T>

Synopsis #include <rw/tidlist.h>

RWTIsvDlist<T> list;

RWTIsvDlistIterator<T> iterator(list);

Description Iterator for class RWTIsvDlist<T> , allowing sequential access to all the
elements of a doubly-linked parameterized intrusive list. Elements are
accessed in order, in either direction.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTIsvDlistIterator(RWTIsvDlist<T>& c);
Constructs an iterator to be used with the list c .

Public operators T* operator++();
Advances the iterator one position, returning a pointer to the new link, or nil if
the end of the list has been reached.

T*operator--();
Reverses the iterator one position, returning a pointer to the new link, or nil if
the beginning of the list has been reached.

T*operator+=(size_t n);
Advances the iterator n positions, returning a pointer to the new link, or nil if
the end of the list has been reached.

T*operator-=(size_t n);
Reverses the iterator n positions, returning a pointer to the new link, or nil if
the beginning of the list has been reached.

T*operator()();
Advances the iterator one position, returning a pointer to the new link, or nil if
the end of the list has been reached.

442 Tools.h++ Class Library

23

Public member functions RWTIsvDlist<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

T*findNext(RWBoolean
 (*testFun)(const T*, void*),
 void*);
Advances the iterator to the first link for which the tester function pointed to
by testFun returns TRUE and returns it, or nil if there is no such link.

voidinsertAfterPoint(T* a);
Inserts the link pointed to by a into the iterator's associated collection in the
position immediately after the iterator's current position.

T*key() const;
Returns the link at the iterator's current position. Returns nil if the iterator is
not valid.

T*remove();
Removes and returns the current link from the iterator's associated collection.
Returns nil if unsuccessful. Afterwards, if successful, the iterator will be
positioned at the element immediately before the removed link.

T*removeNext(RWBoolean
 (*testFun)(const T*, void*),
 void*);
Advances the iterator to the first link for which the tester function pointed to
by testFun returns TRUE, removes and returns it. Returns FALSE if
unsuccessful. Afterwards, if successful, the iterator will be positioned at the
element immediately before the removed element.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTIsvDlist<T>& c);
Resets the iterator to iterate over the collection c .

Templates 443

23

RWTIsvSlist<T>

Synopsis #include <rw/tislist.h>

RWTIsvSlist<T> list;

Descripton Class RWTIsvSlist<T> is a class that implements intrusive singly-linked lists.

An intrusive list is one where the member of the list must inherit from a
common base class, in this case RWIsvSlink . The advantage of such a list is
that memory and space requirements are kept to a minimum. The
disadvantage is that the inheritance hierarchy is inflexible, making it slightly
more difficult to use with an existing class. Class RWTValSlist<T> is offered
as an alternative, non-intrusive, linked list.

See Stroustrup (1991; Section 8.3.1) for more information about intrusive lists.

Caution – When you insert an item into an intrusive list, the actual item (not a
copy) is inserted. Because each item carries only one link field, the same item
cannot be inserted into more than one list, nor can it be inserted into the same
list more than once. For this reason, the copy constructor and assignment
operator for RWIsvSlink have been made private.

!

444 Tools.h++ Class Library

23

Example

Program Output:

zero
one
two

Public constructors RWTIsvSlist();
Constructs an empty list.

RWTIsvSlist(T* a);
Constructs a list with the single item pointed to by a in it.

Public member functions void append(T* a);
Appends the item pointed to by a to the end of the list.

#include <rw/tislist.h>
#include <rw/rstream.h>
#include <string.h>

struct Symbol : public RWIsvSlink {
 char name[10];
 Symbol(const char* cs)
 { strncpy(name, cs, sizeof(name)); name[9] = '\0'; }
};

void printem(Symbol* s, void*) { cout << s-name << endl; }

main(){
 RWTIsvSlist<Symbol> list;
 list.insert(new Symbol("one"));
 list.insert(new Symbol("two"));
 list.prepend(new Symbol("zero"));

 list.apply(printem, 0);
 list.clearAndDestroy(); // Deletes the items inserted into the
list
 return 0;
}

Templates 445

23

voidapply(void (*applyFun)(T*,
 void*), void* d);
Calls the function pointed to by applyFun to every item in the collection. This
must have the prototype:

void yourFun(T* item, void* d);

The item will be passed in as argument item. Client data may be passed
through as parameter d.

T*at(size_t i) const;
Returns the item at index i . The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

voidclear();
Removes all items from the list.

voidclearAndDestroy();
Removes and calls delete for each item in the list.

Note – This assumes that each item was allocated off the heap.

RWBooleancontains(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const;
Returns TRUE if the list contains an item for which the user-defined "tester"
function pointed to by testFun returns TRUE . The tester function must have
the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

RWBooleancontainsReference(const T* a)
 const;
Returns TRUE if the list contains an item with the address a.

size_tentries() const;
Returns the number of items currently in the list.

446 Tools.h++ Class Library

23

T*find(RWBoolean (*testFun)(const
 T*, void*), void* d) const;
Returns the first item in the list for which the user-defined "tester" function
pointed to by testFun returns TRUE. If there is no such item, then returns nil.
The tester function must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

T*first() const;
Returns (but does not remove) the first item in the list, or nil if the list is empty.

T*get();
Returns and removes the first item in the list, or nil if the list is empty.

size_tindex(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const;
Returns the index of the first item in the list for which the user-defined "tester"
function pointed to by testFun returns TRUE. If there is no such item, then
returns RW_NPOS. The tester function must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

voidinsert(T* a);
Appends the item pointed to by a to the end of the list. This item cannot be
inserted into more than one list, nor can it be inserted into the same list more
than once.

voidinsertAt(size_t i, T* a);
Insert the item pointed to by a at the index position i . This position must be
between zero and the number of items in the list, or an exception of type
TOOL_INDEX will be thrown. The item cannot be inserted into more than one
list, nor can it be inserted into the same list more than once.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the list, FALSE otherwise.

T*last() const;
Returns (but does not remove) the last item in the list, or nil if the list is empty.

Templates 447

23

size_toccurrencesOf(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const;
Traverses the list and returns the number of times for which the user-defined
"tester" function pointed to by testFun returned TRUE . The tester function
must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

size_toccurrencesOfReference(const T*
 a) const;
Returns the number of times which the item pointed to by a occurs in the list.
Because items cannot be inserted into a list more than once, this function can
only return zero or one.

voidprepend(T* a);
Prepends the item pointed to by a to the beginning of the list.

T*remove(RWBoolean
 (*testFun)(const T*, void*),
 void* d);
Removes and returns the first item for which the user-defined tester function
pointed to by testFun returns TRUE, or nil if there is no such item. The tester
function must have the prototype:

RWBoolean yourTester(const T* item, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

T*removeAt(size_t i);
Removes and returns the item at index i . The index i must be between zero
and the number of items in the collection less one or an exception of type
TOOL_INDEX will be thrown.

T*removeFirst();
Removes and returns the first item in the list, or nil if there are no items in the
list.

448 Tools.h++ Class Library

23

T*removeLast();
Removes and returns the last item in the list, or nil if there are no items in the
list. This function is relatively slow because removing the last link in a singly-
linked list necessitates access to the next-to-the-last link, requiring the whole
list to be searched.

T*removeReference(T* a);
Removes and returns the link with address a. The link must be in the list. In
a singly-linked list this function is not very efficient.

Templates 449

23

RWTIsvSlistIterator<T>

Synopsis #include <rw/tislist.h>

RWTIsvSlist<T> list;

RWTIsvSlistIterator<T> iterator(list);

Description Iterator for class RWTIsvSlist<T> , allowing sequential access to all the
elements of a singly-linked parameterized intrusive list. Elements are accessed
in order, from first to last.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTIsvSlistIterator(RWTIsvSlist<T>& c);
Constructs an iterator to be used with the list c .

Public operators T* operator++();
Advances the iterator one position, returning a pointer to the new link, or nil if
the end of the list has been reached.

T*operator+=(size_t n);
Advances the iterator n positions, returning a pointer to the new link, or nil if
the end of the list has been reached.

T*operator()();
Advances the iterator one position, returning a pointer to the new link, or nil if
the end of the list has been reached.

450 Tools.h++ Class Library

23

Public member functions RWTIsvSlist<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

T*findNext(RWBoolean
 (*testFun)(const T*, void*),
 void*);
Advances the iterator to the first link for which the tester function pointed to
by testFun returns TRUE and returns it, or nil if there is no such link.

voidinsertAfterPoint(T* a);
Inserts the link pointed to by a into the iterator's associated collection in the
position immediately after the iterator's current position.

T*key() const;
Returns the link at the iterator's current position. Returns nil if the iterator is
not valid.

T*remove();
Removes and returns the current link from the iterator's associated collection.
Returns nil if unsuccessful. Afterwards, if successful, the iterator will be
positioned at the element immediately before the removed link. This function
is relatively inefficient for a singly-linked list.

T*removeNext(RWBoolean
 (*testFun)(const T*, void*),
 void*);
Advances the iterator to the first link for which the tester function pointed to
by testFun returns TRUE, removes and returns it. Returns FALSE if
unsuccessful. Afterwards, if successful, the iterator will be positioned at the
element immediately before the removed element.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTIsvSlist<TL>& c);
Resets the iterator to iterate over the collection c .

Templates 451

23

RWTPtrDlist<T>

Synopsis #include <rw/tpdlist.h>

RWTPtrDlist<T> list;

Description This class maintains a collection of pointers to type T, implemented as a doubly
linked list. This is a pointer based list: pointers to objects are copied in and out
of the links that make up the list.

Parameter T represents the type of object to be inserted into the list, either a
class or built in type. The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Example In this example, a doubly-linked list of pointers to the user type Dog is
exercised. Contrast this approach with the example given under
RWTValDlist<T> .

Code Example 23-1 (1 of 2)

#include <rw/tpdlist.h>
#include <rw/rstream.h>
#include <string.h>

class Dog {
 char* name;
public:
 Dog(const char* c) {

name = new char[strlen(c)+1];
strcpy(name, c); }

 ~Dog() { delete name; }

 // Define a copy constructor:
 Dog(const Dog& dog) {

name = new char[strlen(dog.name)+1];
strcpy(name, dog.name); }

 // Define an assignment operator:
 void operator=(const Dog& dog) {

452 Tools.h++ Class Library

23

if (this!=&dog) {
 delete name;
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);
}

 }

 // Define an equality test operator:
 int operator==(const Dog& dog) const {

return strcmp(name, dog.name)==0; }

 friend ostream& operator<<(ostream& str, const Dog& dog){
 str << dog.name;
 return str;}
};

main()
{
 RWTPtrDlist<dog> terriers;
 terriers.insert(new Dog("Cairn Terrier"));
 terriers.insert(new Dog("Irish Terrier"));
 terriers.insert(new Dog("Schnauzer"));

 Dog key1("Schnauzer");
 cout << "The list " <<
 (terriers.contains(&key1) ? "does " : "does not ") <<
 "contain a Schnauzer\n";

 Dog key2("Irish Terrier");
 terriers.insertAt(
 terriers.index(&key2),
 new Dog("Fox Terrier")
);

 Dog* d;
 while (!terriers.isEmpty()) {
 d = terriers.get();
 cout << *d << endl;
 delete d;
 }

 return 0;
}

Code Example 23-1 (2 of 2)

Templates 453

23

Program output:

The list does contain a Schnauzer
Cairn Terrier
Fox Terrier
Irish Terrier
Schnauzer

Public constructors RWTPtrDlist<T>();
Constructs an empty list.

RWTPtrDlist<T>(const RWTPtrDlist<T>& c);
Constructs a new doubly-linked list as a shallow copy of c . After construction,
pointers will be shared between the two collections.

Public operators RWTPtrDlist& operator=(const RWTPtrDlist<T>&
 c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared between
the two collections.

T*&operator[](size_t i);
T*operator[](size_t i) const;
Returns a pointer to the i 'th value in the list. The first variant can be used as
an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

Public member functions void append(T* a);
Appends the item pointed to by a to the end of the list.

voidapply(void (*applyFun)(T*,
 void*), void* d);
Applies the user-defined function pointed to by applyFun to every item in the
list. This function must have the prototype:

void yourFun(T* a, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

454 Tools.h++ Class Library

23

T*&at(size_t i);
T*at(size_t i) const;
Returns a pointer to the i 'th value in the list. The first variant can be used as
an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

voidclear();
Removes all items from the collection.

voidclearAndDestroy();
Removes all items from the collection and calls their destructors.

RWBooleancontains(T* a) const;
Returns TRUE if the list contains an object that is equal to the object pointed to
by a, FALSE otherwise. Equality is measured by the class-defined equality
operator for type T.

RWBooleancontains(RWBoolean
 (*testFun)(const T*, void*),
 void* d) const;
Returns TRUE if the list contains an item for which the user-defined "tester"
function pointed to by testFun returns TRUE . Returns FALSE otherwise. The
tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

size_tentries() const;
Returns the number of items that are currently in the collection.

T*find(const T* a) const;
Returns a pointer to the first object encountered which is equal to the object
pointed to by a, or nil if no such object can be found. Equality is measured by
the class-defined equality operator for type T.

T*find(RWBoolean (*testFun)
(const T*, void*), void* d,)
const;
Returns a pointer to the first object encountered for which the user-defined
tester function pointed to by testFun returns TRUE, or nil if no such object can
be found. The tester function must have the prototype:

Templates 455

23

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

T*first() const;
Returns a pointer to the first item in the list. The behavior is undefined if the
list is empty.

T*get();
Returns a pointer to the first item in the list and removes the item. The
behavior is undefined if the list is empty.

size_tindex(const T* a);
Returns the index of the first object that is equal to the object pointed to by a,
or RW_NPOS if there is no such object. Equality is measured by the class-
defined equality operator for type T.

size_tindex(RWBoolean (*testFun)
(T*, void*), void* d)
const;
Returns the index of the first object for which the user-defined tester function
pointed to by testFun returns TRUE, or RW_NPOS if there is no such object.
The tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

void insert(T* a);
Adds the object pointed to by a to the end of the list.

voidinsertAt(size_t i, T* a);
Adds the object pointed to by a at the index position i . This position must be
between zero and the number of items in the list, or an exception of type
TOOL_INDEX will be thrown.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the list, FALSE otherwise.

T*last() const;
Returns a pointer to the last item in the list. The behavior is undefined if the
list is empty.

456 Tools.h++ Class Library

23

size_toccurrencesOf(const T* a) const;
Returns the number of objects in the list that are equal to the object pointed to
by a. Equality is measured by the class-defined equality operator for type T.

size_toccurrencesOf(RWBoolean
 (*testFun)(T*, void*), void* d)
 const;
Returns the number of objects in the list for which the user-defined "tester"
function pointed to by testFun returns TRUE . The tester function must have
the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

voidprepend(T* a);
Adds the item pointed to by a to the beginning of the list.

T*remove(const T* a);
Removes the first object which is equal to the object pointed to by a and
returns a pointer to it, or nil if no such object could be found. Equality is
measured by the class-defined equality operator for type T.

T*remove(RWBoolean (*testFun)(T*,
 void*), void* d);
Removes the first object for which the user-defined tester function pointed to
by testFun returns TRUE and returns a pointer to it, or nil if there is no such
object. The tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

size_tremoveAll(const T* a);
Removes all objects which are equal to the object pointed to by a. Returns the
number of objects removed. Equality is measured by the class-defined equality
operator for type T.

size_tremoveAll(RWBoolean
 (*testFun)(T*, void*), void*
 d);

Templates 457

23

Removes all objects for which the user-defined tester function pointed to by
testFun returns TRUE. Returns the number of objects removed. The tester
function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

T*removeAt(size_t i);
Removes the object at index i and returns a pointer to it. An exception of type
TOOL_INDEX will be thrown if i is not a valid index. Valid indices are from
zero to the number of items in the list less one.

T*removeFirst();
Removes the first item in the list and returns a pointer to it. The behavior is
undefined if the list is empty.

T*removeLast()
Removes the last item in the list and returns a pointer to it. The behavior is
undefined if the list is empty.

458 Tools.h++ Class Library

23

RWTPtrDlistIterator<T>

Synopsis #include <rw/tpdlist.h>

RWTPtrDlist<T> list;

RWTPtrDlistIterator<T> iterator(list);

Description Iterator for class RWTPtrDlist<T> , allowing sequential access to all the
elements of a doubly-linked parameterized list. Elements are accessed in
order, in either direction.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTPtrDlistIterator<T>(RWTPtrDlist<T>& c);
Constructs an iterator to be used with the list c .

Public member operators RWBoolean operator++();
Advances the iterator to the next item and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

RWBooleanoperator--();
Retreats the iterator to the previous item and returns TRUE. When the
beginning of the collection is reached, returns FALSE and the position of the
iterator will be undefined.

RWBooleanoperator+=(size_t n);
Advances the iterator n positions and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

Templates 459

23

RWBooleanoperator-=(size_t n);
Retreats the iterator n positions and returns TRUE. When the beginning of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

T*operator()();
Advances the iterator to the next item and returns a pointer to it. When the
end of the collection is reached, returns nil and the position of the iterator will
be undefined.

Public member functions RWTPtrDlist<T> container() const;
Returns a pointer to the collection over which this iterator is iterating.

T*findNext(const T* a);
Advances the iterator to the first element that is equal to the object pointed to
by a and returns a pointer to it. If no item is found, returns nil and the
position of the iterator will be undefined. Equality is measured by the class-
defined equality operator for type T.

T*findNext(RWBoolean
 (*testFun)(T*, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE and returns a pointer to it. If no item is found,
returns nil and the position of the iterator will be undefined.

voidinsertAfterPoint(T* a);
Inserts the object pointed to by a into the iterator's associated collection in the
position immediately after the iterator's current position.

T*key() const;
Returns a pointer to the object at the iterator's current position. The results are
undefined if the iterator is no longer valid.

T*remove();
Removes and returns the object at the iterator's current position from the
iterator's associated collection. Afterwards, the iterator will be positioned at
the element immediately before the removed element. Returns nil if
unsuccessful in which case the position of the iterator is undefined.

460 Tools.h++ Class Library

23

T*removeNext(const T* a);
Advances the iterator to the first element that is equal to the object pointed to
by a, then removes and returns it. Afterwards, the iterator will be positioned
at the element immediately before the removed element. Returns nil if
unsuccessful in which case the position of the iterator is undefined. Equality is
measured by the class-defined equality operator for type T.

T*removeNext(RWBoolean
 (*testFun)(T*, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE, then removes and returns it. Afterwards, the
iterator will be positioned at the element immediately before the removed
element. Returns nil if unsuccessful in which case the position of the iterator is
undefined.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTPtrDlist<T>& c);
Resets the iterator to iterate over the collection c .

Templates 461

23

RWTPtrHashDictionary<K,V>

Synopsis #include <rw/tphdict.h>

unsigned hashFun(const K&);

RWTPtrHashDictionary<K,V> dictionary(hashFun);

Description RWTPtrHashDictionary<KV> is a dictionary of keys of type K and values of
type V, implemented using a hash table. While duplicates of values are
allowed, duplicates of keys are not.

It is a pointer based collection: pointers to the keys and values are copied in and
out of the hash buckets.

Parameters K and V represent the type of the key and the type of the value,
respectively, to be inserted into the table. These can be either classes or built in
types. Class K must have

• well-defined equality semantics (K::operator==(const K&)).

Class V can be of any type.

A user-supplied hashing function for type K must be supplied to the
constructor when creating a new table. If K is a Tools.h++ class, then this
requirement is usually trivial because all Tools.h++ objects know how to return
a hashing value. This function has prototype:

unsigned hFun(const K& a);

and should return a suitable hash value for the object a.

To find a value, the key is first hashed to determine in which bucket the key
and value can be found. The bucket is then searched for an object that is equal
(as determined by the equality operator) to the key.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of (key/value) pairs in the collection greatly
exceeds the number of buckets then efficiency will sag because each bucket

462 Tools.h++ Class Library

23

must be searched linearly. The number of buckets can be changed by calling
member function resize() . This is relatively expensive because all of the
keys must be rehashed.

If you wish for this to be done automatically, then you can subclass from this
class and implement your own special insert() and remove() functions
which perform a resize() as necessary.

Example

Code Example 23-2

#include <rw/tphdict.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

unsigned hashString(const RWCString& str){return str.hash();}

main()
{
 RWTPtrHashDictionary<RWCString, RWDate> birthdays(hashString);

 birthdays.insertKeyAndValue
 (

new RWCString("John"),
new RWDate(12, "April", 1975)

);
 birthdays.insertKeyAndValue
 (

new RWCString("Ivan"),
new RWDate(2, "Nov", 1980)

);

 // Alternative syntax:
 birthdays[new RWCString("Susan")] =

new RWDate(30, "June", 1955);
 birthdays[new RWCString("Gene")] =

new RWDate(5, "Jan", 1981);

 // Print a birthday:
 RWCString key("John");
 cout << *birthdays[&key] << endl;
 return 0;

}

Templates 463

23

Program output:

April 12, 1975

Public constructors RWTPtrHashDictionary<KV>(unsigned (*hashKey)(const K&),
size_t buckets = RWDEFAULT_CAPACITY);

Constructs an empty hash dictionary. The first argument is a pointer to a user-
defined hashing function for items of type K (the key). The table will initally
have buckets buckets although this can be changed with member function
resize() .

RWTPtrHashDictionary<KV>(const RWTPtrHashDictionary<KV>& c);
Constructs a new hash dictionary as a shallow copy of c . After construction,
pointers will be shared between the two collections. The new object will use
the same hashing function and have the same number of buckets as c . Hence,
the keys will not be rehashed.

Public operators RWTPtrHashDictionary<KV&
operator=(const RWTPtrHashDictionary<KV>& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared between
the two collections. Self will use the same hashing function and have the
number of buckets as c . Hence, the keys will not be rehashed.

V*&operator[](K* key);
Look up the key key and return a reference to the pointer of its associated
value. If the key is not in the dictionary, then it is added to the dictionary. In
this case, the pointer to the value will be undefined. Because of this, if there is
a possibility that a key will not be in the dictionary, then this operator can only
be used as an l-value.

Public member functions void applyToKeyAndValue(void
 (*applyFun)(K*,V*&,void*),
 void* d);

Applies the user-defined function pointed to by applyFun to every key-value
pair in the dictionary. This function must have prototype:

void yourFun(K* key, V*& value, void* d);

464 Tools.h++ Class Library

23

This function will be called for each key value pair in the dictionary, with a
pointer to the key as the first argument and a reference to a pointer to the value
as the second argument. The key should not be changed or touched. A new
value can be substituted, or the old value can be changed. Client data may be
passed through as parameter d.

voidclear();
Removes all key value pairs from the collection.

voidclearAndDestroy();
Removes all key value pairs from the collection and calls the destructor for
both the keys and the values.

RWBooleancontains(const K* key) const;
Returns TRUE if the dictionary contains a key which is equal to the key pointed
to by key . Returns FALSE otherwise. Equality is measured by the class-
defined equality operator for type K.

size_tentries() const;
Returns the number of key-value pairs currently in the dictionary.

K*find(const K* key) const;
Returns a pointer to the key which is equal to the key pointed to by key , or nil
if no such item could be found. Equality is measured by the class-defined
equality operator for type K.

V*findValue(const K* key) const;
Returns a pointer to the value associated with the key pointed to by key , or nil
if no such item could be found. Equality is measured by the class-defined
equality operator for type K.

K*findKeyAndValue(const K* key,
V*& retVal) const;
Returns a pointer to the key associated with the key pointed to by key , or nil if
no such item could be found. If a key is found, the pointer to its associated
value is put in retVal . Equality is measured by the class-defined equality
operator for type K.

voidinsertKeyAndValue(K* key, V*
 value);
If the key pointed to by key is in the dictionary, then its associated value is
changed to value . Otherwise, a new key value pair is inserted into the
dictionary.

Templates 465

23

RWBooleanisEmpty() const;
Returns TRUE if the dictionary has no items in it, FALSE otherwise.

K*remove(K* key);
Removes the key and value pair where the key is equal to the key pointed to
by key . Returns the key or nil if no match was found. Equality is measured by
the class-defined equality operator for type K.

voidresize(size_t N);
Changes the number of buckets to N. This will result in all of the keys being
rehashed.

466 Tools.h++ Class Library

23

RWTPtrHashDictionaryIterator<K,V>

Synopsis #include <rw/tphdict.h>

unsigned hashFun(const K&);

RWTPtrHashDictionary<KV> dictionary(hashFun);

RWTPtrHashDictionaryIterator<KV> iterator(dictionary);

Description Iterator for class RWTPtrHashDictionary<KV> , allowing sequential access to
all keys and values of a parameterized hash dictionary. Elements are not
accessed in any particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTPtrHashDictionaryIterator(RWTPtrHashDictionary& c);
Constructs an iterator to be used with the dictionary c .

Public operators RWBoolean operator++();
Advances the iterator to the next key-value pair and returns TRUE. When the
end of the collection is reached, returns FALSE and the position of the iterator
will be undefined.

K*operator()();
Advances the iterator to the next key-value pair and returns a pointer to the
key. When the end of the collection is reached, returns nil and the position of
the iterator will be undefined. Use member function value() to recover the
dictionary value.

Templates 467

23

Public member functions RWTPtrHashDictionary* container() const;
Returns a pointer to the collection over which this iterator is iterating.

K*key() const;
Returns a pointer to the key at the iterator's current position. The results are
undefined if the iterator is no longer valid.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTPtrHashDictionary& c);
Resets the iterator to iterate over the collection c .

V*value() const;
Returns a pointer to the value at the iterator's current position. The results are
undefined if the iterator is no longer valid.

468 Tools.h++ Class Library

23

RWTPtrHashSet<T>
RWTPtrHashSet<T>

|
RWTPtrHashTable<T>

Synopsis #include <rw/tphset.h>

unsigned hashFun(const T&);

RWTPtrHashSet(hashFun) set;

Description RWTPtrHashSet<T> is a derived class of RWTPtrHashTable<T> where the
insert() function has been overridden to accept only one item of a given
value. Hence, each item in the collection will have a unique value.

As with class RWTPtrHashTable<T> , you must supply a hashing function to
the constructor.

The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Example This examples exercises a set of RWCStrings .

Code Example 23-3

#include <rw/tphset.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

unsigned hashIt(const RWCString& str){ return str.hash(); }

main()
{
 RWTPtrHashSet<RWCString> set(hashIt);

 set.insert(new RWCString("one"));
 set.insert(new RWCString("two"));
 set.insert(new RWCString("three"));
 set.insert(new RWCString("one"));

Templates 469

23

Program output:

3

Public constructor RWTPtrHashSet<T>(unsigned (*hashFun)(const T&),
size_t buckets = RWDEFAULT_CAPACITY);

Constructs an empty hashing set. The first argument is a pointer to a user-
defined hashing function for items of type T. The table will initally have
buckets buckets although this can be changed with member function
resize() .

Public member functions void apply(void (*applyFun)(T*,
 void*), void* d);

Inherited from class RWTPtrHashTable<T> .

voidclear();
Inherited from class RWTPtrHashTable<T> .

voidclearAndDestroy();
Inherited from class RWTPtrHashTable<T> .

RWBooleancontains(const T* a) const;
Inherited from class RWTPtrHashTable<T> .

size_tentries() const;
Inherited from class RWTPtrHashTable<T> .

T*find(const T* a) const;
Inherited from class RWTPtrHashTable<T> .

virtual voidinsert(T* a);
Redefined from class RWTPtrHashTable<T> to allow an object of a given
value to be inserted only once.

 cout << set.entries() << endl;// Prints "3"
 return 0;
}

Code Example 23-3 (Continued)

470 Tools.h++ Class Library

23

RWBooleanisEmpty() const;
Inherited from class RWTPtrHashTable<T> .

size_toccurrencesOf(const T* a) const;
Inherited from class RWTPtrHashTable<T> .

T*remove(const T* a);
Inherited from class RWTPtrHashTable<T> .

size_tremoveAll(const T* a);
Inherited from class RWTPtrHashTable<T> .

voidresize(size_t N);
Inherited from class RWTPtrHashTable<T> .

Templates 471

23

RWTPtrHashTable<T>

Synopsis #include <rw/tphasht.h>

unsigned hashFun(const T&);

RWTPtrHashTable<T> table(hashFun);

Description This class implements a parameterized hash table of types T. It uses chaining
to resolve hash collisions. Duplicates are allowed.

It is a pointer based collection: pointers to objects are copied in and out of the
hash buckets.

Parameter T represents the type of object to be inserted into the table, either a
class or built in type. The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

A user-supplied hashing function for type T must be supplied to the
constructor when creating a new table. If T is a Tools.h++ class, then this
requirement is usually trivial because all Tools.h++ objects know how to return
a hashing value. This function has prototype:

unsigned hFun(const T& a);

and should return a suitable hash value for the object a.

To find an object, it is first hashed to determine in which bucket it occurs. The
bucket is then searched for an object that is equal (as determined by the
equality operator) to the candidate.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of items in the collection greatly exceeds the
number of buckets then efficiency will sag because each bucket must be
searched linearly. The number of buckets can be changed by calling member
function resize() . This is relatively expensive because all of the keys must
be rehashed.

If you wish for this to be done automatically, then you can subclass from this
class and implement your own special insert() and remove() functions
which perform a resize() as necessary.

472 Tools.h++ Class Library

23

Example

Program output:

The table does contain Oregon
The table does not contain Oregon

Public constructors RWTPtrHashTable<T>(unsigned (*hashFun)(const T&),
size_t buckets = RWDEFAULT_CAPACITY);

#include <rw/tphasht.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

unsigned hashIt(const RWCString& str) {return str.hash();}

main()
{
 RWTPtrHashTable<RWCString> table(hashIt);

 table.insert(new RWCString("Alabama"));
 table.insert(new RWCString("Pennsylvania"));
 table.insert(new RWCString("Oregon"));
 table.insert(new RWCString("Montana"));

 RWCString key("Oregon");
 cout << "The table " <<
 (table.contains(&key) ? "does " : "does not ") <<
 "contain Oregon\n";

 table.removeAll(&key);

 cout << "The table " <<
 (table.contains(&key) ? "does " : "does not ") << "contain
Oregon";
 return 0;
}

Templates 473

23

Constructs an empty hash table. The first argument is a pointer to a user-
defined hashing function for items of type T. The table will initally have
buckets buckets although this can be changed with member function
resize() .

RWTPtrHashTable<T>(const RWTPtrHashTable<T>& c);
Constructs a new hash table as a shallow copy of c . After construction,
pointers will be shared between the two collections. The new object will have
the same number of buckets as c . Hence, the keys will not be rehashed.

Public operators RWTPtrHashTable&<T>operator=(const RWTPtrHashTable<T>& c);
Sets self to a shallow copy of c . Afterwards, pointers will be shared between
the two collections and self will have the same number of buckets as c . Hence,
the keys will not be rehashed.

Public member functions void apply(void (*applyFun)(T*,
 void*), void* d);

Applies the user-defined function pointed to by applyFun to every item in the
table. This function must have prototype:

void yourFun(T* a, void* d);

Client data may be passed through as parameter d. The items should not be
changed in any way that could change their hash value.

voidclear();
Removes all items from the collection.

voidclearAndDestroy();
Removes all items from the collection and calls their destructors.

RWBooleancontains(contains T* p) const;
Returns TRUE if the collection contains an item which is equal to the item
pointed to by p. Returns FALSE otherwise. Equality is measured by the class-
defined equality operator for type T.

size_tentries() const;
Returns the number of items currently in the collection.

474 Tools.h++ Class Library

23

T*find(const T* a) const;
Returns a pointer to the object which is equal to the object pointed to by a, or
nil if no such object can be found. Equality is measured by the class-defined
equality operator for type T.

voidinsert(T* a);
Adds the object pointed to by a to the collection.

RWBooleanisEmpty() const;
Returns TRUE if the collection has no items in it, FALSE otherwise.

size_toccurrencesOf(const T* a) const;
Returns the number of objects in the collection which are equal to the object
pointed to by a. Equality is measured by the class-defined equality operator
for type T.

T*remove(const T* a);
Removes the object which is equal to the object pointed to by a and returns a
pointer to it, or nil if no such object could be found. Equality is measured by
the class-defined equality operator for type T.

size_tremoveAll(const T* a);
Removes all objects which are equal to the object pointed to by a. Returns the
number of objects removed. Equality is measured by the class-defined equality
operator for type T.

voidresize(size_t N);
Changes the number of buckets to N. This will result in all of the objects in the
collection being rehashed.

Templates 475

23

RWTPtrHashTableIterator<T>

Synopsis #include <rw/tphasht.h>

RWTPtrHashTable<T> table;

RWTPtrHashTableIterator<T> iterator(table);

Description Iterator for class RWTPtrHashTable<T> , allowing sequential access to all the
elements of a hash table. Elements are not accessed in any particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTPtrHashTableIterator(RWTPtrHashTable<T>& c);
Constructs an iterator to be used with the table c .

Public operators RWBoolean operator++();
Advances the iterator to the next item and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

T*operator()();
Advances the iterator to the next item and returns a pointer to it. When the
end of the collection is reached, returns nil and the position of the iterator will
be undefined.

Public member functions RWTPtrHashTable<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

T*key() const
Returns a pointer to the item at the iterator's current position. The results are
undefined if the iterator is no longer valid.

476 Tools.h++ Class Library

23

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTPtrHashTable<T>& c);
Resets the iterator to iterate over the collection c .

Templates 477

23

RWTPtrOrderedVector<T>

Synopsis #include <rw/tpordvec.h>

RWTPtrOrderedVector<T> ordvec;

Description RWTPtrOrderedVector<T> is a pointer-based ordered collection. That is, the
items in the collection have a meaningful ordered relationship with respect to
one another and can be accessed by an index number. The order is set by the
order of insertion. Duplicates are allowed. The class is implemented as a
vector, allowing efficient insertion and retrieval from the end of the collection,
but somewhat slower from the beginning of the collection.

The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Example

#include <rw/tpordvec.h>
#include <rw/rstream.h>

main() {

 RWTPtrOrderedVector<double> vec;

 vec.insert(new double(22.0));
 vec.insert(new double(5.3));
 vec.insert(new double(-102.5));
 vec.insert(new double(15.0));
 vec.insert(new double(5.3));

 cout << vec.entries() << " entries\n" << endl;// Prints "5"
 for (int i=0; i<vec.length(); i++)
 cout << *vec[i] << endl;

 vec.clearAndDestroy();
 return 0;
}

478 Tools.h++ Class Library

23

Program output:

5 entries
22
5.3
-102.5
15
5.3

Public constructors RWTPtrOrderedVector<T>(size_t capac=RWDEFAULT_CAPACITY);
Creates an empty ordered vector with capacity capac . Should the number of
items exceed this value, the vector will be resized automatically.

RWTPtrOrderedVector<T>(const RWTPtrOrderedVector<T>& c);
Constructs a new ordered vector as a shallow copy of c . After construction,
pointers will be shared between the two collections.

Public operators RWTPtrOrderedVector<T>& operator=(const
 RWTPtrOrderedVector& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared between
the two collections.

T*&operator()(size_t i);
T*operator()(size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one. No bounds checking is performed.

T*&operator[](size_t i);
T*operator[](size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

Public member functions void append(T* a);
Appends the item pointed to by a to the end of the vector. The collection will
automatically be resized if this causes the number of items in the collection to
exceed the capacity.

Templates 479

23

T*&at(size_t i);
T*at(size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

voidclear();
Removes all items from the collection.

voidclearAndDestroy();
Removes all items from the collection and calls their destructors.

RWBooleancontains(const T* a) const;
Returns TRUE if the collection contains an item that is equal to the object
pointed to by a, FALSE otherwise. A linear search is done. Equality is
measured by the class-defined equality operator for type T.

T* const *data() const;
Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_tentries() const;
Returns the number of items currently in the collection.

T*find(const T* a) const;
Returns a pointer to the first object encountered which is equal to the object
pointed to by a, or nil if no such object can be found. Equality is measured by
the class-defined equality operator for type T.

T*first() const;
Returns a pointer to the first item in the vector. An exception of type
TOOL_INDEX will occur if the vector is empty.

size_tindex(const T* a) const;
Performs a linear search, returning the index of the first object that is equal to
the object pointed to by a, or RW_NPOS if there is no such object. Equality is
measured by the class-defined equality operator for type T.

voidinsert(T* a);
Adds the object pointed to by a to the end of the vector. The collection will be
resized automatically if this causes the number of items to exceed the capacity.

480 Tools.h++ Class Library

23

voidinsertAt(size_t i, T* a);
Adds the object pointed to by a at the index position i . The item previously at
position i is moved to i+1 , etc. The collection will be resized automatically if
this causes the number of items to exceed the capacity. The index i must be
between 0 and the number of items in the vector or an exception of type
TOOL_INDEX will occur.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the collection, FALSE otherwise.

T*last() const;
Returns a pointer to the last item in the collection. If there are no items in the
collection then an exception of type TOOL_INDEX will occur.

size_tlength() const;
Returns the number of items currently in the collection.

size_toccurrencesOf(const T* a) const;
Performs a linear search, returning the number of objects in the collection that
are equal to the object pointed to by a. Equality is measured by the class-
defined equality operator for type T.

voidprepend(T* a);
Adds the item pointed to by a to the beginning of the collection. The collection
will be resized automatically if this causes the number of items to exceed the
capacity.

T*remove(const T* a);
Performs a linear search, removing the first object which is equal to the object
pointed to by a and returns a pointer to it, or nil if no such object could be
found. Equality is measured by the class-defined equality operator for type T.

size_tremoveAll(const T* a);
Performs a linear search, removing all objects which are equal to the object
pointed to by a. Returns the number of objects removed. Equality is measured
by the class-defined equality operator for type T.

T*removeAt(size_t i);
Removes the object at index i and returns a pointer to it. An exception of type
TOOL_INDEX will be thrown if i is not a valid index. Valid indices are from
zero to the number of items in the list less one.

Templates 481

23

T*removeFirst();
Removes the first item in the collection and returns a pointer to it. An
exception of type TOOL_INDEX will be thrown if the list is empty.

T*removeLast();
Removes the last item in the collection and returns a pointer to it. An
exception of type TOOL_INDEX will be thrown if the list is empty.

voidresize(size_t N);
Changes the capacity of the collection to N.

Note – The number of objects in the collection does not change, just the
capacity.

482 Tools.h++ Class Library

23

RWTPtrSlist<T>

Synopsis #include <rw/tpslist.h>

RWTPtrSlist<T> list;

Description This class maintains a collection of pointers to type T, implemented as a singly-
linked list. This is a pointer based list: pointers to objects are copied in and out
of the links that make up the list.

Parameter T represents the type of object to be inserted into the list, either a
class or built in type. The class T must have:

• well-defined equality semantics (T::operator==(const T&)).

Example In this example, a singly-linked list of RWDates is exercised.

Code Example 23-4

#include <rw/tpslist.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{
 RWTPtrSlist<RWDate> dates;
 dates.insert(new RWDate(2, "June", 52)); // 6/2/52
 dates.insert(new RWDate(30, "March", 46)); // 3/30/46
 dates.insert(new RWDate(1, "April", 90)); // 4/1/90

 // Now look for one of the dates:
 RWDate key(2, "June", 52);
 RWDate* d = dates.find(&key);
 if (d){
 cout << "Found date " << *d << endl;
 }

 // Remove in reverse order:
 while (!dates.isEmpty()){
 d = dates.removeLast();
 cout << *d << endl;

Templates 483

23

Program output:

Found date June 2, 1952
April 1, 1990
March 30, 1946
June 2, 1952

Public constructors RWTPtrSlist<T>();
Construct an empty list.

RWTPtrSlist<T>(const RWTPtrSlist<T>& c);
Constructs a new singly-linked list as a shallow copy of c . After construction,
pointers will be shared between the two collections.

Public operators RWTPtrSlist& operator=(const RWTPtrSlist& c);
Sets self to a shallow copy of c . Afterwards, pointers will be shared between
the two collections.

T*&operator[](size_t i);
T*operator[](size_t i) const;
Returns a pointer to the i 'th value in the list. The first variant can be used as
an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

Public member functions void append(T* a);
Appends the item pointed to by a to the end of the list.

voidapply(void (*applyFun)(T*,
 void*), void* d);
Applies the user-defined function pointed to by applyFun to every item in the
list. This function must have the prototype:

 delete d;
 }

 return 0;
}

Code Example 23-4 (Continued)

484 Tools.h++ Class Library

23

void yourFun(T* a, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

T*&at(size_t i);
T*at(size_t i) const;
Returns a pointer to the i 'th value in the list. The first variant can be used as
an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

voidclear();
Removes all items from the collection.

voidclearAndDestroy();
Removes all items from the collection and calls their destructors.

RWBooleancontains(T* a) const;
Returns TRUE if the list contains an object that is equal to the object pointed to
by a, FALSE otherwise. Equality is measured by the class-defined equality
operator for type T.

RWBooleancontains(RWBoolean
 (*testFun)(T*, void*),void* d)
 const;
Returns TRUE if the list contains an item for which the user-defined "tester"
function pointed to by testFun returns TRUE . Returns FALSE otherwise. The
tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

size_tentries() const;
Returns the number of items that are currently in the collection.

T*find(T* a) const;
Returns a pointer to the first object encountered which is equal to the object
pointed to by a, or nil if no such object can be found. Equality is measured by
the class-defined equality operator for type T.

Templates 485

23

T*find(RWBoolean (*testFun)(T*,
void*), void* d,) const;
Returns a pointer to the first object encountered for which the user-defined
tester function pointed to by testFun returns TRUE, or nil if no such object can
be found. The tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

T*first() const;
Returns a pointer to the first item in the list. The behavior is undefined if the
list is empty.

T*get();
Returns a pointer to the first item in the list and removes the item. The
behavior is undefined if the list is empty.

size_tindex(T* a);
Returns the index of the first object that is equal to the object pointed to by a,
or RW_NPOS if there is no such object. Equality is measured by the class-
defined equality operator for type T.

size_tindex(RWBoolean (*testFun)(T*,
 void*), void* d) const;
Returns the index of the first object for which the user-defined tester function
pointed to by testFun returns TRUE, or RW_NPOS if there is no such object.
The tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

void insert(T* a);
Adds the object pointed to by a to the end of the list.

voidinsertAt(size_t i, T* a);
Adds the object pointed to by a at the index position i . This position must be
between zero and the number of items in the list, or an exception of type
TOOL_INDEX will be thrown.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the list, FALSE otherwise.

486 Tools.h++ Class Library

23

T*last() const;
Returns a pointer to the last item in the list. The behavior is undefined if the
list is empty.

size_toccurrencesOf(T* a) const;
Returns the number of objects in the list that are equal to the object pointed to
by a. Equality is measured by the class-defined equality operator for type T.

size_toccurrencesOf(RWBoolean
 (*testFun)(T*, void*), void* d)
 const;
Returns the number of objects in the list for which the user-defined "tester"
function pointed to by testFun returns TRUE . The tester function must have
the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

voidprepend(T* a);
Adds the item pointed to by a to the beginning of the list.

T*remove(T* a);
Removes the first object which is equal to the object pointed to by a and
returns a pointer to it, or nil if no such object could be found. Equality is
measured by the class-defined equality operator for type T.

T*remove(RWBoolean (*testFun)(T*,
 void*), void* d);
Removes the first object for which the user-defined tester function pointed to
by testFun returns TRUE and returns a pointer to it, or nil if there is no such
object. The tester function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

size_tremoveAll(T* a);
Removes all objects which are equal to the object pointed to by a. Returns the
number of objects removed. Equality is measured by the class-defined equality
operator for type T.

Templates 487

23

size_tremoveAll(RWBoolean
(*testFun)(T*, void*), void* d);
Removes all objects for which the user-defined tester function pointed to by
testFun returns TRUE. Returns the number of objects removed. The tester
function must have the prototype:

RWBoolean yourTester(T*, void* d);

This function will be called for each item in the list, with a pointer to the item
as the first argument. Client data may be passed through as parameter d.

T*removeAt(size_t i);
Removes the object at index i and returns a pointer to it. An exception of type
TOOL_INDEX will be thrown if i is not a valid index. Valid indices are from
zero to the number of items in the list less one.

T*removeFirst();
Removes the first item in the list and returns a pointer to it. The behavior is
undefined if the list is empty.

T*removeLast()
Removes the last item in the list and returns a pointer to it. The behavior is
undefined if the list is empty. This function is relatively slow because
removing the last link in a singly-linked list necessitates access to the next-to-
the-last link, requiring that the whole list be searched.

488 Tools.h++ Class Library

23

RWTPtrSlistIterator<T>

Synopsis #include <rw/tpslist.h>

RWTPtrSlist<T> list;

RWTPtrSlistIterator<T> iterator(list);

Description Iterator for class RWTPtrSlist<T> , allowing sequential access to all the
elements of a singly-linked parameterized list. Elements are accessed in order,
from first to last.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTPtrSlistIterator<T>(RWTPtrSlist<T>& c);
Constructs an iterator to be used with the list c .

Public member operators RWBoolean operator++();
Advances the iterator to the next item and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

RWBooleanoperator+=(size_t n);
Advances the iterator n positions and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

T*operator()();
Advances the iterator to the next item and returns a pointer to it. When the
end of the collection is reached, returns nil and the position of the iterator will
be undefined.

Templates 489

23

Public member functions RWTPtrSlist<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

T*findNext (const T* a);
Advances the iterator to the first element that is equal to the object pointed to
by a and returns a pointer to it. If no item is found, returns nil and the
position of the iterator will be undefined. Equality is measured by the class-
defined equality operator for type T.

T*findNext(RWBoolean
 (*testFun)(T*, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE and returns a pointer to it. If no item is found,
returns nil and the position of the iterator will be undefined.

voidinsertAfterPoint(T* a);
Inserts the object pointed to by a into the iterator's associated collection in the
position immediately after the iterator's current position.

T*key() const;
Returns a pointer to the object at the iterator's current position. The results are
undefined if the iterator is no longer valid.

T*remove();
Removes and returns the object at the iterator's current position from the
iterator's associated collection. Afterwards, the iterator will be positioned at
the element immediately before the removed element. Returns nil if
unsuccessful in which case the position of the iterator is undefined. This
function is relatively inefficient for a singly-linked list.

T*removeNext(const T* a);
Advances the iterator to the first element that is equal to the object pointed to
by a, then removes and returns it. Afterwards, the iterator will be positioned
at the element immediately before the removed element. Returns nil if
unsuccessful in which case the position of the iterator is undefined. Equality is
measured by the class-defined equality operator for type T.

490 Tools.h++ Class Library

23

T*removeNext(RWBoolean
(*testFun)(T*, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE, then removes and returns it. Afterwards, the
iterator will be positioned at the element immediately before the removed
element. Returns nil if unsuccessful in which case the position of the iterator is
undefined.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTPtrSlist<T>& c);
Resets the iterator to iterate over the collection c .

Templates 491

23

RWTPtrSortedVector<T>

Synopsis #include <rw/tpsrtvec.h>

RWTPtrSortedVector<T> sortvec;

Description RWTPtrSortedVector<T> is a pointer-based ordered collection. That is, the
items in the collection have a meaningful ordered relationship with respect to
each other and can be accessed by an index number. In the case of
RWTPtrSortedVector<T> , objects are inserted such that objects "less than"
themselves are before the object, objects "greater than" themselves after the
object. An insertion sort is used. Duplicates are allowed.

Stores a pointer to the inserted item into the collection according to an ordering
determined by the less-than (<) operator.

The class T must have:

• well-defined equality semantics (T::operator==(const T&));

• well-defined less-than semantics (T::operator<(const T&));

Example This example inserts a set of dates into a sorted vector in no particular order,
then prints them out in order.

Code Example 23-5

#include <rw/tpsrtvec.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{
 RWTPtrSortedVector<RWDate> vec;
 vec.insert(new RWDate(10, "Aug", 1991));
 vec.insert(new RWDate(9, "Aug", 1991));
 vec.insert(new RWDate(1, "Sept", 1991));
 vec.insert(new RWDate(14, "May", 1990));
 vec.insert(new RWDate(1, "Sept", 1991)); // Add a duplicate
 vec.insert(new RWDate(2, "June", 1991));

 for (int i=0; i<vec.length(); i++)

492 Tools.h++ Class Library

23

Program output:

May 14, 1990
June 2, 1991
August 9, 1991
August 10, 1991
September 1, 1991
September 1, 1991

Public constructor RWTPtrSortedVector(size_t capac = RWDEFAULT_CAPACITY);
Create an empty sorted vector with an initial capacity equal to capac . The
vector will be automatically resized should the number of items exceed this
amount.

RWTPtrSortedVector<T>(const RWTPtrSortedVector<T>& c);
Constructs a new ordered vector as a shallow copy of c . After construction,
pointers will be shared between the two collections.

Public operators RWTPtrSortedVector<T>& operator=(const
RWTPtrSortedVector& c);

Sets self to a shallow copy of c . Afterwards, pointers will be shared between
the two collections.

T*&operator()(size_t i);
T*operator()(size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one. No bounds checking is performed.

 cout << *vec[i] << endl;

 vec.clearAndDestroy();

 return 0;
}

Code Example 23-5 (Continued)

Templates 493

23

T*&operator[](size_t i);
T*operator[](size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

Public member functions T*& at(size_t i);
T* at(size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
number of items in the collection less one, or an exception of type TOOL_INDEX
will be thrown.

voidclear();
Removes all items from the collection.

voidclearAndDestroy();
Removes all items from the collection and calls their destructors.

RWBooleancontains(const T* a) const;
Returns TRUE if the collection contains an item that is equal to the object
pointed to by a, FALSE otherwise. A binary search is done. Equality is
measured by the class-defined equality operator for type T.

T* const *data() const;
Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_tentries() const;
Returns the number of items currently in the collection.

T*find(const T* a) const;
Returns a pointer to the first object encountered which is equal to the object
pointed to by a, or nil if no such object can be found. A binary search is used.
Equality is measured by the class-defined equality operator for type T.

T*first() const;
Returns a pointer to the first item in the vector. An exception of type
TOOL_INDEX will occur if the vector is empty.

494 Tools.h++ Class Library

23

size_tindex(const T* a) const;
Performs a binary search, returning the index of the first object that is equal to
the object pointed to by a, or RW_NPOS if there is no such object. Equality is
measured by the class-defined equality operator for type T.

voidinsert(T* a);
Performs a binary search, inserting the object pointed to by a after all items
that compare less than or equal to it, but before all items that do not. "Less
Than" is measured by the class-defined '<' operator for type T. The collection
will be resized automatically if this causes the number of items to exceed the
capacity.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the collection, FALSE otherwise.

T*last() const;
Returns a pointer to the last item in the collection. If there are no items in the
collection then an exception of type TOOL_INDEX will occur.

size_tlength() const;
Returns the number of items currently in the collection.

size_toccurrencesOf(const T* a) const;
Performs a binary search, returning the number of items that are equal to the
object pointed to by a. Equality is measured by the class-defined equality
operator for type T.

T*remove(const T* a);
Performs a binary search, removing the first object which is equal to the object
pointed to by a and returns a pointer to it, or nil if no such object could be
found. Equality is measured by the class-defined equality operator for type T.

size_tremoveAll(const T* a);
Performs a binary search, removing all objects which are equal to the object
pointed to by a. Returns the number of objects removed. Equality is measured
by the class-defined equality operator for type T.

T*removeAt(size_t i);
Removes the object at index i and returns a pointer to it. An exception of type
TOOL_INDEX will be thrown if i is not a valid index. Valid indices are from
zero to the number of items in the list less one.

Templates 495

23

T*removeFirst();
Removes the first item in the collection and returns a pointer to it. An
exception of type TOOL_INDEX will be thrown if the list is empty.

T*removeLast();
Removes the last item in the collection and returns a pointer to it. An
exception of type TOOL_INDEX will be thrown if the list is empty.

voidresize(size_t N);
Changes the capacity of the collection to N.

Note – The number of objects in the collection does not change, just the
capacity.

496 Tools.h++ Class Library

23

RWTPtrVector<T>

Synopsis #include <rw/tpvector.h>

RWTPtrVector<T> vec;

Descripton Class RWTPtrVector<T> is a simple parameterized vector of pointers to
objects of type T. It is most useful when you know precisely how many objects
have to be held in the collection. If the intention is to "insert" an unknown
number of objects into a collection, then class RWTPtrOrderedVector<T>
may be a better choice.

The class T can be of any type.

Example

#include <rw/tpvector.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {

 RWTPtrVector<RWDate> week(7);

 RWDate begin; // Today's date

 for (int i=0; i<7; i++)
 week[i] = new RWDate(begin++);

 for (i=0; i<7; i++)
 cout << *week[i] << endl;

 return 0;
}

Templates 497

23

Program output:

March 16, 1992
March 17, 1992
March 18, 1992
March 19, 1992
March 20, 1992
March 21, 1992
March 22, 1992

Public constructors RWTPtrVector<T>();
Constructs an empty vector of length zero.

RWTPtrVector<T>(size_t n);
Constructs a vector of length n. The initial values of the elements is undefined.
Hence, they can (and probably will) be garbage.

RWTPtrVector<T>(size_t n, T* ival);
Constructs a vector of length n, with each element initialized to the value
ival .

RWTPtrVector<T>(const RWTPtrVector& v);
Constructs self as a shallow copy of v. After construction, pointers will be
shared between the two vectors.

Public operators RWTPtrVector<T>& operator=(const
 RWTPtrVector<T>& v);

Sets self to a shallow copy of v. Afterwards, the two vectors will have the same
length and pointers will be shared between them.

RWTPtrVector<T>&operator=(T* p);
Sets all elements in self to the value p.

T*&operator()(size_t i);
T*operator()(size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
length of the vector, less one. No bounds checking is performed.

498 Tools.h++ Class Library

23

T*&operator[](size_t i);
T*operator[](size_t i) const;
Returns a pointer to the i 'th value in the vector. The first variant can be used
as an l-value, the second cannot. The index i must be between zero and the
length of the vector, less one, or an exception of type TOOL_INDEX will be
thrown.

Public member functions T* const * data() const;
Returns a pointer to the raw data of the vector. Should be used with care.

size_tlength() const;
Returns the length of the vector.

voidreshape(size_t N);
Changes the length of the vector to N. If this results in the vector being
lengthened, then the initial value of the additional elements is undefined.

voidresize(size_t N);
Changes the length of the vector to N. If this results in the vector being
lengthened, then the initial value of the additional elements is set to zero.

Templates 499

23

RWTQueue<T,C>

Synopsis #include <rw/tqueue.h>

RWTQueue<T, C> queue;

Description This class represents a parameterized queue. Not only can the type of object
inserted into the queue be parameterized, but also the implementation.

Parameter T represents the type of object in the queue, either a class or built in
type. The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• any other semantics required by class C.

Parameter C represents the class used for implementation. Useful choices are
RWTValSlist<T> or RWTValDlist<T> . Vectors, such as
RWTValOrderedVector<T> , can also be used, but tend to be less efficient at
removing an object from the front of the list.

500 Tools.h++ Class Library

23

Example In this example a queue of RWCStrings , implemented as a singly-linked list, is
exercised.

Program output:

one
two
three

Public constructor RWTQueue<T>,C>();
Construct an empty queue of objects of type T, implemented using class C.

Public member functions void clear();
Removes all items from the queue.

size_tentries() const;
Returns the number of items in the queue.

Tfirst() const;
Returns, but does not remove, the first item in the queue (the item least
recently inserted into the queue).

#include <rw/tqueue.h>
#include <rw/cstring.h>
#include <rw/tvslist.h>
#include <rw/rstream.h>

main() {
 RWTQueue<RWCString, RWTValSlist<RWCString> > queue;

 queue.insert("one"); // Type conversion occurs
 queue.insert("two");
 queue.insert("three");

 while (!queue.isEmpty())
 cout << queue.get() << endl;

 return 0;
}

Templates 501

23

Tget();
Returns and removes the first item in the queue (the item least recently
inserted into the queue).

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the queue, otherwise FALSE.

voidinsert(const T& a);
Inserts the item a at the end of the queue.

Tlast() const;
Returns, but does not remove, the last item in the queue (the item most
recently inserted into the queue).

502 Tools.h++ Class Library

23

RWTStack<T,C>

Synopsis #include <rw/tstack.h>

RWTStack<T, C> stack;

Description This class maintains a stack of values. Not only can the type of object inserted
onto the stack be parameterized, but also the implementation of the stack.

Parameter T represents the type of object in the stack, either a class or built in
type. The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• any other semantics required by class C.

Parameter C represents the class used for implementation. Useful choices are
RWTValOrderedVector<T> or RWTValDlist<T> . Class RWTValSlist<T>
can also be used, but note that singly-linked lists are less efficient at removing
the last item of a list (function pop()), because of the necessity of searching
the list for the next-to-the-last item.

Templates 503

23

Example In this example a stack of ints, implemented as an ordered vector, is exercised.

Program output:

6
5
1

Public constructor RWTStack<T,C>();
Constructs an empty stack of objects of type T, implemented using class C.

Public member functions void clear();
Removes all items from the stack.

size_tentries() const;
Returns the number of items currently on the stack.

RWBooleanisEmpty() const;
Returns TRUE if there are currently no items on the stack, FALSE otherwise.

voidpush(const T& a);
Push the item a onto the top of the stack.

#include <rw/tstack.h>
#include <rw/tvordvec.h>
#include <rw/rstream.h>

main() {

 RWTStack<int, RWTValOrderedVector<int> > stack;

 stack.push(1);
 stack.push(5);
 stack.push(6);

 while (!stack.isEmpty())
 cout << stack.pop() << endl;
 return 0;
}

504 Tools.h++ Class Library

23

Tpop();
Pop (remove and return) the item at the top of the stack. If there are no items
on the stack then an exception of type TOOL_INDEX will occur.

Ttop() const;
Returns (but does not remove) the item at the top of the stack.

Templates 505

23

RWTValDlist<T>

Synopsis #include <rw/tvdlist.h>

RWTValDlist<T> list;

Description This class maintains a collection of values, implemented as a doubly linked list.
This is a value based list: objects are copied in and out of the links that make up
the list. Unlike intrusive lists (see class RWTIsvDlist<T>), the objects need
not inherit from a link class. However, this makes the class slightly less
efficient than the intrusive lists because of the need to allocate a new link off
the heap with every insertion and to make a copy of the object in the newly
allocated link.

Parameter T represents the type of object to be inserted into the list, either a
class or built in type. The class T must have:

• A default constructor;

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• well-defined equality semantics (T::operator==(const T&)).

Example In this example, a doubly-linked list of user type Dog is exercised.

Code Example 23-6 (1 of 2)

#include <rw/tvdlist.h>
#include <rw/rstream.h>
#include <string.h>

class Dog {
 char* name;
public:
 Dog(const char* c = "") {

name = new char[strlen(c)+1];
strcpy(name, c); }

 ~Dog() { delete name; }

 // Define a copy constructor:

506 Tools.h++ Class Library

23

 Dog(const Dog& dog) {
name = new char[strlen(dog.name)+1];
strcpy(name, dog.name); }

 // Define an assignment operator:
 void operator=(const Dog& dog) {

if (this!=&dog) {
 delete name;
 name = new char[strlen(dog.name)+1];
 strcpy(name, dog.name);
}

 }

 // Define an equality test operator:
 int operator==(const Dog& dog) const {

return strcmp(name, dog.name)==0; }

 friend ostream& operator<<(ostream& str, Dog& dog){
 str << dog.name;
 return str;}
};

main()
{
 RWTValDlist<dog> terriers;
 terriers.insert("Cairn Terrier"); // NB: type conversion
occurs
 terriers.insert("Irish Terrier");
 terriers.insert("Schnauzer");

 cout << "The list " <<
 (terriers.contains("Schnauzer") ? "does " : "does not ") <<
 "contain a Schnauzer\n";

 terriers.insertAt(
 terriers.index("Irish Terrier"),
 "Fox Terrier"
);

 while (!terriers.isEmpty())
 cout << terriers.get() << endl;

 return 0;
}

Code Example 23-6 (2 of 2)

Templates 507

23

Program output:

The list does contain a Schnauzer
Cairn Terrier
Fox Terrier
Irish Terrier
Schnauzer

Public constructors RWTValDlist<T>();
Construct an empty list.

RWTValDlist<T>(const RWTValDlist<T>& list);
Construct a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in the
list must be copied.

Public operators RWTValDlist& operator=(const RWTValDlist<T>&
 list);

Sets self to a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in the
list must be copied.

T&operator[](size_t i);
Returns a reference to the item at index i . The results can be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

Toperator[](size_t i) const;
Returns a copy of the item at index i . The results cannot be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

Public member functions void append(const T& a);
Adds the item a to the end of the list.

voidapply(void (*applyFun)(T&,
 void*), void* d);
Applies the user-defined function pointed to by applyFun to every item in the
list. This function must have prototype:

void yourFun(T& a, void* d);

508 Tools.h++ Class Library

23

Client data may be passed through as parameter d.

T&at(size_t i);
Returns a reference to the item at index i . The results can be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

Tat(size_t i) const;
Returns a copy of the item at index i . The results cannot be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

voidclear();
Removes all items from the list. Their destructors (if any) will be called.

RWBooleancontains(const T& a) const;
Returns TRUE if the list contains an object that is equal to the object a. Returns
FALSE otherwise. Equality is measured by the class-defined equality operator.

RWBoolean contains(RWBoolean (*testFun)
 (const T&, void*), void* d) const;

Returns TRUE if the list contains an item for which the user-defined "tester"
function pointed to by testFun returns TRUE . Returns FALSE otherwise. The
tester function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

size_tentries() const;
Returns the number of items that are currently in the collection.

RWBooleanfind(const T& a, T& k) const;
Returns TRUE if the list contains an object that is equal to the object a and puts
a copy of the matching object into k . Returns FALSE otherwise and does not
touch k . Equality is measured by the class-defined equality operator. If you do
not need a copy of the found object, use contains() instead.

RWBooleanfind(RWBoolean (*testFun)
 (const T&, void*), void* d,
 T& k) const;
Returns TRUE if the list contains an object for which the user-defined tester

Templates 509

23

function pointed to by testFun returns TRUE and puts a copy of the matching
object into k . Returns FALSE otherwise and does not touch k . The tester
function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d. If you do not
need a copy of the found object, use contains() instead.

Tfirst() const;
Returns (but does not remove) the first item in the list. The behavior is
undefined if the list is empty.

Tget();
Returns and removes the first item in the list. The behavior is undefined if the
list is empty.

size_tindex(const T& a);
Returns the index of the first object that is equal to the object a, or RW_NPOS if
there is no such object. Equality is measured by the class-defined equality
operator.

size_tindex(RWBoolean (*testFun)
 (const T&, void*), void* d)
 const;
Returns the index of the first object for which the user-defined tester function
pointed to by testFun returns TRUE, or RW_NPOS if there is no such object.
The tester function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

void insert(const T& a);
Adds the item a to the end of the list.

voidinsertAt(size_t i, const T& a);
Insert the item a at the index position i . This position must be between zero
and the number of items in the list, or an exception of type TOOL_INDEX will
be thrown.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the list, FALSE otherwise.

510 Tools.h++ Class Library

23

Tlast() const;
Returns (but does not remove) the last item in the list. The behavior is
undefined if the list is empty.

size_toccurrencesOf(const T& a) const;
Returns the number of objects in the list that are equal to the object a. Equality
is measured by the class-defined equality operator.

size_t occurrencesOf(RWBoolean (*testFun)
 (const T&, void*),void* d) const;

Returns the number of objects in the list for which the user-defined "tester"
function pointed to by testFun returns TRUE . The tester function must have
the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

voidprepend(const T& a);
Adds the item a to the beginning of the list.

RWBooleanremove(const T& a);
Removes the first object which is equal to the object a and returns TRUE.
Returns FALSE if there is no such object. Equality is measured by the class-
defined equality operator.

RWBooleanremove(RWBoolean (*testFun)
 (const T&, void*),void* d);
Removes the first object for which the user-defined tester function pointed to
by testFun returns TRUE, and returns TRUE. Returns FALSE if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

size_tremoveAll(const T& a);
Removes all objects which are equal to the object a. Returns the number of
objects removed. Equality is measured by the class-defined equality operator.

Templates 511

23

size_tremoveAll(RWBoolean (*testFun)
 (const T&, void*), void* d);
Removes all objects for which the user-defined tester function pointed to by
testFun returns TRUE. Returns the number of objects removed. The tester
function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

TremoveAt(size_t i);
Removes and returns the object at index i . An exception of type TOOL_INDEX
will be thrown if i is not a valid index. Valid indices are from zero to the
number of items in the list less one.

TremoveFirst();
Removes and returns the first item in the list. The behavior is undefined if the
list is empty.

TremoveLast()
Removes and returns the last item in the list. The behavior is undefined if the
list is empty.

512 Tools.h++ Class Library

23

RWTValDlistIterator<T>

Synopsis #include <rw/tvdlist.h>

RWTValDlist<T> list;

RWTValDlistIterator<T> iterator(list);

Description Iterator for class RWTValDlist<T> , allowing sequential access to all the
elements of a doubly-linked parameterized list. Elements are accessed in
order, in either direction.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTValDlistIterator<T>(RWTValDlist<T>& c);
Constructs an iterator to be used with the list c .

Public member operators RWBoolean operator++();
Advances the iterator to the next item and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

RWBooleanoperator--();
Retreats the iterator to the previous item and returns TRUE. When the
beginning of the collection is reached, returns FALSE and the position of the
iterator will be undefined.

RWBooleanoperator+=(size_t n);
Advances the iterator n positions and returns TRUE. When the end of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

Templates 513

23

RWBooleanoperator-=(size_t n);
Retreats the iterator n positions and returns TRUE. When the beginning of the
collection is reached, returns FALSE and the position of the iterator will be
undefined.

RWBooleanoperator()();
Advances the iterator to the next item. Returns TRUE if the new position is
valid, FALSE otherwise.

Public member functions RWTValDlist<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

RWBooleanfindNext(const T& a);
Advances the iterator to the first element that is equal to a and returns TRUE,
or FALSE if there is no such element. Equality is measured by the class-defined
equality operator for type T.

RWBooleanfindNext(RWBoolean (*testFun)
 (const T&, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE and returns TRUE, or FALSE if there is no such
element.

voidinsertAfterPoint(const T& a);
Inserts the value a into the iterator's associated collection in the position
immediately after the iterator's current position.

Tkey() const;
Returns the value at the iterator's current position. The results are undefined if
the iterator is no longer valid.

RWBooleanremove();
Removes the value from the iterator's associated collection at the current
position of the iterator. Returns TRUE if successful, FALSE otherwise.
Afterwards, if successful, the iterator will be positioned at the element
immediately before the removed element.

514 Tools.h++ Class Library

23

RWBooleanremoveNext(const T& a);
Advances the iterator to the first element that is equal to a and removes it.
Returns TRUE if successful, FALSE otherwise. Equality is measured by the
class-defined equality operator for type T. Afterwards, if successful, the
iterator will be positioned at the element immediately before the removed
element.

RWBooleanremoveNext(RWBoolean (*testFun)
 (const T&, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE and removes it. Returns TRUE if successful,
FALSE otherwise. Afterwards, if successful, the iterator will be positioned at
the element immediately before the removed element.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTValDlist<T>& c);
Resets the iterator to iterate over the collection c .

Templates 515

23

RWTValHashDictionary<K,V>

Synopsis #include <rw/tvhdict.h>

unsigned hashFun(const K&);

RWTValHashDictionary<K,V> dictionary(hashFun);

Description RWTValHashDictionary<K,V> is a dictionary of keys of type K and values of
type V, implemented using a hash table. While duplicates of values are
allowed, duplicates of keys are not.

It is a value based collection: keys and values are copied in and out of the hash
buckets.

Parameters K and V represent the type of the key and the type of the value,
respectively, to be inserted into the table. These can be either classes or built in
types. Classes K and V must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.).

In addition, class K must have

• well-defined equality semantics (K::operator==(const K&) .

A user-supplied hashing function for type K must be supplied to the
constructor when creating a new table. If K is a “ class, then this requirement
is usually trivial because all Tools.h++ objects know how to return a hashing
value. This function has prototype:

unsigned hFun(const K& a);

and should return a suitable hash value for the object a.

To find a value, the key is first hashed to determine in which bucket the key
and value can be found. The bucket is then searched for an object that is equal
(as determined by the equality operator) to the key.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of (key/value) pairs in the collection greatly
exceeds the number of buckets then efficiency will sag because each bucket
must be searched linearly. The number of buckets can be changed by calling

516 Tools.h++ Class Library

23

member function resize() . This is an expensive proposition because not
only must all the items be copied into the new buckets, but all of the keys must
be rehashed.

If you wish this to be done automatically, then you can subclass from this class
and implement your own special insert() and remove() functions which
perform a resize() as necessary.

Example

Program output:

April 12, 1975

Public constructors RWTValHashDictionary<K,V>(unsigned (*hashKey)(const K&),
 size_t buckets = RWDEFAULT_CAPACITY);
Constructs a new hash dictionary. The first argument is a pointer to a user-

#include <rw/tvhdict.h>
#include <rw/cstring.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

unsigned hashString(const RWCString& str){return str.hash();}

main()
{
 RWTValHashDictionary<RWCString, RWDate> birthdays(hashString);

 birthdays.insertKeyAndValue("John", RWDate(12, "April",
1975));
 birthdays.insertKeyAndValue("Ivan", RWDate(2, "Nov", 1980));

 // Alternative syntax:
 birthdays["Susan"] = RWDate(30, "June", 1955);
 birthdays["Gene"] = RWDate(5, "Jan", 1981);

 // Print a birthday:
 cout << birthdays["John"] << endl;
 return 0;
}

Templates 517

23

defined hashing function for items of type K (the key). The table will initally
have buckets buckets although this can be changed with member function
resize() .

RWTValHashDictionary<K,V>(const RWTValHashDictionary<K,V>&
 dict);
Copy constructor. Constructs a new hash dictionary as a copy of dict . The
new dictionary will have the same number of buckets as the old table. Hence,
although the keys and values must be copied into the new table, the keys will
not be rehashed.

Public operators RWTValHashDictionary<K,V>&
 operator=(const RWTValHashDictionary<K,V>& dict);
Sets self to a copy of dict . Afterwards, the new table will have the same
number of buckets as the old table. Hence, although the keys and values must
be copied into the new table, the keys will not be rehashed.

V&operator[](const K& key);
Look up the key key and return its associated value as an lvalue reference. If
the key is not in the dictionary, then it is added to the dictionary. In this case,
the value associated with the key will be provided by the default constructor
for objects of type V.

Public member functions void applyToKeyAndValue(void
 (*applyFun)(const K&,V&,void*),
 void* d);

Applies the user-defined function pointed to by applyFun to every key-value
pair in the dictionary. This function must have prototype:

void yourFun(const K& key, V& value, void* d);

The key will be passed by value and hence cannot be changed. The value will
be passed by reference and can be modified. Client data may be passed
through as parameter d.

voidclear();
Removes all items from the collection.

518 Tools.h++ Class Library

23

RWBooleancontains(const K& key) const;
Returns TRUE if the dictionary contains a key which is equal to key. Returns
FALSE otherwise. Equality is measured by the class-defined equality operator
for class K.

size_tentries() const;
Returns the number of key-value pairs currently in the dictionary.

RWBooleanfind(const K& key, K& retKey)
 const;
Returns TRUE if the dictionary contains a key which is equal to key and puts
the matching key into retKey . Returns FALSE otherwise and leaves retKey
untouched. Equality is measured by the class-defined equality operator for
class K.

RWBooleanfindValue(const K& key, V&
 retVal) const;
Returns TRUE if the dictionary contains a key which is equal to key and puts
the associated value into retVal . Returns FALSE otherwise and leaves
retVal untouched. Equality is measured by the class-defined equality
operator for class K.

RWBooleanfindKeyAndValue(const K& key, K&
 retKey, V& retVal) const;
Returns TRUE if the dictionary contains a key which is equal to key and puts
the matching key into retKey and the associated value into retVal . Returns
FALSE otherwise and leaves retKey and retVal untouched. Equality is
measured by the class-defined equality operator for class K.

voidinsertKeyAndValue(const K&
 key, V value);
Inserts the key key and value value into the dictionary.

RWBooleanisEmpty() const;
Returns TRUE if the dictionary has no items in it, FALSE otherwise.

RWBooleanremove(const K& key);
Returns TRUE and removes the (key/value) pair where the key is equal to the
key . Returns FALSE if there is no such key. Equality is measured by the class-
defined equality operator for class K.

Templates 519

23

voidresize(size_t N);
Changes the number of buckets to N, a relatively expensive operation if there
are many items in the collection.

520 Tools.h++ Class Library

23

RWTValHashDictionaryIterator<K,V>

Synopsis #include <rw/tvhdict.h>

unsigned hashFun(const K&);

RWTValHashDictionary<K,V> dictionary(hashFun);

RWTValHashDictonaryIterator<K,V> iterator(dictionary);

Description Iterator for class RWTValHashDictionary<K,V> , allowing sequential access
to all keys and values of a parameterized hash dictionary. Elements are not
accessed in any particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTValHashDictionaryIterator(RWTValHashDictionary& c);
Constructs an iterator to be used with the dictionary c .

Public operators RWBoolean operator++();
Advances the iterator one position. Returns TRUE if the new position is valid,
FALSE otherwise.

RWBooleanoperator()();
Advances the iterator one position. Returns TRUE if the new position is valid,
FALSE otherwise.

Public member functions RWTValHashDictionary* container() const;
Returns a pointer to the collection over which this iterator is iterating.

Kkey() const;
Returns the key at the iterator's current position. The results are undefined if
the iterator is no longer valid.

Templates 521

23

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTValHashDictionary& c);
Resets the iterator to iterate over the collection c .

Vvalue() const;
Returns the value at the iterator's current position. The results are undefined if
the iterator is no longer valid.

522 Tools.h++ Class Library

23

RWTValHashSet<T>
RWTValHashSet<T>

|
RWTValHashTable<T>

Synopsis #include <rw/tvhset.h>

unsigned hashFun(const T&);

RWTValHashSet(hashFun) set;

Description RWTValHashSet<T> is a derived class of RWTValHashTable<T> where the
insert() function has been overridden to accept only one item of a given
value. Hence, each item in the collection will be unique.

As with class RWTValHashTable<T> , you must supply a hashing function to
the constructor.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• well-defined equality semantics (T::operator==(const T&)).

Templates 523

23

Example This examples exercises a set of RWCStrings .

Program output:

3

Public constructors RWTValHashSet<T>(unsigned (*hashFun)(const T&),
size_t buckets =
RWDEFAULT_CAPACITY);

Constructs a new hash table. The first argument is a pointer to a user-defined
hashing function for items of type T. The table will initally have buckets
buckets although this can be changed with member function resize() .

RWTValHashSet<T>(const RWTValHashSet<T>& table);
Constructs a new hash table as a copy of table . The new table will have the
same number of buckets as the old table. Hence, although objects must be
copied into the new table, they will not be hashed.

#include <rw/tvhset.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

unsigned hashIt(const RWCString& str){ return str.hash(); }

main()
{
 RWTValHashSet<RWCString> set(hashIt);

 set.insert("one");
 set.insert("two");
 set.insert("three");
 set.insert("one"); // Rejected: already in collection

 cout << set.entries() << endl;// Prints "3"
 return 0;
}

524 Tools.h++ Class Library

23

Public operators RWTValHashSet& operator=(const
RWTValHashSet<T>&);

Sets self to a copy of table . Afterwards, the new table will have the same
number of buckets as the old table. Hence, although objects must be copied
into the new table, they will not be hashed.

Public member functions void apply(void (*applyFun)(const T&,
void*), void* d);

Inherited from class RWTValHashTable<T> .

voidclear();
Inherited from class RWTValHashTable<T> .

RWBooleancontains(const T& val) const;
Inherited from class RWTValHashTable<T> .

size_tentries() const;
Inherited from class RWTValHashTable<T> .

RWBooleanfind(const T& a, T& k) const;
Inherited from class RWTValHashTable<T> .

voidinsert(const T& val);
Redefined from class RWTValHashTable<T> to allow an object of a given
value to be inserted only once.

RWBooleanisEmpty() const;
Inherited from class RWTValHashTable<T> .

size_toccurrencesOf(const T& val)
 const;
Inherited from class RWTValHashTable<T> .

RWBooleanremove(const T& val);
Inherited from class RWTValHashTable<T> .

size_tremoveAll(const T& val);
Inherited from class RWTValHashTable<T> .

voidresize(size_t N);
Inherited from class RWTValHashTable<T> .

Templates 525

23

RWTValHashTable<T>

Synopsis #include <rw/tvhasht.h>

unsigned hashFun(const T&);

RWTValHashTable<T> table(hashFun);

Description This class implements a parameterized hash table of types T. It uses chaining
to resolve hash collisions. Duplicates are allowed.

It is a value based collection: objects are copied in and out of the hash buckets.

Parameter T represents the type of object to be inserted into the table, either a
class or built in type. The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• well-defined equality semantics (T::operator==(const T&)).

A user-supplied hashing function for type T must be supplied to the
constructor when creating a new table. If T is a Tools.h++ class, then this
requirement is usually trivial because all Tools.h++ objects know how to return
a hashing value. This function has prototype:

unsigned hFun(const T& a);

and should return a suitable hash value for the object a.

To find an object, it is first hashed to determine in which bucket it occurs. The
bucket is then searched for an object that is equal (as determined by the
equality operator) to the candidate.

The initial number of buckets in the table is set by the constructor. There is a
default value. If the number of items in the collection greatly exceeds the
number of buckets then efficiency will sag because each bucket must be
searched linearly. The number of buckets can be changed by calling member
function resize() . This is an expensive proposition because not only must
all items be copied into the new buckets, but they must also be rehashed.

526 Tools.h++ Class Library

23

If you wish this to be automatically done, then you can subclass from this class
and implement your own special insert() and remove() functions which
perform a resize() as necessary.

Example

Program output:

The table does contain Oregon
The table does not contain Oregon

#include <rw/tvhasht.h>
#include <rw/cstring.h>
#include <rw/rstream.h>

unsigned hashIt(const RWCString& str) {return str.hash();}

main()
{
 RWTValHashTable<RWCString> table(hashIt);

 table.insert("Alabama"); // NB: Type conversion occurs
 table.insert("Pennsylvania");
 table.insert("Oregon");
 table.insert("Montana");

 cout << "The table " <<
 (table.contains("Oregon") ? "does " : "does not ") <<
 "contain Oregon\n";

 table.removeAll("Oregon");

 cout << "The table " <<
 (table.contains("Oregon") ? "does " : "does not ") <<
 "contain Oregon";
 return 0;
}

Templates 527

23

Public constructors RWTValHashTable<T>(unsigned (*hashFun)(const T&),
size_t buckets =
RWDEFAULT_CAPACITY);

Constructs a new hash table. The first argument is a pointer to a user-defined
hashing function for items of type T. The table will initally have buckets
buckets although this can be changed with member function resize() .

RWTValHashTable<T>(const RWTValHashTable<T>& table);
Constructs a new hash table as a copy of table . The new table will have the
same number of buckets as the old table. Hence, although objects must be
copied into the new table, they will not be hashed.

Public operators RWTValHashTable& operator=(const
 RWTValHashTable<T>&);

Sets self to a copy of table . Afterwards, the new table will have the same
number of buckets as the old table. Hence, although objects must be copied
into the new table, they will not be hashed.

Public member functions void apply(void (*applyFun)(const T&,
 void*), void* d) ;

Applies the user-defined function pointed to by applyFun to every item in the
table. This function must have prototype:

void yourFun(const T& a, void* d);

Client data may be passed through as parameter d.

voidclear();
Removes all items from the collection.

RWBooleancontains(const T& val) const;
Returns TRUE if the collection contains an item which is equal to val . Returns
FALSE otherwise. Equality is measured by the class-defined equality operator.

size_tentries() const;
Returns the number of items currently in the collection.

RWBooleanfind(const T& a, T& k) const;
Returns TRUE if the collection contains an item which is equal to val and puts
the matching object into k . Returns FALSE otherwise and leaves k untouched.
Equality is measured by the class-defined equality operator.

528 Tools.h++ Class Library

23

voidinsert(const T& val);
Inserts the value val into the collection.

RWBooleanisEmpty() const;
Returns TRUE if the collection has no items in it, FALSE otherwise.

size_toccurrencesOf(const T& val)
 const;
Returns the number of items in the collection which are equal to val . Equality
is measured by the class-defined equality operator.

RWBooleanremove(const T& val);
Removes the first object which is equal to the object a and returns TRUE.
Returns FALSE if there is no such object. Equality is measured by the class-
defined equality operator.

size_tremoveAll(const T& val);
Removes all objects which are equal to the object a. Returns the number of
objects removed. Equality is measured by the class-defined equality operator.

voidresize(size_t N);
Changes the number of buckets to N, a relatively expensive operation if there
are many items in the collection.

Templates 529

23

RWTValHashTableIterator<T>
Synopsis #include <rw/tvhasht.h>

RWTValHashTable<T> table;

RWTValHashTableIterator<T> iterator(table);

Description Iterator for class RWTValHashTable<T> , allowing sequential access to all the
elements of a hash table. Elements are not accessed in any particular order.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTValHashTableIterator(RWTValHashTable<T>& c);
Constructs an iterator to be used with the table c .

Public operators RWBoolean operator++();
Advances the iterator one position. Returns TRUE if the new position is valid,
FALSE otherwise.

RWBooleanoperator()();
Advances the iterator one position. Returns TRUE if the new position is valid,
FALSE otherwise.

Public member functions RWTValHashTable<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

Tkey() const
Returns the value at the iterator's current position. The results are undefined if
the iterator is no longer valid.

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTValHashTable<T>& c);
Resets the iterator to iterate over the collection c .

530 Tools.h++ Class Library

23

RWTValOrderedVector<T>

Synopsis #include <rw/tvordvec.h>

RWTValOrderedVector<T> ordvec;

Description RWTValOrderedVector<T> is an ordered collection. That is, the items in the
collection have a meaningful ordered relationship with respect to one another
and can be accessed by an index number. The order is set by the order of
insertion. Duplicates are allowed. The class is implemented as a vector,
allowing efficient insertion and retrieval from the end of the collection, but
somewhat slower from the beginning of the collection.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• well-defined equality semantics (T::operator==(const T&));

• a default constructor.

Note that an ordered vector has a length (the number of items returned by
length() or entries()) and a capacity. Necessarily, the capacity is always
greater than or equal to the length. Although elements beyond the collection's
length are not used, nevertheless, in a value-based collection, they are
occupied. If each instance of class T requires considerable resources, then you
should insure that the collection's capacity is not much greater than its length,
otherwise unnecessary resources will be tied up.

Templates 531

23

Example

Program output:

5 entries
22
5.3
-102.5
15
5.3

Public constructor RWTValOrderedVector<T>(size_t capac=RWDEFAULT_CAPACITY);
Create an empty ordered vector with capacity capac . Should the number of
items exceed this value, the vector will be resized automatically.

RWTValOrderedVector<T>(const RWTValOrderedVector<T>& c);
Constructs a new ordered vector as a copy of c . The copy constructor of all
elements in the vector will be called. The new vector will have the same
capacity and number of members as the old vector.

#include <rw/tvordvec.h>
#include <rw/rstream.h>

main() {

 RWTValOrderedVector<double> vec;

 vec.insert(22.0);
 vec.insert(5.3);
 vec.insert(-102.5);
 vec.insert(15.0);
 vec.insert(5.3);

 cout << vec.entries() << " entries\n" << endl; // Prints "5"
 for (int i=0; i<vec.length(); i++)
 cout << vec[i] << endl;

 return 0;
}

532 Tools.h++ Class Library

23

Public operators RWTValOrderedVector<T>& operator=(const
 RWTValOrderedVector& c);

Sets self to a copy of c . The copy constructor of all elements in the vector will
be called. Self will have the same capacity and number of members as the old
vector.

T&operator()(size_t i);
Toperator()(size_t i) const;
Returns the i 'th value in the vector. The first variant can be used as an l-value,
the second cannot. The index i must be between zero and the number of items
in the collection less one. No bounds checking is performed.

T&operator[](size_t i);
Toperator[](size_t i) const;
Returns the i 'th value in the vector. The first variant can be used as an l-value,
the second cannot. The index i must be between zero and the number of items
in the collection less one, or an exception of type TOOL_INDEX will be thrown.

Public member functions void append(const T& a);
Appends the value a to the end of the vector. The collection will automatically
be resized if this causes the number of items in the collection to exceed the
capacity.

T&at(size_t i);
Tat(size_t i) const;
Return the i 'th value in the vector. The first variant can be used as an lvalue,
the second cannot. The index i must be between 0 and the length of the vector
less one, or an exception of type TOOL_INDEX will be thrown .

voidclear();
Removes all items from the collection.

RWBooleancontains(const T& a) const;
Returns TRUE if the collection contains an item that is equal to a. A linear
search is done. Equality is measured by the class-defined equality operator.

const T*data() const;
Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_tentries() const;
Returns the number of items currently in the collection.

Templates 533

23

RWBooleanfind(const T& a,T& ret) const;
Performs a linear search and returns TRUE if the vector contains an object that
is equal to the object a and puts a copy of the matching object into ret .
Returns FALSE otherwise and does not touch ret . Equality is measured by the
class-defined equality operator.

Tfirst() const;
Returns the first item in the collection. An exception of type TOOL_INDEX will
occur if the vector is empty.

size_tindex(const T& a) const;
Performs a linear search, returning the index of the first item that is equal to a.
Returns RW_NPOS if there is no such item. Equality is measured by the class-
defined equality operator.

voidinsert(const T& a);
Appends the value a to the end of the vector. The collection will automatically
be resized if this causes the number of items in the collection to exceed the
capacity.

voidinsertAt(size_t i, const T& a);
Inserts the value a into the vector at index i . The item previously at position i
is moved to i+1 , etc. The collection will automatically be resized if this causes
the number of items in the collection to exceed the capacity. The index i must
be between 0 and the number of items in the vector or an exception of type
TOOL_INDEX will occur.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the collection, FALSE otherwise.

Tlast() const;
Returns the last item in the collection. If there are no items in the collection
then an exception of type TOOL_INDEX will occur.

size_tlength() const;
Returns the number of items currently in the collection.

size_toccurrencesOf(const T& a) const;
Performs a linear search, returning the number of items that are equal to a.
Equality is measured by the class-defined equality operator.

534 Tools.h++ Class Library

23

voidprepend(const T& a);
Prepends the value a to the beginning of the vector. The collection will
automatically be resized if this causes the number of items in the collection to
exceed the capacity.

RWBooleanremove(const T& a);
Performs a linear search, removing the first object which is equal to the object
a and returns TRUE. Returns FALSE if there is no such object. Equality is
measured by the class-defined equality operator.

size_tremoveAll(const T& a);
Removes all items which are equal to a, returning the number removed.
Equality is measured by the class-defined equality operator.

TremoveAt(size_t i);
Removes and returns the object at index i . An exception of type TOOL_INDEX
will be thrown if i is not a valid index. Valid indices are from zero to the
number of items in the list less one.

TremoveFirst();
Removes and returns the first object in the collection. An exception of type
TOOL_INDEX will be thrown if the list is empty.

TremoveLast();
Removes and returns the last object in the collection. An exception of type
TOOL_INDEX will be thrown if the list is empty.

voidresize(size_t N);
Changes the capacity of the collection to N. Note that the number of objects in
the collection does not change, just the capacity.

Templates 535

23

RWTValSlist<T>

Synopsis #include <rw/tvslist.h>

RWTValSlist<T> list;

Description This class maintains a collection of values, implemented as a singly linked list.
This is a value based list: objects are copied in and out of the links that make up
the list. Unlike intrusive lists (see class RWTIsvSlist<T>) the objects need
not inherit from a link class. However, this makes the class slightly less
efficient than the intrusive lists because of the need to allocate a new link off
the heap with every insertion and to make a copy of the object in the newly
allocated link.

Parameter T represents the type of object to be inserted into the list, either a
class or built in type. The class T must have:

• A default constructor;

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• well-defined equality semantics (T::operator==(const T&)).

Example In this example, a singly-linked list of RWDates is exercised.

Code Example 23-7

#include <rw/tvslist.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{
 RWTValSlist<RWDate> dates;
 dates.insert(RWDate(2, "June", 52));// 6/2/52
 dates.insert(RWDate(30, "March", 46));// 3/30/46
 dates.insert(RWDate(1, "April", 90));// 4/1/90

 // Now look for one of the dates:
 RWDate ret;

536 Tools.h++ Class Library

23

Program output:

Found date June 2, 1952
April 1, 1990
March 30, 1946
June 2, 1952

Public constructors RWTValSlist<T>();
Construct an empty list.

RWTValSlist<T>(const RWTValSlist<T>& list);
Construct a copy of the list list . Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in the
list must be copied.

Public operators RWTValSlist&<T>operator=(const RWTValSlist<T>& list);
Sets self to a copy of the list list. Depending on the nature of the copy
constructor of T, this could be relatively expensive because every item in the
list must be copied.

T&operator[](size_t i);
Returns a reference to the item at index i . The results can be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

 if (dates.find(RWDate(2, "June", 52), ret)){
 cout << "Found date " << ret << endl;
 }

 // Remove in reverse order:
 while (!dates.isEmpty())
 cout << dates.removeLast() << endl;

 return 0;
}

Code Example 23-7 (Continued)

Templates 537

23

Toperator[](size_t i) const;
Returns a copy of the item at index i . The results cannot be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

Public member functions void append(const T& a);
Adds the item a to the end of the list.

voidapply(void (*applyFun)(T&,
 void*), void* d);
Applies the user-defined function pointed to by applyFun to every item in the
list. This function must have prototype:

void yourFun(T& a, void* d);

Client data may be passed through as parameter d.

T&at(size_t i);
Returns a reference to the item at index i . The results can be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

Tat(size_t i) const;
Returns a copy of the item at index i . The results cannot be used as an lvalue.
An exception of type TOOL_INDEX will be thrown if i is not a valid index.
Valid indices are from zero to the number of items in the list less one.

voidclear();
Removes all items from the list. Their destructors (if any) will be called.

RWBooleancontains(const T& a) const;
Returns TRUE if the list contains an object that is equal to the object a. Returns
FALSE otherwise. Equality is measured by the class-defined equality operator.

RWBooleancontains(RWBoolean (*testFun)
 (const T&, void*), void* d)
 const;
Returns TRUE if the list contains an item for which the user-defined "tester"
function pointed to by testFun returns TRUE . Returns FALSE otherwise. The
tester function must have the prototype:

RWBoolean yourTester(const T&, void* d);

538 Tools.h++ Class Library

23

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

size_tentries() const;
Returns the number of items that are currently in the collection.

RWBooleanfind(const T& a, T& k) const;
Returns TRUE if the list contains an object that is equal to the object a and puts
a copy of the matching object into k . Returns FALSE otherwise and does not
touch k . Equality is measured by the class-defined equality operator. If you do
not need a copy of the found object, use contains() instead.

RWBooleanfind(RWBoolean (*testFun)
 (const T&, void*), void* d,
 T& k) const;
Returns TRUE if the list contains an object for which the user-defined tester
function pointed to by testFun returns TRUE and puts a copy of the matching
object into k . Returns FALSE otherwise and does not touch k . The tester
function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d. If you do not
need a copy of the found object, use contains() instead.

Tfirst() const;
Returns (but does not remove) the first item in the list. The behavior is
undefined if the list is empty.

Tget();
Returns and removes the first item in the list. The behavior is undefined if the
list is empty.

size_tindex(const T& a);
Returns the index of the first object that is equal to the object a, or RW_NPOS if
there is no such object. Equality is measured by the class-defined equality
operator.

size_tindex(RWBoolean (*testFun)
 (const T&, void*), void* d)
 const;

Templates 539

23

Returns the index of the first object for which the user-defined tester function
pointed to by testFun returns TRUE, or RW_NPOS if there is no such object.
The tester function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

void insert(const T& a);
Adds the item a to the end of the list.

voidinsertAt(size_t i, const T& a);
Insert the item a at the index position i . This position must be between zero
and the number of items in the list, or an exception of type TOOL_INDEX will
be thrown.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the list, FALSE otherwise.

Tlast() const;
Returns (but does not remove) the last item in the list. The behavior is
undefined if the list is empty.

size_toccurrencesOf(const T& a) const;
Returns the number of objects in the list that are equal to the object a. Equality
is measured by the class-defined equality operator.

size_t occurrencesOf(RWBoolean (*testFun)
 (const T&, void*), void* d) const;

Returns the number of objects in the list for which the user-defined "tester"
function pointed to by testFun returns TRUE . The tester function must have
the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

voidprepend(const T& a);
Adds the item a to the beginning of the list.

540 Tools.h++ Class Library

23

RWBooleanremove(const T& a);
Removes the first object which is equal to the object a and returns TRUE.
Returns FALSE if there is no such object. Equality is measured by the class-
defined equality operator.

RWBooleanremove(RWBoolean (*testFun)
 (const T&, void*), void* d);
Removes the first object for which the user-defined tester function pointed to
by testFun returns TRUE, and returns TRUE. Returns FALSE if there is no
such object. The tester function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

size_tremoveAll(const T& a);
Removes all objects which are equal to the object a. Returns the number of
objects removed. Equality is measured by the class-defined equality operator.

size_tremoveAll(RWBoolean (*testFun)
 (const T&, void*), void* d);
Removes all objects for which the user-defined tester function pointed to by
testFun returns TRUE. Returns the number of objects removed. The tester
function must have the prototype:

RWBoolean yourTester(const T&, void* d);

For each item in the list this function will be called with the item as the first
argument. Client data may be passed through as parameter d.

TremoveAt(size_t i);
Removes and returns the object at index i . An exception of type TOOL_INDEX
will be thrown if i is not a valid index. Valid indices are from zero to the
number of items in the list less one.

TremoveFirst();
Removes and returns the first item in the list. The behavior is undefined if the
list is empty.

Templates 541

23

TremoveLast()
Removes and returns the last item in the list. The behavior is undefined if the
list is empty. This function is relatively slow because removing the last link in
a singly-linked list necessitates access to the next-to-the-last link, requiring the
whole list to be searched.

542 Tools.h++ Class Library

23

RWTValSlistIterator<T>

Synopsis #include <rw/tvslist.h>

RWTValSlist<T< list;

RWTValSlistIterator<T> iterator(list);

Description Iterator for class RWTValSlist<T> , allowing sequential access to all the
elements of a singly-linked parameterized list. Elements are accessed in order,
from first to last.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

Public constructor RWTValSlistIterator<T>(RWTValSlist<T>& c);
Constructs an iterator to be used with the list c .

Public member operators RWBoolean operator++();
Advances the iterator one position. Returns TRUE if the new position is valid,
FALSE otherwise.

RWBooleanoperator+=(size_t n);
Advances the iterator n positions. Returns TRUE if the new position is valid,
FALSE otherwise.

RWBooleanoperator()();
Advances the iterator one position. Returns TRUE if the new position is valid,
FALSE otherwise.

Templates 543

23

Public member functions RWTValSlist<T>* container() const;
Returns a pointer to the collection over which this iterator is iterating.

RWBooleanfindNext(const T& a);
Advances the iterator to the first element that is equal to a and returns TRUE,
or FALSE if there is no such element. Equality is measured by the class-defined
equality operator for type T.

RWBooleanfindNext(RWBoolean (*testFun)
 (const T&, void*),void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE and returns TRUE, or FALSE if there is no such
element.

voidinsertAfterPoint(const T& a);
Inserts the value a into the iterator's associated collection in the position
immediately after the iterator's current position.

Tkey() const;
Returns the value at the iterator's current position. The results are undefined if
the iterator is no longer valid.

RWBooleanremove();
Removes the value from the iterator's associated collection at the current
position of the iterator. Returns TRUE if successful, FALSE otherwise.
Afterwards, if successful, the iterator will be positioned at the element
immediately before the removed element. This function is relatively inefficient
for a singly-linked list.

RWBooleanremoveNext(const T& a);
Advances the iterator to the first element that is equal to a and removes it.
Returns TRUE if successful, FALSE otherwise. Equality is measured by the
class-defined equality operator for type T. Afterwards, if successful, the
iterator will be positioned at the element immediately before the removed
element.

RWBooleanremoveNext(RWBoolean (*testFun)
 (const T&, void*), void*);
Advances the iterator to the first element for which the tester function pointed
to by testFun returns TRUE and removes it. Returns TRUE if successful,
FALSE otherwise. Afterwards, if successful, the iterator will be positioned at
the element immediately before the removed element.

544 Tools.h++ Class Library

23

voidreset();
Resets the iterator to the state it had immediately after construction.

voidreset(RWTValSlist& c);
Resets the iterator to iterate over the collection c .

Templates 545

23

RWTValSortedVector<T>

Synopsis #include <rw/tvsrtvec.h>

RWTValSortedVector<T> sortvec;

Description RWTValSortedVector<T> is an ordered collection. That is, the items in the
collection have a meaningful ordered relationship with respect to each other
and can be accessed by an index number. In the case of
RWTValSortedVector<T> , objects are inserted such that objects "less than"
themselves are before the object, objects "greater than" themselves after the
object. An insertion sort is used. Duplicates are allowed.

Stores a copy of the inserted item into the collection according to an ordering
determined by the less-than (<) operator.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• well-defined equality semantics (T::operator==(const T&));

• well-defined less-than semantics (T::operator(const T&));

• a default constructor.

Note that a sorted vector has a length (the number of items returned by
length() or entries()) and a capacity. Necessarily, the capacity is always
greater than or equal to the length. Although elements beyond the collection's
length are not used, nevertheless, in a value-based collection, they are
occupied. If each instance of class T requires considerable resources, then you
should insure that the collection's capacity is not much greater than its length,
otherwise unnecessary resources will be tied up.

546 Tools.h++ Class Library

23

Example This example inserts a set of dates into a sorted vector in no particular order,
then prints them out in order.

Program output:

May 14, 1990
June 2, 1991
August 9, 1991
August 10, 1991
September 1, 1991
September 1, 1991

Public constructor RWTValSortedVector(size_t capac = RWDEFAULT_CAPACITY);
Create an empty sorted vector with an initial capacity equal to capac . The
vector will be automatically resized should the number of items exceed this
amount.

#include <rw/tvsrtvec.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main()
{
 RWTValSortedVector<RWDate> vec;

 vec.insert(RWDate(10, "Aug", 1991));
 vec.insert(RWDate(9, "Aug", 1991));
 vec.insert(RWDate(1, "Sept", 1991));
 vec.insert(RWDate(14, "May", 1990));
 vec.insert(RWDate(1, "Sept", 1991)); // Add a duplicate
 vec.insert(RWDate(2, "June", 1991));

 for (int i=0; i<vec.length(); i++)
 cout << vec[i] << endl;
 return 0;
}

Templates 547

23

Public operators T& operator()(size_t i);
T operator()(size_t i) const;
Returns the i'th value in the vector. The first variant can be used as an l-value,
the second cannot. The index i must be between zero and the number of items
in the collection less one. No bounds checking is performed.

T&operator[](size_t i);
Toperator[](size_t i) const;
Returns the i 'th value in the vector. The first variant can be used as an l-value,
the second cannot. The index i must be between zero and the number of items
in the collection less one, or an exception of type TOOL_INDEX will be thrown.

Public member functions T& at(size_t i);
T at(size_t i) const;
Return the i 'th value in the vector. The first variant can be used as an lvalue,
the second cannot. The index i must be between 0 and the length of the vector
less one, or an exception of type TOOL_INDEX will be thrown.

voidclear();
Removes all items from the collection.

RWBooleancontains(const T& a) const;
Returns TRUE if the collection contains an item that is equal to a. A binary
search is done. Equality is measured by the class-defined equality operator.

const T*data() const;
Returns a pointer to the raw data of the vector. The contents should not be
changed. Should be used with care.

size_tentries() const;
Returns the number of items currently in the collection.

RWBooleanfind(const T& a,T& ret) const;
Performs a binary search and returns TRUE if the vector contains an object that
is equal to the object a and puts a copy of the matching object into ret .
Returns FALSE otherwise and does not touch ret . Equality is measured by the
class-defined equality operator.

Tfirst() const;
Returns the first item in the collection. An exception of type TOOL_INDEX will
occur if the vector is empty.

548 Tools.h++ Class Library

23

size_tindex(const T& a) const;
Performs a binary search, returning the index of the first item that is equal to a.
Returns RW_NPOS if there is no such item. Equality is measured by the class-
defined equality operator.

voidinsert(const T& a);
Performs a binary search, inserting a after all items that compare less than or
equal to it, but before all items that do not. "Less Than" is measured by the
class-defined '<' operator for type T. The collection will be resized
automatically if this causes the number of items to exceed the capacity.

RWBooleanisEmpty() const;
Returns TRUE if there are no items in the collection, FALSE otherwise.

Tlast() const;
Returns the last item in the collection. If there are no items in the collection
then an exception of type TOOL_INDEX will occur.

size_tlength() const;
Returns the number of items currently in the collection.

size_toccurrencesOf(const T& a) const;
Performs a binary search, returning the number of items that are equal to a.
Equality is measured by the class-defined equality operator.

RWBooleanremove(const T& a);
Performs a binary search, removing the first object which is equal to the object
a and returns TRUE. Returns FALSE if there is no such object. Equality is
measured by the class-defined equality operator.

size_tremoveAll(const T& a);
Removes all items which are equal to a, returning the number removed.
Equality is measured by the class-defined equality operator.

TremoveAt(size_t i);
Removes and returns the object at index i . An exception of type TOOL_INDEX
will be thrown if i is not a valid index. Valid indices are from zero to the
number of items in the list less one.

TremoveFirst();
Removes and returns the first object in the collection. An exception of type
TOOL_INDEX will be thrown if the list is empty.

Templates 549

23

TremoveLast();
Removes and returns the last object in the collection. An exception of type
TOOL_INDEX will be thrown if the list is empty.

voidresize(size_t N);
Changes the capacity of the collection to N. Note that the number of objects in
the collection does not change, just the capacity.

550 Tools.h++ Class Library

23

RWTValVector<T>

Synopsis #include <rw/tvvector.h>

RWTValVector<T> vec;

Descripton Class RWTValVector<T> is a simple parameterized vector of objects of type T.
It is most useful when you know precisely how many objects have to be held
in the collection. If the intention is to "insert" an unknown number of objects
into a collection, then class RWTValOrderedVector<T> may be a better
choice.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.);

• a default constructor.

Example

#include <rw/tvvector.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

main() {

 RWTValVector<RWDate> week(7);

 RWDate begin; // Today's date

 for (int i=0; i<7; i++)
 week[i] = begin++;

 for (i=0; i<7; i++)
 cout << week[i] << endl;

 return 0;
}

Templates 551

23

Program output:

March 16, 1992
March 17, 1992
March 18, 1992
March 19, 1992
March 20, 1992
March 21, 1992
March 22, 1992

Public constructors RWTValVector<T>();
Constructs an empty vector of length zero.

RWTValVector<T>(size_t n);
Constructs a vector of length n. The values of the elements will be set by the
default constructor of class T. For a built in type this can (and probably will)
be garbage.

RWTValVector<T>(size_t n, const T& ival);
Constructs a vector of length n, with each element initialized to the value
ival .

RWTValVector<T>(const RWTValVector& v);
Constructs self as a copy of v. Each element in v will be copied into self.

~RWTValVector<T>();
Calls the destructor for every element in self.

Public operators RWTValVector<T>& operator=(const
 RWTValVector<T>& v);

Sets self to the same length as v and then copies all elements of v into self.

RWTValVector<T>&operator=(const T& ival);
Sets all elements in self to the value ival .

Toperator()(size_t i) const;
T&operator()(size_t i);
Return the i 'th value in the vector. The index i must be between 0 and the
length of the vector less one. No bounds checking is performed.

552 Tools.h++ Class Library

23

Toperator[](size_t i) const;
T&operator[](size_t i);
Return the i 'th value in the vector. The index i must be between 0 and the
length of the vector less one. Bounds checking will be performed.

Public member functions const T* data() const;
Returns a pointer to the raw data of self. Should be used with care.

size_tlength() const;
Returns the length of the vector.

voidreshape(size_t N);
Changes the length of the vector to N. If this results in the vector being
lengthened, then the initial value of the additional elements is set by the
default constructor of T.

Templates 553

23

RWTValVirtualArray<T>

Synopsis #include <rw/tvrtarry.h>

RWVirtualPageHeap* heap;

RWTValVirtualArray<T> array(1000L, heap);

Description This class represents a virtual array of elements of type T of almost any length.
Individual elements are brought into physical memory on an "as needed" basis.
If an element is used as an lvalue it is automatically marked as "dirty" and will
be rewritten to the swapping medium.

The swap space is provided by an abstract page heap which is specified by the
constructor. Any number of virtual arrays can use the same abstract page
heap. You must take care that the destructor of the abstract page heap is not
called before all virtual arrays built from it have been destroyed.

The class supports reference counting using a copy-on-write technique, so (for
example) returning a virtual array by value from a function is as efficient as it
can be. Be aware, however, that if the copy-on-write machinery finds that a
copy must ultimately be made, then for large arrays this could take quite a bit
of time.

For efficiency, more than one element can (and should) be put on a page. The
actual number of elements is equal to the page size divided by the element
size, rounded downwards. Example: for a page size of 512 bytes, and an
element size of 8, then 64 elements would be put on a page.

The indexing operator (operator[](long)) actually returns an object of type
RWTVirtualElement<T> . Consider this example:

double d = vec[j];
vec[i] = 22.0;

Assume that vec is of type RWTValVirtualArray<double> . The expression
vec[j] will return an object of type RWTVirtualElement<double> , which
will contain a reference to the element being addressed. In the first line, this
expression is being used to initialize a double. The class
RWTVirtualElement<T> contains a type conversion operator to convert itself
to a T, in this case a double. The compiler uses this to initialize d. In the

554 Tools.h++ Class Library

23

second line, the expression vec[i] is being used as an lvalue. In this case, the
compiler uses the assignment operator for RWTVirtualElement<T> . This
assignment operator recognizes that the expression is being used as an lvalue
and automatically marks the appropriate page as "dirty", thus guaranteeing
that it will be written back out to the swapping medium.

Slices, as well as individual elements, can also be addressed. These should be
used wherever possible as they are much more efficient because they allow a
page to be locked and used multiple times before unlocking.

The class T must have:

• well-defined copy semantics (T::T(const T&) or equiv.);

• well-defined assignment semantics (T::operator=(const T&) or equiv.).

In addition, you must never take the address of an element.

Example In this example, a virtual vector of objects of type ErsatzInt is exercised. A
disk-based page heap is used for swapping space.

Code Example 23-8

#include <rw/tvrtarry.h>
#include <rw/rstream.h>
#include <rw/diskpage.h>
#include <stdlib.h>
#include <stdio.h>

struct ErsatzInt {
 char buf[8];
 ErsatzInt(int i) { sprintf(buf, "%d", i); }
 friend ostream& operator<<(ostream& str, ErsatzInt& i)
 { str << atoi(i.buf); return str; }
};

main() {

 RWDiskPageHeap heap;
 RWTValVirtualArray<ErsatzInt> vec1(10000L, &heap);

 for (long i=0; i<1000L; i++)
 vec1[i] = i; // Some compilers may need a cast here

 cout << vec1[100] << endl; // Prints "100"

Templates 555

23

Program output:

100
300
500
5000

Public constructors RWTValVirtualArray<T>(long size, RWVirtualPageHeap* heap);
Construct a vector of length size. The pages for the vector will be allocated
from the page heap given by heap which can be of any type.

RWTValVirtualArray<T>(const RWTValVirtualArray<T>& v);
Constructs a vector as a copy of v. The resultant vector will use the same heap
and have the same length as v. The actual copy will not be made until a write,
minimizing the amount of heap allocations and copying that must be done.

RWTValVirtualArray<T>(const RWTVirtualSlice<T>& sl);
Constructs a vector from a slice of another vector. The resultant vector will use
the same heap as the vector whose slice is being taken. Its length will be given
by the length of the slice. The copy will be made immediately.

Public destructor ~RWTValVirtualArray<T>();
Releases all pages allocated by the vector.

Public operators RWTValVirtualArray&
 operator=(const RWTValVirtualArray<T>& v) ;
Sets self to a copy of v. The resultant vector will use the same heap and have
the same length as v. The actual copy will not be made until a write,
minimizing the amount of heap allocations and copying that must be done.

 cout << vec1[300] << endl; // Prints "300"

 RWTValVirtualArray<EsatzInt> vec2 = vec.slice(5000L, 500L);
 cout << vec2.length() << endl; // Prints "500"
 cout << vec2[0] << endl; // Prints "5000";

 return 0;
}

Code Example 23-8 (Continued)

556 Tools.h++ Class Library

23

voidoperator=(const
 RWTVirtualSlice<T>& sl);
Sets self equal to a slice of another vector. The resultant vector will use the
same heap as the vector whose slice is being taken. Its length will be given by
the length of the slice. The copy will be made immediately.

Toperator=(const T& val);
Sets all elements in self equal to val . This operator is actually quite efficient
because it can work with many elements on a single page at once.

Toperator[](long i) const;
Returns a copy of the value at index i . The index i must be between zero and
the length of the vector less one or an exception of type TOOL_LONGINDEX will
occur.

RWTVirtualElement<T>operator[](long);
Returns a reference to the value at index i . The results can be used as an
lvalue. The index i must be between zero and the length of the vector less one
or an exception of type TOOL_LONGINDEX will occur.

Public member functions long length() const;
Returns the length of the vector.

Tval(long i) const;
Returns a copy of the value at index i . The index i must be between zero and
the length of the vector less one or an exception of type TOOL_LONGINDEX will
occur.

voidset(long i, (const T& v);
Sets the value at the index i to v. The index i must be between zero and the
length of the vector less one or an exception of type TOOL_LONGINDEX will
occur.

RWTVirtualSlice<T>slice(long start, long length);
Returns a reference to a slice of self. The value start is the starting index of
the slice, the value length its extent. The results can be used as an lvalue.

voidreshape(long newLength);
Change the length of the vector to newLength . If this results in the vector
being lengthened then the value of the new elements is undefined.

RWVirtualPageHeap*heap() const;
Returns a pointer to the heap from which the vector is getting its pages.

Part 4— <generic.h> Classes

559

<generic.h> Classes 24

RWGBitVec(size)
Synopsis #include <rw/gbitvec.h>

declare(RWGBitVec, size)

RWGBitVec(size) a;

Description RWGBitVec(size) is a bit vector of fixed length size. The length cannot be
changed dynamically (see class RWBitVec if you need a bit vector whose
length can be changed at run time). Objects of type RWGBitVec(size) are
declared with macros defined in the standard C++ header file <generic.h>.

Bits are numbered from 0 through size–1, inclusive.

560 Tools.h++ Class Library

24

Example In this example, a bit vector 24 bits long is declared and exercised:

Public constructors RWGBitVec(size)();
Construct a bit vector size elements long, with all bits initialized to FALSE.

RWGBitVec(size)(RWBoolean f);
Construct a bit vector size elements long, with all bits initialized to f .

RWGBitVec(size)(unsigned long v);
Construct a bit vector size elements long, initialized to the bits of v . If size is
greater than sizeof(v) , the extra bits will be set to zero.

Assignment operators RWGBitVec(sz)& operator=(const RWGBitVec(sz)&
 v);

Set each element of self to the corresponding bit value of v. Return a reference
to self.

RWGBitVec(sz)& operator=(RWBoolean f);
Set all elements of self to the boolean value f.

RWGBitVec(sz)& operator&=(const RWGBitVec(sz)&
 v);

RWGBitVec(sz)& operator^=(const RWGBitVec(sz)&
 v);

RWGBitVec(sz)& operator|=(const RWGBitVec(sz)&
 v);

#include <rw/gbitvec.h>
declare(RWGBitVec,24)// declare a 24 bit long vector
implement(RWGBitVec, 24)// implement the vector
main()
{

RWGBitVec(24) a, b;// Allocate two vectors.
a(2) = TRUE;// Set bit 2 (the third bit) of

a on.
b(3) = TRUE;// Set bit 3 (the fourth bit

of b on.
RWGBitVec(24) c = a ^ b;// Set c to the XOR of a and b.

}

<generic.h> Classes 561

24

Logical assignments. Set each element of self to the logical AND, XOR, or OR,
respectively, of self and the corresponding bit in v.

Indexing operators RWBitRef operator[](size_t i);
Returns a reference to the i'th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size–1 , inclusive. Bounds
checking will occur.

RWBitRef operator()(size_t i);
Returns a reference to the i'th bit of self. This reference can be used as an
lvalue. The index i must be between 0 and size–1 , inclusive. No bounds
checking is done.

Public member functions void clearBit(size_t i);
Clears (i.e., sets to FALSE) the bit with index i . The index i must be between
0 and size–1. No bounds checking is performed. The following are equivalent,
although clearBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

a(i) = FALSE;
a.clearBit(i);

const RWByte* data() const;
Returns a const pointer to the raw data of self. Should be used with care.

void setBit(size_t i);
Sets (i.e., sets to TRUE) the bit with index i . The index i must be between 0
and size–1. No bounds checking is performed. The following are equivalent,
although setBit(size_t) is slightly smaller and faster than using
operator()(size_t)

a(i) = TRUE;
a.setBit(i);

RWBoolean testBit(size_t i) const;
Tests the bit with index i . The index i must be between 0 and size–1. No
bounds checking is performed. The following are equivalent, although
testBit(size_t) is slightly smaller and faster than using
operator()(size_t) :

if(a(i)) doSomething();
if(a.testBit(i)) doSomething();

562 Tools.h++ Class Library

24

Related global functions RWGBitVec(sz) operator&(const RWGBitVec(sz)& v1, const
 RWGBitVec(sz)& v2);
RWGBitVec(sz) operator^(const RWGBitVec(sz)& v1, const
 RWGBitVec(sz)& v2);
RWGBitVec(sz) operator|(const RWGBitVec(sz)& v1, const
 RWGBitVec(sz)& v2);
Return the logical AND, XOR, and OR, respectively, of vectors v1 and v2 .

RWBoolean operator==(const RWGBitVec(sz)& v1, const
 RWGBitVec(sz)& v2) const;
Returns TRUE if each bit of v1 is set to the same value as the corresponding bit
in v2 . Otherwise, returns FALSE.

RWBoolean operator!=(const RWGBitVec(sz)& v1, const
 RWGBitVec(sz)& v2) const;
Returns FALSE if each bit of v1 is set to the same value as the corresponding
bit in v2 . Otherwise, returns TRUE.

<generic.h> Classes 563

24

RWGDlist(type)
RWGDlist(type)

|
RWDlist

|
RWSlist

Synopsis #include <rw/gdlist.h>
declare(RWGDlist, type)

RWGDlist (type) a ;

Description Class RWGDlist (type) represents a group of ordered elements of type type, not
accessible by an external key. Duplicates are allowed. This class is
implemented as a doubly-linked list. Objects of type RWGDlist (type) are
declared with macros defined in the standard C++ header file <generic.h>.

In order to find a particular item within the collection, a user-provided global
"tester" function is required to test for a "match", definable in any consistent
way. This function should have prototype:

RWBoolean yourTesterFunction(const type* c, const void* d);

The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction(). The function should return TRUE if a "match" is found
between c and d.

In order to simplify the following documentation, an imaginary typedef
typedef RWBoolean (* yourTester)(const type*, const void*);

has been used for this tester function.

564 Tools.h++ Class Library

24

Example

Program output:
11
5
7
1

Public constructors RWGDlist(type)();
Construct an empty collection.

RWGDlist(type)(type* a);
Construct a collection with one entry a.

RWGDlist(type)(const RWGDlist(type)& a);
Copy constructor. A shallow copy of a is made.

Assignment operator void operator=(const RWGDlist
 (type)& a);

Assignment operator. A shallow copy of a is made.

#include <rw/gdlist.h>
#include <rw/rstream.h>

declare(RWGDlist,int) /* Declare a list of ints */

main()
{
int *ip;

RWGDlist(int) list;// Define a list of ints
list.insert(new int(5));// Insert some ints
list.insert(new int(7));
list.insert(new int(1));
list.prepend(new int(11));
RWGDlistIterator(int) next(list);

 while(ip = next())
cout << *ip << endl;// Print out the members

}

<generic.h> Classes 565

24

Public member functions type* append(type* a);
Adds an item to the end of the collection. Returns nil if the insertion was
unsuccessful.

void apply(void (*ap)(type*, void*), void*);
Visits all the items in the collection in order, from first to last, calling the user-
provided function pointed to by ap for each item. This function should have
prototype:

void yourApplyFunction(type* c, void*);
and can perform any operation on the object at address c . The last argument is
useful for passing data to the apply function.

type*& at(size_t i);
const type* at(size_t i) const;
Returns a pointer to the i ’th item in the collection. The first variant can be
used as an lvalue, the second cannot. The index i must be between zero and
the number of items in the collection less one, or an exception of type
TOOL_INDEX will be thrown.

void clear();
Removes all items in the collection.

RWBoolean contains(yourTester t, const
void* d) const;

Returns TRUE if the collection contains an item for which the user-defined
function pointed to by t finds a match with d.

RWBoolean containsReference(const type*
e) const;

Returns TRUE if the collection contains an item with the addresse e.

size_t entries() const;
Returns the number of items in the collection.

type* find(yourTester t, const void*
d) const;

Returns the first item in the collection for which the user-provided function
pointed to by t finds a match with d, or nil if no item is found.

type* findReference(const type* e)
 const;

Returns the first item in the collection with the address e , or nil if no item is
found.

566 Tools.h++ Class Library

24

type* first() const;
Returns the first item of the collection.

type* get();
Returns and removes the first item of the collection.

type* insert(type* e);
Adds an item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

void insertAt(size_t indx, type* e);
Adds a new item to the collection at position indx . The item previously at
position i is moved to i+1 , etc. The index indx must be between 0 and the
number of items in the collection, or an exception of type TOOL_INDEX will be
thrown.

RWBoolean isEmpty() const;
Returns TRUE if the collection is empty, otherwise FALSE.

type* last() const;
Returns the last item of the collection.

size_t occurrencesOf(yourTester t,
 const void* d) const;

Returns the number of occurrences in the collection for which the user-
provided function pointed to by t finds a match with d.

size_t occurrencesOfReference(const
type* e) const;

Returns the number of items in the collection with the address e.

type* prepend(type* a);
Adds an item to the beginning of the collection. Returns nil if the insertion
was unsuccessful.

type* remove(yourTester t, const void*
 d);

Removes and returns the first item from the collection for which the user-
provided function pointed to by t finds a match with d, or returns nil if no
item is found.

type* removeReference(const type* e);
Removes and returns the first item from the collection with the address e, or
returns nil if no item is found.

<generic.h> Classes 567

24

RWGDlistIterator(type)
RWGDlistIterator(type)

|
RWDlistIterator

|
RWSlistIterator

Synopsis #include <rw/gdlist.h>
declare(RWGDlist, type)

RWGDlist (type) a;
RWGDlistIterator (type) I(a);

Description Iterator for class RWGDlist (type), which allows sequential access to all the
elements of a doubly-linked list. Elements are accessed in order, in either
direction.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

In order to simplify the following documentation, an imaginary typedef

typedef RWBoolean (* yourTester)(const type*, const void*);

has been used. See the documentation for class RWGDlist (type) for an
explanation of this function.

Example See class RWGDlist (type)

Public constructor RWGDlistIterator(type)(RWGDlist(type)& list);
Construct an iterator for the RWGDlist (type) list . Immediately after
construction, the position of the iterator is undefined.

568 Tools.h++ Class Library

24

Public member operators type* operator()();
Advances the iterator to the next item and returns it. Returns nil if at the end
of the collection.

void operator++();
Advances the iterator one item.

void operator--();
Moves the iterator back one item.

void operator+=(size_t n);
Advances the iterator n items.

void operator-=(size_t n);
Moves the iterator back n items.

Public member functions RWBoolean atFirst() const;
Returns TRUE if the iterator is at the start of the list, FALSE otherwise;

RWBoolean atLast() const;
Returns TRUE if the iterator is at the end of the list, FALSE otherwise;

type* findNext(yourTester t,const
 type* d);

Moves the iterator to the next item for which the function pointed to by t finds
a match with d and returns it. Returns nil if no match is found, in which case
the position of the iterator will be undefined.

type* findNextReference(const type*
 e);

Moves the iterator to the next item with the address e and returns it. Returns
nil if no match is found, in which case the position of the iterator will be
undefined.

type* insertAfterPoint(type* a);
Adds item a after the current iterator position and return the item. The
position of the iterator is left unchanged.

type* key() const;
Returns the item at the current iterator position.

<generic.h> Classes 569

24

type* remove();
Removes and returns the item at the current cursor position. Afterwards, the
iterator will be positioned at the previous item in the list.

type* removeNext(yourTester t, const type*
 d);

Moves the iterator to the next item for which the function pointed to by t finds
a "match" with d and removes and returns it. Returns nil if no match is found,
in which case the position of the iterator will be undefined.

type* removeNextReference(const type*
 a);

Moves the iterator to the next item with the address e and removes and returns
it. Returns nil if no match is found, in which case the position of the iterator
will be undefined.

void reset();
Resets the iterator to its initial state.

void toFirst();
Moves the iterator to the first item in the list.

void toLast();
Moves the iterator to the last item in the list.

570 Tools.h++ Class Library

24

RWGOrderedVector(val)

Synopsis #include <rw/gordvec.h>
declare(RWGVector, val)
declare(RWGOrderedVector, val)
implement(RWGVector, val)
implement(RWGOrderedVector, val)

RWGOrderedVector (val) v; // Ordered vector of objects of
 type val.

Description Class RWGOrderedVector (val) represents an ordered collection of objects of
type val. Objects are ordered by the order of insertion and are accessible by
index. Duplicates are allowed. RWGOrderedVector (val) is implemented as a
vector, using macros defined in the standard C++ header file <generic.h>.

Note – It is a value-based collection: items are copied in and out of the
collection.

The class val must have:

• a default constructor;

• well-defined copy semantics (val:: val(const val&) or equiv.);

• well-defined assignment semantics(val::operator=(const val&) or equiv.);

• well-defined equality semantics(val::operator==(const val&) or equiv.).

To use this class you must declare and implement its base class as well as the
class itself. For example, here is how you declare and implement an ordered
collection of doubles:

declare(RWGVector,double) // Declare base class
declare(RWGOrderedVector,double) // Declare ordered vector

// In one and only one .cc file you must put the following:
implement(RWGVector,double) // Implement base class
implement(RWGOrderedVector,double) // Implement ordered

 vector

<generic.h> Classes 571

24

For each type of RWGOrderedVector you must include one (and only one) call
to the macro implement somewhere in your code for both the
RWGOrderedVector itself and for its base class RWGVector.

Example Here's an example that uses an ordered vector of RWCStrings .

Program output:

First
Second
Last

Public constructors RWGOrderedVector(val)(size_t capac=RWDEFAULT_CAPACITY);
Construct an ordered vector of elements of type val. The initial capacity of the
vector will be capac whose default value is RWDEFAULT_CAPACITY. The
capacity will be automatically increased as necessary should too many items be
inserted, a relatively expensive process because each item must be copied into
the new storage.

#include <rw/gordvec.h>
#include <rw/cstring.h>
#include <rw/rstream.h>
declare(RWGVector,RWCString)
declare(RWGOrderedVector,RWCString)
implement(RWGVector,RWCString)
implement(RWGOrderedVector,RWCString)
main()
{

RWGOrderedVector(RWCString) vec;
RWCString one("First");
vec.insert(one);
vec.insert("Second");// Automatic type conversion occurs
vec.insert("Last");// Automatic type conversion occurs
for(size_t i=0; i <vec.entries(); i++) cout << vec[i] << endl;
return 0;

}

572 Tools.h++ Class Library

24

Public member functions val operator()(size_t i) const;
val& operator()(size_t i);

Return the i'th value in the vector. The index i must be between 0 and the
length of the vector less one. No bounds checking is performed. The second
variant can be used as an lvalue, the first cannot.

val operator[](size_t i) const;
val& operator[](size_t i);
Return the i'th value in the vector. The index i must be between 0 and the
length of the vector less one. Bounds checking will be performed. The second
variant can be used as an lvalue, the first cannot.

void clear();
Remove all items from the collection.

size_t entries() const;
Return the number of items currently in the collection.

size_t index(val item) const;
Performs a linear search of the collection returning the index of the first item
that isEqual to the argument item . If no item is found, then it returns
RW_NPOS.

void insert(val item);
Add the new value item to the end of the collection.

void insertAt(size_t indx, val item);
Add the new value item to the collection at position indx . The value of indx
must be between zero and the length of the collection. No bounds checking is
performed. Old items from index indx upwards will be shifted to higher
indices.

RWBoolean isEmpty() const;
Return TRUE if the collection has no entries. FALSE otherwise.

void removeAt(size_t indx);
Remove the item at position indx from the collection. The value of indx must
be between zero and the length of the collection less one. No bounds checking
is performed. Old items from index indx+1 will be shifted to lower indices.
E.g., the item at index indx+1 will be moved to position indx , etc.

<generic.h> Classes 573

24

void resize(size_t newCapacity);
Change the capacity of the collection to newCapacity , which must be at least
as large as the present number of items in the collection.

Note – The actual number of items in the collection does not change, just the
capacity.

574 Tools.h++ Class Library

24

RWGQueue(type)
RWGQueue(type)

|
RWSlist

Synopsis #include <rw/gqueue.h>
declare(RWGQueue, type)

RWGQueue(type) a;

Description Class RWGQueue(type) represents a group of ordered elements, not accessible
by an external key. A RWGQueue(type) is a first in, first out (FIFO) sequential list
for which insertions are made at one end (the "tail"), but all removals are made
at the other (the "head"). Hence, the ordering is determined externally by the
ordering of the insertions. Duplicates are allowed. This class is implemented as
a singly-linked list. Objects of type RWGQueue(type) are declared with macros
defined in the standard C++ header file <generic.h>.

In order to find a particular item within the collection, a user-provided global
"tester" function is required to test for a match", definable in any consistent
way. This function should have prototype:

RWBoolean yourTesterFunction(const type* c, const void* d);
The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction() . The function should return TRUE if a "match" is found
between c and d.

In order to simplify the documentation below, an imaginary typedef
 typedef RWBoolean (* yourTester)(const type*, const void*);

has been used for this tester function.

Public constructors RWGQueue(type)();
Construct an empty queue.

RWGQueue(type)(type* a);
Construct a queue with one entry a.

RWGQueue(type)(const RWGQueue(type)& q);
Copy constructor. A shallow copy of q is made.

<generic.h> Classes 575

24

Assignment operator void operator=(const RWGQueue(type)&
q);
Assignment operator. A shallow copy of q is made.

Public member functions type* append(type* a);
Adds a to the end of the queue and returns it. Returns nil if the insertion was
unsuccessful.

void clear();
Removes all items from the queue.

RWBoolean contains(yourTester t, const
 void* d) const;

Returns TRUE if the queue contains an item for which the user-defined function
pointed to by t finds a match with d.

RWBoolean containsReference(const type*
 e)const;

Returns TRUE if the queue contains an item with the address e.

size_t entries() const;
Returns the number of items in the queue.

type* first() const;
Returns the first item in the queue, or nil if the queue is empty.

type* get();
Returns and removes the first item in the queue. Returns nil if the queue is
empty.

RWBoolean isEmpty() const;
Returns TRUE if the queue is empty, otherwise FALSE.

type* insert(type* a);
Calls append(type*) with a as the argument.

type* last();
Returns the last (most recently inserted) item in the queue, or nil if the queue is
empty.

576 Tools.h++ Class Library

24

size_t occurrencesOf(yourTester t,
 const void* d) const;

Returns the number of items in the queue for which the user-provided function
pointed to by t finds a match with d.

size_t occurrencesOfReference(const type* e)
const;

Returns the number of items in the queue with the address e.

<generic.h> Classes 577

24

RWGSlist(type)
RWGSlist(type)

|
RWSlist

Synopsis #include <rw/gslist.h>
declare(RWGSlist, type)

RWGSlist (type) a;

Description Class RWGSlist (type) represents a group of ordered elements of type type, not
accessible by an external key. Duplicates are allowed. This class is
implemented as a singly-linked list. Objects of type RWGSlist (type) are
declared with macros defined in the standard C++ header file <generic.h>.

In order to find a particular item within the collection, a user-provided global
"tester" function is required to test for a "match", definable in any consistent
way. This function should have prototype:

RWBoolean yourTesterFunction(const type* c, const void* d);

The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction(). The function should return TRUE if a "match" is found
between c and d.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type*, const void*);

has been used for this tester function.

Public constructors RWGSlist(type)();
Construct an empty collection.

RWGSlist(type)(type* a);
Construct a collection with one entry a.

RWGSlist(type)(const RWGSlist(type)& a);
Copy constructor. A shallow copy of a is made.

Assignment operator void operator=(const RWGSlist(type)&);
Assignment operator. A shallow copy of a is made.

578 Tools.h++ Class Library

24

Public member functions type* append(type* a);
Adds an item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

void apply(void (*ap)(type*, void*),
 void*);

Visits all the items in the collection in order, from first to last, calling the user-
provided function pointed to by ap for each item. This function should have
prototype:

void yourApplyFunction(type* c, void*);

and can perform any operation on the object at address c . The last argument is
useful for passing data to the apply function.

type*& at(size_t i);
const type* at(size_t i) const;
Returns a pointer to the i ’th item in the collection. The first variant can be
used as an lvalue, the second cannot. The index i must be between zero and
the number of items in the collection less one, or an exception of type
TOOL_INDEX will be thrown.

void clear();
Removes all items in the collection.

RWBoolean contains(yourTester t, const
 void* d) const;

Returns TRUE if the collection contains an item for which the user-defined
function pointed to by t finds a match with d.

RWBoolean containsReference(const type* e)
 const;

Returns TRUE if the collection contains an item with the address e.

size_t entries() const;
Returns the number of items in the collection.

type* find(yourTester t, const void* d)
 const;

Returns the first item in the collection for which the user-provided function
pointed to by t finds a match with d, or nil if no item is found.

<generic.h> Classes 579

24

type* findReference(const type* e)
 const;

Returns the first item in the collection with the address e, or nil if no item is
found.

type* first() const;
Returns the first item of the collection.

type* get();
Returns and removes the first item of the collection.

type* insert(type* e);
Adds an item to the end of the collection and returns it. Returns nil if the
insertion was unsuccessful.

void insertAt(size_t indx, type* e);
Adds a new item to the collection at position indx . The item previously at
position i is moved to i+1 , etc. The index indx must be between 0 and the
number of items in the collection, or an exception of type TOOL_INDEX will be
thrown.

RWBoolean isEmpty() const;
Returns TRUE if the collection is empty, otherwise FALSE.

type* last() const;
Returns the last item of the collection.

size_t occurrencesOf(yourTester t, const
 void* d) const;

Returns the number of occurrences in the collection for which the user-
provided function pointed to by t finds a match with d.

size_t occurrencesOfReference(const type*
 e) const;

Returns the number of items in the collection with the address e.

type* prepend(const type* a);
Adds an item to the beginning of the collection and returns it. Returns nil if the
insertion was unsuccessful.

580 Tools.h++ Class Library

24

type* remove(yourTester t, const void*
 d);

Removes and returns the first item from the collection for which the user-
provided function pointed to by t finds a match with d, or returns nil if no
item is found.

type* removeReference(const type* e);
Removes and returns the first item from the collection with the address e, or
returns nil if no item is found.

<generic.h> Classes 581

24

RWGSlistIterator(type)
RWGSlistIterator(type)

|
RWSlistIterator

Synopsis #include <rw/gslist.h>
declare(RWGSlist, type)

RWGSlist(type) a;
RWGSlistIterator(type) I(a);

Description Iterator for class RWGSlist (type), which allows sequential access to all the
elements of a singly-linked list. Elements are accessed in order, first to last.

Like all Tools.h++ iterators, the "current item" is undefined immediately after
construction—you must define it by using operator() or some other (valid)
operation.

Once the iterator has advanced beyond the end of the collection it is no longer
valid—continuing to use it will bring undefined results.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type*, const void*);

has been used. See the documentation for class RWGSlist (type) for an
explanation of this function.

Public constructor RWGSlistIterator(type)(RWGSlist(type)& list);
Construct an iterator for the RWGSlist (type) list. Immediately after
construction, the position of the iterator is undefined.

Public member operators type* operator()();
Advances the iterator to the next item and returns it. Returns nil if at the end of
the collection.

void operator++();
Advances the iterator one item.

void operator+=(size_t n);
Advances the iterator n items.

582 Tools.h++ Class Library

24

Public member functions RWBoolean atFirst() const;
Returns TRUE if the iterator is at the start of the list, FALSE otherwise;

RWBoolean atLast() const;
Returns TRUE if the iterator is at the end of the list, FALSE otherwise;

type* findNext(yourTester t,const type*
 d);

Moves the iterator to the next item for which the function pointed to by t finds
a match with d and returns it. Returns nil if no match is found, in which case
the position of the iterator will be undefined.

type* findNextReference(const type* e);
Moves the iterator to the next item with the address e and returns it. Returns
nil if no match is found, in which case the position of the iterator will be
undefined.

type* insertAfterPoint(type* a);
Adds item a after the current iterator position and return the item. The
position of the iterator is left unchanged.

type* key() const;
Returns the item at the current iterator position.

type* remove();
Removes and returns the item at the current cursor position. Afterwards, the
iterator will be positioned at the previous item in the list. In a singly-linked list,
this function is an inefficient operation because the entire list must be
traversed, looking for the link before the link to be removed.

type* removeNext(yourTester t, const type*
 d);

Moves the iterator to the next item for which the function pointed to by t finds
a "match" with d and removes and returns it. Returns nil if no match is found,
in which case the position of the iterator will be undefined.

type* removeNextReference(const type*
 e);

Moves the iterator to the next item with the address e and removes and returns
it. Returns nil if no match is found, in which case the position of the iterator
will be undefined.

<generic.h> Classes 583

24

void reset();
Resets the iterator to its initial state.

void toFirst();
Moves the iterator to the start of the list.

void toLast();
Moves the iterator to the end of the list.

584 Tools.h++ Class Library

24

RWGSortedVector(val)
RWGSortedVector(val)

|
RWGVector(val)

Synopsis #include <rw/gsortvec.h>
declare(RWGSortedVector, val)
implement(RWGSortedVector, val)

RWGSortedVector(val) v; // A sorted vector of val's.

Description Class RWGSortedVector (val) represents a vector of elements of type val,
sorted using an insertion sort. The elements can be retrieved using an index or
a search. Duplicates are allowed. Objects of type RWGSortedVector (val) are
declared with macros defined in the standard C++ header file <generic.h>.

Note – It is a value-based collection: items are copied in and out of the collection.

The class val must have:

• a default constructor;

• well-defined copy semantics(val:: val(const val&) or equiv.);

• well-defined assignment semantics(val::operator=(const val&) or equiv.);

• well-defined equality semantics(val::operator==(const val&) or equiv.);

• well-defined less-than semantics(val::operator<(const val&) or equiv.).

To use this class you must declare and implement its base class as well as the
class itself. For example, here is how you declare and implement a sorted
collection of doubles:

declare(RWGVector,double) // Declare base class
declare(RWGSortedVector,double)// Declare sorted vector

// In one and only one .cc file you must put the following:

implement(RWGVector,double) // Implement base
implement(RWGSortedVector,double) // Implement sorted

 vector

<generic.h> Classes 585

24

For each type of RWGSortedVector you must include one (and only one) call
to the macro implement somewhere in your code for both the
RWGSortedVector itself and for its base class RWGVector.

Insertions and retrievals are done using a binary search.

Note – The constructor of a RWGSortedVector(val) requires a pointer to a
“comparison function.”

This function should have prototype:
int comparisonFunction(const val* a, const val* b);
and should return an int less than, greater than, or equal to zero, depending on
whether the item pointed to by a is less than, greater than, or equal to the item
pointed to by b. Candidates from the collection will appear as a, the key as b.

586 Tools.h++ Class Library

24

Example Here's an example of a sorted vector of ints:

Public constructors RWGSortedVector(val)(int (*f)(const val*, const val*));
Construct a sorted vector of elements of type val, using the comparison
function pointed to by f . The initial capacity of the vector will be set by the
value RWDEFAULT_CAPACITY. The capacity will automatically be increased
should too many items be inserted.

RWGSortedVector(val)(int (*f)(const val*, const val*),
 size_t N);
Construct a sorted vector of elements of type val, using the comparison
function pointed to by f . The initial capacity of the vector will be N. The
capacity will automatically be increased should too many items be inserted.

#include <rw/gsortvec.h>
#include <rw/rstream.h>

declare(RWGVector,int)
declare(RWGSortedVector,int)
implement(RWGVector,int)
implement(RWGSortedVector,int)

// Declare and define the "comparison function":int compFun(const
int* a, const int* b)
{

return *a - *b;
}

main()
{

// Declare and define an instance,
// using the comparison function 'compFun':

RWGSortedVector(int) avec(compFun);

// Do some insertions:
avec.insert(3);// 3
avec.insert(17);// 3 17
avec.insert(5);// 3 5 17

cout < avec(1);// Prints '5'
cout < avec.index(17);// Prints '2'

}

<generic.h> Classes 587

24

Public member functions val operator()(size_t i) const;
Return the i 'th value in the vector. The index i must be between 0 and the
length of the vector less one. No bounds checking is performed.

val operator[](size_t i) const;
Return the i 'th value in the vector. The index i must be between 0 and the
length of the vector less one. Bounds checking is performed.

size t entries() const;
Returns the number of items currently in the collection.

size_t index(val v);
Return the index of the item with value v. The value "RW_NPOS" is returned if
the value does not occur in the vector. A binary search, using the comparison
function, is done to find the value. If duplicates are present, the index of the
first instance is returned.

RWBoolean insert(val v);
Insert the new value v into the vector. A binary search, using the comparison
function, is performed to determine where to insert the value. The item will be
inserted after any duplicates. If the insertion causes the vector to exceed its
capacity, it will automatically be resized by an amount given by
RWDEFAULT_RESIZE.

void resize(size_t newCapacity);
Change the capacity of the collection to newCapacity , which must be at least
as large as the present number of items in the collection.

Note – The actual number of items in the collection does not change, just the capacity.

588 Tools.h++ Class Library

24

RWGStack(type)
RWGStack(type)

|
RWSlist

Synopsis #include <rw/gstack.h>
declare(RWGStack, type)

RWGStack(type) a;

Description Class RWGStack(type) represents a group of ordered elements, not accessible
by an external key. A RWGStack(type) is a last in, first out (LIFO) sequential list
for which insertions and removals are made at the beginning of the list. Hence,
the ordering is determined externally by the ordering of the insertions.
Duplicates are allowed. This class is implemented as a singly-linked list.
Objects of type RWGStack(type) are declared with macros defined in the
standard C++ header file <generic.h> .

In order to find a particular item within the collection, a user-provided global
“tester” function is required to test for a “match,” definable in any consistent
way. This function should have prototype:

RWBoolean yourTesterFunction(const type* c, const void* d);
The argument c is a candidate within the collection to be tested for a match.
The argument d is for your convenience and will be passed to
yourTesterFunction(). The function should return TRUE if a “match” is found
between c and d.

In order to simplify the documentation below, an imaginary typedef

typedef RWBoolean (* yourTester)(const type*, const void*) ;
has been used for this tester function.

Public constructors RWGStack(type)();
Construct an empty stack.

RWGStack(type)(type* a);
Construct a stack with one entry a.

RWGStack(type)(const RWGStack(type)& a);
Copy constructor. A shallow copy of a is made.

<generic.h> Classes 589

24

Assignment operator void operator=(const RWGStack
 (type)& a);

Assignment operator. A shallow copy of a is made.

Public member functions void clear();
Removes all items from the stack.

RWBoolean contains(yourTester t, const void*
 d) const;

Returns TRUE if the stack contains an item for which the user-defined function
pointed to by t finds a match with d.

RWBoolean containsReference(const type* e)
 const;

Returns TRUE if the stack contains an item with the address e

size_t entries() const;
Returns the number of items in the stack.

RWBoolean isEmpty() const;
Returns TRUE if the stack is empty, otherwise FALSE.

size_t occurrencesOf(yourTester t, const
 void* d) const;

Returns the number of items in the stack for which the user-provided function
pointed to by t finds a match with d.

size_t occurrencesOfReference
 (const type* e) const;

Returns the number of items in the stack with the address e.

type* pop();
Removes and returns the item at the top of the stack, or returns nil if the stack
is empty.

void push(type* a);
Adds an item to the top of the stack.

type* top() const;
Returns the item at the top of the stack or nil if the stack is empty.

590 Tools.h++ Class Library

24

RWGVector(val)
Synopsis #include <rw/gvector.h>

declare(RWGVector, val)
implement(RWGVector, val)

RWGVector (val) a; // A Vector of val's.

Description Class RWGVector(val) represents a group of ordered elements, accessible by an
index. Duplicates are allowed. This class is implemented as an array. Objects of
type RWGVector(val) are declared with macros defined in the standard C++
header file <generic.h>.

Note – It is a value-based collection: items are copied in and out of the collection.

The class val must have:

• a default constructor;

• well-defined copy semantics (val:: val(const val&) or equiv.);

• well-defined assignment semantics (val::operator=(const val&) or equiv.).

For each type of RWGVector, you must include one (and only one) call to the
macro implement , somewhere in your code.

<generic.h> Classes 591

24

Example

Program output:
04/12/93
04/13/93
04/14/93
04/15/93
04/16/93
04/17/93
04/18/93

Public constructors RWGVector(val)();
Construct an empty vector.

RWGVector(val)(size_t n);
Construct a vector with length n. The initial values of the elements can (and
probably will) be garbage.

RWGVector(val)(size_t n, val v);
Construct a vector with length n. Each element is assigned the value v.

#include <rw/gvector.h>
#include <rw/rwdate.h>
#include <rw/rstream.h>

declare(RWGVector, RWDate)/* Declare a vector of dates */
implement(RWGVector, RWDate)/* Implement a vector of dates */

main()
{
 RWGVector(RWDate) oneWeek(7);
 for (int i=1; i<7; i++)
 oneWeek(i) = oneWeek(0) + i;

 for (i=0; i<7; i++)
 cout << oneWeek(i) << endl;

 return 0;
}

592 Tools.h++ Class Library

24

RWGVector(val)(RWGVector(val)& s);
Copy constructor. The entire vector is copied, including all imbedded values.

Public member operators RWGVector(val) operator=(RWGVector(val)& s);
Assignment operator. The entire vector is copied.

RWGVector(val)& operator=(val v);
Sets all elements of self to the value v.

val& operator()(size_t i);
Returns a reference to the the i 'th element of self. The index i must be
between zero and the length of the vector less one. No bounds checking is
performed.

val& operator[](size_t i);
Returns a reference to the the i 'th element of self. The index i must be
between zero and the length of the vector less one. Bounds checking is
performed.

Public member functions size_t length() const;
Returns the length of the vector.

void reshape(size_t n);
Resize the vector. If the vector shrinks, it will be truncated. If the vector grows,
then the value of the additional elements will be undefined.

593

Summary of typedefs and macros A

Constants:
#define FALSE 0
#define rwnil 0
#define TRUE 1
const int) RWkeyLen= 16
const RWoffset RWNIL = -1L;

Typedefs:
typedef unsigned short ClassID;// Unique for each class
typedef unsigned long clockTy;// seconds
typedef unsigned dayTy;// days
typedef int fileDescTy;// File descriptor
typedef unsigned hourTy;// hours
typedef unsigned long julTy;// Julian days
typedef unsigned minuteTy;// minutes
typedef unsigned monthTy;// months
typedef unsigned secondTy;// seconds
typedef unsigned yearTy;// years
typedef int RWBoolean;// TRUE or FALSE
typedef long RWoffset;// Used for file offsets
typedef void* RWvoid;// For arrays of void*'s
typedef unsigned RWspace;// Used for file records
typedef long RWstoredValue;// Used for file offsets

594 Tools.h++ Class Library

A

Pointers to Functions:
typedef void (*RWapplyCollectable)(RWCollectable*, void*);
typedef void (*RWapplyGeneric)(void*, void*);
typedef void (*RWapplyKeyAndValue)

 (RWCollectable*,RWCollectable*,void*);
typedef int (*RWdiskTreeCompare)(const char*,const

 char*,size_t);
typedef RWBoolean (*RWtestGeneric)(const void*,const void*);
typedef RWBoolean (*RWtestCollectable)(const

 RWCollectable*,const void*);
typedef RWCollectable* (*RWuserCreator)();

Enumerations:
enum RWSeverity {RWWARNING, RWDEFAULT, RWFATAL}

Standard Smalltalk Interface:
typedef RWBag Bag;
typedef RWBagIterator BagIterator;
typedef RWBinaryTree SortedCollection;
typedef RWBinaryTreeIterator SortedCollectionIterator;
typedef RWBitVec BitVec
typedef RWCollectable Object; // All-too-common type!
typedef RWCollectableDate Date;
typedef RWCollectableInt Integer;
typedef RWCollectableString String;
typedef RWCollectableTime Time;
typedef RWCollection Collection;
typedef RWHashDictionary Dictionary;
typedef RWHashDictionaryIterator DictionaryIterator;
typedef RWIdentityDictionary IdentityDictionary;
typedef RWIdentityHash IdentitySet;
typedef RWOrdered OrderedCollection;
typedef RWOrderedIterator OrderedCollectionIterator;
typedef RWSequenceable SequenceableCollection;

Summary of typedefs and macros 595

A

typedef RWSet Set;
typedef RWSetIterator SetIterator;
typedef RWSlistCollectables LinkedList;
typedef RWSlistCollectablesIterator LinkedListIterator;
typedef RWSlistCollectablesQueue Queue;
typedef RWSlistCollectablesStack Stack;

596 Tools.h++ Class Library

A

597

Header file compiler.h B

This header file is the repository for all information about compiler related
capabilities and limitations. It is included by Tools.h++ libraries.

The general philosophy of the various macros defined in <rw/compiler.h> is
that an ARM compliant compiler does not have any of these macros defined.
That is, macros characterize a compiler’s limitations, rather than its abilities.

Table B-1 Summary of preprocessor macros found in <rw/compiler.h>.

Macro Defined if ...

RW_BROKEN_TEMPLATES Supports only cfront 3.0 style templates

RW_CRLF_CONVENTION Newlines marked by <CR><LF>

RW_GLOBAL_ENUMS Nested enums have global scope

RW_INLINE86_ASSEMBLY Compiler supports inline 80x86 assembly

RW_IOS_XALLOC_BROKEN ios::xalloc() does not zero initialize.

RW_KR_ONLY No function prototypes

RW_NO_ACCESS_ADJUSTMENT Does not allow adjustment of visibility of base
class

RW_NO_ANSI_SPRINTF sprintf() does not return string length

RW_NO_CLOCK Does not have clock()

RW_NO_CONST_OVERLOAD Cannot overload on const

RW_NO_CPP_RECURSION Preprocessor does not detect recursions properly

598 Tools.h++ Class Library

B

RW_NO_EXCEPTIONS Does not support exceptions

RW_NO_GETTIMEOFDAY Does not have gettimeofday()

RW_NO_GLOBAL_TZ Does not have global variables timezone and
daylight

RW_NO_LOCALE No ANSI locale facilities

RW_NO_MEMMOVE Does not have memmove()

RW_NO_NESTED_QUOTES cpp does not escape quotes inside strings

RW_NO_OVERLOAD_UCHAR Cannot overload on unsigned char

RW_NO_OVERLOAD_WCHAR Type wchar_t is not a distinct type

RW_NO_POSTFIX Does not support (*this)++

RW_NO_SCHAR Does not support signed char

RW_NO_STRFTIME_CAPC Does not have %C directive to strftime()

RW_NO_STRICMP Does not have stricmp()

RW_NO_STRNICMP Does not have strnicmp()

RW_NO_STRSTR Does not have strstr()

RW_NO_TEMPLATES Does not support templates at all

RW_NO_WSTR Does not support wide character strings

RW_NON_ANSI_HEADERS Function memcpy() found in <memory.h>

Table B-1 Summary of preprocessor macros found in <rw/compiler.h>.
(Continued)

Macro Defined if ...

599

Messages C

Table C-1 Core messages. These are messages used by all Tools.h++ libraries.
The symbols are defined in <rw/coreerr.h> . These messages
belong to category "rwcore6.0 ".

Symbol Message

CORE_EOF "[EOF] EOF on input "

CORE_GENERIC "[GENERIC] Generic error number %d; %s "

CORE_INVADDR "[INVADDR] Invalid address: %lx "

CORE_LOCK "[LOCK] Unable to lock memory "

CORE_NOINIT "[NOINIT] Memory allocated without being
initialized "

CORE_NOMEM "[NOMEM] No memory "

CORE_OPERR "[OPERR] Could not open file %s "

CORE_OUTALLOC "[OUTALLOC] Memory released with
allocations still outstanding "

CORE_OVFLOW "[OVFLOW] Overflow error -> \"%.*s\" <-
(%u max characters) "

CORE_STREAM "[STREAM] Bad input stream "

CORE_SYNSTREAM "[SYNSTREAM] Syntax error in input stream:
expected %s, got %s "

600 Tools.h++ Class Library

C

Table C-2 Tools.h++ messages. These are messages used by the Tools.h++
library. The symbols are defined in <rw/toolerr.h> . These
messages belong to category "rwtool6.0 ".

Symbol Message

TOOL_ALLOCOUT "[ALLOCOUT] %s destructor called with
allocation outstanding”

TOOL_BADRE "[BADRE] Attempt to use invalid regular
expression"

TOOL_CRABS "[CRABS] RWFactory: attempting to create
abstract class with ID %hu (0x%hx)"

TOOL_FLIST "[FLIST] Free list size error: expected
%ld, got %ld"

TOOL_ID "[ID] Unexpected class ID %hu; should be
%hu"

TOOL_INDEX "[INDEX] Index (%u) out of range [0->%u]"

TOOL_LOCK "[LOCK] Locked object deleted"

TOOL_LONGINDEX "[LONGINDEX] Long index (%lu) out of
range [0->%lu]"

TOOL_MAGIC "[MAGIC] Bad magic number: %ld (should be
%ld)"

TOOL_NEVECL "[NEVECL] Unequal vector lengths: %u
versus %u"

TOOL_NOCREATE "[NOCREATE] RWFactory: no create function
for class with ID %hu (0x%hx)"

TOOL_NOTALLOW "[NOTALLOW] Function not allowed for
derived class"

TOOL_READERR "[READERR] Read error"

TOOL_REF "[REF] Bad persistence reference"

TOOL_SEEKERR "[SEEKERR] Seek error"

TOOL_STREAM "[STREAM] Bad input stream"

Messages 601

C

TOOL_SUBSTRING "[SUBSTRING] Illegal substring (%d, %u)
from %u element RWCString"

TOOL_UNLOCK "[UNLOCK] Improper use of locked object"

TOOL_WRITEERR "[WRITEERR] Write error"

Table C-2 Tools.h++ messages. These are messages used by the Tools.h++
library. The symbols are defined in <rw/toolerr.h> . These
messages belong to category "rwtool6.0 ". (Continued)

Symbol Message

602 Tools.h++ Class Library

C

603

Bibliography D

Ammeraal, L. Programs and Data Structures in C, John Wiley and Sons, 1989,
ISBN 0-471-91751-6.

Booch, Grady, Object-Oriented Design with Applications, The Benjamin
Cummings Publishing Company, Inc., 1991, ISBN 0-8053-0091-0_.

Budd, Timothy, An Introduction to Object-Oriented Programming, Addison-
Wesley, 1991, ISBN 0-201-54709-0.

Coplien, James O., Advanced C++, Programming Styles and Idioms, Addison-
Wesley, 1992, ISBN 0-201-54855-0_.

Eckel, Bruce, C++ Inside and Out, McGraw-Hill, Inc, 1993, ISBN 0-07-881809-5.

Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990, ISBN 0-201-51459-1_.

Goldberg, Adele and David Robson, Smalltalk-80, The Language, Addison-
Wesley, 1989, ISBN 0-201-13688-0.

Gorlen, Keith, The NIH Class Library, Computer Systems Laboratory, DCRT,
National Institutes of Health, Bethesda, MD 20892.

Gorlen, Keith, Sanford M. Orlow and Perry S. Plexico, Data Abstraction and
Object-Oriented Programming in C++, John Wiley and Sons, 1990, ISBN 0-471-
92346 X.

Khoshafian, Setrag and Razmik Abnous, Object orientation: Concepts, Languages,
Databases, User Interfaces, John Wiley and Sons, 1990, ISBN 0-471-51802-6.

604 Tools.h++ Class Library

D

Lippman, Stanley B. C++ Primer, Addison-Wesley, 1989, ISBN 0-201-16487-6_.

Meyer, Bertrand, Object-oriented Software Construction, Prentice-Hall, 1988, ISBN
0-13-629049-3.

Meyers, Scott, Effective C++, Addison-Wesley, 1992, ISBN 0-201-56364-9.

Petzold, Charles, Programming Windows, Microsoft Press, 1990, ISBN 1-55615-
264-7.

Sedgewick, Robert. Algorithms, Addison-Wesley, 1988, ISBN 0-201-06673-4.

Stroustrup, Bjarne. The C++ Programming Language, Addison-Wesley, 1986,
ISBN 0-201-12078-X.

Stroustrup, Bjarne. The C++ Programming Language, Second Edition, Addison-
Wesley, 1991, ISBN 0-201-53992-6_. – Highly recommended –

605

Index

A
abstract, 248
Abstract data types, 21
Apply functions, 110, 123
apply(), 110, 123

B
Bag, 187

Overview, 118
Benchmarking, 193
Bibliography, 603
Bit vector, 208, 431, 559
Borland C++

binary mode, 65
BOUNDS_CHECK, 98

C
Caches

RWCacheManager, 234
Class names, 4
ClassID, 237, 292, 593
clear(), 124
clearAndDestroy(), 124
clockTy, 593
Collection, 248

Collection Classes
abstract base class, 248
compareTo(), 236
dictionary, 119
generic

RWGBitVec(size), 559
RWGDlist(type), 563
RWGOrderedVector(val), 570
RWGQueue(type), 574
RWGSlist(type), 577
RWGSortedVector(val), 584
RWGStack(type), 588

hashing, 128
introduction, 83
referenced-based, 84
retrieving objects, 88
RWBag, 187
RWBinaryTree, 198
RWBTree, 219
RWBTreeOnDisk, 227
RWDlistCollectables, 285
RWGBitVec(size), 559
RWIdentitySet, 314
RWOrdered, 329, 365
RWSet, 346
RWSlistCollectables, 352
RWSlistCollectablesQueue, 359
RWSlistCollectablesStack, 362
selection, 125

606 Tools.h++ Class Library

storage methods, 84
value-based, 87
virtual functions, 120

Collection classes, 19
Compares equal, 89
Comparison functions, 24
Compiling a program, 13
Concrete classes, 20
contains(), 121
Conventions, 4
conversions

between strings and numbers, 39
Copies

shallow vs. deep, 85
Copy constructor, 85
Copy on write, 167, 553
Create functions, 292
Currency conversions, 40

D
Date, 240
dayTy, 593
dbx, 15
Debugging a Program, 15
Deep copy, 85
Dictionary, 119, 300

RWBTreeDictionary, 223
RWHashDictionary, 300
RWIdentityDictionary, 313
RWTPtrHashDictionary, 461
RWTValHashDictionary, 515
template

example, 99
Disk retrieval, 2

E
Embedded nulls, 26
entries(), 120
Errors, 157

F
FALSE, 593
fileDescTy, 593
find(), 120

G
generic.h, 2
gprof, 15

H
Handling exceptions, 3
hash(), 128, 237
Hashing collections

overview, 118
RWHashTable, 306
RWTPtrHashTable, 471
RWTValHashTable, 525
strategy, 128

Header files, 14
hourTy, 593

I
IdentityDictionary, 313
IdentitySet, 314
insert(), 120
Integer, 242
Internationalization, 31
Internationalization support, 2
Interviews Class Library, 294
isA(), 237
isEmpty(), 121
isEqual, 89
isEqual(), 237
isSame, 89
Iterators

abstract base class, 317
reset(), 90
RWBagIterator, 191
RWBinaryTreeIterator, 201
RWDlistCollectablesIterator, 289

Index 607

RWGDlistIterator(type), 567
RWGSlistIterator(type), 581
RWHashDictionaryIterator, 304
RWHashTableIterator, 311
RWIterator, 317
RWOrderedIterator, 333
RWSetIterator, 350
RWSlistCollectablesIterator, 356
RWTIsvDlistIterator, 441
RWTIsvSlistIterator, 449
RWTPtrDlistIterator, 458
RWTPtrHashDictionaryIterator, 466
RWTPtrHashTableIterator, 475
RWTPtrSlistIterator, 488
RWTValDlistIterator, 512
RWTValHashDictionaryIterator, 520
RWTValHashTableIterator, 529
RWTValSlistIterator, 542

J
julTy, 593

L
Linked List

generic
doubly-linked, 563
singly-linked, 577

of Collectables
doubly-linked, 285
singly-linked, 352

Templates
doubly-linked, 451, 505
singly-linked, 482, 535

LinkedList, 352
LinkedListIterator, 356
lrwtool_dbg, 15

M
Makefile, 13
Memory allocation, 24
minuteTy, 593
Model-View-Controller, 326

monthTy, 593
Multiple inheritance, 89
Multi-thread safe, 26
Multi-threaded, 26
Multithreaded applications, 14

N
numbers

converting to strings, 39

O
Object, 236

type, state, and identity, 88
occurrencesOf(), 121
Ordered collection

generic, 570
Smalltalk-like, 329
Templates, 477, 491, 530, 545

P
Page heaps

abstract, 378
buffered, 232
disk based, 282

Persistence, 22
technical discussion, 169
to RWFiles, 66
to virtual streams, 61

Persistent store, 2
PFile, 294
prof, 15
profiling, 15
Public Class Hierarchy, 28

Q
Queue, 359

generic, 574
of Collectables, 359
Templates, 499

608 Tools.h++ Class Library

R
recursiveStoreSize(), 238
Reference counting, 167
Reference semantics, 85
Regular expressions, 1, 47, 252
remove(), 123
removeAndDestroy(), 123
Reshape vs. resize, 98
restoreGuts(), 237
RWapplyCollectable, 594
RWapplyGeneric, 594
RWapplyKeyAndValue, 594
RWBag, 113, 187
RWBagIterator, 191
RWBench, 193
RWBinaryTree, 116, 198
RWBinaryTreeIterator, 201
RWbistream, 203
RWBitVec, 208, 431, 559
RWBoolean, 593
RWbostream, 214
RWBTree, 219
RWBTreeDictionary, 223
RWBTreeOnDisk, 77, 227
RWBufferedPageHeap, 232, 282
RWCacheManager, 234
RWCollectable, 2, 236

and multiple inheritance, 173
designing, 137
virtual functions, 137

RWCollectableDate, 240
RWCollectableInt, 242
RWCollectableString, 116, 244
RWCollectableTime, 246
RWCollection, 248
RWCRegexp, 1, 252
RWCString, 1, 43, 244, 256

pattern matching, 47
substrings, 269

RWCSubString, 1, 46, 269

RWCTokenizer, 1, 272
RWDate, 55, 240, 274
RWDEBUG, 15
RWDiskPageHeap, 282
RWdiskTreeCompare, 594
RWDlistCollectables, 285
RWDlistCollectablesIterator, 289
RWFactory, 292
RWFile, 2, 67, 69, 294, 298
RWFileManager, 71, 298

use with RWBTreeOnDisk, 77
RWGBitVec(size), 208, 559

synopsis, 559
RWGDlist(type), 563
RWGDlistIterator(type), 567
RWGOrderedVector(val), 570
RWGQueue(type), 574
RWGSlist(type), 577
RWGSlistIterator(type), 581
RWGSortedVector(val), 584
RWGStack(type), 588
RWGVector(val), 590
RWHashDictionary, 300
RWHashDictionaryIterator, 304
RWHashTable, 118, 306
RWHashTableIterator, 311
RWIdentityDictionary, 313
RWIdentitySet, 314
RWInteger, 242, 315
RWIterator, 317
RWkeyLen, 593
RWLocale, 2, 33, 39
RWLocaleSnapshot, 39
RWModel, 326
RWNIL, 593
rwnil, 593
RWoffset, 298, 593
RWOrdered, 329
RWOrderedIterator, 333
RWpistream, 334

Index 609

RWpostream, 339
RWSequenceable, 119, 344

virtual functions, 126
RWSet, 118, 346
RWSetIterator, 350
RWSeverity, 594
RWSlistCollectables, 352
RWSlistCollectablesIterator, 356
RWSlistCollectablesQueue, 359
RWSlistCollectablesStack, 362
RWSortedVector, 365
RWspace, 298, 593
RWstoredValue, 77, 593
RWTBitVec, 431
RWtestCollectable, 594
RWtestGeneric, 594
RWTime, 59, 246, 370
RWTimer, 376
RWTimeZone, 2
RWTIsvDlist, 435
RWTIsvDlistIterator, 441
RWTIsvSlist, 443
RWTIsvSlistIterator, 449
RWTokenizer, 50
RWTPtrDlist, 451
RWTPtrDlistIterator, 458
RWTPtrHashDictionary, 461
RWTPtrHashDictionaryIterator, 466
RWTPtrHashSet, 468
RWTPtrHashTable, 471
RWTPtrHashTableIterator, 475
RWTPtrOrderedVector, 477
RWTPtrSlist, 482
RWTPtrSlistIterator, 488
RWTPtrSortedVector, 491
RWTPtrVector, 496
RWTQueue, 499
RWTStack, 502
RWTValDlist, 505
RWTValDlistIterator, 512

RWTValHashDictionary, 515
RWTValHashDictionaryIterator, 520
RWTValHashSet, 522
RWTValHashTable, 525
RWTValHashTableIterator, 529
RWTValOrderedVector, 530
RWTValSlist, 535
RWTValSlistIterator, 542
RWTValSortedVector, 545
RWTValVector, 550
RWTValVirtualArray, 553
RWuserCreator, 292, 594
RWVirtualPageHeap, 232, 282, 378
RWvistream, 381
RWvoid, 593
RWvostream, 386
RWWString, 1, 390
RWWSubString, 1, 403
RWWTokenizer, 1, 407
RWXDRistream, 409
RWXDRostream, 415
RWZone, 33, 36, 420
RWZoneDefault, 424

S
saveGuts(), 237
secondTy, 593
select(), 126
Sequenceable, 119
SequenceableCollection, 344
Set, 346

overview, 118
Shallow copy, 85
Simple classes, 20
Smalltalk, 2

typedefs, 594
Smalltalk-like collection classes, 21
SortedCollection, 116, 198
SortedCollectionIterator, 201
SPARCworks Debugger, 15

610 Tools.h++ Class Library

Stack, 362
generic, 588
of Collectables, 362
Templates, 502

Store size, 23
Storing and receiving, see Persistence
Stream I/O, 23

RWbistream, 203
RWbostream, 214
RWpistream, 334
RWpostream, 339
RWvistream, 381
RWvostream, 386
virtual streams, 61

String, 244, 256
searches, 252
tokens, 50, 272

strings
converting to numbers, 39

Substring, 269
null, 269

T
Template classes, 20

advantages, 20
disadvantages, 20

Tester functions, 106
theFactory, 292
Time, 246, 370

beginning of, 370
time

measuring elapsed, 376
Time and date, 2
Time zone, 36

setting, 59
Tokens, 1
TRUE, 593
Typedefs, 593

V
value semantics, 85
Vector, 431

bit, 208, 559
Templates, 431

bounds checking, 98
generic, 590

ordered, 570
reshape vs. resize, 98
sorted, 584
Templates, 477, 496, 550

Version of Tools.h++, 26
Virtual functions

pure, 248
Virtual streams, 61

W
Wide characters, 1

Y
yearTy, 593

Copyright 1995 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA.

Tous droits réservés.Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs
de licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX Systems Laboratories, Inc., filiale
entierement detenue par Novell, Inc., ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le
logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright
et licencié par des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS : l’utilisation, la duplication ou la divulgation par l’administation
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et
aux logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut Être protege par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des
demandes en cours d’en- registrement.

MARQUES
Sun, Sun Microsystems, le logo Sun, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+ et NFS sont des marques deposées
ou enregistrées par Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. UNIX est une marque enregistrée aux Etats-
Unis et dans d’autres pays, et exclusivement licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée
de Novell, Inc., PostScript et Display PostScript sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC II et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsytems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique, cette licence couvrant aussi les licencies de Sun qui mettent en place OPEN
LOOK GUIs et qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES, CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

