
SPARCworks/TeamWare
ProWorks/TeamWare
Users Guide

A Sun Microsystems, Inc. Business

2550 Garcia Avenue
Mountain View, CA 94043
U.S.A

Please
Recycle

 1995 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System
Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font
software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in
the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. . All other
product names mentioned herein are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International,
Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster,
SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, ProWorks, and SPARCompiler are
licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed
by Sun Microsystems, Inc.

The OPEN LOOKand Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a product of the Massachusetts Institute of Technology.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

Preface. xiii

Part 1 —Quickstart Guide

1. QuickStart Guide . 1

CodeManager . 2

Some CodeManager Concepts . 2

Parent and Child Workspaces . 3

Source Code Control System . 3

VersionTool . 9

FreezePoint . 12

ParallelMake . 14

Part 2 —CodeManager

2. Introduction to CodeManager . 17

Coordinating the Work of Software Developers 17

Copy-Modify-Merge Model . 18

Default CodeManager . 21

iv TeamWare Users Guide

Workspace. 21

Copying Files between Workspaces 26

Resolving Conflicts . 34

3. CodeManager User Interfaces. 37

CodeManager Command-Line Interface 38

CodeManager Graphical User Interface 39

About This Section. 39

Starting Up CodeManager . 40

CodeManager Windows . 40

CodeManager File and Directory Choosers 41

CodeManager Window . 42

Transactions Window . 51

Customizing CodeManager Using Properties 57

Footer Messages . 62

Accelerators . 63

4. CodeManager Workspace . 65

The Workspace Metadata Directory . 65

Creating a Workspace . 68

Using Workspace Create . 68

Using the Bringover Create Transaction 69

Deleting a Workspace . 69

Moving and Renaming a Workspace. 70

A Note About Moving Workspaces. 70

Reparenting a Workspace . 71

Contents v

Two Ways to Reparent Workspaces . 71

Reasons to Change a Workspace’s Parent. 73

Controlling Access to Workspaces . 77

Viewing and Changing Access Control Values 80

How to Notify Users of Changes to Workspaces 83

Viewing and Changing Notification Entries 84

Notes About Registering Notification Events 87

Viewing Workspace Command History 87

Ensuring Consistency through Workspace Locking 90

CodeManager Environment Variables . 92

The CODEMGR_WS Variable . 92

The CODEMGR_WSPATH Variable . 93

5. Copying Files between Workspaces . 95

CodeManager Transaction Model . 95

General File Copying Information. 97

SCCS History Files. 97

Viewing Transaction Output . 97

Specifying Directories and Files for Transactions 98

Copying Files from a Parent to a Child Workspace (Bringover) 104

Creating a New Child Workspace (Bringover Create) 104

Notes about the Bringover Create Transaction 107

Updating an Existing Child Workspace (Bringover Update) 110

Notes about the Bringover Update Transaction. 113

Bringover Action Summary . 116

vi TeamWare Users Guide

Copying Files from a Child to a Parent Workspace (Putback) . 117

Updating a Parent Workspace Using Putback 117

Notes about the Putback Transaction 120

Putback Action Summary . 123

Reversing Bringover and Putback Transactions with Undo. . . 124

Notes about the Undo Transaction . 125

How the Undo Transaction Works. 125

Renaming, Moving, or Deleting Files . 128

Renaming Files. 128

Deleting Files . 132

Notes about Renaming Files. 133

6. Resolving Conflicts. 135

Detecting Conflicts. 137

Detecting Conflicts during Bringover Update Transactions 137

Preparing Files for Conflict Resolution 138

Resolving Conflicts . 139

Resolve Transaction . 139

7. CodeManger Administration . 145

Starting a Project with CodeManager . 145

Moving an Existing Project. 145

Starting a New Project. 146

Configuring Your Workspace Hierarchy. 146

File Transfer Considerations. 148

Product Release Considerations. 150

Contents vii

8. How CodeManager
Merges SCCS Files . 153

Merging Files That Do Not Conflict . 154

Merging Files That Conflict . 155

A Merge Example . 156

9. CodeManager Example . 167

Creating Workspaces . 168

Putting Back Changes . 173

Updating a Workspace . 176

Resolving Conflicts . 180

10. CodeManager Messages . 183

CodeManager Error Messages . 183

CodeManager Warnings . 206

Part 3 —Version Tool

11. Introduction to VersionTool . 215

Terminology . 216

Branches . 216

Deltas and Versions . 217

History Files . 217

SCCS Delta ID (SID) . 217

Graphical Tour . 218

Base Window . 218

Base Window Pop-up Menu. 219

File Button. 220

viii TeamWare Users Guide

Load Button . 221

View Button . 222

History Window. 223

Commands Button . 228

Check In New Window . 229

Props Button . 231

Properties Window . 231

12. Performing Basic SCCS Functions with VersionTool 233

Typical Tool Sessions . 233

Putting a Project Under SCCS Control 234

Working with a Project Under SCCS Control. 235

File Button: Loading and Unloading a Directory. 235

Loading a Directory. 236

Unloading a Directory. 236

Load Button: Reloading Previous Directories 237

View Button: Viewing File Information 238

Viewing the History Graph of a Selected File 239

Viewing SCCS Command Output . 241

Viewing SCCS File Status . 241

Commands Button: Manipulating Files 242

Checking Out and Checking In Files. 243

Editing a Checked-Out File . 246

Checking in a New File . 246

Unchecking Out a File . 247

Contents ix

Displaying the Differences Between Two Deltas 247

Props Button: Changing VersionTool Properties 247

Changing the Main File List Display. 248

Defining an Editor . 248

Changing the Double-Click Action . 249

Changing the History Graph Display 249

Changing the History Information Display 249

Part 4 —FreezePoint

13. Introduction to FreezePoint . 253

How FreezePoint Works . 254

Terminology . 256

Starting FreezePoint. 257

Creating a Freezepoint File . 257

Viewing or Modifying a Freezepoint File 260

Recreating (Extracting) a Source Hierarchy 260

Notes about Using FreezePoint . 262

Details about the Freezepoint File . 263

What is a SMID?. 263

Why are SMIDs Necessary? . 264

SMID/SID Translation . 264

Translating SIDs to SMIDs . 264

Translating SMIDS to SIDS . 265

14. Troubleshooting VersionTool
and FreezePoint . 267

x TeamWare Users Guide

Troubleshooting Checklist . 267

Reporting Problems . 268

Error Messages . 268

Part 5 —ParallelMake

15. Introduction to ParallelMake . 271

Parallel Builds. 271

New Options. 272

Special-Purpose Targets . 272

16. Using ParallelMake . 273

A Note About Makefiles . 273

Building Targets in Parallel. 274

The .make.machines File . 274

How Parallelism is Achieved . 275

Collected Output . 275

Limitations on Makefiles. 276

Dependency Lists. 276

Explicit Ordering of Dependency Lists 276

Concurrent File Modification . 277

Concurrent Library Update . 277

Multiple Targets . 278

Restricting Parallelism. 278

Nested Invocations of ParallelMake 279

Error Messages . 280

Glossary . 281

Contents xi

Index . 287

xii TeamWare Users Guide

xiii

Preface

The TeamWare Users Guide (TeamWare Users Guide) describes how to use the
SPARCworks/TeamWare PorWorks/TeamWare (TeamWare) code management tools.
The concepts and information discussed apply to both command line and
graphical user interfaces.

Who Should Use This Book
You, the software developer, typically acquire code from a code integration
area or integration workspace. You then:

• Add new features to your program module
• Test and debug the program
• Put the code back in the implementation or integration workspace from

which it was acquired

The CodeManager section of this guide is primarily addressed to you. It also
addresses the needs of integrators, administrators, and release engineers.

The VersionTool and FreezePoint section of this guide explains how to use
VersionTool for controlling files and monitoring changes on concurrent
software development projects. VersionTool is a graphical user interface (GUI)
to the source code control system (SCCS). It also explains how to use
FreezePoint, a tool that allows you to create snapshots of a project at various
key junctures. These snapshots, or freezepoints, enable you to recreate the
project at a particular state in its development cycle. Use this section if you

xiv TeamWare Users Guide

write programs coded in ASCII text source. This sections assumes that you are
familiar with programming constructs and processes. You need not have
previous experience with SCCS.

The ParallelMake section of this guide is a supplement to the standard make
documentation. It describes how to use ParallelMake to parallelize the process
of building programs. Use this section if you maintain programs using the
make utility and wish to speed up the build process. This section also assumes
that you are familiar with the standard make utility.

This manual assumes that you are familiar with the SunOS operating system,
the UNIX® source code control system (SCCS), and with general programming
terminology.

Compatibility
See the online readme file for specific operating environment information.

Before You Read This Book
You should have TeamWare installed on your system. See the Installing SunSoft
Developer Products on Solaris manual for information on how to install the
TeamWare software.

How This Book Is Organized

Part 1—TeamWare Code Management Tools Quick-Start

Chapter 1, “QuickStart Guide” provides instructions ffor quickly getting
starting using the TeamWare Code Management Tools.

Preface xv

Part 2—Code Manager

Chapter 2, “Introduction to CodeManager” presents a conceptual overview of
CodeManager. Basic concepts are discussed that are vital to understanding
CodeManager and the remainder of this manual.

Chapter 3, “CodeManager User Interfaces” describes the CodeManager user
interfaces.

Chapter 4, “CodeManager Workspace” describes the CodeManager workspace
and the commands used to work with workspaces.

Chapter 5, “Copying Files between Workspaces” describes the CodeManager
transactions used to transfer files between workspaces.

Chapter 6, “Resolving Conflicts” explains how you resolve conflicts between
files in parent and child workspaces.

Chapter 7, “CodeManger Administration” discusses issues related to starting
to use CodeManager with a source hierarchy.

Chapter 8, “How CodeManager Merges SCCS Files” describes the ways that
CodeManager manipulates SCCS history files during file transfer transactions.

Chapter 9, “CodeManager Example” contains a simple example that
demonstrates the CodeManager Bringover/Putback/Resolve transaction cycle.

Chapter 10, “CodeManager Messages” contains a list of CodeManager error
messages and warnings. For each message, the meaning of the message and a
possible remedy for the error are provided.

Part 3—VersionTool

Chapter 11, “Introduction to VersionTool presents VersionTool terminology
and a conceptual overview of how VersionTool works. It also provides a
graphical tour of the main VersionTool windows and menus.

Chapter 12, “Performing Basic SCCS Functions with VersionTool” presents
the basic operations of VersionTool and a typical tool session. It covers the
basic operational tasks associated with each menu button and walks you
through step-by-step instructions.

xvi TeamWare Users Guide

Part 4—FreezePoint

Chapter 13, “Introduction to FreezePoint presents FreezePoint, a tool that
allows you to create snapshots of a project. It provides an overview of the
graphical interface and shows you how to use this tool in conjunction with the
other TeamWare development tools.

Chapter 14, “Troubleshooting VersionTool and FreezePoint provides a
problem checklist to consider before calling the Sun Support hot line. It also
gives information on how to report a problem, as well as a list of error
messages — their meanings and what to do next.

Part 5—ParallelMake

Chapter 15, “Introduction to ParallelMake” is an introduction to
ParallelMake.

Chapter 16, “Using ParallelMake” describes how to use ParallelMake.

“Glossary” is a list of words and phrases found in this book and their
definitions.

“Index”

Related Documentation
The documentation for TeamWare is available in hard copy and online.

Hard Copy Documentation

The following manuals are avaiable in hard copy:

• TeamWare Users Guide (this book)
• Installing SunSoft Developer Products on Solaris
• Managing the Toolset
• SPARCworks/TeamWare ProWorks/TeamWare Solutions Guide
• Merging Source Files

Online Documentation

You can get online documentation in the following ways:

Preface xvii

AnswerBook Product—An online documentation tool that displays this
manual along with other SPARCworks tools manuals. You can read this
manual online and take advantage of dynamically linked headings and
cross-references. To start the AnswerBook product, type:

% answerbook

Magnify Help™—A standard help system of the OpenWindows software
environment. It furnishes help messages in Magnify Help windows. To
access Magnify Help messages, place the pointer on the window, menu, or
menu button, and press the keyboard Help key.

Notices—A standard feature of the OPEN LOOK environment that serve two
functions. Some notices are prompts that inquire about whether you want
to continue with a particular action. Other notices are precautionary in that
they provide information about the end result of a particular action. They
appear only when the end result of an action is irreversible.

Manual Pages (man pages)—TeamWare has the following man pages:

Table P-1 TeamWare Manual Pages

codemgr(1) rcstosccs(1) conflicts(4)

codemgrtool(1) resolve(1) history(4)

bringover(1) sccsmerge(1) locks(4)

def.dir.flp(1) workspace(1) nametable(4)

putback(1) ws_undo(1) notification(4)

rcstosccs(1) access_control(4) parent(4)

resolve(1) args(4) putback.cmt(4)

putback(1) children(4) freezept(1)

freezepttool(1) vertool(1) make(1)

freezepointfile(4) filemerge(1)

xviii TeamWare Users Guide

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

Table P-2 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-3 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

Part 1 — Quickstart Guide

CodeManager page 2

VersionTool page 9

FreezePoint page 12

ParallelMake page 14

1

QuickStart Guide 1

Use this chapter to quickly get started using the TeamWare code management
tools. For more detailed information on the use of the tools, see the other parts
of this guide.

Note – The Magnify Help™ facility is available at all times through all of the
TeamWare GUIs. For information about any object on the screen (for example, a
button, menu or window), move the cursor over the object and press the Help
key on the keyboard.

Use Table 1-1 to find about the TeamWare tools and to locate quickstart and
detailed information about them:

Table 1-1 TeamWare Tools Definitions and Information Locations

Tool Definition

Start here if you
want to quickly
begin using this
tool

Start here for more
detailed
information about
this tool

CodeManager Enables you to manage concurrent code
development. Also facilitates release integration and
release management.

“CodeManager” on
page 2

Part 2—Code
Manager

VersionTool A graphical front end for the UNIX source code
control system (SCCS).

“VersionTool” on
page 9

Part 3—VersionTool

2 TeamWare Users Guide

1

CodeManager

Some CodeManager Concepts

CodeManager is based on a concurrent development model called Copy-
Modify-Merge. Isolated (per developer) workspaces1 form the basis of the
CodeManager model. With CodeManager, you (the developer) copy source
from a central workspace into your own workspace, modify the source to your
liking, and then merge your changes with changes made by other developers in
the central workspace.

Besides providing isolated workspaces, CodeManager enables you to easily
and “intelligently” copy files between workspaces and then merge changes
that exist between corresponding files. The CodeManager “intelligent” copy
feature enables you to copy project files in groups that you (or the project
administrator) determine are logically linked; it also automatically determines
for you whether differences exist between the files in the originating
workspace and the destination workspace.

CodeManager further assists the concurrent development process by
determining whether differences exist between the files in the central
workspace and your workspace. If differences are found to exist,

1. A work space is a designated UNIX directory and and subdirectories.

FreezePoint Enables you to capture source file configurations for
subsequent retrieval.

“FreezePoint” on
page 12

Part 4—Freezepoint

FileMerge Assists you in comparing and merging concurrent
modifications to source files.

Chapter ,
“QuickStart Guide

See the Merging
Source Files manual

Parallel Make Accelerates project builds on multiprocessor
machines.

“ParallelMake” on
page 14

Part 5—Parallel Make

Table 1-1 TeamWare Tools Definitions and Information Locations

Tool Definition

Start here if you
want to quickly
begin using this
tool

Start here for more
detailed
information about
this tool

QuickStart Guide 3

1

 CodeManager commands prevent you (or another developer) from copying
over those changes; CodeManager then provides sophisticated window-based
tools that help you to merge these differences.

Parent and Child Workspaces

When you copy files from a central workspace to create a new workspace, a
special relationship is created between the central workspace and the new one.
The central workspace is considered the parent of the newly created child
workspace. You can acquire files from any CodeManager workspace in this
manner, and workspaces can have an unlimited number of children. The
portion of the file system that you copy from the parent workspace is
determined at the time you copy it. You can copy the entire contents of the
parent to the child, making it a clone of the parent, or you can copy only
portions of the file system hierarchy that are of interest to you. The
CodeManager transaction used to copy files from a parent workspace to a child
workspace is called Bringover.

When development and testing are complete in the child, you copy changes in
files that were modified or added in the child back into the parent workspace.
Once the altered files are present in the parent, they can be copied by other
children or passed up another level to the parent’s parent workspace. The
CodeManager transaction for copying changes in files from a child workspace
to a parent workspace is called Putback.

If any of the files you attempt to put back are changed in both the parent and
child workspace, the files are said to be in conflict. If this is the case,
CodeManager will block the transaction. You must then use the Bringover
transaction to bring over the changed information from the parent and use the
Resolve transaction to resolve the conflict in the child workspace before you can
put your work back to the parent.

Source Code Control System

CodeManager acts only upon files under the source code control system
(SCCS). When considering CodeManager file transfer transactions, remember
that source files are derived from SCCS deltas and are identified by SCCS delta
IDs (SIDs). When a file is copied by either a Putback or Bringover transaction,
CodeManager acts upon (copies or merges) the file’s SCCS history file (also

4 TeamWare Users Guide

1

known as the “s-dot-file”). How CodeManager manipulates and merges the
history files is described in Chapter 8, “How CodeManager Merges SCCS
Files.”

▼ Getting Started

You can use CodeManager through either a graphical user interface (GUI) or
command-line interface (CLI). The following flow diagram uses the GUI only;
for information about the CLI, please refer to the bringover (1) and
putback (1) man pages.

Note – Before you begin using CodeManager on your project, you must know
the path name of the workspace from which you are to bring over your work.

QuickStart Guide 5

1

▼ Creating a New Workspace

CodeManager

File View Edit Transactions Props Tools

• From a command prompt start the CodeManager GUI:
tutorial% codemgrtool &

• If the workspace from which you must obtain your files is not
automatically loaded, you can load the workspace using the Load
item from the File menu.

• Once you have loaded the workspace, use the Bringover Create
transaction to create your own workspace. Your workspace is a
child of the original workspace. You initiate the transaction by
dragging and dropping the parent workspace icon into an open
area of the pane. This activates the Bringover Create version of
the Transactions window.

• In the Bringover Create Transactions window, enter the child
workspace path name in the text field labeled: To Child
Workspace Directory.

• In the Directories and Files text pane, create the list of directories
and files you wish to bring over into your workspace from the
parent workspace. Choose File ➤ Add Files to create the
Directories and Files list.

• Optionally: Select the Preview option in order to view the results
of the transaction prior to actually transferring any files.

• Click on the Bringover button at the bottom of the window to
initiate the transaction.

• View transaction output in the Transaction Output window.

☞ For more information about the Bringover Create transaction,
see “Creating a New Child Workspace (Bringover Create)” on
page 104” .

From Parent Workspace Directory: /src/main/project/ws

man/

lib/

src/

CodeManager: Transactions

Bringover Create
Transactions
window

Category: Bringover Create

Bringover

Drag-and-drop
parent
workspace
icon to a
vacant area

/src/main/project/ws

To Child Workspace Directory: /home/myhome/ws

Parent: Directories and Files

File Edit

Options:PreviewVerboseQuiet

Show Output...

Comments:

CodeManager: Transaction Output

bringover -w /home/myhome/ws -p

/src/main/project/ws man/

Parent workspace: /src/main/project/ws

Child workspace: /home/myhome/ws

cd /src/main/project/ws/man; def.dir.flp

cd /src/main/project/ws/lib; def.dir.flp

cd /src/main/project/ws/src; def.dir.flp

Examined files: 19

Bringing over contents changes: 19

create: man/Makefile

Transaction
Output

Skip SCCS getsForce Conflicts

6 TeamWare Users Guide

1

▼ Putting Back Changes to the Parent

• When you are ready, you will update the parent workspace with
the changes you make. This CodeManager transaction is called
Putback.

• You initiate the Putback transaction by dragging and dropping
your child workspace icon onto the parent workspace icon. This
activates the Putback version of the Transactions window.

• CodeManager automatically fills in the names of the parent and
child workspaces in the Putback Transaction window and
includes the same directories and files that you included when
you created the child workspace.

• Type a comment in the Comments text window.

• Optionally: Select the Preview option in order to view the results
of the transaction prior to actually transferring any files.

• Click on the Putback button at the bottom of the window to
initiate the transaction.

• View transaction output in the Transaction Output window.

☞ For more information about the Putback transaction,
se“Updating a Parent Workspace Using Putback” on
page 117.

 To Parent Workspace Directory: /home/myhome/ws

man/

lib/

src/

CodeManager: Transactions

Putback
Transactions
window

Category: Putback

Putback

Drag-and-drop
child
workspace
icon onto
parent icon

From Child Workspace Directory: /src/main/project/ws

Child: Directories and Files

File Edit

Options:PreviewVerboseQuiet

Show Output...

Comments:

CodeManager

File View Edit Transactions Props Tools

/home/myhome/ws

Transaction
Output

Skip SCCS getsAuto Bringover

 /src/main/project/ws

CodeManager: Transaction Output

putback -w /home/myhome/ws -p /src/main/project -c

’Changes to the optimizer’ man lib src

Parent workspace: /src/main/project/ws

Child workspace: /home/myhome/ws

cd /home/myhome/ws/man; def.dir.flp &

cd /src/main/project/ws/man; def.dir.flp

cd /home/myhome/ws/lib; def.dir.flp &

cd /src/main/project/ws/lib; def.dir.flp

cd /home/myhome/ws/src/; def.dir.flp &

cd /src/main/project/ws/src; def.dir.flp

Examined files: 19

Putting back contents changes: 19

Changes to the optimizer

QuickStart Guide 7

1

▼ Updating the Child Workspace

• The Putback transaction is blocked if any of the files have
changed in the parent since you brought them over.

• If the Putback transaction is blocked, you must use the Bringover
Update transaction to bring those changes into your child
workspace, resolve any conflicts, test and then put them back to
the parent. A popup window advises you that the transaction is
blocked.

• You initiate the Bringover Update transaction by clicking on
Bringover now in the popup window. This activates the
Bringover Update version of the Transactions window.

• In the Bringover Update Transactions window, CodeManager
automatically fills in the names of the parent and child
workspaces, and includes the same directories and files that you
included when you created the child workspace.

• Optionally: Select the Preview option in order to view the results
of the transaction prior to actually transferring any files.

• Click on the Bringover button at the bottom of the window to
initiate the transaction.

• View transaction output in the Transaction Output window.

☞ For more information about the Bringover Update
transaction, see “Updating an Existing Child Workspace
(Bringover Update)” on page 110”.

Bringover Update
Transactions
Window

Bringover now
popup

CodeManager

File View Edit Transactions Props Tools

/home/myhome/ws

Transaction
Output

 /src/main/project/ws

CodeManager: Transaction Output

bringover -w /home/myhome/ws -p /src/main/project/ws

man/

Parent workspace: /src/main/project/ws

Child workspace: /home/myhome/ws

cd /home/myhome/ws/man; def.dir.flp

cd /src/main/project/ws/man; def.dir.flp

cd /home/myhome/ws/lib; def.dir.flp

cd /src/main/project/ws/lib; def.dir.flp

cd /home/myhome/ws/src/; def.dir.flp

cd /src/main/project/ws/src; def.dir.flp

Examined files: 19

Bringing over contents changes: 19

From Parent Workspace Directory: /src/main/project/ws

man

lib

src

CodeManager: Transactions

Category: Bringover Update

Bringover

To Child Workspace Directory: /home/myhome/ws

Parent: Directories and Files

File Edit

Options:PreviewVerboseQuiet

Show Output...

Comments:

Skip SCCS getsForce Conflicts

Your putback was blocked and a

bringover will be required.

Do you want to do the bringover now?

Bringover now Cancel

8 TeamWare Users Guide

1

▼ Resolving any Conflicts

• If any of the files that you changed in your child workspace have
also changed been changed in the parent workspace, they are said
to be in conflict. If CodeManager discovers any conflicts during
the Bringover Update transaction, it automatically activates a
popup window advising you of this.

• You initiate the Resolve transaction by clicking on Resolve now in
the popup window. This activates the Resolve version of the
Transactions window. Note: CodeManager automatically alters
the workspace icon to alert you that a workspace contains
unresolved conflicts.

• CodeManager automatically:
- Lists the path names of the files that are in conflict in the

Resolve Transaction window
- Starts the FileMerge program, loading the first file in the list

• FileMerge displays two text files (the versions of the file from the
parent and child workspaces) for side-by-side comparison, each
in a read-only subwindow. Each version is shown in comparison
(using glyphs) to the version that existed before the changes were
made. Beneath them, FileMerge displays a subwindow that
contains a merged version. The merged version contains selected
lines from either or both deltas.

FileMerge automatically merges the files for you in the bottom
window. If you disagree with the choices made by the program,
you can use the Left and Right buttons to accept the changes
found in the left or right window.

• When you have merged the files, select the Save button to save the
file. If there are more files in the Transactions window conflict
list, CodeManager automatically loads the next file in the list into
FileMerge.

❖ You can now successfully put back your files to the parent
workspace.

☞ For more information about resolving conflicts and merging
files, see Chapter 6, “Resolving Conflicts” .

Workspace: /home/myhome/ws/manpages

man/man5/io.5

man/man1/Makefile

man/man1/fix_window.1

man/man1/move_dirs.1

.”

.” Copyright (c) 1991 by Sun Mi-

crosystems, Inc.

.”

.” @(#)io.11.1191/10/23 SMI

.”

.”

Child vs Ancestor Parent vs Ancestor

Merged Result
.”

.” Copyright (c) 1991 by SunPro

.”

.” @(#)io.11.1191/10/23 SMI

.”

.TH 1 “05 Oct 1991”

.TH IO 1 “07 Oct 1991”

.”

.” Copyright (c) 1991 by SunPro

.”

.” @(#)io.11.1191/10/23 SMI

.”

.TH 1 “05 Oct 1991”

.TH IO 1 “07 Oct 1991”

FileMerge — Ancestor File:/home/myhome/ws/man/man1/io.1

CodeManager: Transactions

Resolve
Transaction
Window

Category: Resolve

Files in Conflict

FileMerge... Load Conflicts

Resolve now
popup

CodeManager

File View Edit Transactions Props Tools

 /src/main/project/ws

 /home/myhome/ws

FileMerge
Program

Your bringover created conflict(s)

resolve will be required.

Do you want to do the resolve now?

Resolve now Cancel

QuickStart Guide 9

1

VersionTool
VersionTool is a GUI to SCCS that enables you to manipulate files and perform
SCCS functions without having to know SCCS commands. It provides an
intuitive method for checking files in and out, as well as displaying a file’s
delta history and showing differences between deltas.

With VersionTool, you can do the following:

• Check out a version of the file for editing
• Check in files
• Retrieve copies of any version (delta) of a file
• Visually peruse the branches of an SCCS history file
• Back out changes to a checked-out copy
• Display differences between selected deltas using Filemerge
• Display the version log summarizing executed commands
• Create new SCCS files

▼ Starting VersionTool

To start VersionTool, at a shell command prompt type vertool followed by
the ampersand symbol (&) as shown:

Note – VersionTool can also be started directly from the CodeManager GUI by
double-clicking on a workspace icon.

To use VersionTool, select a file (or group of files) in the File List pane and
choose a menu item to operate on it. Commands are located in the:

• Commands menu
• View menu
• File List pane floating menu

Following are two examples that describe how to use VersionTool to check out
and check in files, and to view and compare a file’s delta history.

tutorial% vertool &
tutorial%

10 TeamWare Users Guide

1

▼ Checking Files In and Out of SCCS

• From a command prompt start VersionTool:
tutorial% vertool &

• If the directory that contains your file is not automatically loaded,
you can type the directory’s path name (followed by Return), in
the Directory text field.

• Click on a file icon to select a file; use the ADJUST mouse button
to extend the selection.

• Choose either Checkout ➤ Default or Checkout ➤ Check Out,
Edit from the Commands menu. As the files are checked out a
check mark appears in their icons.

• When you are ready to check the files back in, select the file(s) and
choose Check In from the Commands menu. This activates the
Check In Popup window.

• Enter a comment in the text window that describes your changes
and click on Check In to complete the check in process.

Note that the check mark is removed from the file icon as the files
are checked in.

☞ For more information about VersionTool, see the section on
VersionTool in this manual.

VersionTool

 File View Props ToolsCommands

..
Makefile

access.cc

widget.cc

lock.cc

filetype.cc

align.cc

rcfile.cc

backup.cc

force.cc

insert.cc

strain.cc

extract.cc

Directory: /ws/sources/project Load

VersionTool
main window
with two files
selected

VersionTool

 File View Props ToolsCommands

..
Makefile

access.cc

widget.cc

lock.cc

filetype.cc

align.cc

rcfile.cc

backup.cc

force.cc

insert.cc

strain.cc

extract.cc

Directory: /ws/sources/project Load

✓

✓

VersionTool: Check In Popup

 Check In

Comment:

 Reset

Merged changes between workspaces “/ws/sources/project” and

“/ws/sources/main”

VersionTool
main window
with two files
selected and
checked out

Check In
popup

QuickStart Guide 11

1

▼ Viewing and Comparing a File’s Delta History

• To view a graph of a file’s delta history, select the file’s icon in the
main window and choose File History from the View menu.

• Select two deltas in the graph and choose Use FileMerge from the
Differences menu.

Note that the graph indicates that a branch (1.3.1.1) was created
during a CodeManager Bringover Update operation (due to a
conflict). The dotted line indicates that the conflict was
subsequently resolved using CodeManager; this resulted in the
creation of delta 1.5.

• FileMerge displays the two deltas side-by-side, marking
differences with glyphs.

☞ For more information about VersionTool, see the VersionTool
section in this manual. FileMerge window with differences between

deltas 1.5 and 1.6 displayed

VersionTool: File History — widget.cc

Differences View Contents... Commands Display

Filename: /ws/sources/project/widget.cc

Owner: george Date: 11/14/91

SCCS Id: 1.5 Time: 16:35:34

Lines Unchanged: 00448

Inserted: 00014

Deleted: 00006
Delta Comment:

1.1 1.2 1.5 1.6

1.3.1.1

1.3

Merged changes between workspaces “/ws/sources/project” and “/ws/sources/main”

/*

 * Copyright (c) 1993 WidgetCo, Inc.

 */

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

#include <sys/param.h>

widget.cc --1.5-- widget.cc --1.6--
/*

 * Copyright (c) 1993 WidgetCo, Inc.

 */

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

FileMerge — Ancestor File: /usr/tmp/widget.cc.15

 File View Prev Next

VersionTool File History window with deltas
1.5 and 1.6 selected

VersionTool

 File View Props ToolsCommands

..
Makefile

access.cc

widget.cc

lock.cc

filetype.cc

align.cc

rcfile.cc

backup.cc

force.cc

insert.cc

strain.cc

extract.cc

Directory: /ws/sources/project Load

VersionTool main window with file selected

1.4

12 TeamWare Users Guide

1

FreezePoint
During software development it is often useful to create “freezepoints” of your
work at key junctures. These freezepoints serve as “snapshots” of the project
that enable you to recreate the state of the project at key development points.

With the FreezePoint program, you preserve these freezepoints quickly and
simply, using a very small amount of storage resource.

You can use FreezePoint through two functionally equivalent user interfaces:

• Graphical user interface (freezepttool)
• Command-line interface (freezept)

The concepts discussed in this section generally apply to both the GUI and the
CLI. Descriptions and examples are included for the GUI only. Information
specific to the CLI can be obtained on line through the man pages:
freezept (1), freezepttool (1), and freezepointfile (5).

FreezePoint enables you to create freezepoint files from CodeManager
workspaces. Freezepoint files are text files that list the default deltas in SCCS
history files contained in the workspace. When you later recreate (extract) the
files, FreezePoint uses those entries as pointers back to the original history files
and to the delta that was the default at the time the freezepoint file was
created.

Note – The recreated files will not contain the original SCCS histories; only the
g-files represented by the default deltas from the original hierarchy are
recreated. The default delta is the delta that would be retrieved using the SCCS
get command with no options specified.

▼ Starting the FreezePoint GUI

To start FreezePoint, at a shell command prompt type freezepttool
followed by the ampersand symbol (&) as shown:

tutorial% freezepttool &
tutorial%

QuickStart Guide 13

1

▼ Creating and Extracting Freezepoints

• From a command prompt start the FreezePoint GUI:
tutorial% freezepointtool &

The pane below the Control area is used for both creating and
extracting freezepoints. You switch between the Create and
Extract panes by choosing the appropriate item from the
Category menu. The Create pane is the default and is displayed
when you start freezepointtool .

• Enter the path name of a freezepoint file. Note: FreezePoint
automatically inserts the file name freezepoint.out . Delete it
and replace it with a path name of your choosing.

• Enter the path name of the source workspace. This is the
workspace that you are “freezepointing.”

• In the Directories and Files text window, compose a list of
directories and/or files that you wish to freezepoint. Choose File
➤ Add Files to create the Directories and Files list

• Click Create to execute.

• To extract a freezepoint, choose Extract from the Category menu.
This changes the pane from Create to Extract..

• Type the path name of an existing freezepoint file.

• Specify the path name of the Destination Directory. This the
directory into which the newly extracted files are placed.

• Click on Extract to execute.

☞ For more information about FreezePoint, see the chapter on
FreezePoint in this manual.

Freezepoint
Create
Window

Freezepoint
Extract
Window

Freezepoint File: /home/myhome/archives/cp_ws.04.10.93

./

FreezePoint

Category: Create

Create

Workspace: /home/myhome/ws

Directories and Files

Comments:

Props Tools

File Edit

Freezepoint File: /home/myhome/archives/cp_ws.04.10.93

FreezePoint

Category: Extract

Extract

Workspace:

Props Tools

Extract From: Use default from freezepoint file

Destination Directory: /home/myhome/ext ws.04.10.93

14 TeamWare Users Guide

1

ParallelMake
ParallelMake enables you to parallelize the process of building large programs
over a number of processes and, in the case of multiprocessor systems, over
multiple CPUs. ParallelMake reads your makefiles and automatically:

• Determines which targets can be built in parallel
• Parallelizes the build of those targets over a number of processes

As a developer, you shouldn’t have to do anything to start using ParallelMake.
Your project administrator may have to make adjustments to makefiles so that
they work correctly with ParallelMake.

☞ For more information about ParallelMake, see the ParallelMake section in this
manual.

Part 2 — CodeManager

Introduction to CodeManager page 17

CodeManager User Interfaces page 37

CodeManager Workspace page 65

Copying Files between Workspaces page 95

Resolving Conflicts page 135

CodeManger Administration page 145

How CodeManager Merges SCCS Files page 153

CodeManager Example page 167

CodeManager Messages page 183

17

Introduction to CodeManager 2

This chapter introduces basic CodeManager concepts. The practical
implementation of these concepts is discussed in the remainder of Part
2—CodeManager. An example that demonstrates CodeManager use can be
found in Chapter 9, “CodeManager Example.”

Coordinating the Work of Software Developers
Managing large programming projects involves the difficult and complex task
of coordinating the work of many developers who share common and
interdependent files.

If developers have private copies of the source code, the changes they make to
the source base are difficult to track when all of the code is finally (or even
periodically) merged. Often the incompatible changes are subtle, and they can
effect the entire project. Preparing the code for a final build and release can be
a daunting task.

One solution is to allow serial access to the common files, one developer at a
time. This approach eliminates conflicts due to changes that are made
simultaneously. Unfortunately, this approach produces a productivity
bottleneck because only one programmer at a time has access to the code.

Developers often change the way source files are grouped and used to build
the intermediate and final product. A developer must know what source files,
header files, and libraries are required to build a particular program. Often a
developer copies a set of files, then later finds that it is incomplete. Only after

18 TeamWare Users Guide

2

repeated failed attempts to build the program is the developer able to
determine which files are required to successfully build the program. Also,
changes not only occur to files, but often to the file system structure as well.
New files and directories are constantly created, renamed, and deleted.

Maintaining a consistent, buildable set of sources in preparation for a product
release is also very difficult on a large software project. When developers
integrate their work directly into the mainline source hierarchy, a set of sources
that built correctly one day can be innocently made incompatible the next.

Another problem common to large software projects is the inability to recreate
the product at a certain stage of development (for example, a past release).
Preserving source code “deltas” (changes to source files) becomes very difficult
when different copies of files are changed concurrently. Developers generally
do not take the time to apply more than one delta; to accurately represent
concurrent development, SCCS branch deltas must be used. When deltas are
collapsed together, or when parallel deltas are represented sequentially, the
true history of the file is lost.

Sometimes development of a feature is begun for a given release and later
(often quite near the release date) a decision is made to include the feature in a
different release. Backing out the changes and then including them in a
different release can be difficult.

Copy-Modify-Merge Model
CodeManager assists in the development and release of large software projects.
CodeManager is based on a concurrent development model called Copy-
Modify-Merge. Isolated (per developer) workspaces1 form the basis of the
CodeManager model. With CodeManager, you (the developer) copy source you
want to change from a central workspace into your own workspace, modify the
source to your liking, and then merge your changes with changes made by
other developers in the central workspace.

The inconvenience of merging changes is outweighed by the productivity
increase that results from developers working concurrently. CodeManager is
designed to minimize (and in some cases, eliminate) the inconvenience of
merging changes.

1. A workspace is simply a specially designated SunOS™ directory and its subdirectories.

Introduction to CodeManager 19

2

Besides providing isolated workspaces, CodeManager enables you to easily
and “intelligently” copy files between workspaces and then merge changes
that exist between corresponding files. CodeManager’s “intelligent” copy
feature enables you to copy project files in groups that you (or the project
administrator) determine are logically linked; it also automatically determines
for you whether differences exist between the files in the originating
workspace and the destination workspace.

You copy project files from a central workspace into your own private
workspace, make changes to files (or the file system), and then copy your
changes back to the central workspace. You can group source files, header
files, libraries, and so on, together in logical units that are copied in unison;
CodeManager further assists the concurrent development process by
determining whether differences exist between the files in the originating
workspace and the destination workspace. If differences are found to exist,
CodeManager prevents you (or another developer) from copying over those
changes. CodeManager then provides sophisticated window-based tools that
help you to merge these differences.

Copy-Modify-Merge Example

Figure 2-1 illustrates the Copy-Modify-Merge concurrent development model
employed by CodeManager. This example describes the common software
development scenario where two developers are working simultaneously on
the same or related parts of a project.

20 TeamWare Users Guide

2

Figure 2-1 Copy-Modify-Merge Example

1. Both you and Developer x copy the same
file from the project integration area to your
separate work areas.

2. Developer x changes the file and copies
the changed file back into the integration
area.

4. CodeManager informs you of the
conflicting changes and you copy the file
containing Developer x’s changes from the
integration area to your work area.

3. You modify the same file in your work area
and attempt to copy the file back into the
integration area. CodeManager blocks
your attempt to copy since it would
overwrite Developer x’s changes.

Integration
area

Dev x’s work areaYour work area

Integration
area

Dev x’s work areaYour work area

Integration
area

Dev x’s work areaYour work area

Integration
area

Dev x’s work areaYour work area

5. With CodeManager’s assistance, you resolve the
conflicts, merge the changes, test the changes, and
successfully copy the file back to the integration area.

Integration
area

Dev x’s work areaYour work area

Introduction to CodeManager 21

2

Default CodeManager
The following overview discusses the default CodeManager system.
CodeManager can be customized in ways that modify its default behavior;
many of those customizations are discussed in other sections of
Part 2—CodeManger.

All source files in a CodeManager project are maintained under the UNIX
SCCS. CodeManager only copies files that are under SCCS. Within your
workspaces, you use SCCS in the normally. For example, you:

• Create files
• Create deltas
• Edit files
• Add comments
• Check in files using SCCS commands

SCCS history files are in SCCS subdirectories, as they would be if the project
were not using CodeManager. When you copy files between workspaces and
merge files that have changed, CodeManager manages SCCS history files for
you, preserving all comments and deltas.

Workspace

The workspace forms the basis of the CodeManager system. The workspace
provides the isolation in which developers work concurrently with other
developers programming in other workspaces. Project files are propagated
between workspaces by CodeManager commands.

The workspace is a directory and its subdirectory hierarchy. When the
workspace is created, CodeManager creates a special subdirectory under the
workspace, called Codemgr_wsdata, to store workspace information.

A CodeManager project is created in a top-level workspace from which all
others are derived. When other workspaces are created from the original
workspace, the original file system hierarchy is recreated to form the new
workspace.

In the following example, work is begun by a developer in a workspace whose
top-level directory is boatspex . The workspace exists under the directory
/usr/src/ws .

22 TeamWare Users Guide

2

Figure 2-2 Project File System Hierarchy

If you are assigned to work on the Boatspex project you create a copy of the
original workspace in a file system of your choice; the workspace portion of
the file system in the new workspace is identical to that of the original
workspace. If you create the new workspace in your home directory, it
appears something like Figure 2-3.

Note – If you were only working on a portion of the project, you could have
copied only that portion.

include/

Makefile
lib.mk

libboat.a

ratios.h
store.h

boatfileMakefile
bin.mk
show

show.c
show.o

stats
stats.c
stats.o

bin/ demo/ lib/

update/

Makefile
update

update.c
update.o

add.c
add.o
del.c
del.o

Makefile
disp21.c
disp21.o
sa2disp.c
sa2disp.0

Makefile
store.c
store.o

ratios/ store/

boatspex.mk

/

usr/

src/

ws/

boatspex/

Codemgr_wsdata/

access_control
args

backup/
children
conflicts
history
locks

nametable
parent

CodeManager
Workspace

Introduction to CodeManager 23

2

Figure 2-3 Your New Workspace

The directories previous the workspace directory (boatspex) are
variable—they change depending on where in the file system you locate the
workspace; below the workspace directory, however, the file system is a
duplicate of the original workspace.

Parent and Child Relationship

When you copy files from a workspace to create a new workspace, a special
relationship is created between the original workspace and the new one. The
original workspace is considered the parent of the newly created child
workspace. You can acquire files from any CodeManager workspace in this
manner, and workspaces can have an unlimited number of children. The

include/

Makefile
lib.mk

libboat.a

ratios.h
store.h

boatfileMakefile
bin.mk
show

show.c
show.o

stats
stats.c
stats.o

bin/ demo/ lib/

update/

Makefile
update

update.c
update.o

add.c
add.o
del.c
del.o

Makefile
disp21.c
disp21.o
sa2disp.c
sa2disp.0

Makefile
store.c
store.o

ratios/ store/

boatspex.mk

/

home/

myhome/

boatspex/CodeManager
Workspace

Codemgr_wsdata/

access_control
args

backup/
children
conflicts
history
locks

nametable
parent

24 TeamWare Users Guide

2

portion of the file system that you copy from the parent workspace is
determined at the time you copy it. You can copy the entire contents of the
parent to the child, making it a clone of the parent, or you can copy only
portions of the file system hierarchy that are of interest to you. The
CodeManager transaction used to copy files from a parent workspace to a child
workspace is called Bringover.

Note – If you use the Bringover transaction to copy files to a workspace that
does not already exist, the transaction creates a new child workspace and then
copies files to it. This special case is called a Bringover Create transaction. You
use the Bringover Update transaction to update an existing child workspace.

The parent and child relationship is special because project data is exchanged
only between parent and child workspaces. All files contained in a child
workspace were either brought over from a parent workspace or created in the
child workspace1. When development and testing are complete in the child,
you can copy the files that were modified or added in the child back into the
parent workspace. Once the altered files are present in the parent, they can be
copied by other children or passed up another level to the parent’s parent
workspace. The CodeManager transaction for copying files from a child
workspace to a parent workspace is called Putback.

Workspace hierarchies are formed by repeating Bringover transactions to create
child workspaces. The hierarchy of parent and child workspaces forms a
pathway through which data is moved throughout the project.

In the following example, a project is originally created in a workspace and
then a three-level workspace hierarchy is created by means of the Bringover
transaction. The original workspace is considered to be the parent of the
integration workspace and, conversely, the integration workspace is considered
to be the child of the original workspace. Developers (Jon, Jack, and Jill) then
use the Bringover Create transaction to create child workspaces from the
integration workspace, which forms a three-tiered hierarchy of workspaces.

1. Unless the child is itself a parent, in which case new files can also be copied to it from its children.

Introduction to CodeManager 25

2

Figure 2-4 Using the Bringover Create Transaction to Create a Workspace Hierarchy

In this hierarchy, files can be disseminated from Jon’s workspace to its
“sibling” workspaces owned by Jack and Jill. Jon uses the Putback transaction
to copy modified files from his workspace into the common parent (step)
and then Jack and Jill use the Bringover Update transaction to copy the files
from the parent into their workspaces (step).

Figure 2-5 Copying Files between Workspaces

WS

WS

Jack

WS

Jon

WS

Jill

WS

Original Project Workspace

Integration Workspace

1

2

21 2

WS

Jill

WS
Jack

WS
Jon

WS

WS

26 TeamWare Users Guide

2

Reparenting

Parent and child relationships can be changed. CodeManager permits child
workspaces to be “reparented” to new parent workspaces. Reasons that you
might want to reparent a workspace include the following:

• To reorganize workspace hierarchies
• To populate a new project hierarchy (new top-level workspace)
• To move a feature into a new release
• To apply a bug fix to multiple releases

Refer to Section , “Reparenting a Workspace,” on page 71 for more information.

Codemgr_wsdata Directory

Every CodeManager workspace contains a directory named Codemgr_wsdata
that is a subdirectory of the workspace top-level (root) directory. This
directory contains text files that CodeManager uses to log its actions, and store
temporary and permanent data. You can view and alter these files using
standard text utilities.

Refer to Section , “The Workspace Metadata Directory,” on page 65 for more
information.

Modifying Files

Since CodeManager workspaces are simply directories within the SunOS file
system, all your usual tools and utilities can be used on files and directories in
workspaces. Your normal edit/compile/debug process is not altered by
CodeManager.

Copying Files between Workspaces

Once you make and test modifications in a child workspace, you must
disseminate them to the rest of the developers working on the project and
ultimately to an integration/release workspace.

Introduction to CodeManager 27

2

Every developer in a project needs up-to-date data with which to work. If a
modification is made to a module in one part of the project, it could have
profound implications for the testing of a different module in another part of
the project. Perhaps even more important is the sharing of information
between developers working on the same or closely related modules.

Newly modified files (or groups of files) are transferred between parents and
children up and down the workspace hierarchy in order to keep workspaces
consistent. The decision as to when the data is ready for dissemination is, of
course, left to the developer’s discretion.

The Putback and Bringover transactions are generally applied to groups of files
so that files need not be specified individually. CodeManager provides the
means for you (or your project administrator) to specify groupings of files that
should logically be copied together. Three examples of this type of grouping
are as follows:

• Directories
• Files required to build a particular program
• All of the child workspace

How files are grouped for Bringover and Putback transactions between
workspaces is discussed in detail in Chapter 5, “Copying Files between
Workspaces.”

Bringover and Putback transactions are always initiated from within the child
workspace. Both transactions are viewed from the perspective of the child
workspace—not the parent’s.

Source Code Control System Files

When considering Bringover and Putback transactions, remember that source
files are derived from SCCS deltas and are identified by SCCS delta IDs (SIDs).
When a file is copied by either a Putback or Bringover transaction,
CodeManager is manipulating the file’s SCCS history file (also known as the
“s-dot-file”).

When a file is copied from one workspace to another, CodeManager decides
how to manipulate the SCCS history file used to derive the file. If the file does
not exist in the target workspace, CodeManager copies the history file from the
source workspace to the target. In the more complicated case—when the file

28 TeamWare Users Guide

2

(and thus the SCCS history file) exists in both the source and the target—the
SCCS history files must be merged to maintain the file’s delta, administrative,
and comment history.

Remember, files consist of both the file derived from the latest delta and its
predecessors by the SCCS get command and the SCCS history file from which
it is derived. When files are copied from workspace to workspace, SCCS
history files are adjusted appropriately.

Bringover and Putback Transactions
When you initiate a Bringover Update or Putback transaction, CodeManager
must make a number of determinations before taking any action. Copying files
indiscriminately from one workspace to another could overwrite work that
you or another developer want to keep. CodeManager must check all files
specified for transfer to determine where they stand in relationship to each
corresponding file in the other workspace.

For example, suppose a file was modified in the parent (perhaps put back from
another child) since it was last brought over into your child. You have
modified your copy of the same file in your child workspace. When you
attempt to put back that file (or a group of files that contains that file) from
your child workspace to the parent, CodeManager will not allow your Putback
transaction to proceed because it would cause the revised version of the file in
the parent to be overwritten by the version of the file from your child. In this
case, CodeManager blocks your attempt to put back the files into the parent
and informs you of the conflicting change. (Additional information appears on
page 33.)

Note – When a Putback or Bringover Update transaction is blocked, none of
the files in the group are copied, even those that don’t conflict.

The conflicts between your versions of the files and the versions in the parent
must be resolved in your (child) workspace. Conflicts are always resolved in the
child workspace in order to preserve the integrity of the parent.

You use the Bringover Update transaction to copy the conflicting files from the
parent to your workspace, and using CodeManager’s merge tool, you merge
your changes with those made by the other developer. After testing the
changes you then put back the merged files to the parent workspace.
Figure 2-6 illustrates this process.

Introduction to CodeManager 29

2

Figure 2-6 Conflict Example

Parent

WS

Dev x

WS
You

WS

Parent

WS

Dev x

WS
You

WS

Parent

WS

Dev x

WS
You

WS

Parent

WS

Dev x

WS
You

WS

1. Both you and Developer x bring over the
same file to your workspaces.

2. Developer x changes the file and puts the
changed file back into the parent.

4. CodeManager notifies you of the
conflicting changes and you bring the file
over to your workspace (actually, the
SCCS history files are merged).

3. You change the same file in your
workspace and attempt to put the file back
into the parent. CodeManager blocks the
Putback.

Parent

WS

Dev x

WS
You

WS

5. You resolve the conflict, test the changes
and successfully put back the file back to
the parent workspace.

30 TeamWare Users Guide

2

Relationships between Files in Parent and Child Workspaces

The previous example describes only one of four possible states of relationship
that can exist between corresponding files in parent and child workspaces. The
relationship between files in parent and child workspaces governs the way that
CodeManager behaves when you attempt to copy files via Putback and
Bringover Update transactions. Following are descriptions of the four cases
and the action CodeManager takes in each case:

1. Neither the files in the parent nor the corresponding files in the child have
been modified since they were put back into the parent or brought over into
the child.

In this case no action is required by CodeManager in either case. The files
are exactly the same in both the parent and child.

2. The specified files have not been modified in the parent since they were
brought over from the parent into the child or put back from the child into
the parent. However, the corresponding files have been modified in the
child.

Putback

Files unchanged

Files unchanged

Action - None

Parent

WS

WS

Child

Files unchanged

Files unchanged

Action - None

Parent

WS

WS

Child

Bringover

Introduction to CodeManager 31

2

In this case when you use the Putback transaction to copy the file to the
parent, the changed files are automatically updated from the child into the
parent, replacing the corresponding files in the parent. This new data is now
available for acquisition by other children of that parent or to be further
propagated up to the parent’s parent workspace.

When you use the Bringover Update command in this case, no action is
taken because copying the file from the parent would overwrite changes
made in the child.

3. One or more files in the parent have been modified since their
corresponding files were brought over into the child or put back into the
parent from that child. The corresponding files in the child have not been
modified.

WS

WS

Files unchanged

Files changed

Action - None

Child

WS

Parent

Files unchanged

Files changed

Action - Update file from
child workspace to parent

Child

WS

Parent

Putback Bringover

32 TeamWare Users Guide

2

In this case the parent’s copy of the file being put back from the child has
been modified (probably by one of its other children) since it was last
brought over to the child; the corresponding file in the child has not been
modified since it was last brought over into the child.

When CodeManager detects this situation during the Putback transaction, it
cannot update the parent workspace until the child workspace is updated
by means of the Bringover Update transaction. Even if the changes are in
files that you have not altered (remember you’re copying groups of files),
they might impact the changes you have made. In this case, the Putback
transaction is blocked and the user is notified. It is the user’s responsibility
to execute the Bringover Update transaction in order to update the child
workspace.1

4. Corresponding files have been modified in both the parent and child
workspaces.

1. You may optionally specify that the Putback transaction automatically update the child by invoking the
Bringover Update transaction.

Action - Block Putback and notify
user that update is required

Child

Parent

WS

WS

Files changed

Files unchanged

Child

Parent

WS

WS

Action - Update files
in the child

Files changed

Files unchanged

Putback Bringover

Introduction to CodeManager 33

2

This is the most complicated of the four cases. CodeManager cannot allow
the file to be put back from the child into the parent because the transaction
will obscure modifications there. Likewise, CodeManager cannot allow the
file to be brought over from the parent into the child because the transaction
will overwrite modifications there.

As in case 3 above, CodeManager blocks the Putback transaction and
notifies the user. When the user attempts to update the child workspace by
means of the Bringover transaction, CodeManager detects that the file in the
child has also been changed; the file cannot be updated without overwriting
the newly created work in the child. In this case CodeManager merges the
parent and child SCCS history files for the conflicting file in the child
workspace.

CodeManager merges the parent and child SCCS history files together in the
child workspace; the SIDs that were created in the child are renamed and
placed on an SCCS branch off of the current line of work brought down
from the parent. Although it is a branch, the child’s SCCS version tree
remains the default for any additional deltas so that work on the file may
proceed in the child as if nothing had changed.

The merge process places all needed deltas in the SCCS history file so that
the conflicting files can be merged at the user’s discretion. All SCCS
comments are preserved in this process since the entire SCCS delta history is
preserved.

At this point the conflict between the parent and child versions of the file is
still open. Work can continue on the branch that contains the deltas created
in the child; any new deltas will be added to the branch. However, the user

Files changed

Files changed

Action - Merge files in the
child and notify user of
conflict

Child

Parent

WS

WS

Action - Block Putback and notify
user that update is required

Child

Parent

WS

WS

Files changed

Files changed

Putback Bringover

34 TeamWare Users Guide

2

must resolve the conflict before the group of files that contain the conflicting file(s)
can successfully be put back to the parent. Conflict resolution is discussed in
the next section.

Summary

Table 2-1 summarizes the action taken by CodeManager during a Putback
transaction in each of the four cases described above. Table 2-2 does the same
for the Bringover transaction.

Resolving Conflicts

During the Putback transaction, CodeManager may determine that a file in the
parent has been modified since it was last put back from that child or brought
over into the child. In that case it blocks the Putback so that the changes are
not overwritten and then notifies the user of the potential conflict.

Table 2-1 Summary of CodeManager Action during a Putback Transaction

Case File in Parent File in Child Action by CodeManager

1 Unchanged Unchanged None

2 Unchanged Changed Update file in parent

3 Changed Unchanged Block Putback, notify user

4 Changed Changed Block Putback, notify user

Table 2-2 Summary of CodeManager Action during a Bringover Transaction

Case File in Parent File in Child Action by CodeManager

1 Unchanged Unchanged None

2 Unchanged Changed None

3 Changed Unchanged Update child (extend SCCS
files)

4 Changed Changed Merge SCCS history files
and notify user of conflict

Introduction to CodeManager 35

2

Generally the owner of the child workspace will then attempt to update the
child by bringing over the changed file. If, during the Bringover Update
transaction, CodeManager determines that the corresponding file in the child
has also been modified since it was last brought over, a conflict exists.

Conflicts arise when corresponding files in both the parent and child have been
modified. If CodeManager were to overwrite either of the files, a loss of data
would result. Before the specified file can be put back or brought over the user
must resolve any conflicts.

When CodeManager detects a conflict during the Bringover Update
transaction, as described in the previous section, it then does the following:

• Merges the parent and child SCCS history files for the conflicting files in the
child workspace

• Notifies the user of the conflict

• Assists the user in resolving the conflict

Note – All conflicts are resolved from within the child workspace and from the
perspective of the child workspace.

In the case of most conflicts, the options available to the user for resolving
conflicts are:

• Install the latest delta from the parent as the resolved version in the child.

• Accept the latest delta from the child as the resolved version of the file.
Since it has been through the resolve process, its Putback transaction will no
longer be blocked in the parent.

• Merge the contents of latest delta from the parent with that of the child.

CodeManager provides tools that aid in resolving conflicts, however, the
conflicts must be resolved by the user. Refer to Chapter 6, “Resolving
Conflicts,” for a detailed discussion about conflict resolution.

36 TeamWare Users Guide

2

37

CodeManager User Interfaces 3

You can work with CodeManager in two ways:

• Use the CodeManager graphical user interface (GUI).
• Use the command-line interface (CLI).

Both interfaces are included to provide flexibility and to accommodate
different computing styles. Complete CodeManager functionality is
implemented in both interfaces. The interfaces can be used interchangeably —
you can simultaneously use the GUI for some functions and the CLI for others.

Both interfaces employ the same underlying CodeManager functionality and
command structure; the difference is an easy-to-use, graphical, point-and-click
interface for the GUI.

The concepts discussed in this guide generally apply to both the GUI and the
CLI. Except in cases where there are special considerations regarding the CLI,
descriptions and examples are included for the GUI only — information
specific to the CLI can be obtained online through the man pages.

The remainder of this chapter serves as an overview and introduction to the
CodeManager CLI and GUI.

38 TeamWare Users Guide

3

CodeManager Command-Line Interface
The CodeManager command-line interface (CLI) is accessible from any SunOS
shell. It is especially useful when you are not working on a window-based
system.

Like SCCS commands, all CLI commands may be executed through a central
“umbrella” command. The individual commands may also be executed
directly by specifying the individual command name. The umbrella command
named codemgr provides a unified method of execution that enables you to
conveniently list CodeManager commands.

You can list CodeManager commands with their usage summaries by simply
executing codemgr without specifying any arguments.1

To use the umbrella command to execute commands, type codemgr followed
by the name of the subcommand you wish to execute. For example:

% codemgr bringover -w my_child -p their_parent /usr/ws/project

Since using the codemgr umbrella command requires extra typing, you may
also execute the commands directly (without typing codemgr). For example:

% bringover -w my_child -p their_parent /usr/ws/project

Note – The man pages for the CodeManager commands are referenced using
only the individual command name.

1. You can achieve the same results by executing codemgr with the help subcommand.

example% codemgr
bringover ...
codemgrtool
help
putback ...
resolve ...
ws_undo
workspace

CodeManager User Interfaces 39

3

CodeManager provides a number of ways for you to reduce typing long
command-lines, including environment variables and argument files that store
previously specified arguments. Refer to the respective man pages for details.

CodeManager Graphical User Interface
The CodeManager GUI (hereafter referred to simply as “CodeManager”) is a
tool that enables you to view workspace hierarchies and to execute menu-
based commands on workspaces and their contents. Key features include the
following:

• Graphical display of workspaces in a Workspace Graph pane. This feature
enables users to:
• Conveniently view workspace hierarchies.
• Use the mouse to select workspace icons.
• Execute menu-based commands on selected workspaces and their

contents.

• Menu lists that reduce the need for you to remember and type command
names, options, and arguments.

• Facilities to customize the GUI to meet your individual style and needs.

• Magnify Help to assist you at all levels, including explanation of error
messages.

About This Section

CodeManager is extensively documented online using the OpenWindows
Magnify Help feature. This enables you to conveniently and quickly obtain
specific information regarding any object on the screen. For that reason, this
overview does not discuss these objects (windows, menus, buttons) in great
detail; rather, it serves as an orientation and guide to the workings of
CodeManager. Specific, detailed information is available to you online as you
require it.

Throughout the rest of this manual, CodeManager tasks such as
Bringover/Putback transactions and conflict resolution are discussed in detail.
As part of these discussions, examples are included that describe
CodeManager being used to accomplish those tasks.

40 TeamWare Users Guide

3

Starting Up CodeManager

To start up CodeManager, at a shell command prompt type codemgrtool
followed by the ampersand symbol (&) as shown.

After a moment, the CodeManager window appears.

CodeManager Windows

CodeManager consists of two base windows and a number of pop-up
windows. The two base windows are:

• CodeManager window
• Transactions window

Most of your work is done in these two windows. Within each of these
windows are control areas that contain menu buttons from which you can
choose command items, menu items, and window items to help you
accomplish your tasks.

Figure 3-1 CodeManager Window and Transactions Window

example% codemgrtool &
example%

CodeManager User Interfaces 41

3

CodeManager File and Directory Choosers

Wherever possible, CodeManager employs point-and-click chooser windows
to help you conveniently navigate the file system and choose files and
directories. Specifically, chooser windows are used to assist you in the
following tasks:

• Choose workspaces to load into the Workspace Graph pane (Load ⇒
Workspaces item on the File menu).

• Choose files and directories for inclusion in interworkspace transactions
(Add Files to List item on the Transactions window File menu).

• Choose FLPs (file list programs) for use during interworkspace transactions
(Add FLPs item on the Transaction Window File menu).

• Choose directories and files about whose change of status you wish to be
notified (Add Files to List button in the Properties Notification window).

You use the three choosers in the same manner. Select files and directories by
moving the mouse pointer over icons and clicking SELECT. You can make
multiple selections using two different methods:

• Use the ADJUST mouse button to extend the selection to multiple files or
directories.

• Press SELECT in an open area of the pane and drag a bounding box
diagonally until the desired group of icons is enclosed, then release SELECT.

When you have made your selection, select the button at the bottom of the
chooser window to make your choice effective. You can also choose a file or
directory by typing its name in the Name text field and selecting the Add Files
to List button (or typing Return).

You can navigate down through the file system hierarchy by double-clicking
SELECT on any directory icon. To move hierarchically upward, double-click
SELECT on the directory icon. To move directly to a directory, enter its
path name in the Name text field and select the Load Directory button.

Note – A check mark in a file icon indicates that the file is checked out from
SCCS.

42 TeamWare Users Guide

3

Figure 3-2 Add Files Chooser Window

CodeManager Window

When you start up CodeManager, you see its main base window.

When you work with CodeManager, you select workspace icons in the
Workspace Graph pane and then choose commands from the control area that
act upon the selected workspaces and the files they contain.

CodeManager User Interfaces 43

3

Figure 3-3 The CodeManager Base Window

Workspace Graph Pane

Workspace hierarchy graphs are displayed in the Workspace Graph pane. Each
workspace is represented by a workspace icon; parent/child relationships are
depicted by lines connecting workspaces. The path name of the workspace’s
top-level (root) directory is displayed beneath the icon.

Loading Workspaces into the Workspace Graph Pane
When CodeManager is started, it checks the directory (or directories) specified
by the environment variable CODEMGR_WSPATH to determine if it contains any
workspaces. If workspaces are found, they are loaded into the Workspace
Graph pane. If this variable is not set, CodeManager attempts to load
workspaces from the directory in which it is started. To load additional
workspaces, use the Load Workspaces window from the File menu.

Control Area

Workspace Graph Pane

44 TeamWare Users Guide

3

Figure 3-4 Graph of a Workspace Hierarchy

Layout
Workspace hierarchy graphs are automatically created in the Workspace Graph
pane by CodeManager as you load workspaces (using the Load menu).
Hierarchies are displayed either vertically or horizontally1 starting from the
upper left corner and distributed to the right as space permits. Layout is done
automatically — you are not able to change the layout by moving icons with the
mouse.

Workspace Name Fields
Beneath the workspace icon is a text field that contains the name of the
workspace’s root directory.

You can choose to have workspace names displayed one of two ways:

• Using the absolute (full) path name of the root directory

• Using the truncated (short) name of root directory

Choose the display style you prefer using the Name item from the View menu.

1. You can choose the orientation that you prefer using the Orientation item from the View menu. Vertical
orientation is the default.

Parent Workpsace

Parent/Child Connectors

Child Workspaces

Selected Workspace Unselected Workspace

CodeManager User Interfaces 45

3

You can change the path name of a workspace by editing the name text field.
Select the name field by moving the pointer over a portion of the text and click
SELECT. This selects the text for editing. Use the standard OpenWindows text
editing features to change the name; type Return to enter your changes. Click
SELECT in an empty portion of the pane to deselect the text.

Workspace Selection
Select workspace icons by moving the pointer over the icon and clicking
SELECT. You can extend your selection to any number of additional
workspaces by moving the pointer over their icons and clicking ADJUST. You
can also select groups of icons by pressing SELECT in an open area and
dragging the pointer to surround a group of icons with a bounding box. All
objects within the box are selected.

Figure 3-5 Group Selection of Workspaces

Once you have selected workspaces, you can choose CodeManager commands
from the control area (see the following section) to act upon the workspaces.

Surround icons with bounding box Icons are selected

46 TeamWare Users Guide

3

Workspace Pop-up Menu
A pop-up window that contains the most frequently used commands is
available by pressing the MENU mouse button while the pointer is in the
Workspace Graph pane.

Figure 3-6 Workspace Pop-up Menu in the Workspace Graph Pane

Dragging and Dropping Workspace Icons
You can accomplish two types of operations by directly manipulating icons on
the Workspace Graph pane. You can “drag and drop” workspace icons to
initiate both Bringover and Putback transactions and to reparent workspaces.

• Interworkspace transactions

If you select and drag a workspace and drop it on top of another icon,
CodeManager will initiate one of the following transactions: Bringover
Create, Bringover Update, Putback. You determine which transaction is
initiated by which icon you drag, and where you drag it; Table 3-1
summarizes these actions. For more information about interworkspace
transactions, see Chapter 5, “Copying Files between Workspaces.”

CodeManager User Interfaces 47

3

• Reparenting

To use the drag and drop facility to change a workspace’s parent, press and
hold the SHIFT key while you select and drag the workspace icon on top of
its new parent’s icon.1 If you drag the icon to an open area of the Workspace
Graph pane, the workspace will be orphaned (have no parent). The display
is automatically adjusted to reflect the new relationship. For more
information about reparenting workspaces, see Section , “Reparenting a
Workspace,” on page 71.

Double-Click Action
When you double-click the SELECT mouse button when the pointer is over a
workspace icon, the TeamWare utility VersionTool is automatically started (with
the selected workspace automatically loaded). See VersionTool Magnify Help
and the section in this manual on VersionTool for instructions on using
VersionTool.

If you double-click SELECT when the pointer is over the icon of a workspace
that contains unresolved conflicts, CodeManager automatically activates the
Resolve transaction window. Conflicted files from the selected workspace are
automatically loaded and ready for processing.

1. You are prompted to confirm the reparent operation.

Table 3-1 Workspace Drag and Drop Action

Drag: To: Action

Any workspace icon Open area Activate Bringover Create
transaction window

Parent workspace icon Child workspace icon Activate Bringover Update
transaction window

Child workspace icon Parent workspace icon Activate Putback
transaction window

Any workspace icon A nonrelated (not a parent
or child) workspace icon

Activate pop-up notice to
determine actions

48 TeamWare Users Guide

3

You can customize CodeManager double-click behavior using the
CodeManager pop-up window under the Properties button.

CodeManager Window Control Area

Menu Buttons
The CodeManager window control area contains six menu buttons.

Use items on the File menu to perform the following tasks:

• Load workspaces from specified directories into the Workspace Graph pane.

• Create a new workspace.

• Create a new child workspace.

• Unload workspaces from the Workspace Graph pane.

Use items on the View menu to perform the following tasks:

• Choose the orientation (vertical vs. horizontal) of the workspace hierarchy
display in the Workspace Graph pane.

• Choose whether workspace names in the Workspace Graph pane are
displayed in “full” or “short” format.

Use items on the Edit menu to perform the following tasks:

• Delete selected workspaces.

• Rename the selected workspace.

• Change the parent of the selected workspace.

CodeManager User Interfaces 49

3

Use the Transactions menu to perform the following tasks:

• Bring over files from a selected parent workspace to a new, or existing, child
workspace.

• Put back files from a selected child workspace to its parent workspace.

• In the selected workspace, resolve conflicts that were created during a
Bringover transaction.

• Undo (reverse) the action of the last Putback or Bringover transaction in the
selected workspace.

Use the Properties menu to perform the following tasks:

• Customize one or more workspace’s properties (Codemgr_wsdata).

• Customize aspects of CodeManager behavior.

• Display the version number of the TeamWare release.

Use the Tools menu to:

• Launch other TeamWare tools directly from CodeManager.

50 TeamWare Users Guide

3

Figure 3-7 CodeManager Subwindows

CodeManager Window

Transactions Window

Properties

Parent

Rename

Load Workspaces

Create Workspaces

Create Child

CodeManager User Interfaces 51

3

Transactions Window

The Transactions window is activated when you choose any of the items on the
CodeManager window Transactions menu, or the Bringover and Putback items
on the pop-up window in the Workspace Graph pane.

The Transactions window is a base window that you use to initiate and
complete interworkspace transactions. These transactions are:

• Bringover Create Bring over files into a previously nonexistent child
workspace from the selected (or specified) parent
workspace. Refer to Section , “Creating a New Child
Workspace (Bringover Create),” on page 104 for
information about the Bringover Create transaction.

• Bringover Update Update the contents of the selected (or specified)
child workspace by bringing over files from its parent
workspace. Refer to Section , “Updating an Existing
Child Workspace (Bringover Update),” on page 110
for information about the Bringover Update
transaction.

• Putback Put back files from the selected (or specified) child
workspace into its parent workspace. Refer to
Section , “Copying Files from a Child to a Parent
Workspace (Putback),” on page 117 for information
about the Putback transaction.

• Resolve Resolve conflicts in the selected (or specified)
workspace. Refer to Chapter 6, “Resolving Conflicts”
for information about resolving conflicts.

• Undo Undo the action of the last Bringover or Putback
transaction in the selected (or specified) workspace.
Refer to Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 124 for
information about reversing the action of Bringover
and Putback transactions.

The layout of the Transactions window changes when you select each of the
five transactions listed above. When you use the Category menu button in the
control area to select a different transaction, the layout of the entire window is
changed to accommodate the new transaction.

52 TeamWare Users Guide

3

Figure 3-8 Transactions Window Category Menu

CodeManager User Interfaces 53

3

Figure 3-9 Bringover Create, Bringover Update, Putback, Undo, and Resolve
Transactions Windows

File List Pane

The File List pane can be used for two functions:

• To construct the list of files and directories you want included in a
transaction

• To specify file list programs (FLPs) that generate lists of files for Bringover
and Putback transactions

Since the same pane is used for both functions, it has two modes that are
controlled by the abbreviated menu directly above the File List pane. Use the
CodeManager Chooser window to construct both lists.

54 TeamWare Users Guide

3

Figure 3-10 File List Pane Menu

Transaction Pop-up Windows

Two pop-up windows can be activated from the Transactions window:

• CodeManager Chooser window

Activate the CodeManager Chooser window by invoking the Add Files to
List (or Add FLPs to List) item on the File menu below the File List pane.
Use this window to do the following:
• Choose files you wish copied during a Bringover, Putback, or Undo

transaction. See Section , “Specifying Directories and Files for
Transactions,” on page 98 for more information.

• Choose FLPs you wish executed to generate a list of files to copy during
Bringover and Putback transactions. See Section , “Grouping Files for
Transfer Using File List Programs,” on page 99 for more information.

CodeManager User Interfaces 55

3

• Transaction Output window

CodeManager automatically activates the Transaction Output window when
you execute Bringover and Putback transactions. Status messages about the
transaction are displayed. You can also activate the Transaction Output
window by invoking the Show Output button. See Section , “Viewing
Transaction Output,” on page 97 for more information.

Figure 3-11 Transaction Subwindows

CodeManager Chooser Window
The File List pane is used to construct the list of directories and files that you
wish included in a Bringover or Putback transaction. You use the
CodeManager Chooser window to move about the file system and select files
to add to the file list.

The File Chooser window is activated by selecting the Add Files to List item
from the File menu on the Transactions window.

Transactions Window

File Chooser

File List
Pane

Transaction Output Window

56 TeamWare Users Guide

3

See Section , “Specifying Directories and Files for Transactions,” on page 98 for
details on using the chooser to select files for copying.

Transaction Output Window
Output from CodeManager transaction commands is viewed in the Transaction
Output window. This window is activated automatically when you invoke one
of the transactions. You can also activate it yourself by choosing the Show
Output button in any of the Transactions window layouts.

Figure 3-12 Transaction Output Window

CodeManager User Interfaces 57

3

Customizing CodeManager Using Properties

Using the Tool Properties window, you can customize the behavior of:

• CodeManager window functions
• Bringover/Putback transactions
• Resolve transaction

You activate the Tool Properties window by choosing the CodeManager item
from the Properties menu. The Category menu on the Properties window
enables you to switch between the CodeManager, Bringover/Putback, and
Resolve panes.

Figure 3-13 Tool Properties Category Menu

CodeManager Defaults Files

When you change CodeManager behavior using the Tool Properties window,
you can use the Set Default button to preserve the changes in defaults files in
your home directory. The defaults files are consulted by CodeManager when it
is started, your changes are used as the default values.

Changes made in the Resolve pane of the Tool Properties window are written
to the file ~/.codemgr_resrc . This file is a standard SunOs runtime
configuration file.

Changes made in the CodeManager and Bringover/Putback panes of the Tool
Properties window are written to the file ~/.codemgrtoolrc . This file is an
OpenWindows XDefaults format file.

58 TeamWare Users Guide

3

CodeManager Pane

The CodeManager pane of the Tool Properties window enables you to change
the behavior of the CodeManager base window. The specific properties are
described in Table 3-2.

Figure 3-14 Coder Manager Pane of the Tool Properties Window

CodeManager User Interfaces 59

3

Bringover/Putback Pane

The Bringover/Putback pane of the Tool Properties window enables you to
change the behavior of the Bringover and Putback panes of the Transactions
window. The specific properties are described in Table 3-3.

Table 3-2 CodeManager Tool Properties

Property Description

Default Directory Directory to which CodeManager actions are relative.

Double-click Action Specify the commands you want launched when you
double-click SELECT on: standard workspace icons,
icons of workspaces that contain conflicts. Specify the
path names required to execute the commands based
on the current working directory and your search path.
By default, the standard workspace command is
VersionTool (vertool); by default, the Resolve
Transaction window (<resolve_pane >) is activated
for conflicted workspaces.

Load Workspaces Select this check box if you want the parent and
children of workspaces you load in the Workspace
Graph pane automatically loaded with them. By
default this box is not checked.

Orientation Choose the Horizontal setting if you want the
workspace hierarchy displayed horizontally from left
to right in the Workspace Graph pane. Choose the
Vertical setting if you want workspace hierarchy
displayed vertically from top to bottom. By default the
Vertical setting is in effect. This property corresponds
to the Orientation item on the View menu in the main
CodeManager window.

Workspace Names Choose the Short setting if you want workspaces
labelled with the shortest possible name in the
Workspace Graph pane. Choose Full if you want
workspaces labelled with absolute path names. By
default the Full setting is in effect. This property
corresponds to the Names item on the View menu in
the main CodeManager window.

60 TeamWare Users Guide

3

Figure 3-15 Bringover/Putback Pane of the Tool Properties Window

Table 3-3 Bringover/Putback Tool Properties

Property Description

Auto Load Causes CodeManager to reread the
Codemgr_wsdata/args file and load it into the File
List pane whenever a new workspace is selected. You
might choose to deselect this property when you want
to use the same file list for a number of transactions
involving different workspaces.

Auto Display Automatically displays the Transaction Output
window during transaction execution.

Auto Bringover Update If a Putback transaction is blocked, automatically
initiates a Bringover transaction to update the child
workspace.

CodeManager User Interfaces 61

3

Resolve Pane

The Resolve pane of the Tool Properties window enables you to change the
behavior of the Resolve pane of the Transaction window. The specific
properties are described in Table 3-4.

Figure 3-16 Resolve Pane of the Tool Properties Window

62 TeamWare Users Guide

3

Footer Messages

CodeManager provides helpful messages in the footers of both the
CodeManager window and the Transactions window.

Figure 3-17 A Transaction Window Footer Message

Table 3-4 Resolve Tool Properties

Property Description

Start FileMerge (auto load) Causes FileMerge to start automatically when the
Resolve transaction pane is chosen.

Auto Advance Causes the next file in the list to be automatically
loaded into FileMerge after the current file is
resolved.

Prompt for Checkin Comments A default comment is automatically supplied
during checkin after you resolve a file. This
property causes you to be prompted for an
additional comment that is appended to the
standard comment.

Use Existing FileMerge If this property is set, an already running FileMerge
process is reused during subsequent resolve
operations.

Auto Save (when no
unresolved diffs)

If this property is set, and all the changes in the file
can be “automerged,” the files will also be saved
and checked in; you need not select the FileMerge
Save button.

CodeManager User Interfaces 63

3

Accelerators

Table 3-5 summarizes the various accelerators available for CodeManager
functions.

Table 3-5 Summary of CodeManager Accelerators

Accelerator Action Where to Find More
Information

Drag and drop
workspace icon

Activate
Bringover/Putback
transaction window

“Dragging and Dropping
Workspace Icons” on
page 46

SHIFT + drag and drop
workspace icon

Reparent workspace “Dragging and Dropping
Workspace Icons” on
page 46

Click SELECT on
workspace icon name
field

Rename workspace “Workspace Name Fields”
on page 44

Double-click SELECT on
workspace icon

Launch a tool. User
configurable, VersionTool
is the default

“Double-Click Action” on
page 47

Double-click SELECT on
an icon of a workspace
that contains conflicts

Launch a tool. User
configurable, Resolve
window is the default

“Double-Click Action” on
page 47

64 TeamWare Users Guide

3

65

CodeManager Workspace 4

As discussed in Chapter 2, “Introduction to CodeManager,” the workspace
forms the basis of the CodeManager system. The workspace provides isolation
in which you (a developer) work in parallel with other developers
programming in other workspaces. For an introduction to the CodeManager
workspace, refer to “Workspace” on page 21 of this manual.

This chapter discusses specific aspects of workspaces and the CodeManager
commands you use to configure, create, manipulate, and administer them.

The Workspace Metadata Directory
A CodeManager workspace is a directory hierarchy that contains a directory
named Codemgr_wsdata in its root directory. CodeManager stores data
(metadata) about that workspace in Codemgr_wsdata . CodeManager
commands use the presence or absence of this directory to determine whether
a directory is a workspace.

66 TeamWare Users Guide

4

All data stored in the Codemgr_wsdata directory is contained in ASCII text
files that can be edited by users. Table 4-1 briefly describes each of the files and
directories contained in the metadata directory. Information regarding the
format of these files is available in the man(5) page for each file.

Table 4-1 Contents of the Codemgr_wsdata Metadata Directory

File/Dir Name Description

access_control The access_control file contains information that controls
which users are allowed to execute CodeManager transactions
and commands for a given a workspace. When workspaces are
created, a default access control file is also created. See Section ,
“Controlling Access to Workspaces,” on page 77.

args The args file is maintained by the CodeManager Bringover
and Putback transaction commands and contains a list of file,
directory, and FLP arguments. Initially, the args file contains
the arguments specified when the workspace was created. If
you explicitly specify arguments during subsequent Bringover
or Putback transactions, the commands determine if the new
arguments are more encompassing than the arguments already
in the args file; if they are, the new arguments replace the old.

backup/ The backup directory is used to store information that
CodeManager uses to “undo” a Bringover or Putback
transaction. See Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 124.

children The children file contains a list of the workspace’s child
workspaces. The names of child workspaces are entered into
the workspace’s children file during the Bringover Create
transaction. CodeManager consults this file to obtain the list of
child workspaces. When you delete, move, or reparent a
workspace, CodeManager updates the children file in its
parent.

conflicts The conflicts file contains a list of files in that workspace
that are currently in conflict. See Chapter 6, “Resolving
Conflicts,” for more information about conflicts and how to
resolve them.

history The history file is a historical log of transactions and updated
files that affect a workspace. See Section , “Viewing Workspace
Command History,” on page 87 for more information.

CodeManager Workspace 67

4

locks To assure consistency, CodeManager locks workspaces during
Bringover, Putback and Undo transactions. Locks are recorded
in the locks file in each workspace; CodeManager consults
that file before acting in a workspace. See Section , “Ensuring
Consistency through Workspace Locking,” on page 90.

nametable The nametable file contains a table of SCCS file names (path
names relative to that workspace) and a unique number
represented as four 32-bit hexadecimal words. Each entry in the
table is terminated by a newline character. The nametable file
is used by CodeManager during Bringover and Putback to
accelerate the processing of files that have been renamed. If this
file is not available, CodeManager rebuilds it automatically
during the next Putback or Bringover transaction. See Section ,
“Renaming, Moving, or Deleting Files,” on page 128.

notification The notification file is edited by users to register
notification requests. This facility permits CodeManager to
detect events that involve that workspace and to send
electronic mail messages in response to the event. See Section ,
“How to Notify Users of Changes to Workspaces,” on page 83.

parent The parent file contains the path name of the workspace’s
parent workspace and is created by the Bringover Create
transaction, or by the Reparent command if the workspace was
originally created with the Create Workspace command (and
thus had no parent). CodeManager consults this file to
determine a workspace’s parent. When you delete, move, or
reparent a workspace, CodeManager updates the parent file
in its children.

putback.cmt The putback.cmt file is a cache of the text of the comment
from the last blocked Putback transaction. When a Putback
transaction is blocked, the comment is discarded.
CodeManager caches the comment in putback.cmt so that
you can retrieve the original text when you reexecute the
transaction.

Table 4-1 Contents of the Codemgr_wsdata Metadata Directory

File/Dir Name Description

68 TeamWare Users Guide

4

Creating a Workspace
You can create a workspace in one of two ways:

• Explicitly by means of the Create Workspace item in the File menu on the
main CodeManager window

• Implicitly by using the Bringover Create transaction to copy files into a
nonexistent child workspace, in which case the child workspace is created
and then populated with the files specified as part of the transaction

Using Workspace Create

The Workspace Create item in the CodeManager File menu is used to create
new workspaces. Type the name of the new workspace’s root (top-level)
directory in the Workspace Directory text field and click on the Create
Workspace button.

If the workspace you are creating already exists as a directory hierarchy,
CodeManager converts it to a workspace by simply adding the
Codemgr_wsdata directory in the root directory and displaying its icon in the
Workspace Graph Pane.

If the directory does not already exist, CodeManager creates both the root
directory and the Codemgr_wsdata directory.

Figure 4-1 Create Workspace Pop-up Window

CodeManager Workspace 69

4

Using the Bringover Create Transaction

Use the Bringover Create transaction (on the Transactions menu) to copy files
from a parent workspace to a nonexistent child workspace; the child is
automatically created as part of the transaction. See Section , “Creating a New
Child Workspace (Bringover Create),” on page 104 for details.

Deleting a Workspace
You delete workspaces by selecting their icons in the Workspace Graph Pane
and then invoking the Delete ⇒ item from the CodeManager Edit menu.

Two menu items are provided that delete workspaces:

• Sources and Codemgr_wsdata Directory

Recursively deletes the contents of the workspaces.

• Codemgr_wsdata Directory only

Changes their status to nonworkspace directories by deleting only the
Codemgr_wsdata directory and removing their icons from the Workspace
Graph Pane.

In either of these cases CodeManager automatically updates records in parent
and child workspaces to reflect the deletion of the workspace.

Figure 4-2 The Edit And Delete Pop-up Windows

When you choose the Sources and Codemgr_wsdata Directory command, you
are prompted to confirm your decision.

70 TeamWare Users Guide

4

Moving and Renaming a Workspace
Since workspaces are directories, you move them by changing their path
names. There are two ways that you can move/rename a workspace:

• By editing its name in the Workspace Graph pane

Select the name field by moving the pointer over a portion of the text and
click SELECT. This selects the text for editing. Use the standard
OpenWindows text editing features to change the name; type Return to
enter your changes. Click SELECT in an empty portion of the pane to
deselect the text.

• By using the Rename command item from the CodeManager Edit menu

The path name of the selected workspace is changed to the name that you
type in the New Workspace Name text field.

In addition to changing the workspace path name, both methods also update
the appropriate data files in the parent and child workspaces to contain the
new name. These data files are discussed in “The Workspace Metadata
Directory” on page 65.

Figure 4-3 Rename Pop-up Window

A Note About Moving Workspaces

Do not use the SunOS mv command to rename or move workspaces. The
CodeManager Rename command updates files in the workspace’s parent and
children, as well as logging the event in the Codemgr_wsdata/history file.

CodeManager Workspace 71

4

If you inadvertently use the mv command to move/rename a workspace and
discover that it has become “disconnected” from its parent and children, you
can use the Rename command to reconnect it.

For example, if you used the mv command to rename a workspace from A to B:

1. Use the Rename command to rename B to C.
This causes CodeManager to update the workspace’s new name (C) in the
parent and child workspaces. To save time, be sure to use a path name on
the same device.

2. Use the Rename command to change C back to B.
Everything should be reconnected.

Reparenting a Workspace
As discussed in Chapter 2, “Introduction to CodeManager,” (page 23) the
parent/child relationship is the thread that connects the workspace hierarchy.
CodeManager provides the means for you to change this relationship at your
discretion.

This section discusses how you can explicitly change a workspace’s parent. It is
also possible for you to implicitly change a workspace parent “on the fly” (for
the duration of a single command) by specifying the new parent’s path name
as part of a Bringover Update or Putback transaction. See the descriptions of
the Bringover Update and Putback transactions in Chapter 5, “Copying Files
between Workspaces,” for more information.

The following sections describe:

• Two methods that you can use to change a workspace’s parent

• Some reasons why you might want to change a workspace’s parent

• An example of using the rename feature

Two Ways to Reparent Workspaces

This section describes two completely equivalent ways to reparent workspaces.

72 TeamWare Users Guide

4

Drag and Drop Workspace Icons

You can change a workspace’s parent by selecting its icon in the Workspace
Graph Pane, pressing and holding the SHIFT key, and dragging it on top of its
new parent’s icon.1 The display is automatically adjusted to reflect the new
relationship.

You may also “orphan” a workspace by selecting its icon, pressing SHIFT, and
dragging it to an open area on the Workspace Graph. The workspace no longer
has a parent: the display is automatically adjusted to reflect its new status.

The Parent Command

You can change a workspace’s parent by selecting its icon in the Workspace
Graph Pane and then choosing the Parent command item from the Edit menu.
This activates the Parent pop-up window.

Figure 4-4 Parent Pop-up Window

When the window is initially activated, the New Parent Workspace Directory
text field contains the name of the current parent; edit that line so that it
contains the name of the new parent file. Click SELECT on the Parent button.
The Workspace Graph Pane is automatically adjusted to reflect the new
relationship.

1. You are prompted to confirm the change.

CodeManager Workspace 73

4

If you do not specify a parent workspace in the New Parent Workspace
Directory text field, the workspace is orphaned — it has no parent. The
Workspace Graph Pane is automatically adjusted to reflect its new status.

Reasons to Change a Workspace’s Parent

Reasons why you might want to permanently or temporarily change a
workspace parent are as follows:

• To populate a new project hierarchy (new top-level workspace)

You may be completing Release 1 of your product and see the need to begin
work on Release 2. In this case you might:

a. Create a new (empty) Release 2 workspace by means of the Create
Workspace command item.

b. Use either of the two methods described above to make the Release 2
workspace the new parent of the Release 1 workspace.

c. Use the Putback transaction to copy files to the Release 2 workspace.

d. Reparent the Release 1 workspace to its original parent.

• To move a feature into a new release

If a feature intended for a particular release is not completed in time, the
workspace in which the feature was being developed can be reparented to
the following release’s integration workspace. A similar use of reparenting
is described in the example in the next section.

• To apply a bug fix to multiple releases.

The workspace in which work was done to correct a bug is reparented from
hierarchy to hierarchy; the CodeManager Putback transaction is used to
incorporate the changes into the new parent. An example of this use of
reparenting is included in the next section.

• To reorganize workspace hierarchies
• You can add additional levels to the hierarchy.
• You can remove levels from the hierarchy (do not specify a new parent

during reparenting).
• You can reorganize workspace branches within the project hierarchy.

74 TeamWare Users Guide

4

• To adopt an orphan workspace if its Codemgr_wsdata/parent file is
deleted

If, for some reason a file is orphaned (for example, its parent is corrupted or
its own Codemgr_wsdata/parent file deleted) you can use the
reparenting feature to restore its parentage.

A Reparenting Example

Often a bug is fixed in a version of a product and a patch release is made to
distribute the fixed code. The code that was fixed must usually be incorporated
into the next release of the product as well. If the product is developed using
CodeManager, the patch can be incorporated relatively simply by means of
reparenting.

In the following example, a patch is developed to fix a bug in Release 1.0 of a
product. The patch must be incorporated into Release 2.0, which has begun
development.

1. The workspace in which the patch was developed (or the workspace from
which it is released) is cloned by means of the Bringover Create transaction.
The reason the workspace is cloned is that it will be altered by its interaction
with its new parent (Bringover transaction to synchronize it with its new
parent).

2. Either of the two reparenting methods are used to change the cloned
workspace’s parent from 1.0patch to 2.0 . (Figure 4-5)

CodeManager Workspace 75

4

Figure 4-5 Patch Workspace Reparented to New Release

3. The workspace is then updated from its new parent, and any new work is
brought over from 2.0 . (Figure 4-6A)

4. The fixes made for the patch are merged in patch with the files from 2.0
and are put back into the 2.0 workspace where they are now available to
workspace 2.0child . (Figure 4-6B)

Figure 4-6 Files Brought Over, Merged, and Incorporated into the New Release

5. Files are brought over to 2.0child , and patch is deleted by means of the
Delete ⇒ Sources and Metadata item from the Edit menu. (Figure 4-7)

Bringover Create

Reparent

 bringover putback

A. B.

76 TeamWare Users Guide

4

Figure 4-7 Patched Files Brought Over into 2.0child ; patch Deleted

 bringover

CodeManager Workspace 77

4

Controlling Access to Workspaces
CodeManager permits you to control the access that users have to your
workspaces. Table 4-2 lists and describes the eight types of access over which
you can exercise control.

Prior to taking any of the actions listed above, CodeManager consults a file in
the Codemgr_wsdata directory named access_control to determine
whether the user taking the action has access permission to the workspace for
that purpose. The access_control file is a text file that contains a list of the
eight operations and corresponding values that stipulate who is permitted to
perform those operations. The access_control file is automatically created
at the time the workspace is created and is owned by the creator of the
workspace.

Use the Workspace item in the Props menu to view and change access
permissions. Use the Category menu to choose the Access Control pane of the
Workspace Properties pop-up window (see “Viewing and Changing Access
Control Values” on page 80).

Table 4-2 Operations Over Which You Have Access Control

Type of Access Description

bringover-from Controls which users may bring over files from this
workspace

bringover-to Controls which users may bring over files to this
workspace

putback-from Controls which users may put back files from this
workspace

putback-to Controls which users may put back files to this
workspace

undo Controls which users may “undo” commands executed
in this workspace

workspace-delete Controls which users may delete this workspace

workspace-move Controls which users may move this workspace

workspace-reparent Controls which users may reparent this workspace

workspace-reparent-to Controls which users may reparent other workspaces to
this workspace

78 TeamWare Users Guide

4

Table 4-3 shows the default contents of access_control after you create a
workspace:

You can express which users have or do not have access to a workspace in a
number of ways. Figure 4-8 shows all of the possible types of values you can
specify to control access to your workspaces. Table 4-4 describes what the
entries mean.

1. Creator’s login name actually appears

Table 4-3 Default Access Control Permissions

Operation Permissions

bringover-from

bringover-to creator1

putback-from

putback-to

undo

workspace-delete creator

workspace-move creator

workspace-reparent creator

workspace-reparent-to

CodeManager Workspace 79

4

Figure 4-8 Example Access Control Values

Access
Control List

80 TeamWare Users Guide

4

Note – If a user is listed as having both access permission and restriction, the
first reference is used.

Note – Performance may degrade when net groups are included in the access
control file. The time required to look up group membership can add several
seconds to the execution of a given operation.

Viewing and Changing Access Control Values

To view the access control status of a workspace, do the following:

1. Select a workspace icon in the base window Workspace Graph pane.

Table 4-4 Workspace Access Control Values

Value Meaning

@engineering All users in the net group named
engineering can execute this operation

-@engineering No users from the net group named
engineering can execute this
operation. Note that “- ” denotes
negation.

@special -user2 @engineering All users in the net groups special and
engineering can execute the operation;
user2 cannot (unless user2 is in the
special netgroup). “- ” denotes
negation.

user1 user2 The users user1 and user2 can execute
the operation.

“-” No user can execute the operation.

creator Only the user who created the workspace
can execute the operation. Note that the
creator’s login name actually appears.

(no entry) Any user may execute the operation.

CodeManager Workspace 81

4

2. Choose the Workspace item from the Props button menu.

To change the access control status of a workspace, do the following:

1. Select a workspace icon in the base window Workspace Graph pane.

2. Choose the Workspace item from the Props button menu.

3. Use the SELECT mouse button to select an access line in the global Access
Control list, then select the Edit button to activate the Access Control Edit
pop-up.
The operation you selected before clicking on the Edit button is
automatically selected for you.

4. Optionally, use the Operation menu in the Access Control Edit pop-up to
select an operation type.

5. Choose the type of permission you wish to allow:
• None: No users have permission
• All: All users have permission
• Specify: Use the Permissions list to construct a list of users and

netgroups that are to be granted or denied permission

6. If you choose to specify individual and/or group permissions, construct
your entry using:
• The Name text field to enter the name of the user or netgroup
• The Type setting to specify whether the entry is a user or a netgroup
• The Access setting to specify whether the specified user/netgroup is

granted or denied permission

7. Select the Insert button to enter your entry into the Permissions list.

8. Select the Apply button to enter your selection into the global Access
Control list.

9. In the Workspace Properties pop-up, select the Set Default button to write
the changes to the access_control file.

82 TeamWare Users Guide

4

Figure 4-9 Access Control Edit Pop-up

Permissions
List

CodeManager Workspace 83

4

How to Notify Users of Changes to Workspaces
You can request CodeManager to notify you (through an electronic mail
message) when a variety of CodeManager events occur in a workspace.
Notification requests are entered in the file named notification in the
Codemgr_wsdata directory.

A notification request consists of the following items:

• An address to which mail is sent.

• The event for which you want notification triggered.

• An optional list of directories and files whose changes of status trigger
notification. The list is bracketed by BEGIN/END statements.

The following is an example of a notification file that contains three
requests:

In the first entry, the user chip@mach1 requests to be notified when the file
dir1/foo.cc and any file in the directory dir2 (path names are relative to
the workspace root directory) are brought over to the workspace.

Note – File and directory entries for each event are bracketed by BEGIN/END
statements. An empty list, a missing list, or a list that consists of only the “.”
character indicate that all files and directories in the workspace are registered
for notification.

In the second entry, user biff@mach2 requests to be notified when any file in
the workspace is brought over to, or put back to, the workspace. The “.”
character represents all files in the workspace.

chip@mach1 bringover-to
BEGIN
dir1/foo.cc
dir2
END
biff@mach2 bringover-to putback-to
BEGIN
.
END
biff@mach2 workspace-move

84 TeamWare Users Guide

4

In the third entry, biff@mach2 requests to be notified if the workspace is
moved. Events that involve entire workspaces (delete, move, reparent) do not
accept directory/file lists.

Table 4-5 lists the events for which you can register notification requests:

Viewing and Changing Notification Entries

To view and change notification entries, select a workspace icon in the
Workspace Graph pane and choose the Workspace item from the base window
Props menu. Use the Category menu to choose the Notification pane.

Figure 4-10 shows how the requests contained in the notification file
described on the previous page are displayed in the Workspace Properties
pop-up.

Table 4-5 Notification Events

Event Name Description

bringover-from Send mail whenever files are brought over from the
workspace in which the notification file is located.

bringover-to Send mail whenever files are brought over to the
workspace in which the notification file is located.

putback-from Send mail whenever files are put back from the workspace
in which the notification file is located.

putback-to Send mail whenever files are put back to the workspace in
which the notification file is located.

undo Send mail whenever a transaction is “undone” in the
workspace in which the notification file is located.

workspace-delete Send mail if the workspace in which the notification file is
located is deleted.

workspace-move Send mail if the workspace in which the notification file is
located is moved.

workspace-reparent Send mail if the workspace in which the notification file is
reparented.

workspace-reparent-to Send mail if the workspace becomes the new parent of an
existing workspace.

CodeManager Workspace 85

4

Figure 4-10 Example Notification Entries

Use the items in the Edit menu to modify, create and delete notification entries.
Choosing the Entry and Create menu items activates the Notification Edit
pop-up.

To create a new request, choose (with no items selected) the Create item in the
Edit menu. The Notifications Edit pop-up is activated—use this window to
specify the following request information:

• The mail address to which notification mail is sent

• The event about which notification mail is sent

Global
Notification
List

86 TeamWare Users Guide

4

• The files the notification event applies to:
• Any file in the workspace (All)
• Specific directories and/or files (Specify). If you choose to specify

files/directories, create the list of directories and files in the Files text
pane. To create the list, activate the Add Files chooser by clicking on the
Add files to List button (for information about CodeManager chooser
windows see Section , “CodeManager File and Directory Choosers,” on
page 41). Delete files from the list using the Delete button.

Figure 4-11 Notification Edit Pop-up

CodeManager Workspace 87

4

Modify an existing entry, by selecting it in the Notification pane of the
Workspace Properties pop-up and choosing the Entry item from the Edit menu.
Use the Notification Edit pop-up to modify the entry.

Apply changes to the Notification Edit pop-up changes to the global
Notification list, by clicking on the Apply button.

Apply changes to the notifications file, by clicking on the Set Default
button in the Workspace Properties pop-up.

Notes About Registering Notification Events
• The following events involve entire workspaces and thus do not require a

directory/file list:
• workspace-delete
• workspace-move
• workspace-reparent
• workspace-reparent-to

• When a directory is specified in the list, all files hierarchically beneath it are
automatically registered.

• The mail address can be any valid mail address, including aliases.

Viewing Workspace Command History
CodeManager commands are logged in the text file
Codemgr_wsdata/history . Commands that affect a single workspace are
logged only in that workspace; interworkspace transactions are logged in both
the source and destination workspaces.1

You can view the contents of this file to track or reconstruct changes that have
been made to a workspace over time. Log entries consist of the underlying
command-line entries and do not correspond to GUI menu item names. If you

1. Although command entries are logged in both the source and destination workspaces, the list of changed
files is entered only in the destination directory.

88 TeamWare Users Guide

4

have any questions about the meaning or syntax of a command, refer to its man
page for details. Table 4-6 lists the GUI operations and the corresponding CLI
command that is entered in the history log.

Note – In active workspaces, the Codemgr_wsdata/history file can grow
very quickly. You may want to periodically prune the file to reduce its size.

Table 4-6 Corresponding GUI and CLI Commands

GUI Menu Item Corresponding CLI Command

Create Workspace workspace create

Rename workspace move

Parent workspace parent

Bringover Create bringover

Bringover Update bringover

Putback putback

Undo ws_undo

Resolve resolve

CodeManager Workspace 89

4

The following portion of a history file was generated during a Bringover
Update transaction; entries are described in Table 4-7. This entry is taken from
the history file in the child; the corresponding entry in the parent is identical
except that file status messages are not included.

COMMAND bringover -w /home/sponge3/larryh/ws/man_pages -p
/home/sponge3/larryh/ws/manpages man trans/man

 update: man/Makefile
 update: man/man5/access_control.5
 create: man/man5/notification.5
 create: man/man1/codemgr.1
 rename from: man/man1/def.dir.flg.1
 to: man/man1/def.dir.flp.1
 update: man/man1/def.dir.flp.1
 create: man/man1/codemgrtool.1
 rename from: man/man1/fileresolve.1
 to: deleted_files/man/man1/fileresolve.1
 update children’s name history:

deleted_files/man/man1/fileresolve.1
 rename from: man/man1/resolve_tty.1
 to: deleted_files/man/man1/resolve_tty.1
 update: deleted_files/man/man1/resolve_tty.1
 create: trans/man/man1/codemgr_acquire.1
 create: trans/man/man1/codemgr_prepare.1
CWD /tmp_mnt/home/sponge3/larryh/temp
RELEASE Beta 1.0
HOST croak
USER larryh
PARENT_WORKSPACE (/home/sponge3/larryh/ws/manpages)
(sponge:/export/home/sponge3/larryh/ws/manpages)
CHILD_WORKSPACE (/home/sponge3/larryh/ws/man_pages)
(sponge:/export/home/sponge3/larryh/ws/man_pages)
START (Mon Jul 13 13:31:16 1992 PDT) (Mon Jul 13 20:31:16 1992 GMT)
END (Mon Jul 13 13:32:08 1992 PDT) (Mon Jul 13 20:32:08 1992 GMT)
STATUS 0

90 TeamWare Users Guide

4

Ensuring Consistency through Workspace Locking
To assure consistency, the CodeManager transactions—Bringover, Undo, and
Putback—lock workspaces while they are working in them. These locks only
affect CodeManager transactions; other commands such as SCCS programs, are

Table 4-7 History File Entry Descriptions

Entry Description

COMMAND Underlying command line issued for the
operation. File status messages as displayed
in the Transaction Output window are
included only in the destination workspace
history file.

CWD Name of the current working directory when
the command was executed.

RELEASE Release number of the TeamWare software

HOST Name of the system from which the
command was executed.

USER Login name of the user who executed the
command.

PARENT_WORKSPACE The path name of the parent workspace
specified in two formats: host-specific and
machine:pathname.

CHILD_WORKSPACE The path name of the child workspace
specified in two formats: host-specific and
machine:pathname.

START Time the command started execution, both
locally and as measured by Greenwich Mean
Time (GMT).

END Time the command completed execution,
both locally and as measured by Greenwich
Mean Time (GMT).

STATUS Exit status of the command: 0 = Normal
completion, any other value indicates an
error condition, warning, or other status.

CodeManager Workspace 91

4

not affected. Locks are recorded in the Codemgr_wsdata/locks file in each
workspace; the CodeManager transaction commands consult that file before
acting in a workspace. Two types of locks are used:

• A read-lock is used when a command must assure that a workspace does not
change while it is examining its contents.

Read-locks may be obtained concurrently by a number of commands; no
CodeManager command can write to the workspace while a read-lock is in
force. A read-lock is obtained during a Bringover transaction in the parent
when its files are examined in preparation for copying to the child, and
during a Putback transaction in the child when its files are examined in
preparation for copying to the parent.

• A write-lock is used when a command must assure that a workspace does
not change while it is writing to it.

Only one write-lock may be obtained for a workspace at any time. When a
write-lock is in force, only the CodeManager command that owns the lock
can write to the workspace; other commands cannot obtain read-locks from
the workspace. A write-lock is obtained during a Bringover transaction for
the child when files are copied into it, and during a Putback transaction for
the parent when files are copied into it.

If a CodeManager command is unable to remove its lock after completion (for
example, the system crashes), you must remove the lock yourself before
CodeManager commands will again be able to read and/or write in the
workspace. You can use the CodeManager GUI to view and delete active locks
for a workspace, or you can edit the file directly.

To view and delete locks using the CodeManager GUI, select a workspace icon
from the Workspace Graph pane and choose the Workspace item from the main
Props menu. Use the Category menu to choose the Locks pane.

To delete locks, select the line that contains the lock and click on the Delete
button. To apply the deletion to the locks file, click on the Set Default button.

92 TeamWare Users Guide

4

Figure 4-12 Example Lock Entry

CodeManager Environment Variables
CodeManager consults environment variables to direct some of its actions.

The CODEMGR_WS Variable

If you do not explicitly specify a workspace as the focus of a CodeManager
command, many of the commands will consult the shell environment variable
CODEMGR_WSto determine a default workspace as the focus of their action. If

CodeManager Workspace 93

4

you have a workspace that is the primary focus of your work, use of the
variable will allow you to execute the commands without specifying the
workspace argument.

The CODEMGR_WSPATH Variable

When it is started, CodeManager automatically loads workspaces from
directory path names specified in the CODEMGR_WSPATH variable.

94 TeamWare Users Guide

4

95

Copying Files between Workspaces 5

Chapter 2, “Introduction to CodeManager,” describes copying files up and
down the parent/child hierarchy. This chapter describes how you use
CodeManager to copy files.

The chapter covers the following topics:

• CodeManager transaction model
• Information common to all of the workspace transactions
• How you use the Bringover and Putback transactions to copy files
• How you can “undo” the actions of Bringover and Putback transactions
• How to correctly delete, move, and rename files and directories
• All of the transactions discussed in this chapter are initiated in the

CodeManager Transactions window.

An example demonstrating these transactions can be found in Chapter 9,
“CodeManager Example.”

CodeManager Transaction Model
CodeManager is designed so that all interworkspace transactions (Bringover
Create, Bringover Update, Putback, Undo, and Resolve) are based upon the
same user model; that model is described in Figure 5-1. The ways in which the
transactions differ are described later in this chapter (the Resolve transaction is
described in Chapter 6, “Resolving Conflicts”).

96 TeamWare Users Guide

5

Figure 5-1 CodeManager Transaction Model

CodeManager

File View Edit Transactions Props ToolsFrom the CodeManager Workspace Graph pane,
select a workspace icon and then activate the
Transaction window in one of three ways:
• Drag the icon over another icon or to an open area

of the pane (depending on transaction type)
• Click MENU in the pane and choose

a transaction from the pop-up menu
• Choose a transaction from the Transactions menu

Use the CodeManager Add Files chooser window
to construct the list of files and directories you want
to include in the transaction.

Optionally:
• Select the Preview option in order to view the

results of the transaction prior to actually
transferring any files

• Type a comment in the Comments text window
that is added to the Codemgr_wsdata/history

Ensure that the workspace parent and child path
names are correct. Make any necessary additions
or changes.

From Parent Workspace Directory: /home/myhome/ws/ws4

lib

src

man

CodeManager: Transactions

Transactions
Window

Category: Bringover Create

Bringover Reset

/home/myhome/ws/ws1

CodeManager
Window/home/myhome/ws/ws3/home/myhome/ws/ws2

/home/myhome/ws/ws4

To Child Workspace Directory:

Parent: Directories and Files

File Edit

Options: Preview (-n) Quiet (-q)

Show Output...

Comments:

Initiate the transaction by selecting the transaction
button at the bottom of the window.

View transaction output in the Transaction Output
window.

CodeManager: Transaction Output

Transaction
Output Window

bringover -w /home/myhome/ws/ws4 -p
/home/myhome/ws/ws3 -n man/
Parent workspace: /home/myhome/ws/ws3
Child workspace: /home/myhome/ws/ws4

cd /home/myhome/ws/ws3/man/; def.dir.flp

Examined files: 19

Would bring over contents changes: 19

create: man/Makefile
create: man/man5/access_control.5
create: man/man5/Makefile
create: man/man1/Makefile
create: man/man1/tc1putback.1
create: man/man1/def.dir.flg.1
create: man/man1/fileresolve.1
create: man/man1/resolve.1
create: man/man1/resolvetool.1

Copying Files between Workspaces 97

5

General File Copying Information
This section contains background information about copying files between
workspaces.

SCCS History Files

When considering CodeManager file transfer transactions, it is important to
remember that source files are actually derived from SCCS deltas and are
identified by SCCS delta IDs (SIDs). When a file is said to be copied by either a
Putback or Bringover transaction, CodeManager actually acts upon (copies or
merges) the file’s SCCS history file (also known as the “s-dot-file”).

The means by which CodeManager manipulates and merges the history files is
described in detail in Chapter 8, “How CodeManager Merges SCCS Files.”

Viewing Transaction Output

Output from CodeManager transaction commands is viewed in the Transaction
Output window. This window is activated automatically when you invoke one
of the transactions. You can also activate it yourself by choosing the Show
Output button in any of the Transactions window layouts.

98 TeamWare Users Guide

5

Figure 5-2 Transaction Output Window

Note – CodeManager transactions are implemented through command-line
based programs; some portion of the output contains messages related to the
command-line implementation. This manual describes only messages that
apply to the actual transactions. If you are interested in more information
about the underlying command-line based programs, please refer to the
appropriate man pages.

Specifying Directories and Files for Transactions

When you copy files between parent and child workspaces using the Bringover
and Putback transactions, you must specify the directories and files you wish
included in the transaction. The Bringover Create, Bringover Update, and

Copying Files between Workspaces 99

5

Putback layouts of the Transactions window contain a File List pane. The File
List pane is a scrolling text window in which you construct the list of file and
directory names to be included in the transaction.

Figure 5-3 Transactions Window

Grouping Files for Transfer Using File List Programs

In addition to explicitly specifying files for transfer, you can execute programs
that generate that list for you — such a program is called a File List Program (or
FLP). An FLP generates a list of files to stdout ; the Bringover and Putback
transactions read the list of files from stdout and include them in the
transaction.

CodeManager is shipped with a default FLP named def.dir.flp . The FLP
def.dir.flp recursively lists the names of files that are under SCCS control
in directories that you specify in the File List pane (see next section). The files
generated by this (or any) FLP are included for transfer with files that you also
specify in the File List pane.

File List
Pane

100 TeamWare Users Guide

5

If you want to use your own FLPs during a transaction, you can specify their
path names in the File List pane. The File List pane is used for both specifying
file/directory lists and for specifying FLPs. Use the abbreviated menu
immediately above the pane to change between the two modes. Add FLPs to
the list using the point-and-click chooser window that is activated by choosing
the Add FLPs to List item in the File menu (located below the File List pane).
See “Add Files Chooser” on page 102 for more information.

Note – You can create your own FLPs that generate lists of files that are useful
for your project.

Constructing Directory and File Lists in the File List Pane

CodeManager attempts to provide you with a useful initial list of directories
and files in the File List pane. You are free to modify the list in any way you
wish. The initial list is constructed differently for each type of transaction:

• Bringover Create The initial list is empty.

• Bringover Update The initial list is retrieved from the
Codemgr_wsdata/args file in the child workspace.
This file contains a list of arguments specified during
previous Bringover and Putback transactions.

• Putback The initial list is retrieved from the
Codemgr_wsdata/args file in the child workspace.
This file contains a list of arguments specified during
previous Bringover and Putback transactions.

Every workspace contains a Codemgr_wsdata/args file that is maintained
by the CodeManager Bringover and Putback transaction commands. The args
file contains a list of file, directory, and FLP arguments. Initially, the args file
contains the arguments specified when the workspace was created. If you
explicitly specify arguments during subsequent Bringover or Putback
transactions, CodeManager determines if the new arguments are more
encompassing than the arguments already in the args file; if the new
arguments are of a wider scope, the new arguments replace the old.

Note – You can edit the args file at any time to change its contents.

Copying Files between Workspaces 101

5

Selecting Files in the File List Pane
Once a list of files and directories exists in the File List pane, you can include
or exclude any of them for a given transaction. To be included in a transaction,
the file or directory name must be selected. You can select or deselect any
number of names by moving the pointer over them and clicking SELECT. You
can select or deselect the entire list by choosing the Select List or Unselect List
items from the Edit menu.

Loading and Saving Default Lists
You can reload the default list from the workspace args file at any time by
choosing the “Load List from Defaults” item from the File menu. This feature is
useful if you find that you’ve made changes to the list that you do not want to
keep; you can use Load List from Defaults to revert the list to its default state.

If you change the default list and wish to make the new list the default in the
workspace args file, choose the “Save List to Defaults” item from the File
menu. This is especially useful if you have eliminated files or directories from
the list. If you add files, CodeManager automatically adds them to the args
file for you as part of a Bringover or Putback transaction.

Changing the Contents of the File List Pane
You add files and directories to the File List pane by using the point-and-click,
CodeManager Chooser. See “Add Files Chooser” on page 102 for details.

You delete files and directories from the File List pane using:

• The Clear List and Delete items from the Edit menu

• The Clear All Choices item from the File List pane pop-up menu

Note – You can specify the “.” directory as the sole item in the file list to
designate that the entire workspace be copied to the child. Enter the “.”
character using the Name text field in the CodeManager Chooser.

102 TeamWare Users Guide

5

Add Files Chooser
You can use the Add Files chooser to conveniently add directories and files to
the Transaction window File List pane.1 The CodeManager chooser is a pop-up
window that contains a point-and-click chooser pane that you can use to
search for and select directories and files. Activate the chooser window using
the Add Files to List item in the File menu.

Figure 5-4 The Add Files to List Window

Use the chooser to navigate down through the file system hierarchy by double-
clicking SELECT on any directory icon. Double-click SELECT on the

directory icon to move hierarchically upward in the file system. To move
directly to a directory, enter its path name in the Name text field and select the
Load Directory button.

Note – The chooser does not permit you to navigate outside of the workspace
file system.

1. The CodeManager Chooser is also used to add FLPs to the File List pane. The appropriate version of the
chooser is automatically invoked when you change the File List pane mode using the abbreviated menu
immediately above the pane.

Copying Files between Workspaces 103

5

To add a file or directory to the File List pane:

1. Select files and directories by moving the pointer over any file or directory
icon and clicking SELECT.
You can extend the selection to include any number of additional files and
directories by moving the pointer over them and clicking ADJUST.

You can select entire groups of files by clicking and holding SELECT in an
empty portion of the chooser and dragging the bounding box to surround
any number of icons. When you release the button, all the files within the
bounding box are selected.

You can also add a file to the File List pane by specifying its path name in
the Name text field. If you type Return, the entry will be entered
immediately; you may also enter it by choosing the Add Files to List button.

2. Select the Add File to List button to add the file to the File List pane.

Note – A check mark in a file icon indicates that the file is checked out from
SCCS.

104 TeamWare Users Guide

5

Copying Files from a Parent to a Child Workspace (Bringover)
All CodeManager file transfer transactions are performed from the perspective
of the child workspace; hence Bringover transactions “bring over” groups of
files from the parent to the child workspace. There are two types of Bringover
transactions:

• Bringover Create Copy groups of files from a parent workspace to a
nonexistent child workspace; the child is created as a
result of the Bringover Create transaction.

• Bringover Update Copy files to an existing workspace; the contents of
the child are updated as result of the Bringover
Update transaction.

Note – You can use the Bringover Update and Create transactions to import
directories and files from directories that are not CodeManager workspaces.
You cannot Putback files to directories that are not workspaces.

Creating a New Child Workspace (Bringover Create)

You use the CodeManager Bringover Create transaction to copy groups of files
from a parent workspace to a child workspace that is created as a result of the
Bringover transaction. You can display the Bringover Create layout of the
Transactions window by any of the following methods:

• Drag and drop a workspace icon onto an empty space in the Workspace
Graph pane.

• Select a workspace icon and choose the Bringover ⇒ Create item from the
Transactions menu.

• Select a workspace icon and choose the Bringover ⇒ Create item from the
Workspace Graph pane pop-up menu.

• Choose the Bringover Create item from the Category menu if the
Transactions window is already displayed.

Copying Files between Workspaces 105

5

Figure 5-5 Transactions Window Bringover Create Layout

The Bringover Create transaction operates on files that are under SCCS control.
When files are said to be copied to the child, the SCCS history file is copied and
its g-file (the most recent delta) is materialized through the SCCS get
command.

To initiate a Bringover Create transaction, follow these five basic steps:

1. Specify the parent workspace.1

If you select a workspace icon on the Workspace Graph pane prior to
displaying the Bringover Create window, its path name is automatically
inserted in the From Parent Workspace Directory text field. You can edit and
change the contents of the text field by hand at any point. You can specify
the absolute path name of any accessible workspace; it need not be
displayed in the Workspace Graph pane.

1. You can also specify the path name of directories that are not workspaces to import directories and files into
the new workspace.

106 TeamWare Users Guide

5

2. Specify the child workspace.
Type the absolute path name of the child that will be created and populated
with files from the parent workspace in the To Child Workspace Directory
text field.

3. Create a list of directory and file names in the File List Pane.1

You can copy all or part of the contents of the parent workspace to the child.
You specify the directories and files you wish to copy in the File List pane.
See Section , “Specifying Directories and Files for Transactions,” on page 98
for information about specifying directory and file arguments.

4. Select options.

Preview Select this option to preview the results of the
transaction. If you invoke the Bringover Create
transaction with this option selected, the
transaction will proceed without actually
transferring any files. You can monitor the output
messages in the Transaction Output window (Show
Output) as if the transaction were actually
proceeding.

Verbose Select this option to increase the information
displayed in the Transaction Output window. By
default, a message is displayed for each created,
updated, or conflicting file. The Verbose option
causes bringover to print a message for all files,
including those that are not brought over. If both
the Verbose option and the Quiet option are
specified, the Quiet option takes precedence.

Quiet Select this option to suppress the output of status
messages to the Transaction Output window (Show
Output).

Skip SCCS gets Select this option to inhibit the automatic
invocation of the SCCS get program as part of the
Bringover transaction. Normally g-files are
extracted after they are brought over. This option

1. If you are using your own FLPs to generate file lists, you also specify them in the File List pane.

Copying Files between Workspaces 107

5

improves file transfer performance although it
shifts the responsibility to the user to do the
appropriate get s at a later time.

Force Conflicts
Select this option to cause all updates to be treated
as conflicts. This option is not applicable to the
Bringover Create transaction, but is applicable to
the Bringover Update transaction.

5. Select the Bringover button to initiate the transaction.

Notes about the Bringover Create Transaction
• Checked-out files

When, during a Bringover Create transaction, CodeManager encounters files
that are checked out from SCCS in the parent, it takes action based on
preserving the consistency of the files and any changes to the file that might
be in-process.

Table 5-1 shows the different actions that CodeManager takes when it
encounters checked-out files.

• As the transaction proceeds, status information is displayed in the
Transaction Output window. Messages are displayed as files are processed
during the transaction and a transaction summary is displayed when
execution is completed.

Table 5-1 Effects of Checked-out Files on Bringover Create Transactions

File Checked-out
in Parent

CodeManager Action

g-file and latest
delta differ

• Issue a warning
• Process file

g-file and latest
delta are identical

• Process file

108 TeamWare Users Guide

5

• If you specify relative path names for directory and file names, be aware that
they are interpreted as being relative from the top-level (root) directory of
the workspace hierarchy (which is assumed to be the same in both parent
and child). If you specify these file names using absolute path names, the file
must be found in one of the two workspaces, or it will be ignored.

• The parent and child workspaces must be accessible through the file system.
Either automounter or NFS® mounts can be used.

• Action taken during the Bringover Create transaction can be reversed using
the Undo transaction. Refer to Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 124 for details.

• While CodeManager is reading and examining files in the parent workspace
during a Bringover transaction, it obtains a read-lock for that workspace.
When it is manipulating files in the child workspace, it obtains a write-lock.

Read-locks may be obtained concurrently by multiple CodeManager
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock can be
in force at any time; no CodeManager command may write to a workspace
while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

If you attempt to bring over files into a workspace that is locked, you will be
so notified with a message that states the name of the user that has the lock,
the command they are executing, and the time they obtained the lock.

• Accessibility (by users) to workspaces is controlled by the
Codemgr_wsdata/access_control file in each workspace. Make sure
that “bringover-to” and “bringover-from” access for your workspaces are
set appropriately. Refer to Section , “Controlling Access to Workspaces,” on
page 77 for more information.

bringover: Cannot obtain a write lock in workspace
“/tmp_mnt/home/my_home/projects/mpages”
because it has the following locks:

Command: bringover (pid 20291), user: jack, machine: holiday,
time: 12/02/91 16:25:23
 (Error 2021)

Copying Files between Workspaces 109

5

• CodeManager records information regarding the Bringover transaction in
the Codemgr_wsdata/history file. This information can be useful to you
as a means of tracking changes that have been made to files in your
workspaces. Refer to “Viewing Workspace Command History” on page 87
for further information regarding these files.

• CodeManager executes commands during a Bringover transaction and
expects to find them in your command search path. Make sure that your
PATH variable includes the directory in which CodeManager commands are
installed.

110 TeamWare Users Guide

5

Updating an Existing Child Workspace (Bringover Update)

You use the CodeManager Bringover Update transaction to update an existing
child workspace. You can display the Bringover Update layout of the
Transactions window by any of the following methods:

• Drag and drop a workspace icon on top of the icon of a child workspace.

• Select a child workspace icon and choose the Bringover ⇒ Update item from
the Transactions menu.

• Select a child workspace icon and choose the Bringover ⇒ Update item from
the Workspace Graph pane pop-up menu.

• Choose the Bringover Update item from the Category menu if the
Transactions window is already displayed.

Figure 5-6 Transactions Window Bringover Update Layout

Copying Files between Workspaces 111

5

The Bringover Update transaction transfers files that are under SCCS control.
When a file exists in the parent workspace but not in the child, its SCCS history
file is copied to the child and its g-file (the most recent delta) is materialized
through the SCCS get command. When a file exists in both workspaces and
has changed only in the parent, CodeManager copies the new deltas from the
parent to the child. When a file has changed in both workspaces, CodeManager
moves the child’s new deltas into an SCCS branch.

To initiate a Bringover Update transaction follow these five basic steps:

1. Specify the child workspace.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Bringover Update window, its name is automatically inserted
in the To Child Workspace Directory text field. You can insert new path
names, and edit and change the text field by hand at any point.

2. Specify the parent workspace.1

The name of the selected child’s parent workspace is automatically inserted
in the From Parent Workspace text field. The parent workspace name is
retrieved from the CodeManager metadata file named
Codemgr_wsdata/parent .

You can change a child workspace’s parent for the duration of a single
Bringover Update transaction by specifying the new parent’s path name in
the From Parent Workspace text field. You change the parent for that
transaction only; if you wish to permanently change a workspace’s parent,
use the Reparent item on the CodeManager window Edit menu or drag the
child workspace icon over the new parent’s icon. See Section , “Reparenting
a Workspace,” on page 71 for details regarding reparenting workspaces.

Note – If you enter the child workspace name by hand and no icons are
selected in the Workspace Graph pane, CodeManager automatically updates
the parent field if you rechoose the Bringover Update item in the Category
menu.

1. You can also specify the path name of directories that are not workspaces to import files and directories into
the workspace.

112 TeamWare Users Guide

5

3. Create a list of directory and file names in the File List Pane.1

You can copy all or part of the contents of the parent workspace to the child.
You specify the directories and files you wish to copy in the File List pane.
See Section , “Specifying Directories and Files for Transactions,” on page 98
for information about specifying directory and file arguments.

4. Select options.

Preview Select this option to preview the results of the
transaction. If you invoke the Bringover Update
transaction with this option selected, the
transaction will proceed without actually
transferring any files. You can monitor the output
messages in the Transaction Output window (Show
Output) as if the transaction were actually
proceeding.

Verbose Select this option to increase the information
displayed in the Transaction Output window. By
default, a message is displayed for each created,
updated, or conflicting file. The Verbose option
causes bringover to print a message for all files,
including those that are not brought over. If both
the Verbose option and the Quiet option are
specified, the Quiet option takes precedence.

Quiet Select this option to suppress the output of status
messages to the Transaction Output window (Show
Output).

Skip SCCS gets Select this option to inhibit the automatic
invocation of the SCCS get program as part of the
Bringover transaction. Normally g-files are
extracted after they are brought over. This option
improves file transfer performance although it
shifts the responsibility to the user to do the
appropriate get s at a later time.

1. If you are using your own FLPs to generate file lists, you also specify them in the File List pane.

Copying Files between Workspaces 113

5

Force Conflicts
Select this option to cause all file updates to be
treated as conflicts.

5. Invoke the Bringover button to initiate the transaction.

Notes about the Bringover Update Transaction
• Checked-out files

When, during a Bringover Update transaction, CodeManager encounters
files that are checked-out from SCCS, it takes action based on preserving the
consistency of the files and any changes to the file that might be in process.

Table 5-2 shows the different actions that CodeManager takes when it
encounters checked-out files.

114 TeamWare Users Guide

5

• As the transaction proceeds, status information is displayed in the
Transaction Output window. Messages are displayed as files are processed
during the transaction and a transaction summary is displayed when
execution is completed.

• Bringover Update transactions often produce conflicts (when files are
changed in both the parent and child). When this occurs, you are so notified
by messages in the Transaction Output window. See Chapter 6, “Resolving
Conflicts,” for details about resolving conflicts.

• If you specify relative path names for directory and file names be aware that
they are interpreted as being relative from the top-level (root) directory of
the workspace hierarchy (which is assumed to be the same in both parent
and child). If you specify these file names using absolute path names, the file
must be found in one of the two workspaces or it will be ignored.

• The parent and child workspaces must be accessible through the file system.
Either automounter or NFS® mounts can be used.

• Action taken during the Bringover Update transaction can be reversed using
the Undo transaction. Refer to Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 124 for details.

Table 5-2 Effects of Checked-out Files on Bringover Update Transactions

File Checked-out
in Parent

File Checked-out
in Child

CodeManager Action

g-file and latest
delta differ

• Issue a warning
• Process file

g-file and latest
delta are identical

• Process file

g-file and latest
delta are identical

• Uncheckout the file
• Process the file
• Checkout the file

g-file and latest
delta differ

• Create a conflict

g-file is readonly • Issue a warning
• Do not process the file

Copying Files between Workspaces 115

5

• While files are read and examined in the parent workspace during the
transaction, CodeManager obtains a read-lock for that workspace. When
CodeManager manipulates files in the child workspace, it obtains a
write-lock.

Read-locks may be obtained concurrently by multiple CodeManager
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock may
be in force at any time; no CodeManager command may write to a
workspace while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

If you attempt to bring over files into a workspace that is locked, you will be
so notified with a message that states the name of the user that has the lock,
the command they are executing, and the time they obtained the lock.

• Accessibility (by users) to workspaces is controlled by the
Codemgr_wsdata/access_control file in each workspace. Ensure that
“bringover-to” and “bringover-from” access for your workspaces are set
appropriately. Refer to Section , “Controlling Access to Workspaces,” on
page 77 for more information.

• Bringover Update transaction information is recorded in the
Codemgr_wsdata/history file. This information can be useful as a means
of tracking changes that have been made to files in your workspaces. Refer
to “Viewing Workspace Command History” on page 87 for further
information regarding these files.

• CodeManager executes a number of programs as part of the Bringover
Update transaction and expects to find them in your command search path.
Ensure that your PATH variable includes the directory in which
CodeManager commands are installed.

bringover: Cannot obtain a write lock in workspace
“/tmp_mnt/home/my_home/projects/mpages”
because it has the following locks:

Command: bringover (pid 20291), user: jack, machine: holiday,
time: 12/02/91 16:25:23
 (Error 2021)

116 TeamWare Users Guide

5

Bringover Action Summary

Table 5-3 summarizes the actions that CodeManager takes during Bringover
transactions.

Table 5-3 Summary of CodeManager Action during a Bringover Transaction

File in Parent File in Child Action by CodeManager

Exists Does not exist Create the file in the child

Does not exist Exists None

Unchanged Unchanged None

Unchanged Changed None

Changed Unchanged Update file in the child. (Merge SCCS
files and extract [via get] a g-file that
consists of the most recent delta.)

Changed Changed Merge SCCS history files in the child, cre-
ate conflict, and notify user of the con-
flict. Current line of work in the child is
moved to an SCCS branch.

Copying Files between Workspaces 117

5

Copying Files from a Child to a Parent Workspace (Putback)
All CodeManager file transfer transactions are performed from the perspective
of the child workspace; hence the Putback transaction “puts back” groups of
files from the child to the parent workspace.

You use the Putback transaction to make the parent and child workspace
identical with respect to the set of files that you specify for the Putback
transaction. Use the Putback transaction after you make changes and test them
in the child workspace. Putting the files back into the parent usually makes
them accessible to other developers.

During a Putback transaction, CodeManager may find that it cannot transfer
files from the child to the parent workspace without endangering the
consistency of the data in the parent. If this occurs, no files are transferred and
the Putback transaction is said to be blocked. A Putback transaction is blocked
because:

• A file in either workspace is currently checked out from SCCS.

• A file in the parent workspace contains changes not yet brought over into
the child workspace.

• A file conflict in either workspace is currently unresolved.

The Putback transaction transfers files that are under SCCS control. When a file
exists in the child workspace but not in the parent, its SCCS history file is
copied to the parent and its g-file (the most recent delta) is materialized
through the SCCS get command. When a file exists in both workspaces and
has changed only in the child, CodeManager copies the new deltas from the
child to the parent. When a file has changed in the parent, or both the parent
and child, the Putback transaction is blocked.

Updating a Parent Workspace Using Putback

You can display the Putback layout of the Transactions window by any of the
following methods:

• Drag and drop a child workspace icon onto a parent workspace icon.

• Select a workspace icon and choose the Putback item from the Transactions
menu.

118 TeamWare Users Guide

5

• Select a workspace icon and choose the Putback item from the Workspace
Graph pane pop-up menu.

• Choose the Putback item from the Category menu if the Transactions
window is already displayed.

Figure 5-7 Putback Transactions Window Layout

Copying Files between Workspaces 119

5

To initiate a Putback transaction, follow these six basic steps:

1. Specify the child workspace.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Putback window, its name is automatically inserted in the
From Child Workspace Directory text field. You can insert new path names,
and edit and change the text field by hand at any point.

2. Specify the parent workspace.
The name of the selected child’s parent workspace is automatically inserted
in the From Parent Workspace text field. The parent workspace name is
retrieved from the CodeManager metadata file named
Codemgr_wsdata/parent .

You can change a child workspace’s parent for the duration of a single
Putback transaction by specifying the new parent’s path name in the To
Parent Workspace text field. You change the parent for that transaction only;
if you wish to permanently change a workspace’s parent, use the Reparent
item on the CodeManager window Edit menu or drag the child workspace
icon over the new parent’s icon. See Section , “Reparenting a Workspace,”
on page 71 for details regarding reparenting workspaces.

Note – If you enter the child workspace name by hand and no icons are
selected in the Workspace Graph pane, CodeManager automatically updates
the parent field if you rechoose the Putback item in the Category menu.

3. Create a list of directory and file names in the File List Pane.1

You can copy all or part of the contents of the parent workspace to the child.
You specify the directories and files you wish to copy in the File List pane.
See Section , “Specifying Directories and Files for Transactions,” on page 98
for information about specifying directory and file arguments.

4. Select options.

Preview Select this option to preview the results of the
transaction. If you invoke the Putback transaction
with this option, the transaction will proceed
without actually transferring any files. You can

1. If you are using your own FLPs to generate file lists, you also specify them in the File List pane.

120 TeamWare Users Guide

5

monitor the output messages in the Transaction
Output window (Show Output) as if the
transaction were actually proceeding.

Verbose Select this option to increase the information
displayed in the Transaction Output window. By
default, a message is displayed for each created,
updated, or conflicting file. The Verbose option
causes bringover to print a message for all files,
including those that are not brought over. If both
the Verbose option and the Quiet option are
specified, the Quiet option takes precedence.

Quiet Select this option to suppress the output of status
messages to the Transaction Output window (Show
Output).

Skip SCCS gets Select this option to inhibit the automatic
invocation of the SCCS get program as part of the
Bringover transaction. Normally g-files are
extracted after they are brought over. This option
improves file transfer performance although it
shifts the responsibility to the user to do the
appropriate get s at a later time.

Auto Bringover
Select this option to cause CodeManager to
automatically start a Bringover Update transaction
to update files in the child if the Putback
transaction is blocked.

5. Enter a comment.
Enter a comment that describes the Putback transaction. This comment is
included with the transaction log written into the file called
Codemgr_wsdata/history in the parent workspace. The comment can be
up to 8Kbytes long.

6. Invoke the Putback button to initiate the transaction.

Notes about the Putback Transaction
• Checked-out files

Copying Files between Workspaces 121

5

When, during a Putback transaction, CodeManager encounters files that are
checked-out from SCCS, it takes action based on preserving the consistency
of the files and any changes to the file that might be in-process.

Table 5-4 shows the different actions that CodeManager takes when it
encounters checked-out files.

• As the transaction proceeds, status information is displayed in the
Transaction Output window. Messages are displayed as files are processed
during the transaction, and a transaction summary is displayed when
execution is completed.

• If you specify relative path names for directory and file names, be aware that
they are interpreted as being relative from the top-level (root) directory of
the workspace hierarchy (which is assumed to be the same in both parent
and child). If you specify these file names using absolute path names, the file
must be found in one of the two workspaces or it will be ignored.

• The parent and child workspaces must be accessible through the file system.
Either automounter or NFS mounts can be used.

• Action taken during the Putback transaction can be reversed using the Undo
transaction. Refer to Section , “Reversing Bringover and Putback
Transactions with Undo,” on page 124 for details.

Table 5-4 Effects of Checked-out Files on Putback Transactions

File Checked-out
in Parent

File Checked-out
in Child

CodeManager Action

g-file and latest
delta differ

• Block Putback transaction

g-file and latest
delta are identical
(or g-file does not
exist)

• Uncheckout the file
• Process the file
• Check-out the file

g-file and latest
delta differ

• Block Putback transaction

g-file and latest
delta are identical

• Process the file

g-file does not exist • Issue a warning
• Process the file

122 TeamWare Users Guide

5

• While files are read and examined in the child workspace during the
transaction, CodeManager obtains a read-lock for that workspace. When
CodeManager manipulates files in the parent workspace it obtains a
write-lock.

Read-locks may be obtained concurrently by multiple CodeManager
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock may
be in force at any time; no CodeManager command may write to a
workspace while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

If you attempt to put back files into a workspace that is locked, you are
notified with a message such as the following that states the name of the
user that has the lock, the command they are executing, and the time they
obtained the lock.

• Accessibility (by users) to workspaces is controlled by the
Codemgr_wsdata/access_control file in each workspace. Ensure that
“putback-to” and “putback-from” access for your workspaces are set
appropriately. Refer to Section , “Controlling Access to Workspaces,” on
page 77 for more information.

• Putback transaction information is recorded in the file called
Codemgr_wsdata/history . This information can be useful as a means of
tracking changes that have been made to files in your workspaces. Refer to
“Viewing Workspace Command History” on page 87 for further information
regarding these files.

• CodeManager executes a number of programs as part of the Putback
transaction and expects to find them in your command search path. Make
sure that your PATH variable includes the directory in which CodeManager
is installed.

putback: Cannot obtain a write lock in workspace
“/tmp_mnt/home/my_home/projects/mpages”
because it has the following locks:

Command: bringover (pid 20291), user: jack, machine: holiday,
time: 12/02/91 16:25:23
 (Error 2021)

Copying Files between Workspaces 123

5

Putback Action Summary

Table 5-5 summarizes the actions that CodeManager takes during Putback
transactions.

1. If a file is checked out in either the parent or the child, the transaction is blocked. See Table 5-4 for more
information about putting back files that are checked out.

2. If a conflict is unresolved in either the parent or the child, the transaction is blocked.

Table 5-5 Summary of CodeManager Action during a Putback Transaction

File in Parent File in Child Action by CodeManager

Exists Does not exist Block Putback and notify user.

Does not exist Exists Create the file in the parent.

Unchanged Unchanged None.

Unchanged Changed Update file in the parent. (Merge SCCS
files and extract [via get] a g-file that
consists of the most recent delta.)

Changed Unchanged Block Putback, notify user.

Changed Changed Block Putback, notify user.

Checked out Checked out1 Block Putback, notify user.

Unresolved conflict Unresolved conflict2 Block Putback, notify user.

124 TeamWare Users Guide

5

Reversing Bringover and Putback Transactions with Undo
You can reverse (undo) the action of the most recent Bringover or Putback
transaction in a workspace by using the Undo Transactions window layout.
You Undo the Putback or Bringover transaction in the destination workspace
(the one in which the files are changed). You can undo a Bringover or Putback
transaction as many times as you like until another Bringover or Putback
transaction makes changes in that workspace; only the most recent
Bringover/Putback transaction can be undone.

If a file is updated or found to be in conflict by the Putback or Bringover
transaction, the Undo transaction restores the file to its original state. If a file is
“new” (created by the Bringover/Putback transaction), then it is deleted.

Figure 5-8 Undo Transactions Window Layout

Copying Files between Workspaces 125

5

To initiate an Undo transaction, follow these three basic steps:

1. Specify the workspace in which to reverse the transaction.
If you select a workspace icon on the Workspace Graph pane prior to
displaying the Undo layout, its name is automatically inserted in the
Workspace Directory text field. You can insert a new path name followed by
a Return, and edit and change the text field by hand at any point.

2. Click on the Undo button to initiate the transaction.

Notes about the Undo Transaction
• When it is manipulating files in the specified workspace, CodeManager

obtains a write-lock for the workspace. Only a single write-lock may be in
force at any time; no CodeManager command may write to a workspace
while a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace. If CodeManager cannot
obtain the lock, it will display an error message and abort.

• CodeManager records information regarding the Undo transaction in the
Codemgr_wsdata/history file. This information can be useful as a means
of tracking changes that have been made to files in your workspaces. Refer
to “Viewing Workspace Command History” on page 87 for further
information regarding these files.

How the Undo Transaction Works

When the Bringover and Putback transactions update or create files in the
destination workspace (the child in the case of Bringover, the parent in the case
of Putback), they make backup copies of the originals before they actually
make changes to the files. All existing files are copied to the
Codemgr_wsdata/backup/files directory in the destination workspace,
and the names of all newly created files are entered into a file called
Codemgr_wsdata/backup/new .

126 TeamWare Users Guide

5

Figure 5-9 How Bringover Transactions Are Backed Up

When you decide that you would like to cause a workspace to revert to its
state before a Bringover/Putback transaction, the Undo transaction does the
following:

• Copies the backed-up files from the Codemgr_wsdata/backup/files
directory over the transferred files

• Deletes files whose names are contained in the
Codemgr_wsdata/backup/new file

The next Bringover/Putback transaction overwrites all data in the
Codemgr_wsdata/backup directory.

Note – All files transferred by CodeManager are under SCCS control. Usually,
only SCCS history files are backed up during Bringover and Putback
transactions; if the files are subsequently restored, the Undo transaction
extracts the appropriate g-file (most recent delta) from the history file. If,
however, a file in the child is checked out (using sccs edit) during the

Codemgr_wsdata/backup/new
 D p

Ap Bp Cp

Ac Bc Cc

Parent

Child

Child Ac Bc Cc

Codemgr_wsdata/backup/files

Bringover

Dp

Ap Bp Cp Dp

(File name written to new)

Copying Files between Workspaces 127

5

Bringover transaction,1 CodeManager backs up both the g-file and the SCCS
history file in order to preserve the work in progress; the g-file and the SCCS
history file are copied to the Codemgr_wsdata/backup/files directory and
restored by the Undo transaction.

1. CodeManager permits files to be checked out during a Bringover transaction, but not during a Putback
transaction. If a file that is being put back is checked out, an error condition exists.

128 TeamWare Users Guide

5

Renaming, Moving, or Deleting Files
When you rename, move, or “delete” files as described in this section,
CodeManager tracks those changes so that it knows how to manage the altered
files during Bringover and Putback transactions. Although CodeManager
processes these files automatically, it is helpful for you to understand some of
the ramifications of renaming, moving, or deleting files.

Note – For the purposes of this discussion, the terms “rename” and “move” are
considered to be the same action and are referred to only as “rename.”

This section describes the best ways to delete and rename files.

Renaming Files

When you bring over or put back files that you (or another user) have
renamed, CodeManager must decide whether the files have been newly
created or whether they existed previously and have been renamed.

For example, in the following figure, the name of file C in the parent is
changed to D. When CodeManager brings the file over to the child it must
decide which of the following is true:

• D has been newly created in the parent.

• It is the same file as C in the child, only with a new name.

Copying Files between Workspaces 129

5

Figure 5-10 File “C” Renamed to “D”

If the same case was the subject of a Putback operation, the same problem
would apply: Is “C” new in the child, or has it been renamed from some other
file?

The action that CodeManager takes is very different in each case. If it is a new
file in the parent, CodeManager creates it in the child; if it has been renamed in
the parent, CodeManager renames file “C” to “D” in the child.

CodeManager stores information in the SCCS history files that enables it to
identify files even if their names are changed. You may have noticed the
following message when viewing Bringover and Putback output:

CodeManager examines all files involved in a Bringover Update or Putback
transaction for potential rename conditions before it begins to propagate files.

Examined files:

Rename
C

Parent

Child

Bringover

D

Parent

A B

DA B

CA B

130 TeamWare Users Guide

5

When CodeManager encounters renamed files, it propagates the name change
to the child in the case of Bringover, and to the parent in the case of Putback.
You are informed of the change in the Transaction Output window with the
following messages:

Name History
As mentioned in the previous section, CodeManager stores information about
a file’s name history in its SCCS history file. The name history is simply a list
of the workspace-relative names that have been given to the file during its
lifetime. This information is used by CodeManager to differentiate between
files that have been renamed and those that are new. When you rename a file,
CodeManager updates the file’s name history during the next Bringover or
Putback transaction that includes it. When a name history is updated, you are
notified in the Transaction Output window.

Rename Conflicts

In rare cases, a file’s name is changed concurrently in parent and child
workspaces. This is referred to as a rename conflict. For example, the name of
file “C” is changed to “D” in the parent, and concurrently to “E” in the child.

rename from: old_filename
 to: new_filename

Names Summary:
1 updated parent’s name history
1 updated children’s name history

Copying Files between Workspaces 131

5

Figure 5-11 File “C” is Concurrently Renamed in both Parent and Child Workspaces

When this occurs, CodeManager determines that both “D” in the parent and
“E” in the child are actually the same file, but with different names. In the case
of rename conflicts:

• CodeManager reports the conflict using the name of the file in the child.

• CodeManager always resolves the conflict by automatically changing the
name of the file in the child workspace to the current (renamed) name in the
parent; the name of the file from the parent is always chosen, even in the case
of a Putback transaction.

When CodeManager encounters a rename conflict, you are notified in the
Transaction Output window with the following messages:

rename conflict: name_in_child
rename from: name_in_child
 to: name_in_parent

Rename
C

Child

Child

Bringover

E

Parent

A B

DA B

EA B

Rename
C

Parent
DA B

132 TeamWare Users Guide

5

Deleting Files

Deleting files from a CodeManager workspace is a little trickier than it first
appears. Deleting a file from a workspace with the rm command causes
CodeManager to think that the file has been newly created in the workspace’s
parent or child.

Take for instance, the following example. The file “C” is removed from the
child workspace using the rm command; later the Bringover Update
transaction is used to update the child.

Figure 5-12 File “C” Is Removed From The Child Using the rm Command, Then
Created Again by Bringover

CodeManager examines the two workspaces and determines that the file “C”
exists in the parent and not in the child — following the usual CodeManager
rules, it creates “C” in the child.

C Removed Using rmC
Child

Child

Bringover

Parent

A B

CA B

A B

C
Parent

A B

C Created by BringoverC

Copying Files between Workspaces 133

5

The recommended method for “deleting” files in workspaces is to rename
them out of the way using a convention agreed upon by everyone working on
the project. One recommended method is to rename files you wish to “delete”
so that they begin with the.del- prefix. For example:

This method has a number of advantages:

• The file is no longer seen using default SunOS commands such as ls .

• CodeManager does not recreate the file.

• CodeManager propagates the change throughout the workspace hierarchy
as a rename, “deleting” the file in all workspaces.

• The file remains available to later reconstruct releases for which it was a part
(for example, if it was part of a freezepoint (see Part 3 Version Tool and Part 4
FreezePoint for more information about freezepoints).

Notes about Renaming Files
• When you rename a file, you must rename both the g-file and the SCCS

history file.

• During transactions, CodeManager processes files individually. When you
rename a directory, each file in the directory is evaluated separately as if
each had been renamed individually.

• When files are renamed, CodeManager propagates the change throughout
the workspace hierarchy using the same rules used with file content updates
and conflicts.

example% mv module.c .del-module.c
example% mv SCCS/s.module.c SCCS/s..del-module.c

134 TeamWare Users Guide

5

135

Resolving Conflicts 6

When files change concurrently in both a parent and child workspace, they are
said to be in conflict. Neither the version of the file in the child nor the version
in the parent can be copied to the other without overwriting changes. Conflicts
are detected during Bringover Update transactions. You must resolve conflicts
in the child before the conflicting file(s) can be put back to the parent.
CodeManager assists you in resolving conflicts.

This chapter discusses the process by which CodeManager detects conflicts
and then assists you in resolving these conflicts. Figure 6-1 outlines the
CodeManager conflict resolution process.

Note – You can also resolve conflicts using the CLI. See the resolve (1) man
page for more information.

136 TeamWare Users Guide

6

Figure 6-1 Conflict Resolution Process

You execute the Bringover Update transaction.
CodeManager:
• Detects conflicts
• Merges deltas in the child workspace
• Enters file names in child conflicts file
• Notifies user of conflicts

As part of the Resolve transaction, CodeManager:
1. Reads the conflicts file
2. Lists conflicted files in the File List Pane of the

Resolve window
3. Extracts the parent, child and common ancestor

deltas from the next file in its list

From the Resolve window, you invoke FileMerge to
resolve differences between the parent and child
deltas, creating a “Merged Result. CodeManager
passes the names of the deltas to be compared to
FileMerge.

Workspace: /home/myhome/ws/manpages

man/man1/bringover.1

man/man1/def.dir.flg.1

man/man1/putback.1

man/man1/resolve.1

.”

.” Copyright (c) 1991 by Sun Mi-
crosystems, Inc.
.”
.” @(#)putback.11.1191/10/23 SMI
.”
.”
.TH PUTBACK 1 “07 Oct 1991”
.SH NAME
putback \- copy files from a child

Child vs Ancestor Parent vs Ancestor

Merged Result
.”
.” Copyright (c) 1991 by SunSoft
.”
.” @(#)putback.11.1191/10/23 SMI
.”
.TH 1 “05 Oct 1991”
.TH PUTBACK 1 “07 Oct 1991”

.SH NAME
putback \- copy files from a child workspace to its parent workspace

.”

.” Copyright (c) 1991 by SunSoft

.”

.” @(#)putback.11.1191/10/23 SMI

.”

.TH 1 “05 Oct 1991”

.TH PUTBACK 1 “07 Oct 1991”

.SH NAME
putback \- copy files from a child
workspace to its parent workspace

You execute the Resolve transaction, selecting or
specifying the name of the child workspace that
contains the conflicts.

After you save the Merged Result with FileMerge,
CodeManager:
1. Creates a new delta in the SCCS history that

contains the Merged Result you created with
FileMerge

2. Extracts deltas from the next file in the list (if
present) and passes them to FileMerge

filemerge — Ancestor File:/home/myhome/ws/manpages/man/man1/putback.1.A

CodeManager: Transactions

FileMerge Program

Resolve Transactions Window

Category: Resolve

Files in Conflict

FileMerge... Load Conflicts

Resolving Conflicts 137

6

Detecting Conflicts
Before you can resolve conflicts, CodeManager must detect the conflict and
prepare the history files of the conflicting files for resolving. These two
processes are described in this section.

Detecting Conflicts during Bringover Update Transactions

Usually, the conflict resolution process begins when you attempt to put back
files that have changed in both the parent and child workspaces. The Putback
transaction blocks the transfer of files from the child to the parent because the
version of the file from the child will overwrite changes made in the parent.

After the Putback transaction is blocked, you must use the Bringover Update
transaction to update the child.1 If, during the Bringover transaction,
CodeManager determines that the file in the child has also changed, a conflict
exists. All files included in the Bringover Update transaction that are not in
conflict are copied or updated normally.

The following is an example of output from a Bringover Update operation in
which two conflicts were found.

1. If Putback is executed with the Auto Bringover option specified, then the Bringover transaction is initiated
automatically by CodeManager.

138 TeamWare Users Guide

6

Figure 6-2 Transaction Output with File Conflicts

Preparing Files for Conflict Resolution

When a conflict is encountered during a Bringover Update transaction,
CodeManager takes special steps to prepare that file so that you can resolve the
conflict.

CodeManager incorporates the deltas created in the parent into the SCCS
history file in the child. The parent and child deltas are placed on separate
branches in the child SCCS history file. After the deltas are merged, the history
file in the child contains:

• Delta(s) created in the parent
• Delta(s) created in the child
• The delta from which the two versions of the file are both descended (their

common ancestor)

Note – VersionTool enables you to view graphical depictions of SCCS delta
histories (including branches).

Resolving Conflicts 139

6

Access to the three deltas (common ancestor, parent, and child) in the child
enables you to use the CodeManager Resolve transaction and FileMerge
command to compare the parent and child deltas — both to their common
ancestor, and to each other.

In addition to merging deltas, CodeManager adds the name of the conflicted
file to the child’s Codemgr_wsdata/conflicts file. The conflicts file is a
text file that contains the names of all files in that workspace with unresolved
conflicts.

The stage is set for you to resolve the conflicts using the CodeManager Resolve
transaction.

Resolving Conflicts
The two tools that you use to resolve conflicts are:

• CodeManager Resolve Transactions window

• FileMerge

Resolve Transaction

The Resolve layout of the Transactions Window facilitates resolving conflicts
detected during Bringover Update transactions. The Resolve transaction
coordinates the merging process, acting as intermediary between you and the
file-merging program — FileMerge.

140 TeamWare Users Guide

6

Figure 6-3 Resolve Transactions Window

As previously mentioned, when CodeManager detects a conflict during a
Bringover Update transaction, it does the following:

• Merges new deltas from the parent into the SCCS history in the child

• Enters the file’s path name in the child’s Codemgr_wsdata/conflicts
file

Resolving Conflicts 141

6

To resolve conflicts in a workspace, follow these four steps:

1. Double-click SELECT on the icon of a workspace that contains conflicted
files.
The Resolve layout of the Transaction Window is automatically activated
with the names of its conflicted files displayed in the File List Pane.

2. Select a file in the File List Pane and then invoke the FileMerge selection
button.
CodeManager starts the FileMerge program and begins to process the list of
files from the File List Pane. For the next file in the list, CodeManager
extracts the parent delta, the child delta, and the common ancestor from the
SCCS history file and passes their path names to the FileMerge program.1

The FileMerge window appears with the files loaded and ready for merging.

3. Use FileMerge to resolve the differences between the parent and child
versions of the file.
See Section , “The FileMerge Program,” on page 142 for more information.

4. Save the file in FileMerge.
After you use FileMerge to resolve differences between the parent and child
versions of the file, CodeManager creates a new delta in the child SCCS
history file and removes the file name from the conflicts file. The new
delta contains the “Merged Result” you created using FileMerge.

Notes about the Resolve Transaction
• By default, CodeManager automatically, sequentially processes the list of

files from the File List Pane; after you resolve a conflict, CodeManager
automatically begins to process the next file in the list. If you want to
change the behavior so that it individually processes only files that you
explicitly select, deselect the Auto Advance check box in the Properties
window.

• Conflicts need not be resolved immediately. In fact, you can continue to
make changes and create new deltas in conflicted files in the child
workspace. New deltas are created on a branch; when you finally resolve

1. CodeManager and FileMerge communicate via the ToolTalk™ service. The ToolTalk service is a network-
spanning, interapplication communication service that allows applications to communicate with other
autonomous applications.

142 TeamWare Users Guide

6

the conflict, the latest delta is the one merged with the version brought over
from the parent. Conflicts must be resolved before you can put back the files to the
parent.

• When CodeManager creates the new delta in the child SCCS history file, it
includes the following standard comment:

Merged changes between workspace x and y.

By default, CodeManager does not prompt you for a comment to append to
its comment. If you want to be prompted for comments that are appended
to the standard comment, select the Skip Checkin Comments check box in
the Properties window.

The FileMerge Program

Note – This section is intended to serve as a brief introduction to the FileMerge
program as used with CodeManager. For a more detailed description, please
refer to the FileMerge section in this manual.

FileMerge displays two text files (the parent and child deltas) for side-by-side
comparison, each in a read-only subwindow. Beneath them, FileMerge displays
a subwindow that contains a merged version of the two files. The merged
version contains selected lines from either or both deltas and can be edited to
produce a final merged version.

Resolving Conflicts 143

6

Figure 6-4 FileMerge Window with Loaded Files

Each deltas in each of the top windows is shown in comparison to the common
ancestor delta:

• The child delta is in the left window labeled “Child vs. Ancestor”

• The parent delta is in the right window labeled “Parent vs. Ancestor”

As mentioned earlier, the common ancestor is the delta from which both the
parent and child deltas are descended. This arrangement permits you to make
a three-way comparison — each delta to the common ancestor, and each delta
to the other.

Lines in each descendant are marked according to their relationship to the
corresponding lines in the common ancestor:

• If a line is identical in all three deltas, then no glyph appears.

144 TeamWare Users Guide

6

• If a line is not in the ancestor but was added to one or both of the
descendants, then a plus sign glyph (+) appears next to the line in the delta
where the line was added.

• If a line is present in the ancestor but was removed from one or both of the
descendants, then a minus sign (-) appears as a placeholder in the delta
from which the line was removed.

• If a line is in the ancestor but has been changed in one or both of the
descendants, then a vertical bar glyph (|) appears next to the line in the
delta where the line was changed.

As mentioned previously, when FileMerge discovers a line that differs between
either of the two deltas and the ancestor, it marks with glyphs the lines in the
two deltas and also in the automatically merged file. Together, these marked
lines are called a difference. While FileMerge is focusing on a difference, it
highlights the glyphs.

The difference on which FileMerge is focusing at any given time is called the
current difference. The difference that appears immediately later in the file is
called the next difference; the difference that appears immediately earlier in the
file is called the previous difference.

While focusing on a difference, you can accept a line from either of the original
deltas, or you can edit the merged version by hand. When you indicate that
you are satisfied with your changes (by clicking on a control panel button), the
current difference is said to be resolved. After a difference is resolved, FileMerge
changes the glyphs that mark the difference to outline (hollow) font. FileMerge
then automatically advances to the next difference (if the Auto Advance
property is on), or moves to another difference of your choice.

As mentioned in the previous section, when used with CodeManager,
FileMerge activity is coordinated by the Resolve transaction window.
CodeManager and FileMerge programs communicate bidirectionally through
the ToolTalk service. CodeManager extracts the parent, child, and common
ancestor deltas and starts FileMerge, passing it the names of the files that
contain the deltas to be merged. When you complete the merge process using
the FileMerge Save button, CodeManager creates a new delta in the file’s SCCS
history file that contains the “Merged Results” and removes the file name from
the conflicts file.

145

CodeManger Administration 7

CodeManager requires little administrative support. However, there are some
things to consider when starting out. This chapter contains information about:

• Starting a project using CodeManager
• Configuring workspace hierarchies

Starting a Project with CodeManager
Getting started with CodeManager is simple. The following sections provide
guidelines and strategic issues that you (the project administrator) should
consider to maximize the benefit your project receives by using CodeManager.

Moving an Existing Project

CodeManager works only with projects that use SCCS for version control.
Moving an existing SCCS-based project to CodeManager is a simple process:

• Ensure that all SCCS history files (“s-dot-files”) are in directories named
SCCS located directly beneath directories that contain source files.

• Be sure that your project directory structure is current and organized.

• Execute the Create Workspace command item in the File menu, specifying
the top-level directory as your workspace. The Create Workspace command
creates the Codemgr_wsdata directory under the top-level directory.

146 TeamWare Users Guide

7

• Begin using the Bringover Create transaction to form a workspace hierarchy.
See Section , “Configuring Your Workspace Hierarchy,” on page 146 for
guidelines regarding workspace hierarchies.

If your project is structured so that compilation units can be easily grouped on
a directory basis during transfer operations, you can use the default
CodeManager FLP. See Section , “Grouping Files for Transfer Using File List
Programs,” on page 99 for a description of the default FLPs.

If your project requires files to be grouped for transfer operations in special
ways, you will have to write your own FLP(s).

Starting a New Project

If you are starting a new project:

• Use the Create Workspace command item in the File menu to create your
project’s top-level directory (with its Codemgr_wsdata directory)

• Proceed as you normally would to set up an SCCS-based development
hierarchy. Ensure that all SCCS history files (“s-dot-file”) are in directories
named SCCS located directly beneath directories that contain source files.

• Begin using the Bringover Create transaction to form a workspace hierarchy.
See Section , “Configuring Your Workspace Hierarchy,” for guidelines
regarding workspace hierarchies.

• The default CodeManager FLP groups files recursively by directory; if you
intend to use that FLP, be sure to arrange files in compilation units
accordingly. If your project requires that files be grouped differently during
transfer, be sure to arrange your project hierarchy in such a way that it
works well with the FLP(s) you will create.

Configuring Your Workspace Hierarchy
The way you structure the workspace hierarchy of your project will have
influence on the inter-workspace file-transfer process and on how you prepare
product releases. The following discussion will help you make informed
choices about the kind of workspace hierarchy best suited for your project.

CodeManger Administration 147

7

Note – Whatever initial decisions you make regarding workspace hierarchies
can later be changed by using CodeManager’s workspace reparenting feature.
See Section , “Reparenting a Workspace,” on page 71 for details.

A workspace hierarchy is a chain of parent/child workspaces two or more
layers deep. The number of layers in a hierarchy bears no relation to the
number of workspaces comprising it. A parent workspace and its child
comprise two layers. A parent workspace and three children also comprise two
layers. A parent workspace and its child and grandchild comprise three layers.
Figure 7-1 depicts a “flat” (three-tiered) hierarchy and a “multitiered” (four-
tiered) hierarchy.

Figure 7-1 A “Flat” (Three-Tiered) Hierarchy

Product

Integration

Development

148 TeamWare Users Guide

7

Figure 7-2 A “Multitiered” (Four-Tiered) Hierarchy

File Transfer Considerations

The way in which you set up your workspace hierarchy can have an impact on
the transfer of files up and down the hierarchy.

File System Accessibility

In order to transfer (Bringover/Putback) files between workspaces, both the
parent and the child must be mounted on the same file system. The
automounter can be used to connect file systems.

Flat Hierarchy vs. Multitiered Hierarchy

Advantages of a Flat Hierarchy
A flat workspace hierarchy is one in which many developers put back files to a
single integration workspace. The advantage of a flat hierarchy is that all
developers have immediate access to one another’s work. The moment that
Jack (a developer) puts back his work to the integration workspace, Jon
(another developer) can use the Bringover Update transaction to have
immediate access to the changes made by Jack.

Product

Integration

Development

Subintegration

CodeManger Administration 149

7

Disadvantages of a Flat Hierarchy
The disadvantage of a flat hierarchy is that time is often wasted because the
integration workspace changes frequently, requiring developers to do frequent
Bringover transactions, builds, and tests in order to keep their source base up-
to-date. There is a cumulative effect of doing Putback transactions; the first
developer to do a Putback resolves only one set of changes, the next developer
resolves two, and so on till the last developer, who must resolve all of the
changes that have been made within her development group.

Advantages of a Multitiered Hierarchy
The amount of time required for a developer to put her work back to the
integration workspace can be sharply reduced by interposing a tier of
subintegration workspaces between the integration and development level
workspaces.

Whenever a developer puts back work to an integration workspace, there is
some chance that the next developer to do a Putback transaction will not be
able to put back their changes until they bring over the earlier changes, rebuild
the modules, and test the new changes with their own — the more Putbacks
that occur the higher the potential for conflict.

When many developers work on a project, the Bringover, rebuild, test cycle can
become onerous and time consuming. If smaller groups of developers working
on related portions of code integrate into a subintegration workspace, that
workspace will be more stable and require fewer builds and less testing. Of
course when the subintegration workspaces are themselves put back to their
common integration area, changes made in the other development workspaces
will have to be integrated. Experience has shown, however, that doing larger
integrations, less frequently, is more efficient.

Disadvantages of a Multitiered Hierarchy
The disadvantages of multiplying subintegration workspaces are as follows:

• Each new workspace consumes disk space.

• Developers who ought regularly to be looking at one another’s work may
find it harder to do so because they do not put back to the same integration
workspace

150 TeamWare Users Guide

7

• Integration of the subintegration workspaces to the higher integration
workspace can become more complicated than more frequent, smaller
integrations.

Product Release Considerations

When you plan your project hierarchy structure, it is useful to consider how
you plan to release your product. There are a number of ways that you can
structure workspace hierarchies to facilitate the preparation of major, minor,
and patch releases. The following discussion presents some ideas for you to
consider; your product may not lend itself to this model, or your product may
have considerations that suggest an alternate scheme.

Experience has shown that it is best to dedicate a workspace as a product
release staging area for each release. It is generally a good idea to “hang” the
release workspace off of a top level “product” workspace. The product
workspace should be located hierarchically above the workspaces in which
normal development integration is done. Locating the product workspace in
this manner permits you to begin development of your next release without
corrupting the current release.

After the files are transferred to the product workspace, you use the Bringover
transaction to transfer the files down to the release workspace. The release
workspace can be used to make masters and can serve as an area in which to
save work for subsequent releases if necessary.

Figure 7-3 shows a hierarchy that contains a product workspace and release
workspaces for six different releases.

CodeManger Administration 151

7

Figure 7-3 Product and Release Workspaces

Note – You can use the reparenting feature to transfer data between release
workspaces directly. See “A Reparenting Example” on page 74 for details.

Product

2.1

2.0

2.2

1.0

1.21.1

152 TeamWare Users Guide

7

153

How CodeManager
Merges SCCS Files 8

This chapter describes the ways CodeManager manipulates SCCS history files
when you do the following:

• Copy files between workspaces
• Resolve conflicts

Note – This discussion assumes that the reader is familiar with SCCS,
including the concept of branching. SCCS is described in detail in the SunOS
Programming Utilities manual.

When considering Bringover and Putback transactions, it is important to
recognize that source files are actually derived from SCCS deltas and are
identified by SCCS delta IDs (SIDs). When a file is said to be copied by either
a Putback or Bringover transaction, CodeManager must actually manipulate
the file’s SCCS history file (also known as the “s-dot-file”).

When a file is copied (by means of Bringover or Putback transaction) from a
source workspace to a destination workspace, it appears that a single file has
been transferred. In fact, all of the SCCS information for that file (deltas,
comments, and so on) must be merged into the destination SCCS history file.

154 TeamWare Users Guide

8

By merging the information from the source into the destination history file,
the current version (delta) can be rederived, and the file’s entire delta and
comment history are available.1

Merging Files That Do Not Conflict
If the file in the destination workspace is simply being updated (the file has
changed in the source of a Bringover or Putback transaction, and has not
changed in the destination), the merging process is straightforward — the new
deltas from the destination are added to the history file in the destination2.

To accomplish the merger, CodeManager determines where the delta histories
diverge and adds (to the destination workspace) only the deltas that have been
created in the source workspace since they diverged. To determine where the
histories diverge, the CodeManager compares the delta tables in both the
parent and child history files; information used in this comparison includes
comments and data such as when and who created the delta.

Figure 8-1 contains an example of a Putback transaction where CodeManager
adds deltas 1.3 and 1.4 from the child workspace (denoted by) to the SCCS
history file in the parent (denoted by).

1. The exception is the case where the file does not exist in the destination workspace. In this case the entire
history file is simply copied from the source workspace to the destination.

2. The reason that SCCS history files are merged at all in this case (rather than simply copying the source
history file over the destination history file) is that administrative information (for example, flags and
access lists) stored in the destination history file would be overwritten.

How CodeManager Merges SCCS Files 155

8

Figure 8-1 Updating a File in the Destination Workspace That Has Not Changed

Merging Files That Conflict
When you propagate files between parent and child workspaces, it is often the
case that both the version of the file from the parent and the version in your
child have changed since they were last updated. When that is the case, the
parent and child versions of the file are said to be in conflict. In the case of
conflicting files, the merge process is more complex.

When the contents of files conflict, CodeManager’s goal is to aid you in
resolving the potentially conflicting changes that have been made to the file, as
well as to preserve the file’s delta, administrative, and comment history. To
accomplish this, CodeManager merges the SCCS deltas from the parent into
the history file in the child. CodeManager’s Resolve transaction is then used to
resolve the conflict in the child. See Chapter 6, “Resolving Conflicts,” for
details on resolving conflicts.

1.1

1.2

1.3

1.4

1.1

1.2

Parent

Child

Putback/merge

1.1

1.2

1.3

1.4

Parent

Child

1.1

1.2

1.3

1.4

156 TeamWare Users Guide

8

A Merge Example

This section contains a series of figures designed to illustrate the CodeManager
merging process. This scenario involves an integration workspace and two
child workspaces owned by different developers. The developers bring over
copies of the same file from the integration workspace, and independently
change the file. The example illustrates how the SCCS history file is
manipulated when conflicts occur and when they are resolved.

Some notes regarding the following examples:

• The geometric shapes are used to identify the workspace from
which the deltas originate.

• The default delta (the point at which the next delta will be added to the
SCCS delta tree) is identified by an unattached descending line.

• VersionTool (part of the TeamWare product) can be used, to graphically
display SCCS delta trees in much the same way they are depicted here.

How CodeManager Merges SCCS Files 157

8

Both Developer and Developer copy the same file from the integration
workspace by means of the Bringover transaction. The file is new in both
workspaces, so the SCCS history file is simply copied to both.

1.1

1.2

1.1

1.2

1.1

1.2

Integration WS

DeveloperDeveloper

Bringover

158 TeamWare Users Guide

8

Developer makes changes to the file, creating two new deltas: 1.3 and 1.4,
and then puts the file back into the integration workspace (by means of the
Putback transaction). CodeManager appends the two new deltas to the parent
SCCS delta tree.

Rather than replacing the destination workspace version of the SCCS history
file with the source’s version, the new deltas are added to the destination SCCS
history file to preserve administrative information, such as access lists.

1.1

1.2

1.3

1.4

Integration WS

Putback

1.1

1.2

1.3

1.4

DeveloperDeveloper

1.1

1.2

How CodeManager Merges SCCS Files 159

8

In the meantime, Developer also changes the file (creating three new deltas:
1.3, 1.4, and 1.5) and now attempts to put back the file into the integration
workspace.

CodeManager blocks the Putback of Developer because the files are in
conflict — the changes put back by Developer would be overwritten.
Developer must also incorporate the changes made by Developer into his
work.

1.1

1.2

1.3

1.4

Putback blocked

1.1

1.2

1.3

1.4

1.1

1.2

1.3

1.4

1.5

Integration WS

DeveloperDeveloper

160 TeamWare Users Guide

8

Developer brings over the file that now contains the changes made by
Developer into his workspace from the integration workspace. The deltas
created by Developer are added into the child SCCS history file by
CodeManager.

The delta tree brought down from the parent is unchanged in the child. The
new deltas created in the child are attached as an SCCS branch to the last delta
that the child and parent had in common; the deltas from the child are
assigned new SIDs accordingly. The deltas are renumbered using the SCCS
branch numbering algorithm that derives the SID from the point at which it
branches. In this case the branch is attached to SID 1.2; the first delta is
renumbered to 1.2.1.1. The last delta created in the child (1.2.1.3 — formerly
1.5) is still the default delta. Therefore, any new deltas that Developer
creates in the child before the conflict is resolved are added to the child line of
work, and not the trunk (the parent line of work).

Bringover/merge

1.1

1.2

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.3

1.4

Integration WS

DeveloperDeveloper

1.1

1.2

1.3

1.4

1.3

1.4

1.5

How CodeManager Merges SCCS Files 161

8

Developer resolves the conflict in his workspace using the CodeManager
Resolve transaction (see Chapter 6, “Resolving Conflicts,” for details regarding
conflict resolution). Developer uses the Resolve transaction to help him
decide how to merge the versions of the file represented by SIDs 1.2.1.3 and
1.4. When he commits the changes, the Resolve transaction places the newly
merged contents into a new delta— .

Notes:

1. The new delta, , is contained in a circle because it is created by Developer
.

2. The newly created delta is now the default location for any new work
created by Developer .

1.1

1.2

Resolve/Merge

1.5

1.3

1.4

1.1

1.2

1.3

1.4

Integration WS

DeveloperDeveloper

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.3

1.4

1.5

1.5

162 TeamWare Users Guide

8

Now that the conflict has been resolved, Developer successfully puts back
the file into the integration workspace. The branch and the newly created delta
are added to the SCCS history file in the integration workspace.

Putback

Integration WS

DeveloperDeveloper

1.1

1.2

1.3

1.4

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

How CodeManager Merges SCCS Files 163

8

Developer makes another change to the file in her workspace, creating delta
. She attempts to put back the new work to the integration workspace, but

the Putback is blocked because it conflicts with the newly merged delta that
was put back by Developer .

Integration WS

DeveloperDeveloper

Putback Blocked

1.1

1.2

1.3

1.4

1.5

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.5

1.5

164 TeamWare Users Guide

8

Developer brings over the changed file into her workspace where its deltas
are added into the child SCCS history file and renumbered by CodeManager.

Integration WS

DeveloperDeveloper

Bringover
1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.4.1.1

How CodeManager Merges SCCS Files 165

8

As in the previous case, CodeManager appends the delta created by Developer
 to the last common delta on the delta tree trunk as a branch and renumbers

it appropriately—in this case 1.5 becomes 1.4.1.1. 1.4.1.1 remains the default
delta; any new deltas created in the child before the conflict is resolved will be
added to the branch.

Using the CodeManager Resolve transaction, Developer resolves the conflict
merging the differences between 1.5 and 1.4.1.1 to create the new delta 1.6.

Notes:

1. The newly created merged contents are added as a new delta to the parent
delta — 1.6.

Developer

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.4.1.1

Developer

1.1

1.2

1.5

1.3

1.4

1.2.1.1

1.2.1.2

1.2.1.3

1.6

1.4.1.1

166 TeamWare Users Guide

8

2. The new delta is owned by the developer who owns the workspace.

3. The new delta becomes the default delta, therefore, new work in the child
will now be added beneath it.

167

CodeManager Example 9

The example in this chapter illustrates the basic bringover, putback, resolve
cycle. It employs a simple case to demonstrate:

• Use of the Bringover Create transaction to create two new child workspaces
from a common parent

• Use of the Putback transaction to put back changes from one of the child
workspaces to the parent

• Use of the Bringover Update transaction to update the other child
workspace with those changes

• How to resolve conflicts created during the Bringover Update transaction

For this example, assume two writers (Jane and Bob) are responsible for
maintaining the man pages for some of the CodeManager commands. The main
man page workspace is named man_pages . The writers decide that they will
each do their work in separate child workspaces and merge their work in
man_pages . Figure 9-1 shows the file system hierarchy in the workspace
man_pages .

168 TeamWare Users Guide

9

Figure 9-1 The man_pages Workspace

Creating Workspaces
Each writer creates his and her own child workspaces. Each child contains the
same files as the parent workspace man_pages .

1. Jane selects the man_pages icon on the Workspace Graph pane and chooses
the Bringover ⇒ Create item from the Transactions menu (Figure 9-2).1

1. For accelerator options see Section , “Accelerators,” on page 63.

SCCS/
bringover.1
def.dir.flg.1
filemerge.1
putback.1

ws_undo.1
workspace.1

man/

man_pages/

Codemgr_wsdata/

SCCS/
access_control.

args.5
children.5
conflicts.5
history.5
locks.5

nametable.5
parent.5

man1/ man5/

CodeManager Example 169

9

Figure 9-2 Activating the Bringover Create Transactions Window

2. The Bringover Create Transactions window is activated (Figure 9-4). Jane
enters the following information:
• The path name of the child workspace in the To Child Workspace

Directory text field
• The directory /man in the File List pane using the Add Files point-and-

click chooser window activated from the File menu (Figure 9-3)

170 TeamWare Users Guide

9

Figure 9-3 Add Files Point-And-Click Chooser Window

Figure 9-4 depicts the Transactions window as it is configured to create
Jane’s child workspace man_pages _jane. (Bob repeats the process to create
his workspace named man_pages_bob .)

CodeManager Example 171

9

Figure 9-4 Transactions Window — Bringover Create of man_pages_jane

Note – The character “.” (representing all of the workspace) could have been
specified in the file list pane instead of man/ . Since all SCCS files are located
beneath man/ , the two are equivalent.

Figure 9-5 shows the output produced during the transaction.

172 TeamWare Users Guide

9

Figure 9-5 Output from Bringover Create of man_pages_jane

Notes Regarding the transaction output in Figure 9-5:

• Updating names in child workspace’s name table

The name table is a file that assists CodeManager in tracking file names, it is
used to speed up the processing of renamed files.

• Examined files: 15

During the initial examination phase of the Bringover transaction,
CodeManager determined that 15 files differed in the parent and child. In
this case, since the child is being created and thus contains no files, all files
contained in the parent are considered for the transaction.

• Bringing over contents changes : 15

CodeManager Example 173

9

CodeManager has determined that 15 files should be brought over from the
parent to the child workspace.

• Contents Summary :

Summarizes the results of the transaction.

• 15 Create

This line indicates that 15 files were created (as opposed to updated) in the
child. In the Bringover Create transaction, all transferred files fall into this
category.

Putting Back Changes
Bob begins work in his new workspace and makes changes to three files:
bringover.1 , putback.1 , and args.5 . He decides that these changes are
important and that Jane should have access to them. He uses the Putback
transaction to copy the changes back to the common parent workspace
man_pages .

1. Bob selects the man_pages_bob icon on the Workspace Graph pane and
chooses the Putback item from the Transactions menu (Figure 9-6).1

1. For accelerator options see Section , “Accelerators,” on page 63.

174 TeamWare Users Guide

9

Figure 9-6 Activating the Putback Transaction Window

2. When the Putback window is activated (Figure 9-7), Bob chooses the
Preview option. By choosing this option, the transaction proceeds without
actually copying files. Bob is able to view the output of the transaction
without actually altering files; by using this option he is able to confirm that
the transaction will proceed the way he expects.

CodeManager Example 175

9

Figure 9-7 Transactions Window — Putback of man_pages_bob

Note that CodeManager automatically loads the directory /man into the File
List pane. This is the directory that Bob specified when he created
man_pages_bob ; the value was saved in the workspace’s
Codemgr_wsdata/args file. He could change the contents of the File List
pane using the items in the File and Edit menus directly below the pane.

The output is shown in Figure 9-8.

Preview option

176 TeamWare Users Guide

9

Figure 9-8 Output from Putback of man_pages_bob

Updating a Workspace
Jane makes changes to the files putback.1 and locks.5 in
man_pages_jane . Before she attempts to put the changes back to the
man_pages workspace, she wants to update her workspace with the changes
that Bob has just put back to man_pages . She uses the Bringover Update
transaction.

1. Jane selects the man_pages_jane icon on the Workspace Graph pane and
chooses the Bringover ⇒ Update item from the Transactions menu
(Figure 9-9).1

1. For accelerator options see Section , “Accelerators,” on page 63.

CodeManager Example 177

9

Figure 9-9 Activating the Bringover Update Transactions Window

2. When the Bringover Update window is activated (Figure 9-10), Jane chooses
the Preview option. By choosing this option, the transaction proceeds
without actually copying files. Jane is able to view the output of the
transaction without actually altering files. By using this option she is able to
determine which files have been changed prior to taking any real action.

178 TeamWare Users Guide

9

Figure 9-10 Transactions Window — Bringover Update of man_pages_jane

Figure 9-11 shows the output of the transaction.

Preview option

CodeManager Example 179

9

Figure 9-11 Output from Bringover Update of man_pages_jane

The output indicates that:
• args.5 and bringover.1 will be updated in man_pages_jane

• There will be a conflict created on putback.1 . The conflict occurs
because putback.1 is changed both in man_pages by Bob and in
man_pages_jane by Jane.

• One file (locks.5) is changed only in man_pages_jane.

• The other 11 files are unchanged.

3. None of these changes surprises Jane, so she decides to complete the
transaction by reexecuting it with the Preview option deselected. The output
is shown in Figure 9-12.

180 TeamWare Users Guide

9

Figure 9-12 Resolve Confirmation Pop-up Window

After the transaction completes as expected, CodeManager automatically
presents Jane with the option to resolve the conflict created on putback.1 .

Resolving Conflicts
Jane decides that she wants to resolve the conflict now and she clicks SELECT
on the Resolve now button.1 The Resolve transaction window is activated.2

1. If the conflict is left unresolved, the Resolve transaction can be initiated later by either double-clicking
SELECT on the man_pages_jane icon, or by selecting the icon and choosing the Resolve item from the
Transactions menu.

2. If the “auto load” property is set for the Resolve window, FileMerge begins execution automatically.

CodeManager Example 181

9

Figure 9-13 Transactions Window — Resolve Conflict on putback.1

The file in conflict (man/man1/putback.1) is listed in the Resolve window
File List pane. The file is automatically selected (surrounded by a box) so Jane
clicks SELECT on the FileMerge button.1

1. If there had been multiple files in the list, Jane could have deselected any portion of the list. If the Auto
Advance property is selected (the default), CodeManager automatically works its way down through the
list of selected files.

182 TeamWare Users Guide

9

CodeManager starts the FileMerge program and passes it the name of
putback.1 (Figure 9-14).

Figure 9-14 FileMerge Window—Merging putback.1

Jane works her way through the merging process, accepting Bob’s changes
from the right pane and her changes from the left. When all the differences
have been resolved, she saves the changes. See Chapter 6, “Resolving
Conflicts,” and Merging Source Files for more information about using
FileMerge.

Jane can now put back her changes to the parent workspace (man_pages)
following the same procedure that Bob used (Section , “Putting Back Changes,”
on page 173).

183

CodeManager Messages 10

This chapter describes CodeManager error messages and warning messages.
Error messages are described in Section , “CodeManager Error Messages” and
warning messages are described in Section , “CodeManager Warnings.” All
CodeManager messages are numbered and are listed in numerical order. For
each message, the meaning of the message and a possible remedy for the error
are provided.

CodeManager Error Messages

1000 - 1999: System errors

Note – Error messages numbered between 1000 and 1999 report errors from
operating system calls made by CodeManager commands. They consist of a
short CodeManager message, and an appended system error message and
number. Refer to operating system documentation for information regarding
these errors.

2000: Line too long or unexpected end of file in “ file_name”

Meaning: While reading the file_name, a line was encountered that contained too many
characters for a CodeManager command to buffer. The maximum line length
is 1024 characters.

Remedy: Reduce the size of the long line and re-execute the command.

184 TeamWare Users Guide

10

2001: Must specify a [child] 1 workspace either with the -w
option or via the CODEMGR_WS environment variable

Meaning: The CodeManager command could not determine the workspace on which to
act. CodeManager commands attempt to acquire the workspace path name in
the following order:

• As specified by the command’s -w option
• As specified by the value of the environment variable CODEMGR_WS
• The current directory, if it is hierarchically within a workspace

Remedy: Specify the workspace path name using one of the methods listed above

2002: Cannot use the -p option to reparent the child of an NSE
environment

Meaning: The -p option to the CLI bringover and putback commands cannot be used
to reparent a workspace that has an NSE environment as a parent.

Remedy: Use the workspace reparent command to reparent a workspace whose
parent is an NSE environment to a CodeManager workspace. Note that you
cannot reparent such a workspace to another NSE environment.

2003: “ directory_name” is not a workspace

Meaning: The directory specified in the command is not a CodeManager workspace.
CodeManager workspaces are distinguished by the presence of the
Codemgr_wsdata directory in the top level directory.

Remedy: Specify a different workspace name or use the CLI workspace create
command or GUI File ⇒ Create Workspace command to convert the directory
into a workspace

1. When the error is reported by Bringover and Putback the word “child” is included, when reported by Undo
and Resolve it is not included.

CodeManager Messages 185

10

2004: Workspace “ workspace_name” doesn’t have a parent workspace

Meaning: A CodeManager command (Bringover or Putback) could not complete
execution because a parent workspace could not be found for workspace
workspace_name.

Remedy: Use the CLI workspace parent command or the GUI Edit ⇒ Parent
command to reparent the orphaned workspace.

2005: Parent workspace “ workspace_name” is not visible as it is not
mounted on machine_name

Meaning: The file system that contains the parent workspace is not currently mounted on
machine machine_name.

Remedy: Mount the file system that contains the parent workspace and re-issue the
command.

2006: Filename file_name has too many “..” path components in it

Meaning: Relative file names specified to CodeManager commands are interpreted as
being relative to the root directory of the workspace. If a file name contains
“.. ” components, it is possible for one of the “.. ” components to reach a
directory that is hierarchically above the workspace root.

Remedy: Specify the path name with fewer (or no) “.. ” path name components

2007: Could not get username for uid uid_number

Meaning: The uid could not be found in the NIS maps or in /etc/passwd

Remedy: Check NIS server and maps.

186 TeamWare Users Guide

10

2008: No version number in file “ file_name”

Meaning: When a CodeManager command accesses a metadata file (a file in the
Codemgr_wsdata directory) it checks the version number written in the file
when it was created (for example, VERSION 1). The metadata file file_name
does not contain the version string.

Remedy: Check the integrity of file_name. The version string may have been
inadvertently removed when the file was edited. If it is missing and the file is
not otherwise corrupted, use the workspace create command to create a
new workspace; check the value of the version string for the analogous file in
the new workspace and edit that string into file_name.

2009: Command “command_name”
failed, /bin/sh killed by signal signal

Meaning: A CodeManager command attempted to execute command_name and was
unable to because the shell was killed by signal.

Remedy: Re-execute the CodeManager command.

2010: Command “command_name”
failed, could not execute the shell, /bin/sh

Meaning: A CodeManager command could not start a shell. This indicates that some
system resource, such as swap space or memory was insufficient.

Remedy: Check system resources.

2011: Command “command_name”
killed by signal signal

Meaning: A command started by a CodeManager command received signal signal.

Remedy: Re-execute the command. If the error re-occurs, refer to the Solaris
documentation for information about the signal.

CodeManager Messages 187

10

2012: Command “command_name”
exited with status status

Meaning: CodeManager expects commands it executes to exit with a status of zero
indicating successful completion. CodeManager considers it an error if a
command exits with a non-zero status.

Remedy: Refer to the documentation for command_name to determine the meaning of
status.

2013: FLP “ FLP_name” does not exist in the parent or child workspace

Meaning: The FLP (File List Program) FLP_name specified for the Bringover or Putback
transaction, could not be found in either the parent or child workspace

Remedy: Check the path name of the intended FLP and re-execute the transaction.

2014: Could not execute “ program_name”

Meaning: A CodeManager command attempted to execute another program and was
unable to do so.

Remedy: Ensure that your installation is correct. Ensure that the program is in your
search path and that its permissions are set correctly.

2015: Workspace “ workspace_name” already exists

Meaning: An attempt was made to create a workspace that already exists.

Remedy: Re-execute the command using a different workspace name.

2016: Workspace “ name” does not exist

Meaning: The workspace name specified as an argument for a CodeManager command
could not be found.

Remedy: Check to ensure that the path name was specified correctly.

188 TeamWare Users Guide

10

2017: Can’t open file “ file_name” so can’t get comments for check in

Meaning: CodeManager stored checkin comments in a temporary file and was unable to
subsequently open that file to read the comments.

Remedy: Check file permissions and other such file system problems that would
prohibit opening the file.

2018: Can’t reparent a workspace to itself

Meaning: An attempt was made (either as part of a transaction, or by using an explicit
reparent command) to make a workspace its own new parent.

Remedy: Re-execute the command, specifying a different parent.

2019: Internal error: unknown locktype lock

Meaning: Indicates that the workspace’s lock file (Codemgr_wsdata/locks) is
corrupted. A unknown lock value was found.

Remedy: Edit the lock file to repair the damage. For more information refer to the
locks (5) man page or Section , “Ensuring Consistency through Workspace
Locking.”

2020: You must specify a workspace name

Meaning: The CodeManager command could not determine the workspace on which to
act. CodeManager commands attempt to acquire the workspace path name in
the following order:

• As specified by the command’s -w option
• As specified by the value of the environment variable CODEMGR_WS
• The current directory, if it is hierarchically within a workspace

Remedy: Specify the workspace path name using one of the methods listed above

CodeManager Messages 189

10

2021: Cannot obtain a type lock in workspace “ workspace_name” because it
has the following locks:
Command: command (pid), user: user, machine: machine, time: time

Meaning: In order to ensure consistency, CodeManager interworkspace commands lock
workspaces while they read and write data in them. The command you issued
could not obtain a lock because the workspace is already locked.

While CodeManager is reading and examining files in the parent workspace
during a Bringover transaction, it obtains a read-lock for that workspace. When
it is manipulating files in the child workspace, it obtains a write-lock.

Read-locks may be obtained concurrently by multiple CodeManager
commands that read files in the workspace; no commands may write to a
workspace while any read-locks are in force. Only a single write-lock can be in
force at any time; no CodeManager command may write to a workspace while
a write-lock is in force. Lock status is controlled by the
Codemgr_wsdata/locks file in each workspace.

Remedy: If the system is running normally, wait until the command that is locking the
workspace releases its lock. If the workspace is stuck in a locked state (for
example, the system crashed while a command had a lock in force), use the
GUI Props ⇒ Workspace ⇒ Locks window, or the workspace locks
command to remove the lock.

2022: Invalid subcommand - command_name

Meaning: An attempt was made to obtain help on a subcommand of the resolve ,
workspace or codemgr command and the name of a non-existent
subcommand was specified.

Remedy: For the list of valid subcommands for each command, type the command and
specify the help subcommand.

2023: Not used

2024: File “ file_name” has no deltas

Meaning: The SCCS history file file_name contains no deltas, therefore it cannot be
processed.

Remedy: Perhaps the history file has been mistakenly overwritten.

190 TeamWare Users Guide

10

2025: Could not find the “ command_name” command. Executable does not
exist: “ name”
Also could not find the “ name” command in PATH “ PATH_contents”

Meaning: A CodeManager command attempted to execute another program and was not
able to find it.

Remedy: Ensure that your installation is correct. Include the directory that contains the
missing program.

2026: Unknown SCCS control character (char) in file
“ file_name” at line line_number

Meaning: A CodeManager command expected file_name to be an SCCS history file; based
on the character it encountered, it is either not a history file, or it has been
corrupted.

Remedy: Refer to Solaris SCCS documentation regarding SCCS history file format.

2027: Corrupted file - “ file_name”, line “ line_number”

Meaning: A CodeManager command was unable to read a workspace metadata file (a
file in the Codemgr_wsdata directory). Illegal characters were found in line
line_number.

Remedy: Check and repair the file. All CodeManager metadata files are ASCII text files
and can be edited. See the file_name(5) man page or Chapter 4, “CodeManager
Workspace” for more information on its format.

2028: Could not find the “ command_name” command in PATH “ path_name”

Meaning: A CodeManager command attempted to execute another program and was not
able to find it.

Remedy: Ensure that your installation is correct. Include the directory that contains the
missing program.

CodeManager Messages 191

10

2029: The file has unresolved conflicts. Run ‘edit m’ and
search for ^<<<<<<<

Meaning: This error is issued by the resolve command. An attempt was made to save
the file while it still contained unresolved conflicts.

Remedy: Use the edit m subcommand (edit the “merged result”) to resolve the conflicts
and then save the file. Conflicts are marked with the “^<<<<<<<” characters.

2030: No file with number file_number

Meaning: The resolve command creates a numbered list of files that contain conflicts.
The file_number chosen does not exist in this list.

Remedy: Use the list subcommand to list the files and determine the correct number
of the file you wish to specify.

2031: Can’t find home directory so can’t write to file “ file_name”

Meaning: A CodeManager command was unable to find the user’s home directory and
cannot locate file file_name. This usually indicates a problem with NIS maps.

Remedy: Check NIS server and appropriate NIS maps.

2032: Can’t parse line in file “ file_name”: line

Meaning: Upon startup, the resolve command reads the ~/.codemgr_resrc file to
obtain user defined properties. The line line could not be interpreted correctly
by the program.

Remedy: Correct the file ~/.codemgr_resr c file so that it includes only valid entries.
For information regarding these entries, see the resolve (1) man page.

2033: Must specify a directory list either as arguments or
via the CODEMGR_WSPATH variable

Meaning: This message is reported by the workspace list command when a directory
(or list of directories) has not been specified in which it can search for
workspaces to list. Directories can be specified as the standard argument to
the command, or by defining the CODEMGR_WSPATH variable to contain the
path name of a directory.

Remedy: Re-execute the command specifying a directory, or set the
CODEMGR_WSPATH directory to contain a directory path.

192 TeamWare Users Guide

10

2034: Internal error: Access control operation “ operation_name” does not
have a built-in default

Meaning: A CodeManager command attempted to verify access permission for a
workspace operation (for example: bringover-from, putback-to, reparent-to).
An internal consistency check failed.

Remedy: Please contact your local service representative.

2035: Access control file does not exist

Meaning: A CodeManager command attempted to verify access permission for a
workspace operation (for example: bringover-from, putback-to, reparent-to).
The access control file (Codemgr_wsdata/access_control) in the affected
workspace was not found.

Remedy: If the access control file has been deleted from the workspace, copy a new one
from another workspace and edit it so that the access permissions are correct.
If no other workspaces are available, create a new workspace using the CLI
workspace create or the GUI File ⇒ Create Workspace commands and copy
the file from the newly created workspace. For more information refer to the
access_control (5) man page or Section , “Controlling Access to
Workspaces.”

2036: Cannot specify common ancestor file; there is no common
ancestor delta

Meaning: The ancestor (“a”) was specified as an argument to a resolve subcommand
(diff , edit , more). The files that are being resolved do not have an ancestor
in common. This occurs most commonly in cases where files with the same
name are created concurrently in both the child and the parent; they have the
same name but are not descended from a common ancestor.

For more information about ancestors and their role in resolving conflicts, see
Chapter 6, “Resolving Conflicts.”

Remedy: Proceed with the conflict resolution process without specifying the ancestor
(“a”) as an argument to the diff , edit and more subcommands.

CodeManager Messages 193

10

2037: Invalid argument - “ character”

Meaning: An invalid argument was specified to one of the resolve subcommands. The
command expected one of the following characters: a (ancestor), c (child), p
(parent), m (merged result).

Remedy: Specify one of the valid arguments: a, c , p, m. See the resolve (1) man page
for more information.

2038: Parent workspace is an NSE environment. Use the ‘nseputback’
command

Meaning: The “parent” in a putback transaction is an NSE environment and not a
CodeManager workspace.

Remedy: Use the “nseputback” command to putback changes from the workspace to the
environment.

2039: File “ file_name” is probably not an s-file
on line “ line_number” expected ^A, but got ‘ char’

Meaning: A CodeManager command expected file_name to be an SCCS history file; based
on the format it is either not a history file, or it has been corrupted.

Remedy: Refer to Solaris SCCS documentation regarding SCCS history file format.

2040: File “ file_name” has not been merged.
Use the merge subcommand first or the filemerge subcommand

Meaning: An attempt was made to commit (save) a file that had not yet been merged.

Remedy: Merge the file using either the merge subcommand, or the filemerge
subcommand (which executes the FileMerge GUI merge tool). For more
information about the resolve command see the resolve (1) man pages. For
information about the FileMerge program, see manual Merging Source Files
(included with TeamWare).

2041: “ path_name” is not a workspace or a directory

Meaning: The string path_name specified in the Bringover Create transaction is not a
CodeManager workspace or a directory.

Remedy: Specify a different workspace/directory name.

194 TeamWare Users Guide

10

2042: Can’t create ToolTalk message, error = TT_error_code

Meaning: The resolve command communicates with the FileMerge program via the
ToolTalk service. The ToolTalk service is an interapplication communication
service distributed with the Solaris OpenWindows windowing system.

In this case the resolve command called a ToolTalk routine in order to create
a ToolTalk message to FileMerge. The ToolTalk routine could not create the
message and passed back TT_error_code.

Remedy: Refer to the OpenWindows ToolTalk documentation for information about the
error.

2043: SCCS file “ file_name” is corrupted

Meaning: The SCCS admin -h command reports that the newly computed check-sum
does not compare with the one stored in the first line of the file.

Remedy: See the Solaris SCCS documentation for more information.

2044: Unable to create a temporary name from template “ temp_file_name”

Meaning: A CodeManager command was unable to create a temporary file for its use.
This is a CodeManager internal error.

Remedy: Check for any system-level reasons why the command could not write this file
(for example, file permission restrictions or incorrect command ownership).

2045: Fprintf of “ file_name” failed

Meaning: A command was unable to write to the file file_name.

Remedy: Check file permissions and other such file system problems that would
prohibit writing in the file system.

2046: Version mismatch in file “ file_name”, expected version
expected_number, but found actual_number

Meaning: Each CodeManager metadata file (Codemgr_wsdata/*) contains a string that
includes a version number (for release 1.0 the version number string is
VERSION 1). As a consistency check, when CodeManager commands read
and write to these files, they check to determine whether the file contains the
version that the command expects. In this case the command expected to find

CodeManager Messages 195

10

expected_number but found actual_number instead. This may indicate that old
binaries are being used with new metadata files and could cause the file to be
corrupted.

Remedy: Make sure that the most current versions of the CodeManager binaries are
being accessed.

2047: Do not know how to convert file “ file_name” from version
found_version_number to current_version_number

Meaning: Each CodeManager metadata file (Codemgr_wsdata/*) contains a string that
includes a version number (for release 1.0 the version number string is
VERSION 1). As a consistency check, when CodeManager commands read
and write to these files, they check to determine whether the file contains the
version that the command expects. It is anticipated that when new versions of
CodeManager binaries and metadata files are released, the formats of some of
these files may change. Commands contain code to make this conversion. A
command found a metadata file with a version number earlier than 1.

Remedy: Since this is the first release of CodeManager, the version string in the
metadata file must have been inadvertently changed during editing. Check the
file and make sure that the first line reads “VERSION 1”.

2048: Must specify at least one file, directory or -f argument to a
bringover that creates a child workspace

Meaning: The command-line for a Bringover transaction was not constructed properly.
An argument that specifies at least one file, directory or FLP must be included.
If this argument is omitted, CodeManager attempts to take the arguments from
the workspace’s Codemgr_wsdata/args file.

Remedy: Reenter the command and ensure that you’ve included the correct number of
arguments.

2049: Could not determine where “ file_name” is mounted from

Meaning: CodeManager commands convert path names of NFS mounted directories to
the machine_name: path_name format to do much of their work. This message
indicates that the mount entry that contains file_name in /etc/mtab (Solaris
1.x) or /etc/mntab (Solaris 2.x) is no longer present.

Remedy: Remount the file system that contains file_name.

196 TeamWare Users Guide

10

2050: Could not determine the absolute pathname for “ file_name”

Meaning: A CodeManager command was unable to read a directory. This indicates some
corruption in the file system; for example, incorrect directory permissions.

Remedy: Check the file system, especially directory and file permissions in the path of
file_name.

2051: Can’t rename to “ file_name”; it exists

Meaning: During a Bringover, Putback or Undo transaction a file was found that was
renamed in the source workspace to a name already in use in the destination
workspace.

Remedy: Change the name in one of the directories.

2052: Corrupted file - “ file_name”, text after “BEGIN”, line number.
Can’t send notification

Meaning: A CodeManager command encountered an error when reading the workspace
notification file Codemgr_wsdata/notification . The BEGIN statement
that delimits the list of files/directories for which notification is requested
must be the only text on the line, other text was encountered. The
CodeManager command cannot correctly parse the request; if the file contains
a notification request, it cannot be sent.

Remedy: Edit the notification file and enter the appropriate BEGIN statement. See the
notification (5) man page or Section , “How to Notify Users of Changes to
Workspaces” for more information on its format.

2053: Corrupted file - “ file_name”, text after “END”, line number. Can’t
send notification

Meaning: A CodeManager command encountered an error when reading the workspace
notification file Codemgr_wsdata/notification . The END statement that
delimits the list of files/directories for which notification is requested must be
the only text on the line, other text was encountered. The CodeManager
command cannot correctly parse the request; if the file contains a notification
request, it cannot be sent.

Remedy: Edit the notification file and enter the appropriate END statement. See the
notification (5) man page or Section , “How to Notify Users of Changes to
Workspaces” for more information on its format.

CodeManager Messages 197

10

2054: Corrupted file - “ file_name”, missing BEGIN, line number. Can’t
send notification

Meaning: A CodeManager command encountered an error when reading the workspace
notification file Codemgr_wsdata/notification . The BEGIN statement that
delimits the list of files/directories for which notification is requested, is
missing. The CodeManager command cannot correctly parse the request; if the
file contains a notification request, it cannot be sent.

Remedy: Edit the notification file and enter the appropriate BEGIN statement. See the
notification (5) man page or Section , “How to Notify Users of Changes to
Workspaces” for more information on its format.

2055: File “ file_name” has incomplete delta table

Meaning: The delta table in the SCCS history file file_name is incomplete. This indicates
that the file has been corrupted.

Remedy: Fix the file, or copy in a new version.

2056: Badly formatted line in “ file_name”:
line_number

Meaning: A CodeManager command was reading a temporary log file left over from an
aborted Bringover or Putback operation and encountered a malformed line.
This indicates that the file has been corrupted.

Remedy: Execute the workspace updatenames command to rebuild the nametable and
then re-execute the command.

2057: Zero-length SCCS file, “ file_name”

Meaning: An SCCS history file was encountered that contained no data.

Remedy: Remove the SCCS history file.

2058: Can’t get a version of the child file until it is checked in

Meaning: During a Resolve transaction a file was encountered that is not checked in to
SCCS. Files must be checked in before conflicts can be resolved.

Remedy: Check the file in and re-start the transaction.

198 TeamWare Users Guide

10

2059: Name history serial number number out of order in file file_name

Meaning: Rename information in the SCCS history file file_name is corrupted. The name
history records in this SCCS file are not in numerically descending order.

Remedy: Reorder the name history records, or copy in a new version of the file using the
Bringover or Putback transaction.

2060: Delta serial number number out of order in file “ file_name”

Meaning: Delta numbers are not in numerically descending order in the SCCS history file
file_name. This indicates that the file is corrupted.

Remedy: Reorder the delta numbers, or copy in a new version of the file using the
Bringover or Putback transaction.

2061: Must have DISPLAY environment variable set to invoke filemerge

Meaning: The DISPLAY variable is automatically set by OpenWindows when it begins
execution. Your machine must be running OpenWindows to use the FileMerge
program.

Remedy: Ensure that OpenWindows is executing properly; if it is, reset the DISPLAY
variable.

2062: Can’t resolve file “ file_name” because it is writable

Meaning: The file file_name is not checked out from SCCS but its file permissions indicate
that it is writable. Resolving this conflict will result in writing to a file that is
not checked out.

Remedy: Reconcile the file permissions (for example, check the file out and then check it
back in) and then re-execute the Resolve transaction.

2063: Cannot create workspace “ name” because it would be nested within
workspace “ name”

Meaning: An attempt was made to create a workspace hierarchically beneath an existing
workspace.

Remedy: Create the new workspace hierarchically outside of any existing workspaces.

CodeManager Messages 199

10

2064: Cannot delete a workspace that is a symbolic link.
Run “workspace delete workspace_name”

Meaning: CodeManager commands will not delete directories or files that are symbolic
links. You must delete the “physical” copy of the file; the appropriate
command line is provided.

Remedy: Use the workspace delete command to delete workspace_name.

2065: This error message may be issued in any of the following forms:

• User user_name does not have access to bringover from workspace
“ workspace_name”

• User user_name does not have access to bringover to workspace
“ workspace_name”

• User user_name does not have access to putback from workspace
“ workspace_name”

• User user_name does not have access to putback to workspace
“ workspace_name”

• User user_name does not have access to undo workspace
“ workspace_name”

• User user_name does not have access to delete workspace
“ workspace_name”

• User user_name does not have access to move workspace
“ workspace_name”

• User user_name does not have access to change the parent of
workspace “ workspace_name”

• User user_name does not have access to change the parent to
workspace “ workspace_name”

Meaning: The user user_name attempted an operation that affected the workspace
workspace_name; access permissions in workspace_name do not permit user_name
access to execute that operation.

Remedy: The file workspace_name/Codemgr_wsdata/access_control is a text file
that specifies access permissions for various workspace operations. The owner
of the workspace must change the permissions to include user_name in order
for the operation to proceed. Permissions can be changed using the Workspace

200 TeamWare Users Guide

10

item in the GUI Props menu or by editing the access_control file directly.
See the access_control (5) man page or Chapter , “CodeManager
Workspace” of this manual for more information.

2066: Corrupted file - “ file_name”, whitespace in pathname, line
line_number. Can’t send notification

Meaning: A CodeManager command encountered an error when reading the workspace
notification file Codemgr_wsdata/notification . A whitespace character
was encountered in a line where a single path name was expected.

Remedy: Edit the Codemgr_wsdata/notification file to remove the whitespace
characters from the line. See the notification (5) man page or Section ,
“How to Notify Users of Changes to Workspaces” for more information on its
format.

2067: Corrupted file - “ file_name”, missing notification event, line
line_number. Can’t send notification

Meaning: A CodeManager command encountered an error when reading the workspace
notification file Codemgr_wsdata/notification . The CodeManager event
(for example, bringover-to) was not specified.

Remedy: Edit the Codemgr_wsdata/notification file to add the correct event. See
Section , “How to Notify Users of Changes to Workspaces,” on page 83 for a
list of valid events.

2068: Not used

2069: Not used

2070: Not used

2071: Not used

2072: Not used

2073: Not used

CodeManager Messages 201

10

2074: Workspace “ workspace_name” has no locks

Meaning: An attempt was made to remove locks from a workspace that had no active
locks.

Remedy: N/A

2075: Lock lock_name does not exist for workspace “ workspace_name”

Meaning: While using the workspace locks -r command, a lock number was specified
that is out of range of the lock list.

Remedy: Check the lock numbers for the workspace using the workspace locks
command and enter a valid number.

2076: Internal error: Cannot find the directory in which command
“ command_name” is located because avo_find_dir_init() has not
been called

Meaning: This is an internal error.

Remedy: Please contact your local service representative.

2077: number is not a valid number

Meaning: While using the resolve command, a number was referenced that is outside
of the listed values.

Remedy: List the values to determine the valid number for your selection.

2078: Cannot access workspace “ workspace_name”

Meaning: File permissions for workspace_name prohibit access by the CodeManager
command.

Remedy: Default permissions for workspace directories are “777”.

202 TeamWare Users Guide

10

2079: Could not parse name history for file
“ file_name”, contains: text

Meaning: There is a format error in the name history record in the SCCS history file
file_name. The troublesome text is displayed.

Remedy: If possible, fix the record; otherwise copy a new version of the file using the
Bringover or Putback transaction.

2080: Could not remove or rename backup directory
“ directory_name”

Meaning: CodeManager attempted to clear the backup area directory_name so that it
could backup a new transaction. CodeManager was not able to delete or
rename the directory out of the way. The most likely cause is that file
permissions have been changed for the directory.

Remedy: Check directory permissions for directory_name. Default CodeManager
permissions for this directory are “777”.

2081: build_workspace_list: “ path_name” does not start with a /

Meaning: The CodeManager GUI program was expecting a fully qualified path name to
be returned from a subprocess. This is an internal error.

Remedy: Please contact your local service representative.

2082: Workspace workspace_name’s parent does not exist in the filesystem

Meaning: The parent workspace is not mounted or visible on this machine.

Remedy: Mount the parent workspace on the executing machine.

2083: Workspace workspace_name’s child does not exist in filesystem

Meaning: The child workspace is not mounted or visible on this machine.

Remedy: Mount the child workspace on the executing machine.

CodeManager Messages 203

10

2084: codemgrtool: internal error in args_strlist_from_wsname() :
NULL args_list

Meaning: Internal error.

Remedy: Please contact your local service representative.

2085: codemgrtool: internal error in undo_strlist_from_wsname() :
NULL undo_list

Meaning: Internal error.

Remedy: Please contact your local service representative.

2086: codemgrtool: “ path_name” doesn’t start with a /

Meaning: Internal error.

Remedy: Please contact your local service representative.

2087: Not used

2088: Nametable in workspace “ workspace_name” cannot be read because the
following SCCS files have identical root deltas

file_name
file_name

Run the following command and then re-execute the “ command_name”
command:

path_name/workspace updatenames workspace_name

Meaning: An SCCS history file was copied within a workspace using the cp command.
As a result, the two files contain the identical root delta. CodeManager uses
the root delta to distinguish between files. The workspace updatenames
command enables CodeManager to distinguish between the files.

Remedy: Execute the workspace updatenames command and then reexecute the
command that spawned the error.

204 TeamWare Users Guide

10

2089: Cannot move workspace “ workspace_name”
Because it is a symlink to “ directory_name”.
Use a workspace name that is not a symlink.

Meaning: CodeManager commands will not move directories or files that are symbolic
links.

Remedy: Move the workspace to a name that is not a symlink.

2090: Nametable in workspace “ workspace_name” not written because the
following SCCS files have identical root deltas

file_name
file_name

Run the following command and then re-execute the “ command_name”
command:

path_name/workspace updatenames workspace_name

Meaning: An SCCS history file was copied within a workspace using the cp command.
As a result the two files contain the identical root delta. CodeManager uses the
root delta to distinguish between files. The workspace updatenames
command enables CodeManager to distinguish between the files.

Remedy: Execute the workspace updatenames command and then reexecute the
command that spawned the error.

2091: Internal error: hash table missing entry

Meaning: Internal error.

Remedy: Please contact your local service representative.

2092: An SCCS file (A) was copied (to file B). The original SCCS file (A)
cannot be found.
Run the following command and then re-execute the “ command_name”
command:

path_name/workspace updatenames workspace_name

Meaning: An SCCS history file was copied within a workspace using the cp command.
The original file (A) was subsequently renamed or removed from the
workspace. CodeManager is unable to determine whether the files has been
renamed (and to what name) or removed from the workspace. The
workspace updatenames command interactively displays the possible names

CodeManager Messages 205

10

to which the file could have been renamed, and asks you to determine the file’s
current state: its new name, or its absence from the workspace. CodeManager
can then correctly propagate the changes throughout the workspace hierarchy.

Remedy: Execute the workspace updatenames command and then reexecute the
command that spawned the error.

2093: Internal error: SmIDs not equivalent

Meaning: Internal error.

Remedy: Please contact your local service representative.

2094: Internal error: SmID not found

Meaning: Internal error.

Remedy: Please contact your local service representative.

2095 - 2499: Not used

2500 - 2600: Internal errors

Note – Error numbers in the 2500 range are all errors internal to CodeManager
programs. Occurrence of these errors indicates problems that users cannot
correct. If you encounter errors numbered in this range, please contact your
local service representative.

206 TeamWare Users Guide

10

CodeManager Warnings

2601: Could not remove backup directory
“ old_dir_name”,
so it was renamed to
“ new_dir_name”

Meaning: CodeManager attempted to clear the backup area old_dir_name so that it could
backup a new transaction. CodeManager was not able to clear the backup
directory by deleting it, but it was able to rename it out of the way to the name
new_dir_name. The most likely cause is that file permissions have been
changed for the directory.

Remedy: Check directory permissions for old_dir_name. Default CodeManager
permissions for this directory are “777”. Delete the contents of new_dir_name.

2602: File “ file_name” is not under SCCS in either workspace - ignored

Meaning: CodeManager could not find an SCCS history file in either workspace for
file_name.

Remedy: The file name was probably entered incorrectly, re-execute the command.

2603: Zero length filename - ignored

Meaning: A file name specified as an argument on the command-line (or in the
Codemgr_wsdata/args file) contained no characters (““).

Remedy: Re-execute the command and re-specify the file name argument. If the
problem persists, check the arguments listed in the args file.

2604: Filename “ file_name” has whitespace characters in it - ignored

Meaning: A file name specified as an argument on the command-line (or in the
Codemgr_wsdata/args file) contained whitespace characters. CodeManager
commands do not accept file names that contain whitespace characters.

Remedy: Re-execute the command and re-specify the file name argument. If the
problem persists, check the arguments listed in the args file.

CodeManager Messages 207

10

2605: Not used

2606: File “ file_name” not brought over because
it is a file_type in workspace “ workspace_name”
and a file_type in workspace “ workspace_name”

Meaning: A file name has a different file type (regular file vs. directory vs. symbolic link)
in the parent and child workspaces.

Remedy: Take whatever action is appropriate to make the listed files the same type, or
change one of the names.

2607: Not used

2608: Workspace “ child_ws_name” is a child of “ parent_ws_name”. Could not
update its parent file

Meaning: During a workspace delete or workspace move operation involving
child_ws_name, the command found that the children file in the workspace’s
parent (parent_ws_name) did not contain an entry specifying child_ws_name as a
child of that parent.

Remedy: Advisory only. The command will correct the discrepancy, however, this could
indicate that the parent’s children file has been corrupted.

2609: Not used

2610: “ directory_name” is not a workspace

Meaning: The directory specified in the command is not a CodeManager workspace.
CodeManager workspaces are distinguished by the presence of the
Codemgr_wsdata directory in the top level directory.

Remedy: Specify a different workspace name or use the CLI workspace create
command or GUI File ⇒ Create Workspace command to convert the directory
into a workspace.

2611: “ file_name” does not exist in either workspace - ignored

Meaning: The file file_name was not found in either the parent or child workspace.

Remedy: Check to be sure the name was specified correctly.

208 TeamWare Users Guide

10

2612: Not used

2613: Filename “ file_name” has too many “..” path components in it -
ignored

Meaning: Possible causes include:

• The CodeManager command cannot resolve the path name into a
workspace-relative file name

• The CodeManager command cannot resolve the path name into a fully
qualified workspace name

Remedy: Specify the path name with fewer (or no) “.. ” path name components

2614: Line “ line_number” too long or unexpected end of file in “ file_name”

Meaning: While reading the Codemgr_wsdata/nametable file, a line was encountered
that contained too many characters for a CodeManager command to buffer.
The maximum line length is 1024 characters. This indicates that nametable
has been corrupted.

Remedy: CodeManager automatically rebuilds the nametable. As you have probably
noticed, this takes some time.

2615: Line “ line_number” has bad format in “ file_name”

Meaning: This indicates that the Codemgr_wsdata/nametable file has been corrupted.

Remedy: CodeManager automatically rebuilds the nametable. As you have probably
noticed, this takes some time.

2616: Not used

2617: Unexpected name table editlog record type “ type_number” - ignored

Meaning: A CodeManager command was reading a temporary log file left over from an
aborted Bringover or Putback operation and encountered a malformed record.
This indicates that the file has been corrupted.

Remedy: Execute the workspace updatenames command to rebuild nametable and
then re-execute the command.

CodeManager Messages 209

10

2618: Can’t open “ file_name” - can’t send mail notification

Meaning: The CodeManager notification facility failed to open the file file_name. As a
result, notification mail will not be sent for the current operation.

Remedy: Check file permissions for file_name.

2619: Not used

2620: Can’t fork process to send notification

Meaning: Lack of system resources (memory, swap space) prevented the CodeManager
notification facility from sending notification mail.

Remedy: Check system resources.

2621: Not used

2622: Filename “ file_name” contains a comment character (#) - ignored

Meaning: A file name specified as an argument to a command (or in the
Codemgr_wsdata/args file) contains the “#” character. CodeManager
reserves this character to denote comments.

Remedy: Change the name of the file so that its file name does not contain the “#”
character. If the problem persists, check the arguments listed in the args file.

2623: Read-lock left in workspace or Write-lock left in workspace

Meaning: A Codemanager command was unable to remove locks in “workspace_name.
May indicate that there is insufficient disk space, or that permissions on the file
Codemgr_wsdata/locks were changed since the lock was originally written.

Remedy: Remove the lockes using the CodeManager GUI Props workspace command or
the CLI workspace locks command.

210 TeamWare Users Guide

10

2624: File “ file_name” is checked out in workspace
“ workspace_name”. The changes in the checked out file will not be
brought over

Meaning: The file file_name is checked out in the parent workspace. You are being
advised that any changes in the g-file have not been brought over as part of the
Bringover transaction.

Remedy: N/A

2625: File “ file_name” is not in conflict
according to the SCCS file. Removing it from the conflict file

Meaning: The information in the SCCS history file indicates that the file contains no
unresolved conflicts, however, the Codemgr_wsdata/conflicts file in the
workspace lists it as being in conflict. The command removed it from the
conflicts file.

Remedy: N/A

2626: File “ file_name” not brought over because it is
unresolved in workspace “ workspace_name”

Meaning: The file file_name was not brought over because it contains an unresolved
conflict in workspace_name.

Remedy: Use the GUI Resolve transaction or the CLI resolve command to resolve the
conflict and then re-execute the Bringover transaction.

2627: Directory “directory_name” is mounted read-only.

Meaning: Before beginning Bringover and Putback transactions, Codemanager checks to
determine whether the destination workspace root (top-level) directory is
accessible for writing. This is not treated as an error condition because lower
level directories within the workspace could be mounted from different areas
and they may be accessible for writing. This warning is issued as an early
warning that directory permissions might be set incorrectly.

Remedy: If write access is not intentionally denied, change the root directory
permissions.

CodeManager Messages 211

10

2628: Not updating g-files because “get” command couldn’t be found in
PATH “search_path”

Meaning: The g-files could not be updated as part of a Bringover or Putback transaction
because the SCCS get command could not be executed; it was not found in
your search path.

Remedy: If you want g-files to be updated as part of transactions, include the get
command in your search path.

2629: Will not be able to run filemerge

Meaning: The resolve command was not able to connect with the ToolTalk message
service. The ToolTalk service is used by the resolve command to communicate
with the FileMerge program.

Remedy: The ToolTalk service is normally installed as part of OpenWindows version 3.
Check the OpenWindows documentation to determine why the ToolTalk
service is not present or responding.

2630: This workspace is being created over an existing directory

Meaning: This message advises you that you are converting an already existing directory
into a CodeManager workspace. Creating a workspace from an existing
directory hierarchy consists of creating the Codemgr_wsdata metadata
directory in the top-level directory. Be aware that once the directory becomes a
workspace, its contents can be deleted using the CodeManager workspace
delete command.

Remedy: N/A

2631: File “ file_name” not brought over because it is
checked out and not writable in workspace “ workspace_name”

Meaning: The file file_name was not brought over as part of the Bringover transaction
because it is checked out (p-file exists) and writable in the child workspace
workspace_name. The unusual state of this file indicates that it is safer not to
process the file.

Remedy: Reconcile the write permissions with its SCCS status.

212 TeamWare Users Guide

10

2632: Omitting contents change to file “ file_name” because of rename
error

Meaning: An error was encountered while processing the name of “file_name”. As a
result, the change in the file from the source workspace could not be
propagated to the destination workspace.

Remedy: Correct the rename problem (see the rename error text) and re-execute the
CodeManager transaction.

Part 3 — Version Tool

Introduction to VersionTool page 215

Performing Basic SCCS Functions with VersionTool page 233

215

Introduction to VersionTool 11

Coordinating write access to source files is important when changes will be
made by several people. Maintaining a record of file updates allows you to
determine when and why changes were made.

The source code control system (SCCS) allows you to control write access to
source files and monitor changes made to those files. The SCCS allows only
one user at a time to update a file, and it records all changes in a history file.

VersionToo lis a GUI to SCCS. Version Tool allows you to manipulate files and
perform SCCS functions without having to know SCCS commands. It provides
an intuitive method for checking files in and out, as well as displaying and
moving through the history branches.

With VersionTool, you can do the following:

• Check in files under SCCS
• Check out and lock a version of the file for editing
• Retrieve copies of any version of the file from SCCS history
• Visually peruse the branches of an SCCS history file
• Back out changes to a checked-out copy
• Inquire about the availability of a file for editing
• Inquire about differences between selected versions using Filemerge
• Display the version log summarizing executed commands

VersionTool helps you perform these tasks and expedites the progress of
concurrent development projects.

This chapter is organized into the following sections:

216 TeamWare Users Guide

11

• “Terminology” on page 216
• “Graphical Tour” on page 218
• “Base Window” on page 218
• “File Button” on page 220
• “Load Button” on page 221
• “View Button” on page 222
• “Commands Button” on page 228
• “Props Button” on page 231

Terminology
This section covers the terminology and concepts of SCCS. Familiarity with
these terms will help you when working with a project under SCCS control.
This terminology applies mainly to SCCS and its ability to keep track of
changes to files.

Branches

You can picture the deltas applied to an SCCS file as nodes of a tree with the
initial version of the file as the root. The root delta is numbered 1.1 by default.
These two parts of the SCCS delta ID (SID) are the release and level numbers.
Successive deltas (nodes) are named 1.2, 1.3, and so forth. This structure is
called the trunk of the SCCS delta tree. It represents the normal sequential
development of an SCCS file.

Situations can arise, however, when it is necessary to create an alternative
branch on the tree. Branches can be used, for instance, to keep track of alternate
versions developed in parallel, such as for bug fixes.

The SID for a branch delta consists of four parts: the release and level numbers
and the branch and sequence numbers, or release.level.branch.sequence. The
branch number is assigned to each branch that is a descendant of a particular
trunk delta; the first branch is 1, the next 2, and so on. The sequence number is
assigned, in order, to each delta on a particular branch. Thus, 1.3.1.1 identifies
the first delta of the first branch derived from delta 1.3. A second branch to this
delta would be numbered 1.3.2.1 and so on.

The concepts of branching can be extended to any delta in the tree. The branch
component is assigned in the order of creation on the branch, independent of
its location relative to the trunk. Thus, a branch delta can always be identified

Introduction to VersionTool 217

11

from its name. While the trunk delta can be identified from the branch delta’s
name, it is not possible to determine the entire path leading from the trunk
delta to the branch delta.

For example, if delta 1.3 has one branch, all deltas on that branch will be
named 1.3.n. If a delta on this branch has another branch emanating from it, all
deltas on the new branch will be named 1.3.2.n. The only information that can
be derived from the name of delta 1.3.2.2 is that it is the second chronological
delta on the second chronological branch whose trunk ancestor is delta 1.3. In
particular, it is not possible to determine from the name of delta 1.3.2.2 all of
the deltas between it and its trunk ancestor (1.3).

Deltas and Versions

When you check in a file, SCCS records only the line-by-line differences
between the text you check in and the previous version of the file. This set of
differences is known as a delta. The file version that you initially checked out
was constructed from a set of accumulated deltas. The terms delta and version
are often used synonymously; however, their meanings are not the same. It is
possible to retrieve a version that omits selected deltas.

History Files

When you initially put a file under SCCS control, a history file is created for
the new SCCS file. The initial version of the history file uses the complete text
of the source file. The initial history file is the file that further deltas are
compared to. Owing to its prefix (s.), the history file is often referred to as the
s. file (s-dot-file).

SCCS Delta ID (SID)

A SID is the number used to represent a specific delta. This is a two-part
number, with the parts separated by a dot (.). The SID of the initial delta is 1.1
by default. The first part of the SID is referred to as the release number, and the
second, the level number. When you check in a delta, the level number is
incremented automatically.

218 TeamWare Users Guide

11

Graphical Tour
This chapter is dedicated to provide an overview of the functionality of the
VersionTool Base window and control buttons. Included in this discussion are
the pop-up windows associated with their buttons. The overview is organized
in the following sections:

• Base Window

• File Button

• Load Button

• View Button

• Commands Button

• Show Output Button

• Props Button

Base Window
The VersionTool base window displays the directories and SCCS files of the
loaded directory; the directory path is shown in the Directory text field.
Directories are shown as file folders; files are shown as pieces of paper. Files
checked out from SCCS are marked with a check mark. Figure 11-1 is an
example of a typical base window directory listing.

Directories are shown whether they contain files which are under SCCS control
or not. A directory is a container for files and directories and can possibly
contain SCCS files and directories further down the hierarchy. Files are only
shown in the Base window if they are under SCCS control. To look at the non-SCCS
files in a directory, use the Check in New window. For more information, see
“Check In New Window” on page 229.

Introduction to VersionTool 219

11

Figure 11-1 VersionTool Base Window

The control buttons at the top of the window provide menus and options for
performing SCCS functions. The buttons are described starting with “File
Button” on page 220.

The scroll bars at the side and bottom of the window allow you to scroll
through, and across, an extensive listing.

Base Window Pop-up Menu

The Base window has a pop-up menu that offers the menu items shown in
Figure 11-2. For more information on the base window pop-up menu options,
see “Commands Button” on page 228.

220 TeamWare Users Guide

11

Figure 11-2 Base Window Pop-up Menu

File Button
The File button allows you to load and unload files into the base window file
list display. The File button menu has the following menu items:

Introduction to VersionTool 221

11

The Load menu item loads the directory name you type in the Directory text
field. A list of previously loaded directories is saved. The Load directory list is
the same as the Unload directory list.

The Unload menu item lets you unload a directory. The pop-up submenu
displays a list of previously loaded directories. The directory displayed at the
top of the list is the currently loaded directory. You unload a directory by
choosing it from the display list. For more information on unloading
directories, see Chapter 2, “VersionTool Basics.”

Load Button
The Load button displays a menu with a list of previously loaded directories. It
is the same list displayed under Unload in the File menu. To reload a directory,
choose it from the list. For more information on loading directories, see
Chapter 2, “VersionTool Basics.”

222 TeamWare Users Guide

11

View Button
The View button menu displays the following menu and pop-up submenu:

Figure 11-3 View Pop-up Window

The File History menu item brings up the History window and displays a
history graph of a selected SCCS file. For information on the History window,
see “History Window” on page 223.

The Command Output menu item brings up a pop-up window that allows you
to selectively display the following information:

• Commands being executed
• Output of executed commands
• Errors from executed commands

You can display information types exclusively or in combinations by selecting
the appropriate box in the pop-up window header. A check mark is displayed
in the box once it is selected.

The Clear button allows you to clear the pane of displayed information. The
scroll bar at the side of the output pane lets you peruse an extensive list of
displayed information.

Figure 11-4 is an example of the Command Output pop-up window.

Introduction to VersionTool 223

11

Figure 11-4 Command Output Pop-Up Window

The List by File Status menu item brings up a pop-up window that lets you
filter the file list display according to status. You have the option of creating a
list of:
• Checked-out files
• Checked-in files
• All files (default)

History Window

The History window displays an illustration of SCCS delta branches for a
selected file. This history graph allows you to peruse the delta structure of a file
and assess associations between versions. Dashed lines are shown by default
and indicate that the delta to the right of the dashed line was created by
including the changes from the delta on the left. Following the dashed line
provides you with a time-ordering sequence. In Figure 11-5, delta 1.123 is
comprised of changes from both 1.122 and 1.120.1.2.

224 TeamWare Users Guide

11

Figure 11-5 File History Window

The scroll bars at the right and bottom of the window allow you to scan a large
history graph. If a delta on the displayed branch is checked out, a check mark
is shown to the left of the SID.

The Differences button menu gives you the choice between bringing up a
FileMerge window or a text editor displaying the textual differences between
two selected deltas. The Differences button is only activated when two deltas
are selected.

Introduction to VersionTool 225

11

• The Use FileMerge menu item automatically brings up FileMerge when
selected. The two selected deltas are displayed in the side-by-side panes.
The name of the common ancestor is shown at the top of the window.

• The View diff Output menu item allows you to display the textual
differences between two selected deltas. Figure 11-6 is an example.

Figure 11-6 Text Editor Displaying Textual Output of Two Deltas

226 TeamWare Users Guide

11

The View Contents button brings up the editor of your choice and displays the
contents of the selected file. You can edit the file and create a temporary copy
in your /tmp directory. You cannot write to the file itself. For information on
how to define an editor, see Section , “Props Button,” on page 231.

The Commands button menu lets you check out a file, check in a file, view the
contents of a delta, or the differences between two selected deltas. For more
information on the Commands menu, see “File History Window Commands
Button” on page 226.

The Version Information pane at the bottom of the History window displays
information for the most recently selected delta. The following information is
displayed in the Version Information pane:

• SCCS ID
• Owner
• Time
• Date
• Lines unchanged, inserted, deleted

The Delta Comment pane is a read-only display of the comments for the
selected delta.

File History Window Commands Button

The Commands button menu on the File History window displays the
following items:

Introduction to VersionTool 227

11

Figure 11-7 History Window Commands Button Menu

The Check Out menu item has a pop-up menu that lets you check out a
selected delta, or check out a delta and bring it up in an editor. For information
on how to define an editor, see Section , “Props Button,” on page 231. The
Check Out menu item is only active when you select a checked in delta.

The Check In menu item brings up a pop-up window that lets you specify
comments for the delta to be created. Once you add comments, you can check
in the file by selecting the Check In button.

File History Window Pop-up Menu

The History window has a floating pop-up menu that, when displayed,
provides the same menu items as the File History window Commands button
menu. For more information on the File History Commands button menu, see
“File History Window Commands Button” on page 226.

228 TeamWare Users Guide

11

Commands Button
The Commands button menu on the base window displays the following
items:

Figure 11-8 Commands Pop-up Menu

The Check Out menu item has a pop-up menu that lets you check out a
selected delta, or check out a delta and bring it up in an editor. For information
on how to define an editor, see Section , “Props Button,” on page 231.

The Edit menu item brings up the contents of a selected file into an editor. If
you select multiple files, an editor is brought up for each file.

The Check In menu item brings up a pop-up window that lets you specify
comments for the delta to be created. Once you add comments, you can check
in the file using the Check In button on the Check In pop-up.

The Check In New menu item brings up the Check In New window. The
Check In New window displays a list of files not yet under SCCS control. It
allows you to select files, add comments, and check them in. For more
information on the Check In New window, see “Check In New Window” on
page 229.

The Uncheckout menu item takes a checked-out writable file, removes its write
permissions, and reverts it back to the last fixed delta state for the file.

The Latest Diffs menu item brings up FileMerge with the latest clear copy of a
selected file and the latest checked-in delta displayed in side-by-side panes.
This is a three way diff with the differences between the files discerned from

Introduction to VersionTool 229

11

the common ancestor. The common ancestor file name is displayed in the
Filemerge window header. This is a read-only display for browsing the latest
differences between versions.

Check In New Window

The Check In New window displays the directory files that are not under SCCS
control. The scroll bars to the right and bottom of the window let you peruse
an extensive file listing.

The List field gives you the option of displaying all the files that are not under
SCCS control or showing a specified group of files as defined by the shell
pattern text field. Figure 11-9 shows the List pop-up menu. Figure 11-10 shows
the Check In New window with the by Pattern menu item activated.

Figure 11-9 List Field Options

The Directory text field displays the directory path name for the files listed in
the Check In New window. You can edit this field to define the path name of
different directories.

230 TeamWare Users Guide

11

The Initial Comments pane at the bottom of the window allows you to enter
comments for a selected file that you want to check in under SCCS control. The
scrollable comments pane supports a text-wrapping function that allows for
extensive comments. When you select a file to check in, it is highlighted with a
rectangular box.

The Check In button lets you check in the selected file or files.

The Reset button automatically clears the comment pane.

Once you check in a file under SCCS control, it is automatically removed from
the Check In New display and transferred to the file list displayed in the Base
window.

Figure 11-10 is an example of the Check In New window.

Figure 11-10 Check In New Window

Introduction to VersionTool 231

11

Props Button
The Props button menu displays the following items:

The VersionTool Props menu item brings up a Properties window that allows
you to specify VersionTool properties. The Properties window and its options
are described in the following section.

The Version menu item displays the current version number of VersionTool in
the message area of the base window. Figure 11-11 shows the message area
where the version number is displayed.

Figure 11-11 Version Display in Footer of Base Window

Properties Window

The Properties window allows you to set VersionTool properties in the
following categories:

• Main File List
• Editor
• Double Click Action
• History Graph
• History Information
• SCCS File History Command

232 TeamWare Users Guide

11

Figure 11-12 is an example of the Properties window. For more information on
changing VersionTool properties, see Chapter 2, “VersionTool Basics.”

Figure 11-12 Properties Window

233

Performing Basic SCCS Functions
with VersionTool 12

This chapter shows you how to perform basic SCCS functions using
VersionTool. It is organized into the following sections:

• “Typical Tool Sessions” on page 233

• “File Button: Loading and Unloading a Directory” on page 235

• “Load Button: Reloading Previous Directories” on page 237

• “View Button: Viewing File Information” on page 238

• “Commands Button: Manipulating Files” on page 242

• “Props Button: Changing VersionTool Properties” on page 247

Typical Tool Sessions
This section gives an overview of the most common types of tool sessions. It
assumes that you are familiar with the SCCS. The following scenarios are
covered:

• An initial session where files are not yet under SCCS control
• A session where the project is already under SCCS control

234 TeamWare Users Guide

12

Putting a Project Under SCCS Control

There may be instances where a project is under development before a source
code control system is put in place. This scenario assumes a project is already
under way and the hierarchy of the project is established. It is assumed that the
project is ready to be put under SCCS control. The following process shows
you how to do so.

1. Bring up VersionTool at the top level of the source hierarchy by going to
the appropriate directory and entering one of the commands shown in the
following two examples:

2. Double click on the project directory from the list displayed in the base
window.
VersionTool automatically changes (cd) to the selected directory. As there
are no files yet under SCCS control, the display will only show directories.

3. From the Commands button menu, choose Check In New.
The Check In New window displays a list of files not under SCCS control.

4. Select the files you want to put under SCCS control and add necessary
comments in the Initial Comment pane.

5. Choose the Check In button at the bottom of the window to check in the
selected files.
Once the files are under SCCS control, they will be transferred to the base
window file list display. The Reset button clears the comment pane.

Repeat this scenario in as many project directories as necessary. Then proceed
to the scenario in the next section for working with files under SCCS control.

demo% vertool &

demo% vertool dirname &

Performing Basic SCCS Functions with VersionTool 235

12

Working with a Project Under SCCS Control

Once a project is under SCCS control, you can use VersionTool to perform
SCCS functions. This section provides a scenario of basic SCCS tasks and how
they might be applied on a project. These steps are simplified to give an
overview of the process. The remaining sections of this chapter cover in-depth
instructions on performing tasks.

Note – This is representative of a hypothetical session. The steps will vary
according to project needs and the tasks required to fulfill them.

1. Bring up VersionTool in the working directory.

2. Check out a file.

3. From the View menu, select File History to display the history graph of
the file.

4. Select two deltas from the history graph and inspect the diffs.

5. Make changes to the file.

6. Add necessary comments.

7. Check the file in.

These steps can be repeated and varied as required by the needs of your
project. The following sections of this chapter provide in-depth information on
how to perform these, and other, SCCS functions with VersionTool.

File Button: Loading and Unloading a Directory
The File button menu allows you to:

• Load a directory
• Display a list of loaded directories
• Unload a directory

There are several methods for loading and unloading the contents of a
directory into the VersionTool file list. The Load and Unload options are on the
File button menu as shown in Figure 12-1.

236 TeamWare Users Guide

12

Figure 12-1 File Button and Menu

Loading a Directory

To load the contents of a directory into VersionTool:

1. Type, or cut and paste, the directory name into the Directory text field.

2. Press Return, select the Load button, or choose Load from the File button
menu.
The files of the directory that are under SCCS control, as well as the
directories they contain are displayed, replacing the previous contents of the
base window.

3. To load subdirectories, double click on the name or glyph of the directory
you wish to load, or repeat Steps 1 and 2.
The files of the directory which are under SCCS control and the contained
directories are automatically loaded and displayed.

Unloading a Directory

The paths of loaded directories are stored in a list that is displayed when you
select the Unload option of the File menu. This directories list is the same as
the one displayed under the Load menu item. The current directory is placed
at the top of the directories menu. As you load more directories, previously
loaded directories are pushed down the list. Figure 12-2 shows an example of
the directories list displayed under the Unload option.

To unload a directory from the directories list under the Unload menu item:

Performing Basic SCCS Functions with VersionTool 237

12

♦ Choose the directory name from the Unload menu item display.
The directory is automatically removed from the directories list.

Figure 12-2 Unload Directories List

Load Button: Reloading Previous Directories
The Load button menu allows you to do the following:

• Display a list of loaded directories.
• Reload a previously loaded directory.

The paths of loaded directories are stored in a list that is displayed when you
choose the Load button. The current directory is placed at the top of the
directories menu. As you load more directories, previously loaded directories
are pushed down the list. Figure 12-3 shows an example of the directories list
displayed under the Load button.

238 TeamWare Users Guide

12

Figure 12-3 Loaded Directories List

To reload a previously loaded directory:

♦ Choose the directory name from the Load menu item display.
Its contents are loaded into the base window file list display, and the
directory name is displayed in the Directory text field.

View Button: Viewing File Information
The View button menu allows you to do the following:

• View the history graph of a file.
• View SCCS command output.
• List files according to the SCCS state.

Performing Basic SCCS Functions with VersionTool 239

12

Viewing the History Graph of a Selected File

A history graph is a pictorial display of the delta structure of a selected file.
The information contained in the File History window includes the history
graph, as well as specific information on the selected deltas in the graph.

To display the history graph:

♦ Select the file from the base window file list and choose File History from
the View button menu.
The History window displays the history graph of the file shown. When you
select a delta version from the history graph, it is highlighted with a
rectangular box, and the information for the delta is shown in the Version
Information Pane.

Figure 12-4 shows a history graph with the Show Default Delta selected.

Note – In the case where several delta versions are highlighted simultaneously,
the information of the most recently selected delta is displayed.

Using the File History Window

Once you have brought up the File History window with a history graph, you
can:

• Select a delta from the history graph which will display information about
the delta in the Version Information Pane.

• Select a delta from the history graph to check it in or out, depending on its
current SCCS state.

• View the contents of a selected delta by choosing the View Contents button.
This brings up an editor with the contents of the selected delta displayed.
For information on how to define the editor, see “Props Button: Changing
VersionTool Properties” on page 247.

• Select two deltas and choose the View Differences menu item from the
Differences button menu. This displays a FileMerge window. The two
selected deltas are displayed side by side for comparison. The common
ancestor name is displayed at the top of the window.

240 TeamWare Users Guide

12

• Select two deltas and choose the View diff Output menu item from the
Differences button menu. A Text Edit window automatically comes up
displaying the textual differences from the sccs diffs command.

Figure 12-4 History Graph Showing Default Delta

Performing Basic SCCS Functions with VersionTool 241

12

Viewing SCCS Command Output

The Commands Output menu item displays a pop-up window that allows you
to view:

• Executed commands
• Output of executed commands
• Errors from executed commands

You have the option of displaying the information types exclusively, or in
combinations. You do this by selecting the appropriate box in the control area.
Once selected, a check mark is displayed in the box. To undo a selection,
reselect the box. The check mark goes away upon reselection.

Note – This filter only affects new output. For instance, errors from previously
shown output are not removed if the Errors check mark is turned off.

Viewing SCCS File Status

The List by File Status menu item allows you to filter the file list according to
SCCS status as follows:

• Checked-out files
• Checked-in files
• All files

Note – Checked-out files have a check mark on the file icon. Checked-in files
have the regular file icon.

To display a selective list of files by status:

♦ Choose the List by File Status menu item from the View button menu.
Select the appropriate SCCS status from the pop-up submenu.
The base window file list changes to display a list of files of the selected
SCCS status. Figure 12-5 shows File Status pop-up menu.

Note – To show all the files after choosing the Checked In files or Checked Out
files menu items, you must reselect the All Files menu item.

242 TeamWare Users Guide

12

Figure 12-5 File Status

Commands Button: Manipulating Files
You can perform SCCS operations within the file list on a per-file basis or on a
multiple-file basis. You can select a single file, or multiple files, on which to
perform a function.

The Commands button menu allows you to do the following:

• Check out a file.
• Check in a file.
• Edit a checked out file.
• Check a new file under SCCS control.
• Uncheckout a file.
• Display the differences between two selected deltas.

Performing Basic SCCS Functions with VersionTool 243

12

Checking Out and Checking In Files

This section covers the process of checking out and checking in files that are
already under SCCS control.

Checking Out Files

Two methods for checking out files are as follows:

♦ Select the file(s) you want to check out from the base window display.
Then, choose Check Out from the Commands menu.
A check mark is displayed in the file icon(s) of the selected file(s). This
method is valuable when you want to check out several files at once.

Figure 12-6 is an example of selecting a file from the base window and using
the Check Out option of the Commands menu.

Figure 12-6 Check Out a File

244 TeamWare Users Guide

12

♦ Double click on a file icon in the base window (if set in the Properties
window).
A check mark is displayed in the file icon and the file is checked out with
you as the owner. This is not the default behavior. You must change the
default behavior using the Props button functions. See, “Props Button:
Changing VersionTool Properties” on page 247.

Checking In Files

There are two methods for checking in files:

♦ Select the file(s) you want to check in from the base window display and
choose Check In from the Commands button menu. Enter the appropriate
comments in the Check In pop-up window before choosing Check In.
The check mark(s) continue to be displayed on the file icon(s) until you
choose Check In from the pop-up window. This method is valuable when
you want to check in several files at once and the same comment can apply
to each.

Figure 12-7 is an example of selecting a file from the base window and using
the Check In option of the Commands menu.

Performing Basic SCCS Functions with VersionTool 245

12

Figure 12-7 Check In a File

♦ Double click on a checked out file icon in the base window and add the
appropriate comments in the Check In window before choosing Check In
(if set in the Properties window).
The check mark continues to be displayed on the file icon until you choose
Check In from the pop-up window. This is not the default behavior. You
must change the default behavior using the Props button functions. See,
“Props Button: Changing VersionTool Properties” on page 247.

246 TeamWare Users Guide

12

Editing a Checked-Out File

This section covers the process of checking out a file that is under SCCS control
and displaying it in a window with an editor. The Edit menu item allows you
to do this in either of the following ways:

 To edit a file after checking it out:

♦ Select the checked out file from the base window. Then choose Edit from
the Commands button menu.
The default is for the file to be brought up in a cmdtool window running vi .
For instructions on defining an editor, see “Props Button: Changing
VersionTool Properties” on page 247.

To check out a file and display it in a window with an editor:

♦ Choose the Check Out, Edit menu item from the Check Out pop-up menu
of the Commands button menu.
The default is for the file to be brought up in a cmdtool window running vi .
For instructions on defining an editor, see “Props Button: Changing
VersionTool Properties” on page 247.

Checking in a New File

Files that are not under SCCS control are not displayed in the base window. To
see what files are in a directory and are not under SCCS control, use the Check
In New menu item.

Check In New displays a window that contains a list of files. You can define
the list by specifying a shell pattern in the Shell Pattern text field.

1. Display a list of files from a directory that are not under SCCS control.
Double click on the directory in the base window, or define the directory
path in the Directory text field. Once in the directory, choose Check In New
from the Commands button menu. The Check In New window is displayed
with a list of files not yet under SCCS control.

2. Check in new files under SCCS control using the Check In New window.
Select the files from the Check In New window display. Enter the
appropriate initial comments in the Initial Comments pane before choosing
Check In. The checked-in files are removed from the Check In New display
and now appear in the base window file list display.

Performing Basic SCCS Functions with VersionTool 247

12

Unchecking Out a File

When you have mistakenly checked out a file and want to return the file to an
unchecked out state, there is a simple way to do so without having to check in
the file and add comments. This is done through the Uncheck Out option of the
Commands button menu.

To uncheck out a file:

♦ Select the checked out file and choose Uncheckout from the Commands
menu.
You will be prompted for confirmation. When confirmed, the file reverts to
its previous unchecked-out status, and no comments are required. No record
is kept of your owning the file.

Displaying the Differences Between Two Deltas

It is possible to display the differences between two delta versions in side-by-
side panes. The display is a three way diff with the differences between the
files discerned from the common ancestor. The common ancestor name is
displayed at the top of the FileMerge window. This is a read only display that
lets you browse the latest differences between the file versions.

To display the differences between two delta versions:

♦ Select the file from the base window list and choose Latest Diffs from the
Commands menu.
FileMerge comes up automatically displaying the latest clear copy of the
selected file and the latest checked in delta.

Props Button: Changing VersionTool Properties
The Props button displays a pop-up window with VersionTool properties
options. Selecting options from this window sets the VersionTool properties for
the remainder of the session.

Note – You must choose the Apply button before the property selections are
activated. Use the Set Default button to save the changes for subsequent
vertool sessions.

248 TeamWare Users Guide

12

Changing the Main File List Display

The Main File List category lets you specify the type of SCCS files displayed in
the base window file list.

To specify the base window file list display:

♦ Select one of the following options from the Properties window:

• List all files under SCCS control.
• List only files which are checked out.
• List only files which are checked in.

Defining an Editor

The Editor category lets you specify an editor that automatically comes up
when you view the contents of a delta, or bring up a delta to edit. You have the
following list of editors to choose from. The last option allows you to specify
your own editor.

To specify an editor:

♦ Select one of the following options from the Properties window:
• textedit
• emacs
• emacsclient
• vi
• Other:__

Note – With Other:__ you must supply a command that will bring up your
editor in a separate window. The file name is tacked on the end of the supplied
command.

Note – If you set the EDITOR environment variable to one of the top four
selections, VersionTool brings up the editor automatically without setting it
from the Properties window.

Performing Basic SCCS Functions with VersionTool 249

12

Changing the Double-Click Action

The Double-Click Action category lets you specify what happens when you
double click in VersionTool.

To specify the results of the double-click action:

♦ Select one of the following options from the Properties window:
• Toggle SCCS State — checked in or checked out
When you select this option, you can optionally check the Confirm Double
Click Check Out option.

• Show File History — automatically brings up the History window

Changing the History Graph Display

The History Graph category lets you define items for display on the history
graph.

To specify the display of the history graph:

♦ Select the following options as desired from the Properties window.
These options are toggles that you can turn off or on.

• Show Removed Deltas - Removed deltas displayed with an “X” through
them

• Show Branch Closure - Shows dashed lines that indicate changes included
from other deltas

Changing the History Information Display

The History Information category lets you specify the extensiveness of the
information displayed when you select a delta on the history graph.

To specify the history information:

♦ Select one of the following options from the Properties window:
• Show Per-SID Information
• Show Entire File History
When you select this option, you can also specify a command to gather the
history.

250 TeamWare Users Guide

12

Part 4 — FreezePoint

Introduction to FreezePoint page 253

Troubleshooting VersionTool and FreezePoint page 267

253

Introduction to FreezePoint 13

During the software development process it is often useful to create
“freezepoints” of your work at key points. Those freezepoints serve as
snapshots of a project that enable you to later recreate the state of the project at
key development points.

One way to preserve the state of the project is to make a copy of the project
hierarchy using the tar or cpio utilities. This method is very effective, but it
requires a large amount of storage resources and time.

With FreezePoint, you preserve freezepoints quickly and simply, using a small
amount of storage resource.

You can use FreezePoint through two functionally equivalent user interfaces.
You can access the user interfaces with the following commands

• freezepttool —for the GUI
• freezept —for the CLI

Note – FreezePoint is a companion tool to the CodeManager product.
Therefore, FreezePoint assumes that you are creating freezepoints of
CodeManager workspace hierarchies. You can also use FreezePoint to preserve
nonworkspace directories that contain SCCS files. If you specify a directory
that is not a workspace, a cautionary warning is issued.

This chapter refers primarily to the GUI. For information about the CLI, see the
freezept (1) man page. The GUI is documented online. You can access the
online information by using the OpenWindows Magnify Help feature.

254 TeamWare Users Guide

13

How FreezePoint Works
FreezePoint enables you to create freezepoint files from CodeManager
workspaces.1 At a later time you can use the freezepoint files to recreate the
directory hierarchies contained in the workspaces.2

The freezepoint file that FreezePoint creates is a text file that lists the default
deltas in SCCS history files in the hierarchy. When you later recreate the
hierarchy, FreezePoint uses those entries as pointers back to the original history
files and to the delta that was the default at the time the freezepoint file was
created.

When you create a freezepoint file, you specify directories and files to
FreezePoint in the Directories and Files pane. FreezePoint recursively descends
the directory hierarchies and identifies the most recently checked-in deltas in
each SCCS history file. FreezePoint then creates a freezepoint file that consists
of a list of those files and unique numerical identifiers for each delta.

You can later use FreezePoint to recreate the source hierarchy. You specify the
name of the freezepoint file, the path name of the directory hierarchy from
which the deltas are to be extracted (if different from the hierarchy from which
it was derived), and the directory where you want the source hierarchy
recreated.

1. Nonworkspace directory hierarchies that contain SCCS history files can also be preserved using
FreezePoint. FreezePoint issues a warning if the directory is not a workspace.

2. The recreated hierarchy will not contain the original SCCS history files; only the g-files represented by the
default deltas from the original hierarchy are recreated. The default delta is the delta that would be
retrieved using the SCCS get command with no options specified.

Introduction to FreezePoint 255

13

Figure 13-1 The FreezePoint Base Window

Create/Extract Pane

Control Area

256 TeamWare Users Guide

13

Terminology

Freezepoint File
A freezepoint file is a list of the default deltas from the SCCS history files
contained in the workspace hierarchy being preserved. The freezepoint file also
contains the following information:

• The login name of the user who created the freezepoint
• The date and time that the file was created
• The path name of the workspace from which the list of deltas was created
• An optional user-supplied comment

See Section , “Details about the Freezepoint File,” on page 263 for more
information.

Extract
The extract operation consists of creating a new directory hierarchy based on
the information contained in the freezepoint file. The new hierarchy is
comprised of g-files defined by the default deltas in the original SCCS history
files; the history files themselves are not recreated. Deltas are extracted from SCCS
history files located in the original source workspace.

Source Workspace
The source workspace is the directory hierarchy that contains the SCCS history
files from which the freezepoint file is created. Usually, the source workspace is
also the directory hierarchy from which g-files are later extracted to recreate
the hierarchy.1

Destination Directory
The destination directory is the top-level directory into which the files listed in
the freezepoint file are extracted. You specify the path name of this directory in
the Extract pane of the FreezePoint base window.

1. You can specify an alternate source directory at the time you perform the extract operation.

Introduction to FreezePoint 257

13

Starting FreezePoint
♦ To start the FreezePoint GUI, type the following:

After a moment, the FreezePoint window will appear.

Creating a Freezepoint File
1. To create a Freezepoint file, use the Category menu to choose the Create

pane
The pane below the Control area is used for both creating and extracting
freezepoints. You switch between the Create pane and the Extract pane by
choosing the appropriate item from the Category menu. The Create pane is
the default and is displayed when you start FreezePoint.

example% freezepttool &
example%

258 TeamWare Users Guide

13

Figure 13-2 Choosing the FreezePoint Create Pane

2. Enter the name of a freezepoint file.
• When FreezePoint initially appears, the Freezepoint File text field is

automatically set to contain the file freezepoint.out appended to the
path name of the directory from which freezepoint.

• Delete freezepoint.out and type the path name of your freezepoint file
in the Freezepoint File text field.

Note that path names that are not absolute are assumed to be relative to the
directory in which FreezePoint is started.

Introduction to FreezePoint 259

13

3. Enter the name of the source workspace.
When you start FreezePoint, the Workspace text field is automatically set to
be the workspace you have specified through the CODEMGR_WS
environment variable. If the variable is not set, and the directory from
which FreezePoint is started is hierarchically within a workspace, the
Workspace field is initialized with the path name of that workspace.

4. In the Directories and Files text window, compose a list of directories
and/or files that you wish to preserve.
The list of directories and files that you create in the Directories and Files
text window are those that will be preserved in the freezepoint file.

You add directory and file entries to the Directories and Files window using
the two items in the File menu:
• Load Entire Directory
• Add File to List

The Load Entire Directory inserts the “./” characters into the Directories
and Files window; this indicates that the entire workspace hierarchy be
recursively preserved.

The Add Files to List item activates a point-and-click chooser window with
which you can search for and select files and directories to add to the list.
• Click SELECT on a directory icon to select it, and then select the chooser’s

Add to List button to add the choice to the list.
• Double click SELECT on a directory icon to descend in the file system

hierarchy;1 double-click SELECT on the icon to ascend.

Note – You can also type the path name of a directory or file into the chooser
Directory field and then click SELECT on the Add to List button.

5. Enter an optional comment in the Comments text pane.
The comment is stored in the freezepoint file for future reference.

6. Select the Create button to create the freezepoint file.
A counter on the bottom right corner of the base window footer displays the
progress of the freezepoint operation.

1. Alternatively, you can select a directory icon and click on the Load Directory button to hierarchically
descend.

260 TeamWare Users Guide

13

Viewing or Modifying a Freezepoint File
Freezepoint files are text files. You can view and edit their contents using
standard text editors.

Recreating (Extracting) a Source Hierarchy
To extract a new source hierarchy described by a freezepoint file, follow these
basic steps:

1. Use the Category menu to choose the Extract pane
The pane below the Control area is used for both creating and extracting
freezepoints. You switch between the Create pane and the Extract pane by
choosing the appropriate item from the Category menu. Choose the Extract
item to display the Extract pane.

Introduction to FreezePoint 261

13

Figure 13-3 Choosing the FreezePoint Extract Pane

2. Type the name of an existing freezepoint file.
Type the path name of your freezepoint file in the Freezepoint File text field.

Note that path names that are not absolute are assumed to be relative to the
directory in which FreezePoint is started.

3. Use the Extract From menu to choose how you will specify the source
workspace.
By default, FreezePoint extracts files from the source workspace path name
stored in the freezepoint file when it was created.1 By default, FreezePoint
uses this path name as the source workspace from which to extract files. If

1. You can edit the freezepoint file and change the path name of the source workspace.

262 TeamWare Users Guide

13

you choose the Show Default menu item from the Extract From menu,
FreezePoint displays the path name of the source workspace in the
Workspace text field.1

If you wish to specify a source workspace hierarchy other than the one
contained in the freezepoint file, choose the You Specify item from the
Extract From menu and enter the path name of the alternate source
workspace in the Workspace text field.

4. Specify the Destination Directory.
Enter in the Destination Directory text field the path name of the directory
in which you want the new (extracted) hierarchy to be located.

Note that path names that are not absolute are assumed to be relative to the
directory in which FreezePoint is started. The destination directory that you
specify must be new or empty.

5. Select the Extract button to begin the extraction.
Selecting the Extract button causes a series of sccs get operations to be
performed on the source files listed in the freezepoint file. The version of
each file extracted is the version specified by the SMID in the freezepoint
file. The extracted g-files are written to destination directory.

A counter on the bottom right corner of the base window footer displays the
progress of the extract operation.

Notes about Using FreezePoint
• Use the Edit menu on the Create pane to delete selections from the

Directories and Files text window. Select and deselect files using the
SELECT mouse button and then use the Delete item from the Edit menu to
delete selected directories/files. Use the Select All, Deselect All, Delete All
items to edit large numbers of directories/files.

• Helpful status messages are displayed in the main window footer.

1. If you type Return after entering the path name of the freezepoint file, FreezePoint automatically displays
the default source workspace in the Workspace text field.

Introduction to FreezePoint 263

13

• If during an extraction, FreezePoint cannot locate a file that has been
renamed or deleted, the extraction is aborted and the offending entry is
named. You must edit the freezepoint file to remove the entry. Refer to the
freezepointfile (5) man page for information that enables you to
determine the new name of a renamed file.

• You can use the Tools menu to launch other TeamWare tools directly from
FreezePoint.

Details about the Freezepoint File
A freezepoint file contains:

• A list of source files

• A group of hex digits that identifies the most recent SCCS deltas found in
each file’s corresponding SCCS history file

• A group of hex digits that identifies the root delta in each file’s
corresponding SCCS history file

Figure 13-4 Three Entries From a Freezepoint File

The deltas are not identified as you might imagine, by their standard SCCS
delta ID (SID). Instead, a new means of identification called an SCCS
Mergeable ID (SMID) is used. Use of the SMID enables FreezePoint to work
properly with files in which SIDS have been renumbered as part of a
CodeManager Bringover Update transaction. For more information see
Section , “Why are SMIDs Necessary?”.

What is a SMID?

The use of SMIDs ensures that every delta is uniquely identifiable, even if its
SID is changed. A SMID is a number generated using the Xerox Secure Hash
Function. When you use FreezePoint to create a freezepoint file, it calculates

filemerge.1 (previously 1.5) 92/03/19 14:09:08 jon a6f4fe81 89b4632b 418e7950 5510740e cf9ab4e1 95627c33 2287acc3 b9e0877e
putback.1 (previously 1.40)92/06/02 16:36:16 george 5b791c60 2b827cfd f0cc9a73 46ac975 24d9b3ec f87d1975 9ea59e0d 72ce2a4d
resolve.1 (previously 1.19) 92/06/10 16:38:07 paul f21fa6e6 668bf818 e4964f36 240d825c f1d3f57 8cc4c31c 9f53029f 8aaf3db1

264 TeamWare Users Guide

13

the SMID for both the current delta and the root delta in the SCCS history file.
Using both of these values, FreezePoint can identify a delta in a file even if its
SID has been changed.

Why are SMIDs Necessary?

Note – This section briefly discusses how CodeManager merges SCCS history
files. For more information, see Chapter 8, “How CodeManager Merges SCCS
Files.”

When CodeManager encounters a file conflict during a Bringover Update
transaction (file is changed in both the parent and child workspaces), it merges
the new deltas from the parent workspace into the SCCS history file in the
child. When this merge occurs, the deltas that were created in the child are
moved to an SCCS branch off of the delta that both deltas have in common
(common ancestor).

When CodeManager relocates the child deltas to a branch, it changes their SID.
If SIDS were used in freezepoint files to identify deltas, this relocation would
invalidate the information contained in the freezepoint file. For that reason,
SIDs cannot be used to identify deltas after conflicting SCCS histories have
been merged.

SMID/SID Translation
In release 1.0 of TeamWare, SMID/SID translation is available only through the
FreezePoint CLI.

The freezept command sid and smid subcommands enable you to translate
specified SIDs into SMIDs, and to translate specified SMIDs into SIDs. The
ability to make these translations is useful if you wish to write your own
scripts or programs to track deltas.

Translating SIDs to SMIDs

Use the freezept smid command to translate SIDs to SMIDs. The syntax is:

freezept smid [-w workspace] [-r SID] [-a] file

Introduction to FreezePoint 265

13

• Use the -r option to specify the SID (in file file) for which you wish to
calculate a SMID.

• Use the -a option to calculate a SMID for all of the SIDS in file.

• For convenience you can use the -s option to specify a directory from which
file is relative.

Examples

Translating SMIDS to SIDS

Use the freezept sid command to translate SMIDs to SIDs. The syntax is:

freezept sid [-w workspace] [-m “SMID”] [-a] file

• Use the -m option to specify the SMID (in file file) for which you wish to
calculate a SID.

• Use the -a option to calculate a SID for all of the deltas in file.

• For convenience you can use the -s option to specify a directory from which
file is relative.

example% freezept smid -r 1.38 module.c
SID 1.38 = SMID “f5b67794 705f0768 a89b1f4 588de104”

example% freezept smid -a bringover.1
SID 1.1 = SMID “b05b0a2f 1db5246e 1a466014 707e38f5”
SID 1.2 = SMID “d6a5c61f 5634f0ef 9847a080 d0d7b212”
SID 1.2 = SMID “e31acdd5 6c1232e2 9e81c287 1edb2f41”
SID 1.3 = SMID “c34c91b4 a818622a 2457356a 489b2728”
SID 1.4 = SMID “98c0fd8d 889563fb cf722c2b 6afc9636”
SID 1.5 = SMID “b1e24be3 752fec3e df2d2717 a9b3f1fa”
SID 1.6 = SMID “2b93d39 1ea2f6ba 9814320c bc609acb”
SID 1.7 = SMID “1db7d640 42b0f009 35c60d7b b230bd85”
SID 1.8 = SMID “906dfe9a ca7e2d6c a64da5be 4baef254”

266 TeamWare Users Guide

13

Note – Because the SMID contains white space, you must enclose it within
quotation marks.

Examples

example% freezept sid -m “64fdd0df de9d7dd de75812 23da96aa”
module.c
SMID “64fdd0df de9d7dd de75812 23da96aa” = SID 1.36

example% freezept sid -a bringover.1
SMID “b05b0a2f 1db5246e 1a466014 707e38f5” = SID 1.1
SMID “d6a5c61f 5634f0ef 9847a080 d0d7b212” = SID 1.2
SMID “e31acdd5 6c1232e2 9e81c287 1edb2f41” = SID 1.2
SMID “c34c91b4 a818622a 2457356a 489b2728” = SID 1.3
SMID “98c0fd8d 889563fb cf722c2b 6afc9636” = SID 1.4
SMID “b1e24be3 752fec3e df2d2717 a9b3f1fa” = SID 1.5
SMID “2b93d39 1ea2f6ba 9814320c bc609acb” = SID 1.6
SMID “1db7d640 42b0f009 35c60d7b b230bd85” = SID 1.7
SMID “906dfe9a ca7e2d6c a64da5be 4baef254” = SID 1.8
SMID “77481e8a 61542339 cc28f532 e5fc6389” = SID 1.9
SMID “cb97c9a6 d0342cf6 19b7b743 2436ca1c” = SID 1.10
SMID “46de4131 b95b9973 93958a07 b960074c” = SID 1.11

267

Troubleshooting VersionTool
and FreezePoint 14

This chapter describes some of the most common problems in VersionTool and
FreezePoint. It indicates where to look for information on how to overcome the
problem. It is organized into the following sections:

• “Troubleshooting Checklist” on page 267
• “Reporting Problems” on page 268
• “Error Messages” on page 268

Troubleshooting Checklist
If you are having problems using VersionTool or FreezePpoint, use the
following checklist to rule out some of the most common reasons for the
problem:

❏ Is the tool installed correctly?
 If not, contact your system administrator. You can also read Installing
SunSoft Developer Products on Solaris.

❏ Is /opt/bin in your PATH?
If not, see Installing SunSoft Developer Products on Solaris for information on
how to add /opt/bin to your PATH.

❏ Is /usr/lang in your PATH?
If not, see Installing SunSoft Developer Products on Solaris for information on
how to add /usr/lang to your PATH.

268 TeamWare Users Guide

14

❏ Is the HELPPATH environment variable set?
VersionTool relies on finding the vertool.info file in or near the directory
that contains vertool . FreezePoint relies on finding the
freezepoint.info file in or near the directory that contains
freezepoint . Magnify Help provides on-line help for each control,
window, pane, and error message displayed on the screen. See “Error
Messages” for a list of the VersionTool and FreezePoint error messages and
instructions on what to do next.

❏ Do you have enough swap space?
If you receive a message stating “Request for xxx bytes of memory failed,”
you have run out of swap space. Use the mkfile (8) and swapon (8)
commands to create more swap space or abort some existing processes
(windows) to free up swap space. To determine which processes occupy
significant swap space, use the ps uagx command and look in the SZ
column. To determine how much swap space you have, use the pstat -s
command.

❏ Does your window system have enough resources?
If VersionTool or FreezePoint cannot activate a pop-up window, your
window system may be running out of resources. Contact your system
administrator for help.

Reporting Problems
If you have gone through the checklist and are still having problems, call your
local service office. Have the version number of the tool ready to give to the
dispatcher. For information on how to display the version number, see Chapter
2, “VersionTool Basics,” for VersionTool and Chapter 3, “FreezePoint,” for
FreezePoint.

Error Messages
VersionTool and FreezePoint display messages to provide you with
information or tell you about an error.

Part 5 — ParallelMake

Introduction to ParallelMake page 271

Using ParallelMake page 273

271

Introduction to ParallelMake 15

The ParallelMake tool replaces the make command. Using ParallelMake, it is
possible to distribute the process of building large programs over a number of
processes and, in the case of multiprocessor systems, over multiple CPUs.

ParallelMake reads your makefiles and automatically:

• Determines which targets can be built in parallel1

• Distributes the build of those targets over a number of processes set by you

If you already use the standard make command, the transition to ParallelMake
is simple; most makefiles require little, if any, alteration, and the command is
virtually identical to standard make.

The ParallelMake executable file (also named make) is executed in place of the
standard make utility. The ParallelMake executable is installed in a different
directory than standard make, and should be placed in your search path so that
it is called when you execute the make command.

Parallel Builds
ParallelMake allows targets to be built in parallel on any single host. This
concurrent processing can greatly reduce the elapsed time required to build a
large system or project. ParallelMake supplies the special targets .PARALLEL,
.NO_PARALLEL, and .WAIT for controlling concurrency and timing.

1. You can exert control over how the build is parallelized by how you write your makefiles.

272 TeamWare Users Guide

15

New Options
There are two new options:

–M machines_file
Read the alternate machine specification file machines_file rather than the
default file ~/.make.machines .

–R
Turn parallel build mode off.

Special-Purpose Targets
The following targets are specified in makefiles to control parallel processing.

Note – Makefiles that you write using these targets remain compatible with the
standard version of make distributed with Solaris 1.0 and Solaris 2.0. Standard
make accepts these targets without error (and without action).

.NO_PARALLEL:
Use this target to indicate which targets are to be processed serially.

.PARALLEL:
Use this target to indicate which targets are to be processed in parallel.

.WAIT
When you specify this target in a dependency list, ParallelMake waits until
the dependencies that precede it are finished before processing those that
follow, even when processing is parallel.

273

Using ParallelMake 16

This chapter describes how to use ParallelMake. It assumes that you have a
working knowledge of the standard make utility. It is a supplement to the
standard make utility documentation.

A Note About Makefiles
The methods and examples in this chapter illustrate the kinds of problems that
can be corrected with ParallelMake.

As procedures become more complicated, so do the makefiles that implement
them. The trick is to know which approach will yield a makefile that works in
a given situation. The examples in this chapter illustrate some common
situations and some methods to simplify them using ParallelMake.

If you use a template approach in a project from the outset, chances are that the
custom makefiles that evolve from the templates are more familiar, and
therefore easier to understand, integrate, maintain, and reuse. After all, the less
time you spend editing the makefiles, the more time you have to develop your
program or project.

274 TeamWare Users Guide

16

Building Targets in Parallel
Large software projects typically consist of multiple independent modules that
can be built in parallel. ParallelMake supports concurrent processing of targets
on a single machine; this concurrency can markedly reduce the time required
to build a large project.

The .make.machines File

You can control the level of parallelization of a make operation on the local
machine. By default, ParallelMake spawns a maximum of four concurrent
processes. If you want to increase or decrease the maximum number of
concurrent processes, you must create a file named .make.machines in your
home directory1, adding an entry for the local machine. An entry consists of
both:

• The machine name

• A value that specifies the maximum number of concurrent processes
allowed on that machine

Parallel Processes

Since most compilers spend more time in disk I/O functions than they do in
compute intensive functions, some performance speedup can be achieved by
building targets concurrently on the local machine. The optimal number of
multiple builds for a machine depends on the computational power in relation
to disk access speed. A single processor machine can get reasonable
improvement compiling two targets in parallel; a multiprocessor machine can
build more.

The number of concurrent builds is also limited by the available swap space
and the disk space available in /tmp . As a default, ParallelMake attempts to
run four builds on the local machine. This default can be modified for different
machines by using the max option in the .make.machines file. This option
takes the form:

1. You can specify an alternate file using the -M option.

max = n

Using ParallelMake 275

16

where n is the number of concurrent targets. Here is an example:

Figure 16-1 Example .make.machines file using the max specification

 always uses the local host.

Turning off Parallelism

The -R option to ParallelMake turns off parallel processing, even when the
~/.make.machines file exists.

How Parallelism is Achieved
When given a target to build, ParallelMake checks the dependencies associated
with that target, and builds those that are out of date. Building those
dependencies may, in turn, entail building some of their dependencies. When
building in parallel, ParallelMake starts every target that it can. As these
targets complete, ParallelMake then starts other targets. Nested invocations of
ParallelMake are not run in parallel by default, but this can be changed (see
Section , “Restricting Parallelism,” on page 278 for more information).

Collected Output

Since ParallelMake builds multiple targets concurrently, the output of each
build will be produced at the same time. In order to avoid intermixing the
output of various commands, ParallelMake collects output from each build
separately. ParallelMake displays the commands before they are executed. If an
executed command generates any output, warnings, or errors, ParallelMake
displays the entire output for that command. Since commands started later
may finish earlier, this output may be displayed in an unexpected order.

venus max=7
pluto max=2
jupiter max=4

276 TeamWare Users Guide

16

Limitations on Makefiles
Concurrent building of multiple targets places some restrictions on makefiles.
Makefiles that depend on the implicit ordering of dependencies may fail when
built in parallel. Targets in makefiles which modify the same files may fail if
those files are modified in parallel by two different targets. Some examples of
possible problems are discussed in this section.

Dependency Lists

When building targets in parallel, the dependency lists should be accurate. For
example, if two executables use the same object file but only one specifies the
dependency, then the build may cause errors when done in parallel. For
example, consider the following makefile fragment:

Figure 16-2 Example Makefile with Inadequate Dependency Information

When built serially, the target aux.o would be built as a dependent of prog1
and would be up to date for the build of prog2 . If built in parallel, the link of
prog2 would begin before aux.o had been built, and would therefore be
incorrect. The .KEEP_STATE feature of make detects some dependencies, but
not the one shown above.

Explicit Ordering of Dependency Lists

Other examples of implicit ordering dependencies are more difficult to fix. For
example, if all of the headers for a system must be constructed before anything
else is built, then everything must be dependent on this construction. This
causes the makefile to be more complex and increases the potential for error
when new targets are added to the makefile. The user can specify the special
target .WAIT in a makefile to indicate this implicit ordering of dependents.
When ParallelMake encounters the .WAIT target in a dependency list, it
finishes processing all prior dependents before proceeding with the following

all: prog1 prog2
prog1: prog1.o aux.o

$(LINK.c) prog1.o aux.o -o prog1
prog2: prog2.o

$(LINK.c) prog2.o aux.o -o prog2

Using ParallelMake 277

16

dependents. More than one .WAIT target can be used in a dependency list. The
following example shows how to use .WAIT to indicate that the headers must
be constructed before anything else.

Figure 16-3 Example Use of .WAIT

The user may add an empty rule for the .WAIT target to the makefile so that
the makefile is backward-compatible.

Concurrent File Modification

You must make sure that targets built in parallel do not attempt to modify the
same files at the same time. This can happen in a variety of ways. If a new
suffix rule is defined that must use a temporary file, the temporary file name
must be different for each target. This can be accomplished by using the
dynamic macros $@ or $* . For example, a .c.o rule which performs some
modification of the .c file before compiling it might be defined as:

Figure 16-4 Use of Dynamic Macros in Temporary File Names

Concurrent Library Update

Another example is the default rule for creating libraries that also modifies a
fixed file, that is, the library. The inappropriate .c.a rule causes ParallelMake
to build each object file and then archive that object file. When ParallelMake
archives two object files in parallel, the concurrent updates will corrupt the
archive file.

Figure 16-5 Incorrect .c.a Rule for Parallel Building

all: hdrs .WAIT libs functions

.c.o:
awk -f modify.awk $*.c > $*.mod.c
$(COMPILE.c) $*.mod.c -o $*.o
$(RM) $*.mod.c

.c.a:
$(COMPILE.c) -o $% $<
$(AR) $(ARFLAGS) $@ $%
$(RM) $%

278 TeamWare Users Guide

16

A better method is to build each object file and then archive all the object files
after completion of the builds. An appropriate suffix rule and the
corresponding library rule are:

Figure 16-6 Example Suffix Rule for Building Libraries in Parallel

Multiple Targets

Another form of concurrent file update occurs when the same rule is defined
for multiple targets. An example is a yacc (1) program that builds both a
program and a header for use with lex (1). When a rule builds several target
files, it is important to specify them as a group using the + notation. This is
especially so in the case of a parallel build.

Figure 16-7 Parallel yacc Rule Using + Construct

Restricting Parallelism
Sometimes file collisions cannot be avoided in a makefile. An example is
xstr (1), which extracts strings from a C program to implement shared strings.
The xstr command writes the modified C program to the fixed file x.c and
appends the strings to the fixed file strings . Since xstr must be run over
each C file, the following new .c.o rule is commonly defined:

Figure 16-8 Common Use of xstr in .c.o makefile Rule

.c.a:
$(COMPILE.c) -o $% $<

lib.a: lib.a($(OBJECTS))
$(AR) $(ARFLAGS) $(OBJECTS)
ranlib $@
$(RM) $(OBJECTS)

y.tab.c + y.tab.h: parser.y
$(YACC.y) parser.y

.c.o:
$(CC) $(CPPFLAGS) -E $*.c | xstr -c -
$(CC) $(CFLAGS) $(TARGET_ARCH) -c x.c
mv x.o $*.o

Using ParallelMake 279

16

ParallelMake cannot concurrently build targets using this rule since the build
of each target writes to the same x.c and strings files, nor is it possible to
change the files used. The user can use the special target .NO_PARALLEL: to
tell ParallelMake not to build these targets in parallel. For example, if the
objects being built using the .c.o rule were defined by the OBJECTS macro,
the following entry would force ParallelMake to build those targets serially:

Figure 16-9 Use of .NO_PARALLEL:

If most of the objects need to be built serially, it is easier and safer to force all
objects to default to serial by including the .NO_PARALLEL: target without any
dependents. Any targets which can be built in parallel can be listed as
dependencies of the .PARALLEL: target:

Figure 16-10 Use of .PARALLEL: and .NO_PARALLEL:

Nested Invocations of ParallelMake

When ParallelMake encounters a target that invokes another ParallelMake
command, it builds that target serially, rather than in parallel. This prevents
problems with two different ParallelMake invocations attempting to build the
same targets in the same directory. Such a problem might occur when two
different programs are built in parallel, and each must access the same library.
The only way for each ParallelMake invocation to be sure that the library is up
to date is for each to invoke ParallelMake recursively to build that library. Note
that ParallelMake only recognizes a nested invocation when the $(MAKE)
macro is used in the command line.

If you have nested make commands that you know will not collide, you can
force them to be done in parallel by using the .PARALLEL: construct.

When a makefile contains many nested make commands that run in parallel,
the load-balancing algorithm may force too many builds to be assigned to the
local machine. This may cause high loads and possibly other problems, such as
running out of swap space. If such problems occur, allow the nested
commands to run serially.

.NO_PARALLEL: $(OBJECTS)

.NO_PARALLEL:

.PARALLEL: $(LIB_OBJECT)

280 TeamWare Users Guide

16

Error Messages
The following error messages may be issued by ParallelMake and are not
documented in the standard make utility documentation.

• Ignoring unknown host hostname

The ~/.make.machines file includes the name of a host which cannot be
found in the hosts database. See the file /etc/hosts or the NIS.

• Conditional macro conflict encountered

When building targets in parallel, make may encounter a problem with the
use of conditional macros. This condition is rather obscure, and the warning
only appears with the -d option. It indicates that make has encountered a
target that may have to be rebuilt due to a new conditional macro setting,
but the previously built object has not yet been used.

281

Glossary

Access control
The CodeManager facility by which users can control access to workspaces by
CodeManager commands.

Branch (SCCS)
A delta or series of deltas that are placed off of the main line of deltas in an
SCCS history file.

Bringover Create
The transaction used to copy groups of files from a parent workspace to a
nonexistent child workspace. The new child workspace is created as a result of
the transaction. All CodeManager transfer transactions are performed from
the perspective of the child workspace; hence the Bringover Create transaction
“brings over” files to the child from the parent workspace. See also Bringover
Update, Workspace and Putback.

Bringover Update
The transaction used to update an existing child workspace with respect to
files contained in its parent workspace. All CodeManager transfer transactions
are performed from the perspective of the child workspace; the Bringover
Update transaction “brings over” files to the child from the parent workspace.
See also Bringover Create, Workspace, and Putback.

FreezePoint
The TeamWare utility used to make snapshots of workspaces (or portions of
them) at important junctures or “freezepoints.”

282 TeamWare Users Guide

Child workspace
A workspace that has a parent workspace listed in its
Codemgr_wsdata/parents file. Development work is typically done in child
workspaces and put back to parent workspaces after it has been tested. The
CodeManager transfer transactions are viewed from the child workspace
perspective, and all conflicts are resolved in the child workspace.

Codemgr_wsdata directory
Every CodeManager workspace contains a “metadata” directory in its root
directory named Codemgr_wsdata . CodeManager stores data about the
workspace in Codemgr_wsdata . The presence of this directory is the sole
factor that defines it as a CodeManager workspace (as opposed to a normal
directory). CodeManager commands use the presence or absence of this
directory to determine whether a directory is a workspace. All data stored in
the Codemgr_wsdata directory is contained in flat ASCII text files that can be
edited by users. See Section , “The Workspace Metadata Directory,” on page 65
for more information.

Conflict
The condition that exists when a file has changed in both the child and parent
workspace. Conflicts are identified by the Bringover Update transaction and
are resolved by using the Resolve transaction.

Copy-Modify-Merge
The concurrent development model upon which CodeManager is based.
Using this model, multiple developers concurrently copy sources from a
common area, modify the source in isolation, and then merge those changes with
changes made by other developers.

Create
Used in CodeManager transaction output. Files are said to be created if they
exist in the source workspace and not in the destination workspace, and are
copied into the destination workspace as part of a Bringover or Putback
transaction.

Default line of work
The branch in an SCCS history file upon which the next delta will be added.

def.dir.flp
The default FLP shipped with CodeManager is def.dir.flp ; this FLP
recursively descends directory hierarchies and lists all files for which SCCS
history files exist. See FLP.

Glossary 283

delta
The set of differences between two versions of a file checked into SCCS.

ParallelMake
The program distributed as part of TeamWare that enables program builds to
be parallelized over multiple processes and CPUs. See the section on
ParallelMake.

FileMerge
The TeamWare utility used to merge deltas during Resolve transactions. See
Chapter 6, “Resolving Conflicts,” and the section on FIleMerge.

FLP
An FLP or FIle List Program is a program or script that generates a list of files to
stdout that CodeManager then processes during Bringover and Putback
transactions. See def.dir.flp.

g-file (SCCS)
The working copy of a file retrieved from an SCCS history file by the sccs-
get command.

Integration workspace
A workspace to which multiple developers put back (merge) their work.

Lock
To assure consistency, the CodeManager file transfer transactions Bringover
and Putback lock workspaces while they are working in them. Locks are
recorded in the Codemgr_wsdata/lock file in each workspace; the
CodeManager commands consult that file before acting in a workspace. See
read-lock, write-lock.

Merge
To produce a single version of a file from two conflicting files (deltas). Usually
accomplished with the assistance of the FileMerge program.

Notification
A CodeManager facility that mails notice of events, such as changes to files or
directories, to users.

Parent workspace
A workspace that has a child workspace(s) listed in its
Codemgr_wsdata/children file. Parent workspaces are typically used as
integration areas, since development, testing, and conflict resolution occur in
child workspaces.

284 TeamWare Users Guide

Putback
The transaction used to update a parent workspace with respect to files
contained in its child workspace. All CodeManager transfer transactions are
performed from the perspective of the child workspace; the Putback
transaction “puts back” files to the parent from the child workspace. See also
Bringover Create, Bringover Update, and Workspace.

Read-lock
A lock that is obtained by a CodeManager command while it examines the
contents of a workspace. A read-lock assures that the workspace does not
change while the command is examining files in a workspace. Read-locks may
be obtained concurrently by a number of commands; no CodeManager
command may write to the workspace while a read-lock is in force. See lock,
write-lock.

Reparent
To change the parent of a child workspace.

Resolve
To produce a new delta of a file from two conflicting deltas. See merged,
conflict.

Root directory
The top-level directory of a CodeManager workspace. This directory’s path
name is the name by which the workspace is referred.

SCCS history file
The file that contains a given file’s delta history; also referred to as an
“s-dot-file.” All SCCS history files must be located in a directory named SCCS,
which is located in the same directory as the g-file. See g-file.

SID
SCCS delta ID—The number used to represent a specific SCCS delta.

Undo
To return a workspace to the state it was in before the most recent Bringover or
Putback transaction, thereby “undoing” the action of the transaction.

Update
Files are said to be updated during a Bringover or Putback transaction if they
exist in both the source workspace and in the destination workspace, and have
changed in the source workspace. The SCCS history file in the destination
workspace is updated with new deltas from the source workspace.

Glossary 285

VersionTool
The TeamWare program that provides a graphical interface to SCCS. See the
section on VersionTool.

Workspace
A workspace is a specially designated (but standard) directory and its
subdirectory hierarchy. Usually each developer on a project works in their
own isolated workspace concurrently with other developers programming in
other workspaces. CodeManager provides utilities to “intelligently” copy files
from workspace to workspace.

Workspace hierarchy
A hierarchy of parent and child workspaces in which programmers and release
engineers can develop, test, share, and release software products.

Write-lock
A lock that is obtained by a CodeManager command that changes data in a
workspace. Only one write-lock may be obtained for a workspace at any time.
When a write-lock is in force, only the CodeManager command that owns the
lock may write to the workspace; other commands cannot obtain read-locks
from the workspace. See lock, read-lock.

286 TeamWare Users Guide

Index-287

Index

Symbols
.make.machines , 274
.NO_PARALLEL: special target, 279
.PARALLEL: special target, 279
.WAIT special target, 276
~/.codemgr_resrc , 57
~/.codemgrtoolrc , 57

A
access control, workspace, 77
access_control file, 66, 77
AnswerBook, xvii
archiving libraries, 277
args file, 66, 100
Auto Bringover option, 120

B
backup directory, 66, 125
Base window

pop-up menu, 219
branch delta, 216
branches, 216
branching, SCCS, 160
Bringover Create transaction, 69, 104 to

173

effect of checked out files, 107
file system accessibility, 108
Force Conflicts option, 107
path name specification, 108
Preview option, 106
Quiet option, 106
search path, 109
Skip SCCS gets option, 106
Verbose option, 106
workspace locks, 108, 189

Bringover Transaction, 104 to 116
Bringover Update transaction, 110 to 116

action summary table, 116
conflict detection during, 137
effect of checked-out files, 113
file system accessibility, 114
Force Conflicts option, 113
path names, 114
Preview option, 112
Quiet option, 112
Skip SCCS gets option, 112
Verbose option, 112
workspace locks, 115

Bringover/Putback transaction
introduction, 28

C
Category menu (Transactions

Index-288 TeamWare Users Guide

window), 51
Check In New menu item, 228
Check In New window, 229

Check In button, 230
Directory text field, 229
Initial Comments pane, 230
List field, 229
Reset button, 230

checked-out files, 113, 120
children file, 66
chooser, 102
Chooser window, 55
CLI, command-line interface

umbrella command, 38
CodeManager

base window, 42
Chooser, 102
control area, 48
customization, 57
menus, 48
moving an existing project, 145
properties, 57
starting a project, 145
starting execution, 40
transaction model, 95
Workspace Graph pane, 43

CODEMGR_WS variable, 92
Codemgr_wsdata , 26, 65

access_control file, 66
args file, 66, 100
backup directory, 66, 125
children file, 66
history file, 66
locks file, 67
nametable file, 67
notification file, 67, 83
parent file, 67

CODEMGR_WSPATH variable, 93
codemgrtool , 40
Command Output menu item, 222
command-line interface

umbrella command, 38
Commands button, 228

Check In menu item, 228
Check In New menu item, 228
Check Out menu item, 228
checking in a new file, 246
checking in files, 244
checking out files, 243
displaying the differences between

deltas, 247
Edit menu item, 228
editing checked out files, 246
Latest Diffs menu item, 228
unchecking out a file, 247
Uncheckout menu item, 228

Commands button menu, 226
Commands button, History window, 226

Check In menu item, 227
Check Out menu item, 227

Commands Output button, 241
Commands Output menu item, 241
comment

Putback transaction, 120
common ancestor delta, 138
concurrent file modification, 277
conflict

detection during Bringover, 137
merging files in conflict, 155
resolving, 136

copy-modify-merge
example, 19
model, 18

creating a workspace, 68
current difference (FileMerge), 144

D
def.dir.flp , 99
default list

loading, 101
saving, 101

defaults files, 57
~/.codemgr_resrc , 57
~/.codemgrtoolrc , 57

Delete, 69
Codemgr_wsdata Directory only, 69

Index-289

Sources and Codemgr_wsdata
Directory, 69

delta, 217
delta branches, 223
Delta Comment pane, 226
delta ID, 217
dependency lists, 276

explicit ordering, 276
implicit ordering, 276

difference (FileMerge)
current, 144
defined, 144
next, 144
previous, 144
resolved, 144

Differences button menu, 224
Use FileMerge menu item, 225
View diff Output menu item, 225

double-click action
Workspace Graph pane, 47

E
Edit menu, 48
environment variables, 92
examples

Bringover/Putback/Resolve
cycle, 167 to 182

merging SCCS history files, 156
reparenting, 74

F
file

collision, 278
concurrent modification, 277

File button, 220, 235
Load menu item, 221
loading a directory, 236
Unload menu item, 221
unloading a directory, 236

file chooser, 102
File History menu item, 222
File List pane, 55

changing contents of, 101
constructing directory and file

lists, 100
selecting files, 101

File List Program, see FLP
file lists

initial state, 100
transactions, 100

File menu, 48
File status

menu item, 223
pop-up window, 223

FileMerge program, 142 to 144
files

merging, 155
relationships between files in parent

and child workspaces, 30 to
34

specifying for transactions, 98
FLP, 99

default (def.dir.flp), 99
footer messages, 62
Force Conflicts option, 107, 113
FreezePoint

creating a freezepoint file, 257
extract a source directory, 260

FreezePoint terms, 256
extract, 256
freezepoint file, 256

G
graphical user interface (GUI),

overview, 39
grouping files

H
help facilities

AnswerBook, xvii
Magnify Help, xvii
Notices, xvii

hierarchy, workspace, 146 to 151
history file, 217

Index-290 TeamWare Users Guide

history file, 66, 87
History window, 223, 239

Commands button, 226
Commands button menu, 226
Delta Comment pane, 226
Differences button menu, 224
pop-up menu, 227
Version Information pane, 226
View Contents button, 226

History window Commands button
Check In menu item, 227
Check Out menu item, 227

hosts, definition, 274

I
icons

drag and drop, 46

L
Latest Diffs menu item, 228
library update, concurrent, 277
limitations on makefiles, 276
Load

workspaces into Workspace Graph
pane, 43

Load button, 221, 237
Load menu option, 221
locking workspaces, 90
locks

removing workspace locks, 91
viewing workspace locks (GUI), 91

locks file, 67

M
-M option, read machines file, 274
machines

file, 274
file option, 274

macro
dynamic, 277

Magnify Help, xvii, 39

spot help, xvii
makefiles, limitations, 276
manual pages, SunOS, xvii
max option, 274
maximum builds, controlling, 274
menu buttons

Edit, 48
File, 48
Properties, 49
Tools, 49
Transactions, 49
View, 48

menus
CodeManager, 48

merging files
not in conflict, 154

merging SCCS history files, 33
example, 156
in conflict, 155

messages
footer, 62

metadata directory, 26
mkfile command, 268
multiple targets, 278

N
name fields, workspace, 44
nametable file, 67
new

special targets for make, 272
next difference (FileMerge), 144
nodes, 216
Notices, xvii
notification, 83
notification file, 67

O
On-Line Help

answerbook, xvii
notices, xvii

output, collected, 275

Index-291

output, commands, 241
output, transaction, 97

P
parallelism

restricting, 278
turning off, 275

Parent, 72
parent file, 67
parent/child introduction, 23 to 26
Preview option, 106, 112, 119
previous difference (FileMerge), 144
project

moving an existing project, 145
starting a new project, 145

Properties menu, 49
Properties window, 57, 231
Props button, 231, 247

changing double click action, 249
changing file list display, 248
changing history graph display, 249
changing history information

display, 249
defining an editor, 248
VersionTool Props menu item, 231

Putback, 123
Putback transaction, 117 to 123

access control, 122
action summary table, 123
Auto Bringover option, 120
comment, 120
effect of checked-out files, 120
file system accessibility, 121
path names, 121
Preview option, 119
Quiet option, 120
Skip SCCS gets option, 120
Verbose option, 120
workspace locks, 122

Putback/Bringover transactions,
introduction, 28

Q
Quiet option, 106, 112, 120

R
-R option, turn off parallelism, 275
Rename, 70
reparenting a workspace, 26, 71 to 76

example, 74
Resolve transaction, 139 to 144

introduction, 34
merging SCCS history files, 161
preparing files for conflict

resolution, 138
summary, 136

restricting parallelism, 278
restrictions on makefiles, 276

S
s.file, 217
SCCS, xiii, 215

branches, 216
concepts, 216
delta, 217
delta branches, 223
delta ID, 217
history file, 217
nodes, 216
terminology, 216
version, 217
viewing output, 241

SCCS history files, 21, 27, 97, 117, 153
branching, 160
common ancestor delta, 138
merging, 33, 153
resolving, 138

s-dot-file, 217
selecting files, transactions, 101
selecting workspaces, 45
Set Default button, 57
SID, 217
Skip SCCS gets option, 106, 112, 120

Index-292 TeamWare Users Guide

Source Code Control System, xiii, 215
spot help, see Magnify Help
starting a project, 145

default FLP, 146
SCCS file location, 145

swap space, 268

T
targets

.NO_PARALLEL: , 279

.PARALLEL: , 279

.WAIT , 276
multiple, 278

Tools menu, 49, 263
transaction model, 95
Transaction Output window, 56, 97
transactions

file lists, 100
file specification, 98

Transactions menu, 49
Transactions window, 51

U
Uncheckout menu item, 228
Undo transaction, 124 to 127

implementation, 125
workspace locks, 125

Unload menu option, 221
unlocking workspaces, 90
Use FileMerge menu item, 225

V
variables, environment, 92

CODEMGR_WS, 92
CODEMGR_WSPATH, 93

Verbose option, 106, 112, 120
version, 217
Version Information pane, 226
VersionTool, 215
VersionTool Props menu item, 231

View button, 222, 238
Command Output menu item, 222
File History menu item, 222
using the History window, 239
viewing a history graph, 239
viewing SCCS file status, 241

View Contents button, 226
View diff Output menu item, 225
View menu, 48

W
windows

Chooser, 55
Transaction Output window, 56
Transactions, 51

workspace
access control, 77, 108, 115
command history log, 87
create, 68
create using Bringover Create, 69
delete, 69
event notification, 83
hierarchies, 24
hierarchy configuration, 146, 151
locking, 90
metadata directory

(Codemgr_wsdata), 65
moving, 70
name fields, 44
removing locks, 91
renaming, 70
reparenting, 71 to 76
selection, 45
viewing locks from GUI, 91

Workspace Create, 68
Workspace Graph pane, 43

double-click action, 47
loading workspaces, 43
pop-up menu, 46

workspace introduction, 21 to 23

