
SPARCworks/Ada Tutorial

Part No.: 802-3472-10
Revision A, November 1995

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A



Please
Recycle

 1995 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Solaris,  are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and certain other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. PostScript and Display PostScript are
trademarks of Adobe Systems, Inc.  All other product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler  are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of the X Consortium.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.



iii

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v

1. Examining the solve  Program . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

1.1 Listing Objectives and Tasks . . . . . . . . . . . . . . . . . . . . . . . . 1-7

1.2 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

1.3 Creating a New Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

1.4 Choosing Your Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

1.5 Importing Units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13

1.6 Viewing Job Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16

1.7 Changing the ADAPATH  . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19

1.8 Setting a LINK Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25

1.9 Linking solve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28

1.10 Running solve  From AdaVision . . . . . . . . . . . . . . . . . . . . 1-29

1.11 Examining solve  in AdaVision . . . . . . . . . . . . . . . . . . . . . 1-32

1.12 Explaining the Program’s Behavior: Two Hypotheses. . . 1-35

2. Debugging the solve  Program  . . . . . . . . . . . . . . . . . . . . . . . . . 2-37



iv SPARCworks/Ada Tutorial

2.1 Starting AdaDebug From AdaVision . . . . . . . . . . . . . . . . . 2-37

2.2 Setting the First Breakpoint. . . . . . . . . . . . . . . . . . . . . . . . . 2-39

2.3 Executing the Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41

2.4 Stepping Into attack() . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41

2.5 Examining a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44

2.6 Setting a Breakpoint in the Task View . . . . . . . . . . . . . . . . 2-47

2.7 Stepping Into munch()  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50

2.8 Stepping Through munch()  . . . . . . . . . . . . . . . . . . . . . . . . 2-52

2.9 Stack Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55

2.10 Setting a Breakpoint at start_muncher() . . . . . . . . . . . 2-56

2.11 Evaluating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57

2.12 Fixing Bugs From AdaVision  . . . . . . . . . . . . . . . . . . . . . . . 2-60



v

Preface

This tutorial demonstrates SPARCworks/Ada features and facilities as they
might be used when working with an actual program. The SPARCompiler Ada
demonstration program is called solve .

In this tutorial, you use the tools to examine and fix a version of the solve
program that does not run correctly.

Where solve  is Located
The solve  program supplied with SPARCompiler Ada is located in:

$ADAHOME/examples/X11_examples/xmaze

This directory contains the makefile and source files for two versions of solve :
one that runs correctly (maze_muncher_b.aok ), and one that contains a bug
(maze_muncher_b.deb ). You inherit the version with the bug.

Purpose of This Tutorial
Developers might use many strategies and tactics to solve the kinds of
problems the solve  program has. The SPARCworks/Ada tools themselves
provide multiple ways of doing things. The approach outlined in this tutorial
is just one of many ways of solving the given problems.



vi SPARCworks/Ada Tutorial

This tutorial demonstratesSPARCworks/Ada features and facilities. You are
told to do a few things you might not ordinarily do to illustrate some things
about SPARCworks/Ada.

Note – Use local execution when following the steps in the tutorial.

How This Tutorial is Organized
This tutorial consists of two chapters:

Appendix A,  “List of Steps for AdaDebug Tutorial,” is a step-by-step
summary of the second chapter so that you can restart the AdaDebug tutorial
and advance quickly to a particular step.

Examining the solve Program page 7

Debugging the solve Program page 37



1-7

Examining thesolve  Program 1

You are assigned to take over the broken version of the maze from its original
author, who has left the development team. Although you are a veteran Ada
programmer, you are fairly new to SPARCworks/Ada. The solve  program is
also something of a mystery.

1.1 Listing Objectives and Tasks
A list of your objectives and the tasks required to accomplish each of them
might read like the following:

1. Copying the files in the xmaze directory to your own workspace and
renaming it my_broken_maze  to avoid confusion with the original

2. Building the SPARCompiler Ada library my_broken_maze

a. Starting AdaVision in the my_broken_maze  directory

b. Creating a new SPARCompiler Ada library

c. Setting LINK directives to connect the C X11 archive

d. Compiling and linking my_broken_maze

3. Running solve  to see what the problem looks like

4. Examining the structure of solve  in AdaVision

5. Starting AdaDebug and trying to fix the program



1-8 SPARCworks/Ada Tutorial

1

1.2 Getting Started
1. Copy the xmaze files to a working directory.

Note – xmaze is write-protected. Before you start the tutorial, copy the
complete contents of the $ADAHOME/examples/X11_examples/xmaze
directory to somewhere else in your file system. In this tutorial, the files are
copied to /usr/example/my_broken_maze .

The maze tutorial directory contains a .desc  file and some other . xxx files, so
a simple cp *  does not copy all of them. Add the option -r  as follows:

% cd $ADAHOME/examples/X11_examples/xmaze
% cp -r . /usr/example/my_broken_maze

2. Work with the broken version of the maze and list the contents of the
newly created directory as follows:

% cd /usr/example/my_broken_maze
% make broken
% ls

3. Start AdaVision from a command line by typing:

% adavision &



Examining the solve Program 1-9

1

As you have not yet created an Ada library, the Initial Ada Library pop-up
window appears:

4. Click on New Library.

1.3 Creating a New Library
In a few seconds, the empty AdaVision main window appears on the screen,
along with the New Library pop-up window.



1-10 SPARCworks/Ada Tutorial

1

1. Enter the library name
/usr/example/my_broken_maze /
by either typing it directly into the text field or clicking on the ellipsis
(. . .) button to the right of the Library Name text field to open a file
chooser from which you select the name.

Note – The target release(s) as shown depend on the entries in your
/etc/VADS  file. Parent marks the release pointed to by the first line in
/etc/VADS  and designates it the default library.

2. Choose Release Library:

SELF_TARGET 3.0 opt/SUNWspro/Ada3.0/self

3. Click on the Create button to create a new SPARCompiler Ada library
named my_broken_maze  with a parent library named:

/opt/SUNWspro/Ada3.0/self/verdixlib

The New Library window then closes, and the Unit View message log indicates
that the action is complete.



Examining the solve Program 1-11

1

4. Choose View ➤ Libraries from the Unit View to open the Library View.

5. Choose Library ➤ Load from the Library View and type
/usr/example/my_broken_maze /
in the library name text field (or select it using the file chooser).

6. Click Load to load the library.

As soon as the library loads, the Load Library window closes and the Library
View displays the new library (with the eyeglasses glyph) and all the libraries
on its ADAPATH.



1-12 SPARCworks/Ada Tutorial

1

1.4 Choosing Your Editor
Open the Global Options window to determine your editor of choice. The
default editor is vi.

1. Choose Options ➤ Global to open the Global Options window.



Examining the solve Program 1-13

1

2. Select your editor of choice.

3. Click OK to quit the window.

1.5 Importing Units
You are now ready to import the my_broken_maze  units into AdaVision.

AdaVision is primarily an Ada unit-based system rather than a file-based
system. When you import units, you instruct AdaVision to compile a list of
Ada source files and display an object for each of the resulting units in the
display pane. The unit objects are named and have graphically-coded icons.

To import:

1. Select /usr/example/my_broken_maze  by clicking on it in the scrolling
list in the Library View.

2. Choose Actions ➤ Import, which brings up a confirmation window.



1-14 SPARCworks/Ada Tutorial

1

3. Click on Optimize and enter the number 0 in the Level text field.

4. Click Import.

AdaVision starts an import job in the background. When the job begins, the
confirmation window closes. To check on the status of the import job:



Examining the solve Program 1-15

1

5. Select Status ➤ Jobs in the Unit View.

Job Status is displayed in the Status of Jobs window.

Unexpectedly, instead of completing a satisfactory compile, the job is displayed
in the Completed Jobs pane with a broken glyph, indicating that the job
terminated unsuccessfully.



1-16 SPARCworks/Ada Tutorial

1

1.6 Viewing Job Status
To discover what has happened:

1. Select the unsuccessful job in the Status of Jobs window by clicking on it.

2. Click on the Information button under the Completed Jobs pane.

3. Read the message in the Job Output pane of the Job Information window.



Examining the solve Program 1-17

1

The output indicates that maze references units in a library that is not on the
my_broken_maze  ADAPATH. publiclib  was not assigned as the parent
library when creating the new library. This particular program also needs



1-18 SPARCworks/Ada Tutorial

1

vads_exec  and X11 on its ADAPATH.

Rather than starting over, you can go to the my_broken_maze  Library Options
window and change the ADAPATH. Leave the Job Information and Status of
Jobs windows open for later.

Although the job completed unsuccessfully, the icons associated with it
appeared in the Unit View as soon as the job completed.



Examining the solve Program 1-19

1

1.7 Changing the ADAPATH
1. Choose Options ➤ Library in the Library View to display the Library

Options pop-up window.

In addition to changing the ADAPATH, you might as well write the link
directives for the C X11 archive while the Library Options window is open.



1-20 SPARCworks/Ada Tutorial

1

The ADAPATH is visible in the window’s main display pane.

The ADAPATH control shows only the standard  and verdixlib  libraries.
The vads_exec , X11, and publiclib  libraries need to be added to the
ADAPATH list.



Examining the solve Program 1-21

1

The libraries should be in the following order:

a. . . ./publiclib

b. . . ./verdixlib

c. . . ./X11

d. . . ./vads_exec

e. . . ./standard

Begin by adding publiclib .

2. Click in the ADAPATH text field at the bottom of the window and type in
the ADAPATH for publiclib, where sunada_location is the location of
SPARCompiler Ada (and the value of the $ADAHOME environment
variable):
sunada_location/self/publiclib



1-22 SPARCworks/Ada Tutorial

1

3. Click Append to see the change in the scrolling list.

Note – Although the scrolling list updates, the actual ADAPATH does not
change until you press Apply or OK, which you will do in a minute.



Examining the solve Program 1-23

1

4. Select publiclib  from the scrolling list and press the Move Up button
until the library is at the desired location in the list.

5. Press Apply to update the Library View and have the change in the
ADAPATH take effect.



1-24 SPARCworks/Ada Tutorial

1

6. Repeat Step 2 through Step 5 for the vads_exec  and X11 libraries.



Examining the solve Program 1-25

1

1.8 Setting a LINK Directive
You are now ready to write the LINK directive for the C X11 archives. Still
working in the Library Options window,

1. Select the LINK Directives setting from the Category menu to display the
LINK directive controls.

No WITHn directives are set in my_broken_maze .



1-26 SPARCworks/Ada Tutorial

1

You will want to set a LINK directive in my_broken_maze  to tell AdaVision to
include the shared object (or archive) libX11  in any executable linked in this
Ada library.

To set WITHn LINK directives in the current library:

2. Click on the WITHn text field and type 1 to indicate the number of the
WITH directive.

3. In the Value field, enter the name of the C X11 archive:
-lX11

Note – In the C X11 archive above, the hyphen is followed by a lowercase “l,”
a capital “X,” and two ones.



Examining the solve Program 1-27

1

4. Click Append to have the changes take effect in the scrolling list.

5. Click OK to update the Ada library. The Library Options window closes.

You are now ready to rerun the Import job.

6. Press the Redo Command button in the Job Information window, which
was left open on the desktop.

This time, the import is successful.



1-28 SPARCworks/Ada Tutorial

1

7. Close the Job Information window, the Status of Jobs window, and the
Library View window.

All that remains before running solve  is to link the executable.

1.9 Linking solve

1. Select the body of the unit solve  by clicking on its icon in the Unit View.

2. Choose Actions ➤ Link (or click on the Link button).

3. Select Output File and type solve  in the text field to make the file name
of the executable image more descriptive than the default a.out .

4. Confirm the link action by pressing Link in the confirmation window.

The link succeeds and the solve  unit icon now has a Sun logo inside to
indicate it is executable.



Examining the solve Program 1-29

1

1.10 Running solve  From AdaVision
To start running solve  from within AdaVision:

1. With the solve  executable still selected in the Unit View, choose Actions
➤ Run (or click on the Run button) and click Run in the Run action
confirmation window.

The solve  program, called Maze-O-Matic for end users, is displayed on the
screen.



1-30 SPARCworks/Ada Tutorial

1

The Run action generates an Action Output window that contains details on
the state of the action.



Examining the solve Program 1-31

1

2. Put the cursor inside the maze display pane and click the mouse, as the
message in the maze instructs users to do.

The first maze completes successfully.



1-32 SPARCworks/Ada Tutorial

1

3. Generate a new maze by clicking on the maze window once, then try to
solve the new maze by clicking on it again.

Maze-O-Matic fails to work this time, termintating in a blind maze pathway.

4. Quit Maze-O-Matic and close the Action Output window.

1.11 Examining solve  in AdaVision
The main thing you know about solve  is that it is a multitasking program that
spawns tasks at each intersection in the maze, and that these tasks then follow
all the pathways simultaneously to solve the maze.

While watching the program fail, you noticed that it:

• Dead-ends

• Fails to make footprints on other pathways in each maze

• Seems to have trouble spawning tasks and sending them in each direction at
an intersection

Before proceeding, you need to know more about how the program is
assembled. What little documentation is available is either in comments in the
source files or in the brief descriptions of each unit that a coworker wrote up
early in the project.



Examining the solve Program 1-33

1

The first thing to do is look quickly at the description for each unit provided by
the previous programmer. To do this:

1. Select each unit in turn and choose Options ➤ Unit to display the Options
window for each unit.

Now that you have a fair idea of how the program is assembled, it becomes
important to see how the Ada units are themselves structured into specs,
bodies, and subunits.

2. Click OK to close the Unit Options window.



1-34 SPARCworks/Ada Tutorial

1

3. From the Unit View, choose View ➤ Graph.

AdaVision opens a base window that graphs the interdependencies among the
displayed units (in this case, all of the units in the solve  program). WITH
dependencies appear as dashed lines, and parent-child relationships appear as
solid lines.

4. Choose View ➤ Icon to return to the icon view.



Examining the solve Program 1-35

1

1.12 Explaining the Program’s Behavior: Two Hypotheses
If you run through the program again, you can see that the program is not
spawning tasks in all possible directions at each intersection, as it is supposed
to do. All that white space should be gray because task munchers should have
gone down each path, flushing the entire maze. Also, in the second maze, a
task did not head out to the left at the first intersection.

There are two plausible explanations for the program’s behavior:

• Maybe only one task is running and the others are not being spawned
successfully.

• Maybe tasks are spawned successfully, but they are dying before they get
anywhere.

You can use the Debugger tool to further examine the program.

Note – If you want to redo the first chapter, be sure to type make clean  in a
command line before starting over.



1-36 SPARCworks/Ada Tutorial

1



2-37

Debugging thesolve  Program 2

You are now ready to view and edit the source code. If you want to follow the
AdaDebug section of the tutorial in more than one sitting (or if you miss a step
that breaks the correct sequence), you can use the concise list of steps in
Appendix A to return the program quickly to any particular place in the
tutorial.

Note – If you skipped Chapter 1 of this tutorial, go back and perform Steps 1
and 2 from Section 1.2, “Getting Started.” Then, execute the make all
command at the command line before continuing with this chapter.

2.1 Starting AdaDebug From AdaVision
To start AdaDebug from within AdaVision:

♦ Select the solve  executable in the AdaVision Unit View and choose Tools
➤ Debug (or click on the AdaDebug button).

Note – If AdaDebug is already running on the desktop, you can start a
debugging session by choosing File ➤ Load Executable. If neither AdaVision
nor the Debugger is running on your Desktop, you can type
adadebug solve &
in a Shell Tool window to start the Debugger.

You may want to close AdaVision to an icon for now.



2-38 SPARCworks/Ada Tutorial

2

At startup, AdaDebug displays the Program View window with the main
program source code in the display pane. A small arrow marks the next line to
be executed by the debugger—that is, the current position in the program.



Debugging the solve Program 2-39

2

2.2 Setting the First Breakpoint
You know that the program solves the first maze and therefore decide to find a
place in the code where it passes the first maze but does not start the second
one.

1. Begin by scrolling halfway through the file to find parts of the code that
might be relevant.

Line 57 reads:

At first, this seems like a good place to put a breakpoint. But this statement
probably comes too late to catch any of the action.

In the code that comes before this call to generate a new maze, line 41 is a call
to the attack()  procedure. From the description of solve , it is fairly obvious
that the program uses attack()  to launch the task munchers that solve the
maze. A breakpoint at the call to the attack()  procedure seems like a good
idea.

2. Double-click in line 41. The first word in the line is highlighted.

57 generate_new_maze



2-40 SPARCworks/Ada Tutorial

2

3. Choose Breakpoint ➤ Stop At <selected line> (or click Stop At).

A stop sign glyph appears to the left of line 41, indicating that a breakpoint is
set at that line.



Debugging the solve Program 2-41

2

2.3 Executing the Program
Having set a breakpoint, start the program from the beginning.

1. Choose Execution ➤ Run (or click Run).

The Maze-O-Matic window opens with a message prompting the user to click
the mouse button to solve the maze.

2. Click in the maze window to start the program solving the first maze.

The program runs until it hits the breakpoint at the call to attack() . The
arrow indicating the next line to be executed points at line 41, where the
breakpoint is set. Nothing has happened yet in the Maze-O-Matic window.

2.4 Stepping Into attack()

Recall that the program always solves the first maze, even though it does not
work exactly as it is supposed to work because it doesn’t send out munchers to
explore the opposite path when it reaches an intersection. Work with the first
maze for a while.



2-42 SPARCworks/Ada Tutorial

2

Step into the attack()  procedure to see what happens when the program
calls it.

1. Choose Execution ➤ Step (or click Step) to step into the attack()
procedure.

The Program View window now displays the attack()  procedure.
AdaDebug positions the current line arrow at line 191, the first line of
attack() .



Debugging the solve Program 2-43

2

At this point, assume that the program will behave properly and begin
stepping through attack()  line by line.

2. Choose Execution ➤ Next (or click Next).



2-44 SPARCworks/Ada Tutorial

2

3. Repeat Next eight more times, advancing to line 206 and reading ahead a
line or two before each step to analyze what is happening.

With the current line arrow pointing at line 206, nothing has happened in the
Maze-O-Matic window.

Line 206 reads:

And the next line, 207, reads:

Remember, the munchers’ progress results in footprints on the maze. Don’t
allow the program to step over line 206, or the action involved in drawing the
first footprint will be lost. Step into start_muncher .

4. Choose Execution ➤ Step (or click Step) to step into the start_muncher
function at line 21.

AdaDebug scrolls the display to point at line 21, where solve  declares the
start_muncher()  function. This is a short but important routine.

5. Choose Execution ➤ Next (or click Next) four times until reaching line 26.

Line 25, the second line in start_muncher() , allocates a task of type
maze_muncher . In stepping over line 25, notice that solve  has just created a
new task. Note also that the next line, 26, is a task rendezvous call:

Recall that the maze_muncher  unit uses attack()  to control the munchers
that travel the maze. Now it should be clear that each muncher is a task.

2.5 Examining a Task
1. Choose Execution ➤ Task Inspector to display each activated task in the

Task Inspector window.

206 first_muncher:=start_muncher(start_x,start_y,start_dir);

207 first_muncher.finish(found_finish);

26 new_muncher.start(x, y, dir);



Debugging the solve Program 2-45

2

As expected, the icon for the new muncher task that start_muncher  just
created is visible. It is named maze_muncher .

From the Task Inspector, the task opens into a Task View window, where a
task-specific breakpoint can be set at the accept statement for this muncher.

2. Select the maze_muncher  task icon in the Task Inspector and click Open
to open the task in a Task View window.

The Task View window looks similar to the Program View window.

Note – The important difference between the Task View window and the
Program View window is functional. When you choose a menu item from
within a Task View window, it applies only to the task identified in the Task
View title bar.



2-46 SPARCworks/Ada Tutorial

2



Debugging the solve Program 2-47

2

2.6 Setting a Breakpoint in the Task View
By setting a breakpoint in the Task View window, the program reaches the
breakpoint only if this particular task attempts to execute this line of code.

Find the accept start  statement using the search facility:

1. Choose Edit ➤ Find in the Task View.

2. Type accept start  in the text field and click Forward.

The code in the Task View pane highlights the accept start  statement into
view at line 181.

A breakpoint at line 181 is too early. The task is already suspended at the
accept start  rendezvous statement. The task-specific breakpoint goes on
line 182.

3. Close the Find Pattern window.



2-48 SPARCworks/Ada Tutorial

2

4. Double-click on line 182 in the Task View window and choose Breakpoint
➤ Stop At <selected line> (or click Stop At).

The hollow arrow at line 181 shows where the task suspended its execution.
Don’t confuse the hollow arrow with the solid arrow, which shows the next
statement to be executed when you continue the program.

5. Close the Task View window, but leave the Task Inspector open for later.



Debugging the solve Program 2-49

2

6. Choose Execution ➤ Continue (or click Continue) from the Program View.

The program runs until the task named maze_muncher  hits this task-specific
breakpoint. Still, nothing has happened in the Maze-O-Matic window.

Clear the breakpoint at line 182, since it has already served its purpose.



2-50 SPARCworks/Ada Tutorial

2

7. Double-click on line on 182 in the Program View and choose Breakpoint
➤ Clear At <selected line> (or click Clear).

2.7 Stepping Into munch()

By stepping into the munch()  procedure at line 184, you can step through the
entire process by which solve  creates task munchers.

1. Choose Execution ➤ Next (or click Next) twice to advance the current line
pointer to line 184.

2. Choose Execution ➤ Step (or click on Step) at line 184 to step into the start
of the munch()  function at line 70.

3. Scroll or click Next a few times to advance through the code, noticing the
loop from lines 106 to 116.

Just after the loop, at line 123, is an if . . . then . . . else statement that seems to
be significant.

4. Double-click on line 123 and choose Breakpoint ➤ Stop At <selected line>
(or click Stop At).



Debugging the solve Program 2-51

2

5. Choose Execution ➤ Continue (or click Continue) to have the program
advance to the breakpoint you just set at line 123.

The program advances to the new breakpoint. In the Maze-O-Matic window,
the program draws a single black footprint in the maze.



2-52 SPARCworks/Ada Tutorial

2

2.8 Stepping Through munch()

Step through munch()  one line at a time to see what happens next.

1. Click Next five times. The fifth step executes the make_print(x, y,
dir Grey)  procedure (line 128), causing the first footprint to turn gray.

2. Click Next again to execute line 129.



Debugging the solve Program 2-53

2

Something unexpected happens: the program returns to line 123, even though
the program is not in a loop. Also, the hollow arrow at line 129 indicated a
different stack frame was executing.

.



2-54 SPARCworks/Ada Tutorial

2

Also, solve  draws another footprint in the maze.

munch()  must be calling itself recursively at line 129. To check this hypothesis,
bring up the Stack Inspector window.



Debugging the solve Program 2-55

2

2.9 Stack Tracing
1. Choose Stack ➤ Inspector.

The Stack Inspector window display provides you with some key pieces of
information. First, the top two entries on the stack are calls to munch() .
Looking at the values of the parameters and comparing them to the location of
the two footprints with respect to the maze—which is a 12 x 8 matrix—shows
that the coordinates and the direction match perfectly.



2-56 SPARCworks/Ada Tutorial

2

2. Click Next six times to step through the recursive lines of code again
(lines 123 through 129, returning to 123) and see the third footprint appear
in the maze.

The new call also appears in the Stack Inspector.

3. Select a word in line 123 and choose Breakpoint ➤ Clear At <selected
line> (or click Clear) to remove the breakpoint at line 123.

4. Close the Stack Inspector window by clicking Cancel.

2.10 Setting a Breakpoint at start_muncher()

Maze footprints are not exploring all avenues (or “possibilities,” as the code
calls them) when coming to an intersection. To discover why, set the next
breakpoint where the start_muncher()  procedure begins (line 137).

1. Double-click on a word in line 137 and choose Breakpoint ➤ Stop At
<selected line> (or click Stop At).

2. Choose Execution ➤ Continue (or click Continue).



Debugging the solve Program 2-57

2

The maze takes off this time, drawing footprints one after another until it
reaches the first two-way intersection in the maze and stops.

solve  must spawn two new maze muncher tasks here, sending one in each
direction. The breakpoint set at the line containing start_muncher()  has
stopped the program just before it creates the new task munchers.

The maze fails here because when it reaches intersections it sends a muncher in
one direction but not the other.

2.11 Evaluating Parameters
Evaluate the parameters of the start_muncher()  procedure: xx , yy , and
possibilities(i) .

1. Drag the mouse to highlight the xx  parameter in start_muncher()  at
line 137, then choose Data ➤ Evaluate <selected expr>.

AdaDebug displays the value 6 in the message pane. Count six cells from the
left. The xx  coordinate is correct, but how is the yy  coordinate?

2. Select the yy  parameter, then choose Data ➤ Evaluate <selected expr>.

The message pane shows that the value of yy  is 8. Eight is the bottom row in
the matrix, so this value, too, is correct. What are the possibilities(i) ?



2-58 SPARCworks/Ada Tutorial

2

3. Highlight possibilities(i)  and choose Data ➤ Evaluate <selected
expr> again.

The message at the bottom of the window reports east_print . This value is
also correct.



Debugging the solve Program 2-59

2

4. Choose Execution ➤ Continue (or click Continue).

Choosing Continue here at an intersection does not advance the maze. Instead,
the program starts up a second maze muncher, and a second maze_muncher
appears in the Task Inspector. This is the muncher that should go in the other
direction, west. Test this by evaluating the arguments to start_muncher()
for this second task.

5. Close the Task Inspector and repeat Step 1 through Step 4 to evaluate the
start_muncher()  parameters xx , yy ,  and possibilities(i) . The
results are shown as follows:

The direction is not correct: west_print  coordinates are the same for the first
muncher. It appears that the second muncher is preparing to follow the first
one. Why?

Look at the line above the start_muncher()  call, to where the program calls
move_dir() :

The parameter should be possibilities(i) , not possibilities(1) .
There are four possible directions, not one. No wonder the task munchers
travel in one direction when they come to an intersection: the possibilities
variable in the mov_dir  call was coded mistakenly as a constant.

♦ Change 1 to i , and the program behaves correctly.

136 move_dir( xx, yy, possibilities(1) );



2-60 SPARCworks/Ada Tutorial

2

2.12 Fixing Bugs From AdaVision
Shift back to AdaVision to edit and then re-make the library.

1. Return to the AdaVision Unit View.

2. Double-click the icon for the maze_muncher  body.

AdaVision opens the body of the maze_muncher  unit in your editor of choice.

3. Go to line 136, which contains the call to mov_dir() , and edit the
variable, changing 1 to i  in the possibilities  parameter.

4. Save the changes and quit the editor window.

5. Return to the AdaVision Unit View window and click in a blank area of
the display pane to deselect the maze_muncher  icon.

6. Choose Actions ➤ Make (or click Make) in the Unit View.

AdaVision runs make on all of the units in the library. The job completes
successfully.

7. Select the solve  executable by clicking it and then choose Actions ➤ Run
(or click Run).

In a moment Maze-O-Matic opens, along with a Program I/O window.

8. Click in the Maze-O-Matic window to solve the maze.

9. After the program solves the first maze, click to generate a new maze, then
click again to solve that maze.

You have corrected the error and solve  now solves each of the mazes
correctly.



A-61

List of Steps for AdaDebug Tutorial A

This appendix contains a list of the steps in the AdaDebug portion (Chapter 2)
of the tutorial. Having the steps in this format should make it easier to restart
the AdaDebug tutorial session if you want to take the tutorial in more than one
sitting or if you accidentally skip one of the steps.



A-62 SPARCworks/Ada Tutorial

A

1 Select the solve  executable in the Unit View and choose Tools ➤ Debug (or click on the AdaDebug button).

2 Begin by scrolling halfway through the file to find parts of the code that might be relevant.

3 Double-click in line 41. The first word in the line is highlighted.

4 Choose Breakpoint ➤ Stop At <selected line> (or click Stop At).

5 Choose Execution ➤ Run (or click Run).

6 Click in the maze window to start the program solving the first maze.

7 Choose Execution ➤ Step (or click Step) to step into the attack()  procedure.

8 Choose Execution ➤ Next (or click Next).

9 Repeat Next eight more times, advancing to line 206 and reading ahead a line or two before each step to analyze
what is happening.

10 Choose Execution ➤ Step (or click Step) to step into the start_muncher  function at line 21.

11 Choose Execution ➤ Next (or click Next) four times until reaching line 26.

12 Choose Execution ➤ Task Inspector to display each activated task in the Task Inspector window.

13 Select the maze_muncher task icon in the Task Inspector and click Open to open the task in a Task View window.

14 Choose Edit ➤ Find in the Task View.

15 Type accept start  in the text field and click Forward.

16 Close the Find Pattern window.

17 Double-click on line 182 in the Task View window and choose Breakpoint ➤ Stop At <selected line> (or click Stop
At).

18 Close the Task View window, but leave the Task Inspector open for later.

19 Choose Execution ➤ Continue (or click Continue) from the Program View.

20 Double-click on line 182 in the Program View and choose Breakpoint ➤ Clear At <selected line> (or click Clear).

21 Choose Execution ➤ Next (or click Next) twice to advance the current line pointer to line 184.

22 Choose Execution ➤ Step (or click Step) at line 184 to step into the start of the munch()  function at line 70.

23 Scroll or click Next a few times to advance through the code, noticing the loop from lines 106 to 116.

24 Double-click on line 123 and choose Breakpoint ➤ Stop At <selected line> (or click Stop At ).

25 Choose Execution ➤ Continue (or click Continue) to have the program advance to the breakpoint you just set at
line 123.

26 Click Next five times. The fifth step executes the make_print(x, y, dir Grey)  procedure (line 128), causing
the first footprint to turn gray.



List of Steps for AdaDebug Tutorial A-63

A

27 Click Next again to execute line 129.

28 Choose Stack ➤ Inspector.

29 Click Next six times to step through the recursive lines of code again (lines 123 through 129, returning to 123) and
see the third footprint appear in the maze.

30 Select a word in line 123 and choose Breakpoint ➤ Clear At <selected line> (or click Clear) to remove the
breakpoint at line 123.

31 Close the Stack Inspector window by clicking Cancel.

32 Double-click on a word in line 137 and choose Breakpoint ➤ Stop At <selected line> (or click Stop At).

33 Choose Execution ➤ Continue (or click Continue).

34 Drag the mouse to highlight the xx  parameter in start_muncher()  at line 137, then choose Data ➤ Evaluate
<selected expr>.

35 Select the yy  parameter, then choose Data ➤ Evaluate <selected expr>.

36 Select possibilities(i)  and choose Data ➤ Evaluate <selected expr> again.

37 Choose Execution ➤ Continue (or click Continue).

38 Close the Task Inspector and repeat the last four steps to evaluate the start_muncher()  parameters xx , yy,
and possibilities(i) .

39 Return to the AdaVision Unit View.

40 Double-click the icon for the maze_muncher  body.

41 Go to line 136, which contains the call to mov_dir() , and edit the variable, changing 1 to i  in the
possibilities  parameter.

42 Save the changes and quit the editor window.

43 Return to the AdaVision Unit View window and click in a blank area of the display pane to deselect the
maze_muncher  icon.

44 Choose Actions ➤ Make (or click Make) in the Unit View.

45 Select the solve  executable by clicking it and then choose Actions ➤ Run (or click Run).

46 Click in the Maze-O-Matic window to solve the maze.

47 After the program solves the first maze, click to generate a new maze, then click again to solve that maze.



Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 U.S.A.

Tous droits réservés. Ce produit ou document est protégé par un  copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie, et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX System Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS: l’utilisation, la duplication  ou la divulgation par l’administration
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFARS 252.227-7013 et FAR 52.227-19. Le produit décrit dans ce manuel peut Être protege par un ou
plusieurs brevet(s) americain(s), etranger(s) ou par des demandes en cours d’enregistrement.

MARQUES

Sun, Sun Microsystems, le logo Sun, Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et exclusivement
licenciée par X/Open Company Ltd. OPEN LOOK est  une marque enregistrée de Novell, Inc. PostScript et Display PostScript
sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver,  SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation  visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licenciés de Sun qui mettent en place  OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT  LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE  DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT  PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES. CES CHANGEMENTS SERONT INCORPORES  AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU  LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.




